Science.gov

Sample records for diameter-dependent dopant location

  1. Dopant location identification in Nd3+ doped TiO2 nanoparticles

    SciTech Connect

    Li, W.; Frenkel, A.; Woicik, J.; Ni, C.; Shah, S.

    2010-12-03

    Large band gap semiconductors are typically doped in order to enhance their photocatalytic, photovoltaic, and other chemical and optoelectronic properties. The identification of dopant position and its local environment are essential to explore the effect of doping. X ray techniques, including extended x ray absorption fine structure, x ray photoelectron spectroscopy, and x ray diffraction, were performed to analyze the Nd (0 to 1.5 at. %) dopant location and the structural changes associated with the doping in anatase TiO{sub 2} nanoparticles, which were synthesized by metalorganic chemical vapor deposition. Nd ions were determined to have a trivalent chemical state and substitute for Ti{sup 4+} in the TiO{sub 2} structure. The substitutional Nd{sup 3+} ions cause anatase lattice expansion along c direction with a maximum value of 0.15 {angstrom} at 1.5% Nd doping level and the local structure of the dopants changes towards rutile like configuration. The lengths of the nearest neighbor Nd-O and Nd-Ti bonds increase by 0.5-0.8 {angstrom} compared to their counterparts in the pure TiO{sub 2} host structure. The substitutional nature of Nd{sup 3+} dopants explains why they are efficient not only for charge carrier separation but also for visible light absorption in TiO{sub 2}.

  2. Three-dimensional location of a single dopant with atomic precision by aberration-corrected scanning transmission electron microscopy.

    PubMed

    Ishikawa, Ryo; Lupini, Andrew R; Findlay, Scott D; Taniguchi, Takashi; Pennycook, Stephen J

    2014-01-01

    Materials properties, such as optical and electronic response, can be greatly enhanced by isolated single dopants. Determining the full three-dimensional single-dopant defect structure and spatial distribution is therefore critical to understanding and adequately tuning functional properties. Combining quantitative Z-contrast scanning transmission electron microscopy images with image simulations, we show the direct determination of the atomic-scale depth location of an optically active, single atom Ce dopant embedded within wurtzite-type AlN. The method represents a powerful new tool for reconstructing three-dimensional information from a single, two-dimensional image.

  3. Diameter-dependent hydrophobicity in carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Kyakuno, Haruka; Fukasawa, Mamoru; Ichimura, Ryota; Matsuda, Kazuyuki; Nakai, Yusuke; Miyata, Yasumitsu; Saito, Takeshi; Maniwa, Yutaka

    2016-08-01

    Single-wall carbon nanotubes (SWCNTs) are a good model system that provides atomically smooth nanocavities. It has been reported that water-SWCNTs exhibit hydrophobicity depending on the temperature T and the SWCNT diameter D. SWCNTs adsorb water molecules spontaneously in their cylindrical pores around room temperature, whereas they exhibit a hydrophilic-hydrophobic transition or wet-dry transition (WDT) at a critical temperature Twd ≈ 220-230 K and above a critical diameter Dc ≈ 1.4-1.6 nm. However, details of the WDT phenomenon and its mechanism remain unknown. Here, we report a systematic experimental study involving X-ray diffraction, optical microscopy, and differential scanning calorimetry. It is found that water molecules inside thick SWCNTs (D > Dc) evaporate and condense into ice Ih outside the SWCNTs at Twd upon cooling, and the ice Ih evaporates and condenses inside the SWCNTs upon heating. On the other hand, residual water trapped inside the SWCNTs below Twd freezes. Molecular dynamics simulations indicate that upon lowering T, the hydrophobicity of thick SWCNTs increases without any structural transition, while the water inside thin SWCNTs (D < Dc) exhibits a structural transition, forming an ordered ice. This ice has a well-developed hydrogen bonding network adapting to the cylindrical pores of the SWCNTs. Thus, the unusual diameter dependence of the WDT is attributed to the adaptability of the structure of water to the pore dimension and shape.

  4. The diameter-dependent photoelectrochemical performance of silicon nanowires.

    PubMed

    Zhang, Bing-Chang; Wang, Hui; He, Le; Duan, Chun-Yang; Li, Fan; Ou, Xue-Mei; Sun, Bao-Quan; Zhang, Xiao-Hong

    2016-01-25

    We demonstrate the first systematic study of the diameter-dependent photoelectrochemical performance of single silicon nanowires within a broad size range from 200 to 2000 nm. SiNWs with a diameter of 1415 nm exhibit the highest solar energy conversion efficiency, which can be mainly traced to their diameter-dependent light absorption properties.

  5. Diameter Dependent Thermoelectric Properties of Individual SnTe Nanowires

    NASA Astrophysics Data System (ADS)

    Xu, E. Z.; Li, Z.; Martinez, J.; Sinitsyn, N.; Htoon, H.; Li, N.; Swartzentruber, B.; Hollingsworth, J.; Wang, J.; Zhang, S. X.

    2015-03-01

    Tin telluride (SnTe), a newly discovered topological crystalline insulator, has recently been suggested to be a promising thermoelectric material. In this work, we report on a systematic study of the thermoelectric properties of individual single-crystalline SnTe nanowires with different diameters. Measurements of thermopower, electrical conductivity and thermal conductivity were carried out on the same nanowires over a temperature range of 25 - 300 K. While the electrical conductivity does not show a strong diameter dependence, we found that the thermopower increases by a factor of two when the nanowire diameter is decreased from 913 nm to 218 nm. The thermal conductivity of the measured NWs is lower than that of the bulk SnTe, which may be attributed to the enhanced phonon - surface boundary scattering and phonon-defect scattering. We further calculated the temperature dependent figure of merit ZT for each individual nanowire. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Los Alamos National Laboratory (Contract DE-AC52-06NA25396) and Sandia National Laboratories (Contract DE-AC04-94AL85000). We acknowledge support by the Los Alamos LDRD program.

  6. Diameter dependent thermoelectric properties of individual SnTe nanowires

    SciTech Connect

    Xu, E. Z.; Li, Z.; Martinez, J. A.; Sinitsyn, N.; Htoon, H.; Li, Nan; Swartzentruber, B.; Hollingsworth, J. A.; Wang, Jian; Zhang, S. X.

    2015-01-15

    The lead-free compound tin telluride (SnTe) has recently been suggested to be a potentially promising thermoelectric material because of its similar electronic band structure as the well-known lead telluride. Here we report on the first thermoelectric study of individual single crystalline SnTe nanowires (NWs) with different diameters ranging from ~200 to ~1000 nm. Measurements of thermopower S, electrical conductivity σ, and thermal conductivity κ were carried out on the same nanowires over a temperature range of 25 - 300 K. While σ does not show a strong diameter dependence, the thermopower increases by a factor of 2 when the nanowire diameter is decreased from 1000 nm to 200 nm. The thermal conductivities of the measured NWs are only about half of that of the bulk SnTe, which may arise from the enhanced phonon-grain boundary and phonon-defect scatterings. Temperature dependent figure-of-merit ZT was determined and the maximum value at room temperature is ~3 times higher than what was obtained in bulk samples of comparable carrier density.

  7. Diameter dependent thermoelectric properties of individual SnTe nanowires

    DOE PAGES

    Xu, E. Z.; Li, Z.; Martinez, J. A.; Sinitsyn, N.; Htoon, H.; Li, Nan; Swartzentruber, B.; Hollingsworth, J. A.; Wang, Jian; Zhang, S. X.

    2015-01-15

    The lead-free compound tin telluride (SnTe) has recently been suggested to be a potentially promising thermoelectric material because of its similar electronic band structure as the well-known lead telluride. Here we report on the first thermoelectric study of individual single crystalline SnTe nanowires (NWs) with different diameters ranging from ~200 to ~1000 nm. Measurements of thermopower S, electrical conductivity σ, and thermal conductivity κ were carried out on the same nanowires over a temperature range of 25 - 300 K. While σ does not show a strong diameter dependence, the thermopower increases by a factor of 2 when the nanowiremore » diameter is decreased from 1000 nm to 200 nm. The thermal conductivities of the measured NWs are only about half of that of the bulk SnTe, which may arise from the enhanced phonon-grain boundary and phonon-defect scatterings. Temperature dependent figure-of-merit ZT was determined and the maximum value at room temperature is ~3 times higher than what was obtained in bulk samples of comparable carrier density.« less

  8. Location of trivalent lanthanide dopant energy levels in (Lu{sub 0.5}Gd{sub 0.5}){sub 2}O{sub 3}

    SciTech Connect

    Retot, H.; Viana, B.; Bessiere, A.; Galtayries, A.

    2011-06-15

    The location of Ln{sup 3+} dopant energy levels relative to bands in (Lu{sub 0.5}Gd{sub 0.5}){sub 2}O{sub 3} was studied. A several-steps analysis of XPS measurements on heavy lanthanides sesquioxides Ln{sub 2}O{sub 3} (Ln = Gd, Tb, Dy, Er, Tm, Yb, Lu) and on Sc{sub 2}O{sub 3} and Y{sub 2}O{sub 3} reference materials were used to locate Ln{sup 3+} dopant ground state relative to the top of the valence band in (Lu{sub 0.5}Gd{sub 0.5}){sub 2}O{sub 3} within an error bar of {+-}0.4 eV. The agreement between XPS data and model was found improved relative to previous studies. When compared to XPS analysis, prediction based on optical absorption shows a slight underestimation attributed to the lack of precision in Ce{sup 4+} charge transfer band measurement.

  9. Diameter Dependence of Lattice Thermal Conductivity of Single-Walled Carbon Nanotubes: Study from Ab Initio.

    PubMed

    Yue, Sheng-Ying; Ouyang, Tao; Hu, Ming

    2015-10-22

    The effects of temperature, tube length, defects, and surface functionalization on the thermal conductivity (κ) of single-walled carbon nanotubes (SWCNTs) were well documented in literature. However, diameter dependence of thermal conductivity of SWCNTs received less attentions. So far, diverse trends of the diameter dependence have been discussed by different methods and all the previous results were based on empirical interatomic potentials. In this paper, we emphasize to clarify accurate κ values of SWCNTs with different diameters and in-plane κ of graphene. All the studies were under the framework of anharmonic lattice dynamics and Boltzmann transport equation (BTE) based on first principle calculations. We try to infer the right trend of diameter dependent thermal conductivity of SWCNTs. We infer that graphene is the limitation as SWCNT with an infinite diameter. We analyzed the thermal conductivity contributions from each phonon mode in SWCNTs to explain the trend. Meanwhile, we also identify the extremely low thermal conductivity of ultra-thin SWCNTs.

  10. Diameter-dependent thermoelectric figure of merit in single-crystalline Bi nanowires

    NASA Astrophysics Data System (ADS)

    Kim, Jeongmin; Lee, Seunghyun; Brovman, Yuri M.; Kim, Philip; Lee, Wooyoung

    2015-03-01

    The diameter-dependent thermoelectric properties of individual single-crystalline Bi nanowires grown by the on-film formation of nanowires method have been investigated. The electrical resistivity, Seebeck coefficient, and thermal conductivity were measured as functions of the nanowire diameter using an individual nanowire device. The thermoelectric figure of merit (ZT) calculated from the measured thermoelectric properties shows an increase from the bulk value to a maximum value of 0.28 at 109 nm-diameter, followed by a decrease upon further decreasing the diameter. This non-monotonic diameter dependence of ZT in Bi nanowires reveals simultaneous positive and negative contributions to the thermoelectric efficiency, driven by the change in intrinsic properties, which originates from the diameter-dependent classical and quantum size effects.The diameter-dependent thermoelectric properties of individual single-crystalline Bi nanowires grown by the on-film formation of nanowires method have been investigated. The electrical resistivity, Seebeck coefficient, and thermal conductivity were measured as functions of the nanowire diameter using an individual nanowire device. The thermoelectric figure of merit (ZT) calculated from the measured thermoelectric properties shows an increase from the bulk value to a maximum value of 0.28 at 109 nm-diameter, followed by a decrease upon further decreasing the diameter. This non-monotonic diameter dependence of ZT in Bi nanowires reveals simultaneous positive and negative contributions to the thermoelectric efficiency, driven by the change in intrinsic properties, which originates from the diameter-dependent classical and quantum size effects. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr06412g

  11. Determining exact location of Group V dopants below the Si(001):H surface from scanning tunnelling spectroscopy and density functional theory

    NASA Astrophysics Data System (ADS)

    Brazdova, Veronika; Sinthiptharakoon, Kitiphat; Studer, Philipp; Bowler, David R.; Rahnejat, Adam; Curson, Neil J.; Schofield, Steven; Fisher, Andrew J.

    2015-03-01

    Group V impurities in silicon provide a way to tailor properties of electronic materials. The magnetically quiet environment that silicon provides for the impurity spins has also lead to new applications in coherent quantum devices. In both the ultimate classical devices and in future quantum computers the exact position of the dopants near surfaces and interfaces will determine the functionality: the ability to control and monitor those positions is key in these technologies. We precisely determine the substitutional sites of neutral As dopants that lie between 4.2 A and 15.0 A below the hydrogenated Si(001) surface, using a combination of density functional theory and low-temperature scanning tunnelling microscopy. We describe the interaction of the donor-electron state with the surface. Supported by the EPSRC Grant COMPASSS.

  12. Diameter-dependent ion transport through the interior of isolated single-walled carbon nanotubes.

    PubMed

    Choi, Wonjoon; Ulissi, Zachary W; Shimizu, Steven F E; Bellisario, Darin O; Ellison, Mark D; Strano, Michael S

    2013-01-01

    Nanopores that approach molecular dimensions demonstrate exotic transport behaviour and are theoretically predicted to display discontinuities in the diameter dependence of interior ion transport because of structuring of the internal fluid. No experimental study has been able to probe this diameter dependence in the 0.5-2 nm diameter regime. Here we observe a surprising fivefold enhancement of stochastic ion transport rates for single-walled carbon nanotube centered at a diameter of approximately 1.6 nm. An electrochemical transport model informed from literature simulations is used to understand the phenomenon. We also observe rates that scale with cation type as Li(+)>K(+)>Cs(+)>Na(+) and pore blocking extent as K(+)>Cs(+)>Na(+)>Li(+) potentially reflecting changes in hydration shell size. Across several ion types, the pore-blocking current and inverse dwell time are shown to scale linearly at low electric field. This work opens up new avenues in the study of transport effects at the nanoscale.

  13. Diameter Dependence of Lattice Thermal Conductivity of Single-Walled Carbon Nanotubes: Study from Ab Initio

    PubMed Central

    Yue, Sheng-Ying; Ouyang, Tao; Hu, Ming

    2015-01-01

    The effects of temperature, tube length, defects, and surface functionalization on the thermal conductivity (κ) of single-walled carbon nanotubes (SWCNTs) were well documented in literature. However, diameter dependence of thermal conductivity of SWCNTs received less attentions. So far, diverse trends of the diameter dependence have been discussed by different methods and all the previous results were based on empirical interatomic potentials. In this paper, we emphasize to clarify accurate κ values of SWCNTs with different diameters and in-plane κ of graphene. All the studies were under the framework of anharmonic lattice dynamics and Boltzmann transport equation (BTE) based on first principle calculations. We try to infer the right trend of diameter dependent thermal conductivity of SWCNTs. We infer that graphene is the limitation as SWCNT with an infinite diameter. We analyzed the thermal conductivity contributions from each phonon mode in SWCNTs to explain the trend. Meanwhile, we also identify the extremely low thermal conductivity of ultra-thin SWCNTs. PMID:26490342

  14. Efficiency of dopant-induced ignition of helium nanoplasmas

    NASA Astrophysics Data System (ADS)

    Heidenreich, A.; Grüner, B.; Rometsch, M.; Krishnan, S. R.; Stienkemeier, F.; Mudrich, M.

    2016-07-01

    Helium nanodroplets irradiated by intense near-infrared laser pulses ignite and form highly ionized nanoplasmas even at laser intensities where helium is not directly ionized by the optical field, provided the droplets contain a few dopant atoms. We present a combined theoretical and experimental study of the He nanoplasma ignition dynamics for various dopant species. We find that the efficiency of dopants to ignite a nanoplasma in helium droplets strongly varies and mostly depends on (i) the number of free electrons each dopant donates upon ionization, (ii) the pick-up process, and (iii) the hitherto unexplored effect of the dopant location in or on the droplet.

  15. Successful location of tin dopant cations on surface sites of anatase-type TiO2 crystallites evidenced by 119Sn Mössbauer spectroscopic probe and XPS techniques

    NASA Astrophysics Data System (ADS)

    Astashkin, R. A.; Fabritchnyi, P. B.; Afanasov, M. I.; Korolenko, M. V.; Wattiaux, A.; Bordère, S.; Labrugère, C.; Delmas, C.

    2013-11-01

    The present study provides the first experimental evidence for the stabilization of tin dopant cations immediately on the surface of an oxide having a tetragonal structure. 119Sn Mössbauer spectra of the dopant, introduced by air annealing into the bulk of anatase microcrystals, showed that it was located, in the tetravalent state, in somewhat distorted octahedral sites of a unique type. On the contrary, the reduced tin species, formed upon subsequent hydrogen annealing the Sn4+-doped samples, are found to occupy different sites being characterized by two sets of the isomer shift δ and quadrupole splitting ΔEQ values (δI = 3.25 mm s-1, ΔEQI = 1.75 mm s-1; and δII = 2.85 mm s-1, ΔEQII = 1.71 mm s-1). Either of them implies both the divalent state of tin atoms and their presence at low-coordination sites that can be assigned to the surface of crystallites. Mössbauer spectra of Sn4+←2+ daughter ions, formed upon contact with air of Sn2+, consist of a symmetrically broadened peak characterized by only slightly different average values of both the isomer shift (<δ> = 0.07 mm s-1) and quadrupole splitting (<ΔEQ> = 0.50 mm s-1), as compared to the δ and ΔEQ values for the bulk-located Sn4+. However, considerable broadening of Sn4+←2+ doublet components (Γ = 0.97 mm s-1) allows one to suggest that these secondary formed ions remain distributed over the non equivalent sites inherited from their Sn2+ precursors. The occurrence of Sn4+←2+ at surface sites is independently proven by XPS measurements that revealed a greater than 10-fold enrichment with tin of 3-5 nm thick surface layers.

  16. Introduction of a nozzle throat diameter dependency into the SRM dust size distribution

    NASA Astrophysics Data System (ADS)

    Stabroth, S.; Wegener, P.; Oswald, M.; Wiedemann, C.; Klinkrad, H.; Vörsmann, P.

    2006-01-01

    The ESA space debris population model MASTER (Meteoroid and Space Debris Terrestrial Environment Reference) considers 1032 firings of solid rocket motors (SRM) with the associated generation of SRM slag and dust particles in its current version. The resulting dust population is a major contribution to the sub-millimetre size space debris environment in Earth orbit. For the modelling of each SRM dust release event a detailed knowledge of the particle size distribution is essential. However, the knowledge of the particle sizes after passing the nozzle throat is poor. The current dust implementation in the MASTER model assumes a fixed size distribution which is identically used for both large upper stages and small apogee motors. This assumption can lead to an over-representation of large dust particles in regions, where mainly apogee motors are used (i.e., Geostationary Earth Orbit) and an under-representation in lower altitudes, where large stages predominate. In this paper, a concept for the improvement of SRM dust size modelling is discussed. It will be shown that an introduction of a nozzle throat diameter dependency into the dust size distribution enables a more precise modelling of SRM dust release events. The improved SRM dust size distribution is going to be used by the MASTER-2005 space debris model which is currently under development by the Institute of Aerospace Systems and QinetiQ (UK) under ESA contract.

  17. Diameter Dependence of Giant Magneto-Impedance Effect in Co-BASED Melt Extracted Amorphous Wires

    NASA Astrophysics Data System (ADS)

    Zhang, Shuling; Xing, Dawei; Sun, Jianfei

    2011-06-01

    Naked Co68.25Fe4.5Si12.25B15 amorphous wires of 67μm, 56μm, 52μm, 47μm and 31μm in diameter are produced by melt extraction method. Their giant magneto impedance (GMI) effect is investigated at frequencies from 0.1MHz to13MHz. Significant diameter dependence of GMI effect is studied. Thicker wires exhibit strong GMI effect and have clear characteristic frequencies at which their impedance ratio ΔZ/Z are largest. Largest impedance response is obtained in 67μm wires with the ΔZ/Z of 442% and field sensitivity of 71.5%/Oe. Wires of 31μm in diameter show increasing ΔZ/Z as frequency and have a steady field sensitivity of 30.7-33.6%/Oe in a wide frequency range from 3MHz to 13MHz. The different frequency dependence of GMI effect is discussed in the light of the skin effect. These amorphous wires are suitable for applications in high performance field sensors and can fit different demand.

  18. Introduction of a Nozzle Throat Diameter Dependency into the SRM Dust Size Distribution

    NASA Astrophysics Data System (ADS)

    Stabroth, S.; Wegener, P.; Oswald, M.; Wiedemann, C.; Klinkrad, H.; Vörsmann, P.

    In the exhaust gas of SRM (Solid Rocket Motor) firings, a considerable amount of very small aluminium oxide (Al2O3) particles is generally included. In order to increase motor performance and to dampen burn instabilities, aluminium is used as an additive in the propellant. During the burn process this aluminium is transformed into Al2O3. A large number of small dust particles (< 1 μ m up to about 50 μ m) is generated continuously during a burn. At the end of a burn, a second group of much larger fragments from an Al2O3 slag pool clustering inside the motor leaves the nozzle. The ESA space debris population model MASTER-2001 considers 1,032 SRM firings with the associated generation of SRM slag and dust. The resulting Al2O3 population is a major contribution to the micron size space debris environment in Earth orbit. For the modelling of each SRM dust release event a detailed knowledge of the size distribution is essential. However, the knowledge of the particle size distribution after passing the nozzle throat is poor. The current dust implementation in the MASTER-2001 space debris model therefore assumes an average motor size, since information on the actual motor size is normally not available in common databases. Thus, a fixed distribution is identically used for large upper stages as well as small apogee motors. This assumption can lead to an over-representation of large dust in regions, where mainly apogee motors are used (i.e. GEO) and an under-representation in lower altitudes, where large stages predominate. In this paper, a concept for the improvement of SRM dust size modelling is discussed. It will be shown that an introduction of a nozzle throat diameter dependency into the dust size distribution could lead to a more precise modelling of SRM dust release events. Investigations showed that there is a good correlation between the propellant mass flow and the nozzle's throat diameter, which is in turn the determining term for the actual diameter

  19. Limits in detecting an individual dopant atom embedded in a crystal.

    PubMed

    Mittal, Anudha; Mkhoyan, K Andre

    2011-07-01

    Annular dark field scanning transmission electron microscope (ADF-STEM) images allow detection of individual dopant atoms located on the surface of or inside a crystal. Contrast between intensities of an atomic column containing a dopant atom and a pure atomic column in ADF-STEM image depends strongly on specimen parameters and microscope conditions. Analysis of multislice-based simulations of ADF-STEM images of crystals doped with one substitutional dopant atom for a wide range of crystal thicknesses, types and locations of dopant atom inside the crystal, and crystals with different atoms reveal some interesting trends and non-intuitive behaviours in visibility of the dopant atom. The results provide practical guidelines to determine the optimal microscope and specimen conditions to detect a dopant atom in experiment, obtain information about the 3-d location of a dopant atom, and recognize cases where detecting a single dopant atom is not possible.

  20. Spatial metrology of dopants in silicon with exact lattice site precision.

    PubMed

    Usman, M; Bocquel, J; Salfi, J; Voisin, B; Tankasala, A; Rahman, R; Simmons, M Y; Rogge, S; Hollenberg, L C L

    2016-09-01

    Scaling of Si-based nanoelectronics has reached the regime where device function is affected not only by the presence of individual dopants, but also by their positions in the crystal. Determination of the precise dopant location is an unsolved problem in applications from channel doping in ultrascaled transistors to quantum information processing. Here, we establish a metrology combining low-temperature scanning tunnelling microscopy (STM) imaging and a comprehensive quantum treatment of the dopant-STM system to pinpoint the exact coordinates of the dopant in the Si crystal. The technique is underpinned by the observation that STM images contain atomic-sized features in ordered patterns that are highly sensitive to the STM tip orbital and the absolute dopant lattice site. The demonstrated ability to determine the locations of P and As dopants to 5 nm depths will provide critical information for the design and optimization of nanoscale devices for classical and quantum computing applications. PMID:27271965

  1. Spatial metrology of dopants in silicon with exact lattice site precision

    NASA Astrophysics Data System (ADS)

    Usman, M.; Bocquel, J.; Salfi, J.; Voisin, B.; Tankasala, A.; Rahman, R.; Simmons, M. Y.; Rogge, S.; Hollenberg, L. C. L.

    2016-09-01

    Scaling of Si-based nanoelectronics has reached the regime where device function is affected not only by the presence of individual dopants, but also by their positions in the crystal. Determination of the precise dopant location is an unsolved problem in applications from channel doping in ultrascaled transistors to quantum information processing. Here, we establish a metrology combining low-temperature scanning tunnelling microscopy (STM) imaging and a comprehensive quantum treatment of the dopant-STM system to pinpoint the exact coordinates of the dopant in the Si crystal. The technique is underpinned by the observation that STM images contain atomic-sized features in ordered patterns that are highly sensitive to the STM tip orbital and the absolute dopant lattice site. The demonstrated ability to determine the locations of P and As dopants to 5 nm depths will provide critical information for the design and optimization of nanoscale devices for classical and quantum computing applications.

  2. SU-F-18C-11: Diameter Dependency of the Radial Dose Distribution in a Long Polyethylene Cylinder

    SciTech Connect

    Bakalyar, D; McKenney, S; Feng, W

    2014-06-15

    Purpose: The radial dose distribution in the central plane of a long cylinder following a long CT scan depends upon the diameter and composition of the cylinder. An understanding of this behavior is required for determining the spatial average of the dose in the central plane. Polyethylene, the material for construction of the TG200/ICRU phantom (30 cm in diameter) was used for this study. Size effects are germane to the principles incorporated in size specific dose estimates (SSDE); thus diameter dependency was explored as well. Method: ssuming a uniform cylinder and cylindrically symmetric conditions of irradiation, the dose distribution can be described using a radial function. This function must be an even function of the radial distance due to the conditions of symmetry. Two effects are accounted for: The direct beam makes its weakest contribution at the center while the contribution due to scatter is strongest at the center and drops off abruptly at the outer radius. An analytic function incorporating these features was fit to Monte Carlo results determined for infinite polyethylene cylinders of various diameters. A further feature of this function is that it is integrable. Results: Symmetry and continuity dictate a local extremum at the center which is a minimum for the larger sizes. The competing effects described above can Resultin an absolute maximum occurring between the center and outer edge of the cylinders. For the smallest cylinders, the maximum dose may occur at the center. Conclusion: An integrable, analytic function can be used to characterize the radial dependency of dose for cylindrical CT phantoms of various sizes. One use for this is to help determine average dose distribution over the central cylinder plane when equilibrium dose has been reached.

  3. Spatial metrology of dopants in silicon with exact lattice site precision

    NASA Astrophysics Data System (ADS)

    Usman, M.; Bocquel, J.; Salfi, J.; Voisin, B.; Tankasala, A.; Rahman, R.; Simmons, M. Y.; Rogge, S.; Hollenberg, L. C. L.

    2016-09-01

    Scaling of Si-based nanoelectronics has reached the regime where device function is affected not only by the presence of individual dopants, but also by their positions in the crystal. Determination of the precise dopant location is an unsolved problem in applications from channel doping in ultrascaled transistors to quantum information processing. Here, we establish a metrology combining low-temperature scanning tunnelling microscopy (STM) imaging and a comprehensive quantum treatment of the dopant–STM system to pinpoint the exact coordinates of the dopant in the Si crystal. The technique is underpinned by the observation that STM images contain atomic-sized features in ordered patterns that are highly sensitive to the STM tip orbital and the absolute dopant lattice site. The demonstrated ability to determine the locations of P and As dopants to 5 nm depths will provide critical information for the design and optimization of nanoscale devices for classical and quantum computing applications.

  4. Dopant Distribution in NIF Beryllium Ablator Capsules

    NASA Astrophysics Data System (ADS)

    Huang, H.; Xu, H. W.; Youngblood, K. P.; Wall, D. R.; Stephens, R. B.; Moreno, K. A.; Nikroo, A.; Salmonson, J. D.; Haan, S. W.; Wu, K. J.; Wang, Y. M.; Hamza, A. V.

    2012-10-01

    Good implosion performance requires capsule ablator material with spherically uniform x-ray opacity, which is controlled by one of several dopants (Cu, Si, Al, etc.) in the Be shell. During production, the dopant concentration is radially stepped. However, the various Be-dopant interactions result in vastly different dopant distribution patterns, some quite inhomogeneous. We have characterized these structures and established the phenomenological basis and the magnitudes of the inhomogeneity both in spatial length scales and in atomic percent. We will discuss the case of inhomogeneous Cu diffusion in detail, followed by discussions of other dopants and the estimate of the impact of these structures on target implosion.

  5. Interface engineering through atomic dopants in HfO2-based gate stacks

    NASA Astrophysics Data System (ADS)

    Zhu, H.; Ramanath, Ganpati; Ramprasad, R.

    2013-09-01

    Controlling the effective work function (ϕeff) of metal electrodes is critical and challenging in metal-oxide-semiconductor field effect transistors. The introduction of atomic dopants (also referred to as "capping" layers) is an emerging approach to controllably modify ϕeff. Here, we investigate the energetic preference of the location of La, Y, Sc, Al, Ce, Ti, and Zr as atomic dopants within a model Pt/HfO2/Si stack and the resulting variation of ϕeff using density functional theory calculations. Our results indicate that all the considered atomic dopants prefer to be situated at the interfaces. The dopant-induced variation of ϕeff is found to be strongly correlated to the dopant electronegativity and location. Dopants at the metal/HfO2 interface decrease ϕeff with increasing dopant electronegativity, while a contrary trend is seen for dopants at the Si/HfO2 interface. These results are consistent with available experimental data for La, Al, and Ti doping. Our findings, especially the identified correlations, have important implications for the further optimization and "scaling down" of transistors.

  6. Interactions of Sn2+ dopant ions located on surface sites of anatase-type TiO2 with adsorbed H2S molecules studied using 119Sn Mössbauer spectroscopic probe

    NASA Astrophysics Data System (ADS)

    Fabritchnyi, P. B.; Afanasov, M. I.; Astashkin, R. A.; Wattiaux, A.; Labrugère, C.

    2014-11-01

    Information provided by 119Sn2+ Mössbauer probe ions, located on surface sites of anatase-type TiO2 microcrystals exposed, at room temperature, to a H2S/H2 mixture, has permitted to conclude that the interaction of H2S molecules with the substrate surface leads to the dissociation of a fraction of the absorbate molecules. This gives rise to the formation of elemental sulfur which oxidizes the neighboring Sn2+ ions, the produced Sn4+ ions being found coordinated only by S2- anions. Subsequent exposure to ambient air is shown to result in the oxidation of S2- ions, yielding both S0 and SO42--like species, with concomitant stabilization of Sn4+ ions in coordination polyhedra where they are surrounded by only oxygen anions.

  7. Location, Location, Location!

    ERIC Educational Resources Information Center

    Ramsdell, Kristin

    2004-01-01

    Of prime importance in real estate, location is also a key element in the appeal of romances. Popular geographic settings and historical periods sell, unpopular ones do not--not always with a logical explanation, as the author discovered when she conducted a survey on this topic last year. (Why, for example, are the French Revolution and the…

  8. Transient enhanced diffusion and gettering of dopants in ion implanted silicon

    SciTech Connect

    Pennycook, S.J.; Narayan, J.; Culbertson, R.J.

    1984-01-01

    We have studied in detail the transient enhanced diffusion observed during furnace or rapid-thermal-annealing of ion-implanted Si. We show that the effect originates in the trapping of Si atoms by dopant atoms during implantation, which are retained during solid-phase-epitaxial (SPE) growth but released by subsequent annealing to cause a transient dopant precipitation or profile broadening. The interstitials condense to form a band of dislocation loops located at the peak of the dopant profile, which may be distinct from the band formed at the original amorphous/crystalline interface. The band can develop into a network and effectively getter the dopant. We discuss the conditions under which the various effects may or may not be observed, and discuss conflicting observations on As/sup +/ implanted Si.

  9. Numerical algorithms for the atomistic dopant profiling of semiconductor materials

    NASA Astrophysics Data System (ADS)

    Aghaei Anvigh, Samira

    In this dissertation, we investigate the possibility to use scanning microscopy such as scanning capacitance microscopy (SCM) and scanning spreading resistance microscopy (SSRM) for the "atomistic" dopant profiling of semiconductor materials. For this purpose, we first analyze the discrete effects of random dopant fluctuations (RDF) on SCM and SSRM measurements with nanoscale probes and show that RDF significantly affects the differential capacitance and spreading resistance of the SCM and SSRM measurements if the dimension of the probe is below 50 nm. Then, we develop a mathematical algorithm to compute the spatial coordinates of the ionized impurities in the depletion region using a set of scanning microscopy measurements. The proposed numerical algorithm is then applied to extract the (x, y, z) coordinates of ionized impurities in the depletion region in the case of a few semiconductor materials with different doping configuration. The numerical algorithm developed to solve the above inverse problem is based on the evaluation of doping sensitivity functions of the differential capacitance, which show how sensitive the differential capacitance is to doping variations at different locations. To develop the numerical algorithm we first express the doping sensitivity functions in terms of the Gâteaux derivative of the differential capacitance, use Riesz representation theorem, and then apply a gradient optimization approach to compute the locations of the dopants. The algorithm is verified numerically using 2-D simulations, in which the C-V curves are measured at 3 different locations on the surface of the semiconductor. Although the cases studied in this dissertation are much idealized and, in reality, the C-V measurements are subject to noise and other experimental errors, it is shown that if the differential capacitance is measured precisely, SCM measurements can be potentially used for the "atomistic" profiling of ionized impurities in doped semiconductors.

  10. Development of dopant-free conductive bioelastomers

    PubMed Central

    Xu, Cancan; Huang, Yihui; Yepez, Gerardo; Wei, Zi; Liu, Fuqiang; Bugarin, Alejandro; Tang, Liping; Hong, Yi

    2016-01-01

    Conductive biodegradable materials are of great interest for various biomedical applications, such as tissue repair and bioelectronics. They generally consist of multiple components, including biodegradable polymer/non-degradable conductive polymer/dopant, biodegradable conductive polymer/dopant or biodegradable polymer/non-degradable inorganic additives. The dopants or additives induce material instability that can be complex and possibly toxic. Material softness and elasticity are also highly expected for soft tissue repair and soft electronics. To address these concerns, we designed a unicomponent dopant-free conductive polyurethane elastomer (DCPU) by chemically linking biodegradable segments, conductive segments, and dopant molecules into one polymer chain. The DCPU films which had robust mechanical properties with high elasticity and conductivity can be degraded enzymatically and by hydrolysis. It exhibited great electrical stability in physiological environment with charge. Mouse 3T3 fibroblasts survived and proliferated on these films exhibiting good cytocompatibility. Polymer degradation products were non-toxic. DCPU could also be processed into a porous scaffold and in an in vivo subcutaneous implantation model, exhibited good tissue compatibility with extensive cell infiltration over 2 weeks. Such biodegradable DCPU with good flexibility and elasticity, processability, and electrical stability may find broad applications for tissue repair and soft/stretchable/wearable bioelectronics. PMID:27686216

  11. Enhancing Dopant Solubility via Epitaxial Surfactant Growth

    SciTech Connect

    Zhang, L.; Yan, Y.; Wei, S.-H.

    2009-01-01

    A general concept for enhancing dopant solubility via epitaxial surfactant growth is proposed. The key of the concept is to find the appropriate surfactants that generate high (low) levels that can transfer electrons (holes) to dopant acceptor (donor) levels in p-type (n-type) doping, thus significantly lowering the formation energy of dopants. Using first-principles density-functional calculations, our concept explains excellently the recently discovered dual-surfactant effect of Sb and H on enhancing Zn doping in epitaxially grown GaP(100) thin film and suggests that sole surfactant Te can also induce enhancement of N solubility in ZnSe(100) film. We also proposed the surfactants for enhancing p-type doing of ZnO with epitaxial growth with (000{bar 1}) surface. General rules for selecting surfactants for enhancing both p-type and n-type dopings are provided.

  12. Synthesis of chiral dopants based on carbohydrates.

    PubMed

    Tsuruta, Toru; Koyama, Tetsuo; Yasutake, Mikio; Hatano, Ken; Matsuoka, Koji

    2014-07-01

    Chiral dopants based on carbohydrates for nematic liquid crystals were synthesized from D-glucose, and their helical twisting power (HTP) values were evaluated. The chiral dopants induced helices in the host nematic liquid crystals. An acetyl derivative having an ether-type glycosidic linkage between carbohydrate and a mesogenic moiety showed the highest HTP value of 10.4 μm(-1), while an acetyl derivative having an anomeric ester-type linkage did not show any HTP. It was surprising that this molecule had no HTP despite the presence of chirality in the molecule. A relationship between HTP and specific rotation was not observed in this study.

  13. Liquid-phase electroepitaxy - Dopant segregation

    NASA Technical Reports Server (NTRS)

    Lagowski, J.; Jastrzebski, L.; Gatos, H. C.

    1980-01-01

    A theoretical model is presented which accounts for the dopant segregation in liquid-phase electroepitaxy in terms of dopant transport in the liquid phase (by electromigration and diffusion), the growth velocity, and the Peltier effect at the substrate-solution interface. The contribution of dopant electromigration to the magnitude of the effective segregation coefficient is dominant in the absence of convection; the contribution of the Peltier effect becomes significant only in the presence of pronounced convection. Quantitative expressions which relate the segregation coefficient to the growth parameters also permit the determination of the diffusion constant and electromigration mobility of the dopant in the liquid phase. The model was found to be in good agreement with the measured segregation characteristics of Sn in the electroepitaxial growth of GaAs from Ga-As solutions. For Sn in Ga-As solution at 900 C the diffusion constant was found to be 4 x 10 to the -5 sq cm/s and the electromigration velocity (toward the substrate with a positive polarity 2 x 10 to the -5 cm/s current density of 10 A/sq cm.

  14. Atom-probe for FinFET dopant characterization.

    PubMed

    Kambham, A K; Mody, J; Gilbert, M; Koelling, S; Vandervorst, W

    2011-05-01

    With the continuous shrinking of transistors and advent of new transistor architectures to keep in pace with Moore's law and ITRS goals, there is a rising interest in multigate 3D-devices like FinFETs where the channel is surrounded by gates on multiple surfaces. The performance of these devices depends on the dimensions and the spatial distribution of dopants in source/drain regions of the device. As a result there is a need for new metrology approach/technique to characterize quantitatively the dopant distribution in these devices with nanometer precision in 3D. In recent years, atom probe tomography (APT) has shown its ability to analyze semiconductor and thin insulator materials effectively with sub-nm resolution in 3D. In this paper we will discuss the methodology used to study FinFET-based structures using APT. Whereas challenges and solutions for sample preparation linked to the limited fin dimensions already have been reported before, we report here an approach to prepare fin structures for APT, which based on their processing history (trenches filled with Si) are in principle invisible in FIB and SEM. Hence alternative solutions in locating and positioning them on the APT-tip are presented. We also report on the use of the atom probe results on FinFETs to understand the role of different dopant implantation angles (10° and 45°) when attempting conformal doping of FinFETs and provide a quantitative comparison with alternative approaches such as 1D secondary ion mass spectrometry (SIMS) and theoretical model values.

  15. Dopant Incorporation Efficiency in CVD Silicon Carbide Epilayers

    NASA Technical Reports Server (NTRS)

    Larkin, D. J.

    1996-01-01

    In order to ensure reproducible and reliable SiC semiconductor device characteristics, controlled dopant incorporation must be accomplished. Some of the many factors which greatly influence dopant incorporation are the site-competition effect, SiC(0001) substrate polarity, substrate temperature, and the dopant-source reactor concentration. In this paper, dopant incorporation is considered and compared for various dopants in the context of dopant incorporation efficiency. By using secondary ion mass spectrometry (SIMS), the relative dopant incorporation efficiencies were calculated by dividing the SIMS determined dopant concentration in the resulting epitaxial layer by the intentional gas phase dopant concentration used during the SiC CVD. Specifically, the relative magnitudes of dopant incorporation efficiencies for nitrogen, phosphorus, and boron in 6H-SiC (0001) Si-face epitaxial layers are compared as a function of the site-competition effect and the dopant-source reactor concentrations. This serves as a first approximation for comparison of the relative 'doping potencies' of some common dopants used in SiC CVD epitaxial growth.

  16. Charge transfer and penning ionization of dopants in or on helium nanodroplets exposed to EUV radiation.

    PubMed

    Buchta, Dominic; Krishnan, Siva R; Brauer, Nils B; Drabbels, Marcel; O'Keeffe, Patrick; Devetta, Michele; Di Fraia, Michele; Callegari, Carlo; Richter, Robert; Coreno, Marcello; Prince, Kevin C; Stienkemeier, Frank; Moshammer, Robert; Mudrich, Marcel

    2013-05-30

    Helium nanodroplets are widely used as a cold, weakly interacting matrix for spectroscopy of embedded species. In this work, we excite or ionize doped He droplets using synchrotron radiation and study the effect onto the dopant atoms depending on their location inside the droplets (rare gases) or outside at the droplet surface (alkali metals). Using photoelectron-photoion coincidence imaging spectroscopy at variable photon energies (20-25 eV), we compare the rates of charge-transfer to Penning ionization of the dopants in the two cases. The surprising finding is that alkali metals, in contrast to the rare gases, are efficiently Penning ionized upon excitation of the (n = 2)-bands of the host droplets. This indicates rapid migration of the excitation to the droplet surface, followed by relaxation, and eventually energy transfer to the alkali dopants.

  17. Silicide formation and dopant diffusion in silicon

    NASA Astrophysics Data System (ADS)

    Wittmer, M.; Fahey, P.; Cotte, J.; Iyer, S. S.; Scilla, G. J.

    1992-05-01

    Recently, we reported that formation of Pd2Si from Pd induced asymmetric diffusion of buried dopant marker layers in the silicon substrate at surprisingly low temperatures (~200 °C) [M. Wittmer, P. Fahey, G. J. Scilla, S. S. Iyer, and M. Tejwani, Phys. Rev. Lett. 66, 632 (1991)]. We concluded that asymmetric diffusion could not be readily explained within the framework of existing diffusion theories. In this investigation we have examined in detail whether the observed asymmetries in profile shapes after silicidation could be induced by the secondary-ion mass spectroscopy (SIMS) profiling technique; however, we were unable to show that asymmetries can be attributed solely to the SIMS measurements. We have also utilized high-resolution Rutherford backscattering to confirm with another profiling technique that dopant diffusion does indeed occur as a result of the silicidation process.

  18. Deposition of dopant impurities and pulsed energy drive-in

    DOEpatents

    Wickboldt, P.; Carey, P.G.; Smith, P.M.; Ellingboe, A.R.

    1999-06-29

    A semiconductor doping process which enhances the dopant incorporation achievable using the Gas Immersion Laser Doping (GILD) technique is disclosed. The enhanced doping is achieved by first depositing a thin layer of dopant atoms on a semiconductor surface followed by exposure to one or more pulses from either a laser or an ion-beam which melt a portion of the semiconductor to a desired depth, thus causing the dopant atoms to be incorporated into the molten region. After the molten region recrystallizes the dopant atoms are electrically active. The dopant atoms are deposited by plasma enhanced chemical vapor deposition (PECVD) or other known deposition techniques. 2 figs.

  19. Deposition of dopant impurities and pulsed energy drive-in

    DOEpatents

    Wickboldt, Paul; Carey, Paul G.; Smith, Patrick M.; Ellingboe, Albert R.

    2008-01-01

    A semiconductor doping process which enhances the dopant incorporation achievable using the Gas Immersion Laser Doping (GILD) technique. The enhanced doping is achieved by first depositing a thin layer of dopant atoms on a semiconductor surface followed by exposure to one or more pulses from either a laser or an ion-beam which melt a portion of the semiconductor to a desired depth, thus causing the dopant atoms to be incorporated into the molten region. After the molten region recrystallizes the dopant atoms are electrically active. The dopant atoms are deposited by plasma enhanced chemical vapor deposition (PECVD) or other known deposition techniques.

  20. Deposition of dopant impurities and pulsed energy drive-in

    DOEpatents

    Wickboldt, Paul; Carey, Paul G.; Smith, Patrick M.; Ellingboe, Albert R.

    1999-01-01

    A semiconductor doping process which enhances the dopant incorporation achievable using the Gas Immersion Laser Doping (GILD) technique. The enhanced doping is achieved by first depositing a thin layer of dopant atoms on a semiconductor surface followed by exposure to one or more pulses from either a laser or an ion-beam which melt a portion of the semiconductor to a desired depth, thus causing the dopant atoms to be incorporated into the molten region. After the molten region recrystallizes the dopant atoms are electrically active. The dopant atoms are deposited by plasma enhanced chemical vapor deposition (PECVD) or other known deposition techniques.

  1. Quantum interference and correlations in single dopants and exchange-coupled dopants in silicon

    NASA Astrophysics Data System (ADS)

    Salfi, Joe

    2015-03-01

    Quantum electronics exploiting the highly coherent states of single dopants in silicon invariably requires interactions between states and interfaces, and inter-dopant coupling by exchange interactions. We have developed a low temperature STM scheme for spatially resolved single-electron transport in a device-like environment, providing the first wave-function measurements of single donors and exchange-coupled acceptors in silicon. For single donors, we directly observed valley quantum interference due to linear superpositions of the valleys, and found that valley degrees of freedom are highly robust to the symmetry-breaking perturbation of nearby (3 nm) surfaces. For exchange-coupled acceptors, we measured the singlet-triplet splitting, and from the spatial tunneling probability, extracted enough information about the 2-body wavefunction amplitudes to determine the entanglement entropy, a measure of the quantum inseparability (quantum correlations) generated by the interactions between indistinguishable particles. Entanglement entropy of the J=3/2 holes was found to increase with increasing dopant distance, as Coulomb interactions overcome tunneling, coherently localizing spin towards a Heitler-London singlet, mimicing S=1/2 particles. In the future these capabilities will be exploited to peer into the inner workings of few-dopant quantum devices and shed new light on multi-dopant correlated states, engineered atom-by-atom. Work done collaboratively with J. A. Mol, R. Rahman, G. Klimeck, M. Y. Simmons, L. C. L. Hollenberg, and S. Rogge. Primary financial support from the ARC.

  2. Dopant materials used in the microelectronics industry

    SciTech Connect

    Lewis, D.R.

    1986-01-01

    Advances in microelectronics have transformed the occupational environment of the electronics industry. Large quantities of potentially hazardous materials are now in routine use as integrated circuit manufacturing becomes more complex and specialized. While the acute hazards associated with these dopant materials are clear, the subacute and chronic effects are less evident. Many of these elements are trace elements in humans and may play roles in health and disease in minute concentrations. Early detection and prevention of adverse health effects requires both astute medical surveillance, industrial hygiene, and safety engineering efforts to eliminate the sources of exposure to workers. 24 references.

  3. Energetics of neutral Si dopants in InGaAs: An ab initio and semiempirical Tersoff model study

    NASA Astrophysics Data System (ADS)

    Lee, Cheng-Wei; Lukose, Binit; Thompson, Michael O.; Clancy, Paulette

    2015-03-01

    A roadblock in utilizing III-V semiconductors for scaled-down electronic devices is their poor dopant activation. As a first step to unravel the dopant behavior in InGaAs, we studied the tendency for dopant formation computationally using two approaches: ab initio and semiempirical methods. We studied a number of structural possibilities, such as the impact of local sites and local and global environments. We will show that the dopant we considered here, Si, has discrete preferences for certain sites and the nature of its surroundings. Substitutional defects are clearly preferred over interstitial locations. We shall show that cation ordering has an impact on dopant energetics. Critically, for large-scale simulations of dopant diffusion in InGaAs alloys, we also present a parameterization of the Abell-Tersoff semiempirical potential for pairwise interactions between silicon atoms and each of the elements constituting InGaAs. In the absence of experimental data, reference parameters for estimating the Tersoff values were obtained using ab initio pseudopotential calculations (density functional theory and generalized gradient approximations). These sets of Tersoff parameters were optimized to describe the bulk structural properties of the mostly theoretical alloys Si-As, Si-Ga, and Si-In. We demonstrate the transferability of these parameters by predicting formation energies of extrinsic point "defects" of Si on a variety of sites in ternary InGaAs alloys with different local compositional configurations, both random and ordered. Tersoff model predictions of the extrinsic "substitution energy" of a Si dopant on a cationic lattice site were found to be independent of the composition of the dopant's second nearest neighbors, but were affected by the strain induced by a local arrangement of In and Ga cationic atoms. This finding is important since common deposition processes used to create InGaAs may lead to specifically ordered patterns within the cation sublattice.

  4. Patterning Superatom Dopants on Transition Metal Dichalcogenides.

    PubMed

    Yu, Jaeeun; Lee, Chul-Ho; Bouilly, Delphine; Han, Minyong; Kim, Philip; Steigerwald, Michael L; Roy, Xavier; Nuckolls, Colin

    2016-05-11

    This study describes a new and simple approach to dope two-dimensional transition metal dichalcogenides (TMDCs) using the superatom Co6Se8(PEt3)6 as the electron dopant. Semiconducting TMDCs are wired into field-effect transistor devices and then immersed into a solution of these superatoms. The degree of doping is determined by the concentration of the superatoms in solution and by the length of time the films are immersed in the dopant solution. Using this chemical approach, we are able to turn mono- and few-layer MoS2 samples from moderately to heavily electron-doped states. The same approach applied on WSe2 films changes their characteristics from hole transporting to electron transporting. Moreover, we show that the superatom doping can be patterned on specific areas of TMDC films. To illustrate the power of this technique, we demonstrate the fabrication of a lateral p-n junction by selectively doping only a portion of the channel in a WSe2 device. Finally, encapsulation of the doped films with crystalline hydrocarbon layers stabilizes their properties in an ambient environment. PMID:27082448

  5. Topological engineering of glass for modulating chemical state of dopants.

    PubMed

    Zhou, Shifeng; Guo, Qiangbing; Inoue, Hiroyuki; Ye, Qun; Masuno, Atsunobu; Zheng, Binbin; Yu, Yongze; Qiu, Jianrong

    2014-12-17

    A novel approach to modulating the chemical state of dopants by engineering the topological features of a glass matrix is presented. The method allows selective stabilization of dopants on a wide range of length scales, from dispersed ions to aggregated clusters to nanoparticles, leading to various intriguing optical phenomena, such as great emission enhancement and ultra-broadband optical amplification.

  6. Dopant ink composition and method of fabricating a solar cell there from

    DOEpatents

    Loscutoff, Paul; Wu, Kahn; Molesa, Steven Edward

    2015-03-31

    Dopant ink compositions and methods of fabricating solar cells there from are described. A dopant ink composition may include a cross-linkable matrix precursor, a bound dopant species, and a solvent. A method of fabricating a solar cell may include delivering a dopant ink composition to a region above a substrate. The dopant ink composition includes a cross-linkable matrix precursor, a bound dopant species, and a solvent. The method also includes baking the dopant ink composition to remove a substantial portion of the solvent of the dopant ink composition, curing the baked dopant ink composition to cross-link a substantial portion of the cross-linkable matrix precursor of the dopant ink composition, and driving dopants from the cured dopant ink composition toward the substrate.

  7. Arrangement, Dopant Source, And Method For Making Solar Cells

    DOEpatents

    Rohatgi, Ajeet; Krygowski, Thomas W.

    1999-10-26

    Disclosed is an arrangement, dopant source and method used in the fabrication of photocells that minimize handling of cell wafers and involve a single furnace step. First, dopant sources are created by depositing selected dopants onto both surfaces of source wafers. The concentration of dopant that is placed on the surface is relatively low so that the sources are starved sources. These sources are stacked with photocell wafers in alternating orientation in a furnace. Next, the temperature is raised and thermal diffusion takes place whereby the dopant leaves the source wafers and becomes diffused in a cell wafer creating the junctions necessary for photocells to operate. The concentration of dopant diffused into a single side of the cell wafer is proportional to the concentration placed on the respective dopant source facing the side of the cell wafer. Then, in the same thermal cycle, a layer of oxide is created by introducing oxygen into the furnace environment after sufficient diffusion has taken place. Finally, the cell wafers receive an anti-reflective coating and electrical contacts for the purpose of gathering electrical charge.

  8. Atom location by electron channeling analysis

    SciTech Connect

    Pennycook, S.J.

    1984-07-01

    For many years the orientation dependence of the characteristic x-ray emission close to a Bragg reflection has been regarded as a hindrance to accurate microanalysis, and a random incident beam direction has always been recommended for accurate composition analysis. However, this orientation dependence can be put to use to extract information on the lattice location of foreign atoms within the crystalline matrix. Here a generalization of the technique is described which is applicable to any crystal structure including monatomic crystals, and can quantitatively determine substitutional fractions of impurities. The technique was referred to as electron channeling analysis, by analogy with the closely related and widely used bulk technique of ion channeling analysis, and was developed for lattice location studies of dopants in semiconductors at high spatial resolution. Only two spectra are required for each channeling analysis, one in each of the channeling conditions described above. If the matrix and dopant x-ray yields vary identically between the two orientations then the dopant necessarily lies within the reflecting matrix planes. If the dopant x-ray yield does not vary the dopant atoms are randomly located with respect to the matrix planes. 10 references, 2 figures.

  9. Diffusion of n-type dopants in germanium

    SciTech Connect

    Chroneos, A.; Bracht, H.

    2014-03-15

    Germanium is being actively considered by the semiconductor community as a mainstream material for nanoelectronic applications. Germanium has advantageous materials properties; however, its dopant-defect interactions are less understood as compared to the mainstream material, silicon. The understanding of self- and dopant diffusion is essential to form well defined doped regions. Although p-type dopants such as boron exhibit limited diffusion, n-type dopants such as phosphorous, arsenic, and antimony diffuse quickly via vacancy-mediated diffusion mechanisms. In the present review, we mainly focus on the impact of intrinsic defects on the diffusion mechanisms of donor atoms and point defect engineering strategies to restrain donor atom diffusion and to enhance their electrical activation.

  10. Dopant profile engineering of advanced Si MOSFET's using ion implantation

    NASA Astrophysics Data System (ADS)

    Stolk, P. A.; Ponomarev, Y. V.; Schmitz, J.; van Brandenburg, A. C. M. C.; Roes, R.; Montree, A. H.; Woerlee, P. H.

    1999-01-01

    Ion implantation has been used to realize non-uniform, steep retrograde (SR) dopant profiles in the active channel region of advanced Si MOSFET's. After defining the transistor configuration, SR profiles were formed by dopant implantation through the polycrystalline Si gate and the gate oxide (through-the-gate, TG, implantation). The steep nature of the as-implanted profile was retained by applying rapid thermal annealing for dopant activation and implantation damage removal. For NMOS transistors, TG implantation of B yields improved transistor performance through increased carrier mobility, reduced junction capacitances, and reduced susceptibility to short-channel effects. Electrical measurements show that the gate oxide quality is not deteriorated by the ion-induced damage, demonstrating that transistor reliability is preserved. For PMOS transistors, TG implantation of P or As leads to unacceptable source/drain junction broadening as a result of transient enhanced dopant diffusion during thermal activation.

  11. Dopant morphology as the factor limiting graphene conductivity

    PubMed Central

    Hofmann, Mario; Hsieh, Ya-Ping; Chang, Kai-Wen; Tsai, He-Guang; Chen, Tzung-Te

    2015-01-01

    Graphene’s low intrinsic carrier concentration necessitates extrinsic doping to enhance its conductivity and improve its performance for application as electrodes or transparent conductors. Despite this importance limited knowledge of the doping process at application-relevant conditions exists. Employing in-situ carrier transport and Raman characterization of different dopants, we here explore the fundamental mechanisms limiting the effectiveness of doping at different doping levels. Three distinct transport regimes for increasing dopant concentration could be identified. First the agglomeration of dopants into clusters provides a route to increase the graphene conductivity through formation of ordered scatterers. As the cluster grows, the charge transfer efficiency between graphene and additional dopants decreases due to emerging polarization effects. Finally, large dopant clusters hinder the carrier motion and cause percolative transport that leads to an unexpected change of the Hall effect. The presented results help identifying the range of beneficial doping density and guide the choice of suitable dopants for graphene’s future applications. PMID:26617255

  12. Base doping and dopant profile control of SiGe npn and pnp HBTs

    NASA Astrophysics Data System (ADS)

    Tillack, Bernd; Heinemann, Bernd; Knoll, Dieter; Rücker, Holger; Yamamoto, Yuji

    2008-07-01

    Incorporation of high doping concentrations and the creation and maintaining of steep doping profiles during processing are key enabler for high level RF performance of heterojunction bipolar transistors (HBTs). In this paper, we discuss results of base doping and dopant profile control for npn and pnp SiGe HBTs fabricated within 0.25 μm BiCMOS technologies. High level of electrically active B and P doping concentrations (up to 10 20 cm -3) have been incorporated into SiGe. By adding C to SiGe steep doping profiles have been maintained due to the prevention of dopant diffusion during device processing. It is shown that broadening of P doping profiles caused by segregation could be reduced by lowering the deposition temperature for the SiGe cap. B and P atomic layer doping is shown to be suitable for the creation of steep and narrow doping profiles. This result is demonstrating the capability of the atomic layer processing approach for future devices with critical requirements of dopant dose and location control.

  13. Method for enhancing the solubility of dopants in silicon

    DOEpatents

    Sadigh, Babak; Lenosky, Thomas J.; De La Rubia, Tomas Diaz

    2003-09-30

    A method for enhancing the equilibrium solid solubility of dopants in silicon, germanium and silicon-germanium alloys. The method involves subjecting silicon-based substrate to biaxial or compression strain. It has been determined that boron solubility was largely enhanced (more than 100%) by a compressive bi-axial strain, based on a size-mismatch theory since the boron atoms are smaller than the silicon atoms. It has been found that the large enhancement or mixing properties of dopants in silicon and germanium substrates is primarily governed by their, and to second order by their size-mismatch with the substrate. Further, it has been determined that the dopant solubility enhancement with strain is most effective when the charge and the size-mismatch of the impurity favor the same type of strain. Thus, the solid solubility of small p-type (e.g., boron) as well as large n-type (e.g., arsenic) dopants can be raised most dramatically by appropriate bi-axial (compressive) strain, and that solubility of a large p-type dopant (e.g, indium) in silicon will be raised due to size-mismatch with silicon, which favors tensile strain, while its negative charge prefers compressive strain, and thus the two effects counteract each other.

  14. Non-equilibrium Green's functions study of discrete dopants variability on an ultra-scaled FinFET

    SciTech Connect

    Valin, R. Martinez, A.; Barker, J. R.

    2015-04-28

    In this paper, we study the effect of random discrete dopants on the performance of a 6.6 nm channel length silicon FinFET. The discrete dopants have been distributed randomly in the source/drain region of the device. Due to the small dimensions of the FinFET, a quantum transport formalism based on the non-equilibrium Green's functions has been deployed. The transfer characteristics for several devices that differ in location and number of dopants have been calculated. Our results demonstrate that discrete dopants modify the effective channel length and the height of the source/drain barrier, consequently changing the channel control of the charge. This effect becomes more significant at high drain bias. As a consequence, there is a strong effect on the variability of the on-current, off-current, sub-threshold slope, and threshold voltage. Finally, we have also calculated the mean and standard deviation of these parameters to quantify their variability. The obtained results show that the variability at high drain bias is 1.75 larger than at low drain bias. However, the variability of the on-current, off-current, and sub-threshold slope remains independent of the drain bias. In addition, we have found that a large source to drain current by tunnelling current occurs at low gate bias.

  15. Photoluminescence imaging of solitary dopant sites in covalently doped single-wall carbon nanotubes.

    PubMed

    Hartmann, Nicolai F; Yalcin, Sibel Ebru; Adamska, Lyudmyla; Hároz, Erik H; Ma, Xuedan; Tretiak, Sergei; Htoon, Han; Doorn, Stephen K

    2015-12-28

    Covalent dopants in semiconducting single wall carbon nanotubes (SWCNTs) are becoming important as routes for introducing new photoluminescent emitting states with potential for enhanced quantum yields, new functionality, and as species capable of near-IR room-temperature single photon emission. The origin and behavior of the dopant-induced emission is thus important to understand as a key requirement for successful room-T photonics and optoelectronics applications. Here, we use direct correlated two-color photoluminescence imaging to probe how the interplay between the SWCNT bright E(11) exciton and solitary dopant sites yields the dopant-induced emission for three different dopant species: oxygen, 4-methoxybenzene, and 4-bromobenzene. We introduce a route to control dopant functionalization to a low level as a means for introducing spatially well-separated solitary dopant sites. Resolution of emission from solitary dopant sites and correlation to their impact on E(11) emission allows confirmation of dopants as trapping sites for localization of E(11) excitons following their diffusive transport to the dopant site. Imaging of the dopant emission also reveals photoluminescence intermittency (blinking), with blinking dynamics being dependent on the specific dopant. Density functional theory calculations were performed to evaluate the stability of dopants and delineate the possible mechanisms of blinking. Theoretical modeling suggests that the trapping of free charges in the potential well created by permanent dipoles introduced by dopant atoms/groups is likely responsible for the blinking, with the strongest effects being predicted and observed for oxygen-doped SWCNTs. PMID:26586162

  16. Sodium dopants in helium clusters: Structure, equilibrium and submersion kinetics

    SciTech Connect

    Calvo, F.

    2015-12-31

    Alkali impurities bind to helium nanodroplets very differently depending on their size and charge state, large neutral or charged dopants being wetted by the droplet whereas small neutral impurities prefer to reside aside. Using various computational modeling tools such as quantum Monte Carlo and path-integral molecular dynamics simulations, we have revisited some aspects of the physical chemistry of helium droplets interacting with sodium impurities, including the onset of snowball formation in presence of many-body polarization forces, the transition from non-wetted to wetted behavior in larger sodium clusters, and the kinetics of submersion of small dopants after sudden ionization.

  17. Influence of optical-damage-resistant dopants on the nonlinear optical properties of lithium niobate

    NASA Astrophysics Data System (ADS)

    Xue, D.; Betzler, K.

    2001-05-01

    Using the chemical-bond method, nonlinear optical properties of lithium niobate containing different dopants are calculated. In crystals with stoichiometric composition the second order nonlinear susceptibility decreases approximately linearly with increasing dopant concentration. Among the dopants studied - Mg, Zn and In - this behaviour is most highly expressed for In doping. In contrast to that, congruently grown crystals show a different behaviour; only a weak dependence on the dopant concentration is found for, for example, Mg-doped material.

  18. Band engineering of GaN/AlN quantum wells by Si dopants

    SciTech Connect

    Zhuo, Xiaolong; Ni, Jianchao; Li, Jinchai; Lin, Wei; Cai, Duanjun; Li, Shuping E-mail: jykang@xmu.edu.cn; Kang, Junyong E-mail: jykang@xmu.edu.cn

    2014-03-28

    The electronic properties of GaN/AlN quantum wells are engineered by Si doped in different positions with the aid of the first-principle calculations. The local potential where the dopant located is dragged down as a result of negative center induced by the Si atom, leading to a different shift of the potential, and further affects the band bending and carrier distribution. The band profiles are depicted by analyzing the projected densities of states, it is found that the different positions of Si doping lead to a different band bending owing to the modified polarization fields. The spatial distributions of electrons and holes plotted by the partial charge densities reveal that electrons and holes experience redistribution by Si dopant in different positions. The above results demonstrate that the effect of polarization on the band bending has been significantly modulated by Si doped in different positions. Such modification of electronic structure is especially valuable for the fabrication of GaN/AlN QWs under desired control.

  19. Reduction of threshold voltage fluctuation in field-effect transistors by controlling individual dopant position

    NASA Astrophysics Data System (ADS)

    Hori, Masahiro; Taira, Keigo; Komatsubara, Akira; Kumagai, Kuninori; Ono, Yukinori; Tanii, Takashi; Endoh, Tetsuo; Shinada, Takahiro

    2012-07-01

    To investigate the impact of only the dopant position on threshold voltage (Vth) in nanoscale field-effect transistors, we fabricated transistors with ordered dopant arrays and conventional random channel doping. Electrical measurements revealed that device performance could be enhanced by controlling the dopant position alone, despite varying dopant number according to a Poisson distribution. Furthermore, device-to-device fluctuations in Vth could be suppressed by implanting a heavier ion such as arsenic owing to the reduction of the projected ion struggling. The results of our study highlight potential improvements in device performance by controlling individual dopant positions.

  20. Introducing and manipulating magnetic dopant exchange interactions in semiconductor nanowires

    NASA Astrophysics Data System (ADS)

    Hegde, Manu; Hosein, Ian D.; Sabergharesou, Tahereh; Farvid, Shokouh S.; Radovanovic, Pavle V.

    2013-09-01

    The ability to control both spin and charge degrees of freedom in semiconductor nanostructrures is at heart of spintronic and quantum information technologies. Magnetically-doped semiconductor nanowires have emerged as a promising platform for spintronics, which warrants the exploration of their synthesis, electronic structure, and magnetic properties. Here we demonstrate the preparation of manganese-doped GaN and SnO2 nanowires by chemical vapor deposition and solvothermal methods, respectively. The investigation of both systems by electron microscopy and x-ray absorption spectroscopy at ensemble and single nanowire levels indicates that manganese dopants exist in a dual oxidation state, Mn2+ and Mn3+, with Mn2+ being the majority species. X-ray magnetic circular dichroism studies of individual nanowires suggest ferromagnetic interactions of manganese dopants, and the nanowire orientation-dependent magnetization owing to the magnetocrystalline anisotropy. The results of these studies demonstrate quantitative determination of the dopant electronic structure at the molecular level, and allow for a prediction of the magnetic properties of diluted magnetic semiconductor nanowires based on their orientation and geometry.

  1. Simulation and bonding of dopants in nanocrystalline diamond.

    PubMed

    Barnard, A S; Russo, S P; Snook, I K

    2005-09-01

    The doping of the wide-band gap semiconductor diamond has led to the invention of many electronic and optoelectronic devices. Impurities can be introduced into diamond during chemical vapor deposition or high pressure-high temperature growth, resulting in materials with unusual physical and chemical properties. For electronic applications one of the main objectives in the doping of diamond is the production of p-type and n-type semiconductors materials; however, the study of dopants in diamond nanoparticles is considered important for use in nanodevices, or as qubits for quantum computing. Such devices require that bonding of dopants in nanodiamond must be positioned substitutionally at a lattice site, and must exhibit minimal or no possibility of diffusion to the nanocrystallite surface. In light of these requirements, a number of computational studies have been undertaken to examine the stability of various dopants in various forms of nanocrystalline diamond. Presented here is a review of some such studies, undertaken using quantum mechanical based simulation methods, to provide an overview of the crystal stability of doped nanodiamond for use in diamondoid nanodevices. PMID:16193953

  2. Photoluminescence imaging of solitary dopant sites in covalently doped single-wall carbon nanotubes

    SciTech Connect

    Hartmann, Nicolai F.; Yalcin, Sibel Ebru; Adamska, Lyudmyla; Haroz, Erik H.; Ma, Xuedan; Tretiak, Sergei; Htoon, Han; Doorn, Stephen K.

    2015-11-11

    Covalent dopants in semiconducting single wall carbon nanotubes (SWCNTs) are becoming important as routes for introducing new photoluminescent emitting states with potential for enhanced quantum yields, new functionality, and as species capable of near-IR room-temperature single photon emission. The origin and behavior of the dopant-induced emission is thus important to understand as a key requirement for successful room-T photonics and optoelectronics applications. Here, we use direct correlated two-color photoluminescence imaging to probe how the interplay between the SWCNT bright E11 exciton and solitary dopant sites yields the dopant-induced emission for three different dopant species: oxygen, 4-methoxybenzene, and 4-bromobenzene. We introduce a route to control dopant functionalization to a low level as a means for introducing spatially well-separated solitary dopant sites. Resolution of emission from solitary dopant sites and correlation to their impact on E11 emission allows confirmation of dopants as trapping sites for localization of E11 excitons following their diffusive transport to the dopant site. Imaging of the dopant emission also reveals photoluminescence intermittency (blinking), with blinking dynamics being dependent on the specific dopant. Density functional theory calculations were performed to evaluate the stability of dopants and delineate the possible mechanisms of blinking. Furthermore, theoretical modeling suggests that the trapping of free charges in the potential well created by permanent dipoles introduced by dopant atoms/groups is likely responsible for the blinking, with the strongest effects being predicted and observed for oxygen-doped SWCNTs.

  3. Photoluminescence imaging of solitary dopant sites in covalently doped single-wall carbon nanotubes

    DOE PAGES

    Hartmann, Nicolai F.; Yalcin, Sibel Ebru; Adamska, Lyudmyla; Haroz, Erik H.; Ma, Xuedan; Tretiak, Sergei; Htoon, Han; Doorn, Stephen K.

    2015-11-11

    Covalent dopants in semiconducting single wall carbon nanotubes (SWCNTs) are becoming important as routes for introducing new photoluminescent emitting states with potential for enhanced quantum yields, new functionality, and as species capable of near-IR room-temperature single photon emission. The origin and behavior of the dopant-induced emission is thus important to understand as a key requirement for successful room-T photonics and optoelectronics applications. Here, we use direct correlated two-color photoluminescence imaging to probe how the interplay between the SWCNT bright E11 exciton and solitary dopant sites yields the dopant-induced emission for three different dopant species: oxygen, 4-methoxybenzene, and 4-bromobenzene. We introducemore » a route to control dopant functionalization to a low level as a means for introducing spatially well-separated solitary dopant sites. Resolution of emission from solitary dopant sites and correlation to their impact on E11 emission allows confirmation of dopants as trapping sites for localization of E11 excitons following their diffusive transport to the dopant site. Imaging of the dopant emission also reveals photoluminescence intermittency (blinking), with blinking dynamics being dependent on the specific dopant. Density functional theory calculations were performed to evaluate the stability of dopants and delineate the possible mechanisms of blinking. Furthermore, theoretical modeling suggests that the trapping of free charges in the potential well created by permanent dipoles introduced by dopant atoms/groups is likely responsible for the blinking, with the strongest effects being predicted and observed for oxygen-doped SWCNTs.« less

  4. Influence of electron–phonon interactions in single dopant nanowire transistors

    SciTech Connect

    Carrillo-Nuñez, H. Bescond, M. Cavassilas, N.; Dib, E.; Lannoo, M.

    2014-10-28

    Single dopant nanowire transistors can be viewed as the ultimate miniaturization of nano electronic devices. In this work, we theoretically investigate the influence of the electron-phonon coupling on their transport properties using a non-equilibrium Green's function approach in the self-consistent Born approximation. For an impurity located at the center of the wire we find that, at room temperature, acoustic phonons broaden the impurity level so that the bistability predicted in the ballistic regime is suppressed. Optical phonons are found to have a beneficial impact on carrier transport via a phonon-assisted tunneling effect. We discuss the position and temperature dependence of these effects, showing that such systems might be very promising for engineering of ultimate devices.

  5. Characterization of microstructure and dopant distribution of laser diffused resistors

    NASA Astrophysics Data System (ADS)

    Liao, Yougui

    In order to completely understand the laser-processing mechanisms and accurately control the electrical and material properties of the LDRs, the research during this thesis was focused on microstructural characterization and dopant distribution measurements of LDRs fabricated under various laser parameters and different initial device structures The aim of the project was to use theses results to improve the accuracy, thermal coefficient of resistance (TCR) and long-term stability of those microdevices. Obtaining accurate quantified electrically activated dopant distribution in the actual microelectronic devices was a real challenge, especially when one considers microdevices (LDRs) having a very small area of few mum 2. By considering a vector as etching rate instead of a scalar (as considered by previous researchers) and by using a novel calibration method, the reliability, reproducibility and accuracy of quantification of dopant concentrations, ranging from 9x1016 to 6x10 19 atoms/cm3, of the dopant evaluation technique have been significantly improved. Therefore, the dopant profiles in the non-irradiated heavily doped regions in our devices were obtained using dopant selective etching (DSE) in combination with cross-sectional transmission electron microscopy (TEM) and focused ion beam (FIB) techniques. Furthermore, the developed method has been applied to our LDRs and the two-dimensional (2D) dopant distributions with wide range of boron concentrations of the resistive links were quantified with spatial resolution of 1 to 5 nm. This results shows that the LDRs with boron concentrations up to ˜0.24x1018 atoms/cm 3 and 8.9x1018 atoms/cm3 can be produced depending on different structures of initial microdevices and laser parameters. Those profiles were accurately compared with numerical simulation results based on heat transfer and diffusion equations. Three-dimensional (3D) and two-dimensional (2D) periodic silicon nanostructures formed by polarized focused Nd

  6. Multi-dimensional dopant profiling with atomic resolution by scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Liu, Lequn

    Due to the random nature of ion implantation, dopant diffusion, and other processes involved in the doping of silicon devices, the dopant density in shallow junctions and short channels is subject to stochastic variations, which translate directly into variations in device behavior. Dopant profilers with nanometer scale or even atomic scale resolution are needed to properly measure these dopant fluctuations. This thesis presents a new approach for two- and three-dimensional dopant profiling with atomic resolution on the Si(100) surface by scanning tunneling microscopy (STM). The lack of surface states within the band gap of the perfect Si(100)2x1:H surface opens the way to STM studies of dopant distributions in Si(100). STM topographic images, dI/dV images and current image tunneling spectroscopy (CITS) were acquired across the lateral PN junctions of Si devices. Two-dimensional dopant (carrier) profiles were extracted from CITS data with 5A resolution. Moreover, the N and P type dopant induced features were observed in filled state and empty state STM images. The donor (Arsenic) induced feature appears as a protrusion in both the filled and empty state images, while the acceptor (Boron) induced feature appears as a hillock in the filled state image and a depression in the empty state image. The bias dependence, depth dependence and dopant concentration dependence of the dopant induced features were investigated in detail. Based on scattering theory, the numerical calculation was performed to achieve a fundamental understanding of dopant induced features, and the calculation results were in qualitative agreement with the experimental observations. The potential application of this study for 3D dopant profiling with atomic resolution on both P and N type samples is discussed, and the optimal scanning conditions are also suggested. This work reveals the real physical picture of randomly distributed dopants and may be useful to verify and calibrate TCAD simulators.

  7. Dynamics of δ-dopant redistribution during heterostructure growth

    NASA Astrophysics Data System (ADS)

    Pankratov, E. L.

    2007-06-01

    It has recently been shown that growth of a multilayer structure with one or more delta-layers at high temperature leads to spreading and asymmetrization of the dopant distribution [see, for example, E.F.J. Schubert, Vac. Sci. Technol. A. 8, 2980 (1990), A.M. Nazmul, S. Sugahara, M. Tanaka, J. Crystal Growth 251, 303 (2003); R.C. Newman, M.J. Ashwin, M.R. Fahy, L. Hart, S.N. Holmes, C. Roberts, X. Zhang, Phys. Rev. B 54, 8769 (1996); E.F. Schubert, J.M. Kuo, R.F. Kopf, H.S. Luftman, L.C. Hopkins, N.J. Sauer, J. Appl. Phys. 67, 1969 (1990); P.M. Zagwijn, J.F. van der Veen, E. Vlieg, A.H. Reader, D.J. Gravesteijn, J. Appl. Phys. 78, 4933 (1995); W.S. Hobson, S.J. Pearton, E.F. Schubert, G. Cabaniss, Appl. Phys. Lett. 55, 1546 (1989); Delta Doping of Semiconductors, edited by E.F. Schubert (Cambridge University Press, Cambridge, 1996); Yu.N. Drozdov, N.B. Baidus', B.N. Zvonkov, M.N. Drozdov, O.I. Khrykin, V.I. Shashkin, Semiconductors 37, 194 (2003); E. Skuras, A.R. Long, B. Vogele, M.C. Holland, C.R. Stanley, E.A. Johnson, M. van der Burgt, H. Yaguchi, J. Singleton, Phys. Rev. B 59, 10712 (1999); G. Li, C. Jagadish, Solid-State Electronics 41, 1207 (1997)]. In this work analytical and numerical analysis of dopant dynamics in a delta-doped area of a multilayer structure has been accomplished using Fick's second law. Some reasons for asymmetrization of a delta-dopant distribution are illustrated. The spreading of a delta-layer has been estimated using example materials of a multilayer structure, a delta-layer and an overlayer.

  8. Characterization of microstructure and dopant distribution of laser diffused resistors

    NASA Astrophysics Data System (ADS)

    Liao, Yougui

    In order to completely understand the laser-processing mechanisms and accurately control the electrical and material properties of the LDRs, the research during this thesis was focused on microstructural characterization and dopant distribution measurements of LDRs fabricated under various laser parameters and different initial device structures The aim of the project was to use theses results to improve the accuracy, thermal coefficient of resistance (TCR) and long-term stability of those microdevices. Obtaining accurate quantified electrically activated dopant distribution in the actual microelectronic devices was a real challenge, especially when one considers microdevices (LDRs) having a very small area of few mum 2. By considering a vector as etching rate instead of a scalar (as considered by previous researchers) and by using a novel calibration method, the reliability, reproducibility and accuracy of quantification of dopant concentrations, ranging from 9x1016 to 6x10 19 atoms/cm3, of the dopant evaluation technique have been significantly improved. Therefore, the dopant profiles in the non-irradiated heavily doped regions in our devices were obtained using dopant selective etching (DSE) in combination with cross-sectional transmission electron microscopy (TEM) and focused ion beam (FIB) techniques. Furthermore, the developed method has been applied to our LDRs and the two-dimensional (2D) dopant distributions with wide range of boron concentrations of the resistive links were quantified with spatial resolution of 1 to 5 nm. This results shows that the LDRs with boron concentrations up to ˜0.24x1018 atoms/cm 3 and 8.9x1018 atoms/cm3 can be produced depending on different structures of initial microdevices and laser parameters. Those profiles were accurately compared with numerical simulation results based on heat transfer and diffusion equations. Three-dimensional (3D) and two-dimensional (2D) periodic silicon nanostructures formed by polarized focused Nd

  9. A theoretical study of dopant atom detection and probe behavior in STEM

    NASA Astrophysics Data System (ADS)

    Mittal, Anudha

    Very detailed information about the atomic and electronic structure of materials can be obtained via atomic-scale resolution scanning transmission electron microscopy (STEM). These experiments reach the limits of current microscopes, which means that optimal experimental design is a key ingredient in success. The step following experiment, extraction of information from experimental data is also complex. Comprehension of experimental data depends on comparison with simulated data and on fundamental understanding of aspects of scattering behavior. The research projects discussed in this thesis are formulated within three large concepts. 1. Usage of simulation to suggest experimental technique for observation of a particular structural feature.. Two specific structural features are explored. One is the characterization of a substitutional dopant atom in a crystal. Annular dark field scanning transmission electron microscope (ADF-STEM) images allow detection of individual dopant atoms in a crystal based on contrast between intensities of doped and non-doped column in the image. The magnitude of the said contrast is heavily influenced by specimen and microscope parameters. Analysis of multislice-based simulations of ADF-STEM images of crystals doped with one substitutional dopant atom for a wide range of crystal thicknesses, types and locations of dopant atom inside the crystal, and crystals with different atoms revealed trends and non-intuitive behaviors in visibility of the dopant atom. The results provide practical guidelines for the optimal experimental setup regarding both the microscope and specimen conditions in order to characterize the presence and location of a dopant atom. Furthermore, the simulations help in recognizing the cases where detecting a single dopant atom via ADF-STEM imaging is not possible. The second is a more specific case of detecting intrinsic twist in MoS2 nanotubes. Objective molecular dynamics simulations coupled with a density

  10. Nanowire dopant measurement using secondary ion mass spectrometry

    SciTech Connect

    Chia, A. C. E.; Boulanger, J. P.; Wood, B. A.; LaPierre, R. R.; Dhindsa, N.; Saini, S. S.

    2015-09-21

    A method is presented to improve the quantitative determination of dopant concentration in semiconductor nanowire (NW) arrays using secondary ion mass spectrometry (SIMS). SIMS measurements were used to determine Be dopant concentrations in a Be-doped GaAs thin film and NW arrays of various pitches that were dry-etched from the same film. A comparison of these measurements revealed a factor of 3 to 12 difference, depending on the NW array pitch, between the secondary Be ion yields of the film and the NW arrays, despite being identically doped. This was due to matrix effects and ion beam mixing of Be from the NWs into the surrounding benzocyclobutene that was used to fill the space between the NWs. This indicates the need for etched NWs to be used as doping standards instead of 2D films when evaluating NWs of unknown doping by SIMS. Using the etched NWs as doping standards, NW arrays of various pitches grown by the vapour-liquid-solid mechanism were characterized by SIMS to yield valuable insights into doping mechanisms.

  11. Charge-transfer crystallites as molecular electrical dopants

    NASA Astrophysics Data System (ADS)

    Méndez, Henry; Heimel, Georg; Winkler, Stefanie; Frisch, Johannes; Opitz, Andreas; Sauer, Katrein; Wegner, Berthold; Oehzelt, Martin; Röthel, Christian; Duhm, Steffen; Többens, Daniel; Koch, Norbert; Salzmann, Ingo

    2015-10-01

    Ground-state integer charge transfer is commonly regarded as the basic mechanism of molecular electrical doping in both, conjugated polymers and oligomers. Here, we demonstrate that fundamentally different processes can occur in the two types of organic semiconductors instead. Using complementary experimental techniques supported by theory, we contrast a polythiophene, where molecular p-doping leads to integer charge transfer reportedly localized to one quaterthiophene backbone segment, to the quaterthiophene oligomer itself. Despite a comparable relative increase in conductivity, we observe only partial charge transfer for the latter. In contrast to the parent polymer, pronounced intermolecular frontier-orbital hybridization of oligomer and dopant in 1:1 mixed-stack co-crystallites leads to the emergence of empty electronic states within the energy gap of the surrounding quaterthiophene matrix. It is their Fermi-Dirac occupation that yields mobile charge carriers and, therefore, the co-crystallites--rather than individual acceptor molecules--should be regarded as the dopants in such systems.

  12. Charge-transfer crystallites as molecular electrical dopants

    PubMed Central

    Méndez, Henry; Heimel, Georg; Winkler, Stefanie; Frisch, Johannes; Opitz, Andreas; Sauer, Katrein; Wegner, Berthold; Oehzelt, Martin; Röthel, Christian; Duhm, Steffen; Többens, Daniel; Koch, Norbert; Salzmann, Ingo

    2015-01-01

    Ground-state integer charge transfer is commonly regarded as the basic mechanism of molecular electrical doping in both, conjugated polymers and oligomers. Here, we demonstrate that fundamentally different processes can occur in the two types of organic semiconductors instead. Using complementary experimental techniques supported by theory, we contrast a polythiophene, where molecular p-doping leads to integer charge transfer reportedly localized to one quaterthiophene backbone segment, to the quaterthiophene oligomer itself. Despite a comparable relative increase in conductivity, we observe only partial charge transfer for the latter. In contrast to the parent polymer, pronounced intermolecular frontier-orbital hybridization of oligomer and dopant in 1:1 mixed-stack co-crystallites leads to the emergence of empty electronic states within the energy gap of the surrounding quaterthiophene matrix. It is their Fermi–Dirac occupation that yields mobile charge carriers and, therefore, the co-crystallites—rather than individual acceptor molecules—should be regarded as the dopants in such systems. PMID:26440403

  13. Effective dopant activation via low temperature microwave annealing of ion implanted silicon

    NASA Astrophysics Data System (ADS)

    Zhao, Zhao; David Theodore, N.; Vemuri, Rajitha N. P.; Das, Sayantan; Lu, Wei; Lau, S. S.; Alford, T. L.

    2013-11-01

    Susceptor-assisted microwave annealing enables effective dopant activation, at low temperatures, in ion-implanted Si. Given similar thermal budgets for microwave annealing and rapid thermal annealing (RTA), sheet resistances of microwave annealed Si, with either B+ or P+ implants, are lower than the values obtained using RTA. The fraction of dopants activated is as high as 18% for B+ implants and 64% for P+ implants. Dopant diffusion is imperceptible after microwave annealing, but significant after RTA, for P+ implanted Si samples with the same dopant activation. Microwave annealing achieves such properties using shorter anneal times and lower peak temperatures compared to RTA.

  14. Ab-initio study of the segregation and electronic properties of neutral and charged B and P dopants in Si and Si/SiO{sub 2} nanowires

    SciTech Connect

    Schoeters, Bob; Leenaerts, Ortwin Partoens, Bart; Pourtois, Geoffrey

    2015-09-14

    We perform first-principles calculations to investigate the preferred positions of B and P dopants, both neutral and in their preferred charge state, in Si and Si/SiO{sub 2} core-shell nanowires (NWs). In order to understand the observed trends in the formation energy, we isolate the different effects that determine these formation energies. By making the distinction between the unrelaxed and the relaxed formation energy, we separate the impact of the relaxation from that of the chemical environment. The unrelaxed formation energies are determined by three effects: (i) the effect of strain caused by size mismatch between the dopant and the host atoms, (ii) the local position of the band edges, and (iii) a screening effect. In the case of the SiNW (Si/SiO{sub 2} NW), these effects result in an increase of the formation energy away from the center (interface). The effect of relaxation depends on the relative size mismatch between the dopant and host atoms. A large size mismatch causes substantial relaxation that reduces the formation energy considerably, with the relaxation being more pronounced towards the edge of the wires. These effects explain the surface segregation of the B dopants in a SiNW, since the atomic relaxation induces a continuous drop of the formation energy towards the edge. However, for the P dopants, the formation energy starts to rise when moving from the center but drops to a minimum just next to the surface, indicating a different type of behavior. It also explains that the preferential location for B dopants in Si/SiO{sub 2} core-shell NWs is inside the oxide shell just next to the interface, whereas the P dopants prefer the positions next to the interface inside the Si core, which is in agreement with recent experiments. These preferred locations have an important impact on the electronic properties of these core-shell NWs. Our simulations indicate the possibility of hole gas formation when B segregates into the oxide shell.

  15. Ab-initio study of the segregation and electronic properties of neutral and charged B and P dopants in Si and Si/SiO2 nanowires

    NASA Astrophysics Data System (ADS)

    Schoeters, Bob; Leenaerts, Ortwin; Pourtois, Geoffrey; Partoens, Bart

    2015-09-01

    We perform first-principles calculations to investigate the preferred positions of B and P dopants, both neutral and in their preferred charge state, in Si and Si/SiO2 core-shell nanowires (NWs). In order to understand the observed trends in the formation energy, we isolate the different effects that determine these formation energies. By making the distinction between the unrelaxed and the relaxed formation energy, we separate the impact of the relaxation from that of the chemical environment. The unrelaxed formation energies are determined by three effects: (i) the effect of strain caused by size mismatch between the dopant and the host atoms, (ii) the local position of the band edges, and (iii) a screening effect. In the case of the SiNW (Si/SiO2 NW), these effects result in an increase of the formation energy away from the center (interface). The effect of relaxation depends on the relative size mismatch between the dopant and host atoms. A large size mismatch causes substantial relaxation that reduces the formation energy considerably, with the relaxation being more pronounced towards the edge of the wires. These effects explain the surface segregation of the B dopants in a SiNW, since the atomic relaxation induces a continuous drop of the formation energy towards the edge. However, for the P dopants, the formation energy starts to rise when moving from the center but drops to a minimum just next to the surface, indicating a different type of behavior. It also explains that the preferential location for B dopants in Si/SiO2 core-shell NWs is inside the oxide shell just next to the interface, whereas the P dopants prefer the positions next to the interface inside the Si core, which is in agreement with recent experiments. These preferred locations have an important impact on the electronic properties of these core-shell NWs. Our simulations indicate the possibility of hole gas formation when B segregates into the oxide shell.

  16. Towards chiral distributions of dopants in microporous frameworks: helicoidal supramolecular arrangement of (1R,2S)-ephedrine and transfer of chirality.

    PubMed

    Gómez-Hortigüela, Luis; Álvaro-Muñoz, Teresa; Bernardo-Maestro, Beatriz; Pérez-Pariente, Joaquín

    2015-01-01

    A molecular-mechanics computational study is performed in order to analyze the arrangement of (1R,2S)-(-)-ephedrine molecules within the 12-MR channels of the AFI aluminophosphate microporous framework and the influence on the spatial distribution of dopants embedded in the tetrahedral network. Results showed that ephedrine molecules arrange exclusively as dimers by π-π stacking of the aromatic rings within the AFI channels. Interestingly, the asymmetric nature of ephedrine and the presence of H-bond-forming groups (NH2 and OH) involve a preferential orientation where consecutive dimers within the channels are rotated by an angle of +30°; this is driven by the establishment of inter-dimer H-bonds. This preferential orientation leads to the development of a supramolecular enantiomerically-pure helicoidal (chiral) arrangement of ephedrine dimers. In addition, the computational results demonstrate that the particular molecular structure of ephedrine imparts a strong trend to attract negative charges to the vicinity of the NH2(+) positively-charged groups. Hence divalent dopants such as Mg, whose replacement by trivalent Al in the aluminophosphate network involves the generation of a negative charge, will tend to locate close to the NH2(+) molecular groups, suggesting that an imprinting of the organic arrangement to the spatial distribution of dopants would be feasible. Combined with the trend of ephedrine to arrange in a helicoidal fashion, an enantiomerically-pure helicoidal distribution of dopants would be expected, thus inducing a new type of chirality in microporous materials.

  17. Dopant selection for control of charge carrier density and mobility in amorphous indium oxide thin-film transistors: Comparison between Si- and W-dopants

    SciTech Connect

    Mitoma, Nobuhiko E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Kizu, Takio; Lin, Meng-Fang; Tsukagoshi, Kazuhito E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp; Aikawa, Shinya; Ou-Yang, Wei; Gao, Xu; Fujiwara, Akihiko

    2015-01-26

    The dependence of oxygen vacancy suppression on dopant species in amorphous indium oxide (a-InO{sub x}) thin film transistors (TFTs) is reported. In a-InO{sub x} TFTs incorporating equivalent atom densities of Si- and W-dopants, absorption of oxygen in the host a-InO{sub x} matrix was found to depend on difference of Gibbs free energy of the dopants for oxidation. For fully oxidized films, the extracted channel conductivity was higher in the a-InO{sub x} TFTs containing dopants of small ionic radius. This can be explained by a reduction in the ionic scattering cross sectional area caused by charge screening effects.

  18. Neutron Vibrational Spectroscopy and modeling of polymer/dopant interactions

    NASA Astrophysics Data System (ADS)

    Moule, Adam; Harrelson, Thomas; Cheng, Yongqiang; Ramirez-Cuesta, Anibal; Faller, Roland; Huang, David

    Neutron vibrational spectroscopy (VISION and ORNL) is a powerful technique to determine the configurations of organic species in amorphous samples. We apply this technique to samples of the semiconducting polymer regio-regular P3HT to determine the molecular configurations outside of the crystalline domains, which have never been investigated. Application of density functional theory modeling using crystal field theory and for the single molecule approach yield a variety of configurations of the polymer backbone and side chains. These results demonstrate that only 1% of the volume corresponds to the assumed crystal structure solved using x-ray diffraction. In addition we investigate the configurations of P3HT doped with the molecular dopant F4TCNQ and determine that the charging of the polymer backbone leads to increased side chain stiffness. These results have significant implications for design of organic electronic devices based on thiophenes.

  19. Dopant concentration dependent growth of Fe:ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Sahai, Anshuman; Goswami, Navendu

    2016-05-01

    Systematic investigations of structural properties of 1-10% Fe doped ZnO nanostructure (Fe:ZnO NS) prepared via chemical precipitation method have been reported. Structural properties were probed thoroughly employing scanning electron microscope (SEM) and transmission electron microscope (TEM), energy dispersive X-ray (EDAX) analysis and X-ray diffraction (XRD). Morphological transformation of nanostructures (NS) with Fe incorporation is evident in SEM/TEM images. Nanoparticles (NP) obtained with 1% Fe, evolve to nanorods (NR) for 3% Fe; NR transform to nanocones (NC) (for 5% and 7% Fe) and finally NC transform to nanoflakes (NF) at 10% Fe. Morover, primary phase of Zn1-xFexO along with secondary phases of ZnFe2O4 and Fe2O3 were also revealed through XRD measurements. Based on collective XRD, SEM, TEM, and EDAX interpretations, a model for morphological evolution of NS was proposed and the pivotal role of Fe dopant was deciphered.

  20. Cobalt dopant with deep redox potential for organometal halide hybrid solar cells.

    PubMed

    Koh, Teck Ming; Dharani, Sabba; Li, Hairong; Prabhakar, Rajiv Ramanujam; Mathews, Nripan; Grimsdale, Andrew C; Mhaisalkar, Subodh G

    2014-07-01

    In this work, we report a new cobalt(III) complex, tris[2-(1H-pyrazol-1-yl)pyrimidine]cobalt(III) tris[bis(trifluoromethylsulfonyl)imide] (MY11), with deep redox potential (1.27 V vs NHE) as dopant for 2,2',7,7'-tetrakis-(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (spiro-OMeTAD). This dopant possesses, to the best of our knowledge, the deepest redox potential among all cobalt-based dopants used in solar cell applications, allowing it to dope a wide range of hole-conductors. We demonstrate the tuning of redox potential of the Co dopant by incorporating pyrimidine moiety in the ligand. We characterize the optical and electrochemical properties of the newly synthesized dopant and show impressive spiro-to-spiro(+) conversion. Lastly, we fabricate high efficiency perovskite-based solar cells using MY11 as dopant for molecular hole-conductor, spiro-OMeTAD, to reveal the impact of this dopant in photovoltaic performance. An overall power conversion efficiency of 12% is achieved using MY11 as p-type dopant to spiro-OMeTAD.

  1. Dopant gas effect on silicon chemical vapor depositions: A surface potential model

    NASA Technical Reports Server (NTRS)

    Chang, C. A.

    1975-01-01

    A surface potential model is proposed to consistently explain the known dopant gas effects on silicon chemical vapor deposition. This model predicts that the effects of the same dopant gases on the diamond deposition rate using methane and carbon tetrachloride should be opposite and similar to those of silane, respectively. Available data are in agreement with this prediction.

  2. Femtosecond-laser hyperdoping silicon in an SF{sub 6} atmosphere: Dopant incorporation mechanism

    SciTech Connect

    Sher, Meng-Ju; Mangan, Niall M.; Lin, Yu-Ting; Brenner, Michael P.; Smith, Matthew J.; Gradečak, Silvija; Marbach, Sophie; Schneider, Tobias M.; Mazur, Eric

    2015-03-28

    In this paper, we examine the fundamental processes that occur during femtosecond-laser hyperdoping of silicon with a gas-phase dopant precursor. We probe the dopant concentration profile as a function of the number of laser pulses and pressure of the dopant precursor (sulfur hexafluoride). In contrast to previous studies, we show the hyperdoped layer is single crystalline. From the dose dependence on pressure, we conclude that surface adsorbed molecules are the dominant source of the dopant atoms. Using numerical simulation, we estimate the change in flux with increasing number of laser pulses to fit the concentration profiles. We hypothesize that the native oxide plays an important role in setting the surface boundary condition. As a result of the removal of the native oxide by successive laser pulses, dopant incorporation is more efficient during the later stage of laser irradiation.

  3. Optical characterizations of doped silicon nanocrystals grown by co-implantation of Si and dopants in SiO₂

    SciTech Connect

    Frégnaux, M.; Khelifi, R.; Muller, D.; Mathiot, D.

    2014-10-14

    Co-implantation, with overlapping implantation projected ranges, of Si and doping species (P, As, and B) followed by a thermal annealing step is a viable route to form doped Si nanocrystals (NCs) embedded in silica (SiO₂). In this paper, we investigate optical characterizations of both doped and un-doped Si-NCs prepared by this method. The effective NC presence in the oxide layer and their crystallinity is verified by Raman spectrometry. Photoluminescence (PL) and PL excitation measurements reveal quantum confinement effects and a gradual PL quenching with increasing dopant concentrations. In un-doped NC, the measured Stokes shift remains constant and its value ~0.2 eV is almost twice the Si–O vibration energy. This suggests that a possible radiative recombination path is a fundamental transition assisted by a local phonon. PL lifetime investigations show that PL time-decays follow a stretched exponential. Using a statistical model for luminescence quenching, a typical NC diameter close to 2 nm is obtained for As- and P-doped samples, consistent with our previous atomic probe tomography (APT) analyses. APT also demonstrated that n-type dopant (P and As) are efficiently introduced in the NC core, whereas p-type dopant (B) are located at the NC/SiO₂ interface. This last observation could explain the failure of the luminescence-quenching model to determine NC size in B-doped samples. All together, these experimental observations question on possible different carrier recombination paths in P or As doped NC compared to B one's.

  4. Preparation and characterization of electropolymerized poly(3,4-ethylenedioxythiophene) thin films with different dopant anions

    NASA Astrophysics Data System (ADS)

    Deguchi, Toshiaki; Tomeoku, Hiroya; Takashiri, Masayuki

    2016-06-01

    We investigated the structural and thermoelectric properties poly(3,4-ethylenedioxythiophene) (PEDOT) films with several dopants (counter ions, ClO4, PF6, and BF4), synthesised by electropolymerization. We first performed cyclic voltammetry analysis to determine the optimum synthesis conditions of the PEDOT thin films. We found that the surface morphology of the PEDOT thin films was dependent on the type of the dopant. The PF6-doped PEDOT (PEDOT:PF6) thin films showed a dense structure, and the PEDOT:ClO4 thin films showed a highly porous microstructure. Fourier transform infrared (FT-IR) spectroscopy showed that all the PEDOT thin films showed similar chemical structures and the p-type state. Regarding their thermoelectric properties, the electrical conductivity of the all the doped PEDOT thin films increased as the dopant concentration increased, with the PEDOT:PF6 thin films showing the highest value. On the other hand, the Seebeck coefficient of the PEDOT thin films with all the dopants decreased as the dopant concentration increased, with the PEDOT:BF4 thin films achieving the highest value. As a result, the PEDOT:BF4 thin films exhibited the highest power factor of 0.75 µW/(m·K2) at a dopant concentration of 1.0 M. We think that the PEDOT microstructure produced using the different types of dopant may affect the thermoelectric properties.

  5. Anderson-Mott transition in arrays of a few dopant atoms in a silicon transistor.

    PubMed

    Prati, Enrico; Hori, Masahiro; Guagliardo, Filippo; Ferrari, Giorgio; Shinada, Takahiro

    2012-07-01

    Dopant atoms are used to control the properties of semiconductors in most electronic devices. Recent advances such as single-ion implantation have allowed the precise positioning of single dopants in semiconductors as well as the fabrication of single-atom transistors, representing steps forward in the realization of quantum circuits. However, the interactions between dopant atoms have only been studied in systems containing large numbers of dopants, so it has not been possible to explore fundamental phenomena such as the Anderson-Mott transition between conduction by sequential tunnelling through isolated dopant atoms, and conduction through thermally activated impurity Hubbard bands. Here, we observe the Anderson-Mott transition at low temperatures in silicon transistors containing arrays of two, four or six arsenic dopant atoms that have been deterministically implanted along the channel of the device. The transition is induced by controlling the spacing between dopant atoms. Furthermore, at the critical density between tunnelling and band transport regimes, we are able to change the phase of the electron system from a frozen Wigner-like phase to a Fermi glass by increasing the temperature. Our results open up new approaches for the investigation of coherent transport, band engineering and strongly correlated systems in condensed-matter physics.

  6. D-Limonene as a Chiral Dopant for Thermotropic Liquid Crystalline Systems

    NASA Astrophysics Data System (ADS)

    Zola, Rafael S.; Hurley, Shawn; Yang, Deng-Ke

    2011-06-01

    We used the chiral molecule D-limonene to induce thermotropic cholesteric phases. The methods used to characterize the chiral nematic phase and its features are given. We substituted D-limonene for conventional synthesized chiral dopants in the twisted nematic (TN) displays and showed an improvement in the response time. Despite the large number of synthesized chiral dopants, D-limonene can be used as a dopant for making cholesteric phases having the advantage of being a naturally occurring substance. It is surprising how many more synthesized chiral molecules have been used as the liquid crystal field moves forward in comparison to naturally occurring molecules.

  7. Measurement of Temperature, Density, and Particle Transport with Localized Dopants in Wire-Array Z Pinches

    SciTech Connect

    Jones, B.; Deeney, C.; McKenney, J. L.; Ampleford, D. J.; Coverdale, C. A.; LePell, P. D.; Shelton, K. P.; Safronova, A. S.; Kantsyrev, V. L.; Osborne, G.; Sotnikov, V. I.; Ivanov, V. V.; Fedin, D.; Nalajala, V.; Yilmaz, F.; Shrestha, I.

    2008-03-14

    Axially localized NaF dopants are coated onto Al cylindrical wire arrays in order to act as spectroscopic tracers in the stagnated z-pinch plasma. Non-local-thermodynamic-equilibrium kinetic models fit to Na K-shell lines provide an independent measurement of the density and temperature that is consistent with spectroscopic analysis of K-shell emissions from Al and an alloyed Mg dopant. Axial transport of the Na dopant is observed, enabling quantitative study of instabilities in dense z-pinch plasmas.

  8. Carrier injection engineering in nanowire transistors via dopant and shape monitoring of the access regions

    SciTech Connect

    Berrada, Salim Bescond, Marc Cavassilas, Nicolas; Raymond, Laurent; Lannoo, Michel

    2015-10-12

    This work theoretically studies the influence of both the geometry and the discrete nature of dopants of the access regions in ultra-scaled nanowire transistors. By means of self-consistent quantum transport simulations, we show that discrete dopants induce quasi-localized states which govern carrier injection into the channel. Carrier injection can be enhanced by taking advantage of the dielectric confinement occurring in these access regions. We demonstrate that the optimization of access resistance can be obtained by a careful control of shape and dopant position. These results pave the way for contact resistance engineering in forthcoming device generations.

  9. Photorefractive effect in ferroelectric liquid crystal blends containing terthiophene photoconductive chiral dopants

    NASA Astrophysics Data System (ADS)

    Sasaki, Takeo; Yoshino, Masanori

    2016-04-01

    Ferroelectric liquid crystalline mixtures composed of a smectic liquid crystal, a photoconductive chiral dopant, and an electron trap reagent exhibit a large photorefractivity with a rapid response. It is expected that the photorefractive FLC blends can be utilized in dynamic amplification of moving optical signals. In the present study, the photorefractive properties of the ferroelectric liquid crystal blends containing different photoconductive chiral dopants were examined. The durability of the photoconductive chiral dopants during laser irradiation was investigated. Tthe effect of the conduction of photogenerated ionic species on the photorefractivity decay was clarified.

  10. Dopant Profiling of III-V Nanostructures for Electronic Applications

    NASA Astrophysics Data System (ADS)

    Ford, Alexandra Caroline

    2011-12-01

    High electron mobility III-V compound semiconductors such as indium arsenide (InAs) are promising candidates for future active channel materials of electron devices to further enhance device performance. In particular, compound semiconductors heterogeneously integrated on Si substrates have been studied, combining the high mobility of III-V semiconductors and the well-established, low cost processing of Si technology. However, one of the primary challenges of III-V device fabrication is controllable, post-growth dopant profiling. Here InAs nanowires and ultrathin layers (nanoribbons) on SiO2/Si are investigated as the channel material for high performance field-effect transistors (FETs) and post-growth, patterned doping techniques are demonstrated. First, the synthesis of crystalline InAs nanowires with high yield and tunable diameters by using Ni nanoparticles as the catalyst material on SiO 2/Si substrates is demonstrated. The back-gated InAs nanowire FETs have electron field-effect mobilities of ˜4,000 cm2/Vs and ION/IOFF ˜104. The uniformity of the InAs nanowires is demonstrated by large-scale assembly of parallel arrays of nanowires (˜400 nanowires) on SiO2/Si substrates by a contact printing process. This enables high performance, "printable" transistors with 5--10 mA ON currents. Second, an epitaxial transfer method for the integration of ultrathin layers of single-crystalline InAs on SiO2/Si substrates is demonstrated. As a parallel to silicon-on-insulator (SOI) technology, the abbreviation "XOI" is used to represent this compound semiconductor-on-insulator platform. A high quality InAs/dielectric interface is obtained by the use of a thermally grown interfacial InAsOx layer (˜1 nm thick). Top-gated FETs exhibit a peak transconductance of ˜1.6 mS/microm at V DS=0.5V with ION/I OFF >104 and subthreshold swings of 107--150 mV/decade for a channel length of ˜0.5 microm. Next, temperature-dependent I-V and C-V studies of single InAs nanowire FETs are

  11. Thermoelectric properties of silicon carbide nanowires with nitride dopants and vacancies

    NASA Astrophysics Data System (ADS)

    Xu, Zhuo; Zheng, Qing-Rong; Su, Gang

    2011-12-01

    The thermoelectric properties of cubic zinc-blend silicon carbide nanowires (SiCNWs) with nitrogen impurities and vacancies along [111] direction are theoretically studied by means of atomistic simulations. It is found that the thermoelectric figure of merit ZT of SiCNWs can be significantly enhanced by doping N impurities together with making Si vacancies. Aiming at obtaining a large ZT, we study possible energetically stable configurations, and disclose that, when N dopants are located at the center, a small number of Si vacancies at corners are most favored for n-type nanowires, while a large number of Si vacancies spreading into the flat edge sites are most favored for p-type nanowires. For the SiCNW with a diameter of 1.1 nm and a length of 4.6 nm, the ZT value for the n-type is shown capable of reaching 1.78 at 900 K. The conditions to get higher ZT values for longer SiCNWs are also addressed.

  12. Comparison of Cathodoluminescent and Photoluminescent Emission Spectra of LuPO4 with Different Dopants

    SciTech Connect

    Goedeke, Shawn; Hollerman, William Andrew; Allison, Stephen W; Gray, P A; Lewis, Linda A; Smithwick III, Robert W; Boatner, Lynn A; Glasgow, David C; Wise, H.

    2008-01-01

    The current interest in returning human exploration to the Moon and Mars makes cost-effective and low-mass health monitoring sensors essential for spacecraft development. In space, there are many surface measurements that are required to monitor the condition of the spacecraft including: surface temperature, radiation dose, and impact. Through the use of tailored phosphors, these conditions can be monitored. Practical space-based phosphor sensors will depend heavily upon research investigating the resistance of phosphors to ionizing radiation and their ability to anneal or 'self-heal' from damage caused by ionizing radiation. For the present research, a group of lutetium orthophosphate (LuPO{sub 4}) crystals with dopants including europium, erbium, and neodymium were characterized. Cathodoluminescence (CL) testing was performed using the low energy electron system located at the NASA Marshall Space Flight Center in Huntsville, Alabama. The data were collected using an Ocean Optics HR4000 spectrometer and a fiber optic feed-through. Previous research has shown that increases in both beam energy and current density improved the CL fluorescence yield. While the total electron dose was small, the intention was to maximize the number of irradiated materials. Additionally, these samples were evaluated using a PTI Quantum Master Spectrophotometer to determine the photoluminescence emission spectra.

  13. Dopant effects on the photoluminescence of interstitial-related centers in ion implanted silicon

    NASA Astrophysics Data System (ADS)

    Johnson, B. C.; Villis, B. J.; Burgess, J. E.; Stavrias, N.; McCallum, J. C.; Charnvanichborikarn, S.; Wong-Leung, J.; Jagadish, C.; Williams, J. S.

    2012-05-01

    The dopant dependence of photoluminescence (PL) from interstitial-related centers formed by ion implantation and a subsequent anneal in the range 175-525 °C is presented. The evolution of these centers is strongly effected by interstitial-dopant clustering even in the low temperature regime. There is a significant decrease in the W line (1018.2 meV) PL intensity with increasing B concentration. However, an enhancement is also observed in a narrow fabrication window in samples implanted with either P or Ga. The anneal temperature at which the W line intensity is optimized is sensitive to the dopant concentration and type. Furthermore, dopants which are implanted but not activated prior to low temperature thermal processing are found to have a more detrimental effect on the resulting PL. Splitting of the X line (1039.8 meV) arising from implantation damage induced strain is also observed.

  14. Comparison of charge and dopant densities for DX sites in AlGaAs:Sn

    NASA Astrophysics Data System (ADS)

    Lurio, L. B.; Hayes, T. M.; Pant, J.; Williamson, D. L.; Gibart, P.; Theis, T. N.

    1996-03-01

    X-ray absorption spectroscopy measurements using fluorescence detection have been performed on Sn dopant centers in Al_.33Ga_.77As:Sn. Absolute calibration of the fluorescence yield permits a comparison of dopant and charge carrier densities in the persistent photo-conducting (PPC) state. It is found that the ratio of dopants to carriers is significantly greater than 1:1. In order to understand this discrepancy, we have determined the average local environment of the dopants through analysis of the X-ray absorption fine structure. The reduced carrier density is explained by a combination of inactive donor sites and charge traps. Implications for the nature of the Sn donor sites will be discussed. This research is supported by NSF grant nos. DMR-9006956 and DMR-8902512. The measurements were made at SSRL which is funded by the DOE Office of Basic Energy Sciences and the NIH Biotechnology Research Resource Program.

  15. Controlling the Adsorption of Carbon Monoxide on Platinum Clusters by Dopant-Induced Electronic Structure Modification.

    PubMed

    Ferrari, Piero; Molina, Luis M; Kaydashev, Vladimir E; Alonso, Julio A; Lievens, Peter; Janssens, Ewald

    2016-09-01

    A major drawback of state-of-the-art proton exchange membrane fuel cells is the CO poisoning of platinum catalysts. It is known that CO poisoning is reduced if platinum alloys are used, but the underlying mechanism therefore is still under debate. We study the influence of dopant atoms on the CO adsorption on small platinum clusters using mass spectrometry experiments and density functional calculations. A significant reduction in the reactivity for Nb- and Mo-doped clusters is attributed to electron transfer from those highly coordinated dopants to the Pt atoms and the concomitant lower CO binding energies. On the other hand Sn and Ag dopants have a lower Pt coordination and have a limited effect on the CO adsorption. Analysis of the density of states demonstrates a correlation of dopant-induced changes in the electronic structure with the enhanced tolerance to CO poisoning. PMID:27464653

  16. Charge separation technique for metal-oxide-silicon capacitors in the presence of hydrogen deactivated dopants

    SciTech Connect

    Witczak, Steven C.; Winokur, Peter S.; Lacoe, Ronald C.; Mayer, Donald C.

    2000-06-01

    An improved charge separation technique for metal-oxide-silicon (MOS) capacitors is presented which accounts for the deactivation of substrate dopants by hydrogen at elevated irradiation temperatures or small irradiation biases. Using high-frequency capacitance-voltage measurements, radiation-induced inversion voltage shifts are separated into components due to oxide trapped charge, interface traps, and deactivated dopants, where the latter is computed from a reduction in Si capacitance. In the limit of no radiation-induced dopant deactivation, this approach reduces to the standard midgap charge separation technique used widely for the analysis of room-temperature irradiations. The technique is demonstrated on a p-type MOS capacitor irradiated with {sup 60}Co {gamma} rays at 100 degree sign C and zero bias, where the dopant deactivation is significant.(c) 2000 American Institute of Physics.

  17. The dopant dependent photocatalytic activity of polyaniline towards the degradation of Rose Bengal dye

    NASA Astrophysics Data System (ADS)

    Chatterjee, Mukulika Jana; Banerjee, Dipali; Ghosh, Amrita; Mondal, Anup

    2016-05-01

    Polyaniline (PANI) with two different dopants, hydrochloric acid (HCl) and bismuth nitrate (Bi (NO3)3), were synthesized to investigate the effect of dopant on photocatalytic degradation of Rose Bengal, an organic dye, in presence of sunlight. PANI, synthesized by in situ polymerization was characterized by FESEM images, FTIR and UV-Vis spectra. FESEM images show rod like structures obtained for both the dopants. FTIR spectra confirms the formation of conducting PANI with the presence of C=N, C=C stretching modes in quinoid and benzenoid units. Band gap of PANI has been obtained from UV-Vis spectrum. Doped polyaniline exhibited a fast degradation of dye by 98.62 % & 98.12 % within 5 min & 8 min under visible light illumination for the dopant HCl & Bi (NO3)3 respectively.

  18. Dopant-controlled single-electron pumping through a metallic island

    NASA Astrophysics Data System (ADS)

    Wenz, Tobias; Hohls, Frank; Jehl, Xavier; Sanquer, Marc; Barraud, Sylvain; Klochan, Jevgeny; Barinovs, Girts; Kashcheyevs, Vyacheslavs

    2016-05-01

    We investigate a hybrid metallic island/single dopant electron pump based on fully depleted silicon-on-insulator technology. Electron transfer between the central metallic island and the leads is controlled by resonant tunneling through single phosphorus dopants in the barriers. Top gates above the barriers are used to control the resonance conditions. Applying radio frequency signals to the gates, non-adiabatic quantized electron pumping is achieved. A simple deterministic model is presented and confirmed by comparing measurements with simulations.

  19. Wide Band-Gap Bismuth-based p-Dopants for Opto-Electronic Applications.

    PubMed

    Pecqueur, Sébastien; Maltenberger, Anna; Petrukhina, Marina A; Halik, Marcus; Jaeger, Arndt; Pentlehner, Dominik; Schmid, Günter

    2016-08-22

    Ten new efficient p-dopants for conductivity doping of organic semiconductors for OLEDs are identified. The key advantage of the electrophilic tris(carboxylato) bismuth(III) compounds is the unique low absorption of the resulting doped layers which promotes the efficiency of OLED devices. The combination of these features with their low fabrication cost, volatility, and stability, make these materials very attractive as dopants in organic electronics. PMID:27440434

  20. Diameter Dependence of Planar Defects in InP Nanowires.

    PubMed

    Wang, Fengyun; Wang, Chao; Wang, Yiqian; Zhang, Minghuan; Han, Zhenlian; Yip, SenPo; Shen, Lifan; Han, Ning; Pun, Edwin Y B; Ho, Johnny C

    2016-01-01

    In this work, extensive characterization and complementary theoretical analysis have been carried out on Au-catalyzed InP nanowires in order to understand the planar defect formation as a function of nanowire diameter. From the detailed transmission electron microscopic measurements, the density of stacking faults and twin defects are found to monotonically decrease as the nanowire diameter is decreased to 10 nm, and the chemical analysis clearly indicates the drastic impact of In catalytic supersaturation in Au nanoparticles on the minimized planar defect formation in miniaturized nanowires. Specifically, during the chemical vapor deposition of InP nanowires, a significant amount of planar defects is created when the catalyst seed sizes are increased with the lower degree of In supersaturation as dictated by the Gibbs-Thomson effect, and an insufficient In diffusion (or Au-rich enhancement) would lead to a reduced and non-uniform In precipitation at the NW growing interface. The results presented here provide an insight into the fabrication of "bottom-up" InP NWs with minimized defect concentration which are suitable for various device applications. PMID:27616584

  1. Diameter-dependent solubility of single-walled carbon nanotubes.

    PubMed

    Duque, Juan G; Parra-Vasquez, A Nicholas G; Behabtu, Natnael; Green, Micah J; Higginbotham, Amanda L; Price, B Katherine; Leonard, Ashley D; Schmidt, Howard K; Lounis, Brahim; Tour, James M; Doorn, Stephen K; Cognet, Laurent; Pasquali, Matteo

    2010-06-22

    We study the solubility and dispersibility of as-produced and purified HiPco single-walled carbon nanotubes (SWNTs). Variation in specific operating conditions of the HiPco process are found to lead to significant differences in the respective SWNT solubilities in oleum and surfactant suspensions. The diameter distributions of SWNTs dispersed in surfactant solutions are batch-dependent, as evidenced by luminescence and Raman spectroscopies, but are identical for metallic and semiconducting SWNTs within a batch. We thus find that small diameter SWNTs disperse at higher concentration in aqueous surfactants and dissolve at higher concentration in oleum than do large-diameter SWNTs. These results highlight the importance of controlling SWNT synthesis methods in order to optimize processes dependent on solubility, including macroscopic processing such as fiber spinning, material reinforcement, and films production, as well as for fundamental research in type selective chemistry, optoelectronics, and nanophotonics. PMID:20521799

  2. Diameter dependent failure current density of gold nanowires

    NASA Astrophysics Data System (ADS)

    Karim, S.; Maaz, K.; Ali, G.; Ensinger, W.

    2009-09-01

    Failure current density of single gold nanowires is investigated in this paper. Single wires with diameters ranging from 80 to 720 nm and length 30 µm were electrochemically deposited in ion track-etched single-pore polycarbonate membranes. The maximum current density was investigated while keeping the wires embedded in the polymer matrix and ramping up the current until failure occurred. The current density is found to increase with diminishing diameter and the wires with a diameter of 80 nm withstand 1.2 × 1012 A m-2 before undergoing failure. Possible reasons for these results are discussed in this paper.

  3. Diameter Dependence of Planar Defects in InP Nanowires.

    PubMed

    Wang, Fengyun; Wang, Chao; Wang, Yiqian; Zhang, Minghuan; Han, Zhenlian; Yip, SenPo; Shen, Lifan; Han, Ning; Pun, Edwin Y B; Ho, Johnny C

    2016-01-01

    In this work, extensive characterization and complementary theoretical analysis have been carried out on Au-catalyzed InP nanowires in order to understand the planar defect formation as a function of nanowire diameter. From the detailed transmission electron microscopic measurements, the density of stacking faults and twin defects are found to monotonically decrease as the nanowire diameter is decreased to 10 nm, and the chemical analysis clearly indicates the drastic impact of In catalytic supersaturation in Au nanoparticles on the minimized planar defect formation in miniaturized nanowires. Specifically, during the chemical vapor deposition of InP nanowires, a significant amount of planar defects is created when the catalyst seed sizes are increased with the lower degree of In supersaturation as dictated by the Gibbs-Thomson effect, and an insufficient In diffusion (or Au-rich enhancement) would lead to a reduced and non-uniform In precipitation at the NW growing interface. The results presented here provide an insight into the fabrication of "bottom-up" InP NWs with minimized defect concentration which are suitable for various device applications.

  4. Diameter Dependence of the Transport Properties of Antimony Telluride Nanowires

    NASA Astrophysics Data System (ADS)

    Zuev, Yuri; Lee, Jin Sook; Park, Hongkun; Kim, Philip

    2010-03-01

    We report measurements of electronic, thermoelectric, and galvanometric properties of individual semimetallic single crystal antimony telluride (Sb2Te3) nanowires. Microfabricated heater and thermometer electrodes were used to probe the transport properties of the nanowires with diameters in the range of 22 - 95nm and temperatures in the range of 2 - 300K. Temperature dependent resistivity varies depending on nanowire diameter. Thermoelectric power (TEP) measurements indicate hole dominant diffusive thermoelectric generation, with an enhancement of the TEP for smaller diameter wires. The large surface-to-volume ratio of Sb2Te3 nanowires makes them an excellent platform to explore novel phenomena in this predicted topological insulator. We investigate mesoscopic magnetoresistance effects in magnetic fields both parallel and perpendicular to the nanowire axis.

  5. Diameter Dependence of Planar Defects in InP Nanowires

    NASA Astrophysics Data System (ADS)

    Wang, Fengyun; Wang, Chao; Wang, Yiqian; Zhang, Minghuan; Han, Zhenlian; Yip, Senpo; Shen, Lifan; Han, Ning; Pun, Edwin Y. B.; Ho, Johnny C.

    2016-09-01

    In this work, extensive characterization and complementary theoretical analysis have been carried out on Au-catalyzed InP nanowires in order to understand the planar defect formation as a function of nanowire diameter. From the detailed transmission electron microscopic measurements, the density of stacking faults and twin defects are found to monotonically decrease as the nanowire diameter is decreased to 10 nm, and the chemical analysis clearly indicates the drastic impact of In catalytic supersaturation in Au nanoparticles on the minimized planar defect formation in miniaturized nanowires. Specifically, during the chemical vapor deposition of InP nanowires, a significant amount of planar defects is created when the catalyst seed sizes are increased with the lower degree of In supersaturation as dictated by the Gibbs-Thomson effect, and an insufficient In diffusion (or Au-rich enhancement) would lead to a reduced and non-uniform In precipitation at the NW growing interface. The results presented here provide an insight into the fabrication of “bottom-up” InP NWs with minimized defect concentration which are suitable for various device applications.

  6. Diameter Dependence of Planar Defects in InP Nanowires

    PubMed Central

    Wang, Fengyun; Wang, Chao; Wang, Yiqian; Zhang, Minghuan; Han, Zhenlian; Yip, SenPo; Shen, Lifan; Han, Ning; Pun, Edwin Y. B.; Ho, Johnny C.

    2016-01-01

    In this work, extensive characterization and complementary theoretical analysis have been carried out on Au-catalyzed InP nanowires in order to understand the planar defect formation as a function of nanowire diameter. From the detailed transmission electron microscopic measurements, the density of stacking faults and twin defects are found to monotonically decrease as the nanowire diameter is decreased to 10 nm, and the chemical analysis clearly indicates the drastic impact of In catalytic supersaturation in Au nanoparticles on the minimized planar defect formation in miniaturized nanowires. Specifically, during the chemical vapor deposition of InP nanowires, a significant amount of planar defects is created when the catalyst seed sizes are increased with the lower degree of In supersaturation as dictated by the Gibbs-Thomson effect, and an insufficient In diffusion (or Au-rich enhancement) would lead to a reduced and non-uniform In precipitation at the NW growing interface. The results presented here provide an insight into the fabrication of “bottom-up” InP NWs with minimized defect concentration which are suitable for various device applications. PMID:27616584

  7. Dopant in Near-Surface Semiconductor Layers of Metal-Insulator-Semiconductor Structures Based on Graded-Gap p-Hg0.78Cd0.22Te Grown by Molecular-Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Voitsekhovskii, A. V.; Nesmelov, S. N.; Dzyadukh, S. M.

    2016-02-01

    Peculiarities in determining the dopant concentration and dopant distribution profile in the near-surface layer of a semiconductor are investigated by measuring the admittance of metal-insulator-semiconductor structures (MIS structures) based on p-Hg0.78Cd0.22Te grown by molecular beam epitaxy. The dopant concentrations in the near-surface layer of the semiconductor are determined by measuring the admittance of MIS structures in the frequency range of 50 kHz to 1 MHz. It is shown that in this frequency range, the capacitance-voltage characteristics of MIS structures based on p-Hg0.78Cd0.22Te with a near-surface graded gap layer demonstrate a high-frequency behavior with respect to the recharge time of surface states located near the Fermi level for an intrinsic semiconductor. The formation time of the inversion layer is decreased by less than two times, if a near-surface graded-gap layer is created. The dopant distribution profile in the near-surface layer of the semiconductor is found, and it is shown that for structures based on p-Hg0.78Cd0.22Te with a near-surface graded-gap layer, the dopant concentration has a minimum near the interface with the insulator. For MIS structure based on n-Hg0.78Cd0.22Te, the dopant concentration is more uniformly distributed in the near-surface layer of the semiconductor.

  8. Imaging Dirac-mass disorder from magnetic dopant atoms in the ferromagnetic topological insulator Crx(Bi0.1Sb0.9)2-xTe3

    DOE PAGES

    Lee, Inhee; Kim, Chung Koo; Lee, Jinho; Billinge, Simon J. L.; Zhong, Ruidan D.; Schneeloch, John A.; Liu, Tiansheng S.; Valla, Tonica; Tranquada, John M.; Gu, Genda D.; et al

    2015-01-20

    To achieve and use the most exotic electronic phenomena predicted for the surface states of 3D topological insulators (TIs), it is necessary to open a “Dirac-mass gap” in their spectrum by breaking time-reversal symmetry. Use of magnetic dopant atoms to generate a ferromagnetic state is the most widely applied approach. However, it is unknown how the spatial arrangements of the magnetic dopant atoms influence the Dirac-mass gap at the atomic scale or, conversely, whether the ferromagnetic interactions between dopant atoms are influenced by the topological surface states. Here we image the locations of the magnetic (Cr) dopant atoms in themore » ferromagnetic TI Cr₀.₀₈(Bi₀.₁Sb₀.₉)₁.₉₂Te₃. Simultaneous visualization of the Dirac-mass gap Δ(r) reveals its intense disorder, which we demonstrate is directly related to fluctuations in n(r), the Cr atom areal density in the termination layer. We find the relationship of surface-state Fermi wavevectors to the anisotropic structure of Δ(r) not inconsistent with predictions for surface ferromagnetism mediated by those states. Moreover, despite the intense Dirac-mass disorder, the anticipated relationship Δ(r)∝n(r) is confirmed throughout and exhibits an electron–dopant interaction energy J* = 145 meV·nm². In addition, these observations reveal how magnetic dopant atoms actually generate the TI mass gap locally and that, to achieve the novel physics expected of time-reversal symmetry breaking TI materials, control of the resulting Dirac-mass gap disorder will be essential.« less

  9. Imaging Dirac-mass disorder from magnetic dopant atoms in the ferromagnetic topological insulator Crx(Bi0.1Sb0.9)2-xTe3.

    PubMed

    Lee, Inhee; Kim, Chung Koo; Lee, Jinho; Billinge, Simon J L; Zhong, Ruidan; Schneeloch, John A; Liu, Tiansheng; Valla, Tonica; Tranquada, John M; Gu, Genda; Davis, J C Séamus

    2015-02-01

    To achieve and use the most exotic electronic phenomena predicted for the surface states of 3D topological insulators (TIs), it is necessary to open a "Dirac-mass gap" in their spectrum by breaking time-reversal symmetry. Use of magnetic dopant atoms to generate a ferromagnetic state is the most widely applied approach. However, it is unknown how the spatial arrangements of the magnetic dopant atoms influence the Dirac-mass gap at the atomic scale or, conversely, whether the ferromagnetic interactions between dopant atoms are influenced by the topological surface states. Here we image the locations of the magnetic (Cr) dopant atoms in the ferromagnetic TI Cr0.08(Bi0.1Sb0.9)1.92Te3. Simultaneous visualization of the Dirac-mass gap Δ(r) reveals its intense disorder, which we demonstrate is directly related to fluctuations in n(r), the Cr atom areal density in the termination layer. We find the relationship of surface-state Fermi wavevectors to the anisotropic structure of Δ(r) not inconsistent with predictions for surface ferromagnetism mediated by those states. Moreover, despite the intense Dirac-mass disorder, the anticipated relationship [Formula: see text] is confirmed throughout and exhibits an electron-dopant interaction energy J* = 145 meV·nm(2). These observations reveal how magnetic dopant atoms actually generate the TI mass gap locally and that, to achieve the novel physics expected of time-reversal symmetry breaking TI materials, control of the resulting Dirac-mass gap disorder will be essential.

  10. Clustering behavior of yttrium and scandium dopant ions in cubic stabilized zirconia electrolytes at high temperature

    NASA Astrophysics Data System (ADS)

    Miller, Steven Paul

    This work investigates the role that dopant clustering plays in the aging phenomena observed in scandia-stabilized zirconia electrolytes. Molecular dynamics simulations have been conducted on supercells containing compositions of xSc2O3 + (11 - x)Y 2O3 + 89ZrO2 for x = {0, 1, 2, 11} and also on the composition 8Y2O3 + 92ZrO2 . It was discovered that individual dopant-dopant barriers have a relatively small effect on bulk ionic conductivity when the dopants are arranged in small clusters, as the vacancies rarely migration through the small clusters. However, larger clustering of ions can have a significant impact on ionic conductivity, mostly due to localized destabilization of the high-conductivity cubic phase, which forces oxygen ions to migrate through the remaining dopant-rich cubic matrix. Part of the destabilization occurs due to vacancies becoming trapped within the dopant clusters, which forces the Zr ions in the zirconia-rich regions to assume a higher coordinated state with oxygen. However, the zirconium ions are known to abhor eight-fold coordinated states, and these regions form precipitates of low-conductivity phases. These phases have been identified as tetragonal, and their formation coincides with the simultaneous reduction in ionic conductivity. The tetragonal precipitates are found to be energetically favorable at temperatures of 1073 K, indicating that colloidal stratification of the mixture is inevitable due to cationic migration during long term annealing. However, clustering of dopants appears to reach a limiting point as the dopants exhibit a repulsive interaction that limits the thermodynamic stability of the zirconia precipitates. Therefore, the dopant clusters will reach a certain maximum size at which point clustering is expected to terminate at an equilibrium state. Scandia stabilized zirconia was observed to provide better conductivity, lower zirconium coordination and superior

  11. Incorporation of dopant impurities into a silicon oxynitride matrix containing silicon nanocrystals

    NASA Astrophysics Data System (ADS)

    Ehrhardt, Fabien; Ulhaq-Bouillet, Corinne; Muller, Dominique; Slaoui, Abdelilah; Ferblantier, Gérald

    2016-05-01

    Dopant impurities, such as gallium (Ga), indium (In), and phosphorus (P), were incorporated into silicon-rich silicon oxynitride (SRSON) thin films by the ion implantation technique. To form silicon nanoparticles, the implanted layers were thermally annealed at temperatures up to 1100 °C for 60 min. This thermal treatment generates a phase separation of the silicon nanoparticles from the SRSON matrix in the presence of the dopant atoms. We report on the position of the dopant species within the host matrix and relative to the silicon nanoparticles, as well as on the effect of the dopants on the crystalline structure and the size of the Si nanoparticles. The energy-filtered transmission electron microscopy technique is thoroughly used to identify the chemical species. The distribution of the dopant elements within the SRSON compound is determined using Rutherford backscattering spectroscopy. Energy dispersive X-ray mapping coupled with spectral imaging of silicon plasmons was performed to spatially localize at the nanoscale the dopant impurities and the silicon nanoparticles in the SRSON films. Three different behaviors were observed according to the implanted dopant type (Ga, In, or P). The In-doped SRSON layers clearly showed separated nanoparticles based on indium, InOx, or silicon. In contrast, in the P-doped SRSON layers, Si and P are completely miscible. A high concentration of P atoms was found within the Si nanoparticles. Lastly, in Ga-doped SRSON the Ga atoms formed large nanoparticles close to the SRSON surface, while the Si nanoparticles were localized in the bulk of the SRSON layer. In this work, we shed light on the mechanisms responsible for these three different behaviors.

  12. Electron-donor dopant, method of improving conductivity of polymers by doping therewith, and a polymer so treated

    DOEpatents

    Liepins, R.; Aldissi, M.

    1984-07-27

    Polymers with conjugated backbones, both polyacetylene and polyaromatic heterocyclic types, are doped with electron-donor agents to increase their electrical conductivity. The electron-donor agents are either electride dopants made in the presence of lithium or dopants derived from alkalides made in the presence of lithium. The dopants also contain a metal such as cesium and a trapping agent such as a crown ether.

  13. Electron-donor dopant, method of improving conductivity of polymers by doping therewith, and a polymer so treated

    DOEpatents

    Liepins, Raimond; Aldissi, Mahmoud

    1988-01-01

    Polymers with conjugated backbones, both polyacetylene and polyaromatic heterocyclic types, are doped with electron-donor agents to increase their electrical conductivity. The electron-donor agents are either electride dopants made in the presence of lithium or dopants derived from alkalides made in the presence of lithium. The dopants also contain a metal such as cesium and a trapping agent such as a crown ether.

  14. Effects on Implosion Characteristics of High-Z Dopant Profiles in ICF Ignition Capsule Ablators

    NASA Astrophysics Data System (ADS)

    Li, Yongsheng; Wang, Min; Gu, Jianfa; Zou, Shiyang; Kang, Dongguo; Ye, Wenhua; Zhang, Weiyan

    2012-10-01

    For ignition target design (ITD) of indirect drive ICF [J. Lindl, PoP 2, 3933(1995)], high-Z dopants in capsule ablators were used to prevent preheat of DTadjacentablators by Au M-band flux in laser-driven gold Hohlraums, therefore to restrain the growth of high-mode hydro-instabilities and to improve the targetrobustness.Based on NIC's Rev. 5 ITD[S. W. Haan et al., PoP 18, 051001(2011)], we investigated the effect of thickness and dopant concentration of doped layers on implosion characteristics, including the Atwood number (AWN) of fuel-ablator interface, the density gradient scale length (DGSL) of ablation front and the implosion velocity (VIM); all three variables decrease with increment of dopant dosage, and increase with dopant concentration while keeping dosage constant. Since a smaller AWN, a larger DGSL, and a faster VIM always characterize a more robust ITD, one should make tradeoff among them by adjusting the dopant profiles in ablators.A Gaussian spectrum (GS) was used to imitate the Au M-band flux [Y. S. Li et al., PoP 18, 022701(2011)], and the impact of GScenter on implosion characteristics of Rev. 5 ITD was studied while moving the GScenter towards higher energy, the ablatorpreheat got severe, AWN got larger, DGSL got larger, and VIM got faster.

  15. Effect of higher z dopants on implosion dynamics: X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Kyrala, George A.; Wilson, Douglas C.; Benage, John F.; Gunderson, Mark; Klare, Ken; Frenje, Johan; Petrasso, Richard; Garbett, Warren; James, Steven; Glebov, Vladimir; Yaakobi, Barukh

    2007-05-01

    Low- z dopants such as argon are used to characterize the plasma properties in imploding inertial confinement fusion (ICF) capsules. Higher z dopants will be used as the temperature of the capsules is increased especially as we approach ignition on the National Ignition Facility (NIF). The presence of the higher z dopants also affects the dynamics of the implosion as it increases the electron density, which increases the radiation losses from the plasma allowing the plasma to compress to a smaller volume. In the present study, we examine the effects at higher dopant densities. While a normal glass capsule loses energy to radiation during compression, the high- z shells will confine the radiation even as equilibrium burn is approached. We have fielded thin 1-mm diameter glass shells filled with varying amounts of xenon and krypton gas to study the progression from non-equilibrium to equilibrium burn as the dopant gas concentration is increased. The shells used for these experiments also contained 3He to measure the proton spectrum from the D 3He reaction providing information about the target temperature and the density-radius product, ρR. Here we present results using the X-ray measurements, as well as discuss some of the issues and the progress we made.

  16. Method for implantation of high dopant concentrations in wide band gap materials

    DOEpatents

    Usov, Igor; Arendt, Paul N.

    2009-09-15

    A method that combines alternate low/medium ion dose implantation with rapid thermal annealing at relatively low temperatures. At least one dopant is implanted in one of a single crystal and an epitaxial film of the wide band gap compound by a plurality of implantation cycles. The number of implantation cycles is sufficient to implant a predetermined concentration of the dopant in one of the single crystal and the epitaxial film. Each of the implantation cycles includes the steps of: implanting a portion of the predetermined concentration of the one dopant in one of the single crystal and the epitaxial film; annealing one of the single crystal and the epitaxial film and implanted portion at a predetermined temperature for a predetermined time to repair damage to one of the single crystal and the epitaxial film caused by implantation and activates the implanted dopant; and cooling the annealed single crystal and implanted portion to a temperature of less than about 100.degree. C. This combination produces high concentrations of dopants, while minimizing the defect concentration.

  17. Further studies on the role of dopants in LiF:Mg,Cu,Si thermoluminescent material.

    PubMed

    Tang, K; Fan, H; Cui, H; Zhu, H; Liu, Z

    2015-02-01

    The 3-D thermoluminescence spectra and glow curves of LiF:Mg,Cu,Si, LiF:Mg,Cu, LiF:Mg,Si and LiF:Cu,Si with low concentrations of Mg and Cu were measured and were compared with those with high concentrations to investigate further the role of dopants in LiF:Mg,Cu,Si material. The shape of glow curves of the four samples is similar; however, LiF:Cu,Si sample had no Mg dopant. It is concluded that the TL emission to be from self-trapped excitons in LiF, and this emission could be enhanced and altered by Mg, Cu and Si dopants in LiF:Mg,Cu,Si; all three dopants are necessary to obtain the bright TL emission and may be involved in the luminescence process; Mg seems to be the most essential dopant and Cu is involved in the trapping although the role of Mg dominates; both Cu and Si play a role in the main emission process and Cu also plays a role in reducing the emission around 610 nm.

  18. Molecular Dynamics Approach for Predicting Helical Twisting Powers of Metal Complex Dopants in Nematic Solvents.

    PubMed

    Watanabe, Go; Yoshida, Jun

    2016-07-14

    Nematic liquid crystals of small molecules are known to transform into chiral nematic liquid crystals with supramolecular helical structures upon doping with enantiomeric compounds. Although this phenomenon is well established, the basic mechanism is still unclear. We have previously examined metal complexes with Δ and Λ chiralities as dopants in nematic liquid crystals and have found that slight differences in the molecular structure determine the handedness of the induced helical structure. In this study, we investigated the microscopic arrangement of liquid crystal molecules around metal complex dopants with the aid of molecular dynamics (MD) simulations. There are several restrictions to performing MD simulations of the chiral nematic system; for example, one pitch of the helix usually exceeds one side of an applicable periodic boundary box (∼10(2) nm). In view of these simulation problems, we therefore examined racemic systems in which a pair of Δ- and Λ-isomers of the chiral dopant is mixed with liquid crystal molecules. We selected two different octahedral ruthenium complexes as the chiral dopant molecules. As a result, we accurately calculated the ordering matrix that is essential parameter to estimate the helical twisting power of the chiral dopant based on the surface chirality model. Since the microscopic ordering is experimentally hard to be determined, our new approach with using MD simulations accurately deduced the ordering matrix and, with the aid of the surface chirality model, gave reasonable values for the helical twisting powers of each complex. PMID:27333445

  19. A model of dopant diffusion through a strongly correlated p-n junction

    NASA Astrophysics Data System (ADS)

    Wieteska, Jedrzej; Brierley, Richard; Guzman-Verri, Gian; Moller, Gunnar; Littlewood, Peter; Littlewood group Collaboration

    The diffusion of charged ions in a solid depends on an equation of state that balances diffusive and screened electrostatic forces, and is well understood in the case of conventional semiconductors and metals. In the case of a strongly-correlated material, the physics is different, and expected to be relevant, for example, in Li-ion battery cathodes. We propose a model of dopant ion motion through a strongly correlated p-n junction. Our approach is to consider diffusive (Nernst-Planck) dynamics of dopants under screened electrostatic interactions computed within a mean-field (Thomas-Fermi) approximation. Dopant profiles as function of time are calculated for a p-n junction held at constant voltage. In the case where filling levels are near a correlation-induced gap, Mott insulating regions can form at the p-n interface and their dynamics is studied.

  20. Impact of different dopants on the switching properties of ferroelectric hafniumoxide

    NASA Astrophysics Data System (ADS)

    Schroeder, Uwe; Yurchuk, Ekaterina; Müller, Johannes; Martin, Dominik; Schenk, Tony; Polakowski, Patrick; Adelmann, Christoph; Popovici, Mihaela I.; Kalinin, Sergei V.; Mikolajick, Thomas

    2014-08-01

    The wake-up behavior of ferroelectric thin film capacitors based on doped hafnium oxide dielectrics in TiN-based metal-insulator-metal structures is reported. After field cycling a remanent polarization up to 40 µC/cm2 and a high coercive field of about 1 MV/cm was observed. Doping of HfO2 by different dopants with a crystal radius ranging from 54 pm (Si) to 132 pm (Sr) was evaluated. In all cases, an improved polarization-voltage hysteresis after wake-up cycling is visible. For smaller dopant atoms like Si and Al stronger pinching of the polarization hysteresis appeared with increasing dopant concentration and proved to be stable during cycling.

  1. Nanoporous Ge thin film production combining Ge sputtering and dopant implantation.

    PubMed

    Toinin, Jacques Perrin; Portavoce, Alain; Hoummada, Khalid; Texier, Michaël; Bertoglio, Maxime; Bernardini, Sandrine; Abbarchi, Marco; Chow, Lee

    2015-01-01

    In this work a novel process allowing for the production of nanoporous Ge thin films is presented. This process uses the combination of two techniques: Ge sputtering on SiO2 and dopant ion implantation. The process entails four successive steps: (i) Ge sputtering on SiO2, (ii) implantation preannealing, (iii) high-dose dopant implantation, and (iv) implantation postannealing. Scanning electron microscopy and transmission electron microscopy were used to characterize the morphology of the Ge film at different process steps under different postannealing conditions. For the same postannealing conditions, the Ge film topology was shown to be similar for different implantation doses and different dopants. However, the film topology can be controlled by adjusting the postannealing conditions.

  2. Importance of oxide capping on the suppression of dopant outdiffusion for salicide block process

    NASA Astrophysics Data System (ADS)

    Liao, Hong; Siah, Soh Yun; Vigar, David

    2000-10-01

    In this paper, the effect of dopant out diffusion on unsalicided polysilicon resistance has been intensively investigated. It has been found that excessive dopant out diffusion as a result of non-optimized oxide capping could cause a large variation in sheet resistance of the unsalicided polysilicon resistor. For this salicide block process, great attention needs to be paid for the suppression of dopant out diffusion. Based on understanding of the cause of the inconsistent, unsalicided polysilicon resistance, we demonstrate an implementation of salicide blocking for 0.25 micrometers CMOS technology with a well controlled unsalicided polysilicon resistance by exploring the various process trade-offs in the choice of oxide for the salicide blocking and optimizing the subsequent thermal annealing process.

  3. Study of dopant concentrations on thermally induced mode instability in high-power fiber amplifiers

    NASA Astrophysics Data System (ADS)

    Tao, Rumao; Ma, Pengfei; Wang, Xiaolin; Zhou, Pu; Liu, Zejin

    2016-06-01

    The dependence of mode instabilities (MIs) on ytterbium dopant concentrations in high-power fiber amplifiers has been investigated. It is theoretically shown that, by only varying the fiber length to maintain the same total small-signal pump absorption, the MI threshold is independent of dopant concentration. MI thresholds of gain fibers with ytterbium dopant concentrations of 5.93  ×  1025 m‑3 and 1.02  ×  1026 m‑3 have been measured which exhibit similar MI thresholds and agree with the theoretical results. The result indicates that heavy doping of active fiber can be adopted to suppress nonlinear effects without decreasing the MI threshold. This provides a method of maximizing the power output of fiber laser, taking into account the stimulated Brillouin scattering, stimulated Raman Scattering, and MI thresholds simultaneously.

  4. Influence of pentavalent dopant addition to polarization and bioactivity of hydroxyapatite.

    PubMed

    Dhal, Jharana; Bose, Susmita; Bandyopadhyay, Amit

    2013-07-01

    Influence of pentavalent tantalum doping in bulk hydroxyapatite (HAp) ceramics has been investigated for polarizability and bioactivity. Phase analysis from X-ray diffraction measurement indicates that increasing dopant concentration decreased the amount of HAp phase and increased β-TCP and/or α-TCP phases during sintering at 1250 °C in a muffle furnace. Results from thermally stimulated depolarization current (TSDC) measurements showed that doping hindered charge storage ability in HAp ceramics, and doped samples stored fewer charge compared to pure HAp. However, doping enhanced wettability of HAp samples, which was improved further due to polarization. In vitro human osteoblast cell-material interaction study revealed an increase in bioactivity due to dopant addition and polarization compared to pure HAp. This increase in bioactivity was attributed to the increase in wettability due to surface charge and dopant addition. PMID:23623133

  5. Peculiarities of Determining the Dopant Concentration in the Near-Surface Layer of a Semiconductor by Measuring the Admittance of MIS Structures Based on P-Hg0.78Cd0.22Te Grown by Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Voitsekhovskii, A. V.; Nesmelov, S. N.; Dzyadukh, S. M.

    2016-06-01

    Peculiarities of determining the concentration and distribution profile of dopant in the near-surface layer of a semiconductor by measuring the admittance of MIS structures based on p-Hg0.78Cd0.22Te grown by molecular beam epitaxy are studied. A technique is proposed for the determining the concentration of dopant based on the measurement of the admittance of MIS structures in the frequency range of 50 kHz - 1 MHz. It is shown that in this frequency range, the capacitance-voltage characteristics of MIS structures based on p-Hg0.78Cd0.22Te with a near-surface graded-gap layer have a high- frequency behavior with respect to the recharge time of surface states located near the Fermi level of intrinsic semiconductor. The distribution profile of dopant in the nearsurface layer of the semiconductor is calculated. It is shown that in p-Hg0.78Cd0.22Te with a near-surface graded-gap layer, the dopant concentration has the lowest value near the interface with the insulator.

  6. Addition of photosensitive dopants to the D0 liquid argon calorimeter

    SciTech Connect

    Amos, N.A.; Anderson, D.F.; The D0 Collaboration

    1992-10-01

    The addition of photosensitive dopants to liquid argon greatly enhances the signal from heavily ionizing particles. Since binding energy losses we correlated with the heavily ionizing component in hadronic showers, the addition of photosensitive dopants has been suggested as a mechanism to tune the e/{pi} ratio in liquid argon calorimeters. A measurement was performed at the FNAL test beam, adding 4 ppM tetramethylgermanium to the D{phi} uranium-liquid argon calorimeter. An increase in response for electromagnetic and hadronic showers was observed, with no net change in the e/{pi} ratio.

  7. Dopant-induced random telegraph signal in nanoscale lateral silicon pn diodes at low temperatures

    SciTech Connect

    Purwiyanti, Sri; Nowak, Roland; Moraru, Daniel; Mizuno, Takeshi; Tabe, Michiharu; Hartanto, Djoko; Jablonski, Ryszard

    2013-12-09

    We studied current-voltage characteristics of nanoscale pn diodes having the junction formed in a laterally patterned ultrathin silicon-on-insulator layer. At temperatures below 30 K, we observed random telegraph signal (RTS) in a range of forward bias. Since RTS is observed only for pn diodes, but not for pin diodes, one dopant among phosphorus donors or boron acceptors facing across the junction is likely responsible for potential changes affecting the current. Based also on potential measurements by low-temperature Kelvin probe force microscope, RTS is ascribed to trapping/detrapping of carriers by/from a single dopant near the farther edge of the depletion region.

  8. The ionization mechanisms in direct and dopant-assisted atmospheric pressure photoionization and atmospheric pressure laser ionization.

    PubMed

    Kauppila, Tiina J; Kersten, Hendrik; Benter, Thorsten

    2014-11-01

    A novel, gas-tight API interface for gas chromatography-mass spectrometry was used to study the ionization mechanism in direct and dopant-assisted atmospheric pressure photoionization (APPI) and atmospheric pressure laser ionization (APLI). Eight analytes (ethylbenzene, bromobenzene, naphthalene, anthracene, benzaldehyde, pyridine, quinolone, and acridine) with varying ionization energies (IEs) and proton affinities (PAs), and four common APPI dopants (toluene, acetone, anisole, and chlorobenzene) were chosen. All the studied compounds were ionized by direct APPI, forming mainly molecular ions. Addition of dopants suppressed the signal of the analytes with IEs above the IE of the dopant. For compounds with suitable IEs or Pas, the dopants increased the ionization efficiency as the analytes could be ionized through dopant-mediated gas-phase reactions, such as charge exchange, proton transfer, and other rather unexpected reactions, such as formation of [M + 77](+) in the presence of chlorobenzene. Experiments with deuterated toluene as the dopant verified that in case of proton transfer, the proton originated from the dopant instead of proton-bound solvent clusters, as in conventional open or non-tight APPI sources. In direct APLI using a 266 nm laser, a narrower range of compounds was ionized than in direct APPI, because of exceedingly high IEs or unfavorable two-photon absorption cross-sections. Introduction of dopants in the APLI system changed the ionization mechanism to similar dopant-mediated gas-phase reactions with the dopant as in APPI, which produced mainly ions of the same form as in APPI, and ionized a wider range of analytes than direct APLI.

  9. Self- and dopant diffusion in extrinsic boron doped isotopically controlled silicon multilayer structures

    SciTech Connect

    Sharp, Ian D.; Bracht, Hartmut A.; Silvestri, Hughes H.; Nicols, Samuel P.; Beeman, Jeffrey W.; Hansen, John L.; Nylandsted Larsen, Arne; Haller, Eugene E.

    2002-04-01

    Isotopically controlled silicon multilayer structures were used to measure the enhancement of self- and dopant diffusion in extrinsic boron doped silicon. {sup 30}Si was used as a tracer through a multilayer structure of alternating natural Si and enriched {sup 28}Si layers. Low energy, high resolution secondary ion mass spectrometry (SIMS) allowed for simultaneous measurement of self- and dopant diffusion profiles of samples annealed at temperatures between 850 C and 1100 C. A specially designed ion- implanted amorphous Si surface layer was used as a dopant source to suppress excess defects in the multilayer structure, thereby eliminating transient enhanced diffusion (TED) behavior. Self- and dopant diffusion coefficients, diffusion mechanisms, and native defect charge states were determined from computer-aided modeling, based on differential equations describing the diffusion processes. We present a quantitative description of B diffusion enhanced self-diffusion in silicon and conclude that the diffusion of both B and Si is mainly mediated by neutral and singly positively charged self-interstitials under p-type doping. No significant contribution of vacancies to either B or Si diffusion is observed.

  10. Influence of dopant distribution on the plasmonic properties of indium tin oxide nanocrystals.

    PubMed

    Lounis, Sebastien D; Runnerstrom, Evan L; Bergerud, Amy; Nordlund, Dennis; Milliron, Delia J

    2014-05-14

    Doped metal oxide nanocrystals represent an exciting frontier for colloidal synthesis of plasmonic materials, displaying unique optoelectronic properties and showing promise for a variety of applications. However, fundamental questions about the nature of doping in these materials remain. In this article, the strong influence of radial dopant distribution on the optoelectronic properties of colloidal indium tin oxide nanocrystals is reported. Comparing elemental depth-profiling by X-ray photoelectron spectroscopy (XPS) with detailed modeling and simulation of the optical extinction of these nanocrystals using the Drude model for free electrons, a correlation between surface segregation of tin ions and the average activation of dopants is observed. A strong influence of surface segregation of tin on the line shape of the localized surface plasmon resonance (LSPR) is also reported. Samples with tin segregated near the surface show a symmetric line shape that suggests weak or no damping of the plasmon by ionized impurities. It is suggested that segregation of tin near the surface facilitates compensation of the dopant ions by electronic defects and oxygen interstitials, thus reducing activation. A core-shell model is proposed to explain the observed differences in line shape. These results demonstrate the nuanced role of dopant distribution in determining the optoelectronic properties of semiconductor nanocrystals and suggest that more detailed study of the distribution and structure of defects in plasmonic colloidal nanocrystals is warranted.

  11. Detecting excitation and magnetization of individual dopants in a semiconductor two-dimensional electron gas

    NASA Astrophysics Data System (ADS)

    Wiebe, Jens

    2011-03-01

    Magnetic atoms doped into a semiconductor are the building blocks for bottom up spintronic and quantum logic devices. They also provide model systems for the investigation of fundamental effects. In order to correlate the dopant's atomic structure with its magnetism magnetically sensitive techniques with atomic resolution are a prerequisite. Here, I show electrical excitation and read-out [ 1 ] of single magnetic dopant associated spins in a two-dimensional electron gas (2DEG) confined to a semiconductor surface [ 2 ] using spin-resolved scanning tunneling spectroscopy [ 3 ] . I will review our real-space study of the quantum Hall transition in the 2DEG [ 2 ] and of the magnetic properties of the dopants [ 1 ] . Finally, I will demonstrate that the dopant serves as an atomic scale probe for local magnetometry of the 2DEG. This work was done in collaboration with A. A. Khajetoorians, B. Chillian, S. Schuwalow, F. Lechermann, K. Hashimoto, C. Sohrmann, T. Inaoka, F. Meier, Y. Hirayama, R. A. Römer, M. Morgenstern, and R. Wiesendanger. [ 1 ] A. A. Khajetoorians et al., Nature 467, 1084 (2010). [ 2 ] K. Hashimoto et al., Phys. Rev. Lett. 101, 256802 (2008). [ 3 ] J. Wiebe et al., Rev. Sci. Instrum. 75, 4871 (2004). We acknowledge financial support from ERC Advanced Grant ``FURORE'', by the DFG via SFB668 and GrK1286, and by the city of Hamburg via the cluster of excellence ``Nanospintronics''.

  12. A fixed-grid method for transient simulations of dopant segregation in VGF-RMF growth

    NASA Astrophysics Data System (ADS)

    Nikrityuk, Petr A.; Pätzold, Olf; Stelter, Michael

    2012-01-01

    In this work a fixed-grid, virtual-front tracking model originally developed for modeling dendritic growth has been adopted for transient simulations of dopant segregation in vertical gradient freeze (VGF) melt growth of Ga-doped germanium under the influence of a rotating magnetic field (RMF). The interfacial Stefan conditions for temperature and solute are formulated in volumetric terms in energy and solute conservation equations, which allow the interface to be tracked implicitly with no need to calculate the growth velocity. The model and the code are validated against an analytical solution for the transient solidification of a binary alloy at constant velocity. The numerical results show the strong relationship between the melt flow pattern and the dopant concentration in the crystal grown. The better melt mixing during growth under the influence of RMF is found to have a significant impact on the axial and radial macrosegregation of dopants. Simulation results are in good qualitative agreement with previous experimental observations of the dopant segregation in VGF-RMF growth, which now are seen ass a direct consequence of the mixing state of the melt.

  13. Influence of Dopant Distribution on the Plasmonic Properties of Indium Tin Oxide Nanocrystals

    SciTech Connect

    Lounis, SD; Runnerstrom, EL; Bergerud, A; Nordlund, D; Milliron, DJ

    2014-05-14

    Doped metal oxide nanocrystals represent an exciting frontier for colloidal synthesis of plasmonic materials, displaying unique optoelectronic properties and showing promise for a variety of applications. However, fundamental questions about the nature of doping in these materials remain. In this article, the strong influence of radial dopant distribution on the optoelectronic properties of colloidal indium tin oxide nanocrystals is reported. Comparing elemental depth-profiling by X-ray photoelectron spectroscopy (XPS) with detailed modeling and simulation of the optical extinction of these nanocrystals using the Drude model for free electrons, a correlation between surface segregation of tin ions and the average activation of dopants is observed. A strong influence of surface segregation of tin on the line shape of the localized surface plasmon resonance (LSPR) is also reported. Samples with tin segregated near the surface show a symmetric line shape that suggests weak or no damping of the plasmon by ionized impurities. It is suggested that segregation of tin near the surface facilitates compensation of the dopant ions by electronic defects and oxygen interstitials, thus reducing activation. A core shell model is proposed to explain the observed differences in line shape. These results demonstrate the nuanced role of dopant distribution in determining the optoelectronic properties of semiconductor nanocrystals and suggest that more detailed study of the distribution and structure of defects in plasmonic colloidal nanocrystals is warranted.

  14. Charge Exchange Reaction in Dopant-Assisted Atmospheric Pressure Chemical Ionization and Atmospheric Pressure Photoionization.

    PubMed

    Vaikkinen, Anu; Kauppila, Tiina J; Kostiainen, Risto

    2016-08-01

    The efficiencies of charge exchange reaction in dopant-assisted atmospheric pressure chemical ionization (DA-APCI) and dopant-assisted atmospheric pressure photoionization (DA-APPI) mass spectrometry (MS) were compared by flow injection analysis. Fourteen individual compounds and a commercial mixture of 16 polycyclic aromatic hydrocarbons were chosen as model analytes to cover a wide range of polarities, gas-phase ionization energies, and proton affinities. Chlorobenzene was used as the dopant, and methanol/water (80/20) as the solvent. In both techniques, analytes formed the same ions (radical cations, protonated molecules, and/or fragments). However, in DA-APCI, the relative efficiency of charge exchange versus proton transfer was lower than in DA-APPI. This is suggested to be because in DA-APCI both dopant and solvent clusters can be ionized, and the formed reagent ions can react with the analytes via competing charge exchange and proton transfer reactions. In DA-APPI, on the other hand, the main reagents are dopant-derived radical cations, which favor ionization of analytes via charge exchange. The efficiency of charge exchange in both DA-APPI and DA-APCI was shown to depend heavily on the solvent flow rate, with best efficiency seen at lowest flow rates studied (0.05 and 0.1 mL/min). Both DA-APCI and DA-APPI showed the radical cation of chlorobenzene at 0.05-0.1 mL/min flow rate, but at increasing flow rate, the abundance of chlorobenzene M(+.) decreased and reagent ion populations deriving from different gas-phase chemistry were recorded. The formation of these reagent ions explains the decreasing ionization efficiency and the differences in charge exchange between the techniques. Graphical Abstract ᅟ.

  15. Nucleophilic Aromatic Substitution Between Halogenated Benzene Dopants and Nucleophiles in Atmospheric Pressure Photoionization

    NASA Astrophysics Data System (ADS)

    Kauppila, Tiina J.; Haack, Alexander; Kroll, Kai; Kersten, Hendrik; Benter, Thorsten

    2016-03-01

    In a preceding work with dopant assisted-atmospheric pressure photoionization (DA-APPI), an abundant ion at [M + 77]+ was observed in the spectra of pyridine and quinoline with chlorobenzene dopant. This contribution aims to reveal the identity and route of formation of this species, and to systematically investigate structurally related analytes and dopants. Compounds containing N-, O-, and S-lone pairs were investigated with APPI in the presence of fluoro-, chloro-, bromo-, and iodobenzene dopants. Computational calculations on a density functional theory (DFT) level were carried out to study the reaction mechanism for pyridine and the different halobenzenes. The experimental and computational results indicated that the [M + 77]+ ion was formed by nucleophilic aromatic ipso-substitution between the halobenzene radical cation and nucleophilic analytes. The reaction was most efficient for N-heteroaromatic compounds, and it was weakened by sterical effects and enhanced by resonance stabilization. The reaction was most efficient with chloro-, bromo-, and iodobenzenes, whereas with fluorobenzene the reaction was scarcely observed. The calculated Gibbs free energies for the reaction between pyridine and the halobenzenes were shown to increase in the order I < Br < Cl < F. The reaction was found endergonic for fluorobenzene due to the strong C-F bonding, and exergonic for the other halobenzenes. For fluoro- and chlorobenzenes the reaction was shown to proceed through an intermediate state corresponding to [M + dopant]+, which was highly stable for fluorobenzene. For the bulkier bromine and iodine, this intermediate did not exist, but the halogens were shown to detach already during the approach by the nucleophile.

  16. Charge Exchange Reaction in Dopant-Assisted Atmospheric Pressure Chemical Ionization and Atmospheric Pressure Photoionization.

    PubMed

    Vaikkinen, Anu; Kauppila, Tiina J; Kostiainen, Risto

    2016-08-01

    The efficiencies of charge exchange reaction in dopant-assisted atmospheric pressure chemical ionization (DA-APCI) and dopant-assisted atmospheric pressure photoionization (DA-APPI) mass spectrometry (MS) were compared by flow injection analysis. Fourteen individual compounds and a commercial mixture of 16 polycyclic aromatic hydrocarbons were chosen as model analytes to cover a wide range of polarities, gas-phase ionization energies, and proton affinities. Chlorobenzene was used as the dopant, and methanol/water (80/20) as the solvent. In both techniques, analytes formed the same ions (radical cations, protonated molecules, and/or fragments). However, in DA-APCI, the relative efficiency of charge exchange versus proton transfer was lower than in DA-APPI. This is suggested to be because in DA-APCI both dopant and solvent clusters can be ionized, and the formed reagent ions can react with the analytes via competing charge exchange and proton transfer reactions. In DA-APPI, on the other hand, the main reagents are dopant-derived radical cations, which favor ionization of analytes via charge exchange. The efficiency of charge exchange in both DA-APPI and DA-APCI was shown to depend heavily on the solvent flow rate, with best efficiency seen at lowest flow rates studied (0.05 and 0.1 mL/min). Both DA-APCI and DA-APPI showed the radical cation of chlorobenzene at 0.05-0.1 mL/min flow rate, but at increasing flow rate, the abundance of chlorobenzene M(+.) decreased and reagent ion populations deriving from different gas-phase chemistry were recorded. The formation of these reagent ions explains the decreasing ionization efficiency and the differences in charge exchange between the techniques. Graphical Abstract ᅟ. PMID:27126470

  17. A Thermodynamic Study of Dopant Interfacial Segregation Effect on Nanostability and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Wu, Longjia

    Nanoparticles, with great surface area and high surface to volume ratio, have been widely applied in many applications due to their unique size related effects. However, this high surface area character of nanoparticles also brings great excess energy to the whole system, making the system unstable and even causing the failure of nanoparticles, especially at higher temperatures. In order to maintain nanocrystalline structure of the materials, nanostability enhancement is of great significance in nanotechnology. It is well known that the global driving force for particles growth is to eliminate the excess energy brought by surface and grain boundary. Therefore, interfacial energetics has a great influence on the nanostability of the materials. And according to previous studies, dopant interfacial segregation could be a potential way to control the interfacial energetics of the nanoparticles and possibly lead to an improved nanostability. Furthermore, the interfacial energetics even can affect mechanical properties of nano-grain ceramic materials based on recent research. The main goals of the present work were to experimentally measure the interfacial energies of nanoparticles as well as nano-grain ceramics, modify the interfacial energetics through dopant segregation effect and engineer the nanostability and mechanical properties of the nanocrystalline materials through interfacial energetics modification. To achieve this goal, Mn cation has been chosen to introduce Mn interfacial segregation on ceria nanoparticles, and La cation has been added to 12 mol% yttria stabilized zirconia (12YSZ) and magnesium aluminate spinel (MAO) two-phase nano-grain ceramics to cause La interfacial segregation. Both of the dopant segregation phenomena were directly proved by electron energy loss spectroscopy (EELS). To quantify the dopant segregation effect on the interfacial energies, high-temperature oxide melt drop solution calorimetry, water adsorption calorimetry and differential

  18. Nucleophilic Aromatic Substitution Between Halogenated Benzene Dopants and Nucleophiles in Atmospheric Pressure Photoionization.

    PubMed

    Kauppila, Tiina J; Haack, Alexander; Kroll, Kai; Kersten, Hendrik; Benter, Thorsten

    2016-03-01

    In a preceding work with dopant assisted-atmospheric pressure photoionization (DA-APPI), an abundant ion at [M + 77](+) was observed in the spectra of pyridine and quinoline with chlorobenzene dopant. This contribution aims to reveal the identity and route of formation of this species, and to systematically investigate structurally related analytes and dopants. Compounds containing N-, O-, and S-lone pairs were investigated with APPI in the presence of fluoro-, chloro-, bromo-, and iodobenzene dopants. Computational calculations on a density functional theory (DFT) level were carried out to study the reaction mechanism for pyridine and the different halobenzenes. The experimental and computational results indicated that the [M + 77](+) ion was formed by nucleophilic aromatic ipso-substitution between the halobenzene radical cation and nucleophilic analytes. The reaction was most efficient for N-heteroaromatic compounds, and it was weakened by sterical effects and enhanced by resonance stabilization. The reaction was most efficient with chloro-, bromo-, and iodobenzenes, whereas with fluorobenzene the reaction was scarcely observed. The calculated Gibbs free energies for the reaction between pyridine and the halobenzenes were shown to increase in the order I < Br < Cl < F. The reaction was found endergonic for fluorobenzene due to the strong C-F bonding, and exergonic for the other halobenzenes. For fluoro- and chlorobenzenes the reaction was shown to proceed through an intermediate state corresponding to [M + dopant](+), which was highly stable for fluorobenzene. For the bulkier bromine and iodine, this intermediate did not exist, but the halogens were shown to detach already during the approach by the nucleophile.

  19. Charge Exchange Reaction in Dopant-Assisted Atmospheric Pressure Chemical Ionization and Atmospheric Pressure Photoionization

    NASA Astrophysics Data System (ADS)

    Vaikkinen, Anu; Kauppila, Tiina J.; Kostiainen, Risto

    2016-08-01

    The efficiencies of charge exchange reaction in dopant-assisted atmospheric pressure chemical ionization (DA-APCI) and dopant-assisted atmospheric pressure photoionization (DA-APPI) mass spectrometry (MS) were compared by flow injection analysis. Fourteen individual compounds and a commercial mixture of 16 polycyclic aromatic hydrocarbons were chosen as model analytes to cover a wide range of polarities, gas-phase ionization energies, and proton affinities. Chlorobenzene was used as the dopant, and methanol/water (80/20) as the solvent. In both techniques, analytes formed the same ions (radical cations, protonated molecules, and/or fragments). However, in DA-APCI, the relative efficiency of charge exchange versus proton transfer was lower than in DA-APPI. This is suggested to be because in DA-APCI both dopant and solvent clusters can be ionized, and the formed reagent ions can react with the analytes via competing charge exchange and proton transfer reactions. In DA-APPI, on the other hand, the main reagents are dopant-derived radical cations, which favor ionization of analytes via charge exchange. The efficiency of charge exchange in both DA-APPI and DA-APCI was shown to depend heavily on the solvent flow rate, with best efficiency seen at lowest flow rates studied (0.05 and 0.1 mL/min). Both DA-APCI and DA-APPI showed the radical cation of chlorobenzene at 0.05-0.1 mL/min flow rate, but at increasing flow rate, the abundance of chlorobenzene M+. decreased and reagent ion populations deriving from different gas-phase chemistry were recorded. The formation of these reagent ions explains the decreasing ionization efficiency and the differences in charge exchange between the techniques.

  20. Stabilization of the smectic-Calpha* phase in mixtures with chiral dopants.

    PubMed

    Chang, Hak Sun; Jaradat, Shaden; Gleeson, Helen F; Dierking, Ingo; Osipov, Mikhail A

    2009-06-01

    A series of mixtures comprising an antiferroelectric liquid-crystal host and a chiral dopant is described in which the layer spacing variation at the orthogonal smectic-A* (SmA*) to tilted smectic-C* or smectic-Calpha* (SmC* or SmCalpha*) phase transition changes from the usual strong contraction in the pure system to one in which there is almost no layer spacing change observed across the transition for dopant concentrations of 7%. The nature of the orthogonal to tilted phase transition is examined using Raman spectroscopy, to determine the order parameters and in the SmA* phase, and via a generalized Landau expansion to reveal the details of the phase transition itself. The results show that the value of at the orthogonal to tilted transition increases from around 0.6 to 0.7 as the dopant concentration increases, while remains constant at approximately 0.4 irrespective of dopant concentration. Further, the generalized Landau potential measurements prove that the transition is purely second order, while electro-optic measurements confirm that the tilt angle at the transition becomes smaller with increasing dopant concentration. The combined data show that the high-temperature tilted phase regime corresponds to a SmCalpha* phase rather than the mechanism suggested by de Vries that is inferred by the layer spacing data alone. We demonstrate that the lower-temperature SmCalpha*-SmC* phase transition is of first order. Further, the temperature range of the SmCalpha* phase increases dramatically with concentration, from around 2 K in the pure system to around 21 K in the 8% doped mixture, showing that the chiral dopant plays a role in stabilizing this phase. Indeed, we particularly note that for the 8% doped mixture all other SmC*-like phases disappear and that the only tilted phase remaining is SmCalpha*. This implies that we are reporting a liquid-crystalline phase sequence, namely, cryst.-SmCalpha*-SmA*-iso., i.e., a direct transition between the

  1. Further improvement of flame retardancy of polyaniline-deposited paper composite through using phytic acid as dopant or co-dopant.

    PubMed

    Zhou, Yang; Ding, Chunyue; Qian, Xueren; An, Xianhui

    2015-01-22

    Polyaniline (PANI)-deposited electrically conductive and flame retardant paper composite was prepared using phytic acid (PA) as dopant or co-dopant. PA as doping acid greatly improved the flame retardancy of PANI-deposited paper composite whilst the conductivity was lower compared with using 5-sulfosalicylic acid (SSA) as doping acid. Lower temperature was favorable to obtain PANI-deposited paper composite with both higher conductivity and better flame retardancy. Conductivity of PANI-deposited paper composite increased with increase of doping acid concentration and the suitable PA concentration range was 0.15-0.3 mol/L depending on the requirement of conductivity and flame retardancy. The PANI-deposited paper composite was characterized by SEM, TGA and XPS. The outstanding flame retardancy of PA-doped paper composite was caused by the synergetic effect of PANI coating and H3PO4. Both higher flame retardancy and higher conductivity of PANI-deposited paper composite were obtained by co-doping of SSA with PA.

  2. Two-dimensional dopant profiling of gallium nitride p-n junctions by scanning capacitance microscopy

    NASA Astrophysics Data System (ADS)

    Lamhamdi, M.; Cayrel, F.; Frayssinet, E.; Bazin, A. E.; Yvon, A.; Collard, E.; Cordier, Y.; Alquier, D.

    2016-04-01

    Two-dimensional imaging of dopant profiles for n and p-type regions are relevant for the development of new power semiconductors, especially for gallium nitride (GaN) for which classical profiling techniques are not adapted. This is a challenging task since it needs a technique with simultaneously good sensitivity, high spatial resolution and high dopant gradient resolution. To face these challenges, scanning capacitance microscopy combined with Atomic Force Microscopy is a good candidate, presenting reproducible results, as demonstrated in literature. In this work, we attempt to distinguish reliably and qualitatively the various doping concentrations and type at p-n and unipolar junctions. For both p-n and unipolar junctions three kinds of samples were prepared and measured separately. The space-charge region of the p-n metallurgical junction, giving rise to different contrasts under SCM imaging, is clearly observed, enlightening the interest of the SCM technique.

  3. Impact of Dopant Compensation on Graded p-n Junctions in Si Nanowires.

    PubMed

    Amit, Iddo; Jeon, Nari; Lauhon, Lincoln J; Rosenwaks, Yossi

    2016-01-13

    The modulation between different doping species required to produce a diode in VLS-grown nanowires (NWs) yields a complex doping profile, both axially and radially, and a gradual junction at the interface. We present a detailed analysis of the dopant distribution around the junction. By combining surface potential measurements, performed by KPFM, with finite element simulations, we show that the highly doped (5 × 10(19) cm(-3)) shell surrounding the NW can screen the junction's built in voltage at shell thickness as low as 3 nm. By comparing NWs with high and low doping contrast at the junction, we show that dopant compensation dramatically decreases the electrostatic width of the junction and results in relatively low leakage currents. PMID:26650197

  4. Dopant-segregated Schottky barrier MOSFETs with an insulated dielectric oxide

    NASA Astrophysics Data System (ADS)

    Shih, Chun-Hsing; Lin, Ching-Chang

    2010-06-01

    An insulated dielectric oxide (IDO) is presented for the dopant-segregated Schottky barrier MOSFETs (DS-SBMOS) to suppress the unwanted on- and off-state leakage currents in short-channel DS-SBMOS. The effects of the IDO on DS-SBMOS are investigated using two-dimensional device simulations. Although the dopant segregation technique can efficiently modify a Schottky barrier to improve Schottky barrier MOSFETs, the performance of scaled DS-SBMOS suffers from degraded short-channel behavior and ambipolar conduction from the extension of a heavily doped segregation layer. With sidewall IDO insulators between the heavily doped N+ segregation layer and P+ halo region, band-to-band and ambipolar leakage currents are simultaneously minimized. Thus, an optimal halo can be utilized to control the short-channel effect without any constraints in problematic leakage currents. Using the IDO architecture, DS-SBMOS can be successfully scaled as a promising candidate for next-generation CMOS devices.

  5. Mapping active dopants in single silicon nanowires using off-axis electron holography.

    PubMed

    den Hertog, Martien I; Schmid, Heinz; Cooper, David; Rouviere, Jean-Luc; Björk, Mikael T; Riel, Heike; Rivallin, Pierrette; Karg, Siegfried; Riess, Walter

    2009-11-01

    We demonstrate that state-of-the-art off-axis electron holography can be used to map active dopants in silicon nanowires as thin as 60 nm with 10 nm spatial resolution. Experiment and simulation demonstrate that doping concentrations of 10(19) and 10(20) cm(-3) can be measured with a detection threshold of 10(18) cm(-3) with respect to intrinsic silicon. Comparison of experimental data and simulations allows an estimation of the charge density at the wire-oxide interface of -1 x 10(12) electron charges cm(-2). Off-axis electron holography thus offers unique capabilities for a detailed analysis of active dopant concentrations in nanostructures.

  6. Photomodulation of the spontaneous polarization of ferroelectric liquid crystals using chiral thioindigo dopants

    NASA Astrophysics Data System (ADS)

    Dinescu, Liviu

    Ferroelectric liquid crystals (FLC) are chiral smectic C (S C*) phases that exhibit a spontaneous polarization (Ps). This permanent dipole moment is a macroscopic manifestation of molecular chirality. Between crossed polarizers, a FLC becomes a light valve by switching the orientation of Ps using an applied electric field. Due to the bistability exhibited by FLC light valves, any digital information written in such devices is kept for an indefinite period of time in the absence of the electrical field. The switching of the orientation of Ps can also be achieved optically if the FLC media is photoresponsive. Thus, an erasable optical memory device can be developed. Optically addressed FLC light valves have been developed based on the photomodulation of Ps via the so-called photomechanical effect, which works on the principle of destabilizing the FLC phase using azobenzene dopants that absorb in the UV region of the spectrum. In the work described here in, we propose the following approach: to photomodulate the spontaneous polarization of a ferroelectric liquid crystal by modulating the transverse dipole moment of a chiral thioindigo dopant. This dopant undergoes a reversible cis-trans isomerization when irradiated in the visible range of the spectrum, and maintains a rod-like shape in both isomeric forms. In the first part of the project, we synthesized a series of 6,6-dialkoxythioindigo dopants and tested their solubility properties in a variety of S C and nematic liquid crystals. Based on these results, we synthesized the first chiral thioindigo dopant (R,R)-1a with improved solubility in S C hosts. This compound was doped in a phenyl benzoate S C* host to induce a ferroelectric S C* phase and irradiated to cause trans-cis photoisomerization, which resulted in negligible photomodulation of Ps due to the absence of steric coupling between the thioindigo core and the chiral side-chains.(DIAGRAM, TABLE OR GRAPHIC OMITTED...PLEASE SEE DAI) In order to harness the

  7. Effectiveness of a dopant in U-Zr metallic fuel to prevent lanthanide migration

    SciTech Connect

    Kim, Yeon Soo; Wieneck, T.; O'Hare, E.; Fortner, J.

    2013-07-01

    The advanced fast reactor concepts to achieve ultra-high burnup (about 50%) without requiring refueling by way of using metallic alloy fuel have gained interest. Fission product lanthanide accumulation at high burnup is substantial and its migration to cladding and reaction with cladding is a potential life-limiting phenomenon. As a means to solve this problem, adding an element that forms stable compounds with lanthanides to immobilize them has been proposed. The theoretical assessment shows that indium, thallium, gallium, and antimony are good candidates. Except for Sb, because these elements are low-melting temperature elements, liquid metal embrittlement of cladding is a concern if large sized agglomerates exist contacting the cladding. Alloy characterization of as-fabricated samples was performed to examine the effectiveness of the dopant addition method using optical microscopy and scanning electron microscopy. Although preliminary, the present results showed that indium is a better dopant to immobilize lanthanides.

  8. DBR laser with nondynamic plasma grating formed by focused ion beam implanted dopants

    NASA Technical Reports Server (NTRS)

    Boenke, Myra M.; Wu, M. C.; Wang, Shyh; Clark, William M., Jr.; Stevens, Eugene H.

    1989-01-01

    A static plasma grating has been demonstrated experimentally (Wu et al., 1988) in a large-optical-cavity focused-ion-beam-distributed-Bragg-reflector (FIB-DBR) GaAlAs/GaAs laser diode. The grating is formed by implanting stripes of dopants with a focused ion beam. The dopants ionize to form periodic fluctuations in the carrier concentration which, through the Kramers-Kronig relations, form an index grating. A model of the grating strength for optimizaton of the laser design is developed and presented. The computed results show that the coupling coefficient k can be increased by more than an order of magnitude over the 15/cm experimentally. Therefore, FIB-DBR or FIB-distributed-feedback (DFB) lasers with performance comparable to that of conventional DBR (or DFB) lasers can be expected.

  9. Tuning the magnetic interaction between Mn dopants in GaAs

    NASA Astrophysics Data System (ADS)

    Gohlke, David; Gupta, Jay

    2012-02-01

    Manganese can be used as a dopant in gallium arsenide to create a ferromagnetic semiconductor. We use low-temperature scanning tunneling microscopy to study these magnetic properties. The magnetic coupling between Mn dopants in GaAs(110) changes between ferromagnetic and antiferromagnetic depending on the orientation of the acceptors due to the zincblende crystal structure of the surface [Kitchen et al, Nature, 2006]. We have recently reported tuning of the resonance energy for a single Mn acceptor by moving charged atomic point defects [Lee and Gupta, Science, 2010]. Here, we tune the magnetic interaction between surface-layer Mn atoms in the same way. Funding for this research was provided by the Center for Emergent Materials at the Ohio State University, an NSF MRSEC (Award Number DMR-0820414). http://www.physics.ohio-state.edu/˜jgupta/

  10. A diaminomaleonitrile derivative as a new dopant for red-light-emitting electroluminescent device

    NASA Astrophysics Data System (ADS)

    Wang, Xiaodong; Sakuratani, Yuhki; Sone, Hiroyuki; Tanaka, Kuniaki; Miyata, Seizo; Usui, Hiroaki

    2003-08-01

    We have synthesized a novel dye material of N,N'-bis[4-(N,N'-diphenylamino)-benzalidene] diaminomaleonitrile (BAP), as a dopant for red-light-emitting electroluminescent (EL) device. We fabricated several types of EL devices by doping BAP into tris(8-quinoline) aluminium (Alq3) as the light-emitting layer, and investigated their EL properties. BAP has symmetric conjugated structure and could give sharp and intense photoluminescence in the red region. When BAP was doped into Alq3, the device gave bright red EL with the maximum intensity of about 6700 cd m-2 together with the contribution of Alq3 emission. By introducing rubrene as an assist-dopant, the maximum EL intensity increased to 15 700 cd m-2 when the bias voltage was 14.5 V. However, complete energy transfer to BAP has not been achieved.

  11. The determination of dopant ion valence distributions in insulating crystals using XANES measurements.

    PubMed

    Hughes-Currie, Rosa B; Ivanovskikh, Konstantin V; Wells, Jon-Paul R; Reid, Michael F; Gordon, Robert A

    2016-04-01

    Ytterbium-doped wide-bandgap fluoride crystals CaF2, SrF2 and NaMgF3 have been measured using x-ray absorption near edge structure (XANES) on the L3 edge to determine the ratio of trivalent to divalent Yb ions present in the crystals. This study improves upon previous XANES measurements of dopant ion valency by taking into account the x-ray emission transition probabilities for the divalent and trivalent species instead of simply assuming that the relative concentrations may be determined by the ratio of the x-ray excitation band areas. Trivalent to divalent ratios as high as 5 are inferred even at low total dopant ion concentrations of 0.05 mol% Yb. PMID:26941175

  12. Effect of dopants on crystal structure and thermal properties of pentaglycerine

    SciTech Connect

    Chandra, D.; Ding, W.

    1989-03-01

    The overall objective of this research program is to develop practical solid-state thermal energy storage materials. Research is focused on polyalcohol {open_quotes}Plastic Crystals{close_quotes} which undergo crystallographic changes at constant transition temperature absorbing or releasing amounts of latent heat. The known pure polyalcohols have high transition temperatures; therefore, adjustment of transformation temperature is important to develop practical materials. The approach taken is to introduce substitutional and interstitial dopants so as to strain the lattice of the host crystal which results in lowering the transition temperature. Current research is on temperature adjustment of pentaglycerine [PG] (C{sub 5}H{sub 12}O{sub 3}) initiated approximately four months ago. Results, so far, show that the substitutional dopants are more effective in reducing the transition temperature than interstitial dopants. The results in the first phase of this program show that the transition temperature of PG reduced significantly by using trimethylol propane [TMP] (C{sub 6}H{sub 14}O{sub 3}), 2-amino 2-methyl 1,3 propanediol [AMPL] (C{sub 4}H{sub 11}NO{sub 2}) as dopants. It appears that some of these doped samples have near room temperature transitions; however, these results are not conclusive at this time. Recently, it was discovered that TMP has an additional solid-solid phase transformation, slightly below room temperature. Crystal structure analyses showed some surprising results with regards to thermal expansion behavior of PG. Several sets of low as well as high temperature data were obtained from the pure and doped PG to characterize the structural changes, if any, and the thermal expansions. Research is in progress on crystal structure and thermal analyses.

  13. Final results from the SDC dopant search for new green wavelength shifting (WLS) fibers: Volume 1

    SciTech Connect

    Pla-Dalmau, A.; Foster, G.W.; Zhang, G.

    1993-12-01

    A scintillating tile/fiber design had been selected for the SDC calorimeter. It consisted of scintillator plates embedded with a wavelength shifting (WLS) fiber which was spliced to a clear fiber. Based on the results from previous radiation damage studies on different scintillating materials, SCSN38 had been chosen for the scintillating tile and BCF91 or Y7 for the WLS fiber. SCSN38 is a blue-emitting scintillator and both WLS fibers use K-27, a green-emitting compound, as dopant. K-27 has a decay time of approximately 12 ns which is long in comparison to that of most blue-emitting materials. Of all the factors that affect the speed of the scintillator tile/fiber calorimeter, the lifetime of the green-emitting dopant is the dominant component. To increase the speed of the calorimeter, it would be desirable that the green WLS fibers utilized had lifetimes between 3 and 5 ns. However, currently available green WLS fibers exhibit decay times between 7 and 12 ns. Development of new green-emitting WLS fibers with short decay times must be investigated. The goal of this project was to search for commercially available fluorescent compounds with {lambda}{sub abs} = 400--450 nm, {lambda}{sub em} = 450--550 nm, {tau} = 3--7 ns, and quantum efficiency of minimum 0.7 (current K-27 baseline). Large Stokes shift and low self-absorption were not important requirements since the optical pathlength for the shifted light was small. Characterization of the spectroscopic properties of these compounds after styrene polymerization is important since this is an essential part of the manufacturing of WLS fibers. This summary presents the transmittance and fluorescence data for each dopant tested. However, many fluorescence measurements using different excitation wavelengths and orientations were recorded. Volume 1 presents a plot for each dopant combining transmittance and the most representative fluorescence measurement.

  14. Atomistic Interrogation of B-N Co-dopant Structures and Their Electronic Effects in Graphene.

    PubMed

    Schiros, Theanne; Nordlund, Dennis; Palova, Lucia; Zhao, Liuyan; Levendorf, Mark; Jaye, Cherno; Reichman, David; Park, Jiwoong; Hybertsen, Mark; Pasupathy, Abhay

    2016-07-26

    Chemical doping has been demonstrated to be an effective method for producing high-quality, large-area graphene with controlled carrier concentrations and an atomically tailored work function. The emergent optoelectronic properties and surface reactivity of carbon nanostructures are dictated by the microstructure of atomic dopants. Co-doping of graphene with boron and nitrogen offers the possibility to further tune the electronic properties of graphene at the atomic level, potentially creating p- and n-type domains in a single carbon sheet, opening a gap between valence and conduction bands in the 2-D semimetal. Using a suite of high-resolution synchrotron-based X-ray techniques, scanning tunneling microscopy, and density functional theory based computation we visualize and characterize B-N dopant bond structures and their electronic effects at the atomic level in single-layer graphene grown on a copper substrate. We find there is a thermodynamic driving force for B and N atoms to cluster into BNC structures in graphene, rather than randomly distribute into isolated B and N graphitic dopants, although under the present growth conditions, kinetics limit segregation of large B-N domains. We observe that the doping effect of these BNC structures, which open a small band gap in graphene, follows the B:N ratio (B > N, p-type; B < N, n-type; B═N, neutral). We attribute this to the comparable electron-withdrawing and -donating effects, respectively, of individual graphitic B and N dopants, although local electrostatics also play a role in the work function change. PMID:27327863

  15. High Resolution Dopant Profiles Revealed by Atom Probe Tomography and STEM-EBIC for CdTe Based Solar Cells

    DOE PAGES

    Poplawsky, Jonathan D.; Li, Chen; Paudel, Naba; Guo, Wei; Yan, Yanfa; Pennycook, Stephen J.

    2016-01-01

    Segregated elements and their diffusion profiles within grain boundaries and interfaces resulting from post deposition heat treatments are revealed using atom probe tomography (APT), scanning transmission electron microscopy (STEM), and electron beam induced current (EBIC) techniques. The results demonstrate how these techniques complement each other to provide conclusive evidence for locations of space charge regions and mechanisms that create them at the nanoscale. Most importantly, a Cl dopant profile that extends ~5 nm into CdTe grains interfacing the CdS is shown using APT and STEM synergy, which has been shown to push the pn-junction into the CdTe layer indicative ofmore » a homojunction (revealed by STEM EBIC). In addition, Cu and Cl concentrations within grain boundaries within several nms and µms from the CdS/CdTe interface are compared, Na segregation of <0.1% is detected, and S variations of ~1–3% are witnessed between CdTe grains close to the CdS/CdTe interface. The segregation and diffusion of these elements directly impacts on the material properties, such as band gap energy and n/p type properties. Optimization of the interfacial and grain boundary doping will lead to higher efficiency solar cells.« less

  16. High Resolution Dopant Profiles Revealed by Atom Probe Tomography and STEM-EBIC for CdTe Based Solar Cells

    SciTech Connect

    Poplawsky, Jonathan D.; Li, Chen; Paudel, Naba; Guo, Wei; Yan, Yanfa; Pennycook, Stephen J.

    2016-01-01

    Segregated elements and their diffusion profiles within grain boundaries and interfaces resulting from post deposition heat treatments are revealed using atom probe tomography (APT), scanning transmission electron microscopy (STEM), and electron beam induced current (EBIC) techniques. The results demonstrate how these techniques complement each other to provide conclusive evidence for locations of space charge regions and mechanisms that create them at the nanoscale. Most importantly, a Cl dopant profile that extends ~5 nm into CdTe grains interfacing the CdS is shown using APT and STEM synergy, which has been shown to push the pn-junction into the CdTe layer indicative of a homojunction (revealed by STEM EBIC). In addition, Cu and Cl concentrations within grain boundaries within several nms and µms from the CdS/CdTe interface are compared, Na segregation of <0.1% is detected, and S variations of ~1–3% are witnessed between CdTe grains close to the CdS/CdTe interface. The segregation and diffusion of these elements directly impacts on the material properties, such as band gap energy and n/p type properties. Optimization of the interfacial and grain boundary doping will lead to higher efficiency solar cells.

  17. Quantum simulation of the Hubbard model with dopant atoms in silicon

    PubMed Central

    Salfi, J.; Mol, J. A.; Rahman, R.; Klimeck, G.; Simmons, M. Y.; Hollenberg, L. C. L.; Rogge, S.

    2016-01-01

    In quantum simulation, many-body phenomena are probed in controllable quantum systems. Recently, simulation of Bose–Hubbard Hamiltonians using cold atoms revealed previously hidden local correlations. However, fermionic many-body Hubbard phenomena such as unconventional superconductivity and spin liquids are more difficult to simulate using cold atoms. To date the required single-site measurements and cooling remain problematic, while only ensemble measurements have been achieved. Here we simulate a two-site Hubbard Hamiltonian at low effective temperatures with single-site resolution using subsurface dopants in silicon. We measure quasi-particle tunnelling maps of spin-resolved states with atomic resolution, finding interference processes from which the entanglement entropy and Hubbard interactions are quantified. Entanglement, determined by spin and orbital degrees of freedom, increases with increasing valence bond length. We find separation-tunable Hubbard interaction strengths that are suitable for simulating strongly correlated phenomena in larger arrays of dopants, establishing dopants as a platform for quantum simulation of the Hubbard model. PMID:27094205

  18. Predicting Low Energy Dopant Implant Profiles in Semiconductors using Molecular Dynamics

    SciTech Connect

    Beardmore, K.M.; Gronbech-Jensen, N.

    1999-05-02

    The authors present a highly efficient molecular dynamics scheme for calculating dopant density profiles in group-IV alloy, and III-V zinc blende structure materials. Their scheme incorporates several necessary methods for reducing computational overhead, plus a rare event algorithm to give statistical accuracy over several orders of magnitude change in the dopant concentration. The code uses a molecular dynamics (MD) model to describe ion-target interactions. Atomic interactions are described by a combination of 'many-body' and pair specific screened Coulomb potentials. Accumulative damage is accounted for using a Kinchin-Pease type model, inelastic energy loss is represented by a Firsov expression, and electronic stopping is described by a modified Brandt-Kitagawa model which contains a single adjustable ion-target dependent parameter. Thus, the program is easily extensible beyond a given validation range, and is therefore truly predictive over a wide range of implant energies and angles. The scheme is especially suited for calculating profiles due to low energy and to situations where a predictive capability is required with the minimum of experimental validation. They give examples of using the code to calculate concentration profiles and 2D 'point response' profiles of dopants in crystalline silicon and gallium-arsenide. Here they can predict the experimental profile over five orders of magnitude for <100> and <110> channeling and for non-channeling implants at energies up to hundreds of keV.

  19. An Efficient Molecular Dynamics Scheme for Predicting Dopant Implant Profiles in Semiconductors

    SciTech Connect

    Beardmore, K.M.; Gronbech-Jensen, N.

    1998-09-15

    The authors present a highly efficient molecular dynamics scheme for calculating the concentration profile of dopants implanted in group-IV alloy, and III-V zinc blende structure materials. The program incorporates methods for reducing computational overhead, plus a rare event algorithm to give statistical accuracy over several orders of magnitude change in the dopant concentration. The code uses a molecular dynamics (MD) model, instead of the binary collision approximation (BCA) used in implant simulators such as TRIM and Marlowe, to describe ion-target interactions. Atomic interactions are described by a combination of 'many-body' and screened Coulomb potentials. Inelastic energy loss is accounted for using a Firsov model, and electronic stopping is described by a Brandt-Kitagawa model which contains the single adjustable parameter for the entire scheme. Thus, the program is easily extensible to new ion-target combinations with the minimum of tuning, and is predictive over a wide range of implant energies and angles. The scheme is especially suited for calculating profiles due to low energy, large angle implants, and for situations where a predictive capability is required with the minimum of experimental validation. They give examples of using their code to calculate concentration profiles and 2D 'point response' profiles of dopants in crystalline silicon, silicon-germanium blends, and gallium-arsenide. They can predict the experimental profiles over five orders of magnitude for <100> and <110> channeling and for non-channeling implants at energies up to hundreds of keV.

  20. Effects of Li and Cu dopants on structural properties of zinc oxide nanorods

    NASA Astrophysics Data System (ADS)

    Kim, Kyung Ho; Jin, Zhuguang; Abe, Yoshio; Kawamura, Midori

    2015-01-01

    We fabricated undoped zinc oxide (ZnO), Li-doped zinc oxide (LZO), and Cu-doped zinc oxide (CZO) nanorods (NRs) on fluorine-doped tin oxide (FTO)-coated glass substrates using chemical solution deposition and investigated their structural properties. With the incorporation of the Li dopant, the length and crystallinity of LZO NRs increased and improved, respectively, compared to that of the ZnO NRs. The average optical transmittance of LZO NRs was slightly lower than that of the ZnO NRs, but otherwise very similar over the visible wavelength region. With the incorporation of the Cu dopant, however, the morphology of the CZO sample was remarkably different from that of the pure ZnO NRs. Rods with a length of ∼12 μm and a diameter of 0.5-1.2 μm were randomly oriented on the substrate, and copper oxide (CuO) nanocrystals were uniformly grown on the surface of substrate. This paper presents a simple way to tune the growth behaviors of the ZnO NRs by adding dopants.

  1. Structure-property-composition relationships in doped zinc oxides: enhanced photocatalytic activity with rare earth dopants.

    PubMed

    Goodall, Josephine B M; Illsley, Derek; Lines, Robert; Makwana, Neel M; Darr, Jawwad A

    2015-02-01

    In this paper, we demonstrate the use of continuous hydrothermal flow synthesis (CHFS) technology to rapidly produce a library of 56 crystalline (doped) zinc oxide nanopowders and two undoped samples, each with different particle properties. Each sample was produced in series from the mixing of an aqueous stream of basic zinc nitrate (and dopant ion or modifier) solution with a flow of superheated water (at 450 °C and 24.1 MPa), whereupon a crystalline nanoparticle slurry was rapidly formed. Each composition was collected in series, cleaned, freeze-dried, and then characterized using analytical methods, including powder X-ray diffraction, transmission electron microscopy, Brunauer-Emmett-Teller surface area measurement, X-ray photoelectron spectroscopy, and UV-vis spectrophotometry. Photocatalytic activity of the samples toward the decolorization of methylene blue dye was assessed, and the results revealed that transition metal dopants tended to reduce the photoactivity while rare earth ions, in general, increased the photocatalytic activity. In general, low dopant concentrations were more beneficial to having greater photodecolorization in all cases.

  2. Dopant effects on charge transport to enhance performance of phosphorescent white organic light emitting diodes

    SciTech Connect

    Zhu, Liping; Chen, Jiangshan; Ma, Dongge

    2015-11-07

    We compared the performance of phosphorescent white organic light emitting diodes (WOLEDs) with red-blue-green and green-blue-red sequent emissive layers. It was found that the influence of red and green dopants on electron and hole transport in emissive layers leads to the large difference in the efficiency of fabricated WOLEDs. This improvement mechanism is well investigated by the current density-voltage characteristics of single-carrier devices based on dopant doped emissive layers and the comparison of electroluminescent and photoluminescence spectra, and attributed to the different change of charge carrier transport by the dopants. The optimized device achieves a maximum power efficiency, current efficiency, and external quantum efficiency of 37.0 lm/W, 38.7 cd/A, and 17.7%, respectively, which are only reduced to 32.8 lm/W, 38.5 cd/A, and 17.3% at 1000 cd/m{sup 2} luminance. The critical current density is as high as 210 mA/cm{sup 2}. It can be seen that the efficiency roll-off in phosphorescent WOLEDs can be well improved by effectively designing the structure of emissive layers.

  3. Dopant-Enabled Supramolecular Approach for Controlled Synthesis of Nanostructured Conductive Polymer Hydrogels.

    PubMed

    Wang, Yaqun; Shi, Ye; Pan, Lijia; Ding, Yu; Zhao, Yu; Li, Yun; Shi, Yi; Yu, Guihua

    2015-11-11

    Conducting polymer hydrogels emerge as a novel class of polymeric materials that show great potential in many energy, environmental, and biomedical devices. We describe here for the first time a general supramolecular approach toward controlled in situ synthesis of one-dimensional nanostructured conductive hydrogels (polypyrrole (PPy) as a model system) using a rational dopant counterion, which is a disc-shaped liquid crystal molecular copper phthalocyanine-3,4',4″,4‴-tetrasulfonic acid tetrasodium salt (CuPcTs). The dopant molecule CuPcTs cross-linked the PPy chains to form a three-dimensional network that gelated into a hydrogel. The PPy hydrogel could be synthesized in bulk quantities with uniform morphology of self-assembled interconnected nanofibers. The tetra-functional dopant favors a supramolecular self-assembly mechanism to form one-dimensional PPy nanostructures. Furthermore, the enhanced interchain charge transport of CuPcTs doped PPy resulted in greatly enhanced conductivity and pseudocapacitance compared with pristine PPy. PMID:26505784

  4. Effect of isovalent dopants on photodegradation ability of ZnS nanoparticles

    NASA Astrophysics Data System (ADS)

    Khaparde, Rohini; Acharya, Smita

    2016-06-01

    Isovalent (Mn, Cd, Cu, Co)-doped-ZnS nanoparticles having size vary in between 2 to 5 nm are synthesized by co-precipitation route. Their photocatalytic activity for decoloration of Cango Red and Malachite Green dyes is tested in visible radiation under natural conditions. Structural and morphological features of the samples are investigated by X-ray diffraction, Raman spectroscopy, Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM) and UVsbnd Vis spectrometer. Single phase zinc blende structure of as-synthesized undoped and doped-ZnS is confirmed by XRD and revealed by Rietveld fitting. SEM and TEM images show ultrafine nanoparticles having size in the range of 2 to 5 nm. UV-Vis absorption spectra exhibit blue shift in absorption edge of undoped and doped ZnS as compared to bulk counterpart. The photocatalytic activity as a function of dopant concentration and irradiation time is systematically studied. The rate of de-coloration of dyes is detected by UVsbnd Vis absorption spectroscopy and organic dye mineralization is confirmed by table of carbon (TOC) study. The photocatalytic activity of Mn-doped ZnS is highest amongst all dopants; however Co as a dopant is found to reduce photocatalytic activity than pure ZnS.

  5. n-Dopants Based on Dimers of Benzimidazoline Radicals: Structures and Mechanism of Redox Reactions.

    PubMed

    Zhang, Siyuan; Naab, Benjamin D; Jucov, Evgheni V; Parkin, Sean; Evans, Eric G B; Millhauser, Glenn L; Timofeeva, Tatiana V; Risko, Chad; Brédas, Jean-Luc; Bao, Zhenan; Barlow, Stephen; Marder, Seth R

    2015-07-20

    Dimers of 2-substituted N,N'-dimethylbenzimidazoline radicals, (2-Y-DMBI)2 (Y=cyclohexyl (Cyc), ferrocenyl (Fc), ruthenocenyl (Rc)), have recently been reported as n-dopants for organic semiconductors. Here their structural and energetic characteristics are reported, along with the mechanisms by which they react with acceptors, A (PCBM, TIPS-pentacene), in solution. X-ray data and DFT calculations both indicate a longer C-C bond for (2-Cyc-DMBI)2 than (2-Fc-DMBI)2 , yet DFT and ESR data show that the latter dissociates more readily due to stabilization of the radical by Fc. Depending on the energetics of dimer (D2 ) dissociation and of D2 -to-A electron transfer, D2 reacts with A to form D(+) and A(-) by either of two mechanisms, differing in whether the first step is endergonic dissociation or endergonic electron transfer. However, the D(+) /0.5 D2 redox potentials-the effective reducing strengths of the dimers-vary little within the series (ca. -1.9 V vs. FeCp2 (+/0) ) (Cp=cyclopentadienyl) due to cancelation of trends in the D(+/0) potential and D2 dissociation energy. The implications of these findings for use of these dimers as n-dopants, and for future dopant design, are discussed.

  6. Spontaneous reorientation from planar to homeotropic alignment in dual-frequency mixture doped with chiral dopant

    NASA Astrophysics Data System (ADS)

    Perkowski, Paweł; Mrukiewicz, Mateusz; Chojnowska, Olga; Piecek, Wiktor; Dąbrowski, Roman

    2014-11-01

    We investigate a dual-frequency (DF) nematic mixture by means of the dielectric spectroscopy. A chiral dopant has been added to the DF matrix. A pure DF matrix as well as three samples with increasing concentration of chiral dopant (DF*) have been prepared. Investigated samples have shown a selective reflection band, according to a helical pitch induced in proportion to the chiral dopant amount. Such system promises a great application potential as a selective light reflecting shutter or spectral filter due to nearly symmetrical switching times and defectless structures. When we put the non-doped DF mixture into homogenous (HG) oriented cell we found that planar orientation is permanent on both cooling and heating cycles. In the case of DF* chiral mixtures, the behavior changes substantially. One can observe that the oriented virgin planar structure of DF* within the HG cell starts to change its orientation to homeotropic one at different temperature. When heating is continued the homeotropic orientation in the HG cell is preserved up to the clearing temperature. Upon a subsequent cooling from the isotropic state, the homeotropic orientation is preserved within the whole mesogenic state. The effect of induction of the homeotropic state observed within HG cells is analyzed and discussed.

  7. Dopant effects on charge transport to enhance performance of phosphorescent white organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Zhu, Liping; Chen, Jiangshan; Ma, Dongge

    2015-11-01

    We compared the performance of phosphorescent white organic light emitting diodes (WOLEDs) with red-blue-green and green-blue-red sequent emissive layers. It was found that the influence of red and green dopants on electron and hole transport in emissive layers leads to the large difference in the efficiency of fabricated WOLEDs. This improvement mechanism is well investigated by the current density-voltage characteristics of single-carrier devices based on dopant doped emissive layers and the comparison of electroluminescent and photoluminescence spectra, and attributed to the different change of charge carrier transport by the dopants. The optimized device achieves a maximum power efficiency, current efficiency, and external quantum efficiency of 37.0 lm/W, 38.7 cd/A, and 17.7%, respectively, which are only reduced to 32.8 lm/W, 38.5 cd/A, and 17.3% at 1000 cd/m2 luminance. The critical current density is as high as 210 mA/cm2. It can be seen that the efficiency roll-off in phosphorescent WOLEDs can be well improved by effectively designing the structure of emissive layers.

  8. Superficial dopants allow growth of silicone nanofilaments on hydroxyl-free substrates.

    PubMed

    Artus, Georg R J; Bigler, Laurent; Seeger, Stefan

    2014-09-01

    We report new types of silicone nanostructures by a gas-phase reaction of trichloromethylsilane: 1-D silicone nanofilaments with a raveled end and silicone nanoteeth. Filaments with a raveled end are obtained on poly(vinyl chloride), which is superficially doped with the detergent Span 20. Silicone nanoteeth grow on sodium chloride using dibutyl phthalate as superficial dopant. Without dopants, no structures are observed. The dopants are identified by mass spectroscopy and the silicone nanostructures are analyzed by infrared spectroscopy and energy-dispersive analysis of X-rays. The growth of silicone nanostructures on a hydrophobic substrate (poly(vinyl chloride)/Span 20) and a substrate free of hydroxyl groups (sodium chloride/dibutyl phthalate) questions the currently discussed mechanisms for the growth of 1-D silicone nanofilaments, which is discussed. We suggest superficial doping as an alternative pretreatment method to oxidizing activation and prove this principle by the successful coating of copper, which is superficially doped with Span 20. PMID:25111760

  9. Effect of isovalent dopants on photodegradation ability of ZnS nanoparticles.

    PubMed

    Khaparde, Rohini; Acharya, Smita

    2016-06-15

    Isovalent (Mn, Cd, Cu, Co)-doped-ZnS nanoparticles having size vary in between 2 to 5nm are synthesized by co-precipitation route. Their photocatalytic activity for decoloration of Cango Red and Malachite Green dyes is tested in visible radiation under natural conditions. Structural and morphological features of the samples are investigated by X-ray diffraction, Raman spectroscopy, Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM) and UVVis spectrometer. Single phase zinc blende structure of as-synthesized undoped and doped-ZnS is confirmed by XRD and revealed by Rietveld fitting. SEM and TEM images show ultrafine nanoparticles having size in the range of 2 to 5nm. UV-Vis absorption spectra exhibit blue shift in absorption edge of undoped and doped ZnS as compared to bulk counterpart. The photocatalytic activity as a function of dopant concentration and irradiation time is systematically studied. The rate of de-coloration of dyes is detected by UVVis absorption spectroscopy and organic dye mineralization is confirmed by table of carbon (TOC) study. The photocatalytic activity of Mn-doped ZnS is highest amongst all dopants; however Co as a dopant is found to reduce photocatalytic activity than pure ZnS. PMID:27037762

  10. n-Dopants Based on Dimers of Benzimidazoline Radicals: Structures and Mechanism of Redox Reactions

    PubMed Central

    Zhang, Siyuan; Naab, Benjamin D.; Jucov, Evgheni V.; Parkin, Sean; Evans, Eric G. B.; Millhauser, Glenn L.; Timofeeva, Tatiana V.; Risko, Chad; Brédas, Jean-Luc; Bao, Zhenan; Barlow, Stephen; Marder, Seth R.

    2015-01-01

    Dimers of 2-substituted N,N'-dimethylbenzimidazoline radicals, (2-Y-DMBI)2 {Y = cyclohexyl (Cyc), ferrocenyl (Fc), ruthenocenyl (Rc)} have recently been reported as n-dopants for organic semiconductors. Here their structural and energetic characteristics are reported, along with the mechanisms by which they react with acceptors, A (PCBM, TIPS-pentacene), in solution. X-ray data and DFT both indicate a longer C—C bond for (2-Cyc-DMBI)2 than (2-Fc-DMBI)2, yet DFT and ESR data show that the latter dissociates more readily due to stabilization of the radical by Fc. Depending on the energetics of dimer (D2) dissociation and of D2-to-A electron transfer, D2 reacts with A to form D+ and A•– by either of two mechanisms, differing in whether the first step is endergonic dissociation or endergonic electron transfer. However, the D+/0.5D2 redox potentials – the effective reducing strengths of the dimers – vary little within the series (ca. –1.9 V vs. FeCp2+/0) due to cancelation of trends in the D+/0 potential and D2 dissociation energy. The implications of these findings for use of these dimers as n-dopants, and for future dopant design, are discussed. PMID:26088609

  11. Investigation into liquid crystalline smectic-C* subphase stability using chiral and achiral dopants

    SciTech Connect

    Kirchhoff, J.; Hirst, L. S.

    2007-11-15

    In this paper we investigate the influence of chiral and achiral dopants on a chiral smectic liquid crystal material, which exhibits a rich phase sequence, including the antiferroelectric phase and the three-layer intermediate smectic (SmC*{sub FI1}) phase. Using polarized optical microscopy, differential scanning calorimetry, and x-ray diffraction we find that small amounts of achiral dopant have the ability to significantly broaden the SmC*{sub FI1} phase, whereas an oppositely-handed dopant (otherwise identical to the host material) destabilizes the phase. This work clearly indicates that bulk chirality strongly influences SmC*{sub FI1} phase formation and that steric effects also play an important role. Interestingly, addition of the shorter achiral molecule (8CB) was observed to increase the smectic layer spacing, most likely by suppressing interdigitation of alkyl chains between adjacent smectic layers. Control of the SmC*{sub FI1} phase width using mixtures in this way is clearly important for effective phase characterization, and could potentially lead to commercially viable materials with a stable SmC*{sub FI1} phase over a large temperature range.

  12. Investigation into liquid crystalline smectic-C* subphase stability using chiral and achiral dopants.

    PubMed

    Kirchhoff, J; Hirst, L S

    2007-11-01

    In this paper we investigate the influence of chiral and achiral dopants on a chiral smectic liquid crystal material, which exhibits a rich phase sequence, including the antiferroelectric phase and the three-layer intermediate smectic (SmC*FI1) phase. Using polarized optical microscopy, differential scanning calorimetry, and x-ray diffraction we find that small amounts of achiral dopant have the ability to significantly broaden the SmC*FI1 phase, whereas an oppositely-handed dopant (otherwise identical to the host material) destabilizes the phase. This work clearly indicates that bulk chirality strongly influences SmC*FI1 phase formation and that steric effects also play an important role. Interestingly, addition of the shorter achiral molecule (8CB) was observed to increase the smectic layer spacing, most likely by suppressing interdigitation of alkyl chains between adjacent smectic layers. Control of the SmC*FI1 phase width using mixtures in this way is clearly important for effective phase characterization, and could potentially lead to commercially viable materials with a stable SmC*FI1 phase over a large temperature range.

  13. Variable-angle high-angle annular dark-field imaging: application to three-dimensional dopant atom profiling.

    PubMed

    Zhang, Jack Y; Hwang, Jinwoo; Isaac, Brandon J; Stemmer, Susanne

    2015-07-24

    Variable-angle high-angle annular dark-field (HAADF) imaging in scanning transmission electron microscopy is developed for precise and accurate determination of three-dimensional (3D) dopant atom configurations. Gd-doped SrTiO3 films containing Sr columns containing zero, one, or two Gd dopant atoms are imaged in HAADF mode using two different collection angles. Variable-angle HAADF significantly increases both the precision and accuracy of 3D dopant profiling. Using image simulations, it is shown that the combined information from the two detectors reduces the uncertainty in the dopant depth position measurement and can uniquely identify certain atomic configurations that are indistinguishable with a single detector setting. Additional advances and applications are discussed.

  14. Enhanced dopant solubility and visible-light absorption in Cr-N co-doped TiO2 nanoclusters

    SciTech Connect

    Chiodi, Dr Mirco; Cheney, Christine; Vilmercati, Paolo; Cavaliere, Emanuele; Mannella, Norman; Gavioli, Luca; Weitering, Harm H

    2012-01-01

    A major obstacle toward employing TiO2 as an efficient photoactive material is related to its large optical band gap, strongly limiting visible light absorption. Substitutional doping with both donors and acceptors (co-doping) potentially leads to a significant band gap reduction, but the effectiveness of the co-doping approach remains limited by the low solubility of dopants inside TiO2. Here we show that nanostructured Cr and N co-doped TiO2 thin films can be obtained by Supersonic Cluster Beam Deposition (SCBD) with a high concentration of dopants and a strongly reduced band gap. Complementary spectroscopic investigations show that doping effectively occurs into substitutional lattice sites, inducing dopant levels in the gap that are remarkably delocalized. The high surface-to-volume ratio, typical of SCBD nanostructured films, likely facilitates the dopant incorporation. The present results indicate that SCBD films are highly promising photoactive nanophase materials.

  15. Variable-angle high-angle annular dark-field imaging: application to three-dimensional dopant atom profiling

    PubMed Central

    Zhang, Jack Y.; Hwang, Jinwoo; Isaac, Brandon J.; Stemmer, Susanne

    2015-01-01

    Variable-angle high-angle annular dark-field (HAADF) imaging in scanning transmission electron microscopy is developed for precise and accurate determination of three-dimensional (3D) dopant atom configurations. Gd-doped SrTiO3 films containing Sr columns containing zero, one, or two Gd dopant atoms are imaged in HAADF mode using two different collection angles. Variable-angle HAADF significantly increases both the precision and accuracy of 3D dopant profiling. Using image simulations, it is shown that the combined information from the two detectors reduces the uncertainty in the dopant depth position measurement and can uniquely identify certain atomic configurations that are indistinguishable with a single detector setting. Additional advances and applications are discussed. PMID:26206489

  16. Atomic structural features of dopant segregated grain boundary complexions in alumina by EXAFS

    NASA Astrophysics Data System (ADS)

    Behera, Shantanu Kumar

    The primary objective of this undertaking was to characterize the atomic structural features of dopant-segregated interfaces in a (pseudo) single phase microstructure and relate the same to atomic diffusion in the grain boundaries. Alumina was chosen as a model host system based on prior observations of grain boundary complexions in this system by electron microscopy. Two types of dopant chemistry were selected that are known to produce dramatically different microstructural behavior in alumina. These were, (i) rare earth element doping (Y) and (ii) Y-Si co-doping in alumina. In Y-doped alumina microstructures, different Gibbsian excess of the segregated dopant has been known to produce two distinct types of interface complexions. On the other hand, three distinct types of disordered grain boundary complexions have been observed in Y-Si codoped alumina. A quantitative grain growth study was performed in dense microstructures of these materials and different kinetic regimes of boundary mobility were identified. Subsequently, samples annealed at various temperatures were quenched to preserve the grain boundary structure and characterized using synchrotron extended X-ray absorption fine structure spectroscopy (EXAFS) at the Y K-edge. Distinct local structural features of the dopant segregation induced interface phases were observed and were used to distinguish between each of the complexion types. Computation of EXAFS spectra of theoretical clusters by ab initio methods and fitting the same with experimental data identified several types of interface complexions including: (i) sub-monolayer adsorption, where oversized isovalent dopants (Y) occupy substitutional cation sites at the grain boundary core and reduce the interface energy, (ii) saturation of dopants at the interface leading to bilayer adsorption, where dopants (Y) substitute host cations on both sides of the boundary interpolating into the crystals, (iii) multilayered adsorption, where a pseudo

  17. Imaging Dirac-mass disorder from magnetic dopant atoms in the ferromagnetic topological insulator Crx(Bi0.1Sb0.9)2-xTe3

    SciTech Connect

    Lee, Inhee; Kim, Chung Koo; Lee, Jinho; Billinge, Simon J. L.; Zhong, Ruidan D.; Schneeloch, John A.; Liu, Tiansheng S.; Valla, Tonica; Tranquada, John M.; Gu, Genda D.; Davis, J. C. Séamus

    2015-01-20

    To achieve and use the most exotic electronic phenomena predicted for the surface states of 3D topological insulators (TIs), it is necessary to open a “Dirac-mass gap” in their spectrum by breaking time-reversal symmetry. Use of magnetic dopant atoms to generate a ferromagnetic state is the most widely applied approach. However, it is unknown how the spatial arrangements of the magnetic dopant atoms influence the Dirac-mass gap at the atomic scale or, conversely, whether the ferromagnetic interactions between dopant atoms are influenced by the topological surface states. Here we image the locations of the magnetic (Cr) dopant atoms in the ferromagnetic TI Cr₀.₀₈(Bi₀.₁Sb₀.₉)₁.₉₂Te₃. Simultaneous visualization of the Dirac-mass gap Δ(r) reveals its intense disorder, which we demonstrate is directly related to fluctuations in n(r), the Cr atom areal density in the termination layer. We find the relationship of surface-state Fermi wavevectors to the anisotropic structure of Δ(r) not inconsistent with predictions for surface ferromagnetism mediated by those states. Moreover, despite the intense Dirac-mass disorder, the anticipated relationship Δ(r)∝n(r) is confirmed throughout and exhibits an electron–dopant interaction energy J* = 145 meV·nm². In addition, these observations reveal how magnetic dopant atoms actually generate the TI mass gap locally and that, to achieve the novel physics expected of time-reversal symmetry breaking TI materials, control of the resulting Dirac-mass gap disorder will be essential.

  18. Molecular Electrical Doping of Organic Semiconductors: Fundamental Mechanisms and Emerging Dopant Design Rules.

    PubMed

    Salzmann, Ingo; Heimel, Georg; Oehzelt, Martin; Winkler, Stefanie; Koch, Norbert

    2016-03-15

    Today's information society depends on our ability to controllably dope inorganic semiconductors, such as silicon, thereby tuning their electrical properties to application-specific demands. For optoelectronic devices, organic semiconductors, that is, conjugated polymers and molecules, have emerged as superior alternative owing to the ease of tuning their optical gap through chemical variability and their potential for low-cost, large-area processing on flexible substrates. There, the potential of molecular electrical doping for improving the performance of, for example, organic light-emitting devices or organic solar cells has only recently been established. The doping efficiency, however, remains conspicuously low, highlighting the fact that the underlying mechanisms of molecular doping in organic semiconductors are only little understood compared with their inorganic counterparts. Here, we review the broad range of phenomena observed upon molecularly doping organic semiconductors and identify two distinctly different scenarios: the pairwise formation of both organic semiconductor and dopant ions on one hand and the emergence of ground state charge transfer complexes between organic semiconductor and dopant through supramolecular hybridization of their respective frontier molecular orbitals on the other hand. Evidence for the occurrence of these two scenarios is subsequently discussed on the basis of the characteristic and strikingly different signatures of the individual species involved in the respective doping processes in a variety of spectroscopic techniques. The critical importance of a statistical view of doping, rather than a bimolecular picture, is then highlighted by employing numerical simulations, which reveal one of the main differences between inorganic and organic semiconductors to be their respective density of electronic states and the doping induced changes thereof. Engineering the density of states of doped organic semiconductors, the Fermi

  19. Control of dopants/modifiers in differential mobility spectrometry using a piezoelectric injector.

    PubMed

    Moll, Victor; Bocoş-Binţinţan, Victor; Raţiu, Ileana-Andreea; Ruszkiewicz, Dorota; Thomas, C L Paul

    2012-03-21

    A piezoelectric injector has been interfaced to a differential mobility spectrometer to enable fast and reversible control of dopant/transport-gas modifier levels within the reaction region of the instrument. Operating at 1 Hz with optimised bipolar waveforms for the piezoelectric injector and gas flows within the injector, steady-state 2-butanol mass fluxes of 21 to 1230 ng min(-1) and 1-bromohexane mass fluxes of 149 to 2644 ng min(-1) were delivered to the differential mobility cell. Control of split-flow and transport-gas flow rates enabled rapid and flexible control of the dopant concentrations. The system was consistently reproducible with a relative standard deviation (RSD) of 7.9% at every mass- flux level studied. Stable responses were achieved between 3 to 5 s following a change in the control levels and no significant hysteresis effects were observed. In the positive mode it was possible to control the extent of formation protonated monomer and proton bound cluster ions, tentatively assigned to{C(4)H(9)OH(H(2)O)(n)H}(+) and {(C(4)H(9)OH)(2)(H(2)O)(n)H}(+) and similar control was possible in the negative mode where the concentration relationship for the formation of bromide clusters indicated the presence of multiple ionisation mechanisms. A dopant formulation for the simultaneous control of ions in both the positive and negative modes was demonstrated by the injection of a 50%/50% v/v solution of 2-butanol/1-bromohexane with mass fluxes of 2-butanol in the mixture of between 11 and 1161 ng min(-1) and between 13 and 1325 ng min(-1) for 1-bromohexane.

  20. Location, Location, Location: Development of Spatiotemporal Sequence Learning in Infancy

    ERIC Educational Resources Information Center

    Kirkham, Natasha Z.; Slemmer, Jonathan A.; Richardson, Daniel C.; Johnson, Scott P.

    2007-01-01

    We investigated infants' sensitivity to spatiotemporal structure. In Experiment 1, circles appeared in a statistically defined spatial pattern. At test 11-month-olds, but not 8-month-olds, looked longer at a novel spatial sequence. Experiment 2 presented different color/shape stimuli, but only the location sequence was violated during test;…

  1. Semiconductor material and method for enhancing solubility of a dopant therein

    DOEpatents

    Sadigh, Babak; Lenosky, Thomas J.; Rubia, Tomas Diaz; Giles, Martin; Caturla, Maria-Jose; Ozolins, Vidvuds; Asta, Mark; Theiss, Silva; Foad, Majeed; Quong, Andrew

    2003-09-09

    A method for enhancing the equilibrium solubility of boron and indium in silicon. The method involves first-principles quantum mechanical calculations to determine the temperature dependence of the equilibrium solubility of two important p-type dopants in silicon, namely boron and indium, under various strain conditions. The equilibrium thermodynamic solubility of size-mismatched impurities, such as boron and indium in silicon, can be raised significantly if the silicon substrate is strained appropriately. For example, for boron, a 1% compressive strain raises the equilibrium solubility by 100% at 1100.degree. C.; and for indium, a 1% tensile strain at 1100.degree. C., corresponds to an enhancement of the solubility by 200%.

  2. Characterisation of active dopants in boron-doped self-assembled silicon nanostructures

    NASA Astrophysics Data System (ADS)

    Puthen Veettil, Binesh; Zhang, Tian; Chin, Robert Lee; Jia, Xuguang; Nomoto, Keita; Yang, Terry Chien-Jen; Lin, Ziyun; Wu, Lingfeng; Rexiati, Reyifate; Gutsch, Sebastian; Conibeer, Gavin; Perez-Würfl, Ivan

    2016-10-01

    Doping of silicon nanocrystals has become an important topic due to its potential to enable the fabrication of environmentally friendly and cost-effective optoelectronic and photovoltaic devices. However, doping of silicon nanocrystals has been proven difficult and most of the structural and electronic properties are still not well understood. In this work, the intrinsic and boron-doped self-assembled silicon nanocrystals were prepared and mainly characterised by the transient current method to study the behaviour of charge carriers in these materials. Our experiments quantified the amount of electrically active boron dopants that contributed to charge transport. From this, the boron doping efficiency in the nanocrystal superlattice was estimated.

  3. The mechanism of Marangoni convection influence on dopant distribution in Ge space-grown single crystals

    NASA Astrophysics Data System (ADS)

    Artemyev, V. K.; Folomeev, V. I.; Ginkin, V. P.; Kartavykh, A. V.; Mil'vidskii, M. G.; Rakov, V. V.

    2001-02-01

    A direct numerical simulation of heat mass transfer processes in the melt under the influence of surface tension forces on free surfaces during germanium crystal growth by the floating zone (FZ) method under microgravity conditions is performed. Development in time, and interaction between thermal and solutal kinds of Marangoni convection in the molten zone taking into account the temperature dependence of melt viscosity are analyzed. The obtained results explain anomalous distributions of Ga dopant in Ge single crystals grown aboard Russian Photon series spacecrafts (SC).

  4. Recrystallization and reactivation of dopant atoms in ion-implanted silicon nanowires.

    PubMed

    Fukata, Naoki; Takiguchi, Ryo; Ishida, Shinya; Yokono, Shigeki; Hishita, Shunichi; Murakami, Kouichi

    2012-04-24

    Recrystallization of silicon nanowires (SiNWs) after ion implantation strongly depends on the ion doses and species. Full amorphization by high-dose implantation induces polycrystal structures in SiNWs even after high-temperature annealing, with this tendency more pronounced for heavy ions. Hot-implantation techniques dramatically suppress polycrystallization in SiNWs, resulting in reversion to the original single-crystal structures and consequently high reactivation rate of dopant atoms. In this study, the chemical bonding states and electrical activities of implanted boron and phosphorus atoms were evaluated by Raman scattering and electron spin resonance, demonstrating the formation of p- and n-type SiNWs.

  5. Off-center Tl and Na dopant centers in CsI

    SciTech Connect

    Van Ginhoven, Renee M.; Schultz, P. A.

    2013-12-11

    We use density functional theory calculations to characterize the electronic and structural properties of the Tl and Na dopant centers in CsI. We nd that the Tl and Na centers can accept one or two electrons and couple to long-range relaxations in the surrounding crystal lattice to distort strongly off-center to multiple distinct minima, even without a triplet excitation. The long-range distortions are a mechanism to couple to phonon modes in the crystal, and are expected to play an important role in the phonon-assisted transport of polarons in activated CsI and subsequent light emission in this scintillator.

  6. Dynamics of defects and dopants in complex systems: Silicon and oxide surfaces and interfaces

    NASA Astrophysics Data System (ADS)

    Kirichenko, Taras Alexandrovich

    2005-11-01

    Precise control of dopant redistribution and activation in the vicinity of the semiconductor-dielectric interface has become crucial for fabrication of deep sub-micron metal-oxide-semiconductor field-effect transistor devices. During the process of ion implantation and thermal oxidation a great number of native defects (such as vacancies and interstitials) can be created in the substrate. These defects are known to be mainly responsible for transient enhanced diffusion and electrical activation/deactivation of dopant impurities. In this work we seek to develop a detailed understanding of the exact mechanisms of defect annihilation, and dopant diffusion and clustering/dissolution in complex systems such as Si surfaces and amorphous-crystalline Si-Si and Si-SiO2 interfaces using density functional theory total energy calculations. Si(001) surface: (1) We examine structure, energetics, and bonding of vacancies and interstitials on the clean and terminated Si(001) surface and its subsurface layers. (2) We propose mechanism of vacancy stabilization at the surface and subsurface layers. (3) We find Si(001) surface to be an effective sink for vacancies and interstitials, irrespective of surface passivation. (4) We present diffusion pathways and barriers of vacancies at and in the vicinity of the clean surface. (5) We have demonstrated that the stability of native defects within the top-most three subsurface layers is greatly influenced by surface passivation. Amorphous-crystalline Si interface: (1) We present native defect configurations, energetics and the origin of their stabilization at amorphous-crystalline Si interface and in amorphous Si. (2) A continuous random network model is employed in the construction of a realistic a-c interface structures. (3) We propose the 'sponge-like' behavior of the amorphous phase toward native defects. Si/SiO2 interface: (1) We present stable Si interstitial structures at interface and in the oxide. (2) We propose mechanism of

  7. A Semiconductor Material And Method For Enhancing Solubility Of A Dopant Therein

    DOEpatents

    Sadigh, Babak; Lenosky, Thomas J.; Diaz de la Rubia, Tomas; Giles, Martin; Caturla, Maria-Jose; Ozolins, Vidvuds; Asta, Mark; Theiss, Silva; Foad, Majeed; Quong, Andrew

    2005-03-29

    A method for enhancing the equilibrium solubility of boron ad indium in silicon. The method involves first-principles quantum mechanical calculations to determine the temperature dependence of the equilibrium solubility of two important p-type dopants in silicon, namely boron and indium, under various strain conditions. The equilibrium thermodynamic solubility of size-mismatched impurities, such as boron and indium in silicon, can be raised significantly if the silicon substrate is strained appropriately. For example, for boron, a 1% compressive strain raises the equilibrium solubility by 100% at 1100.degree. C.; and for indium, a 1% tensile strain at 1100.degree. C., corresponds to an enhancement of the solubility by 200%.

  8. On the modes of evaporation of Si and dopants in vacuum epitaxy procedures

    SciTech Connect

    Kuznetsov, V. P. Alyabina, N. A.; Bozhenkin, V. A.; Belova, O. V.; Kuznetsov, M. V.

    2008-03-15

    Silicon layers are grown by sublimation molecular beam epitaxy at the rate 1 {mu}m h{sup -1} at temperatures 500-900 Degree-Sign C in vacuum at the pressure 10{sup -5} Pa. The possibility of varying the Sb concentration in the Si layers in the range from 10{sup 15} to 10{sup 20} cm{sup -3} by varying the temperature of epitaxy is shown. The potentialities of different modes of vacuum evaporation of Si and dopants are analyzed.

  9. DETERMINATION OF OXALATE ION DOPANT LEVEL IN POLYPYRROLE USING FT-IR

    PubMed Central

    Benally, Kristal J.; GreyEyes, Shawn D.; McKenzie, Jason T.

    2014-01-01

    A pellet method using standard addition and FT-IR was used to estimate oxalate ion doping levels in electrosynthesized polypyrrole. The method is useful for materials where removal of analyte from an insoluble material is problematic. Here, electrosynthesized oxalate doped polypyrrole is dispersed in potassium bromide. Spikes of sodium oxalate are added and the mixtures pressed into pellets. The oxalate carbonyl absorption peak is then used to quantify the amount of oxalate present in the polypyrrole. The mass fraction of oxalate dopant in polypyrrole was determined to be 0.4 ± 0.1 % and coincides with the original synthesis solution composition. PMID:25598749

  10. Phosphorus δ-doped silicon: mixed-atom pseudopotentials and dopant disorder effects.

    PubMed

    Carter, Damien J; Marks, Nigel A; Warschkow, Oliver; McKenzie, David R

    2011-02-11

    Within a full density functional theory framework we calculate the band structure and doping potential for phosphorus δ-doped silicon. We compare two different representations of the dopant plane; pseudo-atoms in which the nuclear charge is fractional between silicon and phosphorus, and explicit arrangements employing distinct silicon and phosphorus atoms. While the pseudo-atom approach offers several computational advantages, the explicit model calculations differ in a number of key points, including the valley splitting, the Fermi level and the width of the doping potential. These findings have implications for parameters used in device modelling.

  11. Incorporation and diffusion of dopants in gallium arsenide, indium phosphide and indium gallium arsenide: Implications for devices

    NASA Astrophysics Data System (ADS)

    Tandon, Ashish

    Incorporation and diffusion of dopants in the InP, InGaAs and GaAs material systems by atmospheric pressure organometallic vapor phase epitaxy (APOMVPE) is discussed. A better understanding of the role point defect mechanisms play in driving dopant diffusion in III-V compounds has been obtained from experimental results. A study of Fermi level pinning at the surface of InP, InGaAs and GaAs is presented to explain the anomalously fast diffusion of dopants (such as Zn and Be which reside on the group III sublattice) observed in the base region of InP/InGaAs HBTs. Experimental results indicated that the Fermi level is not pinned at the surface of InGaAs while it appears to be pinned close to the valence band in InP. The Fermi level pinning at the surface of GaAs was found to vary with the crystal orientation. A solution to the problem of obtaining p-type base in InP/InGaAs HBTs has been presented in the form of carbon doped (p-type) InGaAs. The effects of growth temperature, V/III ratio and dopant source partial pressure on the concentration and mobility of holes in carbon doped InGaAs epilayers are reported. Record doping levels with negligible dopant passivation have been attained for carbon doped InGaAs epilayers. Studies linking dopant passivation to macroscopic defect formation are presented. A culmination of these findings in the growth and fabrication of InP/InGaAs HBTs with low base resistance and moderate gains is reported. A design resulting in the improvement of the collector-base breakdown voltage in InGaAs diodes is also discussed. The chemical treatment and history of the substrate were shown to play an important role in the diffusion of dopants in grown epilayers. Chlorine based compounds, thermal oxidation of the surface and growth of buffer layers (between the substrate and the epilayer) reduced diffusion in the epilayer. Sodium based compounds and anodic oxides tend to enhance dopant diffusion in the epilayer. A theoretical model for calculating

  12. Optimizing the Dopant and Carrier Concentration of Ca5Al2Sb6 for High Thermoelectric Efficiency

    PubMed Central

    Yan, Yuli; Zhang, Guangbiao; Wang, Chao; Peng, Chengxiao; Zhang, Peihong; Wang, Yuanxu; Ren, Wei

    2016-01-01

    The effects of doping on the transport properties of Ca5Al2Sb6 are investigated using first-principles electronic structure methods and Boltzmann transport theory. The calculated results show that a maximum ZT value of 1.45 is achieved with an optimum carrier concentration at 1000 K. However, experimental studies have shown that the maximum ZT value is no more than 1 at 1000 K. By comparing the calculated Seebeck coefficient with experimental values, we find that the low dopant solubility in this material is not conductive to achieve the optimum carrier concentration, leading a smaller experimental value of the maximum ZT. Interestingly, the calculated dopant formation energies suggest that optimum carrier concentrations can be achieved when the dopants and Sb atoms have similar electronic configurations. Therefore, it might be possible to achieve a maximum ZT value of 1.45 at 1000 K with suitable dopants. These results provide a valuable theoretical guidance for the synthesis of high-performance bulk thermoelectric materials through dopants optimization. PMID:27406178

  13. Optimizing the Dopant and Carrier Concentration of Ca5Al2Sb6 for High Thermoelectric Efficiency.

    PubMed

    Yan, Yuli; Zhang, Guangbiao; Wang, Chao; Peng, Chengxiao; Zhang, Peihong; Wang, Yuanxu; Ren, Wei

    2016-01-01

    The effects of doping on the transport properties of Ca5Al2Sb6 are investigated using first-principles electronic structure methods and Boltzmann transport theory. The calculated results show that a maximum ZT value of 1.45 is achieved with an optimum carrier concentration at 1000 K. However, experimental studies have shown that the maximum ZT value is no more than 1 at 1000 K. By comparing the calculated Seebeck coefficient with experimental values, we find that the low dopant solubility in this material is not conductive to achieve the optimum carrier concentration, leading a smaller experimental value of the maximum ZT. Interestingly, the calculated dopant formation energies suggest that optimum carrier concentrations can be achieved when the dopants and Sb atoms have similar electronic configurations. Therefore, it might be possible to achieve a maximum ZT value of 1.45 at 1000 K with suitable dopants. These results provide a valuable theoretical guidance for the synthesis of high-performance bulk thermoelectric materials through dopants optimization. PMID:27406178

  14. Optimizing the Dopant and Carrier Concentration of Ca5Al2Sb6 for High Thermoelectric Efficiency

    NASA Astrophysics Data System (ADS)

    Yan, Yuli; Zhang, Guangbiao; Wang, Chao; Peng, Chengxiao; Zhang, Peihong; Wang, Yuanxu; Ren, Wei

    2016-07-01

    The effects of doping on the transport properties of Ca5Al2Sb6 are investigated using first-principles electronic structure methods and Boltzmann transport theory. The calculated results show that a maximum ZT value of 1.45 is achieved with an optimum carrier concentration at 1000 K. However, experimental studies have shown that the maximum ZT value is no more than 1 at 1000 K. By comparing the calculated Seebeck coefficient with experimental values, we find that the low dopant solubility in this material is not conductive to achieve the optimum carrier concentration, leading a smaller experimental value of the maximum ZT. Interestingly, the calculated dopant formation energies suggest that optimum carrier concentrations can be achieved when the dopants and Sb atoms have similar electronic configurations. Therefore, it might be possible to achieve a maximum ZT value of 1.45 at 1000 K with suitable dopants. These results provide a valuable theoretical guidance for the synthesis of high-performance bulk thermoelectric materials through dopants optimization.

  15. In Situ Measurement of Voltage-Induced Stress in Conducting Polymers with Redox-Active Dopants.

    PubMed

    Sen, Sujat; Kim, Sung Yeol; Palmore, Lia R; Jin, Shenghua; Jadhav, Nitin; Chason, Eric; Palmore, G Tayhas R

    2016-09-14

    Minimization of stress-induced mechanical rupture and delamination of conducting polymer (CP) films is desirable to prevent failure of devices based on these materials. Thus, precise in situ measurement of voltage-induced stress within these films should provide insight into the cause of these failure mechanisms. The evolution of stress in films of polypyrrole (pPy), doped with indigo carmine (IC), was measured in different electrochemical environments using the multibeam optical stress sensor (MOSS) technique. The stress in these films gradually increases to a constant value during voltage cycling, revealing an initial break-in period for CP films. The nature of the ions involved in charge compensation of pPy[IC] during voltage cycling was determined from electrochemical quartz crystal microbalance (EQCM) data. The magnitude of the voltage-induced stress within pPy[IC] at neutral pH correlated with the radius of the hydrated mobile ion in the order Li(+) > Na(+) > K(+). At acidic pH, the IC dopant in pPy[IC] undergoes reversible oxidation and reduction within the range of potentials investigated, providing a secondary contribution to the observed voltage-induced stress. We report on the novel stress response of these polymers due to the presence of pH-dependent redox-active dopants and how it can affect material performance.

  16. Electrical properties of tin-doped zinc oxide nanostructures doped at different dopant concentrations

    NASA Astrophysics Data System (ADS)

    Nasir, M. F.; Zainol, M. N.; Hannas, M.; Mamat, M. H.; Rahman, S. A.; Rusop, Mohamad

    2016-07-01

    This project has been focused on the electrical and optical properties respectively on the effect of Tin doped zinc oxide (ZnO) thin films at different dopant concentrations. These thin films were doped with different Sn dopant concentrations at 1 at%, 2 at%, 3 at%, 4 at% and 5 at% was selected as the parameter to optimize the thin films quality while the annealing temperature is fixed 500 °C. Sn doped ZnO solutions were deposited onto the glass substrates using sol-gel spin coating method. This project was involved with three phases, which are thin films preparation, deposition and characterization. The thin films were characterized using Current Voltage (I-V) measurement and ultraviolet-visible-near-infrared (UV-vis-NIR) spectrophotometer (Perkin Elmer Lambda 750) for electrical properties and optical properties. The electrical properties show that the resistivity is the lowest at 4 at% Sn doping concentration with the value 3.08 × 103 Ωcm-1. The absorption coefficient spectrum obtained shows all films exhibit very low absorption in the visible (400-800nm) and near infrared (NIR) (>800nm) range but exhibit high absorption in the UV range.

  17. Dopant-specific unzipping of carbon nanotubes for intact crystalline graphene nanostructures

    NASA Astrophysics Data System (ADS)

    Lim, Joonwon; Narayan Maiti, Uday; Kim, Na-Young; Narayan, Rekha; Jun Lee, Won; Sung Choi, Dong; Oh, Youngtak; Min Lee, Ju; Yong Lee, Gil; Hun Kang, Seok; Kim, Hyunwoo; Kim, Yong-Hyun; Ouk Kim, Sang

    2016-01-01

    Atomic level engineering of graphene-based materials is in high demand to enable customize structures and properties for different applications. Unzipping of the graphene plane is a potential means to this end, but uncontrollable damage of the two-dimensional crystalline framework during harsh unzipping reaction has remained a key challenge. Here we present heteroatom dopant-specific unzipping of carbon nanotubes as a reliable and controllable route to customized intact crystalline graphene-based nanostructures. Substitutional pyridinic nitrogen dopant sites at carbon nanotubes can selectively initiate the unzipping of graphene side walls at a relatively low electrochemical potential (0.6 V). The resultant nanostructures consisting of unzipped graphene nanoribbons wrapping around carbon nanotube cores maintain the intact two-dimensional crystallinity with well-defined atomic configuration at the unzipped edges. Large surface area and robust electrical connectivity of the synergistic nanostructure demonstrate ultrahigh-power supercapacitor performance, which can serve for AC filtering with the record high rate capability of -85° of phase angle at 120 Hz.

  18. Origin of electrolyte-dopant dependent sulfur poisoning of SOFC anodes.

    PubMed

    Zeng, ZhenHua; Björketun, Mårten E; Ebbesen, Sune; Mogensen, Mogens B; Rossmeisl, Jan

    2013-05-14

    The mechanisms governing the sulfur poisoning of the triple phase boundary (TPB) of Ni-XSZ (X2O3 stabilized zirconia) anodes have been investigated using density functional theory. The calculated sulfur adsorption energies reveal a clear correlation between the size of the cation dopant X(3+) and the sulfur tolerance of the Ni-XSZ anode; the smaller the ionic radius, the higher the sulfur tolerance. The mechanistic study shows that the size of X(3+) strongly influences XSZ's surface energy, which in turn determines the adhesion of Ni to XSZ. The Ni-XSZ interaction has a direct impact on the Ni-S interaction and on the relative stability of reconstructed and pristine Ni(100) facets at the TPB. Together, these two effects control the sulfur adsorption on the Ni atoms at the TPB. The established relationships explain experimentally observed dopant-dependent anode performances and provide a blueprint for the future search for and preparation of highly sulfur tolerant anodes. PMID:23549289

  19. Electronics and atomic scale properties of defects and dopants in 2H-MoTe2

    NASA Astrophysics Data System (ADS)

    Longobardi, Maria; Ubaldini, Alberto; Giannini, Enrico; Bowler, David R.; Renner, Christoph

    2015-03-01

    We present a detailed STM/STS investigation and corresponding DFT modeling of native dopants and atomic scale defects and their influence on the local electron density of states of 2H-MoTe2. Semiconducting transition metal dichalcogenides (TMDs) are attracting increasing interest in the field of electronics and optoelectronics owing to their layered structure and the indirect-to-direct band gap transition when approaching the single-layer limit. 2H-MoTe2 is a semiconducting TMD with a bulk band gap of around 1.0 eV. This compound shows very high mobility at room temperature and strong absorption throughout the solar spectrum. Previous studies demonstrated the possibility to achieve gate-induced ambipolar transport at the surface. 2H-MoTe2 is thus an attractive candidate for novel optoelectronic devices such as light-emitting diodes, photo detectors and solar cell technology. Controlling the atomic nature and density of defects and dopants is crucial for the development of the aforementioned applications and devices.

  20. Heterovalent Dopant Incorporation for Bandgap and Type Engineering of Perovskite Crystals.

    PubMed

    Abdelhady, Ahmed L; Saidaminov, Makhsud I; Murali, Banavoth; Adinolfi, Valerio; Voznyy, Oleksandr; Katsiev, Khabiboulakh; Alarousu, Erkki; Comin, Riccardo; Dursun, Ibrahim; Sinatra, Lutfan; Sargent, Edward H; Mohammed, Omar F; Bakr, Osman M

    2016-01-21

    Controllable doping of semiconductors is a fundamental technological requirement for electronic and optoelectronic devices. As intrinsic semiconductors, hybrid perovskites have so far been a phenomenal success in photovoltaics. The inability to dope these materials heterovalently (or aliovalently) has greatly limited their wider utilizations in electronics. Here we show an efficient in situ chemical route that achieves the controlled incorporation of trivalent cations (Bi(3+), Au(3+), or In(3+)) by exploiting the retrograde solubility behavior of perovskites. We term the new method dopant incorporation in the retrograde regime. We achieve Bi(3+) incorporation that leads to bandgap tuning (∼300 meV), 10(4) fold enhancement in electrical conductivity, and a change in the sign of majority charge carriers from positive to negative. This work demonstrates the successful incorporation of dopants into perovskite crystals while preserving the host lattice structure, opening new avenues to tailor the electronic and optoelectronic properties of this rapidly emerging class of solution-processed semiconductors. PMID:26727130

  1. Interactions between Mn dopant and oxygen vacancy for insulation performance of BaTiO3

    NASA Astrophysics Data System (ADS)

    Chikada, Shunsuke; Kubota, Teppei; Honda, Atsushi; Higai, Shin'ichi; Motoyoshi, Yasuhiro; Wada, Nobuyuki; Shiratsuyu, Kosuke

    2016-10-01

    We performed first-principles calculations and electron spin resonance (ESR) measurements on Mn-doped perovskite BaTiO3 (BT) ceramics in order to investigate the interactions between Mn dopant and O vacancy (VO). We discovered the following two. First, VOs are stabilized at the nearest neighbor O site of Mn at a Ti site and this results in the suppression of VO diffusion. Second, electrons generated by the formation of VOs are trapped in unoccupied Mn-3d orbitals in the BT bandgap. This indicates that the valence state of Mn changes according to the VO density. We synthesized Mn-doped BT by varying the partial pressure of O2 gas and examined the Mn valence states with ESR measurements. We successfully observed that the majority type of Mn ions (2+, 3+, and 4+) depends on O2 gas pressure of the firing atmosphere. According to these theoretical and experimental investigations, we concluded that Mn dopants have two effects, i.e., VO and electron carrier trapping. Moreover, the mechanisms of Mn doping in BT improved the insulation resistance, and the reliability of BT-based ceramic capacitors/condensers were thoroughly examined.

  2. Doping and dopant behavior in (Al,Ga)As grown by metalorganic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Kuech, T. F.; Tischler, M. A.; Potemski, R.; Cardone, F.; Scilla, G.

    1989-11-01

    The controlled doping of n- and p-type Al xGa 1-xAs has been studied for the dopant elements, C, Zn, Si, and Sn. Both the incorporation characteristics and the electrical properties of these dopants are reviewed and discussed fo Al xGa 1-xAs grown by th metal-organic vapor phase epitaxy (MOVPE) technique. The incorporation of Si from SiH 4 and Si 2H 6 is dominated by heterogeneous and homogenous reactions respectively and represents the best understood of the doping systems. Zinc and carbon both possess complex dependencies on the MOVPE growth system parameters. The electrical behavior of n-Al xGa 1- xAs is dominated by the presence of the DX center. The relationship between this center and the electrical behavior of the material must be understood in order to properly characterize the doping behavior in Al xGa 1-xAs layers and structures.

  3. Mitigating valley-driven localization in atomically thin dopant chains in Si

    NASA Astrophysics Data System (ADS)

    Dusko, Amintor; Saraiva, A. L.; Koiller, Belita

    2016-09-01

    A theoretical study of the localization properties of nanowires of dopants in silicon (Si) fabricated by ionic implantation or scanning tunnel microscope lithography is presented for a model incorporating the currently unavoidable imprecision in individual donor positioning. Experiments have shown that Ohm's law holds in some cases, in apparent defiance to the Anderson localization theory in one dimension. We investigate how valley interference affects the traditional theory of electronic structure of disordered systems. Each isolated donor orbital is realistically described by multivalley effective-mass theory. We extend this model to describe chains of donors as a linear combination of dopant orbitals. Disorder in donor positioning is taken into account, leading to an intricate disorder distribution of hoppings between nearest-neighbor donor sites (donor-donor tunnel coupling)—an effect of valley interference. A decay length, related to the usual localization length, is obtained for phosphorous (P) donor chains from a transfer-matrix approach and is further compared with the chain length. We quantitatively determine the impact of uncertainties δ R in the implantation position relative to a target and also compare our results with those obtained without valley interference. We analyze systematically the aimed interdonor separation dependence (R0) and show that fairly diluted donor chains (R0=7.7 nm) may be as long as 100 nm before the effective onset of Anderson localization, as long as the positioning error is under a lattice parameter (δ R <0.543 nm).

  4. Room-temperature single-photon generation from solitary dopants of carbon nanotubes.

    PubMed

    Ma, Xuedan; Hartmann, Nicolai F; Baldwin, Jon K S; Doorn, Stephen K; Htoon, Han

    2015-08-01

    On-demand single-photon sources capable of operating at room temperature and the telecom wavelength range of 1,300-1,500 nm hold the key to the realization of novel technologies that span from sub-diffraction imaging to quantum key distribution and photonic quantum information processing. Here, we show that incorporation of undoped (6,5) single-walled carbon nanotubes into a SiO2 matrix can lead to the creation of solitary oxygen dopant states capable of fluctuation-free, room-temperature single-photon emission in the 1,100-1,300 nm wavelength range. We investigated the effects of temperature on photoluminescence emission efficiencies, fluctuations and decay dynamics of the dopant states and determined the conditions most suitable for the observation of single-photon emission. This emission can in principle be extended to 1,500 nm by doping of smaller-bandgap single-walled carbon nanotubes. This easy tunability presents a distinct advantage over existing defect centre single-photon emitters (for example, diamond defect centres). Our SiO2-encapsulated sample also presents exciting opportunities to apply Si/SiO2-based micro/nano-device fabrication techniques in the development of electrically driven single-photon sources and integration of these sources into quantum photonic devices and networks. PMID:26167766

  5. Multi-Excitonic Emission from Solitary Dopant States of Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Htoon, H.; Ma, X.; Hartmann, N. F.; Adamska, L.; Velizhanin, K. A.; Tretiak, S.; Baldwin, J. K. S.; Doorn, S. K.

    Oxygen doping of single wall carbon nanotubes (SWCNTs) has been rapidly emerging as an effective mean for introduction of new functionalities. Recently, through demonstration of fluctuation free, room temperature single photon generation, we established these states as a new type of solid-state two level atom with potentials in quantum information technologies. This study further showed that while some doped tubes were characterized with a near complete photon antibunching, significant numbers of doped tubes exhibit some degree of photon bunching indicating that they emit more than one photon in one excitation cycle. Here in this work, by separating slow and fast photons in the time domain, we show for the first time that the multiple photon emissions originated from higher order multi-exciton states of solitary dopants. We also show that such multi-exciton states can allow emission of photon pairs with efficiency as high as 20-30% of single exciton emission. With this work, we bring out multi-excitonic processes of the solitary dopant states as a new area to be explored for potential applications in lasing, entangled photon generation and carrier multiplication.

  6. Effect of Dopants on the Adsorption of Carbon Dioxide on Ceria Surfaces

    DOE PAGES

    Li, Meijun; Tumuluri, Uma; Wu, Zili; Dai, Sheng

    2015-09-25

    Here, high-surface-area nanosized CeO2 and M-doped CeO2 (M=Cu, La, Zr, and Mg) prepared by a surfactant-templated method were tested for CO2 adsorption. Cu, La, and Zr are doped into the lattice of CeO2, whereas Mg is dispersed on the CeO2 surface. The doping of Cu and La into CeO2 leads to an increase of the CO2 adsorption capacity, whereas the doping of Zr has little or no effect. The addition of Mg causes a decrease of the CO2 adsorption capacity at a low Mg content and a gradual increase at a higher content. The CO2 adsorption capacity follows the sequencemore » Cu-CeO2>La-CeO2>Zr-CeO2≈CeO2>Mg-CeO2 at low dopant contents, in line with the relative amount of defect sites in the samples. It is the defect sites on the surface, not in the bulk of CeO2, modified by the dopants that play the vital role in CO2 chemisorption. Lastly, the role of surface oxygen vacancies is further supported by an in situ IR spectroscopic study of the surface chemistry during CO2 adsorption on the doped CeO2.« less

  7. High-resolution patterning electronic polymers using dopant induced solubility control (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Moule, Adam J.; Jacobs, Ian E.; Li, Jun; Burg, Stephanie L.; Bilsky, David J.; Rotondo, Brandon T.; Stroeve, Pieter

    2015-08-01

    Organic electronics promise to provide flexible, large-area circuitry such as photovoltaics, displays, and light emitting diodes that can be fabricated inexpensively from solutions. A major obstacle to this vision is that most conjugated organic materials are miscible, making solution-based fabrication of multilayer or micro- to nanoscale patterned films problematic. Here we demonstrate that the solubility of prototypical conductive polymer poly(3-hexylthiophene) (P3HT) can be reversibly "switched off" using high electron affinity molecular dopants, then later recovered with light or a suitable dedoping solution. Using this technique, we are able to stack mutually soluble materials and laterally pattern polymer films using evaporation of dopants through a shadow mask or with light, achieving sub-micrometer, optically limited feature sizes. After forming these structures, the films can be dedoped without disrupting the patterned features; dedoped films have identical optical characteristics, charge carrier mobilities, and NMR spectra as as-cast P3HT films. This method greatly simplifies solution-based device fabrication, is easily adaptable to current manufacturing workflows, and is potentially generalizable to other classes of materials.

  8. Theoretical investigation of single dopant in core/shell nanocrystal in magnetic field

    NASA Astrophysics Data System (ADS)

    Talbi, A.; Feddi, E.; Oukerroum, A.; Assaid, E.; Dujardin, F.; Addou, M.

    2015-09-01

    The control of single dopant or "solitary dopant" in semiconductors constitute a challenge to achieve new range of tunable optoelectronic devices. Knowing that the properties of doped monocrystals are very sensitive to different external perturbations, the aim of this study is to understand the effect of a magnetic field on the ground state energy of an off-center ionized donor in a core/shell quantum dot (CSQD). The binding energies with and without an applied magnetic field are determined by the Ritz variational method taking into account the electron-impurity correlation in the trial wave function deduced from the second-order perturbation. It has been found that the external magnetic field affects strongly the binding energy, and its effect varies as a function of the core radius and the shell thickness. We have shown the existence of a threshold ratio (a / b) crit which represents the limit between the tridimensional and the spherical surface confinement. In addition our analysis demonstrates the important influence of the position of ionized donor in the shell material.

  9. Dopant-specific unzipping of carbon nanotubes for intact crystalline graphene nanostructures

    PubMed Central

    Lim, Joonwon; Narayan Maiti, Uday; Kim, Na-Young; Narayan, Rekha; Jun Lee, Won; Sung Choi, Dong; Oh, Youngtak; Min Lee, Ju; Yong Lee, Gil; Hun Kang, Seok; Kim, Hyunwoo; Kim, Yong-Hyun; Ouk Kim, Sang

    2016-01-01

    Atomic level engineering of graphene-based materials is in high demand to enable customize structures and properties for different applications. Unzipping of the graphene plane is a potential means to this end, but uncontrollable damage of the two-dimensional crystalline framework during harsh unzipping reaction has remained a key challenge. Here we present heteroatom dopant-specific unzipping of carbon nanotubes as a reliable and controllable route to customized intact crystalline graphene-based nanostructures. Substitutional pyridinic nitrogen dopant sites at carbon nanotubes can selectively initiate the unzipping of graphene side walls at a relatively low electrochemical potential (0.6 V). The resultant nanostructures consisting of unzipped graphene nanoribbons wrapping around carbon nanotube cores maintain the intact two-dimensional crystallinity with well-defined atomic configuration at the unzipped edges. Large surface area and robust electrical connectivity of the synergistic nanostructure demonstrate ultrahigh-power supercapacitor performance, which can serve for AC filtering with the record high rate capability of −85° of phase angle at 120 Hz. PMID:26796993

  10. Modification of dopant profiles due to surface and interface interactions: Applications to semiconductor materials

    SciTech Connect

    Jagannadham, K.; Narayan, J.

    1987-02-01

    The kinetics of segregation of dopant solute atoms in the presence of free surfaces and interfaces are analyzed by solving the diffusion equation with a drift term. The drift term includes the configurational interaction energy associated with an oversize or an undersize atom near a coherent interface when the continuity conditions are satisfied. Both an analytical solution and a numerical procedure are provided to solve the problem by eigenfunction expansion method. A new procedure for evaluating the eigenvalues to include higher-order terms is given. It is further established that an attractive force due to either a soft second phase or a free surface gives rise to a minimum in the concentration profile near the interface while a hard second phase results in a monotonically increasing concentration. The position of the minimum in the concentration profile in the presence of a soft second phase or the slope of the concentration profile in the presence of a hard second phase provides a measure of the strength of the defect and the interaction-energy term which can be compared with experimental observations. In particular, we have considered changes in the dopant profiles in silicon under the influence of the free surface, in silicon with silicon dioxide, gallium arsenide, germanium, magnesium oxide and in germanium with silicon, all deposited as a second phase, respectively.

  11. Role of dopant counter-anion functionality in polyaniline salts/blends and implications to morphology

    SciTech Connect

    Hopkins, A.R.; Rasmussen, P.G.; Basheer, R.A.; Annis, B.K.; Wignall, G.D.

    1997-04-01

    Polyanilines are of particular current interest primarily due to their relative ease of synthesis, low cost and stable conductivity in air. The insulating, polyaniline emeraldine base (PANI-EB) form becomes electrically conducting by preferential protonation or doping the imine nitrogen sites to yield an electrically conducting polyaniline emeraldine salt (PANI-ES). In this paper, wide and small angle X-ray scattering techniques (i.e., WAXS and SAXS) and light microscopy are used to characterize the influence of the dopant`s structure on the morphology of both polyaniline salt and blend. In an attempt to modify the morphology of the PANI-ES, the authors have evaluated a number of doping acids (i.e., methane sulfonic acid (HMSA), butane sulfonic acid (HBSA), dodecyl benzene sulfonic acid (HDBSA) and camphor sulfonic acid (HCSA)) that vary in size and polarity to better understanding the role of the acid in PANI-ES`s morphology and the resulting electrical conductivity. The other goal was to investigate the effect of the counter-anion structure on the nature of the phase separated PANI-ES network. The shape of the PANI-ES network in the host polycaprolactam has important implications on the nature of conduction behavior and the final electrical conductivity of the blend.

  12. In Situ Measurement of Voltage-Induced Stress in Conducting Polymers with Redox-Active Dopants.

    PubMed

    Sen, Sujat; Kim, Sung Yeol; Palmore, Lia R; Jin, Shenghua; Jadhav, Nitin; Chason, Eric; Palmore, G Tayhas R

    2016-09-14

    Minimization of stress-induced mechanical rupture and delamination of conducting polymer (CP) films is desirable to prevent failure of devices based on these materials. Thus, precise in situ measurement of voltage-induced stress within these films should provide insight into the cause of these failure mechanisms. The evolution of stress in films of polypyrrole (pPy), doped with indigo carmine (IC), was measured in different electrochemical environments using the multibeam optical stress sensor (MOSS) technique. The stress in these films gradually increases to a constant value during voltage cycling, revealing an initial break-in period for CP films. The nature of the ions involved in charge compensation of pPy[IC] during voltage cycling was determined from electrochemical quartz crystal microbalance (EQCM) data. The magnitude of the voltage-induced stress within pPy[IC] at neutral pH correlated with the radius of the hydrated mobile ion in the order Li(+) > Na(+) > K(+). At acidic pH, the IC dopant in pPy[IC] undergoes reversible oxidation and reduction within the range of potentials investigated, providing a secondary contribution to the observed voltage-induced stress. We report on the novel stress response of these polymers due to the presence of pH-dependent redox-active dopants and how it can affect material performance. PMID:27579593

  13. The effect of low levels of dopants upon the formation and properties of beta-phase molybdenum nitride

    SciTech Connect

    Cairns, A.G.; Gallagher, J.G.; Hargreaves, J.S.J.; Mckay, D.; Rico, J.L.; Wilson, K.

    2010-03-15

    The addition of 1 wt% Pd, Au, Ni and Cu dopants has been demonstrated to strongly alter the morphology of beta-phase molybdenum nitride prepared by treatment of MoO{sub 3} with a 3/1 H{sub 2}/N{sub 2} mixture at 750 deg. C. Furthermore, the addition of Pd significantly enhances the surface area and the formation of the nitride phase. It is proposed that the facile formation of molybdenum bronzes in this system is important in this respect. The dopants have also been observed to modify the denitridation characteristics of the beta-phase, with an overall reduction of the proportion of NH{sub 3} formed upon using a 3/1 H{sub 2}/Ar mixture with respect to the undoped sample. - Graphical abstract: Low levels of Pd, Au, Ni and Cu dopant have significant effects upon the morphology, formation and dentitridation characteristics of beta-phase molybdenum nitride.

  14. Dopant effects on 2-ethyl-1-hexanol: A dual-channel impedance spectroscopy and neutron scattering study

    NASA Astrophysics Data System (ADS)

    Singh, Lokendra P.; Raihane, Ahmed; Alba-Simionesco, Christiane; Richert, Ranko

    2015-01-01

    A two-channel impedance technique has been used to study the relaxation behavior of 2-ethyl-1-hexanol with polar and non-polar dopants at the few percent concentration level over a wide temperature and frequency range. The non-polar dopants shift both the Debye and the primary structural relaxation time in the same direction, to shorter times for 3-methylpentane and to longer times for squalane, consistent with the relative glass transition temperatures (Tg) of the components. By contrast, polar dopants such as water or methanol modify the α-process towards slower dynamics and increased amplitude, while the Debye process is accelerated and with a decreased amplitude. This effect of adding water to alcohol is explained by water promoting more compact structures with reduced Kirkwood correlation factors. This picture is consistent with a shift in the neutron scattering pre-peak to lower scattering vectors and with simulation work on alcohol-water systems.

  15. Dopant effects on 2-ethyl-1-hexanol: a dual-channel impedance spectroscopy and neutron scattering study.

    PubMed

    Singh, Lokendra P; Raihane, Ahmed; Alba-Simionesco, Christiane; Richert, Ranko

    2015-01-01

    A two-channel impedance technique has been used to study the relaxation behavior of 2-ethyl-1-hexanol with polar and non-polar dopants at the few percent concentration level over a wide temperature and frequency range. The non-polar dopants shift both the Debye and the primary structural relaxation time in the same direction, to shorter times for 3-methylpentane and to longer times for squalane, consistent with the relative glass transition temperatures (Tg) of the components. By contrast, polar dopants such as water or methanol modify the α-process towards slower dynamics and increased amplitude, while the Debye process is accelerated and with a decreased amplitude. This effect of adding water to alcohol is explained by water promoting more compact structures with reduced Kirkwood correlation factors. This picture is consistent with a shift in the neutron scattering pre-peak to lower scattering vectors and with simulation work on alcohol-water systems.

  16. Microwave annealing, a low-thermal-budget process for dopant activation in phosphorus-implanted MOSFET devices

    NASA Astrophysics Data System (ADS)

    Lim, Cheol-Min; Cho, Won-Ju

    2016-09-01

    In this work, we investigated a low-thermal-budget dopant activation process based on microwave annealing (MWA) of phosphorus ions implanted by plasma doping and compared the proposed technique with the conventional furnace annealing and the rapid thermal annealing processes. We fabricated p-n junction diodes and metal-oxide-semiconductor field-effect transistors (MOSFETs) on silicon and silicon-on-insulator substrates, respectively, in order to examine the dopant activation resulting from MWA. The investigated low-thermal-budget MWA technique proved effective for implanted dopant atom activation and diffusion suppression. In addition, a good interface property between the gate oxide and the silicon channel was achieved. Thus, low-thermal-budget MWA is a promising and effective method for the fabrication of highly-integrated semiconductor devices.

  17. Dopant effects on 2-ethyl-1-hexanol: A dual-channel impedance spectroscopy and neutron scattering study

    SciTech Connect

    Singh, Lokendra P.; Richert, Ranko; Raihane, Ahmed; Alba-Simionesco, Christiane

    2015-01-07

    A two-channel impedance technique has been used to study the relaxation behavior of 2-ethyl-1-hexanol with polar and non-polar dopants at the few percent concentration level over a wide temperature and frequency range. The non-polar dopants shift both the Debye and the primary structural relaxation time in the same direction, to shorter times for 3-methylpentane and to longer times for squalane, consistent with the relative glass transition temperatures (T{sub g}) of the components. By contrast, polar dopants such as water or methanol modify the α-process towards slower dynamics and increased amplitude, while the Debye process is accelerated and with a decreased amplitude. This effect of adding water to alcohol is explained by water promoting more compact structures with reduced Kirkwood correlation factors. This picture is consistent with a shift in the neutron scattering pre-peak to lower scattering vectors and with simulation work on alcohol-water systems.

  18. Locating Continuing Education Programs.

    ERIC Educational Resources Information Center

    Mason, Robert C.

    1986-01-01

    Emphasizes program location as an important component of the marketing plan for continuing education. Also discusses relations among program location and quality, costs, supportive services, and economies of scale. (CH)

  19. Cable-fault locator

    NASA Technical Reports Server (NTRS)

    Cason, R. L.; Mcstay, J. J.; Heymann, A. P., Sr.

    1979-01-01

    Inexpensive system automatically indicates location of short-circuited section of power cable. Monitor does not require that cable be disconnected from its power source or that test signals be applied. Instead, ground-current sensors are installed in manholes or at other selected locations along cable run. When fault occurs, sensors transmit information about fault location to control center. Repair crew can be sent to location and cable can be returned to service with minimum of downtime.

  20. Location, Location, Location: Where Do Location-Based Services Fit into Your Institution's Social Media Mix?

    ERIC Educational Resources Information Center

    Nekritz, Tim

    2011-01-01

    Foursquare is a location-based social networking service that allows users to share their location with friends. Some college administrators have been thinking about whether and how to take the leap into location-based services, which are also known as geosocial networking services. These platforms, which often incorporate gaming elements like…

  1. Current-voltage spectroscopy of dopant-induced quantum-dots in heavily n-doped junctionless nanowire transistors

    SciTech Connect

    Wang, Hao; Han, Weihua Ma, Liuhong; Li, Xiaoming; Hong, Wenting; Yang, Fuhua

    2014-03-31

    We demonstrate current-voltage spectroscopy of dopant-induced quantum dots in heavily n-doped junctionless nanowire transistors (JNTs) at low temperatures. The similar multiple-split current peak features for both single-channel and multiple-channel JNTs are found at the initial stage of conduction below the temperature of 75 K. The temperature stability of the pinch-off voltage, affected by activated electrons from defects and donor ionization, has been effectively improved by the 20 nm-width nanowires. The transition temperature for single electron tunneling to thermal activated transport is dependent on the ionization energy of dopants.

  2. Maskless RGB color patterning of vacuum-deposited small molecule OLED displays by diffusion of luminescent dopant molecules.

    PubMed

    Kajiyama, Yoshitaka; Kajiyama, Koichi; Aziz, Hany

    2015-06-29

    A maskless RGB color patterning technique based on diffusion of luminescent dopant molecules is proposed here for vacuum-deposited small molecule OLED displays. The proposed maskless color patterning technique enables us to overcome challenging issues in OLED display manufacturing arising from shadow mask limitations. This approach utilizes selective diffusion of luminescent dopant molecules from a donor substrate to an acceptor substrate. Results show that sufficiently high doping levels can be achieved through this technique and that devices with performance similar to those produced by standard co-deposition can be easily produced. Red, green and blue OLEDs are successfully fabricated side by side on one substrate using this technique.

  3. Electron-donor dopant, method of improving conductivity of polymers by doping therewith, and a polymer so treated

    SciTech Connect

    Liepins, R.; Aldissi, M.

    1988-07-05

    The electrically conductive material is described comprising a polymer with a conjugated backbone selected from the group consisting of polyacetylene, polypyrrone, and polyphenylquinoxaline, the polymer being electron-donor doped to a controlled degree with an agent derived from an electride dopant or a dopant derived from an alkalide both of which contain a trapping agent being selected from the group consisting of: a crown ether, 1,4,7,10,13,16-hexaoxacyclooctadecane, cryptand, methyl ether cyclodextrin, spherand, methyl ether calixarene, podand, and an octopus molecule, the agent being made in the presence of lithium.

  4. Dopant characterization in self-regulatory plasma doped fin field-effect transistors by atom probe tomography

    SciTech Connect

    Takamizawa, H.; Shimizu, Y.; Nozawa, Y.; Toyama, T.; Nagai, Y.; Morita, H.; Yabuuchi, Y.; Ogura, M.

    2012-02-27

    Fin field-effect transistors are promising next-generation electronic devices, and the identification of dopant positions is important for their accurate characterization. We report atom probe tomography (APT) of silicon fin structures prepared by a recently developed self-regulatory plasma doping (SRPD) technique. Trenches between fin-arrays were filled using a low-energy focused ion beam to directly deposit silicon, which allowed the analysis of dopant distribution by APT near the surface of an actual fin transistor exposed to air. We directly demonstrate that SRPD can achieve a boron concentration above 1 x 10{sup 20} atoms/cm{sup 3} at the fin sidewall.

  5. High efficient white organic light-emitting diodes with single emissive layer using phosphorescent red, green, and blue dopants

    NASA Astrophysics Data System (ADS)

    Kim, You-Hyun; Wai Cheah, Kok; Young Kim, Woo

    2013-07-01

    Phosphorescent white organic light-emitting diodes (PHWOLEDs) with single emissive layer were fabricated by co-doping phosphorescent blue, green, and red emitters with different concentrations. WOLEDs using Ir(piq)3 and Ir(ppy)3 as red and green dopants along with 8% of Firpic as blue dopant with host materials of 4CzPBP in the emissive layer were compared under various doping ratio between Ir(piq)3 and Ir(ppy)3. Triplet-triplet Dexter energy transfer in single emissive PHWOLEDs including three primary colors was saturated from higher triplet energy levels to lower triplet energy levels directly.

  6. The influence of dopant distribution on the optoelectronic properties of tin-doped indium oxide nanocrystals and nanocrystal films

    NASA Astrophysics Data System (ADS)

    Lounis, Sebastien Dahmane

    Colloidally prepared nanocrystals of transparent conducting oxide (TCO) semiconductors have emerged in the past decade as an exciting new class of plasmonic materials. In recent years, there has been tremendous progress in developing synthetic methods for the growth of these nanocrystals, basic characterization of their properties, and their successful integration into optoelectronic and electrochemical devices. However, many fundamental questions remain about the physics of localized surface plasmon resonance (LSPR) in these materials, and how their optoelectronic properties derive from their underlying structural properties. In particular, the influence of the concentration and distribution of dopant ions and compensating defects on the optoelectronic properties of TCO nanocrystals has seen little investigation. Indium tin oxide (ITO) is the most widely studied and commercially deployed TCO. Herein we investigate the role of the distribution of tin dopants on the optoelectronic properties of colloidally prepared ITO nanocrystals. Owing to a high free electron density, ITO nanocrystals display strong LSPR absorption in the near infrared. Depending on the particular organic ligands used, they are soluble in various solvents and can readily be integrated into densely packed nanocrystal films with high conductivities. Using a combination of spectroscopic techniques, modeling and simulation of the optical properties of the nanocrystals using the Drude model, and transport measurements, it is demonstrated herein that the radial distribution of tin dopants has a strong effect on the optoelectronic properties of ITO nanocrystals. ITO nanocrystals were synthesized in both surface-segregated and uniformly distributed dopant profiles. Temperature dependent measurements of optical absorbance were first combined with Drude modeling to extract the internal electrical properties of the ITO nanocrystals, demonstrating that they are well-behaved degenerately doped semiconductors

  7. Understanding of dopant-induced osteogenesis and angiogenesis in calcium phosphate ceramics.

    PubMed

    Bose, Susmita; Fielding, Gary; Tarafder, Solaiman; Bandyopadhyay, Amit

    2013-10-01

    General trends in synthetic bone grafting materials are shifting towards approaches that can illicit osteoinductive properties. Pharmacologics and biologics have been used in combination with calcium phosphate (CaP) ceramics, however, they have recently become the target of scrutiny over safety. The importance of trace elements in natural bone health is well documented. Ions, for example, lithium, zinc, magnesium, manganese, silicon, strontium, etc., have been shown to increase osteogenesis and neovascularization. Incorporation of dopants (trace metal ions) into CaPs can provide a platform for safe and efficient delivery in clinical applications where increased bone healing is favorable. This review highlights the use of trace elements in CaP biomaterials, and offers an insight into the mechanisms of how metal ions can enhance both osteogenesis and angiogenesis.

  8. Electric-field-dependent charge delocalization from dopant atoms in silicon junctionless nanowire transistor

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Han, Wei-Hua; Zhao, Xiao-Song; Zhang, Wang; Lyu, Qi-Feng; Ma, Liu-Hong; Yang, Fu-Hua

    2016-10-01

    We study electric-field-dependent charge delocalization from dopant atoms in a silicon junctionless nanowire transistor by low-temperature electron transport measurement. The Arrhenius plot of the temperature-dependent conductance demonstrates the transport behaviors of variable-range hopping (below 30 K) and nearest-neighbor hopping (above 30 K). The activation energy for the charge delocalization gradually decreases due to the confinement potential of the conduction channel decreasing from the threshold voltage to the flatband voltage. With the increase of the source-drain bias, the activation energy increases in a temperature range from 30 K to 100 K at a fixed gate voltage, but decreases above the temperature of 100 K. Project supported partly by the National Key R & D Program of China (Grant No. 2016YFA02005003) and the National Natural Science Foundation of China (Grant Nos. 61376096 and 61327813).

  9. Anomalous effects of dopant distribution in Ge single crystals grown by FZ-technique aboard spacecrafts

    NASA Astrophysics Data System (ADS)

    Kartavykh, A. V.; Kopeliovich, E. S.; Mil'vidskii, M. G.; Rakov, V. V.

    1999-09-01

    The gallium distribution in nine germanium single crystals, all grown with similar heat conditions using the floating zone (FZ) method aboard five unmanned "Photon" spacecrafts (SC), from melts doped from 1×10 18 to 1×10 20 at/cm 3 are studied. For the first time, the strong anomalous concentration dependence of the distribution coefficient (from 0.16 to 0.089, respectively), having no "earth" analogue, was revealed experimentally as a result of comparative studies of space-grown and reference crystals. It also was shown, that the revealed dependence can completely define the longitudinal dopant distribution profile in a single crystal. The hypothesis of the nature of the observed effect was proposed, which consists of an intensification of the mixing processes in the heavily doped molten zone, restricted by free surface, caused by an increase of the surface-active impurity content in reduced gravity.

  10. Atomic scale models of Ion implantation and dopant diffusion in silicon

    SciTech Connect

    Caturla, M; Johnson, M; Lenosky, T; Sadigh, B; Theiss, S K; Zhu, J; de la Rubia, T D

    1999-03-01

    We review our recent work on an atomistic approach to the development of predictive process simulation tools. First principles methods, molecular dynamics simulations, and experimental results are used to construct a database of defect and dopant energetics in Si. This is used as input for kinetic Monte Carlo simulations. C and B trapping of the Si self- interstitial is shown to help explain the enormous disparity in its measured diffusivity. Excellent agreement is found between experiments and simulations of transient enhanced diffusion following 20-80 keV B implants into Si, and with those of 50 keV Si implants into complex B-doped structures. Our simulations predict novel behavior of the time evolution of the electrically active B fraction during annealing.

  11. Contributed Review: A review of the investigation of rare-earth dopant profiles in optical fibers

    NASA Astrophysics Data System (ADS)

    Sidiroglou, F.; Roberts, A.; Baxter, G.

    2016-04-01

    Rare-earth doped optical fibers have captivated the interest of many researchers around the world across the past three decades. The growth of this research field has been stimulated primarily through their application in optical communications as fiber lasers and amplifiers, although rare-earth doped optical fiber based devices are now finding important uses in many other scientific and industrial areas (for example, medicine, sensing, the military, and material processing). Such wide commercial interest has provided a strong incentive for innovative fiber designs, alternative glass compositions, and novel fabrication processes. A prerequisite for the ongoing progress of this research field is developing the capacity to provide high resolution information about the rare-earth dopant distribution profiles within the optical fibers. This paper constitutes a comprehensive review of the imaging techniques that have been utilized in the analysis of the distribution of the rare-earth ion erbium within the core of optical fibers.

  12. Contributed Review: A review of the investigation of rare-earth dopant profiles in optical fibers.

    PubMed

    Sidiroglou, F; Roberts, A; Baxter, G

    2016-04-01

    Rare-earth doped optical fibers have captivated the interest of many researchers around the world across the past three decades. The growth of this research field has been stimulated primarily through their application in optical communications as fiber lasers and amplifiers, although rare-earth doped optical fiber based devices are now finding important uses in many other scientific and industrial areas (for example, medicine, sensing, the military, and material processing). Such wide commercial interest has provided a strong incentive for innovative fiber designs, alternative glass compositions, and novel fabrication processes. A prerequisite for the ongoing progress of this research field is developing the capacity to provide high resolution information about the rare-earth dopant distribution profiles within the optical fibers. This paper constitutes a comprehensive review of the imaging techniques that have been utilized in the analysis of the distribution of the rare-earth ion erbium within the core of optical fibers. PMID:27131646

  13. Dual nature of magnetic dopants and competing trends in topological insulators.

    PubMed

    Sessi, Paolo; Biswas, Rudro R; Bathon, Thomas; Storz, Oliver; Wilfert, Stefan; Barla, Alessandro; Kokh, Konstantin A; Tereshchenko, Oleg E; Fauth, Kai; Bode, Matthias; Balatsky, Alexander V

    2016-01-01

    Topological insulators interacting with magnetic impurities have been reported to host several unconventional effects. These phenomena are described within the framework of gapping Dirac quasiparticles due to broken time-reversal symmetry. However, the overwhelming majority of studies demonstrate the presence of a finite density of states near the Dirac point even once topological insulators become magnetic. Here, we map the response of topological states to magnetic impurities at the atomic scale. We demonstrate that magnetic order and gapless states can coexist. We show how this is the result of the delicate balance between two opposite trends, that is, gap opening and emergence of a Dirac node impurity band, both induced by the magnetic dopants. Our results evidence a more intricate and rich scenario with respect to the once generally assumed, showing how different electronic and magnetic states may be generated and controlled in this fascinating class of materials. PMID:27345240

  14. Operation and scalability of dopant-segregated Schottky barrier MOSFETs with recessed channels

    NASA Astrophysics Data System (ADS)

    Shih, Chun-Hsing; Hsia, Jui-Kai

    2013-11-01

    Recessed channels were used in scaled dopant-segregated Schottky barrier MOSFETs (DS-SBMOS) to control the severe short-channel effect. The physical operation and device scalability of the DS-SBMOS resulting from the presence of recessed channels and associated gate-corners are elucidated. The coupling of Schottky and gate-corner barriers has a key function in determining the on-off switching and drain current. The gate-corner barriers divide the channel into three regions for protection from the drain penetration field. To prevent resistive degradations in the drive current, an alternative asymmetric recessed channel (ARC) without a source-side gate-corner is proposed to simultaneously optimize both the short-channel effect and drive current in the scaled DS-SBMOS. By employing the proposed ARC architecture, the DS-SBMOS devices can be successfully scaled down, making them promising candidates for next-generation CMOS devices.

  15. Observation of dopant-induced impurity states in bottom-up graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Pedramrazi, Zahra; Chen, Chen; Marangoni, Tomas; Cloke, Ryan; Cao, Ting; Louie, Steven; Fischer, Felix; Crommie, Michael

    Graphene nanoribbons (GNRs) provide a means for inducing energy gaps in graphene and are a promising candidate for many nanotechnological applications. New bottom-up fabrication techniques allow the structure of GNRs to be tuned with atomic precision, thus providing new opportunities for modifying their electronic structure. Here we report the synthesis of bottom-up armchair GNRs (AGNRs) with isolated substitutional boron-dopant centers; thus creating localized impurity states in the GNR. These impurities are realized via dilute doping of pristine n =7 AGNRs with sparse boron-containing monomer units, resulting in uniform-width n =7 AGNR segments where only two carbon atoms have been substitutionally replaced by boron atoms. Scanning tunneling microscopy (STM) and spectroscopy (STS) were performed to study the electronic structure of these AGNR impurity systems, enabling us to observe localized mid-gap impurity states.

  16. Restoring the lattice of Si-based atom probe reconstructions for enhanced information on dopant positioning.

    PubMed

    Breen, Andrew J; Moody, Michael P; Ceguerra, Anna V; Gault, Baptiste; Araullo-Peters, Vicente J; Ringer, Simon P

    2015-12-01

    The following manuscript presents a novel approach for creating lattice based models of Sb-doped Si directly from atom probe reconstructions for the purposes of improving information on dopant positioning and directly informing quantum mechanics based materials modeling approaches. Sophisticated crystallographic analysis techniques are used to detect latent crystal structure within the atom probe reconstructions with unprecedented accuracy. A distortion correction algorithm is then developed to precisely calibrate the detected crystal structure to the theoretically known diamond cubic lattice. The reconstructed atoms are then positioned on their most likely lattice positions. Simulations are then used to determine the accuracy of such an approach and show that improvements to short-range order measurements are possible for noise levels and detector efficiencies comparable with experimentally collected atom probe data. PMID:26190007

  17. Spin dynamics and magnetic interactions of Mn dopants in the topological insulator Bi2Te3

    NASA Astrophysics Data System (ADS)

    Zimmermann, S.; Steckel, F.; Hess, C.; Ji, H. W.; Hor, Y. S.; Cava, R. J.; Büchner, B.; Kataev, V.

    2016-09-01

    The magnetic and electronic properties of the magnetically doped topological insulator Bi2 -xMnxTe3 were studied using electron-spin resonance (ESR) and measurements of static magnetization and electrical transport. The investigated high-quality single crystals of Bi2 -xMnxTe3 show a ferromagnetic phase transition for x ≥0.04 at TC≈12 K. The Hall measurements reveal a p -type finite charge-carrier density. Measurements of the temperature dependence of the ESR signal of Mn dopants for different orientations of the external magnetic field give evidence that the localized Mn moments interact with the mobile charge carriers leading to Ruderman-Kittel-Kasuya-Yosida-type ferromagnetic coupling between the Mn spins of order 2-3 meV. Furthermore, ESR reveals a low-dimensional character of magnetic correlations that persist far above the ferromagnetic ordering temperature.

  18. Novel ferroelectric liquid crystals consisting glassy liquid crystal as chiral dopants

    NASA Astrophysics Data System (ADS)

    Chen, Huang-Ming Philip; Tsai, Yun-Yen; Lin, Chi-Wen; Shieh, Han-Ping David

    2006-08-01

    A series of ferroelectric liquid crystals consisting new glassy liquid crystals (GLCs) as chiral dopants were prepared and evaluated for their potentials in fast switching ability less than 1 ms. The properties of pure ferroelectric glassy liquid crystals (FGLCs) and mixtures were reported in this paper. In particular, the novel FGLC possessing wide chiral smectic C mesophase over 100 °C is able to suppress smectic A phase of host. The mixture containing 2.0 % GLC-1 performs greater alignment ability and higher contrast ratio than R2301 (Clariant, Japan) in a 2 μm pre-made cell (EHC, Japan). These results indicate that novel FLC mixtures consisting glassy liquid crystals present a promising liquid crystal materials for fast switching field sequential color displays.

  19. Local Probes of Strain Texture and Individual Atomic Dopant Sites in Monolayer MoS2

    NASA Astrophysics Data System (ADS)

    Fragapane, Alex H.; Contryman, Alex W.; Li, Hong; Qian, Xiaofeng; Ardakani, Sina Moeini; Gong, Yongji; Wang, Xingli; Weisse, Jeffrey M.; Lee, Chi Hwan; Zhao, Jiheng; Ajayan, Pulickel M.; Li, Ju; Zheng, Xiaolin; Manoharan, Hari C.

    The 2D semiconductor MoS2 is an optically active material uniquely responsive to local perturbations. As an atomically thin membrane with exceptional strength, it can embed wide band gap variations overlapping the visible light spectrum when subjected to biaxial strain, where the modified electronic potential emanating from point-induced tensile strain perturbations mimics the Coulomb potential in a mesoscopic atom. We have realized this ``artificial atom'' concept via monolayer nanoindentation, and demonstrate that a synthetic superlattice of these building blocks forms an optoelectronic crystal capable of broadband light absorption and efficient funneling of photogenerated excitons to points of maximum strain at the artificial-atom nuclei. We also investigate the effects of individual atomic dopant sites through STM/STS, and visualize the atomic-scale local band structure changes. The modification of 2D semiconductors through methods such as strain texturing and doping connects to applications in next generation optoelectronics and photovoltaics.

  20. Dual nature of magnetic dopants and competing trends in topological insulators

    PubMed Central

    Sessi, Paolo; Biswas, Rudro R.; Bathon, Thomas; Storz, Oliver; Wilfert, Stefan; Barla, Alessandro; Kokh, Konstantin A.; Tereshchenko, Oleg E.; Fauth, Kai; Bode, Matthias; Balatsky, Alexander V.

    2016-01-01

    Topological insulators interacting with magnetic impurities have been reported to host several unconventional effects. These phenomena are described within the framework of gapping Dirac quasiparticles due to broken time-reversal symmetry. However, the overwhelming majority of studies demonstrate the presence of a finite density of states near the Dirac point even once topological insulators become magnetic. Here, we map the response of topological states to magnetic impurities at the atomic scale. We demonstrate that magnetic order and gapless states can coexist. We show how this is the result of the delicate balance between two opposite trends, that is, gap opening and emergence of a Dirac node impurity band, both induced by the magnetic dopants. Our results evidence a more intricate and rich scenario with respect to the once generally assumed, showing how different electronic and magnetic states may be generated and controlled in this fascinating class of materials. PMID:27345240

  1. Dual nature of magnetic dopants and competing trends in topological insulators.

    PubMed

    Sessi, Paolo; Biswas, Rudro R; Bathon, Thomas; Storz, Oliver; Wilfert, Stefan; Barla, Alessandro; Kokh, Konstantin A; Tereshchenko, Oleg E; Fauth, Kai; Bode, Matthias; Balatsky, Alexander V

    2016-06-27

    Topological insulators interacting with magnetic impurities have been reported to host several unconventional effects. These phenomena are described within the framework of gapping Dirac quasiparticles due to broken time-reversal symmetry. However, the overwhelming majority of studies demonstrate the presence of a finite density of states near the Dirac point even once topological insulators become magnetic. Here, we map the response of topological states to magnetic impurities at the atomic scale. We demonstrate that magnetic order and gapless states can coexist. We show how this is the result of the delicate balance between two opposite trends, that is, gap opening and emergence of a Dirac node impurity band, both induced by the magnetic dopants. Our results evidence a more intricate and rich scenario with respect to the once generally assumed, showing how different electronic and magnetic states may be generated and controlled in this fascinating class of materials.

  2. Dual nature of magnetic dopants and competing trends in topological insulators

    NASA Astrophysics Data System (ADS)

    Sessi, Paolo; Biswas, Rudro R.; Bathon, Thomas; Storz, Oliver; Wilfert, Stefan; Barla, Alessandro; Kokh, Konstantin A.; Tereshchenko, Oleg E.; Fauth, Kai; Bode, Matthias; Balatsky, Alexander V.

    2016-06-01

    Topological insulators interacting with magnetic impurities have been reported to host several unconventional effects. These phenomena are described within the framework of gapping Dirac quasiparticles due to broken time-reversal symmetry. However, the overwhelming majority of studies demonstrate the presence of a finite density of states near the Dirac point even once topological insulators become magnetic. Here, we map the response of topological states to magnetic impurities at the atomic scale. We demonstrate that magnetic order and gapless states can coexist. We show how this is the result of the delicate balance between two opposite trends, that is, gap opening and emergence of a Dirac node impurity band, both induced by the magnetic dopants. Our results evidence a more intricate and rich scenario with respect to the once generally assumed, showing how different electronic and magnetic states may be generated and controlled in this fascinating class of materials.

  3. The effect of mixed dopants on the stability of Fricke gel dosimeters

    NASA Astrophysics Data System (ADS)

    Penev, K.; Mequanint, K.

    2013-06-01

    Auto-oxidation and fast diffusion in Fricke gels are major drawbacks to wide-spread application of these gels in 3D dosimetry. Aiming to limit both processes, we used mixed dopants: the ferric-specific ligand xylenol orange with a ferrous-specific ligand (1,10-phenanthroline) and/or a bi-functional cross-linking agent (glyoxal). Markedly improved auto-oxidation stability was observed in the xylenol orange and phenanthroline doped gel at the expense of increased background absorbance and faster diffusion. Addition of glyoxal limited the diffusion rate and led to a partial bleaching of the gel. It is conceivable that these two new compositions may find useful practical application.

  4. Ionized dopant concentrations at the heavily doped surface of a silicon solar cell

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Broder, J. D.; Mazaris, G. A., Jr.; Hsu, L.

    1978-01-01

    Data are combined with concentrations obtained by a bulk measurement method using successive layer removal with measurements of Hall effect and resistivity. From the MOS (metal-oxide-semiconductor) measurements it is found that the ionized dopant concentration N has the value (1.4 + or - 0.1) x 10 to the 20th power/cu cm at distances between 100 and 220 nm from the n(+) surface. The bulk measurement technique yields average values of N over layers whose thickness is 2000 nm. Results show that, at the higher concentrations encountered at the n(+) surface, the MOS C-V technique, when combined with a bulk measurement method, can be used to evaluate the effects of materials preparation methodologies on the surface and near surface concentrations of silicon cells.

  5. Site selectivity of dopant cations in Ca3(SiO4)Cl2

    NASA Astrophysics Data System (ADS)

    Gilbert, M. R.

    2014-08-01

    A series of static lattice calculations were performed to determine the site selectivity of cations of differing size and valence when substituted onto the Ca sites of the calcium chlorosilicate (Ca3(SiO4)Cl2) lattice, a potential host phase for the immobilisation of halide-rich wastes arising from the pyrochemical reprocessing of plutonium. Atomic-scale simulations indicate that divalent cations are preferentially substituted onto the Ca1 site, whilst tri- and tetravalent cations are preferentially hosted on the Ca2 site, with the Ca1 site favoured for forming the vacancies necessary to charge-balance the lattice as a whole. Multi-defect calculations reveal that the site selectivity of the dopant cations is dependent on their ionic radii; as the ionic radii of the divalent cations increase, substitution onto the preferred site becomes more and more strongly favoured, whereas the inverse is true of the trivalent cations.

  6. Tunable proton stopping power of deuterium-tritium by mixing heavy ion dopants for fast ignition

    NASA Astrophysics Data System (ADS)

    Zou, D. B.; Hu, L. X.; Wang, W. Q.; Yang, X. H.; Yu, T. P.; Zhang, G. B.; Ouyang, J. M.; Shao, F. Q.; Zhuo, H. B.

    2016-03-01

    The theoretical model of charged-particle stopping power for the Coulomb logarithm lnΛb ≥ 2 plasma [Phys. Rev. Lett., 20, 3059 (1993)] is extended to investigate the transport of the energetic protons in a compressed deuterium-tritium (DT) pellet mixed with heavy ion dopants. It shows that an increase of mixed-ion charge state and density ratio results in the substantial enhancement of the proton stopping power, which leads to a shorter penetration distance and an earlier appearance of the Bragg peak with a higher magnitude. The effect of hot-spot mix on the proton-driven fast ignition model is discussed. It is found that ignition time required for a small mixed hot-spot can be significantly reduced with slightly increased beam energy. Nevertheless, the ignition cannot maintain for a long time due to increasing alpha-particle penetration distance and energy loss from mechanical work and thermal conduction at high temperatures.

  7. Restoring the lattice of Si-based atom probe reconstructions for enhanced information on dopant positioning.

    PubMed

    Breen, Andrew J; Moody, Michael P; Ceguerra, Anna V; Gault, Baptiste; Araullo-Peters, Vicente J; Ringer, Simon P

    2015-12-01

    The following manuscript presents a novel approach for creating lattice based models of Sb-doped Si directly from atom probe reconstructions for the purposes of improving information on dopant positioning and directly informing quantum mechanics based materials modeling approaches. Sophisticated crystallographic analysis techniques are used to detect latent crystal structure within the atom probe reconstructions with unprecedented accuracy. A distortion correction algorithm is then developed to precisely calibrate the detected crystal structure to the theoretically known diamond cubic lattice. The reconstructed atoms are then positioned on their most likely lattice positions. Simulations are then used to determine the accuracy of such an approach and show that improvements to short-range order measurements are possible for noise levels and detector efficiencies comparable with experimentally collected atom probe data.

  8. Modeling and de-embedding the interferometric scanning microwave microscopy by means of dopant profile calibration

    SciTech Connect

    Michalas, L. Marcelli, R.; Wang, F.; Brillard, C.; Theron, D.

    2015-11-30

    This paper presents the full modeling and a methodology for de-embedding the interferometric scanning microwave microscopy measurements by means of dopant profile calibration. A Si calibration sample with different boron-doping level areas is used to that end. The analysis of the experimentally obtained S{sub 11} amplitudes based on the proposed model confirms the validity of the methodology. As a specific finding, changes in the tip radius between new and used tips have been clearly identified, leading to values for the effective tip radius in the range of 45 nm to 85 nm, respectively. Experimental results are also discussed in terms of the effective area concept, taking into consideration details related to the nature of tip-to-sample interaction.

  9. Yb-doped large mode area fibers with depressed clad and dopant confinement

    NASA Astrophysics Data System (ADS)

    Roy, Vincent; Paré, Claude; Laperle, Pierre; Desbiens, Louis; Taillon, Yves

    2016-03-01

    Large mode area fibers with depressed-index cladding layer and confinement of rare-earth dopants can provide effective suppression of high-order modes. A polarization-maintaining Yb-doped double-clad fiber with 35/250 μm core/clad diameter has been fabricated from conventional methods according to this design. The fiber which has an effective mode area close to 500 μm2 yields near diffraction-limited output with beam quality factor M2 close to 1.1 when tested as a power amplifier with a coherent seed light source. Beam pointing measurements provide further evidence for near single-mode behavior as the pointing fluctuations are shown to be negligible once the fiber is coiled to a given diameter.

  10. Simple structured hybrid WOLEDs based on incomplete energy transfer mechanism: from blue exciplex to orange dopant

    PubMed Central

    Zhang, Tianyou; Zhao, Bo; Chu, Bei; Li, Wenlian; Su, Zisheng; Yan, Xingwu; Liu, Chengyuan; Wu, Hairuo; Gao, Yuan; Jin, Fangming; Hou, Fuhua

    2015-01-01

    Exciplex is well known as a charge transfer state formed between electron-donating and electron-accepting molecules. However, exciplex based organic light emitting diodes (OLED) often performed low efficiencies relative to pure phosphorescent OLED and could hardly be used to construct white OLED (WOLED). In this work, a new mechanism is developed to realize efficient WOLED with extremely simple structure by redistributing the energy of triplet exciplex to both singlet exciplex and the orange dopant. The micro process of energy transfer could be directly examined by detailed photoluminescence decay measurement and time resolved photoluminescence analysis. This strategy overcomes the low reverse intersystem crossing efficiency of blue exciplex and complicated device structure of traditional WOLED, enables us to achieve efficient hybrid WOLEDs. Based on this mechanism, we have successfully constructed both exciplex-fluorescence and exciplex-phosphorescence hybrid WOLEDs with remarkable efficiencies. PMID:25975371

  11. Partitioning of dopant cations between β-tricalcium phosphate and fluorapatite

    NASA Astrophysics Data System (ADS)

    Jay, E. E.; Mallinson, P. M.; Fong, S. K.; Metcalfe, B. L.; Grimes, R. W.

    2011-07-01

    Mixed crystalline phase composite ceramics offer the possibility of partitioning defect species between the phases as well as occupancy of specific sites within a given phase. Here we use atomic scale simulations to study the site preference of an extensive range of divalent and trivalent substitutional ions across the five cation sites in β-tricalcium phosphate ( β-TCP) and the two cations sites in fluorapatite (FAp). This study indicates that in β-TCP small dopant species occupy the smaller of the five cation sites and vice versa. Conversely, in FAp, small divalent species occupy the nominally larger Ca(1) site while larger cations occupy the Ca(2) site. Partition energies between the two phases indicate that divalent species strongly segregate to β-TCP as do Al 3+ and Ga 3+, whereas all other (larger) trivalent ions exhibit little preference.

  12. Biocompatibility of Polypyrrole with Human Primary Osteoblasts and the Effect of Dopants

    PubMed Central

    Fahlgren, Anna; Bratengeier, Cornelia; Gelmi, Amy; Semeins, Cornelis M.; Klein-Nulend, Jenneke; Jager, Edwin W. H.; Bakker, Astrid D.

    2015-01-01

    Polypyrrole (PPy) is a conducting polymer that enables controlled drug release upon electrical stimulation. We characterized the biocompatibility of PPy with human primary osteoblasts, and the effect of dopants. We investigated the biocompatibility of PPy comprising various dopants, i.e. p-toluene sulfonate (PPy-pTS), chondroitin sulfate (PPy-CS), or dodecylbenzenesulfonate (PPy-DBS), with human primary osteoblasts. PPy-DBS showed the roughest appearance of all surfaces tested, and its wettability was similar to the gold-coated control. The average number of attached cells was 45% higher on PPy-DBS than on PPy-CS or PPy-pTS, although gene expression of the proliferation marker Ki-67 was similar in osteoblasts on all surfaces tested. Osteoblasts seeded on PPy-DBS or gold showed similar vinculin attachment points, vinculin area per cell area, actin filament structure, and Feret’s diameter, while cells seeded on PPY-CS or PPY-pTS showed disturbed focal adhesions and were enlarged with disorganized actin filaments. Osteoblasts grown on PPy-DBS or gold showed enhanced alkaline phosphatase activity and osteocalcin gene expression, but reduced osteopontin gene expression compared to cells grown on PPy-pTS and PPy-CS. In conclusion, PPy doped with DBS showed excellent biocompatibility, which resulted in maintaining focal adhesions, cell morphology, cell number, alkaline phosphatase activity, and osteocalcin gene expression. Taken together, conducting polymers doped with DBS are well tolerated by osteoblasts. Our results could provide a basis for the development of novel orthopedic or dental implants with controlled release of antibiotics and pharmaceutics that fight infections or focally enhance bone formation in a tightly controlled manner. PMID:26225862

  13. Effects of Substitutional Dopants on the Photoresponse of a Polyoxotitanate Cluster.

    PubMed

    Hu, Junyi; Zhan, Lijie; Zhang, Guanyun; Zhang, Qun; Du, Lin; Tung, Chen-Ho; Wang, Yifeng

    2016-09-01

    In this paper, using a simple method, 17 isostructural polyoxotitanates (POTs) were synthesized, including the pristine [Ti12O16(O(i)Pr)16], the monodefected [Ti11O13(O(i)Pr)18], and the heterometal-doped [Ti11O14(O(i)Pr)17(ML)] (M = Mg, Ca, Zn, Cd, Co, or Ni; L = Cl, Br, I, or NO3). The electronic structures of these POTs were determined by UV-vis spectroscopy and DFT calculations. Upon UV irradiation of the POTs, electron spin resonance showed the formation of Ti(III) under anaerobic conditions and superoxide (O2(•-)) in the presence of O2. The photoactivities of the POTs were then probed with Ti(III) production and short-circuit photocurrent experiments. The photophysical processes were studied using steady-state and transient photoluminescence. The results show that within the very similar structures, the deexcitation processes of the photoexcited POTs can be greatly affected by the dopants, which result in enhanced or decreased photoactivities. Co and Ni doping enhances the absorption of the visible light accompanied by serious loss of UV photoactivities. On the other hand, a Ti vacancy (in [Ti11O13(O(i)Pr)18]) does not reduce the band gap of a POT but improves the UV photoactivities by serving as surface reaction site. The POTs were then used as molecular models of titanium oxide nanoparticles to understand some important issues relevant to doped titanate, i.e., coordination environment of the dopant metal, electronic structure, photoactivities, and photophysical processes. Our present findings suggest that for solar energy harvesting applications of titanium oxides like photocatalysis and solar cells substitution of titanium atoms by transition metal ions (like Co and Ni) to extend the absorption edges may not be an efficient way, while loading of Ti vacancies is very effective. PMID:27559825

  14. Dopant-assisted negative photoionization ion mobility spectrometry for sensitive detection of explosives.

    PubMed

    Cheng, Shasha; Dou, Jian; Wang, Weiguo; Chen, Chuang; Hua, Lei; Zhou, Qinghua; Hou, Keyong; Li, Jinghua; Li, Haiyang

    2013-01-01

    Ion mobility spectrometry (IMS) is a key trace detection technique for explosives and the development of a simple, stable, and efficient nonradioactive ionization source is highly demanded. A dopant-assisted negative photoionization (DANP) source has been developed for IMS, which uses a commercial VUV krypton lamp to ionize acetone as the source of electrons to produce negative reactant ions in air. With 20 ppm of acetone as the dopant, a stable current of reactant ions of 1.35 nA was achieved. The reactant ions were identified to be CO(3)(-)(H(2)O)(n) (K(0) = 2.44 cm(2) V(-1) s(-1)) by atmospheric pressure time-of-flight mass spectrometry, while the reactant ions in (63)Ni source were O(2)(-)(H(2)O)(n) (K(0) = 2.30 cm(2) V(-1) s(-1)). Finally, its capabilities for detection of common explosives including ammonium nitrate fuel oil (ANFO), 2,4,6-trinitrotoluene (TNT), N-nitrobis(2-hydroxyethyl)amine dinitrate (DINA), and pentaerythritol tetranitrate (PETN) were evaluated, and the limits of detection of 10 pg (ANFO), 80 pg (TNT), and 100 pg (DINA) with a linear range of 2 orders of magnitude were achieved. The time-of-flight mass spectra obtained with use of DANP source clearly indicated that PETN and DINA can be directly ionized by the ion-association reaction of CO(3)(-) to form PETN·CO(3)(-) and DINA·CO(3)(-) adduct ions, which result in good sensitivity for the DANP source. The excellent stability, good sensitivity, and especially the better separation between the reactant and product ion peaks make the DANP a potential nonradioactive ionization source for IMS.

  15. Low-cost copper complexes as p-dopants in solution processable hole transport layers

    SciTech Connect

    Kellermann, Renate; Taroata, Dan; Maltenberger, Anna; Hartmann, David; Schmid, Guenter; Brabec, Christoph J.

    2015-09-07

    We demonstrate the usage of the Lewis-acidic copper(II)hexafluoroacetylacetonate (Cu(hfac){sub 2}) and copper(II)trifluoroacetylacetonate (Cu(tfac){sub 2}) as low-cost p-dopants for conductivity enhancement of solution processable hole transport layers based on small molecules in organic light emitting diodes (OLEDs). The materials were clearly soluble in mixtures of environmentally friendly anisole and xylene and spin-coated under ambient atmosphere. Enhancements of two and four orders of magnitude, reaching 4.0 × 10{sup −11} S/cm with a dopant concentration of only 2 mol% Cu(hfac){sub 2} and 1.5 × 10{sup −9} S/cm with 5 mol% Cu(tfac){sub 2} in 2,2′,7,7′-tetra(N,N-ditolyl)amino-9,9-spiro-bifluorene (spiro-TTB), respectively, were achieved. Red light emitting diodes were fabricated with reduced driving voltages and enhanced current and power efficiencies (8.6 lm/W with Cu(hfac){sub 2} and 5.6 lm/W with Cu(tfac){sub 2}) compared to the OLED with undoped spiro-TTB (3.9 lm/W). The OLED with Cu(hfac){sub 2} doped spiro-TTB showed an over 8 times improved LT{sub 50} lifetime of 70 h at a starting luminance of 5000 cd/m{sup 2}. The LT{sub 50} lifetime of the reference OLED with PEDOT:PSS was only 8 h. Both non-optimized OLEDs were operated at similar driving voltage and power efficiency.

  16. Persistent dopants and phase segregation in organolead mixed-halide perovskites

    DOE PAGES

    Rosales, Bryan A.; Men, Long; Cady, Sarah D.; Hanrahan, Michael P.; Rossini, Aaron J.; Vela, Javier

    2016-07-25

    Organolead mixed-halide perovskites such as CH3NH3PbX3–aX'a (X, X' = I, Br, Cl) are interesting semiconductors because of their low cost, high photovoltaic power conversion efficiencies, enhanced moisture stability, and band gap tunability. Using a combination of optical absorption spectroscopy, powder X-ray diffraction (XRD), and, for the first time, 207Pb solid state nuclear magnetic resonance (ssNMR), we probe the extent of alloying and phase segregation in these materials. Because 207Pb ssNMR chemical shifts are highly sensitive to local coordination and electronic structure, and vary linearly with halogen electronegativity and band gap, this technique can provide the true chemical speciation and compositionmore » of organolead mixed-halide perovskites. We specifically investigate samples made by three different preparative methods: solution phase synthesis, thermal annealing, and solid phase synthesis. 207Pb ssNMR reveals that nonstoichiometric dopants and semicrystalline phases are prevalent in samples made by solution phase synthesis. We show that these nanodomains are persistent after thermal annealing up to 200 °C. Further, a novel solid phase synthesis that starts from the parent, single-halide perovskites can suppress phase segregation but not the formation of dopants. Our observations are consistent with the presence of miscibility gaps and spontaneous spinodal decomposition of the mixed-halide perovskites at room temperature. This underscores how strongly different synthetic procedures impact the nanostructuring and composition of organolead halide perovskites. In conclusion, better optoelectronic properties and improved device stability and performance may be achieved through careful manipulation of the different phases and nanodomains present in these materials.« less

  17. Effect of Dopants on the Adsorption of Carbon Dioxide on Ceria Surfaces

    SciTech Connect

    Li, Meijun; Tumuluri, Uma; Wu, Zili; Dai, Sheng

    2015-09-25

    Here, high-surface-area nanosized CeO2 and M-doped CeO2 (M=Cu, La, Zr, and Mg) prepared by a surfactant-templated method were tested for CO2 adsorption. Cu, La, and Zr are doped into the lattice of CeO2, whereas Mg is dispersed on the CeO2 surface. The doping of Cu and La into CeO2 leads to an increase of the CO2 adsorption capacity, whereas the doping of Zr has little or no effect. The addition of Mg causes a decrease of the CO2 adsorption capacity at a low Mg content and a gradual increase at a higher content. The CO2 adsorption capacity follows the sequence Cu-CeO2>La-CeO2>Zr-CeO2≈CeO2>Mg-CeO2 at low dopant contents, in line with the relative amount of defect sites in the samples. It is the defect sites on the surface, not in the bulk of CeO2, modified by the dopants that play the vital role in CO2 chemisorption. Lastly, the role of surface oxygen vacancies is further supported by an in situ IR spectroscopic study of the surface chemistry during CO2 adsorption on the doped CeO2.

  18. Theoretical Spin-Orbit Spectroscopy of cl Dopants in Solid Parahydrogen

    NASA Astrophysics Data System (ADS)

    Hinde, Robert

    2012-06-01

    Solid parahydrogen (pH_2) matrices containing open-shell (^2P) Cl and Br atoms as substitutional impurities exhibit several infrared (IR) absorption features associated with intermolecular interactions between the halogen atom and nearby pH_2 molecules. These dopant-induced IR absorption features are associated with (i) spin-orbit (SO) excitation of the halogen atom, and (ii) cooperative excitations in which a single IR photon both triggers SO excitation of the halogen atom and excites the H-H stretching coordinate of a nearby pH_2 molecule. The IR spectral features thus contain detailed information about the interaction between the open-shell halogen atom and the surrounding pH_2 molecules, and in particular tell us about the coupling between the atom's electronic degrees of freedom and the nuclear motion of its H_2 neighbors. Here we present recent progress towards understanding these features in Cl-doped solid pH_2. This system represents an arena for testing theoretical approaches that generate many-body, non-pairwise-additive potential energy functions for the dopant--matrix interaction by combining multiple low-lying Cl--H_2 pair potential energy functions. Our analysis must account for the fact that the individual pH_2 molecules in the doped solid undergo large amplitude zero-point motions; we use quantum Monte Carlo simulations to model these zero-point motions. We interpret our findings in terms of a reduced dimensionality model that provides a qualitative understanding of the role that matrix zero-point motions play in the observed spectra. P. L. Raston and D. T. Anderson, J. Chem. Phys. 126, 021106 (2007) S. C. Kettwich, L. O. Paulson, P. L. Raston and D. T. Anderson, J. Phys. Chem. A 112, 11153 (2008). I .F. Silvera, Rev. Mod. Phys. 52, 393 (1980). R. J. Hinde, Comput. Phys. Commun. 182, 2339 (2011).

  19. Reversible micromachining locator

    DOEpatents

    Salzer, Leander J.; Foreman, Larry R.

    1999-01-01

    This invention provides a device which includes a locator, a kinematic mount positioned on a conventional tooling machine, a part carrier disposed on the locator and a retainer ring. The locator has disposed therein a plurality of steel balls, placed in an equidistant position circumferentially around the locator. The kinematic mount includes a plurality of magnets which are in registry with the steel balls on the locator. In operation, a blank part to be machined is placed between a surface of a locator and the retainer ring (fitting within the part carrier). When the locator (with a blank part to be machined) is coupled to the kinematic mount, the part is thus exposed for the desired machining process. Because the locator is removably attachable to the kinematic mount, it can easily be removed from the mount, reversed, and reinserted onto the mount for additional machining. Further, the locator can likewise be removed from the mount and placed onto another tooling machine having a properly aligned kinematic mount. Because of the unique design and use of magnetic forces of the present invention, positioning errors of less than 0.25 micrometer for each machining process can be achieved.

  20. Reversible micromachining locator

    DOEpatents

    Salzer, L.J.; Foreman, L.R.

    1999-08-31

    This invention provides a device which includes a locator, a kinematic mount positioned on a conventional tooling machine, a part carrier disposed on the locator and a retainer ring. The locator has disposed therein a plurality of steel balls, placed in an equidistant position circumferentially around the locator. The kinematic mount includes a plurality of magnets which are in registry with the steel balls on the locator. In operation, a blank part to be machined is placed between a surface of a locator and the retainer ring (fitting within the part carrier). When the locator (with a blank part to be machined) is coupled to the kinematic mount, the part is thus exposed for the desired machining process. Because the locator is removably attachable to the kinematic mount, it can easily be removed from the mount, reversed, and reinserted onto the mount for additional machining. Further, the locator can likewise be removed from the mount and placed onto another tooling machine having a properly aligned kinematic mount. Because of the unique design and use of magnetic forces of the present invention, positioning errors of less than 0.25 micrometer for each machining process can be achieved. 7 figs.

  1. Effective dopant activation by susceptor-assisted microwave annealing of low energy boron implanted and phosphorus implanted silicon

    SciTech Connect

    Zhao, Zhao; Vemuri, Rajitha N. P.; Alford, T. L.; David Theodore, N.; Lu, Wei; Lau, S. S.; Lanz, A.

    2013-12-28

    Rapid processing and reduced end-of-range diffusion result from susceptor-assisted microwave (MW) annealing, making this technique an efficient processing alternative for electrically activating dopants within ion-implanted semiconductors. Sheet resistance and Hall measurements provide evidence of electrical activation. Susceptor-assisted MW annealing, of ion-implanted Si, enables more effective dopant activation and at lower temperatures than required for rapid thermal annealing (RTA). Raman spectroscopy and ion channeling analyses are used to monitor the extent of ion implantation damage and recrystallization. The presence and behavior of extended defects are monitored by cross-section transmission electron microscopy. Phosphorus implanted Si samples experience effective electrical activation upon MW annealing. On the other hand, when boron implanted Si is MW annealed, the growth of extended defects results in reduced crystalline quality that hinders the electrical activation process. Further comparison of dopant diffusion resulting from MW annealing and rapid thermal annealing is performed using secondary ion mass spectroscopy. MW annealed ion implanted samples show less end-of-range diffusion when compared to RTA samples. In particular, MW annealed P{sup +} implanted samples achieve no visible diffusion and equivalent electrical activation at a lower temperature and with a shorter time-duration of annealing compared to RTA. In this study, the peak temperature attained during annealing does not depend on the dopant species or dose, for susceptor-assisted MW annealing of ion-implanted Si.

  2. Effective dopant activation by susceptor-assisted microwave annealing of low energy boron implanted and phosphorus implanted silicon

    NASA Astrophysics Data System (ADS)

    Zhao, Zhao; David Theodore, N.; Vemuri, Rajitha N. P.; Lu, Wei; Lau, S. S.; Lanz, A.; Alford, T. L.

    2013-12-01

    Rapid processing and reduced end-of-range diffusion result from susceptor-assisted microwave (MW) annealing, making this technique an efficient processing alternative for electrically activating dopants within ion-implanted semiconductors. Sheet resistance and Hall measurements provide evidence of electrical activation. Susceptor-assisted MW annealing, of ion-implanted Si, enables more effective dopant activation and at lower temperatures than required for rapid thermal annealing (RTA). Raman spectroscopy and ion channeling analyses are used to monitor the extent of ion implantation damage and recrystallization. The presence and behavior of extended defects are monitored by cross-section transmission electron microscopy. Phosphorus implanted Si samples experience effective electrical activation upon MW annealing. On the other hand, when boron implanted Si is MW annealed, the growth of extended defects results in reduced crystalline quality that hinders the electrical activation process. Further comparison of dopant diffusion resulting from MW annealing and rapid thermal annealing is performed using secondary ion mass spectroscopy. MW annealed ion implanted samples show less end-of-range diffusion when compared to RTA samples. In particular, MW annealed P+ implanted samples achieve no visible diffusion and equivalent electrical activation at a lower temperature and with a shorter time-duration of annealing compared to RTA. In this study, the peak temperature attained during annealing does not depend on the dopant species or dose, for susceptor-assisted MW annealing of ion-implanted Si.

  3. The role of the domain size and titanium dopant in nanocrystalline hematite thin films for water photolysis

    SciTech Connect

    Yan, Danhua; Tao, Jing; Kisslinger, Kim; Cen, Jiajie; Wu, Qiyuan; Orlov, Alexander; Liu, Mingzhao

    2015-10-13

    In this study, we develop a novel technique for preparing high quality Ti-doped hematite thin films for photoelectrochemical (PEC) water splitting, through sputtering deposition of metallic iron films from an iron target embedded with titanium (dopants) pellets, followed by a thermal oxidation step that turns the metal films into doped hematite. It is found that the hematite domain size can be tuned from ~10 nm to over 100 nm by adjusting the sputtering atmosphere from more oxidative to mostly inert. The better crystallinity at a larger domain size ensures excellent PEC water splitting performance, leading to record high photocurrent from pure planar hematite thin films on FTO substrates. Titanium doping further enhances the PEC performance of hematite photoanodes. The photocurrent is improved by 50%, with a titanium dopant concentration as low as 0.5 atom%. It is also found that the role of the titanium dopant in improving the PEC performance is not apparently related to the films’ electrical conductivity which had been widely believed, but is more likely due to the passivation of surface defects by the titanium dopants.

  4. The role of the domain size and titanium dopant in nanocrystalline hematite thin films for water photolysis

    DOE PAGES

    Yan, Danhua; Tao, Jing; Kisslinger, Kim; Cen, Jiajie; Wu, Qiyuan; Orlov, Alexander; Liu, Mingzhao

    2015-10-13

    In this study, we develop a novel technique for preparing high quality Ti-doped hematite thin films for photoelectrochemical (PEC) water splitting, through sputtering deposition of metallic iron films from an iron target embedded with titanium (dopants) pellets, followed by a thermal oxidation step that turns the metal films into doped hematite. It is found that the hematite domain size can be tuned from ~10 nm to over 100 nm by adjusting the sputtering atmosphere from more oxidative to mostly inert. The better crystallinity at a larger domain size ensures excellent PEC water splitting performance, leading to record high photocurrent frommore » pure planar hematite thin films on FTO substrates. Titanium doping further enhances the PEC performance of hematite photoanodes. The photocurrent is improved by 50%, with a titanium dopant concentration as low as 0.5 atom%. It is also found that the role of the titanium dopant in improving the PEC performance is not apparently related to the films’ electrical conductivity which had been widely believed, but is more likely due to the passivation of surface defects by the titanium dopants.« less

  5. Doped Graphene for DNA Analysis: the Electrochemical Signal is Strongly Influenced by the Kind of Dopant and the Nucleobase Structure.

    PubMed

    Tian, Huidi; Wang, Lu; Sofer, Zdenek; Pumera, Martin; Bonanni, Alessandra

    2016-01-01

    Doping graphene with heteroatoms can alter the electronic and electrochemical properties of the starting material. Contrasting properties should be expected when the doping is carried out with electron donating species (n-type dopants) or with electron withdrawing species (p-type dopants). This in turn can have a profound influence on the electroanalytical performance of the doped material being used for the detection of specific probes. Here we investigate the electrochemical oxidation of DNA bases adenine, guanine, thymine and cytosine on two heteroatom-doped graphene platforms namely boron-doped graphene (p-type dopant) and nitrogen-doped graphene (n-type dopant). We found that overall, boron-doped graphene provided the best response in terms of electrochemical signal sensitivity for all bases. This is due to the electron deficiency of boron-doped graphene, which can promote the oxidation of DNA bases, as opposed to nitrogen-doped graphene which possesses an excess of electrons. Moreover, also the structure of the nucleobase was found to have significant influence on the obtained signal. Our study may open new frontiers in the electrochemical detection of DNA bases which is the first step for label-free DNA analysis. PMID:27623951

  6. Direct observation of dopant atom diffusion in a bulk semiconductor crystal enhanced by a large size mismatch.

    PubMed

    Ishikawa, Ryo; Mishra, Rohan; Lupini, Andrew R; Findlay, Scott D; Taniguchi, Takashi; Pantelides, Sokrates T; Pennycook, Stephen J

    2014-10-10

    Diffusion is one of the fundamental processes that govern the structure, processing, and properties of materials and it plays a crucial role in determining device lifetimes. However, direct observations of diffusion processes have been elusive and limited only to the surfaces of materials. Here we use an aberration-corrected electron microscope to locally excite and directly image the diffusion of single Ce and Mn dopants inside bulk wurtzite-type AlN single crystals, identifying correlated vacancy-dopant and interstitial-dopant kick-out mechanisms. Using a 200 kV electron beam to supply energy, we observe a higher frequency of dopant jumps for the larger and heavier Ce atoms than the smaller Mn atoms. These observations confirm density-functional-theory-based predictions of a decrease in diffusion barrier for large substitutional atoms. The results show that combining depth sensitive microscopy with theoretical calculations represents a new methodology to investigate diffusion mechanisms, not restricted to surface phenomena, but within bulk materials.

  7. Investigation of iodine dopant amount effects on dye-sensitized hierarchically structured ZnO solar cells

    SciTech Connect

    Zheng, Yan-Zhen; Ding, Haiyang; Tao, Xia; Chen, Jian-Feng

    2014-07-01

    Highlights: • The effect of I amount on the photovoltaic performance was investigated. • The enhancement in η of ZnO:I DSSCs was from 38% to 77% compared with ZnO DSSCs. • Appropriate I doping enhanced light harness and inhibited charge recombination. - Abstract: We prepare a series of iodine doped zinc oxide monodisperse aggregates (ZnO:I) with various iodine concentrations as the photoanodes of dye-sensitized solar cells (DSSCs) to study iodine dopant amount-dependent photovoltaic performance. The iodine-doped DSSCs achieve overall conversion efficiency (η) of 3.6–4.6%. The enhancement in η of ZnO:I DSSCs is from 38% to 77% as compared to undoped ZnO DSSCs. The significantly enhanced η of DSSCs is found to be correlated with iodine dopant amount. The optimum iodine dopant amount is determined to be 2.3 wt% by X-ray photoelectron spectroscopy. Furthermore, the incident photon to current conversion efficiency and electrochemical impedance spectroscopy data reveal a systematic correlation between photovoltaic properties and the iodine dopant amount. The enhancement of open-circuit potential of ZnO:I cells is arising from negative shift of their flat-band potential, as demonstrated by Mott–Schottky measurement.

  8. Doped Graphene for DNA Analysis: the Electrochemical Signal is Strongly Influenced by the Kind of Dopant and the Nucleobase Structure

    PubMed Central

    Tian, Huidi; Wang, Lu; Sofer, Zdenek; Pumera, Martin; Bonanni, Alessandra

    2016-01-01

    Doping graphene with heteroatoms can alter the electronic and electrochemical properties of the starting material. Contrasting properties should be expected when the doping is carried out with electron donating species (n-type dopants) or with electron withdrawing species (p-type dopants). This in turn can have a profound influence on the electroanalytical performance of the doped material being used for the detection of specific probes. Here we investigate the electrochemical oxidation of DNA bases adenine, guanine, thymine and cytosine on two heteroatom-doped graphene platforms namely boron-doped graphene (p-type dopant) and nitrogen-doped graphene (n-type dopant). We found that overall, boron–doped graphene provided the best response in terms of electrochemical signal sensitivity for all bases. This is due to the electron deficiency of boron-doped graphene, which can promote the oxidation of DNA bases, as opposed to nitrogen-doped graphene which possesses an excess of electrons. Moreover, also the structure of the nucleobase was found to have significant influence on the obtained signal. Our study may open new frontiers in the electrochemical detection of DNA bases which is the first step for label-free DNA analysis. PMID:27623951

  9. Doped Graphene for DNA Analysis: the Electrochemical Signal is Strongly Influenced by the Kind of Dopant and the Nucleobase Structure

    NASA Astrophysics Data System (ADS)

    Tian, Huidi; Wang, Lu; Sofer, Zdenek; Pumera, Martin; Bonanni, Alessandra

    2016-09-01

    Doping graphene with heteroatoms can alter the electronic and electrochemical properties of the starting material. Contrasting properties should be expected when the doping is carried out with electron donating species (n-type dopants) or with electron withdrawing species (p-type dopants). This in turn can have a profound influence on the electroanalytical performance of the doped material being used for the detection of specific probes. Here we investigate the electrochemical oxidation of DNA bases adenine, guanine, thymine and cytosine on two heteroatom-doped graphene platforms namely boron-doped graphene (p-type dopant) and nitrogen-doped graphene (n-type dopant). We found that overall, boron–doped graphene provided the best response in terms of electrochemical signal sensitivity for all bases. This is due to the electron deficiency of boron-doped graphene, which can promote the oxidation of DNA bases, as opposed to nitrogen-doped graphene which possesses an excess of electrons. Moreover, also the structure of the nucleobase was found to have significant influence on the obtained signal. Our study may open new frontiers in the electrochemical detection of DNA bases which is the first step for label-free DNA analysis.

  10. Generation of core-shell structures and segregation of dopants in Si/SiO2 nanowires

    NASA Astrophysics Data System (ADS)

    Kim, Sunghyun; Park, Ji-Sang; Chang, K. J.

    2013-03-01

    Oxidized Si nanowires (SiNWs) are usually synthesized by subsequent thermal annealing of as-grown SiNWs. It has been observed that B diffusivity is enhanced during thermal annealing in SiNWs, similar to the phenomena called transient enhanced diffusion or oxidation enhanced diffusion in planar Si/SiO2 interfaces. However, previous theoretical studies have been focused on hydrogen or hydroxyl terminated SiNWs. In this work, we generate realistic atomic models for oxidized SiNWs in which crystalline Si core is sheathed by amorphous SiO2 by using a combined approach of classical molecular dynamics simulations with first-principles density functional calculations. For realistic core-shell structures, we investigate the stability and segregation behavior of B and P dopants. A single substitutional B is more stable in the Si core, with a very small energy variation with the radial position of B. On the other hand, B dopants easily segregate to the oxide shell with the aid of Si self-interstitials generated during thermal oxidation. In contrast to B dopants, P dopants prefer to reside in the Si core even in the presence of Si self-interstitials but tend to aggregate in the Si region near the interface, forming nearest-neighbor donor pairs which are electrically inactive.

  11. Random Dopant Threshold Voltage Fluctuations in 50 nm Epitaxial Channel MOSFETs: A 3D 'Atomoc' Simulation Study

    NASA Technical Reports Server (NTRS)

    Asenov, Asen

    2000-01-01

    3D 'atomistic' simulations are used to study random dopant related threshold voltage fluctuations in 50 nm MOSFETs. Comparisons are made between conventionally doped transistors and transistors with thin epitaxial silicon layers on heavily doped silicon. Issues related to both the optimum threshold voltage control and the suppression of the threshold voltage dispersion are addressed.

  12. Diffusion of ion-implanted group 4 n-type dopants in gallium arsenide and gallium/arsenide-based superlattices

    NASA Astrophysics Data System (ADS)

    Allen, Emily Lin

    1992-09-01

    As semiconductor device dimensions shrink, understanding and controlling dopant diffusion becomes increasingly important. For submicron FET's made in GaAs, dopant diffusion during post-implant anneal is undesirable. In addition, impurity induced intermixing of III-V heterostructures for optoelectronic devices requires a series of carefully controlled diffusion steps. A more complete understanding of the diffusion mechanisms of dopants and point defects in both GaAs and Al(x)Ga(1-x)As is thus required for several advanced technologies. Most of the published parameters for diffusion of dopants in III-V compound semiconductors are from thin film or vapor source diffusions. The effect of implant damage and extended defects on diffusion of implanted dopants in GaAs and Al(x)Ga(1-x)As has not been extensively studied. In this work we measure the carrier concentrations and diffusivities of the ion-implanted Group IV dopants Sn, Ge and Si in GaAs and Al(x)Ga(1-x)As, using SIMS, polaron and SUPREM 3.5 simulations. In the substrate, diffusion is modeled by an effective diffusivity which depends on the square of the electron concentration (n), due to enhancement of the negatively charged Ga vacancy concentration by the n-type doping. In the near-surface implanted region diffusion is suppressed for doses greater than 1 x 10(exp 14)/sq cm. The carrier concentrations for Sn implants are anomalously high in this region, and anomalously low for Ge and Si. Transmission electron microscopy shows that precipitates and dislocations form in the implanted region during annealing for doses greater than 1 x 10(exp 14)/sq cm. These extended defects may influence dopant diffusion by controlling the generation and recombination of point defects. The carrier concentration-dependent diffusion model is applied to interdiffusion of Al and Ga in AlAs/Al(x)Ga(1-x)As superlattice structures. We show that interdiffusion is enhanced more under an oxide film than under a nitride film, while a tungsten

  13. Object locating system

    DOEpatents

    Novak, James L.; Petterson, Ben

    1998-06-09

    A sensing system locates an object by sensing the object's effect on electric fields. The object's effect on the mutual capacitance of electrode pairs varies according to the distance between the object and the electrodes. A single electrode pair can sense the distance from the object to the electrodes. Multiple electrode pairs can more precisely locate the object in one or more dimensions.

  14. Reversible micromachining locator

    DOEpatents

    Salzer, Leander J.; Foreman, Larry R.

    2002-01-01

    A locator with a part support is used to hold a part onto the kinematic mount of a tooling machine so that the part can be held in or replaced in exactly the same position relative to the cutting tool for machining different surfaces of the part or for performing different machining operations on the same or different surfaces of the part. The locator has disposed therein a plurality of steel balls placed at equidistant positions around the planar surface of the locator and the kinematic mount has a plurality of magnets which alternate with grooves which accommodate the portions of the steel balls projecting from the locator. The part support holds the part to be machined securely in place in the locator. The locator can be easily detached from the kinematic mount, turned over, and replaced onto the same kinematic mount or another kinematic mount on another tooling machine without removing the part to be machined from the locator so that there is no need to touch or reposition the part within the locator, thereby assuring exact replication of the position of the part in relation to the cutting tool on the tooling machine for each machining operation on the part.

  15. Ionization of EPA contaminants in direct and dopant-assisted atmospheric pressure photoionization and atmospheric pressure laser ionization.

    PubMed

    Kauppila, Tiina J; Kersten, Hendrik; Benter, Thorsten

    2015-06-01

    Seventy-seven EPA priority environmental pollutants were analyzed using gas chromatography-mass spectrometry (GC-MS) equipped with an optimized atmospheric pressure photoionization (APPI) and an atmospheric pressure laser ionization (APLI) interface with and without dopants. The analyzed compounds included e.g., polycyclic aromatic hydrocarbons (PAHs), nitro compounds, halogenated compounds, aromatic compounds with phenolic, acidic, alcohol, and amino groups, phthalate and adipatic esters, and aliphatic ethers. Toluene, anisole, chlorobenzene, and acetone were tested as dopants. The widest range of analytes was ionized using direct APPI (66/77 compounds). The introduction of dopants decreased the amount of compounds ionized in APPI (e.g., 54/77 with toluene), but in many cases the ionization efficiency increased. While in direct APPI the formation of molecular ions via photoionization was the main ionization reaction, dopant-assisted (DA) APPI promoted ionization reactions, such as charge exchange and proton transfer. Direct APLI ionized a much smaller amount of compounds than APPI (41/77 compounds), showing selectivity towards compounds with low ionization energies (IEs) and long-lived resonantly excited intermediate states. DA-APLI, however, was able to ionize a higher amount of compounds (e.g. 51/77 with toluene), as the ionization took place entirely through dopant-assisted ion/molecule reactions similar to those in DA-APPI. Best ionization efficiency in APPI and APLI (both direct and DA) was obtained for PAHs and aromatics with O- and N-functionalities, whereas nitro compounds and aliphatic ethers were the most difficult to ionize. Halogenated aromatics and esters were (mainly) ionized in APPI, but not in APLI.

  16. Ionization of EPA Contaminants in Direct and Dopant-Assisted Atmospheric Pressure Photoionization and Atmospheric Pressure Laser Ionization

    NASA Astrophysics Data System (ADS)

    Kauppila, Tiina J.; Kersten, Hendrik; Benter, Thorsten

    2015-06-01

    Seventy-seven EPA priority environmental pollutants were analyzed using gas chromatography-mass spectrometry (GC-MS) equipped with an optimized atmospheric pressure photoionization (APPI) and an atmospheric pressure laser ionization (APLI) interface with and without dopants. The analyzed compounds included e.g., polycyclic aromatic hydrocarbons (PAHs), nitro compounds, halogenated compounds, aromatic compounds with phenolic, acidic, alcohol, and amino groups, phthalate and adipatic esters, and aliphatic ethers. Toluene, anisole, chlorobenzene, and acetone were tested as dopants. The widest range of analytes was ionized using direct APPI (66/77 compounds). The introduction of dopants decreased the amount of compounds ionized in APPI (e.g., 54/77 with toluene), but in many cases the ionization efficiency increased. While in direct APPI the formation of molecular ions via photoionization was the main ionization reaction, dopant-assisted (DA) APPI promoted ionization reactions, such as charge exchange and proton transfer. Direct APLI ionized a much smaller amount of compounds than APPI (41/77 compounds), showing selectivity towards compounds with low ionization energies (IEs) and long-lived resonantly excited intermediate states. DA-APLI, however, was able to ionize a higher amount of compounds (e.g. 51/77 with toluene), as the ionization took place entirely through dopant-assisted ion/molecule reactions similar to those in DA-APPI. Best ionization efficiency in APPI and APLI (both direct and DA) was obtained for PAHs and aromatics with O- and N-functionalities, whereas nitro compounds and aliphatic ethers were the most difficult to ionize. Halogenated aromatics and esters were (mainly) ionized in APPI, but not in APLI.

  17. Ionization of EPA contaminants in direct and dopant-assisted atmospheric pressure photoionization and atmospheric pressure laser ionization.

    PubMed

    Kauppila, Tiina J; Kersten, Hendrik; Benter, Thorsten

    2015-06-01

    Seventy-seven EPA priority environmental pollutants were analyzed using gas chromatography-mass spectrometry (GC-MS) equipped with an optimized atmospheric pressure photoionization (APPI) and an atmospheric pressure laser ionization (APLI) interface with and without dopants. The analyzed compounds included e.g., polycyclic aromatic hydrocarbons (PAHs), nitro compounds, halogenated compounds, aromatic compounds with phenolic, acidic, alcohol, and amino groups, phthalate and adipatic esters, and aliphatic ethers. Toluene, anisole, chlorobenzene, and acetone were tested as dopants. The widest range of analytes was ionized using direct APPI (66/77 compounds). The introduction of dopants decreased the amount of compounds ionized in APPI (e.g., 54/77 with toluene), but in many cases the ionization efficiency increased. While in direct APPI the formation of molecular ions via photoionization was the main ionization reaction, dopant-assisted (DA) APPI promoted ionization reactions, such as charge exchange and proton transfer. Direct APLI ionized a much smaller amount of compounds than APPI (41/77 compounds), showing selectivity towards compounds with low ionization energies (IEs) and long-lived resonantly excited intermediate states. DA-APLI, however, was able to ionize a higher amount of compounds (e.g. 51/77 with toluene), as the ionization took place entirely through dopant-assisted ion/molecule reactions similar to those in DA-APPI. Best ionization efficiency in APPI and APLI (both direct and DA) was obtained for PAHs and aromatics with O- and N-functionalities, whereas nitro compounds and aliphatic ethers were the most difficult to ionize. Halogenated aromatics and esters were (mainly) ionized in APPI, but not in APLI. PMID:25828352

  18. Sensors Locate Radio Interference

    NASA Technical Reports Server (NTRS)

    2009-01-01

    After receiving a NASA Small Business Innovation Research (SBIR) contract from Kennedy Space Center, Soneticom Inc., based in West Melbourne, Florida, created algorithms for time difference of arrival and radio interferometry, which it used in its Lynx Location System (LLS) to locate electromagnetic interference that can disrupt radio communications. Soneticom is collaborating with the Federal Aviation Administration (FAA) to install and test the LLS at its field test center in New Jersey in preparation for deploying the LLS at commercial airports. The software collects data from each sensor in order to compute the location of the interfering emitter.

  19. Object locating system

    DOEpatents

    Novak, J.L.; Petterson, B.

    1998-06-09

    A sensing system locates an object by sensing the object`s effect on electric fields. The object`s effect on the mutual capacitance of electrode pairs varies according to the distance between the object and the electrodes. A single electrode pair can sense the distance from the object to the electrodes. Multiple electrode pairs can more precisely locate the object in one or more dimensions. 12 figs.

  20. Lunar Impact Flash Locations

    NASA Technical Reports Server (NTRS)

    Moser, D. E.; Suggs, R. M.; Kupferschmidt, L.; Feldman, J.

    2015-01-01

    A bright impact flash detected by the NASA Lunar Impact Monitoring Program in March 2013 brought into focus the importance of determining the impact flash location. A process for locating the impact flash, and presumably its associated crater, was developed using commercially available software tools. The process was successfully applied to the March 2013 impact flash and put into production on an additional 300 impact flashes. The goal today: provide a description of the geolocation technique developed.

  1. Dopant induced variations in microstructure and optical properties of CeO{sub 2} nanoparticles

    SciTech Connect

    Mohanty, Bhaskar Chandra; Lee, Jong Won; Yeon, Deuk-Ho; Jo, Yeon-Hwa; Kim, Jong Hak; Cho, Yong Soo

    2011-06-15

    Research highlights: {yields} Dopant (Zr{sup 4+}, La{sup 3+}, and Ca{sup 2+}) induced phase stability, and changes in microstructure and optical properties of CeO{sub 2} nanoparticles have been studied. {yields} The nanoparticles were prepared by hydrothermal synthesis of nitrate solutions. {yields} The results show modification of the unit cell parameter by -0.39, +0.83 and +0.16% for doping of 20% Zr{sup 4+}, La{sup 3+}, and Ca{sup 2+}, respectively. {yields} For each batch prepared, nanoparticles with a narrow size distribution of 5-15 nm have been obtained. These particles are single crystals mostly having polygonal two-dimensional projections. {yields} UV-visible spectra of doped particles exhibit shift of the absorption edge and absorption peak with respect to those of the undoped ones and has been attributed to compensation of Ce{sup 3+} and decreasing crystallite size as result of doping. -- Abstract: Nanocrystalline CeO{sub 2} particles doped in the range of 0-20% of Ca{sup 2+}, La{sup 3+}, and Zr{sup 4+} have been prepared from hydrothermal synthesis of nitrate solutions at 200 {sup o}C and the influences of the dopants on microstructure and optical properties of the nanoparticles have been investigated. The unit cell parameter is found to be modified by -0.39, +0.83 and +0.16% for doping of 20% Zr{sup 4+}, La{sup 3+}, and Ca{sup 2+}, respectively. For each batch prepared, nanoparticles with a narrow size distribution of 5-15 nm have been obtained. A high-resolution transmission electron microscopy investigation reveals that these particles are single crystals mostly having hexagonal, square or circular two-dimensional projections. UV-visible spectra of doped powders exhibit shift of the absorption edge and absorption peak with respect to those of the undoped CeO{sub 2} particles and has been attributed to compensation of Ce{sup 3+} and decreasing crystallite size as result of doping.

  2. Electronic structure and chemical nature of oxygen dopant states in carbon nanotubes.

    PubMed

    Ma, Xuedan; Adamska, Lyudmyla; Yamaguchi, Hisato; Yalcin, Sibel Ebru; Tretiak, Sergei; Doorn, Stephen K; Htoon, Han

    2014-10-28

    We performed low temperature photoluminescence (PL) studies on individual oxygen-doped single-walled carbon nanotubes (SWCNTs) and correlated our observations to electronic structure simulations. Our experiment reveals multiple sharp asymmetric emission peaks at energies 50-300 meV red-shifted from that of the E11 bright exciton peak. Our simulation suggests an association of these peaks with deep trap states tied to different specific chemical adducts. In addition, oxygen doping is also observed to split the E11 exciton into two or more states with an energy splitting <40 meV. We attribute these states to dark states that are brightened through defect-induced symmetry breaking. While the wave functions of these brightened states are delocalized, those of the deep-trap states are strongly localized and pinned to the dopants. These findings are consistent with our experimental observation of asymmetric broadening of the deep trap emission peaks, which can result from interaction between pinned excitons and one-dimensional phonons. Exciton pinning also increases the sensitivity of the deep traps to the local dielectric environment, leading to a large inhomogeneous broadening. Observations of multiple spectral features on single nanotubes indicate the possibility of different chemical adducts coexisting on a given nanotube. PMID:25265272

  3. Dopant effect of yttrium and the growth and adherence of alumina on nickel-aluminum alloys

    NASA Technical Reports Server (NTRS)

    Anderson, A. B.; Mehandru, S. P.; Smialek, J. L.

    1985-01-01

    The atom superposition and electron delocalization molecular orbital theory and large cluster models have been employed to study cation vacancy diffusion in alpha-Al2O3 and the bonding of alpha-Al2O3 to nickel, aluminum, and yttrium surfaces. Al(3+) diffusion barriers in alpha-Al2O3 by the vacancy mechanism are in reasonable agreement with experiment. The barrier to Y(3+) diffusion is predicted to be much higher. Since addition of yttrium to transition metal alloys is known to reduce the growth rate and stress convolutions in protective alumina scales, this result suggests the rate-limiting step in scale growth is cation vacancy diffusion. This may partially explain the beneficial effect of yttrium dopants on scale adhesion. The theory also predicts a very strong bonding between alumina and yttrium at the surface of the alloy. This may also be important to the adhesion phenomenon. It is also found that aluminum and yttrium atoms bond very strongly to nickel because of charge transfer from their higher lying valence orbitals to the lower lying nickel s-d band.

  4. A molecular approach to Cu doped ZnO nanorods with tunable dopant content.

    PubMed

    Pashchanka, Mikhail; Hoffmann, Rudolf C; Gurlo, Aleksander; Swarbrick, Janine C; Khanderi, Jayaprakash; Engstler, Jörg; Issanin, Alexander; Schneider, Jörg J

    2011-04-28

    A novel molecular approach to the synthesis of polycrystalline Cu-doped ZnO rod-like nanostructures with variable concentrations of introduced copper ions in ZnO host matrix is presented. Spectroscopic (PLS, variable temperature XRD, XPS, ELNES, HERFD) and microscopic (HRTEM) analysis methods reveal the +II oxidation state of the lattice incorporated Cu ions. Photoluminescence spectra show a systematic narrowing (tuning) of the band gap depending on the amount of Cu(II) doping. The advantage of the template assembly of doped ZnO nanorods is that it offers general access to doped oxide structures under moderate thermal conditions. The doping content of the host structure can be individually tuned by the stoichiometric ratio of the molecular precursor complex of the host metal oxide and the molecular precursor complex of the dopant, Di-aquo-bis[2-(methoxyimino)-propanoato]zinc(II) 1 and -copper(II) 2. Moreover, these keto-dioximato complexes are accessible for a number of transition metal and lanthanide elements, thus allowing this synthetic approach to be expanded into a variety of doped 1D metal oxide structures.

  5. High thermoelectric performance by resonant dopant indium in nanostructured SnTe

    PubMed Central

    Zhang, Qian; Liao, Bolin; Lan, Yucheng; Lukas, Kevin; Liu, Weishu; Esfarjani, Keivan; Opeil, Cyril; Broido, David; Chen, Gang; Ren, Zhifeng

    2013-01-01

    From an environmental perspective, lead-free SnTe would be preferable for solid-state waste heat recovery if its thermoelectric figure-of-merit could be brought close to that of the lead-containing chalcogenides. In this work, we studied the thermoelectric properties of nanostructured SnTe with different dopants, and found indium-doped SnTe showed extraordinarily large Seebeck coefficients that cannot be explained properly by the conventional two-valence band model. We attributed this enhancement of Seebeck coefficients to resonant levels created by the indium impurities inside the valence band, supported by the first-principles simulations. This, together with the lower thermal conductivity resulting from the decreased grain size by ball milling and hot pressing, improved both the peak and average nondimensional figure-of-merit (ZT) significantly. A peak ZT of ∼1.1 was obtained in 0.25 atom % In-doped SnTe at about 873 K. PMID:23901106

  6. High thermoelectric performance by resonant dopant indium in nanostructured SnTe.

    PubMed

    Zhang, Qian; Liao, Bolin; Lan, Yucheng; Lukas, Kevin; Liu, Weishu; Esfarjani, Keivan; Opeil, Cyril; Broido, David; Chen, Gang; Ren, Zhifeng

    2013-08-13

    From an environmental perspective, lead-free SnTe would be preferable for solid-state waste heat recovery if its thermoelectric figure-of-merit could be brought close to that of the lead-containing chalcogenides. In this work, we studied the thermoelectric properties of nanostructured SnTe with different dopants, and found indium-doped SnTe showed extraordinarily large Seebeck coefficients that cannot be explained properly by the conventional two-valence band model. We attributed this enhancement of Seebeck coefficients to resonant levels created by the indium impurities inside the valence band, supported by the first-principles simulations. This, together with the lower thermal conductivity resulting from the decreased grain size by ball milling and hot pressing, improved both the peak and average nondimensional figure-of-merit (ZT) significantly. A peak ZT of ∼1.1 was obtained in 0.25 atom % In-doped SnTe at about 873 K.

  7. Study of dopant activation in biaxially compressively strained SiGe layers using excimer laser annealing

    NASA Astrophysics Data System (ADS)

    Luong, G. V.; Wirths, S.; Stefanov, S.; Holländer, B.; Schubert, J.; Conde, J. C.; Stoica, T.; Breuer, U.; Chiussi, S.; Goryll, M.; Buca, D.; Mantl, S.

    2013-05-01

    Excimer Laser Annealing (ELA) with a wavelength of 248 nm is used to study doping of biaxialy compressively strained Si1-xGex/Si heterostructures. The challenge is to achieve a high activation of As in SiGe, while conserving the elastic strain and suppressing dopant diffusion. Doping of 20 nm Si0.64Ge0.36 layers by ion implantation of 1 × 1015 As+/cm2 and subsequent laser annealing using single 20 ns pulse with an energy density of 0.6 J/cm2 leads to an As activation of about 20% and a sheet resistance of 650 Ω/sq. At this laser energy density, the entire SiGe layer melts and the subsequent fast recrystallization on a nanosecond time scale allows high As incorporation into the lattice. Moreover, using these annealing parameters, the SiGe layer exhibits epitaxial regrowth with negligible strain relaxation. ELA at energy densities greater than 0.6 J/cm2 resembles Pulsed Lased Induced Epitaxy, leading to an intermixing of the SiGe layer with the Si substrate, thus to thicker single-crystalline strained SiGe layers with sheet resistance down to 62 Ω/sq. Effects of energy densities on composition, crystal quality, activation of As and co-doping with B are discussed and related to the spatial and temporal evolution of the temperature in the irradiated zone, as simulated by Finite Element Methods.

  8. Copper phthalocyanine as an efficient dopant in development of solar cells

    SciTech Connect

    Inigo, A.R.; Xavier, F.P.; Goldsmith, G.J.

    1997-05-01

    Organic semiconductors having conjugate bonds, such as phthalocyanines, are well known photoconductors. Phthalocyanines absorb light on either side of blue-green region in the visible spectrum. And polyaniline which has conjugate bonds is photosensitive. When polyaniline thin films are prepared with copper phthalocyanine powder the magnitude of absorption of the films not only increases but also broadens, indicating a wide absorption region between 1.7 and 2.3 eV and above 3.0 eV of the visible spectrum. Thus copper phthalocyanine in preparation of thin films is shown to smooth the broadening effect in absorption of solar cells. Attempts are underway to increase the absorption on either end of the visible spectrum, viz., infrared as well as ultraviolet regions, using suitable dopants. This would ensure the overall efficiency of solar cells made of organic photoconductive materials to absorb solar energy from infrared to ultraviolet regions of the optical spectrum, thereby making them more efficient solar energy converters.

  9. Computer modelling of the reduction of rare earth dopants in barium aluminate

    SciTech Connect

    Rezende, Marcos V. dos S; Valerio, Mario E.G.; Jackson, Robert A.

    2011-08-15

    Long lasting phosphorescence in barium aluminates can be achieved by doping with rare earth ions in divalent charge states. The rare earth ions are initially in a trivalent charge state, but are reduced to a divalent charge state before being doped into the material. In this paper, the reduction of trivalent rare earth ions in the BaAl{sub 2}O{sub 4} lattice is studied by computer simulation, with the energetics of the whole reduction and doping process being modelled by two methods, one based on single ion doping and one which allows dopant concentrations to be taken into account. A range of different reduction schemes are considered and the most energetically favourable schemes identified. - Graphical abstract: The doping and subsequent reduction of a rare earth ion into the barium aluminate lattice. Highlights: > The doping of barium aluminate with rare earth ions reduced in a range of atmospheres has been modelled. > The overall solution energy for the doping process for each ion in each reducing atmosphere is calculated using two methods. > The lowest energy reduction process is predicted and compared with experimental results.

  10. Polycrystalline silicon carbide dopant profiles obtained through a scanning nano-Schottky contact

    NASA Astrophysics Data System (ADS)

    Golt, M. C.; Strawhecker, K. E.; Bratcher, M. S.; Shanholtz, E. R.

    2016-07-01

    The unique thermo-electro-mechanical properties of polycrystalline silicon carbide (poly-SiC) make it a desirable candidate for structural and electronic materials for operation in extreme environments. Necessitated by the need to understand how processing additives influence poly-SiC structure and electrical properties, the distribution of lattice defects and impurities across a specimen of hot-pressed 6H poly-SiC processed with p-type additives was visualized with high spatial resolution using a conductive atomic force microscopy approach in which a contact forming a nano-Schottky interface is scanned across the sample. The results reveal very intricate structures within poly-SiC, with each grain having a complex core-rim structure. This complexity results from the influence the additives have on the evolution of the microstructure during processing. It was found that the highest conductivities localized at rims as well as at the interface between the rim and the core. The conductivity of the cores is less than the conductivity of the rims due to a lower concentration of dopant. Analysis of the observed conductivities and current-voltage curves is presented in the context of nano-Schottky contact regimes where the conventional understanding of charge transport to diode operation is no longer valid.

  11. In-dopants effect on the photoluminescence properties of YVO4 nanophosphors.

    PubMed

    Peng, Zifei; Du, Yanyun; Wang, Yuan; Peng, Donghong

    2010-03-01

    The powders of Yttrium vanadate (YVO4) with In-dopants were synthesized by solid-state reactions, and X-ray diffraction (XRD), transmission electron microscopy (TEM), ultraviolet-visible (UV-vis) absorption spectra, photoluminescence (PL) spectra, and the luminescence intensity change were used to characterize the samples. The results of XRD indicated that the YVO4:In3+ samples remained in pure cubic phase. TEM illustrated that the powders mainly consisted of grains with an average size of 100 nm. Under the excitation of 320 nm, the YVO4:In3+ single-crystalline samples exhibited emission ranging from 350 to 700 nm. The emission intensity of YVO4:In3+ increased with increasing indium concentration in the lower indium concentration region until the saturated PL intensity was reached, and the strongest white fluorescence was observed when the In3+ doping concentration was 2% at 900 degrees C. The luminescent intensity of YVO4:In3+ (2%) was 9.6 times as strong as that of non-doped YVO4. The nanophosphors emit white luminescence owing to broad charge transfer in crystal lattice is due to the addition of In3+ to capture the UV radiation. PMID:20355624

  12. Optical activity and defect/dopant evolution in ZnO implanted with Er

    SciTech Connect

    Azarov, Alexander; Galeckas, Augustinas; Kuznetsov, Andrej; Monakhov, Edouard; Svensson, Bengt G.; Hallén, Anders

    2015-09-28

    The effects of annealing on the optical properties and defect/dopant evolution in wurtzite (0001) ZnO single crystals implanted with Er ions are studied using a combination of Rutherford backscattering/channeling spectrometry and photoluminescence measurements. The results suggest a lattice recovery behavior dependent on ion dose and involving formation/evolution of an anomalous multipeak defect distribution, thermal stability of optically active Er complexes, and Er outdiffusion. An intermediate defect band occurring between the surface and ion-induced defects in the bulk is stable up to 900 °C and has a photoluminescence signature around 420 nm well corresponding to Zn interstitials. The optical activity of the Er atoms reaches a maximum after annealing at 700 °C but is not directly associated to the ideal Zn site configuration, since the Er substitutional fraction is maximal already in the as-implanted state. In its turn, annealing at temperatures above 700 °C leads to dissociation of the optically active Er complexes with subsequent outdiffusion of Er accompanied by the efficient lattice recovery.

  13. Electronic transport through carbon nanotubes - effect of contacts, topological defects, dopants and chemisorbed impurities

    SciTech Connect

    Maiti, A; Hoekstra, J; Andzelm, J; Govind, N; Ricca, A; Svizhenko, A; Mehrez, H; Anantram, M P

    2005-02-11

    Electronics based on carbon nanotubes (CNT) has received a lot of attention recently because of its tremendous application potential, such as active components and interconnects in nanochips, nanoelectromechanical systems (NEMS), display devices, and chemical and biological sensors. However, as with most nanoelectronic systems, successful commercial deployment implies structural control at the molecular level. To this end, it is clearly necessary to understand the effect of contacts, topological defects, dopants, and chemisorbed atoms and molecules on the electronic transport through CNT's. This paper summarizes our computational efforts to address some of the above questions. Examples include: wetting properties and bonding strength of metal contacts on the CNT surface, the effect of Stone-Wales defects on the chemisorption of O{sub 2} and NH3, and how such chemisorbed species and defects effect the electronic transmission and conductance. Our approach is based on first-principles density functional theory (DFT) to compute equilibrium structures, and nonequilibrium Green's function (NEGF) methods, using both DFT and semi-empirical tight-binding formalisms, for computing electronic transport properties.

  14. Dopant-mediated structural and magnetic properties of TbMnO3

    NASA Astrophysics Data System (ADS)

    Sharma, Vinit; McDannald, A.; Staruch, M.; Ramprasad, R.; Jain, M.

    2015-07-01

    Structural and magnetic properties of the doped terbium manganites (Tb,A)MnO3 (A = Gd, Dy, and Ho) have been investigated using first-principles calculations and further confirmed by subsequent experimental studies. Both computational and experimental studies suggest that compared to the parent material, namely, TbMnO3 (with a magnetic moment of 9.7 μ B for Tb3+) Dy- and Ho-ion substituted TbMnO3 results in an increase in the magnetic susceptibility at low fields ( ≤ 10.6 μ B for Dy3+ and Ho3+). The observed spiral-spin AFM order in TbMnO3 is stable with respect to the dopant substitutions, which modify the Mn-O-Mn bond angles and lead to stronger the ferromagnetic component of the magnetic moment. Given the fact that magnetic ordering in TbMnO3 causes the ferroelectricity, this is an important step in the field of the magnetically driven ferroelectricity in the class of magnetoelectric multiferroics, which traditionally have low magnetic moments due to the predominantly antiferromagnetic order. In addition, the present study reveals important insights on the phenomenological coupling mechanism in detail, which is essential in order to design new materials with enhanced magneto-electric effects at higher temperatures.

  15. Summary of the radiation damage studies of the SDC dopants in polystyrene

    SciTech Connect

    Pla-Dalmau, A.; Foster, G.W.; Zhang, G.

    1993-12-22

    Approximately 80 commercially available fluorescent organic compounds were studied as dopants in a polystyrene matrix for possible use in wavelength shifting (WLS) fibers. The goal was to find a new green- emitting WLS fiber which would outperform in light yield and decay time the currently available fiber doped with K-27. Therefore the fluorescent compounds of interest should exhibit the following spectroscopic characteristics in polystyrene: {lambda}{sub abs} = 400--450 nm,{lambda}{sub em} = 450--550 nm, {tau} = 3--7 ns and quantum efficiency of minimum 0.7. Polystyrene samples doped with different fluorescent compounds were prepared and characterized. Of all the compounds tested, only a series of coumarins exhibited the spectroscopic characteristics of interest. Radiation damage studies had to be performed on these samples in order to condusively determine if they were better candidates than K-27 for green WLS fibers. AU samples except those showing opacity or deep coloration were irradiated. They were, however, separated in two sets. Radiation damage set No. 20 was mainly formed by the coumarin derivatives. Radiation damage set No. 22 was based on the remaining samples. The irradiations were performed at the Phoenix Memorial Laboratory using a {sup 60}Co source. Both sets were exposed to a total dose of 10 Mrad in air, at a dose rate of 1.8 Mrad/h. Transmittance measurements were recorded before and after irradiation, and after annealing. After irradiation, the samples were annealed in oxygen to accelerate the recovery process.

  16. The study of dopant segregation behavior during the growth of GaAs in microgravity

    NASA Technical Reports Server (NTRS)

    Matthiesen, David H.; Majewski, J. A.

    1994-01-01

    An investigation into the segregation behavior of selenium doped gallium arsenide during directional solidification in the microgravity environment was conducted using the Crystal Growth Furnace (CGF) aboard the first United States Microgravity Laboratory (USML-1). The two crystals grown were 1.5 cm in diameter and 16.5 cm in length with an initial melt length of 14 cm. Two translation periods were executed, the first at 2.5 microns/s and after a specified time, which was different between the two experiments, the translation rate was doubled to 5.0 microns/s. The translation was then stopped and the remaining sample melt was solidified using a gradient freeze technique in the first sample and a rapid solidification in the second experiment. Measurement of the selenium dopant distribution, using quantitative infrared transmission imaging, indicates that the first sample initially achieved diffusion controlled growth as desired. However, after about 1 cm of growth, the segregation behavior was driven from a diffusion controlled growth regime to a complete mixing regime. Measurements in the second flight sample indicated that the growth was always in a complete mixing regime. In both experiments, voids in the center line of the crystal, indicative of bubble entrapment, were found to correlate with the position in the crystal when the translation rates were doubled.

  17. Impact of stochastic accelerations on dopant segregation in microgravity semiconductor crystal growth

    NASA Astrophysics Data System (ADS)

    Ruiz, X.; Bitlloch, P.; Ramírez-Piscina, L.; Casademunt, J.

    2012-09-01

    The residual accelerations that are typically present in microgravity environments (g-jitters) contain a broad spectrum of frequencies and may be modeled as stochastic processes. Their effects on the quality of the semiconductor crystals are analyzed here quantitatively with direct numerical simulation. In particular we focus on the dopant segregation effects due to thermosolutal convection as a function of the parameters characterizing the statistics of the stochastic force. The numerical simulation is specified for material parameters of two doped semiconductors (Ge:Ga and GaAs:Se) in realistic conditions of actual microgravity environments. As a general result, we show that the segregation response is strongly dominated by the low-frequency part of the g-jitter spectrum. In addition, we develop a simplified model of the problem based on linear response theory that projects the dynamics into very few effective modes. The model captures remarkably well the segregation effects for an arbitrary time-dependent acceleration of small amplitude, while it implies an enormous reduction of computer demands. This model could be helpful to analyze results from real accelerometric signals and also as a predictive tool for experimental design.

  18. Polyaniline films and powders: Effect of excess dopant acid on conductivity

    SciTech Connect

    Feng, J.; MacDiarmid, A.G.

    1995-12-31

    We have shown previously that excess dopant acid, d,l camphorsulfonic acid, (HCSA), when present in a solution of m-cresol containing polyaniline doped with HCSA, reduces the conductivity of films of the doped polyaniline cast from the solution. We here report that the opposite effect is observed with powders of the same doped polyaniline. Polyaniline doped with HCSA was precipitated by pouring a solution of the doped polyaniline into excess hexane; it was then washed with either methanol or methanol containing HCSA to remove the m-cresol. The quantity of HCSA in the resulting dried powders was determined using TGA techniques. It was found that excess HCSA in the doped polyaniline increased the conductivity of compressed pellets of the polymer. The conductivity was increased from {approximately}4 S/cm (no excess HCSA) to {approximately}40 S/cm in material containing twice the amount of HCSA necessary for doping. The conductivity of {approximately}40 S/cm is the highest yet reported for doped polyaniline powders. Reasons for this increase conductivity will be presented.

  19. Investigation of lauric acid dopant as a novel carbon source in MgB 2 wire

    NASA Astrophysics Data System (ADS)

    Lee, C. M.; Lee, S. M.; Park, G. C.; Joo, J.; Lim, J. H.; Kang, W. N.; Yi, J. H.; Jun, B.-H.; Kim, C.-J.

    2010-11-01

    We fabricated lauric acid (LA) doped MgB 2 wires and investigated the effects of the LA doping. For the fabrication of the LA-doped MgB 2 wires, B powder was mixed with LA at 0-5 wt.% of the total amount of MgB 2 using an organic solvent, dried, and then the LA-treated B and Mg powders were mixed stoichiometrically. The powder mixture was loaded into an Fe tube and the assemblage was drawn and sintered at 900 °C for 3 h under an argon atmosphere. We observed that the LA doping induced the substitution of C for the B sites in MgB 2 and that the actual content of C increased monotonically with increasing LA doping level. The LA-doped MgB 2 wires exhibited a lower critical temperature ( Tc), but better critical current density ( Jc) behavior in a high magnetic field: the 5 wt.% LA-doped sample had a Jc value of 5.32 × 10 3 A/cm 2, which was 2.17 times higher than that of the pristine sample (2.45 × 10 3 A/cm 2) at 5 K and 6 T, suggesting that LA is an effective C dopant in MgB 2 for enhancing the high-field Jc performance.

  20. Geostar - Navigation location system

    NASA Astrophysics Data System (ADS)

    Keyser, Donald A.

    The author describes the Radiodetermination Satellite Service (RDSS). The initial phase of the RDSS provides for a unique service enabling central offices and headquarters to obtain position-location information and receive short digital messages from mobile user terminals throughout the contiguous United States, southern Canada, and northern Mexico. The system employs a spread-spectrum, CDMA modulation technique allowing multiple customers to use the system simultaneously, without preassigned coordination with fellow users. Position location is currently determined by employing an existing radio determination receiver, such as Loran-C, GPS, or Transit, in the mobile user terminal. In the early 1990s position location will be determined at a central earth station by time-differential ranging of the user terminals via two or more geostationary satellites. A brief overview of the RDSS system architecture is presented with emphasis on the user terminal and its diverse applications.

  1. X-ray photoelectron diffraction study of dopant effects in La{sub 0.7}X{sub 0.3}MnO{sub 3} (X = La, Sr, Ca, Ce) thin films

    SciTech Connect

    Raisch, C.; Glaser, M.; Chasse, T.; Langheinrich, C.; Chasse, A.; Werner, R.; Kleiner, R.; Koelle, D.

    2013-02-14

    We present and discuss element-specific x-ray photoelectron diffraction (XPD) patterns of La, Mn, O and the dopant ions Ca, Sr and Ce of various La{sub 0.7}X{sub 0.3}MnO (LXMO) films grown epitaxially on SrTiO{sub 3}(001) substrates. The recorded XPD polar scans are explained in the framework of multiple-scattering cluster calculations, where in general a very good agreement between experimental and theoretical data has been found. Results for all thin films are compatible with a tetragonally distorted cubic perovskite structure with similar MnO{sub 6} network. Strong evidence for Mn-site termination was found in all thin films. Dopant locations on A-type sites were clearly confirmed for Sr in LSMO and Ca in LCMO films by means of XPD polar scans. The absence of surface-sensitive Ce3d diffraction features for Ce in LCeMO points to non-equivalent Ce sites and related near-surface disorder.

  2. Marine cable location system

    SciTech Connect

    Zachariadis, R.G.

    1984-05-01

    An acoustic positioning system locates a marine cable at an exploration site, such cable employing a plurality of hydrophones at spaced-apart positions along the cable. A marine vessel measures water depth to the cable as the vessel passes over the cable and interrogates the hydrophones with sonar pulses along a slant range as the vessel travels in a parallel and horizontally offset path to the cable. The location of the hydrophones is determined from the recordings of water depth and slant range.

  3. Preparation of monotectic alloys having a controlled microstructure by directional solidification under dopant-induced interface breakdown

    NASA Technical Reports Server (NTRS)

    Parr, R. A.; Johnston, M. H.; Mcclure, J. C.

    1980-01-01

    Monotectic alloys having aligned spherical particles of rods of the minor component dispersed in a matrix of the major component are prepared by forming a melt containing predetermined amounts of the major and minor components of a chosen monotectic system, providing in the melt a dopant capable of breaking down the liquid solid interface for the chosen alloy, and directionally solidfying the melt at a selected temperature gradient and a selected rate of movement of the liquid-solid interface (growth rate). Shaping of the minor component into spheres or rods and the spacing between them are controlled by the amount of dopant and the temperature gradient and growth rate values. Specific alloy systems include Al Bi, Al Pb and Zn Bi, using a transition element such as iron.

  4. Sensitivity of CoSi2 precipitation in silicon to extra-low dopant concentrations. I. Experiment

    NASA Astrophysics Data System (ADS)

    Fortuna, F.; Ruault, M.-O.; Borodin, V. A.; Ganchenkova, M. G.; Kaïtasov, O.

    2015-01-01

    We demonstrate that the precipitation of cobalt disilicide phase in silicon during high-temperature (500 °C and 650 °C) implantation is noticeably affected by impurities of phosphorus and boron. Measurements of B-type CoSi2 cluster sizes and number densities as a function of implantation dose indicate that the number density of clusters progressively increases as the phosphorus concentration increases from 7 × 1011 to 8 × 1013 cm-3. A tentative explanation of these observations is proposed based on the previously suggested mechanism of precipitate nucleation, and on the results of first principles calculations summarized in Paper II, published as a follow-up paper. The results imply that utmost care is to be taken when dealing with transition metal precipitation during ion implantation into silicon because variations in the dopant content can affect the reproducibility of results even at extremely low dopant concentrations.

  5. Rational Design of Dipolar Chromophore as an Efficient Dopant-Free Hole-Transporting Material for Perovskite Solar Cells.

    PubMed

    Li, Zhong'an; Zhu, Zonglong; Chueh, Chu-Chen; Jo, Sae Byeok; Luo, Jingdong; Jang, Sei-Hum; Jen, Alex K-Y

    2016-09-14

    In this paper, an electron donor-acceptor (D-A) substituted dipolar chromophore (BTPA-TCNE) is developed to serve as an efficient dopant-free hole-transporting material (HTM) for perovskite solar cells (PVSCs). BTPA-TCNE is synthesized via a simple reaction between a triphenylamine-based Michler's base and tetracyanoethylene. This chromophore possesses a zwitterionic resonance structure in the ground state, as evidenced by X-ray crystallography and transient absorption spectroscopies. Moreover, BTPA-TCNE shows an antiparallel molecular packing (i.e., centrosymmetric dimers) in its crystalline state, which cancels out its overall molecular dipole moment to facilitate charge transport. As a result, BTPA-TCNE can be employed as an effective dopant-free HTM to realize an efficient (PCE ≈ 17.0%) PVSC in the conventional n-i-p configuration, outperforming the control device with doped spiro-OMeTAD HTM.

  6. High-performance germanium n+/p junction by nickel-induced dopant activation of implanted phosphorus at low temperature

    NASA Astrophysics Data System (ADS)

    Wei, Huang; Chao, Lu; Jue, Yu; Jiang-Bin, Wei; Chao-Wen, Chen; Jian-Yuan, Wang; Jian-Fang, Xu; Chen, Wang; Cheng, Li; Song-Yan, Chen; Chun-Li, Liu; Hong-Kai, Lai

    2016-05-01

    High-performance Ge n+/p junctions were fabricated at a low formation temperature from 325 °C to 400 °C with a metal(nickel)-induced dopant activation technique. The obtained NiGe electroded Ge n+/p junction has a rectification ratio of 5.6× 104 and a forward current of 387 A/cm2 at -1 V bias. The Ni-based metal-induced dopant activation technique is expected to meet the requirement of the shallow junction of Ge MOSFET. Project supported by the National Natural Science Foundation of China (Grant Nos. 61176092 and 61474094), the National Basic Research Program of China (Grant Nos. 2012CB933503 and 2013CB632103), and the National Natural Science Foundation of China-National Research Foundation of Korea Joint Research Project (Grant No. 11311140251).

  7. The Effects of Highly Chiral Dopants on the Smectic Phases of Liquid Crystals Remarkably Wide Intermediate Phases

    SciTech Connect

    Jaradat,S.; Gleeson, H.; Roberts, N.; Wang, Y.

    2006-01-01

    A series of liquid crystalline mixtures that exhibit remarkably stable 4-layer intermediate phases, with phase ranges of around 30 {sup o}C, are reported. The mixtures are formed from a selenium-containing antiferroelectric material combined with up to 9% (by weight) of a highly chiral dopant. Various experimental methods including X-ray scattering and electro-optic techniques were employed in order to determine a set of physical parameters for each of the mixtures, such as smectic layer spacing, steric and optical tilt angles and spontaneous polarization. It is shown that the antiferroelectric phase is lost at dopant concentrations between 5 and 6%, when the stability of the 4-layer intermediate phase becomes significantly enhanced. This transition is associated with a decrease in the ratio of the spontaneous to flexoelectric coupling coefficients in the system. The combined observations suggest that molecular conformation is a more significant factor in stabilising the intermediate phases than chirality. The data are compared.

  8. Electrical and optical properties of SrTiO3 nanopowders: Effect of different dopants Ba and Ag

    NASA Astrophysics Data System (ADS)

    Ghasemifard, Mahdi; Ghamari, Misagh; Iziy, Meysam

    2016-05-01

    Using strontium-titanium salts precursor, nanopowders (STO-based-NPs) were successfully synthesized by controlled gel-combustion method. Citric and nitric acids in an optimum ratio were used as the fuel and oxidizer agents, respectively. After heat treatment at 850∘C, the crystalline structure of the products was investigated by X-ray diffraction. The effects of Ba and Ag dopants on particle size distribution were discussed by transmission electron microscopy (TEM). The optical and dielectric parameters such as energy band gap (Eg), real and imaginary parts of refractive index, dielectric function and energy loss function of nanopowders have been investigated by UV-Vis and FTIR spectra. The band gap of SrTiO3 increased with increasing Ba, Ag and Ba-Ag. Different atomic radii of dopants are responsible for changing optical and dielectric parameters due to the altered orbital configuration of the lattice structure.

  9. Structural and orientation effects on electronic energy transfer between silicon quantum dots with dopants and with silver adsorbates

    SciTech Connect

    Vinson, N.; Freitag, H.; Micha, D. A.

    2014-06-28

    Starting from the atomic structure of silicon quantum dots (QDs), and utilizing ab initio electronic structure calculations within the Förster resonance energy transfer (FRET) treatment, a model has been developed to characterize electronic excitation energy transfer between QDs. Electronic energy transfer rates, K{sub EET}, between selected identical pairs of crystalline silicon quantum dots systems, either bare, doped with Al or P, or adsorbed with Ag and Ag{sub 3}, have been calculated and analyzed to extend previous work on light absorption by QDs. The effects of their size and relative orientation on energy transfer rates for each system have also been considered. Using time-dependent density functional theory and the hybrid functional HSE06, the FRET treatment was employed to model electronic energy transfer rates within the dipole-dipole interaction approximation. Calculations with adsorbed Ag show that: (a) addition of Ag increases rates up to 100 times, (b) addition of Ag{sub 3} increases rates up to 1000 times, (c) collinear alignment of permanent dipoles increases transfer rates by an order of magnitude compared to parallel orientation, and (d) smaller QD-size increases transfer due to greater electronic orbitals overlap. Calculations with dopants show that: (a) p-type and n-type dopants enhance energy transfer up to two orders of magnitude, (b) surface-doping with P and center-doping with Al show the greatest rates, and (c) K{sub EET} is largest for collinear permanent dipoles when the dopant is on the outer surface and for parallel permanent dipoles when the dopant is inside the QD.

  10. Air stable organic salt as an n-type dopant for efficient and stable organic light-emitting diodes.

    PubMed

    Bin, Zhengyang; Duan, Lian; Qiu, Yong

    2015-04-01

    Air-stable and low-temperature-evaporable n-type dopants are highly desired for efficient and stable organic light-emitting diodes (OLEDs). In this work, 2-(2-Methoxyphenyl)-1,3-dimethyl-1H-benzoimidazol-3-ium iodide (o-MeO-DMBI-I), a thermally decomposable precursor of organic radical o-MeO-DMBI, has been employed as a novel n-type dopant in OLEDs, because of its air stability, low decomposition temperature, and lack of atom diffusion. The n-type electrical doping is evidenced by the rapid increase in current density of electron-only devices and the large improvement in conductivity, originated from increased electron concentration in electron-transport layer (ETL) and reduced electron injection barrier. A highly efficient and stable OLED is created using o-MeO-DMBI as an n-type dopant in Bphen. Compared with the control device with its high-temperature-evaporable n-type dopant cesium carbonate (Cs2CO3), o-MeO-DMBI-doped device showed an incredible boom in current efficiency from 28.6 to 42.2 cd/A. Moreover, the lifetime (T(70%)) of o-MeO-DMBI-doped device is 45 h, more than 20 times longer than that of the Cs2CO3-doped device (2 h). The enhanced efficiency and stability are attributed to the improved balance of holes and electrons in the emissive layer, and the eliminated atom diffusion of cesium. PMID:25768295

  11. Fourier transform infrared spectroscopic analysis of spin-on dopant layers used in proximity rapid thermal diffusion

    NASA Astrophysics Data System (ADS)

    Romero-Borja, Fernando; Grabiec, Piotr B.; Zagozdzon-Wasik, Wanda; Wood, Lowell L.

    1994-01-01

    A new rapid thermal diffusion (proximity RTD) method, utilizing spin-on dopant (SOD) layers, was reported recently. This technique is based on an evaporation-gas phase diffusion- adsorption-surface reaction-diffusion in Si scheme. In this paper we use FTIR spectroscopy to investigate a relationship between the SOD layer structure/composition and its doping efficiency, as determined by sheet resistance (RS) measurements, for a phosphorus diffusion case.

  12. Mn2+-Doped CdSe/CdS Core/Multishell Colloidal Quantum Wells Enabling Tunable Carrier-Dopant Exchange Interactions

    NASA Astrophysics Data System (ADS)

    Delikanli, Savas; Scrace, Thomas; Murphy, Joseph; Barman, Biblop; Tsai, Yutsung; Zhang, Peiyao; Hernandez-Martinez, Pedro Ludwig; Christodoulides, Joseph; Cartwright, Alexander N.; Petrou, Athos; Demir, Hilmi Volkan

    We report the manifestations of carrier-dopant exchange interactions in colloidal Mn2+-doped CdSe/CdS core/multishell quantum wells. In our solution-processed quantum well heterostructures, Mn2+ was incorporated by growing a Cd0.985Mn0:015S monolayer shell on undoped CdSe nanoplatelets using the colloidal atomic layer deposition technique. The carrier-magnetic ion exchange interaction effects are tunable through wave function engineering. This is realized by controlling the spatial overlap between the carrier wave functions with the manganese ions through adjusting the location, composition, and number of the CdSe, Cd1-xMnxS, and CdS layers. Our colloidal quantum wells, which exhibit magneto-optical properties analogous to those of epitaxially grown quantum wells, offer new opportunities for solution-processed spin-based semiconductor devices. H.V.D. acknowledges support from EU-FP7 Nanophotonics4Energy NoE, TUBITAK, NRF-CRP-6-2010-02 and A*STAR of Singapore. Work at the University at Buffalo was supported by NSF DMR 1305770.

  13. Location of Geothermal Resources

    SciTech Connect

    2004-07-01

    Geothermal resources, which utilize the heat of the earth, are located throughout the plant's crust. Those closer to the surface are most commonly used because geothermal drilling costs are currently prohibitive below depths of between 10,000 and 15,000 feet.

  14. Birefringent Stress Location Sensor

    NASA Astrophysics Data System (ADS)

    Franks, R. B.; Torruellas, W.; Youngquist, R. C.

    1986-08-01

    A new type of stress location sensor is discussed in which the FMCW technique is used to detect the difference in propagation time between two optical paths in an optical fiber due to stress induced modal coupling. Two versions of the system are included, and experimental results are presented for each system.

  15. LOCATING AREAS OF CONCERN

    EPA Science Inventory

    A simple method to locate changes in vegetation cover, which can be used to identify areas under stress. The method only requires inexpensive NDVI data. The use of remotely sensed data is far more cost-effective than field studies and can be performed more quickly. Local knowledg...

  16. Particle impact location detector

    NASA Technical Reports Server (NTRS)

    Auer, S. O.

    1974-01-01

    Detector includes delay lines connected to each detector surface strip. When several particles strike different strips simultaneously, pulses generated by each strip are time delayed by certain intervals. Delay time for each strip is known. By observing time delay in pulse, it is possible to locate strip that is struck by particle.

  17. Effects of different dopants on switching behavior of HfO2-based resistive random access memory

    NASA Astrophysics Data System (ADS)

    Deng, Ning; Pang, Hua; Wu, Wei

    2014-10-01

    In this study the effects of doping atoms (Al, Cu, and N) with different electro-negativities and ionic radii on resistive switching of HfO2-based resistive random access memory (RRAM) are systematically investigated. The results show that forming voltages and set voltages of Al/Cu-doped devices are reduced. Among all devices, Cu-doped device shows the narrowest device-to-device distributions of set voltage and low resistance. The effects of different dopants on switching behavior are explained with deferent types of CFs formed in HfO2 depending on dopants: oxygen vacancy (Vo) filaments for Al-doped HfO2 devices, hybrid filaments composed of oxygen vacancies and Cu atoms for Cu-doped HfO2 devices, and nitrogen/oxygen vacancy filaments for N-doped HfO2 devices. The results suggest that a metal dopant with a larger electro-negativity than host metal atom offers the best comprehensive performance.

  18. Size and dopant-concentration dependence of photoluminescence properties of ion-implanted phosphorus- and boron-codoped Si nanocrystals

    NASA Astrophysics Data System (ADS)

    Nakamura, Toshihiro; Adachi, Sadao; Fujii, Minoru; Sugimoto, Hiroshi; Miura, Kenta; Yamamoto, Shunya

    2015-04-01

    We investigate the nanocrystallite-size and dopant-concentration dependence of the photoluminescence (PL) properties of heavily phosphorus- (P) and boron- (B) codoped Si nanocrystals (Si NCs), prepared using a combination of sputtering and ion implantation techniques. We find that the heavily doped Si NC exhibits three exotic luminescence bands, A, B, and C. The peak energy of band A redshifts with increasing dopant concentration. This band is due to the band-to-band transition at the reduced Si-NC band gap caused by the formation of impurity bands together with band-tailing effects. The PL redshift becomes large when the nanocrystallite size decreases, suggesting the occurrence of the quantum-confinement-induced carrier doping effect. The peak energies of bands B and C are independent of both the concentration and size, indicating that these bands are due to transitions between defect- and/or impurity-related localized states. Band A shows stronger thermal quenching than the PL band in pure (undoped) Si NCs, the magnitude of which depends on the dopant concentration. The stronger thermal quenching in band A is probably due to the thermally induced migration of electrons in the impurity band.

  19. Layer-dependent dopant stability and magnetic exchange coupling of iron-doped MoS2 nanosheets.

    PubMed

    Shu, Haibo; Luo, Pengfei; Liang, Pei; Cao, Dan; Chen, Xiaoshuang

    2015-04-15

    Using density-functional theory calculations including a Hubbard U term we explore structural stability, electronic and magnetic properties of Fe-doped MoS2 nanosheets. Unlike previous reports, the geometry and the stability of Fe dopant atoms in MoS2 nanosheets strongly depend on the chemical potential and the layer number of sheets. The substitution Fe dopant atoms at the Mo sites are energetically favorable in monolayer MoS2 and the formation of intercalated and substitutional Fe complexes are preferred in bilayer and multilayer ones under the S-rich regime that is a popular condition for the synthesis of MoS2 nanosheets. We find that the Fe dopants prefer to the ferromagnetic coupling in monolayer MoS2 and the antiferromagnetic coupling in bilayer and multilayer ones, suggesting the layer dependence of magnetic exchange coupling (MEC). The transition of MEC in Fe-doped MoS2 sheets induced by the change of layer number arises from the competition mechanism between the double-exchange and superexchange couplings. The findings provide a route to facilitate the design of MoS2-based diluted magnetic semiconductors and spintronic devices.

  20. Simulation and comparative study of tunneling field effect transistors with dopant-segregated Schottky source/drain

    NASA Astrophysics Data System (ADS)

    Zhang, Yi Bo; Sun, Lei; Xu, Hao; Han, Jing Wen

    2016-04-01

    Dopant-segregated Schottky source/drain tunneling field effect transistors (STFET) are investigated in this paper. The working mechanisms of STFET and the influence of device parameters are studied with Synopsys Sentaurus. Schottky source/drain MOSFETs possess several advantages over conventional MOSFETs, and dopant segregation can be feasibly achieved within current silicidation process. With dopant segregation, highly doped regions can be obtained after silicidation, which is necessary for band-to-band tunneling. With proper parameter setting, STFET can achieve comparable performance as TFET. High segregation doping for STFET is required to increase band-to-band tunneling probability and suppress bipolar behaviors. Increasing the electron barrier height at source side helps to provide larger drive current and higher on/off ratio. It is also found that STFET’s on-state performance is irrelevant to the segregation length when the segregation length is larger than a certain value. Furthermore, STFET is also insensitive to the Schottky barrier at drain side when the Schottky barrier at source side is fixed, which would relax the requirement for source/drain fabrication.

  1. Atomic-scale quantification of interdiffusion and dopant localization in GeSbTe-based memory devices

    NASA Astrophysics Data System (ADS)

    Chae, B.-G.; Seol, J.-B.; Song, J.-H.; Jung, W.-Y.; Hwang, H.; Park, C.-G.

    2016-09-01

    Fabrication of phase-change memory devices at modest or ambient temperatures leads to nanoscale compositional variations in phase-transition layers, where amorphous-polycrystalline phase change takes place via electrical switching, and can alter the device's performances. Here, by transmission electron microscopy and atom probe tomography, we address that thermal annealing at 400 °C for 20 min induces an elemental interdiffusion in the devices consisting of TiN (top electrode), carbon-doped GeSbTe (phase-transition layer), and TiSiN (bottom heater). With respect to the employed annealing process, the Ge atoms of GeSbTe layer have diffused into TiSiN layer at a given sample volume, while the Ti atoms of TiSiN layer into GeSbTe layer. Furthermore, non-random nature of dopant distribution in the GeSbTe materials leads to a Ti-localization including dopants at the GeSbTe/TiSiN interfaces. Our findings have two important implications: First, the annealing-driven interdiffusion of Ge and Ti is a predominant mechanism responsible for nanoscale compositional variations in GeSbTe layer; second, such an interdiffusion and the resultant dopant localization play a crucial role on the driving force for amorphous-polycrystalline transition of GeSbTe-based memory devices.

  2. Grain boundary segregation of cation dopants in {alpha}-Al{sub 2}O{sub 3} scales

    SciTech Connect

    Pint, B.A.; Alexander, K.B.

    1996-12-31

    A Fe-20at.%Cr-10%Al matrix was dispersed with a wide range of different oxides in order to study the effect of oxygen-active dopants on the high-temperature growth and adhesion of {alpha}-Al{sub 2}O{sub 3} scales. Effect of these various cation dopants on the alumina scale microstructure was correlated with dopant ion segregation to the {alpha}-Al{sub 2}O{sub 3} grain boundaries using analytical electron microscopy. Elements such as Mn and V showed little effect on the oxide scale and were not observed to segregate. Elements such as Y and Gd resulted in finer, more columnar {alpha}-Al{sub 2}O{sub 3} grains and were segregated to scale grain boundaries. However, Ti, Ta, Ca, and Nb also were found to segregate but had a lesser effect on scale morphology. This indicates that cation segregation to scale grain boundaries is not a sufficient condition to achieve beneficial oxidation effects. The driving force for segregation in growing alumina scales is discussed.

  3. Measurement of Small Molecular Dopant F4TCNQ and C60F36 Diffusion in Organic Bilayer Architectures.

    PubMed

    Li, Jun; Rochester, Chris W; Jacobs, Ian E; Friedrich, Stephan; Stroeve, Pieter; Riede, Moritz; Moulé, Adam J

    2015-12-30

    The diffusion of molecules through and between organic layers is a serious stability concern in organic electronic devices. In this work, the temperature-dependent diffusion of molecular dopants through small molecule hole transport layers is observed. Specifically we investigate bilayer stacks of small molecules used for hole transport (MeO-TPD) and p-type dopants (F4TCNQ and C60F36) used in hole injection layers for organic light emitting diodes and hole collection electrodes for organic photovoltaics. With the use of absorbance spectroscopy, photoluminescence spectroscopy, neutron reflectometry, and near-edge X-ray absorption fine structure spectroscopy, we are able to obtain a comprehensive picture of the diffusion of fluorinated small molecules through MeO-TPD layers. F4TCNQ spontaneously diffuses into the MeO-TPD material even at room temperature, while C60F36, a much bulkier molecule, is shown to have a substantially higher morphological stability. This study highlights that the differences in size/geometry and thermal properties of small molecular dopants can have a significant impact on their diffusion in organic device architectures. PMID:26673846

  4. Probing the effect of intrinsic defects and dopants on the structural evolution and optical properties of ZnO nanocrystallites

    SciTech Connect

    Panda, N. R.; Sahu, D.; Acharya, B. S.; Nayak, P.

    2015-06-24

    Role of intrinsic defects and external impurities in modifying the structural and optical properties of ZnO nanostructures has been studied and discussed. ZnO nanocrystallites doped with B, N and S elements have been prepared by ultrasound assisted wet chemical method. Structural evolution of ZnO in presence of dopant ions has been studied by XRD and electron microscopic measurements. Elemental analysis like XPS has been carried out to ascertain the dopant configuration. A variation in crystallographic parameters and microstructure is found to be observed as impurity is incorporated into ZnO. This has been explained on the basis of the substitution of dopant at Zn{sup 2+} and O{sup −} sites rearranging the lattice. Optical absorption measurements and PL studies reflect a change in band gap of ZnO by impurity adsorption. Most of the cases, the band gap is found to be broadened which has been explained in the line of Moss-Burstein effect. The excitonic emission in ZnO is observed to blue shift supporting the above results and the defect emissions also get modified in terms of position and intensity. New PL bands observed have been assigned to the transitions related to the defect states present in the band gap of ZnO along with intrinsic defects.

  5. Highly efficient blue organic light-emitting diodes using dual emissive layers with host-dopant system

    NASA Astrophysics Data System (ADS)

    Lee, Bo Mi; Yu, Hyeong Hwa; Kim, You Hyun; Kim, Nam Ho; Yoon, Ju An; Mascher, Peter; Kim, Woo Young

    2012-10-01

    In this study, we fabricated highly efficient blue organic light-emitting diodes by designing different emitting layer structures with fluorescent host and dopant materials of 4,4-bis(2,2-diphenylyinyl)-1,10-biphenyl (DPVBi) and 9,10- bis(2-naphthyl) anthracene (ADN) as host materials and 4,4'-bis(9-ethyl-3-carbazovinylene)-1,1'biphenyl (BCzVBi) as a dopant material to demonstrate electrical and optical improvements. Best enhancement in luminance and luminous efficiency were achieved by a quantum well structure and energy transfer between host and dopant materials in device F as of 8668cd/m2 at 8V and 5.16 Cd/A at 103.20 mA/cm2 respectively. Among the blue OLED devices doped by BCzVBi, device B emits the deepest blue emission with Commission Internationale de l'É clairage (CIExy) coordinates of (0.157, 0.117) at 8V.

  6. The effect of the dopant nature on the reactivity, interlayer bonding and electronic properties of dual doped bilayer graphene.

    PubMed

    Denis, Pablo A; Iribarne, Federico

    2016-09-21

    Herein, we report on the structural, chemical reactivity and electronic properties of dual-doped bilayer graphene (DDBG). Only one of the layers was doped with a pair of 3p-2p elements. Aluminum was the only dopant which prefers to interact with the undoped layer. The interlayer interaction energies of DDBG are smaller than those determined for bilayer graphene, except for AlN and AlO DDBG. This effect is due to the presence of weak Al-C interlayer bonds. The dopants increase the reactivity of both the doped and undoped layers. Interestingly, we found that hydrogenation is a method that can be used to switch on/off the interlayer bonding, as it controlled the X-C interlayer distance (X = Al, Si, P, S). The magnetic moment of the systems can be adjusted by the position of the 3p dopant. In effect, when X interacts with the doped layer, the magnetic moment is reduced, while it is maintained when X fails to interact. Finally, we found that the doped layer is able to break the symmetry of the undoped sheet and small gaps can be opened in the band structure of the undoped layer. As observed for single doped monolayer graphene, the most effective element for such purposes is P, which opened gaps close to 0.2 eV. For SiN DDBG, the spin filtering properties are enhanced with respect to the monolayered structure. PMID:27545204

  7. Enhanced photoelectric property and visible activity of nitrogen doped TiO2 synthesized from different nitrogen dopants

    NASA Astrophysics Data System (ADS)

    Cheng, Xiuwen; Yu, Xiujuan; Xing, Zipeng

    2013-03-01

    N doped TiO2 nano-particles were synthesized through simple sol-gel reactions from different nitrogen dopants. The resulting materials were characterized by X-ray diffraction (XRD), Raman spectra, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible diffuse reflectance spectroscopy (UV-vis DRS) and surface photovoltage spectroscopy (SPS). Furthermore, the photoelectric property and activity enhanced mechanism were investigated in detail. It was found that the introduction of N dopants could effectively inhibit the crystal growth of TiO2 nano-particles, enhance the light absorption in visible region, possess more surface hydroxyl groups and separate the photoinduced charge carriers. The effects of dopants on the photocatalytic activity for the degradation of rhodamine B (RhB) were investigated in detail. It is clearly demonstrated that the photocatalytic activity of N)-TiO nano-particle was higher than that of NCl)-TiO and undoped TiO2. The enhanced photocatalytic activity could be attributed to the smaller crystal size, more hydroxyl groups on surface of the catalyst, stronger light absorption in visible region and higher separation efficiency of photoinduced charge carriers.

  8. X-ray powder diffraction study of some dopant positions in unit cells of chosen AIIBVI compounds crystals

    NASA Astrophysics Data System (ADS)

    Michalski, E.; Demianiuk, Mieczyslaw

    1995-10-01

    The characteristic changes in relative reflections intensity (without substantial change of their positions and without any additional reflexes from any new phases) on x-ray powder diffraction patterns from different doped AIIBVI compound crystals have been experimentally registered. On the basis of the powder diffraction data the changes in the lattice constants (increasing as well as decreasing) have been confirmed too. These changes have been tried to be connected with crystal structure under the assumption of statistical occupation of parts of positions chosen from positions possible to occupy in the lattice. The qualitative conformity of calculated relative intensity of x-ray reflections for the best matched models with obtained experimentally and also qualitative conformity of changes in lattice constants have been obtained for examined cases. Simultaneously the possibility of obtaining such conformity for other models (with dopants occupying other positions in lattice) have been excluded. It allows us to determine the position occupying by dopants and to estimate the relative contents of dopants.

  9. The big red shift of photoluminescence of Mn dopants in strained CdS: a case study of Mn-doped MnS-CdS heteronanostructures.

    PubMed

    Zuo, Taisen; Sun, Zhipeng; Zhao, Yuliang; Jiang, Xiaoming; Gao, Xueyun

    2010-05-19

    The red photoluminescence of Mn dopants in MnS-CdS heteronanostructures has been observed for the first time. The red photoluminescence at 650 nm derives from emission due to the (4)T(1) --> (6)A(1) transition of Mn(2+) dopants in a CdS matrix exposed to gigapascal-level lattice stress. HRTEM, FFT, XRD, and optical studies revealed that the lattice of Mn-doped CdS is compressed to match that of MnS when CdS crystallizes at the MnS surface to form MnS-CdS heteronanostructures. The photoluminescence decay times of such Mn dopants are on the order of nanoseconds because of the spin-flip interactions between Mn dopants and free carriers in the CdS matrix.

  10. Control of the binding energy by tuning the single dopant position, magnetic field strength and shell thickness in ZnS/CdSe core/shell quantum dot

    NASA Astrophysics Data System (ADS)

    Talbi, A.; Feddi, E.; Zouitine, A.; Haouari, M. El; Zazoui, M.; Oukerroum, A.; Dujardin, F.; Assaid, E.; Addou, M.

    2016-10-01

    Recently, the new tunable optoelectronic devices associated to the inclusion of the single dopant are in continuous emergence. Combined to other effects such as magnetic field, geometrical confinement and dielectric discontinuity, it can constitute an approach to adjusting new transitions. In this paper, we present a theoretical investigation of magnetic field, donor position and quantum confinement effects on the ground state binding energy of single dopant confined in ZnS/CdSe core/shell quantum dot. Within the framework of the effective mass approximation, the Schrödinger equation was numerically been solved by using the Ritz variational method under the finite potential barrier. The results show that the binding energy is very affected by the core/shell sizes and by the external magnetic field. It has been shown that the single dopant energy transitions can be controlled by tuning the dopant position and/or the field strength.

  11. Electronic and Magnetic Properties of Encapsulated MoS2 Quantum Dots: The Case of Noble Metal Nanoparticle Dopants.

    PubMed

    Loh, Guan Chee

    2016-04-18

    With the rise of 2D materials, such as graphene and transition metal dichalcogenides, as viable materials for numerous experimental applications, it becomes more necessary to maintain fine control of their properties. One expedient and efficacious technique to regulate their properties is surface functionalization. In this study, DFT calculations are performed on triangular MoS2 quantum dots (QDs) either partially or completely doped with nanoparticles (NPs) of the noble metals Au, Ag, and Pt. The effects of these dopants on the geometry, electronic properties, magnetic properties, and chemical bonding of the QDs are investigated. The calculations show that the structural stability of the QDs is reduced by Au or Ag dopants, whereas Pt dopants have a contrasting effect. The NPs diminish the metallicity of the QD, the extent of which is contingent on the number of NPs adsorbed on the QD. However, these NPs exert distinctly disparate charge transfer effects-Ag NPs n-dope the QDs, whereas Au and Pt NPs either n- or p-dope. The molecular electrostatic potential maps of the occupied states show that metallic states are removed from the doping sites. Notwithstanding the decrease of magnetization in all three types of hybrid QD, the distribution of spin density in the Pt-doped QD is inherently different from that in the other QDs. Bond analyses using the quantum theory of atoms in molecules and the crystal orbital Hamilton population suggest that bonds between the Pt NPs and the QDs are the most covalent and the strongest, followed by the Au-QD bonds, and then Ag-QD bonds. The versatility of these hybrid QDs is further examined by applying an external electric field in the three orthogonal orientations, and comparing their properties with those in the absence of the electric field. There are two primary observations: 1) dopants at the tail, head and tail, and in the fully encased configuration are most effective in modifying the distribution of metallic states if the

  12. Electronic and Magnetic Properties of Encapsulated MoS2 Quantum Dots: The Case of Noble Metal Nanoparticle Dopants.

    PubMed

    Loh, Guan Chee

    2016-04-18

    With the rise of 2D materials, such as graphene and transition metal dichalcogenides, as viable materials for numerous experimental applications, it becomes more necessary to maintain fine control of their properties. One expedient and efficacious technique to regulate their properties is surface functionalization. In this study, DFT calculations are performed on triangular MoS2 quantum dots (QDs) either partially or completely doped with nanoparticles (NPs) of the noble metals Au, Ag, and Pt. The effects of these dopants on the geometry, electronic properties, magnetic properties, and chemical bonding of the QDs are investigated. The calculations show that the structural stability of the QDs is reduced by Au or Ag dopants, whereas Pt dopants have a contrasting effect. The NPs diminish the metallicity of the QD, the extent of which is contingent on the number of NPs adsorbed on the QD. However, these NPs exert distinctly disparate charge transfer effects-Ag NPs n-dope the QDs, whereas Au and Pt NPs either n- or p-dope. The molecular electrostatic potential maps of the occupied states show that metallic states are removed from the doping sites. Notwithstanding the decrease of magnetization in all three types of hybrid QD, the distribution of spin density in the Pt-doped QD is inherently different from that in the other QDs. Bond analyses using the quantum theory of atoms in molecules and the crystal orbital Hamilton population suggest that bonds between the Pt NPs and the QDs are the most covalent and the strongest, followed by the Au-QD bonds, and then Ag-QD bonds. The versatility of these hybrid QDs is further examined by applying an external electric field in the three orthogonal orientations, and comparing their properties with those in the absence of the electric field. There are two primary observations: 1) dopants at the tail, head and tail, and in the fully encased configuration are most effective in modifying the distribution of metallic states if the

  13. Interferometric locating system

    NASA Technical Reports Server (NTRS)

    Macdoran, P. F. (Inventor)

    1980-01-01

    A system is described for determining the position of a vehicle or other target that emits radio waves and which is of the type that senses the difference in time of arrival at spaced ground stations of signals from the vehicle to locate the vehicle on a set of intersecting hyperbolas. A network of four ground stations detects the radio emissions from the vehicle and by means of cross correlation derives the relative signal delay at the ground stations from which the vehicle position is deduced. Because the signal detection is by cross correlation, no knowledge of the emission is needed, which makes even unintentional radio noise emissions usable as a locator beacon. By positioning one of the four ground stations at an elevation significantly above the plane of the other three stations, a three dimensional fix on the vehicle is possible.

  14. Dipole Well Location

    1998-08-03

    The problem here is to model the three-dimensional response of an electromagnetic logging tool to a practical situation which is often encountered in oil and gas exploration. The DWELL code provide the electromagnetic fields on the axis of a borehole due to either an electric or a magnetic dipole located on the same axis. The borehole is cylindrical, and is located within a stratified formation in which the bedding planes are not horizontal. The anglemore » between the normal to the bedding planes and the axis of the borehole may assume any value, or in other words, the borehole axis may be tilted with respect to the bedding planes. Additionally, all of the formation layers may have invasive zones of drilling mud. The operating frequency of the source dipole(s) extends from a few Hertz to hundreds of Megahertz.« less

  15. Electric current locator

    DOEpatents

    King, Paul E.; Woodside, Charles Rigel

    2012-02-07

    The disclosure herein provides an apparatus for location of a quantity of current vectors in an electrical device, where the current vector has a known direction and a known relative magnitude to an input current supplied to the electrical device. Mathematical constants used in Biot-Savart superposition equations are determined for the electrical device, the orientation of the apparatus, and relative magnitude of the current vector and the input current, and the apparatus utilizes magnetic field sensors oriented to a sensing plane to provide current vector location based on the solution of the Biot-Savart superposition equations. Description of required orientations between the apparatus and the electrical device are disclosed and various methods of determining the mathematical constants are presented.

  16. Underwater hydrophone location survey

    NASA Technical Reports Server (NTRS)

    Cecil, Jack B.

    1993-01-01

    The Atlantic Undersea Test and Evaluation Center (AUTEC) is a U.S. Navy test range located on Andros Island, Bahamas, and a Division of the Naval Undersea Warfare Center (NUWC), Newport, RI. The Headquarters of AUTEC is located at a facility in West Palm Beach, FL. AUTEC's primary mission is to provide the U.S. Navy with a deep-water test and evaluation facility for making underwater acoustic measurements, testing and calibrating sonars, and providing accurate underwater, surface, and in-air tracking data on surface ships, submarines, aircraft, and weapon systems. Many of these programs are in support of Antisubmarine Warfare (ASW), undersea research and development programs, and Fleet assessment and operational readiness trials. Most tests conducted at AUTEC require precise underwater tracking (plus or minus 3 yards) of multiple acoustic signals emitted with the correct waveshape and repetition criteria from either a surface craft or underwater vehicle.

  17. Optimal Facility-Location

    PubMed Central

    Goldman, A. J.

    2006-01-01

    Dr. Christoph Witzgall, the honoree of this Symposium, can count among his many contributions to applied mathematics and mathematical operations research a body of widely-recognized work on the optimal location of facilities. The present paper offers to non-specialists a sketch of that field and its evolution, with emphasis on areas most closely related to Witzgall’s research at NBS/NIST. PMID:27274920

  18. Ammonia Leak Locator Study

    NASA Technical Reports Server (NTRS)

    Dodge, Franklin T.; Wuest, Martin P.; Deffenbaugh, Danny M.

    1995-01-01

    The thermal control system of International Space Station Alpha will use liquid ammonia as the heat exchange fluid. It is expected that small leaks (of the order perhaps of one pound of ammonia per day) may develop in the lines transporting the ammonia to the various facilities as well as in the heat exchange equipment. Such leaks must be detected and located before the supply of ammonia becomes critically low. For that reason, NASA-JSC has a program underway to evaluate instruments that can detect and locate ultra-small concentrations of ammonia in a high vacuum environment. To be useful, the instrument must be portable and small enough that an astronaut can easily handle it during extravehicular activity. An additional complication in the design of the instrument is that the environment immediately surrounding ISSA will contain small concentrations of many other gases from venting of onboard experiments as well as from other kinds of leaks. These other vapors include water, cabin air, CO2, CO, argon, N2, and ethylene glycol. Altogether, this local environment might have a pressure of the order of 10(exp -7) to 10(exp -6) torr. Southwest Research Institute (SwRI) was contracted by NASA-JSC to provide support to NASA-JSC and its prime contractors in evaluating ammonia-location instruments and to make a preliminary trade study of the advantages and limitations of potential instruments. The present effort builds upon an earlier SwRI study to evaluate ammonia leak detection instruments [Jolly and Deffenbaugh]. The objectives of the present effort include: (1) Estimate the characteristics of representative ammonia leaks; (2) Evaluate the baseline instrument in the light of the estimated ammonia leak characteristics; (3) Propose alternative instrument concepts; and (4) Conduct a trade study of the proposed alternative concepts and recommend promising instruments. The baseline leak-location instrument selected by NASA-JSC was an ion gauge.

  19. Magnetic Location Indicator

    NASA Technical Reports Server (NTRS)

    Stegman, Thomas W.

    1992-01-01

    Ferrofluidic device indicates point of highest magnetic-flux density in workspace. Consists of bubble of ferrofluid in immiscible liquid carrier in clear plastic case. Used in flat block or tube. Axes of centering circle on flat-block version used to mark location of maximum flux density when bubble in circle. Device used to find point on wall corresponding to known point on opposite side of wall.

  20. Coso MT Site Locations

    SciTech Connect

    Doug Blankenship

    2011-05-04

    This data includes the locations of the MT data collected in and around the Coso Geothermal field that covered the West Flank area. These are the data that the 3D MT models were created from that were discussed in Phase 1 of the West Flank FORGE project. The projected coordinate system is NAD 1927 State Plane California IV FIPS 0404 and the Projection is Lambert Conformal Conic. Units are in feet.

  1. Organic dopant added polyvinylidene fluoride based solid polymer electrolytes for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Senthil, R. A.; Theerthagiri, J.; Madhavan, J.

    2016-02-01

    The effect of phenothiazine (PTZ) as dopant on PVDF/KI/I2 electrolyte was studied for the fabrication of efficient dye-sensitized solar cell (DSSC). The different weight percentage (wt%) ratios (0, 20, 30, 40 and 50%) of PTZ doped PVDF/KI/I2 electrolyte films were prepared by solution casting method using DMF as a solvent. The following techniques such as Fourier transform infrared (FT-IR), differential scanning calorimetry (DSC), X-ray diffractometer (XRD) and AC-impedance analysis have been employed to characterize the prepared polymer electrolyte films. The FT-IR studies revealed the complex formation between PVDF/KI/I2 and PTZ. The crystalline and amorphous nature of polymer electrolytes were confirmed by DSC and XRD analysis respectively. The ionic conductivities of polymer electrolyte films were calculated from the AC-impedance analysis. The undoped PVDF/KI/I2 electrolyte exhibited the ionic conductivity of 4.68×10-6 S cm-1 and this value was increased to 7.43×10-5 S cm-1 when PTZ was added to PVDF/KI/I2 electrolyte. On comparison with different wt% ratios, the maximum ionic conductivity was observed for 20% PTZ-PVDF/KI/I2 electrolyte. A DSSC assembled with the optimized wt % of PTZ doped PVDF/KI/I2 electrolyte exhibited a power conversion efficiency of 2.92%, than the undoped PVDF/KI/I2 electrolyte (1.41%) at similar conditions. Hence, the 20% PTZ-PVDF/KI/I2 electrolyte was found to be optimal for DSSC applications.

  2. Chemical nature of boron and nitrogen dopant atoms in graphene strongly influences its electronic properties.

    PubMed

    Lazar, Petr; Zbořil, Radek; Pumera, Martin; Otyepka, Michal

    2014-07-21

    Boron and nitrogen doped graphenes are highly promising materials for electrochemical applications, such as energy storage, generation and sensing. The doped graphenes can be prepared by a broad variety of chemical approaches. The substitution of a carbon atom should induce n-type behavior in the case of nitrogen and p-type behavior in the case of boron-doped graphene; however, the real situation is more complex. The electrochemical experiments show that boron-doped graphene prepared by hydroboration reaction exhibits similar properties as the nitrogen doped graphene; according to theory, the electrochemical behavior of B and N doped graphenes should be opposite. Here we analyze the electronic structure of N/B-doped graphene (at ∼5% coverage) by theoretical calculations. We consider graphene doped by both substitution and addition reactions. The density of states (DOS) plots show that graphene doped by substitution of the carbon atom by N/B behaves as expected, i.e., as an n/p-doped material. N-doped graphene also has a lower value of the workfunction (3.10 eV) with respect to that of the pristine graphene (4.31 eV), whereas the workfunction of B-doped graphene is increased to the value of 5.57 eV. On the other hand, the workfunctions of graphene doped by addition of -NH2 (4.77 eV) and -BH2 (4.54 eV) groups are both slightly increased and therefore the chemical nature of the dopant is less distinguishable. This shows that mode of doping depends significantly on the synthesis method used, as it leads to different types of behaviour, and, in turn, different electronic and electrochemical properties of doped graphene, as observed in electrocatalytic experiments. This study has a tremendous impact on the design of doped graphene systems from the point of view of synthetic chemistry.

  3. Improving the stability of organosiloxane smectic A liquid crystal random lasers using redox dopants

    NASA Astrophysics Data System (ADS)

    Khan, Ammar A.; Morris, Stephen M.; Gardiner, Damian J.; Qasim, Malik M.; Wilkinson, Timothy D.; Coles, Harry J.

    2015-04-01

    In this paper, we focus on the development of liquid crystal (LC) visible-light scattering devices for random lasers. These light-scattering devices are based upon binary mixtures that consist of an organosiloxane smectic A LC and a wide temperature range nematogen LC. Both the temperature range of the smectic A phase and the dielectric anisotropy of the binary mixture are increased compared with that of the neat organosiloxane compound. In the latter case, the increase in the dielectric anisotropy results in a reduction of the magnitude of the electric field required to induce a clear state. Furthermore, it is found that the electric field threshold continues to decrease with increasing concentration of the nematic compound. For the random laser devices, the Pyrromethene 597 laser dye was added to a mixture that was optimized for scattering and it was found that the absorption properties of the dye becomes unstable in the presence of the electro-hydrodynamic instabilities that are required to generate scattering in the LC cells. This is believed to be due to electro-chemical reactions that occur at the electrodes. To avoid dye degradation and ensure repeatable electro-optic behaviour, a reduction-oxidation (redox) couple is dispersed within the dye-doped binary mixture. It is shown that the addition of redox dopants helps to stabilize the dye in the scattering mixtures, and also increases the long-term repeatability of the scattering behaviour. Finally, we conclude by characterizing the random laser emission of the dye-doped binary mixture and demonstrate improved stability.

  4. Tuning near-gap electronic structure, interface charge transfer and visible light response of hybrid doped graphene and Ag3PO4 composite: Dopant effects

    PubMed Central

    He, Chao-Ni; Huang, Wei-Qing; Xu, Liang; Yang, Yin-Cai; Zhou, Bing-Xin; Huang, Gui-Fang; Peng, P.; Liu, Wu-Ming

    2016-01-01

    The enhanced photocatalytic performance of doped graphene (GR)/semiconductor nanocomposites have recently been widely observed, but an understanding of the underlying mechanisms behind it is still out of reach. As a model system to study the dopant effects, we investigate the electronic structures and optical properties of doped GR/Ag3PO4 nanocomposites using the first-principles calculations, demonstrating that the band gap, near-gap electronic structure and interface charge transfer of the doped GR/Ag3PO4(100) composite can be tuned by the dopants. Interestingly, the doping atom and C atoms bonded to dopant become active sites for photocatalysis because they are positively or negatively charged due to the charge redistribution caused by interaction. The dopants can enhance the visible light absorption and photoinduced electron transfer. We propose that the N atom may be one of the most appropriate dopants for the GR/Ag3PO4 photocatalyst. This work can rationalize the available experimental results about N-doped GR-semiconductor composites, and enriches our understanding on the dopant effects in the doped GR-based composites for developing high-performance photocatalysts. PMID:26923338

  5. Sonar Locator Systems

    NASA Technical Reports Server (NTRS)

    1985-01-01

    An underwater locator device called a Pinger is attached to an airplane's flight recorder for recovery in case of a crash. Burnett Electronics Pinger Model 512 resulted from a Burnett Electronics Laboratory, Inc./Langley Research Center contract for development of a search system for underwater mines. The Pinger's battery-powered transmitter is activated when immersed in water, and sends multidirectional signals for up to 500 hours. When a surface receiver picks up the signal, a diver can retrieve the pinger and the attached airplane flight recorder. Other pingers are used to track whales, mark underwater discoveries and assist oil drilling vessels.

  6. Location of Planet X

    SciTech Connect

    Harrington, R.S.

    1988-10-01

    Observed positions of Uranus and Neptune along with residuals in right ascension and declination are used to constrain the location of a postulated tenth planet. The residuals are converted into residuals in ecliptic longitude and latitude. The results are then combined into seasonal normal points, producing average geocentric residuals spaced slightly more than a year apart that are assumed to represent the equivalent heliocentric average residuals for the observed oppositions. Such a planet is found to most likely reside in the region of Scorpius, with considerably less likelihood that it is in Taurus. 8 references.

  7. Huntington's disease gene located.

    PubMed

    Kolata, G

    1983-11-25

    Investigators have found a restriction enzyme marker, a piece of DNA that can be located with recombinant DNA techniques, that is so close to the Huntington's disease gene that its presence can be used as an indicator for that gene. If this marker is used as a diagnostic test for Huntington's disease, people at risk for getting the disease will be able to learn whether or not they will in fact develop the disease. The ability to predict the inevitable onset of this progressive, degenerative disease raises ethical questions about counseling, screening, and disclosure of risk status to patients and family members.

  8. METHOD OF LOCATING GROUNDS

    DOEpatents

    Macleish, K.G.

    1958-02-11

    ABS>This patent presents a method for locating a ground in a d-c circult having a number of parallel branches connected across a d-c source or generator. The complete method comprises the steps of locating the ground with reference to the mildpoint of the parallel branches by connecting a potentiometer across the terminals of the circuit and connecting the slider of the potentiometer to ground through a current indicating instrument, adjusting the slider to right or left of the mildpoint so as to cause the instrument to indicate zero, connecting the terminal of the network which is farthest from the ground as thus indicated by the potentiometer to ground through a condenser, impressing a ripple voltage on the circuit, and then measuring the ripple voltage at the midpoint of each parallel branch to find the branch in which is the lowest value of ripple voltage, and then measuring the distribution of the ripple voltage along this branch to determine the point at which the ripple voltage drops off to zero or substantially zero due to the existence of a ground. The invention has particular application where a circuit ground is present which will disappear if the normal circuit voltage is removed.

  9. Effect of rare earth dopants on the magnetic ordering of frustrated h-YMnO3

    NASA Astrophysics Data System (ADS)

    Sharma, Neetika; Das, A.; Prajapat, C. L.; Singh, M. R.

    2016-12-01

    In this report the combined effects of chemical pressure and R-Mn interaction on the structural and magnetic properties of frustrated h-YMnO3 have been investigated. Towards this, neutron powder diffraction and magnetization measurements were carried out on isostructural compounds Y1-xRxMnO3(R=Yb, Er, Tb, Ho; x≤0.2) with hexagonal structure (P63cm space group). The dopants are evenly distributed between the two Yttrium sites. The unit cell volume shows a linear increase with average A-site ionic radii, . The average apical a and planar p bond lengths are found to increase with . The tilting angle of the MnO5 polyhedron decreases linearly with increase in , whereas the buckling angle remains constant. No significant change in TN (within 10 K) is observed on doping. The temperature variation of the volume indicates an anomalous reduction in volume at TN which is found to be correlated with the square of the antiferromagnetic Mn moment. A spin reorientation behavior (evident from a change in the irreducible representation (IR) Γ3 to Γ4) is observed on decreasing from 1.019 Å (Y) to 1.012 Å (Yb) similar to that reported in external pressure studies on YMnO3. Additional interaction between the doped R and Mn influences the magnetic structure in the case of Ho and Tb doped samples. With Ho doping at Y site, the magnetic structure is described by IR Γ3 alone for 5 K≤T<35 K and a mixture of Γ3 and Γ4 for T≥35 K. However, in Tb doped sample, the magnetic structure is better described by Γ4Tb,Mn IR with additional moment on Tb. The frustration parameter, f reduces from 6 to 1 in the doped samples. A combination of chemical pressure effect and magnetic coupling between the magnetic R ion and Mn moments thus describes the magnetic structures and relieves the frustration effects inherent to the quasi-two dimensional Mn moment ordering.

  10. Pregnancy of unknown location.

    PubMed

    Schuneman, Margaret; Von Wald, Tiffany; Hansen, Keith

    2015-04-01

    The development of highly sensitive and accurate human chorionic gonadotropin assays as well as the improvement of vaginal ultrasound have allowed for the early detection of pregnancy and have reduced the morbidity and mortality associated with ectopic gestations. One of the byproducts of this increased sensitivity is pregnancy of unknown location (PUL), a term which is used to describe pregnancy in a woman with a positive pregnancy test but no signs of intrauterine or extrauterine pregnancy. A PUL can include an early intrauterine pregnancy, a failing intrauterine/extrauterine pregnancy or ectopic pregnancy. Modern medical management has improved the diagnosis and treatment of early pregnancy and pregnancy loss. In the hemodynamically stable patient with PUL, expectant management has been shown to be safe and allows for confirmatory studies before proceeding with therapy.

  11. Quantum Image Location

    NASA Astrophysics Data System (ADS)

    Jiang, Nan; Dang, Yijie; Zhao, Na

    2016-10-01

    Quantum image processing has been a hot topic as a consequence of the development of quantum computation. Many quantum image processing algorithms have been proposed, whose efficiency are theoretically higher than their corresponding classical algorithms. However, most of the quantum schemes do not consider the problem of measurement. If users want to get the results, they must measure the final state many times to get all the pixels' values. Moreover, executing the algorithm one time, users can only measure the final state one time. In order to measure it many times, users must execute the algorithms many times. If the measurement process is taken into account, whether or not the algorithms are really efficient needs to be reconsidered. In this paper, we try to solve the problem of measurement and give a quantum image location algorithm. This scheme modifies the probability of pixels to make the target pixel to be measured with higher probability. Furthermore, it only has linear complexity.

  12. Hydrogen adsorption and storage on palladium-decorated graphene with boron dopants and vacancy defects: A first-principles study

    NASA Astrophysics Data System (ADS)

    Ma, Ling; Zhang, Jian-Min; Xu, Ke-Wei; Ji, Vincent

    2015-02-01

    The geometric stability and hydrogen capacity of Pd-decorated graphene with experimentally realizable boron dopants and various vacancy defects including single carbon vacancy (SV), "585"-type double carbon vacancy (585 DCV) and "555-777"-type double carbon vacancy (555-777 DCV) are investigated using the first-principles calculations based on density functional theory (DFT). It is found that among the four types of defective structures, Pd‧s binding energies on SV and 585 DCV defect graphene sheets exceed the cohesive energy of the Pd metal bulk, thus Pd atoms are well dispersed above defective graphene sheets and effectively prevent Pd clustering. Up to three H2 molecules can bind to Pd atom on graphene with B dopants, SV and 555-777 DCV defects. For the cases of Pd-decorated graphene with B dopants and 555-777 DCV defect, a single H2 or two H2 are molecularly chemisorbed to Pd atom in the form of Pd-H2 Kubas complex, where the stretched H-H bond is relaxed but not dissociated. Out of two adsorbed H2, the third H2 binds to Pd atom by small van der Waals (vdW) forces and the nature of bonding is very weak physisorption. Different from above two cases, three H2 are all molecularly chemisorbed to Pd atom with stretched H-H bond for Pd-decorated SV defect graphene, the hybridization of the Pd-4d orbitals with the H2-σ orbitals and the electrostatic interaction between the Pd cation and the induced H2 dipole both contribute to the H2 molecules binding, and the binding energies of 0.25-0.41 eV/H2 is in the range that can permit H2 molecules recycling at ambient conditions.

  13. Defect-Rich Dopant-Free ZrO2 Nanostructures with Superior Dilute Ferromagnetic Semiconductor Properties.

    PubMed

    Rahman, Md Anisur; Rout, S; Thomas, Joseph P; McGillivray, Donald; Leung, Kam Tong

    2016-09-14

    Control of the spin degree of freedom of an electron has brought about a new era in spin-based applications, particularly spin-based electronics, with the potential to outperform the traditional charge-based semiconductor technology for data storage and information processing. However, the realization of functional spin-based devices for information processing remains elusive due to several fundamental challenges such as the low Curie temperature of group III-V and II-VI semiconductors (<200 K), and the low spin-injection efficiencies of existing III-V, II-VI, and transparent conductive oxide semiconductors in a multilayer device structure, which are caused by precipitation and migration of dopants from the host layer to the adjacent layers. Here, we use catalyst-assisted pulsed laser deposition to grow, for the first time, oxygen vacancy defect-rich, dopant-free ZrO2 nanostructures with high TC (700 K) and high magnetization (5.9 emu/g). The observed magnetization is significantly greater than both doped and defect-rich transparent conductive oxide nanomaterials reported to date. We also provide the first experimental evidence that it is the amounts and types of oxygen vacancy defects in, and not the phase of ZrO2 that control the ferromagnetic order in undoped ZrO2 nanostructures. To explain the origin of ferromagnetism in these ZrO2 nanostructures, we hypothesize a new defect-induced bound polaron model, which is generally applicable to other defect-rich, dopant-free transparent conductive oxide nanostructures. These results provide new insights into magnetic ordering in undoped dilute ferromagnetic semiconductor oxides and contribute to the design of exotic magnetic and novel multifunctional materials. PMID:27533277

  14. Defect-Rich Dopant-Free ZrO2 Nanostructures with Superior Dilute Ferromagnetic Semiconductor Properties.

    PubMed

    Rahman, Md Anisur; Rout, S; Thomas, Joseph P; McGillivray, Donald; Leung, Kam Tong

    2016-09-14

    Control of the spin degree of freedom of an electron has brought about a new era in spin-based applications, particularly spin-based electronics, with the potential to outperform the traditional charge-based semiconductor technology for data storage and information processing. However, the realization of functional spin-based devices for information processing remains elusive due to several fundamental challenges such as the low Curie temperature of group III-V and II-VI semiconductors (<200 K), and the low spin-injection efficiencies of existing III-V, II-VI, and transparent conductive oxide semiconductors in a multilayer device structure, which are caused by precipitation and migration of dopants from the host layer to the adjacent layers. Here, we use catalyst-assisted pulsed laser deposition to grow, for the first time, oxygen vacancy defect-rich, dopant-free ZrO2 nanostructures with high TC (700 K) and high magnetization (5.9 emu/g). The observed magnetization is significantly greater than both doped and defect-rich transparent conductive oxide nanomaterials reported to date. We also provide the first experimental evidence that it is the amounts and types of oxygen vacancy defects in, and not the phase of ZrO2 that control the ferromagnetic order in undoped ZrO2 nanostructures. To explain the origin of ferromagnetism in these ZrO2 nanostructures, we hypothesize a new defect-induced bound polaron model, which is generally applicable to other defect-rich, dopant-free transparent conductive oxide nanostructures. These results provide new insights into magnetic ordering in undoped dilute ferromagnetic semiconductor oxides and contribute to the design of exotic magnetic and novel multifunctional materials.

  15. Universal non-Landau, self-organized, lattice disordering percolative dopant network sub-Tc phase transition in ceramic superconductors

    PubMed Central

    Phillips, J. C.

    2009-01-01

    Ceramic superconductors (cuprates, pnictides, etc.) exhibit universal features in both Tcmax and in their planar lattice disordering measured by EXAFS, as reflected by three phase transitions. The two highest temperature transitions are known to be associated with formation of Jahn–Teller pseudogaps and superconductive gaps, with corresponding Landau order parameters, but no new gap is associated with the third transition below Tc, and its origin is mysterious. It is argued that the third subTc transition is a dopant glass transition, which is remarkably similar to topological transitions previously observed in chalcogenide and oxide alloy network glasses (like window glass). PMID:19805211

  16. Co-Dopant Influence on the Persistent Luminescence of BaAl2O4:Eu2+,R3+

    NASA Astrophysics Data System (ADS)

    Rodrigues, Lucas C. V.; Hölsä, Jorma; Carvalho, José M.; Pedroso, Cássio C. S.; Lastusaari, Mika; Felinto, Maria C. F. C.; Watanabe, Shigeo; Brito, Hermi F.

    2014-04-01

    The R3+ (rare earth) co-dopants may have a surprisingly important role in persistent luminescence - enhancement of up to 1-3 orders of magnitude may be obtained in the performance of these phosphor materials - depending strongly on the R3+ ion, of course. In this work, the effects of the R3+ co-dopants in the BaAl2O4:Eu2+,R3+ materials were studied using mainly thermoluminescence (TL) and synchrotron radiation XANES methods. In BaAl2O4, the conventional and persistent luminescence both arise from the 4f7→4f65d1 transition of Eu2+, yielding blue-green emission color. The former, in the presence of humidity, turns to more bluish because of creation of an additional Eu2+ luminescence centre which is not, however, visible in persistent luminescence. The trap structure in the non-co-doped BaAl2O4:Eu2+ is rather complex with 4-5 TL bands above room temperature. With R3+ co-doping, this basic structure is modified though no drastic change can be observed. This underlines the fact that even very small changes in the trap depths can produce significant modifications in the persistent luminescence efficiency. It should be remembered that basically the persistent luminescence performance is controlled by the Boltzmann population law depending exponentially on both the temperature and trap depth. Some mechanisms for persistent luminescence have suggested the presence of either divalent R2+ or tetravalent RIV during the charging of the Eu2+ doped materials. The present XANES measurements on BaAl2O4:Eu2+,R3+ confirmed the presence of only the trivalent form of the R3+ co-dopants excluding both of these pathways. It must thus be concluded, that the energy is stored in intrinsic and extrinsic defects created by the synthesis conditions and charge compensation due to R3+ co-doping. Even though the effect of the R3+ co-dopants was carefully exploited and characterized, the differences in the effect of different R3+ ions with very similar chemical and spectroscopic properties could

  17. Low-temperature study of array of dopant atoms on transport behaviors in silicon junctionless nanowire transistor

    SciTech Connect

    Wang, Hao; Han, Weihua Li, Xiaoming; Zhang, Yanbo; Yang, Fuhua

    2014-09-28

    We demonstrate temperature-dependent quantum transport characteristics in silicon junctionless nanowire transistor fabricated on Silicon-on-Insulator substrate by the femtosecond laser lithography. Clear drain-current oscillations originated from dopant-induced quantum dots are observed in the initial stage of the conduction for the silicon nanowire channel at low temperatures. Arrhenius plot of the conductance indicates the transition temperature of 30 K from variable-range hopping to nearest-neighbor hopping, which can be well explained under Mott formalism. The transition of electron hopping behavior is the interplay result between the thermal activation and the Coulomb interaction.

  18. Site-Competition Epitaxy for N-Type and P-Type Dopant Control in CVD Sic Epilayers

    NASA Technical Reports Server (NTRS)

    Larkin, D. J.

    1995-01-01

    The use of site-competition epitaxy, which is based on intentional variation of the Si/C ratio during epitaxy, has now been reproduced in numerous national and international laboratories. However, previous reports have only considered dopant incorporation control for epitaxy on the Si-face 6H-SiC(OOO1) substrates. Presented in this paper is the extension of this technique for control of phosphorous incorporation and also a comparison of controlled doping on C-face 6H-SiC(OOO1) versus Si-face 6H-SiC(OOO1) substrates for aluminum, boron, nitrogen, and phosphorous.

  19. Object Locating System

    NASA Technical Reports Server (NTRS)

    Arndt, G. Dickey (Inventor); Carl, James R. (Inventor)

    2000-01-01

    A portable system is provided that is operational for determining, with three dimensional resolution, the position of a buried object or approximately positioned object that may move in space or air or gas. The system has a plurality of receivers for detecting the signal front a target antenna and measuring the phase thereof with respect to a reference signal. The relative permittivity and conductivity of the medium in which the object is located is used along with the measured phase signal to determine a distance between the object and each of the plurality of receivers. Knowing these distances. an iteration technique is provided for solving equations simultaneously to provide position coordinates. The system may also be used for tracking movement of an object within close range of the system by sampling and recording subsequent position of the object. A dipole target antenna. when positioned adjacent to a buried object, may be energized using a separate transmitter which couples energy to the target antenna through the medium. The target antenna then preferably resonates at a different frequency, such as a second harmonic of the transmitter frequency.

  20. AOTV bow shock location

    NASA Technical Reports Server (NTRS)

    Desautel, D.

    1985-01-01

    Hypersonic bow-shock location and geometry are of central importance to the aerodynamics and aerothermodynamics of aeroassisted orbital transfer vehicles (AOTVs), but they are difficult to predict for a given vehicle configuration. This paper reports experimental measurements of shock standoff distance for the 70 deg cone AOTV configuration in shock-tunnel-test flows at Mach numbers of 3.8 to 7.9 and for angles of attack from 0 deg to 20 deg. The controlling parameter for hypersonic bow-shock standoff distance (for a given forebody shape) is the mean normal-shock density ratio. Values for this parameter in the tests reported are in the same range as those of the drag-brake AOTV perigee regime. Results for standoff distance are compared with those previously reported in the literature for this AOTV configuration. It is concluded that the AOTV shock standoff distance for the conical configuration, based on frustrum (base) radius, is equivalent to that of a sphere with a radius about 35 percent greater than that of the cone; the distance is, therefore, much less than reported in previous studies. Some reasons for the discrepancies between the present and previous are advanced. The smaller standoff distance determined here implies there will be less radiative heat transfer than was previously expected.

  1. Evaluation of CO2 and CO dopants in hydrogen to reduce hydrogen permeation in the Stirling engine heater head tube alloy CG-27

    NASA Technical Reports Server (NTRS)

    Misencik, J. A.

    1983-01-01

    Tubes of CG-27 alloy, filled with hydrogen doped with various amounts of carbon dioxide and carbon monoxide, were heated in a diesel fuel fired Stirling engine simulator materials test rig for 100 hours at 820 C and at a gas pressure of 15 MPa to determine the effectiveness of the dopants in reducing hydrogen permeation through the hot tube wall. This was done for clean as-heat treated tubes and also for tubes that had previously been exposed for 100 hours to hydrogen doped with 1.0 volume percent carbon dioxide to determine if the lower levels of dopant could maintain a low hydrogen permeation through the hot tube wall. Carbon dioxide, as a dopant in hydrogen, was most effective in reducing hydrogen permeation through clean tubes and in maintaining low hydrogen permeation after prior exposure to 1.0 volume percent carbon dioxide. Only the lowest level of carbon dioxide (0.05 volume percent) was not as effective in the clean or prior exposed tubes. Carbon monoxide as a dopant in hydrogen was less effective than carbon dioxide at a given concentration level. Of the four dopant levels studied; 1.0, 0.5, 0.2, and 0.05 volume percent carbon monoxide, only the 1.0 and 0.5 volume percent were effective in reducing and maintaining low hydrogen permeation through the CG-27.

  2. Supersaturated substitutional alloys formed by ion implantation and pulsed laser annealing of group-III and group-V dopants in silicon

    SciTech Connect

    White, C.W.; Wilson, S.R.; Appleton, B.R.; Young, F.W. Jr.

    1980-01-01

    The formation of supersaturated substitutional alloys by ion implantation and rapid liquid-phase-epitaxial regrowth induced by pulsed laser annealing has been studied using Rutherford backscattering, ion channeling analysis. Group-III (Ga, In) and group-V (As, Sb, Bi) dopants have been implanted into single-crystal silicon at doses ranging from 1 x 10/sup 15/ to 1 x 10/sup 17//cm/sup 2/. The samples were annealed with a Q-switched ruby laser (energy density approx.1.5 J/cm/sup 2/, pulse duration approx.15 x 10/sup -9/ sec). Ion channeling analysis shows that laser annealing incorporates these dopants into substitutional lattice sites at concentrations far in excess of the equilibrium solid solubility. Channeling measurements indicate the silicon crystal is essentially defect free after laser annealing. Also values for the maximum dopant concentration (C/sup max//sub s/) that can be incorporated into substitutional lattice sites are determined for our annealing conditions. Dopant profiles determined by Rutherford backscattering are compared to model calculations which incorporate both dopant diffusion in liquid silicon and a distribution coefficient from the liquid. It is necessary to assume an interfacial distribution coefficient (k') far greater than the equilibrium value k/sub 0/ to fit the experimental data. The relationship of C/sup max//sub s/ and k' to the formation of these supersaturated alloys is discussed.

  3. Modification of the Electro-optical Properties of the B1 Liquid Crystal Phase using a Rod-like Liquid Crystal Dopant

    SciTech Connect

    J Kirchhoff; L Hirst

    2011-12-31

    It has recently been observed that on application of an alternating electric field, the B1 liquid-crystalline phase may be induced to form a switchable phase. This induced phase has been shown to have an almost thresholdless dielectric response. In this paper we examine this E-field-induced transition as a function of temperature both with and without a ferroelectric liquid-crystal dopant. Although the aim of this experiment was to enhance and stabilize the field-induced phase on addition of dopant, we find that the opposite is the case. The ferroelectric dopant actually increases the threshold E-fields required for transformation to the switching phase and at just 5 wt?% dopant a smectic-A phase is formed. Addition of the dopant also acts against the low-field switching and significantly speeds relaxation back to the B1 phase on field removal. In addition we find that the field-induced phase experiences a slower crystallization. We use polarized optical microscopy, differential scanning calorimetry, and x-ray scattering experiments to characterize the physical properties of the mixtures.

  4. Anomalous diameter dependence of thermal transport in ultra-narrow Si nanowires

    SciTech Connect

    Karamitaheri, Hossein; Neophytou, Neophytos; Kosina, Hans

    2014-01-14

    We present atomistic valence force field calculations of thermal transport in Si nanowires of diameters from 12 nm down to 1 nm. We show that as the diameter is reduced, the phonon density-of-states and transmission function acquire a finite value at low frequency, in contrast to approaching zero as in the bulk material. It turns out that this effect results in what Ziman described as the “problem of long longitudinal waves” [J. M. Ziman, Electrons and Phonons: The Theory of Transport Phenomena in Solids (Clarendon, Oxford, 1962)], which states that the thermal conductivity of a material increases as its length is increased due to the vanishing scattering for long-wavelength phonons. We show that this thermal transport improvement also appears in nanowires as their diameter is decreased below D = 5 nm (not only as the length increases), originating from the increase in the density of the long wavevector modes. The observation is present under ballistic transport conditions, and further enhanced with the introduction of phonon-phonon scattering. Because of this, in such ultra-narrow nanowires, as the diameter is reduced, phonon transport is dominated more and more by lower energy phonons with longer mean-free paths. We show that ∼80% of the heat is carried by phonons with energies less than 5 meV, most with mean-free paths of several hundreds of nanometers.

  5. Diameter-dependent dissipation of vibration energy of cantilevered multiwall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Sawaya, Shintaro; Arie, Takayuki; Akita, Seiji

    2011-04-01

    This study investigated the mechanical properties of vibrating cantilevered multiwall carbon nanotubes in terms of energy loss in a vibrating nanotube. Young's moduli of the nanotubes show a clear dependence of the perfection of the sp2 carbon network, as determined from Raman spectroscopy. The energy loss corresponding to the inverse of the quality factor increases with increasing tube diameter, although the nanotube maintains high mechanical strength around 0.5 TPa. This fact implies that the vibration energy is dissipated mainly not by defects, but by van der Waals interactions between walls.

  6. Diameter-dependent multiferroic functionality in hybrid core/shell NWs.

    PubMed

    Khan, U; Irfan, M; Li, W J; Adeela, N; Liu, P; Zhang, Q T; Han, X F

    2016-08-11

    A versatile approach towards nanofabrication of highly reproducible Co/BiCoO3 (Co/BCO) core/shell (CS) nanowires (NWs) with different diameters has been adopted by demonstrating easily available and low cost sol-gel and electrodeposition routes. X-ray diffraction (XRD) analysis confirmed the tetragonal system of the BCO nanoshells (NSs) with the space group P4mm. Scanning electron microscopy (SEM) clearly demonstrates the uniform morphology with well aligned CS NWs. The magnetization reversal processes (MRPs), experimentally and with analytical modelling, have been discussed for CS NWs with θ ranging from 0° (in-plane magnetic easy axis) to 90° (out-of-plane magnetic hard axis) with magnetic hysteresis loops and geometrical parameters. Crossover from the vortex to transverse reversal mode on increasing θ has been observed for all diameters. An exchange bias effect has been observed for smaller CS NWs diameters and it is attributed to the shell thickness of ∼25 nm. Furthermore, the magnetic anisotropy effect has been discussed in some detail. PMID:27465910

  7. Diameter-Dependent Modulus and Melting Behavior in Electrospun Semicrystalline Polymer Fibers

    SciTech Connect

    Y Liu; S Chen; E Zussman; C Korach; W Zhao; M Rafailovich

    2011-12-31

    Confinement of the semicrystalline polymers, poly(ethylene-co-vinyl acetate) (PEVA) and low-density polyethylene (LDPE), produced by electrospinning has been observed to produce fibers with large protrusions, which have not been previously observed in fibers of comparable diameters produced by other methods. SAXS spectra confirmed the crystalline structure and determined that the lamellar spacing was almost unchanged from the bulk. Measurement of the mechanical properties of these fibers, by both shear modulation force microscopy (SMFM) and atomic force acoustic microscopy (AFAM), indicates that the modulii of these fibers increases with decreasing diameter, with the onset at {approx}10 {micro}m, which is an order of magnitude larger than previously reported. Melting point measurements indicate a decrease of more than 7% in T{sub m}/T{sub 0} (where T{sub m} is the melting point of semicrystalline polymer fibers and T{sub 0} is the melting point of the bulk polymer) for fibers ranging from 4 to 10 {micro}m in diameter. The functional form of the decrease followed a universal curve for PEVA, when scaled with T{sub 0}.

  8. Effects of crystallization and dopant concentration on the emission behavior of TiO2:Eu nanophosphors

    PubMed Central

    2012-01-01

    Uniform, spherical-shaped TiO2:Eu nanoparticles with different doping concentrations have been synthesized through controlled hydrolysis of titanium tetrabutoxide under appropriate pH and temperature in the presence of EuCl3·6H2O. Through air annealing at 500°C for 2 h, the amorphous, as-grown nanoparticles could be converted to a pure anatase phase. The morphology, structural, and optical properties of the annealed nanostructures were studied using X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy [EDS], and UV-Visible diffuse reflectance spectroscopy techniques. Optoelectronic behaviors of the nanostructures were studied using micro-Raman and photoluminescence [PL] spectroscopies at room temperature. EDS results confirmed a systematic increase of Eu content in the as-prepared samples with the increase of nominal europium content in the reaction solution. With the increasing dopant concentration, crystallinity and crystallite size of the titania particles decreased gradually. Incorporation of europium in the titania particles induced a structural deformation and a blueshift of their absorption edge. While the room-temperature PL emission of the as-grown samples is dominated by the 5D0 - 7Fj transition of Eu+3 ions, the emission intensity reduced drastically after thermal annealing due to outwards segregation of dopant ions. PMID:22214494

  9. 7,7,8,8-Tetracyanoquinodimethane based molecular dopants for p-type doping of OLEDs: A theoretical investigation

    SciTech Connect

    Cosimbescu, Lelia; Padmaperuma, Asanga B.; Gaspar, Daniel J.

    2011-11-15

    The array of organic conductivity dopants used for organic light emitting devices (OLED) to reduce the operating voltage and improve power efficiency is extremely limited. Here we report a comparative theoretical study between newly proposed analogs and the standard state-of-the-art conductivity dopant 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ). We used density functional theory to determine the bond lengths, bond angles and electronic properties, such as the energy of the highest occupied molecular orbital (E{sub HOMO}) and lowest occupied molecular orbital (E{sub LUMO}) states, as well as the triplet energies of the novel structures (ET). The ground state structures of the proposed molecules were optimized at the B3LYP/6-31G* level. The results show that substitution of one or two fluorine groups in the F4-TCNQ core with a substituted phenyl ring or other electron withdrawing moieties, will not substantially affect the geometry of the molecule or its electronic ability to accept electrons. The most significant finding was that the phenyl substitutions onto the TCNQ core are nearly perpendicular to the TCNQ plane, and thus there is no electronic communication between the two rings. This is extremely important, as such extension of the {pi} conjugated system would negatively affect the E{sub LUMO} and thus the electron affinity of the molecule.

  10. A study on NiGe-contacted Ge n+/p Ge shallow junction prepared by dopant segregation technique

    NASA Astrophysics Data System (ADS)

    Tsui, Bing-Yue; Shih, Jhe-Ju; Lin, Han-Chi; Lin, Chiung-Yuan

    2015-05-01

    In this work, the effect of dopant segregation on the NiGe/n-Ge contact is studied by experiments and first-principles calculations. Both Al-contacted and NiGe-contacted n+/p junctions were fabricated. Phosphorus and arsenic ions were Implanted Before Germanide (IBG) formation or Implanted After Germanide (IAG) formation. The NiGe-contacted junction always exhibit higher forward current than the Al-contacted junction due to dopant segregation. First principles calculations predict that phosphorus atoms tend to segregate on both NiGe side and Ge side while arsenic atoms tend to segregate at Ge side. Since phosphorus has higher activation level and lower diffusion coefficient than arsenic, we propose a phosphorus IBG + arsenic IAG process. Shallow n+/p junction with junction depth 90 nm below the NiGe/Ge interface is achieved. The lowest and average contact resistivity is 2 × 10-6 Ω cm2 and 6.7 × 10-6 Ω cm2, respectively. Methods which can further reduce the junction depth and contact resistivity are suggested.

  11. Cavitating ultrasound hydrogenation of water-soluble olefins employing inert dopants: Studies of activity, selectivity and reaction mechanisms

    SciTech Connect

    Disselkamp, Robert S.; Chajkowski, Sarah M.; Boyles, Kelly R.; Hart, Todd R.; Peden, Charles HF

    2006-12-07

    Here we discuss results obtained as part of a three-year investigation at Pacific Northwest National Laboratory of ultrasound processing to effect selectivity and activity in the hydrogenation of water-soluble olefins on transition metal catalysts. We have shown previously that of the two regimes for ultrasound processing, high-power cavitating and high-power non-cavitating, only the former can effect product selectivity dramatically (> 1000%) whereas the selectivity of the latter was comparable with those obtained in stirred/silent control experiments [R.S. Disselkamp, Y.-H. Chin, C.H.F. Peden, J. Catal., 227, 552 (2005)]. As a means of ensuring the benefits of cavitating ultrasound processing, we introduced the concept of employing inert dopants into the reacting solution. These inert dopants do not partake in solution chemistry but enable a more facile transition from high-power non-cavitating to cavitating conditions during sonication treatment. With cavitation processing conditions ensured, we discuss here results of isotopic H/D substitution for a variety of substrates and illustrate how such isotope dependent chemistries during substrate hydrogenation elucidate detailed mechanistic information about these reaction systems.

  12. Dopant concentration dependent optical and X-Ray induced photoluminescence in Eu3+ doped La2Zr2O7

    NASA Astrophysics Data System (ADS)

    Pokhrel, Madhab; Brik, Mikhail; Mao, Yuanbing

    2015-03-01

    Herein, we will be presenting the dopant (Eu) concentration dependent high density La2Zr2O7 nanoparticles for optical and X-ray scintillation applications by use of X - ray diffraction, Raman, FTIR, scanning electron microscope (SEM), transmission electron microscopy (TEM), optically and X-ray excited photoluminescence (PL). Several theoretical methods have been used in order to investigate the structural, electronic, optical, elastic, dynamic properties of Eu doped La2Zr2O7. It is observed that Eu: La2Zr2O7 shows an intense red luminescence under 258, 322, 394 and 465 nm excitation. The optical intensity of Eu: La2Zr2O7 depends on the dopant concentration of Eu3+. Following high energy excitation with X-rays, Eu: La2Zr2O7 shows an atypical Eu PL response (scintillation) with a red emission. The intense color emission of Eu obtained under 258 nm excitation, the X-ray induced luminescence property along with reportedly high density of La2Zr2O7, makes these nanomaterials attractive for optical and X-ray applications. The authors thank the support from the Defense Threat Reduction Agency (DTRA) of the U.S. Department of Defense (Award #HDTRA1-10-1-0114).

  13. H2 Desorption from MgH2 Surfaces with Steps and Catalyst-Dopants

    SciTech Connect

    Reich, Jason M.; Wang, Lin-Lin; Johnson, Duane D.

    2014-03-10

    Light-metal hydrides, like MgH2, remain under scrutiny as prototypes for reversible H-storage materials. For MgH2, we assess hydrogen desorption/adsorption properties (enthalpy and kinetic barriers) for stepped, catalyst-doped surfaces occurring, e.g., from ball-milling in real samples. Employing density functional theory and simulated annealing in a slab model, we studied initial H2 desorption from stepped surfaces with(out) titanium (Ti) catalytic dopant. Extensive simulated annealing studies were performed to find the dopant’s site preferences. For the most stable initial and final (possibly magnetic) states, nudged elastic band (NEB) calculations were performed to determine the H2-desorption activation energy. We used a moment-transition NEB method to account for the dopant’s transition to the lowest-energy magnetic state at each image along the band. We identify a dopant-related surface-desorption mechanism that reloads via bulk H diffusion. While reproducing the observed bulk enthalpy of desorption, we find a decrease of 0.24 eV (a 14% reduction) in the activation energy on doped stepped surface; together with a 22% reduction on a doped flat surface, this brackets the assessed 18% reduction in kinetic barrier for ball-milled MgH2 samples with low concentration of Ti from experiment.

  14. Assessing three different ranges of amounts of silver nanoparticle dopants on the ethanol sensing properties of zinc oxide

    NASA Astrophysics Data System (ADS)

    Mohammadrezaei, Ameneh; Afzalzadeh, Reza; Mohsen Hosseini-Golgoo, Seyed

    2012-03-01

    The effects of silver nanoparticle (SNP) dopants on the ethanol sensing properties of zinc oxide (ZnO) bulk sensors were investigated. ZnO powder was mixed with various weight percentages of SNPs in the range of 0-1.8 wt% and then all samples were sintered at 860 °C. X-ray diffractometry was used to determine the crystal structure of the doped samples. Scanning electron microscopy was used to characterize the structure of the specimens. The electrical and gas-sensing properties of the specimens were assessed at different temperatures. Three different ranges of additive amount were distinguished based on the sensing behavior of the samples as a result of the solubility of SNPs in ZnO samples. In the first range, a tiny amount of the SNPs (˜0.025 wt%) can be dissolved in the ZnO lattice, so the resistance and response of the bulk ZnO sensors are decreased. In the second range (0.025% < wt% <0.7%), those parameters are increased, revealing that Ag cannot be dissolved in ZnO at higher concentration. Best recovery time is achieved in this range at 0.7 wt% of SNP dopants. In the third range (wt% > 0.7%), the resistance is observed to increase and the response to decrease with a high accumulation of Ag clusters on the grain surfaces. Moreover, the working temperature is reduced by increasing the amount of SNPs.

  15. spds* Tight-Binding Model for Exchange Interaction Between Transition Metal Dopants in Diamond and SiC

    NASA Astrophysics Data System (ADS)

    Kortan, Victoria R.; Şahin, Cüneyt; Flatté, Michael E.

    2015-03-01

    Diamond and SiC are wide-band-gap semiconductors with long-lived spin lifetimes and promising for quantum information technology device design. Spin initialization, manipulation and readout has already been demonstrated for the NV center in diamond and the divacancy in SiC. Transition metal spin centers offer additional benefits in tetrahedral hosts due to the crystal field splitting of the d-states into localized and extended states. For example, the application of strain in diamond allows switching between two spin states of a single Ni dopant. Here we use a spds* tight-binding model including spin-orbit interaction to describe transition metal spin centers in diamond and 3C-SiC as well as the NV center in diamond and divacancy in 3C-SiC. The energy levels for an isolated dopant are taken from experiment, when available, and density functional theory calculations otherwise. We calculate and compare the wavefunctions of these spin centers, as well as the strength of the exchange interaction between pairs of them. This work was supported by an AFOSR MURI.

  16. Infrared-active spin-orbit transitions of halogen atom dopants in solid parahydrogen: The role of trapping site geometry

    NASA Astrophysics Data System (ADS)

    Hinde, Robert J.

    2013-10-01

    We present theoretical calculations of the 2P1/2 ← 2P3/2 spin-orbit transition of Cl dopants embedded as substitutional impurities in solid parahydrogen (pH2) matrices. In the lower-energy 2P3/2 spin-orbit level, the Cl atom's electron density distribution is anisotropic, and slightly distorts the geometry of the atom's trapping site. This distortion leads to a blue shift in the spin-orbit transition energy; the blue shift is enhanced when we account for the large-amplitude zero point motions of the pH2 molecules surrounding the Cl dopant. We also show that the intensity of the transition depends on the geometry of the trapping site. In the gas phase, the 2P1/2 ← 2P3/2 atomic transition is electric dipole forbidden. However, when the Cl atom resides in trapping sites that mimic the hexagonal close packed morphology of pure solid pH2, the transition becomes electric dipole allowed through interaction-induced transition dipole moments. These transition dipole moments originate in the anisotropic electron density distribution of the lower-energy 2P3/2 spin-orbit level.

  17. Sensitivity of CoSi{sub 2} precipitation in silicon to extra-low dopant concentrations. I. Experiment

    SciTech Connect

    Fortuna, F.; Ruault, M.-O.; Kaïtasov, O.; Borodin, V. A.; Ganchenkova, M. G.

    2015-01-28

    We demonstrate that the precipitation of cobalt disilicide phase in silicon during high-temperature (500 °C and 650 °C) implantation is noticeably affected by impurities of phosphorus and boron. Measurements of B-type CoSi{sub 2} cluster sizes and number densities as a function of implantation dose indicate that the number density of clusters progressively increases as the phosphorus concentration increases from 7 × 10{sup 11} to 8 × 10{sup 13 }cm{sup −3}. A tentative explanation of these observations is proposed based on the previously suggested mechanism of precipitate nucleation, and on the results of first principles calculations summarized in Paper II, published as a follow-up paper. The results imply that utmost care is to be taken when dealing with transition metal precipitation during ion implantation into silicon because variations in the dopant content can affect the reproducibility of results even at extremely low dopant concentrations.

  18. The Impact of an Oxygen Dopant in an ideal Bi_2Sr_2CaCu_2O_8 delta Crystal

    SciTech Connect

    Johnston, S.

    2010-05-04

    Recent scanning tunneling microscopy studies have shown that local nanoscale pairing inhomogenities are correlated with interstitial oxygen dopants in Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}}. Combining electrostatic and cluster calculations, in this paper the impact of a dopant on the local Madelung and charge transfer energies, magnetic exchange J, Zhang-Rice mobility, and interactions with the lattice is investigated. It is found that electrostatic modifications locally increases the charge transfer energy and slightly suppresses J. It is further shown that coupling to c-axis phonons is strongly modified near the dopant. The combined effects of electrostatic modifications and coupling to the lattice yield broadened spectral features, reduced charge gap energies, and a sizable local increase of J. This implies a strong local interplay between antiferromagnetism, polarons, and superconducting pairing.

  19. Increase in the Random Dopant Induced Threshold Fluctuations and Lowering in Sub 100 nm MOSFETs Due to Quantum Effects: A 3-D Density-Gradient Simulation Study

    NASA Technical Reports Server (NTRS)

    Asenov, Asen; Slavcheva, G.; Brown, A. R.; Davies, J. H.; Saini, S.

    2000-01-01

    In this paper we present a detailed simulation study of the influence of quantum mechanical effects in the inversion layer on random dopant induced threshold voltage fluctuations and lowering in sub 100 nm MOSFETs. The simulations have been performed using a 3-D implementation of the density gradient (DG) formalism incorporated in our established 3-D atomistic simulation approach. This results in a self-consistent 3-D quantum mechanical picture, which implies not only the vertical inversion layer quantisation but also the lateral confinement effects related to current filamentation in the 'valleys' of the random potential fluctuations. We have shown that the net result of including quantum mechanical effects, while considering statistical dopant fluctuations, is an increase in both threshold voltage fluctuations and lowering. At the same time, the random dopant induced threshold voltage lowering partially compensates for the quantum mechanical threshold voltage shift in aggressively scaled MOSFETs with ultrathin gate oxides.

  20. High Conductivity in Molecularly p-Doped Diketopyrrolopyrrole-Based Polymer: The Impact of a High Dopant Strength and Good Structural Order.

    PubMed

    Karpov, Yevhen; Erdmann, Tim; Raguzin, Ivan; Al-Hussein, Mahmoud; Binner, Marcus; Lappan, Uwe; Stamm, Manfred; Gerasimov, Kirill L; Beryozkina, Tetyana; Bakulev, Vasiliy; Anokhin, Denis V; Ivanov, Dimitri A; Günther, Florian; Gemming, Sibylle; Seifert, Gotthard; Voit, Brigitte; Di Pietro, Riccardo; Kiriy, Anton

    2016-07-01

    [3]-Radialene-based dopant CN6-CP studied herein, with its reduction potential of +0.8 versus Fc/Fc+ and the lowest unoccupied molecular orbital level of -5.87 eV, is the strongest molecular p-dopant reported in the open literature, so far. The efficient p-doping of the donor-acceptor dithienyl-diketopyrrolopyrrole-based copolymer having the highest unoccupied molecular orbital level of -5.49 eV is achieved. The doped films exhibit electrical conductivities up to 70 S cm(-1) . PMID:27172371

  1. FFTF Asbestos Location Tracking Program

    SciTech Connect

    Reynolds, J.A.

    1994-09-15

    An Asbestos Location Tracking Program was prepared to list, locate, and determine Asbestos content and to provide baseline {open_quotes}good faith{close_quotes} for yearly condition inspections for the FFTF Plant and buildings and grounds.

  2. Dopants Control Electron-Hole Recombination at Perovskite-TiO₂ Interfaces: Ab Initio Time-Domain Study.

    PubMed

    Long, Run; Prezhdo, Oleg V

    2015-11-24

    TiO2 sensitized with organohalide perovskites gives rise to solar-to-electricity conversion efficiencies reaching close to 20%. Nonradiative electron-hole recombination across the perovskite/TiO2 interface constitutes a major pathway of energy losses, limiting quantum yield of the photoinduced charge. In order to establish the fundamental mechanisms of the energy losses and to propose practical means for controlling the interfacial electron-hole recombination, we applied ab initio nonadiabatic (NA) molecular dynamics to pristine and doped CH3NH3PbI3(100)/TiO2 anatase(001) interfaces. We show that doping by substitution of iodide with chlorine or bromine reduces charge recombination, while replacing lead with tin enhances the recombination. Generally, lighter and faster atoms increase the NA coupling. Since the dopants are lighter than the atoms they replace, one expects a priori that all three dopants should accelerate the recombination. We rationalize the unexpected behavior of chlorine and bromine by three effects. First, the Pb-Cl and Pb-Br bonds are shorter than the Pb-I bond. As a result, Cl and Br atoms are farther away from the TiO2 surface, decreasing the donor-acceptor coupling. In contrast, some iodines form chemical bonds with Ti atoms, increasing the coupling. Second, chlorine and bromine reduce the NA electron-vibrational coupling, because they contribute little to the electron and hole wave functions. Tin increases the coupling, since it is lighter than lead and contributes to the hole wave function. Third, higher frequency modes introduced by chlorine and bromine shorten quantum coherence, thereby decreasing the transition rate. The recombination occurs due to coupling of the electronic subsystem to low-frequency perovskite and TiO2 modes. The simulation shows excellent agreement with the available experimental data and advances our understanding of electronic and vibrational dynamics in perovskite solar cells. The study provides design principles

  3. DIORAMA Location Type User's Guide

    SciTech Connect

    Terry, James Russell

    2015-01-29

    The purpose of this report is to present the current design and implementation of the DIORAMA location type object (LocationType) and to provide examples and use cases. The LocationType object is included in the diorama-app package in the diorama::types namespace. Abstractly, the object is intended to capture the full time history of the location of an object or reference point. For example, a location may be speci ed as a near-Earth orbit in terms of a two-line element set, in which case the location type is capable of propagating the orbit both forward and backward in time to provide a location for any given time. Alternatively, the location may be speci ed as a xed set of geodetic coordinates (latitude, longitude, and altitude), in which case the geodetic location of the object is expected to remain constant for all time. From an implementation perspective, the location type is de ned as a union of multiple independent objects defi ned in the DIORAMA tle library. Types presently included in the union are listed and described in subsections below, and all conversions or transformation between these location types are handled by utilities provided by the tle library with the exception of the \\special-values" location type.

  4. Spring loaded locator pin assembly

    DOEpatents

    Groll, Todd A.; White, James P.

    1998-01-01

    This invention deals with spring loaded locator pins. Locator pins are sometimes referred to as captured pins. This is a mechanism which locks two items together with the pin that is spring loaded so that it drops into a locator hole on the work piece.

  5. Spring loaded locator pin assembly

    DOEpatents

    Groll, T.A.; White, J.P.

    1998-03-03

    This invention deals with spring loaded locator pins. Locator pins are sometimes referred to as captured pins. This is a mechanism which locks two items together with the pin that is spring loaded so that it drops into a locator hole on the work piece. 5 figs.

  6. Impact-Locator Sensor Panels

    NASA Technical Reports Server (NTRS)

    Christiansen, Eric L.; Byers, Terry; Gibbons, Frank

    2008-01-01

    Electronic sensor systems for detecting and locating impacts of rapidly moving particles on spacecraft have been invented. Systems of this type could also be useful on Earth in settings in which the occurrence of impacts and/or the locations of impacts are not immediately obvious and there are requirements to detect and quickly locate impacts to prevent or minimize damage.

  7. A fully 3D atomistic quantum mechanical study on random dopant induced effects in 25nm MOSFETs

    SciTech Connect

    Wang, Lin-Wang; Jiang, Xiang-Wei; Deng, Hui-Xiong; Luo, Jun-Wei; Li, Shu-Shen; Wang, Lin-Wang; Xia, Jian-Bai

    2008-07-11

    We present a fully 3D atomistic quantum mechanical simulation for nanometered MOSFET using a coupled Schroedinger equation and Poisson equation approach. Empirical pseudopotential is used to represent the single particle Hamiltonian and linear combination of bulk band (LCBB) method is used to solve the million atom Schroedinger's equation. We studied gate threshold fluctuations and threshold lowering due to the discrete dopant configurations. We compared our results with semiclassical simulation results. We found quantum mechanical effects increase the threshold fluctuation while decreases the threshold lowering. The increase of threshold fluctuation is in agreement with previous study based on approximated density gradient approach to represent the quantum mechanical effect. However, the decrease in threshold lowering is in contrast with the previous density gradient calculations.

  8. A strategy of enhancing the photoactivity of TiO2 containing nonmetal and transition metal dopants

    NASA Astrophysics Data System (ADS)

    Li, Wei; Wei, Shi-Hao; Duan, Xiang-Mei

    2014-02-01

    An effective structural codoping approach is proposed to modify the photoelectrochemical (PEC) properties of anatase TiO2 by being doped with nonmetal (N or/and C) and transition metal (Re) elements. The electronic structures and formation energies of different doped systems are investigated using spin-polarized density functional theory. We find that (C, Re) doped TiO2, with a low formation energy and a large binding energy, reduces the band gap to a large extent, thus it could contribute to the significant enhancement of the photocatalytic activity in the visible-light region. It should be pointed out that, to be successful, the proper proportion of the dopants C and Re should be controlled, so that reasonable PEC properties can be achieved.

  9. Sensitivity of CoSi2 precipitation in silicon to extra-low dopant concentrations. II. First-principles calculations

    NASA Astrophysics Data System (ADS)

    Borodin, V. A.; Ganchenkova, M. G.; Ruault, M.-O.; Fortuna, F.

    2015-01-01

    The paper is the second part of the study on the influence of very low dopant content in silicon on CoSi2 precipitation during high-temperature cobalt ion implantation into transmission electron microscope samples. It deals with the computational justification of various assumptions used in Paper I when rationalizing the kinetics of cobalt clustering in ion-implanted intrinsic silicon (both undoped and containing low concentrations of phosphorus atoms). In particular, it is proven that divacancies are efficient nucleation centers for the new Co-Si phase. It is shown that the capture of vacancies and divacancies on phosphorus atoms increases their lifetime in silicon matrix, but practically does not affect the mechanism of their interaction with interstitial cobalt atoms. Finally, it is demonstrated that the mobility of phosphorus interstitials at temperatures of our experiment is orders of magnitude higher than might be expected from the published literature data.

  10. Influence of γ-dose, dopant/codopant and heating rate on thermoluminescence properties of CaWO4 phosphors

    NASA Astrophysics Data System (ADS)

    Ambast, A. K.; Sharma, S. K.

    2015-08-01

    A series of Ca1-2xKxDyxWO4 (x = 0.02, 0.03, 0.04) phosphors were prepared by solid state reaction method and their thermoluminescence properties were investigated. Before thermoluminescence measurements, the sample was heated to 300°C for 1hour and then quenched to room temperature to erase out all the previous radiation memory. The prepared phosphors were irradiated by γ-ray in the dose range 1KGy-5KGy and their glow curves were recorded at an uniform rate of 5°C/s. In order to see the effect of heating rate as well as concentration of dopant/codopant, TL glow curves were also recorded by heating the samples at the rate of 3°C/s and 7°C/s as well as by varying the concentration x = 0.02, 0.03, 0.04.

  11. Effects of field fluctuation on impact ionization rates in semiconductor devices due to the discreteness and distribution of dopants

    SciTech Connect

    Arnold, D.; Kim, K.; Hess, K.

    1987-02-15

    Field fluctuations due to dopants in a p/sup +/-n junction have been calculated and used to study the effects on the impact ionization rate with a Monte Carlo simulation. Results are plotted along the direction normal to the interface. We report that the field fluctuations have no effect on the ionization rate in the dead space and a small and spatially delayed effect in the region after the dead space even though the field shows large and rapid fluctuations. A similar ''averaged-out'' effect is also shown for the average electron energy. The enhancement in the ionization rate due to the field fluctuations which Shockley expected in his pioneering research is shown to be negligibly small.

  12. No difference in local structure about a Zn dopant for congruent and stoichiometric LiNbO3

    NASA Astrophysics Data System (ADS)

    Bridges, F.; Mackeen, C.; Kovács, L.

    2016-07-01

    We compare extended x-ray absorption fine structure (EXAFS) data at the Zn K edge for a low concentration of Zn (0.7 mol%) in a stoichiometric crystal with that for higher Zn concentrations (nominally 5 and 9 mol%) in congruent LiNbO3 (LNO). Note that stoichiometric and congruent LNO have significantly different optical properties. We find no significant difference in the local structure about Zn out to 4 Å for the two types of crystals and different dopant levels. Although some earlier theoretical models suggest a self-compensation model with 75% of Zn on a Li site and 25% Zn on Nb, we find no clear evidence for a significant fraction of Zn on the Nb site, and estimate at most 2%-3% of Zn might be ZnN b.

  13. Thermal transport across symmetric tilt grain boundaries in β-SiC: Effect of dopants and temperature

    NASA Astrophysics Data System (ADS)

    Goel, N.; Webb, E. B.; Rickman, J. M.; Oztekin, A.; Neti, S.

    2016-07-01

    The Kapitza resistance at a segregated, low-angle symmetric tilt grain boundary in β-SiC is investigated using non-equilibrium molecular dynamics simulation. In particular, we assess the role of compositional and thermal disorder on the boundary resistance for various doping scenarios. By examining the local vibrational density of states, we identify a subset of modes that are significant for thermal transport in this system. This analysis is complemented by calculations of the projected density of states and a corresponding eigenmode analysis of the dynamical matrix that highlight important phonon polarizations and propagation directions. We also examine the dependence of the Kapitza resistance on temperature and dopant/matrix interaction strength, the latter parameter affecting grain-boundary structure and, hence, phonon scattering.

  14. Impact of random discrete dopant in extension induced fluctuation in gate-source/drain underlap FinFET

    NASA Astrophysics Data System (ADS)

    Wang, Yijiao; Huang, Peng; Xin, Zheng; Zeng, Lang; Liu, Xiaoyan; Du, Gang; Kang, Jinfeng

    2014-01-01

    In this work, three dimensional technology computer-aided design (TCAD) simulations are performed to investigate the impact of random discrete dopant (RDD) including extension induced fluctuation in 14 nm silicon-on-insulator (SOI) gate-source/drain (G-S/D) underlap fin field effect transistor (FinFET). To fully understand the RDD impact in extension, RDD effect is evaluated in channel and extension separately and together. The statistical variability of FinFET performance parameters including threshold voltage (Vth), subthreshold slope (SS), drain induced barrier lowering (DIBL), drive current (Ion), and leakage current (Ioff) are analyzed. The results indicate that RDD in extension can lead to substantial variability, especially for SS, DIBL, and Ion and should be taken into account together with that in channel to get an accurate estimation on RDF. Meanwhile, higher doping concentration of extension region is suggested from the perspective of overall variability control.

  15. Diffusion, Clustering, and Magnetic Properties of Mn dopants on a 2x2-T4 GaN(0001) Substrate

    SciTech Connect

    Hao, Shiqiang; Zhang, Zhenyu

    2007-01-01

    Based on extensive rst-principles calculations with density-functional theory (DFT), we propose a growth model of Mn on reconstructed 22-T4 GaN(0001), characterized by substitution of Ga by a Mn adatom via a surface site T4. At lower Mn concentration, Mn dopants distribute in Ga sublattice randomly forming intrinsic DMS. At higher concentration, planar ferromagnetic clusters oriented in (0001) plane are easily formed at lower temperature, but ferrimagnetic zigzag columns along the growth orientation will be formed at higher temperature. Based on these ndings, we qualitatively explain the puzzling experimental observations on TC variations, as well as the dierent magnetic natures in Ga1 xMnxN systems.

  16. Quantum Mechanical Enhancement of the Random Dopant Induced Threshold Voltage Fluctuations and Lowering in Sub 0.1 Micron MOSFETs

    NASA Technical Reports Server (NTRS)

    Asenov, Asen; Slavcheva, G.; Brown, A. R.; Davies, J. H.; Saini, Subhash

    1999-01-01

    A detailed study of the influence of quantum effects in the inversion layer on the random dopant induced threshold voltage fluctuations and lowering in sub 0.1 micron MOSFETs has been performed. This has been achieved using a full 3D implementation of the density gradient (DG) formalism incorporated in our previously published 3D 'atomistic' simulation approach. This results in a consistent, fully 3D, quantum mechanical picture which implies not only the vertical inversion layer quantisation but also the lateral confinement effects manifested by current filamentation in the 'valleys' of the random potential fluctuations. We have shown that the net result of including quantum mechanical effects, while considering statistical fluctuations, is an increase in both threshold voltage fluctuations and lowering.

  17. SEMICONDUCTOR TECHNOLOGY: SBH adjustment characteristic of the dopant segregation process for NiSi/n-Si SJDs

    NASA Astrophysics Data System (ADS)

    Haiping, Shang; Qiuxia, Xu

    2010-05-01

    By means of analyzing the I-V characteristic curve of NiSi/n-Si Schottky junction diodes (NiSi/n-Si SJDs), abstracting the effective Schottky barrier height (varphiB, eff) and the ideal factor of NiSi/n-Si SJDs and measuring the sheet resistance of NiSi films (RNiSi), we study the effects of different dopant segregation process parameters, including impurity implantation dose, segregation annealing temperature and segregation annealing time, on the varphiB, eff of NiSi/n-Si SJDs and the resistance characteristic of NiSi films. In addition, the changing rules of varphiB, eff and RNiSi are discussed.

  18. Defect induced tunable near infrared emission of Er-CeO2 by heterovalent co-dopants.

    PubMed

    Florea, Mihaela; Avram, Daniel; Cojocaru, Bogdan; Tiseanu, Ion; Parvulescu, Vasile; Tiseanu, Carmen

    2016-07-21

    We investigate the effects of heterovalent co-dopants on the structural and emission properties of 1% Er-CeO2 nanoparticles. The CeO2 oxide host was selected on the basis of its fairly well-understood defect chemistry in either a pure or doped state. As a luminescent activator, Er is acknowledged as an interesting element due to its rich luminescence and excitation properties spanning the visible to near-infrared range. The optically inactive trivalent La and monovalent Li metal ions with a concentration of up to 20% were chosen to presumably generate a variable amount of defects in the Er-CeO2 lattice. It was found that La and Li co-dopants induced distinct changes related to the size, lattice constant, bandgap energy, lattice and surface defects of Er-CeO2. As a result of these changes, a strong modulation of the luminescence intensity and shape was measured using a suite of excitation conditions (charge-transfer absorption band of CeO2, direct/up-conversion into Er absorptions and X-ray excitation modes). The use of Eu as a luminescent probe offered additional information concerning the effects of La/Li co-doping on the local structure surrounding the luminescent activator. Remarkably high percentages of 90 and 98% of the total emission of Er measured between 500 and 1100 nm are measured in the near-infrared region at 980 nm under X-ray and up-conversion excitation at ∼1500 nm, respectively. The optical properties suggest that Li, Er co-doped CeO2 has good potential for therapy and biological imaging.

  19. Neodymium as a magnesium tetraborate matrix dopant and its applicability in dosimetry and as a temperature sensor

    NASA Astrophysics Data System (ADS)

    Souza, Luiza F.; Antonio, Patrícia L.; Caldas, Linda V. E.; Souza, Divanizia N.

    2015-06-01

    MgB4O7 doped with lanthanides such as Dy3+ and Tm3+ are phosphors with very well established use in routine personal dosimetry. Certain characteristics, for example linearity in a broad dose range, low energy dependence, Zeff=8.5, high sensitivity and a relatively simple thermoluminescent (TL) emission curve make MgB4O7 a good material for thermoluminescent dosimetry. With the aim of analyzing other doping possibilities, this paper presents some preliminary results on the use of Nd3+ as a dopant in the MgB4O7 matrix. Furthermore, we evaluated the effect of using two different lanthanides, Nd and Dy, in the host matrix. In the present work, the phosphors were produced through solid state synthesis and X-ray diffraction confirmed the success of the technique. The TL behavior of MgB4O7:Nd was assessed when irradiated with gamma (60Co) and beta radiation, to determine the effect of the dopant concentration and the dose-response over a broad dose range. We also evaluated the dose-response of MgB4O7:Nd,Dy when irradiated with 60Co. The TL responses of the phosphors were compared with that of MgB4O7:Dy. These preliminary studies show that for the absorbed dose range studied, the sensitivity of MgB4O7:Nd,Dy was 3.8 and 28 times higher than that of MgB4O7:Dy and MgB4O7:Nd. The materials also presented linearity from 5 to 40 Gy. Above this value, the dose response curve exhibited sublinear behavior. These preliminary results will assist in developing a new temperature sensor based on a MgB4O7 dosimeter.

  20. Radiotherapy dosimetry and the thermoluminescence characteristics of Ge-doped fibres of differing germanium dopant concentration and outer diameter

    NASA Astrophysics Data System (ADS)

    Noor, N. Mohd; Fadzil, M. S. Ahmad; Ung, N. M.; Maah, M. J.; Mahdiraji, G. A.; Abdul-Rashid, H. A.; Bradley, D. A.

    2016-09-01

    We examine the influence of elevated dopant concentration on the thermoluminescence characteristics of novel Ge-doped silica fibres. Basic dosimetric characteristics of the TL media were obtained, including linearity, reproducibility, energy dependence, fading, minimum detectable dose and glow curve analysis, use being made of a 60Co gamma irradiation facility (mean energy 1.25 MeV) and an electron linear accelerator producing photons at an accelerating potential of 6 and 10 MV. The 6 mol% Ge-doped fibres were found to provide TL response superior to that of 8- and 10 mol% Ge-doped fibres, both for fibres with outer diameter of 241 μm and 604 μm. Concerning reproducibility, obtained under three different test conditions, at <10% the 6 mol% Ge dopant concentration was observed to provide the superior coefficient of variation (CV). In regard to energy dependence, the 10 mol% Ge doped cylindrical fibres produced the largest gradient values at 0.364 and 0.327 for the 241 μm and 604 μm diameter cylindrical fibres respectively and thus the greatest energy dependency. Measured 33 days post irradiation; the 6 mol% Ge doped cylindrical fibres showed the least TL signal loss, at 21% for the 241 μm cylindrical fibre and <40% for the 604 μm cylindrical fibres. The results also revealed that the 6 mol% optical fibres provided the lowest minimum detectable dose, at 0.027 Gy for 6 MV photon beams. Evaluations of these characteristics are supporting development of novel Ge-doped optical fibres for dosimetry in radiotherapy.

  1. The radial distribution of dopant (Cr, Nd, Yb, or Ce) in yttrium aluminum garnet (Y 3Al 5O 12) single crystals grown by the micro-pulling-down method

    NASA Astrophysics Data System (ADS)

    Simura, Rayko; Yoshikawa, Akira; Uda, Satoshi

    2009-12-01

    Dopant distribution in yttrium aluminum garnet (YAG:Y 3Al 5O 12) shaped crystal grown via the micro-pulling-down method depends primarily on the distribution coefficient (k0). The solid-favoring dopants (k0>1.0), Cr and Yb, concentrated in the central core of the crystal, while the liquid-favoring dopants (k0<1.0), Nd and Ce, concentrated in the rim. Secondary rare-earth oxide phases were sometimes segregated and crystallized circumferentially with Nd and Ce dopant. The dopant distribution profile was also controlled by the position of the melt entrance hole in the crucible shaper, which was confirmed by SIMPLER calculation. Segregation/distribution coefficients for Cr, Yb, Nd, and Ce in YAG were found to be 1.5, 1.01, 0.1, and 0.01, respectively.

  2. The unexpected formation of [M - H]+ species during MALDI and dopant-free APPI MS analysis of novel antineoplastic curcumin analogues.

    PubMed

    Awad, H; Stoudemayer, M J; Usher, L; Amster, I J; Cohen, A; Das, U; Whittal, R M; Dimmock, J; El-Aneed, A

    2014-11-01

    Unusual ionization behavior was observed with novel antineoplastic curcumin analogues during the positive ion mode of matrix-assisted laser desorption ionization (MALDI) and dopant-free atmospheric pressure photoionization (APPI). The tested compounds produced an unusual significant peak designated as [M - H](+) ion along with the expected [M + H](+) species. In contrast, electrospray ionization, atmospheric pressure chemical ionization and the dopant-mediated APPI (dopant-APPI) showed only the expected [M + H](+) peak. The [M - H](+) ion was detected with all evaluated curcumin analogues including phosphoramidates, secondary amines, amides and mixed amines/amides. Our experiments revealed that photon energy triggers the ionization of the curcumin analogues even in the absence of any ionization enhancer such as matrix, solvent or dopant. The possible mechanisms for the formation of both [M - H](+) and [M + H](+) ions are discussed in this paper. In particular, three proposed mechanisms for the formation of [M - H](+) were evaluated. The first mechanism involves the loss of H2 from the protonated [M + H](+) species. The other two mechanisms include hydrogen transfer from the analyte radical cation or hydride abstraction from the neutral analyte molecule.

  3. Dopant Diffusion and Activation in Silicon Nanowires Fabricated by ex Situ Doping: A Correlative Study via Atom-Probe Tomography and Scanning Tunneling Spectroscopy.

    PubMed

    Sun, Zhiyuan; Hazut, Ori; Huang, Bo-Chao; Chiu, Ya-Ping; Chang, Chia-Seng; Yerushalmi, Roie; Lauhon, Lincoln J; Seidman, David N

    2016-07-13

    Dopants play a critical role in modulating the electric properties of semiconducting materials, ranging from bulk to nanoscale semiconductors, nanowires, and quantum dots. The application of traditional doping methods developed for bulk materials involves additional considerations for nanoscale semiconductors because of the influence of surfaces and stochastic fluctuations, which may become significant at the nanometer-scale level. Monolayer doping is an ex situ doping method that permits the post growth doping of nanowires. Herein, using atom-probe tomography (APT) with subnanometer spatial resolution and atomic-ppm detection limit, we study the distributions of boron and phosphorus in ex situ doped silicon nanowires with accurate control. A highly phosphorus doped outer region and a uniformly boron doped interior are observed, which are not predicted by criteria based on bulk silicon. These phenomena are explained by fast interfacial diffusion of phosphorus and enhanced bulk diffusion of boron, respectively. The APT results are compared with scanning tunneling spectroscopy data, which yields information concerning the electrically active dopants. Overall, comparing the information obtained by the two methods permits us to evaluate the diffusivities of each different dopant type at the nanowire oxide, interface, and core regions. The combined data sets permit us to evaluate the electrical activation and compensation of the dopants in different regions of the nanowires and understand the details that lead to the sharp p-i-n junctions formed across the nanowire for the ex situ doping process.

  4. Dopant-assisted atmospheric pressure photoionization of patulin in apple juice and apple-based food with liquid chromatography-tandem mass spectrometry.

    PubMed

    Zhang, Kai; Wong, Jon W; Mai, Huy; Trucksess, Mary W

    2014-05-01

    A dopant-assisted atmospheric pressure photoionization (APPI) with liquid chromatography tandem mass spectrometry (LC-MS/MS) method was developed to determine patulin in apple juice and apple-based food. Different dopants, dopant flow rates, and LC separation conditions were evaluated. Using toluene as the dopant, the LC-APPI-MS/MS method achieved a linear calibration from 12.5 to 2000 μg/L (r(2) > 0.99). Matrix-dependent limits of quantitation (LOQs) were from 8 μg/L (solvent) to 12 μg/L (apple juice). [(13)C]-Patulin-fortified apple juice samples were directly analyzed by the LC-APPI-MS/MS method. Other apple-based food was fortified with [(13)C]-patulin, diluted using water (1% formic acid), centrifuged, and filtered, followed by LC-APPI-MS/MS analysis. In clear apple juice, unfiltered apple cider, applesauce, and apple-based baby food, average recoveries were 101 ± 6% (50 μg/kg), 103 ± 5% (250 μg/kg), and 102 ± 5% (1000 μg/kg) (av ± SD, n = 16). Using the suggested method, patulin was detected in 3 of 30 collected market samples with concentrations ranging from

  5. Determination of Dopant Site Occupancies in Copper - Yttrium-Barium by a New Application of Differential Anomalous X-Ray Scattering.

    NASA Astrophysics Data System (ADS)

    Gustafson, Rebecca Howland

    Dopant site occupancies in YBa_2 Cu_{rm 3-x}M _{rm x}O _{7-delta}, with M representing Fe (x = 0.3 and x = 0.5), Co (x = 0.2 and x = 0.5), Ni (x = 0.3) and Zn (x = 0.3) have been determined using an new application of differential anomalous x-ray scattering. The Ni and Zn atoms were found to occupy the Cu(1) ("chains") site and the Cu(2) ("planes") site in a nearly random distribution. The Fe and Co atoms were found to occupy the Cu(1) site predominantly at low x, with an increasing fraction on the Cu(2) sites as the total amount of dopant increases. In all cases, the results appear to have high statistical significance, with very little sensitivity to expected uncertainties in oxygen content, total dopant content, anomalous corrections to the atomic scattering factor of the dopant, and to relative atomic coordinates assumed in the modeling. The results are also discussed in the context of existing EXAFS and neutron diffraction results, thermogravimetric analysis and Mossbauer spectra, and T_{rm c} and Hall-effect studies.

  6. Determination of dopant site occupancies in Cu-substituted YBa2Cu3O7-δ by differential anomalous x-ray scattering

    NASA Astrophysics Data System (ADS)

    Howland, R. S.; Geballe, T. H.; Laderman, S. S.; Fischer-Colbrie, A.; Scott, M.; Tarascon, J. M.; Barboux, P.

    1989-05-01

    Dopant site occupancies in YBa2Cu3-xMxO7-δ, with M=Fe (x=0.3 and x=0.5), Co (x=0.2 and x=0.5), Ni (x=0.3), and Zn (x=0.3) have been found using differential anomalous x-ray scattering. The Ni and Zn atoms were found to occupy the Cu(1) (``chains'') site and the Cu(2) (``planes'') site in a nearly random distribution. The Fe and Co atoms were found to occupy the Cu(1) site predominantly at low x, with an increasing fraction on the Cu(2) sites as the total amount of dopant increases. In all cases, our results appear to have high statistical significance, with very little sensitivity to expected uncertainties in oxygen content, total dopant content, anomalous corrections to the atomic scattering factor of the dopant, and to relative atomic coordinates assumed in the modeling. We have also discussed the results in the context of existing extended x-ray-absorption fine-structure and neutron-diffraction results, thermogravimetric analysis, and Mössbauer spectra, and Tc and Hall-effect studies.

  7. Left-handed properties of manganite-perovskites La{sub 1-x}Sr{sub x}MnO{sub 3} at various dopant concentrations

    SciTech Connect

    Belozorov, D. P.; Girich, A. A.; Tarapov, S. I.; Pogorily, A. M.; Tovstolytkin, A. I.; Belous, A. G.; Solopan, S. A.

    2014-03-15

    The experimental study of Double Negative (DNG) state of electromagnetic wave propagating in lanthanum manganite-perovskites doped with strontium La{sub 1-x}Sr{sub x}MnO{sub 3} is provided firstly below individual Curie temperatures (in ferromagnetic metal state (FM) for La{sub 1-x}Sr{sub x}MnO{sub 3}). Various dopant concentrations are considered for ceramic specimens: x = 0.15;  0.225;  0.3;  0.45;  0.6. It is shown that dependence of the DNG-peak intensity on dopant concentration is sharply non-monotone with maximum at the dopant concentrations x = 0.225 – 0.3. This behaviour follows the change of Curie temperature with increase of dopant concentration in such substances. The obtained dependence of DNG peak intensity supports the opinion concerning the role of disorder in highly doped manganite-perovskite magnetic ceramics under study.

  8. [Rare locations of hydatid disease].

    PubMed

    Tocchi, A; Mazzoni, G; Lepre, L; Liotta, G; Costa, G; Maggiolini, F; Miccini, M

    1999-04-01

    The authors report their experience with uncommon hydatid cyst locations. Between 1970 and 1995 a total of 16 patients suffering from hydatid cysts located in various organs other than liver and lungs were observed. There were 7 women and 9 men with a mean of 53.3 years. In 10 cases uncommon locations were found to be isolated and in 6 associated to contemporary or previously treated hepatic cystic disease. Pathogenesis of these uncommon locations, whether being primary or secondary, as well as specific items of diagnosis and surgery are discussed.

  9. Synthesis and characterization of p-type conductivity dopant 2-(3-(adamantan-1-yl)propyl)-3,5,6-trifluoro-7,7,8,8-tetracyanoquinodimethane

    SciTech Connect

    Rainbolt, James E.; Koech, Phillip K.; Polikarpov, Evgueni; Swensen, James S.; Cosimbescu, Lelia; Von Ruden, Amber L.; Wang, Liang; Sapochak, Linda S.; Padmaperuma, Asanga B.; Gaspar, Daniel J.

    2013-01-22

    We report the synthesis and characterization of 2-(3-(adamantan-1-yl)propyl)-3,5,6-trifluoro-7,7,8,8-tetracyanoquinodimethane (F3TCNQ-Ad1), a substituted analog of 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ), designed for p-type conductivity doping. The dopant is designed as a model for substituted alternatives to F4TCNQ that maintain similar electronic properties with the goal of engineering dopants with superior fabrication characteristics over F4TCNQ. We describe the design strategy for F3TCNQ-Ad1 based on molecular modeling predictions that substitution of a single fluorine atom of F4TCNQ has little effect on the electronic properties of the molecule. Photophysical and electrochemical characterization reveal that the adamantyl substituent in F3TCNQ-Ad1 does not significantly alter the electronic properties of the substituted dopant relative to F4TCNQ. Unfortunately, F3TCNQ-Ad1 degrades under standard sublimation conditions, preventing sublimation deposition processing. Instead, hole-only devices were made via solution-processing of the p-doped films with the structure glass/ITO/2.3 x103Å PVK:(MTDATA:dopant)/2.0x102Å Au/1.0x103Å Al, where dopant is either F4TCNQ or F3TCNQ-Ad1. We demonstrate that F3TCNQ-Ad1 increased the conductivity of the films by at least 1,000 times compared to an undoped device.

  10. Effects of Cu Dopant on Lattice and Optical Properties of ZnS Quantum Dots.

    PubMed

    Shuhua, Lu; Aiji, Wang; Tingfang, Chen; Yinshu, Wang

    2016-04-01

    Doped and undoped ZnS colloidal nanocrystals have drawn much attention due to their versatile applications in the fields of optoelectronics and biotechnology. In this paper, Cu doped ZnS quantum dots were synthesized via the simple thermolysis of ethylxanthate salts. The lattice and optical properties of the nanocrystals were then studied in detail. The quantum dot lattice contracted linearly between Cu concentrations of 0.2-2%, while it continued to contract more gradually as Cu concentrations were further increased from 4 to 6%, due in part to the Cu ions located on the surface of the ZnS lattice. Cu incorporation induces a long tail in absorption at long wavelengths. The PL spectrum shows a red shift at first, and then a blue shift with increases in Cu concentration. Cu doped at low concentrations (0.2-1%) enhanced the emission, while high Cu concentrations (2-6%) quenched emissions. PMID:27451716

  11. Pan-information Location Map

    NASA Astrophysics Data System (ADS)

    Zhu, X. Y.; Guo, W.; Huang, L.; Hu, T.; Gao, W. X.

    2013-11-01

    A huge amount of information, including geographic, environmental, socio-economic, personal and social network information, has been generated from diverse sources. Most of this information exists separately and is disorderly even if some of it is about the same person, feature, phenomenon or event. Users generally need to collect related information from different sources and then utilize them in applications. An automatic mechanism, therefore, for establishing a connection between potentially-related information will profoundly expand the usefulness of this huge body of information. A connection tie is semantic location describing semantically concepts and attributes of locations as well as relationships between locations, since 80% of information contains some kind of geographic reference but not all of geographic reference has explicit geographic coordinates. Semantic location is an orthogonal form of location representation which can be represented as domain ontology or UML format. Semantic location associates various kinds of information about a same object to provide timely information services according to users' demands, habits, preferences and applications. Based on this idea, a Pan-Information Location Map (PILM) is proposed as a new-style 4D map to associates semantic location-based information dynamically to organize and consolidate the locality and characteristics of corresponding features and events, and delivers on-demand information with a User-Adaptive Smart Display (UASD).

  12. Mobile Alternative Fueling Station Locator

    SciTech Connect

    Not Available

    2009-04-01

    The Department of Energy's Alternative Fueling Station Locator is available on-the-go via cell phones, BlackBerrys, or other personal handheld devices. The mobile locator allows users to find the five closest biodiesel, electricity, E85, hydrogen, natural gas, and propane fueling sites using Google technology.

  13. Locating Information within Extended Hypermedia

    ERIC Educational Resources Information Center

    Cromley, Jennifer G.; Azevedo, Roger

    2009-01-01

    New literacies researchers have identified a core set of strategies for locating information, one of which is "reading a Web page to locate information that might be present there" (Leu et al. in: Rush, Eakle, Berger (eds) "Secondary school reading and writing: What research reveals for classroom practices," 2007, p. 46). Do middle-school, high…

  14. Precision zero-home locator

    DOEpatents

    Stone, William J.

    1986-01-01

    A zero-home locator includes a fixed phototransistor switch and a moveable actuator including two symmetrical, opposed wedges, each wedge defining a point at which switching occurs. The zero-home location is the average of the positions of the points defined by the wedges.

  15. Cold War Geopolitics: Embassy Locations.

    ERIC Educational Resources Information Center

    Vogeler, Ingolf

    1995-01-01

    Asserts that the geopolitics of the Cold War can be illustrated by the diplomatic ties among countries, particularly the superpowers and their respective allies. Describes a classroom project in which global patterns of embassy locations are examined and compared. Includes five maps and a chart indicating types of embassy locations. (CFR)

  16. A thermodynamic analysis of native point defect and dopant solubilities in zinc-blende III-V semiconductors

    SciTech Connect

    Hurle, D. T. J.

    2010-06-15

    A thermodynamic model is used to analyze available experimental data relevant to point defects in the binary zinc-blende III-V compounds (Ga,In)-(P,As,Sb). The important point defects and their complexes in each of the materials are identified and included in the model. Essentially all of the available experimental data on dopant solubility, crystal density, and lattice parameter of melt and solution grown crystals and epilayers are reproduced by the model. It extends an earlier study [Hurle, J. Appl. Phys. 85, 6957 (1999)] devoted solely to GaAs. Values for the enthalpy and entropy of formation of both native and dopant related point defects are obtained by fitting to experimental data. In undoped material, vacancies, and interstitials on the Group V sublattice dominate in the vicinity of the melting point (MP) in both the phosphides and arsenides, whereas, in the antimonides, vacancies on both sublattices dominate. The calculated concentrations of the native point defects are used to construct the solidus curves of all the compounds. The charged native point defect concentrations at the MP in four of the six materials are significantly higher than their intrinsic carrier concentrations. Thus the usually assumed high temperature 'intrinsic' electroneutrality condition for undoped material (n=p) is not valid for these materials. In GaSb, the Ga{sub Sb} antisite defect appears to be grown-in from the melt. This contrasts with the As{sub Ga} defect in GaAs for which the concentration grown-in at the MP is negligibly small. Compensation of donor-doped material by donor-Group III vacancy complexes is shown to exist in all the compounds except InP where Group VI doped crystals are uncompensated and in InSb where there is a lack of experimental data. The annealing effects in n{sup +} GaAs, including lattice superdilation, which were shown in the earlier paper to be due to Group III vacancy undersaturation during cooling, are found to be present also in GaSb and In

  17. Influence of carbon dopants on the structure, elasticity and lattice dynamics of Ti5Si3C x Nowotny phases

    NASA Astrophysics Data System (ADS)

    Wdowik, Urszula D.; Wasik, Magdalena; Twardowska, Agnieszka

    2016-02-01

    Density functional theory studies on the Ti5Si3C x systems with various concentrations of carbon impurities (x=0, 0.25, 0.50, 1.00 ) are reported. The effects of interstitial carbon atoms on crystal and electronic structures, and on the elastic and vibrational properties of the Ti5Si3C x compound are analysed and discussed. The results of the present investigations indicate not only strong bonding between carbon atoms and their neighbouring titanium atoms, but also the effects of carbon impurities on the atomic bonds beyond the immediate proximity of the dopants. These determine to a great extent the electron densities of states, and the structural and elastic properties of the Ti5Si3C x Nowotny phases. Although carbon atoms tend to stabilise Ti5Si3C x phases, they also have a negative effect on their ductile properties. The strong impact of carbon impurities on the lattice dynamics of Ti5Si3C x compounds is revealed by the phonon and Raman spectra, which remain sensitive to changes in the interatomic distances. In C-doped systems the phonon bands originating from the vibrations of carbon impurities appear at high frequencies and remain well-separated from the lower lying phonon bands dominated by the vibrations of Ti and Si sublattices. The lower frequency phonon bands also experience changes due to the incorporated dopants. Impurities occupying the interstitials of the Ti5Si3 lattice are responsible for the appearance of new infrared active and optically inactive modes of A 2u , E 1u and E 2u symmetries, leaving the number of Raman active modes unchanged. Modifications to the dynamical properties of ternary Ti5Si3C x phases manifest themselves via shifts and the suppression of phonon peaks as well as the emergence of new phonon peaks which are absent in the binary Ti5Si3 system. The observed effects become enhanced with an increased concentration of carbon impurities.

  18. The dopant type and amount governs the electrochemical performance of graphene platforms for the antioxidant activity quantification

    NASA Astrophysics Data System (ADS)

    Hui, Kai Hwee; Ambrosi, Adriano; Sofer, Zdeněk; Pumera, Martin; Bonanni, Alessandra

    2015-05-01

    Graphene doped with heteroatoms can show new or improved properties as compared to the original undoped material. It has been reported that the type of heteroatoms and the doping conditions can have a strong influence on the electronic and electrochemical properties of the resulting material. Here, we wish to compare the electrochemical behavior of two n-type and two p-type doped graphenes, namely boron-doped graphenes and nitrogen-doped graphenes containing different amounts of heteroatoms. We show that the boron-doped graphene containing a higher amount of dopants provides the best electroanalytical performance in terms of calibration sensitivity, selectivity and linearity of response for the detection of gallic acid normally used as the standard probe for the quantification of antioxidant activity of food and beverages. Our findings demonstrate that the type and amount of heteroatoms used for the doping have a profound influence on the electrochemical detection of gallic acid rather than the structural properties of the materials such as amounts of defects, oxygen functionalities and surface area. This finding has a profound influence on the application of doped graphenes in the field of analytical chemistry.Graphene doped with heteroatoms can show new or improved properties as compared to the original undoped material. It has been reported that the type of heteroatoms and the doping conditions can have a strong influence on the electronic and electrochemical properties of the resulting material. Here, we wish to compare the electrochemical behavior of two n-type and two p-type doped graphenes, namely boron-doped graphenes and nitrogen-doped graphenes containing different amounts of heteroatoms. We show that the boron-doped graphene containing a higher amount of dopants provides the best electroanalytical performance in terms of calibration sensitivity, selectivity and linearity of response for the detection of gallic acid normally used as the standard probe for

  19. Experiences with information locator services

    USGS Publications Warehouse

    Christian, E.

    1999-01-01

    Over the last few years, governments and other organizations have been using new technologies to create networked Information Locator Services that help people find information resources. These services not only enhance access to information, but also are designed to support fundamental information policy principles. This article relates experiences in developing and promoting services interoperable with the Global Information Locator Service standard that has now been adopted and promoted in many forums worldwide. The article describes sample implementations and touches on the strategic choices made in public policy, standards, and technology. Ten recommendations are offered for successful implementation of an Information Locator Service. Published by Elsevier Science Ltd. All rights reserved.

  20. Bayesian Mulitple-Event Location

    2010-03-30

    Bayesloc is a statistical model of the multiple seismic location system, including event hypocenters, corrections to model-based travel time predictions, assessments precision for measurement phase arrival times, and phase lavels which indicate phase ray path.

  1. Determinants of first practice location

    PubMed Central

    Raghavan, Malathi; Fleisher, William; Downs, Allan; Martin, Bruce; Sandham, J. Dean

    2012-01-01

    Abstract Objective To help understand physician movement out of Manitoba by determining the factors that influence Manitoba medical graduates’ choices about practice locations. Design Cross-sectional, within-stage, mixed-model survey. Setting Manitoba. Participants All University of Manitoba medical graduates from classes 1998 to 2009 for whom we had valid contact information (N = 912 of 943 graduates) were invited in August 2009 to participate in a survey. Main outcome measures Demographic information; ratings, on a 5-point scale, of the importance when choosing first practice locations of 12 practice characteristics, 3 recruitment strategies, and 4 location characteristics listed in the survey; free-text narratives on unlisted factors; and estimates of likely practice location upon completion of training for recent graduates still in residency training. Results Completed surveys were received from 331 (35.1%) graduates of the surveyed classes, 162 (53.3%) of whom chose Manitoba for their first practice location. Multiple regression analyses indicated that graduates choosing Manitoba for their first practice location were significantly more likely to have done their residency training in Manitoba (P < .05), whether or not they gave a high rating to the importance of being near family and friends. Also, graduates choosing Manitoba were significantly more likely to be recent graduates (P = .007) and less likely to be members of a visible minority (P = .018). These associations were robust even when analyses were restricted to responses from practitioners without cause to estimate practice locations. Early self-selection of graduates during entry into specific residency programs, results of the residency match process, and “putting down roots” during residency years were 3 important interrelated themes identified through qualitative analyses. Conclusion Residency education in Manitoba is the overwhelming factor influencing graduates’ choice of Manitoba as

  2. Effects of nitrogen dopants on the atomic step kinetics and electronic structures of O-polar ZnO.

    PubMed

    Wang, Hao; Zhan, Huahan; Zhou, Yinghui; Wu, Yaping; Chen, Xiaohang; Wang, Huiqiong; Kang, Junyong

    2016-02-21

    Oxygen-polar ZnO films are grown in step flow mode by molecular beam epitaxy. Driven by the step flow anisotropy, the growth leads to the occurrence of specific hexagonal pits in the surface. The specific pits are formed by interlacing steps of the {10̄1̄4} facets, thus quenching the macroscopic dipole moment along the c-axis and satisfying the stabilization principles. Nitrogen (N) doping trials are then performed on the basis of the stable surface. In doping, growth remains in step flow mode but the step flow anisotropy vanishes, resulting in an obvious change of the surface morphology. Besides, a distinct acceptor state appears by in situ scanning tunneling spectroscopy analysis. First-principles calculations reveal that N readily substitutes for step-edge Zn and acts as NO2 adsorbed at the step edge. Desorption of the NO2 facilitates the formation of NO-VZn shallow acceptor complexes, which contributes to the appearance of the acceptor state. According to the peculiarities of N dopants on the O-polar surface, vicinal O-polar substrates (e.g., {10̄1̄4} substrate) are promising in ZnO : N due to the easily achieved step flow growth and high density of step edges for N incorporation.

  3. Experimental observation and computational identification of Sc at Cu{sub 16}{sup +}, a stable dopant-encapsulated copper cage

    SciTech Connect

    Veldeman, Nele; Neukermans, Sven; Lievens, Peter; Hoeltzl, Tibor; Minh Tho Nguyen; Veszpremi, Tamas

    2007-07-15

    We report a combined experimental and computational study of scandium doped copper clusters. The clusters are studied with time-of-flight mass spectrometry after laser fragmentation. Enhanced stabilities for specific cluster sizes in the mass abundance spectra are discussed using both electronic (shell closing) and geometric (symmetry) arguments. The exceptional stability observed for Cu{sub 16}Sc{sup +} is investigated in detail computationally. Density functional geometry optimizations at the Becke-Perdew 1986-LANL 2-double-zeta (BP86/LANL2DZ) level result in a Frank-Kasper tetrahedron, encapsulating a scandium atom in a highly coordinated position. The high stability is therefore interpreted in terms of extremely stable dopant encapsulated structures featuring a closed electron shell. The thermodynamic stability, as indicated by the stable backbone and large binding energy per atom, the relatively small ionization energy, and the moderate electron affinity of the neutral Cu{sub 16}Sc cluster show that it has a superatom character, chemically similar to the alkaline-metal atoms.

  4. Role of MW-ECR hydrogen plasma on dopant deactivation and open-circuit voltage in crystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    Madi, D.; Prathap, P.; Slaoui, A.

    2015-01-01

    Plasma hydrogenation is an efficient method to passivate intergrain and intragrain defects of polycrystalline silicon (pc-Si) solar cells. The hydrogenation experiments were carried out in hydrogen plasma generated in an electron cyclotron resonance system controlling different operating parameters such as microwave power ( P MW), process time ( t H) and hydrogenation temperature ( T H) for a fixed hydrogen flux of 30 sccm. The hydrogenation of n+pp+ pc-Si solar cells resulted in an improvement in the open-circuit voltage. The improvement was correlated with the dopant deactivation due to the formation of boron-hydrogen bonding. This was demonstrated from the changes in the doping level after hydrogenation of n+p diode structures made using single crystalline silicon as a reference material. It was found that deactivation of boron was more pronounced at high microwave plasma power, in good agreement with the high open-circuit voltage values obtained on pc-Si mesa cells. On the other hand, the effect of longer hydrogenation time and higher temperature resulted in a decrease of boron deactivation, while an increase in V oc with a tendency of saturation at high T H was observed. Reasons for such behavior were thoroughly explained.

  5. Evaluation of river pollution of neonicotinoids in Osaka City (Japan) by LC/MS with dopant-assisted photoionisation.

    PubMed

    Yamamoto, Atsushi; Terao, Tomoko; Hisatomi, Hirotaka; Kawasaki, Hideya; Arakawa, Ryuichi

    2012-08-01

    An atmospheric pressure photoionisation (APPI) source for liquid chromatography/mass spectrometry (LC/MS) was applied to determine neonicotinoid pesticides in the aquatic environment. Dopant-assisted APPI was very effective in the ionisation of neonicotinoids. Neonicotinoids generated protonated molecules in APPI with high sensitivity, while adduct ions, such as sodiated molecules, were predominantly generated in conventional electrospray ionisation. The ionisation of neonicotinoids was confirmed by ultra-high-resolution MS. An analytical method coupled with solid phase extraction was developed for acetamiprid, clothianidin, dinotefuran, imidacloprid, nitenpyram, and thiamethoxam. Method detection limits were 0.47 to 2.1 ng L(-1) for six neonicotinoids. Dinotefuran was the most frequent and highest among the neonicotinoids examined in the aquatic environment in Osaka, Japan. The maximum concentration of dinotefuran was 220 ng L(-1). Given the toxicity of neonicotinoids for aquatic creatures, the concentrations observed here were substantially low. The change in concentrations was temporally coincident with the period of the neonicotinoid application. Although rapid photodegradation and some degradation products have been elucidated, the degradation products in the aquatic environment were not identified in the present study. PMID:22767100

  6. Asymmetric Dimers of Chiral Azobenzene Dopants Exhibiting Unusual Helical Twisting Power upon Photoswitching in Cholesteric Liquid Crystals.

    PubMed

    Kim, Yuna; Tamaoki, Nobuyuki

    2016-02-01

    In this study, we synthesized asymmetric dimeric chiral molecules as photon-mode chiral switches for reversible tuning of self-assembled helical superstructures. The chiral switches bearing two mesogen units-cholesterol and azobenzene moieties connected through flexible alkylenedioxy bridges-were doped into nematic liquid crystals, resulting in a chiral nematic (cholesteric) phase. Under irradiation with UV light, photoisomerization of the azobenzene units led to unprecedented switching of the cholesteric pitch and helical twisting power (HTP, β), with a higher HTP found in the cis-rich state (bent-form) than in the trans-state (rod-form). We attribute this behavior to the elongated cybotactic smectic clusters disrupting the helical orientation of the molecules in the cholesteric liquid crystals; their reversible decay and reassembly was evidenced upon sequential irradiation with UV and visible light, respectively. In addition to the photoisomerization of the azobenzene units, the odd/even parity of the alkylenedioxy linkers of the dimeric dopants also had a dramatic effect on the transitions of the cybotactic smectic domains. On the basis of the large rotational reorganization of the cholesteric helix and HTP switching (Δβ/βini of up to 50%), we could control the macroscopic rotational motion of microsized glass rods upon irradiating the surface of a cholesteric liquid crystal film featuring a polygonal fingerprint texture using UV and visible light.

  7. Effects of added dopants on various triboluminescent properties of europium dibenzoylmethide triethylammonium (EuD4TEA)

    NASA Astrophysics Data System (ADS)

    Owens, Constance; Fontenot, Ross S.; Bhat, Kamala N.; Aggarwal, Mohan D.

    2014-03-01

    A triboluminescent (TL) material is one that emits light upon pressure, impact, friction, or mechanical shock. TL materials are desirable for investigation because they have the potential to be used as the active element for smart impact sensors. While the material europium dibenzoylmethide triethylammonium (EuD4TEA) produces a TL emission yield that can be observed by the naked eye, it is still not sufficiently bright for use in smart sensor devices. Previous studies have shown that additional materials can be combined with EuD4TEA in order to improve the TL emission yield. In this paper, we discuss the effects of doping on EuD4TEA at different concentrations with a variety of materials on the TL emission yield and decay times. The dopants that were used in this study were nicotine, dibutyl phosphate (DBP), and magnesium. We also discuss both the effects of pH on EuD4TEA, and the doping effects on impact energy. For testing triboluminescent properties, we use a custom-built drop tower that generates triboluminescence by fracturing compounds through impact. Collected data is analyzed using specially written LabVIEW programs.

  8. Dopant passivation and work function tuning through attachment of heterogeneous organic monolayers on silicon in ultrahigh vacuum

    NASA Astrophysics Data System (ADS)

    Cooper, Ashley J.; Keyvanfar, Kian; Deberardinis, Albert; Pu, Lin; Bean, John C.

    2011-05-01

    Electronic structures of silicon-organic interfaces were studied by the scanning Kelvin probe technique. These surfaces were fabricated by covalent bonding of a range of phenylacetylene-based molecules ( p-X-C 6H 4C tbnd CH, where X = CF 3, OCH 3, and H) onto a hydrogen-terminated silicon surface. Organic molecules were bound to the surface under high vacuum conditions by ultraviolet light-induced hydrosilylation. Changes in the electronic structure due to electron-donating ability and dipole moment were analyzed under dark and illuminated conditions. The origin of the silicon band bending was tested to separate the effects of molecular monolayers and unintended dopant passivation. In addition, heterogeneous monolayers were grown by controllably diluting the incoming vapor stream with acetylene during growth. The measured work functions follow a trend linked to dipole moment that can be further tuned by molecular dilution. These results suggest a way to use heterogeneous organic monolayers to tune the electron affinity of silicon and directly alter channel modulation in small semiconductor devices.

  9. Facile fabrication of superhydrophobic flower-like polyaniline architectures by using valine as a dopant in polymerization

    NASA Astrophysics Data System (ADS)

    Sun, Jun; Bi, Hong

    2012-03-01

    A facile method was developed to fabricate superhydrophobic, flower-like polyanline (PANI) architectures with hierarchical nanostructures by adding valine in polymerization as a dopant. The water contact angle of the prepared PANI film was measured to be 155.3°, and the hydrophobic surface of the PANI architectures can be tuned easily by varying the polymerization time as well as valine doping quantity. It is believed that valine plays an important role in not only growth of the hierarchical PANI structures but also formation of the superhydrophobic surface, for it provides functional groups such as sbnd COOH, sbnd NH2 and a hydrophobic terminal group which may further increase intra-/inter-molecular interactions including hydrogen bonding, π-π stacking and hydrophobic properties. Similar flower-like PANI architectures have been prepared successfully by employing other amino acids such as threonine, proline and arginine. This method makes it possible for widespread applications of superhydrophobic PANI film due to its simplicity and practicability.

  10. Effect of acid dopants in biodegradable gel polymer electrolyte and the performance in an electrochemical double layer capacitor

    NASA Astrophysics Data System (ADS)

    Sudhakar, Y. N.; Selvakumar, M.; Krishna Bhat, D.

    2015-09-01

    Proton-conducting biodegradable gellan gum gel polymer electrolytes (GPEs) have been prepared using three different dopants, namely ortho-phosphoric (o-H3PO4), sulfuric (H2SO4) and hydrochloric acids (HCl). The GPEs were cross-linked using borax. The polymeric gels were characterized by spectroscopic, thermal, ionic conductivities and dielectric measurements. Proton conductivity was in the range of 5.1 × 10-3 to 3.7 × 10-4 s cm-1 and activation energies were between 0.14 meV and 0.19 meV, at different temperatures. Among the doped acids, the H3PO4 doped GPE exhibited thermal stability at varying temperature. Electrochemical double layer capacitors (EDLCs) were fabricated using activated carbon as electrode material and GPEs. The EDLCs were tested using cyclic voltammetry, ac impedance spectroscopic and galvanostatic charge-discharge techniques. The maximum specific capacitance value was 146 F g-1 at a scan rate of 2 mV s-1. Quite stable values were obtained at a constant current density up to 1000 cycles.

  11. Improved integrated sniper location system

    NASA Astrophysics Data System (ADS)

    Figler, Burton D.; Spera, Timothy J.

    1999-01-01

    In July of 1995, Lockheed Martin IR Imaging Systems, of Lexington, Massachusetts began the development of an integrated sniper location system for the Defense Advanced Research Projects Agency and for the Department of the Navy's Naval Command Control & Ocean Surveillance Center, RDTE Division in San Diego, California. The I-SLS integrates acoustic and uncooled infrared sensing technologies to provide an affordable and highly effective sniper detection and location capability. This system, its performance and results from field tests at Camp Pendleton, California, in October 1996 were described in a paper presented at the November 1996 SPIE Photonics East Symposium1 on Enabling Technologies for Law Enforcement and Security. The I-SLS combines an acoustic warning system with an uncooled infrared warning system. The acoustic warning system has been developed by SenTech, Inc., of Lexington, Massachusetts. This acoustic warning system provides sniper detection and coarse location information based upon the muzzle blast of the sniper's weapon and/or upon the shock wave produced by the sniper's bullet, if the bullet is supersonic. The uncooled infrared warning system provides sniper detection and fine location information based upon the weapon's muzzle flash. In addition, the uncooled infrared warning system can provide thermal imagery that can be used to accurately locate and identify the sniper. Combining these two technologies improves detection probability, reduces false alarm rate and increases utility. In the two years since the last report of the integrated sniper location system, improvements have been made and a second field demonstration was planned. In this paper, we describe the integrated sniper location system modifications in preparation for the new field demonstration. In addition, fundamental improvements in the uncooled infrared sensor technology continue to be made. These improvements include higher sensitivity (lower minimum resolvable temperature

  12. Locating the LCROSS Impact Craters

    NASA Technical Reports Server (NTRS)

    Marshall, William; Shirley, Mark; Moratto, Zachary; Colaprete, Anthony; Neumann, Gregory A.; Smith, David E.; Hensley, Scott; Wilson, Barbara; Slade, Martin; Kennedy, Brian; Gurrola, Eric; Harcke, Leif

    2012-01-01

    The Lunar CRater Observations and Sensing Satellite (LCROSS) mission impacted a spent Centaur rocket stage into a permanently shadowed region near the lunar south pole. The Sheperding Spacecraft (SSC) separated approx. 9 hours before impact and performed a small braking maneuver in order to observe the Centaur impact plume, looking for evidence of water and other volatiles, before impacting itself. This paper describes the registration of imagery of the LCROSS impact region from the mid- and near-infrared cameras onboard the SSC, as well as from the Goldstone radar. We compare the Centaur impact features, positively identified in the first two, and with a consistent feature in the third, which are interpreted as a 20 m diameter crater surrounded by a 160 m diameter ejecta region. The images are registered to Lunar Reconnaisance Orbiter (LRO) topographical data which allows determination of the impact location. This location is compared with the impact location derived from ground-based tracking and propagation of the spacecraft's trajectory and with locations derived from two hybrid imagery/trajectory methods. The four methods give a weighted average Centaur impact location of -84.6796 deg, -48.7093 deg, with a 1s uncertainty of 115 m along latitude, and 44 m along longitude, just 146 m from the target impact site. Meanwhile, the trajectory-derived SSC impact location is -84.719 deg, -49.61 deg, with a 1 alpha uncertainty of 3 m along the Earth vector and 75 m orthogonal to that, 766 m from the target location and 2.803 km south-west of the Centaur impact. We also detail the Centaur impact angle and SSC instrument pointing errors. Six high-level LCROSS mission requirements are shown to be met by wide margins. We hope that these results facilitate further analyses of the LCROSS experiment data and follow-up observations of the impact region

  13. Impact of Junction Nonabruptness on Random-Discrete-Dopant Induced Variability in Intrinsic Channel Trigate Metal-Oxide-Semiconductor Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Wei, Kang Liang; Liu, Xiao Yan; Du, Gang

    2013-04-01

    Using full three-dimensional (3D) technology computer-aided design (TCAD) simulations, we present a comprehensive statistical study on the random discrete dopant (RDD) induced variability in state-of-the-art intrinsic channel trigate MOSFETs. This paper is focused on the RDD variability sources that are introduced by dopant diffusion from highly doped source/drain (S/D) regions into the undoped channel region, which is referred to as junction nonabruptness (JNA). By considering a realistic lateral doping profile in the channel and evaluating the impact of JNA on the variability of performance parameters such as threshold voltage (Vth), subthreshold slope (SS), drain-induced barrier lowering (DIBL), on current (Ion), and off current (Ioff), we show that the effect of JNA can lead to substantial device variations. The nonnegligible influence of JNA puts limitations on device scaling, which is also investigated in this paper.

  14. A phononic crystal strip based on silicon for support tether applications in silicon-based MEMS resonators and effects of temperature and dopant on its band gap characteristics

    NASA Astrophysics Data System (ADS)

    Ha, Thi Dep; Bao, JingFu

    2016-04-01

    Phononic crystals (PnCs) and n-type doped silicon technique have been widely employed in silicon-based MEMS resonators to obtain high quality factor (Q) as well as temperature-induced frequency stability. For the PnCs, their band gaps play an important role in the acoustic wave propagation. Also, the temperature and dopant doped into silicon can cause the change in its material properties such as elastic constants, Young's modulus. Therefore, in order to design the simultaneous high Q and frequency stability silicon-based MEMS resonators by two these techniques, a careful design should study effects of temperature and dopant on the band gap characteristics to examine the acoustic wave propagation in the PnC. Based on these, this paper presents (1) a proposed silicon-based PnC strip structure for support tether applications in low frequency silicon-based MEMS resonators, (2) influences of temperature and dopant on band gap characteristics of the PnC strips. The simulation results show that the largest band gap can achieve up to 33.56 at 57.59 MHz and increase 1280.13 % (also increase 131.89 % for ratio of the widest gaps) compared with the counterpart without hole. The band gap properties of the PnC strips is insignificantly effected by temperature and electron doping concentration. Also, the quality factor of two designed length extensional mode MEMS resonators with proposed PnC strip based support tethers is up to 1084.59% and 43846.36% over the same resonators with PnC strip without hole and circled corners, respectively. This theoretical study uses the finite element analysis in COMSOL Multiphysics and MATLAB softwares as simulation tools. This findings provides a background in combination of PnC and dopant techniques for high performance silicon-based MEMS resonators as well as PnC-based MEMS devices.

  15. Wireless Damage Location Sensing System

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E. (Inventor); Taylor, Bryant Douglas (Inventor)

    2012-01-01

    A wireless damage location sensing system uses a geometric-patterned wireless sensor that resonates in the presence of a time-varying magnetic field to generate a harmonic response that will experience a change when the sensor experiences a change in its geometric pattern. The sensing system also includes a magnetic field response recorder for wirelessly transmitting the time-varying magnetic field and for wirelessly detecting the harmonic response. The sensing system compares the actual harmonic response to a plurality of predetermined harmonic responses. Each predetermined harmonic response is associated with a severing of the sensor at a corresponding known location thereof so that a match between the actual harmonic response and one of the predetermined harmonic responses defines the known location of the severing that is associated therewith.

  16. A Satellite Interference Location System

    NASA Astrophysics Data System (ADS)

    Smith, William Whitfield, Jr.

    1990-01-01

    This dissertation describes the design and development of a system for inferring the position of terrestrial satellite uplink stations using existing domestic satellites with minimal disruption to normal satellite operation. Two methods are presented by which a quantity measured at a terrestrial receiving site is mapped into a curve of possible uplink locations on the Earth's surface. One method involves measuring differential time delays of a single uplink signal observed through two adjacent spacecraft. Another method uses a short baseline interferometer composed of the two cross-polarized and spatially separated antenna feeds aboard an affected satellite. A unique location or two dimensional solution is obtained by employing an appropriate combination of the two presented methods. A system for measurement of the required differential delays and phases is described in addition to the experimental work performed to demonstrate the feasibility of these location methods.

  17. Effects of Zn2+ and Pb2+ dopants on the activity of Ga2O3-based photocatalysts for water splitting.

    PubMed

    Wang, Xiang; Shen, Shuai; Jin, Shaoqing; Yang, Jingxiu; Li, Mingrun; Wang, Xiuli; Han, Hongxian; Li, Can

    2013-11-28

    Zn-doped and Pb-doped β-Ga2O3-based photocatalysts were prepared by an impregnation method. The photocatalyst based on the Zn-doped β-Ga2O3 shows a greatly enhanced activity in water splitting while the Pb-doped β-Ga2O3 one shows a dramatic decrease in activity. The effects of Zn(2+) and Pb(2+) dopants on the activity of Ga2O3-based photocatalysts for water splitting were investigated by HRTEM, XPS and time-resolved IR spectroscopy. A ZnGa2O4-β-Ga2O3 heterojunction is formed in the surface region of the Zn-doped β-Ga2O3 and a slower decay of photogenerated electrons is observed. The ZnGa2O4-β-Ga2O3 heterojunction exhibits type-II band alignment and facilitates charge separation, thus leading to an enhanced photocatalytic activity for water splitting. Unlike Zn(2+) ions, Pb(2+) ions are coordinated by oxygen atoms to form polyhedra as dopants, resulting in distorted surface structure and fast decay of photogenerated electrons of β-Ga2O3. These results suggest that the Pb dopants act as charge recombination centers expediting the recombination of photogenerated electrons and holes, thus decreasing the photocatalytic activity.

  18. Characterization of doped amorphous silicon thin films through the investigation of dopant elements by glow discharge spectrometry: a correlation of conductivity and bandgap energy measurements.

    PubMed

    Sánchez, Pascal; Lorenzo, Olaya; Menéndez, Armando; Menéndez, Jose Luis; Gomez, David; Pereiro, Rosario; Fernández, Beatriz

    2011-01-01

    The determination of optical parameters, such as absorption and extinction coefficients, refractive index and the bandgap energy, is crucial to understand the behavior and final efficiency of thin film solar cells based on hydrogenated amorphous silicon (a-Si:H). The influence of small variations of the gas flow rates used for the preparation of the p-a-SiC:H layer on the bandgap energy, as well as on the dopant elements concentration, thickness and conductivity of the p-layer, is investigated in this work using several complementary techniques. UV-NIR spectrophotometry and ellipsometry were used for the determination of bandgap energies of four p-a-SiC:H thin films, prepared by using different B(2)H(6) and SiH(4) fluxes (B(2)H(6) from 12 sccm to 20 sccm and SiH(4) from 6 sccm to 10 sccm). Moreover, radiofrequency glow discharge optical emission spectrometry technique was used for depth profiling characterization of p-a-SiC:H thin films and valuable information about dopant elements concentration and distribution throughout the coating was found. Finally, a direct relationship between the conductivity of p-a-SiC:H thin films and the dopant elements concentration, particularly boron and carbon, was observed for the four selected samples.

  19. Formation of the dopant-oxygen vacancy complexes and its influence on the photoluminescence emissions in Gd-doped HfO{sub 2}

    SciTech Connect

    Wang, L. G.; Tu, H. L.; Xiong, Y. H.; Du, J.; Wang, J. W.; Huang, G. J.; Xiao, W.

    2014-09-28

    Rare earth doping is widely used to improve the desired properties of high-k dielectric oxides. However, whether rare earth doping can suppress the formation of oxygen vacancies is still debated. By using the first-principles calculations with the generalized gradient approximation and more advanced hybrid functional, we have investigated the structural and electronic properties of the dopant-oxygen vacancy complexes in Gd-doped HfO{sub 2}. Our calculations indicate that the Gd dopants interacting with oxygen vacancies can substantially shift up the V{sub O} energy states towards the conduction band edge. This together with other effects, such as capturing the localized electrons at the oxygen vacancy by Gd dopants and suppressing the randomicity of oxygen vacancy formation, improves the reliability of the devices made from Gd-doped HfO{sub 2}. Based on our calculated results, we have presented an explanation for the experimentally observed decrease of the V{sub O}-related photoluminescence intensities upon Gd doping in HfO{sub 2}.

  20. Statistical variability study of random dopant fluctuation on gate-all-around inversion-mode silicon nanowire field-effect transistors

    NASA Astrophysics Data System (ADS)

    Yoon, Jun-Sik; Rim, Taiuk; Kim, Jungsik; Kim, Kihyun; Baek, Chang-Ki; Jeong, Yoon-Ha

    2015-03-01

    Random dopant fluctuation effects of gate-all-around inversion-mode silicon nanowire field-effect transistors (FETs) with different diameters and extension lengths are investigated. The nanowire FETs with smaller diameter and longer extension length reduce average values and variations of subthreshold swing and drain-induced barrier lowering, thus improving short channel immunity. Relative variations of the drain currents increase as the diameter decreases because of decreased current drivability from narrower channel cross-sections. Absolute variations of the drain currents decrease critically as the extension length increases due to decreasing the number of arsenic dopants penetrating into the channel region. To understand variability origins of the drain currents, variations of source/drain series resistance and low-field mobility are investigated. All these two parameters affect the variations of the drain currents concurrently. The nanowire FETs having extension lengths sufficient to prevent dopant penetration into the channel regions and maintaining relatively large cross-sections are suggested to achieve suitable short channel immunity and small variations of the drain currents.

  1. Study of Nd3+, Pd2+, Pt4+, and Fe3+ dopant effect on photoreactivity of TiO2 nanoparticles

    PubMed Central

    Shah, S. I.; Li, W.; Huang, C.-P.; Jung, O.; Ni, C.

    2002-01-01

    The metallorganic chemical vapor deposition method was successfully used to synthesize pure TiO2 and Nd3+-, Pd2+-, Pt4+-, and Fe3+-doped TiO2 nanoparticles. Polycrystalline TiO2 structure was verified with x-ray diffraction, which showed typical characteristic anatase reflections without any separate dopant-related peaks. Transmission electron microscopy observations confirmed the existence of homogeneously distributed 22 ± 3 nm TiO2 nanoparticles. The particle size remained the same for the doped samples. The doping level of transition metals was kept at ≈1 atomic percent, which was determined by x-ray photoelectron spectra and energy dispersive x-ray spectroscopy. The effects of different types of dopants on the photocatalytic activity were revealed by the degradation of 2-chlorophenols with an UV light source. The photocatalytic efficiency was remarkably enhanced by the introduction of Pd2+ and Nd3+. Nd3+-doped TiO2 showed the largest enhancement. However, Pt4+ changed the 2-chlorophenol degradation rate only slightly, and Fe3+ was detrimental to this process. These effects were related to the position of the dopants in the nanoparticles and the difference in their ionic radii with respect to that of Ti4+. PMID:11880607

  2. Effect of different dopant elements (Al, Mg and Ni) on microstructural, optical and electrochemical properties of ZnO thin films deposited by spray pyrolysis (SP)

    NASA Astrophysics Data System (ADS)

    Benzarouk, Hayet; Drici, Abdelaziz; Mekhnache, Mounira; Amara, Abdelaziz; Guerioune, Mouhamed; Bernède, Jean Christian; Bendjffal, Hacen

    2012-09-01

    In the present work we studied the influence of the dopant elements and concentration on the microstructural and electrochemical properties of ZnO thin films deposited by spray pyrolysis. Transparent conductive thin films of zinc oxide (ZnO) were prepared by the spray pyrolysis process using an aqueous solution of zinc acetate dehydrate [Zn(CH3COO)2·2H2O] on soda glass substrate heated at 400 ± 5 °C. AlCl3, MgCl2 and NiCl2 were used as dopant. The effect of doping percentage (2-4%) has been investigated. Afterwards the samples were thermally annealed in an ambient air during one hour at 500 °C. X-ray diffraction showed that films have a wurtzite structure with a preferential orientation along the (0 0 2) direction for doped ZnO. The lattice parameters a and c are estimated to be 3.24 and 5.20 Ǻ, respectively. Transmission allowed to estimate the band gaps of ZnO layers. The electrochemical studies revealed that the corrosion resistance of the films depended on the concentration of dopants.

  3. Effects of Zn2+ and Pb2+ dopants on the activity of Ga2O3-based photocatalysts for water splitting.

    PubMed

    Wang, Xiang; Shen, Shuai; Jin, Shaoqing; Yang, Jingxiu; Li, Mingrun; Wang, Xiuli; Han, Hongxian; Li, Can

    2013-11-28

    Zn-doped and Pb-doped β-Ga2O3-based photocatalysts were prepared by an impregnation method. The photocatalyst based on the Zn-doped β-Ga2O3 shows a greatly enhanced activity in water splitting while the Pb-doped β-Ga2O3 one shows a dramatic decrease in activity. The effects of Zn(2+) and Pb(2+) dopants on the activity of Ga2O3-based photocatalysts for water splitting were investigated by HRTEM, XPS and time-resolved IR spectroscopy. A ZnGa2O4-β-Ga2O3 heterojunction is formed in the surface region of the Zn-doped β-Ga2O3 and a slower decay of photogenerated electrons is observed. The ZnGa2O4-β-Ga2O3 heterojunction exhibits type-II band alignment and facilitates charge separation, thus leading to an enhanced photocatalytic activity for water splitting. Unlike Zn(2+) ions, Pb(2+) ions are coordinated by oxygen atoms to form polyhedra as dopants, resulting in distorted surface structure and fast decay of photogenerated electrons of β-Ga2O3. These results suggest that the Pb dopants act as charge recombination centers expediting the recombination of photogenerated electrons and holes, thus decreasing the photocatalytic activity. PMID:24121670

  4. Enhanced visible-light absorption and dopant distribution of iodine-TiO{sub 2} nanoparticles synthesized by a new facile two-step hydrothermal method

    SciTech Connect

    Hong Xiaoting; Luo Zhiping; Batteas, James D.

    2011-08-15

    In order to prepare visible-light responsive iodine-doped TiO{sub 2}, a new facile synthetic approach was proposed, which started with the cost-efficient and environmentally friendly precursor of undoped anatase TiO{sub 2} to form nanotube structures as templates that collapsed and recrystallized into I-TiO{sub 2} nanopowders in HIO{sub 3} solution, followed by annealing at different temperatures. The modification of TiO{sub 2} to incorporate iodine and form titanium dioxide with significantly enhanced absorption in the visible range of the spectrum was investigated. The extent of iodine dopant incorporation was determined by X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray analysis (EDX) and was found to be homogenously distributed on each nanostructure as determined by electron energy-loss spectroscopy (EELS) elemental mapping and EDX spectroscopy. The modified TiO{sub 2} exhibits a dramatically extended absorption edge beyond 800 nm as compared to the original and unmodified TiO{sub 2}. - Graphical abstract: As-synthesized I-TiO{sub 2} nanoparticles show significantly enhanced visible-light absorption, with the dopant iodine homogenously dispersed on each I-TiO{sub 2} nanostructure based on EELS elemental mapping. Highlights: > Iodine-TiO{sub 2} nanoparticles by a new facile two-step hydrothermal method. > Significantly enhanced light absorption in the visible range of the spectrum. > Homogenous dopant distribution within each nanostructure.

  5. Neuroanatomical correlates of locative prepositions.

    PubMed

    Tranel, Daniel; Kemmerer, David

    2004-10-01

    Very little research has explored which neural systems may be important for retrieving the meanings of locative prepositions (e.g., in, on, around). To begin to address this knowledge gap, we conducted a lesion study in which we tested the hypothesis that processing the meanings of locative prepositions depends on neural structures in the left inferior prefrontal cortex and left inferior parietal cortex. Seventy-eight subjects with focal, stable lesions to various parts of the telencephalon and a comparison group of 60 normal participants were studied with tasks that require production, comprehension, and semantic analysis of locative prepositions. In support of our hypothesis, we found that in subjects with impaired knowledge of locative prepositions, the highest region of lesion overlap was in the left frontal operculum and the left supramarginal gyrus, and in the white matter subjacent to these two areas. In a second study, focused on six subjects who had pervasive defects for locative preposition knowledge, we confirmed that such defects were associated specifically with damage to the posterior left frontal operculum, white matter subjacent to this region, and white matter underneath the inferior parietal operculum. These subjects did not have basic impairments in spatial processing or working memory, and they had relatively well-preserved processing of conceptual knowledge for actions and various categories of concrete entities (e.g., persons, animals, tools). All six subjects, however, had defects in naming actions, and some of them also had defective naming of some categories of concrete entities. Overall, the findings converge nicely with recent results from functional imaging approaches, and with classic studies from the aphasia-based literature, and suggest that the left inferior prefrontal and left inferior parietal regions have crucial-albeit not exclusive-roles in processing knowledge associated with locative prepositions. PMID:21038229

  6. Inherent room temperature ferromagnetism and dopant dependent Raman studies of PbSe, Pb{sub 1−x}Cu{sub x}Se, and Pb{sub 1−x}Ni{sub x}Se

    SciTech Connect

    Gayner, Chhatrasal; Kar, Kamal K.

    2015-03-14

    Polycrystalline lead selenide (PbSe) doped with copper (Cu) and nickel (Ni) was prepared to understand its magnetic behaviour and Raman activity. The processing conditions, influence of dopants (magnetically active and non-active) and their respective compositions on the magnetic properties and Raman active mode were studied. A surprising/anomalous room temperature ferromagnetism (hysteresis loop) is noticed in bulk diamagnetic PbSe, which is found to be natural or inherent characteristic of material, and depends on the crystallite size, dopant, and developed strain due to dopant/defects. The magnetic susceptibility (−1.71 × 10{sup −4} emu/mol Oe) and saturated magnetic susceptibility (−2.74 × 10{sup −4} emu/mol Oe) are found to be higher than the earlier reported value (diamagnetic: −1.0 × 10{sup −4} emu/mol Oe) in bulk PbSe. With increase of Cu concentration (2% to 10%) in PbSe, the saturated magnetic susceptibility decreases from −1.22 × 10{sup −4} to −0.85 × 10{sup −4} emu/mol Oe. Whereas for Ni dopant, the saturated magnetic susceptibility increases to −2.96 × 10{sup −4} emu/mol Oe at 2% Ni doped PbSe. But it further decreases with dopant concentration. In these doped PbSe, the shifting of longitudinal (LO) phonon mode was also studied by the Raman spectroscopy. The shifting of LO mode is found to be dopant dependent, and the frequency shift of LO mode is associated with the induced strain that created by the dopants and vacancies. This asymmetry in LO phonon mode (peak shift and shape) may be due to the intraband electronic transition of dopants. The variation in magnetic susceptibility and Raman shifts are sensitive to crystallite size, nature of dopant, concentration of dopants, and induced strain due to dopants.

  7. LOCATING LEAKS WITH ACOUSTIC TECHNOLOGY

    EPA Science Inventory

    Many water distribution systems in this country are almost 100 years old. About 26 percent of piping in these systems is made of unlined cast iron or steel and is in poor condition. Many methods that locate leaks in these pipes are time-consuming, costly, disruptive to operations...

  8. Earthquake location in island arcs

    USGS Publications Warehouse

    Engdahl, E.R.; Dewey, J.W.; Fujita, K.

    1982-01-01

    A comprehensive data set of selected teleseismic P-wave arrivals and local-network P- and S-wave arrivals from large earthquakes occurring at all depths within a small section of the central Aleutians is used to examine the general problem of earthquake location in island arcs. Reference hypocenters for this special data set are determined for shallow earthquakes from local-network data and for deep earthquakes from combined local and teleseismic data by joint inversion for structure and location. The high-velocity lithospheric slab beneath the central Aleutians may displace hypocenters that are located using spherically symmetric Earth models; the amount of displacement depends on the position of the earthquakes with respect to the slab and on whether local or teleseismic data are used to locate the earthquakes. Hypocenters for trench and intermediate-depth events appear to be minimally biased by the effects of slab structure on rays to teleseismic stations. However, locations of intermediate-depth events based on only local data are systematically displaced southwards, the magnitude of the displacement being proportional to depth. Shallow-focus events along the main thrust zone, although well located using only local-network data, are severely shifted northwards and deeper, with displacements as large as 50 km, by slab effects on teleseismic travel times. Hypocenters determined by a method that utilizes seismic ray tracing through a three-dimensional velocity model of the subduction zone, derived by thermal modeling, are compared to results obtained by the method of joint hypocenter determination (JHD) that formally assumes a laterally homogeneous velocity model over the source region and treats all raypath anomalies as constant station corrections to the travel-time curve. The ray-tracing method has the theoretical advantage that it accounts for variations in travel-time anomalies within a group of events distributed over a sizable region of a dipping, high

  9. Dopant-free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors.

    PubMed

    Li, Yat; Xiang, Jie; Qian, Fang; Gradecak, Silvija; Wu, Yue; Yan, Hao; Blom, Douglas A; Lieber, Charles M

    2006-07-01

    We report the rational synthesis of dopant-free GaN/AlN/AlGaN radial nanowire heterostructures and their implementation as high electron mobility transistors (HEMTs). The radial nanowire heterostructures were prepared by sequential shell growth immediately following nanowire elongation using metal-organic chemical vapor deposition (MOCVD). Transmission electron microscopy (TEM) studies reveal that the GaN/AlN/AlGaN radial nanowire heterostructures are dislocation-free single crystals. In addition, the thicknesses and compositions of the individual AlN and AlGaN shells were unambiguously identified using cross-sectional high-angle annular darkfield scanning transmission electron microscopy (HAADF-STEM). Transport measurements carried out on GaN/AlN/AlGaN and GaN nanowires prepared using similar conditions demonstrate the existence of electron gas in the undoped GaN/AlN/AlGaN nanowire heterostructures and also yield an intrinsic electron mobility of 3100 cm(2)/Vs and 21,000 cm(2)/Vs at room temperature and 5 K, respectively, for the heterostructure. Field-effect transistors fabricated with ZrO(2) dielectrics and metal top gates showed excellent gate coupling with near ideal subthreshold slopes of 68 mV/dec, an on/off current ratio of 10(7), and scaled on-current and transconductance values of 500 mA/mm and 420 mS/mm. The ability to control synthetically the electronic properties of nanowires using band structure design in III-nitride radial nanowire heterostructures opens up new opportunities for nanoelectronics and provides a new platform to study the physics of low-dimensional electron gases.

  10. Dopant-Free All-Back-Contact Si Nanohole Solar Cells Using MoOx and LiF Films.

    PubMed

    Um, Han-Don; Kim, Namwoo; Lee, Kangmin; Hwang, Inchan; Seo, Ji Hoon; Seo, Kwanyong

    2016-02-10

    We demonstrate novel all-back-contact Si nanohole solar cells via the simple direct deposition of molybdenum oxide (MoOx) and lithium fluoride (LiF) thin films as dopant-free and selective carrier contacts (SCCs). This approach is in contrast to conventionally used high-temperature thermal doping processes, which require multistep patterning processes to produce diffusion masks. Both MoOx and LiF thin films are inserted between the Si absorber and Al electrodes interdigitatedly at the rear cell surfaces, facilitating effective carrier collection at the MoOx/Si interface and suppressed recombination at the Si and LiF/Al electrode interface. With optimized MoOx and LiF film thickness as well as the all-back-contact design, our 1 cm(2) Si nanohole solar cells exhibit a power conversion efficiency of up to 15.4%, with an open-circuit voltage of 561 mV and a fill factor of 74.6%. In particular, because of the significant reduction in Auger/surface recombination as well as the excellent Si-nanohole light absorption, our solar cells exhibit an external quantum efficiency of 83.4% for short-wavelength light (∼400 nm), resulting in a dramatic improvement (54.6%) in the short-circuit current density (36.8 mA/cm(2)) compared to that of a planar cell (23.8 mA/cm(2)). Hence, our all-back-contact design using MoOx and LiF films formed by a simple deposition process presents a unique opportunity to develop highly efficient and low-cost nanostructured Si solar cells. PMID:26760949

  11. Effects of Ceramic Nanopowder Dopants on Acoustic Attenuation Properties of Silicone Rubber Lens for Medical Echo Probe

    NASA Astrophysics Data System (ADS)

    Yamashita, Yohachi (John); Hosono, Yasuharu; Itsumi, Kazuhiro

    2007-07-01

    The effects of fine ceramic powder dopants, namely, TiO2, Al2O3, BaSO4, Fe2O3, ZrO2, and Yb2O3 with primary particle sizes of 16-100 nm, on the acoustic properties of silicone rubber have been investigated, in order to develop an acoustic lens material for medical echo probes with a low acoustic attenuation (α). Silicone rubber doped with Yb2O3 powder having a high density (ρ) of 9.2× 103 kg/m3 and an average particle size of 16 nm showed a lower acoustic attenuation than silicone rubber doped with other powders. The materials showed ρ=1.54× 103 kg/m3, a sound velocity (c)=882 m/s, an acoustic impedance ρ\\cdot c (Z)=1.36× 106 kg m-2 s-1, and an acoustic attenuation α=0.93 dB mm-1 MHz-1 at 37 °C. Silicone rubber doped with Fe2O3 powder having ρ=5.2× 103 kg/m3 and an average particle size of 30 nm showed the highest α=2.36 dB mm-1 MHz-1 and Z=1.47× 106 kg m-2 s-1. Microstructure observation of the rubber by scanning microscopy revealed that the α of the powder-doped rubber is not only determined by the primary particle size of the powders but also by the dispersion and agglomeration of the secondary particles in the rubber matrix. The discovery of the process parameter required to reduce the α of the nanopowder-doped silicone rubber has an important practical consequence.

  12. Location, Location, Location: How Would a High-Performing Charter School Network Fare in Different States?

    ERIC Educational Resources Information Center

    Lozier, Chris; Rotherham, Andrew J.

    2011-01-01

    In this paper the authors do not examine different operating strategies for charter schools or analyze the impact of their often educationally intensive models on finance. Instead, because public charter schools are funded predominantly by public dollars, they simply ask what impact location--and its associated variances in public funding and the…

  13. It's All about Location, Location, Location: Children's Memory for the "Where'' of Personally Experienced Events

    ERIC Educational Resources Information Center

    Bauer, Patricia J.; Doydum, Ayzit O.; Pathman, Thanujeni; Larkina, Marina; Guler, O. Evren; Burch, Melissa

    2012-01-01

    Episodic memory is defined as the ability to recall specific past events located in a particular time and place. Over the preschool and into the school years, there are clear developmental changes in memory for when events took place. In contrast, little is known about developmental changes in memory for where events were experienced. In the…

  14. Antarctic Meteorite Location Map Series

    NASA Technical Reports Server (NTRS)

    Schutt, John (Editor); Fessler, Brian (Editor); Cassidy, William (Editor)

    1989-01-01

    Antarctica has been a prolific source of meteorites since meteorite concentrations were discovered in 1969. The Antarctic Search For Meteorites (ANSMET) project has been active over much of the Trans-Antarctic Mountain Range. The first ANSMET expedition (a joint U.S.-Japanese effort) discovered what turned out to be a significant concentration of meteorites at the Allan Hills in Victoria Land. Later reconnaissance in this region resulted in the discovery of meteorite concentrations on icefields to the west of the Allan Hills, at Reckling Moraine, and Elephant Moraine. Antarctic meteorite location maps (reduced versions) of the Allan Hills main, near western, middle western, and far western icefields and the Elephant Moraine icefield are presented. Other Antarctic meteorite location maps for the specimens found by the ANSMET project are being prepared.

  15. Cholesterol's location in lipid bilayers

    DOE PAGES

    Marquardt, Drew; Kučerka, Norbert; Wassall, Stephen R.; Harroun, Thad A.; Katsaras, John

    2016-04-04

    It is well known that cholesterol modifies the physical properties of lipid bilayers. For example, the much studied liquid-ordered Lo phase contains rapidly diffusing lipids with their acyl chains in the all trans configuration, similar to gel phase bilayers. Moreover, the Lo phase is commonly associated with cholesterol-enriched lipid rafts, which are thought to serve as platforms for signaling proteins in the plasma membrane. Cholesterol's location in lipid bilayers has been studied extensively, and it has been shown – at least in some bilayers – to align differently from its canonical upright orientation, where its hydroxyl group is in themore » vicinity of the lipid–water interface. In this study we review recent works describing cholesterol's location in different model membrane systems with emphasis on results obtained from scattering, spectroscopic and molecular dynamics studies.« less

  16. Location Privacy in RFID Applications

    NASA Astrophysics Data System (ADS)

    Sadeghi, Ahmad-Reza; Visconti, Ivan; Wachsmann, Christian

    RFID-enabled systems allow fully automatic wireless identification of objects and are rapidly becoming a pervasive technology with various applications. However, despite their benefits, RFID-based systems also pose challenging risks, in particular concerning user privacy. Indeed, improvident use of RFID can disclose sensitive information about users and their locations allowing detailed user profiles. Hence, it is crucial to identify and to enforce appropriate security and privacy requirements of RFID applications (that are also compliant to legislation). This chapter first discusses security and privacy requirements for RFID-enabled systems, focusing in particular on location privacy issues. Then it explores the advances in RFID applications, stressing the security and privacy shortcomings of existing proposals. Finally, it presents new promising directions for privacy-preserving RFID systems, where as a case study we focus electronic tickets (e-tickets) for public transportation.

  17. Computer Model Locates Environmental Hazards

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Catherine Huybrechts Burton founded San Francisco-based Endpoint Environmental (2E) LLC in 2005 while she was a student intern and project manager at Ames Research Center with NASA's DEVELOP program. The 2E team created the Tire Identification from Reflectance model, which algorithmically processes satellite images using turnkey technology to retain only the darkest parts of an image. This model allows 2E to locate piles of rubber tires, which often are stockpiled illegally and cause hazardous environmental conditions and fires.

  18. Locating buildings in aerial photos

    NASA Technical Reports Server (NTRS)

    Green, James S.

    1994-01-01

    Algorithms and techniques for use in the identification and location of large buildings in digitized copies of aerial photographs are developed and tested. The building data would be used in the simulation of objects located in the vicinity of an airport that may be detected by aircraft radar. Two distinct approaches are considered. Most building footprints are rectangular in form. The first approach studied is to search for right-angled corners that characterize rectangular objects and then to connect these corners to complete the building. This problem is difficult because many nonbuilding objects, such as street corners, parking lots, and ballparks often have well defined corners which are often difficult to distinguish from rooftops. Furthermore, rooftops come in a number of shapes, sizes, shadings, and textures which also limit the discrimination task. The strategy used linear sequences of different samples to detect straight edge segments at multiple angles and to determine when these segments meet at approximately right-angles with respect to each other. This technique is effective in locating corners. The test image used has a fairly rectangular block pattern oriented about thirty degrees clockwise from a vertical alignment, and the overall measurement data reflect this. However, this technique does not discriminate between buildings and other objects at an operationally suitable rate. In addition, since multiple paths are tested for each image pixel, this is a time consuming task. The process can be speeded up by preprocessing the image to locate the more optimal sampling paths. The second approach is to rely on a human operator to identify and select the building objects and then to have the computer determine the outline and location of the selected structures. When presented with a copy of a digitized aerial photograph, the operator uses a mouse and cursor to select a target building. After a button on the mouse is pressed, with the cursor fully within

  19. Kaposi sarcoma in unusual locations

    PubMed Central

    Pantanowitz, Liron; Dezube, Bruce J

    2008-01-01

    Kaposi sarcoma (KS) is a multifocal, vascular lesion of low-grade malignant potential that presents most frequently in mucocutaneous sites. KS also commonly involves lymph nodes and visceral organs. This article deals with the manifestation of KS in unusual anatomic regions. Unusual locations of KS involvement include the musculoskeletal system, central and peripheral nervous system, larynx, eye, major salivary glands, endocrine organs, heart, thoracic duct, urinary system and breast. The development of KS within wounds and blood clots is also presented. KS in these atypical sites may prove difficult to diagnose, resulting in patient mismanagement. Theories to explain the rarity and development of KS in these unusual sites are discussed. PMID:18605999

  20. New Location Improves Efficiency | Poster

    Cancer.gov

    By Nancy Parrish, Staff Writer The physical proximity of the SAIC-Frederick Intellectual Property (IP) Office to the NCI Technology Transfer Center (NCI-TTC) is one of the many benefits of being at the Advanced Technology Research Facility (ATRF), according to Courtney Silverthorn, Ph.D. Being in one location “has increased the effectiveness of both informal communication and formal meetings. We have already brainstormed solutions for several issues in the hallway during an informal chat,” said Silverthorn, an SAIC-Frederick IP specialist.

  1. Locating nuclear power plants underground.

    PubMed

    Scott, F M

    1975-01-01

    This paper reviews some of the questions that have been asked by experts and others as to why nuclear power plants are not located or placed underground. While the safeguards and present designs make such installations unnecessary, there are some definite advantages that warrant the additional cost involved. First of all, such an arrangement does satisfy the psychological concern of a number of people and, in so doing, might gain the acceptance of the public so that such plants could be constructed in urban areas of load centers. The results of these studies are presented and some of the requirements necessary for underground installations described, including rock conditions, depth of facilities, and economics.

  2. Variable Solitary Fibrous Tumor Locations

    PubMed Central

    Zhanlong, Ma; Haibin, Shi; Xiangshan, Fang; Jiacheng, Song; Yicheng, Ni

    2016-01-01

    Abstract The aim of the study is to describe the radiological imaging features of different solitary fibrous tumors (SFTs) locations and present histopathological correlations. From 2007 to 2013, 20 cases of histologically confirmed that SFTs were retrospectively analyzed with computed tomography (CT; 9/20), magnetic resonance imaging (MRI; 5/20), or both CT and MRI (6/20). All 20 SFTs were well defined, lobular, soft-tissue masses, and 60% were located outside of the pleura. One pleural case invaded to the 10th thoracic vertebra and had lung metastases. Images revealed 11 heterogeneous lesions that exceeded 3.0 ± 0.203 cm along the greatest axis with patchy necrotic foci, and 9 homogeneous lesions <3.0 ± 0.203. Microscopically, all SFTs were proliferative spindle cells with varying degrees of fibrosis and interspersed vessel branching. Cells were strongly immunopositive for CD34. Here we review variable imaging findings of SFTs, which can be within the pleura as well as within other serosal tissues such as the meninges and postperitoneum. SFTs > 3.0 ± 0.203 cm along the greatest axis appeared to be mixed patterns, whereas SFTs < 3.0 ± 0.203 cm had isodense appearances. SFTs cells were CD34 immunopositive and surgery was a first-line treatment choice. PMID:27043668

  3. Short range radio locator system

    DOEpatents

    McEwan, T.E.

    1996-12-31

    A radio location system comprises a wireless transmitter that outputs two megahertz period bursts of two gigahertz radar carrier signals. A receiver system determines the position of the transmitter by the relative arrival of the radar bursts at several component receivers set up to have a favorable geometry and each one having a known location. One receiver provides a synchronizing gating pulse to itself and all the other receivers. The rate of the synchronizing gating pulse is slightly offset from the rate of the radar bursts themselves, so that each sample collects one finely-detailed piece of information about the time-of-flight of the radar pulse to each receiver each pulse period. Thousands of sequential pulse periods provide corresponding thousand of pieces of information about the time-of-flight of the radar pulse to each receiver, in expanded, not real time. Therefore the signal processing can be done with relatively low-frequency, inexpensive components. A conventional microcomputer is then used to find the position of the transmitter by geometric triangulation based on the relative time-of-flight information. 5 figs.

  4. Short range radio locator system

    DOEpatents

    McEwan, Thomas E.

    1996-01-01

    A radio location system comprises a wireless transmitter that outputs two megahertz period bursts of two gigahertz radar carrier signals. A receiver system determines the position of the transmitter by the relative arrival of the radar bursts at several component receivers set up to have a favorable geometry and each one having a known location. One receiver provides a synchronizing gating pulse to itself and all the other receivers to sample the ether for the radar pulse. The rate of the synchronizing gating pulse is slightly offset from the rate of the radar bursts themselves, so that each sample collects one finely-detailed piece of information about the time-of-flight of the radar pulse to each receiver each pulse period. Thousands of sequential pulse periods provide corresponding thousand of pieces of information about the time-of-flight of the radar pulse to each receiver, in expanded, not real time. Therefore the signal processing can be done with relatively low-frequency, inexpensive components. A conventional microcomputer is then used to find the position of the transmitter by geometric triangulation based on the relative time-of-flight information.

  5. Trend of the magnetic anisotropy for individual Mn dopants near the (1 1 0) GaAs surface.

    PubMed

    Mahani, M R; Pertsova, A; Canali, C M

    2014-10-01

    Using a microscopic finite-cluster tight-binding model, we investigate the trend of the magnetic anisotropy energy as a function of the cluster size for an individual Mn impurity positioned in the vicinity of the (1 1 0) GaAs surface. We present results of calculations for large cluster sizes containing approximately 10(4) atoms, which have not been investigated so far. Our calculations demonstrate that the anisotropy energy of a Mn dopant in bulk GaAs, found to be non-zero in previous tight-binding calculations, is purely a finite size effect that vanishes with inverse cluster size. In contrast to this, we find that the splitting of the three in-gap Mn acceptor energy levels converges to a finite value in the limit of the infinite cluster size. For a Mn in bulk GaAs this feature is related to the nature of the mean-field treatment of the coupling between the impurity and its nearest neighbor atoms. We also calculate the trend of the anisotropy energy in the sublayers as the Mn dopant is moved away from the surface towards the center of the cluster. Here the use of large cluster sizes allows us to position the impurity in deeper sublayers below the surface, compared to previous calculations. In particular, we show that the anisotropy energy increases up to the fifth sublayer and then decreases as the impurity is moved further away from the surface, approaching its bulk value. The present study provides important insights for experimental control and manipulation of the electronic and magnetic properties of individual Mn dopants at the semiconductor surface by means of advanced scanning tunneling microscopy techniques.

  6. Importance of doping, dopant distribution, and defects on electronic band structure alteration of metal oxide nanoparticles: Implications for reactive oxygen species.

    PubMed

    Saleh, Navid B; Milliron, Delia J; Aich, Nirupam; Katz, Lynn E; Liljestrand, Howard M; Kirisits, Mary Jo

    2016-10-15

    Metal oxide nanoparticles (MONPs) are considered to have the potency to generate reactive oxygen species (ROS), one of the key mechanisms underlying nanotoxicity. However, the nanotoxicology literature demonstrates a lack of consensus on the dominant toxicity mechanism(s) for a particular MONP. Moreover, recent literature has studied the correlation between band structure of pristine MONPs to their ability to introduce ROS and thus has downplayed the ROS-mediated toxicological relevance of a number of such materials. On the other hand, material science can control the band structure of these materials to engineer their electronic and optical properties and thereby is constantly modulating the pristine electronic structure. Since band structure is the fundamental material property that controls ROS-producing ability, band tuning via introduction of dopants and defects needs careful consideration in toxicity assessments. This commentary critically evaluates the existing material science and nanotoxicity literature and identifies the gap in our understanding of the role of important crystal structure features (i.e., dopants and defects) on MONPs' electronic structure alteration as well as their ROS-generation capability. Furthermore, this commentary provides suggestions on characterization techniques to evaluate dopants and defects on the crystal structure and identifies research needs for advanced theoretical predictions of their electronic band structures and ROS-generation abilities. Correlation of electronic band structure and ROS will not only aid in better mechanistic assessment of nanotoxicity but will be impactful in designing and developing ROS-based applications ranging from water disinfection to next-generation antibiotics and even cancer therapeutics.

  7. Calorimetric study of the effect of bent-shaped dopant molecules on the critical behavior at the nematic-smectic-Ad phase transition.

    PubMed

    Sasaki, Y; Ema, K; Le, K V; Takezoe, H; Dhara, S; Sadashiva, B K

    2011-06-01

    We report results of calorimetric studies for the binary mixture of rodlike host n-alkyloxy-cyanobiphenyl (nOCB, n=8,9) and bent-shaped guest 1,3-phenylene-bis[4-(3-methylbenzoyloxy)]-4'-n-dodecylbiphenyl-4'-carboxylate (BC12). The effect of bent-shaped dopant molecules on the critical behavior associated with the nematic-smectic-A(d) phase transition has been studied in detail. The transition temperature for the nematic-smectic-A(d) phase sharply decreases as the increase of the mole fraction of the dopant concentration (denoted X for the BC12/9OCB mixture and Y for the BC12/8OCB mixture). The dependence of the critical exponent α on X and Y is well explained in terms of the McMillan ratio. A nearly tricritical exponent has been obtained for the X=0.01 mixture. X=0.02-0.03 mixtures, pure 8OCB, and Y=0.01-0.03 mixtures exhibit nonuniversal behaviors with effective exponents lying between the 3D-XY and tricritical exponents. The heat capacity anomaly for Y=0.05 has been well described with the 3D-XY exponent. The critical amplitude ratio A(-)/A(+) is close to 1 and insensitive to the dopant concentration. No Fisher renormalization of the critical exponent has been observed even for nearly tricritical compositions, which indicates the smallness of the concentration plays a decisive role rather than the steepness of the N-SmA(d) phase boundary.

  8. Importance of doping, dopant distribution, and defects on electronic band structure alteration of metal oxide nanoparticles: Implications for reactive oxygen species.

    PubMed

    Saleh, Navid B; Milliron, Delia J; Aich, Nirupam; Katz, Lynn E; Liljestrand, Howard M; Kirisits, Mary Jo

    2016-10-15

    Metal oxide nanoparticles (MONPs) are considered to have the potency to generate reactive oxygen species (ROS), one of the key mechanisms underlying nanotoxicity. However, the nanotoxicology literature demonstrates a lack of consensus on the dominant toxicity mechanism(s) for a particular MONP. Moreover, recent literature has studied the correlation between band structure of pristine MONPs to their ability to introduce ROS and thus has downplayed the ROS-mediated toxicological relevance of a number of such materials. On the other hand, material science can control the band structure of these materials to engineer their electronic and optical properties and thereby is constantly modulating the pristine electronic structure. Since band structure is the fundamental material property that controls ROS-producing ability, band tuning via introduction of dopants and defects needs careful consideration in toxicity assessments. This commentary critically evaluates the existing material science and nanotoxicity literature and identifies the gap in our understanding of the role of important crystal structure features (i.e., dopants and defects) on MONPs' electronic structure alteration as well as their ROS-generation capability. Furthermore, this commentary provides suggestions on characterization techniques to evaluate dopants and defects on the crystal structure and identifies research needs for advanced theoretical predictions of their electronic band structures and ROS-generation abilities. Correlation of electronic band structure and ROS will not only aid in better mechanistic assessment of nanotoxicity but will be impactful in designing and developing ROS-based applications ranging from water disinfection to next-generation antibiotics and even cancer therapeutics. PMID:27350094

  9. Visualization and analysis of active dopant distribution in a p-i-n structured amorphous silicon solar cell using scanning nonlinear dielectric microscopy

    NASA Astrophysics Data System (ADS)

    Hirose, K.; Chinone, N.; Cho, Y.

    2015-09-01

    Scanning nonlinear dielectric microscopy (SNDM) and super-higher-order (SHO-) SNDM were used for dopant profiling analysis of a cross-section of the p-i-n structure of an amorphous silicon solar cell. The p-i-n and zigzag structures of each layer boundary were visualized as carrier polarity and density images on 10-20 nm scale through a SNDM measurement. A capacitance-voltage curve was obtained at each pixel in the scan area through a SHO-SNDM measurement. The obtained SNDM and SHO-SNDM data suggest that the i-layer was not completely intrinsic, but was very-low-density p-type.

  10. Heat exchanger leakage problem location

    NASA Astrophysics Data System (ADS)

    Hejčík, Jiří; Jícha, Miroslav

    2012-04-01

    Recent compact heat exchangers are very often assembled from numerous parts joined together to separate heat transfer fluids and to form the required heat exchanger arrangement. Therefore, the leak tightness is very important property of the compact heat exchangers. Although, the compact heat exchangers have been produced for many years, there are still technological problems associated with manufacturing of the ideal connection between the individual parts, mainly encountered with special purpose heat exchangers, e.g. gas turbine recuperators. This paper describes a procedure used to identify the leakage location inside the prime surface gas turbine recuperator. For this purpose, an analytical model of the leaky gas turbine recuperator was created to assess its performance. The results obtained are compared with the experimental data which were acquired during the recuperator thermal performance analysis. The differences between these two data sets are used to indicate possible leakage areas.

  11. Map learning with indistinguishable locations

    NASA Technical Reports Server (NTRS)

    Basye, Kenneth; Dean, Thomas

    1989-01-01

    Nearly all spatial reasoning problems involve uncertainty of one sort or another. Uncertainty arises due to the inaccuracies of sensors used in measuring distances and angels. This is inferred as directional uncertainty. Uncertainty also arises in combining spatial information when one location is mistakenly identified with another. This is referred to as recognition uncertainty. Most problems in constructing spatial representations (maps) for the purpose of navigation involve both directional and recognition uncertainty. It is shown that a particular class of spatial reasoning problems involving the construction of representations of large-scale space can be solved efficiently even in the presence of directional and recognition uncertainty. Particular attention is paid to the problems that arise due to recognition uncertainty. The results described are applicable to the construction of global maps from satellite data as well as the construction of local navigation maps from measurements made by a rover in exploring a planetary surface.

  12. Estimating Location without External Cues

    PubMed Central

    Cheung, Allen

    2014-01-01

    The ability to determine one's location is fundamental to spatial navigation. Here, it is shown that localization is theoretically possible without the use of external cues, and without knowledge of initial position or orientation. With only error-prone self-motion estimates as input, a fully disoriented agent can, in principle, determine its location in familiar spaces with 1-fold rotational symmetry. Surprisingly, localization does not require the sensing of any external cue, including the boundary. The combination of self-motion estimates and an internal map of the arena provide enough information for localization. This stands in conflict with the supposition that 2D arenas are analogous to open fields. Using a rodent error model, it is shown that the localization performance which can be achieved is enough to initiate and maintain stable firing patterns like those of grid cells, starting from full disorientation. Successful localization was achieved when the rotational asymmetry was due to the external boundary, an interior barrier or a void space within an arena. Optimal localization performance was found to depend on arena shape, arena size, local and global rotational asymmetry, and the structure of the path taken during localization. Since allothetic cues including visual and boundary contact cues were not present, localization necessarily relied on the fusion of idiothetic self-motion cues and memory of the boundary. Implications for spatial navigation mechanisms are discussed, including possible relationships with place field overdispersion and hippocampal reverse replay. Based on these results, experiments are suggested to identify if and where information fusion occurs in the mammalian spatial memory system. PMID:25356642

  13. Location, Location, Location: Eye-Tracking Evidence that Consumers Preferentially View Prominently Positioned Nutrition Information

    PubMed Central

    Graham, Dan J.; Jeffery, Robert W.

    2012-01-01

    Background Nutrition Facts labels can keep consumers better informed about their diets' nutritional composition, however, consumers currently do not understand these labels well or use them often. Thus, modifying existing labels may benefit public health. Objective The present study tracked the visual attention of individuals making simulated food-purchasing decisions to assess Nutrition Facts label viewing. Primary research questions were how self-reported viewing of Nutrition Facts labels and their components relates to measured viewing and whether locations of labels and specific label components relate to viewing. Design The study involved a simulated grocery shopping exercise conducted on a computer equipped with an eye-tracking camera. A post-task survey assessed self-reported nutrition information viewing, health behaviors, and demographics. Subjects/setting Individuals 18 years old and older and capable of reading English words on a computer (n=203) completed the 1-hour protocol at the University of Minnesota during Spring 2010. Statistical analyses Primary analyses included χ2, analysis of variance, and t tests comparing self-reported and measured viewing of label components in different presentation configurations. Results Self-reported viewing of Nutrition Facts label components was higher than objectively measured viewing. Label components at the top of the label were viewed more than those at the bottom, and labels positioned in the center of the screen were viewed more than those located on the sides. Conclusions Nutrition Facts label position within a viewing area and position of specific components on a label relate to viewing. Eye tracking is a valuable technology for evaluating consumers' attention to nutrition information, informing nutrition labeling policy (eg, front-of-pack labels), and designing labels that best support healthy dietary decisions. PMID:22027053

  14. Evaluation of dopants in hydrogen to reduce hydrogen permeation in candidate Stirling engine heater head tube alloys at 760 deg and 820 deg

    NASA Technical Reports Server (NTRS)

    Misencik, J. A.

    1982-01-01

    Alloy tubes filled with hydrogen doped with various amounts of carbon monoxide, carbon dioxide, ethane, ethylene, methane, ammonia, or water were heated in a diesel fuel-fired Stirling engine simulator materials test rig for 100 hours at 21 MPa and 760 or 820 C to determine the effectiveness of the dopants in reducing hydrogen permeation through the hot tube walls. Ultra high purity (UHP) hydrogen was used for comparison. The tube alloys were N-155, A-286, Incoloy 800, Nitronic 40, 19-9DL, 316 stainless steel, Inconel 718, and HS-188. Carbon dioxide and carbon monoxide in the concentration range 0.2 to 5 vol % were most effective in reducing hydrogen permeation through the hot tube walls for all alloys. Ethane, ethylene, methane, ammonia, and water at the concentrations investigated were not effective in reducing the permeation below that achieved with UHP hydrogen. One series of tests were conducted with UHP hydrogen in carburized tubes. Carburization of the tubes prior to exposure reduced permeation to values similar to those for carbon monoxide; however, carbon dioxide was the most effective dopant.

  15. Observation of dopant-profile independent electron transport in sub-monolayer TiOx stacked ZnO thin films grown by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Saha, D.; Misra, P.; Das, Gangadhar; Joshi, M. P.; Kukreja, L. M.

    2016-01-01

    Dopant-profile independent electron transport has been observed through a combined study of temperature dependent electrical resistivity and magnetoresistance measurements on a series of Ti incorporated ZnO thin films with varying degree of static-disorder. These films were grown by atomic layer deposition through in-situ vertical stacking of multiple sub-monolayers of TiOx in ZnO. Upon decreasing ZnO spacer layer thickness, electron transport smoothly evolved from a good metallic to an incipient non-metallic regime due to the intricate interplay of screening of spatial potential fluctuations and strength of static-disorder in the films. Temperature dependent phase-coherence length as extracted from the magnetotransport measurement revealed insignificant role of inter sub-monolayer scattering as an additional channel for electron dephasing, indicating that films were homogeneously disordered three-dimensional electronic systems irrespective of their dopant-profiles. Results of this study are worthy enough for both fundamental physics perspective and efficient applications of multi-stacked ZnO/TiOx structures in the emerging field of transparent oxide electronics.

  16. SiO2 and ZnO dopants in three-dimensionally printed tricalcium phosphate bone tissue engineering scaffolds enhance osteogenesis and angiogenesis in vivo.

    PubMed

    Fielding, Gary; Bose, Susmita

    2013-11-01

    Calcium phosphate (CaP) scaffolds with three-dimensionally-interconnected pores play an important role in mechanical interlocking and biological fixation in bone implant applications. CaPs alone, however, are only osteoconductive (able to guide bone growth). Much attention has been given to the incorporation of biologics and pharmacologics to add osteoinductive (able to cause new bone growth) properties to CaP materials. Because biologics and pharmacologics are generally delicate compounds and also subject to increased regulatory scrutiny, there is a need to investigate alternative methods to introduce osteoinductivity to CaP materials. In this study silica (SiO2) and zinc oxide (ZnO) have been incorporated into three-dimensional printed β-tricalcium phosphate (β-TCP) scaffolds to investigate their potential to trigger osteoinduction in vivo. Silicon and zinc are trace elements that are common in bone and have also been shown to have many beneficial properties, from increased bone regeneration to angiogenesis. Implants were placed in bicortical femur defects introduced to a murine model for up to 16 weeks. The addition of dopants into TCP increased the capacity for new early bone formation by modulating collagen I production and osteocalcin production. Neovascularization was found to be up to three times more than the pure TCP control group. The findings from this study indicate that the combination of SiO2 and ZnO dopants in TCP may be a viable alternative to introducing osteoinductive properties to CaPs.

  17. The effect of fe-dopant concentration on ethanol gas sensing properties of fe doped ZnO/ZnO shell/core nanorods

    NASA Astrophysics Data System (ADS)

    Khayatian, A.; Safa, S.; Azimirad, R.; Kashi, M. Almasi; Akhtarianfar, S. F.

    2016-10-01

    In this paper, Fe-doped ZnO/ZnO shell/core nanostructures were synthesized through a simple two-step method and the effects of Fe dopant concentrations (between 0 and 9 at%) on the structural, optical, electrical and gas sensing properties were investigated. The X-ray diffraction analysis revealed that all of the samples are crystallized in the same wurtzite hexagonal crystal structure with (002) peak as the main orientation. Nevertheless, the morphology of shell/core nanorods remained stable with increasing of Fe dopant, but the crystallinity improved. The ultraviolet-visible spectroscopy analysis showed that the Fe ions have coordination number of 3+ in the ZnO shell layer. The participation of Fe3+ ions into ZnO layer was also confirmed by Current-Voltage (I-V) curves where the resistance of nanorods was reduced with Fe concentration. Moreover, the ethanol-sensing properties of the Fe-doped ZnO/ZnO shell/core nanorod sensors were systematically investigated. According to the results, optimum gas sensing was obtained by the addition of 0.5 at% Fe to ZnO shell layer which lead to significant enhancement in ethanol gas response.

  18. Dopant activation in Sn-doped Ga{sub 2}O{sub 3} investigated by X-ray absorption spectroscopy

    SciTech Connect

    Siah, S. C. Brandt, R. E.; Jaramillo, R.; Buonassisi, T.; Lim, K.; Schelhas, L. T.; Toney, M. F.; Heinemann, M. D.; Chua, D.; Gordon, R. G.; Wright, J.; Segre, C. U.; Perkins, J. D.

    2015-12-21

    Doping activity in both beta-phase (β-) and amorphous (a-) Sn-doped gallium oxide (Ga{sub 2}O{sub 3}:Sn) is investigated by X-ray absorption spectroscopy (XAS). A single crystal of β-Ga{sub 2}O{sub 3}:Sn grown using edge-defined film-fed growth at 1725 °C is compared with amorphous Ga{sub 2}O{sub 3}:Sn films deposited at low temperature (<300 °C). Our XAS analyses indicate that activated Sn dopant atoms in conductive single crystal β-Ga{sub 2}O{sub 3}:Sn are present as Sn{sup 4+}, preferentially substituting for Ga at the octahedral site, as predicted by theoretical calculations. In contrast, inactive Sn atoms in resistive a-Ga{sub 2}O{sub 3}:Sn are present in either +2 or +4 charge states depending on growth conditions. These observations suggest the importance of growing Ga{sub 2}O{sub 3}:Sn at high temperature to obtain a crystalline phase and controlling the oxidation state of Sn during growth to achieve dopant activation.

  19. Synthesis, characterization and luminescence of Sr{sub 3}Al{sub 2}O{sub 6} phosphor with trivalent rare earth dopant

    SciTech Connect

    Page, Pallavi; Ghildiyal, Rahul; Murthy, K.V.R. . E-mail: drmurthykvr@yahoo.com

    2006-10-12

    The luminescent properties of Sr{sub 3}Al{sub 2}O{sub 6} doped and co-doped with the rare earths (Ln{sup 3+} = Eu{sup 3+}, Dy{sup 3+}, Eu{sup 3+} and Dy{sup 3+}) have been studied. The material was synthesized by reflux method and fired up to 900 deg. C for 16 h. The X-ray diffraction pattern confirms that the synthesized material consists of Sr{sub 3}Al{sub 2}O{sub 6} as main phase. The photoluminescence study gives a clear evidence of europium stabilizing in trivalent form and surprisingly with no presence of europium in the divalent state. The addition of Dy{sup 3+} as co-dopant in the Sr{sub 3}Al{sub 2}O{sub 6}:Eu{sup 3+} matrix shows the quenching effect in the photoluminescence (PL) spectra. The photoluminescence intensity of Eu{sup 3+} falls gradually on increasing the concentration of the co-dopant in the range from 0.1 mole% to 2.0 mole%. The significantly intense thermoluminescence (TL) glow peak was obtained for Sr{sub 3}Al{sub 2}O{sub 6}:Eu{sup 3+}, Dy{sup 3+} (1% and 0.1%) at around 194 deg. C when irradiated with 10 kGy dose from Sr-90 {beta} source.

  20. Dopant spin states and magnetism of Sn{sub 1−x}Fe{sub x}O{sub 2} nanoparticles

    SciTech Connect

    Punnoose, A. Dodge, Kelsey; Reddy, K. M.; Franco, Nevil; Chess, Jordan; Eixenberger, Josh; Beltrán, J. J.; Barrero, C. A.

    2014-05-07

    This work reports detailed investigations of a series of ∼2.6 nm sized, Sn{sub 1−x}Fe{sub x}O{sub 2} crystallites with x = 0–0.10 using Mossbauer spectroscopy, x-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance spectroscopy (EPR), and magnetometry to determine the oxidation state of Fe dopants and their role in the observed magnetic properties. The magnetic moment per Fe ion μ was the largest ∼6.48 × 10{sup −3} μ{sub B} for the sample with the lowest (0.001%) Fe doping, and it showed a rapid downward trend with increasing Fe doping. Majority of the Fe ions are in 3+ oxidation state occupying octahedral sites. Another significant fraction of Fe dopant ions is in 4+ oxidation state and a still smaller fraction might be existing as Fe{sup 2+} ions, both occupying distorted sites, presumably in the surface regions of the nanocrystals, near oxygen vacancies. These studies also suggest that the observed magnetism is not due to exchange coupling between Fe{sup 3+} spins. A more probable role for the multi-valent Fe ions may be to act as charge reservoirs, leading to charge transfer ferromagnetism.

  1. Investigation of the influence of vanadium, iron and nickel dopants on the morphology, and crystal structure and photocatalytic properties of titanium dioxide based nanopowders.

    PubMed

    Shao, Godlisten N; Jeon, Sun-Jeong; Haider, M Salman; Abbass, Nadir; Kim, Hee Taik

    2016-07-15

    Photoactive V, Fe and Ni doped TiO2 (M-TiO2) nanopowders were synthesized by a modified two-step sol-gel process in the absence of additives. Titanium oxychloride, which is a rarely-used TiO2 precursor was used to yield M-TiO2 photocatalysts with preferential photochemical performance in the presence of natural solar irradiation. The obtained samples were calcined at different calcination temperatures ranging from 450 to 800°C to evaluate the influence of the sintering on the physicochemical properties. The properties of the obtained samples were examined by XRF, XRD, Raman spectroscopy, UV-visible DRS, XPS, nitrogen gas physisorption studies, SEM-EDAX and HRTEM analyses. Structural characterization of the samples revealed the incorporation of these transition metal element into TiO2. It was also depicted that the morphology, crystal structure, optical and photochemical properties of the obtained samples were largely dependent on the calcination temperature and the type of dopant used during the preparation process. The photochemical performance of the samples was investigated in the photodegradation of methylene blue in the presence of natural sunlight. The experimental results indicated that the VT600 sample possessed the highest activity due to its superior properties. This study provides a systematic preparation and selection of the precursor, dopant and calcination temperature that are suitable for the formation of TiO2-based heterogeneous photocatalysts with appealing morphology, crystal structure, optical and photochemical properties for myriad of applications.

  2. SiO2 and ZnO Dopants in 3D Printed TCP Scaffolds Enhances Osteogenesis and Angiogenesis in vivo

    PubMed Central

    Fielding, Gary; Bose, Susmita

    2013-01-01

    Calcium phosphate (CaP) scaffolds with three dimensionally (3D) interconnected pores play an important role in mechanical interlocking and biological fixation in bone implant applications. CaPs alone, however, are only osteoconductive (ability to guide bone growth). Much attention has been given to the incorporation of biologics and pharmacologics to add osteoinductive (ability to cause new bone growth) properties to CaP materials. Because biologics and pharmacologics are generally delicate compounds and also subject to increased regulatory scrutiny, there is a need to investigate alternative methods to introduce osteoinductivity to CaP materials. In this study silica (SiO2) and zinc oxide (ZnO) have been incorporated in to 3D printed β-tricalcium phosphate (TCP) scaffolds to investigate their potential to trigger osteoinduction in vivo. Silicon and zinc are trace elements that are common to bone and have also been shown to have many beneficial properties from increased bone regeneration to angiogenesis. Implants were placed in bicortical femur defects introduced to a murine model for up to 16 weeks. Addition of dopants into TCP increased the capacity for new early bone formation by modulating collagen I production and osteocalcin production. Neovascularization was found to be up to three times more than the pure TCP control group. The findings from this study indicate that the combination of SiO2 and ZnO dopants in TCP may be a viable alternative to introduce osteoinductive properties to CaPs. PMID:23871941

  3. Band-Gap Reduction and Dopant Interaction in Epitaxial La,Cr Co-doped SrTiO3 Thin Films

    SciTech Connect

    Comes, Ryan B.; Sushko, Petr; Heald, Steve M.; Colby, Robert J.; Bowden, Mark E.; Chambers, Scott A.

    2014-12-03

    We show that by co-doping SrTiO3 (STO) epitaxial thin films with equal amounts of La and Cr it is possible to produce films with an optical band gap ~0.9 eV lower than that of undoped STO. Sr1-xLaxTi1-xCrxO3 thin films were deposited by molecular beam epitaxy and characterized using x-ray photoelectron spectroscopy and x-ray absorption near-edge spectroscopy to show that the Cr dopants are almost exclusively in the Cr3+ oxidation state. Extended x-ray absorption fine structure measurements and theoretical modeling suggest that it is thermodynamically preferred for La and Cr dopants to occupy nearest neighbor A- and B-sites in the lattice. Transport measurements show that the material exhibits variable-range hopping conductivity with high resistivity. These results create new opportunities for the use of doped STO films in photovoltaic and photocatalytic applications.

  4. Arousal-Enhanced Location Memory for Pictures

    ERIC Educational Resources Information Center

    Mather, Mara; Nesmith, Kathryn

    2008-01-01

    Four experiments revealed arousal-enhanced location memory for pictures. After an incidental encoding task, participants were more likely to remember the locations of positive and negative arousing pictures than the locations of non-arousing pictures, indicating better binding of location to picture. This arousal-enhanced binding effect did not…

  5. Privacy-Preserving Location-Based Services

    ERIC Educational Resources Information Center

    Chow, Chi Yin

    2010-01-01

    Location-based services (LBS for short) providers require users' current locations to answer their location-based queries, e.g., range and nearest-neighbor queries. Revealing personal location information to potentially untrusted service providers could create privacy risks for users. To this end, our objective is to design a privacy-preserving…

  6. 43 CFR 3816.1 - Mineral locations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Mineral locations. 3816.1 Section 3816.1..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) LANDS AND MINERALS SUBJECT TO LOCATION Mineral Locations in Reclamation Withdrawals § 3816.1 Mineral locations. The Act of April 23, 1932 (47 Stat. 136;...

  7. 43 CFR 3815.1 - Mineral locations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Mineral locations. 3815.1 Section 3815.1..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) LANDS AND MINERALS SUBJECT TO LOCATION Mineral Locations in Stock Driveway Withdrawals § 3815.1 Mineral locations. Under authority of the provisions of...

  8. 43 CFR 3816.1 - Mineral locations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Mineral locations. 3816.1 Section 3816.1..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) LANDS AND MINERALS SUBJECT TO LOCATION Mineral Locations in Reclamation Withdrawals § 3816.1 Mineral locations. The Act of April 23, 1932 (47 Stat. 136;...

  9. 43 CFR 3815.1 - Mineral locations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Mineral locations. 3815.1 Section 3815.1..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) LANDS AND MINERALS SUBJECT TO LOCATION Mineral Locations in Stock Driveway Withdrawals § 3815.1 Mineral locations. Under authority of the provisions of...

  10. 43 CFR 3815.1 - Mineral locations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Mineral locations. 3815.1 Section 3815.1..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) LANDS AND MINERALS SUBJECT TO LOCATION Mineral Locations in Stock Driveway Withdrawals § 3815.1 Mineral locations. Under authority of the provisions of...

  11. 43 CFR 3816.1 - Mineral locations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Mineral locations. 3816.1 Section 3816.1..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) LANDS AND MINERALS SUBJECT TO LOCATION Mineral Locations in Reclamation Withdrawals § 3816.1 Mineral locations. The Act of April 23, 1932 (47 Stat. 136;...

  12. 43 CFR 3815.1 - Mineral locations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Mineral locations. 3815.1 Section 3815.1..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) LANDS AND MINERALS SUBJECT TO LOCATION Mineral Locations in Stock Driveway Withdrawals § 3815.1 Mineral locations. Under authority of the provisions of...

  13. 43 CFR 3816.1 - Mineral locations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Mineral locations. 3816.1 Section 3816.1..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) LANDS AND MINERALS SUBJECT TO LOCATION Mineral Locations in Reclamation Withdrawals § 3816.1 Mineral locations. The Act of April 23, 1932 (47 Stat. 136;...

  14. Locating Radio Noise from Sprites

    NASA Astrophysics Data System (ADS)

    Fullekrug, M.; Mezentsev, A.; Watson, R.; Gaffet, S.; Astin, I.; Evans, A.

    2014-12-01

    Sprites are composed of individual streamer discharges (e.g., Pasko, 2010) which split into exponentially growing streamer tips (McHarg et al., 2010). The acceleration of the electrons to a few eV results in the radiation of a small amount of electromagnetic energy. The incoherent superposition of many streamers causes the low frequency radio noise from sprites near ~40 km height (Qin et al., 2012). The presence of this theoretically predicted radiation was recently confirmed by low frequency radio noise measurements during dancing sprites with a very sensitive radio receiver (Fullekrug et al., 2013). To locate the radio noise from sprites in the sky, an interferometric network of low frequency radio receivers was developed (Mezentsev and Fullekrug, JGR, 2013). The key parameter for the interferometric signal processing is the frequency dependent wave propagation velocity of the radio waves within the Earth's atmosphere. This wave propagation velocity is determined by the wave number vector which needs to be inferred from the measurements. Here we adapt and subsequently apply array analyses which have been developed for seismic and infrasound arrays to determine the horizontal wave number vectors of ~20-24 kHz radio waves measured with an array of ten radio receivers distributed over an area of ~1 km × 1 km. It is found that the horizontal slowness of ~20-24 kHz radio waves ranges from ~2.7 ns/m to ~4.1 ns/m depending on the arrival azimuth of the radio wave. For comparison, an electromagnetic wave in vacuum has a slowness of ~3.34 ns/m. A larger slowness indicates an apparent velocity which is smaller than the speed of light and a smaller slowness indicates that the radio wave arrives at the array from an elevation angle. The observed variability of the observed slowness almost certainly results from the distance dependent superposition of the transverse electric and magnetic TEn and TMn radio wave propagation modes.

  15. Central chemoreceptors: locations and functions.

    PubMed

    Nattie, Eugene; Li, Aihua

    2012-01-01

    Central chemoreception traditionally refers to a change in ventilation attributable to changes in CO2/H(+) detected within the brain. Interest in central chemoreception has grown substantially since the previous Handbook of Physiology published in 1986. Initially, central chemoreception was localized to areas on the ventral medullary surface, a hypothesis complemented by the recent identification of neurons with specific phenotypes near one of these areas as putative chemoreceptor cells. However, there is substantial evidence that many sites participate in central chemoreception some located at a distance from the ventral medulla. Functionally, central chemoreception, via the sensing of brain interstitial fluid H(+), serves to detect and integrate information on (i) alveolar ventilation (arterial PCO2), (ii) brain blood flow and metabolism, and (iii) acid-base balance, and, in response, can affect breathing, airway resistance, blood pressure (sympathetic tone), and arousal. In addition, central chemoreception provides a tonic "drive" (source of excitation) at the normal, baseline PCO2 level that maintains a degree of functional connectivity among brainstem respiratory neurons necessary to produce eupneic breathing. Central chemoreception responds to small variations in PCO2 to regulate normal gas exchange and to large changes in PCO2 to minimize acid-base changes. Central chemoreceptor sites vary in function with sex and with development. From an evolutionary perspective, central chemoreception grew out of the demands posed by air versus water breathing, homeothermy, sleep, optimization of the work of breathing with the "ideal" arterial PCO2, and the maintenance of the appropriate pH at 37°C for optimal protein structure and function.

  16. Central Chemoreceptors: Locations and Functions

    PubMed Central

    Nattie, Eugene; Li, Aihua

    2016-01-01

    Central chemoreception traditionally refers to a change in ventilation attributable to changes in CO2/H+ detected within the brain. Interest in central chemoreception has grown substantially since the previous Handbook of Physiology published in 1986. Initially, central chemoreception was localized to areas on the ventral medullary surface, a hypothesis complemented by the recent identification of neurons with specific phenotypes near one of these areas as putative chemoreceptor cells. However, there is substantial evidence that many sites participate in central chemoreception some located at a distance from the ventral medulla. Functionally, central chemoreception, via the sensing of brain interstitial fluid H+, serves to detect and integrate information on 1) alveolar ventilation (arterial PCO2), 2) brain blood flow and metabolism and 3) acid-base balance, and, in response, can affect breathing, airway resistance, blood pressure (sympathetic tone) and arousal. In addition, central chemoreception provides a tonic ‘drive’ (source of excitation) at the normal, baseline PCO2 level that maintains a degree of functional connectivity among brainstem respiratory neurons necessary to produce eupneic breathing. Central chemoreception responds to small variations in PCO2 to regulate normal gas exchange and to large changes in PCO2 to minimize acid-base changes. Central chemoreceptor sites vary in function with sex and with development. From an evolutionary perspective, central chemoreception grew out of the demands posed by air vs. water breathing, homeothermy, sleep, optimization of the work of breathing with the ‘ideal’ arterial PCO2, and the maintenance of the appropriate pH at 37°C for optimal protein structure and function. PMID:23728974

  17. [Rare location of arachnoid cysts. Extratemporal cysts].

    PubMed

    Martinez-Perez, Rafael; Hinojosa, José; Pascual, Beatriz; Panaderos, Teresa; Welter, Diego; Muñoz, María J

    2016-01-01

    The therapeutic management of arachnoid cysts depends largely on its location. Almost 50% of arachnoid cysts are located in the temporal fossa-Sylvian fissure, whereas the other half is distributed in different locations, sometimes exceptional. Under the name of infrequent location arachnoid cysts, a description is presented of those composed of 2 sheets of arachnoid membrane, which are not located in the temporal fossa, and are primary or congenital.

  18. Diameter-dependent release of a cisplatin pro-drug from small and large functionalized carbon nanotubes.

    PubMed

    Muzi, Laura; Ménard-Moyon, Cécilia; Russier, Julie; Li, Jian; Chin, Chee Fei; Ang, Wee Han; Pastorin, Giorgia; Risuleo, Gianfranco; Bianco, Alberto

    2015-03-12

    The use of platinum-based chemotherapeutic drugs in cancer therapy still suffers from severe disadvantages, such as lack of appropriate selectivity for tumor tissues and insurgence of multi-drug resistance. Moreover, drug efficacy can be attenuated by several mechanisms such as premature drug inactivation, reduced drug uptake inside cells and increased drug efflux once internalized. The use of functionalized carbon nanotubes (CNTs) as chemotherapeutic drug delivery systems is a promising strategy to overcome such limitations due to their ability to enhance cellular internalization of poorly permeable drugs and thus increase the drug bioavailability at the diseased site, compared to the free drug. Furthermore, the possibility to encapsulate agents in the nanotubes' inner cavity can protect the drug from early inactivation and their external functionalizable surface is useful for selective targeting. In this study, a hydrophobic platinum(IV) complex was encapsulated within the inner space of two different diameter functionalized multi-walled CNTs (Pt(IV)@CNTs). The behavior of the complexes, compared to the free drug, was investigated on both HeLa human cancer cells and RAW 264.7 murine macrophages. Both CNT samples efficiently induced cell death in HeLa cancer cells 72 hours after the end of exposure to CNTs. Although the larger diameter CNTs were more cytotoxic on HeLa cells compared to both the free drug and the smaller diameter nanotubes, the latter allowed a prolonged release of the encapsulated drug, thus increasing its anticancer efficacy. In contrast, both Pt(IV)@CNT constructs were poorly cytotoxic on macrophages and induced negligible cell activation and no pro-inflammatory cytokine production. Both CNT samples were efficiently internalized by the two types of cells, as demonstrated by transmission electron microscopy observations and flow cytometry analysis. Finally, the platinum levels found in the cells after Pt(IV)@CNT exposure demonstrate that they can promote drug accumulation inside cells in comparison with treatment with the free complex. To conclude, our study shows that CNTs are promising nanocarriers to improve the accumulation of a chemotherapeutic drug and its slow release inside tumor cells, by tuning the CNT diameter, without inducing a high inflammatory response.

  19. Diameter-dependent release of a cisplatin pro-drug from small and large functionalized carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Muzi, Laura; Ménard-Moyon, Cécilia; Russier, Julie; Li, Jian; Chin, Chee Fei; Ang, Wee Han; Pastorin, Giorgia; Risuleo, Gianfranco; Bianco, Alberto

    2015-03-01

    The use of platinum-based chemotherapeutic drugs in cancer therapy still suffers from severe disadvantages, such as lack of appropriate selectivity for tumor tissues and insurgence of multi-drug resistance. Moreover, drug efficacy can be attenuated by several mechanisms such as premature drug inactivation, reduced drug uptake inside cells and increased drug efflux once internalized. The use of functionalized carbon nanotubes (CNTs) as chemotherapeutic drug delivery systems is a promising strategy to overcome such limitations due to their ability to enhance cellular internalization of poorly permeable drugs and thus increase the drug bioavailability at the diseased site, compared to the free drug. Furthermore, the possibility to encapsulate agents in the nanotubes' inner cavity can protect the drug from early inactivation and their external functionalizable surface is useful for selective targeting. In this study, a hydrophobic platinum(iv) complex was encapsulated within the inner space of two different diameter functionalized multi-walled CNTs (Pt(iv)@CNTs). The behavior of the complexes, compared to the free drug, was investigated on both HeLa human cancer cells and RAW 264.7 murine macrophages. Both CNT samples efficiently induced cell death in HeLa cancer cells 72 hours after the end of exposure to CNTs. Although the larger diameter CNTs were more cytotoxic on HeLa cells compared to both the free drug and the smaller diameter nanotubes, the latter allowed a prolonged release of the encapsulated drug, thus increasing its anticancer efficacy. In contrast, both Pt(iv)@CNT constructs were poorly cytotoxic on macrophages and induced negligible cell activation and no pro-inflammatory cytokine production. Both CNT samples were efficiently internalized by the two types of cells, as demonstrated by transmission electron microscopy observations and flow cytometry analysis. Finally, the platinum levels found in the cells after Pt(iv)@CNT exposure demonstrate that they can promote drug accumulation inside cells in comparison with treatment with the free complex. To conclude, our study shows that CNTs are promising nanocarriers to improve the accumulation of a chemotherapeutic drug and its slow release inside tumor cells, by tuning the CNT diameter, without inducing a high inflammatory response.The use of platinum-based chemotherapeutic drugs in cancer therapy still suffers from severe disadvantages, such as lack of appropriate selectivity for tumor tissues and insurgence of multi-drug resistance. Moreover, drug efficacy can be attenuated by several mechanisms such as premature drug inactivation, reduced drug uptake inside cells and increased drug efflux once internalized. The use of functionalized carbon nanotubes (CNTs) as chemotherapeutic drug delivery systems is a promising strategy to overcome such limitations due to their ability to enhance cellular internalization of poorly permeable drugs and thus increase the drug bioavailability at the diseased site, compared to the free drug. Furthermore, the possibility to encapsulate agents in the nanotubes' inner cavity can protect the drug from early inactivation and their external functionalizable surface is useful for selective targeting. In this study, a hydrophobic platinum(iv) complex was encapsulated within the inner space of two different diameter functionalized multi-walled CNTs (Pt(iv)@CNTs). The behavior of the complexes, compared to the free drug, was investigated on both HeLa human cancer cells and RAW 264.7 murine macrophages. Both CNT samples efficiently induced cell death in HeLa cancer cells 72 hours after the end of exposure to CNTs. Although the larger diameter CNTs were more cytotoxic on HeLa cells compared to both the free drug and the smaller diameter nanotubes, the latter allowed a prolonged release of the encapsulated drug, thus increasing its anticancer efficacy. In contrast, both Pt(iv)@CNT constructs were poorly cytotoxic on macrophages and induced negligible cell activation and no pro-inflammatory cytokine production. Both CNT samples were efficiently internalized by the two types of cells, as demonstrated by transmission electron microscopy observations and flow cytometry analysis. Finally, the platinum levels found in the cells after Pt(iv)@CNT exposure demonstrate that they can promote drug accumulation inside cells in comparison with treatment with the free complex. To conclude, our study shows that CNTs are promising nanocarriers to improve the accumulation of a chemotherapeutic drug and its slow release inside tumor cells, by tuning the CNT diameter, without inducing a high inflammatory response. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00220f

  20. Controlling the optical path length in turbid media using differential path-length spectroscopy: fiber diameter dependence.

    PubMed

    Kaspers, O P; Sterenborg, H J C M; Amelink, A

    2008-01-20

    We have characterized the path length for the differential path-length spectroscopy (DPS) fiber optic geometry for a wide range of optical properties and for fiber diameters ranging from 200 microm to 1000 microm. Phantom measurements show that the path length is nearly constant for scattering coefficients in the range 5 mm(-1)< micros <50 mm(-1) for all fiber diameters and that the path length is proportional to the fiber diameter. The path length decreases with increasing absorption for all fiber diameters, and this effect is more pronounced for larger fiber diameters. An empirical model is formulated that relates the DPS path length to total absorption for all fiber diameters simultaneously.