Science.gov

Sample records for diamond electron beam

  1. High power, electron-beam induced switching in diamond

    SciTech Connect

    Scarpetti, R.D.; Hofer, W.W.; Kania, D.R.; Schoenbach, K.H.; Joshi, R.P.; Molina, C.; Brinkmann, R.P.

    1993-07-01

    We are developing a high voltage, high average power, electron-beam controlled diamond switch that could significantly impact high power solid-state electronics in industrial and defense applications. An electron-beam controlled thin-film diamond could switch well over 100 kW average power at MHz frequencies, greater than 5 kV, and with high efficiency. This performance is due to the excellent thermal and electronic properties of diamond, the high efficiency achieved with electron beam control, and the demonstrated effectiveness of microchannel cooling. Our electron beam penetration depth measurements agree with our Monte-Carlo calculations. We have not observed electron beam damage in diamond for beam energies up to 150 keV. In this paper we describe our experimental and calculational results and research objectives.

  2. Single Crystal Diamond Beam Position Monitors with Radiofrequency Electronic Readout

    SciTech Connect

    Solar, B.; Graafsma, H.; Potdevin, G.; Trunk, U.; Morse, J.; Salome, M.

    2010-06-23

    Over the energy range 5{approx}30 keV a suitably contacted, thin ({approx}100 {mu}m) diamond plate can be operated in situ as a continuous monitor of X-ray beam intensity and position as the diamond absorbs only a small percentage of the incident beam. Single crystal diamond is a completely homogeneous material showing fast (ns), spatially uniform signal response and negligible (beams. We report on tests made at ESRF and DESY using diamond beam position monitors of simple quadrant electrode designs with metal contacts, operated using wideband electronic readout corresponding to the RF accelerator frequency. The instrumentation for these monitors must cover a large range of operating conditions: different beam sizes, fluxes, energies and time structure corresponding to the synchrotron fill patterns. Sophisticated new RF sampling electronics can satisfy most requirements: using a modified Libera Brilliance readout system, we measured the center of gravity position of a 25 {mu}m beam at the DORIS III F4 beam line at a rate of 130 Msample/s with narrowband filtering of a few MHz bandwidth. Digitally averaging the signal further provided a spatial resolution {approx}20 nm.

  3. Diamonds for beam instrumentation

    SciTech Connect

    Griesmayer, Erich

    2013-04-19

    Diamond is perhaps the most versatile, efficient and radiation tolerant material available for use in beam detectors with a correspondingly wide range of applications in beam instrumentation. Numerous practical applications have demonstrated and exploited the sensitivity of diamond to charged particles, photons and neutrons. In this paper, a brief description of a generic diamond detector is given and the interaction of the CVD diamond detector material with protons, electrons, photons and neutrons is presented. Latest results of the interaction of sCVD diamond with 14 MeV mono-energetic neutrons are shown.

  4. A diamond detector in the dosimetry of high-energy electron and photon beams.

    PubMed

    Laub, W U; Kaulich, T W; Nüsslin, F

    1999-09-01

    A diamond detector type 60003 (PTW Freiburg) was examined for the purpose of dosimetry with 4-20 MeV electron beams and 4-25 MV photon beams. Results were compared with those obtained by using a Markus chamber for electron beams and an ionization chamber for photon beams. Dose distributions were measured in a water phantom with the detector connected to a Unidos electrometer (PTW Freiburg). After a pre-irradiation of about 5 Gy the diamond detector shows a stability in response which is better than that of an ionization chamber. The current of the diamond detector was measured under variation of photon beam dose rate between 0.1 and 7 Gy min(-1). Different FSDs were chosen. Furthermore the pulse repetition frequency and the depth of the detector were changed. The electron beam dose rate was varied between 0.23 and 4.6 Gy min(-1) by changing the pulse-repetition frequency. The response shows no energy dependence within the covered photon-beam energy range. Between 4 MeV and 18 MeV electron beam energy it shows only a small energy dependence of about 2%, as expected from theory. For smaller electron energies the response increases significantly and an influence of the contact material used for the diamond detector can be surmised. A slight sublinearity of the current and dose rate was found. Detector current and dose rate are related by the expression i alpha Ddelta, where i is the detector current, D is the dose rate and delta is a correction factor of approximately 0.963. Depth-dose curves of photon beams, measured with the diamond detector, show a slight overestimation compared with measurements with the ionization chamber. This overestimation is compensated for by the above correction term. The superior spatial resolution of the diamond detector leads to minor deviations between depth-dose curves of electron beams measured with a Markus chamber and a diamond detector.

  5. A diamond detector in the dosimetry of high-energy electron and photon beams

    NASA Astrophysics Data System (ADS)

    Laub, Wolfram U.; Kaulich, Theodor W.; Nüsslin, Fridtjof

    1999-09-01

    A diamond detector type 60003 (PTW Freiburg) was examined for the purpose of dosimetry with 4-20 MeV electron beams and 4-25 MV photon beams. Results were compared with those obtained by using a Markus chamber for electron beams and an ionization chamber for photon beams. Dose distributions were measured in a water phantom with the detector connected to a Unidos electrometer (PTW Freiburg). After a pre-irradiation of about 5 Gy the diamond detector shows a stability in response which is better than that of an ionization chamber. The current of the diamond detector was measured under variation of photon beam dose rate between 0.1 and 7 Gy min-1. Different FSDs were chosen. Furthermore the pulse repetition frequency and the depth of the detector were changed. The electron beam dose rate was varied between 0.23 and 4.6 Gy min-1 by changing the pulse-repetition frequency. The response shows no energy dependence within the covered photon-beam energy range. Between 4 MeV and 18 MeV electron beam energy it shows only a small energy dependence of about 2%, as expected from theory. For smaller electron energies the response increases significantly and an influence of the contact material used for the diamond detector can be surmised. A slight sublinearity of the current and dose rate was found. Detector current and dose rate are related by the expression ipropto(dotD)Delta, where i is the detector current, (dotD) is the dose rate and Delta is a correction factor of approximately 0.963. Depth-dose curves of photon beams, measured with the diamond detector, show a slight overestimation compared

  6. Characterization of a synthetic single crystal diamond Schottky diode for radiotherapy electron beam dosimetry

    SciTech Connect

    Di Venanzio, C.; Marinelli, Marco; Milani, E.; Prestopino, G.; Verona, C.; Verona-Rinati, G.; Falco, M. D.; Bagala, P.; Santoni, R.; Pimpinella, M.

    2013-02-15

    Purpose: To investigate the dosimetric properties of synthetic single crystal diamond based Schottky diodes under irradiation with therapeutic electron beams from linear accelerators. Methods: A single crystal diamond detector was fabricated and tested under 6, 8, 10, 12, and 15 MeV electron beams. The detector performances were evaluated using three types of commercial detectors as reference dosimeters: an Advanced Markus plane parallel ionization chamber, a Semiflex cylindrical ionization chamber, and a p-type silicon detector. Preirradiation, linearity with dose, dose rate dependence, output factors, lateral field profiles, and percentage depth dose profiles were investigated and discussed. Results: During preirradiation the diamond detector signal shows a weak decrease within 0.7% with respect to the plateau value and a final signal stability of 0.1% (1{sigma}) is observed after about 5 Gy. A good linear behavior of the detector response as a function of the delivered dose is observed with deviations below {+-}0.3% in the dose range from 0.02 to 10 Gy. In addition, the detector response is dose rate independent, with deviations below 0.3% in the investigated dose rate range from 0.17 to 5.45 Gy/min. Percentage depth dose curves obtained from the diamond detector are in good agreement with the ones from the reference dosimeters. Lateral beam profile measurements show an overall good agreement among detectors, taking into account their respective geometrical features. The spatial resolution of solid state detectors is confirmed to be better than that of ionization chambers, being the one from the diamond detector comparable to that of the silicon diode. A good agreement within experimental uncertainties was also found in terms of output factor measurements between the diamond detector and reference dosimeters. Conclusions: The observed dosimetric properties indicate that the tested diamond detector is a suitable candidate for clinical electron beam dosimetry.

  7. Characterization of a synthetic single crystal diamond Schottky diode for radiotherapy electron beam dosimetry.

    PubMed

    Di Venanzio, C; Marinelli, Marco; Milani, E; Prestopino, G; Verona, C; Verona-Rinati, G; Falco, M D; Bagalà, P; Santoni, R; Pimpinella, M

    2013-02-01

    To investigate the dosimetric properties of synthetic single crystal diamond based Schottky diodes under irradiation with therapeutic electron beams from linear accelerators. A single crystal diamond detector was fabricated and tested under 6, 8, 10, 12, and 15 MeV electron beams. The detector performances were evaluated using three types of commercial detectors as reference dosimeters: an Advanced Markus plane parallel ionization chamber, a Semiflex cylindrical ionization chamber, and a p-type silicon detector. Preirradiation, linearity with dose, dose rate dependence, output factors, lateral field profiles, and percentage depth dose profiles were investigated and discussed. During preirradiation the diamond detector signal shows a weak decrease within 0.7% with respect to the plateau value and a final signal stability of 0.1% (1σ) is observed after about 5 Gy. A good linear behavior of the detector response as a function of the delivered dose is observed with deviations below ±0.3% in the dose range from 0.02 to 10 Gy. In addition, the detector response is dose rate independent, with deviations below 0.3% in the investigated dose rate range from 0.17 to 5.45 Gy∕min. Percentage depth dose curves obtained from the diamond detector are in good agreement with the ones from the reference dosimeters. Lateral beam profile measurements show an overall good agreement among detectors, taking into account their respective geometrical features. The spatial resolution of solid state detectors is confirmed to be better than that of ionization chambers, being the one from the diamond detector comparable to that of the silicon diode. A good agreement within experimental uncertainties was also found in terms of output factor measurements between the diamond detector and reference dosimeters. The observed dosimetric properties indicate that the tested diamond detector is a suitable candidate for clinical electron beam dosimetry.

  8. Precision Electron-Beam Polarimetry at 1 GeV Using Diamond Microstrip Detectors

    NASA Astrophysics Data System (ADS)

    Narayan, A.; Jones, D.; Cornejo, J. C.; Dalton, M. M.; Deconinck, W.; Dutta, D.; Gaskell, D.; Martin, J. W.; Paschke, K. D.; Tvaskis, V.; Asaturyan, A.; Benesch, J.; Cates, G.; Cavness, B. S.; Dillon-Townes, L. A.; Hays, G.; Ihloff, E.; Jones, R.; King, P. M.; Kowalski, S.; Kurchaninov, L.; Lee, L.; McCreary, A.; McDonald, M.; Micherdzinska, A.; Mkrtchyan, A.; Mkrtchyan, H.; Nelyubin, V.; Page, S.; Ramsay, W. D.; Solvignon, P.; Storey, D.; Tobias, A.; Urban, E.; Vidal, C.; Waidyawansa, B.; Wang, P.; Zhamkotchyan, S.

    2016-01-01

    We report on the highest precision yet achieved in the measurement of the polarization of a low-energy, O (1 GeV ) , continuous-wave (CW) electron beam, accomplished using a new polarimeter based on electron-photon scattering, in Hall C at Jefferson Lab. A number of technical innovations were necessary, including a novel method for precise control of the laser polarization in a cavity and a novel diamond microstrip detector that was able to capture most of the spectrum of scattered electrons. The data analysis technique exploited track finding, the high granularity of the detector, and its large acceptance. The polarization of the 180 -μ A , 1.16-GeV electron beam was measured with a statistical precision of <1 % per hour and a systematic uncertainty of 0.59%. This exceeds the level of precision required by the Qweak experiment, a measurement of the weak vector charge of the proton. Proposed future low-energy experiments require polarization uncertainty <0.4 %, and this result represents an important demonstration of that possibility. This measurement is the first use of diamond detectors for particle tracking in an experiment. It demonstrates the stable operation of a diamond-based tracking detector in a high radiation environment, for two years.

  9. Precision electron-beam polarimetry at 1 GeV using diamond microstrip detectors

    DOE PAGES

    Narayan, A.; Jones, D.; Cornejo, J. C.; ...

    2016-02-16

    We report on the highest precision yet achieved in the measurement of the polarization of a low-energy, O(1 GeV), continuous-wave (CW) electron beam, accomplished using a new polarimeter based on electron-photon scattering, in Hall C at Jefferson Lab. A number of technical innovations were necessary, including a novel method for precise control of the laser polarization in a cavity and a novel diamond microstrip detector that was able to capture most of the spectrum of scattered electrons. The data analysis technique exploited track finding, the high granularity of the detector, and its large acceptance. The polarization of the 180–μA, 1.16-GeVmore » electron beam was measured with a statistical precision of <1% per hour and a systematic uncertainty of 0.59%. This exceeds the level of precision required by the Qweak experiment, a measurement of the weak vector charge of the proton. Proposed future low-energy experiments require polarization uncertainty < 0.4%, and this result represents an important demonstration of that possibility. This measurement is the first use of diamond detectors for particle tracking in an experiment. As a result, it demonstrates the stable operation of a diamond-based tracking detector in a high radiation environment, for two years.« less

  10. Diamond detector in absorbed dose measurements in high-energy linear accelerator photon and electron beams.

    PubMed

    Ravichandran, Ramamoorthy; Binukumar, John Pichy; Al Amri, Iqbal; Davis, Cheriyathmanjiyil Antony

    2016-03-08

    Diamond detectors (DD) are preferred in small field dosimetry of radiation beams because of small dose profile penumbras, better spatial resolution, and tissue-equivalent properties. We investigated a commercially available 'microdiamond' detector in realizing absorbed dose from first principles. A microdiamond detector, type TM 60019 with tandem electrometer is used to measure absorbed doses in water, nylon, and PMMA phantoms. With sensitive volume 0.004 mm3, radius 1.1mm, thickness 1 x10(-3) mm, the nominal response is 1 nC/Gy. It is assumed that the diamond detector could collect total electric charge (nC) developed during irradiation at 0 V bias. We found that dose rate effect is less than 0.7% for changing dose rate by 500 MU/min. The reproducibility in obtaining readings with diamond detector is found to be ± 0.17% (1 SD) (n = 11). The measured absorbed doses for 6 MV and 15 MV photons arrived at using mass energy absorption coefficients and stop-ping power ratios compared well with Nd, water calibrated ion chamber measured absorbed doses within 3% in water, PMMA, and nylon media. The calibration factor obtained for diamond detector confirmed response variation is due to sensitivity due to difference in manufacturing process. For electron beams, we had to apply ratio of electron densities of water to carbon. Our results qualify diamond dosimeter as a transfer standard, based on long-term stability and reproducibility. Based on micro-dimensions, we recommend these detectors for pretreatment dose verifications in small field irradiations like stereotactic treatments with image guidance.

  11. Radiotherapy electron beams collimated by small tubular applicators: characterization by silicon and diamond diodes

    NASA Astrophysics Data System (ADS)

    Bagalà, P.; Di Venanzio, C.; Falco, M. D.; Guerra, A. S.; Marinelli, Marco; Milani, E.; Pimpinella, M.; Pompili, F.; Prestopino, G.; Santoni, R.; Tonnetti, A.; Verona, C.; Verona-Rinati, G.

    2013-11-01

    High-energy electron beams generated by linear accelerators, typically in the range 6 to 20 MeV, are used in small field sizes for radiotherapy of localized superficial tumors. Unshielded silicon diodes (Si-D) are commonly considered suitable detectors for relative dose measurements in small electron fields due to their high spatial resolution. Recently, a novel synthetic single crystal diamond diode (SCDD) showed suitable properties for standard electron beams and small photon beams dosimetry. The aim of the present study is twofold: to characterize 6 to 15 MeV small electron beams shaped by using commercial tubular applicators with 2, 3, 4 and 5 cm diameter and to assess the dosimetric performance under such irradiation conditions of the novel SCDD dosimeter by comparison with commercially available dosimeters, namely a Si-D and a plane-parallel ionization chamber. Percentage depth dose curves, beam profiles and output factors (OFs) were measured. A good agreement among the dosimeters was observed in all of the performed measurements. As for the tubular applicators, two main effects were evidenced: (i) OFs larger than unity were measured for a number of field sizes and energies, with values up to about 1.3, that is an output 30% greater than that obtained at the 10 × 10 cm2 reference field; (ii) for each diameter of the tubular applicator a noticeable increase of the OF values was observed with increasing beam energy, up to about 100% in the case of the smaller applicator. This OF behavior is remarkably different from what typically observed for small blocked fields having the same size and energy as those used in this study. OFs for tubular applicators depend considerably on the field size, so interpolation is unadvisable to predict the linear accelerator output for such applicators whereas reliable high-resolution detectors, as the silicon and diamond diodes used in this work allow OF measurements with uncertainties of about 1%.

  12. Diamond Electronic Devices

    NASA Astrophysics Data System (ADS)

    Isberg, J.

    2010-11-01

    For high-power and high-voltage applications, silicon is by far the dominant semiconductor material. However, silicon has many limitations, e.g. a relatively low thermal conductivity, electric breakdown occurs at relatively low fields and the bandgap is 1.1 eV which effectively limits operation to temperatures below 175° C. Wide-bandgap materials, such as silicon carbide (SiC), gallium nitride (GaN) and diamond offer the potential to overcome both the temperature and power handling limitations of silicon. Diamond is the most extreme in this class of materials. By the fundamental material properties alone, diamond offers the largest benefits as a semiconductor material for power electronic applications. On the other hand, diamond has a problem with a large carrier activation energy of available dopants which necessitates specialised device concepts to allow room temperature (RT) operation. In addition, the role of common defects on the charge transport properties of diamond is poorly understood. Notwithstanding this, many proof-of-principle two-terminal and three-terminal devices have been made and tested. Two-terminal electronic diamond devices described in the literature include: p-n diodes, p-i-n diodes, various types of radiation detectors, Schottky diodes and photoconductive or electron beam triggered switches. Three terminal devices include e.g. MISFETs and JFETs. However, the development of diamond devices poses great challenges for the future. A particularly interesting way to overcome the doping problem, for which there has been some recent progress, is to make so-called delta doped (or pulse-doped) devices. Such devices utilise very thin (˜1 nm) doped layers in order to achieve high RT activation.

  13. The dose rate dependence of synthetic diamond detectors in the relative dosimetry of high-energy electron therapy beams

    NASA Astrophysics Data System (ADS)

    Ade, N.; Nam, T. L.; Derry, T. E.; Mhlanga, S. H.

    2014-05-01

    Evaluation of the linear response of a radiation detector with absorbed dose rate should be of paramount importance in clinical dosimetry. As modelled by Fowler, electrical conductivity, σ, of a solid-state detector and absorbed dose rate, Dr, are related by σ~DrΔ where Δ is the linearity index. The detector is thus independent of dose rate if Δ is unity. This contribution investigates and evaluates the dependence of Δ of synthetic diamond detectors of various types on therapy electron energy and its influence in relative electron dosimetry with the aim of selecting a suitable crystal. The study was conducted initially on one HPHT and eight CVD synthesised diamonds of optical grade (OG) and detector grade (DG) qualities using 6-14 MeV electron therapy beams. For quality control, the diamond specimens were characterised by Raman spectroscopy and electron spin resonance (ESR). Values of Δ ranging between 0.79 and 1.03 were obtained for all the nine diamond detectors at 1000 V/cm for 7 and 12 MeV electron beams. Whereas the Δ values of the HPHT diamond were found not to vary with the electron energies, those of three CVD samples of a given class varied with the electron energies within 2%. In addition, a very strong variation of about 9% was observed for two OG crystals of another class. The Δ values were found to decrease with increasing dose rate and there was a tendency for the Δ values to change with defect levels present within the crystals. Due to the independence of the HPHT diamond's Δ values on electron energy and its better stability of response to radiation, a small-size HPHT crystal was then evaluated of its potential applications in small radiation fields. Relative dose distributions measured with the diamond probe on exposure to 6, 12 and 14 MeV electron beams between 1×1 cm2 and 10×10 cm2 fields were compared with those obtained with reference ion chambers and a Dosimetry Diode E. The results showed that with careful selection of a suitable

  14. Electron-Beam Irradiation Effect on Thermal and Mechanical Properties of Nylon-6 Nanocomposite Fibers Infused with Diamond and Diamond Coated Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Imam, Muhammad A.; Jeelani, Shaik; Rangari, Vijaya K.; Gome, Michelle G.; Moura, Esperidiana. A. B.

    2016-02-01

    Nylon-6 is an engineering plastic with excellent properties and processability, which are essential in several industrial applications. The addition of filler such as diamond (DN) and diamond coated carbon nanotubes (CNTs) to form molded composites may increase the range of Nylon-6 applications due to the resulting increase in strength. The effects of electron-beam irradiation on these thermoplastic nanocomposites are either increase in the cross-linking or causes chain scission. In this study, DN-coated CNTs were synthesized using the sonochemical technique in the presence of cationic surfactant cetyltrimethyl ammonium bromide (CTAB). The DN-coated CNTs nanoparticles and diamond nanoparticles were then introduced into Nylon-6 polymer through a melt extrusion process to form nanocomposite fibers. They were further tested for their mechanical (Tensile) and thermal properties (thermogravimetric analysis (TGA), differential scanning calorimetry (DSC)). These composites were further exposed to the electron-beam (160kGy, 132kGy and 99kGy) irradiation using a 1.5MeV electron-beam accelerator, at room temperature, in the presence of air and tested for their thermal and mechanical properties. The best ultimate tensile strength was found to be 690MPa and 864MPa irradiated at 132 for DN/CNTs/Nylon-6 and Diamond/Nylon-6 nanocomposite fiber as compared to 346MPa and 321MPa for DN/CNTs/Nylon-6 and Diamond/Nylon-6 nanocomposite fiber without irradiation. The neat Nylon-6 tensile strength was 240MPa. These results are consistent with the activation energy calculated from TGA graphs. DSC analysis result shows that the slight increase in glass transition temperature (Tg) and decrease in melting temperature (Tm) which was expected from high electron-beam radiation dose.

  15. Diamond bio electronics.

    PubMed

    Linares, Robert; Doering, Patrick; Linares, Bryant

    2009-01-01

    The use of diamond for advanced applications has been the dream of mankind for centuries. Until recently this dream has been realized only in the use of diamond for gemstones and abrasive applications where tons of diamonds are used on an annual basis. Diamond is the material system of choice for many applications, but its use has historically been limited due to the small size, high cost, and inconsistent (and typically poor) quality of available diamond materials until recently. The recent development of high quality, single crystal diamond crystal growth via the Chemical Vapor Deposition (CVD) process has allowed physcists and increasingly scientists in the life science area to think beyond these limitations and envision how diamond may be used in advanced applications ranging from quantum computing, to power generation and molecular imaging, and eventually even diamond nano-bots. Because of diamond's unique properties as a bio-compatible material, better understanding of diamond's quantum effects and a convergence of mass production, semiconductor-like fabrication process, diamond now promises a unique and powerful key to the realization of the bio-electronic devices being envisioned for the new era of medical science. The combination of robust in-the-body diamond based sensors, coupled with smart bio-functionalized diamond devices may lead to diamond being the platform of choice for bio-electronics. This generation of diamond based bio-electronic devices would contribute substantially to ushering in a paradigm shift for medical science, leading to vastly improved patient diagnosis, decrease of drug development costs and risks, and improved effectiveness of drug delivery and gene therapy programs through better timed and more customized solutions.

  16. SU-F-BRE-02: Characterization of a New Commercial Single Crystal Diamond Detector in Photon, Electron and Proton Beams

    SciTech Connect

    Akino, Y; Das, I

    2014-06-15

    Purpose: Diamond detectors even with superior characteristics have become obsolete due to poor design, selection of crystal and cost. Recently, microDiamond using synthetic single crystal diamond detector (SCDD) is commercially available which is characterized in various radiation beams in this study. Methods: The characteristics of a commercial SCDD model 60019 (PTW) to a 6- and 15-MV photon beams, 6- and 20-MeV electron beams, and 208 MeV proton beams were investigated and compared to the pre-characterized detectors: TN31010 (0.125 cm{sup 3}) and TN30006 (pinpoint) ionization chambers (PTW), EDGE detector (Sun Nuclear Corp), and SFD Stereotactic Dosimetry Diode Detector (IBA). The depth-dose and profiles data were collected for various field sizes and depths. The dose linearity and dose rate dependency were also evaluated. To evaluate the effects of the preirradiation, the diamond detector which had not been irradiated on the day was set up in the water tank and the response to 100 MU was measured every 20 s. The temperature dependency was tested for the range of 4–60 °C. Angular dependency was evaluated in water phantom by rotating the SCDD. Results: For all radiation types and field sizes, the depth-dose data of the diamond chamber showed identical curve to those of ionization chambers. The profile of the diamond detector was very similar to those of the Edge and SFD detectors, although the 0.125 cm{sup 3} and pinpoint chambers showed averaging effects in the penumbrae region. The temperature dependency was within 0.7% in the range of 4–41°C. A dose of 900 cGy and 1200 cGy were needed to stabilize the chamber to the level within 0.5% and 0.2%, respectively. Conclusion: The type 60019 SCDD detector showed suitable characteristics for depth-dose and profile measurements for wide range of field sizes. However, at least 1000 cGy of pre-irradiation is needed for accurate measurements.

  17. Relativistic electron beam transport through cold and shock-heated carbon samples from aerogel to diamond

    NASA Astrophysics Data System (ADS)

    Krauland, C. M.; Wei, M.; Zhang, S.; Santos, J.; Nicolai, P.; Theobald, W.; Kim, J.; Forestier-Colleoni, P.; Beg, F.

    2016-10-01

    Understanding the transport physics of a relativistic electron beam in various plasma regimes is crucial for many high-energy-density applications, such as fast heating for advanced ICF schemes and ion sources. Most short pulse laser-matter interaction experiments for transport studies have been performed with initially cold targets where the resistivity is far from that in warm dense plasmas. We present three experiments that have been performed on OMEGA EP in order to extend fast electron transport and energy coupling studies in pre-assembled plasmas from different carbon samples. Each experiment has used one 4 ns long pulse UV beam (1014 W/cm2) to drive a shockwave through the target and a 10 ps IR beam (1019 W/cm2) to create an electron beam moving opposite the shock propagation direction. These shots were compared with initially cold target shots without the UV beam. We fielded three different samples including 340 mg/cc CRF foam, vitreous carbon at 1.4 g/cc, and high density carbon at 3.4 g/cc. Electrons were diagnosed via x-ray fluorescence measurements from a buried Cu tracer in the target, as well as bremsstrahlung emission and escaped electrons reaching an electron spectrometer. Proton radiograph was also performed in the foam shots. Details of each experiment, available data and particle-in-cell simulations will be presented. This work is supported by US DOE NLUF Program, Grant Number DE-NA0002728.

  18. ELECTRON AMPLIFICATION IN DIAMOND.

    SciTech Connect

    SMEDLEY, J.; BEN-ZVI, I.; BURRILL, A.; CHANG, X.; GRIMES, J.; RAO, T.; SEGALOV, Z.; WU, Q.

    2006-07-10

    We report on recent progress toward development of secondary emission ''amplifiers'' for photocathodes. Secondary emission gain of over 300 has been achieved in transmission mode and emission mode for a variety of diamond samples. Techniques of sample preparation, including hydrogenation to achieve negative electron affinity (NEA), have been adapted to this application.

  19. Diamond switches for high temperature electronics

    SciTech Connect

    Prasad, R.R.; Rondeau, G.; Qi, Niansheng

    1996-04-25

    Diamond switches are well suited for use in high temperature electronics. Laboratory feasibility of diamond switching at 1 kV and 18 A was demonstrated. DC blocking voltages up to 1 kV were demonstrated. A 50 {Omega} load line was switched using a diamond switch, with switch on-state resistivity {approx}7 {Omega}-cm. An electron beam, {approx}150 keV energy, {approx}2 {mu}s full width at half maximum was used to control the 5 mm x 5 mm x 100 {mu}m thick diamond switch. The conduction current temporal history mimics that of the electron beam. These data were taken at room temperature.

  20. Triple ion beam cutting of diamond/Al composites for interface characterization

    SciTech Connect

    Ji, Gang; Tan, Zhanqiu; Shabadi, Rajashekhara; Li, Zhiqiang; Grünewald, Wolfgang; Addad, Ahmed; Schryvers, Dominique; Zhang, Di

    2014-03-01

    A novel triple ion beam cutting technique was employed to prepare high-quality surfaces of diamond/Al composites for interfacial characterization, which has been unachievable so far. Near-perfect and artifact-free surfaces were obtained without mechanical pre-polishing. Hence, the as-prepared surfaces are readily available for further study and also, ready to be employed in a focus ion beam system for preferential selection of transmission electron microscopy samples. Dramatically different diamond/Al interface configurations — sub-micrometer Al{sub 2}O{sub 3} particles and clean interfaces were unambiguously revealed. - Highlights: • A new triple ion beam technique was employed to prepare diamond/Al composites. • Near-perfect and artifact-free surfaces were obtained for interface characterization. • Sub-micrometer Al{sub 2}O{sub 3} particles and clean interfaces were unambiguously revealed.

  1. Secondary Electron Emission Spectroscopy of Diamond Surfaces

    NASA Technical Reports Server (NTRS)

    Krainsky, Isay L.; Asnin, Vladimir M.; Petukhov, Andre G.

    1999-01-01

    This report presents the results of the secondary electron emission spectroscopy study of hydrogenated diamond surfaces for single crystals and chemical vapor-deposited polycrystalline films. One-electron calculations of Auger spectra of diamond surfaces having various hydrogen coverages are presented, the major features of the experimental spectra are explained, and a theoretical model for Auger spectra of hydrogenated diamond surfaces is proposed. An energy shift and a change in the line shape of the carbon core-valence-valence (KVV) Auger spectra were observed for diamond surfaces after exposure to an electron beam or by annealing at temperatures higher than 950 C. This change is related to the redistribution of the valence-band local density of states caused by hydrogen desorption from the surface. A strong negative electron affinity (NEA) effect, which appeared as a large, narrow peak in the low-energy portion of the spectrum of the secondary electron energy distribution, was also observed on the diamond surfaces. A fine structure in this peak, which was found for the first time, reflected the energy structure of the bottom of the conduction band. Further, the breakup of the bulk excitons at the surface during secondary electron emission was attributed to one of the features of this structure. The study demonstrated that the NEA type depends on the extent of hydrogen coverage of the diamond surface, changing from the true type for the completely hydrogenated surface to the effective type for the partially hydrogenated surface.

  2. Electron-beam induced diamond-like-carbon passivation of plasmonic devices

    NASA Astrophysics Data System (ADS)

    Balaur, Eugeniu; Sadatnajafi, Catherine; Langley, Daniel; Lin, Jiao; Kou, Shan Shan; Abbey, Brian

    2015-12-01

    Engineered materials with feature sizes on the order of a few nanometres offer the potential for producing metamaterials with properties which may differ significantly from their bulk counterpart. Here we describe the production of plasmonic colour filters using periodic arrays of nanoscale cross shaped apertures fabricated in optically opaque silver films. Due to its relatively low loss in the visible and near infrared range, silver is a popular choice for plasmonic devices, however it is also unstable in wet or even ambient conditions. Here we show that ultra-thin layers of Diamond-Like Carbon (DLC) can be used to prevent degradation due to oxidative stress, ageing and corrosion. We demonstrate that DLC effectively protects the sub-micron features which make up the plasmonic colour filter under both atmospheric conditions and accelerated aging using iodine gas. Through a systematic study we confirm that the nanometre thick DLC layers have no effect on the device functionality or performance.

  3. Bone bonding strength of diamond-structured porous titanium-alloy implants manufactured using the electron beam-melting technique.

    PubMed

    Hara, Daisuke; Nakashima, Yasuharu; Sato, Taishi; Hirata, Masanobu; Kanazawa, Masayuki; Kohno, Yusuke; Yoshimoto, Kensei; Yoshihara, Yusuke; Nakamura, Akihiro; Nakao, Yumiko; Iwamoto, Yukihide

    2016-02-01

    The present study examined the bone bonding strength of diamond-structured porous titanium-alloy (Porous-Ti-alloy) manufactured using the electron beam-melting technique in comparison with fiber mesh-coated or rough-surfaced implants. Cylindrical implants with four different pore sizes (500, 640, 800, and 1000μm) of Porous-Ti-alloy, titanium fiber mesh (FM), and surfaces roughened by titanium arc spray (Ti-spray) were implanted into the distal femur of rabbits. Bone bonding strength and histological bone ingrowth were evaluated at 4 and 12weeks after implantation. The bone bonding strength of Porous-Ti-alloy implants (640μm pore size) increased over time from 541.4N at 4weeks to 704.6N at 12weeks and was comparable to that of FM and Ti-spray implants at both weeks. No breakage of the porous structure after mechanical testing was found with Porous-Ti-alloy implants. Histological bone ingrowth that increased with implantation time occurred along the inner structure of Porous-Ti-alloy implants. There was no difference in bone ingrowth in Porous-Ti-alloy implants with pore sizes among 500, 640, and 800μm; however, less bone ingrowth was observed with the 1000μm pore size. These results indicated Porous-Ti-alloy implants with pore size under 800μm provided biologically active and mechanically stable surface for implant fixation to bone, and had potential advantages for weight bearing orthopedic implants such as acetabular cups.

  4. Amorphous-diamond electron emitter

    DOEpatents

    Falabella, Steven

    2001-01-01

    An electron emitter comprising a textured silicon wafer overcoated with a thin (200 .ANG.) layer of nitrogen-doped, amorphous-diamond (a:D-N), which lowers the field below 20 volts/micrometer have been demonstrated using this emitter compared to uncoated or diamond coated emitters wherein the emission is at fields of nearly 60 volts/micrometer. The silicon/nitrogen-doped, amorphous-diamond (Si/a:D-N) emitter may be produced by overcoating a textured silicon wafer with amorphous-diamond (a:D) in a nitrogen atmosphere using a filtered cathodic-arc system. The enhanced performance of the Si/a:D-N emitter lowers the voltages required to the point where field-emission displays are practical. Thus, this emitter can be used, for example, in flat-panel emission displays (FEDs), and cold-cathode vacuum electronics.

  5. Electron energy loss spectrometry of interstellar diamonds

    NASA Technical Reports Server (NTRS)

    Bernatowicz, Thomas J.; Gibbons, Patrick C.; Lewis, Roy S.

    1990-01-01

    The results are reported of electron energy loss spectra (EELS) measurements on diamond residues from carbonaceous meteorites designed to elucidate the structure and composition of interstellar diamonds. Dynamic effective medium theory is used to model the dielectric properties of the diamonds and in particular to synthesize the observed spectra as mixtures of diamond and various pi-bonded carbons. The results are shown to be quantitatively consistent with the idea that diamonds and their surfaces are the only contributors to the electron energy loss spectra of the diamond residues and that these peculiar spectra are the result of the exceptionally small grain size and large specific surface area of the interstellar diamonds.

  6. Electron energy loss spectrometry of interstellar diamonds

    NASA Technical Reports Server (NTRS)

    Bernatowicz, Thomas J.; Gibbons, Patrick C.; Lewis, Roy S.

    1990-01-01

    The results are reported of electron energy loss spectra (EELS) measurements on diamond residues from carbonaceous meteorites designed to elucidate the structure and composition of interstellar diamonds. Dynamic effective medium theory is used to model the dielectric properties of the diamonds and in particular to synthesize the observed spectra as mixtures of diamond and various pi-bonded carbons. The results are shown to be quantitatively consistent with the idea that diamonds and their surfaces are the only contributors to the electron energy loss spectra of the diamond residues and that these peculiar spectra are the result of the exceptionally small grain size and large specific surface area of the interstellar diamonds.

  7. Ion-beam-assisted etching of diamond

    NASA Technical Reports Server (NTRS)

    Efremow, N. N.; Geis, M. W.; Flanders, D. C.; Lincoln, G. A.; Economou, N. P.

    1985-01-01

    The high thermal conductivity, low RF loss, and inertness of diamond make it useful in traveling wave tubes operating in excess of 500 GHz. Such use requires the controlled etching of type IIA diamond to produce grating like structures tens of micrometers deep. Previous work on reactive ion etching with O2 gave etching rates on the order of 20 nm/min and poor etch selectivity between the masking material (Ni or Cr) and the diamond. An alternative approach which uses a Xe(+) beam and a reactive gas flux of NO2 in an ion-beam-assisted etching system is reported. An etching rate of 200 nm/min was obtained with an etching rate ratio of 20 between the diamond and an aluminum mask.

  8. Transmission-mode diamond white-beam position monitor at NSLS

    PubMed Central

    Muller, Erik M.; Smedley, John; Bohon, Jen; Yang, Xi; Gaowei, Mengjia; Skinner, John; De Geronimo, Gianluigi; Sullivan, Michael; Allaire, Marc; Keister, Jeffrey W.; Berman, Lonny; Héroux, Annie

    2012-01-01

    Two transmission-mode diamond X-ray beam position monitors installed at National Synchrotron Light Source (NSLS) beamline X25 are described. Each diamond beam position monitor is constructed around two horizontally tiled electronic-grade (p.p.b. nitrogen impurity) single-crystal (001) CVD synthetic diamonds. The position, angle and flux of the white X-ray beam can be monitored in real time with a position resolution of 500 nm in the horizontal direction and 100 nm in the vertical direction for a 3 mm × 1 mm beam. The first diamond beam position monitor has been in operation in the white beam for more than one year without any observable degradation in performance. The installation of a second, more compact, diamond beam position monitor followed about six months later, adding the ability to measure the angular trajectory of the photon beam. PMID:22514173

  9. Transmission-mode diamond white-beam position monitor at NSLS.

    PubMed

    Muller, Erik M; Smedley, John; Bohon, Jen; Yang, Xi; Gaowei, Mengjia; Skinner, John; De Geronimo, Gianluigi; Sullivan, Michael; Allaire, Marc; Keister, Jeffrey W; Berman, Lonny; Héroux, Annie

    2012-05-01

    Two transmission-mode diamond X-ray beam position monitors installed at National Synchrotron Light Source (NSLS) beamline X25 are described. Each diamond beam position monitor is constructed around two horizontally tiled electronic-grade (p.p.b. nitrogen impurity) single-crystal (001) CVD synthetic diamonds. The position, angle and flux of the white X-ray beam can be monitored in real time with a position resolution of 500 nm in the horizontal direction and 100 nm in the vertical direction for a 3 mm × 1 mm beam. The first diamond beam position monitor has been in operation in the white beam for more than one year without any observable degradation in performance. The installation of a second, more compact, diamond beam position monitor followed about six months later, adding the ability to measure the angular trajectory of the photon beam.

  10. Transmission-mode diamond white-beam position monitor at NSLS

    SciTech Connect

    Muller E. M.; Heroux A.; Smedley, J.; Bohon, J.; Yang, X.; Gaowei, M.; Skinner, J.; De Geronimo, G.; Sullivan, M.; Allaire, M.; Keister, J. W.; Berman, L.

    2012-05-01

    Two transmission-mode diamond X-ray beam position monitors installed at National Synchrotron Light Source (NSLS) beamline X25 are described. Each diamond beam position monitor is constructed around two horizontally tiled electronic-grade (p.p.b. nitrogen impurity) single-crystal (001) CVD synthetic diamonds. The position, angle and flux of the white X-ray beam can be monitored in real time with a position resolution of 500 nm in the horizontal direction and 100 nm in the vertical direction for a 3 mm x 1 mm beam. The first diamond beam position monitor has been in operation in the white beam for more than one year without any observable degradation in performance. The installation of a second, more compact, diamond beam position monitor followed about six months later, adding the ability to measure the angular trajectory of the photon beam.

  11. Study of low multiplicity electron source LEETECH with diamond detector

    NASA Astrophysics Data System (ADS)

    Kubytskyi, V.; Krylov, V.; Bambade, P.; Cabouat, B.; Wicek, F.; Bogard, F.; Barsuk, S.; Rodin, V.; Burmistrov, L.; Bezshyyko, O.; Attie, D.; Colas, P.; Fedorchuk, O.; Golinka-Bezshyyko, L.; Lopez, R.; Monard, H.; Cayla, J.-N.; Sukhonos, D.; Titov, M.; Tomassini, D.; Variola, A.

    2017-02-01

    In this paper, we present experimental and numerical studies of the calibration of low-multiplicity electron source using signals from electrons incident on a diamond detector. The experiments were performed at the newly commissioned versatile LEETECH platform at the PHIL photoinjector facility at LAL. We show that with a single crystal CVD diamonds of 500 micrometers thickness, the energy losses from the first three electrons of 2.5–3 MeV are clearly resolved. The described technique can be used as a complementary approach for calibration of diamond detectors as well as for diagnostics of accelerated beam halos in a regime down to a few particles.

  12. Single Crystal Diamond Needle as Point Electron Source

    NASA Astrophysics Data System (ADS)

    Kleshch, Victor I.; Purcell, Stephen T.; Obraztsov, Alexander N.

    2016-10-01

    Diamond has been considered to be one of the most attractive materials for cold-cathode applications during past two decades. However, its real application is hampered by the necessity to provide appropriate amount and transport of electrons to emitter surface which is usually achieved by using nanometer size or highly defective crystallites having much lower physical characteristics than the ideal diamond. Here, for the first time the use of single crystal diamond emitter with high aspect ratio as a point electron source is reported. Single crystal diamond needles were obtained by selective oxidation of polycrystalline diamond films produced by plasma enhanced chemical vapor deposition. Field emission currents and total electron energy distributions were measured for individual diamond needles as functions of extraction voltage and temperature. The needles demonstrate current saturation phenomenon and sensitivity of emission to temperature. The analysis of the voltage drops measured via electron energy analyzer shows that the conduction is provided by the surface of the diamond needles and is governed by Poole-Frenkel transport mechanism with characteristic trap energy of 0.2–0.3 eV. The temperature-sensitive FE characteristics of the diamond needles are of great interest for production of the point electron beam sources and sensors for vacuum electronics.

  13. Single Crystal Diamond Needle as Point Electron Source

    PubMed Central

    Kleshch, Victor I.; Purcell, Stephen T.; Obraztsov, Alexander N.

    2016-01-01

    Diamond has been considered to be one of the most attractive materials for cold-cathode applications during past two decades. However, its real application is hampered by the necessity to provide appropriate amount and transport of electrons to emitter surface which is usually achieved by using nanometer size or highly defective crystallites having much lower physical characteristics than the ideal diamond. Here, for the first time the use of single crystal diamond emitter with high aspect ratio as a point electron source is reported. Single crystal diamond needles were obtained by selective oxidation of polycrystalline diamond films produced by plasma enhanced chemical vapor deposition. Field emission currents and total electron energy distributions were measured for individual diamond needles as functions of extraction voltage and temperature. The needles demonstrate current saturation phenomenon and sensitivity of emission to temperature. The analysis of the voltage drops measured via electron energy analyzer shows that the conduction is provided by the surface of the diamond needles and is governed by Poole-Frenkel transport mechanism with characteristic trap energy of 0.2–0.3 eV. The temperature-sensitive FE characteristics of the diamond needles are of great interest for production of the point electron beam sources and sensors for vacuum electronics. PMID:27731379

  14. Electron Microscopy of Natural and Epitaxial Diamond

    NASA Technical Reports Server (NTRS)

    Posthill, J. B.; George, T.; Malta, D. P.; Humphreys, T. P.; Rudder, R. A.; Hudson, G. C.; Thomas, R. E.; Markunas, R. J.

    1993-01-01

    Semiconducting diamond films have the potential for use as a material in which to build active electronic devices capable of operating at high temperatures or in high radiation environments. Ultimately, it is preferable to use low-defect-density single crystal diamond for device fabrication. We have previously investigated polycrystalline diamond films with transmission electron microscopy (TEM) and scanning electron microscopy (SEM), and homoepitaxial films with SEM-based techniques. This contribution describes some of our most recent observations of the microstructure of natural diamond single crystals and homoepitaxial diamond thin films using TEM.

  15. Electron Microscopy of Natural and Epitaxial Diamond

    NASA Technical Reports Server (NTRS)

    Posthill, J. B.; George, T.; Malta, D. P.; Humphreys, T. P.; Rudder, R. A.; Hudson, G. C.; Thomas, R. E.; Markunas, R. J.

    1993-01-01

    Semiconducting diamond films have the potential for use as a material in which to build active electronic devices capable of operating at high temperatures or in high radiation environments. Ultimately, it is preferable to use low-defect-density single crystal diamond for device fabrication. We have previously investigated polycrystalline diamond films with transmission electron microscopy (TEM) and scanning electron microscopy (SEM), and homoepitaxial films with SEM-based techniques. This contribution describes some of our most recent observations of the microstructure of natural diamond single crystals and homoepitaxial diamond thin films using TEM.

  16. Negative Electron Affinity Mechanism for Diamond Surfaces

    NASA Technical Reports Server (NTRS)

    Krainsky, I. L.; Asnin, V. M.

    1998-01-01

    The energy distribution of the secondary electrons for chemical vacuum deposited diamond films with Negative Electron Affinity (NEA) was investigated. It was found that while for completely hydrogenated diamond surfaces the negative electron affinity peak in the energy spectrum of the secondary electrons is present for any energy of the primary electrons, for partially hydrogenated diamond surfaces there is a critical energy above which the peak is present in the spectrum. This critical energy increases sharply when hydrogen coverage of the diamond surface diminishes. This effect was explained by the change of the NEA from the true type for the completely hydrogenated surface to the effective type for the partially hydrogenated surfaces.

  17. Temperature enhancement of secondary electron emission from hydrogenated diamond films

    SciTech Connect

    Stacey, A.; Prawer, S.; Rubanov, S.; Akhvlediani, R.; Michaelson, Sh.; Hoffman, A.

    2009-09-15

    The effect of temperature on the stability of the secondary electron emission (SEE) yield from approx100-nm-thick continuous diamond films is reported. At room temperature, the SEE yield was found to decay as a function of electron irradiation dose. The SEE yield is observed to increase significantly upon heating of the diamond surface. Furthermore, by employing moderate temperatures, the decay of the SEE yield observed at room temperature is inhibited, showing a nearly constant yield with electron dose at 200 deg. C. The results are explained in terms of the temperature dependence of the electron beam-induced hydrogen desorption from the diamond surface and surface band bending. These findings demonstrate that the longevity of diamond films in practical applications of SEE can be increased by moderate heating.

  18. Enhanced field electron emission from aligned diamond-like carbon nanorod arrays prepared by reactive ion beam etching

    NASA Astrophysics Data System (ADS)

    Zhao, Yong; Qin, Shi-Qiao; Zhang, Xue-Ao; Chang, Sheng-Li; Li, Hui-Hui; Yuan, Ji-Ren

    2016-05-01

    Homogeneous diamond-like carbon (DLC) films were deposited on Si supports by a pulsed filtered cathodic vacuum arc deposition system. Using DLC films masked by Ni nanoparticles as precursors, highly aligned diamond-like carbon nanorod (DLCNR) arrays were fabricated by the etching of inductively coupled radio frequency oxygen plasma. The as-prepared DLCNR arrays exhibit excellent field emission properties with a low turn-on field of 2.005 V μm-1 and a threshold field of 4.312 V μm-1, respectively. Raman spectroscopy and x-ray photoelectron spectroscopy were employed to determine the chemical bonding structural change of DLC films before and after etching. It is confirmed that DLC films have good connection with Si supports via the formation of the SiC phase, and larger conductive sp2 domains are formed in the as-etched DLC films, which play essential roles in the enhanced field emission properties for DLCNR arrays.

  19. Electron beam pumped semiconductor laser

    NASA Technical Reports Server (NTRS)

    Hug, William F. (Inventor); Reid, Ray D. (Inventor)

    2009-01-01

    Electron-beam-pumped semiconductor ultra-violet optical sources (ESUVOSs) are disclosed that use ballistic electron pumped wide bandgap semiconductor materials. The sources may produce incoherent radiation and take the form of electron-beam-pumped light emitting triodes (ELETs). The sources may produce coherent radiation and take the form of electron-beam-pumped laser triodes (ELTs). The ELTs may take the form of electron-beam-pumped vertical cavity surface emitting lasers (EVCSEL) or edge emitting electron-beam-pumped lasers (EEELs). The semiconductor medium may take the form of an aluminum gallium nitride alloy that has a mole fraction of aluminum selected to give a desired emission wavelength, diamond, or diamond-like carbon (DLC). The sources may be produced from discrete components that are assembled after their individual formation or they may be produced using batch MEMS-type or semiconductor-type processing techniques to build them up in a whole or partial monolithic manner, or combination thereof.

  20. Fabrication of an electron multiplier utilizing diamond films

    NASA Technical Reports Server (NTRS)

    Mearini, G. T.; Krainsky, I. L.; Wang, Y. X.; Dayton, JR., J. a.; Ramesham, R.; Rose, M. F.

    1994-01-01

    High secondary electron yields (sigma=14-27) from polycrystalline diamond films on Mo substrates have been reported previously. We observed that continuous exposure to an electron beam degraded the secondary yield in vacuum as a function of fluence owing to a loss of surface hydrogen. However, the hydrogen partial pressure could be adjusted such that the high secondary yield remained stable during beam exposure. We have constructed a prototype electron multiplier using these diamond films for use in ultrahigh vacuum. A gain of 0.9 times 10(exp 5) has been measured in a d.c. mode. Palladium, titanium and aluminum nitride have been studied for possible dynode substrate materials which might eliminate the need for hydrogen during operation. Total secondary yields as high as 50 were measured from diamond on palladium and sigma was stable at 25 during heating at 700 K in vacuum. Raman spectroscopy and scanning electron microscopy showed that variations in sigma from diamond films on Pd were due to differing concentrations of non-diamond carbon.

  1. Fabrication of an electron multiplier utilizing diamond films

    NASA Technical Reports Server (NTRS)

    Mearini, G. T.; Krainsky, I. L.; Wang, Y. X.; Dayton, JR., J. a.; Ramesham, R.; Rose, M. F.

    1994-01-01

    High secondary electron yields (sigma=14-27) from polycrystalline diamond films on Mo substrates have been reported previously. We observed that continuous exposure to an electron beam degraded the secondary yield in vacuum as a function of fluence owing to a loss of surface hydrogen. However, the hydrogen partial pressure could be adjusted such that the high secondary yield remained stable during beam exposure. We have constructed a prototype electron multiplier using these diamond films for use in ultrahigh vacuum. A gain of 0.9 times 10(exp 5) has been measured in a d.c. mode. Palladium, titanium and aluminum nitride have been studied for possible dynode substrate materials which might eliminate the need for hydrogen during operation. Total secondary yields as high as 50 were measured from diamond on palladium and sigma was stable at 25 during heating at 700 K in vacuum. Raman spectroscopy and scanning electron microscopy showed that variations in sigma from diamond films on Pd were due to differing concentrations of non-diamond carbon.

  2. Excimer Laser Beam Analyzer Based on CVD Diamond

    NASA Astrophysics Data System (ADS)

    Girolami, Marco; Salvatori, Stefano; Conte, Gennaro

    2010-11-01

    1-D and 2-D detector arrays have been realized on CVD-diamond. The relatively high resistivity of diamond in the dark allowed the fabrication of photoconductive "sandwich" strip (1D) or pixel (2D) detectors: a semitransparent light-receiving back-side contact was used for detector biasing. Cross-talk between pixels was limited by using intermediate guard contacts connected at the same ground potential of the pixels. Each pixel photocurrent was conditioned by a read-out electronics composed by a high sensitive integrator and a Σ-Δ ADC converter. The overall 500 μs conversion time allowed a data acquisition rate up to 2 kSPS. The measured fast photoresponse of the samples in the ns time regime suggests to use the proposed devices for fine tuning feedback of high-power pulsed-laser cavities, whereas solar-blindness guarantees high performance in UV beam diagnostics also under high intensity background illumination. Offering unique properties in terms of thermal conductivity and visible-light transparency, diamond represents one of the most suitable candidate for the detection of high-power UV laser emission. The technology of laser beam profiling is evolving with the increase of excimer lasers applications that span from laser-cutting to VLSI and MEMS technologies. Indeed, to improve emission performances, fine tuning of the laser cavity is required. In such a view, the development of a beam-profiler, able to work in real-time between each laser pulse, is mandatory.

  3. Diamond Analyzed by Secondary Electron Emission Spectroscopy

    NASA Technical Reports Server (NTRS)

    Krainsky, Isay L.

    1998-01-01

    Diamond is a promising semiconductor material for novel electronic applications because of its chemical stability and inertness, heat conduction properties, and so-called negative electron affinity (NEA). When a surface has NEA, electrons generated inside the bulk of the material are able to come out into the vacuum without any potential barrier (work function). Such a material would have an extremely high secondary electron emission coefficient o, very high photoelectron (quantum) yield, and would probably be an efficient field emitter. Chemical-vapor-deposited (CVD) polycrystalline diamond films have even more advantages than diamond single crystals. Their fabrication is relatively easy and inexpensive, and they can be grown with high levels of doping--consequently, they can have relatively high conductivity. Because of these properties, diamond can be used for cold cathodes and photocathodes in high-power electronics and in high-frequency and high-temperature semiconductor devices.

  4. Relativistic electron beam generator

    DOEpatents

    Mooney, L.J.; Hyatt, H.M.

    1975-11-11

    A relativistic electron beam generator for laser media excitation is described. The device employs a diode type relativistic electron beam source having a cathode shape which provides a rectangular output beam with uniform current density.

  5. Response of synthetic diamond detectors in proton, carbon, and oxygen ion beams.

    PubMed

    Rossomme, Séverine; Marinelli, Marco; Verona-Rinati, Gianluca; Romano, Francesco; Cirrone, Pablo Antonio Giuseppe; Kacperek, Andrzej; Vynckier, Stefaan; Palmans, Hugo

    2017-07-15

    In this work, the LET-dependence of the response of synthetic diamond detectors is investigated in different particle beams. Measurements were performed in three nonmodulated particle beams (proton, carbon, and oxygen). The response of five synthetic diamond detectors was compared to the response of a Markus or an Advanced Markus ionization chamber. The synthetic diamond detectors were used with their axis parallel to the beam axis and without any bias voltage. A high bias voltage was applied to the ionization chambers, to minimize ion recombination, for which no correction is applied (+300 V and +400 V were applied to the Markus and Advanced Markus ionization chambers respectively). The ratio between the normalized response of the synthetic diamond detectors and the normalized response of the ionization chamber shows an under-response of the synthetic diamond detectors in carbon and oxygen ion beams. No under-response of the synthetic diamond detectors is observed in protons. For each beam, combining results obtained for the five synthetic diamond detectors and considering the uncertainties, a linear fit of the ratio between the normalized response of the synthetic diamond detectors and the normalized response of the ionization chamber is determined. The response of the synthetic diamond detectors can be described as a function of LET as (-6.22E-4 ± 3.17E-3) • LET + (0.99 ± 0.01) in proton beam, (-2.51E-4 ± 1.18E-4) • LET + (1.01 ± 0.01) in carbon ion beam and (-2.77E-4 ± 0.56E-4) • LET + (1.03 ± 0.01) in oxygen ion beam. Combining results obtained in carbon and oxygen ion beams, a LET dependence of about 0.026% (±0.013%) per keV/μm is estimated. Due to the high LET value, a LET dependence of the response of the synthetic diamond detector was observed in the case of carbon and oxygen beams. The effect was found to be negligible in proton beams, due to the low LET value. The under-response of the synthetic diamond detector may result from the

  6. Electron beam focusing system

    SciTech Connect

    Dikansky, N.; Nagaitsev, S.; Parkhomchuk, V.

    1997-09-01

    The high energy electron cooling requires a very cold electron beam. Thus, the electron beam focusing system is very important for the performance of electron cooling. A system with and without longitudinal magnetic field is presented for discussion. Interaction of electron beam with the vacuum chamber as well as with the background ions and stored antiprotons can cause the coherent electron beam instabilities. Focusing system requirements needed to suppress these instabilities are presented.

  7. Diamond pixel modules and the ATLAS beam conditions monitor

    NASA Astrophysics Data System (ADS)

    Dobos, D.; Pernegger, Heinz; RD42 Collaboration; ATLAS Diamond Pixel Upgrade Collaboration; ATLAS Beam Conditions Monitor Collaborations

    2011-02-01

    Chemical vapor deposition diamonds are considered among possible sensor materials for the next pixel upgrade in ATLAS. Full size diamond pixel modules have been constructed to the specification of the ATLAS Pixel Detector using poly-crystalline CVD diamond sensors to develop the production techniques required for industrial production. Those modules were tested in the lab and testbeam. Additionally we will present results of diamond pixel modules using single-crystal diamonds and results of proton irradiations up to 1.8 ×10 16 protons/cm 2. The ATLAS Beam Conditions Monitors (BCM) main purpose is to protect the experiments silicon tracker from beam incidents. In total 16 1×1 cm2 500 μm thick diamond pCVD sensors are used in eight positions around the LHC interaction point. They perform time difference measurements with sub nanosecond resolution to distinguish between particles from a collision and spray particles from a beam incident; an abundance of the latter can lead the BCM to provoke an abort of LHC beam. The BCM diamond detector modules, their readout system and the algorithms used to detect beam incidents are described. Results of the BCM operation with circulating LHC beams and its commissioning with first LHC collisions are reported.

  8. Combining Focused Ion Beam and Electron Microscopy to Prepare and Analyze Starting and Recovered Materials of High Pressure and Temperature Diamond-Anvil Cell Experiments

    NASA Astrophysics Data System (ADS)

    Speziale, S.; Marquardt, H.; Wirth, R.; Schreiber, A.; Marquardt, K.; Neusser, G.; Reichmann, H. J.

    2010-12-01

    Experimental mineral physics research in the diamond-anvil cell (DAC) is experiencing a rapid progress from the study of average thermoelastic properties of single phases to both the investigation of anisotropic single-crystal properties and the behavior of complex multiphase aggregates, including the effects of chemical reactions. The studies are performed at high temperatures and pressures, compatible with the conditions present in the deep Earth. The extreme experimental conditions impose strict requirements both in terms of sample quality and sample characterization at the micro- to nanoscale and demand for novel approaches to both prepare miniature samples and recover, treat and analyze samples that were subject to extreme conditions of pressure, temperature and stresses in DAC experiments. Single-crystal studies of materials synthesized at extreme conditions in very small amounts, fragile materials, or materials with extremely small grain-sizes, need delicate preparation to obtain samples with the required characteristics for spectroscopic studies in the DAC. Focused ion beam (FIB) milling allows us micromachining single-crystal samples of appropriate orientation, shape and surface quality for experiments such as Brillouin scattering in the DAC. Preferred orientation of polymineralic aggregates can be nowadays measured at extreme conditions in the DAC. The detailed interpretation of these results requires a fine characterization of the local microfabrics. A combination of FIB and scanning electron microscopy allows us to characterize grain-sizes, shapes, grain boundary geometries in selected sites of the recovered samples. In addition, mineral physics research in the DAC offers the possibility of extending the approaches of petrology to the study of chemical processes involving rocks at the conditions of the deep mantle. In situ X-ray diffraction can give precious information about the average phase assemblages and put constraints of the phase diagrams of

  9. Electron Beam Freeform Fabrication

    NASA Image and Video Library

    Electron Beam Freeform Fabrication (EBF3) is a process by which NASA hopes to build metal parts in zero gravity environments. It's a layer-additive process that uses an electron beam and a solid wi...

  10. Electron beam device

    DOEpatents

    Beckner, E.H.; Clauser, M.J.

    1975-08-12

    This patent pertains to an electron beam device in which a hollow target is symmetrically irradiated by a high energy, pulsed electron beam about its periphery and wherein the outer portion of the target has a thickness slightly greater than required to absorb the electron beam pulse energy. (auth)

  11. Diamond heat sinks for electronic circuits

    NASA Astrophysics Data System (ADS)

    Li, Chou H.

    During the interim stage of this Phase 1 R and D, a useful metallizing procedure for bulk diamond has been developed, with natural diamond chips, granules, and polished wafers from two vendors. Small-scale statistical experiments were designed and executed by systematically varying several material and processing variables including: metallizing and brazing compositions, processing temperature and time, ambient control, and other procedural changes. Under selected combinations of these variables, metallizing of these diamond samples was achieved. Surface wetting appears to be excellent. The metallized surfaces were brazed or soldered to metal for future heat sink uses in high-power electronic circuits. These results clearly demonstrate the proof of the principle that is our main objective in Phase 1. The remainder of the Phase 1 work will be directed to metallizing and brazing polished diamond wafers to metal (copper and/or Kovar) substrates; detailed sample characterization including scanning electron microscopy (SEM), microstructural and microprobing analyses; thermal conductance measurements of mounted diamond wafers; and analyzing all results for the final report.

  12. Electron field emission for ultrananocrystalline diamond films

    NASA Astrophysics Data System (ADS)

    Krauss, A. R.; Auciello, O.; Ding, M. Q.; Gruen, D. M.; Huang, Y.; Zhirnov, V. V.; Givargizov, E. I.; Breskin, A.; Chechen, R.; Shefer, E.; Konov, V.; Pimenov, S.; Karabutov, A.; Rakhimov, A.; Suetin, N.

    2001-03-01

    Ultrananocrystalline diamond (UNCD) films 0.1-2.4 μm thick were conformally deposited on sharp single Si microtip emitters, using microwave CH4-Ar plasma-enhanced chemical vapor deposition in combination with a dielectrophoretic seeding process. Field-emission studies exhibited stable, extremely high (60-100 μA/tip) emission current, with little variation in threshold fields as a function of film thickness or Si tip radius. The electron emission properties of high aspect ratio Si microtips, coated with diamond using the hot filament chemical vapor deposition (HFCVD) process were found to be very different from those of the UNCD-coated tips. For the HFCVD process, there is a strong dependence of the emission threshold on both the diamond coating thickness and Si tip radius. Quantum photoyield measurements of the UNCD films revealed that these films have an enhanced density of states within the bulk diamond band gap that is correlated with a reduction in the threshold field for electron emission. In addition, scanning tunneling microscopy studies indicate that the emission sites from UNCD films are related to minima or inflection points in the surface topography, and not to surface asperities. These data, in conjunction with tight binding pseudopotential calculations, indicate that grain boundaries play a critical role in the electron emission properties of UNCD films, such that these boundaries: (a) provide a conducting path from the substrate to the diamond-vacuum interface, (b) produce a geometric enhancement in the local electric field via internal structures, rather than surface topography, and (c) produce an enhancement in the local density of states within the bulk diamond band gap.

  13. Diamond/diamond-like carbon coated nanotube structures for efficient electron field emission

    NASA Technical Reports Server (NTRS)

    Dimitrijevic, Steven (Inventor); Withers, James C. (Inventor); Loutfy, Raouf O. (Inventor)

    2005-01-01

    The present invention is directed to a nanotube coated with diamond or diamond-like carbon, a field emitter cathode comprising same, and a field emitter comprising the cathode. It is also directed to a method of preventing the evaporation of carbon from a field emitter comprising a cathode comprised of nanotubes by coating the nanotube with diamond or diamond-like carbon. In another aspect, the present invention is directed to a method of preventing the evaporation of carbon from an electron field emitter comprising a cathode comprised of nanotubes, which method comprises coating the nanotubes with diamond or diamond-like carbon.

  14. In vacuum diamond sensor scanner for beam halo measurements in the beam line at the KEK Accelerator Test Facility

    NASA Astrophysics Data System (ADS)

    Liu, S.; Bogard, F.; Cornebise, P.; Faus-Golfe, A.; Fuster-Martínez, N.; Griesmayer, E.; Guler, H.; Kubytskyi, V.; Sylvia, C.; Tauchi, T.; Terunuma, N.; Bambade, P.

    2016-10-01

    The investigation of beam halo transverse distributions is important for the understanding of beam losses and the control of backgrounds in Future Linear Colliders (FLC). A novel in vacuum diamond sensor (DSv) scanner with four strips has been designed and developed for the investigation of the beam halo transverse distributions and also for the diagnostics of Compton recoil electrons after the interaction point (IP) of ATF2, a low energy (1.3 GeV) prototype of the final focus system for the ILC and CLIC linear collider projects. Using the DSv, a dynamic range of ∼106 has been successfully demonstrated and confirmed for the first time in simultaneous beam core (∼109 electrons) and beam halo (∼103 electrons) measurements at ATF2. This report presents the characterization, performance studies and tests of diamond sensors using an α source, as well as using the electron beams at PHIL, a low energy < 5 MeV photo-injector at LAL, and at ATF2. First beam halo measurement results using the DSv at ATF2 with different beam intensities and vacuum levels are also presented. Such measurements not only allow one to evaluate the different sources of beam halo generation but also to define the requirements for a suitable collimation system to be installed at ATF2, as well as to optimize its performance during future operation.

  15. Study of Electron Transport and Amplification in Diamond

    SciTech Connect

    Muller, Erik M.; Ben-Zvi, Ilan

    2013-03-31

    As a successful completion of this award, my group has demonstrated world-leading electron gain from diamond for use in a diamond-amplified photocathode. Also, using high-resolution photoemission measurements we were able to uncover exciting new physics of the electron emission mechanisms from hydrogen terminated diamond. Our work, through the continued support of HEP, has resulted in a greater understanding of the diamond material science, including current limits, charge transport modeling, and spatial uniformity.

  16. (Pulsed electron beam precharger)

    SciTech Connect

    Finney, W.C.; Shelton, W.N.

    1990-01-01

    This report discusses the following topics on electron beam guns: Precharger Modification; Installation of Charge vs. Radius Apparatus; High Concentration Aerosol Generation; and Data Acquisition and Analysis System.

  17. Plasma and ion beam enhanced chemical vapour deposition of diamond and diamond-like carbon

    NASA Astrophysics Data System (ADS)

    Tang, Yongji

    WC-Co cutting tools are widely used in the machining industry. The application of diamond coatings on the surfaces of the tools would prolong the cutting lifetime and improves the manufacturing efficiency. However, direct chemical vapor deposition (CVD) of diamond coatings on WC-Co suffer from severe premature adhesion failure due to interfacial graphitization induced by the binder phase Co. In this research, a combination of hydrochloric acid (HCl) and hydrogen (H2) plasma pretreatments and a novel double interlayer of carbide forming element (CFE)/Al were developed to enhance diamond nucleation and adhesion. The results showed that both the pretreatments and interlayers were effective in forming continuous and adhesive nanocrystalline diamond coatings. The method is a promising replacement of the hazardous Murakami's regent currently used in WC-Co pretreatment with a more environmental friendly approach. Apart from coatings, diamond can be fabricated into other forms of nanostructures, such as nanotips. In this work, it was demonstrated that oriented diamond nanotip arrays can be fabricated by ion beam etching of as-grown CVD diamond. The orientation of diamond nanotips can be controlled by adjusting the direction of incident ion beam. This method overcomes the limits of other techniques in producing nanotip arrays on large areas with controlled orientation. Oriented diamond nano-tip arrays have been used to produce anisotropic frictional surface, which is successfully used in ultra-precision positioning systems. Diamond-like carbon (DLC) has many properties comparable to diamond. In this thesis, the preparation of alpha-C:H thin films by end-Hall (EH) ion source and the effects of ion energy and nitrogen doping on the microstructure and mechanical properties of the as-deposited thin films were investigated. The results have demonstrated that smooth and uniform alpha-C:H and alpha-C:H:N films with large area and reasonably high hardness and Young's modulus can be

  18. Dual Ion Beam Deposition Of Diamond Films On Optical Elements

    NASA Astrophysics Data System (ADS)

    Deutchman, Arnold H.; Partyka, Robert J.; Lewis, J. C.

    1990-01-01

    Diamond film deposition processes are of great interest because of their potential use for the formation of both protective as well as anti-reflective coatings on the surfaces of optical elements. Conventional plasma-assisted chemical vapor deposition diamond coating processes are not ideal for use on optical components because of the high processing temperatures required, and difficulties faced in nucleating films on most optical substrate materials. A unique dual ion beam deposition technique has been developed which now makes possible deposition of diamond films on a wide variety of optical elements. The new DIOND process operates at temperatures below 150 aegrees Farenheit, and has been used to nucleate and grow both diamondlike carbon and diamond films on a wide variety of optical :taterials including borosilicate glass, quartz glass, plastic, ZnS, ZnSe, Si, and Ge.

  19. Measurements and Studies of Secondary Electron Emission of Diamond Amplified Photocathode

    SciTech Connect

    Wu,Q.

    2008-10-01

    The Diamond Amplified Photocathode (DAP) is a novel approach to generating electrons. By following the primary electron beam, which is generated by traditional electron sources, with an amplifier, the electron beam available to the eventual application is increased by 1 to 2 orders of magnitude in current. Diamond has a very wide band gap of 5.47eV which allows for a good negative electron affinity with simple hydrogenation, diamond can hold more than 2000MV/m field before breakdown. Diamond also provides the best rigidity among all materials. These two characters offer the capability of applying high voltage across very thin diamond film to achieve high SEY and desired emission phase. The diamond amplifier also is capable of handling a large heat load by conduction and sub-nanosecond pulse input. The preparation of the diamond amplifier includes thinning and polishing, cleaning with acid etching, metallization, and hydrogenation. The best mechanical polishing available can provide high purity single crystal diamond films with no less than 100 {micro}m thickness and <15 nm Ra surface roughness. The ideal thickness for 700MHz beam is {approx}30 {micro}m, which requires further thinning with RIE or laser ablation. RIE can achieve atomic layer removal precision and roughness eventually, but the time consumption for this procedure is very significant. Laser ablation proved that with <266nm ps laser beam, the ablation process on the diamond can easily achieve removing a few microns per hour from the surface and <100nm roughness. For amplifier application, laser ablation is an adequate and efficient process to make ultra thin diamond wafers following mechanical polishing. Hydrogenation will terminate the diamond surface with monolayer of hydrogen, and form NEA so that secondary electrons in the conduction band can escape into the vacuum. The method is using hydrogen cracker to strike hydrogen atoms onto the bare diamond surface to form H-C bonds. Two independent

  20. Focused ion beam fabrication of boron-doped diamond ultramicroelectrodes.

    PubMed

    Hu, Jingping; Holt, Katherine B; Foord, John S

    2009-07-15

    The fabrication of ultramicroelectrodes (UMEs) for analytical electrochemical applications has been explored, using boron-doped diamond as the active electrode material in an insulating coating formed by deposition of electrophoretic paint. Because of the rough nature of the diamond film, the property of such coatings that is normally exploited in the fabrication of UMEs, namely the tendency to retract automatically from sharp protrusions, cannot be used in the present instance. Instead focused ion beam (FIB) sputtering was employed to controllably produce UMEs with well-defined geometry, critical dimension of a few micrometers, and very thin insulating coatings. If the FIB machining is carried out at normal incidence to the diamond electrode surface, significant ion beam damage reduces the yield of successful electrodes. However, if a parallel machining geometry is employed, high yields of ultramicroelectrodes with a flat disk geometry can be obtained very reliably. The electrochemical properties of diamond UMEs are characterized. They show much lower background currents than the equivalent Pt or carbon fiber electrodes but more varied electrochemical response than macroscopic diamond electrodes.

  1. Electron beam polarimetry

    SciTech Connect

    Sinclair, C.K.

    1998-12-01

    Along with its well known charge and mass, the electron also carries an intrinsic angular momentum, or {ital spin}. The rules of quantum mechanics allow us to measure only the probability that the electron spin is in one of two allowed spin states. When a beam carries a net excess of electrons in one of these two allowed spin states, the beam is said to be {ital polarized}. The beam polarization may be measured by observing a sufficient number of electrons scattered by a spin-dependent interaction. For electrons, the useful scattering processes involve Coulomb scattering by heavy nuclei, or scattering from either polarized photons or other polarized electrons (known as Mott, Compton, and Mo/ller scattering, respectively). In this tutorial, we will briefly review how beam polarization is measured through a general scattering process, followed by a discussion of how the three scattering processes above are used to measure electron beam polarization. Descriptions of electron polarimeters based on the three scattering processes will be given. {copyright} {ital 1998 American Institute of Physics.}

  2. Electron beam polarimetry

    NASA Astrophysics Data System (ADS)

    Sinclair, Charles K.

    1998-12-01

    Along with its well known charge and mass, the electron also carries an intrinsic angular momentum, or spin. The rules of quantum mechanics allow us to measure only the probability that the electron spin is in one of two allowed spin states. When a beam carries a net excess of electrons in one of these two allowed spin states, the beam is said to be polarized. The beam polarization may be measured by observing a sufficient number of electrons scattered by a spin-dependent interaction. For electrons, the useful scattering processes involve Coulomb scattering by heavy nuclei, or scattering from either polarized photons or other polarized electrons (known as Mott, Compton, and Mo/ller scattering, respectively). In this tutorial, we will briefly review how beam polarization is measured through a general scattering process, followed by a discussion of how the three scattering processes above are used to measure electron beam polarization. Descriptions of electron polarimeters based on the three scattering processes will be given.

  3. Beam-based model of broad-band impedance of the Diamond Light Source

    NASA Astrophysics Data System (ADS)

    Smaluk, Victor; Martin, Ian; Fielder, Richard; Bartolini, Riccardo

    2015-06-01

    In an electron storage ring, the interaction between a single-bunch beam and a vacuum chamber impedance affects the beam parameters, which can be measured rather precisely. So we can develop beam-based numerical models of longitudinal and transverse impedances. At the Diamond Light Source (DLS) to get the model parameters, a set of measured data has been used including current-dependent shift of betatron tunes and synchronous phase, chromatic damping rates, and bunch lengthening. A matlab code for multiparticle tracking has been developed. The tracking results and analytical estimations are quite consistent with the measured data. Since Diamond has the shortest natural bunch length among all light sources in standard operation, the studies of collective effects with short bunches are relevant to many facilities including next generation of light sources.

  4. Effects of Surface Treatments on Secondary Electron Emission from CVD Diamond Films

    NASA Technical Reports Server (NTRS)

    Mearini, G. T.; Krainsky, I. L.; Dayton, J. A., Jr.; Zorman, Christian; Wang, Yaxin; Lamouri, A.

    1995-01-01

    Secondary electron emission (SEE) properties of polycrystalline diamond films grown by chemical vapor deposition (CVD) were measured. The total secondary yield (sigma) from as-grown samples was observed to be as high as 20 at room temperature and 48 while heating at 700 K in vacuum. Electron-beam-activated, alkali-terminated diamond films have shown stable values of sigma as high as 60 when coated with CsI and similarly high values when coated with other alkali halides. Diamond coated with BaF2 had a stable sigma of 6, but no enhancement of the SEE properties was observed with coatings of Ti or Au. Hydrogen was identified to give rise to this effect in as-grown films. However, electron beam exposure led to a reduction in sigma values as low as 2. Exposure to a molecular hydrogen environment restored sigma to its original value after degradation, and enabled stable secondary emission during electron beam exposure. Atomic hydrogen and hydrogen plasma treatments were performed on diamond/Mo samples in an attempt to increase the near-surface hydrogen concentration which might lead to increased stability in the secondary emission. Raman scattering analysis, scanning electron microscopy, and Auger electron spectroscopy (AES) confirmed that hydrogen plasma and atomic hydrogen treatments improved the quality of the CVD diamond significantly. Elastic recoil detection (ERD) showed that heating as-grown diamond targets to 7OO K, which was correlated with an increase in sigma, removed contaminants from the surface but did not drive hydrogen from the diamond bulk. ERD showed that the hydrogen plasma treatment produced an increase in the hydrogen concentration in the near-surface region which did not decrease while heating in vacuum at 700 K, but no improvement in the SEE properties was observed.

  5. Electronic properties of ultrananocrystalline diamond surfaces.

    SciTech Connect

    Lud, S. Q.; Niedermeier, M.; Koch, P. S.; Bruno, P.; Gruen, D. M.; Stutzmann, M.; Garriod, J. A.; Materials Science Division; Technische Univ. Munchen

    2010-03-04

    We have characterized ultrananocrystalline diamond films with different surface terminations by x-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS). The surface terminations were performed by plasma functionalization in atmospheres of hydrogen, fluorine, and oxygen. XPS proves the dense monolayer coverage of the surface functionalization. AFM and STM show low impact of the plasma treatment on the surface morphology. STS has been used to investigate the surface electronic properties, for H-terminated surfaces the electronic structure is dominated by the sp{sup 3} carbon phase of the grain surfaces; for O- and F-terminated surfaces, however, sp{sup 2} carbon from the grain boundaries seems to determine the surface band gap.

  6. Evaluation of Bessel beam machining for scalable fabrication of conductive channels through diamond

    NASA Astrophysics Data System (ADS)

    Canfield, Brian K.; Davis, Lloyd M.

    2017-02-01

    Scalable methods must be developed for fabricating high-density arrays of conductive microchannels through 0.5 mmthick synthetic diamonds in order to form radiation-hard 3D particle tracking detectors for use in future high-energy particle physics experiments, such as those beyond the scheduled 2022 high-luminosity upgrade of the Large Hadron Collider. Prototype detectors with small-area arrays of graphitic columns, each written by slowly translating a femtosecond laser beam focus through the diamond, have established proof of concept, but much faster procedures are needed to manufacture large arrays of electrodes with <100 micron spacing over diameters of 10 cm. We have used a Bessel beam, formed using a 10° axicon and 0.68 NA aspheric lens, to very quickly write micron-diameter columns through 0.5 mm-thick electronic grade CVD diamonds without axially translating the diamond with respect to the beam. We employ an optical microscope to visualize columns, Raman spectroscopy to ascertain the degree of graphitization, and cat-whisker probes to test overall conductivity. Bessel focusing enables formation of a complete column with just a few femtosecond laser pulses, and so provides a scalable manufacturing method. However, reduction in the electrode resistivity is desired. To this end, expulsion of material from the column is probably needed, as carbon plasma will otherwise condense back into diamond, due to the disparate densities of graphite and diamond. We describe the use of several different femtosecond laser systems to evaluate a range of pulse parameters with the goal of increasing the level of graphitization and improving the conductivity of the electrodes.

  7. Pulsed electron beam precharger

    SciTech Connect

    Finney, W.C.; Shelton, W.N.

    1990-01-01

    Electrostatic collection of a high resistivity aerosol using the Electron Beam Precipitator (EBP) collecting section was demonstrated during this reporting period (Quarter Five). Collection efficiency experiments were designed to confirm and extend some of the work performed under the previous contract. The reason for doing this was to attempt to improve upon the collection efficiency of the precipitator alone when testing with a very high resistivity, moderate-to-high concentration dust load. From the collector shakedown runs, a set of suitable operational parameters were determined for the downstream electrostatic collecting sections of the Electron Beam Precipitator wind tunnel. These parameters, along with those for the MINACC electron beam, will generally be held constant while the numerous precharging parameters are varied to produce an optimum particle charge. The electrostatic collector experiments were part of a larger, comprehensive investigation on electron beam precharging of high resistivity aerosol particles performed during the period covered by Quarters Five, Six, and Seven. This body of work used the same experimental apparatus and procedures and the experimental run period lasted nearly continuously for six months. A summary of the Quarter Five work is presented in the following paragraphs. Section II-A of TPR 5 contains a report on the continuing effort which was expended on the modification and upgrade of the pulsed power supply and the monitoring systems prior to the initiation of the electron beam precharging experimental work.

  8. The ATLAS Diamond Beam Monitor: Luminosity detector at the LHC

    NASA Astrophysics Data System (ADS)

    Schaefer, D. M.; Atlas Collaboration

    2016-07-01

    After the first three years of the LHC running, the ATLAS experiment extracted its pixel detector system to refurbish and re-position the optical readout drivers and install a new barrel layer of pixels. The experiment has also taken advantage of this access to install a set of beam monitoring telescopes with pixel sensors, four each in the forward and backward regions. These telescopes are based on chemical vapor deposited (CVD) diamond sensors to survive in this high radiation environment without needing extensive cooling. This paper describes the lessons learned in construction and commissioning of the ATLAS Diamond Beam Monitor (DBM). We show results from the construction quality assurance tests and commissioning performance, including results from cosmic ray running in early 2015.

  9. Pulsed electron beam precharger

    SciTech Connect

    Finney, W.C.; Shelton, W.N.

    1991-01-01

    Electron beam precharging of a high resistivity aerosol was successfully demonstrated during this reporting period (Quarters Five and Six). The initial E-beam particle precharging experiments completed this term were designed to confirm and extend some of the work performed under the previous contract. There are several reasons for doing this: (1) to re-establish a baseline performance criterion for comparison to other runs, (2) to test several recently upgraded or repaired subsystems, and (3) to improve upon the collection efficiency of the electron beam precipitator when testing precharging effectiveness with a very high resistivity, moderate-to-high concentration dust load. In addition, these shakedown runs were used to determine a set of suitable operational parameters for the wind tunnel, the electrostatic collecting sections, and the MINACC E-beam accelerator. These parameters will generally be held constant while the precharging parameters are varied to produce an optimum particle charge.

  10. Secondary-electron emission from hydrogen-terminated diamond

    SciTech Connect

    Wang E.; Ben-Zvi, I.; Rao, T.; Wu, Q.; Dimitrov, D.A.; T. Xin, T.

    2012-05-20

    Diamond amplifiers demonstrably are an electron source with the potential to support high-brightness, high-average-current emission into a vacuum. We recently developed a reliable hydrogenation procedure for the diamond amplifier. The systematic study of hydrogenation resulted in the reproducible fabrication of high gain diamond amplifier. Furthermore, we measured the emission probability of diamond amplifier as a function of the external field and modelled the process with resulting changes in the vacuum level due to the Schottky effect. We demonstrated that the decrease in the secondary electrons average emission gain was a function of the pulse width and related this to the trapping of electrons by the effective NEA surface. The findings from the model agree well with our experimental measurements. As an application of the model, the energy spread of secondary electrons inside the diamond was estimated from the measured emission.

  11. Electron beam dose calculations.

    PubMed

    Hogstrom, K R; Mills, M D; Almond, P R

    1981-05-01

    Electron beam dose distributions in the presence of inhomogeneous tissue are calculated by an algorithm that sums the dose distribution of individual pencil beams. The off-axis dependence of the pencil beam dose distribution is described by the Fermi-Eyges theory of thick-target multiple Coulomb scattering. Measured square-field depth-dose data serve as input for the calculations. Air gap corrections are incorporated and use data from'in-air' measurements in the penumbra of the beam. The effective depth, used to evaluate depth-dose, and the sigma of the off-axis Gaussian spread against depth are calculated by recursion relations from a CT data matrix for the material underlying individual pencil beams. The correlation of CT number with relative linear stopping power and relative linear scattering power for various tissues is shown. The results of calculations are verified by comparison with measurements in a 17 MeV electron beam from the Therac 20 linear accelerator. Calculated isodose lines agree nominally to within 2 mm of measurements in a water phantom. Similar agreement is observed in cork slabs simulating lung. Calculations beneath a bone substitute illustrate a weakness in the calculation. Finally a case of carcinoma in the maxillary antrum is studied. The theory suggests an alternative method for the calculation of depth-dose of rectangular fields.

  12. Electronic Kapitza conductance at a diamond-Pb interface

    NASA Astrophysics Data System (ADS)

    Huberman, M. L.; Overhauser, A. W.

    1994-08-01

    In recent experiments it was found that the Kapitza conductance between diamond and Pb at room temperature is as much as 100 times larger than predicted by the acoustic mismatch model. Because the diamond and Pb are in intimate contact, the phonon modes near the interface are joint vibrational modes, extending a phonon mean free path on each side of the interface. Since the phonon mean-free path at room temperature is of the order of 4000 Å in diamond but only of the order of 10 Å in Pb, the energy of a joint mode resides primarily in the diamond. Consequently, the thermal population of a joint mode is determined by the temperature of the diamond. It is shown here that the direct energy transfer between metallic electrons at the Pb temperature and joint vibrational modes at the diamond temperature explains the observed heat conduction across the interface.

  13. Performance of a beam-multiplexing diamond crystal monochromator at the Linac Coherent Light Source

    SciTech Connect

    Zhu, Diling Feng, Yiping; Lemke, Henrik T.; Fritz, David M.; Chollet, Matthieu; Glownia, J. M.; Alonso-Mori, Roberto; Sikorski, Marcin; Song, Sanghoon; Williams, Garth J.; Messerschmidt, Marc; Boutet, Sébastien; Robert, Aymeric; Stoupin, Stanislav; Shvyd'ko, Yuri V.; Terentyev, Sergey A.; Blank, Vladimir D.; Driel, Tim B. van

    2014-06-15

    A double-crystal diamond monochromator was recently implemented at the Linac Coherent Light Source. It enables splitting pulses generated by the free electron laser in the hard x-ray regime and thus allows the simultaneous operations of two instruments. Both monochromator crystals are High-Pressure High-Temperature grown type-IIa diamond crystal plates with the (111) orientation. The first crystal has a thickness of ∼100 μm to allow high reflectivity within the Bragg bandwidth and good transmission for the other wavelengths for downstream use. The second crystal is about 300 μm thick and makes the exit beam of the monochromator parallel to the incoming beam with an offset of 600 mm. Here we present details on the monochromator design and its performance.

  14. Performance of a beam-multiplexing diamond crystal monochromator at the Linac Coherent Light Source.

    PubMed

    Zhu, Diling; Feng, Yiping; Stoupin, Stanislav; Terentyev, Sergey A; Lemke, Henrik T; Fritz, David M; Chollet, Matthieu; Glownia, J M; Alonso-Mori, Roberto; Sikorski, Marcin; Song, Sanghoon; van Driel, Tim B; Williams, Garth J; Messerschmidt, Marc; Boutet, Sébastien; Blank, Vladimir D; Shvyd'ko, Yuri V; Robert, Aymeric

    2014-06-01

    A double-crystal diamond monochromator was recently implemented at the Linac Coherent Light Source. It enables splitting pulses generated by the free electron laser in the hard x-ray regime and thus allows the simultaneous operations of two instruments. Both monochromator crystals are High-Pressure High-Temperature grown type-IIa diamond crystal plates with the (111) orientation. The first crystal has a thickness of ~100 μm to allow high reflectivity within the Bragg bandwidth and good transmission for the other wavelengths for downstream use. The second crystal is about 300 μm thick and makes the exit beam of the monochromator parallel to the incoming beam with an offset of 600 mm. Here we present details on the monochromator design and its performance.

  15. Ultrananocrystalline diamond contacts for electronic devices

    SciTech Connect

    Sumant, Anirudha V.; Smedley, John; Muller, Erik

    2016-11-01

    A method of forming electrical contacts on a diamond substrate comprises producing a plasma ball using a microwave plasma source in the presence of a mixture of gases. The mixture of gases include a source of a p-type or an n-type dopant. The plasma ball is disposed at a first distance from the diamond substrate. The diamond substrate is maintained at a first temperature. The plasma ball is maintained at the first distance from the diamond substrate for a first time, and a UNCD film, which is doped with at least one of a p-type dopant and an n-type dopant, is disposed on the diamond substrate. The doped UNCD film is patterned to define UNCD electrical contacts on the diamond substrate.

  16. Beam Stop for Electron Accelerator Beam Characterisation

    NASA Astrophysics Data System (ADS)

    Roach, Greg; Sharp, Vic; Tickner, James; Uher, Josef

    2009-08-01

    Electron linear accelerator applications involving the generation of hard X-rays frequently require accurate knowledge of the electron beam parameters. We developed a beam stop device which houses a tungsten Bremsstrahlung target and enables the electron beam current, energy and position to be monitored. The beam stop consisted of four plates. The first was a removable aluminium (Al) transmission plate. Then followed the tungsten target. Behind the target there were four Al quadrant plates for beam position measurement. The last plate was a thick Al back-stop block. Currents from the four quadrants and the back-stop were measured and the beam lateral position, energy and current were calculated. The beam stop device was optimised using Monte-Carlo simulation, manufactured (including custom-made electronics and software) in our laboratory and tested at the ARPANSA (Australian Radiation Protection and Nuclear Safety Agency) linear accelerator in Melbourne. The electron beam energy was determined with a precision of 60 keV at beam energies between 11 and 21 MeV and the lateral beam position was controlled with a precision of 200 mum. The relative changes of the beam current were monitored as well.

  17. Electronic devices from diamond-like carbon

    NASA Astrophysics Data System (ADS)

    Milne, W. I.

    2003-03-01

    This paper reviews the work carried out over the past few years on the application of diamond-like carbon (DLC) materials to electronic devices. The use of such materials is still in its infancy due to their high defect state density and associated low mobilities. To date, the major effort in the electronic field has been in their attempted use as cold cathode field emitters where their low threshold field has attracted much attention. However, attempts have also been made to produce metal semiconductor metal structures, diodes, a-C/c-Si heterostructures and thin film transistors with varying degrees of success. A brief review of work carried out on the use of DLCs in solar cell manufacture will also be presented but it seems at this early stage in their development that the most promising area for future development will be in the field of microelectromechanical structures where their friction, stiction and wear properties make them prime candidates for use in moving mechanical assemblies.

  18. Electron beam generation in Tevatron electron lenses

    SciTech Connect

    Kamerdzhiev, V.; Kuznetsov, G.; Shiltsev, V.; Solyak, N.; Tiunov, M.; /Novosibirsk, IYF

    2006-08-01

    New type of high perveance electron guns with convex cathode has been developed. Three guns described in this article are built to provide transverse electron current density distributions needed for Electron Lenses for beam-beam compensation in the Tevatron collider. The current distribution can be controlled either by the gun geometry or by voltage on a special control electrode located near cathode. We present the designs of the guns and report results of beam measurements on the test bench. Because of their high current density and low transverse temperature of electrons, electron guns of this type can be used in electron cooling and beam-beam compensation devices.

  19. Study of Electron Transport and Amplification in Diamond

    SciTech Connect

    Ben-Zvi, Ilan; Muller, Erik

    2015-01-05

    The development of the Diamond Amplified Photocathode (DAP) has produced significant results under our previous HEP funded efforts both on the fabrication of working devices and the understanding of the underlying physics governing its performance. The results presented here substantiate the use of diamond as both a secondary electron amplifier for high-brightness, high-average-current electron sources and as a photon and particle detector in harsh radiation environments. Very high average current densities (>10A/cm2) have been transported through diamond material. The transport has been measured as a function of incident photon energy and found to be in good agreement with theoretical models. Measurements of the charge transport for photon energies near the carbon K-edge (290 eV for sp3 bonded carbon) have provided insight into carrier loss due to diffusion; modeling of this aspect of charge transport is underway. The response of diamond to nanosecond x-ray pulses has been measured; in this regime the charge transport is as expected. Electron emission from hydrogenated diamond has been measured using both electron and x-ray generated carriers; a gain of 178 has been observed for electron-generated carriers. The energy spectrum of the emitted electrons has been measured, providing insight into the electron affinity and ultimately the thermal emittance. The origin of charge trapping in diamond has been investigated for both bulk and surface trapping

  20. Investigation of transferred-electron oscillations in diamond

    SciTech Connect

    Suntornwipat, N.; Majdi, S.; Gabrysch, M.; Isberg, J.

    2016-05-23

    The recent discovery of Negative Differential Mobility (NDM) in intrinsic single-crystalline diamond enables the development of devices for high frequency applications. The Transferred-Electron Oscillator (TEO) is one example of such devices that uses the benefit of NDM to generate continuous oscillations. This paper presents theoretical investigations of a diamond TEO in the temperature range of 110 to 140 K where NDM has been observed. Our simulations map out the parameter space in which transferred-electron oscillations are expected to occur for a specific device geometry. The results are promising and indicate that it is possible to fabricate diamond based TEO devices.

  1. A beam radiation monitor based on CVD diamonds for SuperB

    NASA Astrophysics Data System (ADS)

    Cardarelli, R.; Di Ciaccio, A.

    2013-08-01

    Chemical Vapor Deposition (CVD) diamond particle detectors are in use in the CERN experiments at LHC and at particle accelerator laboratories in Europe, USA and Japan mainly as beam monitors. Nowadays it is considered a proven technology with a very fast signal read-out and a very high radiation tolerance suitable for measurements in high radiation environment zones i.e. near the accelerators beam pipes. The specific properties of CVD diamonds make them a prime candidate for measuring single particles as well as high-intensity particle cascades, for timing measurements on the sub-nanosecond scale and for beam protection systems in hostile environments. A single-crystalline CVD (scCVD) diamond sensor, read out with a new generation of fast and high transition frequency SiGe bipolar transistor amplifiers, has been tested for an application as radiation monitor to safeguard the silicon vertex tracker in the SuperB detector from excessive radiation damage, cumulative dose and instantaneous dose rates. Test results with 5.5 MeV alpha particles from a 241Am radioactive source and from electrons from a 90Sr radioactive source are presented in this paper.

  2. Measuring electron beam polarization

    NASA Astrophysics Data System (ADS)

    Napolitano, J.

    1992-12-01

    A two-hour discussion session was held on electron beam polarimetry including representatives from Halls A, B, and C. Presentations included a description of an existing Mo/ller polarimeter at the MIT-Bates laboratory, plans for Mo/ller polarimeters in Halls A and B, and a Compton (i.e., ``laser backscatter'') polarimeter planned for Hall A. This paper is a summary of those discussions.

  3. A new single crystal diamond dosimeter for small beam: comparison with different commercial active detectors

    NASA Astrophysics Data System (ADS)

    Marsolat, F.; Tromson, D.; Tranchant, N.; Pomorski, M.; Le Roy, M.; Donois, M.; Moignau, F.; Ostrowsky, A.; De Carlan, L.; Bassinet, C.; Huet, C.; Derreumaux, S.; Chea, M.; Cristina, K.; Boisserie, G.; Bergonzo, P.

    2013-11-01

    Recent developments of new therapy techniques using small photon beams, such as stereotactic radiotherapy, require suitable detectors to determine the delivered dose with a high accuracy. The dosimeter has to be as close as possible to tissue equivalence and to exhibit a small detection volume compared to the size of the irradiation field, because of the lack of lateral electronic equilibrium in small beam. Characteristics of single crystal diamond (tissue equivalent material Z = 6, high density) make it an ideal candidate to fulfil most of small beam dosimetry requirements. A commercially available Element Six electronic grade synthetic diamond was used to develop a single crystal diamond dosimeter (SCDDo) with a small detection volume (0.165 mm3). Long term stability was studied by irradiating the SCDDo in a 60Co beam over 14 h. A good stability (deviation less than ± 0.1%) was observed. Repeatability, dose linearity, dose rate dependence and energy dependence were studied in a 10 × 10 cm2 beam produced by a Varian Clinac 2100 C linear accelerator. SCDDo lateral dose profile, depth dose curve and output factor (OF) measurements were performed for small photon beams with a micro multileaf collimator m3 (BrainLab) attached to the linac. This study is focused on the comparison of SCDDo measurements to those obtained with different commercially available active detectors: an unshielded silicon diode (PTW 60017), a shielded silicon diode (Sun Nuclear EDGE), a PinPoint ionization chamber (PTW 31014) and two natural diamond detectors (PTW 60003). SCDDo presents an excellent spatial resolution for dose profile measurements, due to its small detection volume. Low energy dependence (variation of 1.2% between 6 and 18 MV photon beam) and low dose rate dependence of the SCDDo (variation of 1% between 0.53 and 2.64 Gy min-1) are obtained, explaining the good agreement between the SCDDo and the efficient unshielded diode (PTW 60017) in depth dose curve measurements. For

  4. A new single crystal diamond dosimeter for small beam: comparison with different commercial active detectors.

    PubMed

    Marsolat, F; Tromson, D; Tranchant, N; Pomorski, M; Le Roy, M; Donois, M; Moignau, F; Ostrowsky, A; De Carlan, L; Bassinet, C; Huet, C; Derreumaux, S; Chea, M; Cristina, K; Boisserie, G; Bergonzo, P

    2013-11-07

    Recent developments of new therapy techniques using small photon beams, such as stereotactic radiotherapy, require suitable detectors to determine the delivered dose with a high accuracy. The dosimeter has to be as close as possible to tissue equivalence and to exhibit a small detection volume compared to the size of the irradiation field, because of the lack of lateral electronic equilibrium in small beam. Characteristics of single crystal diamond (tissue equivalent material Z = 6, high density) make it an ideal candidate to fulfil most of small beam dosimetry requirements. A commercially available Element Six electronic grade synthetic diamond was used to develop a single crystal diamond dosimeter (SCDDo) with a small detection volume (0.165 mm(3)). Long term stability was studied by irradiating the SCDDo in a (60)Co beam over 14 h. A good stability (deviation less than ± 0.1%) was observed. Repeatability, dose linearity, dose rate dependence and energy dependence were studied in a 10 × 10 cm(2) beam produced by a Varian Clinac 2100 C linear accelerator. SCDDo lateral dose profile, depth dose curve and output factor (OF) measurements were performed for small photon beams with a micro multileaf collimator m3 (BrainLab) attached to the linac. This study is focused on the comparison of SCDDo measurements to those obtained with different commercially available active detectors: an unshielded silicon diode (PTW 60017), a shielded silicon diode (Sun Nuclear EDGE), a PinPoint ionization chamber (PTW 31014) and two natural diamond detectors (PTW 60003). SCDDo presents an excellent spatial resolution for dose profile measurements, due to its small detection volume. Low energy dependence (variation of 1.2% between 6 and 18 MV photon beam) and low dose rate dependence of the SCDDo (variation of 1% between 0.53 and 2.64 Gy min(-1)) are obtained, explaining the good agreement between the SCDDo and the efficient unshielded diode (PTW 60017) in depth dose curve

  5. Ion Beam Induced Charge analysis of diamond diodes

    NASA Astrophysics Data System (ADS)

    Lehnert, J.; Meijer, J.; Ronning, C.; Spemann, D.; Vittone, E.

    2017-08-01

    Diamond based p-i-n light-emitting diodes, developed to electrically drive single-photon sources in the visible spectral region at room temperature, have the potential to play a key role in quantum based technologies. In order to gain more insight into the charge injection mechanism occurring in these diodes, we carried out an experiment aimed to investigate the electrostatics and the charge carrier transport by the Ion Beam Induced Charge (IBIC) technique, using 1 MeV He microbeam raster scanning of p-i-n structures fabricated in a high purity diamond substrate, using lithographic masking and P and B ion implantation doping. Charge Collection Efficiency (CCE) maps obtained at low ion fluence, show that induced charge pulses arise only from the P-implanted region, whereas no IBIC signals arise from the B-implanted region. This result suggests the formation of a slightly p-type doped substrate, forming a n+-p-p+, rather than the expected p-i-n, structure. However, for high fluence scans of small areas covering the intrinsic gap, CCE maps are more uniform and compatible with a p-i-n structure, suggesting the occurrence of a ;priming effect;, which saturates acceptor levels resulting in a decrease of the effective doping of the diamond substrate.

  6. Synthesis of TiN thin film on diamond surface for ferrous metal contacts by a new atom beam method

    NASA Astrophysics Data System (ADS)

    Kinoshita, Hiroshi; Yamamoto, Shunsuke; Yatani, Hideaki; Nakai, Tetsuo; Ohmae, Nobuo

    2012-01-01

    In order to prevent degradation of diamond surfaces in contact with ferrous metals, a TiN thin film of a few tens of nm thick was synthesized on a diamond surface with a Ti thin buffer layer of approximately 10 nm by a new atom beam method. A diamond surface was simultaneously exposed to pulsed Ti arc plasma and hyperthermal neutral N atom beam generated from an arc plasma gun (APG) and a laser breakdown-type atom beam generator, respectively. Frictional experiment of the TiN thin film was conducted by an in situ scanning electron microscopic (SEM) tribometer using a 1 mm diameter SUS304 pin with an applied force of 0.24 N. The TiN film had a relative high friction coefficient (0.4), but this film showed no notable degradation and relative steady friction. In addition, a TiN coated diamond tip by the new atom beam method showed less wear than that of non-coated diamond tips by three times in the scratching tests of iron with using an atomic force microscope (AFM).

  7. A photoemission electron microscope investigation of chemical vapor deposition diamond films and diamond nucleation

    SciTech Connect

    Wang, C.

    1993-12-31

    CVD diamond nucleation is investigated using the hot filament technique. The stability of CVD diamond at elevated temperatures in vacuum, O{sub 2}, and atomic hydrogen environments are studied using photoemission electron microscopy (PEEM) combined with in-vacuo x-ray photoelectron spectroscopy (XPS). Dissolution, oxidation, and atomic hydrogen etching processes of CVD diamond are observed in real-time. Low field cold electron emission from CVD diamond films has been observed for the first time by PEEM. Nucleation density Mo substrates could be increased from 10{sup 4} to 10{sup 8}/cm{sup 2} by polishing. Heating the substrate to 870{degrees}C in vacuum prior to deposition, or above 1000{degrees}C at the beginning of deposition, reduced nucleation by more than 100-fold. Reduction in nucleation sites is attributed to annealing. Nucleation on Mo{sub 2}C substrates was found to be very poor (10{sup 4}/cm{sup 2}), which shows carbide alone does not promote nucleation. Carbide formation may remove nucleation sites. CVD diamond was found to dissolve into the Mo substrate in vacuum at about 1200{degrees}C. XPS showed formation of Mo{sub 2}C when the diamond dissolved. Diamond oxidation to gas phase products occurred directly at about 600{degrees}C, with no observable participation by the substrate. No detectable etching by atomic hydrogen at a pressure 1 {times} 10{sup {minus}4} torr was observed. Boron doped and `pure` CVD diamond films were found to emit electrons at room temperature under the action of the accelerating electric field of the PEEM (about 30 kV/cm) without photon excitation. The mechanism underlying this phenomenon was investigated with PEEM and by studying the emission current-vs-voltage characteristics of the CVD diamond films. Morphology and crystalline orientation were found to play only a minor role. Impurities in the CVD diamond structure lowers the potential barrier substantially; tunneling of electrons into the vacuum is facile.

  8. Compact electron beam focusing column

    SciTech Connect

    Persaud, Arun; Leung, Ka-Ngo; Reijonen, Jani

    2001-07-13

    A novel design for an electron beam focusing column has been developed at LBNL. The design is based on a low-energy spread multicusp plasma source which is used as a cathode for electron beam production. The focusing column is 10 mm in length. The electron beam is focused by means of electrostatic fields. The column is designed for a maximum voltage of 50 kV. Simulations of the electron trajectories have been performed by using the 2-D simulation code IGUN and EGUN. The electron temperature has also been incorporated into the simulations. The electron beam simulations, column design and fabrication will be discussed in this presentation.

  9. Depressed collector for electron beams

    NASA Technical Reports Server (NTRS)

    Ives, R. Lawrence (Inventor)

    2005-01-01

    A depressed collector for recovery of spent beam energy from electromagnetic sources emitting sheet or large aspect ration annular electron beams operating aver a broad range of beam voltages and currents. The collector incorporates a trap for capturing and preventing the return of reflected and secondary electrons.

  10. Charge collection uniformity and irradiation effects of synthetic diamond detectors studied with a proton micro-beam

    NASA Astrophysics Data System (ADS)

    Cazzaniga, C.; Rebai, M.; Garcia Lopez, J.; Jimenez-Ramos, M. C.; Girolami, M.; Trucchi, D. M.; Bellucci, A.; Frost, C. D.; Garcia-Munoz, M.; Nocente, M.; Tardocchi, M.; Gorini, G.

    2017-08-01

    The proton micro-beam of the CNA accelerator in Seville has been used to test two detectors based on single crystal diamond grown by chemical vapor deposition. The first diamond has a more traditional design, with dimensions 4.5 × 4.5 × 0.5 mm3, and features a large contact of the same size as the crystal. The second, with dimensions 2.0 × 2.0 × 0.3 mm3, features a small contact of 0.5 × 0.5 mm2. By using the micro-beam, the map of the charge collection efficiency for both the detectors have been measured. We show that the charge collection efficiency of the diamond with large contacts is generally uniform, while the diamond with smaller contacts needs further developments in this respect. A proof of principle test with a fast electronic chain has been performed to demonstrate that spatially resolved pulse shape analysis can be performed with this system. The micro-beam allowed also studying radiation-induced permanent damage and polarization, which are two irradiation effects of importance for the development of diamonds used in spectroscopy applications.

  11. Three-dimensional cathodoluminescence imaging and electron backscatter diffraction: tools for studying the genetic nature of diamond inclusions

    NASA Astrophysics Data System (ADS)

    Wiggers de Vries, D. F.; Drury, M. R.; de Winter, D. A. M.; Bulanova, G. P.; Pearson, D. G.; Davies, G. R.

    2011-04-01

    As a step towards resolving the genesis of inclusions in diamonds, a new technique is presented. This technique combines cathodoluminescence (CL) and electron backscatter diffraction (EBSD) using a focused ion beam-scanning electron microscope (FIB-SEM) instrument with the aim of determining, in detail, the three-dimensional diamond zonation adjacent to a diamond inclusion. EBSD reveals that mineral inclusions in a single diamond have similar crystallographic orientations to the host, within ±0.4°. The chromite inclusions record a systematic change in Mg# and Cr# from core to the rim of the diamond that corresponds with a ~80°C decrease of their formation temperature as established by zinc thermometry. A chromite inclusion, positioned adjacent to a boundary between two major diamond growth zones, is multi-faceted with preferred octahedral and cubic faces. The chromite is surrounded by a volume of non-luminescent diamond (CL halo) that partially obscures any diamond growth structures. The CL halo has apparent crystallographic morphology with symmetrically oriented pointed features. The CL halo is enriched in ~200 ppm Cr and ~80 ppm Fe and is interpreted to have a secondary origin as it overprints a major primary diamond growth structure. The diamond zonation adjacent to the chromite is complex and records both syngenetic and protogenetic features based on current inclusion entrapment models. In this specific case, a syngenetic origin is favoured with the complex form of the inclusion and growth layers indicating changes of growth rates at the diamond-chromite interface. Combined EBSD and 3D-CL imaging appears an extremely useful tool in resolving the ongoing discussion about the timing of inclusion growth and the significance of diamond inclusion studies.

  12. Chemical Vapor-Deposited (CVD) Diamond Films for Electronic Applications

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Diamond films have a variety of useful applications as electron emitters in devices such as magnetrons, electron multipliers, displays, and sensors. Secondary electron emission is the effect in which electrons are emitted from the near surface of a material because of energetic incident electrons. The total secondary yield coefficient, which is the ratio of the number of secondary electrons to the number of incident electrons, generally ranges from 2 to 4 for most materials used in such applications. It was discovered recently at the NASA Lewis Research Center that chemical vapor-deposited (CVD) diamond films have very high secondary electron yields, particularly when they are coated with thin layers of CsI. For CsI-coated diamond films, the total secondary yield coefficient can exceed 60. In addition, diamond films exhibit field emission at fields orders of magnitude lower than for existing state-of-the-art emitters. Present state-of-the-art microfabricated field emitters generally require applied fields above 5x10^7 V/cm. Research on field emission from CVD diamond and high-pressure, high-temperature diamond has shown that field emission can be obtained at fields as low as 2x10^4 V/cm. It has also been shown that thin layers of metals, such as gold, and of alkali halides, such as CsI, can significantly increase field emission and stability. Emitters with nanometer-scale lithography will be able to obtain high-current densities with voltages on the order of only 10 to 15 V.

  13. Chemical Vapor-Deposited (CVD) Diamond Films for Electronic Applications

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Diamond films have a variety of useful applications as electron emitters in devices such as magnetrons, electron multipliers, displays, and sensors. Secondary electron emission is the effect in which electrons are emitted from the near surface of a material because of energetic incident electrons. The total secondary yield coefficient, which is the ratio of the number of secondary electrons to the number of incident electrons, generally ranges from 2 to 4 for most materials used in such applications. It was discovered recently at the NASA Lewis Research Center that chemical vapor-deposited (CVD) diamond films have very high secondary electron yields, particularly when they are coated with thin layers of CsI. For CsI-coated diamond films, the total secondary yield coefficient can exceed 60. In addition, diamond films exhibit field emission at fields orders of magnitude lower than for existing state-of-the-art emitters. Present state-of-the-art microfabricated field emitters generally require applied fields above 5x10^7 V/cm. Research on field emission from CVD diamond and high-pressure, high-temperature diamond has shown that field emission can be obtained at fields as low as 2x10^4 V/cm. It has also been shown that thin layers of metals, such as gold, and of alkali halides, such as CsI, can significantly increase field emission and stability. Emitters with nanometer-scale lithography will be able to obtain high-current densities with voltages on the order of only 10 to 15 V.

  14. X-ray beam monitor made by thin-film CVD single-crystal diamond.

    PubMed

    Marinelli, Marco; Milani, E; Prestopino, G; Verona, C; Verona-Rinati, G; Angelone, M; Pillon, M; Kachkanov, V; Tartoni, N; Benetti, M; Cannatà, D; Di Pietrantonio, F

    2012-11-01

    A novel beam position monitor, operated at zero bias voltage, based on high-quality chemical-vapor-deposition single-crystal Schottky diamond for use under intense synchrotron X-ray beams was fabricated and tested. The total thickness of the diamond thin-film beam monitor is about 60 µm. The diamond beam monitor was inserted in the B16 beamline of the Diamond Light Source synchrotron in Harwell (UK). The device was characterized under monochromatic high-flux X-ray beams from 6 to 20 keV and a micro-focused 10 keV beam with a spot size of approximately 2 µm × 3 µm square. Time response, linearity and position sensitivity were investigated. Device response uniformity was measured by a raster scan of the diamond surface with the micro-focused beam. Transmissivity and spectral responsivity versus beam energy were also measured, showing excellent performance of the new thin-film single-crystal diamond beam monitor.

  15. Pulsed electron beam precharger

    SciTech Connect

    Finney, W.C.; Shelton, W.N.

    1990-01-01

    Florida State University is investigating the concept of pulsed electron beams for fly ash precipitation. This report describes the results and data on three of the subtasks of this project and preliminary work only on the remaining five subtasks. Described are the modification of precharger for pulsed and DC energization of anode; installation of the Q/A measurement system; and modification and installation of pulsed power supply to provide both pulsed and DC energization of the anode. The other tasks include: measurement of the removal efficiency for monodisperse simulated fly ash particles; measurement of particle charge; optimization of pulse energization schedule for maximum removal efficiency; practical assessment of results; and measurement of the removal efficiency for polydisperse test particles. 15 figs., 1 tab. (CK)

  16. Applications of diamond films and related materials; Proceedings of the 1st International Conference, Auburn, AL, Aug. 17-22, 1991

    NASA Technical Reports Server (NTRS)

    Tzeng, Yonhua (Editor); Yoshikawa, Manasori (Editor); Murakawa, Masao (Editor); Feldman, Albert (Editor)

    1991-01-01

    The present conference discusses the nucleation and growth of diamond from hydrocarbons, the cutting tool performance of CVD thick-film diamond, the characterization of CVD diamond grinding powder, industrial applications of crystalline diamond-coated tools, standardized SEM tribometry of diamond-coated substrates, residual stress in CVD diamond films, the optical properties of CVD diamond films, polycrystalline diamond films for optical applications, and diamond growth on ferrous metals. Also discussed are ion beam-irradiation smoothing of diamond films, electronic circuits on diamond substrates, diamond-laminated surfaces for evaporative spray cooling, electron devices based on the unique properties of diamond, diamond cold cathodes, thin-film diamond microstructure applications, Schottky diodes from flame-grown diamond, diamond films for thermionic applications, methods of diamond nucleation and selective deposition, high-rate/large-area diamond film production, halogen-assisted diamond growth, the economics of diamond technology, and the optical and mechanical properties of diamondlike films.

  17. Electron Beam Diagnostics in Plasmas Based on Electron Beam Ionization

    NASA Astrophysics Data System (ADS)

    Leonhardt, Darrin; Leal-Quiros, Edbertho; Blackwell, David; Walton, Scott; Murphy, Donald; Fernsler, Richard; Meger, Robert

    2001-10-01

    Over the last few years, electron beam ionization has been shown to be a viable generator of high density plasmas with numerous applications in materials modification. To better understand these plasmas, we have fielded electron beam diagnostics to more clearly understand the propagation of the beam as it travels through the background gas and creates the plasma. These diagnostics vary greatly in sophistication, ranging from differentially pumped systems with energy selective elements to metal 'hockey pucks' covered with thin layers of insulation to electrically isolate the detector from the plasma but pass high energy beam electrons. Most importantly, absolute measurements of spatially resolved beam current densities are measured in a variety of pulsed and continuous beam sources. The energy distribution of the beam current(s) will be further discussed, through experiments incorporating various energy resolving elements such as simple grids and more sophisticated cylindrical lens geometries. The results are compared with other experiments of high energy electron beams through gases and appropriate disparities and caveats will be discussed. Finally, plasma parameters are correlated to the measured beam parameters for a more global picture of electron beam produced plasmas.

  18. Timekeeping with electron spin states in diamond

    NASA Astrophysics Data System (ADS)

    Hodges, J. S.; Yao, N. Y.; Maclaurin, D.; Rastogi, C.; Lukin, M. D.; Englund, D.

    2013-03-01

    Frequency standards based on atomic states, such as Rb or Cs vapors, or single-trapped ions, are the most precise measures of time. Here we propose and analyze a precision oscillator approach based upon spins in a solid-state system, in particular, the nitrogen-vacancy defect in single-crystal diamond. We show that this system can have stability approaching portable atomic standards and is readily incorporable as a chip-scale device. Using a pulsed spin-echo technique, we anticipate an Allan deviation of σy=10-7τ-1/2 limited by thermally-induced strain variations; in the absence of such thermal fluctuations, the system is limited by spin dephasing and harbors an Allan deviation nearing ˜10-12τ-1/2. Potential improvements based upon advanced diamond material processing, temperature stabilization, and nanophotonic engineering are discussed.

  19. Investigations of high mobility single crystal chemical vapor deposition diamond for radiotherapy photon beam monitoring

    SciTech Connect

    Tromson, D.; Descamps, C.; Tranchant, N.; Bergonzo, P.; Nesladek, M.; Isambert, A.

    2008-03-01

    The intrinsic properties of diamond make this material theoretically very suitable for applications in medical physics. Until now ionization chambers have been fabricated from natural stones and are commercialized by PTW, but their fairly high costs and long delivery times have often limited their use in hospital. The properties of commercialized intrinsic polycrystalline diamond were investigated in the past by many groups. The results were not completely satisfactory due to the nature of the polycrystalline material itself. In contrast, the recent progresses in the growth of high mobility single crystal synthetic diamonds prepared by chemical vapor deposition (CVD) technique offer new alternatives. In the framework of the MAESTRO project (Methods and Advanced Treatments and Simulations for Radio Oncology), the CEA-LIST is studying the potentialities of synthetic diamond for new techniques of irradiation such as intensity modulated radiation therapy. In this paper, we present the growth and characteristics of single crystal diamond prepared at CEA-LIST in the framework of the NoRHDia project (Novel Radiation Hard CVD Diamond Detector for Hadrons Physics), as well as the investigations of high mobility single crystal CVD diamond for radiotherapy photon beam monitoring: dosimetric analysis performed with the single crystal diamond detector in terms of stability and repeatability of the response signal, signal to noise ratio, response speed, linearity of the signal versus the absorbed dose, and dose rate. The measurements performed with photon beams using radiotherapy facilities demonstrate that single crystal CVD diamond is a good alternative for air ionization chambers for beam quality control.

  20. Graphene-diamond interface: Gap opening and electronic spin injection

    NASA Astrophysics Data System (ADS)

    Ma, Yandong; Dai, Ying; Guo, Meng; Huang, Baibiao

    2012-06-01

    Creating a finite band gap, injecting electronic spin, and finding a suitable substrate are the three important challenges for building graphene-based devices. Here, first-principles calculations are performed to investigate the electronic and magnetic properties of graphene adsorbed on the (111) surface of diamond, which is synthesized experimentally [Nature10.1038/nature09979 472, 74 (2011); J. Appl. Phys.10.1063/1.3627370 110, 044324 (2011); Nano Lett.10.1021/nl204545q 12, 1603 (2012); ACS Nano10.1021/nn204362p 6, 1018 (2012)]. Our results reveal that the graphene adsorbed on the diamond surface is a semiconductor with a finite gap depending on the adsorption arrangements due to the variation of on-site energy induced by the diamond surface, with the extra advantage of maintaining main characters of the linear band dispersion of graphene. More interestingly, different from typical graphene/semiconductor hybrid systems, we find that electronic spin can arise ``intrinsically'' in graphene owing to the exchange proximity interaction between electrons in graphene and localized electrons in the diamond surface rather than the characteristic graphene states. These predications strongly revive this new synthesized system as a viable candidate to overcome all the aforementioned challenges, providing an ideal platform for future graphene-based electronics.

  1. Nucleation of diamond by pure carbon ion bombardment--a transmission electron microscopy study

    SciTech Connect

    Yao, Y.; Liao, M.Y.; Wang, Z.G.; Lifshitz, Y.; Lee, S.

    2005-08-08

    A cross-sectional high-resolution transmission electron microscopy (HRTEM) study of a film deposited by a 1 keV mass-selected carbon ion beam onto silicon held at 800 deg. C is presented. Initially, a graphitic film with its basal planes perpendicular to the substrate is evolving. The precipitation of nanodiamond crystallites in upper layers is confirmed by HRTEM, selected area electron diffraction, and electron energy loss spectroscopy. The nucleation of diamond on graphitic edges as predicted by Lambrecht et al. [W. R. L. Lambrecht, C. H. Lee, B. Segall, J. C. Angus, Z. Li, and M. Sunkara, Nature, 364 607 (1993)] is experimentally confirmed. The results are discussed in terms of our recent subplantation-based diamond nucleation model.

  2. Nucleation of diamond by pure carbon ion bombardment—a transmission electron microscopy study

    NASA Astrophysics Data System (ADS)

    Yao, Y.; Liao, M. Y.; Wang, Z. G.; Lifshitz, Y.; Lee, S. T.

    2005-08-01

    A cross-sectional high-resolution transmission electron microscopy (HRTEM) study of a film deposited by a 1 keV mass-selected carbon ion beam onto silicon held at 800 °C is presented. Initially, a graphitic film with its basal planes perpendicular to the substrate is evolving. The precipitation of nanodiamond crystallites in upper layers is confirmed by HRTEM, selected area electron diffraction, and electron energy loss spectroscopy. The nucleation of diamond on graphitic edges as predicted by Lambrecht et al. [W. R. L. Lambrecht, C. H. Lee, B. Segall, J. C. Angus, Z. Li, and M. Sunkara, Nature, 364 607 (1993)] is experimentally confirmed. The results are discussed in terms of our recent subplantation-based diamond nucleation model.

  3. Diamond detector for high rate monitors of fast neutrons beams

    SciTech Connect

    Giacomelli, L.; Rebai, M.; Cippo, E. Perelli; Tardocchi, M.; Fazzi, A.; Andreani, C.; Pietropaolo, A.; Frost, C. D.; Rhodes, N.; Schooneveld, E.; Gorini, G.

    2012-06-19

    A fast neutron detection system suitable for high rate measurements is presented. The detector is based on a commercial high purity single crystal diamond (SDD) coupled to a fast digital data acquisition system. The detector was tested at the ISIS pulsed spallation neutron source. The SDD event signal was digitized at 1 GHz to reconstruct the deposited energy (pulse amplitude) and neutron arrival time; the event time of flight (ToF) was obtained relative to the recorded proton beam signal t{sub 0}. Fast acquisition is needed since the peak count rate is very high ({approx}800 kHz) due to the pulsed structure of the neutron beam. Measurements at ISIS indicate that three characteristics regions exist in the biparametric spectrum: i) background gamma events of low pulse amplitudes; ii) low pulse amplitude neutron events in the energy range E{sub dep}= 1.5-7 MeV ascribed to neutron elastic scattering on {sup 12}C; iii) large pulse amplitude neutron events with E{sub n} < 7 MeV ascribed to {sup 12}C(n,{alpha}){sup 9}Be and 12C(n,n')3{alpha}.

  4. The use of electron scattering for studying atomic momentum distributions: the case of graphite and diamond.

    PubMed

    Vos, M; Moreh, R; Tokési, K

    2011-07-14

    The momentum distributions of C atoms in polycrystalline diamond (produced by chemical vapor deposition) and in highly oriented pyrolitic graphite (HOPG) are studied by scattering of 40 keV electrons at 135°. By measuring the Doppler broadening of the energy of the elastically scattered electrons, we resolve a Compton profile of the motion of the C atoms. The aim of the present work is to resolve long-standing disagreements between the calculated kinetic energies of carbon atoms in HOPG and in diamond films and the measured ones, obtained both by neutron Compton scattering (NCS) and by nuclear resonance photon scattering (NRPS). The anisotropy of the momentum distribution in HOPG was measured by rotating the HOPG sample relative to the electron beam. The obtained kinetic energies for the motion component along, and perpendicular to, the graphite planes were somewhat higher than those obtained from the most recent NCS data of HOPG. Monte Carlo simulations indicate that multiple scattering adds about 2% to the obtained kinetic energies. The presence of different isotopes in carbon affects the measurement at a 1% level. After correcting for these contributions, the kinetic energies are 3%-6% larger than the most recent NCS results for HOPG, but 15%-25% smaller than the NRPS results. For diamond, the corrected direction-averaged kinetic energy is ≈ 6% larger than the calculated value. This compares favorably to the ≈25% discrepancy between theory and both the NCS and NRPS results for diamond.

  5. Operation of an ungated diamond field-emission array cathode in a L-band radiofrequency electron source

    SciTech Connect

    Piot, P.; Brau, C. A.; Choi, B. K.; Blomberg, B.; Gabella, W. E.; Ivanov, B.; Jarvis, J.; Mendenhall, M. H.; Mihalcea, D.; Panuganti, H.; Prieto, P.; Reid, J.

    2014-06-30

    We report on the first successful operation of a field-emitter-array cathode in a conventional L-band radio-frequency electron source. The cathode consisted of an array of $\\sim 10^6$ diamond diamond tips on pyramids. Maximum current on the order of 15~mA were reached and the cathode did not show appreciable signs of fatigue after weeks of operation. The measured Fowler-Nordheim characteristics, transverse beam density, and current stability are discussed. Numerical simulations of the beam dynamics are also presented.

  6. Why diamond dimensions and electrode geometry are crucial for small photon beam dosimetry

    SciTech Connect

    Marsolat, F.; Tromson, D.; Tranchant, N.; Pomorski, M.; Bergonzo, P.; Bassinet, C.; Huet, C.; Buchheit, I.; Marchesi, V.; Gaudaire-Josset, S.; Lisbona, A.; Lazaro, D.; Hugon, R.

    2015-12-21

    Recent use of very small photon beams (down to 4 mm) in stereotactic radiotherapy requires new detectors to accurately determine the delivered dose. Diamond detectors have been presented in the literature as an attractive candidate for this application, due to their small detection volume and the diamond atomic number (Z = 6) which is close to water effective atomic number (Zeff ∼ 7.42). However, diamond exhibits a density 3.51 times greater than that of water and recent studies using Monte Carlo simulations have demonstrated the drawback of a high-density detector on small beam output factors. The current study focuses on geometrical parameters of diamond detector, namely, the diamond dimensions and the electrode geometry, in order to solve the dosimetric issues still observed in small photon beams with diamond detectors. To give better insights to these open questions, we have used both computational method and experimental analysis. This study highlighted that reducing diamond dimensions is crucial for small beam output factor measurements and to limit the influence of its high density. Furthermore, electrodes covering the whole diamond surface were essential for a dose rate independence of the diamond detector. The optimal dosimeter derived from this work presented small diamond dimensions of approximately 1 × 1 × 0.15 mm{sup 3}, with diamond-like-carbon electrodes covering the whole diamond surface. A dose rate independence of this diamond detector (better than 0.5% over a wide range of dose rates available on a stereotactic dedicated facility) was obtained due to the electrode geometry. Concerning the output factor measurements, a good agreement (better than 1.1%) was observed between this carbon material detector and two types of passive dosimeters (LiF microcubes and EBT2 radiochromic films) for all beam sizes except the smallest field of 0.6 × 0.6 cm{sup 2} with a deviation of 2.6%. This new study showed the high performance

  7. Using Si-doped diamond plate of sandwich type for spatial profiling of laser beam

    NASA Astrophysics Data System (ADS)

    Shershulin, V. A.; Samoylenko, S. R.; Sedov, V. S.; Kudryavtsev, O. S.; Ralchenko, V. G.; Nozhkina, A. V.; Vlasov, I. I.; Konov, V. I.

    2017-02-01

    We demonstrated a laser beam profiling method based on imaging of the laser induced photoluminescence of a transparent single-crystal diamond plate. The luminescence at 738 nm is caused by silicon-vacancy color centers formed in the epitaxial diamond film by its doping with Si during CVD growth of the film. The on-line beam monitor was tested for a cw laser emitting at 660 nm wavelength.

  8. Demonstration of a Coherent Electronic Spin Cluster in Diamond

    NASA Astrophysics Data System (ADS)

    Knowles, Helena S.; Kara, Dhiren M.; Atatüre, Mete

    2016-09-01

    An obstacle for spin-based quantum sensors is magnetic noise due to proximal spins. However, a cluster of such spins can become an asset, if it can be controlled. Here, we polarize and readout a cluster of three nitrogen electron spins coupled to a single nitrogen-vacancy spin in diamond. We further achieve sub-nm localization of the cluster spins. Finally, we demonstrate coherent spin exchange between the species by simultaneous dressing of the nitrogen-vacancy and the nitrogen states. These results establish the feasibility of environment-assisted sensing and quantum simulations with diamond spins.

  9. Generation of electron Airy beams.

    PubMed

    Voloch-Bloch, Noa; Lereah, Yossi; Lilach, Yigal; Gover, Avraham; Arie, Ady

    2013-02-21

    Within the framework of quantum mechanics, a unique particle wave packet exists in the form of the Airy function. Its counterintuitive properties are revealed as it propagates in time or space: the quantum probability wave packet preserves its shape despite dispersion or diffraction and propagates along a parabolic caustic trajectory, even though no force is applied. This does not contradict Newton's laws of motion, because the wave packet centroid propagates along a straight line. Nearly 30 years later, this wave packet, known as an accelerating Airy beam, was realized in the optical domain; later it was generalized to an orthogonal and complete family of beams that propagate along parabolic trajectories, as well as to beams that propagate along arbitrary convex trajectories. Here we report the experimental generation and observation of the Airy beams of free electrons. These electron Airy beams were generated by diffraction of electrons through a nanoscale hologram, which imprinted on the electrons' wavefunction a cubic phase modulation in the transverse plane. The highest-intensity lobes of the generated beams indeed followed parabolic trajectories. We directly observed a non-spreading electron wavefunction that self-heals, restoring its original shape after passing an obstacle. This holographic generation of electron Airy beams opens up new avenues for steering electronic wave packets like their photonic counterparts, because the wave packets can be imprinted with arbitrary shapes or trajectories.

  10. Electron beams in solar flares

    NASA Technical Reports Server (NTRS)

    Aschwanden, Markus J.; Dennis, Brian R.; Benz, Arnold O.

    1994-01-01

    A list of publications resulting from this program includes 'The Timing of Electron Beam Signatures in Hard X-Ray and Radio: Solar Flare Observations by BATSE/Compton Gamma-Ray Observatory and PHOENIX'; 'Coherent-Phase or Random-Phase Acceleration of Electron Beams in Solar Flares'; 'Particle Acceleration in Flares'; 'Chromospheric Evaporation and Decimetric Radio Emission in Solar Flares'; 'Sequences of Correlated Hard X-Ray and Type 3 Bursts During Solar Flares'; and 'Solar Electron Beams Detected in Hard X-Rays and Radiowaves.' Abstracts and reprints of each are attached to this report.

  11. Simulations of Surface Effects and Electron Emission from Diamond-Amplifier Cathodes

    SciTech Connect

    Dimitrov D. A.; Rao T.; Busby, R.; Smithe, D.; Cary, J.R.; Ben-Zvi, I.; Chang, X.; Smedley, J.; Wu, Q.; Wang, E.

    2011-09-30

    Emission of electrons in diamond experiments based on the promising diamond-amplifier concept was recently demonstrated. Transmission mode experiments have shown the potential to realize over two orders of magnitude charge amplification. However, the recent emission experiments indicate that surface effects should be understood in detail to build cathodes with optimal properties. We have made progress in understanding secondary electron generation and charge transport in diamond with models we implemented in the VORPAL particle-in-cell computational framework. We introduce models that we have been implementing for surface effects (band bending and electron affinity), charge trapping, and electron emission from diamond. Then, we present results from 3D VORPAL diamond-vacuum simulations with the integrated capabilities on generating electrons and holes, initiated by energetic primary electrons, charge transport, and then emission of electrons from diamond into vacuum. Finally, we discuss simulation results on the dependence of the electron emission on diamond surface properties.

  12. Ion beam planarization of diamond turned surfaces with various roughness profiles.

    PubMed

    Li, Yaguo; Takino, Hideo; Frost, Frank

    2017-04-03

    The effectiveness of ion beam planarization (IBP) to reduce surface roughness of diamond turned NiP surfaces was investigated. The surfaces with various spatial wavelengths and depths of turning marks were spray-coated and planarized with broad ion beam. The ion beam planarization was performed at a special angle where the etching rate of photoresist is closely similar to NiP. It is found that the combined process of spray-coating and ion-beam-planarization can effectively reduce the surface roughness of diamond turned NiP. The spatial wavelength and depth of turning marks have limited influence on surface roughness reduction rate. The final surface roughness after ion beam planarization is 30%~40% of the original roughness, irrespective of spatial wavelength and depth of turning marks. Extending planarization time does not alter surface quality after photoresist is etched away. These results show that the IBP is applicable to roughness minimization of diamond turned surfaces.

  13. Improved electron-beam welder

    NASA Technical Reports Server (NTRS)

    Smock, R. A.; Taylor, R. A.; Wall, W. A.

    1978-01-01

    Report describes comprehensive test-and-evaluation program designed to improve performance of 7.5 kW electron-beam welder. Report describes prototype and seventeen changes incorporated to improve performance.

  14. Repetitively pumped electron beam device

    DOEpatents

    Schlitt, L.G.

    1979-07-24

    Disclosed is an apparatus for producing fast, repetitive pulses of controllable length of an electron beam by phased energy storage in a transmission line of length matched to the number of pulses and specific pulse lengths desired. 12 figs.

  15. High-Power Microwave Switch Employing Electron Beam Triggering

    SciTech Connect

    Hirshfield, Jay L

    2012-09-19

    A high-power active microwave pulse compressor is described that modulates the quality factor Q of the energy storage cavity by a new means involving mode conversion controlled by a triggered electron-beam discharge through a switch cavity. The electron beam is emitted from a diamond-coated molybdenum cathode. This report describes the principle of operation, the design of the switch, the configuration used for the test, and the experimental results. The pulse compressor produced output pulses with 140 - 165 MW peak power, power gain of 16 - 20, and pulse duration of 16 - 20 ns at a frequency of 11.43 GHz.

  16. Electronic structure of hydrogenated diamond: Microscopical insight into surface conductivity

    NASA Astrophysics Data System (ADS)

    Iacobucci, S.; Alippi, Paola; Calvani, P.; Girolami, M.; Offi, F.; Petaccia, L.; Trucchi, D. M.

    2016-07-01

    We have correlated the surface conductivity of hydrogen-terminated diamond to the electronic structure in the Fermi region. Significant density of electronic states (DOS) in proximity of the Fermi edge has been measured by photoelectron spectroscopy (PES) on surfaces exposed to air, corresponding to a p -type electric conductive regime, while upon annealing a depletion of the DOS has been achieved, resembling the diamond insulating state. The surface and subsurface electronic structure has been determined, exploiting the different probing depths of PES applied in a photon energy range between 7 and 31 eV. Ab initio density functional calculations including surface charge depletion and band-bending effects favorably compare with electronic states measured by angular-resolved photoelectron spectroscopy. Such states are organized in the energy-momentum space in a twofold structure: one, bulk-derived, band disperses in the Γ -X direction with an average hole effective mass of (0.43 ±0.02 ) m0 , where m0 is the bare electron mass; a second flatter band, with an effective mass of (2.2 ±0.9 ) m0 , proves that a hole gas confined in the topmost layers is responsible for the conductivity of the (2 ×1 ) hydrogen-terminated diamond (100 ) surface.

  17. Dual-Cathode Electron-Beam Source

    NASA Technical Reports Server (NTRS)

    Bradley, James G.; Conley, Joseph M.; Wittry, David B.

    1988-01-01

    Beam from either cathode electromagnetically aligned with exit port. Electron beam from either of two cathodes deflected by magnetic and electric fields to central axis. Mechanical alignment of beam easy because cathode axes, anode apertures, and electron trajectories coplanar. Applications where uninterrupted service needed: scanning electron microscopes, transmission electron microscopes, electron-beam lithography equipment, Auger instruments, and microfocused x-ray sources.

  18. Enhanced photoelectric detection of NV magnetic resonances in diamond under dual-beam excitation

    NASA Astrophysics Data System (ADS)

    Bourgeois, E.; Londero, E.; Buczak, K.; Hruby, J.; Gulka, M.; Balasubramaniam, Y.; Wachter, G.; Stursa, J.; Dobes, K.; Aumayr, F.; Trupke, M.; Gali, A.; Nesladek, M.

    2017-01-01

    The core issue for the implementation of NV center qubit technology is a sensitive readout of the NV spin state. We present here a detailed theoretical and experimental study of NV center photoionization processes, used as a basis for the design of a dual-beam photoelectric method for the detection of NV magnetic resonances (PDMR). This scheme, based on NV one-photon ionization, is significantly more efficient than the previously reported single-beam excitation scheme. We demonstrate this technique on small ensembles of ˜10 shallow NVs implanted in electronic grade diamond (a relevant material for quantum technology), on which we achieve a cw magnetic resonance contrast of 9%—three times enhanced compared to previous work. The dual-beam PDMR scheme allows independent control of the photoionization rate and spin magnetic resonance contrast. Under a similar excitation, we obtain a significantly higher photocurrent, and thus an improved signal-to-noise ratio, compared to single-beam PDMR. Finally, this scheme is predicted to enhance magnetic resonance contrast in the case of samples with a high proportion of substitutional nitrogen defects, and could therefore enable the photoelectric readout of single NV spins.

  19. Direct observation of phonon emission from hot electrons: spectral features in diamond secondary electron emission.

    PubMed

    O'Donnell, Kane M; Edmonds, Mark T; Ristein, Jürgen; Rietwyk, Kevin J; Tadich, Anton; Thomsen, Lars; Pakes, Christopher I; Ley, Lothar

    2014-10-01

    In this work we use high-resolution synchrotron-based photoelectron spectroscopy to investigate the low kinetic energy electron emission from two negative electron affinity surfaces of diamond, namely hydrogenated and lithiated diamond. For hydrogen-terminated diamond electron emission below the conduction band minimum (CBM) is clearly observed as a result of phonon emission subsequent to carrier thermalization at the CBM. In the case of lithiated diamond, we find the normal conduction band minimum emission peak is asymmetrically broadened to higher kinetic energies and argue the broadening is a result of ballistic emission from carriers thermalized to the CBM in the bulk well before the onset of band-bending. In both cases the spectra display intensity modulations that are the signature of optical phonon emission as the main mechanism for carrier relaxation. To our knowledge, these measurements represent the first direct observation of hot carrier energy loss via photoemission.

  20. Diamond monochromator for high heat flux synchrotron x-ray beams

    SciTech Connect

    Khounsary, A.M.; Smither, R.K.; Davey, S.; Purohit, A.

    1992-12-01

    Single crystal silicon has been the material of choice for x-ray monochromators for the past several decades. However, the need for suitable monochromators to handle the high heat load of the next generation synchrotron x-ray beams on the one hand and the rapid and on-going advances in synthetic diamond technology on the other make a compelling case for the consideration of a diamond mollochromator system. In this Paper, we consider various aspects, advantage and disadvantages, and promises and pitfalls of such a system and evaluate the comparative an monochromator subjected to the high heat load of the most powerful x-ray beam that will become available in the next few years. The results of experiments performed to evaluate the diffraction properties of a currently available synthetic single crystal diamond are also presented. Fabrication of diamond-based monochromator is within present technical means.

  1. Relativistic Electron Beams Above Thunderclouds

    NASA Astrophysics Data System (ADS)

    Fullekrug, Martin; Roussel-Dupre, Robert; Symbalisty, Eugene; Chanrion, Olivier; van der Velde, Oscar; Soula, Serge; Odzimek, Anna; Bennett, Alec; Whitley, Toby; Neubert, Torsten

    2010-05-01

    It has recently been discovered that lightning discharges generate upward-directed relativistic electron beams above thunderclouds. This extends the phenomenon of relativistic runaway breakdown believed to occur inside thunderclouds to the atmosphere above thunderclouds. This marks a profound advance in our understanding of the atmosphere because we now know it acts as a giant, natural, particle accelerator. The accelerated electrons can reach significant relativistic energies of some MeV during their passage from the troposphere, through the middle atmosphere, into near-Earth space. These relativistic electron beams constitute a current above thunderclouds and effectively transfer energy from the troposphere to the middle atmosphere. This coupling process thereby forms a novel element of the global atmospheric electric circuit which links tropospheric thunderclouds to the atmosphere above. This contribution describes the radio remote sensing of upward electron beams to determine their occurrence frequency and to characterise their physical properites.

  2. Polarized electron beams at SLAC

    SciTech Connect

    Moffeit, K.C.

    1992-11-01

    SLAC has successfully accelerated high energy polarized electrons for the Stanford Linear Collider and fixed polarized nuclear target experiments. The polarized electron beams at SLAC use a gallium arsenide (GaAlAs for E-142) photon emission source to provide the beam of polarized electrons with polarization of approximately 28% (41% for E-142). While the beam emittance is reduced in the damping ring for SLC operation a system of bend magnets and superconducting solenoids preserve and orient the spin direction for maximum longitudinal polarization at the collision point. The electron polarization is monitored with a Compton scattering polarimeter, and was typically 22% at the e[plus]e[minus] collision point for the 1992 run. Improvements are discussed to increase the source polarization and to reduce the depolarization effects between the source and the collision point.

  3. Polarized electron beams at SLAC

    SciTech Connect

    Moffeit, K.C.

    1992-11-01

    SLAC has successfully accelerated high energy polarized electrons for the Stanford Linear Collider and fixed polarized nuclear target experiments. The polarized electron beams at SLAC use a gallium arsenide (GaAlAs for E-142) photon emission source to provide the beam of polarized electrons with polarization of approximately 28% (41% for E-142). While the beam emittance is reduced in the damping ring for SLC operation a system of bend magnets and superconducting solenoids preserve and orient the spin direction for maximum longitudinal polarization at the collision point. The electron polarization is monitored with a Compton scattering polarimeter, and was typically 22% at the e{plus}e{minus} collision point for the 1992 run. Improvements are discussed to increase the source polarization and to reduce the depolarization effects between the source and the collision point.

  4. Deformation of a laser beam in the fabrication of graphite microstructures inside a volume of diamond

    SciTech Connect

    Kononenko, T V; Zavedeev, E V

    2016-03-31

    We report a theoretical and experimental study of the energy profile deformation along the laser beam axis during the fabrication of graphite microstructures inside a diamond crystal. The numerical simulation shows that the use of a focusing lens with a numerical aperture NA < 0.1 at a focusing depth of up to 2 mm makes it possible to avoid a noticeable change in the energy profile of the beam due to the spherical aberration that occurs in the case of refraction of the focused laser beam at the air – diamond interface. The calculation results are confirmed by experimental data on the distribution of the laser intensity along the beam axis in front of its focal plane, derived from observations of graphitisation wave propagation in diamond. The effect of radiation self-focusing on laser-induced graphitisation of diamond is analysed. It is shown that if the wavefront distortion due to self-focusing can be neglected at a minimum pulse energy required for the optical breakdown of diamond, then an increase in the beam distortion with increasing pulse energy has no effect on the graphitisation process. (interaction of laser radiation with matter)

  5. Combined single-crystalline and polycrystalline CVD diamond substrates for diamond electronics

    SciTech Connect

    Vikharev, A. L. Gorbachev, A. M.; Dukhnovsky, M. P.; Muchnikov, A. B.; Ratnikova, A. K.; Fedorov, Yu. Yu.

    2012-02-15

    The fabrication of diamond substrates in which single-crystalline and polycrystalline CVD diamond form a single wafer, and the epitaxial growth of diamond films on such combined substrates containing polycrystalline and (100) single-crystalline CVD diamond regions are studied.

  6. Electron beam ion source and electron beam ion trap (invited).

    PubMed

    Becker, Reinard; Kester, Oliver

    2010-02-01

    The electron beam ion source (EBIS) and its trap variant [electron beam ion trap (EBIT)] celebrated their 40th and 20th anniversary, respectively, at the EBIS/T Symposium 2007 in Heidelberg. These technologically challenging sources of highly charged ions have seen a broad development in many countries over the last decades. In contrast to most other ion sources the recipe of improvement was not "sorcery" but a clear understanding of the physical laws and obeying the technological constraints. This review will report important achievements of the past as well as promising developments in the future.

  7. Electron Beam Materials Irradiators

    NASA Astrophysics Data System (ADS)

    Cleland, Marshall R.

    2012-06-01

    Radiation processing is a well established method for enhancing the properties of materials and commercial products by treating them with ionizing energy in the form of high-energy electrons, X-rays, and gamma rays. Beneficial effects include polymerizing, cross-linking, grafting and degrading plastics, sterilizing single-use medical devices, disinfecting and disinfesting fresh foods, purifying drinking water, treating wastewater and other toxic waste materials that harm the environment, and many other applications that are still being evaluated. Industrial electron accelerators of several types have been developed and are being used for these applications. More than 1800 electron accelerators are presently installed in facilities worldwide for these purposes.

  8. Beam Studies with Electron Columns

    SciTech Connect

    Shiltsev, V.; Valishev, A.; Kuznetsov, G.; Kamerdzhiev, V.; Romanov, A.; /Novosibirsk, IYF

    2009-04-01

    We report preliminary results of experimental studies of 'electron columns' in the Tevatron and in a specialized test setup. In the Tevatron, a beam of 150 GeV protons ionizes residual gas and ionization electrons are stored in an electrostatic trap immersed into strong longitudinal magnetic field. Shifts of proton betatron frequencies are observed. In the test setup, we observe effects pointing to accumulation and escape of ionization electrons.

  9. Beam Characterizations at Femtosecond Electron Beam Facility

    SciTech Connect

    Rimjaem, S.; Jinamoon, V.; Kangrang, M.; Kusoljariyakul, K.; Saisut, J.; Thongbai, C.; Vilaithong, T.; Rhodes, M.W.; Wichaisirimongkol, P.; Wiedemann, H.; /SLAC

    2006-03-17

    The SURIYA project at the Fast Neutron Research Facility (FNRF) has been established and is being commissioning to generate femtosecond (fs) electron bunches. Theses short bunches are produced by a system consisting of an S-band thermionic cathode RF-gun, an alpha magnet (a-magnet) serving as a magnetic bunch compressor, and a SLAC-type linear accelerator (linac). The characteristics of its major components and the beam characterizations as well as the preliminary experimental results will be presented and discussed in this paper.

  10. Cylindrical electron beam diode

    DOEpatents

    Bolduc, Paul E.

    1976-01-01

    A diode discharge device may include a tubular anode concentrically encircled by and spaced from a tubular cathode electrode with ends intermediate the ends of said anode electrode, and a metal conductive housing having a tubular wall disposed around the cathode electrode with end walls connected to the anode electrode. High energy electron current coupling is through an opening in the housing tubular wall to a portion of the cathode electrode intermediate its ends. Suitable utilization means may be within the anode electrode at positions to be irradiated by electrons emitted from the cathode electrode and transmitted through the anode walls.

  11. Electron microscopy of gallium nitride growth on polycrystalline diamond

    NASA Astrophysics Data System (ADS)

    Webster, R. F.; Cherns, D.; Kuball, M.; Jiang, Q.; Allsopp, D.

    2015-11-01

    Transmission and scanning electron microscopy were used to examine the growth of gallium nitride (GaN) on polycrystalline diamond substrates grown by metalorganic vapour phase epitaxy with a low-temperature aluminium nitride (AlN) nucleation layer. Growth on unmasked substrates was in the (0001) orientation with threading dislocation densities ≈7 × 109 cm-2. An epitaxial layer overgrowth technique was used to reduce the dislocation densities further, by depositing silicon nitride stripes on the surface and etching the unmasked regions down to the diamond substrate. A re-growth was then performed on the exposed side walls of the original GaN growth, reducing the threading dislocation density in the overgrown regions by two orders of magnitude. The resulting microstructures and the mechanisms of dislocation reduction are discussed.

  12. Damage investigation on tungsten and diamond diffractive optics at a hard x-ray free-electron laser.

    PubMed

    Uhlén, Fredrik; Nilsson, Daniel; Holmberg, Anders; Hertz, Hans M; Schroer, Christian G; Seiboth, Frank; Patommel, Jens; Meier, Vivienne; Hoppe, Robert; Schropp, Andreas; Lee, Hae Ja; Nagler, Bob; Galtier, Eric; Krzywinski, Jacek; Sinn, Harald; Vogt, Ulrich

    2013-04-08

    Focusing hard x-ray free-electron laser radiation with extremely high fluence sets stringent demands on the x-ray optics. Any material placed in an intense x-ray beam is at risk of being damaged. Therefore, it is crucial to find the damage thresholds for focusing optics. In this paper we report experimental results of exposing tungsten and diamond diffractive optics to a prefocused 8.2 keV free-electron laser beam in order to find damage threshold fluence levels. Tungsten nanostructures were damaged at fluence levels above 500 mJ/cm(2). The damage was of mechanical character, caused by thermal stress variations. Diamond nanostructures were affected at a fluence of 59 000 mJ/cm(2). For fluence levels above this, a significant graphitization process was initiated. Scanning Electron Microscopy (SEM) and µ-Raman analysis were used to analyze exposed nanostructures.

  13. Synchrotron radiation x-ray beam profile monitor using chemical vapor deposition diamond film

    SciTech Connect

    Kudo, Togo; Takahashi, Sunao; Nariyama, Nobuteru; Hirono, Toko; Tachibana, Takeshi; Kitamura, Hideo

    2006-12-15

    Photoluminescence (PL) of a Si-doped polycrystalline diamond film fabricated using the chemical vapor deposition technique was employed to measure the profile of a synchrotron radiation pink x-ray beam emitted from an in-vacuum hybrid undulator at the SPring-8 facility. The spectrum of the section of the diamond film penetrated by the emitted visible red light exhibited a peak at 739 nm and a wideband structure extending from 550 to 700 nm. The PL intensity increased with the absorbed dose of the incident beam in the diamond within a dynamic range of 10{sup 3}. A two-dimensional distribution of the PL intensity revealed the undulator beam profile.

  14. Diamond-based heat spreaders for power electronic packaging applications

    NASA Astrophysics Data System (ADS)

    Guillemet, Thomas

    As any semiconductor-based devices, power electronic packages are driven by the constant increase of operating speed (higher frequency), integration level (higher power), and decrease in feature size (higher packing density). Although research and innovation efforts have kept these trends continuous for now more than fifty years, the electronic packaging technology is currently facing a challenge that must be addressed in order to move toward any further improvements in terms of performances or miniaturization: thermal management. Thermal issues in high-power packages strongly affect their reliability and lifetime and have now become one of the major limiting factors of power modules development. Thus, there is a strong need for materials that can sustain higher heat flux levels while safely integrating into the electronic package architecture. In such context, diamond is an attractive candidate because of its outstanding thermal conductivity, low thermal expansion, and high electrical resistivity. Its low heat capacity relative to metals such as aluminum or copper makes it however preferable for heat spreading applications (as a heat-spreader) rather than for dissipating the heat flux itself (as a heat sink). In this study, a dual diamond-based heat-spreading solution is proposed. Polycrystalline diamond films were grown through laser-assisted combustion synthesis on electronic substrates (in the U.S) while, in parallel, diamond-reinforced copper-matrix composite films were fabricated through tape casting and hot pressing (in France). These two types of diamond-based heat-spreading films were characterized and their microstructure and chemical composition were related to their thermal performances. Particular emphasize was put on the influence of interfaces on the thermal properties of the materials, either inside a single material (grain boundaries) or between dissimilar materials (film/substrate interface, matrix/reinforcement interface). Finally, the packaging

  15. Electron beam cutting

    DOEpatents

    Mochel, Margaret E.; Humphreys, Colin J.

    1985-04-02

    A method for the cutting of holes 20 Angstroms in diameter, or lines 20 Angstroms wide in a material having positive ionic conduction by the use of a focused electron probe is described. The holes and lines are stable under ambient conditions.

  16. Electron beam cutting

    DOEpatents

    Mochel, M.E.; Humphreys, C.J.

    1985-04-02

    A method for the cutting of holes 20 Angstroms in diameter, or lines 20 Angstroms wide in a material having positive ionic conduction by the use of a focused electron probe is described. The holes and lines are stable under ambient conditions. 2 figs.

  17. Shimmed electron beam welding process

    DOEpatents

    Feng, Ganjiang; Nowak, Daniel Anthony; Murphy, John Thomas

    2002-01-01

    A modified electron beam welding process effects welding of joints between superalloy materials by inserting a weldable shim in the joint and heating the superalloy materials with an electron beam. The process insures a full penetration of joints with a consistent percentage of filler material and thereby improves fatigue life of the joint by three to four times as compared with the prior art. The process also allows variable shim thickness and joint fit-up gaps to provide increased flexibility for manufacturing when joining complex airfoil structures and the like.

  18. Use of PTW-microDiamond for relative dosimetry of unflattened photon beams.

    PubMed

    Reggiori, Giacomo; Stravato, Antonella; Pimpinella, Maria; Lobefalo, Francesca; De Coste, Vanessa; Fogliata, Antonella; Mancosu, Pietro; De Rose, Fiorenza; Palumbo, Valentina; Scorsetti, Marta; Tomatis, Stefano

    2017-06-01

    The increasing interest in SBRT treatments encourages the use of flattening filter free (FFF) beams. Aim of this work was to evaluate the performance of the PTW60019 microDiamond detector under 6MV and 10MVFFF beams delivered with the EDGE accelerator (Varian Medical System, Palo Alto, USA). A flattened 6MV beam was also considered for comparison. Short term stability, dose linearity and dose rate dependence were evaluated. Dose per pulse dependence was investigated in the range 0.2-2.2mGy/pulse. MicroDiamond profiles and output factors (OFs) were compared to those obtained with other detectors for field sizes ranging from 40×40cm(2) to 0.6×0.6cm(2). In small fields, volume averaging effects were evaluated and the relevant correction factors were applied for each detector. MicroDiamond short term stability, dose linearity and dependence on monitor unit rate were less than 0.8% for all energies. Response variations with dose per pulse were found within 1.8%. MicroDiamond output factors (OF) values differed from those measured with the reference ion-chamber for less than 1% up to 40×40cm(2) fields where silicon diodes overestimate the dose of ≈3%. For small fields (<3×3cm(2)) microDiamond and the unshielded silicon diode were in good agreement. MicroDiamond showed optimal characteristics for relative dosimetry even under high dose rate beams. The effects due to dose per pulse dependence up to 2.2mGy/pulse are negligible. Compared to other detectors, microDiamond provides accurate OF measurements in the whole range of field sizes. For fields <1cm correction factors accounting for fluence perturbation and volume averaging could be required. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  19. Ferroelectric electron beam sources

    NASA Astrophysics Data System (ADS)

    Flechtner, D.; Flechtner, D.; Ivers, J. D.; Kerslick, G. S.; Nation, J. A.; Schächter, L.; Zhang, Ge

    1995-06-01

    Ferroelectric materials offer the possibility of compact electron sources, with modest requirements to initiate the emission process. We are studying such sources as possible injectors for microwave generation. The source consists of a polarized ferroelectric ceramic disk with silver electrodes coated on both faces. The front electrode consists of a periodic grid created by etching the silver to expose a line pattern of ceramic. This electrode functions as the cathode in a planar diode geometry with an accelerating gap adjustable from 0.1 to 5 cm. A rapid change in the polarization state of the ceramic is achieved by applying a 1-2 kV, 150 ns pulse between the electrodes of the ferroelectric. Early work used a coaxial cable to maintain an anode potential of up to 1 kV across the A-K gap. The emitted electron current was measured as a function of the gap spacing and the anode potential. The current varies linearly with the anode voltage, up to 1 kV, for gaps <10 mm, and typically exceeds the Child-Langmuir current density by at least two orders of magnitude. Current densities in excess of 70 A/cm2 have been measured. More recent work has used a 300 ns pulse forming network to apply a potential of up to 15 kV at the anode. Results of emittance and scaling measurements under these conditions are reported.

  20. Mycosis fungoides. Electron beam therapy.

    PubMed

    Spittle, M F

    1977-01-01

    The most effective treatment of late mycosis fungoides is total skin electron beam therapy. The beam at the Hammersmith Hospital in London has been adapted to treat these patients. Patients with advanced disease who have failed more conservative methods of treatment are irradiated. The electron beam is modified by the use of carbon and copper scatterers to produce an 80 percent depth dose at 5.5, 8 and 11.5 millimeters below the skin surface. The dose achieved in most patients is between 1500 rads and 2600 rads given in 10 to 13 treatments over 5-7 weeks. Recently the higher dose range has been employed and lithium flouride studies have shown that giving these doses from each of 4 fields, the dose achieved on the skin is approximately twice the given dose. The management of patients and the effects of treatment are discussed.

  1. Electron-beam-pinch experiment at Harry Diamond Laboratories: Providing for a high-dose-rate flash x-ray facility for transient radiation effects on electronics (TREE) testing of pieceparts. Final report, May-Jul 90

    SciTech Connect

    Robertson, D.N.; Litz, M.S.; Blomquist, S.M.; Blackburn, J.C.; Ovrebo, G.K.

    1991-08-01

    The peak photon-radiation dose rate of the High-Intensity Flash X-Ray facility has been increased by at least a factor of five through the use of custom beam-pinching hardware. With this hardware, the facility can now routinely provide a dose rate of 2.7 times 10 to the 11th power rads(Si)/s, at a distance of 1/4 in. from the drift-tube face, while providing excellent radial drop-off to minimized irradiation of items surrounding the device under test. The experimental results show the optimum operating parameters of the beam-pinching hardware to be a drift-tube length equal to 6 cm with an internal nitrogen gas pressure of 0.1 Torr.

  2. A Diamond Electron Tunneling Micro-Electromechanical Sensor

    NASA Technical Reports Server (NTRS)

    Albin, Sacharia

    2000-01-01

    A new pressure sensing device using field emission from diamond coated silicon tips has been developed. A high electric field applied between a nano-tip array and a diaphragm configured as electrodes produces electron emission governed by the Fowler Nordheim equation. The electron emission is very sensitive to the separation between the diaphragm and the tips, which is fixed at an initial spacing and bonded such that a cavity is created between them. Pressure applied to the diaphragm decreases the spacing between the electrodes, thereby increasing the number of electrons emitted. Silicon has been used as a substrate on which arrays of diamond coated sharp tips have been fabricated for electron emission. Also, a diaphragm has been made using wet orientation dependent etching. These two structures were bonded together using epoxy and tested. Current - voltage measurements were made at varying pressures for 1-5 V biasing conditions. The sensitivity was found to be 2.13 mV/V/psi for a 20 x 20 array, which is comparable to that of silicon piezoresistive transducers. Thinner diaphragms as well as alternative methods of bonding are expected to improve the electrical characteristics of the device. This transducer will find applications in many engineering fields for pressure measurement.

  3. First dose-map measured with a polycrystalline diamond 2D dosimeter under an intensity modulated radiotherapy beam

    NASA Astrophysics Data System (ADS)

    Scaringella, M.; Zani, M.; Baldi, A.; Bucciolini, M.; Pace, E.; de Sio, A.; Talamonti, C.; Bruzzi, M.

    2015-10-01

    A prototype of bidimensional dosimeter made on a 2.5×2.5 cm2 active area polycrystalline Chemical Vapour Deposited (pCVD) diamond film, equipped with a matrix of 12×12 contacts connected to the read-out electronics, has been used to evaluate a map of dose under Intensity Modulated Radiation Therapy (IMRT) fields for a possible application in pre-treatment verifications of cancer treatments. Tests have been performed under a 6-10 MVRX beams with IMRT fields for prostate and breast cancer. Measurements have been taken by measuring the 144 pixels in different positions, obtained by shifting the device along the x/y axes to span a total map of 14.4×10 cm2. Results show that absorbed doses measured by our pCVD diamond device are consistent with those calculated by the Treatment Planning System (TPS).

  4. Genesis of presolar diamonds: Comparative high-resolution transmission electron microscopy study of meteoritic and terrestrial nano-diamonds

    SciTech Connect

    Daulton, T.L. |; Eisenhour, D.D.; Buseck, P.R.

    1996-12-01

    Nano-diamonds isolated from acid dissolution residues of primitive carbonaceous meteorites (Allende and Murchison) were studied using high-resolution transmission electron microscopy. To discriminate among their most likely formation mechanisms, high-pressure shock-induced metamorphism or low-pressure vapor condensation. the microstructures of presolar diamond crystallites were compared to those of (terrestrial) synthesized nano-diamonds. The synthesized diamonds used for comparison in this study were produced by high-pressure shock waves generated in controlled detonations and by direct nucleation and homoepitaxial growth from the vapor phase in low-pressure chemical vapor deposition (CVD)-type processes. Microstructural features were identified that appear unique to shock metamorphism and to nucleation from the vapor phase, respectively. A comparison of these features to the microstructures found in presolar diamonds indicates that the predominant mechanism for presolar diamond formation is a vapor deposition process, suggesting a circumstellar condensation origin. A new presolar grain component has also been identified in the meteoritic residues, the (2H) hexagonal polytype of diamond (lonsdaleite). 93 refs., 17 figs., 1 tab.

  5. Light modulated electron beam driven radiofrequency emitter

    DOEpatents

    Wilson, M.T.; Tallerico, P.J.

    1979-10-10

    The disclosure relates to a light modulated electron beam-driven radiofrequency emitter. Pulses of light impinge on a photoemissive device which generates an electron beam having the pulse characteristics of the light. The electron beam is accelerated through a radiofrequency resonator which produces radiofrequency emission in accordance with the electron, hence, the light pulses.

  6. Electron Beam Could Probe Recombination Centers

    NASA Technical Reports Server (NTRS)

    Vonroos, O.

    1983-01-01

    Electron beam probe technique estimate electron/hole capture cross sections in semiconductors with wide band gaps. Amplitude-modulated electron beam induces short-circuit current collected by ohmic contacts. Phase shift between this current and electron-beam current measured as function of frequency. Results of measurements used to ascertain recombination rates and energy levels.

  7. The role of a microDiamond detector in the dosimetry of proton pencil beams.

    PubMed

    Gomà, Carles; Marinelli, Marco; Safai, Sairos; Verona-Rinati, Gianluca; Würfel, Jan

    2016-03-01

    In this work, the performance of a microDiamond detector in a scanned proton beam is studied and its potential role in the dosimetric characterization of proton pencil beams is assessed. The linearity of the detector response with the absorbed dose and the dependence on the dose-rate were tested. The depth-dose curve and the lateral dose profiles of a proton pencil beam were measured and compared to reference data. The feasibility of calibrating the beam monitor chamber with a microDiamond detector was also studied. It was found the detector reading is linear with the absorbed dose to water (down to few cGy) and the detector response is independent of both the dose-rate (up to few Gy/s) and the proton beam energy (within the whole clinically-relevant energy range). The detector showed a good performance in depth-dose curve and lateral dose profile measurements; and it might even be used to calibrate the beam monitor chambers-provided it is cross-calibrated against a reference ionization chamber. In conclusion, the microDiamond detector was proved capable of performing an accurate dosimetric characterization of proton pencil beams.

  8. Visualization of expanding warm dense gold and diamond heated uniformly by laser-generated ion beams

    NASA Astrophysics Data System (ADS)

    Bang, W.; Albright, B. J.; Bradley, P. A.; Gautier, D. C.; Palaniyappan, S.; Vold, E. L.; Santiago Cordoba, M. A.; Hamilton, C. E.; Fernández, J. C.

    2015-11-01

    With a laser-generated beam of quasi-monoenergetic ions, a solid density target can be heated uniformly and isochorically. On the LANL Trident laser facility, we have used a beam of quasi-monoenergetic aluminum ions to heat gold and diamond foils. We visualized directly the expanding warm dense gold and diamond with an optical streak camera. Furthermore, we present a new technique to determine the initial temperatures of these heated samples from the measured expansion speeds of gold and diamond into vacuum. These temperatures are in good agreement with the expected temperatures calculated using the total deposited energy into the cold targets and SESAME equation-of-state tables at solid densities. We anticipate the uniformly heated solid density target will allow for direct quantitative measurements of equation-of-state, conductivity, opacity, and stopping power of warm dense matter, benefiting plasma physics, astrophysics, and nuclear physics. *This work is sponsored by the LANL LDRD Program.

  9. Dosimetric characterization of a microDiamond detector in clinical scanned carbon ion beams.

    PubMed

    Marinelli, Marco; Prestopino, G; Verona, C; Verona-Rinati, G; Ciocca, M; Mirandola, A; Mairani, A; Raffaele, L; Magro, G

    2015-04-01

    To investigate for the first time the dosimetric properties of a new commercial synthetic diamond detector (PTW microDiamond) in high-energy scanned clinical carbon ion beams generated by a synchrotron at the CNAO facility. The detector response was evaluated in a water phantom with actively scanned carbon ion beams ranging from 115 to 380 MeV/u (30-250 mm Bragg peak depth in water). Homogeneous square fields of 3 × 3 and 6 × 6 cm(2) were used. Short- and medium-term (2 months) detector response stability, dependence on beam energy as well as ion type (carbon ions and protons), linearity with dose, and directional and dose-rate dependence were investigated. The depth dose curve of a 280 MeV/u carbon ion beam, scanned over a 3 × 3 cm(2) area, was measured with the microDiamond detector and compared to that measured using a PTW Advanced Markus ionization chamber, and also simulated using fluka Monte Carlo code. The detector response in two spread-out-Bragg-peaks (SOBPs), respectively, centered at 9 and 21 cm depths in water and calculated using the treatment planning system (TPS) used at CNAO, was measured. A negligible drift of detector sensitivity within the experimental session was seen, indicating that no detector preirradiation was needed. Short-term response reproducibility around 1% (1 standard deviation) was found. Only 2% maximum variation of microDiamond sensitivity was observed among all the evaluated proton and carbon ion beam energies. The detector response showed a good linear behavior. Detector sensitivity was found to be dose-rate independent, with a variation below 1.3% in the evaluated dose-rate range. A very good agreement between measured and simulated Bragg curves with both microDiamond and Advanced Markus chamber was found, showing a negligible LET dependence of the tested detector. A depth dose curve was also measured by positioning the microDiamond with its main axis oriented orthogonally to the beam direction. A strong distortion in Bragg

  10. Dosimetric characterization of a microDiamond detector in clinical scanned carbon ion beams

    SciTech Connect

    Marinelli, Marco; Prestopino, G. Verona, C.; Verona-Rinati, G.; Ciocca, M.; Mirandola, A.; Mairani, A.; Raffaele, L.; Magro, G.

    2015-04-15

    Purpose: To investigate for the first time the dosimetric properties of a new commercial synthetic diamond detector (PTW microDiamond) in high-energy scanned clinical carbon ion beams generated by a synchrotron at the CNAO facility. Methods: The detector response was evaluated in a water phantom with actively scanned carbon ion beams ranging from 115 to 380 MeV/u (30–250 mm Bragg peak depth in water). Homogeneous square fields of 3 × 3 and 6 × 6 cm{sup 2} were used. Short- and medium-term (2 months) detector response stability, dependence on beam energy as well as ion type (carbon ions and protons), linearity with dose, and directional and dose-rate dependence were investigated. The depth dose curve of a 280 MeV/u carbon ion beam, scanned over a 3 × 3 cm{sup 2} area, was measured with the microDiamond detector and compared to that measured using a PTW Advanced Markus ionization chamber, and also simulated using FLUKA Monte Carlo code. The detector response in two spread-out-Bragg-peaks (SOBPs), respectively, centered at 9 and 21 cm depths in water and calculated using the treatment planning system (TPS) used at CNAO, was measured. Results: A negligible drift of detector sensitivity within the experimental session was seen, indicating that no detector preirradiation was needed. Short-term response reproducibility around 1% (1 standard deviation) was found. Only 2% maximum variation of microDiamond sensitivity was observed among all the evaluated proton and carbon ion beam energies. The detector response showed a good linear behavior. Detector sensitivity was found to be dose-rate independent, with a variation below 1.3% in the evaluated dose-rate range. A very good agreement between measured and simulated Bragg curves with both microDiamond and Advanced Markus chamber was found, showing a negligible LET dependence of the tested detector. A depth dose curve was also measured by positioning the microDiamond with its main axis oriented orthogonally to the beam

  11. Curved diamond-crystal spectrographs for x-ray free-electron laser noninvasive diagnostics

    DOE PAGES

    Terentyev, Sergey; Blank, Vladimir; Kolodziej, Tomasz; ...

    2016-12-29

    Here, we report on the manufacturing and X-ray tests of bent diamond-crystal X-ray spectrographs, designed for noninvasive diagnostics of the X-ray free-electron laser (XFEL) spectra in the spectral range from 5 to 15 keV. The key component is a curved, 20-µm thin, single crystalline diamond triangular plate in the (110) orientation. The radius of curvature can be varied between R = 0.6 m and R = 0.1 m in a controlled fashion, ensuring imaging in a spectral window of up to 60 eV for ' 8 keV X-rays. All of the components of the bending mechanism (about 10 parts) aremore » manufactured from diamond, thus ensuring safe operations in intense XFEL beams. The spectrograph is transparent to 88% for 5-keV photons, and to 98% for 15-keV photons. Therefore, it can be used for noninvasive diagnostics of the X-ray spectra during XFEL operations.« less

  12. Curved diamond-crystal spectrographs for x-ray free-electron laser noninvasive diagnostics.

    PubMed

    Terentyev, Sergey; Blank, Vladimir; Kolodziej, Tomasz; Shvyd'ko, Yuri

    2016-12-01

    We report on the manufacturing and X-ray tests of bent diamond-crystal X-ray spectrographs, designed for noninvasive diagnostics of the X-ray free-electron laser (XFEL) spectra in the spectral range from 5 to 15 keV. The key component is a curved, 20-μm thin, single crystalline diamond triangular plate in the (110) orientation. The radius of curvature can be varied between R = 0.6 m and R = 0.1 m in a controlled fashion, ensuring imaging in a spectral window of up to 60 eV for ≃8 keV X-rays. All of the components of the bending mechanism (about 10 parts) are manufactured from diamond, thus ensuring safe operations in intense XFEL beams. The spectrograph is transparent to 88% for 5-keV photons and to 98% for 15-keV photons. Therefore, it can be used for noninvasive diagnostics of the X-ray spectra during XFEL operations.

  13. Curved diamond-crystal spectrographs for x-ray free-electron laser noninvasive diagnostics

    NASA Astrophysics Data System (ADS)

    Terentyev, Sergey; Blank, Vladimir; Kolodziej, Tomasz; Shvyd'ko, Yuri

    2016-12-01

    We report on the manufacturing and X-ray tests of bent diamond-crystal X-ray spectrographs, designed for noninvasive diagnostics of the X-ray free-electron laser (XFEL) spectra in the spectral range from 5 to 15 keV. The key component is a curved, 20-μm thin, single crystalline diamond triangular plate in the (110) orientation. The radius of curvature can be varied between R = 0.6 m and R = 0.1 m in a controlled fashion, ensuring imaging in a spectral window of up to 60 eV for ≃8 keV X-rays. All of the components of the bending mechanism (about 10 parts) are manufactured from diamond, thus ensuring safe operations in intense XFEL beams. The spectrograph is transparent to 88% for 5-keV photons and to 98% for 15-keV photons. Therefore, it can be used for noninvasive diagnostics of the X-ray spectra during XFEL operations.

  14. Curved diamond-crystal spectrographs for x-ray free-electron laser noninvasive diagnostics

    SciTech Connect

    Terentyev, Sergey; Blank, Vladimir; Kolodziej, Tomasz; Shvyd’ko, Yuri

    2016-12-29

    Here, we report on the manufacturing and X-ray tests of bent diamond-crystal X-ray spectrographs, designed for noninvasive diagnostics of the X-ray free-electron laser (XFEL) spectra in the spectral range from 5 to 15 keV. The key component is a curved, 20-µm thin, single crystalline diamond triangular plate in the (110) orientation. The radius of curvature can be varied between R = 0.6 m and R = 0.1 m in a controlled fashion, ensuring imaging in a spectral window of up to 60 eV for ' 8 keV X-rays. All of the components of the bending mechanism (about 10 parts) are manufactured from diamond, thus ensuring safe operations in intense XFEL beams. The spectrograph is transparent to 88% for 5-keV photons, and to 98% for 15-keV photons. Therefore, it can be used for noninvasive diagnostics of the X-ray spectra during XFEL operations.

  15. Operation of an ungated diamond field-emission array cathode in a L-band radiofrequency electron source

    SciTech Connect

    Piot, P.; Brau, C. A.; Gabella, W. E.; Ivanov, B.; Mendenhall, M. H.; Choi, B. K.; Blomberg, B.; Mihalcea, D.; Panuganti, H.; Jarvis, J.; Prieto, P.; Reid, J.

    2014-06-30

    We report on the operation of a field-emitter-array cathode in a conventional L-band radio-frequency electron source. The cathode consisted of an array of ∼10{sup 6} diamond tips on pyramids. Maximum current on the order of 15 mA was reached and the cathode did not show appreciable signs of fatigue after weeks of operation. The measured Fowler-Nordheim characteristics, transverse beam density, and current stability are discussed.

  16. Single-shot beam-position monitor for x-ray free electron laser.

    PubMed

    Tono, Kensuke; Kudo, Togo; Yabashi, Makina; Tachibana, Takeshi; Feng, Yiping; Fritz, David; Hastings, Jerome; Ishikawa, Tetsuya

    2011-02-01

    We have developed an x-ray beam-position monitor for detecting the radiation properties of an x-ray free electron laser (FEL). It is composed of four PIN photodiodes that detect backscattered x-rays from a semitransparent diamond film placed in the beam path. The signal intensities from the photodiodes are used to compute the beam intensity and position. A proof-of-principle experiment at a synchrotron light source revealed that the error in the beam position is reduced to below 7 μm by using a nanocrystal diamond film prepared by plasma-enhanced chemical vapor deposition. Owing to high dose tolerance and transparency of the diamond film, the monitor is suitable for routine diagnostics of extremely intense x-ray pulses from the FEL.

  17. Ultra-thin optical grade scCVD diamond as X-ray beam position monitor.

    PubMed

    Desjardins, Kewin; Pomorski, Michal; Morse, John

    2014-11-01

    Results of measurements made at the SIRIUS beamline of the SOLEIL synchrotron for a new X-ray beam position monitor based on a super-thin single crystal of diamond grown by chemical vapor deposition (CVD) are presented. This detector is a quadrant electrode design processed on a 3 µm-thick membrane obtained by argon-oxygen plasma etching the central area of a CVD-grown diamond plate of 60 µm thickness. The membrane transmits more than 50% of the incident 1.3 keV energy X-ray beam. The diamond plate was of moderate purity (∼1 p.p.m. nitrogen), but the X-ray beam induced current (XBIC) measurements nevertheless showed a photo-charge collection efficiency approaching 100% for an electric field of 2 V µm(-1), corresponding to an applied bias voltage of only 6 V. XBIC mapping of the membrane showed an inhomogeneity of more than 10% across the membrane, corresponding to the measured variation in the thickness of the diamond plate before the plasma etching process. The measured XBIC signal-to-dark-current ratio of the device was greater than 10(5), and the X-ray beam position resolution of the device was better than a micrometer for a 1 kHz sampling rate.

  18. Dynamic Pattern Formation in Electron-Beam-Induced Etching [Emergent formation of dynamic topographic patterns in electron beam induced etching

    DOE PAGES

    Martin, Aiden A.; Bahm, Alan; Bishop, James; ...

    2015-12-15

    Here, we report highly ordered topographic patterns that form on the surface of diamond, span multiple length scales, and have a symmetry controlled by the precursor gas species used in electron-beam-induced etching (EBIE). The pattern formation dynamics reveals an etch rate anisotropy and an electron energy transfer pathway that is overlooked by existing EBIE models. Therefore, we, modify established theory such that it explains our results and remains universally applicable to EBIE. Furthermore, the patterns can be exploited in controlled wetting, optical structuring, and other emerging applications that require nano- and microscale surface texturing of a wide band-gap material.

  19. Experimental Time Resolved Electron Beam Temperature Measurements Using Bremsstrahlung Diagnostics

    SciTech Connect

    Menge, P.R.; Maenchen, J.E.; Mazarakis, M.G.; Rosenthal, S.E.

    1999-06-25

    Electron beam temperature, {beta}{perpendicular} (= v{perpendicular}/v), is important to control for the development of high dose flash radiographic bremsstrahlung sources. At high voltage (> 5 MV) increasing electron beam temperature has a serious deleterious effect on dose production. The average and time resolved behavior of beam temperature was measured during radiographic experiments on the HERMES III accelerator (10 MV, 50 kA, 70 ns). A linear array of thermoluminescent dosimeters (TLDs) were used to estimate the time integrated average of beam temperature. On and off-axis photoconducting diamond (PCD) detectors were used to measure the time resolved bremsstrahlung dose rate, which is dependent on beam energy and temperature. The beam temperature can be determined by correlating PCD response with accelerator voltage and current and also by analyzing the ratio of PCD amplitudes on and off axis. This ratio is insensitive to voltage and current and thus, is more reliable than utilizing absolute dose rate. The data is unfolded using comparisons with Monte Carlo simulations to obtain absolute beam temperatures. The data taken on HERMES III show abrupt increases in {beta}{perpendicular} midway through the pulse indicating rapid onset of beam instability.

  20. APPARATUS FOR ELECTRON BEAM HEATING CONTROL

    DOEpatents

    Jones, W.H.; Reece, J.B.

    1962-09-18

    An improved electron beam welding or melting apparatus is designed which utilizes a high voltage rectifier operating below its temperature saturation region to decrease variations in electron beam current which normally result from the gas generated in such apparatus. (AEC)

  1. Electron beam control for barely separated beams

    DOEpatents

    Douglas, David R.; Ament, Lucas J. P.

    2017-04-18

    A method for achieving independent control of multiple beams in close proximity to one another, such as in a multi-pass accelerator where coaxial beams are at different energies, but moving on a common axis, and need to be split into spatially separated beams for efficient recirculation transport. The method for independent control includes placing a magnet arrangement in the path of the barely separated beams with the magnet arrangement including at least two multipole magnets spaced closely together and having a multipole distribution including at least one odd multipole and one even multipole. The magnetic fields are then tuned to cancel out for a first of the barely separated beams to allow independent control of the second beam with common magnets. The magnetic fields may be tuned to cancel out either the dipole component or tuned to cancel out the quadrupole component in order to independently control the separate beams.

  2. The chemistry of halogens on diamond: effects on growth and electron emission

    SciTech Connect

    Hsu, W.L.; Pan, L.S.; Brown, L.A.

    1997-02-01

    Diamond growth using halogenated precursors was studied in several diamond growth reactors. In a conventionao plasma reactor, diamond growth using the following gas mixtures was studied: CF{sub 4}/H{sub 2}, CH{sub 4}/H{sub 2}, CH{sub 3}F/H{sub 2}, and CH{sub 3}CL/H{sub 2}. Both the diamond growth measurements demonstrated ineffective transport of halogen radicals to the diamond surface during the growth process. In order to transport radical halogen species to the diamond surface during growth, a flow-tube reactor was constructed which minimized gas phase reactions. Also, the flow-tube reactor enabled pulsed gs transport to the diamond surface by fast-acting valves. Molecular beam mass spectroscopy was used to find condition which resulted in atomic hydrogen and/or atomic fluorine transport to the growing diamond surface. Although such conditions were found, they required very low pressures (0.5 Torr and below); these low pressures produce radical fluxes which are too low to sustain a reasonable diamond growth rate. The sequential reactor at Stanford was modified to add a halogen-growth step to the conventinoal atomic hydrogen/atomic carbon diamond growth cycle. Since the atomic fluorine, hydrogen and carbon environments are independent in the sequential reactor, the effect of fluorine on diamond growth could be studied independently of gas phase reactions. Although the diamond growth rate was increased by the use of fluorine, the film quality was seen to deteriorate as well as the substrate surface. Moreover, materials incompatibilities with fluorine significantly limited the use of fluorine in this reactor. A diamond growth model incorporating both gas phase and surface reactions was developed for the halocarbon system concurrent with the film growth efforts. In this report, we review the results of the growth experiments, the modeling, and additional experiments done to understand fluorine with diamond surfaces.

  3. Electron Beam IEMP Simulation Development

    DTIC Science & Technology

    1975-08-01

    Effect of Injected Current Pulse Width Variation Upon Transmittfed Current Pulse 69 4.10 Open Shutter Photograph of Surface Flashover on Dielectric Tube...occurred, presumably by electrical breakdown In volume. However it was no+ observed In all cases. Surface flashover Is another electrical failure mode...early in the Injected pulse 71 TDIELECTRIC TUBE ELECTRON BEAM oil~ Flgu--e 4.10 Open Shutter Photograph of Surface Flashover on Dielectric Tube 7

  4. Practical Teaching about Electron Beams

    ERIC Educational Resources Information Center

    Strawson, R. J.

    2009-01-01

    If you have seen tubes like the ones we describe here in the back of a cupboard but have been reluctant to use them, now is the time to get them out. The aim of this article is to record the history of teaching about electron beams, particularly with Teltron equipment, and in doing so encourage those schools that are equipped with these tubes to…

  5. Practical Teaching about Electron Beams

    ERIC Educational Resources Information Center

    Strawson, R. J.

    2009-01-01

    If you have seen tubes like the ones we describe here in the back of a cupboard but have been reluctant to use them, now is the time to get them out. The aim of this article is to record the history of teaching about electron beams, particularly with Teltron equipment, and in doing so encourage those schools that are equipped with these tubes to…

  6. Laser wakefield acceleration of polarized electron beams

    NASA Astrophysics Data System (ADS)

    Pugacheva, D. V.; Andreev, N. E.; Cros, B.

    2016-11-01

    The acceleration of highly polarized electron beams are widely used in state-of-the-art high-energy physics experiments. In this work, a model for investigation of polarization dynamics of electron beams in the laser-plasma accelerator depending on the initial energy of electrons was developed and tested. To obtain the evolution of the trajectory and momentum of the electron for modeling its acceleration the wakefield structure was determined. The spin precession of the beam electron was described by Thomas-Bargman-Michel-Telegdi equations. The evolution of the electron beam polarization was investigated for zero-emittance beams with zero-energy spread.

  7. Quantum teleportation from light beams to vibrational states of a macroscopic diamond.

    PubMed

    Hou, P-Y; Huang, Y-Y; Yuan, X-X; Chang, X-Y; Zu, C; He, L; Duan, L-M

    2016-05-31

    With the recent development of optomechanics, the vibration in solids, involving collective motion of trillions of atoms, gradually enters into the realm of quantum control. Here, building on the recent remarkable progress in optical control of motional states of diamonds, we report an experimental demonstration of quantum teleportation from light beams to vibrational states of a macroscopic diamond under ambient conditions. Through quantum process tomography, we demonstrate average teleportation fidelity (90.6±1.0)%, clearly exceeding the classical limit of 2/3. The experiment pushes the target of quantum teleportation to the biggest object so far, with interesting implications for optomechanical quantum control and quantum information science.

  8. Quantum teleportation from light beams to vibrational states of a macroscopic diamond

    NASA Astrophysics Data System (ADS)

    Hou, P.-Y.; Huang, Y.-Y.; Yuan, X.-X.; Chang, X.-Y.; Zu, C.; He, L.; Duan, L.-M.

    2016-05-01

    With the recent development of optomechanics, the vibration in solids, involving collective motion of trillions of atoms, gradually enters into the realm of quantum control. Here, building on the recent remarkable progress in optical control of motional states of diamonds, we report an experimental demonstration of quantum teleportation from light beams to vibrational states of a macroscopic diamond under ambient conditions. Through quantum process tomography, we demonstrate average teleportation fidelity (90.6+/-1.0)%, clearly exceeding the classical limit of 2/3. The experiment pushes the target of quantum teleportation to the biggest object so far, with interesting implications for optomechanical quantum control and quantum information science.

  9. Quantum teleportation from light beams to vibrational states of a macroscopic diamond

    PubMed Central

    Hou, P.-Y.; Huang, Y.-Y.; Yuan, X.-X.; Chang, X.-Y.; Zu, C.; He, L.; Duan, L.-M.

    2016-01-01

    With the recent development of optomechanics, the vibration in solids, involving collective motion of trillions of atoms, gradually enters into the realm of quantum control. Here, building on the recent remarkable progress in optical control of motional states of diamonds, we report an experimental demonstration of quantum teleportation from light beams to vibrational states of a macroscopic diamond under ambient conditions. Through quantum process tomography, we demonstrate average teleportation fidelity (90.6±1.0)%, clearly exceeding the classical limit of 2/3. The experiment pushes the target of quantum teleportation to the biggest object so far, with interesting implications for optomechanical quantum control and quantum information science. PMID:27240553

  10. Microscopic diamond solid-immersion-lenses fabricated around single defect centers by focused ion beam milling

    SciTech Connect

    Jamali, Mohammad; Rezai, Mohammad; Fedder, Helmut; Gerhardt, Ilja; Wrachtrup, Jörg; Frenner, Karsten

    2014-12-15

    Recent efforts to define microscopic solid-immersion-lenses (SIL) by focused ion beam milling into diamond substrates that are registered to a preselected single photon emitter are summarized. We show how we determine the position of a single emitter with at least 100 nm lateral and 500 nm axial accuracy, and how the milling procedure is optimized. The characteristics of a single emitter, a Nitrogen Vacancy (NV) center in diamond, are measured before and after producing the SIL and compared with each other. A count rate of 1.0 × 10{sup 6} counts/s is achieved with a [111] oriented NV center.

  11. Friction and Wear of Ion-Beam-Deposited Diamondlike Carbon on Chemical-Vapor-Deposited, Fine-Grain Diamond

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Wu, Richard L. C.; Lanter, William C.

    1996-01-01

    Friction and wear behavior of ion-beam-deposited diamondlike carbon (DLC) films coated on chemical-vapor-deposited (CVD), fine-grain diamond coatings were examined in ultrahigh vacuum, dry nitrogen, and humid air environments. The DLC films were produced by the direct impact of an ion beam (composed of a 3:17 mixture of Ar and CH4) at ion energies of 1500 and 700 eV and an RF power of 99 W. Sliding friction experiments were conducted with hemispherical CVD diamond pins sliding on four different carbon-base coating systems: DLC films on CVD diamond; DLC films on silicon; as-deposited, fine-grain CVD diamond; and carbon-ion-implanted, fine-grain CVD diamond on silicon. Results indicate that in ultrahigh vacuum the ion-beam-deposited DLC films on fine-grain CVD diamond (similar to the ion-implanted CVD diamond) greatly decrease both the friction and wear of fine-grain CVD diamond films and provide solid lubrication. In dry nitrogen and in humid air, ion-beam-deposited DLC films on fine-grain CVD diamond films also had a low steady-state coefficient of friction and a low wear rate. These tribological performance benefits, coupled with a wider range of coating thicknesses, led to longer endurance life and improved wear resistance for the DLC deposited on fine-grain CVD diamond in comparison to the ion-implanted diamond films. Thus, DLC deposited on fine-grain CVD diamond films can be an effective wear-resistant, lubricating coating regardless of environment.

  12. Diamond detector for beam profile monitoring in COMET experiment at J-PARC

    NASA Astrophysics Data System (ADS)

    &Cbreve; erv, M.; Sarin, P.; Pernegger, H.; Vageeswaran, P.; Griesmayer, E.

    2015-06-01

    We present the design and initial prototype results of a proton beam profile monitor for the COMET experiment at J-PARC. The goal of COMET is to look for charged lepton flavor violation by direct μ to e conversion at a sensitivity of 10-19. The 8 GeV proton beam pulsed at 100 ns with 1010 protons/s will be used to create muons through pion production and decay. In the final experiment, the proton flux will be raised to 1014 protons/s to increase the sensitivity. These requirements of harsh radiation tolerance and fast readout make diamond a good choice for constructing a beam profile monitor in COMET. We present first results of the characterization of single crystal diamond (scCVD) sourced from a new company 2A SYSTEMS Singapore. Our measurements indicate excellent charge collection and high carrier mobility down to cryogenic temperatures.

  13. Electron beam stimulated spin reorientation

    NASA Astrophysics Data System (ADS)

    Monchesky, T. L.; Unguris, J.; Celotta, R. J.

    2003-05-01

    Using scanning electron microscopy with polarization analysis, we observed the electron beam induced switching of the magnetic state of epitaxial single-crystal Fe(110) films grown on atomically flat cleaved GaAs(110). For low film thickness the magnetization lies along the [-110] in-plane direction, while above a thickness of 19 monolayers, the ground state magnetization configuration switches to the [001] in-plane direction. If Fe films are grown to a thickness greater than the critical thickness of the reorientation, the magnetization is caught in a metastable state, oriented along [-110]. We discovered that we can locally switch the metastable state to the stable [001] direction by irradiating the metastable magnetic state with a suitable electron current density. The reversal proceeds by the nucleation and growth of lancet-shaped domains that move in discrete jumps between pinning sites. Our results show that there is a permanent reduction of the strength of defect sites without a permanent change in the overall anisotropy. We demonstrate how an electron beam can be used to locally control domain structure.

  14. Synchrotron Bragg diffraction imaging characterization of synthetic diamond crystals for optical and electronic power device applications1 1

    PubMed Central

    Tran Thi, Thu Nhi; Morse, J.; Caliste, D.; Fernandez, B.; Eon, D.; Härtwig, J.; Mer-Calfati, C.; Tranchant, N.; Arnault, J. C.; Lafford, T. A.; Baruchel, J.

    2017-01-01

    Bragg diffraction imaging enables the quality of synthetic single-crystal diamond substrates and their overgrown, mostly doped, diamond layers to be characterized. This is very important for improving diamond-based devices produced for X-ray optics and power electronics applications. The usual first step for this characterization is white-beam X-ray diffraction topography, which is a simple and fast method to identify the extended defects (dislocations, growth sectors, boundaries, stacking faults, overall curvature etc.) within the crystal. This allows easy and quick comparison of the crystal quality of diamond plates available from various commercial suppliers. When needed, rocking curve imaging (RCI) is also employed, which is the quantitative counterpart of monochromatic Bragg diffraction imaging. RCI enables the local determination of both the effective misorientation, which results from lattice parameter variation and the local lattice tilt, and the local Bragg position. Maps derived from these parameters are used to measure the magnitude of the distortions associated with polishing damage and the depth of this damage within the volume of the crystal. For overgrown layers, these maps also reveal the distortion induced by the incorporation of impurities such as boron, or the lattice parameter variations associated with the presence of growth-incorporated nitrogen. These techniques are described, and their capabilities for studying the quality of diamond substrates and overgrown layers, and the surface damage caused by mechanical polishing, are illustrated by examples. PMID:28381981

  15. Collimation Studies with Hollow Electron Beams

    SciTech Connect

    Stancari, G.; Annala, G.; Johnson, T.R.; Saewert, G.W.; Shiltsev, V.; Still, D.A.; Valishev, A.; /Fermilab

    2011-08-01

    Recent experimental studies at the Fermilab Tevatron collider have shown that magnetically confined hollow electron beams can act as a new kind of collimator for high-intensity beams in storage rings. In a hollow electron beam collimator, electrons enclose the circulating beam. Their electric charge kicks halo particles transversely. If their distribution is axially symmetric, the beam core is unaffected. This device is complementary to conventional two-stage collimation systems: the electron beam can be placed arbitrarily close to the circulating beam; and particle removal is smooth, so that the device is a diffusion enhancer rather than a hard aperture limitation. The concept was tested in the Tevatron collider using a hollow electron gun installed in one of the existing electron lenses. We describe some of the technical aspects of hollow-beam scraping and the results of recent measurements.

  16. Beam/seam alignment control for electron beam welding

    DOEpatents

    Burkhardt, Jr., James H.; Henry, J. James; Davenport, Clyde M.

    1980-01-01

    This invention relates to a dynamic beam/seam alignment control system for electron beam welds utilizing video apparatus. The system includes automatic control of workpiece illumination, near infrared illumination of the workpiece to limit the range of illumination and camera sensitivity adjustment, curve fitting of seam position data to obtain an accurate measure of beam/seam alignment, and automatic beam detection and calculation of the threshold beam level from the peak beam level of the preceding video line to locate the beam or seam edges.

  17. Nanofabrication of sharp diamond tips by e-beam lithography and inductively coupled plasma reactive ion etching.

    SciTech Connect

    Moldovan, N.; Divan, R.; Zeng, H.; Carlisle, J. A.; Advanced Diamond Tech.

    2009-12-07

    Ultrasharp diamond tips make excellent atomic force microscopy probes, field emitters, and abrasive articles due to diamond's outstanding physical properties, i.e., hardness, low friction coefficient, low work function, and toughness. Sharp diamond tips are currently fabricated as individual tips or arrays by three principal methods: (1) focused ion beam milling and gluing onto a cantilever of individual diamond tips, (2) coating silicon tips with diamond films, or (3) molding diamond into grooves etched in a sacrificial substrate, bonding the sacrificial substrate to another substrate or electrodepositing of a handling chip, followed by dissolution of the sacrificial substrate. The first method is tedious and serial in nature but does produce very sharp tips, the second method results in tips whose radius is limited by the thickness of the diamond coating, while the third method involves a costly bonding and release process and difficulties in thoroughly filling the high aspect ratio apex of molding grooves with diamond at the nanoscale. To overcome the difficulties with these existing methods, this article reports on the feasibility of the fabrication of sharp diamond tips by direct etching of ultrananocrystalline diamond (UNCD{reg_sign}) as a starting and structural material. The UNCD is reactive ion etched using a cap-precursor-mask scheme. An optimized etching recipe demonstrates the formation of ultrasharp diamond tips ({approx} 10 nm tip radius) with etch rates of 650 nm/min.

  18. Determination of nitrogen spin concentration in diamond using double electron-electron resonance

    NASA Astrophysics Data System (ADS)

    Stepanov, Viktor; Takahashi, Susumu

    2016-07-01

    Diamond has been extensively investigated recently due to a wide range of potential applications of nitrogen-vacancy (NV) defect centers existing in a diamond lattice. The applications include magnetometry and quantum information technologies, and long decoherence time (T2) of NV centers is critical for those applications. Although it has been known that T2 highly depends on the concentration of paramagnetic impurities in diamond, precise measurement of the impurity concentration remains challenging. In the present work we show a method to determine a wide range of the nitrogen concentration (n ) in diamond using a wide-band high-frequency electron spin resonance and double electron-electron resonance spectrometer. Moreover, we investigate T2 of the nitrogen impurities and show the relationship between T2 and n . The method developed here is applicable for various spin systems in solid and implementable in nanoscale magnetic resonance spectroscopy with NV centers to characterize the concentration of the paramagnetic spins within a microscopic volume.

  19. Low Emittance Electron Beam Studies

    SciTech Connect

    Tikhoplav, Rodion

    2006-01-01

    We have studied the properties of a low emittance electron beam produced by laser pulses incident onto an rf gun photocathode. The experiments were carried out at the A0 photoinjector at Fermilab. Such beam studies are necessary for fixing the design of new Linear Colliders as well as for the development of Free Electron Lasers. An overview of the A0 photoinjector is given in Chapter 1. In Chapter 2 we describe the A0 photoinjector laser system. A stable laser system is imperative for reliable photoinjector operation. After the recent upgrade, we have been able to reach a new level of stability in the pulse-to-pulse fluctuations of the pulse amplitude, and of the temporal and transverse profiles. In Chapter 3 we present a study of transverse emittance versus the shape of the photo-cathode drive-laser pulse. For that purpose a special temporal profile laser shaping device called a pulse-stacker was developed. In Chapter 4 we discuss longitudinal beam dynamics studies using a two macro-particle bunch; this technique is helpful in analyzing pulse compression in the magnetic chicane, as well as velocity bunching effects in the rf-gun and the 9-cell accelerating cavity. In Chapter 5 we introduce a proposal for laser acceleration of electrons. We have developed a laser functioning on the TEM*01 mode, a mode with a longitudinal electric field component which is suitable for such a process. Using this technique at energies above 40 MeV, one would be able to observe laser-based acceleration.

  20. Diamond fiber field emitters

    DOEpatents

    Blanchet-Fincher, Graciela B.; Coates, Don M.; Devlin, David J.; Eaton, David F.; Silzars, Aris K.; Valone, Steven M.

    1996-01-01

    A field emission electron emitter comprising an electrode formed of at least one diamond, diamond-like carbon or glassy carbon composite fiber, said composite fiber having a non-diamond core and a diamond, diamond-like carbon or glassy carbon coating on said non-diamond core, and electronic devices employing such a field emission electron emitter.

  1. Electron-electron interaction in ballistic electron beams

    NASA Astrophysics Data System (ADS)

    Müller, F.; Lengeler, B.; Schäpers, Th.; Appenzeller, J.; Förster, A.; Klocke, Th.; Lüth, H.

    1995-02-01

    The transport of ballistic electrons emitted and detected by adjacent point contacts in a two-dimensional electron gas (2DEG) in the system GaAs/AlxGa1-xAs was measured at 1.2 K as a function of the emitter current. Hot carriers with a surplus energy up to 15 meV above the Fermi level were generated by the current flow. It is shown that electron-electron scattering is the main limitation for the quasiparticle lifetime. The experimental data for the ballistic electron propagation from emitter to detector are explained without free parameters by a theory developed by Chaplik and by Giuliani and Quinn. In addition, it is shown that crossing ballistic electron beams in a 2DEG interact with one another, if one of the beams contains hot electrons in the zone of interaction. Experiments on the influence of impurities on the mean free path of ballistic electrons should be done with currents as low as 10 nA. Otherwise, the mean free path contains a contribution from electron-electron scattering. Electron-electron interaction of hot carriers is a serious basic limitation for future devices based on the transport of electrons in the mesoscopic transport regime.

  2. Nuclear astrophysics and electron beams

    SciTech Connect

    Schwenk, A.

    2013-11-07

    Electron beams provide important probes and constraints for nuclear astrophysics. This is especially exciting at energies within the regime of chiral effective field theory (EFT), which provides a systematic expansion for nuclear forces and electroweak operators based on quantum chromodynamics. This talk discusses some recent highlights and future directions based on chiral EFT, including nuclear structure and reactions for astrophysics, the neutron skin and constraints for the properties of neutron-rich matter in neutron stars and core-collapse supernovae, and the dark matter response of nuclei.

  3. Adjusting an electron beam for drilling

    NASA Technical Reports Server (NTRS)

    Childress, C. L.

    1980-01-01

    Reticle contains two concentric circles: inner circle insures beam circularity and outer circle is guide to prevent beam from cutting workpiece clamp. Precise measurement of beam and clamp are required with old reticle. New reticle speeds up electron-beam drilling process by eliminating need to rotate eyepiece to make measurements against reticle scale.

  4. Modeling electron emission and surface effects from diamond cathodes

    SciTech Connect

    Dimitrov, D. A.; Smithe, D.; Cary, J. R.; Ben-Zvi, I.; Rao, T.; Smedley, J.; Wang, E.

    2015-02-05

    We developed modeling capabilities, within the Vorpal particle-in-cell code, for three-dimensional (3D) simulations of surface effects and electron emission from semiconductor photocathodes. They include calculation of emission probabilities using general, piece-wise continuous, space-time dependent surface potentials, effective mass and band bending field effects. We applied these models, in combination with previously implemented capabilities for modeling charge generation and transport in diamond, to investigate the emission dependence on applied electric field in the range from approximately 2 MV/m to 17 MV/m along the [100] direction. The simulation results were compared to experimental data. For the considered parameter regime, conservation of transverse electron momentum (in the plane of the emission surface) allows direct emission from only two (parallel to [100]) of the six equivalent lowest conduction band valleys. When the electron affinity χ is the only parameter varied in the simulations, the value χ = 0.31 eV leads to overall qualitative agreement with the probability of emission deduced from experiments. Including band bending in the simulations improves the agreement with the experimental data, particularly at low applied fields, but not significantly. In this study, using surface potentials with different profiles further allows us to investigate the emission as a function of potential barrier height, width, and vacuum level position. However, adding surface patches with different levels of hydrogenation, modeled with position-dependent electron affinity, leads to the closest agreement with the experimental data.

  5. Modeling electron emission and surface effects from diamond cathodes

    DOE PAGES

    Dimitrov, D. A.; Smithe, D.; Cary, J. R.; ...

    2015-02-05

    We developed modeling capabilities, within the Vorpal particle-in-cell code, for three-dimensional (3D) simulations of surface effects and electron emission from semiconductor photocathodes. They include calculation of emission probabilities using general, piece-wise continuous, space-time dependent surface potentials, effective mass and band bending field effects. We applied these models, in combination with previously implemented capabilities for modeling charge generation and transport in diamond, to investigate the emission dependence on applied electric field in the range from approximately 2 MV/m to 17 MV/m along the [100] direction. The simulation results were compared to experimental data. For the considered parameter regime, conservation of transversemore » electron momentum (in the plane of the emission surface) allows direct emission from only two (parallel to [100]) of the six equivalent lowest conduction band valleys. When the electron affinity χ is the only parameter varied in the simulations, the value χ = 0.31 eV leads to overall qualitative agreement with the probability of emission deduced from experiments. Including band bending in the simulations improves the agreement with the experimental data, particularly at low applied fields, but not significantly. In this study, using surface potentials with different profiles further allows us to investigate the emission as a function of potential barrier height, width, and vacuum level position. However, adding surface patches with different levels of hydrogenation, modeled with position-dependent electron affinity, leads to the closest agreement with the experimental data.« less

  6. Modeling electron emission and surface effects from diamond cathodes

    SciTech Connect

    Dimitrov, D. A.; Smithe, D.; Cary, J. R.; Ben-Zvi, I.; Rao, T.; Smedley, J.; Wang, E.

    2015-02-07

    We developed modeling capabilities, within the Vorpal particle-in-cell code, for three-dimensional simulations of surface effects and electron emission from semiconductor photocathodes. They include calculation of emission probabilities using general, piece-wise continuous, space-time dependent surface potentials, effective mass, and band bending field effects. We applied these models, in combination with previously implemented capabilities for modeling charge generation and transport in diamond, to investigate the emission dependence on applied electric field in the range from approximately 2 MV/m to 17 MV/m along the [100] direction. The simulation results were compared to experimental data. For the considered parameter regime, conservation of transverse electron momentum (in the plane of the emission surface) allows direct emission from only two (parallel to [100]) of the six equivalent lowest conduction band valleys. When the electron affinity χ is the only parameter varied in the simulations, the value χ = 0.31 eV leads to overall qualitative agreement with the probability of emission deduced from experiments. Including band bending in the simulations improves the agreement with the experimental data, particularly at low applied fields, but not significantly. Using surface potentials with different profiles further allows us to investigate the emission as a function of potential barrier height, width, and vacuum level position. However, adding surface patches with different levels of hydrogenation, modeled with position-dependent electron affinity, leads to the closest agreement with the experimental data.

  7. Electron beam parallel X-ray generator

    NASA Technical Reports Server (NTRS)

    Payne, P.

    1967-01-01

    Broad X ray source produces a highly collimated beam of low energy X rays - a beam with 2 to 5 arc minutes of divergence at energies between 1 and 6 keV in less than 5 feet. The X ray beam is generated by electron bombardment of a target from a large area electron gun.

  8. Note on polarization of electron beam.

    SciTech Connect

    Yang, Z. J.; Energy Technology

    1997-01-01

    Based on the classical theory of electrodynamics, we show the feasibility of using superconductors to realize transversal and longitudinal polarizations of electron beams. The results can in principle be used with beams of positron and/or other particles with magnetic moments without major modifications. We briefly discuss applications of polarized electron beams in physical sciences and technology.

  9. Beam profile analysis for the C{ampersand}MS B231 electron beam welding machines

    SciTech Connect

    Elmer, J. W.; Teruya, A.T.; Gauthier, M.

    1997-06-12

    The electron beams produced by two different welders were examined using computer assisted tomographic (CT) analysis. The machines used are Hamilton Standard welders with 150 kV/50mA maximum. One machine uses a ribbon filament while the other uses a hairpin filament. The objective of this study was to characterize the beam power distribution on each machine to see if weld parameters could easily be transferred between machines. Beam focus, voltage, and current settings were pre-selected to duplicate the welding conditions used in LLNL program applications. The results show that the actual beam currents measured by Faraday cup are 5 to 10% higher for the first machine and 30% lower for the second. The CT analysis of the beam shapes shows that the hairpin filament welder produces an elliptical beam shape in the sharp focus condition that defocuses to a diamond shape. The ribbon filament welder produced less of an elliptical beam shape in the sharp focus condition, but when defocused, acquires an elliptical shape. CT analysis of the effects of defocus on the peak power density shows that the hairpin filament drops in peak power density much more quickly than the ribbon filament for a given amount of defocus. Furthermore, it was more difficult to find and repeat the sharp focus condition for the hairpin filament, particularly at higher beam currents.

  10. Definition of Beam Diameter for Electron Beam Welding

    SciTech Connect

    Burgardt, Paul; Pierce, Stanley W.; Dvornak, Matthew John

    2016-03-11

    It is useful to characterize the dimensions of the electron beam during process development for electron beam welding applications. Analysis of the behavior of electron beam welds is simplest when a single number can be assigned to the beam properties that describes the size of the beam spot; this value we generically call the “beam diameter”. This approach has worked well for most applications and electron beam welding machines with the weld dimensions (width and depth) correlating well with the beam diameter. However, in recent weld development for a refractory alloy, Ta-10W, welded with a low voltage electron beam machine (LVEB), it was found that the weld dimensions (weld penetration and weld width) did not correlate well with the beam diameter and especially with the experimentally determined sharp focus point. These data suggest that the presently used definition of beam diameter may not be optimal for all applications. The possible reasons for this discrepancy and a suggested possible alternative diameter definition is the subject of this paper.

  11. Dosimetric characterization of a synthetic single crystal diamond detector in clinical radiation therapy small photon beams

    SciTech Connect

    Ciancaglioni, I.; Marinelli, Marco; Milani, E.; Prestopino, G.; Verona, C.; Verona-Rinati, G.; Consorti, R.; Petrucci, A.; De Notaristefani, F.

    2012-07-15

    Purpose: To determine the potentialities of synthetic single crystal diamond Schottky diodes for accurate dose measurements in radiation therapy small photon beams. Methods: The dosimetric properties of a diamond-based detector were assessed by comparison with a reference microionization chamber. The diamond device was operated at zero bias voltage under irradiation with high-energy radiotherapic photon beams. The stability of the detector response and its dose and dose rate dependence were measured. Different square field sizes ranging from 1 Multiplication-Sign 1 cm{sup 2} to 10 Multiplication-Sign 10 cm{sup 2} were used during comparative dose distribution measurements by means of percentage depth dose curves (PDDs), lateral beam profiles, and output factors. The angular and temperature dependence of the diamond detector response were also studied. Results: The detector response shows a deviation from linearity of less than {+-}0.5% in the 0.01-7 Gy range and dose rate dependence below {+-}0.5% in the 1-6 Gy/min range. PDDs and output factors are in good agreement with those measured by the reference ionization chamber within 1%. No angular dependence is observed by rotating the detector along its axis, while {approx}3.5% maximum difference is measured by varying the radiation incidence angle in the polar direction. The temperature dependence was investigated as well and a {+-}0.2% variation of the detector response is found in the 18-40 Degree-Sign C range. Conclusions: The obtained results indicate the investigated synthetic diamond-based detector as a candidate for small field clinical radiation dosimetry in advanced radiation therapy techniques.

  12. Dosimetric characterization of a synthetic single crystal diamond detector in clinical radiation therapy small photon beams.

    PubMed

    Ciancaglioni, I; Marinelli, Marco; Milani, E; Prestopino, G; Verona, C; Verona-Rinati, G; Consorti, R; Petrucci, A; De Notaristefani, F

    2012-07-01

    To determine the potentialities of synthetic single crystal diamond Schottky diodes for accurate dose measurements in radiation therapy small photon beams. The dosimetric properties of a diamond-based detector were assessed by comparison with a reference microionization chamber. The diamond device was operated at zero bias voltage under irradiation with high-energy radiotherapic photon beams. The stability of the detector response and its dose and dose rate dependence were measured. Different square field sizes ranging from 1 × 1 cm(2) to 10 × 10 cm(2) were used during comparative dose distribution measurements by means of percentage depth dose curves (PDDs), lateral beam profiles, and output factors. The angular and temperature dependence of the diamond detector response were also studied. The detector response shows a deviation from linearity of less than ±0.5% in the 0.01-7 Gy range and dose rate dependence below ±0.5% in the 1-6 Gy∕min range. PDDs and output factors are in good agreement with those measured by the reference ionization chamber within 1%. No angular dependence is observed by rotating the detector along its axis, while ∼3.5% maximum difference is measured by varying the radiation incidence angle in the polar direction. The temperature dependence was investigated as well and a ±0.2% variation of the detector response is found in the 18-40 °C range. The obtained results indicate the investigated synthetic diamond-based detector as a candidate for small field clinical radiation dosimetry in advanced radiation therapy techniques.

  13. Dual-ion-beam deposition of carbon films with diamond-like properties

    NASA Technical Reports Server (NTRS)

    Mirtich, M. J.; Swec, D. M.; Angus, J. C.

    1985-01-01

    A single and dual ion beam system was used to generate amorphous carbon films with diamond like properties. A methane/argon mixture at a molar ratio of 0.28 was ionized in the low pressure discharge chamber of a 30-cm-diameter ion source. A second ion source, 8 cm in diameter was used to direct a beam of 600 eV Argon ions on the substrates (fused silica or silicon) while the deposition from the 30-cm ion source was taking place. Nuclear reaction and combustion analysis indicate H/C ratios for the films to be 1.00. This high value of H/C, it is felt, allowed the films to have good transmittance. The films were impervious to reagents which dissolve graphitic and polymeric carbon structures. Although the measured density of the films was approximately 1.8 gm/cu cm, a value lower than diamond, the films exhibited other properties that were relatively close to diamond. These films were compared with diamond like films generated by sputtering a graphite target.

  14. Scalable focused ion beam creation of nearly lifetime-limited single quantum emitters in diamond nanostructures

    PubMed Central

    Schröder, Tim; Trusheim, Matthew E.; Walsh, Michael; Li, Luozhou; Zheng, Jiabao; Schukraft, Marco; Sipahigil, Alp; Evans, Ruffin E.; Sukachev, Denis D.; Nguyen, Christian T.; Pacheco, Jose L.; Camacho, Ryan M.; Bielejec, Edward S.; Lukin, Mikhail D.; Englund, Dirk

    2017-01-01

    The controlled creation of defect centre—nanocavity systems is one of the outstanding challenges for efficiently interfacing spin quantum memories with photons for photon-based entanglement operations in a quantum network. Here we demonstrate direct, maskless creation of atom-like single silicon vacancy (SiV) centres in diamond nanostructures via focused ion beam implantation with ∼32 nm lateral precision and <50 nm positioning accuracy relative to a nanocavity. We determine the Si+ ion to SiV centre conversion yield to be ∼2.5% and observe a 10-fold conversion yield increase by additional electron irradiation. Low-temperature spectroscopy reveals inhomogeneously broadened ensemble emission linewidths of ∼51 GHz and close to lifetime-limited single-emitter transition linewidths down to 126±13 MHz corresponding to ∼1.4 times the natural linewidth. This method for the targeted generation of nearly transform-limited quantum emitters should facilitate the development of scalable solid-state quantum information processors. PMID:28548097

  15. The influence of defect levels on the dose rate dependence of synthetic diamond detectors of various types on exposures to high-energy radiotherapy beams

    NASA Astrophysics Data System (ADS)

    Ade, N.; Nam, T. L.

    2015-03-01

    The linear response of a radiation dosimeter with absorbed dose rate is a principal requirement in radiotherapy. Fowler's model for electrical conductivity, σ of a solid-state detector and absorbed dose rate, Dr is of the form σ ∝ DrΔ where Δ is the linearity index that can take on a range of values around unity. Utilising synthetic diamond detectors of various types as sensors, this study investigates the influence of defect levels on the Δ values of the sensors and the dependence of Δ on bias voltage, beam energy and type in the dosimetry of high-energy photon and electron therapy beams. One main objective of the study was to establish whether for a given diamond detector, Δ could be determined only once for any given beam energy and then used for other beam energies of clinical interest. In order to attain the ICRU overall ±5% uncertainty of absorbed dose delivery in radiotherapy, ±2% accuracy was considered. The study was conducted on one HPHT and eight CVD synthesised diamonds of optical grade (OG) and detector grade (DG) qualities using 6 and 15 MV photon, and 7 and 12 MeV electron energies. Values of Δ ranging from 0.79-1.03 to 0.85-0.96 were obtained for the electron and photon beams, respectively for all the diamond sensors at 1 kV/cm. The Δ values were found to change with various defect levels present within the crystals as characterised by Raman spectroscopy, ESR, FTIR spectroscopy and TL emission, and it was observed that the Δ values of crystals with high defect levels varied strongly with bias voltage. Whereas the Δ values of the HPHT diamond were found not vary with the electron and photon energies, only those of three CVD samples of a given class showed a variation within 2% between the two energies of each beam type. However, for all the crystals tested Δ showed a maximum variation of 3.4% between the photon energies unlike the electron energies where a very strong variation (>5%) was observed for three OG CVD crystals. The results

  16. Rippled beam free electron Laser Amplifier

    SciTech Connect

    Carlsten, Bruce E.

    1998-04-21

    A free electron laser amplifier provides a scalloping annular electron beam that interacts with the axial electric field of a T{sub 0n} mode. A waveguide defines an axial centerline and . A solenoid arranged about the waveguide produces an axial constant magnetic field within the waveguide. An electron beam source outputs a annular electron beam that interacts with the axial magnetic field to have an equilibrium radius and a ripple radius component having a variable radius with a ripple period along the axial centerline. An rf source outputs an axial electric field that propagates within the waveguide coaxial with the electron beam and has a radial mode that interacts at the electron beam at the equilibrium radius component of the electron beam.

  17. Rippled beam free electron laser amplifier

    DOEpatents

    Carlsten, Bruce E.

    1999-01-01

    A free electron laser amplifier provides a scalloping annular electron beam that interacts with the axial electric field of a TM.sub.0n mode. A waveguide defines an axial centerline and, a solenoid arranged about the waveguide produces an axial constant magnetic field within the waveguide. An electron beam source outputs a annular electron beam that interacts with the axial magnetic field to have an equilibrium radius and a ripple radius component having a variable radius with a ripple period along the axial centerline. An rf source outputs an axial electric field that propagates within the waveguide coaxial with the electron beam and has a radial mode that interacts at the electron beam at the equilibrium radius component of the electron beam.

  18. Fast synchrotron and FEL beam monitors based on single-crystal diamond detectors and InGaAs/InAlAs quantum well devices

    NASA Astrophysics Data System (ADS)

    Antonelli, M.; Di Fraia, M.; Carrato, S.; Cautero, G.; Menk, R. H.; Jark, W. H.; Ganbold, T.; Biasiol, G.; Callegari, C.; Coreno, M.; De Sio, A.; Pace, E.

    2013-12-01

    Simultaneous photon-beam position and intensity monitoring is becoming of increasing importance for new-generation synchrotron radiation sources and free-electron lasers (FEL). Thus, novel concepts of beam diagnostics are required in order to keep such beams under control. From this perspective diamond is a promising material for the production of semitransparent in situ photon beam monitors, which can withstand the high dose rates occurring in such radiation facilities. Here, we report on the development of freestanding, single-crystal chemical-vapor-deposited diamond detectors with segmented electrodes. Due to their direct, low-energy band gap, InGaAs quantum well devices operated at room temperature may also be used as fast detectors for photons ranging from visible to X-ray. These features are valuable in low-energy and time-resolved FEL applications. In particular, a novel segmented InGaAs/InAlAs device has been developed and will be discussed. Dedicated measurements carried out on both these devices at the Elettra Synchrotron show their capability to monitor the position and the intensity of the photon beam with bunch-by-bunch temporal performances. Furthermore, preliminary tests have been performed on diamond detectors at the Fermi FEL, extracting quantitative intensity and position information for 100-fs-wide FEL pulses with a photon energy of 28.8 eV.

  19. Beam rotation and shear in a large electron beam diode

    SciTech Connect

    Mansfield, C.R.; Oona, H.; Shurter, R.P.

    1990-01-01

    The time averaged electron beam current distribution of one of the electron guns of the Large Aperture Module (LAM) of the Aurora laser was measured as part of a larger set of experiments designed to study the electron beam transport to and energy deposition in the LAM laser chamber. The LAM laser chamber has a 1-m {times} 1-m aperture and is pumped from two sides along a 2-m length. A 10 ga. stainless steel sheet was placed inside the laser chamber and served multiple purposes. First, it was used to convert high energy electrons into X-rays in order to make radiograms of the electron beam. Second, the sheet was used as a Faraday cup to measure the total beam current. Third, individual Faraday cups were mounted on the plate to sample the time history of the electron beam at various positions. Each of the LAM electron gun diodes produces a beam of 750 kV electrons with a total current of about 500 kA which is relatively uniform over the cathode area of 1 m {times} 2 m. An applied magnetic field of about 1300 Gauss is used to prevent pinch of the beam during beam transport.

  20. Transverse Mode Electron Beam Microwave Generator

    NASA Technical Reports Server (NTRS)

    Wharton, Lawrence E.

    1994-01-01

    An electron beam microwave device having an evacuated interaction chamber to which are coupled a resonant cavity which has an opening between the resonant cavity and the evacuated interaction chamber and an electron gun which causes a narrow beam of electrons to traverse the evacuated interaction chamber. The device also contains a mechanism for feeding back a microwave electromagnetic field from the resonant cavity to the evacuated interaction chamber in such a way as to modulate the direction of propagation of the electron beam, thereby further amplifyjng the microwave electromagnetic field. Furthermore, provision is made for coupling the electromagnetic field out of the electron beam microwave device.

  1. Microfabrication of controlled-geometry samples for the laser-heated diamond-anvil cell using focused ion beam technology.

    PubMed

    Pigott, Jeffrey S; Reaman, Daniel M; Panero, Wendy R

    2011-11-01

    The pioneering of x-ray diffraction with in situ laser heating in the diamond-anvil cell has revolutionized the field of high-pressure mineral physics, expanding the ability to determine high-pressure, high-temperature phase boundaries and equations of state. Accurate determination of high-pressure, high-temperature phases and densities in the diamond-anvil cell rely upon collinearity of the x-ray beam with the center of the laser-heated spot. We present the development of microfabricated samples that, by nature of their design, will have the sample of interest in the hottest portion of the sample. We report initial successes with a simplified design using a Pt sample with dimensions smaller than the synchrotron-based x-ray spot such that it is the only part of the sample that absorbs the heating laser ensuring that the x-rayed volume is at the peak hotspot temperature. Microfabricated samples, synthesized using methods developed at The Ohio State University's Mineral Physics Laboratory and Campus Electron Optics Facility, were tested at high P-T conditions in the laser-heated diamond-anvil cell at beamline 16 ID-B of the Advanced Photon Source. Pt layer thicknesses of ≤0.8 μm absorb the laser and produce accurate measurements on the relative equations of state of Pt and PtC. These methods combined with high-purity nanofabrication techniques will allow for extension by the diamond-anvil cell community to multiple materials for high-precision high-pressure, high-temperature phase relations, equations of state, melting curves, and transport properties.

  2. Electronic Power System Application of Diamond-Like Carbon Films

    NASA Technical Reports Server (NTRS)

    Wu, Richard L. C.; Kosai, H.; Fries-Carr, S.; Weimer, J.; Freeman, M.; Schwarze, G. E.

    2003-01-01

    A prototype manufacturing technology for producing high volume efficiency and high energy density diamond-like carbon (DLC) capacitors has been developed. Unique dual ion-beam deposition and web-handling systems have been designed and constructed to deposit high quality DLC films simultaneously on both sides of capacitor grade aluminum foil and aluminum-coated polymer films. An optimized process, using inductively coupled RF ion sources, has been used to synthesize electrically robust DLC films. DLC films are amorphous and highly flexible, making them suitable for the production of wound capacitors. DLC capacitors are reliable and stable over a wide range of AC frequencies from 20 Hz to 1 MHz, and over a temperature range from .500 C to 3000 C. The compact DLC capacitors offer at least a 50% decrease in weight and volume and a greater than 50% increase in temperature handling capability over equal value capacitors built with existing technologies. The DLC capacitors will be suitable for high temperature, high voltage, pulsed power and filter applications.

  3. Nanofocusing of hard X-ray free electron laser pulses using diamond based Fresnel zone plates.

    PubMed

    David, C; Gorelick, S; Rutishauser, S; Krzywinski, J; Vila-Comamala, J; Guzenko, V A; Bunk, O; Färm, E; Ritala, M; Cammarata, M; Fritz, D M; Barrett, R; Samoylova, L; Grünert, J; Sinn, H

    2011-01-01

    A growing number of X-ray sources based on the free-electron laser (XFEL) principle are presently under construction or have recently started operation. The intense, ultrashort pulses of these sources will enable new insights in many different fields of science. A key problem is to provide x-ray optical elements capable of collecting the largest possible fraction of the radiation and to focus into the smallest possible focus. As a key step towards this goal, we demonstrate here the first nanofocusing of hard XFEL pulses. We developed diamond based Fresnel zone plates capable of withstanding the full beam of the world's most powerful x-ray laser. Using an imprint technique, we measured the focal spot size, which was limited to 320 nm FWHM by the spectral band width of the source. A peak power density in the focal spot of 4×10(17)W/cm(2) was obtained at 70 fs pulse length.

  4. Beam distribution reconstruction simulation for electron beam probe

    NASA Astrophysics Data System (ADS)

    Feng, Yong-Chun; Mao, Rui-Shi; Li, Peng; Kang, Xin-Cai; Yin, Yan; Liu, Tong; You, Yao-Yao; Chen, Yu-Cong; Zhao, Tie-Cheng; Xu, Zhi-Guo; Wang, Yan-Yu; Yuan, You-Jin

    2017-07-01

    An electron beam probe (EBP) is a detector which makes use of a low-intensity and low-energy electron beam to measure the transverse profile, bunch shape, beam neutralization and beam wake field of an intense beam with small dimensions. While it can be applied to many aspects, we limit our analysis to beam distribution reconstruction. This kind of detector is almost non-interceptive for all of the beam and does not disturb the machine environment. In this paper, we present the theoretical aspects behind this technique for beam distribution measurement and some simulation results of the detector involved. First, a method to obtain a parallel electron beam is introduced and a simulation code is developed. An EBP as a profile monitor for dense beams is then simulated using the fast scan method for various target beam profiles, including KV distribution, waterbag distribution, parabolic distribution, Gaussian distribution and halo distribution. Profile reconstruction from the deflected electron beam trajectory is implemented and compared with the actual profile, and the expected agreement is achieved. Furthermore, as well as fast scan, a slow scan, i.e. step-by-step scan, is considered, which lowers the requirement for hardware, i.e. Radio Frequency deflector. We calculate the three-dimensional electric field of a Gaussian distribution and simulate the electron motion in this field. In addition, a fast scan along the target beam direction and slow scan across the beam are also presented, and can provide a measurement of longitudinal distribution as well as transverse profile simultaneously. As an example, simulation results for the China Accelerator Driven Sub-critical System (CADS) and High Intensity Heavy Ion Accelerator Facility (HIAF) are given. Finally, a potential system design for an EBP is described.

  5. Plasma lenses for focusing relativistic electron beams

    SciTech Connect

    Govil, R.; Wheeler, S.; Leemans, W.

    1997-04-01

    The next generation of colliders require tightly focused beams with high luminosity. To focus charged particle beams for such applications, a plasma focusing scheme has been proposed. Plasma lenses can be overdense (plasma density, n{sub p} much greater than electron beam density, n{sub b}) or underdense (n{sub p} less than 2 n{sub b}). In overdense lenses the space-charge force of the electron beam is canceled by the plasma and the remaining magnetic force causes the electron beam to self-pinch. The focusing gradient is nonlinear, resulting in spherical aberrations. In underdense lenses, the self-forces of the electron beam cancel, allowing the plasma ions to focus the beam. Although for a given beam density, a uniform underdense lens produces smaller focusing gradients than an overdense lens, it produces better beam quality since the focusing is done by plasma ions. The underdense lens can be improved by tapering the density of the plasma for optimal focusing. The underdense lens performance can be enhanced further by producing adiabatic plasma lenses to avoid the Oide limit on spot size due to synchrotron radiation by the electron beam. The plasma lens experiment at the Beam Test Facility (BTF) is designed to study the properties of plasma lenses in both overdense and underdense regimes. In particular, important issues such as electron beam matching, time response of the lens, lens aberrations and shot-to-shot reproducibility are being investigated.

  6. Thin conductive diamond films as beam intensity monitors for soft x-ray beamlines

    SciTech Connect

    Kummer, K.; Fondacaro, A.; Yakhou-Harris, F.; Sessi, V.; Brookes, N. B.; Pobedinskas, P.; Janssens, S. D.; Haenen, K.; Williams, O. A.; Hees, J.

    2013-03-15

    Quantitative analysis of X-ray absorption and dichroism data requires knowledge of the beamline photon flux during the measurements. We show that thin conductive (B-doped) diamond thin films can be an alternative to the widely used gold meshes for monitoring the beam intensity of soft X-ray beamlines in situ. Limited by the carbon extended x-ray absorption fine structure oscillations, the diamond films become applicable beginning from about 600 eV photon energy, where the important transition metal edges and the rare-earth edges are found. The 100 nm and 250 nm thick free-standing diamond films were grown and tested against standard gold meshes in real-life dichroism experiments performed at beamline ID08 of the European Synchrotron Radiation Facility, Grenoble, France. Quantitative agreement was found between the two experimental data sets. The films feature an extremely high transmission of about 90% and, at the same time, yield a sufficiently strong and clean reference signal. Furthermore, the thin films do not affect the shape of the transmitted beam. X-rays passing mesh-type monitors are subject to diffraction effects, which widen the beam and become particularly disturbing for small beamsizes in the micrometer range.

  7. Fabrication of monolithic microfluidic channels in diamond with ion beam lithography

    NASA Astrophysics Data System (ADS)

    Picollo, F.; Battiato, A.; Boarino, L.; Ditalia Tchernij, S.; Enrico, E.; Forneris, J.; Gilardino, A.; Jakšić, M.; Sardi, F.; Skukan, N.; Tengattini, A.; Olivero, P.; Re, A.; Vittone, E.

    2017-08-01

    In the present work, we report on the monolithic fabrication by means of ion beam lithography of hollow micro-channels within a diamond substrate, to be employed for microfluidic applications. The fabrication strategy takes advantage of ion beam induced damage to convert diamond into graphite, which is characterized by a higher reactivity to oxidative etching with respect to the chemically inert pristine structure. This phase transition occurs in sub-superficial layers thanks to the peculiar damage profile of MeV ions, which mostly damage the target material at their end of range. The structures were obtained by irradiating commercial CVD diamond samples with a micrometric collimated C+ ion beam at three different energies (4 MeV, 3.5 MeV and 3 MeV) at a total fluence of 2 × 1016 cm-2. The chosen multiple-energy implantation strategy allows to obtain a thick box-like highly damaged region ranging from 1.6 μm to 2.1 μm below the sample surface. High-temperature annealing was performed to both promote the graphitization of the ion-induced amorphous layer and to recover the pristine crystalline structure in the cap layer. Finally, the graphite was removed by ozone etching, obtaining monolithic microfluidic structures. These prototypal microfluidic devices were tested injecting aqueous solutions and the evidence of the passage of fluids through the channels was confirmed by confocal fluorescent microscopy.

  8. Thin conductive diamond films as beam intensity monitors for soft x-ray beamlines

    NASA Astrophysics Data System (ADS)

    Kummer, K.; Fondacaro, A.; Yakhou-Harris, F.; Sessi, V.; Pobedinskas, P.; Janssens, S. D.; Haenen, K.; Williams, O. A.; Hees, J.; Brookes, N. B.

    2013-03-01

    Quantitative analysis of X-ray absorption and dichroism data requires knowledge of the beamline photon flux during the measurements. We show that thin conductive (B-doped) diamond thin films can be an alternative to the widely used gold meshes for monitoring the beam intensity of soft X-ray beamlines in situ. Limited by the carbon extended x-ray absorption fine structure oscillations, the diamond films become applicable beginning from about 600 eV photon energy, where the important transition metal edges and the rare-earth edges are found. The 100 nm and 250 nm thick free-standing diamond films were grown and tested against standard gold meshes in real-life dichroism experiments performed at beamline ID08 of the European Synchrotron Radiation Facility, Grenoble, France. Quantitative agreement was found between the two experimental data sets. The films feature an extremely high transmission of about 90% and, at the same time, yield a sufficiently strong and clean reference signal. Furthermore, the thin films do not affect the shape of the transmitted beam. X-rays passing mesh-type monitors are subject to diffraction effects, which widen the beam and become particularly disturbing for small beamsizes in the micrometer range.

  9. Position-controlled growth of GaN nanowires and nanotubes on diamond by molecular beam epitaxy.

    PubMed

    Schuster, Fabian; Hetzl, Martin; Weiszer, Saskia; Garrido, Jose A; de la Mata, María; Magen, Cesar; Arbiol, Jordi; Stutzmann, Martin

    2015-03-11

    In this work the position-controlled growth of GaN nanowires (NWs) on diamond by means of molecular beam epitaxy is investigated. In terms of growth, diamond can be seen as a model substrate, providing information of systematic relevance also for other substrates. Thin Ti masks are structured by electron beam lithography which allows the fabrication of perfectly homogeneous GaN NW arrays with different diameters and distances. While the wurtzite NWs are found to be Ga-polar, N-polar nucleation leads to the formation of tripod structures with a zinc-blende core which can be efficiently suppressed above a substrate temperature of 870 °C. A variation of the III/V flux ratio reveals that both axial and radial growth rates are N-limited despite the globally N-rich growth conditions, which is explained by the different diffusion behavior of Ga and N atoms. Furthermore, it is shown that the hole arrangement has no effect on the selectivity but can be used to force a transition from nanowire to nanotube growth by employing a highly competitive growth regime.

  10. Rippled-beam free-electron laser

    SciTech Connect

    Carlsten, B.E.

    1997-10-01

    The authors describe a new microwave generation mechanism involving a scalloping annular electron beam. The beam interacts with the axial electric field of a TM{sub 0n} mode in a smooth circular waveguide through the axial free-electron laser interaction, in which the beam ripple period is synchronous with the phase slippage of the rf mode relative to the electron beam. Due to nonlinearities in the orbit equation, the interaction can be made autoresonant, where the phase and amplitude of the gain is independent of the beam energy.

  11. Electron beam effects in a UV FEL

    SciTech Connect

    Wong, R.K.; Blau, J.; Colson, W.B.

    1995-12-31

    At the Continuous Electron Beam Accelerator Facility (CEBAF), a free electron laser (FEL) is designed to produce ultraviolet (UV) light. A four-dimensional FEL simulation studies the effects of betatron oscillations, external focusing, and longitudinal pulse compression of the electron beam on the FEL performance.

  12. Towards demonstration of electron cooling with bunched electron beam

    SciTech Connect

    Fedotov, A.

    2012-01-11

    All electron cooling systems which were in operation so far employed electron beam generated with an electrostatic electron gun in DC operating mode, immersed in a longitudinal magnetic field. At low energies magnetic field is also being used to transport electron beam through the cooling section from the gun to the collector. At higher energies (few MeV), it was shown that one can have simpler electron beam transport without continuous magnetic field. Because of a rather weak magnetic field on the cathode and in the cooling section the latter approach was referred to as 'non-magnetized cooling', since there was no suppression of the transverse angular spread of the electron beam with the magnetic field in the cooling section. Such a cooler successfully operated at FNAL (2005-11) at electron beam energy of 4.3 MeV. Providing cooling at even higher energies would be easier with RF acceleration of electron beam, and thus using bunched electron beam for cooling. Significant efforts were devoted to explore various aspects of such bunched electron beam cooling as part of R and D of high-energy electron cooling for RHIC. However, experimental studies of such cooling are still lacking. Establishing this technique experimentally would be extremely useful for future high-energy applications. Presently there is an ongoing effort to build Proof-of-Principle (PoP) experiment of Coherent Electron Cooling (CEC) at RHIC, which promises to be superior to conventional electron cooling for high energies. Since the CEC experiment is based on bunched electron beam and it has sections where electron beam co-propagates with the ion beam at the same velocity, it also provides a unique opportunity to explore experimentally conventional electron cooling but for the first time with a bunched electron beam. As a result, it allows us to explore techniques needed for the high-energy electron cooling such as 'painting' with a short electron beam and control of ion beam distribution under

  13. Electron beam gaseous pollutants treatments

    SciTech Connect

    Chmielewski, A.G.

    1995-12-31

    High energy electrons create thousands of ions and free radicals along their path. In consequence radiolytical processes take place that with eventual usage of additional reactants at proper physical gas conditions may lead to new air pollution control technologies. Three examples are discusses: (1) SO{sub 2} and NO{sub x} removal (combustion flue gases); (2) volatile organic compounds removal, and (3) SO{sub 2} high concentration flue gas treatment. The experimental tests, depending on the subject has been performed at two different units. One is an industrial pilot plant constructed in electropower station on a coal fired boiler, with gas flow up to 20,000 cNmph, equipped in two electron accelerators. 50 kW power and 800 keV each. The second is a laboratory installation with the flow up to 400 cNmph, in this case flue gases are produced by two gas fired boilers and research setup is furnished in an accelerator of 20 kW beam power and electrons energy up to 2 MeV. The results of the tests performed at laboratory and industrial pilot plant are discussed. On this basis technical and economical evaluation of full size industrial installation has been prepared.

  14. Electronic and physico-chemical properties of nanometric boron delta-doped diamond structures

    SciTech Connect

    Chicot, G. Fiori, A.; Tran Thi, T. N.; Bousquet, J.; Delahaye, J.; Grenet, T.; Eon, D.; Omnès, F.; Bustarret, E.; Volpe, P. N.; Tranchant, N.; Mer-Calfati, C.; Arnault, J. C.; Gerbedoen, J. C.; Soltani, A.; De Jaeger, J. C.; Alegre, M. P.; Piñero, J. C.; Araújo, D.; Jomard, F.; and others

    2014-08-28

    Heavily boron doped diamond epilayers with thicknesses ranging from 40 to less than 2 nm and buried between nominally undoped thicker layers have been grown in two different reactors. Two types of [100]-oriented single crystal diamond substrates were used after being characterized by X-ray white beam topography. The chemical composition and thickness of these so-called delta-doped structures have been studied by secondary ion mass spectrometry, transmission electron microscopy, and spectroscopic ellipsometry. Temperature-dependent Hall effect and four probe resistivity measurements have been performed on mesa-patterned Hall bars. The temperature dependence of the hole sheet carrier density and mobility has been investigated over a broad temperature range (6 K < T < 450 K). Depending on the sample, metallic or non-metallic behavior was observed. A hopping conduction mechanism with an anomalous hopping exponent was detected in the non-metallic samples. All metallic delta-doped layers exhibited the same mobility value, around 3.6 ± 0.8 cm{sup 2}/Vs, independently of the layer thickness and the substrate type. Comparison with previously published data and theoretical calculations showed that scattering by ionized impurities explained only partially this low common value. None of the delta-layers showed any sign of confinement-induced mobility enhancement, even for thicknesses lower than 2 nm.

  15. Creating electron vortex beams with light.

    PubMed

    Handali, Jonathan; Shakya, Pratistha; Barwick, Brett

    2015-02-23

    We propose an all-optical method of creating electron vortices utilizing the Kapitza-Dirac effect. This technique uses the transfer of orbital angular momentum from photons to free electrons creating electron vortex beams in the process. The laser intensities needed for this experiment can be obtained with available pulsed lasers and the resulting electron beams carrying orbital angular momentum will be particularly useful in the study of magnetic materials and chiral plasmonic structures in ultrafast electron microscopy.

  16. The POSEIDON electron beam generator. Final report

    SciTech Connect

    Sethian, J.D.; Mora, F.

    1982-09-27

    The POSEIDON electron beam generator was designed to perform a series of experiments to produce a closed field line plasma confinement system with two rotating relativistic electron beams. Previous experimental studies have shown that a single rotating beam (generated by the TRITON electron beam generator) can produce a plasma in a reversed field configuration inside an initially field free metal tube. The magnetic fields were maintained with induced plasma currents rather than the beam electrons themselves. However, because the beam was injected from one end of the system, a net axial current persisted which precluded axial containment. To eliminate this current, it was proposed to inject a second rotating beam from the opposite end of the system.

  17. Precision Absolute Beam Current Measurement of Low Power Electron Beam

    SciTech Connect

    Ali, M. M.; Bevins, M. E.; Degtiarenko, P.; Freyberger, A.; Krafft, G. A.

    2012-11-01

    Precise measurements of low power CW electron beam current for the Jefferson Lab Nuclear Physics program have been performed using a Tungsten calorimeter. This paper describes the rationale for the choice of the calorimeter technique, as well as the design and calibration of the device. The calorimeter is in use presently to provide a 1% absolute current measurement of CW electron beam with 50 to 500 nA of average beam current and 1-3 GeV beam energy. Results from these recent measurements will also be presented.

  18. Electronic structure studies of nanocrystalline diamond grain boundaries

    SciTech Connect

    Zapol, P.; Sternberg, M.; Frauenheim, T.; Gruen, D. M.; Curtiss, L. A.

    1999-11-29

    Diamond growth from hydrogen-poor plasmas results in diamond structures that are profoundly different from conventionally CVD-grown diamond. High concentration of carbon dimers in the microwave plasma results in a high rate of heterogeneous renucleation leading to formation of nanocrystalline diamond with a typical grain size of 3--10 nm. Therefore, up to 10% of carbon atoms are located in the grain boundaries. In this paper the authors report on density-functional based tight-binding molecular dynamics calculations of the structure of a {Sigma}13 twist (100) grain boundary in diamond. Beginning with a coincidence site lattice model, simulated annealing of the initial structure was performed at 1,500 K followed by relaxation toward lower temperatures. About one-half of the carbons in the grain boundary are found to be three-coordinated. Coordination numbers, bond length and bond angle distributions are analyzed and compared to those obtained in previous studies.

  19. Characterization of a new commercial single crystal diamond detector for photon- and proton-beam dosimetry

    PubMed Central

    Akino, Yuichi; Gautam, Archana; Coutinho, Len; Würfel, Jan; Das, Indra J.

    2015-01-01

    A synthetic single crystal diamond detector (SCDD) is commercially available and is characterized for radiation dosimetry in various radiation beams in this study. The characteristics of the commercial SCDD model 60019 (PTW) with 6- and 15-MV photon beams, and 208-MeV proton beams, were investigated and compared with the pre-characterized detectors: Semiflex (model 31010) and PinPoint (model 31006) ionization chambers (PTW), the EDGE diode detector (Sun Nuclear Corp) and the SFD Stereotactic Dosimetry Diode Detector (IBA). To evaluate the effects of the pre-irradiation, the diamond detector, which had not been irradiated on the day, was set up in the water tank, and the response to 100 MU was measured every 20 s. The depth–dose and profiles data were collected for various field sizes and depths. For all radiation types and field sizes, the depth–dose data of the diamond chamber showed identical curves to those of the ionization chambers. The profile of the diamond detector was very similar to those of the EDGE and SFD detectors, although the Semiflex and PinPoint chambers showed volume-averaging effects in the penumbrae region. The temperature dependency was within 0.7% in the range of 4–41°C. A dose of 900 cGy and 1200 cGy was needed to stabilize the chamber to the level within 0.5% and 0.2%, respectively. The PTW type 60019 SCDD detector showed suitable characteristics for radiation dosimetry, for relative dose, depth–dose and profile measurements for a wide range of field sizes. However, at least 1000 cGy of pre-irradiation will be needed for accurate measurements. PMID:26268483

  20. Focused electron and ion beam systems

    DOEpatents

    Leung, Ka-Ngo; Reijonen, Jani; Persaud, Arun; Ji, Qing; Jiang, Ximan

    2004-07-27

    An electron beam system is based on a plasma generator in a plasma ion source with an accelerator column. The electrons are extracted from a plasma cathode in a plasma ion source, e.g. a multicusp plasma ion source. The beam can be scanned in both the x and y directions, and the system can be operated with multiple beamlets. A compact focused ion or electron beam system has a plasma ion source and an all-electrostatic beam acceleration and focusing column. The ion source is a small chamber with the plasma produced by radio-frequency (RF) induction discharge. The RF antenna is wound outside the chamber and connected to an RF supply. Ions or electrons can be extracted from the source. A multi-beam system has several sources of different species and an electron beam source.

  1. Realization of body centered tetragonal, β-tin and diamond type structures using five beam interference

    NASA Astrophysics Data System (ADS)

    Sidharthan, Raghuraman; Kumar, Manish; Joseph, Joby; Murukeshan, Vadakke Matham

    2014-07-01

    A five beam interference configuration, with one central circularly polarized beam and four linearly polarized side beams incident at equal tilt angles in two orthogonal planes, is investigated for realization of three dimensional periodic structures. It was observed that when the two pairs of linearly polarized waves are TE-TM polarized, dumb-bell shaped pattern and body centered tetragonal lattice structures could be realized. And when all the four linearly polarized waves are TE polarized, with circularly polarized central beam, woodpile type structures and β-tin type structure could be formed. The obtained β-tin type structure was found to get transformed into diamond cubic type structure when the angle of incidence was increased to an optimum value.

  2. An experimental evaluation of monochromatic x-ray beam position monitors at diamond light source

    SciTech Connect

    Bloomer, Chris Rehm, Guenther; Dolbnya, Igor P.

    2016-07-27

    Maintaining the stability of the X-ray beam relative to the sample point is of paramount importance for beamlines and users wanting to perform cutting-edge experiments. The ability to detect, and subsequently compensate for, variations in X-ray beam position with effective diagnostics has multiple benefits: a reduction in commissioning and start-up time, less ‘down-time’, and an improvement in the quality of acquired data. At Diamond Light Source a methodical evaluation of a selection of monochromatic X-ray Beam Position Monitors (XBPMs), using a range of position detection techniques, and from a range of suppliers, was carried out. The results of these experiments are presented, showing the measured RMS noise on the position measurement of each device for a given flux, energy, beam size, and bandwidth. A discussion of the benefits and drawbacks of each of the various devices and techniques is also included.

  3. Low energy electron magnetometer using a monoenergetic electron beam

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Wood, G. M.; Rayborn, G. H.; White, F. A. (Inventor)

    1983-01-01

    A low energy electron beam magnetometer utilizes near-monoenergetic electrons thereby reducing errors due to electron energy spread and electron nonuniform angular distribution. In a first embodiment, atoms in an atomic beam of an inert gas are excited to a Rydberg state and then electrons of near zero energy are detached from the Rydberg atoms. The near zero energy electrons are then accelerated by an electric field V(acc) to form the electron beam. In a second embodiment, a filament emits electrons into an electrostatic analyzer which selects electrons at a predetermined energy level within a very narrow range. These selected electrons make up the electron beam that is subjected to the magnetic field being measured.

  4. Electron beam emittance monitor for the SSC

    SciTech Connect

    Tsyganov, E.; Meinke, R.; Nexsen, W.; Kauffmann, S.; Zinchenko, A.; Taratin, A.

    1993-05-01

    A nondestructive beam profile monitor for the Superconducting Super Collider (SSC) is presented using as a probe a low-energy electron beam interacting with the proton bunch charge. Results using a full Monte Carlo simulation code look promising for the transverse and longitudinal beam profile measurements.

  5. Focused-ion-beam overlay-patterning of three-dimensional diamond structures for advanced single-photon properties

    SciTech Connect

    Jiang, Qianqing; Liu, Dongqi; Liu, Gangqin; Chang, Yanchun; Li, Wuxia E-mail: czgu@aphy.iphy.ac.cn; Pan, Xinyu; Gu, Changzhi E-mail: czgu@aphy.iphy.ac.cn

    2014-07-28

    Sources of single photons are of fundamental importance in many applications as to provide quantum states for quantum communication and quantum information processing. Color centers in diamond are prominent candidates to generate and manipulate quantum states of light, even at room temperature. However, the efficiency of photon collection of the color centers in bulk diamond is greatly reduced by refraction at the diamond/air interface. To address this issue, diamond structuring has been investigated by various methods. Among them, focused-ion-beam (FIB) direct patterning has been recognized as the most favorable technique. But it has been noted that diamond tends to present significant challenges in FIB milling, e.g., the susceptibility of forming charging related artifacts and topographical features. In this work, periodically-positioned-rings and overlay patterning with stagger-superimposed-rings were proposed to alleviate some problems encountered in FIB milling of diamond, for improved surface morphology and shape control. Cross-scale network and uniform nanostructure arrays have been achieved in single crystalline diamond substrates. High quality diamond solid immersion lens and nanopillars were sculptured with a nitrogen-vacancy center buried at the desired position. Compared with the film counterpart, an enhancement of about ten folds in single photon collection efficiency was achieved with greatly improved signal to noise ratio. All these results indicate that FIB milling through over-lay patterning could be an effective approach to fabricate diamond structures, potentially for quantum information studies.

  6. GaN-on-diamond electronic device reliability: Mechanical and thermo-mechanical integrity

    SciTech Connect

    Liu, Dong; Sun, Huarui; Pomeroy, James W.; Kuball, Martin; Francis, Daniel; Faili, Firooz; Twitchen, Daniel J.

    2015-12-21

    The mechanical and thermo-mechanical integrity of GaN-on-diamond wafers used for ultra-high power microwave electronic devices was studied using a micro-pillar based in situ mechanical testing approach combined with an optical investigation of the stress and heat transfer across interfaces. We find the GaN/diamond interface to be thermo-mechanically stable, illustrating the potential for this material for reliable GaN electronic devices.

  7. Imaging electron emission from diamond and III V nitride surfaces with photo-electron emission microscopy

    NASA Astrophysics Data System (ADS)

    Nemanich, R. J.; English, S. L.; Hartman, J. D.; Sowers, A. T.; Ward, B. L.; Ade, H.; Davis, R. F.

    1999-05-01

    Wide bandgap semiconductors such as diamond and the III-V nitrides (GaN, AlN, and AlGaN alloys) exhibit small or even negative electron affinities. Results have shown that different surface treatments will modify the electron affinity of diamond to cause a positive or negative electron affinity (NEA). This study describes the characterization of these surfaces with photo-electron emission microscopy (PEEM). The PEEM technique is unique in that it combines aspects of UV photoemission and field emission. In this study, PEEM images are obtained with either a traditional Hg lamp or with tunable UV excitation from a free electron laser. The UV-free electron laser at Duke University provides tunable emission from 3.5 to greater than 7 eV. PEEM images of boron or nitrogen (N)-doped diamond are similar to SEM of the same surface indicating relatively uniform emission. For the N-doped samples, PEEM images were obtained for different photon energies ranging from 5.0 to 6.0 eV. In these experiments, the hydrogen terminated surface showed more intense PEEM images at lower photon energy indicating a lower photothreshold than annealed surfaces which are presumed to be adsorbate free. For the nitrides, the emission properties of an array of GaN emitter structures is imaged. Emission is observed from the peaks, and relatively uniform emission is observed from the array. The field at the sample surface is approximately 10 V/μm which is sufficient to obtain an image without UV light. This process is termed field emission electron microscopy (FEEM).

  8. Redesigned Electron-Beam Furnace Boosts Productivity

    NASA Technical Reports Server (NTRS)

    Williams, Gary A.

    1995-01-01

    Redesigned electron-beam furnace features carousel of greater capacity so more experiments conducted per loading, and time spent on reloading and vacuum pump-down reduced. Common mounting plate for electron source and carousel simplifies installation and reduces vibration.

  9. Redesigned Electron-Beam Furnace Boosts Productivity

    NASA Technical Reports Server (NTRS)

    Williams, Gary A.

    1995-01-01

    Redesigned electron-beam furnace features carousel of greater capacity so more experiments conducted per loading, and time spent on reloading and vacuum pump-down reduced. Common mounting plate for electron source and carousel simplifies installation and reduces vibration.

  10. Feasibility study for mega-electron-volt electron beam tomography

    SciTech Connect

    Hampel, U.; Baertling, Y.; Hoppe, D.; Kuksanov, N.; Fadeev, S.; Salimov, R.

    2012-09-15

    Electron beam tomography is a promising imaging modality for the study of fast technical processes. But for many technical objects of interest x rays of several hundreds of keV energy are required to achieve sufficient material penetration. In this article we report on a feasibility study for fast electron beam computed tomography with a 1 MeV electron beam. The experimental setup comprises an electrostatic accelerator with beam optics, transmission target, and a single x-ray detector. We employed an inverse fan-beam tomography approach with radiographic projections being generated from the linearly moving x-ray source. Angular projections were obtained by rotating the object.

  11. Feasibility study for mega-electron-volt electron beam tomography.

    PubMed

    Hampel, U; Bärtling, Y; Hoppe, D; Kuksanov, N; Fadeev, S; Salimov, R

    2012-09-01

    Electron beam tomography is a promising imaging modality for the study of fast technical processes. But for many technical objects of interest x rays of several hundreds of keV energy are required to achieve sufficient material penetration. In this article we report on a feasibility study for fast electron beam computed tomography with a 1 MeV electron beam. The experimental setup comprises an electrostatic accelerator with beam optics, transmission target, and a single x-ray detector. We employed an inverse fan-beam tomography approach with radiographic projections being generated from the linearly moving x-ray source. Angular projections were obtained by rotating the object.

  12. X-ray spectrometer based on a bent diamond crystal for high repetition rate free-electron laser applications

    DOE PAGES

    Boesenberg, Ulrike; Samoylova, Liubov; Roth, Thomas; ...

    2017-02-03

    A precise spectral characterization of every single pulse is required in many x-ray free-electron laser (XFEL) experiments due to the fluctuating spectral content of self-amplified spontaneous emission (SASE) beams. Bent single-crystal spectrometers can provide sufficient spectral resolution to resolve the SASE spikes while also covering the full SASE bandwidth. To better withstand the high heat load induced by the 4.5 MHz repetition rate of pulses at the forthcoming European XFEL facility, a spectrometer based on single-crystal diamond has been developed. Here, we report a direct comparison of the diamond spectrometer with its Si counterpart in experiments performed at the Linacmore » Coherent Light Source.« less

  13. Transformation of diamond nanoparticles into onion-like carbon by electron irradiation studied directly inside an ultrahigh-vacuum transmission electron microscope

    SciTech Connect

    Hiraki, J.; Mori, H.; Taguchi, E.; Yasuda, H.; Kinoshita, H.; Ohmae, N.

    2005-05-30

    In situ observation of the transformation of diamond nanoparticles (DNP) into onion-like carbon (OLC) was made during electron-beam irradiation inside an ultrahigh-vacuum transmission electron microscope at 300 kV with 8.5x10{sup 23} e/m{sup 2}. 5 nm DNP changed into OLC within about 10 min of irradiation, while 20 nm DNP did not change to OLC but to graphite. Therefore, the size effect is critical to the formation of OLC. The mechanism of formation of OLC from DNP is discussed.

  14. Ion-beam assisted, electron-beam physical vapor deposition

    SciTech Connect

    Singh, J.

    1996-12-01

    Electron beam-physical vapor deposition (EB-PVD) is a relatively new technology that has overcome some of the difficulties associated with chemical vapor deposition, physical vapor deposition, and thermal spray processes. In the EB-PVD process, focused high-energy electron beams generated from electron guns are directed to melt and evaporate ingots, as well as preheat the substrate inside a vacuum chamber. By adding the assistance of ion beams to the process, coating density and adhesion are improved, while costs are reduced. This article describes physical vapor deposition and ion-beam processes, explains the advantages of EB-PVD, shows how ion beams optimize the benefits of EB-PVD, and enumerates a variety of applications.

  15. Focused electron beam in pyroelectric electron probe microanalyzer.

    PubMed

    Imashuku, Susumu; Imanishi, Akira; Kawai, Jun

    2013-07-01

    We report a method to focus the electron beam generated using a pyroelectric crystal. An electron beam with a spot size of 100 μm was achieved by applying an electrical field to an electroconductive needle tip set on a pyroelectric crystal. When the focused electron beam bombarded a sample, characteristic X-rays of the sample were only detected due to the production of an electric field between the needle tip and the sample.

  16. Characterization of the high-energy neutron beam of the PRISMA beamline using a diamond detector

    NASA Astrophysics Data System (ADS)

    Cazzaniga, C.; Frost, C. D.; Minniti, T.; Schooneveld, E.; Perelli Cippo, E.; Tardocchi, M.; Rebai, M.; Gorini, G.

    2016-07-01

    The high-energy neutron component (En > 10 MeV) of the neutron spectrum of PRISMA, a beam-line at the ISIS spallation source, has been characterized for the first time. Neutron measurements using a Single-crystal Diamond Detector at a short-pulse source are obtained by a combination of pulse height and time of flight analysis. An XY scan provides a 2D map of the high-energy neutron beam which has a diameter of about 40 mm. The high neutron flux, that has been found to be (3.8 ± 0.7) · 105 cm-2s-1 for En > 10 MeV in the centre, opens up for a possible application of the beam-line as a high-energy neutron irradiation position. Results are of interest for the development of the ChipIR beam-line, which will feature an atmospheric-like neutron spectrum for chip irradiation experiment. Furthermore, these results demonstrate that diamond detectors can be used at spallation sources to investigate the transport of high-energy neutrons down instruments which is of interest in general to designers as high-energy neutrons are a source of background in thermal beamlines.

  17. Optical characterization and thermal properties of CVD diamond films for integration with power electronics

    NASA Astrophysics Data System (ADS)

    Nazari, Mohammad; Hancock, B. Logan; Anderson, Jonathan; Hobart, Karl D.; Feygelson, Tatyana I.; Tadjer, Marko J.; Pate, Bradford B.; Anderson, Travis J.; Piner, Edwin L.; Holtz, Mark W.

    2017-10-01

    Studies of diamond material for thermal management are reported for a nominally 1-μm thick layer grown on silicon. Thickness of the diamond is measured using spectroscopic ellipsometry. Spectra are consistently modeled using a diamond layer taking into account surface roughness and requiring an interlayer of nominally silicon carbide. The presence of the interlayer is confirmed by transmission electron microscopy. Thermal conductivity is determined based on a heater which is microfabricated followed by back etching to produce a supported diamond membrane. Micro-Raman mapping of the diamond phonon is used to estimate temperature rise under known drive conditions of the resistive heater. Consistent values are obtained for thermal conductivity based on straightforward analytical calculation using phonon shift to estimate temperature and finite element simulations which take both temperature rise and thermal stress into account.

  18. Hot Forming With Electron-Beam Welder

    NASA Technical Reports Server (NTRS)

    Dobson, R. K.; Whiffen, E. L.

    1984-01-01

    Hot forming to restore size and shape of thin metal parts done with electron-beam welder. Work-piece heated in scanning defocused electron beam rather than conventional heat-treating furnace. Technique proved successful in straightening some thin flanges of nickel alloy and titanium.

  19. Limiting current in electron-beam welders

    NASA Technical Reports Server (NTRS)

    Spiegel, K. W.

    1981-01-01

    Damage to workpiece by excessive current in electron-beam welder is prevented by mechanism that accurately adjusts anode-to-cathode spacing. Mechanism is installed on standard Sciaky (or equivalent) electron-beam gun with only minimal modification. By turning knurled knob and observing digital readout of anode/cathode separation, machine operator adjusts welder for safe maximum current before welding begins.

  20. Electron beam selectively seals porous metal filters

    NASA Technical Reports Server (NTRS)

    Snyder, J. A.; Tulisiak, G.

    1968-01-01

    Electron beam welding selectively seals the outer surfaces of porous metal filters and impedances used in fluid flow systems. The outer surface can be sealed by melting a thin outer layer of the porous material with an electron beam so that the melted material fills all surface pores.

  1. Use of electron spectroscopies in the tribological evaluation of diamond films

    SciTech Connect

    Peebles, D.E.; Pope, L.E.

    1990-01-01

    Diamond films hold a lot of promise as tribological protective coatings, especially for applications in harsh environments. However, thorough examinations of the mechanisms of film failure and wear must be completed in order to optimize the tribological performance of diamond films. In situ electron spectroscopic analysis has been very successfully applied to such studies for metal-metal wear systems and for systems involving several types of dry film lubricants. This work describes our application of these types of studies to protective diamond films on silicon. We have characterized the diamond films by selected techniques, including: Raman spectroscopy, Auger electron spectroscopy, x-ray photoelectron spectroscopy, electron energy loss spectroscopy, and a specially developed charging probe technique. We have characterized the relative ability of each technique to discern film damage, while evaluating the conditions under which each technique may be used, including normal operations such as elastic peak optimization and sample imaging. Results are discussed for each technique which are representative of undamaged and damaged diamond bonding configurations. In addition, the effects of ion bombardment for cleaning and damaging the surface have been evaluated. Finally, applications of these techniques to studies of the tribology of 440C stainless steel pins on diamond films are discussed. These results show that in laboratory air, the observed friction coefficient is strongly correlated with the concentration of oxygen and the surface roughness in the wear track, with only a weak (if any) dependence on the type of carbon structure present (diamond versus graphite). 30 refs., 15 figs., 4 tabs.

  2. Wave excitation by inhomogeneous suprathermal electron beams

    NASA Technical Reports Server (NTRS)

    Freund, H. P.; Dillenburg, D.; Wu, C. S.

    1982-01-01

    Wave excitation by an inhomogeneous suprathermal electron beam in a homogeneous magnetized plasma is studied. Not only is the beam density nonuniform, but the beam electrons possess a sheared bulk velocity. The general dispersion equation encompassing both electrostatic and electromagnetic effects is derived. Particular attention is given to the whistler mode. It is established that the density-gradient and velocity-shear effects are important for waves with frequencies close to the lower-hybrid resonance frequency.

  3. Electron Beam Influence on Microcrystalline Cellulose

    NASA Astrophysics Data System (ADS)

    Nemţanu, Monica R.; Minea, R.; Mitru, Ecaterina

    2007-04-01

    Cellulose is a natural raw material used in great quantity as stabilizer, tabletting agent, anti-caking agent, flavor carrier, etc. Due to its structure it has limited uses exhibiting some disadvantages in certain applications. Irradiation technique is frequently used to change the polymeric materials. The purpose of the work is to discuss the action of accelerated electron beams (e-beams) on microcrystalline cellulose. The results of the study showed that some properties of cellulose can be improved by electron beam treatment.

  4. Electroluminescence from a diamond device with ion-beam-micromachined buried graphitic electrodes

    NASA Astrophysics Data System (ADS)

    Forneris, J.; Battiato, A.; Gatto Monticone, D.; Picollo, F.; Amato, G.; Boarino, L.; Brida, G.; Degiovanni, I. P.; Enrico, E.; Genovese, M.; Moreva, E.; Traina, P.; Verona, C.; Verona Rinati, G.; Olivero, P.

    2015-04-01

    Focused MeV ion microbeams are suitable tools for the direct writing of conductive graphitic channels buried in an insulating diamond bulk, as demonstrated in previous works with the fabrication of multi-electrode ionizing radiation detectors and cellular biosensors. In this work we investigate the suitability of the fabrication method for the electrical excitation of color centers in diamond. Differently from photoluminescence, electroluminescence requires an electrical current flowing through the diamond sub-gap states for the excitation of the color centers. With this purpose, buried graphitic electrodes with a spacing of 10 μm were fabricated in the bulk of a detector-grade CVD single-crystal diamond sample using a scanning 1.8 MeV He+ micro-beam. The current flowing in the gap region between the electrodes upon the application of a 450 V bias voltage was exploited as the excitation pump for the electroluminescence of different types of color centers localized in the above-mentioned gap. The bright light emission was spatially mapped using a confocal optical microscopy setup. The spectral analysis of electroluminescence revealed the emission from neutrally-charged nitrogen-vacancy centers (NV0, λZPL = 575 nm), as well as from cluster crystal dislocations (A-band, λ = 400-500 nm). Moreover, an electroluminescence signal with appealing spectral features (sharp emission at room temperature, low phonon sidebands) from He-related defects was detected (λZPL = 536.3 nm, λZPL = 560.5 nm); a low and broad peak around λ = 740 nm was also observed and tentatively ascribed to Si-V or GR1 centers. These results pose interesting future perspectives for the fabrication of electrically-stimulated single-photon emitters in diamond for applications in quantum optics and quantum cryptography.

  5. Realization of a diamond based high density multi electrode array by means of Deep Ion Beam Lithography

    NASA Astrophysics Data System (ADS)

    Picollo, F.; Battiato, A.; Bernardi, E.; Boarino, L.; Enrico, E.; Forneris, J.; Gatto Monticone, D.; Olivero, P.

    2015-04-01

    In the present work we report about a parallel-processing ion beam fabrication technique whereby high-density sub-superficial graphitic microstructures can be created in diamond. Ion beam implantation is an effective tool for the structural modification of diamond: in particular ion-damaged diamond can be converted into graphite, therefore obtaining an electrically conductive phase embedded in an optically transparent and highly insulating matrix. The proposed fabrication process consists in the combination of Deep Ion Beam Lithography (DIBL) and Focused Ion Beam (FIB) milling. FIB micromachining is employed to define micro-apertures in the contact masks consisting of thin (<10 μm) deposited metal layers through which ions are implanted in the sample. A prototypical single-cell biosensor was realized with the above described technique. The biosensor has 16 independent electrodes converging inside a circular area of 20 μm diameter (typical neuroendocrine cells size) for the simultaneous recording of amperometric signals.

  6. Properties of a commercial PTW-60019 synthetic diamond detector for the dosimetry of small radiotherapy beams

    NASA Astrophysics Data System (ADS)

    Lárraga-Gutiérrez, José Manuel; Ballesteros-Zebadúa, Paola; Rodríguez-Ponce, Miguel; García-Garduño, Olivia Amanda; Olinca Galván de la Cruz, Olga

    2015-01-01

    A CVD based radiation detector has recently become commercially available from the manufacturer PTW-Freiburg (Germany). This detector has a sensitive volume of 0.004 mm3, a nominal sensitivity of 1 nC Gy-1 and operates at 0 V. Unlike natural diamond based detectors, the CVD diamond detector reports a low dose rate dependence. The dosimetric properties investigated in this work were dose rate, angular dependence and detector sensitivity and linearity. Also, percentage depth dose, off-axis dose profiles and total scatter ratios were measured and compared against equivalent measurements performed with a stereotactic diode. A Monte Carlo simulation was carried out to estimate the CVD small beam correction factors for a 6 MV photon beam. The small beam correction factors were compared with those obtained from stereotactic diode and ionization chambers in the same irradiation conditions The experimental measurements were performed in 6 and 15 MV photon beams with the following square field sizes: 10 × 10, 5 × 5, 4 × 4, 3 × 3, 2 × 2, 1.5 × 1.5, 1 × 1 and 0.5 × 0.5 cm. The CVD detector showed an excellent signal stability (<0.2%) and linearity, negligible dose rate dependence (<0.2%) and lower response angular dependence. The percentage depth dose and off-axis dose profiles measurements were comparable (within 1%) to the measurements performed with ionization chamber and diode in both conventional and small radiotherapy beams. For the 0.5 × 0.5 cm, the measurements performed with the CVD detector showed a partial volume effect for all the dosimetric quantities measured. The Monte Carlo simulation showed that the small beam correction factors were close to unity (within 1.0%) for field sizes ≥1 cm. The synthetic diamond detector had high linearity, low angular and negligible dose rate dependence, and its response was energy independent within 1% for field sizes from 1.0 to 5.0 cm. This work provides new data showing the performance of the CVD

  7. Properties of a commercial PTW-60019 synthetic diamond detector for the dosimetry of small radiotherapy beams.

    PubMed

    Lárraga-Gutiérrez, José Manuel; Ballesteros-Zebadúa, Paola; Rodríguez-Ponce, Miguel; García-Garduño, Olivia Amanda; de la Cruz, Olga Olinca Galván

    2015-01-21

    A CVD based radiation detector has recently become commercially available from the manufacturer PTW-Freiburg (Germany). This detector has a sensitive volume of 0.004 mm(3), a nominal sensitivity of 1 nC Gy(-1) and operates at 0 V. Unlike natural diamond based detectors, the CVD diamond detector reports a low dose rate dependence. The dosimetric properties investigated in this work were dose rate, angular dependence and detector sensitivity and linearity. Also, percentage depth dose, off-axis dose profiles and total scatter ratios were measured and compared against equivalent measurements performed with a stereotactic diode. A Monte Carlo simulation was carried out to estimate the CVD small beam correction factors for a 6 MV photon beam. The small beam correction factors were compared with those obtained from stereotactic diode and ionization chambers in the same irradiation conditions The experimental measurements were performed in 6 and 15 MV photon beams with the following square field sizes: 10 × 10, 5 × 5, 4 × 4, 3 × 3, 2 × 2, 1.5 × 1.5, 1 × 1 and 0.5 × 0.5 cm. The CVD detector showed an excellent signal stability (<0.2%) and linearity, negligible dose rate dependence (<0.2%) and lower response angular dependence. The percentage depth dose and off-axis dose profiles measurements were comparable (within 1%) to the measurements performed with ionization chamber and diode in both conventional and small radiotherapy beams. For the 0.5 × 0.5 cm, the measurements performed with the CVD detector showed a partial volume effect for all the dosimetric quantities measured. The Monte Carlo simulation showed that the small beam correction factors were close to unity (within 1.0%) for field sizes ≥1 cm. The synthetic diamond detector had high linearity, low angular and negligible dose rate dependence, and its response was energy independent within 1% for field sizes from 1.0 to 5.0 cm. This work provides new data showing the

  8. High-pressure generation using double stage micro-paired diamond anvils shaped by focused ion beam

    SciTech Connect

    Sakai, Takeshi Ohfuji, Hiroaki; Yagi, Takehiko; Irifune, Tetsuo; Ohishi, Yasuo; Hirao, Naohisa; Suzuki, Yuya; Kuroda, Yasushi; Asakawa, Takayuki; Kanemura, Takashi

    2015-03-15

    Micron-sized diamond anvils with a 3 μm culet were successfully processed using a focused ion beam (FIB) system and the generation of high pressures was confirmed using the double stage diamond anvil cell technique. The difficulty of aligning two second-stage micro-anvils was solved via the paired micro-anvil method. Micro-manufacturing using a FIB system enables us to control anvil shape, process any materials, including nano-polycrystalline diamond and single crystal diamond, and assemble the sample exactly in a very small space between the second-stage anvils. This method is highly reproducible. High pressures over 300 GPa were achieved, and the pressure distribution around the micro-anvil culet was evaluated by using a well-focused synchrotron micro-X-ray beam.

  9. Spin transport in tilted electron vortex beams

    SciTech Connect

    Basu, Banasri; Chowdhury, Debashree

    2014-12-10

    In this paper we have enlightened the spin related issues of tilted Electron vortex beams. We have shown that in the skyrmionic model of electron we can have the spin Hall current considering the tilted type of electron vortex beam. We have considered the monopole charge of the tilted vortex as time dependent and through the time variation of the monopole charge we can explain the spin Hall effect of electron vortex beams. Besides, with an external magnetic field we can have a spin filter configuration.

  10. Intense steady state electron beam generator

    DOEpatents

    Hershcovitch, Ady; Kovarik, Vincent J.; Prelec, Krsto

    1990-01-01

    An intense, steady state, low emittance electron beam generator is formed by operating a hollow cathode discharge plasma source at critical levels in combination with an extraction electrode and a target electrode that are operable to extract a beam of fast primary electrons from the plasma source through a negatively biased grid that is critically operated to repel bulk electrons toward the plasma source while allowing the fast primary electrons to move toward the target in the desired beam that can be successfully transported for relatively large distances, such as one or more meters away from the plasma source.

  11. Optimizing the electron beam parameters for head-on beam-beam compensation in RHIC

    SciTech Connect

    Luo, Y.; Fischer, W.; Pikin, A.; Gu, X.

    2011-03-28

    Head-on beam-beam compensation is adopted to compensate the large beam-beam tune spread from the protonproton interactions at IP6 and IP8 in the Relativistic Heavy Ion Collider (RHIC). Two e-lenses are being built and to be in stalled near IP10 in the end of 2011. In this article we perform numeric simulation to investigate the effect of the electron beam parameters on the proton dynamics. The electron beam parameters include its transverse profile, size, current, offset and random errors in them. In this article we studied the effect of the electron beam parameters on the proton dynamics. The electron beam parameters include its transverse shape, size, current, offset and their random errors. From the study, we require that the electron beam size can not be smaller than the proton beam's. And the random noise in the electron current should be better than 0.1%. The offset of electron beam w.r.t. the proton beam center is crucial to head-on beam-beam compensation. Its random errors should be below {+-}8{micro}m.

  12. Dissociative adsorption of molecular deuterium and thermal stability onto hydrogenated, bare and ion beam damaged poly- and single crystalline diamond surfaces

    NASA Astrophysics Data System (ADS)

    Michaelson, Sh.; Chandran, M.; Zalkind, S.; Shamir, N.; Akhvlediani, R.; Hoffman, A.

    2015-12-01

    In this work we report on dissociative adsorption of deuterium (D2) on bare, hydrogenated and ion beam bombarded polycrystalline and single crystalline diamond surfaces. Polycrystalline diamond films with an average grain size of 300 nm were deposited on silicon substrates by hot filament chemical vapor deposition technique from methane/hydrogen gas mixture. Deposited films were characterized using Raman spectroscopy, atomic force microscopy and scanning electron microscopy to estimate the phase composition and microstructure. High resolution electron energy loss spectroscopy and direct recoil spectrometry were used to study hydrogen (deuterium) bonding configuration of the upper surface region. Near surface amorphization was achieved by 1 keV Ar+ implantation at 1 × 1015 ions/cm2 at room temperature (RT). As deposited and Ar+ bombarded films are annealed to 500-1000 °C in ultra-high vacuum conditions and also under D2 partial pressure of 5 × 10- 6 Torr. For comparison, key experiments were repeated on the single crystal (100) diamond. Our results clearly show the preferential dissociative adsorption of D2 on low hybridized carbon (sp/sp2) states with activation temperature as low as RT, but with a lower thermal stability compared to pure diamond Csbnd D bonds.

  13. Luminescence of crystals excited by a KrCl laser and a subnanosecond electron beam

    SciTech Connect

    Lipatov, E I; Tarasenko, Viktor F; Orlovskii, Viktor M; Alekseev, S B

    2005-08-31

    Luminescence of crystals of natural spodumene and natural diamond of the type IIa is studied upon excitation by a laser at a wavelength of 222 nm and by a subnanosecond avalanche electron beam (SAEB) formed in air at the atmospheric pressure. The photoluminescence spectra of spodumene and diamond are shown to exhibit additional bands, which are absent upon SAEB excitation. It is demonstrated that SAEB excitation allows one to analyse various crystals under normal conditions without using any vacuum equipment. (interaction of laser radiation with matter)

  14. Dual cathode system for electron beam instruments

    NASA Technical Reports Server (NTRS)

    Bradley, James G. (Inventor); Conley, Joseph M. (Inventor); Wittry, David B. (Inventor)

    1989-01-01

    An electron beam source having a single electron optical axis is provided with two coplanar cathodes equally spaced on opposite sides from the electron optical axis. A switch permits selecting either cathode, and a deflection system comprised of electromagnets, each with separate pole pieces equally spaced from the plane of the cathodes and electron optical axis, first deflects the electron beam from a selected cathode toward the electron optical axis, and then in an opposite direction into convergence with the electron optical axis. The result is that the electron beam from one selected cathode undergoes a sigmoid deflection in two opposite directions, like the letter S, with the sigmoid deflection of each being a mirror image of the other.

  15. NCD Diamond Semiconductor System for Advanced Power Electronics Systems Integration : CRADA report

    SciTech Connect

    Sumant, Anirudha

    2016-07-22

    The integration of 2D materials such as molybdenum disulphide (MoS2) with diamond (3D) was achieved by forming an heterojunction between these two materials and its electrical performance was studied experimentally. The device charactertics did show good rectifying nature when p-type single crystal diamond was integrated with n-type MoS2. These results are very encouraging indicating possible applications in semiconductor electronics, however further studies are required for a detailed understanding of the transport phenomena at the MoS2/diamond interface.

  16. The Electronic and Atomic Structure of Diamond Surface and Effects of Hydrogen Termination

    DTIC Science & Technology

    1981-11-02

    low reistivity, 3uR. N. Stuart, F . Wooten , and W, E. Spicer, Phys. Rev. Lett. 10, 7 (1963). although most Ila diamonds are insulators with very high...the large optical phonon energies of diamond (-170 meV) and the observed effective negative electron affinity of diamond (111) 1 x 1 (see Appendix I...semiconductors and islaos the band-peetd ncnimto f u ale ok 1 erprIn contrast to oinsulators, on the relative cross section of the upper p-like part of

  17. Carbon ion beam focusing using laser irradiated heated diamond hemispherical shells

    SciTech Connect

    Offermann, Dustin T; Flippo, Kirk A; Gaillard, Sandrine A

    2009-01-01

    Experiments preformed at the Los Alamos National Laboratory's Trident Laser Facility were conducted to observe the acceleration and focusing of carbon ions via the TNSA mechanism using hemispherical diamond targets. Trident is a 200TW class laser system with 80J of 1 {micro}m, short-pulse light delivered in 0.5ps, with a peak intensity of 5 x 10{sup 20} W/cm{sup 2}. Targets where Chemical Vapor Deposition (CVD) diamonds formed into hemispheres with a radius of curvature of 400{micro}m and a thickness of 5{micro}m. The accelerated ions from the hemisphere were diagnosed by imaging the shadow of a witness copper mesh grid located 2mm behind the target onto a film pack located 5cm behind the target. Ray tracing was used to determine the location of the ion focal spot. The TNSA mechanism favorably accelerates hydrogen found in and on the targets. To make the carbon beam detectable, targets were first heated to several hundred degrees Celsius using a CW, 532nm, 8W laser. Imaging of the carbon beam was accomplished via an auto-radiograph of a nuclear activated lithium fluoride window in the first layer of the film pack. The focus of the carbon ion beam was determined to be located 630 {+-} 110 {micro}m from the vertex of the hemisphere.

  18. Single electron beam rf feedback free electron laser

    DOEpatents

    Brau, C.A.; Stein, W.E.; Rockwood, S.D.

    1981-02-11

    A free electron laser system and electron beam system for a free electron laser which uses rf feedback to enhance efficiency are described. Rf energy is extracted from a single electron beam by decelerating cavities and energy is returned to accelerating cavities using rf returns, such as rf waveguides, rf feedthroughs, resonant feedthroughs, etc. This rf energy is added to rf klystron energy to reduce the required input energy and thereby enhance energy efficiency of the system.

  19. Electron paramagnetic resonance of the N2V- defect in 15N -doped synthetic diamond

    NASA Astrophysics Data System (ADS)

    Green, B. L.; Dale, M. W.; Newton, M. E.; Fisher, D.

    2015-10-01

    Nitrogen is the dominant impurity in the majority of natural and synthetic diamonds, and the family of nitrogen vacancy-type (NnV ) defects are crucial in our understanding of defect dynamics in these diamonds. A significant gap is the lack of positive identification of N2V- , the dominant charge state of N2V in diamond that contains a significant concentration of electron donors. In this paper, we employ isotopically-enriched diamond to identify the EPR spectrum associated with 15N2V- and use the derived spin Hamiltonian parameters to identify 14N2V- in a natural isotopic abundance sample. The electronic wave function of the N2V- ground state and previous lack of identification is discussed. The N2V- EPR spectrum intensity is shown to correlate with the H2 optical absorption over an order of magnitude in concentration.

  20. Electrochemically grafted polypyrrole changes photoluminescence of electronic states inside nanocrystalline diamond

    SciTech Connect

    Galář, P. Malý, P.; Čermák, J.; Kromka, A.; Rezek, B.

    2014-12-14

    Hybrid diamond-organic interfaces are considered attractive for diverse applications ranging from electronics and energy conversion to medicine. Here we use time-resolved and time-integrated photoluminescence spectroscopy in visible spectral range (380–700 nm) to study electronic processes in H-terminated nanocrystalline diamond films (NCD) with 150 nm thin, electrochemically deposited polypyrrole (PPy) layer. We observe changes in dynamics of NCD photoluminescence as well as in its time-integrated spectra after polymer deposition. The effect is reversible. We propose a model where the PPy layer on the NCD surface promotes spatial separation of photo-generated charge carriers both in non-diamond carbon phase and in bulk diamond. By comparing different NCD thicknesses we show that the effect goes as much as 200 nm deep inside the NCD film.

  1. Photo-stimulated low electron temperature high current diamond film field emission cathode

    DOEpatents

    Shurter,; Roger Philips, Devlin [Los Alamos, NM; David James, Moody [Santa Fe, NM; Nathan Andrew, Taccetti [Los Alamos, NM; Jose Martin, Russell [Santa Fe, NM; John, Steven [Los Alamos, NM

    2012-07-24

    An electron source includes a back contact surface having a means for attaching a power source to the back contact surface. The electron source also includes a layer comprising platinum in direct contact with the back contact surface, a composite layer of single-walled carbon nanotubes embedded in platinum in direct contact with the layer comprising platinum. The electron source also includes a nanocrystalline diamond layer in direct contact with the composite layer. The nanocrystalline diamond layer is doped with boron. A portion of the back contact surface is removed to reveal the underlying platinum. The electron source is contained in an evacuable container.

  2. Attainment of Electron Beam Suitable for Medium Energy Electron Cooling

    SciTech Connect

    Seletskiy, Sergei M.

    2005-01-01

    Electron cooling of charged particle beams is a well-established technique at electron energies of up to 300 keV. However, up to the present time the advance of electron cooling to the MeV-range energies has remained a purely theoretical possibility. The electron cooling project at Fermilab has recently demonstrated the ¯rst cooling of 8.9 GeV/c antiprotons in the Recycler ring, and therefore, has proved the validity of the idea of relativistic electron cool- ing. The Recycler Electron Cooler (REC) is the key component of the Teva- tron Run II luminosity upgrade project. Its performance depends critically on the quality of electron beam. A stable electron beam of 4.3 MeV car- rying 0.5 A of DC current is required. The beam suitable for the Recycler Electron Cooler must have an angular spread not exceeding 200 ¹rad. The full-scale prototype of the REC was designed, built and tested at Fermilab in the Wideband laboratory to study the feasibility of attaining the high-quality electron beam. In this thesis I describe various aspects of development of the Fermilab electron cooling system, and the techniques used to obtain the electron beam suitable for the cooling process. In particular I emphasize those aspects of the work for which I was principally responsible.

  3. Genesis of diamond inclusions: An integrated cathodoluminescence (CL) and Electron backscatter diffraction (EBSD) study on eclogitic and peridotitic inclusions and their diamond host.

    NASA Astrophysics Data System (ADS)

    van den Heuvel, Quint; Matveev, Sergei; Drury, Martyn; Gress, Michael; Chinn, Ingrid; Davies, Gareth

    2017-04-01

    Diamond inclusions are potentially fundamental to understanding the formation conditions of diamond and the volatile cycles in the deep mantle. In order to fully understand the implications of the compositional information recorded by inclusions it is vital to know whether the inclusions are proto-, syn-, or epigenetic and the extent to which they have equilibrated with diamond forming fluids. In previous studies, the widespread assumption was made that the majority of diamond inclusions are syngenetic, based upon observation of cubo-octahedral morphology imposed on the inclusions. Recent work has reported the crystallographic relationship between inclusions and the host diamond to be highly complex and the lack of crystallographic relationships between inclusions and diamonds has led some to question the significance of imposed cubo-octahedral morphology. This study presents an integrated EBSD and CL study of 9 diamonds containing 20 pyropes, 2 diopsides, 1 forsterite and 1 rutile from the Jwaneng and Letlhakane kimberlite clusters, Botswana. A new method was developed to analyze the crystallographic orientation of the host diamond and the inclusions with EBSD. Diamonds plates were sequentially polished to expose inclusions at different levels in the diamond. CL imaging at different depths was performed in order to produce a 3D view of diamond growth zones around the inclusions. Standard diamond polishing techniques proved too aggressive for silicate inclusions as they were damaged to such a degree that EBSD measurements on the inclusions were impossible. The inclusions were milled with a Ga+ focused ion beam (FIB) at a 12° angle to clean the surface for EBSD measurements. Of the 24 inclusions, 9 have an imposed cubo-octahedral morphology. Of these inclusions, 6 have faces orientated parallel to diamond growth zones and/or appear to have nucleated on a diamond growth surface, implying syngenesis. In contrast, other diamonds record resorption events such that

  4. Visualization of expanding warm dense gold and diamond heated rapidly by laser-generated ion beams

    DOE PAGES

    Bang, W.; Albright, B. J.; Bradley, P. A.; ...

    2015-09-22

    With the development of several novel heating sources, scientists can now heat a small sample isochorically above 10,000 K. Although matter at such an extreme state, known as warm dense matter, is commonly found in astrophysics (e.g., in planetary cores) as well as in high energy density physics experiments, its properties are not well understood and are difficult to predict theoretically. This is because the approximations made to describe condensed matter or high-temperature plasmas are invalid in this intermediate regime. A sufficiently large warm dense matter sample that is uniformly heated would be ideal for these studies, but has beenmore » unavailable to date. We have used a beam of quasi-monoenergetic aluminum ions to heat gold and diamond foils uniformly and isochorically. For the first time, we visualized directly the expanding warm dense gold and diamond with an optical streak camera. Furthermore, we present a new technique to determine the initial temperature of these heated samples from the measured expansion speeds of gold and diamond into vacuum. We anticipate the uniformly heated solid density target will allow for direct quantitative measurements of equation-of-state, conductivity, opacity, and stopping power of warm dense matter, benefiting plasma physics, astrophysics, and nuclear physics.« less

  5. Visualization of expanding warm dense gold and diamond heated rapidly by laser-generated ion beams

    SciTech Connect

    Bang, W.; Albright, B. J.; Bradley, P. A.; Gautier, D. C.; Palaniyappan, S.; Vold, E. L.; Cordoba, M. A. Santiago; Hamilton, C. E.; Fernández, J. C.

    2015-09-22

    With the development of several novel heating sources, scientists can now heat a small sample isochorically above 10,000 K. Although matter at such an extreme state, known as warm dense matter, is commonly found in astrophysics (e.g., in planetary cores) as well as in high energy density physics experiments, its properties are not well understood and are difficult to predict theoretically. This is because the approximations made to describe condensed matter or high-temperature plasmas are invalid in this intermediate regime. A sufficiently large warm dense matter sample that is uniformly heated would be ideal for these studies, but has been unavailable to date. We have used a beam of quasi-monoenergetic aluminum ions to heat gold and diamond foils uniformly and isochorically. For the first time, we visualized directly the expanding warm dense gold and diamond with an optical streak camera. Furthermore, we present a new technique to determine the initial temperature of these heated samples from the measured expansion speeds of gold and diamond into vacuum. We anticipate the uniformly heated solid density target will allow for direct quantitative measurements of equation-of-state, conductivity, opacity, and stopping power of warm dense matter, benefiting plasma physics, astrophysics, and nuclear physics.

  6. Experimental Evaluation of Beam to Diamond Box Column Connection with Through Plate in Moment Frames

    SciTech Connect

    Keshavarzi, Farhad; Torabian, Shahabeddin; Imanpour, Ali; Mirghaderi, Rasoul

    2008-07-08

    Moment resisting frames with built up section have very enhanced features due to high bending stiffness and strength characteristics in two principal axes and access to column faces for beam to column easy connections. But due to proper transfer of beam stresses to column faces there were always some specific controvertibly issues that how to make the load transfer through and in plane manner in order to mobilize the forces in column faces. Using diamond column instead of box column provide possibility to mobilize the load transfer mechanism in column faces. This section as a column has considerable benefit such as high plastic to elastic section modulus ratio which is an effective factor for force controlled components. Typical connection has no chance to be applied with diamond column.This paper elucidates the seismic behavior of through-plates moment connections to diamond box columns for use in steel moment resisting frames. This connection has a lot of economical benefits such as no need to horizontal continuity plates and satisfying the weak beam--strong column criteria in the connection region. They might serve as panel zone plates as well. According to high shear demand in panel zone of beam to column joint one should use the doublers plates in order to decrease the shear strength demand in this sensitive part of structure but these plates have no possibility to mobilize the load transfer mechanism in column web and transfer them to column flanges. In this type of connection, column faces have effective role in order to decrease the demands on through plate and they are impressive factors for improving the performance of the connection.Experimental analysis was conducted to elucidate the seismic behavior of this connection. The results of Experimental analysis established the effectiveness of the through plate in mitigating local stress concentrations and forming the plastic hinge zone in the beam away from the beam to column interface. The moment

  7. Development of a synthetic single crystal diamond dosimeter for dose measurement of clinical proton beams

    NASA Astrophysics Data System (ADS)

    Moignier, Cyril; Tromson, Dominique; de Marzi, Ludovic; Marsolat, Fanny; García Hernández, Juan Carlos; Agelou, Mathieu; Pomorski, Michal; Woo, Romuald; Bourbotte, Jean-Michel; Moignau, Fabien; Lazaro, Delphine; Mazal, Alejandro

    2017-07-01

    The scope of this work was to develop a synthetic single crystal diamond dosimeter (SCDD-Pro) for accurate relative dose measurements of clinical proton beams in water. Monte Carlo simulations were carried out based on the MCNPX code in order to investigate and reduce the dose curve perturbation caused by the SCDD-Pro. In particular, various diamond thicknesses were simulated to evaluate the influence of the active volume thickness (e AV) as well as the influence of the addition of a front silver resin (250 µm in thickness in front of the diamond crystal) on depth-dose curves. The simulations indicated that the diamond crystal alone, with a small e AV of just 5 µm, already affects the dose at Bragg peak position (Bragg peak dose) by more than 2% with respect to the Bragg peak dose deposited in water. The optimal design that resulted from the Monte Carlo simulations consists of a diamond crystal of 1 mm in width and 150 µm in thickness with the front silver resin, enclosed by a water-equivalent packaging. This design leads to a deviation between the Bragg peak dose from the full detector modeling and the Bragg peak dose deposited in water of less than 1.2%. Based on those optimizations, an SCDD-Pro prototype was built and evaluated in broad passive scattering proton beams. The experimental evaluation led to probed SCDD-Pro repeatability, dose rate dependence and linearity, that were better than 0.2%, 0.4% (in the 1.0-5.5 Gy min-1 range) and 0.4% (for dose higher than 0.05 Gy), respectively. The depth-dose curves in the 90-160 MeV energy range, measured with the SCDD-Pro without applying any correction, were in good agreement with those measured using a commercial IBA PPC05 plane-parallel ionization chamber, differing by less than 1.6%. The experimental results confirmed that this SCDD-Pro is suitable for measurements with standard electrometers and that the depth-dose curve perturbation is negligible, with no energy dependence and no significant dose rate

  8. Cycloadditions on diamond (100) 2 x 1: observation of lowered electron affinity due to hydrocarbon adsorption.

    PubMed

    Ouyang, Ti; Gao, Xingyu; Qi, Dongchen; Wee, Andrew Thye Shen; Loh, Kian Ping

    2006-03-23

    The adsorption of allyl alcohol, acrylic acid, and allyl chloride, as well as unsaturated organic molecules such as acetylene and 1,3 butadiene, on reconstructed diamond (100) 2 x 1 have been investigated using high-resolution electron energy loss (HREELS) spectroscopy and synchrotron radiation spectroscopy. The cycloadditions of these organic molecules produce chemically adsorbed adlayers with varying degree of coverages on the clean diamond. The organic adsorbed surface has a lowered electron affinity and shows a secondary electron yield that varies between 12 and 40% of the yield obtained from a fully hydrogenated diamond surface. The diamond surface can be functionalized with hydroxyl, carboxylic, and chlorine functionalities by the adsorption of these allyl organics. The [2 + 2] adduct of acetylene on the diamond (100) 2 x 1 surface can be observed. 1,3-butadiene attains a higher coverage as well as forms a thermally more stable adlayer on the diamond surface compared to the other organic molecules, due to its ability to undergo [4 + 2] cycloaddition.

  9. Diamond Pixel Detectors and 3D Diamond Devices

    NASA Astrophysics Data System (ADS)

    Venturi, N.

    2016-12-01

    Results from detectors of poly-crystalline chemical vapour deposited (pCVD) diamond are presented. These include the first analysis of data of the ATLAS Diamond Beam Monitor (DBM). The DBM module consists of pCVD diamond sensors instrumented with pixellated FE-I4 front-end electronics. Six diamond telescopes, each with three modules, are placed symmetrically around the ATLAS interaction point. The DBM tracking capabilities allow it to discriminate between particles coming from the interaction point and background particles passing through the ATLAS detector. Also, analysis of test beam data of pCVD DBM modules are presented. A new low threshold tuning algorithm based on noise occupancy was developed which increases the DBM module signal to noise ratio significantly. Finally first results from prototypes of a novel detector using pCVD diamond and resistive electrodes in the bulk, forming a 3D diamond device, are discussed. 3D devices based on pCVD diamond were successfully tested with test beams at CERN. The measured charge is compared to that of a strip detector mounted on the same pCVD diamond showing that the 3D device collects significantly more charge than the planar device.

  10. Electron Beam Scanning in Industrial Applications

    NASA Astrophysics Data System (ADS)

    Jongen, Yves; Herer, Arnold

    1996-05-01

    Scanned electron beams are used within many industries for applications such as sterilization of medical disposables, crosslinking of wire and cables insulating jackets, polymerization and degradation of resins and biomaterials, modification of semiconductors, coloration of gemstones and glasses, removal of oxides from coal plant flue gasses, and the curing of advanced composites and other molded forms. X-rays generated from scanned electron beams make yet other applications, such as food irradiation, viable. Typical accelerators for these applications range in beam energy from 0.5MeV to 10 MeV, with beam powers between 5 to 500kW and scanning widths between 20 and 300 cm. Since precise control of dose delivery is required in many of these applications, the integration of beam characteristics, product conveyance, and beam scanning mechanisms must be well understood and optimized. Fundamental issues and some case examples are presented.

  11. Fine Structure in the Secondary Electron Emission Peak for Diamond Crystal with (100) Negative Electron Affinity Surface

    NASA Technical Reports Server (NTRS)

    Asnin, V. M.; Krainsky, I. L.

    1998-01-01

    A fine structure was discovered in the low-energy peak of the secondary electron emission spectra of the diamond surface with negative electron affinity. We studied this structure for the (100) surface of the natural type-IIb diamond crystal. We have found that the low-energy peak consists of a total of four maxima. The relative energy positions of three of them could be related to the electron energy minima near the bottom of the conduction band. The fourth peak, having the lowest energy, was attributed to the breakup of the bulk exciton at the surface during the process of secondary electron emission.

  12. Conditioner for a helically transported electron beam

    SciTech Connect

    Wang, C.

    1992-05-01

    The kinetic theory is developed to investigate a conditioner for a helically imported electron beam. Linear expressions for axial velocity spread are derived. Numerical simulation is used to check the theoretical results and examine nonlinear aspects of the conditioning process. The results show that in the linear regime the action of the beam conditioner on a pulsed beam mainly depends on the phase at which the beam enters the conditioner and depends only slightly on the operating wavelength. In the nonlinear regime, however, the action of the conditioner strongly depends on the operating wavelength and only slightly upon the entrance phase. For a properly chosen operating wavelength, a little less than the electron`s relativistic cyclotron wavelength, the conditioner can decrease the axial velocity spread of a pulsed beam down to less than one-third of its initial value.

  13. Non-Vacuum Electron Beam Welding

    SciTech Connect

    Hershcovitch, Ady

    2007-01-31

    Original objectives of CRADA number BNL-01-03 between BNL and Acceleron, Inc., were to further develop the Plasma Window concept (a BNL invention covered by US Patent number 5,578,831), mate the Plasma Window to an existing electron beam welder to perform in-air electron beam welding, and mount the novel nonvacuum electron beam welder on a robot arm. Except for the last objective, all other goals were met or exceeded. Plasma Window design and operation was enhanced during the project, and it was successfully mated to a conventional4 kW electron beam welder. Unprecedented high quality non-vacuum electron beam . welding was demonstrated. Additionally, a new invention the Plasma Shield (US Patent number 7,075,030) that chemically and thermally shields a target object was set forth. Great interest in the new technology was shown by a number of industries and three arcs were sold for experimental use. However, the welding industry requested demonstration of high speed welding, which requires 100 kW electron beam welders. The cost of such a welder involved the need for additional funding. Therefore, some of the effort was directed towards Plasma Shield development. Although relatively a small portion of the R&D effort was spent on the Plasma Shield, some very encouraging results were obtained. Inair Plasma Shield was demonstrated. With only a partial shield, enhanced vacuum separation and cleaner welds were realized. And, electron beam propagation in atmosphere improved by a factor of about 3. Benefits to industry are the introduction of two new technologies. BNL benefited from licensing fee cash, from partial payment for employee salary, and from a new patent In addition to financial benefits, a new technology for physics studies was developed. Recommendations for future work are to develop an under-water plasma shield, perform welding with high-power electron beam:s, carry out other plasma shielded electron beam and laser processes. Potential benefits from further R

  14. Towards a Room-Temperature Spin Quantum Bus in Diamond via Electron Photoionization, Transport, and Capture

    NASA Astrophysics Data System (ADS)

    Doherty, M. W.; Meriles, C. A.; Alkauskas, A.; Fedder, H.; Sellars, M. J.; Manson, N. B.

    2016-10-01

    Diamond is a proven solid-state platform for spin-based quantum technology. The nitrogen-vacancy center in diamond has been used to realize small-scale quantum information processing and quantum sensing under ambient conditions. A major barrier in the development of large-scale quantum information processing in diamond is the connection of nitrogen-vacancy spin registers by a quantum bus at room temperature. Given that diamond is expected to be an ideal spin transport material, the coherent transport of spin directly between the spin registers offers a potential solution. Yet, there has been no demonstration of spin transport in diamond due to difficulties in achieving spin injection and detection via conventional methods. Here, we exploit detailed knowledge of the paramagnetic defects in diamond to identify novel mechanisms to photoionize, transport, and capture spin-polarized electrons in diamond at room temperature. Having identified these mechanisms, we explore how they may be combined to realize an on-chip spin quantum bus.

  15. Finishing of display glass for mobile electronics using 3M Trizact diamond tile abrasive pads

    NASA Astrophysics Data System (ADS)

    Zheng, Lianbin; Fletcher, Tim; Na, Tee Koon; Sventek, Bruce; Romero, Vince; Lugg, Paul S.; Kim, Don

    2010-10-01

    This paper will describe a new method being used during the finishing of glass displays for mobile electronics including mobile hand held devices and notebook computers. The new method consists of using 3M TrizactTM Diamond Tile Abrasive Pads. TrizactTM Diamond Tile is a structured fixed abrasive grinding technology developed by 3M Company. The TrizactTM Diamond Tile structured abrasive pad consists of an organic (polymeric binder) - inorganic (abrasive mineral, i.e., diamond) composite that is used with a water-based coolant. TrizactTM Diamond Tile technology can be applied in both double and single side grinding applications. A unique advantage of TrizactTM Diamond Tile technology is the combination of high stock removal and low sub-surface damage. Grinding results will be presented for both 9 micron and 20 micron grades of TrizactTM Diamond Tile abrasive pads used to finish several common display glasses including Corning GorillaTM glass and Soda Lime glass.

  16. Numerical simulation of electron beam welding with beam oscillations

    NASA Astrophysics Data System (ADS)

    Trushnikov, D. N.; Permyakov, G. L.

    2017-02-01

    This research examines the process of electron-beam welding in a keyhole mode with the use of beam oscillations. We study the impact of various beam oscillations and their parameters on the shape of the keyhole, the flow of heat and mass transfer processes and weld parameters to develop methodological recommendations. A numerical three-dimensional mathematical model of electron beam welding is presented. The model was developed on the basis of a heat conduction equation and a Navier-Stokes equation taking into account phase transitions at the interface of a solid and liquid phase and thermocapillary convection (Marangoni effect). The shape of the keyhole is determined based on experimental data on the parameters of the secondary signal by using the method of a synchronous accumulation. Calculations of thermal and hydrodynamic processes were carried out based on a computer cluster, using a simulation package COMSOL Multiphysics.

  17. Electron beam machining using rotating and shaped beam power distribution

    DOEpatents

    Elmer, John W.; O'Brien, Dennis W.

    1996-01-01

    An apparatus and method for electron beam (EB) machining (drilling, cutting and welding) that uses conventional EB guns, power supplies, and welding machine technology without the need for fast bias pulsing technology. The invention involves a magnetic lensing (EB optics) system and electronic controls to: 1) concurrently bend, focus, shape, scan, and rotate the beam to protect the EB gun and to create a desired effective power-density distribution, and 2) rotate or scan this shaped beam in a controlled way. The shaped beam power-density distribution can be measured using a tomographic imaging system. For example, the EB apparatus of this invention has the ability to drill holes in metal having a diameter up to 1000 .mu.m (1 mm or larger), compared to the 250 .mu.m diameter of laser drilling.

  18. Electron beam machining using rotating and shaped beam power distribution

    DOEpatents

    Elmer, J.W.; O`Brien, D.W.

    1996-07-09

    An apparatus and method are disclosed for electron beam (EB) machining (drilling, cutting and welding) that uses conventional EB guns, power supplies, and welding machine technology without the need for fast bias pulsing technology. The invention involves a magnetic lensing (EB optics) system and electronic controls to: (1) concurrently bend, focus, shape, scan, and rotate the beam to protect the EB gun and to create a desired effective power-density distribution, and (2) rotate or scan this shaped beam in a controlled way. The shaped beam power-density distribution can be measured using a tomographic imaging system. For example, the EB apparatus of this invention has the ability to drill holes in metal having a diameter up to 1,000 {micro}m (1 mm or larger), compared to the 250 {micro}m diameter of laser drilling. 5 figs.

  19. Diamond detector versus silicon diode and ion chamber in photon beams of different energy and field size.

    PubMed

    Bucciolini, M; Buonamici, F Banci; Mazzocchi, S; De Angelis, C; Onori, S; Cirrone, G A P

    2003-08-01

    The aim of this work was to test the suitability of a PTW diamond detector for nonreference condition dosimetry in photon beams of different energy (6 and 25 MV) and field size (from 2.6 cm x 2.6 cm to 10 cm x 10 cm). Diamond behavior was compared to that of a Scanditronix p-type silicon diode and a Scanditronix RK ionization chamber. Measurements included output factors (OF). percentage depth doses (PDD) and dose profiles. OFs measured with diamond detector agreed within 1% with those measured with diode and RK chamber. Only at 25 MV, for the smallest field size, RK chamber underestimated OFs due to averaging effects in a pointed shaped beam profile. Agreement was found between PDDs measured with diamond detector and RK chamber for both 6 MV and 25 MV photons and down to 5 cm x 5 cm field size. For the 2.6 cm x 2.6 cm field size, at 25 MV, RK chamber underestimated doses at shallow depth and the difference progressively went to zero in the distal region. PDD curves measured with silicon diode and diamond detector agreed well for the 25 MV beam at all the field sizes. Conversely, the nontissue equivalence of silicon led, for the 6 MV beam, to a slight overestimation of the diode doses in the distal region, at all the field sizes. Penumbra and field width measurements gave values in agreement for all the detectors but with a systematic overestimate by RK measurements. The results obtained confirm that ion chamber is not a suitable detector when high spatial resolution is required. On the other hand, the small differences in the studied parameters, between diamond and silicon systems, do not lead to a significant advantage in the use of diamond detector for routine clinical dosimetry.

  20. Emittance growth from electron beam modulation

    SciTech Connect

    Blaskiewicz, M.

    2009-12-01

    In linac ring colliders like MeRHIC and eRHIC a modulation of the electron bunch can lead to a modulation of the beam beam tune shift and steering errors. These modulations can lead to emittance growth. This note presents simple formulas to estimate these effects which generalize some previous results.

  1. Runaway electron beam in atmospheric pressure discharges

    NASA Astrophysics Data System (ADS)

    Oreshkin, E. V.; Barengolts, S. A.; Chaikovsky, S. A.; Oreshkin, V. I.

    2015-11-01

    A numerical simulation was performed to study the formation of a runaway electron (RAE) beam from an individual emission zone in atmospheric pressure air discharges with a highly overvolted interelectrode gap. It is shown that the formation of a RAE beam in discharges at high overvoltages is much contributed by avalanche processes.

  2. Electron beam, laser beam and plasma arc welding studies

    NASA Technical Reports Server (NTRS)

    Banas, C. M.

    1974-01-01

    This program was undertaken as an initial step in establishing an evaluation framework which would permit a priori selection of advanced welding processes for specific applications. To this end, a direct comparison of laser beam, electron beam and arc welding of Ti-6Al-4V alloy was undertaken. Ti-6Al-4V was selected for use in view of its established welding characteristics and its importance in aerospace applications.

  3. Diamond X-ray photodiode for white and monochromatic SR beams

    SciTech Connect

    Keister, J.W.; Heroux, A.; Smedley, J.; Muller, E. M.; Bohon, J.

    2011-09-01

    High-purity, single-crystal CVD diamond plates are screened for quality and instrumented into a sensor assembly for quantitative characterization of flux and position sensitivity. Initial investigations have yielded encouraging results and have led to further development. Several limiting complications are observed and discussed, as well as mitigations thereof. For example, diamond quality requirements for X-ray diodes include low nitrogen impurity and crystallographic defectivity. Thin electrode windows and electronic readout performance are ultimately also critical to device performance. Promising features observed so far from prototype devices include calculable responsivity, flux linearity, position sensitivity and timing performance. Recent results from testing in high-flux and high-speed applications are described.

  4. Test beam results of ATLAS DBM pCVD diamond detectors using a novel threshold tuning method

    NASA Astrophysics Data System (ADS)

    Janssen, J.

    2017-03-01

    Threshold Baseline Tuning is a novel threshold tuning method meant to increase the hit efficiency of a pixel detector. The tuning method is applicable to any pixel readout ASIC with an adjustable threshold for individual pixels. The method is based on counting noise hits and allows for tuning to very low thresholds. The Threshold Baseline Tuning was successfully tested with ATLAS Diamond Beam Monitor (DBM) polycrystalline chemical vapour deposited (pCVD) diamond detectors in a 120 GeV pion beam at CERN SPS in 2015/2016. Efficiency measurements show the advantage of the Threshold Baseline Tuning over the regular tuning method.

  5. Comparative investigation of surface transfer doping of hydrogen terminated diamond by high electron affinity insulators

    SciTech Connect

    Verona, C.; Marinelli, Marco; Verona-Rinati, G.; Ciccognani, W.; Colangeli, S.; Limiti, E.

    2016-07-14

    We report on a comparative study of transfer doping of hydrogenated single crystal diamond surface by insulators featured by high electron affinity, such as Nb{sub 2}O{sub 5}, WO{sub 3}, V{sub 2}O{sub 5}, and MoO{sub 3}. The low electron affinity Al{sub 2}O{sub 3} was also investigated for comparison. Hole transport properties were evaluated in the passivated hydrogenated diamond films by Hall effect measurements, and were compared to un-passivated diamond films (air-induced doping). A drastic improvement was observed in passivated samples in terms of conductivity, stability with time, and resistance to high temperatures. The efficiency of the investigated insulators, as electron accepting materials in hydrogenated diamond surface, is consistent with their electronic structure. These surface acceptor materials generate a higher hole sheet concentration, up to 6.5 × 10{sup 13} cm{sup −2}, and a lower sheet resistance, down to 2.6 kΩ/sq, in comparison to the atmosphere-induced values of about 1 × 10{sup 13} cm{sup −2} and 10 kΩ/sq, respectively. On the other hand, hole mobilities were reduced by using high electron affinity insulator dopants. Hole mobility as a function of hole concentration in a hydrogenated diamond layer was also investigated, showing a well-defined monotonically decreasing trend.

  6. Comparative investigation of surface transfer doping of hydrogen terminated diamond by high electron affinity insulators

    NASA Astrophysics Data System (ADS)

    Verona, C.; Ciccognani, W.; Colangeli, S.; Limiti, E.; Marinelli, Marco; Verona-Rinati, G.

    2016-07-01

    We report on a comparative study of transfer doping of hydrogenated single crystal diamond surface by insulators featured by high electron affinity, such as Nb2O5, WO3, V2O5, and MoO3. The low electron affinity Al2O3 was also investigated for comparison. Hole transport properties were evaluated in the passivated hydrogenated diamond films by Hall effect measurements, and were compared to un-passivated diamond films (air-induced doping). A drastic improvement was observed in passivated samples in terms of conductivity, stability with time, and resistance to high temperatures. The efficiency of the investigated insulators, as electron accepting materials in hydrogenated diamond surface, is consistent with their electronic structure. These surface acceptor materials generate a higher hole sheet concentration, up to 6.5 × 1013 cm-2, and a lower sheet resistance, down to 2.6 kΩ/sq, in comparison to the atmosphere-induced values of about 1 × 1013 cm-2 and 10 kΩ/sq, respectively. On the other hand, hole mobilities were reduced by using high electron affinity insulator dopants. Hole mobility as a function of hole concentration in a hydrogenated diamond layer was also investigated, showing a well-defined monotonically decreasing trend.

  7. Study on Platinum Coating Depth in Focused Ion Beam Diamond Cutting Tool Milling and Methods for Removing Platinum Layer.

    PubMed

    Choi, Woong Kirl; Baek, Seung Yub

    2015-09-22

    In recent years, nanomachining has attracted increasing attention in advanced manufacturing science and technologies as a value-added processes to control material structures, components, devices, and nanoscale systems. To make sub-micro patterns on these products, micro/nanoscale single-crystal diamond cutting tools are essential. Popular non-contact methods for the macro/micro processing of diamond composites are pulsed laser ablation (PLA) and electric discharge machining (EDM). However, for manufacturing nanoscale diamond tools, these machining methods are not appropriate. Despite diamond's extreme physical properties, diamond can be micro/nano machined relatively easily using a focused ion beam (FIB) technique. In the FIB milling process, the surface properties of the diamond cutting tool is affected by the amorphous damage layer caused by the FIB gallium ion collision and implantation and these influence the diamond cutting tool edge sharpness and increase the processing procedures. To protect the diamond substrate, a protection layer-platinum (Pt) coating is essential in diamond FIB milling. In this study, the depth of Pt coating layer which could decrease process-induced damage during FIB fabrication is investigated, along with methods for removing the Pt coating layer on diamond tools. The optimum Pt coating depth has been confirmed, which is very important for maintaining cutting tool edge sharpness and decreasing processing procedures. The ultra-precision grinding method and etching with aqua regia method have been investigated for removing the Pt coating layer. Experimental results show that when the diamond cutting tool width is bigger than 500 nm, ultra-precision grinding method is appropriate for removing Pt coating layer on diamond tool. However, the ultra-precision grinding method is not recommended for removing the Pt coating layer when the cutting tool width is smaller than 500 nm, because the possibility that the diamond cutting tool is damaged

  8. Experimental Evaluation of Beam to Diamond Box Column Connection with Through Plate in Moment Frames

    NASA Astrophysics Data System (ADS)

    Keshavarzi, Farhad; Mirghaderi, Rasoul; Torabian, Shahabeddin; Imanpour, Ali

    2008-07-01

    Moment resisting frames with built up section have very enhanced features due to high bending stiffness and strength characteristics in two principal axes and access to column faces for beam to column easy connections. But due to proper transfer of beam stresses to column faces there were always some specific controvertibly issues that how to make the load transfer through and in plane manner in order to mobilize the forces in column faces. Using diamond column instead of box column provide possibility to mobilize the load transfer mechanism in column faces. This section as a column has considerable benefit such as high plastic to elastic section modulus ratio which is an effective factor for force controlled components. Typical connection has no chance to be applied with diamond column. This paper elucidates the seismic behavior of through-plates moment connections to diamond box columns for use in steel moment resisting frames. This connection has a lot of economical benefits such as no need to horizontal continuity plates and satisfying the weak beam—strong column criteria in the connection region. They might serve as panel zone plates as well. According to high shear demand in panel zone of beam to column joint one should use the doublers plates in order to decrease the shear strength demand in this sensitive part of structure but these plates have no possibility to mobilize the load transfer mechanism in column web and transfer them to column flanges. In this type of connection, column faces have effective role in order to decrease the demands on through plate and they are impressive factors for improving the performance of the connection. Experimental analysis was conducted to elucidate the seismic behavior of this connection. The results of Experimental analysis established the effectiveness of the through plate in mitigating local stress concentrations and forming the plastic hinge zone in the beam away from the beam to column interface. The moment

  9. Electron beam depolarization in a damping ring

    SciTech Connect

    Minty, M.

    1993-04-01

    Depolarization of a polarized electron beam injected into a damping ring is analyzed by extending calculations conventionally applied to proton synchrotrons. Synchrotron radiation in an electron ring gives rise to both polarizing and depolarizing effects. In a damping ring, the beam is stored for a time much less than the time for self polarization. Spin flip radiation may therefore be neglected. Synchrotron radiation without spin flips, however, must be considered as the resonance strength depends on the vertical betatron oscillation amplitude which changes as the electron beam is radiation damped. An expression for the beam polarization at extraction is derived which takes into account radiation damping. The results are applied to the electron ring at the Stanford Linear Collider and are compared with numerical matrix formalisms.

  10. The Electron Beam Ion Source (EBIS)

    SciTech Connect

    Brookhaven Lab

    2009-06-09

    Brookhaven National Lab has successfully developed a new pre-injector system, called the Electron Beam Ion Source, for the Relativistic Heavy Ion Collider (RHIC) and NASA Space Radiation Laboratory science programs. The first of several planned improvemen

  11. Technical Seminar: Electron Beam Forming Fabrication

    NASA Image and Video Library

    EBF³ uses a focused electron beam in a vacuum environment to create a molten pool on a metallic substrate. This layer-additive process enables fabrication of parts directly from CAD drawings. The ...

  12. Photon-Electron Interaction and Condense Beams

    SciTech Connect

    Chattopadhyay, S.

    1998-11-01

    We discuss beams of charged particles and radiation from multiple perspectives. These include fundamental acceleration and radiation mechanisms, underlying electron-photon interaction, various classical and quantum phase-space concepts and fluctuational interpretations.

  13. Scrap uranium recycling via electron beam melting

    SciTech Connect

    McKoon, R.

    1993-11-01

    A program is underway at the Lawrence Livermore National Laboratory (LLNL) to recycle scrap uranium metal. Currently, much of the material from forging and machining processes is considered radioactive waste and is disposed of by oxidation and encapsulation at significant cost. In the recycling process, uranium and uranium alloys in various forms will be processed by electron beam melting and continuously cast into ingots meeting applicable specifications for virgin material. Existing vacuum processing facilities at LLNL are in compliance with all current federal and state environmental, safety and health regulations for the electron beam melting and vaporization of uranium metal. One of these facilities has been retrofitted with an auxiliary electron beam gun system, water-cooled hearth, crucible and ingot puller to create an electron beam melt furnace. In this furnace, basic process R&D on uranium recycling will be performed with the goal of eventual transfer of this technology to a production facility.

  14. The Electron Beam Ion Source (EBIS)

    ScienceCinema

    Brookhaven Lab

    2016-07-12

    Brookhaven National Lab has successfully developed a new pre-injector system, called the Electron Beam Ion Source, for the Relativistic Heavy Ion Collider (RHIC) and NASA Space Radiation Laboratory science programs. The first of several planned improvemen

  15. Planar ultrananocrystalline diamond field emitter in accelerator radio frequency electron injector: Performance metrics

    SciTech Connect

    Baryshev, Sergey V. Antipov, Sergey; Jing, Chunguang; Qiu, Jiaqi; Shao, Jiahang; Liu, Wanming; Gai, Wei; Pérez Quintero, Kenneth J.; Sumant, Anirudha V.; Kanareykin, Alexei D.

    2014-11-17

    A case performance study of a planar field emission cathode (FEC) based on nitrogen-incorporated ultrananocrystalline diamond, (N)UNCD, was carried out in an RF 1.3 GHz electron gun. The FEC was a 100 nm (N)UNCD film grown on a 20 mm diameter stainless steel disk with a Mo buffer layer. At surface gradients 45–65 MV/m, peak currents of 1–80 mA (equivalent to 0.3–25 mA/cm{sup 2}) were achieved. Imaging with two YAG screens confirmed emission from the (N)UNCD surface with (1) the beam emittance of 1.5 mm × mrad/mm-rms and (2) longitudinal FWHM and rms widths of non-Gaussian energy spread of 0.7% and 11% at an electron energy of 2 MeV. Current stability was tested over the course of 36 × 10{sup 3} RF pulses (equivalent to 288 × 10{sup 6 }GHz oscillations)

  16. Plasma, photon, and beam synthesis of diamond films and multilayered structures

    SciTech Connect

    Chang, R.P.H.

    1992-09-01

    In the area of nucleation, it was discovered that C{sub 70} thin films are perfect substitutes for diamond seeds in the growth of diamond films. This research, along with a careful study of diamond growth on carbon ion implanted single crystal copper, have clearly demonstrated that structured carbon is the best precursor for nucleation and growth of diamond films on non-diamond surfaces. In addition, by using fluorine chemistry during diamond growth, it has been shown that diamond films can grow on carbide substrates without the pretreatment of diamond seeding. The growth rates are higher and the film adhesion is much improved.

  17. Ion beam processing of advanced electronic materials

    SciTech Connect

    Cheung, N.W.; Marwick, A.D.; Roberto, J.B.; International Business Machines Corp., Yorktown Heights, NY . Thomas J. Watson Research Center; Oak Ridge National Lab., TN )

    1989-01-01

    This report contains research programs discussed at the materials research society symposia on ion beam processing of advanced electronic materials. Major topics include: shallow implantation and solid-phase epitaxy; damage effects; focused ion beams; MeV implantation; high-dose implantation; implantation in III-V materials and multilayers; and implantation in electronic materials. Individual projects are processed separately for the data bases. (CBS)

  18. Diamond burr debridement vs. grid keratotomy in canine SCCED with scanning electron microscopy diamond burr tip analysis.

    PubMed

    Spertus, Chloe B; Brown, Josef M; Giuliano, Elizabeth A

    2017-02-09

    (i) Compare the outcome of canine SCCED treated with grid keratotomy (GK) or diamond burr debridement (DBD); (ii) Serially evaluate morphologic and elemental composition changes to diamond burr tips. A total of 91 eyes of 88 canine SCCED patients treated at the University of Missouri (2005-2015); 75 fresh cadaver porcine globes. (i) Medical records were reviewed retrospectively. Data were analyzed for age, sex, breed, procedure performed, eye(s) on which the procedure was performed, time to healing after a single surgical procedure, performance of a second surgical procedure, contact lens placement, and postprocedural complications. (ii) Three naïve 3.5-mm medium grit burr tips were analyzed using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). DBD was performed for 120 s on 8-mm porcine corneal stroma using the Algerbrush(®) . Manufacturer-recommended cleaning protocols were followed. SEM and EDS analyses were performed in triplicate after 10, 25, and 50 DBD, cleaning, and sterilization cycles. There was no statistically significant difference in healing between DBD and GK groups (P = 0.50). No diamond particle damage after 10, 25, or 50 DBDs was detected. SEM secondary electron imaging and backscatter electron imaging after repeated uses demonstrated a build-up of contamination composed of carbon, sulfur, and calcium on burr tips. Both DBD and GK are effective treatment options for canine SCCED. Although complications are rare after DBD, build-up of contaminants may be a contributing factor. Additional cleaning and sterilization protocols are being investigated. © 2017 American College of Veterinary Ophthalmologists.

  19. Optically detected cross-relaxation spectroscopy of electron spins in diamond

    NASA Astrophysics Data System (ADS)

    Wang, Hai-Jing; Shin, Chang S.; Seltzer, Scott J.; Avalos, Claudia E.; Pines, Alexander; Bajaj, Vikram S.

    2014-06-01

    The application of magnetic resonance spectroscopy at progressively smaller length scales may eventually permit ‘chemical imaging’ of spins at the surfaces of materials and biological complexes. In particular, the negatively charged nitrogen-vacancy (NV-) centre in diamond has been exploited as an optical transducer for nanoscale nuclear magnetic resonance. However, the spectra of detected spins are generally broadened by their interaction with proximate paramagnetic NV- centres through coherent and incoherent mechanisms. Here we demonstrate a detection technique that can resolve the spectra of electron spins coupled to NV- centres, in this case, substitutional nitrogen and neutral nitrogen-vacancy centres in diamond, through optically detected cross-relaxation. The hyperfine spectra of these spins are a unique chemical identifier, suggesting the possibility, in combination with recent results in diamonds harbouring shallow NV- implants, that the spectra of spins external to the diamond can be similarly detected.

  20. Electron vortices: Beams with orbital angular momentum

    NASA Astrophysics Data System (ADS)

    Lloyd, S. M.; Babiker, M.; Thirunavukkarasu, G.; Yuan, J.

    2017-07-01

    The recent prediction and subsequent creation of electron vortex beams in a number of laboratories occurred after almost 20 years had elapsed since the recognition of the physical significance and potential for applications of the orbital angular momentum carried by optical vortex beams. A rapid growth in interest in electron vortex beams followed, with swift theoretical and experimental developments. Much of the rapid progress can be attributed in part to the clear similarities between electron optics and photonics arising from the functional equivalence between the Helmholtz equations governing the free-space propagation of optical beams and the time-independent Schrödinger equation governing freely propagating electron vortex beams. There are, however, key differences in the properties of the two kinds of vortex beams. This review is primarily concerned with the electron type, with specific emphasis on the distinguishing vortex features: notably the spin, electric charge, current and magnetic moment, the spatial distribution, and the associated electric and magnetic fields. The physical consequences and potential applications of such properties are pointed out and analyzed, including nanoparticle manipulation and the mechanisms of orbital angular momentum transfer in the electron vortex interaction with matter.

  1. Bent diamond-crystal x-ray spectrographs for x-ray free-electron laser noninvasive diagnostics

    NASA Astrophysics Data System (ADS)

    Terentyev, Sergey; Blank, Vladimir; Kolodziej, Tomasz; Shvyd'ko, Yuri

    2016-09-01

    We report on the manufacturing and X-ray tests of bent diamond-crystal X-ray spectrographs, designed for noninvasive diagnostics of the X-ray free-electron laser (XFEL) spectra in the spectral range from 5 to 15 keV. The key component is a curved, 20-μm thin, single crystalline diamond triangular plate in the (110) orientation. The radius of curvature can be varied between R = 0:6 m and R = 0:1 m in a controlled fashion, ensuring imaging in a spectral window of up to 60 eV for 8 keV X-rays. All of the components of the bending mechanism (about 10 parts) are manufactured from diamond, thus ensuring safe operations in intense XFEL beams. The spectrograph is transparent to 88% for 5-keV photons, and to 98% for 15-keV photons. Therefore, it can be used for noninvasive diagnostics of the X-ray spectra during XFEL operations.

  2. Characterization of beryllium and CVD diamond for synchrotron radiation beamline windows and x-ray beam monitor

    NASA Astrophysics Data System (ADS)

    Goto, S.; Takahashi, S.; Kudo, T.; Yabashi, M.; Tamasaku, K.; Nishino, Y.; Ishikawa, T.

    2007-09-01

    We characterized beryllium foils and CVD diamond films/plates for synchrotron radiation beamline windows and x-ray beam monitor especially in coherent x-ray applications. Sub-micron-resolution imaging with a zooming tube was performed using spatially coherent x-rays at 1-km beamline 29XU of SPring-8. We found that the speckles observed in the conventional powder and ingot beryllium foils were due to voids with diameter of several to ten-several microns. The physical vapor deposition (PVD) eliminated the voids and the PVD beryllium showed the best performance with no speckles. We characterized a commercially available polycrystalline CVD diamond window and CVD films as well as beryllium foils. Polished thin diamond film showed rather uniform transmission image. We found dark spots at in-line image due to Bragg diffraction from grains for thicker CVD diamond window.

  3. Electron Cooling of Intense Ion Beam

    SciTech Connect

    Dietrich, J.; Kamerdjiev, V.; Maier, R.; Prasuhn, D.; Stein, J.; Stockhorst, H.; Korotaev, Yu.; Meshkov, I.; Sidorin, A.; Smirnov, A.

    2006-03-20

    Results of experimental studies of the electron cooling of a proton beam at COSY (Juelich, Germany) are presented. Intensity of the proton beam is limited by two general effects: particle loss directly after the injection and development of instability in a deep cooled ion beam. Results of the instability investigations performed at COSY during last years are presented in this report in comparison with previous results from HIMAC (Chiba, Japan) CELSIUS (Uppsala, Sweden) and LEAR (CERN). Methods of the instability suppression, which allow increasing the cooled beam intensity, are described. This work is supported by RFBR grant no. 05-02-16320 and INTAS grant no. 03-54-5584.

  4. A reflex electron beam discharge as a plasma source for electron beam generation

    SciTech Connect

    Murray, C.S.; Rocca, J.J.; Szapiro, B. )

    1988-10-01

    A reflex electron beam glow discharge has been used as a plasma source for the generation of broad-area electron beams. An electron current of 120 A (12 A/cm/sup 2/) was extracted from the plasma in 10 ..mu..s pulses and accelerated to energies greater than 1 keV in the gap between two grids. The scaling of the scheme for the generation of multikiloamp high-energy beams is discussed.

  5. A conceptual design for an electron beam

    SciTech Connect

    Garcia, M

    1999-02-15

    This report is a brief description of a model electron beam, which is meant to serve as a pulsed heat source that vaporizes a metal fleck into an ''under-dense'' cloud. See Reference 1. The envelope of the electron beam is calculated from the paraxial ray equation, as stated in Reference 2. The examples shown here are for 5 A, 200 keV beams that focus to waists of under 0.4 mm diameter, within a cylindrical volume of 10 cm radius and length. The magnetic fields assumed in the examples are moderate, 0.11 T and 0.35 T, and can probably be created by permanent magnets.

  6. Control and manipulation of electron beams

    SciTech Connect

    Piot, Philippe; /NICADD, DeKalb /Northern Illinois U. /Fermilab

    2008-09-01

    The concepts of the advanced accelerators and light source rely on the production of bright electron beams. The rms areas of the beam phase space often need to be tailored to the specific applications. Furthermore, a new class of the forefront research calls for detailed specific distribution such as the particle density in the time coordinate. Several groups are tackling these various challenges and in this report we attempt to give a review of the state-of-the-art of the control and manipulation of the electron beams.

  7. Short rise time intense electron beam generator

    DOEpatents

    Olson, C.L.

    1984-03-16

    A generator for producing an intense relativisitc electron beam having a subnanosecond current rise time includes a conventional generator of intense relativistic electrons feeding into a short electrically conductive drift tube including a cavity containing a working gas at a low enough pressure to prevent the input beam from significantly ionizing the working gas. Ionizing means such as a laser simultaneously ionize the entire volume of working gas in the cavity to generate an output beam having a rise time less than one nanosecond.

  8. Short rise time intense electron beam generator

    DOEpatents

    Olson, Craig L.

    1987-01-01

    A generator for producing an intense relativistic electron beam having a subnanosecond current rise time includes a conventional generator of intense relativistic electrons feeding into a short electrically conductive drift tube including a cavity containing a working gas at a low enough pressure to prevent the input beam from significantly ionizing the working gas. Ionizing means such as a laser simultaneously ionize the entire volume of working gas in the cavity to generate an output beam having a rise time less than one nanosecond.

  9. Control and Manipulation of Electron Beams

    SciTech Connect

    Piot, Philippe

    2009-01-22

    The concepts of the advanced accelerators and light source rely on the production of bright electron beams. The rms areas of the beam phase space often need to be tailored to the specific applications. Furthermore, a new class of the forefront research calls for detailed specific distribution such as the particle density in the time coordinate. Several groups are tackling these various challenges and in this report we attempt to give a review of the state-of-the-art of the control and manipulation of the electron beams.

  10. Evaluation of the dosimetric properties of a synthetic single crystal diamond detector in high energy clinical proton beams

    SciTech Connect

    Mandapaka, A. K.; Ghebremedhin, A.; Patyal, B.; Marinelli, Marco; Prestopino, G.; Verona, C.; Verona-Rinati, G.

    2013-12-15

    Purpose: To investigate the dosimetric properties of a synthetic single crystal diamond Schottky diode for accurate relative dose measurements in large and small field high-energy clinical proton beams.Methods: The dosimetric properties of a synthetic single crystal diamond detector were assessed by comparison with a reference Markus parallel plate ionization chamber, an Exradin A16 microionization chamber, and Exradin T1a ion chamber. The diamond detector was operated at zero bias voltage at all times. Comparative dose distribution measurements were performed by means of Fractional depth dose curves and lateral beam profiles in clinical proton beams of energies 155 and 250 MeV for a 14 cm square cerrobend aperture and 126 MeV for 3, 2, and 1 cm diameter circular brass collimators. ICRU Report No. 78 recommended beam parameters were used to compare fractional depth dose curves and beam profiles obtained using the diamond detector and the reference ionization chamber. Warm-up/stability of the detector response and linearity with dose were evaluated in a 250 MeV proton beam and dose rate dependence was evaluated in a 126 MeV proton beam. Stem effect and the azimuthal angle dependence of the diode response were also evaluated.Results: A maximum deviation in diamond detector signal from the average reading of less than 0.5% was found during the warm-up irradiation procedure. The detector response showed a good linear behavior as a function of dose with observed deviations below 0.5% over a dose range from 50 to 500 cGy. The detector response was dose rate independent, with deviations below 0.5% in the investigated dose rates ranging from 85 to 300 cGy/min. Stem effect and azimuthal angle dependence of the diode signal were within 0.5%. Fractional depth dose curves and lateral beam profiles obtained with the diamond detector were in good agreement with those measured using reference dosimeters.Conclusions: The observed dosimetric properties of the synthetic single

  11. Evaluation of the dosimetric properties of a synthetic single crystal diamond detector in high energy clinical proton beams.

    PubMed

    Mandapaka, A K; Ghebremedhin, A; Patyal, B; Marinelli, Marco; Prestopino, G; Verona, C; Verona-Rinati, G

    2013-12-01

    To investigate the dosimetric properties of a synthetic single crystal diamond Schottky diode for accurate relative dose measurements in large and small field high-energy clinical proton beams. The dosimetric properties of a synthetic single crystal diamond detector were assessed by comparison with a reference Markus parallel plate ionization chamber, an Exradin A16 microionization chamber, and Exradin T1a ion chamber. The diamond detector was operated at zero bias voltage at all times. Comparative dose distribution measurements were performed by means of Fractional depth dose curves and lateral beam profiles in clinical proton beams of energies 155 and 250 MeV for a 14 cm square cerrobend aperture and 126 MeV for 3, 2, and 1 cm diameter circular brass collimators. ICRU Report No. 78 recommended beam parameters were used to compare fractional depth dose curves and beam profiles obtained using the diamond detector and the reference ionization chamber. Warm-up∕stability of the detector response and linearity with dose were evaluated in a 250 MeV proton beam and dose rate dependence was evaluated in a 126 MeV proton beam. Stem effect and the azimuthal angle dependence of the diode response were also evaluated. A maximum deviation in diamond detector signal from the average reading of less than 0.5% was found during the warm-up irradiation procedure. The detector response showed a good linear behavior as a function of dose with observed deviations below 0.5% over a dose range from 50 to 500 cGy. The detector response was dose rate independent, with deviations below 0.5% in the investigated dose rates ranging from 85 to 300 cGy∕min. Stem effect and azimuthal angle dependence of the diode signal were within 0.5%. Fractional depth dose curves and lateral beam profiles obtained with the diamond detector were in good agreement with those measured using reference dosimeters. The observed dosimetric properties of the synthetic single crystal diamond detector indicate that

  12. Laser-Bessel-Beam-Driven Electron Acceleration

    NASA Astrophysics Data System (ADS)

    Li, Dazhi; Imasaki, Kazuo

    2005-08-01

    A vacuum-laser-driven acceleration scheme using a laser Bessel beam is presented. In contrast to the conventional Gaussian beam, the Bessel beam demonstrates diffraction-free propagation, which implies the possibility of extending the effective interaction distance for a laser-electron system. In this method, the Bessel beam is truncated by annular slits to realize a series of nonsuccessive dim regions along the path of laser propagation, where the amplitude of the laser field is reduced, making the electron slightly decelerate as it travels in the decelerating phase. We analyzed the propagation characteristics of the truncated Bessel beam with scalar diffraction theory, and then introduced this approach with careful investigation of a three-stage acceleration model.

  13. Conditioner for a helically transported electron beam

    SciTech Connect

    Wang, C.

    1992-05-01

    The kinetic theory is developed to investigate a conditioner for a helically imported electron beam. Linear expressions for axial velocity spread are derived. Numerical simulation is used to check the theoretical results and examine nonlinear aspects of the conditioning process. The results show that in the linear regime the action of the beam conditioner on a pulsed beam mainly depends on the phase at which the beam enters the conditioner and depends only slightly on the operating wavelength. In the nonlinear regime, however, the action of the conditioner strongly depends on the operating wavelength and only slightly upon the entrance phase. For a properly chosen operating wavelength, a little less than the electron's relativistic cyclotron wavelength, the conditioner can decrease the axial velocity spread of a pulsed beam down to less than one-third of its initial value.

  14. Nonlinear wave scattering and electron beam relaxation

    NASA Technical Reports Server (NTRS)

    Muschietti, L.; Dum, C. T.

    1991-01-01

    The role played by nonlinear scattering during the relaxation of a warm electron beam is investigated through a numerical code based on kinetic equations. The code encompasses the quasi-linear wave-electron interaction and wave-wave scattering off ion clouds. Ions with velocities 2 nu sub i (nu sub i being the ion thermal velocity) are found to be the most efficient for scattering the Langmuir waves off their polarization clouds. The transfer rate of the spectrum out of resonance with the beam is larger by a factor 3 compared to usual estimates. The changes produced in the dispersion relation by the presence of the beam electrons dramatically alter the characteristics of the secondary spectrum. In a late phase the classic condensate K of about 0 is depleted, with the formation of a new condensate in resonance with the flat-topped beam distribution, which follows from the fact that the mere presence of the beam electrons creates a minimum in the frequency-wave-number relation. For strong and slow beams, the predictions of the code are found to be in excellent agreement with the results of the particle simulation if a dispersion relation that includes the beam is used.

  15. Instability of Agyrotropic Electron Beams near the Electron Diffusion Region.

    PubMed

    Graham, D B; Khotyaintsev, Yu V; Vaivads, A; Norgren, C; André, M; Webster, J M; Burch, J L; Lindqvist, P-A; Ergun, R E; Torbert, R B; Paterson, W R; Gershman, D J; Giles, B L; Magnes, W; Russell, C T

    2017-07-14

    During a magnetopause crossing the Magnetospheric Multiscale spacecraft encountered an electron diffusion region (EDR) of asymmetric reconnection. The EDR is characterized by agyrotropic beam and crescent electron distributions perpendicular to the magnetic field. Intense upper-hybrid (UH) waves are found at the boundary between the EDR and magnetosheath inflow region. The UH waves are generated by the agyrotropic electron beams. The UH waves are sufficiently large to contribute to electron diffusion and scattering, and are a potential source of radio emission near the EDR. These results provide observational evidence of wave-particle interactions at an EDR, and suggest that waves play an important role in determining the electron dynamics.

  16. Instability of Agyrotropic Electron Beams near the Electron Diffusion Region

    NASA Astrophysics Data System (ADS)

    Graham, D. B.; Khotyaintsev, Yu. V.; Vaivads, A.; Norgren, C.; André, M.; Webster, J. M.; Burch, J. L.; Lindqvist, P.-A.; Ergun, R. E.; Torbert, R. B.; Paterson, W. R.; Gershman, D. J.; Giles, B. L.; Magnes, W.; Russell, C. T.

    2017-07-01

    During a magnetopause crossing the Magnetospheric Multiscale spacecraft encountered an electron diffusion region (EDR) of asymmetric reconnection. The EDR is characterized by agyrotropic beam and crescent electron distributions perpendicular to the magnetic field. Intense upper-hybrid (UH) waves are found at the boundary between the EDR and magnetosheath inflow region. The UH waves are generated by the agyrotropic electron beams. The UH waves are sufficiently large to contribute to electron diffusion and scattering, and are a potential source of radio emission near the EDR. These results provide observational evidence of wave-particle interactions at an EDR, and suggest that waves play an important role in determining the electron dynamics.

  17. Electron beam extraction on plasma cathode electron sources system

    NASA Astrophysics Data System (ADS)

    Purwadi, Agus; Taufik, M., Lely Susita R.; Suprapto, Saefurrochman, H., Anjar A.; Wibowo, Kurnia; Aziz, Ihwanul; Siswanto, Bambang

    2017-03-01

    ELECTRON BEAM EXTRACTION ON PLASMA CATHODE ELECTRON SOURCES SYSTEM. The electron beam extraction through window of Plasma Generator Chamber (PGC) for Pulsed Electron Irradiator (PEI) device and simulation of plasma potential has been studied. Plasma electron beam is extracted to acceleration region for enlarging their power by the external accelerating high voltage (Vext) and then it is passed foil window of the PEI for being irradiated to any target (atmospheric pressure). Electron beam extraction from plasma surface must be able to overcome potential barrier at the extraction window region which is shown by estimate simulation (Opera program) based on data of plasma surface potential of 150 V with Ueks values are varied by 150 kV, 175 kV and 200 kV respectively. PGC is made of 304 stainless steel with cylindrical shape in 30 cm of diameter, 90 cm length, electrons extraction window as many as 975 holes on the area of (15 × 65) cm2 with extraction hole cell in 0.3 mm of radius each other, an cylindrical shape IEP chamber is made of 304 stainless steel in 70 cm diameter and 30 cm length. The research result shown that the acquisition of electron beam extraction current depends on plasma parameters (electron density ne, temperature Te), accelerating high voltage Vext, the value of discharge parameter G, anode area Sa, electron extraction window area Se and extraction efficiency value α.

  18. Field electron emission enhancement in lithium implanted and annealed nitrogen-incorporated nanocrystalline diamond films

    NASA Astrophysics Data System (ADS)

    Sankaran, K. J.; Srinivasu, K.; Yeh, C. J.; Thomas, J. P.; Drijkoningen, S.; Pobedinskas, P.; Sundaravel, B.; Leou, K. C.; Leung, K. T.; Van Bael, M. K.; Schreck, M.; Lin, I. N.; Haenen, K.

    2017-06-01

    The field electron emission (FEE) properties of nitrogen-incorporated nanocrystalline diamond films were enhanced due to Li-ion implantation/annealing processes. Li-ion implantation mainly induced the formation of electron trap centers inside diamond grains, whereas post-annealing healed the defects and converted the a-C phase into nanographite, forming conduction channels for effective transport of electrons. This resulted in a high electrical conductivity of 11.0 S/cm and enhanced FEE performance with a low turn-on field of 10.6 V/μm, a high current density of 25.5 mA/cm2 (at 23.2 V/μm), and a high lifetime stability of 1,090 min for nitrogen incorporated nanocrystalline diamond films.

  19. Below band-gap laser ablation of diamond for transmission electron microscopy

    NASA Technical Reports Server (NTRS)

    George, T.; Foote, M. C.; Vasquez, R. P.; Fortier, E. P.; Posthill, J. B.

    1993-01-01

    A 248 nm excimer laser was used to thin naturally occurring type 1a diamond substrates at normal and glancing (22 deg) incidence. Perforation of a 250-micron-thick substrate was achieved in about 15 min at normal incidence. While the substrate thinned at glancing incidence was found to have large electron-transparent areas, that thinned at normal incidence required additional argon-ion milling to achieve electron transparency. X-ray photoelectron spectroscopy of the back surface of the diamond failed to detect any graphite or glassy carbon, confirming that damage due to laser ablation occurs only at the incident surface. Samples prepared using this technique imaged in the transmission electron microscope were observed to have retained the nitrogen platelets characteristic of such type 1a diamonds.

  20. Negative Electron Affinity Effect on the Surface of Chemical Vapor Deposited Diamond Polycrystalline Films

    NASA Technical Reports Server (NTRS)

    Krainsky, I. L.; Asnin, V. M.; Mearini, G. T.; Dayton, J. A., Jr.

    1996-01-01

    Strong negative electron affinity effects have been observed on the surface of as-grown chemical vapor deposited diamond using Secondary Electron Emission. The test samples were randomly oriented and the surface was terminated with hydrogen. The effect appears as an intensive peak in the low energy part of the spectrum of the electron energy distribution and may be described in the model of effective negative electron affinity.

  1. Study on Platinum Coating Depth in Focused Ion Beam Diamond Cutting Tool Milling and Methods for Removing Platinum Layer

    PubMed Central

    Choi, Woong Kirl; Baek, Seung Yub

    2015-01-01

    In recent years, nanomachining has attracted increasing attention in advanced manufacturing science and technologies as a value-added processes to control material structures, components, devices, and nanoscale systems. To make sub-micro patterns on these products, micro/nanoscale single-crystal diamond cutting tools are essential. Popular non-contact methods for the macro/micro processing of diamond composites are pulsed laser ablation (PLA) and electric discharge machining (EDM). However, for manufacturing nanoscale diamond tools, these machining methods are not appropriate. Despite diamond’s extreme physical properties, diamond can be micro/nano machined relatively easily using a focused ion beam (FIB) technique. In the FIB milling process, the surface properties of the diamond cutting tool is affected by the amorphous damage layer caused by the FIB gallium ion collision and implantation and these influence the diamond cutting tool edge sharpness and increase the processing procedures. To protect the diamond substrate, a protection layer—platinum (Pt) coating is essential in diamond FIB milling. In this study, the depth of Pt coating layer which could decrease process-induced damage during FIB fabrication is investigated, along with methods for removing the Pt coating layer on diamond tools. The optimum Pt coating depth has been confirmed, which is very important for maintaining cutting tool edge sharpness and decreasing processing procedures. The ultra-precision grinding method and etching with aqua regia method have been investigated for removing the Pt coating layer. Experimental results show that when the diamond cutting tool width is bigger than 500 nm, ultra-precision grinding method is appropriate for removing Pt coating layer on diamond tool. However, the ultra-precision grinding method is not recommended for removing the Pt coating layer when the cutting tool width is smaller than 500 nm, because the possibility that the diamond cutting tool is

  2. Electron beam experiments at high altitudes

    SciTech Connect

    Olsen, R.C.

    1987-01-01

    Experiments with the electron gun on the SCATHA satellite produced evidence of beam-plasma interactions, and heating of the low-energy electrons around the satellite. These experiments were conducted near geosynchronous orbit, in the dusk, bulge, and plasma sheet, with one short operation in the lobe regions, providing a range of ambient plasma densities. The electron gun was operated at 50 eV, with beam currents of 1, 10, and 100 microAmps. Data from electrostatic analyzers and the DC electric field experiment show that the satellite charged to near the beam energy in sunlight, if the beam current had distribution functions with peaks or plateaus at energies greater than the satellite potential. These measurements indicate heating of the ambient plasma, at several Debye lengths from the satellite (several 10s of meters), with the heated plasma then accelerated into the satellite. It is likely that the ambient plasma is, in fact, the photoelectron sheath generated by the satellite.

  3. Funneling electron beams from gallium arsenide photocathodes

    NASA Astrophysics Data System (ADS)

    Rahman, Omer Habib

    Gallium Arsenide (GaAs) is the most widely used source of polarized electrons around the world. Electrons are extracted from a GaAs surface, terminated by a cesium-oxygen layer. The electrons are accelerated to form a beam by a DC electric field. This beam can ionize residual gas in the chamber, and the DC field accelerates the resulting ions into the cathode surface, damaging the Cesium- Oxygen layer. This process, called Ion Back Bombardment, is the dominant mechanism for limiting photocathode lifetime. As a result, high average current operation yields charge lifetimes too low to be used in a collider design. One idea to extend the charge lifetime is to funnel the beams from multiple cathodes using a rotating magnetic field-if operation of one cathode does not affect the operation of another cathode in the same chamber, then the source's lifetime can be extended by simply adding more cathodes. This dissertation presents the design, construction and commissioning of a unique electron gun capable of operating twenty cathodes. Results of funneling two electron beams with a rotating magnetic field are also presented. For average currents at 175 nA and 350 nA, the charge lifetimes for individual cathodes and two-cathode operation were measured, showing that the charge lifetime for two beam funneling is the sum of the individual ion back bombardment charge lifetimes. The addition of charge lifetime implies that beam funneling can be used to increase charge lifetime by an order of magnitude.

  4. Electron beam direct write: shaped beam overcomes resolution concerns

    NASA Astrophysics Data System (ADS)

    Stolberg, Ines; Pain, Laurent; Kretz, Johannes; Boettcher, Monika; Doering, Hans-Joachim; Gramss, Juergen; Hahmann, Peter

    2007-02-01

    In semiconductor industry time to market is one of the key success factors. Therefore fast prototyping and low-volume production will become extremely important for developing process technologies that are well ahead of the current technological level. Electron Beam Lithography has been launched for industrial use as a direct write technology for these types of applications. However, limited throughput rates and high tool complexity have been seen as the major concerns restricting the industrial use of this technology. Nowadays this begins to change. Variable Shaped Beam (VSB) writers have been established in Electron Beam Direct Write (EBDW) on Si or GaAs. In the paper semiconductor industry requirements to EBDW will be outlined. Behind this background the Vistec SB3050 lithography system will be reviewed. The achieved resolution enhancement of the VSB system down to the 22nm node exposure capability will be discussed in detail; application examples will be given. Combining EBDW in a Mix and Match technology with optical lithography is one way to utilize the high flexibility advantage of this technology and to overcome existing throughput concerns. However, to some extend a common Single Electron Beam Technology (SBT) will always be limited in throughput. Therefore Vistec's approach of a system that is based on the massive parallelisation of beams (MBT), which was initially pursued in a European Project, will also be discussed.

  5. Correlation in a coherent electron beam

    SciTech Connect

    Kodama, Tetsuji; Osakabe, Nobuyuki; Tonomura, Akira

    2011-06-15

    Correlations between successive detections in beams of free electrons are studied with a transmission electron microscope. For incoherent illumination of the detectors, a certain random coincidence probability is observed, indicative for uncorrelated arrival times of the electrons. When the illumination is changed from incoherent to coherent, a reduction of the random coincidence probability is observed, indicative for antibunching in the arrival times of the electrons. However, the amount of reduction is larger than the theoretically expected value calculated from the Pauli principle, forbidding more than one identical fermion to occupy the same quantum state. For a certain coherent illumination of the detectors, where we use magnetic lenses in electron microscopes for magnifications of the coherence length, we find an enhanced coincidence probability, indicative for bunching in the arrival times of the electrons. This originates from correlations in beams of free electrons due to Coulomb interactions.

  6. Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction.

    PubMed

    Zhu, Di; Zhang, Linghong; Ruther, Rose E; Hamers, Robert J

    2013-09-01

    The photocatalytic reduction of N₂ to NH₃ is typically hampered by poor binding of N₂ to catalytic materials and by the very high energy of the intermediates involved in this reaction. Solvated electrons directly introduced into the reactant solution can provide an alternative pathway to overcome such limitations. Here we demonstrate that illuminated hydrogen-terminated diamond yields facile electron emission into water, thus inducing reduction of N₂ to NH₃ at ambient temperature and pressure. Transient absorption measurements at 632 nm reveal the presence of solvated electrons adjacent to the diamond after photoexcitation. Experiments using inexpensive synthetic diamond samples and diamond powder show that photocatalytic activity is strongly dependent on the surface termination and correlates with the production of solvated electrons. The use of diamond to eject electrons into a reactant liquid represents a new paradigm for photocatalytic reduction, bringing electrons directly to reactants without requiring molecular adsorption to the surface.

  7. Theoretical investigation of the electronic structure and quantum transport in the graphene-C(111) diamond surface system.

    PubMed

    Selli, Daniele; Baburin, Igor; Leoni, Stefano; Zhu, Zhen; Tománek, David; Seifert, Gotthard

    2013-10-30

    We investigate the interaction of a graphene monolayer with the C(111) diamond surface using ab initio density functional theory. To accommodate the lattice mismatch between graphene and diamond, the overlayer deforms into a wavy structure that binds strongly to the diamond substrate. The detached ridges of the wavy graphene overlayer behave electronically as free-standing polyacetylene chains with delocalized π electrons, separated by regions containing only sp(3) carbon atoms covalently bonded to the (111) diamond surface. We performed quantum transport calculations for different geometries of the system to study how the buckling of the graphene layer and the associated bonding to the diamond substrate affect the transport properties. The system displays high carrier mobility along the ridges and a wide transport gap in the direction normal to the ridges. These intriguing, strongly anisotropic transport properties qualify the hybrid graphene-diamond system as a viable candidate for electronic nanodevices.

  8. Below-Band-Gap Laser Ablation Of Diamond For TEM

    NASA Technical Reports Server (NTRS)

    George, Thomas; Foote, Marc C.; Vasquez, Richard P.; Fortier, Edward P.; Posthill, John B.

    1995-01-01

    Thin, electron-transparent layers of diamond for examination in transmission electron microscope (TEM) fabricated from thicker diamond substrates by using laser beam to ablate surface of substrate. Involves use of photon energy below band gap. Growing interest in use of diamond as bulk substrate and as coating material in variety of applications has given rise to increasing need for TEM for characterization of diamond-based materials. Below-band-gap laser ablation method helps to satisfy this need. Also applied in general to cutting and etching of diamonds.

  9. Electron spin resonance from NV centers in diamonds levitating in an ion trap

    NASA Astrophysics Data System (ADS)

    Delord, T.; Nicolas, L.; Schwab, L.; Hétet, G.

    2017-03-01

    We report observations of the electron spin resonance (ESR) of nitrogen vacancy centers in diamonds that are levitating in an ion trap. Using a needle Paul trap operating under ambient conditions, we demonstrate efficient microwave driving of the electronic spin and show that the spin properties of deposited diamond particles measured by the ESR are retained in the Paul trap. We also exploit the ESR signal to show angle stability of single trapped mono-crystals, a necessary step towards spin-controlled levitating macroscopic objects.

  10. Holographic generation of highly twisted electron beams.

    PubMed

    Grillo, Vincenzo; Gazzadi, Gian Carlo; Mafakheri, Erfan; Frabboni, Stefano; Karimi, Ebrahim; Boyd, Robert W

    2015-01-23

    Free electrons can possess an intrinsic orbital angular momentum, similar to those in an electron cloud, upon free-space propagation. The wave front corresponding to the electron's wave function forms a helical structure with a number of twists given by the angular speed. Beams with a high number of twists are of particular interest because they carry a high magnetic moment about the propagation axis. Among several different techniques, electron holography seems to be a promising approach to shape a conventional electron beam into a helical form with large values of angular momentum. Here, we propose and manufacture a nanofabricated phase hologram for generating a beam of this kind with an orbital angular momentum up to 200ℏ. Based on a novel technique the value of orbital angular momentum of the generated beam is measured and then compared with simulations. Our work, apart from the technological achievements, may lead to a way of generating electron beams with a high quanta of magnetic moment along the propagation direction and, thus, may be used in the study of the magnetic properties of materials and for manipulating nanoparticles.

  11. Theory of helical electron beams in gyrotrons

    SciTech Connect

    Kuftin, A.N.; Lygin, V.K.; Manuilov, V.N.; Raisky, B.V.; Solujanova, E.A.; Tsimring, S.E.

    1993-04-01

    Helical electron beams (HEB) with disturbed axial symmetry of currents density and HEB with locking electrons in magnetic trap are described. The theory of magnetron injection gun (MIG) in space-charge limited current is developed. Systems on permanent magnets forming HEB are considered. 30 refs., 12 figs., 5 tabs.

  12. Microstructural studies of diamond thin films grown by electron cyclotron resonance-assisted chemical vapor deposition

    SciTech Connect

    Gupta, S.; Katiyar, R. S.; Gilbert, D. R.; Singh, R. K.; Morell, G.

    2000-11-15

    A detailed investigation of the correlation among intrinsic stress ({sigma}{sub int}), nonuniform stress ({sigma}{sub nu}), and phonon lifetime (1/{Gamma}) was performed in order to obtain a coherent and comprehensive picture of the microstructure of diamond thin films grown by the electron cyclotron resonance-assisted chemical vapor deposition (ECR-CVD) technique. It was found that the diamond growth taking place by the ECR-CVD is different to that taking place by the microwave CVD and hot-filament CVD. Point and line defects, rather than sp{sup 2} C bonds, were found to be the dominant source of both nonuniform stress and reduced phonon lifetime. The surface relaxation mechanism in these films yields sp{sup 2} C at the expense of strained sp{sup 3} C, resulting in a trade off between diamond yield and crystalline quality. The diamond precursor that spontaneously forms on the unseeded substrates yielded higher quality diamond than planted diamond seeds. The grain boundary relaxation model proposed by Hoffman accounts well for the observed behavior of the intrinsic stress, thus indicating that microstructural restructuration takes place at the grain boundaries when sufficient time and thermal energy are provided.

  13. Microstructural studies of diamond thin films grown by electron cyclotron resonance-assisted chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Gupta, S.; Katiyar, R. S.; Gilbert, D. R.; Singh, R. K.; Morell, G.

    2000-11-01

    A detailed investigation of the correlation among intrinsic stress (σint), nonuniform stress (σnu), and phonon lifetime (1/Γ) was performed in order to obtain a coherent and comprehensive picture of the microstructure of diamond thin films grown by the electron cyclotron resonance-assisted chemical vapor deposition (ECR-CVD) technique. It was found that the diamond growth taking place by the ECR-CVD is different to that taking place by the microwave CVD and hot-filament CVD. Point and line defects, rather than sp2 C bonds, were found to be the dominant source of both nonuniform stress and reduced phonon lifetime. The surface relaxation mechanism in these films yields sp2 C at the expense of strained sp3 C, resulting in a trade off between diamond yield and crystalline quality. The diamond precursor that spontaneously forms on the unseeded substrates yielded higher quality diamond than planted diamond seeds. The grain boundary relaxation model proposed by Hoffman accounts well for the observed behavior of the intrinsic stress, thus indicating that microstructural restructuration takes place at the grain boundaries when sufficient time and thermal energy are provided.

  14. Green coffee decontamination by electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Nemtanu, Monica R.; Brasoveanu, Mirela; Grecu, Maria Nicoleta; Minea, R.

    2005-10-01

    Microbiological load of green coffee is a real problem considering that it is extremely sensitive to contamination. Irradiation is a decontamination method for a lot of foodstuffs, being a feasible, very effective and environment friendly one. Beans and ground green coffee were irradiated with electron beams up to 40 kGy. Microbial load, rheological behavior, electron paramagnetic resonance (EPR) and visible spectroscopy were carried out. The results show that electron beam irradiation of green coffee could decontaminate it without severe changes in its properties.

  15. Intense Relativistic Electron Beam Investigations

    DTIC Science & Technology

    1979-04-01

    dielectric wall and causing surface flashover and the liberation of ions. These ions provide sufficient charge neutralization for the beam to propagate a...University Raleigh, North Carolina 27650 ABSTRACT The propagation speed of the flashover light produced by the filament- azy surface breakdwn of... flashover between the transmission line electrodes. Then, a spark switch is closed, propagating a backward and forward T.E.M. wave from the spark switch

  16. Electron beam damage in oxides: a review.

    PubMed

    Jiang, Nan

    2016-01-01

    This review summarizes a variety of beam damage phenomena relating to oxides in (scanning) transmission electron microscopes, and underlines the shortcomings of currently popular mechanisms. These phenomena include mass loss, valence state reduction, phase decomposition, precipitation, gas bubble formation, phase transformation, amorphization and crystallization. Moreover, beam damage is also dependent on specimen thickness, specimen orientation, beam voltage, beam current density and beam size. This article incorporates all of these damage phenomena and experimental dependences into a general description, interpreted by a unified mechanism of damage by induced electric field. The induced electric field is produced by positive charges, which are generated from excitation and ionization. The distribution of the induced electric fields inside a specimen is beam-illumination- and specimen-shape- dependent, and associated with the experimental dependence of beam damage. Broadly speaking, the mechanism operates differently in two types of material. In type I, damage increases the resistivity of the irradiated materials, and is thus divergent, resulting in phase separation. In type II, damage reduces the resistivity of the irradiated materials, and is thus convergent, resulting in phase transformation. Damage by this mechanism is dependent on electron-beam current density. The two experimental thresholds are current density and irradiation time. The mechanism comes into effect when these thresholds are exceeded, below which the conventional mechanisms of knock-on and radiolysis still dominate.

  17. Modelling of electron beam induced nanowire attraction

    NASA Astrophysics Data System (ADS)

    Bitzer, Lucas A.; Speich, Claudia; Schäfer, David; Erni, Daniel; Prost, Werner; Tegude, Franz J.; Benson, Niels; Schmechel, Roland

    2016-04-01

    Scanning electron microscope (SEM) induced nanowire (NW) attraction or bundling is a well known effect, which is mainly ascribed to structural or material dependent properties. However, there have also been recent reports of electron beam induced nanowire bending by SEM imaging, which is not fully explained by the current models, especially when considering the electro-dynamic interaction between NWs. In this article, we contribute to the understanding of this phenomenon, by introducing an electro-dynamic model based on capacitor and Lorentz force interaction, where the active NW bending is stimulated by an electromagnetic force between individual wires. The model includes geometrical, electrical, and mechanical NW parameters, as well as the influence of the electron beam source parameters and is validated using in-situ observations of electron beam induced GaAs nanowire (NW) bending by SEM imaging.

  18. Modelling of electron beam induced nanowire attraction

    SciTech Connect

    Bitzer, Lucas A.; Benson, Niels Schmechel, Roland; Speich, Claudia; Prost, Werner; Tegude, Franz J.; Schäfer, David; Erni, Daniel

    2016-04-14

    Scanning electron microscope (SEM) induced nanowire (NW) attraction or bundling is a well known effect, which is mainly ascribed to structural or material dependent properties. However, there have also been recent reports of electron beam induced nanowire bending by SEM imaging, which is not fully explained by the current models, especially when considering the electro-dynamic interaction between NWs. In this article, we contribute to the understanding of this phenomenon, by introducing an electro-dynamic model based on capacitor and Lorentz force interaction, where the active NW bending is stimulated by an electromagnetic force between individual wires. The model includes geometrical, electrical, and mechanical NW parameters, as well as the influence of the electron beam source parameters and is validated using in-situ observations of electron beam induced GaAs nanowire (NW) bending by SEM imaging.

  19. Ribbon electron beam formation by a forevacuum plasma electron source

    SciTech Connect

    Klimov, A. S. Burdovitsin, V. A.; Grishkov, A. A.; Oks, E. M.; Zenin, A. A.; Yushkov, Yu. G.

    2016-01-15

    Results of the numerical analysis and experimental research on ribbon electron beam generation based on hollow cathode discharge at forevacuum gas pressure are presented. Geometry of the accelerating gap has modified. It lets us focus the ribbon electron beam and to transport it on a distance of several tens of centimeters in the absence of an axial magnetic field. The results of numerical simulations are confirmed by the experiment.

  20. First-principles electron dynamics control simulation of diamond under femtosecond laser pulse train irradiation.

    PubMed

    Wang, Cong; Jiang, Lan; Wang, Feng; Li, Xin; Yuan, Yanping; Xiao, Hai; Tsai, Hai-Lung; Lu, Yongfeng

    2012-07-11

    A real-time and real-space time-dependent density functional is applied to simulate the nonlinear electron-photon interactions during shaped femtosecond laser pulse train ablation of diamond. Effects of the key pulse train parameters such as the pulse separation, spatial/temporal pulse energy distribution and pulse number per train on the electron excitation and energy absorption are discussed. The calculations show that photon-electron interactions and transient localized electron dynamics can be controlled including photon absorption, electron excitation, electron density, and free electron distribution by the ultrafast laser pulse train.

  1. Peculiar rotation of electron vortex beams.

    PubMed

    Schachinger, T; Löffler, S; Stöger-Pollach, M; Schattschneider, P

    2015-11-01

    Standard electron optics predicts Larmor image rotation in the magnetic lens field of a TEM. Introducing the possibility to produce electron vortex beams with quantized orbital angular momentum brought up the question of their rotational dynamics in the presence of a magnetic field. Recently, it has been shown that electron vortex beams can be prepared as free electron Landau states showing peculiar rotational dynamics, including no and cyclotron (double-Larmor) rotation. Additionally very fast Gouy rotation of electron vortex beams has been observed. In this work a model is developed which reveals that the rotational dynamics of electron vortices are a combination of slow Larmor and fast Gouy rotations and that the Landau states naturally occur in the transition region in between the two regimes. This more general picture is confirmed by experimental data showing an extended set of peculiar rotations, including no, cyclotron, Larmor and rapid Gouy rotations all present in one single convergent electron vortex beam. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Electron--positron beam--plasma experiments

    NASA Astrophysics Data System (ADS)

    Gilbert, S. J.; Kurz, C. K.; Greaves, R. G.; Surko, C. M.

    1997-11-01

    Electron-positron plasmas possess unique properties due to inherent symmetries between the charge species. The ability to accumulate large numbers of cold positrons in Penning-Malmberg traps has made the study of such plasmas possible in the laboratory.(R.G. Greaves, M.D. Tinkle and C.M. Surko, Phys. Plas.) 1 1439 (1994) In the first experiment of this type we studied a beam-plasma system by transmitting an electron beam through a positron plasma in a Penning trap.(R.G. Greaves and C.M. Surko, Phys. Rev. Lett.), 74 3846 (1995) These earlier measurements were obtained using a hot cathode electron source, for which the large beam energy spreads ( ~ 0.5 eV) made it impossible to explore the low energy regime of this beam-plasma system, where the strongest interaction occurs. We report new growth rate measurements obtained using a novel low-energy, cold (Δ E ≈ 0.05 eV) electron beam based on the extraction of electrons stored in a Penning trap.(S.J. Gilbert et al.), Appl. Phys. Lett., 70 1944 (1997). The measured growth rates for a transit time instability are found to be in excellent agreement with a cold fluid theory by D.H.E. Dubin over the range of accessible energies (0.1--3 eV).

  3. Structural characterization of hard materials by transmission electron microscopy (TEM): Diamond-Silicon Carbide composites and Yttria-stabilized Zirconia

    NASA Astrophysics Data System (ADS)

    Park, Joon Seok

    2008-10-01

    Diamond-Silicon Carbide (SiC) composites are excellent heat spreaders for high performance microprocessors, owing to the unparalleled thermal conductivity of the former component. Such a combination is obtained by the infiltration of liquid silicon in a synthetic diamond compact, where a rigid SiC matrix forms by the reaction between the raw materials. As well as the outstanding thermal properties, this engineered compound also retains the extreme hardness of the artificial gem. This makes it difficult to perform structural analysis by transmission electron microscopy (TEM), for it is not possible to produce thin foils out of this solid by conventional polishing methods. For the first time, a dual-beam focused ion beam (FIB) instrument successfully allowed site-specific preparation of electron-transparent specimens by the lift-out technique. Subsequent TEM studies revealed that the highest concentration of structural defects occurs in the vicinity of the diamond-SiC interfaces, which are believed to act as the major barriers to the transport of thermal energy. Diffraction contrast analyses showed that the majority of the defects in diamond are isolated perfect screw or 60° dislocations. On the other hand, SiC grains contain partial dislocations and a variety of imperfections such as microtwins, stacking faults and planar defects that are conjectured to consist of antiphase (or inversion) boundaries. Clusters of nanocrystalline SiC were also observed at the diamond-SiC boundaries, and a specific heteroepitaxial orientation relationship was discovered for all cubic SiC that grows on diamond {111} facets. Yttria-stabilized Zirconia (YSZ) is the most common electrolyte material for solid oxide fuel cell (SOFC) applications. It is an ionic conductor in which charge transfer is achieved by the transport of oxygen ions (O 2-). Like the diamond composite above, it is hard and brittle, and difficult to make into electron transparent TEM samples. Provided an effective

  4. High Density Mastering Using Electron Beam

    NASA Astrophysics Data System (ADS)

    Kojima, Yoshiaki; Kitahara, Hiroaki; Kasono, Osamu; Katsumura, Masahiro; Wada, Yasumitsu

    1998-04-01

    A mastering system for the next-generation digital versatile disk (DVD) is required to have a higher resolution compared with the conventional mastering systems. We have developed an electron beam mastering machine which features a thermal field emitter and a vacuum sealed air spindle motor. Beam displacement caused by magnetic fluctuation with spindle rotation was about 60 nm(p-p) in both the radial and tangential directions. Considering the servo gain of a read-out system, it has little influence on the read-out signal in terms of tracking errors and jitters. The disk performance was evaluated by recording either the 8/16 modulation signal or a groove on the disk. The electron beam recording showed better jitter values from the disk playback than those from a laser beam recorder. The deviation of track pitch was 44 nm(p-p). We also confirmed the high density recording with a capacity reaching 30 GB.

  5. Ultrafast Time-Resolved Electron Diffraction with Megavolt Electron Beams

    SciTech Connect

    Hastings, J.B.; Rudakov, F.M.; Dowell, D.H.; Schmerge, J.F.; Cardoza, J.D.; Castro, J.M.; Gierman, S.M.; Loos, H.; Weber, P.M.; /Brown U.

    2006-10-24

    An rf photocathode electron gun is used as an electron source for ultrafast time-resolved pump-probe electron diffraction. We observed single-shot diffraction patterns from a 160 nm Al foil using the 5.4 MeV electron beam from the Gun Test Facility at the Stanford Linear Accelerator. Excellent agreement with simulations suggests that single-shot diffraction experiments with a time resolution approaching 100 fs are possible.

  6. Quantum teleportation from light beams to vibrational states of a macroscopic diamond

    NASA Astrophysics Data System (ADS)

    Hou, Panyu; Huang, Yuanyuan; Yuan, Xinxing; Chang, Xiuying; Zu, Chong; He, Li; Duan, Luming; CenterQuantum Information, IIIS, Tsinghua University, Beijing 100084, PR China Team; Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA Team

    2016-05-01

    Quantum teleportation is an unusual disembodied form of quantum information transfer through pre-shared entanglement and classical communication, which has found important applications for realization of various quantum technologies. It is of both fundamental interest and practical importance to push quantum teleportation towards macroscopic objects. With the recent development of optomechanics, the vibration in solids, involving collective motion of trillions of atoms, gradually enters into the realm of quantum control. Built on the recent remarkable progress in optical control of motional states in diamond, we report an experimental demonstration of quantum teleportation from light beams to vibrational states of a macroscopic diamond under ambient conditions. Through quantum state tomography, we demonstrate an average teleportation fidelity (90.6 +/- 1.0)%, exceeding the classical limit of 2/3. The experiment pushes the target of quantum teleportation to the biggest object so far, with interesting implications for quantum foundational studies, optomechanical quantum control and quantum information science. Center for Quantum Information, IIIS, Tsinghua University.

  7. Scaling of Electron Beam Switches

    DTIC Science & Technology

    1983-06-01

    BEAM CURRENT DENSITY (AFTER FOIL). N2 760 Torr N2+0.038Torr C3F8 ~15 N2+0. l’T orr C3F8 N2+0. 124Torr C2F6 Ql L L 310 \\ ~ \\\\ ~ 5 h...Time [sec] FIG 5. CURRENT DECAYS FOR NITROGEN AND NITROGEN WITH ADDED ATTACHING GASES. CH4 760 Torr CH4+0. lTorr C2F6 CH4+0. lTorr C3F8 CH4

  8. Low Voltage Electron Beam Lithography

    DTIC Science & Technology

    1993-02-01

    scattering cross sections for electron/atom scattering in the range 0.1 to 30keV across the periodic table . The empirical forms are derived from trends...well constant across the periodic table except where different electron shells are filled or half filled. It is in the half angles however that I have...it might seem surprising it turns out that the half angle for the differential scattering distribution is nearly constant over the entire periodic

  9. The Physics and Applications of High Brightness Electron Beams

    NASA Astrophysics Data System (ADS)

    Palumbo, Luigi; Rosenzweig, J.; Serafini, Luca

    2007-09-01

    Plenary sessions. RF deflector based sub-Ps beam diagnostics: application to FEL and advanced accelerators / D. Alesini. Production of fermtosecond pulses and micron beam spots for high brightness electron beam applications / S.G. Anderson ... [et al.]. Wakefields of sub-picosecond electron bunches / K.L.F. Bane. Diamond secondary emitter / I. Ben-Zvi ... [et al.]. Parametric optimization for an X-ray free electron laser with a laser wiggler / R. Bonifacio, N. Piovella and M.M. Cola. Needle cathodes for high-brightness beams / C.H. Boulware ... [et al.]. Non linear evolution of short pulses in FEL cascaded undulators and the FEL harmonic cascade / L. Giannessi and P. Musumeci. High brightness laser induced multi-meV electron/proton sources / D. Giulietti ... [et al.]. Emittance limitation of a conditioned beam in a strong focusing FEL undulator / Z. Huang, G. Stupakov and S. Reiche. Scaled models: space-charge dominated electron storage rings / R.A. Kishek ... [et al.]. High brightness beam applications: energy recovered linacs / G.A. Krafft. Maximizing brightness in photoinjectors / C. Limborg-Deprey and H. Tomizawa. Ultracold electron sources / O.J. Luiten ... [et al.]. Scaling laws of structure-based optical accelerators / A. Mizrahi, V. Karagodsky and L. Schächter. High brightness beams-applications to free-electron lasers / S. Reiche. Conception of photo-injectors for the CTF3 experiment / R. Roux. Superconducting RF photoinjectors: an overview / J. Sekutowicz. Status and perspectives of photo injector developments for high brightness beams / F. Stephan. Results from the UCLA/FNLP underdense plasma lens experiment / M.C. Thompson ... [et al.]. Medical application of multi-beam compton scattering monochromatic tunable hard X-ray source / M. Uesaka ... [et al.]. Design of a 2 kA, 30 fs RF-photoinjector for waterbag compression / S.B. Van Der Geer, O.J. Luiten and M.J. De Loos. Proposal for a high-brightness pulsed electron source / M. Zolotorev ... [et al

  10. Microwave emission from relativistic electron beams

    NASA Astrophysics Data System (ADS)

    Bekefi, George

    1993-04-01

    This is a continuation proposal on Microwave Emission from Relativistic electron Beams. Below we summarize the various research activities. All of the experimental studies described below will be performed using our Physics International 615MR Pulserad Accelerator with a maximum voltage of 500 kV and peak currents of 4 kA and the 1.5MV, 30kA Pulserad 110A. The electron beam is presently generated by a thermionically emitting, electrostatically focused, Pierce-type electron gun (250 kV, 250 A) removed from a SLAC klystron. An assembly of six focusing coils is designed so that their magnetic field lines lie along the zero-magnetic field electron trajectories. This field configuration gives the least scalloping of the electron beam (low transverse temperature) and allows the magnetic field amplitude to be varied over a wide range without greatly affecting the electron beam temperature. Only the inner portion of the beam is used; an aperture limits the beam radius to r(sub b) = 0.254 cm. Consequently, the net current available for the different experiments is in the range of 1-8 A. In addition to the above gun, we have recently procured from SLAC a brand-new, state of the art, electron gun that can operate at 450 kV and a peak current of approximately 500 A. The advantage of this system over the previous one is our ability to operate at higher voltages and thus study the various coherent radiation mechanisms at considerably shorter wavelengths.

  11. Electronic speckle pattern interferometry using vortex beams.

    PubMed

    Restrepo, René; Uribe-Patarroyo, Néstor; Belenguer, Tomás

    2011-12-01

    We show that it is possible to perform electronic speckle pattern interferometry (ESPI) using, for the first time to our knowledge, vortex beams as the reference beam. The technique we propose is easy to implement, and the advantages obtained are, among others, environmental stability, lower processing time, and the possibility to switch between traditional ESPI and spiral ESPI. The experimental results clearly show the advantages of using the proposed technique for deformation studies of complex structures. © 2011 Optical Society of America

  12. Electron-beam welder circle generator

    NASA Technical Reports Server (NTRS)

    Burley, R. K.

    1980-01-01

    Generator rotates electron beam and performs other convenient functions during welding process. Device eliminates time-consuming techniques relying heavily on operator's skill. Welding speed is varied with frequency selector, and amplitudes of x- and y-axes are varied by adjusting phase shift. Both high and low-range adjustments are available, and each axis can be separately controlled. Crosshair is provided for set-up and beam alinements.

  13. Electron microscopic evidence for a tribologically induced phase transformation as the origin of wear in diamond

    SciTech Connect

    Zhang, Xinyi; Schneider, Reinhard; Müller, Erich; Gerthsen, Dagmar; Mee, Manuel; Meier, Sven; Gumbsch, Peter

    2014-02-14

    Tribological testing of a coarse-grained diamond layer, deposited by plasma-enhanced chemical vapor deposition, was performed on a ring-on-ring tribometer with a diamond counterpart. The origin of the wear of diamond and of the low friction coefficient of 0.15 was studied by analyzing the microstructure of worn and unworn regions by transmission and scanning electron microscopy. In the worn regions, the formation of an amorphous carbon layer with a thickness below 100 nm is observed. Electron energy loss spectroscopy of the C-K ionization edge reveals the transition from sp{sup 3}-hybridized C-atoms in crystalline diamond to a high fraction of sp{sup 2}-hybridized C-atoms in the tribo-induced amorphous C-layer within a transition region of less than 5 nm thickness. The mechanically induced phase transformation from diamond to the amorphous phase is found to be highly anisotropic which is clearly seen at a grain boundary, where the thickness of the amorphous layer above the two differently oriented grains abruptly changes.

  14. Determination of electron beam polarization using electron detector in Compton polarimeter with less than 1% statistical and systematic uncertainty

    SciTech Connect

    Narayan, Amrendra

    2015-05-01

    The Q-weak experiment aims to measure the weak charge of proton with a precision of 4.2%. The proposed precision on weak charge required a 2.5% measurement of the parity violating asymmetry in elastic electron - proton scattering. Polarimetry was the largest experimental contribution to this uncertainty and a new Compton polarimeter was installed in Hall C at Jefferson Lab to make the goal achievable. In this polarimeter the electron beam collides with green laser light in a low gain Fabry-Perot Cavity; the scattered electrons are detected in 4 planes of a novel diamond micro strip detector while the back scattered photons are detected in lead tungstate crystals. This diamond micro-strip detector is the first such device to be used as a tracking detector in a nuclear and particle physics experiment. The diamond detectors are read out using custom built electronic modules that include a preamplifier, a pulse shaping amplifier and a discriminator for each detector micro-strip. We use field programmable gate array based general purpose logic modules for event selection and histogramming. Extensive Monte Carlo simulations and data acquisition simulations were performed to estimate the systematic uncertainties. Additionally, the Moller and Compton polarimeters were cross calibrated at low electron beam currents using a series of interleaved measurements. In this dissertation, we describe all the subsystems of the Compton polarimeter with emphasis on the electron detector. We focus on the FPGA based data acquisition system built by the author and the data analysis methods implemented by the author. The simulations of the data acquisition and the polarimeter that helped rigorously establish the systematic uncertainties of the polarimeter are also elaborated, resulting in the first sub 1% measurement of low energy (?1 GeV) electron beam polarization with a Compton electron detector. We have demonstrated that diamond based micro-strip detectors can be used for tracking in a

  15. Linac Coherent Light Source Electron Beam Collimation

    SciTech Connect

    Wu, J.; Dowell, D.; Emma, P.; Limborg-Deprey, C.; Schmerge, J.F.; /SLAC

    2007-04-27

    This paper describes the design and simulation of the electron beam collimation system in the Linac Coherent Light Source (LCLS). Dark current is expected from the gun and some of the accelerating cavities. Particle tracking of the expected dark current through the entire LCLS linac, from gun through FEL undulator, is used to estimate final particle extent in the undulator as well as expected beam loss at each collimator or aperture restriction. A table of collimators and aperture restrictions is listed along with halo particle loss results, which includes an estimate of average continuous beam power lost. In addition, the transverse wakefield alignment tolerances are calculated for each collimator.

  16. Belle-II VXD radiation monitoring and beam abort with sCVD diamond sensors

    NASA Astrophysics Data System (ADS)

    Adamczyk, K.; Aihara, H.; Angelini, C.; Aziz, T.; Babu, V.; Bacher, S.; Bahinipati, S.; Barberio, E.; Baroncelli, T.; Basith, A. K.; Batignani, G.; Bauer, A.; Behera, P. K.; Bergauer, T.; Bettarini, S.; Bhuyan, B.; Bilka, T.; Bosi, F.; Bosisio, L.; Bozek, A.; Buchsteiner, F.; Casarosa, G.; Ceccanti, M.; Červenkov, D.; Chendvankar, S. R.; Dash, N.; Divekar, S. T.; Doležal, Z.; Dutta, D.; Forti, F.; Friedl, M.; Hara, K.; Higuchi, T.; Horiguchi, T.; Irmler, C.; Ishikawa, A.; Jeon, H. B.; Joo, C.; Kandra, J.; Kang, K. H.; Kato, E.; Kawasaki, T.; Kodyš, P.; Kohriki, T.; Koike, S.; Kolwalkar, M. M.; Kvasnička, P.; Lanceri, L.; Lettenbicher, J.; Mammini, P.; Mayekar, S. N.; Mohanty, G. B.; Mohanty, S.; Morii, T.; Nakamura, K. R.; Natkaniec, Z.; Negishi, K.; Nisar, N. K.; Onuki, Y.; Ostrowicz, W.; Paladino, A.; Paoloni, E.; Park, H.; Pilo, F.; Profeti, A.; Rashevskaya, I.; Rao, K. K.; Rizzo, G.; Rozanska, M.; Sandilya, S.; Sasaki, J.; Sato, N.; Schultschik, S.; Schwanda, C.; Seino, Y.; Shimizu, N.; Stypula, J.; Tanaka, S.; Tanida, K.; Taylor, G. N.; Thalmeier, R.; Thomas, R.; Tsuboyama, T.; Uozumi, S.; Urquijo, P.; Vitale, Lorenzo; Volpi, M.; Watanuki, S.; Watson, I. J.; Webb, J.; Wiechczynski, J.; Williams, S.; Würkner, B.; Yamamoto, H.; Yin, H.; Yoshinobu, T.

    2016-07-01

    The Belle-II VerteX Detector (VXD) has been designed to improve the performances with respect to Belle and to cope with an unprecedented luminosity of 8 ×1035cm-2s-1 achievable by the SuperKEKB. Special care is needed to monitor both the radiation dose accumulated throughout the life of the experiment and the instantaneous radiation rate, in order to be able to promptly react to sudden spikes for the purpose of protecting the detectors. A radiation monitoring and beam abort system based on single-crystal diamond sensors is now under an active development for the VXD. The sensors will be placed in several key positions in the vicinity of the interaction region. The severe space limitations require a challenging remote readout of the sensors.

  17. Engineering Electronic and Optical Properties of Color Centers in Diamond

    DTIC Science & Technology

    2013-07-30

    REPORT DOCUMENTATION PAGE Form ApprovedOMB No. 0704-0188 1. REPORT DATE (DD-MM-YYYY) 2 . REPORT TYPE 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER 6...developments to study new color centers in diamond. ! color centers, nitrogen-vacancy, spin coherence U U U SAR 8 Jeronimo Maze 56- 2 -2354 4486 Distribution A...Approved for public release AFRL ! "! !"#$%&’()!*)+$#,(&)(’*)-& ! #$%! &’()*+(,-.’/$.&01,2$0.3,234+-!! 5678’(&%! 9+*,-!:’. 2 $.4,*(’!;’/$.&!&$!<.3

  18. SU-E-T-232: Micro Diamonds - Determination of Their Lateral Response Function Via Gap-Beam Dose Profiles

    SciTech Connect

    Poppinga, D; Looe, H; Chofor, N; Schoenfeld, A; Fischer, J; Meyners, J; Delfs, B; Stelljes, T; Poppe, B; Verona, C; Verona-Rinati, G; Marinelli, M; Harder, D

    2014-06-01

    Purpose: The aim of this study is the measurement of the lateral response function of microDiamonds by comparison with radiochromic film dose measurement. In this study a TM60019 microDiamond (PTW Freiburg, Germany) and a prototype synthetic diamond detector with smaller sensitive volume were investigated. Methods: Two lead blocks were positioned below the gantry head of an Elekta Synergy accelerator using a gantry mount. Between the blocks two sheets of paper were fixed. The water phantom was positioned below the gantry mount, so that the block to water distance was 20 cm. The gap beam profile was measured at 5 cm water depth by radiochromic EBT3 film and diamond detectors. The film was fixed on a RW3 plate, moved by the step motor system of the phantom and digitized by an Epson 10000XL scanner using the red color channel. Results: The lateral response of the prototype diamond detector is comparable to that of film measurements, i.e. has negligible width. This corresponds to the small detector volume of the prototype detector. In contrast to this the FWHM values of the gap-beam dose profiles measured with the TM60019 detector are somewhat larger, which corresponds to the larger sensitive detector volume. Conclusion: This study has illustrated the high spatial resolution of the diamond detectors. In comparison with filmmeasured narrow-beam dose profiles, the TM60019 has a spatial resolution function of about 2 mm FWHM, whereas the FWHM for the prototype is practically negligible. However due to the low signal caused by the small sensitive volume, measurements with the prototype in clinical routine are a challenge. On the other hand the TM60019 is a good compromise between detector volume and signal output and thus a well suited detector for most clinically relevant small field situations.

  19. Fast magnetospheric echoes of energetic electron beams

    NASA Technical Reports Server (NTRS)

    Wilhelm, K.; Bernstein, W.; Kellogg, P. J.; Whalen, B. A.

    1983-01-01

    Electron beam experiments using rocket-borne instrumentation confirmed earlier observations of fast magnetospheric echoes of artificially injected energetic electrons. A total of 234 echoes were observed in a pitch angle range from 9 to 110 deg at energies of 1.87 and 3.90 keV. Of these, 102 echoes could unambiguously be identified with known accelerator operations at 2, 4 or 8 keV energy and highest current levels resulting in the determination of transit times of typically 300 to 400 ms. In most cases, when echoes were present in both energy channels, the higher energy electrons led the lower energy ones by 50 to 70 ms. Adiabatic theory applied to these observations yields a reflection height of 3000 to 4000 km. The injection process is discussed as the strong beam-plasma interaction that occurred near the electron accelerator appears to be instrumental in generating the source of heated electrons required for successful echo detection.

  20. Picosecond runaway electron beams in air

    SciTech Connect

    Mesyats, G. A.; Yalandin, M. I.; Reutova, A. G.; Sharypov, K. A.; Shpak, V. G.; Shunailov, S. A.

    2012-01-15

    Experimental data on the generation of picosecond runaway electron beams in an air gap with an inhomogeneous electric field at a cathode voltage of up to 500 kV are presented. The methods and equipment developed for these experiments made it possible to measure the beam characteristics with a time resolution of better than 10{sup -11} s, determine the voltage range and the beam formation time in the breakdown delay stage, and demonstrate the influence of the state of the cathode surface on the stability of runaway electron generation. It is demonstrated that the critical electron runaway field in air agrees with the classical concepts and that the accelerated beam can be compressed to {approx}20 ps. It is unlikely that, under these conditions, the beam duration is limited due to the transition of field emission from the cathode to a microexplosion of inhomogeneities. The maximum energy acquired by runaway electrons in the course of acceleration does not exceed the value corresponding to the electrode voltage.

  1. Non-diffracting multi-electron vortex beams balancing their electron-electron interactions.

    PubMed

    Mutzafi, Maor; Kaminer, Ido; Harari, Gal; Segev, Mordechai

    2017-09-21

    The wave-like nature of electrons has been known for almost a century, but only in recent years has the ability to shape the wavefunction of EBeams (Electron-Beams) become experimentally accessible. Various EBeam wavefunctions have been demonstrated, such as vortex, self-accelerating, Bessel EBeams etc. However, none has attempted to manipulate multi-electron beams, because the repulsion between electrons rapidly alters the beam shape. Here, we show how interference effects of the quantum wavefunction describing multiple electrons can be used to exactly balance both the repulsion and diffraction-broadening. We propose non-diffracting wavepackets of multiple electrons, which can also carry orbital angular momentum. Such wavefunction shaping facilitates the use of multi-electron beams in electron microscopy with higher current without compromising on spatial resolution. Simulating the quantum evolution in three-dimensions and time, we show that imprinting such wavefunctions on electron pulses leads to shape-preserving multi-electrons ultrashort pulses. Our scheme applies to any beams of charged particles, such as protons and ion beams.Vortex electron beams are generated using single electrons but their low beam-density is a limitation in electron microscopy. Here the authors propose a scheme for the realization of non-diffracting electron beams by shaping wavepackets of multiple electrons and including electron-electron interactions.

  2. Field-Emission from Chemically Functionalized Diamond Surfaces: Does Electron Affinity Picture Work?

    NASA Astrophysics Data System (ADS)

    Miyamoto, Yoshiyuki; Miyazaki, Takehide; Takeuchi, Daisuke; Okushi, Hideyo; Yamasaki, Satoshi

    2014-03-01

    By means of the time-dependent density functional electron dynamics, we have revisited the field-emission efficiency of chemically functionalized diamond (100) surfaces. In order to achieve high efficiency and high (chemical) stability, proper chemical species are needed to terminate diamond surfaces. Hydrogen (H) termination is well known to achieve the negative electron affinity (NEA) of diamond surface which indeed enhances field emission performance than that of clean surface with positive electron affinity (PEA). Yet, the durability of H-terminated diamond surface was concerned for long-time operation of the field-emission. Meantime, oxidation, or hydroxyl (OH) termination was considered to achieve chemical stability of the surface but presence of oxygen (O) atom should reduce the emission efficiency. Recently, H- OH-co-terminated surface is reported as NEA and was expected to achieve both emission efficiency and chemical stability. However, our simulation showed that emission efficiency of the H- OH- co-terminated surface is much lower than clean surface with PEA, thus we note that the electron affinity cannot be a unique measure to determine the emission efficiency. In this talk, we introduce necessity of new concept to understand the emission efficiency which needs to know detailed potential profile from bulk to vacuum through surface, which is strongly dependent on the surface chemical functionalization. This work was supported by ALCA project conducted by Japan Science and Technology Agency.

  3. Advanced electron beam resist requirements and challenges

    NASA Astrophysics Data System (ADS)

    Jamieson, Andrew; Kim, Yong Kwan; Olson, Bennett; Lu, Maiying; Wilcox, Nathan

    2011-11-01

    As photomask minimum feature size requirements continue to shrink, resist resolution limitations and their tradeoffs with exposure dose are critical factors. Recently, nearly every node needs a new electron beam resist, customized for exposure dose requirements while simultaneously meeting resolution specifications. Intel Mask Operations has an active program focused on screening new electron beam resists and processes. We discuss the performance metrics we use to evaluate materials and discuss the relative capabilities of the latest resists. We present fundamental resist metrics (resolution, LER and dose) as well as manufacturing process sensitivities.

  4. Microwave Emission from Relativistic Electron Beams

    DTIC Science & Technology

    1989-03-01

    crucial for the operation of short wavelength free-electron lasers. It mitigates the effects of diffraction and thereby allows the free electron...akin to the guiding properties of an optical fiber. Such "optical guiding" [5]-[10] would mitigate the effects of diffraction, and thereby allow the...beam aperture limits the size of the beam to rb/ 1, f 0.07, the wiggler field is close to that of an ideal wiggler. That is, the effects of the radial

  5. Electron beam induced growth of tin whiskers

    SciTech Connect

    Vasko, A. C.; Karpov, V. G.; Warrell, G. R.; Parsai, E. I.; Shvydka, Diana

    2015-09-28

    We have investigated the influence of electron irradiation on tin whisker growth. Sputtered tin samples exposed to electron beam of 6 MeV energy exhibited fast whisker growth, while control samples did not grow any whiskers. The statistics of e-beam induced whiskers was found to follow the log-normal distribution. The observed accelerated whisker growth is attributed to electrostatic effects due to charges trapped in an insulating substrate. These results offer promise for establishing whisker-related accelerated life testing protocols.

  6. LOW EMITTANCE ELECTRON BEAMS FOR THE RHIC ELECTRON COOLER

    SciTech Connect

    KEWISCH,J.; CHANG, X.

    2007-06-25

    An electron cooler, based on an Energy Recovery Linac (ERL) is under development for the Relativistic Heavy Ion Collider (RMIC) at Brookhaven National Laboratory. This will be the first electron cooler operating at high energy with bunched beams. In order to achieve sufficient cooling of the ion beams the electron have to have a charge of 5 nC and a normalized emittance less than 4 {mu}. This paper presents the progress in optimizing the injector and the emittance improvements from shaping the charge distribution in the bunch.

  7. A single-crystal diamond-based thermal neutron beam monitor for instruments at pulsed neutron sources

    NASA Astrophysics Data System (ADS)

    Pietropaolo, A.; Verona Rinati, G.; Verona, C.; Schooneveld, E. M.; Angelone, M.; Pillon, M.

    2009-11-01

    Single-crystal diamond detectors manufactured through a Chemical Vapour Deposition (CVD) technique are recent technology devices that have been employed in reactor and Tokamak environments in order to detect both thermal and almost monochromatic 14 MeV neutrons produced in deuterium-tritium ( d-t) nuclear fusion reactions. Their robustness and compactness are the key features that can be exploited for different applications as well. Aim of the present experimental investigation is the assessment of the performance of a diamond detector as a thermal neutron beam monitor at pulsed neutron sources. To this aim, a test measurement was carried out on the Italian Neutron Experimental Station (INES) beam line at the ISIS spallation neutron source (Great Britain). The experiment has shown the capability of these devices to work at a pulsed neutron source for beam monitoring purposes. Other interesting possible applications are also suggested.

  8. Focused ion beam milling of diamond : effects of H2O on yield, surface morphology and microstructure.

    SciTech Connect

    Mayer, Thomas Michael; Hodges, V. Carter; Adams, David Price; Vasile, Michael J.

    2003-06-01

    The effects of H{sub 2}O vapor introduced during focused ion beam (FIB) milling of diamond(100) are examined. In particular, we determine the yield, surface morphology, and microstructural damage that results from FIB sputtering and H{sub 2}O-assisted FIB milling processes. Experiments involving 20 keV Ga{sup +} bombardment to doses {approx}10{sup 18} ions/cm{sup 2} are conducted at a number of fixed ion incidence angles, {theta}. For each {theta} selected, H{sub 2}O-assisted ion milling shows an increased material removal rate compared with FIB sputtering (no gas assist). The amount by which the yield is enhanced depends on the angle of incidence with the largest difference occurring at {theta} = 75{sup o}. Experiments that vary pixel dwell time from 3 {micro}s to 20 ms while maintaining a fixed H{sub 2}O gas pressure demonstrate the additional effect of beam scan rate on yield for gas-assisted processes. Different surface morphologies develop during ion bombardment depending on the angle of ion incidence and the presence/absence of H{sub 2}O. In general, a single mode of ripples having a wave vector aligned with the projection of the ion beam vector forms for {theta} as high as 70{sup o}. H{sub 2}O affects this morphology by lowering the ripple onset angle and decreasing the ripple wavelength. At high angles of incidence ({theta} > 70{sup o}) a step/terrace morphology is observed. H{sub 2}O-assisted milling at {theta} > 70{sup o} results in a smoother stepped surface compared with FIB sputtering. Transmission electron microscopy shows that the amorphized thickness is reduced by 20% when using H{sub 2}O-assisted FIB milling.

  9. Analysis of emissions from prebunched electron beams

    NASA Astrophysics Data System (ADS)

    Jia, Qika

    2017-07-01

    The emissions of the prebunched electron beam, including the coherent spontaneous emission and the self-amplified stimulated emission, are analyzed by using one-dimensional FEL theory. Neglecting the interaction of the electrons and the radiation field, the formula of the coherent spontaneous emission is given, the power of which is proportional to the square of the initial bunching factor and of the undulator length. For the general emission case of the prebunched electron beam, the evolution equation of the optical field is deducted. Then the analytical expression of the emission power is obtained for the resonant case; it is applicable to the regions from the low gain to the high gain. It is found that when the undulator length is shorter than four gain lengths, the emission is just the coherent spontaneous emission, and conversely, it is the self-amplified stimulated emission growing exponentially. For the nonresonant prebunched electron beam, the variations of the emission intensity with the detuning parameter for different interaction length are presented. The radiation field characters of the prebunched electron beam are discussed and compared with that of the seeded FEL amplifier.

  10. Pulse laser induced graphite-to-diamond phase transition: the role of quantum electronic stress

    NASA Astrophysics Data System (ADS)

    Wang, ZhengFei; Liu, Feng

    2017-02-01

    First-principles calculations show that the pulse laser induced graphite-to-diamond phase transition is related to the lattice stress generated by the excited carriers, termed as "quantum electronic stress (QES)". We found that the excited carriers in graphite generate a large anisotropic QES that increases linearly with the increasing carrier density. Using the QES as a guiding parameter, structural relaxation spontaneously transforms the graphite phase into the diamond phase, as the QES is reduced and minimized. Our results suggest that the concept of QES can be generally applied as a good measure to characterize the pulse laser induced phase transitions, in analogy to pressure induced phase transitions.

  11. Vertically aligned diamond-graphite hybrid nanorod arrays with superior field electron emission properties

    NASA Astrophysics Data System (ADS)

    Ramaneti, R.; Sankaran, K. J.; Korneychuk, S.; Yeh, C. J.; Degutis, G.; Leou, K. C.; Verbeeck, J.; Van Bael, M. K.; Lin, I. N.; Haenen, K.

    2017-06-01

    A "patterned-seeding technique" in combination with a "nanodiamond masked reactive ion etching process" is demonstrated for fabricating vertically aligned diamond-graphite hybrid (DGH) nanorod arrays. The DGH nanorod arrays possess superior field electron emission (FEE) behavior with a low turn-on field, long lifetime stability, and large field enhancement factor. Such an enhanced FEE is attributed to the nanocomposite nature of the DGH nanorods, which contain sp2-graphitic phases in the boundaries of nano-sized diamond grains. The simplicity in the nanorod fabrication process renders the DGH nanorods of greater potential for the applications as cathodes in field emission displays and microplasma display devices.

  12. Electron beam diagnostic for profiling high power beams

    DOEpatents

    Elmer, John W [Danville, CA; Palmer, Todd A [Livermore, CA; Teruya, Alan T [Livermore, CA

    2008-03-25

    A system for characterizing high power electron beams at power levels of 10 kW and above is described. This system is comprised of a slit disk assembly having a multitude of radial slits, a conducting disk with the same number of radial slits located below the slit disk assembly, a Faraday cup assembly located below the conducting disk, and a start-stop target located proximate the slit disk assembly. In order to keep the system from over-heating during use, a heat sink is placed in close proximity to the components discussed above, and an active cooling system, using water, for example, can be integrated into the heat sink. During use, the high power beam is initially directed onto a start-stop target and after reaching its full power is translated around the slit disk assembly, wherein the beam enters the radial slits and the conducting disk radial slits and is detected at the Faraday cup assembly. A trigger probe assembly can also be integrated into the system in order to aid in the determination of the proper orientation of the beam during reconstruction. After passing over each of the slits, the beam is then rapidly translated back to the start-stop target to minimize the amount of time that the high power beam comes in contact with the slit disk assembly. The data obtained by the system is then transferred into a computer system, where a computer tomography algorithm is used to reconstruct the power density distribution of the beam.

  13. Electron Beam Control of Combustion

    DTIC Science & Technology

    2006-11-01

    FA8655-03-D-0001, Delivery Order 0011 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Dr. Georgy Pozdnyakov 5d. PROJECT NUMBER 5d...and Applied Mechanics SB RAS Project Director Dr. Georgy A. Pozdnyakov Novosibirsk, 2006...of the reaction region in the field of wavelengths of about 310 nm, for the kerosene-oxygen mixture. The moment of electron gun connection almost

  14. Unexpected change in the electron affinity of diamond caused by the ultra-thin transition metal oxide films

    NASA Astrophysics Data System (ADS)

    Tiwari, Amit K.; Goss, J. P.; Briddon, P. R.; Horsfall, A. B.; Wright, N. G.; Jones, R.; Rayson, M. J.

    2014-11-01

    The energetics and electronic properties of oxides of selected transition metals (Cu, Ni, Ti and Zn) adsorbed onto a diamond (001) surface are examined using density functional simulations. We find that the stoichiometric oxides of Ti and Zn exhibit large negative electronic affinities of around 3 eV, whereas the oxides Cu and Ni have a relatively small impact on the affinity. Although reactions of most metal oxides with the diamond surface are exothermic in nature, we propose that titanium, which exhibit large binding energies per metal atom in addition to a large negative electron affinity, is of particular interest for the surface coating of diamond-based electron emitters.

  15. Investigations and applications of field- and photo-emitted electron beams from a radio frequency gun

    NASA Astrophysics Data System (ADS)

    Panuganti, Sriharsha

    Production of quality electron bunches using efficient ways of generation is a crucial aspect of accelerator technology. Radio frequency electron guns are widely used to generate and rapidly accelerate electron beams to relativistic energies. In the current work, we primarily study the charge generation processes of photoemission and field emission inside an RF gun installed at Fermilab's High Brightness Electron Source Laboratory (HBESL). Specifically, we study and characterize second-order nonlinear photoemission from a Cesium Telluride (Cs2Te) semiconductor photocathode, and field emission from carbon based cathodes including diamond field emission array (DFEA) and carbon nanotube (CNT) cathodes located in the RF gun's cavity. Finally, we discuss the application experiments conducted at the facility to produce soft x-rays via inverse Compton scattering (ICS), and to generate uniformly filled ellipsoidal bunches and temporally-shaped electron beams from the Cs 2Te photocathode.

  16. Investigations and Applications of Field- and Photo-emitted Electron Beams from a Radio Frequency Gun

    SciTech Connect

    Panuganti, SriHarsha

    2015-08-01

    Production of quality electron bunches using e cient ways of generation is a crucial aspect of accelerator technology. Radio frequency electron guns are widely used to generate and rapidly accelerate electron beams to relativistic energies. In the current work, we primarily study the charge generation processes of photoemission and eld emission inside an RF gun installed at Fermilab's High Brightness Electron Source Laboratory (HBESL). Speci cally, we study and characterize second-order nonlinear photoemission from a Cesium Telluride (Cs2Te) semiconductor photocathode, and eld emission from carbon based cathodes including diamond eld emission array (DFEA) and carbon nanotube (CNT) cathodes located in the RF gun's cavity. Finally, we discuss the application experiments conducted at the facility to produce soft x-rays via inverse Compton scattering (ICS), and to generate uniformly lled ellipsoidal bunches and temporally shaped electron beams from the Cs2Te photocathode.

  17. Gamma Putty dosimetric studies in electron beam

    PubMed Central

    Gloi, Aime M.

    2016-01-01

    Traditionally, lead has been used for field shaping in megavoltage electron beams in radiation therapy. In this study, we analyze the dosimetric parameters of a nontoxic, high atomic number (Z = 83), bismuth-loaded material called Gamma Putty that is malleable and can be easily molded to any desired shape. First, we placed an ionization chamber at different depths in a solid water phantom under a Gamma Putty shield of thickness (t = 0, 3, 5, 10, 15, 20, and 25 mm, respectively) and measured the ionizing radiation on the central axis (CAX) for electron beam ranging in energies from 6 to 20 MeV. Next, we investigated the relationship between the relative ionization (RI) measured at a fixed depth for several Gamma Putty shield at different cutout diameters ranging from 2 to 5 cm for various beam energies and derived an exponential fitting equation for clinical purposes. The dose profiles along the CAX show that bremsstrahlung dominates for Gamma Putty thickness >15 mm. For high-energy beams (12–20 MeV) and all Gamma Putty thicknesses up to 25 mm, RI below 5% could not be achieved due to the strong bremsstrahlung component. However, Gamma Putty is a very suitable material for reducing the transmission factor below 5% and protecting underlying normal tissues for low-energy electron beams (6–9 MeV). PMID:27651563

  18. RHIC electron lens beam transport system design considerations

    SciTech Connect

    Luo, Y.; Heimerle, M.; Fischer, W.; Pikin, A.; Beebe, E.; Bruno, D.; Gassner, D.; Gu, X.; Gupta, R. C.; Hock, J.; Jain, A.; Lambiase, R.; Mapes, M.; Meng, W.; Montag, C.; Oerter, B.; Okamura, M.; Raparia, D.; Tan, Y.; Than, R.; Tuozzolo, J.; Zhang, W.

    2010-08-03

    To apply head-on beam-beam compensation for RHIC, two electron lenses are designed and will be installed at IP6 and IP8. Each electron lens has several sub-systems, including electron gun, electron collector, superconducting main solenoid (SM), diagnostics system and power supply system. In addition to these systems, beam transport system which can transport electron beam from electron gun side to collector side is also needed.

  19. Young's Interference Experiment with Electron Beams Carrying Orbital Angular Momentum

    NASA Astrophysics Data System (ADS)

    Hasegawa, Yuya; Saitoh, Koh; Tanaka, Nobuo; Tanimura, Shogo; Uchida, Masaya

    2013-03-01

    A Young's-type double-slit experiment using electron beams carrying orbital angular momentum (OAM) is demonstrated in a transmission electron microscope. Each of the slits is replaced by a grating mask with a fork dislocation, which generates electron beams with OAM as diffracted beams. Interference fringes produced by two diffracted electron beams with OAM appear at the observation screen. The interference fringe patterns exhibit dislocation features depending on the topological charges of the two electron beams. The experimental results clearly show the wave nature of the electron beams with OAM and gives potential applications in electron physics and quantum mechanics.

  20. Precision fast kickers for kiloampere electron beams

    SciTech Connect

    Caporaso, G.J.; Chen, Y.J.; Weir, J.T.

    1999-10-06

    These kickers will be used to make fast dipoles and quadrupoles which are driven by sharp risetime pulsers to provide precision beam manipulations for high current kA electron beams. This technology will be used on the 2nd axis of the DARHT linac at LANL. It will be used to provide 4 micropulses of pulse width 20 to 120 nsec. selected from a 2 {micro}sec., 2kA, 20MeV macropulse. The fast pulsers will have amplitude modulation capability to compensate for beam-induced steering effects and other slow beam centroid motion to within the bandwidth of the kicker system. Scaling laws derived from theory will be presented along with extensive experimental data obtained on the test bed ETA-II.

  1. Electron gun jitter effects on beam bunching

    SciTech Connect

    Liu, M. S.; Iqbal, M.

    2014-02-15

    For routine operation of Beijing Electron Positron Collider II (BEPCII) linac, many factors may affect the beam bunching process directly or indirectly. We present the measurements and analyses of the gun timing jitter, gun high voltage jitter, and beam energy at the exit of the standard acceleration section of the linac quantitatively. Almost 80 mV and more than 200 ps of gun high voltage and time jitters have ever been measured, respectively. It was analyzed that the gun timing jitter produced severe effects on beam energy than the gun high voltage jitter, if the timing jitter exceeded 100 ps which eventually deteriorates both the beam performance and the injection rate to the storage ring.

  2. Radiative cooling of relativistic electron beams

    SciTech Connect

    Huang, Zhirong

    1998-05-01

    Modern high-energy particle accelerators and synchrotron light sources demand smaller and smaller beam emittances in order to achieve higher luminosity or better brightness. For light particles such as electrons and positrons, radiation damping is a natural and effective way to obtain low emittance beams. However, the quantum aspect of radiation introduces random noise into the damped beams, yielding equilibrium emittances which depend upon the design of a specific machine. In this dissertation, the author attempts to make a complete analysis of the process of radiation damping and quantum excitation in various accelerator systems, such as bending magnets, focusing channels and laser fields. Because radiation is formed over a finite time and emitted in quanta of discrete energies, he invokes the quantum mechanical approach whenever the quasiclassical picture of radiation is insufficient. He shows that radiation damping in a focusing system is fundamentally different from that in a bending system. Quantum excitation to the transverse dimensions is absent in a straight, continuous focusing channel, and is exponentially suppressed in a focusing-dominated ring. Thus, the transverse normalized emittances in such systems can in principle be damped to the Compton wavelength of the electron, limited only by the Heisenberg uncertainty principle. In addition, he investigates methods of rapid damping such as radiative laser cooling. He proposes a laser-electron storage ring (LESR) where the electron beam in a compact storage ring repetitively interacts with an intense laser pulse stored in an optical resonator. The laser-electron interaction gives rise to rapid cooling of electron beams and can be used to overcome the space charge effects encountered in a medium energy circular machine. Applications to the designs of low emittance damping rings and compact x-ray sources are also explored.

  3. Hybrid quantum magnetic-field sensor with an electron spin and a nuclear spin in diamond

    NASA Astrophysics Data System (ADS)

    Matsuzaki, Yuichiro; Shimo-Oka, Takaaki; Tanaka, Hirotaka; Tokura, Yasuhiro; Semba, Kouichi; Mizuochi, Norikazu

    2016-11-01

    Recently, magnetic-field sensors based on an electron spin of a nitrogen vacancy center in diamond have been studied both from an experimental and theoretical point of view. This system provides a nanoscale magnetometer, and it is possible to detect a precession of a single spin. In this paper, we propose a sensor consisting of an electron spin and a nuclear spin in diamond. Although the electron spin has a reasonable interaction strength with magnetic field, the coherence time of the spin is relatively short. On the other hand, the nuclear spin has a longer lifetime while the spin has a negligible interaction with magnetic fields. We show that, through the combination of such two different spins via the hyperfine interaction, it is possible to construct a magnetic-field sensor with the sensitivity far beyond that of previous sensors using just a single electron spin.

  4. Auroral electron beams near the magnetic equator

    NASA Technical Reports Server (NTRS)

    Mcilwain, C. E.

    1975-01-01

    Intense beams of electrons traveling parallel to the local magnetic field have been observed at a magnetic latitude of 11 deg and a radial distance of 6.6 earth radii. The distribution function for electrons traveling within 8 deg of the field line direction is typically flat or slightly rising up to a break point beyond which it decreases as inversely as the 5-10th power of v. The energy corresponding to the break point velocity is usually between 0.1 and 10 keV. These beams are found to occur on closed field lines at the inner edge of the plasma sheet and thus at the root of the earth's magnetotail. Beams with break point energies greater than 2 keV seem to occur only within the first 10 minutes after the onset of hot plasma injection associated with a magnetospheric substorm.

  5. Longitudinal Diagnostics for Short Electron Beam Bunches

    SciTech Connect

    Loos, H.; /SLAC

    2010-06-11

    Single-pass free electron lasers require high peak currents from ultra-short electron bunches to reach saturation and an accurate measurement of bunch length and longitudinal bunch profile is necessary to control the bunch compression process from low to high beam energy. The various state-of-the-art diagnostics methods from ps to fs time scales using coherent radiation detection, RF deflection, and other techniques are presented. The use of linear accelerators as drivers for free electron lasers (FEL) and the advent of single-pass (SASE) FELs has driven the development of a wide range of diagnostic techniques for measuring the length and longitudinal distribution of short and ultra-short electron bunches. For SASE FELs the radiation power and the length of the undulator needed to achieve saturation depend strongly on the charge density of the electron beam. In the case of X-ray FELs, this requires the accelerator to produce ultra-high brightness beams with micron size transverse normalized emittances and peak currents of several kA through several stages of magnetic bunch compression. Different longitudinal diagnostics are employed to measure the peak current and bunch profile along these stages. The measurement techniques can be distinguished into different classes. Coherent methods detect the light emitted from the beam by some coherent radiation process (spectroscopic measurement), or directly measure the Coulomb field traveling with the beam (electro-optic). Phase space manipulation techniques map the time coordinate onto a transverse dimension and then use conventional transverse beam diagnostics (transverse deflector, rf zero-phasing). Further methods measure the profile or duration of an incoherent light pulse emitted by the bunch at wavelengths much shorted than the bunch length (streak camera, fluctuation technique) or modulate the electron beam at an optical wavelength and then generate a narrow bandwidth radiation pulse with the longitudinal profile of

  6. Electron lenses for head-on beam-beam compensation in RHIC

    DOE PAGES

    Gu, X.; Fischer, W.; Altinbas, Z.; ...

    2017-02-17

    Two electron lenses (e-lenses) have been in operation during 2015 RHIC physics run as part of a head-on beam-beam compensation scheme. While the RHIC lattice was chosen to reduce the beam-beam induced resonance driving terms, the electron lenses reduced the beam-beam induced tune spread. This has been demonstrated for the first time. The beam-beam compensation scheme allows for higher beam-beam parameters and therefore higher intensities and luminosity. In this paper, we detailed the design considerations and verification of the electron beam parameters of the RHIC e-lenses. Lastly, longitudinal and transverse alignments with ion beams and the transverse beam transfer functionmore » (BTF) measurement with head-on electron-proton beam are presented.« less

  7. Electron lenses for head-on beam-beam compensation in RHIC

    NASA Astrophysics Data System (ADS)

    Gu, X.; Fischer, W.; Altinbas, Z.; Anerella, M.; Bajon, E.; Bannon, M.; Bruno, D.; Costanzo, M.; Drees, A.; Gassner, D. M.; Gupta, R. C.; Hock, J.; Harvey, M.; Jain, A. K.; Jamilkowski, J. P.; Kankiya, P.; Lambiase, R.; Liu, C.; Luo, Y.; Mapes, M.; Marusic, A.; Mi, C.; Michnoff, R.; Miller, T. A.; Minty, M.; Nemesure, S.; Ng, W.; Phillips, D.; Pikin, A. I.; Rosas, P. J.; Robert-Demolaize, G.; Samms, T.; Sandberg, J.; Schoefer, V.; Shrey, T. C.; Tan, Y.; Than, R.; Theisen, C.; Thieberger, P.; Tuozzolo, J.; Wanderer, P.; Zhang, W.; White, S. M.

    2017-02-01

    Two electron lenses (e -lenses) have been in operation during the 2015 RHIC physics run as part of a head-on beam-beam compensation scheme. While the RHIC lattice was chosen to reduce the beam-beam-induced resonance-driving terms, the electron lenses reduced the beam-beam-induced tune spread. This has been demonstrated for the first time. The beam-beam compensation scheme allows for higher beam-beam parameters and therefore higher intensities and luminosity. In this paper, we detail the design considerations and verification of the electron beam parameters of the RHIC e -lenses. Longitudinal and transverse alignments with ion beams and the transverse beam transfer function measurement with head-on electron-proton beam are presented.

  8. The CMS Beam Halo Monitor electronics

    NASA Astrophysics Data System (ADS)

    Tosi, N.; Dabrowski, A. E.; Fabbri, F.; Grassi, T.; Hughes, E.; Mans, J.; Montanari, A.; Orfanelli, S.; Rusack, R.; Torromeo, G.; Stickland, D. P.; Stifter, K.

    2016-02-01

    The CMS Beam Halo Monitor has been successfully installed in the CMS cavern in LHC Long Shutdown 1 for measuring the machine induced background for LHC Run II. The system is based on 40 detector units composed of synthetic quartz Cherenkov radiators coupled to fast photomultiplier tubes (PMTs). The readout electronics chain uses many components developed for the Phase 1 upgrade to the CMS Hadronic Calorimeter electronics, with dedicated firmware and readout adapted to the beam monitoring requirements. The PMT signal is digitized by a charge integrating ASIC (QIE10), providing both the signal rise time, with few nanosecond resolution, and the charge integrated over one bunch crossing. The backend electronics uses microTCA technology and receives data via a high-speed 5 Gbps asynchronous link. It records histograms with sub-bunch crossing timing resolution and is read out via IPbus using the newly designed CMS data acquisition for non-event based data. The data is processed in real time and published to CMS and the LHC, providing online feedback on the beam quality. A dedicated calibration monitoring system has been designed to generate short triggered pulses of light to monitor the efficiency of the system. The electronics has been in operation since the first LHC beams of Run II and has served as the first demonstration of the new QIE10, Microsemi Igloo2 FPGA and high-speed 5 Gbps link with LHC data.

  9. SLC polarized beam source electron optics design

    NASA Astrophysics Data System (ADS)

    Eppley, K. R.; Lavine, T. L.; Early, R. A.; Herrmannsfeldt, W. B.; Miller, R. H.; Schultz, D. C.; Spencer, C. M.; Yeremian, A. D.

    1991-05-01

    This paper describes the design of the beam-line from the polarized electron gun to the linac injector in the Stanford Linear Collider (SLC). The polarized electron source is a GaAs photocathode, requiring 10(exp -11)Torr-range pressure for adequate quantum efficiency and longevity. The photocathode is illuminated by 3-nsec-long laser pulses. The quality of the optics for the 160-kV beam is crucial since electron-stimulated gas desorption from beam loss in excess of 0.1 percent of the 20-nC pulses may poison the photocathode. Our design for the transport line consists of a differential pumping region isolated by a pair of valves. Focusing is provided by a pair of Helmholtz coils and by several iron-encased solenoidal lenses. Our optics design is based on beam transport simulations using 2(1/2)-D particle-in-cell codes to model the gun and to solve the fully-relativistic time-dependent equations of motion in three dimensions for electrons in the presence of azimuthally symmetric electromagnetic fields.

  10. Electron Beam Applications in Chemical Processing

    NASA Astrophysics Data System (ADS)

    Martin, D.; Dragusin, M.; Radoiu, M.; Moraru, R.; Oproiu, C.; Cojocaru, G.; Margarit, C.

    1997-05-01

    Our recent results in the field of polymeric materials obtained by electron beam irradiation are presented. Two types of polymeric flocculants and three hydrogels are described. The effects of radiation absorbed dose and chemical composition of the irradiated solutions upon the polymeric materials characteristics are discussed. The required absorbed dose levels to produce the polymeric flocculants are in the range of 0.4 kGy to 1 kGy, and 4 kGy to 12 kGy for hydrogels. Experimental results obtained by testing polymeric flocculants with waste water from food industry are given. Plymeric materials processing was developed on a pilot small scale level with a 0.7 kW and 5.5 MeV linac built in Romania. A new facility for application of combined electron beam and microwave irradiation in the field of polymeric materials preparation is presently under investigation. Preliminary results have demonstrated that some polymeric flocculants characteristics, such as linearity, were improved by using combined electron beam and microwave irradiation. Also, the absorbed dose levels decreases in comparison with those required when only electron beam irradiation was used.

  11. Dielectric charging by an electron beam

    NASA Astrophysics Data System (ADS)

    Upatov, V. Y.

    1996-08-01

    Experimental discovery of a charge spot field effect (CSFE) has altered considerably our understanding of dielectric charging by an electron beam, under conditions typical for the operation of a large class of cathode ray tubes (CRT). Dielectric charging by an electron beam was studied using a specific pulse method for the measurement of the potential. The accuracy of this method is discussed. Measurements were made of the potential relief of a positively charged spot on muscovite mica (quartz, aluminum oxide). The potential at the spot center, under conditions described in the paper and at a relatively long charging time, was shown to be considerably lower than that of the collector. Potential dependence on charging time, determined under the same conditions, is shown for the charged spot center and a number of adjacent points. During creation of the charged spot charging current was measured. The results of the measurements are discussed. A new mechanism of dielectric charging by electron beam is proposed. A CSFE is formulated, and its significance for the operation of CRT is stated. Criticism is given of in-plane grid effect. The paper presents calculations of fields for grid target models determining the mechanism of dielectric charging by electron beam.

  12. SLC polarized beam source electron optics design

    SciTech Connect

    Eppley, K.R.; Lavine, T.L.; Early, R.A.; Herrmannsfeldt, W.B.; Miller, R.H.; Schultz, D.C.; Spencer, C.M.; Yeremian, A.D.

    1991-05-01

    This paper describes the design of the beam-line from the polarized electron gun to the linac injector in the Stanford Linear Collider (SLC). The polarized electron source is a GaAs photocathode, requiring 10{sup {minus}11}-Torr-range pressure for adequate quantum efficiency and longevity. The photocathode is illuminated by 3-nsec-long laser pulses. The quality of the optics for the 160-kV beam is crucial since electron-stimulated gas desorption from beam loss in excess of 0.1% of the 20-nC pulses may poison the photocathode. Our design for the transport line consists of a differential pumping region isolated by a pair of valves. Focusing is provided by a pair of Helmholtz coils and by several iron-encased solenoidal lenses. Our optics design is based on beam transport simulations using 2{1/2}-D particle-in-cell codes to model the gun and to solve the fully-relativistic time-dependent equations of motion in three dimensions for electrons in the presence of azimuthally symmetric electromagnetic fields. 6 refs., 6 figs.

  13. INTERACTION OF LASER RADIATION WITH MATTER: Luminescence of crystals excited by a KrCl laser and a subnanosecond electron beam

    NASA Astrophysics Data System (ADS)

    Lipatov, E. I.; Tarasenko, Viktor F.; Orlovskii, Viktor M.; Alekseev, S. B.

    2005-08-01

    Luminescence of crystals of natural spodumene and natural diamond of the type IIa is studied upon excitation by a laser at a wavelength of 222 nm and by a subnanosecond avalanche electron beam (SAEB) formed in air at the atmospheric pressure. The photoluminescence spectra of spodumene and diamond are shown to exhibit additional bands, which are absent upon SAEB excitation. It is demonstrated that SAEB excitation allows one to analyse various crystals under normal conditions without using any vacuum equipment.

  14. Toward a cold electron beam in the Fermilab's Electron Cooler

    SciTech Connect

    Vitali S. Tupikov et al.

    2004-05-12

    Fermilab is developing a high-energy electron cooling system to cool 8.9-GeV/c antiprotons in the Recycler ring [1]. Cooling of antiprotons requires a round electron beam with a small angular spread propagating through 20-m long cooling section with a kinetic energy of 4.3 MeV. To confine the electron beam tightly and to keep its transverse angles below 0.1 mrad, the cooling section will be immersed into a solenoidal field of 50-150G. This paper describes the technique of measuring and adjusting the magnetic field quality in the cooling section and presents preliminary results of beam quality measurements in the cooler prototype.

  15. Double electron-electron resonance measurements of diamond to determine T2 dependence on concentration of paramagnetic impurities

    NASA Astrophysics Data System (ADS)

    Stepanov, Viktor; Takahashi, Susumu

    A nitrogen-vacancy (NV) center in diamond is a promising candidate for investigation of fundamental sciences and applications to a nanoscale magnetic field sensing device because of unique properties of a NV center in diamond including capability to detect optically detected magnetic resonance (ODMR) signals from a single NV and initialize its spin state. Fundamental studies and applications of NV centers relay on coherent control of the NV centers that is limited by decoherence time (T2) and, as often observed, T2 is limited by paramagnetic impurity contents in diamond crystals. In this work, we will investigate T2 dependence on concentration of nitrogen impurities in type-Ib and type-IIa diamond crystals. For precise determination of the nitrogen concentration, we employ a home-built high-frequency electron spin resonance spectrometer which enables broadband double electron-electron resonance spectroscopy with high spectral resolution. This work is supported by the National Science Foundation (DMR-1508661) and the Searle scholars program.

  16. Measurements of aperture and beam lifetime using movable beam scrapers in Indus-2 electron storage ring

    SciTech Connect

    Kumar, Pradeep; Ghodke, A. D.; Karnewar, A. K.; Holikatti, A. C.; Yadav, S.; Puntambekar, T. A.; Singh, G.; Singh, P.

    2013-12-15

    In this paper, the measurements of vertical and horizontal aperture which are available for stable beam motion in Indus-2 at beam energy 2.5 GeV using movable beam scrapers are presented. These beam scrapers are installed in one of the long straight sections in the ring. With the movement of beam scrapers towards the beam centre, the beam lifetime is measured. The beam lifetime data obtained from the movement of vertical and horizontal beam scrapers are analyzed. The contribution of beam loss due to beam-gas scattering (vacuum lifetime) and electron-electron scattering within a beam bunch (Touschek lifetime) is separated from the measured beam lifetime at different positions of the beam scrapers. Vertical and horizontal beam sizes at scrapers location are estimated from the scraper movement towards the beam centre in quantum lifetime limit and their values closely agree with measured value obtained using X-ray diagnostic beamline.

  17. An electron optical theory of beam blanking

    NASA Astrophysics Data System (ADS)

    Gesley, M.

    1993-11-01

    Trajectory equations are derived in closed form for electrons in time-dependent electric fields produced by beam blankers. Simple parallel plate and double-deflection blankers with transmission delay lines are evaluated. Lens imaging of the apparent beam motion is analyzed by developing the virtual electron trajectories obtained from linear extrapolation back into the blanker region. Lens excitation effects and conjugate blanking optics can then be described. The blanker voltage is represented by a damped exponential cosine term, which satisfies a typical circuit equation for the driver-amplifier. The form of the trajectory equation is written as a 3×3 matrix, which comprises a set of conditional solutions that are determined by blanker geometry. The optimum delay line length of any double-deflection blanker can then be determined. The blanker-induced beam jitter is shown to be significantly reduced by using this configuration. The effect of the blanker beam stop on the motion at the target plane is given by combining results on the real and apparent beam trajectories.

  18. New shielding materials for clinical electron beams.

    PubMed

    Tajiri, Minoru; Tokiya, Yuji; Uenishi, Jun; Sunaoka, Masayoshi; Watanabe, Kazuhiro

    2006-09-01

    Since lead has recently been recognized as a source of environmental pollution, we have investigated new electron shielding materials that do not contain lead. We compared the shielding thicknesses of a hard plate and a sheet composed of the new materials with that of lead for electron beams. The shielding thickness was evaluated as the thickness required for shielding primary electrons. The comparison revealed the shielding ability of the hard plate and sheet is approximately equivalent to 1.0 and 0.9 times that of lead, respectively. The thickness (in millimeters) required for shielding by the hard-plate, as well as the thickness of lead, is related to approximately half of the electron-beam energy (in MeV). The shielding ability of the sheet is also equivalent to that of Lipowitz alloy. Moreover these materials are environmentally friendly, and can be easily customized into arbitrary shapes. Therefore they can be used as lead substitutes for shielding against electron beams.

  19. MULTIPLE ELECTRON BEAM ION PUMP AND SOURCE

    DOEpatents

    Ellis, R.E.

    1962-02-27

    A vacuum pump is designed which operates by ionizing incoming air and by withdrawing the ions from the system by means of electrical fields. The apparatus comprises a cylindrical housing communicable with the vessel to be evacuated and having a thin wall section in one end. Suitable coils provide a longitudinal magnetic field within the cylinder. A broad cathode and an anode structure is provided to establish a plurality of adjacent electron beams which are parallel to the cylinder axis. Electron reflector means are provided so that each of the beams constitutes a PIG or reflex discharge. Such structure provides a large region in which incoming gas molecules may be ionized by electron bombardment. A charged electrode assembly accelerates the ions through the thin window, thereby removing the gas from the system. The invention may also be utilized as a highly efficient ion source. (AEC)

  20. Dose rate dependence of the PTW 60019 microDiamond detector in high dose-per-pulse pulsed beams

    NASA Astrophysics Data System (ADS)

    Brualla-González, Luis; Gómez, Faustino; Pombar, Miguel; Pardo-Montero, Juan

    2016-01-01

    Recombination effects can affect the detectors used for the dosimetry of radiotherapy fields. They are important when using ionization chambers, especially in liquid-filled ionization chambers, and should be corrected for. The introduction of flattening-filter-free accelerators increases the typical dose-per-pulse used in radiotherapy beams, which leads to more important recombination effects. Diamond detectors provide a good solution for the dosimetry and quality assurance of small radiotherapy fields, due to their low energy dependence and small volume. The group of Università di Roma Tor Vergata has developed a synthetic diamond detector, which is commercialized by PTW as microDiamond detector type 60019. In this work we present an experimental characterization of the collection efficiency of the microDiamond detector, focusing on high dose-per-pulse FFF beams. The collection efficiency decreases with dose-per-pulse, down to 0.978 at 2.2 mGy/pulse, following a Fowler-Attix-like curve. On the other hand, we have found no significant dependence of the collection efficiency on the pulse repetition frequency (or pulse period).

  1. Field shaping in electron beam therapy.

    PubMed

    Khan, F M; Moore, V C; Levitt, S H

    1976-10-01

    In the treatment of superficial lesions with 8-13 MeV electrons, lead shields are often used to protect the underlying tissue. Measurements were made with film and ion chamber to analyse various aspects of external and internal shielding in electron beam therapy. Data were obtained on the thickness of lead required for shielding, the effect of blocking on dose-rate, electron-backscattering from lead and X-ray contamination. Practical applications of a lead clay for shielding are discussed.

  2. Field electron emission from undoped, continuous, submicron-thick diamond films

    NASA Astrophysics Data System (ADS)

    Ternyak, O.; Akhvlediani, R.; Hoffman, A.; Wong, W. K.; Lee, S. T.; Lifshitz, Y.; Daren, S.; Cheifetz, E.

    2005-12-01

    The present work shows that the field electron emission (FEE) properties of polycrystalline diamond films can be enhanced by control over the film thickness. The FEE properties of undoped, continuous, and smooth submicron-thick diamond films with initial nucleation densities of ˜5×1010particles/cm2 were investigated as a function of diamond film thickness. A set of films with thickness ranging from 70-100to830nm yielded turn-on field values of 6-8V/μm and threshold field values of 8.5-17.5V/μm (for 0.3μA/cm2), respectively, without any conditioning. It was found that the films of thickness up to ˜370nm can sustain stable current density as high as 0.1A/cm2 without morphological modification. The thicker films, however, suffer from a strong degradation of the film and breakdown. The best FEE (lower turn-on and threshold fields and morphological stability) was obtained for a thin (100nm) continuous diamond film. This result is suggested to be attributed mainly to the efficient electron conduction from the back contact to the surface.

  3. Simplifying Electron Beam Channeling in Scanning Transmission Electron Microscopy (STEM).

    PubMed

    Wu, Ryan J; Mittal, Anudha; Odlyzko, Michael L; Mkhoyan, K Andre

    2017-08-01

    Sub-angstrom scanning transmission electron microscopy (STEM) allows quantitative column-by-column analysis of crystalline specimens via annular dark-field images. The intensity of electrons scattered from a particular location in an atomic column depends on the intensity of the electron probe at that location. Electron beam channeling causes oscillations in the STEM probe intensity during specimen propagation, which leads to differences in the beam intensity incident at different depths. Understanding the parameters that control this complex behavior is critical for interpreting experimental STEM results. In this work, theoretical analysis of the STEM probe intensity reveals that intensity oscillations during specimen propagation are regulated by changes in the beam's angular distribution. Three distinct regimes of channeling behavior are observed: the high-atomic-number (Z) regime, in which atomic scattering leads to significant angular redistribution of the beam; the low-Z regime, in which the probe's initial angular distribution controls intensity oscillations; and the intermediate-Z regime, in which the behavior is mixed. These contrasting regimes are shown to exist for a wide range of probe parameters. These results provide a new understanding of the occurrence and consequences of channeling phenomena and conditions under which their influence is strengthened or weakened by characteristics of the electron probe and sample.

  4. Instrumental Asymmetry Reduction in Polarized Electron Beams

    NASA Astrophysics Data System (ADS)

    Fabrikant, M. I.; Trantham, K. W.; Gay, T. J.

    2008-05-01

    We report progress in the reduction of instrumental asymmetries (IAs) related to the photoemission of polarized electrons from GaAs caused by circularly-polarized diode laser beams [1]. Such asymmetries can mask true helicity-dependent interactions between the emitted electrons and chiral targets. Minimization of laser intensity IAs is achieved by chopping two spatially separated light beams with orthogonal polarizations which are recombined and passed through a quarter-wave plate to yield a single beam with rapidly flipping helicity. We have demonstrated the ability to reduce intensity IAs of the laser beam itself to less than 2 x 10-6 [2]. We have also investigated the IAs of the photemission current from the GaAs. At present, we are able to reduce the photoemission asymmetry to values that are comparable to the laser intensity asymmetry. Implications for experiments measuring effects due to electron circular dichroism [3] will be discussed. [1]Trantham K.W. et al J. Phys. B. 28 L543 (1995) [2] Fabrikant M.I. et al submitted to Appl. Opt. [3] Mayer S., Kessler J. Phys. Rev. Lett. 74, 4803 (1995) Funding for this project was provided by Undergraduate Creative Activities and Research Experiences (UCARE) and the National Science Foundation (PHY-0653379).

  5. Scanning probe microscopy and field emission schemes for studying electron emission from polycrystalline diamond

    NASA Astrophysics Data System (ADS)

    Chubenko, Oksana; Baturin, Stanislav S.; Baryshev, Sergey V.

    2016-09-01

    The letter introduces a diagram that rationalizes tunneling atomic force microscopy (TUNA) observations of electron emission from polycrystalline diamonds as described in the recent publications [Chatterjee et al., Appl. Phys. Lett. 104, 171907 (2014); Harniman et al., Carbon 94, 386 (2015)]. The direct observations of electron emission from the grain boundary sites by TUNA could indeed be the evidence of electrons originating from grain boundaries under external electric fields. At the same time, from the diagram, it follows that TUNA and field emission schemes are complimentary rather than equivalent for results interpretation. It is further proposed that TUNA could provide better insights into emission mechanisms by measuring the detailed structure of the potential barrier on the surface of polycrystalline diamonds.

  6. Fabrication of free-standing highly conducting ultrananocrystalline diamond films with enhanced electron field emission properties

    NASA Astrophysics Data System (ADS)

    Sankaran, K. J.; Chen, H. C.; Lee, C. Y.; Tai, N. H.; Lin, I. N.

    2012-12-01

    Fabrication of free-standing/highly conducting ultrananocrystalline diamond (fc-UNCD) films at low growth temperature (<475 °C) is demonstrated. The fc-UNCD films show high conductivity of σ = 146 (Ω cm)-1 with superior electron field emission (EFE) properties, viz. low turn-on field of 4.35 V/μm and high EFE current density of 3.76 mA/cm2 at an applied field of 12.5 V/μm. Transmission electron microscopy examinations reveal the presence of Au/Cu clusters in film-to-substrate interface, which consequences in the induction of nanographite phases, surrounding the diamond grains that form conduction channels for electrons transport, ensuing in marvelous EFE properties of fc-UNCD films.

  7. Measuring the Fluence of Clinical Electron Beams

    NASA Astrophysics Data System (ADS)

    Zaini, Mehran

    1995-01-01

    The incident electron fluence on the patient is greatly affected by the various collimator components on the path of the beam. It is therefore important to measure and characterize these fluence perturbations, which alter the dose distributions. In addition, the incident fluence information is needed as input for the treatment planning algorithms, which are presently inferred from the dose measurements. The magnitude of electron fluence for patient treatments is very low and it is difficult to assess directly. Therefore, a specially designed fluence-meter is required. Of all the detection methods, an ion-implanted semiconductor detector with an ultra-thin depletion layer is the most suitable. We have shown that the energy deposited in an ultra-thin detector, with no window, is directly proportional to the incident fluence of clinical electron beams, including the small contribution of delta-rays. The main reasons for this concept are that (L/rho ) of silicon is essentially constant over the spectrum of any clinical beam and these beams are almost mono-energetic. Our detector is calibrated against a flat Faraday cup and can provide a measure of true electron fluence, with almost no energy and directional dependence. Calibrations are done in a vacuum chamber, where the chamber and the measuring electronics are connected to the accelerator ground. In the calibration setup, a pipe collimation system is used to create a mono-directional beam, so that Phi = Phi_{planar }. Geometrical calculations and films are used for making quantitative analysis of the beam impinging on the detector and the cup. The precision of the calibrations is below 1%. Since the calibration factors of the detector are the same on two different linacs, once a detector is calibrated, it can measure electron fluence on any clinical machine. Fluence output and profiles, and dphi /dtheta of a variety of cones and blocks are measured. The measured surface fluence values conform to the expected shape of

  8. Morphology and electron emission properties of nanocrystalline CVD diamond thin films.

    SciTech Connect

    Krauss, A. R.; Gruen, D. M.; Zhou, D.; McCauley, T. G.; Qin, L. C.; Corrigan, T.; Auciello, O.; Chang, R. P. H.

    1998-01-30

    Nanocrystalline diamond thin films have been produced by microwave plasma-enhanced chemical vapor deposition (MPECVD) using C{sub 60}/Ar/H{sub 2} or CH{sub 4}/Ar/H{sub 2} plasmas. Films grown with H{sub 2} concentration {le} 20% are nanocrystalline, with atomically abrupt grain boundaries and without observable graphitic or amorphous carbon phases. The growth and morphology of these films are controlled via a high nucleation rate resulting from low hydrogen concentration in the plasma. Initial growth is in the form of diamond, which is the thermodynamic equilibrium phase for grains {le}5 nm in diameter. Once formed, the diamond phase persists for grains up to at least 15-20 nm in diameter. The renucleation rate in the near-absence of atomic hydrogen is very high ({approximately} 10{sup 10} cm{sup {minus}2} sec{sup {minus}1}), limiting the average grain size to a nearly constant value as the film thickness increases, although the average grain size increases as hydrogen is added to the plasma. For hydrogen concentrations less than {approximately}20%, the growth species is believed to be the carbon dimer, C{sub 2}, rather than the CH{sub 3}* growth species associated with diamond film growth at higher hydrogen concentrations. For very thin films grown from the C{sub 60} precursor, the threshold field (2 to {approximately}60 volts/micron) for cold cathode electron emission depends on the electrical conductivity and on the surface topography, which in turn depends on the hydrogen concentration in the plasma. A model of electron emission, based on quantum well effects at the grain boundaries is presented. This model predicts promotion of the electrons at the grain boundary to the conduction band of diamond for a grain boundary width {approximately} 3--4 {angstrom}, a value within the range observed by TEM.

  9. Electron Accelerators for Radioactive Ion Beams

    SciTech Connect

    Lia Merminga

    2007-10-10

    The summary of this paper is that to optimize the design of an electron drive, one must: (a) specify carefully the user requirements--beam energy, beam power, duty factor, and longitudinal and transverse emittance; (b) evaluate different machine options including capital cost, 10-year operating cost and delivery time. The author is convinced elegant solutions are available with existing technology. There are several design options and technology choices. Decisions will depend on system optimization, in-house infrastructure and expertise (e.g. cryogenics, SRF, lasers), synergy with other programs.

  10. Guided Radiation Beams in Free Electron Lasers.

    DTIC Science & Technology

    1988-05-19

    the electron beam in an FEL that the radiation beam will remain guided. 0 20 II. Refractive Index Associated with FELs In our model, the vector ...eIAw/ymOc(exp(ikwz) + c.c.) ex/2 , is the wiggle velocity, y is the Lorentz factor, Aw is the vector potential amplitude of the planar wiggler...Balboa Avenue Palo Alto, CA 94303 San Diego, CA 92123 38 Dr. S. Krinsky Nat. Synchrotron Light Source Dr. Michael Lavan Brookhaven National Laboratory U.S

  11. Polarized electron beams at milliampere average current

    SciTech Connect

    Poelker, Matthew

    2013-11-01

    This contribution describes some of the challenges associated with developing a polarized electron source capable of uninterrupted days-long operation at milliAmpere average beam current with polarization greater than 80%. Challenges will be presented in the context of assessing the required level of extrapolation beyond the performance of today's CEBAF polarized source operating at ~ 200 uA average current. Estimates of performance at higher current will be based on hours-long demonstrations at 1 and 4 mA. Particular attention will be paid to beam-related lifetime-limiting mechanisms, and strategies to construct a photogun that operate reliably at bias voltage > 350kV.

  12. Statistical process control for electron beam monitoring.

    PubMed

    López-Tarjuelo, Juan; Luquero-Llopis, Naika; García-Mollá, Rafael; Quirós-Higueras, Juan David; Bouché-Babiloni, Ana; Juan-Senabre, Xavier Jordi; de Marco-Blancas, Noelia; Ferrer-Albiach, Carlos; Santos-Serra, Agustín

    2015-07-01

    To assess the electron beam monitoring statistical process control (SPC) in linear accelerator (linac) daily quality control. We present a long-term record of our measurements and evaluate which SPC-led conditions are feasible for maintaining control. We retrieved our linac beam calibration, symmetry, and flatness daily records for all electron beam energies from January 2008 to December 2013, and retrospectively studied how SPC could have been applied and which of its features could be used in the future. A set of adjustment interventions designed to maintain these parameters under control was also simulated. All phase I data was under control. The dose plots were characterized by rising trends followed by steep drops caused by our attempts to re-center the linac beam calibration. Where flatness and symmetry trends were detected they were less-well defined. The process capability ratios ranged from 1.6 to 9.3 at a 2% specification level. Simulated interventions ranged from 2% to 34% of the total number of measurement sessions. We also noted that if prospective SPC had been applied it would have met quality control specifications. SPC can be used to assess the inherent variability of our electron beam monitoring system. It can also indicate whether a process is capable of maintaining electron parameters under control with respect to established specifications by using a daily checking device, but this is not practical unless a method to establish direct feedback from the device to the linac can be devised. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  13. Electron field emission from composite electrodes of carbon nanotubes-boron-doped diamond and carbon felts

    NASA Astrophysics Data System (ADS)

    Rosolen, J. Mauricio; Tronto, Simone; Marchesin, Marcel S.; Almeida, Erica C.; Ferreira, Neidenei G.; Patrick Poá, C. H.; Silva, S. Ravi P.

    2006-02-01

    The electron field emission of carbon nanotube (CNT)/boron-doped diamond (BDD)/carbon felt electrodes (CNT/BDD/felt) have been investigated. The composite electrode was initially prepared with the growth of BDD on carbon felt and the subsequent growth of CNT by chemical decomposition of methanol. The composite electrodes were characterised using scanning electron microscopy and transmission electron microscopy. For the CNT/BDD/felt samples, the electron field emission was observed at macroscopic fields as low as 1.1Vμm-1. The emission current versus time plot shows significant potential for future field emission applications.

  14. Note: Novel diamond anvil cell for electrical measurements using boron-doped metallic diamond electrodes

    SciTech Connect

    Matsumoto, R.; Sasama, Y.; Yamaguchi, T.; Takano, Y.; Fujioka, M.; Irifune, T.; Tanaka, M.; Takeya, H.

    2016-07-15

    A novel diamond anvil cell suitable for electrical transport measurements under high pressure has been developed. A boron-doped metallic diamond film was deposited as an electrode on a nano-polycrystalline diamond anvil using a microwave plasma-assisted chemical vapor deposition technique combined with electron beam lithography. The maximum pressure that can be achieved by this assembly is above 30 GPa. We report electrical transport measurements of Pb up to 8 GPa. The boron-doped metallic diamond electrodes showed no signs of degradation after repeated compression.

  15. Electron beam irradiation of dental composites.

    PubMed

    Behr, Michael; Rosentritt, Martin; Faltermeier, Andreas; Handel, Gerhard

    2005-09-01

    Electron beam irradiation can be used to influence the mechanical properties of polymers. It was the aim of this study to investigate whether dental composites can benefit from irradiation in order to achieve increased fracture toughness, work of fracture, hardness or less wear. Two hundred rectangular specimens of five veneering composites were electron beam irradiated with 25, 100 and 200 kGy using an electron accelerator of 10 MeV. Fracture toughness, work of fracture, Vickers hardness, color changes and three-medium wear were measured and compared with non-irradiated specimens. Visible color changes (DeltaE>3) were observed with all composites and with all dose rates. Fracture toughness, work of fracture, Vickers hardness and resistance against wear increased significantly with few exceptions. Composites with a simple curing process needed higher dose rates while systems with a more complex curing procedure should be irradiated with lower dose rates. Electron beam irradiation can significantly change the mechanical properties of dental composites. However, color changes can limit the use of irradiation for dentistry.

  16. Electron beam irradiation of denture base materials.

    PubMed

    Behr, M; Rosentritt, M; Faltermeier, A; Handel, G

    2005-02-01

    Electron beam irradiation can be used to influence the properties of polymers. It was the aim of this study to investigate whether PMMA denture base materials can benefit from irradiation in order to have increased fracture toughness, work of fracture or hardness. Rectangular specimens of heat-and auto-curing denture base materials were electron beam irradiated (post-cured) with 25, 100 and 200 kGy using an electron acceleration of 10 MeV or 4.5 MeV respectively. Fracture toughness, work of fracture, Vickers hardness and colour changes were measured and compared with not-irradiated specimens. The toughness, work of fracture and hardness increased using 10 MeV with a dose of 25 kGy and with 100 kGy using 4.5 MeV. However, the clinical use may not benefit from the observed small changes. Higher dosage (200 kGy) decreased the values significantly. The colour changes reached a level which was found to be not clinically acceptable. PMMA denture base materials do not benefit from post-curing with electron beam irradiation.

  17. Electron beam analysis of particulate cometary material

    NASA Technical Reports Server (NTRS)

    Bradley, John

    1989-01-01

    Electron microscopy will be useful for characterization of inorganic dust grains in returned comet nucleus samples. The choice of instrument(s) will depend primarily on the nature of the samples, but ultimately a variety of electron-beam methods could be employed. Scanning and analytical (transmission) electron microscopy are the logical choise for morphological, mineralogical, and bulk chemical analyses of dust grains removed from ices. It may also be possible to examine unmelted ice/dust mixtures using an environmental scanning electron microscope equipped with a cryo-transfer unit and a cold stage. Electron microscopic observations of comet nuclei might include: (1) porosities of dust grains; (2) morphologies and microstructures of individual mineral grains; (3) relative abundances of olivine, pyroxene, and glass; and (4) the presence of phases that might have resulted from aqueous alteration (layer silicates, carbonates, sulfates).

  18. Electron beam throughput from raster to imaging

    NASA Astrophysics Data System (ADS)

    Zywno, Marek

    2016-12-01

    Two architectures of electron beam tools are presented: single beam MEBES Exara designed and built by Etec Systems for mask writing, and the Reflected E-Beam Lithography tool (REBL), designed and built by KLA-Tencor under a DARPA Agreement No. HR0011-07-9-0007. Both tools have implemented technologies not used before to achieve their goals. The MEBES X, renamed Exara for marketing purposes, used an air bearing stage running in vacuum to achieve smooth continuous scanning. The REBL used 2 dimensional imaging to distribute charge to a 4k pixel swath to achieve writing times on the order of 1 wafer per hour, scalable to throughput approaching optical projection tools. Three stage architectures were designed for continuous scanning of wafers: linear maglev, rotary maglev, and dual linear maglev.

  19. Beam Dynamics Considerations in Electron Ion Colliders

    NASA Astrophysics Data System (ADS)

    Krafft, Geoffrey

    2015-04-01

    The nuclear physics community is converging on the idea that the next large project after FRIB should be an electron-ion collider. Both Brookhaven National Lab and Thomas Jefferson National Accelerator Facility have developed accelerator designs, both of which need novel solutions to accelerator physics problems. In this talk we discuss some of the problems that must be solved and their solutions. Examples in novel beam optics systems, beam cooling, and beam polarization control will be presented. Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. The U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce this manuscript for U.S. Government purposes.

  20. ELECTRON BEAM STABILITY REQUIREMENTS FOR LINAC-RING ELECTRON-ION COLLIDERS.

    SciTech Connect

    MONTAG, C.

    2005-05-16

    In recent years, linac-ring electron-ion colliders have been proposed at a number of laboratories around the world. While the linac-ring approach overcomes the beam-beam tuneshift limitation on the electron beam, it also introduces noise into the ion beam, via the beam-beam interaction with electron bunches of slightly fluctuating intensity and transverse size. The effect of these fluctuations is studied using a linearized model of the beam-beam interaction. Upper limits for the rms jitter amplitudes of electron beam parameters for various linac-ring electron-ion colliders are presented.

  1. Optimisation of NSLS-II Blade X-ray Beam Position Monitors: from Photoemission type to Diamond Detector

    SciTech Connect

    ILINSKI P.

    2012-07-10

    Optimisation of blade type x-ray beam position monitors (XBPM) was performed for NSLS-II undulator IVU20. Blade material, con and #64257;guration and operation principle was analysed in order to improve XBPM performance. Optimisation is based on calculation of the XBPM signal spatial distribution. Along with standard photoemission type XBPM a Diamond Detector Blades (DDB) were analysed as blades for XBPMs. DDB XBPMs can help to overcome drawbacks of the photoemission blade XBPMs.

  2. Compact two-beam push-pull free electron laser

    DOEpatents

    Hutton, Andrew

    2009-03-03

    An ultra-compact free electron laser comprising a pair of opposed superconducting cavities that produce identical electron beams moving in opposite directions such that each set of superconducting cavities accelerates one electron beam and decelerates the other electron beam. Such an arrangement, allows the energy used to accelerate one beam to be recovered and used again to accelerate the second beam, thus, each electron beam is decelerated by a different structure than that which accelerated it so that energy exchange rather than recovery is achieved resulting in a more compact and highly efficient apparatus.

  3. Disabling CNT Electronic Devices by Use of Electron Beams

    NASA Technical Reports Server (NTRS)

    Petkov, Mihail

    2008-01-01

    Bombardment with tightly focused electron beams has been suggested as a means of electrically disabling selected individual carbon-nanotubes (CNTs) in electronic devices. Evidence in support of the suggestion was obtained in an experiment in which a CNT field-effect transistor was disabled (see figure) by focusing a 1-keV electron beam on a CNT that served as the active channel of a field-effect transistor (FET). Such bombardment could be useful in the manufacture of nonvolatile-memory circuits containing CNT FETs. Ultimately, in order to obtain the best electronic performances in CNT FETs and other electronic devices, it will be necessary to fabricate the devices such that each one contains only a single CNT as an active element. At present, this is difficult because there is no way to grow a single CNT at a specific location and with a specific orientation. Instead, the common practice is to build CNTs into electronic devices by relying on spatial distribution to bridge contacts. This practice results in some devices containing no CNTs and some devices containing more than one CNT. Thus, CNT FETs have statistically distributed electronic characteristics (including switching voltages, gains, and mixtures of metallic and semiconducting CNTs). According to the suggestion, by using a 1-keV electron beam (e.g., a beam from a scanning electron microscope), a particular nanotube could be rendered electrically dysfunctional. This procedure could be repeated as many times as necessary on different CNTs in a device until all of the excess CNTs in the device had been disabled, leaving only one CNT as an active element (e.g., as FET channel). The physical mechanism through which a CNT becomes electrically disabled is not yet understood. On one hand, data in the literature show that electron kinetic energy >86 keV is needed to cause displacement damage in a CNT. On the other hand, inasmuch as a 1-keV beam focused on a small spot (typically a few tens of nanometers wide

  4. Highly Conductive Diamond-Graphite Nanohybrid Films with Enhanced Electron Field Emission and Microplasma Illumination Properties.

    PubMed

    Saravanan, Adhimoorthy; Huang, Bohr-Ran; Sankaran, Kamatchi Jothiramalingam; Tai, Nyan-Hwa; Lin, I-Nan

    2015-07-01

    Bias-enhanced nucleation and growth of diamond-graphite nanohybrid (DGH) films on silicon substrates by microwave plasma enhanced chemical vapor deposition using CH4/N2 gas mixture is reported herein. It is observed that by controlling the growth time, the microstructure of the DGH films and, thus, the electrical conductivity and the electron field emission (EFE) properties of the films can be manipulated. The films grown for 30 min (DGHB30) possess needle-like geometry, which comprised of a diamond core encased in a sheath of sp(2)-bonded graphitic phase. These films achieved high conductivity of σ = 900 S/cm and superior EFE properties, namely, low turn-on field of 2.9 V/μm and high EFE current density of 3.8 mA/cm(2) at an applied field of 6.0 V/μm. On increasing the growth time to 60 min (the DGHB60), the acicular grain growth ceased and formed nanographite clusters or defective diamond clusters (n-diamond). Even though DGHB60 films possess higher electrical conductivity (σ = 1549 S/cm) than the DGHB30 films, the EFE properties degraded. The implication of this result is that higher conductivity by itself does not guarantee better EFE properties. The nanosized diamond grains with needle-like geometry are the most promising ones for the electron emission, exclusively when they are encased in graphene-like layers. The salient feature of such materials with unique granular structure is that their conductivity and EFE properties can be tuned in a wide range, which makes them especially useful in practical applications.

  5. Experimental Studies of Compensation of Beam-Beam Effects with Tevatron Electron Lenses

    SciTech Connect

    Shiltsev, V.; Alexahin, Yu.; Bishofberger, Kip; Kamerdzhiev, V.; Parkhomchuk, V.; Reva, V.; Solyak, N.; Wildman, D.; Zhang, X.-L.; Zimmermann, F.; /Fermilab /Los Alamos /Novosibirsk, IYF /CERN

    2008-02-01

    Applying the space-charge forces of a low-energy electron beam can lead to a significant improvement of the beam-particle lifetime limit arising from the beam-beam interaction in a high-energy collider [1]. In this article we present the results of various beam experiments with 'electron lenses', novel instruments developed for the beam-beam compensation at the Tevatron, which collides 980-GeV proton and antiproton beams. We study the dependencies of the particle betatron tunes on the electron beam current, energy and position; we explore the effects of electron-beam imperfections and noises; and we quantify the improvements of the high-energy beam intensity and the collider luminosity lifetime obtained by the action of the Tevatron Electron Lenses.

  6. Electron Beam Welding of Gear Wheels by Splitted Beam

    NASA Astrophysics Data System (ADS)

    Dřímal, Daniel

    2014-06-01

    This contribution deals with the issue of electron beam welding of high-accurate gear wheels composed of a spur gearing and fluted shaft joined with a face weld for automotive industry. Both parts made of the high-strength low-alloy steel are welded in the condition after final machining and heat treatment, performed by case hardening, whereas it is required that the run-out in the critical point of weldment after welding, i. e. after the final operation, would be 0.04 mm max.. In case of common welding procedure, cracks were formed in the weld, initiated by spiking in the weld root. Crack formation was prevented by the use of an interlocking joint with a rounded recess and suitable welding parameters, eliminating crack initiation by spiking in the weld root. Minimisation of the welding distortions was achieved by the application of tack welding with simultaneous splitting of one beam into two parts in the opposite sections of circumferential face weld attained on the principle of a new system of controlled deflection with digital scanning of the beam. This welding procedure assured that the weldment temperature after welding would not be higher than 400 °C. Thus, this procedure allowed achieving the final run-outs in the critical point of gearwheels within the maximum range up to 0.04 mm, which is acceptable for the given application. Accurate optical measurements did not reveal any changes in the teeth dimensions.

  7. Recent Experience with Electron Lens Beam-Beam Compensation at the Tevatron

    SciTech Connect

    Kuznetsov, G.; Saewert, G.; Shiltsev, V.; Valishev, A.; Kamerdzhiev, V.; /Julich, Forschungszentrum

    2009-05-01

    Tevatron Electron Lenses (TEL) have reliably demonstrated correction of the bunch-to-bunch tune shift induced by long-range beam-beam interactions. With the commissioning of the new high voltage modulator that became operational in 2008, the electron beam can be pulsed on every bunch of the Tevatron beam. We report on the recent results of beam-beam compensation studies in the high luminosity regime.

  8. Electron-beam distillation of natural polymers

    NASA Astrophysics Data System (ADS)

    Ponomarev, A. V.; Makarov, I. E.; Ershov, B. G.

    2014-01-01

    Pyrolysis of cellulose, lignin, and chitin may be upgraded by the use of an electron-beam irradiation. The radiation-thermal destruction mode does more probable production of liquid low-molecular-weight products instead of solid pyrolitic oligomers. Furans, methoxyphenols, and pyridines are dominant products of high-temperature radiolysis of cellulose, lignin, and chitin, respectively. The mechanism of chain destruction of natural polymers is considered.

  9. Beam-beam and electron cloud effects in CEPC/FCC-ee

    NASA Astrophysics Data System (ADS)

    Ohmi, Kazuhito

    2016-11-01

    We discuss beam dynamics issues in CEPC/FCC-ee, especially focusing on the beam-beam and electron cloud effects. Beamstrahlung is strong in extreme high energy collision such as Higgs and top factory. Beam-beam simulations considering beamstrahlung are now ready. Several points of beam-beam effects for FCC-ee are presented. Electron cloud effects are serious for high current positron machine, especially in Z factory that many bunches are stored. Analytical estimate for threshold of electron density and electron build-up for CEPC are presented.

  10. Electron paramagnetic resonance and photochromism of N3V0 in diamond

    NASA Astrophysics Data System (ADS)

    Green, B. L.; Breeze, B. G.; E Newton, M.

    2017-06-01

    The defect in diamond formed by a vacancy surrounded by three nearest-neighbor nitrogen atoms and one carbon atom, {{\\text{N}}3}\\text{V} , is found in the vast majority of natural diamonds. Despite {{\\text{N}}3}{{\\text{V}}0} being the earliest electron paramagnetic resonance spectrum observed in diamond, to date no satisfactory simulation of the spectrum for an arbitrary magnetic field direction has been produced due to its complexity. In this work, {{\\text{N}}3}{{\\text{V}}0} is identified in {{}15}\\text{N} -doped synthetic diamond following irradiation and annealing. The {{}15}{{\\text{N}}3}{{\\text{V}}0} spin Hamiltonian parameters are directly determined and used to refine the parameters for {{}14}{{\\text{N}}3}{{\\text{V}}0} , enabling the latter to be accurately simulated and fitted for an arbitrary magnetic field direction. Study of {{}15}{{\\text{N}}3}{{\\text{V}}0} under excitation with green light indicates charge transfer between {{\\text{N}}3}\\text{V} and {{\\text{N}}\\text{s}} . It is argued that this charge transfer is facilitated by direct ionization of {{\\text{N}}3}{{\\text{V}}-} , an as-yet unobserved charge state of {{\\text{N}}3}\\text{V} .

  11. Structure, Electronic Properties, and Electrochemical Behavior of a Boron-Doped Diamond/Quartz Optically Transparent Electrode.

    PubMed

    Wächter, Naihara; Munson, Catherine; Jarošová, Romana; Berkun, Isil; Hogan, Timothy; Rocha-Filho, Romeu C; Swain, Greg M

    2016-05-31

    The morphology, microstructure, chemistry, electronic properties, and electrochemical behavior of a boron-doped nanocrystalline diamond (BDD) thin film grown on quartz were evaluated. Diamond optically transparent electrodes (OTEs) are useful for transmission spectroelectrochemical measurements, offering excellent stability during anodic and cathodic polarization and exposure to a variety of chemical environments. We report on the characterization of a BDD OTE by atomic force microscopy, optical spectroscopy, Raman spectroscopic mapping, alternating-current Hall effect measurements, X-ray photoelectron spectroscopy, and electrochemical methods. The results reported herein provide the first comprehensive study of the relationship between the physical and chemical structure and electronic properties of a diamond OTE and the electrode's electrochemical activity.

  12. Positron annihilation study for enhanced nitrogen-vacancy center formation in diamond by electron irradiation at 77 K

    SciTech Connect

    Tang, Z.; Chiba, T.; Nagai, Y.; Inoue, K.; Toyama, T.; Hasegawa, M.

    2014-04-28

    A compact ensemble of high density nitrogen-vacancy (NV) centers in diamond is essential to sense various external fields with a high precision at the nanoscale. Here, defects in type IIa and type Ib diamonds induced by 28 MeV electron irradiation at 77 K were studied by combining the positron annihilation spectroscopy and first-principles calculations. It is shown that the electron irradiation at 77 K can significantly enhance the NV center formation by directly converting 24% vacancies into the NV centers, indicating that it is an efficient way to produce the high density NV centers in the type Ib diamond.

  13. Radiation damage in single crystal CVD diamond material investigated with a high current relativistic 197Au beam

    NASA Astrophysics Data System (ADS)

    Pietraszko, J.; Galatyuk, T.; Grilj, V.; Koenig, W.; Spataro, S.; Träger, M.

    2014-11-01

    Single-crystal Chemical Vapor Deposition (ScCVD) diamond based prototype detectors have been constructed for the high intensity heavy ion experiments HADES and CBM at the future FAIR facility at GSI Darmstadt. Their properties have been studied with a high current density beam (about 2-3×106/s/mm2) of 1.25A GeV Au69+197 ions. Details of the design, the intrinsic properties of the detectors and their performance after irradiation with such a beam are reported.

  14. Susceptor heating device for electron beam brazing

    DOEpatents

    Antieau, Susan M.; Johnson, Robert G. R.

    1999-01-01

    A brazing device and method are provided which locally apply a controlled amount of heat to a selected area, within a vacuum. The device brazes two components together with a brazing metal. A susceptor plate is placed in thermal contact with one of the components. A serrated pedestal supports the susceptor plate. When the pedestal and susceptor plate are in place, an electron gun irradiates an electron beam at the susceptor plate such that the susceptor plate is sufficiently heated to transfer heat through the one component and melt the brazing metal.

  15. Electron beam coupling to a metamaterial structure

    SciTech Connect

    French, David M.; Shiffler, Don; Cartwright, Keith

    2013-08-15

    Microwave metamaterials have shown promise in numerous applications, ranging from strip lines and antennas to metamaterial-based electron beam driven devices. In general, metamaterials allow microwave designers to obtain electromagnetic characteristics not typically available in nature. High Power Microwave (HPM) sources have in the past drawn inspiration from work done in the conventional microwave source community. In this article, the use of metamaterials in an HPM application is considered by using an effective medium model to determine the coupling of an electron beam to a metamaterial structure in a geometry similar to that of a dielectric Cerenkov maser. Use of the effective medium model allows for the analysis of a wide range of parameter space, including the “mu-negative,”“epsilon-negative,” and “double negative” regimes of the metamaterial. The physics of such a system are modeled analytically and by utilizing the particle-in-cell code ICEPIC. For this geometry and effective medium representation, optimum coupling of the electron beam to the metamaterial, and thus the optimum microwave or RF production, occurs in the epsilon negative regime of the metamaterial. Given that HPM tubes have been proposed that utilize a metamaterial, this model provides a rapid method of characterizing a source geometry that can be used to quickly understand the basic physics of such an HPM device.

  16. Optimizing the beam-beam alignment in an electron lens using bremsstrahlung

    SciTech Connect

    Montag, C.; Fischer, W.; Gassner, D.; Thieberger, P.; Haug, E.

    2010-05-23

    Installation of electron lenses for the purpose of head-on beam-beam compensation is foreseen at RHIC. To optimize the relative alignment of the electron lens beam with the circulating proton (or ion) beam, photon detectors will be installed to measure the bremsstrahlung generated by momentum transfer from protons to electrons. We present the detector layout and simulations of the bremsstrahlung signal as function of beam offset and crossing angle.

  17. Fast magnetospheric echoes of energetic electron beams

    NASA Technical Reports Server (NTRS)

    Wilhelm, K.; Bernstein, W.; Kellogg, P. J.; Whalen, B. A.

    1985-01-01

    Electron beam experiments using rocketborne instrumentation have confirmed earlier observations of fast magnetospheric echoes of artificially injected energetic electrons. A total of 234 echoes have been observed in a pitch angle range from 9 to 110 deg at energies of 1.87 and 3.90 keV. Out of this number, 95 echoes could unambiguously be identified with known accelerator operations at 2-, 4-, or 8-keV energy and highest current levels resulting in the determination of transit times of typically 300 to 400 ms. In most cases, when echoes were present in both energy channels, the higher-energy electrons led the lower-energy ones by 50 to 70 ms. Adiabatic theory applied to these observations yields a reflection height of 3000 to 4000 km. An alternative interpretation is briefly examined, and its relative merit in describing the observations is evaluated. The injection process is discussed in some detail as the strong beam-plasma interaction that occurred near the electron accelerator appears to be instrumental in generating the source of heated electrons required for successful echo detection for both processes.

  18. Transverse profile imager for ultrabright electron beams

    NASA Astrophysics Data System (ADS)

    Ischebeck, Rasmus; Prat, Eduard; Thominet, Vincent; Ozkan Loch, Cigdem

    2015-08-01

    A transverse profile imager for ultrabright electron beams is presented, which overcomes resolution issues in present designs by observing the Scheimpflug imaging condition as well as the Snell-Descartes law of refraction in the scintillating crystal. Coherent optical transition radiation emitted by highly compressed electron bunches on the surface of the crystal is directed away from the camera, allowing to use the monitor for profile measurements of electron bunches suitable for X-ray free electron lasers. The optical design has been verified by ray tracing simulations, and the angular dependency of the resolution has been verified experimentally. An instrument according to the presented design principles has been used in the SwissFEL Injector Test Facility, and different scintillator materials have been tested. Measurements in conjunction with a transverse deflecting radiofrequency structure and an array of quadrupole magnets demonstrate a normalized slice emittance of 25 nm in the core of a 30 fC electron beam at a pulse length of 10 ps and a particle energy of 230 MeV.

  19. DIAMOND AMPLIFIER FOR PHOTOCATHODES.

    SciTech Connect

    RAO,T.; BEN-ZVI,I.; BURRILL,A.; CHANG,X.; HULBERT,S.; JOHNSON,P.D.; KEWISCH,J.

    2004-06-21

    We report a new approach to the generation of high-current, high-brightness electron beams. Primary electrons are produced by a photocathode (or other means) and are accelerated to a few thousand electron-volts, then strike a specially prepared diamond window. The large Secondary Electron Yield (SEY) provides a multiplication of the number of electrons by about two orders of magnitude. The secondary electrons drift through the diamond under an electric field and emerge into the accelerating proper of the ''gun'' through a Negative Electron Affinity surface of the diamond. The advantages of the new approach include the following: (1) Reduction of the number of primary electrons by the large SEY, i.e. a very low laser power in a photocathode producing the primaries. (2) Low thermal emittance due to the NEA surface and the rapid thermalization of the electrons. (3) Protection of the cathode from possible contamination from the gun, allowing the use of large quantum efficiency but sensitive cathodes. (4) Protection of the gun from possible contamination by the cathode, allowing the use of superconducting gun cavities. (5) Production of high average currents, up to ampere class. (6) Encapsulated design, making the ''load-lock'' systems unnecessary. This paper presents the criteria that need to be taken into account in designing the amplifier.

  20. RHIC electron lens beam transport system design considerations

    SciTech Connect

    Gu, X.; Pikin, A.; Okamura, M.; Fischer, W.; Luo, Y.; Gupta, R.; Hock, J.; Jain, A.; Raparia, D.

    2010-10-01

    To apply head-on beam-beam compensation for RHIC, two electron lenses are designed and will be installed at IP10. Electron beam transport system is one of important subsystem, which is used to transport electron beam from electron gun side to collector side. This system should be able to change beam size inside superconducting magnet and control beam position with 5 mm in horizontal and vertical plane. Some other design considerations for this beam transport system are also reported in this paper. The head-on beam-beam effect is one of important nonlinear source in storage ring and linear colliders, which have limited the luminosity improvement of many colliders, such as SppS, Tevatron and RHIC. In order to enhance the performance of colliders, beam-beam effects can be compensated with direct space charge compensation, indirect space charge compensation or betatron phase cancellation scheme. Like other colliders, indirect space charge compensation scheme (Electron Lens) was also proposed for Relativistic Heavy Ion Collider (RHIC) beam-beam compensation at Brookhaven National Laboratory. The two similar electron lenses are located in IR10 between the DX magnets. One RHIC electron lens consists of one DC electron gun, one superconducting magnet, one electron collector and beam transport system.

  1. Development and characterization of a diamond-insulated graphitic multi electrode array realized with ion beam lithography.

    PubMed

    Picollo, Federico; Battiato, Alfio; Carbone, Emilio; Croin, Luca; Enrico, Emanuele; Forneris, Jacopo; Gosso, Sara; Olivero, Paolo; Pasquarelli, Alberto; Carabelli, Valentina

    2014-12-30

    The detection of quantal exocytic events from neurons and neuroendocrine cells is a challenging task in neuroscience. One of the most promising platforms for the development of a new generation of biosensors is diamond, due to its biocompatibility, transparency and chemical inertness. Moreover, the electrical properties of diamond can be turned from a perfect insulator into a conductive material (resistivity ~mΩ·cm) by exploiting the metastable nature of this allotropic form of carbon. A 16‑channels MEA (Multi Electrode Array) suitable for cell culture growing has been fabricated by means of ion implantation. A focused 1.2 MeV He+ beam was scanned on a IIa single-crystal diamond sample (4.5 × 4.5 × 0.5 mm3) to cause highly damaged sub-superficial structures that were defined with micrometric spatial resolution. After implantation, the sample was annealed. This process provides the conversion of the sub-superficial highly damaged regions to a graphitic phase embedded in a highly insulating diamond matrix. Thanks to a three-dimensional masking technique, the endpoints of the sub-superficial channels emerge in contact with the sample surface, therefore being available as sensing electrodes. Cyclic voltammetry and amperometry measurements of solutions with increasing concentrations of adrenaline were performed to characterize the biosensor sensitivity. The reported results demonstrate that this new type of biosensor is suitable for in vitro detection of catecholamine release.

  2. Development and Characterization of a Diamond-Insulated Graphitic Multi Electrode Array Realized with Ion Beam Lithography

    PubMed Central

    Picollo, Federico; Battiato, Alfio; Carbone, Emilio; Croin, Luca; Enrico, Emanuele; Forneris, Jacopo; Gosso, Sara; Olivero, Paolo; Pasquarelli, Alberto; Carabelli, Valentina

    2015-01-01

    The detection of quantal exocytic events from neurons and neuroendocrine cells is a challenging task in neuroscience. One of the most promising platforms for the development of a new generation of biosensors is diamond, due to its biocompatibility, transparency and chemical inertness. Moreover, the electrical properties of diamond can be turned from a perfect insulator into a conductive material (resistivity ∼mΩ·cm) by exploiting the metastable nature of this allotropic form of carbon. A 16-channels MEA (Multi Electrode Array) suitable for cell culture growing has been fabricated by means of ion implantation. A focused 1.2 MeV He+ beam was scanned on a IIa single-crystal diamond sample (4.5 × 4.5 × 0.5 mm3) to cause highly damaged sub-superficial structures that were defined with micrometric spatial resolution. After implantation, the sample was annealed. This process provides the conversion of the sub-superficial highly damaged regions to a graphitic phase embedded in a highly insulating diamond matrix. Thanks to a three-dimensional masking technique, the endpoints of the sub-superficial channels emerge in contact with the sample surface, therefore being available as sensing electrodes. Cyclic voltammetry and amperometry measurements of solutions with increasing concentrations of adrenaline were performed to characterize the biosensor sensitivity. The reported results demonstrate that this new type of biosensor is suitable for in vitro detection of catecholamine release. PMID:25558992

  3. Coherent Radiation from Relativistic Electron Beams.

    NASA Astrophysics Data System (ADS)

    Chen, Kuan-Ren

    Two new laser concepts, the Ion-Ripple Laser (IRL) and the Ion-Channel Laser (ICL), are proposed. A unified theory for coherent radiation from relativistic electron beams devices is developed; the theory not only links the physics of Cyclotron Masers (CMs) and Free Electron Lasers (FELs) but covers the physics of the IRLs and the ICLs. We have also invented a new numerical method, the Neo-Finite -Difference (NFD) method, for electromagnetic plasma simulations and applied it to studies of these lasers. The unified amplification theory compares the growth mechanisms. Two bunching mechanisms (both axial and azimuthal) exist, not only for the noncollective single electron resonance regime, but also in the collective gain regime. Competition or reinforcement between the two bunching mechanisms is determined by the q value (a parameter that determines how the electron oscillation frequency depends on energy), the electron axial velocity, and the wave phase velocity. The unified theory concludes that, for wave amplification, the sign of the electron mismatch frequency is required to be the same as the sign of a bunching parameter that is determined by the total bunching. In an IRL, a relativistic electron beam propagates obliquely through an ion ripple in a plasma. The radiation frequency depends on the beam energy, the ripple wave number, and the angle: omega ~ 2gamma ^{2}k_{ir}ccos theta. By proper choice of device parameters, sources of microwaves, optical, and perhaps even X-rays can be made. The dispersion relation for wave coupling is derived and used to calculate the radiation frequency and linear growth rate. The nonlinear saturation mechanism is explored. Computer simulation is used to verify the ideas, scaling laws and nonlinear mechanisms. In an ICL, the ion focusing force causes the electrons to oscillate about the channel axis and plays a similar role to the magnetic field in a CM. This electron motion is nonlinear and is studied. Simulations were performed

  4. First test of BNL electron beam ion source with high current density electron beam

    NASA Astrophysics Data System (ADS)

    Pikin, Alexander; Alessi, James G.; Beebe, Edward N.; Shornikov, Andrey; Mertzig, Robert; Wenander, Fredrik; Scrivens, Richard

    2015-01-01

    A new electron gun with electrostatic compression has been installed at the Electron Beam Ion Source (EBIS) Test Stand at BNL. This is a collaborative effort by BNL and CERN teams with a common goal to study an EBIS with electron beam current up to 10 A, current density up to 10,000 A/cm2 and energy more than 50 keV. Intensive and pure beams of heavy highly charged ions with mass-to-charge ratio < 4.5 are requested by many heavy ion research facilities including NASA Space Radiation Laboratory (NSRL) at BNL and HIE-ISOLDE at CERN. With a multiampere electron gun, the EBIS should be capable of delivering highly charged ions for both RHIC facility applications at BNL and for ISOLDE experiments at CERN. Details of the electron gun simulations and design, and the Test EBIS electrostatic and magnetostatic structures with the new electron gun are presented. The experimental results of the electron beam transmission are given.

  5. First test of BNL electron beam ion source with high current density electron beam

    SciTech Connect

    Pikin, Alexander Alessi, James G. Beebe, Edward N.; Shornikov, Andrey; Mertzig, Robert; Wenander, Fredrik; Scrivens, Richard

    2015-01-09

    A new electron gun with electrostatic compression has been installed at the Electron Beam Ion Source (EBIS) Test Stand at BNL. This is a collaborative effort by BNL and CERN teams with a common goal to study an EBIS with electron beam current up to 10 A, current density up to 10,000 A/cm{sup 2} and energy more than 50 keV. Intensive and pure beams of heavy highly charged ions with mass-to-charge ratio < 4.5 are requested by many heavy ion research facilities including NASA Space Radiation Laboratory (NSRL) at BNL and HIE-ISOLDE at CERN. With a multiampere electron gun, the EBIS should be capable of delivering highly charged ions for both RHIC facility applications at BNL and for ISOLDE experiments at CERN. Details of the electron gun simulations and design, and the Test EBIS electrostatic and magnetostatic structures with the new electron gun are presented. The experimental results of the electron beam transmission are given.

  6. Use of beam deflection to control an electron beam wire deposition process

    NASA Technical Reports Server (NTRS)

    Taminger, Karen M. (Inventor); Hofmeister, William H. (Inventor); Hafley, Robert A. (Inventor)

    2013-01-01

    A method for controlling an electron beam process wherein a wire is melted and deposited on a substrate as a molten pool comprises generating the electron beam with a complex raster pattern, and directing the beam onto an outer surface of the wire to thereby control a location of the wire with respect to the molten pool. Directing the beam selectively heats the outer surface of the wire and maintains the position of the wire with respect to the molten pool. An apparatus for controlling an electron beam process includes a beam gun adapted for generating the electron beam, and a controller adapted for providing the electron beam with a complex raster pattern and for directing the electron beam onto an outer surface of the wire to control a location of the wire with respect to the molten pool.

  7. Applications of electron lenses: scraping of high-power beams, beam-beam compensation, and nonlinear optics

    SciTech Connect

    Stancari, Giulio

    2014-09-11

    Electron lenses are pulsed, magnetically confined electron beams whose current-density profile is shaped to obtain the desired effect on the circulating beam. Electron lenses were used in the Fermilab Tevatron collider for bunch-by-bunch compensation of long-range beam-beam tune shifts, for removal of uncaptured particles in the abort gap, for preliminary experiments on head-on beam-beam compensation, and for the demonstration of halo scraping with hollow electron beams. Electron lenses for beam-beam compensation are being commissioned in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL). Hollow electron beam collimation and halo control were studied as an option to complement the collimation system for the upgrades of the Large Hadron Collider (LHC) at CERN; a conceptual design was recently completed. Because of their electric charge and the absence of materials close to the proton beam, electron lenses may also provide an alternative to wires for long-range beam-beam compensation in LHC luminosity upgrade scenarios with small crossing angles. At Fermilab, we are planning to install an electron lens in the Integrable Optics Test Accelerator (IOTA, a 40-m ring for 150-MeV electrons) as one of the proof-of-principle implementations of nonlinear integrable optics to achieve large tune spreads and more stable beams without loss of dynamic aperture.

  8. Comparison between small radiation therapy electron beams collimated by Cerrobend and tubular applicators.

    PubMed

    Di Venanzio, Cristina; Marinelli, Marco; Tonnetti, Alessia; Verona-Rinati, Gianluca; Bagalà, Paolo; Falco, Maria Daniela; Guerra, Antonio Stefano; Pimpinella, Maria

    2015-01-08

    The purpose of this study was to compare the dosimetric properties of small field electron beams shaped by circular Cerrobend blocks and stainless steel tubular applicators. Percentage depth dose curves, beam profiles, and output factors of small-size circular fields from 2 to 5 cm diameter, obtained either by tubular applicators and Cerrobend blocks, were measured for 6, 10, and 15 MeV electron beam energies. All measurements were performed using a PTW microDiamond 60019 premarket prototype. An overall similar behavior between the two collimating systems can be observed in terms of PDD and beam profiles. However, Cerrobend collimators produce a higher bremsstrahlung background under irradiation with high-energy electrons. In such irradiation condition, larger output factors are observed for tubular applicators. Similar dosimetric properties are observed using circular Cerrobend blocks and stainless steel tubular applicators at lower beam energies. However, Cerrobend collimators allow the delivery of specific beam shapes, conformed to the target area. On the other hand, in high-energy irradiation conditions, tubular applicators produce a lower bremsstrahlung contribution, leading to lower doses outside the target volume. In addition, the higher output factors observed at high energies for tubular applicators lead to reduced treatment times.

  9. Direct observation of electron emission from the grain boundaries of chemical vapour deposition diamond films by tunneling atomic force microscopy

    SciTech Connect

    Chatterjee, Vijay; Harniman, Robert; May, Paul W.; Barhai, P. K.

    2014-04-28

    The emission of electrons from diamond in vacuum occurs readily as a result of the negative electron affinity of the hydrogenated surface due to features with nanoscale dimensions, which can concentrate electric fields high enough to induce electron emission from them. Electrons can be emitted as a result of an applied electric field (field emission) with possible uses in displays or cold-cathode devices. Alternatively, electrons can be emitted simply by heating the diamond in vacuum to temperatures as low as 350 °C (thermionic emission), and this may find applications in solar energy generation or energy harvesting devices. Electron emission studies usually use doped polycrystalline diamond films deposited onto Si or metallic substrates by chemical vapor deposition, and these films have a rough, faceted morphology on the micron or nanometer scale. Electron emission is often improved by patterning the diamond surface into sharp points or needles, the idea being that the field lines concentrate at the points lowering the barrier for electron emission. However, there is little direct evidence that electrons are emitted from these sharp tips. The few reports in the literature that have studied the emission sites suggested that emission came from the grain boundaries and not the protruding regions. We now present direct observation of the emission sites over a large area of polycrystalline diamond using tunneling atomic force microscopy. We confirm that the emission current comes mostly from the grain boundaries, which is consistent with a model for emission in which the non-diamond phase is the source of electrons with a threshold that is determined by the surrounding hydrogenated diamond surface.

  10. Efficient Electron Beam Deposition for Repetitively Pulsed Krypton Fluoride Lasers

    NASA Astrophysics Data System (ADS)

    Hegeler, F.; Myers, M. C.; Friedman, M.; Sethian, J. D.; Swanekamp, S. B.; Rose, D. V.; Welch, D. R.

    2002-12-01

    We have demonstrated that we can significantly increase the electron beam transmission efficiency through a pressure foil structure (hibachi) by segmenting the beam into strips to miss the hibachi support ribs. In order to increase the electron beam transmission, the cathode strips are adjusted to compensate for beam rotation and pinching. The beam propagation through the hibachi has been both measured and simulated with 1-D and 3-D codes.

  11. Fast deposition of thick diamond-like carbon films by ion-beam technique

    NASA Astrophysics Data System (ADS)

    Liao, Bin; Yu, Jingjing; Wang, Yudong; Bian, Baoan; Jiang, Qili; Luo, Jun; Zhang, Xu; Wu, Xianying; Ying, Minju

    2017-08-01

    A diamond-like carbon film doped with TiC nanocrystallites (TiC-DLC) with a thickness of 35.8 μm was successfully prepared on a stainless steel substrate by employing a combination of metal vapor vacuum arc and filtered cathode vacuum arc techniques. A maximum deposition rate of 0.25 μm/min was achieved for TiC-DLC films. The structure and properties of the TiC-DLC films were systematically analyzed using different methods such as transmission electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, scanning electron microscopy, X-ray diffraction, and friction and wear tests. The results indicated that typical a-C:H films containing nano-sized TiC grains were deposited which exhibit improved mechanical properties such as high cohesive strength, Vickers hardness, and capacity against high temperature. Parameter windows for C2H2 flow rate and solenoid current were also provided for the deposition of TiC-DLC films to meet the requirements for using the material for specific commercial applications.

  12. Electron vortex beams with high quanta of orbital angular momentum.

    PubMed

    McMorran, Benjamin J; Agrawal, Amit; Anderson, Ian M; Herzing, Andrew A; Lezec, Henri J; McClelland, Jabez J; Unguris, John

    2011-01-14

    Electron beams with helical wavefronts carrying orbital angular momentum are expected to provide new capabilities for electron microscopy and other applications. We used nanofabricated diffraction holograms in an electron microscope to produce multiple electron vortex beams with well-defined topological charge. Beams carrying quantized amounts of orbital angular momentum (up to 100ħ) per electron were observed. We describe how the electrons can exhibit such orbital motion in free space in the absence of any confining potential or external field, and discuss how these beams can be applied to improved electron microscopy of magnetic and biological specimens.

  13. Designing a beam transport system for RHIC's electron lens

    SciTech Connect

    Gu, X.; Pikin, A.; Okamura, M.; Fischer, W.; Luo, Y.; Gupta, R.; Hock, J.; Raparia, D.

    2011-03-28

    We designed two electron lenses to apply head-on beam-beam compensation for RHIC; they will be installed near IP10. The electron-beam transport system is an important subsystem of the entire electron-lens system. Electrons are transported from the electron gun to the main solenoid and further to the collector. The system must allow for changes of the electron beam size inside the superconducting magnet, and for changes of the electron position by 5 mm in the horizontal- and vertical-planes.

  14. Theory of Electron Beam Moiré

    PubMed Central

    Read, David T.; Dally, James W.

    1996-01-01

    When a specimen surface carrying a high-frequency line grating is examined under a scanning electron microscope (SEM), moiré fringes are observed at several different magnifications. The fringes are characterized by their spatial frequency, orientation, and contrast. These features of the moiré pattern depend on the spatial frequency mismatch between the specimen grating and the raster scan lines, the diameter of the electron beam, and the detailed topography of the lines on the specimen. A mathematical model of e-beam moiré is developed that expresses the spatial dependence of the SEM image brightness as a product of the local intensity of the scanning beam and the local scattering function from the specimen grating. Equations are derived that give the spatial frequency of the moiré fringes as functions of the microscope settings and the spatial frequency of the specimen grating. The model also describes the contrast of several different types of moiré fringes that are observed at different magnifications. We analyze the formation of these different fringe patterns, and divide them into different categories including natural fringes, fringes of multiplication, fringes of division, and fringes of rotation. PMID:27805092

  15. Prediction of electron beam output factors.

    PubMed

    Mills, M D; Hogstrom, K R; Almond, P R

    1982-01-01

    A method to predict square and rectangular field output factors from the measurement of selected fields of electron beams on the Therac 20 Saturne has been developed. A two parameter fit of the square field output factor data, based on the functional dependence as predicted by a pencil beam calculational model, has proven clinically acceptable. The pencil beam distributions are given by the Fermi-Eyges theory of multiple Coulomb scattering. For a rectangular field, the output factor can be calculated from the square root of the product of the two square field output factors wtih sides equal to those of the rectangular field. If however, there is a significant asymmetry between the X and Y collimator systems, then rectangular field output factors should be predicted from the product of the X and Y one-dimensional output factors. One-dimensional output factors are defined as output factors of rectangular fields where one side remains constant and equal to the side of the square reference field. Measured data indicate either of the two methods of determining rectangular field output factors to be clinically acceptable for the Therac 20, the use of one-dimensional output factors demonstrating greater accuracy. Data show agreement to within approximately 1.5% at electron energies of 6, 9, 13, and 17 MeV.

  16. An electromagnetically focused electron beam line source

    NASA Astrophysics Data System (ADS)

    Iqbal, Munawar; Masood, Khalid; Rafiq, Mohammad; Chaudhary, Maqbool A.; Aleem, Fazal-e.-

    2003-11-01

    A directly heated thermionic electron beam source was constructed. A tungsten wire of length 140 mm with diameter 0.9 mm was used as a cathode. An emission current of 5000 mA was achieved at an input heating power of 600 W. Cathode to anode distance of 6 mm with acceleration voltage of 10 kV was used. A uniform external magnetic field of 50 G was employed to obtain a well-focused electron beam at a deflection of 180°, with cathode to work site distance of 130 mm. Dimensions of the beam (1.25×120 mm) recorded at the work site were found to be in good agreement with the designed length of cathode. The deformation of the cathode was overcome by introducing a spring action mechanism, which gives uniform emission current density throughout the emission surface. We have achieved the saturation limit of the designed source resulting in smooth and swift operation of the gun for many hours (10-15 h continuously). The design of gun is so simple that it can accommodate longer cathodes for obtaining higher emission values. This gun has made it possible to coat large substrate surfaces at much faster evaporation rate at lower cost. It can also be useful in large-scale vacuum metallurgy plants for melting, welding and heat treatment.

  17. Electron beam directed energy device and methods of using same

    DOEpatents

    Retsky, Michael W.

    2007-10-16

    A method and apparatus is disclosed for an electron beam directed energy device. The device consists of an electron gun with one or more electron beams. The device includes one or more accelerating plates with holes aligned for beam passage. The plates may be flat or preferably shaped to direct each electron beam to exit the electron gun at a predetermined orientation. In one preferred application, the device is located in outer space with individual beams that are directed to focus at a distant target to be used to impact and destroy missiles. The aimings of the separate beams are designed to overcome Coulomb repulsion. A method is also presented for directing the beams to a target considering the variable terrestrial magnetic field. In another preferred application, the electron beam is directed into the ground to produce a subsurface x-ray source to locate and/or destroy buried or otherwise hidden objects including explosive devices.

  18. Ionospheric modification using relativistic electron beams

    NASA Technical Reports Server (NTRS)

    Banks, Peter M.; Fraser-Smith, Anthony C.; Gilchrist, B. E.

    1990-01-01

    The recent development of comparatively small electron linear accelerators (linacs) now makes possible a new class of ionospheric modification experiments using beams of relativistic electrons. These experiments can potentially provide much new information about the interactions of natural relativistic electrons with other particles in the upper atmosphere, and it may also make possible new forms of ionization structures extending down from the lower ionosphere into the largely un-ionized upper atmosphere. The consequences of firing a pulsed 1 A, 5 Mev electron beam downwards into the upper atmosphere are investigated. If a small pitch angle with respect to the ambient geomagnetic field is selected, the beam produces a narrow column of substantial ionization extending down from the source altitude to altitudes of approximately 40 to 45 km. This column is immediately polarized by the natural middle atmosphere fair weather electric field and an increasingly large potential difference is established between the column and the surrounding atmosphere. In the regions between 40 to 60 km, this potential can amount to many tens of kilovolts and the associated electric field can be greater than the field required for breakdown and discharge. Under these conditions, it may be possible to initiate lightning discharges along the initial ionization channel. Filamentation may also occur at the lower end to drive further currents in the partially ionized gases of the stratosphere. Such discharges would derive their energy from the earth-ionosphere electrical system and would be sustained until plasma depletion and/or electric field reduction brought the discharge under control. It is likely that this artificially-triggered lightning would produce measurable low-frequency radiation.

  19. Beam conditioner for free electron lasers and synchrotrons

    DOEpatents

    Liu, H.; Neil, G.R.

    1998-09-08

    A focused optical has been used to introduce an optical pulse, or electromagnetic wave, collinear with the electron beam in a free electron laser or synchrotron thereby adding an axial field component that accelerates the electrons on the radial outside of the distribution of electrons in the electron beam. This invention consists of using the axial electrical component of a TEM{sub 10} mode Gaussian beam in vacuum to condition the electron beam and speed up the outer electrons in the beam. The conditioning beam should possess about the same diameter as the electron beam. The beam waist of the conditioning wave must be located around the entrance of the undulator longitudinally to have a net energy exchange between the electrons in the outer part of the distribution and the conditioning wave owing to the natural divergence of a Gaussian beam. By accelerating the outer electrons, the outer and core electrons are caused to stay in phase. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron. 4 figs.

  20. Beam conditioner for free electron lasers and synchrotrons

    DOEpatents

    Liu, Hongxiu; Neil, George R.

    1998-01-01

    A focused optical is been used to introduce an optical pulse, or electromagnetic wave, colinearly with the electron beam in a free electron laser or synchrotron thereby adding an axial field component that accelerates the electrons on the radial outside of the distribution of electrons in the electron beam. This invention consists of using the axial electrical component of a TEM.sub.10 mode Gaussian beam in vacuum to condition the electron beam and speed up the outer electrons in the beam. The conditioning beam should possess about the same diameter as the electron beam. The beam waist of the conditioning wave must be located around the entrance of the undulator longitudinally to have a net energy exchange between the electrons in the outer part of the distribution and the conditioning wave owing to the natural divergence of a Gaussian beam. By accelerating the outer electrons, the outer and core electrons are caused to stay in phase. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron.

  1. Polarized electron beams at milliampere average current

    SciTech Connect

    Poelker, M.

    2013-11-07

    This contribution describes some of the challenges associated with developing a polarized electron source capable of uninterrupted days-long operation at milliAmpere average beam current with polarization greater than 80%. Challenges will be presented in the context of assessing the required level of extrapolation beyond the performance of today’s CEBAF polarized source operating at ∼ 200 uA average current. Estimates of performance at higher current will be based on hours-long demonstrations at 1 and 4 mA. Particular attention will be paid to beam-related lifetime-limiting mechanisms, and strategies to construct a photogun that operate reliably at bias voltage > 350kV.

  2. Electrostatic and whistler instabilities excited by an electron beam

    NASA Astrophysics Data System (ADS)

    An, Xin; Bortnik, Jacob; Van Compernolle, Bart; Decyk, Viktor; Thorne, Richard

    2017-07-01

    The electron beam-plasma system is ubiquitous in the space plasma environment. Here, using a Darwin particle-in-cell method, the excitation of electrostatic and whistler instabilities by a gyrating electron beam is studied in support of recent laboratory experiments. It is assumed that the total plasma frequency (ωpe) is larger than the electron cyclotron frequency (Ωe). The fast-growing electrostatic beam-mode waves saturate in a few plasma oscillations by slowing down and relaxing the electron beam parallel to the background magnetic field. Upon their saturation, the finite amplitude electrostatic beam-mode waves can resonate with the tail of the background thermal electrons and accelerate them to the beam parallel velocity. The slower-growing whistler waves are excited in primarily two resonance modes: (a) through Landau resonance due to the inverted slope of the beam electrons in the parallel velocity and (b) through cyclotron resonance by scattering electrons to both lower pitch angles and smaller energies. It is demonstrated that, for a field-aligned beam, the whistler instability can be suppressed by the electrostatic instability due to a faster energy transfer rate between the beam electrons and electrostatic waves. Such a competition of growth between whistler and electrostatic waves depends on the ratio of ωpe/Ωe. In terms of wave propagation, beam-generated electrostatic waves are confined to the beam region, whereas beam-generated whistler waves transport energy away from the beam.

  3. Arbitrary nuclear-spin gates in diamond mediated by a nitrogen-vacancy-center electron spin

    NASA Astrophysics Data System (ADS)

    Casanova, J.; Wang, Z.-Y.; Plenio, M. B.

    2017-09-01

    We show that arbitrary N -qubit interactions among nuclear spins can be achieved efficiently in solid state quantum platforms, such as nitrogen vacancy centers in diamond, by exerting control only on the electron spin coupled to the nuclei. This allows to exploit nuclear spins as robust quantum registers and the direct measurement of nuclear many-body correlators. The method takes advantage of recently introduced dynamical decoupling techniques and avoids the necessity of external, slow, control on the nuclei. Our protocol is general, being applicable to other nuclear spin-based platforms with electronic spin defects acting as mediators as silicon carbide.

  4. Purification of Niobium by Electron Beam Melting

    NASA Astrophysics Data System (ADS)

    Sankar, M.; Mirji, K. V.; Prasad, V. V. Satya; Baligidad, R. G.; Gokhale, A. A.

    2016-06-01

    Pure niobium metal, produced by alumino-thermic reduction of niobium oxide, contains various impurities which need to be reduced to acceptable levels to obtain aerospace grade purity. In the present work, an attempt has been made to refine niobium metals by electron beam drip melting technique to achieve purity confirming to the ASTM standard. Input power to the electron gun and melt rate were varied to observe their combined effect on extend of refining and loss of niobium. Electron beam (EB) melting is shown to reduce alkali metals, trace elements and interstitial impurities well below the specified limits. The reduction in the impurities during EB melting is attributed to evaporation and degassing due to the combined effect of high vacuum and high melt surface temperature. The % removal of interstitial impurities is essentially a function of melt rate and input power. As the melt rate decreases or input power increases, the impurity levels in the solidified niobium ingot decrease. The EB refining process is also accompanied by considerable amount of niobium loss, which is attributed to evaporation of pure niobium and niobium sub-oxide. Like other impurities, Nb loss increases with decreasing melt rate or increase in input power.

  5. Limits to Electron Beam Emittance from Stochastic Coulomb Interactions

    SciTech Connect

    Coleman-Smith, Christopher; Padmore, Howard A.; Wan, Weishi

    2008-08-22

    Dense electron beams can now be generated on an ultrafast timescale using laser driven photo-cathodes and these are used for a range of applications from ultrafast electron defraction to free electron lasers. Here we determine a lower bound to the emittance of an electron beam limited by fundamental stochastic Coulomb interactions.

  6. Suprathermal electrons produced by Beam-Plasma-Discharge

    SciTech Connect

    Sharp, W.E.

    1982-08-01

    Experiments conducted with a low energy plasma lens, HARP, in the electron beam of the large vacuum chamber at Johnson Space Center indicate that an enhanced population of 50 to 300 volt electrons appear when the beam goes into the Beam-Plasma Discharge (BPD) mode. Below the BPD instability the electron distribution appears to be characterized as non-energized single particle scattering and energy loss. At 100 cm from the beam core in the BPD mode the fluxes parallel to the beam are reduced by a factor of 20 with respect to the fluxes at 25 cm. Some evidence for isotropy near the beam core is presented.

  7. Suprathermal electrons produced by beam-plasma-discharge

    NASA Technical Reports Server (NTRS)

    Sharp, W. E.

    1982-01-01

    Experiments conducted with a low energy plasma lens, HARP, in the electron beam of the large vacuum chamber at Johnson Space Center indicate that an enhanced population of 50 to 300 volt electrons appear when the beam goes into the Beam-Plasma Discharge (BPD) mode. Below the BPD instability the electron distribution appears to be characterized as non-energized single particle scattering and energy loss. At 100 cm from the beam core in the BPD mode the fluxes parallel to the beam are reduced by a factor of 20 with respect to the fluxes at 25 cm. Some evidence for isotropy near the beam core is presented.

  8. Suprathermal electrons produced by beam-plasma-discharge

    NASA Technical Reports Server (NTRS)

    Sharp, W. E.

    1982-01-01

    Experiments conducted with a low energy plasma lens, HARP, in the electron beam of the large vacuum chamber at Johnson Space Center indicate that an enhanced population of 50 to 300 volt electrons appear when the beam goes into the Beam-Plasma Discharge (BPD) mode. Below the BPD instability the electron distribution appears to be characterized as non-energized single particle scattering and energy loss. At 100 cm from the beam core in the BPD mode the fluxes parallel to the beam are reduced by a factor of 20 with respect to the fluxes at 25 cm. Some evidence for isotropy near the beam core is presented.

  9. PURIFICATION OF IRIDIUM BY ELECTRON BEAM MELTING

    SciTech Connect

    Ohriner, Evan Keith

    2008-01-01

    The purification of iridium metal by electron beam melting has been characterized for 48 impurity elements. Chemical analysis was performed by glow discharge mass spectrographic (GDMS) analysis for all elements except carbon, which was analyzed by combustion. The average levels of individual elemental impurities in the starting powder varied from 37 g/g to 0.02 g/g. The impurity elements Li, Na, Mg, P, S, Cl, K, Ca, Mn, Co, Ni, Cu, Zn, As, Pd, Ag, Cd, Sn, Sb, Te, Ba, Ce, Tl, Pb, and Bi were not detectable following the purification. No significant change in concentration of the elements Ti, V, Zr, Nb, Mo, and Re was found. The elements B, C, Al, Si, Cr, Fe, Ru, Rh, and Pt were partially removed by vaporization during electron beam melting. Langmuir's equation for ideal vaporization into a vacuum was used to calculate for each impurity element the expected ratio of impurity content after melting to that before melting. Equilibrium vapor pressures were calculated using Henry's law, with activity coefficients obtained from published data for the elements Fe, Ti, and Pt. Activity coefficients were estimated from enthalpy data for Al, Si, V, Cr, Mn, Co, Ni, Zr, Nb, Mo, and Hf and an ideal solution model was used for the remaining elements. The melt temperature was determined from measured iridium weight loss. Excellent agreement was found between measured and calculated impurity ratios for all impurity elements. The results are consistent with some localized heating of the melt pool due to rastering of the electron beam, with an average vaporization temperature of 3100 K as compared to a temperature of 2965 K calculated for uniform heating of the melt pool. The results are also consistent with ideal mixing in the melt pool.

  10. Computational study and experimental validation of porous structures fabricated by electron beam melting: a challenge to avoid stress shielding.

    PubMed

    Herrera, A; Yánez, A; Martel, O; Afonso, H; Monopoli, D

    2014-12-01

    In this paper, several diamond non-stochastic lattice structures, fabricated by electron beam melting, were mechanically characterized by compression tests. A finite element model of the structures was developed, obtaining an equation that estimates the elastic modulus of the lattice structure. Finally, the differences between the numerical and the experimental results were analyzed and discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Two-Beam Instability in Electron Cooling

    SciTech Connect

    Burov, Alexey V.; /Fermilab

    2006-04-01

    The drift motion of cooling electrons makes them able to respond to transverse perturbations of a cooled ion beam. This response may lead to dipole or quadrupole transverse instabilities at specific longitudinal wave numbers. While the dipole instabilities can be suppressed by a combination of the Landau damping, machine impedance, and the active damper, the quadrupole and higher order modes can lead to either emittance growth, or a lifetime degradation, or both. The growth rates of these instabilities are strongly determined by the machine x-y coupling. Thus, tuning out of the coupling resonance and/or reduction of the machine coupling can be an efficient remedy for these instabilities.

  12. High Efficiency Transverse D. C. Electron Beams.

    DTIC Science & Technology

    1984-10-01

    Research: The proposed new sintered metal oxide-metal (e.g. AI203 -Mo) cathodes have been tested. As originally predicted these cathode meterials produce...improvement over that obtained in hollow cathode lasers. These experiments show that a cw Ag laser operating at a power between 0.1 and 1 watt at...concentrated in the construction of an electron beam pumped Ag II and Cu II laser with the goal of obtaining a cw ultraviolet power of 1W at efficiencies over

  13. Cometary particles - Thin sectioning and electron beam analysis

    NASA Technical Reports Server (NTRS)

    Bradley, J. P.; Brownlee, D. E.

    1986-01-01

    Thin sections (500 to 1000 angstroms thick) of individual micrometeorites (5 to 15 micrometers) have been prepared with an ultramicrotome equipped with a diamond knife. Electron microscope examination of these sections has revealed the internal structures of chondritic micrometeorites, and a subset of highly porous, fragile particles has been identified. Delicate meteoritic materials such as these are characteristic of debris from cometary meteors.

  14. Field electron emission of diamond films grown on the ultrasonically scratched and nano-seeded Si substrates

    NASA Astrophysics Data System (ADS)

    Jiang, N.; Nishimura, K.; Shintani, Y.; Hiraki, A.

    2003-07-01

    In the present study, we compare the field emission properties of diamond films grown on ultrasonically scratched and nano-seeded Si substrates. The diamond films were fabricated in a microwave plasma chemical vapor deposition system. It is confirmed that these two kinds of pretreatment methods, scratched or nano-seeded, result in rather different field emission properties. The diamond films grown on the ultrasonically scratched Si substrates present much higher emission current and lower threshold field than those of the films grown on the nano-seeded substrates. Cross-sectional transmission electron microscopy has been employed to evaluate the diamond films, and the field electron emission behaviors are analyzed in relation to the interface structures.

  15. Bunch by bunch beam monitoring in 3rd and 4th generation light sources by means of single crystal diamond detectors and quantum well devices

    NASA Astrophysics Data System (ADS)

    Antonelli, M.; Di Fraia, M.; Tallaire, A.; Achard, J.; Carrato, S.; Menk, R. H.; Cautero, G.; Giuressi, D.; Jark, W. H.; Biasiol, G.; Ganbold, T.; Oliver, K.; Callegari, C.; Coreno, M.; De Sio, A.; Pace, E.

    2012-10-01

    New generation Synchrotron Radiation (SR) sources and Free Electron Lasers (FEL) require novel concepts of beam diagnostics to keep photon beams under surveillance, asking for simultaneous position and intensity monitoring. To deal with high power load and short time pulses provided by these sources, novel materials and methods are needed for the next generation BPMs. Diamond is a promising material for the production of semitransparent in situ X-ray BPMs withstanding the high dose rates of SR rings and high energy FELs. We report on the development of freestanding, single crystal CVD diamond detectors. Performances in both low and radio frequency SR beam monitoring are presented. For the former, sensitivity deviation was found to be approximately 2%; a 0.05% relative precision in the intensity measurements and a 0.1-μm precision in the position encoding have been estimated. For the latter, single-shot characterizations revealed sub-nanosecond rise-times and spatial precisions below 6 μm, which allowed bunch-by-bunch monitoring in multi-bunch operation. Preliminary measurements at the Fermi FEL have been performed with this detector, extracting quantitative intensity and position information for FEL pulses (~ 100 fs, energy 12 ÷ 60 eV), with a long-term spatial precision of about 85 μm results on FEL radiation damages are also reported. Due to their direct, low-energy band gap, InGaAs quantum well devices too may be used as fast detectors for photons ranging from visible to X-ray. Results are reported which show the capability of a novel InGaAs/InAlAs device to detect intensity and position of 100-fs-wide laser pulses.

  16. Generation and application of bessel beams in electron microscopy.

    PubMed

    Grillo, Vincenzo; Harris, Jérémie; Gazzadi, Gian Carlo; Balboni, Roberto; Mafakheri, Erfan; Dennis, Mark R; Frabboni, Stefano; Boyd, Robert W; Karimi, Ebrahim

    2016-07-01

    We report a systematic treatment of the holographic generation of electron Bessel beams, with a view to applications in electron microscopy. We describe in detail the theory underlying hologram patterning, as well as the actual electron-optical configuration used experimentally. We show that by optimizing our nanofabrication recipe, electron Bessel beams can be generated with relative efficiencies reaching 37±3%. We also demonstrate by tuning various hologram parameters that electron Bessel beams can be produced with many visible rings, making them ideal for interferometric applications, or in more highly localized forms with fewer rings, more suitable for imaging. We describe the settings required to tune beam localization in this way, and explore beam and hologram configurations that allow the convergences and topological charges of electron Bessel beams to be controlled. We also characterize the phase structure of the Bessel beams generated with our technique, using a simulation procedure that accounts for imperfections in the hologram manufacturing process.

  17. Space Charge Effect in the Sheet and Solid Electron Beam

    NASA Astrophysics Data System (ADS)

    Song, Ho Young; Kim, Hyoung Suk; Ahn, Saeyoung

    1998-11-01

    We analyze the space charge effect of two different types of electron beam ; sheet and solid electron beam. Electron gun simulations are carried out using shadow and control grids for high and low perveance. Rectangular and cylindrical geometries are used for sheet and solid electron beam in planar and disk type cathode. The E-gun code is used to study the limiting current and space charge loading in each geometries.

  18. Graphene electronics for terahertz electron-beam radiation.

    PubMed

    Tantiwanichapan, Khwanchai; DiMaria, Jeff; Melo, Shayla N; Paiella, Roberto

    2013-09-20

    By virtue of their distinctive electronic properties (including linear energy dispersion, large velocity, and potentially ultra-high mobility even at room temperature), charge carriers in single-layer graphene are uniquely suited to radiation mechanisms that so far have been the primary domain of electron beams in vacuum-based systems. Here, we consider the use of sinusoidally corrugated graphene sheets for the generation of THz light based on a fundamentally new cyclotron-like radiation process, which does not require the application of any external magnetic field. Instead, periodic angular motion under bias is simply produced by the graphene mechanical corrugation, combined with its two-dimensional nature which ensures that the carrier trajectories perfectly conform to the corrugation. Numerical simulations indicate that technologically significant output power levels can correspondingly be obtained at geometrically tunable THz frequencies. This mechanism (as well as similar electron-beam radiation processes such as the Smith-Purcell and Cherenkov effects in periodic nanostructures) may open the way for a new family of THz optoelectronic devices based on graphene, including solid-state 'free-electron' lasers potentially capable of room-temperature operation.

  19. Electron Beam Technology for Environmental Pollution Control.

    PubMed

    Chmielewski, Andrzej G; Han, Bumsoo

    2016-10-01

    Worldwide, there are over 1700 electron beam (EB) units in commercial use, providing an estimated added value to numerous products, amounting to 100 billion USD or more. High-current electron accelerators are used in diverse industries to enhance the physical and chemical properties of materials and to reduce undesirable contaminants such as pathogens, toxic byproducts, or emissions. Over the past few decades, EB technologies have been developed aimed at ensuring the safety of gaseous and liquid effluents discharged to the environment. It has been demonstrated that EB technologies for flue gas treatment (SO x and NO x removal), wastewater purification, and sludge hygienization can be effectively deployed to mitigate environmental degradation. Recently, extensive work has been carried out on the use of EB for environmental remediation, which also includes the removal of emerging contaminants such as VOCs, endocrine disrupting chemicals (EDCs), and potential EDCs.

  20. The electron beam instability and turbulence theories

    NASA Technical Reports Server (NTRS)

    Dum, C. T.

    1990-01-01

    Extensions and practical applications of recent observations of electron beam-plasma interactions are investigated for the range of turbulence theories, extending from quasi-linear to strong turbulence theory, which have been developed on the basis of the Langmuir-wave excitation model. Electron foreshock observations have indicated that linear instability theory must encompass the excitation of waves whose frequencies are substantially different from those of the plasma frequency; the point of departure for such extensions should be a quantitative test of existing theories, and particle simulations conducive to such testing are presented. A step-by-step addition of physical considerations is used in such simulation studies to differentiate among nonlinear turbulence effects.

  1. Focused electron beam induced deposition: A perspective

    PubMed Central

    Porrati, Fabrizio; Schwalb, Christian; Winhold, Marcel; Sachser, Roland; Dukic, Maja; Adams, Jonathan; Fantner, Georg

    2012-01-01

    Summary Background: Focused electron beam induced deposition (FEBID) is a direct-writing technique with nanometer resolution, which has received strongly increasing attention within the last decade. In FEBID a precursor previously adsorbed on a substrate surface is dissociated in the focus of an electron beam. After 20 years of continuous development FEBID has reached a stage at which this technique is now particularly attractive for several areas in both, basic and applied research. The present topical review addresses selected examples that highlight this development in the areas of charge-transport regimes in nanogranular metals close to an insulator-to-metal transition, the use of these materials for strain- and magnetic-field sensing, and the prospect of extending FEBID to multicomponent systems, such as binary alloys and intermetallic compounds with cooperative ground states. Results: After a brief introduction to the technique, recent work concerning FEBID of Pt–Si alloys and (hard-magnetic) Co–Pt intermetallic compounds on the nanometer scale is reviewed. The growth process in the presence of two precursors, whose flux is independently controlled, is analyzed within a continuum model of FEBID that employs rate equations. Predictions are made for the tunability of the composition of the Co–Pt system by simply changing the dwell time of the electron beam during the writing process. The charge-transport regimes of nanogranular metals are reviewed next with a focus on recent theoretical advancements in the field. As a case study the transport properties of Pt–C nanogranular FEBID structures are discussed. It is shown that by means of a post-growth electron-irradiation treatment the electronic intergrain-coupling strength can be continuously tuned over a wide range. This provides unique access to the transport properties of this material close to the insulator-to-metal transition. In the last part of the review, recent developments in mechanical strain

  2. Electron beam diagnostic for space charge measurement of an ion beam

    SciTech Connect

    Roy, Prabir K.; Yu, Simon S.; Henestroza, Enrique; Eylon, Shmuel; Shuman, Derek B.; Ludvig, Jozsef; Bieniosek, Frank M.; Waldron, William L.; Greenway, Wayne G.; Vanecek, David L.; Hannink, Ryan; Amezcua, Monserrat

    2004-09-25

    A non-perturbing electron beam diagnostic system for measuring the charge distribution of an ion beam is developed for Heavy Ion Fusion (HIF) beam physics studies. Conventional diagnostics require temporary insertion of sensors into the beam, but such diagnostics stop the beam, or significantly alter its properties. In this diagnostic a low energy, low current electron beam is swept transversely across the ion beam; the measured electron beam deflection is used to infer the charge density profile of the ion beam. The initial application of this diagnostic is to the Neutralized Transport Experiment (NTX), which is exploring the physics of space-charge-dominated beam focusing onto a small spot using a neutralizing plasma. Design and development of this diagnostic and performance with the NTX ion beamline is presented.

  3. Analysis of Beam-Beam Kink Instability in a Linac-Ring Electron-Ion Collider

    SciTech Connect

    V. Lebedev; J. Bisognano; R. Li; B. Yunn

    2001-06-01

    A linac-ring collision scheme was considered in recent proposals of electron-gold colliders (eRHIC) and polarized-electron light-ion colliders (EPIC). The advantages of using an energy-recovered linac for the electron beam is that it avoids the limitation of beam-beam tune shift inherent in a storage ring, pertains good beam quality and easy manipulation of polarization. However, the interaction of the ion beam in the storage ring with the electron beam from the linac acts analogously to a transverse impedance, and can induce unstable behavior of the ion beam similar to the strong head-tail instability. In this paper, this beam-beam kink instability with head-tail effect is analyzed using the linearized Vlasov equation, and the threshold of transverse mode coupling instability is obtained.

  4. Ohmic contacts to semiconducting diamond

    NASA Astrophysics Data System (ADS)

    Zeidler, James R.; Taylor, M. J.; Zeisse, Carl R.; Hewett, C. A.; Delahoussaye, Paul R.

    1990-10-01

    Work was carried out to improve the electron beam evaporation system in order to achieve better deposited films. The basic system is an ion pumped vacuum chamber, with a three-hearth, single-gun e-beam evaporator. Four improvements were made to the system. The system was thoroughly cleaned and new ion pump elements, an e-gun beam adjust unit, and a more accurate crystal monitor were installed. The system now has a base pressure of 3 X 10(exp -9) Torr, and can easily deposit high-melting-temperature metals such as Ta with an accurately controlled thickness. Improved shadow masks were also fabricated for better alignment and control of corner contacts for electrical transport measurements. Appendices include: A Thermally Activated Solid State Reaction Process for Fabricating Ohmic Contacts to Semiconducting Diamond; Tantalum Ohmic Contacts to Diamond by a Solid State Reaction Process; Metallization of Semiconducting Diamond: Mo, Mo/Au, and Mo/Ni/Au; Specific Contact Resistance Measurements of Ohmic Contracts to Diamond; and Electrical Activation of Boron Implanted into Diamond.

  5. Electron cyclotron resonance deposition of diamond-like films

    NASA Technical Reports Server (NTRS)

    Shing, Y. H.; Pool, F. S.

    1990-01-01

    Electron cyclotron resonance (ECR) microwave plasma CVD has been developed at low pressures (0.0001 - 0.01 torr) and at ambient and high substrate temperatures (up to 750 C), to achieve large-area (greater than 4 in. diameter) depositions of diamondlike amorphous carbon (a - C:H) films. The application of a RF bias to the substrate stage, which induces a negative self-bias voltage, is found to play a critical role in determining carbon bonding configurations and in modifying the film morphology. There are two distinct types of ECR-deposited diamondlike films. One type of diamondlike film exhibits a Raman spectrum consisting of broad and overlapping, graphitic D (1360/cm, line width = 280/cm) and G (1590/cm, line width 140/cm) lines, and the other type has a broad Raman peak centered at appoximately 1500/cm. Examination of plasma species by optical emission spectroscopy shows no correlation between the CH-asterisk emission intensity and the deposition rate of diamondklike films.

  6. High resolution transmission electron microscopy study of diamond films grown from fullerene precursors

    SciTech Connect

    Luo, J.S.; Gruen, D.M.; Krauss, A.R.

    1995-07-01

    High-resolution transmission electron microscopy (HRTEM) has been used to investigate the microstructure of diamond films grown by plasma-assisted chemical vapor deposition using fullerene precursors. HRTEM observations of as-grown films revealed an array of larger crystals (>200 nm) within a polycrystalline matrix of much smaller crystallites (<20 nm). The randomly oriented small crystallites were nearly free of structural imperfections such as stacking faults or twins, while the larger ones had preferred <110> orientations with respect to the Si (100) substrate and showed evidence of structural defects on the periphery of the crystals. The most common defects were V-shaped {Sigma}9 twin boundaries, which are generally believed to serve as re-entrant sites for diamond nucleation and growth. The observation of growth steps on both (111) and (110) surfaces seems to support a reaction model in which fragments of C{sub 60}, including C{sub 2}, are considered the growth species. In particular, the nanocrystallinity of the films is most likely due to a high carbon cluster density from C{sub 60} fragmentation at or near the diamond surface, which can serve as nucleation sites for the growth of new crystallites.

  7. Atomic Image Projection Electron Beam Lithography

    NASA Astrophysics Data System (ADS)

    Kim, Ki-Bum

    2006-03-01

    While we are approaching to the nanotechnology era, as was proposed by Richard Feynman in 1959, our main concern still lies in how one can controllably manufacture and utilize nanometer scale features. The top-down approaches, most notably, lithography based techniques still have the problem of throughput although it has been successfully demonstrate to make features with the size less than 10 nm. The bottom-up approaches, either utilizing chemical vapor deposition process to make carbon nanotube or wet-chemical process to make size controllable quantum dots and rods, still have the limitation of extending it to many different types of materials and also delivering them on a wafer size substrate to make nanodevices. In this talk, we will propose a novel electron beam lithography technique to make nanometer scale features. The novelty of this process lies in the fact that one can utilize the crystalline lattice image commonly observed by the high resolution transmission electron microscopy as an ultimate mask to generate nanometer scale patterns. Using this technique, we demonstrate that down to 45 nm pitch size can be resolved on hydrogen silsesquioxine (HSQ) e-beam resist material. The patterns are formed on Si substarte with the dot size of about 30 nm and the line size of about 25 nm. This technique can be extend to define less than 10 nm size features only if the suitable resist is developed.

  8. The polarized electron beam at ELSA

    NASA Astrophysics Data System (ADS)

    Hoffmann, M.; Drachenfels, W. V.; Frommberger, F.; Gowin, M.; Helbing, K.; Hillert, W.; Husmann, D.; Keil, J.; Michel, T.; Naumann, J.; Speckner, T.; Zeitler, G.

    2001-06-01

    The future medium energy physics program at the electron stretcher accelerator ELSA of Bonn University mainly relies on experiments using polarized electrons in the energy range from 1 to 3.2 GeV. To provide a polarized beam with high polarization and sufficient intensity a dedicated source has been developed and set into operation. To prevent depolarization during acceleration in the circular accelerators several depolarizing resonances have to be corrected for. Intrinsic resonances are compensated using two pulsed betatron tune jump quadrupoles. The influence of imperfection resonances is successfully reduced applying a dynamic closed orbit correction in combination with an empirical harmonic correction on the energy ramp. In order to minimize beam depolarization, both types of resonances and the correction techniques have been studied in detail. It turned out that the polarization in ELSA can be conserved up to 2.5 GeV and partially up to 3.2 GeV which is demonstrated by measurements using a Møller polarimeter installed in the external GDH1-beamline. .

  9. Polarization of a stored electron beam

    SciTech Connect

    Chao, A.W.

    1981-07-01

    Synchrotron radiation by a point charge is a familiar subject in classical electrodynamics. Perhaps less familiar are some quantum mechanical corrections to the classical results. Some of those quantum aspects of synchrotron radiation are described. One of the quantum effects leads to the expectation that electrons in a storage ring will polarize themselves to 92% - a surprisingly high value. A semi-classical derivation of the quantum effects is given. An effort has been made to minimize the need of using quantum mechanics. Results are put together to derive a final expression of beam polarization. Conditions under which the expected 92% polarization is destroyed are found and attributed to depolarization resonances. The various depolarization mechanisms are first illustrated by an idealized example and then systematically treated by a matrix formalism. It is shown that the strength of depolarization is specified by a key quantity called the spin chromaticity. Finally as an application of the obtained results, an estimate of the achievable level of beam polarization for two existing electron storage rings, SPEAR and PEP, is given.

  10. Mask Fabrication Using Electron Beam Exposure System

    NASA Astrophysics Data System (ADS)

    Watakabe, Y.; Shigetomi, A.; Morimoto, H.; Kato, T.

    1981-07-01

    This study describes the results of feature size distribution, pattern location accuracy and level to level registration error on chrominum master masks fabricated by EeBES-40. This system has the capability of high speed electron beam blanking at 40MHz, the capacity for large size masks (with 6 inch mask cassette), and the automatic cassette handling system. OEBR-100(PGMA), as the electron beam negative resist, is used for 5 inch and 6 inch chrominum masks. The chrominum etching process is used for both wet and dry plasma technology. Test patterns and 64 K bit memory TEG, as the practical pattern, are used in this study. More than 40 measurements are taken, uniformly distributed over 96 to 112mm square, and the feature size distribution is measured by a laser interferometer X-Y measuring system. Pattern location accuracy and level to level registration error are obtained using EeBES-40 quality assurance programs called MARKET/PLOTMARKET. This program operates by scanning over the resist image of the test pattern, utilizing the normal fiducial mark location hardware. The followinc results are obtained; (1) Feature size distribution within 6 inch mask : -/+0.1 μm (2) Level-to-level registration error2 : less than 0.1 pm High quality masks with about 0.02 defects/cm2 , and rapid throughput of 6 hr./10 masks using the auto-matic 10-cassette handling system are obtained.

  11. Proximity correction for electron beam lithography

    NASA Astrophysics Data System (ADS)

    Marrian, Christie R.; Chang, Steven; Peckerar, Martin C.

    1996-09-01

    As the critical dimensions required in mask making and direct write by electron beam lithography become ever smaller, correction for proximity effects becomes increasingly important. Furthermore, the problem is beset by the fact that only a positive energy dose can be applied with an electron beam. We discuss techniques such as chopping and dose shifting, which have been proposed to meet the positivity requirement. An alternative approach is to treat proximity correction as an optimization problem. Two such methods, local area dose correction and optimization using a regularizer proportional to the informational entropy of the solution, are compared. A notable feature of the regularized proximity correction is the ability to correct for forward scattering by the generation of a 'firewall' set back from the edge of a feature. As the forward scattering width increases, the firewall is set back farther from the feature edge. The regularized optimization algorithm is computationally time consuming using conventional techniques. However, the algorithm lends itself to a microelectronics integrated circuit coprocessor implementation, which could perform the optimization faster than even the fastest work stations. Scaling the circuit to larger number of pixels is best approached with a hybrid serial/parallel digital architecture that would correct for proximity effects over 108 pixels in about 1 h. This time can be reduced by simply adding additional coprocessors.

  12. Electron energy distribution produced by beam-plasma discharge

    NASA Technical Reports Server (NTRS)

    Anderson, H. R.; Gordeuk, J.; Jost, R. J.

    1982-01-01

    In an investigation of a beam-plasma discharge (BPD), the electron energy distribution of an electron beam moving through a partially ionized gas is analyzed. Among other results, it is found that the occurrence of BPD heats the initially cold electron beam from the accelerator. The directional intensity of electrons measured outside the beam core indicates that most particles suffer a single scattering in energy and pitch angle. At low currents this result is expected as beam particles collide with the neutral atmosphere, while in BPD the majority of particles is determined to still undergo a single scattering near the original beam core. The extended energy spectra at various beam currents show two rather distinct plasma populations, one centered at the initial beam energy (approximately 1500 eV) and the other at approximately 150 eV.

  13. Electron energy distribution produced by beam-plasma discharge

    NASA Technical Reports Server (NTRS)

    Anderson, H. R.; Gordeuk, J.; Jost, R. J.

    1982-01-01

    In an investigation of a beam-plasma discharge (BPD), the electron energy distribution of an electron beam moving through a partially ionized gas is analyzed. Among other results, it is found that the occurrence of BPD heats the initially cold electron beam from the accelerator. The directional intensity of electrons measured outside the beam core indicates that most particles suffer a single scattering in energy and pitch angle. At low currents this result is expected as beam particles collide with the neutral atmosphere, while in BPD the majority of particles is determined to still undergo a single scattering near the original beam core. The extended energy spectra at various beam currents show two rather distinct plasma populations, one centered at the initial beam energy (approximately 1500 eV) and the other at approximately 150 eV.

  14. Laser wakefield accelerated electron beam monitoring and control

    SciTech Connect

    Koga, J. K.; Mori, M.; Kotaki, H.; Esirkepov, T. Zh.; Kiriyama, H.; Kando, M.; Bulanov, S. V.

    2016-03-25

    We will discuss our participation in the ImPACT project, which has as one of its goals the development of an ultra-compact electron accelerator using lasers (< 1 GeV, < 10   m) and the generation of an x-ray beam from the accelerated electrons. Within this context we will discuss our investigation into electron beam monitoring and control. Since laser accelerated electrons will be used for x-ray beam generation combined with an undulator, we will present investigation into the possibilities of the improvement of electron beam emittance through cooling.

  15. Attosecond slicing of an LWFA produced electron beam

    NASA Astrophysics Data System (ADS)

    Sears, C. M. S.; Buck, A.; Schmid, K.; Veisz, L.; Herrmann, D.; Mikhailova, J.; Tautz, R.; Krausz, F.

    2009-05-01

    Recent years have seen rapid improvement in the quality of electron beams produced by wakefields in plasmas. The electron beams produced have inherently short durations and high peak current. To further shorten the pulse duration of these beams for future applications, an experiment is proposed to produce a single sub-femtosecond slice of electrons via an Inverse Free Electron Laser interaction (IFEL) with a few cycle laser pulse. The IFEL is followed by a combined function, permanent magnet quadrupole triplet chicane that both disperses the beam transversely while simultaneously focusing, allowing for efficient energy collimation to select the attosecond slice. Simulations are presented showing the expected electron slice characteristics.

  16. Electron acceleration by a tightly focused cylindrical vector Gaussian beam

    NASA Astrophysics Data System (ADS)

    Xu, Jian; Yang, Zhen-Jun; Li, Jian-Xing; Zang, Wei-Ping

    2017-02-01

    We have studied the electron acceleration by a tightly focused cylindrical vector Gaussian beam. Different from the Lax series field, cylindrical vector Gaussian beams are vector-beam solutions of Maxwell’s equations and its focusing property can be numerically analyzed by the Richards-Wolf vectorial diffraction theory. Field differences exist between the cylindrical vector Gaussian beam and the Lax series field. The cylindrical vector Gaussian beam increases the asymmetry of the electromagnetic fields, which is more beneficial to the electron acceleration. When the beam waist falls down to the order of the wavelength, the high laser intensity zone is more proper to define the reflection, capture and transmission conditions of the electrons. The injection energy and the injected angle of the electron and the initial phase of the laser beam play important roles for the electron to enter and be trapped by the high laser intensity zone.

  17. Maskless Electron-Beam Lithography for Trusted Microchip Production

    DTIC Science & Technology

    2016-03-31

    lithography has soared and continues to rise unabated. Multibeam has developed maskless electron-beam lithography ( EBL ) for producing advanced Rad-Hard...and other DoD microchips at lower cost. In addition to significant cost savings in mask and lithography equipment, Multibeam’s maskless EBL technology...maskless electron-beam lithography ( EBL ); e-beam direct write (EBDW); complementary e-beam lithography (CEBL); multiple patterning; cycle time

  18. Cherenkov Light-based Beam Profiling for Ultrarelativistic Electron Beams

    SciTech Connect

    Adli, E.; Gessner, S. J.; Corde, S.; Hogan, M. J.; Bjerke, H. H.

    2015-02-09

    We describe a beam profile monitor design based on Cherenkov light emitted from a charged particle beam in an air gap. The main components of the profile monitor are silicon wafers used to reflect Cherenkov light onto a camera lens system. The design allows for measuring large beam sizes, with large photon yield per beam charge and excellent signal linearity with beam charge. Furthermore, the profile monitor signal is independent of the particle energy for ultrarelativistic particles. Different design and parameter considerations are discussed. A Cherenkov light-based profile monitor has been installed at the FACET User Facility at SLAC. Finally, we report on the measured performance of this profile monitor.

  19. Field electron emission based on resonant tunneling in diamond/CoSi2/Si quantum well nanostructures

    PubMed Central

    Gu, Changzhi; Jiang, Xin; Lu, Wengang; Li, Junjie; Mantl, Siegfried

    2012-01-01

    Excellent field electron emission properties of a diamond/CoSi2/Si quantum well nanostructure are observed. The novel quantum well structure consists of high quality diamond emitters grown on bulk Si substrate with a nanosized epitaxial CoSi2 conducting interlayer. The results show that the main emission properties were modified by varying the CoSi2 thickness and that stable, low-field, high emission current and controlled electron emission can be obtained by using a high quality diamond film and a thicker CoSi2 interlayer. An electron resonant tunneling mechanism in this quantum well structure is suggested, and the tunneling is due to the long electron mean free path in the nanosized CoSi2 layer. This structure meets most of the requirements for development of vacuum micro/nanoelectronic devices and large-area cold cathodes for flat-panel displays. PMID:23082241

  20. Novel vortex generator and mode converter for electron beams.

    PubMed

    Schattschneider, P; Stöger-Pollach, M; Verbeeck, J

    2012-08-24

    A mode converter for electron vortex beams is described. Numerical simulations, confirmed by experiment, show that the converter transforms a vortex beam with a topological charge m=±1 into beams closely resembling Hermite-Gaussian HG(10) and HG(01) modes. The converter can be used as a mode discriminator or filter for electron vortex beams. Combining the converter with a phase plate turns a plane wave into modes with topological charge m=±1. This combination serves as a generator of electron vortex beams of high brilliance.