Science.gov

Sample records for diblock copolymer self-assembly

  1. Self-assembly of cyclic rod-coil diblock copolymers.

    PubMed

    He, Linli; Chen, Zenglei; Zhang, Ruifen; Zhang, Linxi; Jiang, Zhouting

    2013-03-01

    The phase behavior of cyclic rod-coil diblock copolymer melts is investigated by the dissipative particle dynamics simulation. In order to understand the effect of chain topological architecture better, we also study the linear rod-coil system. The comparison of the calculated phase diagrams between the two rod-coil copolymers reveals that the order-disorder transition point (χN)ODT for cyclic rod-coil diblock copolymers is always higher than that of equivalent linear rod-coil diblocks. In addition, the phase diagram for cyclic system is more "symmetrical," due to the topological constraint. Moreover, there are significant differences in the self-assembled overall morphologies and the local molecular arrangements. For example, frod = 0.5, both lamellar structures are formed while rod packing is different greatly in cyclic and linear cases. The lamellae with rods arranged coplanarly into bilayers occurs in cyclic rod-coil diblocks, while the lamellar structure with rods arranged end by end into interdigitated bilayers appears in linear counterpart. In both the lamellar phases, the domain size ratio of cyclic to linear diblocks is ranged from 0.63 to 0.70. This is attributed to that the cyclic architecture with the additional junction increases the contacts between incompatible blocks and prevents the coil chains from expanding as much as the linear cases. As frod = 0.7, the hexagonally packed cylinder is observed for cyclic rod-coil diblocks, while liquid-crystalline smectic A lamellar phase is formed in linear system. As a result, the cyclization of a linear rod-coil block copolymer can induce remarkable differences in the self-assembly behavior and also diversify its physical properties and applications greatly. PMID:23485326

  2. Supramolecular self-assembly of conjugated diblock copolymers.

    SciTech Connect

    Wang, H.; You, W.; Jiang, P.; Yu, L.; Wang, H. H.; Univ. of Chicago

    2004-02-20

    This paper describes the synthesis and characterization of a novel series of copolymers with different lengths of oligo(phenylene vinylene) (OPV) as the rod block, and poly(propylene oxide) as the coil block. Detailed characterization by means of transmission electron microscopy (TEM), atomic force microscopy (AFM), and small-angle neutron scattering (SANS) revealed the strong tendency of these copolymers to self-assemble into cylindrical micelles in solution and as-casted films on a nanometer scale. These micelles have a cylindrical OPV core surrounded by a poly(propylene glycol) (PPG) corona and readily align with each other to form parallel packed structures when mica is used as the substrate. A packing model has been proposed for these cylindrical micelles.

  3. Kinetically Controlled Nanostructure Formation in Self-Assembled Globular Protein-Polymer Diblock Copolymers

    PubMed Central

    Thomas, Carla S.; Xu, Liza; Olsen, Bradley D.

    2014-01-01

    Aqueous processing of globular protein-polymer diblock copolymers into solid-state materials and subsequent solvent annealing enables kinetic and thermodynamic control of nanostructure formation to produce block copolymer morphologies that maintain a high degree of protein fold and function. Using model diblock copolymers composed of mCherry-b-poly(N-isopropylacrylamide), orthogonal control over solubility of the protein block through changes in pH and the polymer block through changes in temperature is demonstrated during casting and solvent annealing. Hexagonal cylinders, perforated lamellae, lamellae, or hexagonal and disordered micellar phases are observed depending upon the coil fraction of the block copolymer and the kinetic pathway used for self-assembly. Good solvents for the polymer block produce ordered structures reminiscent of coil-coil diblock copolymers, while an unfavorable solvent results in kinetically trapped micellar structures. Decreasing solvent quality for the protein improves long-range ordering, suggesting that the strength of protein interactions influences nanostructure formation. Subsequent solvent annealing results in evolution of the nanostructures, with the best ordering and the highest protein function observed when annealing in a good solvent for both blocks. While protein secondary structure was found to be almost entirely preserved for all processing pathways, UV-vis spectroscopy of solid-state films indicates that using a good solvent for the protein block enables up to 70% of the protein to be retained in its functional form. PMID:22924842

  4. Kinetically controlled nanostructure formation in self-assembled globular protein-polymer diblock copolymers.

    PubMed

    Thomas, Carla S; Xu, Liza; Olsen, Bradley D

    2012-09-10

    Aqueous processing of globular protein-polymer diblock copolymers into solid-state materials and subsequent solvent annealing enables kinetic and thermodynamic control of nanostructure formation to produce block copolymer morphologies that maintain a high degree of protein fold and function. When model diblock copolymers composed of mCherry-b-poly(N-isopropylacrylamide) are used, orthogonal control over solubility of the protein block through changes in pH and the polymer block through changes in temperature is demonstrated during casting and solvent annealing. Hexagonal cylinders, perforated lamellae, lamellae, or hexagonal and disordered micellar phases are observed, depending on the coil fraction of the block copolymer and the kinetic pathway used for self-assembly. Good solvents for the polymer block produce ordered structures reminiscent of coil-coil diblock copolymers, while an unfavorable solvent results in kinetically trapped micellar structures. Decreasing solvent quality for the protein improves long-range ordering, suggesting that the strength of protein interactions influences nanostructure formation. Subsequent solvent annealing results in evolution of the nanostructures, with the best ordering and the highest protein function observed when annealing in a good solvent for both blocks. While protein secondary structure was found to be almost entirely preserved for all processing pathways, UV-vis spectroscopy of solid-state films indicates that using a good solvent for the protein block enables up to 70% of the protein to be retained in its functional form. PMID:22924842

  5. Self-assembled diblock copolymer thin films for the analysis of bacteria-surface interactions

    NASA Astrophysics Data System (ADS)

    Li, Shuyan; Komaromy, Andras; Boysen, Reinhard I.; Nicolau, Dan V.; Hearn, Milton T. W.

    2008-12-01

    Self-assembling polymers have recently attracted significant scientific interest, since they spontaneously generate highly ordered structures with high resolution precision, and provide simple, parallel, and cost-effective processes for nanofabrication. Such systems can be achieved with block copolymers which, when produced as thin films, offer great potential as lithographic templates for the fabrication of photonic band-gap materials, ultrahigh-density nanodots or nanowire arrays, memory and capacitor devices, and nano-patterned substrates for biosensors. Although self-assembling block copolymers can form a variety of surface topographies at the nm scale, like spheres, cylinders, and lamellae, their structural steering through the annealing conditions has in many cases not been fully investigated. In the present investigation optimum production conditions for the preparation of nanostructures from poly(styrene)-block-poly(MMA) diblock copolymers have been established to enable the production of surfaces as thin films (<40 nm) on spin-coated silicon wafers either with parallel cylindrical structures or with vertical cylinders. The resulting self-assembling structures were then evaluated by atomic force microscopy. The obtained nanostructured polymers were then incubated with two microbial species, the gram negative E. coli and the gram positive S. aureus to assess their behaviour. The patterns of the thin film surfaces affected the bacterial attachment. Such self assembly processes can be used to create surfaces acting as bacterial attractants or repellents.

  6. Polymerization-Induced Self-Assembly of Galactose-Functionalized Biocompatible Diblock Copolymers for Intracellular Delivery

    PubMed Central

    2013-01-01

    Recent advances in polymer science are enabling substantial progress in nanobiotechnology, particularly in the design of new tools for enhanced understanding of cell biology and for smart drug delivery formulations. Herein, a range of novel galactosylated diblock copolymer nano-objects is prepared directly in concentrated aqueous solution via reversible addition–fragmentation chain transfer polymerization using polymerization-induced self-assembly. The resulting nanospheres, worm-like micelles, or vesicles interact in vitro with galectins as judged by a turbidity assay. In addition, galactosylated vesicles are highly biocompatible and allow intracellular delivery of an encapsulated molecular cargo. PMID:23941545

  7. Directed Self-Assembly of Diblock Copolymer Thin Films on Prepatterned Metal Nanoarrays.

    PubMed

    Chang, Tongxin; Huang, Haiying; He, Tianbai

    2016-01-01

    The sequential layer by layer self-assembly of block copolymer (BCP) nanopatterns is an effective approach to construct 3D nanostructures. Here large-scale highly ordered metal nano-arrays prepared from solvent annealed thin films of polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) diblock copolymer are used to direct the assembly of the same BCP. The influence of initial loading concentration of metal precursor, the type of metal nanoparticle (gold, platinum, and silver), and the nanoparticle-substrate interaction on the directed assembly behavior of the upper BCP layer have been focused. It is found that the upper BCP film can be completely directed by the gold nanoarray with P2VP domain exclusively located between two adjacent gold nanowires or nanodots, which behaves the same way as on the platinum nanoarray. While the silver nanoarray can be destroyed during the upper BCP self-assembly with the silver nanoparticles assembled into the P2VP domain. Based on the discussions of the surface energy of nanoparticles and the interplay between nanoparticle-substrate interaction and nanoparticle-polymer interaction, it is concluded that the effect of immobilization of nanoparticles on the substrate, together with entropy effect to minimize the energetically unfavorable chain stretching contributes to the most effective alignment between each layer. PMID:26513110

  8. Phase Change Nanodot Arrays Fabricated Using a Self-Assembly Diblock Copolymer Approach

    SciTech Connect

    Zhang,Y.; Wong, H.; Raoux, S.; Cha, J.; Rettner, C.; Krupp, L.; Topuria, T.; Milliron, D.; Rice, P.; Jordan-Sweet, J.

    2007-01-01

    Self-assembling diblock copolymer, polystyrene-b-poly-4-vinylpyridine (PS-b-P4VP), was used as the template for fabricating phase change nanostructures. The high density GeSb nanodots were formed by etching into an amorphous GeSb thin film using silica hard mask which was patterned on top of polymer. The nanodot arrays are 15 nm in diameter with 30 nm spacing. This is smaller than most structures obtained by e-beam lithography. Time-resolved x-ray diffraction studies showed that the phase transition occurred at 235 {sup o}C, which is 5 {sup o}C lower than blanket GeSb film but higher than that of Ge{sub 2}Sb{sub 2}Te{sub 5} (150 {sup o}C). GeSb showed good temperature stability for fabrication of small memory devices.

  9. The impact of substrate interaction in directed self-assembly of symmetric diblock copolymer thin films

    NASA Astrophysics Data System (ADS)

    Seidel, Robert

    Block copolymers (BCP) are a class of materials that have attracted significant attention due to their ability to self-assemble into dense arrays of nanoscale features. These materials are being investigated for their use in applications such as nanolithography, but for commercial implementation require the ability to control or direct the self-assembly process. Chemoepitaxial directed self-assembly (DSA) is one avenue to achieving this control, where a BCP thin film self-assembles in the presence of precisely defined chemical boundary conditions. In such a process, the equilibrium structure of the BCP film and the kinetic pathways it evolves along to reach equilibrium are both a function of the thermodynamic landscape, which is in turn controlled by the chemical pattern. This thesis contributes to the significant body of work attempting to detail the relationship between chemical pattern parameters and the thermodynamics of assembly (both kinetic and equilibrium). We restrict our investigation to the assembly of lamellae-forming diblock copolymers on line/space chemical patterns that employ density multiplication, with a focus on developing technology for nanopatterning beyond the resolution limit of traditional lithography. In the first chapter we introduce the fundamental ideas of BCP DSA and develop the concepts of free energy balance that are crucial to framing the discussion in the following chapters. The second chapter explores using poly(methyl methacrylate) as a guide material and shows how the greater strength of guiding interaction for this system has the ability to guide complex, frustrated non-bulk morphologies. The third chapter develops a novel concept of using process conditions to generate so-called 'three-tone' chemical patterns with multiple guiding regions per patterned stripe. The fourth chapter looks at how guide stripe strength impacts and affects assembly kinetics, equilibrium structure, and process metrics such as line edge roughness (LER

  10. Self-assembly of lamella-forming diblock copolymers confined in nanochannels: Effect of confinement geometry

    NASA Astrophysics Data System (ADS)

    Yu, Bin; Deng, Jian-Hua; Wang, Zheng; Li, Bao-Hui; Shi, An-Chang

    2015-04-01

    The self-assembly of symmetric diblock copolymers confined in the channels of variously shaped cross sections (regular triangles, squares, and ellipses) is investigated using a simulated annealing technique. In the bulk, the studied symmetric diblock copolymers form a lamellar structure with period LL. The geometry and surface property of the confining channels have a large effect on the self-assembled structures and the orientation of the lamellar structures. Stacked perpendicular lamellae with period LL are observed for neutral surfaces regardless of the channel shape and size, but each lamella is in the shape of the corresponding channel's cross section. In the case of triangle-shaped cross sections, stacked parallel lamellae are the majority morphologies for weakly selective surfaces, while morphologies including a triangular-prism-shaped B-cylinder and multiple tridentate lamellae are obtained for strongly selective surfaces. In the cases of square-shaped and ellipse-shaped cross sections, concentric lamellae are the signature morphology for strongly selective surfaces, whereas for weakly selective surfaces, stacked parallel lamellae, and several types of folding lamellae are obtained in the case of square-shaped cross sections, and stacked parallel lamellae are the majority morphologies in the case of ellipse-shaped cross sections when the length of the minor axis is commensurate with the bulk lamellar period. The mean-square end-to-end distance, the average contact number between different species and the surface concentration of the A-monomers are computed to elucidate the mechanisms of the formation of the different morphologies. It is found that the resulting morphology is a consequence of competition among the chain stretching, interfacial energy, and surface energy. Our results suggest that the self-assembled morphology and the orientation of lamellae can be manipulated by the shape, the size, and the surface property of the confining channels. Project

  11. Highly Flexible Self-Assembled V2O5 Cathodes Enabled by Conducting Diblock Copolymers

    NASA Astrophysics Data System (ADS)

    An, Hyosung; Mike, Jared; Smith, Kendall A.; Swank, Lisa; Lin, Yen-Hao; L. Pesek, Stacy; Verduzco, Rafael; Lutkenhaus, Jodie L.

    2015-09-01

    Mechanically robust battery electrodes are desired for applications in wearable devices, flexible displays, and structural energy and power. In this regard, the challenge is to balance mechanical and electrochemical properties in materials that are inherently brittle. Here, we demonstrate a unique water-based self-assembly approach that incorporates a diblock copolymer bearing electron- and ion-conducting blocks, poly(3-hexylthiophene)-block-poly(ethyleneoxide) (P3HT-b-PEO), with V2O5 to form a flexible, tough, carbon-free hybrid battery cathode. V2O5 is a promising lithium intercalation material, but it remains limited by its poor conductivity and mechanical properties. Our approach leads to a unique electrode structure consisting of interlocking V2O5 layers glued together with micellar aggregates of P3HT-b-PEO, which results in robust mechanical properties, far exceeding the those obtained from conventional fluoropolymer binders. Only 5 wt % polymer is required to triple the flexibility of V2O5, and electrodes comprised of 10 wt % polymer have unusually high toughness (293 kJ/m3) and specific energy (530 Wh/kg), both higher than reduced graphene oxide paper electrodes. Furthermore, addition of P3HT-b-PEO enhances lithium-ion diffusion, eliminates cracking during cycling, and boosts cyclability relative to V2O5 alone. These results highlight the importance of tradeoffs between mechanical and electrochemical performance, where polymer content can be used to tune both aspects.

  12. Solid-State Nanostructured Materials from Self-Assembly of a Globular Protein-Polymer Diblock Copolymer

    PubMed Central

    Thomas, Carla S.; Glassman, Matthew J.; Olsen, Bradley D.

    2014-01-01

    Self-assembly of three-dimensional solid-state nanostructures containing approximately 33% by weight globular protein is demonstrated using a globular protein-polymer diblock copolymer, providing a route to direct nanopatterning of proteins for use in bioelectronic and biocatalytic materials. A mutant red fluorescent protein, mCherryS131C, was prepared by incorporation of a unique cysteine residue and site-specifically conjugated to end-functionalized poly(N-isopropylacrylamide) through thiol-maleimide coupling to form a well-defined model protein-polymer block copolymer. The block copolymer was self-assembled into bulk nanostructures by solvent evaporation from concentrated solutions. Small-angle X-ray scattering and transmission electron microscopy illustrated the formation of highly disordered lamellae or hexagonally perforated lamellae depending upon the selectivity of the solvent during evaporation. Solvent annealing of bulk samples resulted in a transition towards lamellar nanostructures with mCherry packed in a bilayer configuration and a large improvement in long range ordering. Wide-angle X-ray scattering indicated that mCherry did not crystallize within the block copolymer nanodomains and that the β-sheet spacing was not affected by self-assembly. Circular dichroism showed no change in protein secondary structure after self-assembly, while UV-vis spectroscopy indicated approximately 35% of the chromophore remained optically active. PMID:21696135

  13. Highly Flexible Self-Assembled V2O5 Cathodes Enabled by Conducting Diblock Copolymers

    PubMed Central

    An, Hyosung; Mike, Jared; Smith, Kendall A.; Swank, Lisa; Lin, Yen-Hao; L. Pesek, Stacy; Verduzco, Rafael; Lutkenhaus, Jodie L.

    2015-01-01

    Mechanically robust battery electrodes are desired for applications in wearable devices, flexible displays, and structural energy and power. In this regard, the challenge is to balance mechanical and electrochemical properties in materials that are inherently brittle. Here, we demonstrate a unique water-based self-assembly approach that incorporates a diblock copolymer bearing electron- and ion-conducting blocks, poly(3-hexylthiophene)-block-poly(ethyleneoxide) (P3HT-b-PEO), with V2O5 to form a flexible, tough, carbon-free hybrid battery cathode. V2O5 is a promising lithium intercalation material, but it remains limited by its poor conductivity and mechanical properties. Our approach leads to a unique electrode structure consisting of interlocking V2O5 layers glued together with micellar aggregates of P3HT-b-PEO, which results in robust mechanical properties, far exceeding the those obtained from conventional fluoropolymer binders. Only 5 wt % polymer is required to triple the flexibility of V2O5, and electrodes comprised of 10 wt % polymer have unusually high toughness (293 kJ/m3) and specific energy (530 Wh/kg), both higher than reduced graphene oxide paper electrodes. Furthermore, addition of P3HT-b-PEO enhances lithium-ion diffusion, eliminates cracking during cycling, and boosts cyclability relative to V2O5 alone. These results highlight the importance of tradeoffs between mechanical and electrochemical performance, where polymer content can be used to tune both aspects. PMID:26391053

  14. Highly Flexible Self-Assembled V2O5 Cathodes Enabled by Conducting Diblock Copolymers

    DOE PAGESBeta

    An, Hyosung; Mike, Jared; Smith, Kendall A.; Swank, Lisa; Lin, Yen-Hao; L. Pesek, Stacy; Verduzco, Rafael; Lutkenhaus, Jodie L.

    2015-09-22

    Mechanically robust battery electrodes are desired for applications in wearable devices, flexible displays, and structural energy and power. In this regard, the challenge is to balance mechanical and electrochemical properties in materials that are inherently brittle. Here, we demonstrate a unique water-based self-assembly approach that incorporates a diblock copolymer bearing electron- and ion-conducting blocks, poly(3-hexylthiophene)-block-poly(ethyleneoxide) (P3HT-b-PEO), with V2O5 to form a flexible, tough, carbon-free hybrid battery cathode. V2O5 is a promising lithium intercalation material, but it remains limited by its poor conductivity and mechanical properties. Our approach leads to a unique electrode structure consisting of interlocking V2O5 layers glued togethermore » with micellar aggregates of P3HT-b-PEO, which results in robust mechanical properties, far exceeding the those obtained from conventional fluoropolymer binders. Only 5 wt % polymer is required to triple the flexibility of V2O5, and electrodes comprised of 10 wt % polymer have unusually high toughness (293 kJ/m3) and specific energy (530 Wh/kg), both higher than reduced graphene oxide paper electrodes. Furthermore, addition of P3HT-b-PEO enhances lithium-ion diffusion, eliminates cracking during cycling, and boosts cyclability relative to V2O5 alone. These results highlight the importance of tradeoffs between mechanical and electrochemical performance, where polymer content can be used to tune both aspects.« less

  15. Self-Assembly of Novel Amphiphilic 21-Arm, Star-Like Coil-Rod Diblock Copolymers at Interfaces

    NASA Astrophysics Data System (ADS)

    Lin, Zhiqun; Zhao, Lei; Pang, Xinchang; Feng, Chaowei

    2012-02-01

    A series of novel amphiphilic 21-arm, star-like diblock copolymers, poly(acrylic acid)-b-poly(3-hexylthiophene) (PAA-b-P3HT) based on β-cyclodextrin (β-CD) with well defined molecular architectures and ratio of two chemically distinct blocks were prepared, for the first time, via a combination of quasi-living Grignard metathesis method (GRIM), click reaction, and atom transfer radical polymerization (ATRP). The star-like PAA-b-P3HT diblock copolymers consist of hydrophilic coil-like PAA cores and hydrophobic rod-like P3HT shells with narrow molecular weight distribution and controllable molecular weight of each block. Owing to the compact structure, the amphiphilic star-like PAA-b-P3HT formed a unimolecular micelle. Vesicles based on these novel amphiphilic star-like, coil-rod diblock copolymers were readily produced at the oil/water interface by crosslinking hydrophilic coil-like PAA cores with a bifunctional crosslinker, ethylenediamine. They also self-assembled into a nanotubular structure at the air/water interface.

  16. Self-assembly of diblock copolymer confined in an array-structure space

    NASA Astrophysics Data System (ADS)

    He, Xuehao; Zou, Zhixiang; Kan, Di; Liang, Haojun

    2015-03-01

    The combination of top-down and bottom-up technologies is an effective method to create the novel nanostructures with long range order in the field of advanced materials manufacture. In this work, we employed a polymeric self-consistent field theory to investigate the pattern formation of diblock copolymer in a 2D confinement system designed by filling pillar arrays with various 2D shapes such as squares, rectangles, and triangles. Our simulation shows that in such confinement system, the microphase structure of diblock copolymer strongly depends on the pitch, shape, size, and rotation of the pillar as well as the surface field of confinement. The array structures can not only induce the formation of new phase patterns but also control the location and orientation of pattern structures. Finally, several methods to tune the commensuration and frustration of array-structure confinement are proposed and examined.

  17. Self-assembly of diblock copolymer confined in an array-structure space

    SciTech Connect

    He, Xuehao E-mail: hjliang@ustc.edu.cn; Zou, Zhixiang; Kan, Di; Liang, Haojun E-mail: hjliang@ustc.edu.cn

    2015-03-14

    The combination of top-down and bottom-up technologies is an effective method to create the novel nanostructures with long range order in the field of advanced materials manufacture. In this work, we employed a polymeric self-consistent field theory to investigate the pattern formation of diblock copolymer in a 2D confinement system designed by filling pillar arrays with various 2D shapes such as squares, rectangles, and triangles. Our simulation shows that in such confinement system, the microphase structure of diblock copolymer strongly depends on the pitch, shape, size, and rotation of the pillar as well as the surface field of confinement. The array structures can not only induce the formation of new phase patterns but also control the location and orientation of pattern structures. Finally, several methods to tune the commensuration and frustration of array-structure confinement are proposed and examined.

  18. Synthesis and self-assembly of terpyridine end-capped poly(N-isopropylacrylamide)-block-poly(2-(dimethylamino)ethyl methacrylate) diblock copolymers.

    PubMed

    Brassinne, Jérémy; Poggi, Elio; Fustin, Charles-André; Gohy, Jean-François

    2015-04-01

    At the basis of smart self-assembled materials are lying small building blocks that can hierarchically assemble in response to stimuli, e.g., temperature or chemical species. In this context, the synthesis of terpyridine end-capped poly(2-(dimethylamino)ethyl methacrylate)-block-poly(N-isopropylacrylamide) diblock copolymers via controlled radical copolymerization is reported here. The self-assembly of those copolymers is investigated in dilute aqueous solutions while varying temperature or adding transition metal ions, respectively, leading to the formation of micellar nanostructures or metallosupramolecular triblock copolymers. PMID:25491079

  19. Self-assembly Morphology and Crystallinity Control of Di-block Copolymer Inspired by Spider Silk

    NASA Astrophysics Data System (ADS)

    Huang, Wenwen; Krishnaji, Sreevidhya; Kaplan, David; Cebe, Peggy

    2012-02-01

    To obtain a fuller understanding of the origin of self-assembly behavior, and thus be able to control the morphology of biomaterials with well defined amino acid sequences for tissue regeneration and drug delivery, we created a family of synthetic silk-based block copolymers inspired by the genetic sequences found in spider dragline, HABn and HBAn (n=1,2,3,6), where B = hydrophilic block, A = hydrophobic block, and H is a histidine tag. We assessed the secondary structure of water cast films by Fourier transform infrared spectroscopy (FTIR). The crystallinity was determined by Fourier self-deconvolution of amide I spectra and confirmed by wide angle X-ray diffraction (WAXD). Results indicate that we can control the self-assembled morphology and the crystallinity by varying the block length, and a minimum of 3 A-blocks are required to form beta sheet crystalline regions in water-cast spider silk block copolymers. The morphology and crystallinity can also be tuned by annealing. Thermal properties of water cast films and films annealed at 120 C were determined by differential scanning calorimetry and thermogravimetry. The sample films were also treated with 1,1,1,3,3,3-Hexafluoro-2-propanol (HFIP) to obtain wholly amorphous samples, and crystallized by exposure to methanol. Using scanning and transmission electron microscopies, we observe that fibrillar networks and hollow micelles are formed in water cast and methanol cast samples, but not in samples cast from HFIP.

  20. Mesosized Crystal-like Structure of Hexagonally Packed Hollow Hoops by Solution Self-Assembly of Diblock Copolymers

    NASA Astrophysics Data System (ADS)

    Zhang, Lifeng; Bartels, Carl; Yu, Yisong; Shen, Hongwei; Eisenberg, Adi

    1997-12-01

    Mesosize crystal-like aggregates with an internal structure of hexagonally packed hollow hoops (HHH) in a polystyrene matrix have been prepared in solution by self-assembly of asymmetric polystyrene-b-poly(acrylic acid) diblock copolymers. Most of the aggregates are cylindrical or in the shape of truncated cones. The external surface of the aggregates and the internal surface of the hollow hoops are lines with short poly(acrylic acid) chains. The hoop morphology is imposed because the end-capping energy of a rod on this size scale is more important than the curvature energy. A strong interdependence between the external shape and the internal structure in these mesosize particles is demonstrated.

  1. Highly Flexible Self-Assembled V2O5 Cathodes Enabled by Conducting Diblock Copolymers

    NASA Astrophysics Data System (ADS)

    An, Hyosung; Mike, Jared; Smith, Kendall; Swank, Lisa; Lin, Yen-Hao; Pesek, Stacy; Verduzco, Rafael; Lutkenhaus, Jodie

    Structural energy storage materials combining load-bearing mechanical properties and high energy storage performance are desired for applications in wearable devices or flexible displays. Vanadium pentoxide (V2O5) is a promising cathode material for possible use in flexible battery electrodes, but it remains limited by low Li+ diffusion coefficient and electronic conductivity, severe volumetric changes upon cycling, and limited mechanical flexibility. Here, we demonstrate a route to address these challenges by blending a diblock copolymer bearing electron- and ion-conducting blocks, poly(3-hexylthiophene)-block-poly(ethyleneoxide) (P3HT- b-PEO), with V2O5 to form a mechanically flexible, electro-mechanically stable hybrid electrode. V2O5 layers were arranged parallel in brick-and-mortar-like fashion held together by the P3HT- b-PEO binder. This unique structure significantly enhances mechanical flexibility, toughness and cyclability without sacrificing capacity. Electrodes comprised of 10 wt% polymer have unusually high toughness (293 kJ/m3) and specific energy (530 Wh/kg), both higher than reduced graphene oxide paper electrodes.

  2. Self-Assembly of Charged Amphiphilic Diblock Copolymers with Insoluble Blocks of Decreasing Hydrophobicity: From Kinetically Frozen Colloids to Macrosurfactants

    SciTech Connect

    M Jacquin; P Muller; H Cottet; O Theodoly

    2011-12-31

    We have investigated the self-assembly properties in aqueous solution of amphiphilic diblock copolymers with insoluble blocks of different hydrophobicity and demonstrated that the condition to obtain dynamic micelles is to design samples with insoluble blocks of low enough hydrophobicity. We focus here on results with new water-soluble amphiphilic diblock copolymers poly(diethyleneglycol ethylether acrylate)-b-poly(acrylic acid), or PDEGA-b-PAA. The physical characteristics of PDEGA-b-PAA micelles at high ionization have been determined by small angle neutron scattering (SANS). We show that PDEGA-b-PAA samples form micelles at thermodynamic equilibrium. The critical micelle concentrations (CMCs) decrease strongly with ionic strength and temperature due to a solvent quality decrease for, respectively, the corona and the core. This behavior of reversible aggregation is remarkable as compared to the behavior of kinetically frozen aggregation that has been widely observed with samples of similar architecture and different hydrophobic blocks, for example, poly(styrene)-b-poly(acrylic acid), PS-b-PAA, and poly(butyl acrylate)-b-poly(acrylic acid), PBA-b-PAA. We have measured the interfacial tension between water and the homopolymers PDEGA and PBA at, respectively, 3 and 20 mN/m at room temperature, which permits one to estimate the energy cost to extract a unimer from a micelle. The results are consistent with a micelle association that is fast for PDEGA-b-PAA and kinetically frozen PBA-b-PAA. Hence, PDEGA-b-PAA samples form a new system of synthetic charged macrosurfactant with unique properties of fast dynamic association, tunable charge, and water solubility even at temperatures and NaCl concentrations as high as 65 C and 1 M.

  3. Directed self-assembly of diblock copolymers in multi-VIA configurations: effect of chemopatterned substrates on defectivity

    NASA Astrophysics Data System (ADS)

    Carpenter, Corinne L.; Delaney, Kris T.; Fredrickson, Glenn H.

    2016-03-01

    Directed self-assembly (DSA) of block copolymers has gained much attention for its potential as a low-cost, high-throughput patterning tool to supplement existing lithographic techniques, and in particular for its ability to easily pattern vertical interconnect accesses (VIAs).1 Single-hole shrink has been extensively explored, but the continued push towards higher-resolution patterns requires more efficient, less space-consuming approaches. The lithographic resolution limits the minimum distance between two features, and the single-hole templates take up valuable real estate on the wafer.2 To accommodate denser features and relax the resolution requirements of the lithographic techniques, it is prudent to move to multi-VIA configurations in which two or more features are assembled in a single guiding template (such as a peanut,3 or a rounded rectangle4). This allows considerably denser feature patterning, but comes at the cost of more plentiful and complicated defect modes than those found in single-hole shrink features. Most systems contain persistent horizontal structures (eg. rings, U-defects, or bars as shown in Figure 1) that prove detrimental to the etch process and yield undesirable configurations. Largely unexplored is the tandem use of chemoepitaxy and graphoepitaxy to suppress defect modes in multi- VIA templates. Specifically, chemically selective patterning of the substrate beneath a template could act synergistically with the template's lateral guidance to lower defectivity. In this study, we use three-dimensional self-consistent field theory (SCFT) simulations to investigate the equilibrium and metastable defective configurations of di-block copolymer DSA systems in the presence of chemically selective or neutral template sidewalls and preferentially attractive striped substrates. We identify chemo-patterning schemes that maximize defect energies, including sidewall interaction strength and chemical preference. In addition, we discuss chemo

  4. Self-assembly of 21-arm star-like diblock copolymer in bulk and under cylindrical confinement.

    PubMed

    Xu, Yuci; Li, Weihua; Qiu, Feng; Lin, Zhiqun

    2014-06-21

    Phase behaviors of a 21-arm star-like diblock copolymer in bulk and under confinement were explored by using the pseudo-spectral method of a self-consistent mean field theory. An asymmetrical phase diagram in bulk was constructed by comparing the free energy of different structures. The gyroid phase was found to possess a large phase region when the inner block in the star-like diblock copolymer has a small volume fraction, suggesting the propensity to form the gyroid phase under this condition. Combined with the early experimental work, a scaling law correlating the period of lamellae D(multiarms) formed from multi-arm star-like block copolymers with the number of arms f was identified, that is, D(multiarms) = D/f(1/2), where D is the period of a linear diblock copolymer with the same degree of polymerization N as a star-like diblock copolymer. The scaling law was also substantiated by the scaling theory. The bridging fraction of the lamellae formed in a star-like diblock copolymer was nearly 100%, which is advantageous for improving its mechanical properties. Some interesting two-dimensional and three-dimensional morphologies were yielded under the cylindrical confinement, where a 3D double helix was found to be the most stable structure. PMID:24830862

  5. Self-assembly of rod-coil diblock copolymers within a rod-selective slit: a dissipative particle dynamics simulation study.

    PubMed

    Huang, Jian-Hua; Ma, Ze-Xin; Luo, Meng-Bo

    2014-06-01

    Dissipative particle dynamics simulations are performed to investigate the self-assembly of rod-coil diblock copolymers R(N(R))C(N-N(R)) within a rod-selective slit. The self-assembled structure of the confined system is sensitively dependent on the rigidity kθ and the fraction fR of the rod block and the slit height H. From the phase diagram of structures with respect to kθ and fR for N = 12 and H = 6, we observe four main structures including disordered cylinder (DC) structure, hexagonally packed cylinders (HPC) perpendicular to the slit surfaces, and lamellar structures parallel (L∥) and perpendicular (L⊥) to surfaces. And structure transitions can be achieved by tuning kθ. The effect of the slit height on the self-assembled structure is also studied for R6C6 and R7C5 copolymers with large kθ. For R6C6, different structures near surfaces and in the interior of slit are observed in relatively wide slits. Whereas for R7C5, L⊥ structure, whose lamellar domain spacing decays exponentially with H, is generally generated. Our results suggest an effective way to control the ordering of rod-coil diblock copolymers under nanoscale confinement. PMID:24801931

  6. Diblock-copolymer-mediated self-assembly of protein-stabilized iron oxide nanoparticle clusters for magnetic resonance imaging.

    PubMed

    Tähkä, Sari; Laiho, Ari; Kostiainen, Mauri A

    2014-03-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) can be used as efficient transverse relaxivity (T2 ) contrast agents in magnetic resonance imaging (MRI). Organizing small (D<10 nm) SPIONs into large assemblies can considerably enhance their relaxivity. However, this assembly process is difficult to control and can easily result in unwanted aggregation and precipitation, which might further lead to lower contrast agent performance. Herein, we present highly stable protein-polymer double-stabilized SPIONs for improving contrast in MRI. We used a cationic-neutral double hydrophilic poly(N-methyl-2-vinyl pyridinium iodide-block-poly(ethylene oxide) diblock copolymer (P2QVP-b-PEO) to mediate the self-assembly of protein-cage-encapsulated iron oxide (γ-Fe2 O3 ) nanoparticles (magnetoferritin) into stable PEO-coated clusters. This approach relies on electrostatic interactions between the cationic N-methyl-2-vinylpyridinium iodide block and magnetoferritin protein cage surface (pI≈4.5) to form a dense core, whereas the neutral ethylene oxide block provides a stabilizing biocompatible shell. Formation of the complexes was studied in aqueous solvent medium with dynamic light scattering (DLS) and cryogenic transmission electron microcopy (cryo-TEM). DLS results indicated that the hydrodynamic diameter (Dh ) of the clusters is approximately 200 nm, and cryo-TEM showed that the clusters have an anisotropic stringlike morphology. MRI studies showed that in the clusters the longitudinal relaxivity (r1 ) is decreased and the transverse relaxivity (r2 ) is increased relative to free magnetoferritin (MF), thus indicating that clusters can provide considerable contrast enhancement.

  7. Fabrication of Nanohole Array via Nanodot Array Using Simple Self-Assembly Process of Diblock Copolymer

    NASA Astrophysics Data System (ADS)

    Matsuyama, Tsuyoshi; Kawata, Yoshimasa

    2007-06-01

    We present a simple self-assembly process for fabricating a nanohole array via a nanodot array on a glass substrate by dripping ethanol onto the nanodot array. It is found that well-aligned arrays of nanoholes as well as nanodots are formed on the whole surface of the glass. A dot is transformed into a hole, and the alignment of the nanodots strongly reflects that of the nanoholes. We find that the change in the depth of holes agrees well with the change in the surface energy with the ethanol concentration in the aqueous solution. We believe that the interfacial energy between the nanodots and the dripped ethanol causes the transformation from nanodots into nanoholes. The nanohole arrays are directly applicable to molds for nanopatterned media used in high-density near-field optical data storage. The bit data can be stored and read out using probes with small apertures.

  8. Vertical Conducting Nanodomains Self-Assembled from Poly(3-hexylthiophene)-Based Diblock Copolymer Thin Films

    SciTech Connect

    Y Lee; S Kim; H Yang; M Jang; S Hwang; H Lee; K Baek

    2011-12-31

    We have synthesized {pi}-conjugated poly(3-hexyl thiophene)-block-poly(methyl methacrylate) (P3HT-b-PMMA) with a P3HT molecular weight of 11 kDa and a PMMA volume fraction of 0.53, which potentially has several organic electronic applications. Its phase-separation behavior was investigated for various thicknesses cast from organic solvents. When cast onto 300 nm thick SiO{sub 2} dielectrics from toluene, in which the P3HT segments have limited solubility, the P3HT-b-PMMA films consist of nanofibrillar self-assemblies of laterally {pi}-stacked P3HT chains. In contrast, the P3HT segments were found to be highly mobile in chlorobenzene, generating a typical phase-separation morphology consisting of vertically conducting P3HT nanodomains on these dielectrics. As the thickness of the cast films increased, however, the topmost surface becomes covered with {pi}-conjugated nanofibrils that are laterally oriented with respect to the surface. Due to the anisotropic domain orientations of P3HT, top-gate organic field-effect transistors (OFETs) containing the P3HT-b-PMMA films exhibited enhanced electrical performance compared to bottom-gate OFETs.

  9. Defect structures and ordering behaviours of diblock copolymers self-assembling on spherical substrates.

    PubMed

    Zhang, Liangshun; Wang, Liquan; Lin, Jiaping

    2014-09-21

    One of the main differences of ordered structures constrained on curved surfaces is the nature of topological defects. We here explore the defect structures and ordering behaviours of both lamellar and cylindrical phases of block copolymers confined on spherical substrates by the Landau-Brazovskii theory, which is numerically solved by a highly accurate spectral method with a spherical harmonic basis. For the cylindrical phase, isolated disclinations and scars are generated on the spherical substrates. The number of excess dislocations in a scar depends linearly on the sphere radius. The defect fraction characterizing the ordering dynamics decays exponentially. The scars are formed from the isolated disclinations via mini-scars. For the lamellar phase, three types of defect structures (hedgehog, spiral and quasi-baseball) are identified. The disclination annihilation is the primary ordering mechanism of the lamellar phase.

  10. One-pot glovebox-free synthesis, characterization, and self-assembly of novel amphiphilic poly(sarcosine-b-caprolactone) diblock copolymers.

    PubMed

    Cui, Saide; Wang, Xin; Li, Zhenjiang; Zhang, Qiguo; Wu, Wenzhuo; Liu, Jingjing; Wu, Hao; Chen, Cheng; Guo, Kai

    2014-11-01

    Novel amphiphilic polypeptoid-polyester diblock copolymers based on poly(sarcosine) (PSar) and poly(ε-caprolactone) (PCL) are synthesized by a one-pot glovebox-free approach. In this method, sarcosine N-carboxy anhydride (Sar-NCA) is firstly polymerized in the presence of benzylamine under N(2) flow, then the resulting poly(sarcosine) is used in situ as the macro-initiator for the ring-opening polymerization (ROP) of ε-caprolactone using tin(II) octanoate as a catalyst. The degree of poly-merization of each block is controlled by various feed ratios of monomer/initiator. The diblock copolymers with controlled molecular weight and narrow molecular weight distributions (Đ(M) < 1.2) are characterized by (1)H NMR, (13)C NMR, and size-exclusion chromatography. The self-assembly behavior of PSar-b-PCL in water is investigated by dynamic light scattering (DLS) and transmission electron microscopy. DLS results reveal that the diblock copolymers associate into nanoparticles with average hydrodynamic diameters (D(H)) around 100 nm in water, which may be used as drug delivery carriers.

  11. One-pot glovebox-free synthesis, characterization, and self-assembly of novel amphiphilic poly(sarcosine-b-caprolactone) diblock copolymers.

    PubMed

    Cui, Saide; Wang, Xin; Li, Zhenjiang; Zhang, Qiguo; Wu, Wenzhuo; Liu, Jingjing; Wu, Hao; Chen, Cheng; Guo, Kai

    2014-11-01

    Novel amphiphilic polypeptoid-polyester diblock copolymers based on poly(sarcosine) (PSar) and poly(ε-caprolactone) (PCL) are synthesized by a one-pot glovebox-free approach. In this method, sarcosine N-carboxy anhydride (Sar-NCA) is firstly polymerized in the presence of benzylamine under N(2) flow, then the resulting poly(sarcosine) is used in situ as the macro-initiator for the ring-opening polymerization (ROP) of ε-caprolactone using tin(II) octanoate as a catalyst. The degree of poly-merization of each block is controlled by various feed ratios of monomer/initiator. The diblock copolymers with controlled molecular weight and narrow molecular weight distributions (Đ(M) < 1.2) are characterized by (1)H NMR, (13)C NMR, and size-exclusion chromatography. The self-assembly behavior of PSar-b-PCL in water is investigated by dynamic light scattering (DLS) and transmission electron microscopy. DLS results reveal that the diblock copolymers associate into nanoparticles with average hydrodynamic diameters (D(H)) around 100 nm in water, which may be used as drug delivery carriers. PMID:25283643

  12. Synthesis and self-assembly of biodegradable polyethylene glycol-poly (lactic acid) diblock copolymers as polymersomes for preparation of sustained release system of doxorubicin

    PubMed Central

    Alibolandi, Mona; Sadeghi, Fatemeh; Sazmand, Seyed Hossein; Shahrokhi, Seyed Mohammad; Seifi, Mahmoud; Hadizadeh, Farzin

    2015-01-01

    Introduction: The copolymer of polyethylene glycol (PEG) and polyesters has many interesting properties, such as amphiphilicity, biocompatibility, biodegradability, and self-assembly in an aqueous environment. Diblock copolymers of PEG-polyester can form different structures such as micelles, polymersome, capsules or micro-container in an aqueous environment according to the length of their blocks. Materials and Methods: Herein, a series of poly (lactic acid) (PLA) and PEG diblock copolymers were synthesized through the ring-opening polymerization. The polymerization reaction and the copolymer structures were evaluated by nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC). The corresponding copolymers were implemented for the formation of polymersome structures using film rehydration method. Impact of methoxy PEG chain length and hydrophobic weight fraction on particle size of polymersomes were studied, and the proper ones were selected for loading of doxorubicin (DOX) via pH gradient method. Results and Discussion: Results obtained from 1HNMR and GPC revealed that microwave irradiation is a simple and reliable method for the synthesis of PEG-PLA copolymers. Further analysis indicated the copolymer with relative molecular weight of PLA to PEG ratios of 3 or fEo ~ 25% produced the smallest size polymersomes. Polymersomes prepared from PEG5000 to PLA15000 were more capable in loading and sustained release of DOX than those prepared from PEG2000 to PLA6000. Conclusion: In conclusion copolymers of PEG/PLA with fOE ~25% and relatively higher molecular weight are more suitable for encapsulation and providing sustained release of DOX. PMID:26258054

  13. Formation and Reversible Morphological Transition of Bicontinuous Nanospheres and Toroidal Micelles by the Self-Assembly of a Crystalline-b-Coil Diblock Copolymer.

    PubMed

    Presa-Soto, David; Carriedo, Gabino A; de la Campa, Raquel; Presa Soto, Alejandro

    2016-08-16

    We herein report the formation of two complex nanostructures, toroidal micelles and bicontinuous nanospheres, by the self-assembly of the single structurally simple crystalline-b-coil diblock copolymer poly[bis(trifluoroethoxy)phosphazene]-b-poly(styrene), PTFEP-b-PS, in one solvent (THF) and without additives. The nature of these nanostructures in solution was confirmed by DLS and cryo-TEM experiments. The two morphologies are related by means of a new type of reversible morphological evolution, bicontinuous-to-toroidal, triggered by changes in the polymer concentration. WAXS experiments showed that the degree of crystallinity of the PTFEP chains located at the core of the toroids was higher than that in the bicontinuous nanospheres, thus indicating that the final morphology of the aggregates is mostly determined by the ordering of the PTFEP core-forming blocks. PMID:27455871

  14. Quantitative Control of Pore Size of Mesoporous Carbon Nanospheres through the Self-Assembly of Diblock Copolymer Micelles in Solution.

    PubMed

    Tian, Hao; Lin, Zhixing; Xu, Fugui; Zheng, Jingxu; Zhuang, Xiaodong; Mai, Yiyong; Feng, Xinliang

    2016-06-01

    This paper reports facile synthesis of nitrogen-doped mesoporous carbon nanospheres (MCNSs) with average diameters of around 300 nm and well-controlled pore sizes ranging from 8 to 38 nm, by employing polystyrene-b-poly(ethylene oxide) (PS-b-PEO) diblocks with different PS block lengths as the soft templates and dopamine as the carbon-rich precursor. For the first time, a linear equation is achieved for the quantitative control of the average pore size of MCNSs by simply adjusting a block length of diblock copolymer. The resultant MCNSs possess high surface areas of up to 450 m(2) g(-1) and nitrogen doping contents of up to ≈3 wt%. As electrode materials of supercapacitors, the MCNSs exhibit excellent electrochemical performance with high specific capacitances of up to 350 F g(-1) at 0.1 A g(-1) , superior rate capability, and cycling stability. Interestingly, the specific capacitance of the MCNSs reduces linearly with increasing pore size, whereas the normalized capacitance by specific surface area remains invariable. This represents a new spectrum of the relationship between electrochemical capacitance and pore size (>5 nm) for porous carbons, which makes a complement to the existing spectra focusing on pore diameters of <5 nm. PMID:27120340

  15. Arrangement of Maghemite Nanoparticles via Wet Chemical Self-Assembly in PS-b-PNIPAM Diblock Copolymer Films.

    PubMed

    Yao, Yuan; Metwalli, Ezzeldin; Su, Bo; Körstgens, Volker; Moseguí González, Daniel; Miasnikova, Anna; Laschewsky, Andre; Opel, Matthias; Santoro, Gonzalo; Roth, Stephan V; Müller-Buschbaum, Peter

    2015-06-17

    The structure and magnetic behavior of hybrid films composed of maghemite (γ-Fe2O3) nanoparticles (NPs) and an asymmetric diblock copolymer (DBC) polystyrene61-block-polyN-isopropylacrylamide115 are investigated. The NPs are coated with PS chains, which allow for a selective incorporation inside the PS domains at different NP concentrations. Upon incorporation of low amounts of NPs into the DBC thin films, the initial parallel (to film surface) cylinder morphology changes to a well ordered, perpendicularly oriented one. The characteristic domain distance of the DBC is increased due to the swelling of the PS domains with NPs. At higher NP concentrations, the excess NPs which can no longer be embedded in the PS domains, are accumulated at the film surface, and NP aggregates form. Irrespective of NP concentration, a superparamagnetic behavior of the metal oxide-DBC hybrid films is found. Such superparamagnetic properties make the established hybrid films interesting for high density magnetic storage media and thermoresponsive magnetic sensors.

  16. Aqueous self-assembly of poly(ethylene oxide)-block-poly(ε-caprolactone) (PEO-b-PCL) copolymers: disparate diblock copolymer compositions give rise to nano- and meso-scale bilayered vesicles

    NASA Astrophysics Data System (ADS)

    Qi, Wei; Ghoroghchian, P. Peter; Li, Guizhi; Hammer, Daniel A.; Therien, Michael J.

    2013-10-01

    Nanoparticles formed from diblock copolymers of FDA approved PEO and PCL have generated considerable interest as in vivo drug delivery vehicles. Herein, we report the synthesis of the most extensive family PEO-b-PCL copolymers that vary over the largest range of number-average molecular weights (Mn: 3.6-57k), PEO weight fractions (fPEO: 0.08-0.33), and PEO chain lengths (0.75-5.8k) reported to date. These polymers were synthesized in order to establish the full range of aqueous phase behaviours of these diblock copolymers and to specifically identify formulations that were able to generate bilayered vesicles (polymersomes). Cryogenic transmission electron microscopy (cryo-TEM) was utilized in order to visualize the morphology of these structures upon aqueous self-assembly of dry polymer films. Nanoscale polymersomes were formed from PEO-b-PCL copolymers over a wide range of PEO weight fractions (fPEO: 0.14-0.27) and PEO molecular weights (0.75-3.8k) after extrusion of aqueous suspensions. Comparative morphology diagrams, which describe the nature of self-assembled structures as a function of diblock copolymer molecular weight and PEO weight fraction, show that in contrast to micron-scale polymersomes, which form only from a limited range of PEO-b-PCL diblock copolymer compositions, a multiplicity of PEO-b-PCL diblock copolymer compositions are able to give rise to nanoscale vesicles. These data underscore that PEO-b-PCL compositions that spontaneously form micron-sized polymersomes, as well as those that have previously been reported to form polymersomes via a cosolvent fabrication system, provide only limited insights into the distribution of PEO-b-PCL diblocks that give rise to nanoscale vesicles. The broad range of polymersome-forming PEO-b-PCL compositions described herein suggest the ability to construct extensive families of nanoscale vesicles of varied bilayer thickness, providing the ability to tune the timescales of vesicle degradation and encapsulant

  17. Testing the Vesicular Morphology to Destruction: Birth and Death of Diblock Copolymer Vesicles Prepared via Polymerization-Induced Self-Assembly

    PubMed Central

    2014-01-01

    Small angle X-ray scattering (SAXS), electrospray ionization charge detection mass spectrometry (CD-MS), dynamic light scattering (DLS), and transmission electron microscopy (TEM) are used to characterize poly(glycerol monomethacrylate)55-poly(2-hydroxypropyl methacrylate)x (G55-Hx) vesicles prepared by polymerization-induced self-assembly (PISA) using a reversible addition–fragmentation chain transfer (RAFT) aqueous dispersion polymerization formulation. A G55 chain transfer agent is utilized to prepare a series of G55-Hx diblock copolymers, where the mean degree of polymerization (DP) of the membrane-forming block (x) is varied from 200 to 2000. TEM confirms that vesicles with progressively thicker membranes are produced for x = 200–1000, while SAXS indicates a gradual reduction in mean aggregation number for higher x values, which is consistent with CD-MS studies. Both DLS and SAXS studies indicate minimal change in the overall vesicle diameter between x = 400 and 800. Fitting SAXS patterns to a vesicle model enables calculation of the membrane thickness, degree of hydration of the membrane, and the mean vesicle aggregation number. The membrane thickness increases at higher x values, hence the vesicle lumen must become smaller if the external vesicle dimensions remain constant. Geometric considerations indicate that this growth mechanism lowers the total vesicle interfacial area and hence reduces the free energy of the system. However, it also inevitably leads to gradual ingress of the encapsulated water molecules into the vesicle membrane, as confirmed by SAXS analysis. Ultimately, the highly plasticized membranes become insufficiently hydrophobic to stabilize the vesicle morphology when x exceeds 1000, thus this PISA growth mechanism ultimately leads to vesicle “death”. PMID:25526525

  18. Testing the vesicular morphology to destruction: birth and death of diblock copolymer vesicles prepared via polymerization-induced self-assembly.

    PubMed

    Warren, Nicholas J; Mykhaylyk, Oleksandr O; Ryan, Anthony J; Williams, Mark; Doussineau, Tristan; Dugourd, Philippe; Antoine, Rodolphe; Portale, Giuseppe; Armes, Steven P

    2015-02-11

    Small angle X-ray scattering (SAXS), electrospray ionization charge detection mass spectrometry (CD-MS), dynamic light scattering (DLS), and transmission electron microscopy (TEM) are used to characterize poly(glycerol monomethacrylate)55-poly(2-hydroxypropyl methacrylate)x (G55-Hx) vesicles prepared by polymerization-induced self-assembly (PISA) using a reversible addition-fragmentation chain transfer (RAFT) aqueous dispersion polymerization formulation. A G55 chain transfer agent is utilized to prepare a series of G55-Hx diblock copolymers, where the mean degree of polymerization (DP) of the membrane-forming block (x) is varied from 200 to 2000. TEM confirms that vesicles with progressively thicker membranes are produced for x = 200-1000, while SAXS indicates a gradual reduction in mean aggregation number for higher x values, which is consistent with CD-MS studies. Both DLS and SAXS studies indicate minimal change in the overall vesicle diameter between x = 400 and 800. Fitting SAXS patterns to a vesicle model enables calculation of the membrane thickness, degree of hydration of the membrane, and the mean vesicle aggregation number. The membrane thickness increases at higher x values, hence the vesicle lumen must become smaller if the external vesicle dimensions remain constant. Geometric considerations indicate that this growth mechanism lowers the total vesicle interfacial area and hence reduces the free energy of the system. However, it also inevitably leads to gradual ingress of the encapsulated water molecules into the vesicle membrane, as confirmed by SAXS analysis. Ultimately, the highly plasticized membranes become insufficiently hydrophobic to stabilize the vesicle morphology when x exceeds 1000, thus this PISA growth mechanism ultimately leads to vesicle "death".

  19. Testing the vesicular morphology to destruction: birth and death of diblock copolymer vesicles prepared via polymerization-induced self-assembly.

    PubMed

    Warren, Nicholas J; Mykhaylyk, Oleksandr O; Ryan, Anthony J; Williams, Mark; Doussineau, Tristan; Dugourd, Philippe; Antoine, Rodolphe; Portale, Giuseppe; Armes, Steven P

    2015-02-11

    Small angle X-ray scattering (SAXS), electrospray ionization charge detection mass spectrometry (CD-MS), dynamic light scattering (DLS), and transmission electron microscopy (TEM) are used to characterize poly(glycerol monomethacrylate)55-poly(2-hydroxypropyl methacrylate)x (G55-Hx) vesicles prepared by polymerization-induced self-assembly (PISA) using a reversible addition-fragmentation chain transfer (RAFT) aqueous dispersion polymerization formulation. A G55 chain transfer agent is utilized to prepare a series of G55-Hx diblock copolymers, where the mean degree of polymerization (DP) of the membrane-forming block (x) is varied from 200 to 2000. TEM confirms that vesicles with progressively thicker membranes are produced for x = 200-1000, while SAXS indicates a gradual reduction in mean aggregation number for higher x values, which is consistent with CD-MS studies. Both DLS and SAXS studies indicate minimal change in the overall vesicle diameter between x = 400 and 800. Fitting SAXS patterns to a vesicle model enables calculation of the membrane thickness, degree of hydration of the membrane, and the mean vesicle aggregation number. The membrane thickness increases at higher x values, hence the vesicle lumen must become smaller if the external vesicle dimensions remain constant. Geometric considerations indicate that this growth mechanism lowers the total vesicle interfacial area and hence reduces the free energy of the system. However, it also inevitably leads to gradual ingress of the encapsulated water molecules into the vesicle membrane, as confirmed by SAXS analysis. Ultimately, the highly plasticized membranes become insufficiently hydrophobic to stabilize the vesicle morphology when x exceeds 1000, thus this PISA growth mechanism ultimately leads to vesicle "death". PMID:25526525

  20. Highly Flexible Self-Assembled V2O5 Cathodes Enabled by Conducting Diblock Copolymers

    SciTech Connect

    An, Hyosung; Mike, Jared; Smith, Kendall A.; Swank, Lisa; Lin, Yen-Hao; L. Pesek, Stacy; Verduzco, Rafael; Lutkenhaus, Jodie L.

    2015-09-22

    Mechanically robust battery electrodes are desired for applications in wearable devices, flexible displays, and structural energy and power. In this regard, the challenge is to balance mechanical and electrochemical properties in materials that are inherently brittle. Here, we demonstrate a unique water-based self-assembly approach that incorporates a diblock copolymer bearing electron- and ion-conducting blocks, poly(3-hexylthiophene)-block-poly(ethyleneoxide) (P3HT-b-PEO), with V2O5 to form a flexible, tough, carbon-free hybrid battery cathode. V2O5 is a promising lithium intercalation material, but it remains limited by its poor conductivity and mechanical properties. Our approach leads to a unique electrode structure consisting of interlocking V2O5 layers glued together with micellar aggregates of P3HT-b-PEO, which results in robust mechanical properties, far exceeding the those obtained from conventional fluoropolymer binders. Only 5 wt % polymer is required to triple the flexibility of V2O5, and electrodes comprised of 10 wt % polymer have unusually high toughness (293 kJ/m3) and specific energy (530 Wh/kg), both higher than reduced graphene oxide paper electrodes. Furthermore, addition of P3HT-b-PEO enhances lithium-ion diffusion, eliminates cracking during cycling, and boosts cyclability relative to V2O5 alone. These results highlight the importance of tradeoffs between mechanical and electrochemical performance, where polymer content can be used to tune both aspects.

  1. Selective confinement of oleylamine capped Au nanoparticles in self-assembled PS-b-PEO diblock copolymer templates.

    PubMed

    Di Mauro, A Evelyn; Striccoli, Marinella; Depalo, Nicoletta; Fanizza, Elisabetta; Cano, Laida; Ingrosso, Chiara; Agostiano, Angela; Curri, M Lucia; Tercjak, Agnieszka

    2014-03-21

    Amphiphilic polystyrene-block-polyethylene oxide (PS-b-PEO) block copolymers (BCPs) have been demonstrated to be effective in directing organization of colloidal Au nanoparticles (NPs). Au NPs have been incorporated into the polymer and the different chemical affinity between the NP surface and the two blocks of the BCP has been used as a driving force of the assembling procedure. The morphology of the nanocomposites, prepared and fabricated as thin films, has been investigated by means of atomic force and scanning electron microscopies as a function of the NP content and BCP molecular weight. NPs have been effectively dispersed in PS-b-PEO hosts at any investigated content (up to 17 wt%) and a clear effect of the BCP properties on the final nanocomposite morphology has been highlighted. Finally, electrostatic force microscopy has demonstrated the conductive properties of the nanocomposite films, showing that the embedded Au NPs effectively convey their conductive properties to the film. The overall investigation has confirmed the selective confinement of the as-prepared surfactant-coated metal NPs in the PS block of PS-b-PEO, thus proposing a very simple and prompt assembling tool for nanopatterning, potentially suitable for optoelectronic, sensing and catalysis applications. PMID:24800269

  2. Self-assembly of diblock co-polymers at air-water interface: A microscopy and x-ray scattering study

    NASA Astrophysics Data System (ADS)

    Giri, R. P.; Mukhopadhyay, M. K.

    2016-05-01

    The spontaneous surface aggregation of diblock copolymer, containing polystyrene-polydimethylsiloxane or PS-PDMS, have been studied at air-water interface using Brewster's angle microscopy (BAM) and grazing incidence small angle x-ray scattering (GISAXS) technique. Pronounced differences in the molecular weight and solvent dependence of the size of aggregation on the water surface are observed. Structural characterization is done using atomic force microscopy (AFM) for a monolayer transferred to Si substrate. It shows that, individual polymer chains coalesce to form some disc like micelle aggregation on the Si surface which is also evident from the BAM image of the water floated monolayer. GISAXS study is also corroborating the same result.

  3. Morphologies of poly(cyclohexadiene) diblock copolymers

    SciTech Connect

    Kumar, Rajeev; Mays, Jimmy; Sides, Scott; Goswami, Monojoy; Sumpter, Bobby G; Hong, Kunlun; Avgeropoulos, Apostolos; Russell, Thomas P; Gido, Samuel; Tsoukatos, Thodoris; Beyer, Fredrick

    2012-01-01

    Concerted experimental and theoretical investigations have been carried out to understand the micro-phase separation in diblock copolymer melts containing poly (1,3-cyclohexadiene), PCHD, as one of the constituents. In particular, we have studied diblock copolymer melts containing polystyrene (PS), polybutadiene (PB), and polyisoprene (PI) as the second block. We have systematically varied the ratio of 1,2- /1,4-microstructures of poly (1,3-cyclohexadiene) to tune the conformational asymmetry between the two blocks and characterized the effects of these changes on the morphologies using transmission electron microscopy (TEM) and small angle X-ray scattering (SAXS). Our experimental investigations reveal that the melts of PCHD-b-PB, PCHD-b-PS and PCHD-b-PI containing nearly equal fractions of each component and high percentage of 1,4-microstructures in the PCHD block form cylindrical rather than lamellar morphologies as expected in symmetric diblock copolymers. In contrast, the morphologies of PCHD-b-PB, PCHD-b-PS and PCHD-b-PI containing PCHD block with higher 1,2-microstructure are found to be disordered at 110 C. The change in the morphological behavior is in good agreement with our numerical calculations using the random phase approximation and self-consistent field theory for conformationally asymmetric diblock copolymer melts. Also, the effects of composition fluctuations are studied by extending the Brazovskii-Leibler-Fredrickson-Helfand (J. Chem. Phys. 87, 697 (1987)) theory to conformationally asymmetric diblock copolymer melts. These results allow the understanding of the underlying self-assembly process that highlights the importance of the conformational asymmetry in tuning the morphologies in block copolymers.

  4. Hyperviscous diblock copolymer vesicles

    NASA Astrophysics Data System (ADS)

    Dimova, R.; Seifert, U.; Pouligny, B.; Förster, S.; Döbereiner, H.-G.

    2002-03-01

    Giant vesicles prepared from the diblock copolymer polybutadien-b-polyethyleneoxide (PB-PEO) exhibit a shear surface viscosity, which is about 500 times higher than those found in common phospholipid bilayers. Our result constitutes the first direct measurement of the shear surface viscosity of such polymersomes. At the same time, we measure bending and stretching elastic constants, which fall in the range of values typical for lipid membranes. Pulling out a tether from an immobilized polymersome and following its relaxation back to the vesicle body provides an estimate of the viscous coupling between the two monolayers composing the polymer membrane. The detected intermonolayer friction is about an order of magnitude higher than the characteristic one for phospholipid membranes. Polymersomes are tough vesicles with a high lysis tension. This, together with their robust rheological properties, makes them interesting candidates for a number of technological applications.

  5. Self-assembly of Random Copolymers

    PubMed Central

    Li, Longyu; Raghupathi, Kishore; Song, Cunfeng; Prasad, Priyaa; Thayumanavan, S.

    2014-01-01

    Self-assembly of random copolymers has attracted considerable attention recently. In this feature article, we highlight the use of random copolymers to prepare nanostructures with different morphologies and to prepare nanomaterials that are responsive to single or multiple stimuli. The synthesis of single-chain nanoparticles and their potential applications from random copolymers are also discussed in some detail. We aim to draw more attention to these easily accessible copolymers, which are likely to play an important role in translational polymer research. PMID:25036552

  6. Crystallization in Ordered Polydisperse Polyolefin Diblock Copolymers

    SciTech Connect

    Li, Sheng; Register, Richard A.; Landes, Brian G.; Hustad, Phillip D.; Weinhold, Jeffrey D.

    2010-12-07

    The morphologies of polydisperse ethylene-octene diblock copolymers, synthesized via a novel coordinative chain transfer polymerization process, are examined using two-dimensional synchrotron small-angle and wide-angle X-ray scattering on flow-aligned specimens. The diblock copolymers comprise one amorphous block with high 1-octene content and one semicrystalline block with relatively low 1-octene content, and each block ideally exhibits the most-probable distribution. Near-symmetric diblocks with a sufficiently large octene differential between the amorphous and semicrystalline blocks show well-ordered lamellar domain structures with long periods exceeding 100 nm. Orientation of these domain structures persists through multiple melting/recrystallization cycles, reflecting a robust structure which self-assembles in the melt. The domain spacings are nearly 3-fold larger than those in near-monodisperse polyethylene block copolymers of similar molecular weights. Although the well-ordered lamellar domain structure established in the melt is preserved in the solid state, the crystallites are isotropic in orientation. These materials display crystallization kinetics consistent with a spreading growth habit, indicating that the lamellae do not confine or template the growing crystals. The exceptionally large domain spacings and isotropic crystal growth are attributed to interblock mixing resulting from the large polydispersity; short hard blocks dissolved in the soft-block-rich domains swell the domain spacing in the melt and allow hard block crystallization to proceed across the lamellar domain interfaces.

  7. Electrostatic Self-Assembly in Copolymers-Nanoparticles Systems

    NASA Astrophysics Data System (ADS)

    Berret, Jean-Francois

    2004-03-01

    We have investigated the phase behavior of neutral/polyelectrolyte block copolymers (also called double-hydrophilic block copolymers) with oppositely charged surfactants [1,2]. When the neutral part of the copolymer is long enough as compared to the charged block, in aqueous solutions the copolymers associate with the surfactant micelles so as to form colloidal complexes of typical sizes 100 nm. We call the mechanism of formation of the complexes electrostatic self-assembly. Using scattering experiments (neutron, x-ray, light) we have found that the colloids have a core-shell microstructure. The core is constituted by densely packed surfactant micelles connected by the polyelectrolyte chains. More recently, we have shown that neutral/polyelectrolyte copolymers also associate with a wide variety of oppositely charged species, such as multivalent counterions, globular proteins and solid nanoparticles. In this communication, we demonstrate the ability of charged diblocks to generate nanostructures of adjustable sizes and morphologies. [1] P. Hervé et al., Europhys. Lett. 58, 912 (2002). J.-F. Berret et al., Eur. Phys. J. E 9, 301 (2002). [2] J.-F. Berret et al., J. Phys. Chem. B 107, 8111 (2003)

  8. Self-assembly of crystalline nanotubes from monodisperse amphiphilic diblock copolypeptoid tiles.

    PubMed

    Sun, Jing; Jiang, Xi; Lund, Reidar; Downing, Kenneth H; Balsara, Nitash P; Zuckermann, Ronald N

    2016-04-12

    The folding and assembly of sequence-defined polymers into precisely ordered nanostructures promises a class of well-defined biomimetic architectures with specific function. Amphiphilic diblock copolymers are known to self-assemble in water to form a variety of nanostructured morphologies including spheres, disks, cylinders, and vesicles. In all of these cases, the predominant driving force for assembly is the formation of a hydrophobic core that excludes water, whereas the hydrophilic blocks are solvated and extend into the aqueous phase. However, such polymer systems typically have broad molar mass distributions and lack the purity and sequence-defined structure often associated with biologically derived polymers. Here, we demonstrate that purified, monodisperse amphiphilic diblock copolypeptoids, with chemically distinct domains that are congruent in size and shape, can behave like molecular tile units that spontaneously assemble into hollow, crystalline nanotubes in water. The nanotubes consist of stacked, porous crystalline rings, and are held together primarily by side-chain van der Waals interactions. The peptoid nanotubes form without a central hydrophobic core, chirality, a hydrogen bond network, and electrostatic or π-π interactions. These results demonstrate the remarkable structure-directing influence of n-alkane and ethyleneoxy side chains in polymer self-assembly. More broadly, this work suggests that flexible, low-molecular-weight sequence-defined polymers can serve as molecular tile units that can assemble into precision supramolecular architectures. PMID:27035944

  9. Self-assembly of crystalline nanotubes from monodisperse amphiphilic diblock copolypeptoid tiles

    PubMed Central

    Sun, Jing; Jiang, Xi; Lund, Reidar; Downing, Kenneth H.; Balsara, Nitash P.; Zuckermann, Ronald N.

    2016-01-01

    The folding and assembly of sequence-defined polymers into precisely ordered nanostructures promises a class of well-defined biomimetic architectures with specific function. Amphiphilic diblock copolymers are known to self-assemble in water to form a variety of nanostructured morphologies including spheres, disks, cylinders, and vesicles. In all of these cases, the predominant driving force for assembly is the formation of a hydrophobic core that excludes water, whereas the hydrophilic blocks are solvated and extend into the aqueous phase. However, such polymer systems typically have broad molar mass distributions and lack the purity and sequence-defined structure often associated with biologically derived polymers. Here, we demonstrate that purified, monodisperse amphiphilic diblock copolypeptoids, with chemically distinct domains that are congruent in size and shape, can behave like molecular tile units that spontaneously assemble into hollow, crystalline nanotubes in water. The nanotubes consist of stacked, porous crystalline rings, and are held together primarily by side-chain van der Waals interactions. The peptoid nanotubes form without a central hydrophobic core, chirality, a hydrogen bond network, and electrostatic or π–π interactions. These results demonstrate the remarkable structure-directing influence of n-alkane and ethyleneoxy side chains in polymer self-assembly. More broadly, this work suggests that flexible, low–molecular-weight sequence-defined polymers can serve as molecular tile units that can assemble into precision supramolecular architectures. PMID:27035944

  10. Phase behaviors of cyclic diblock copolymers.

    PubMed

    Zhang, Guojie; Fan, Zhongyong; Yang, Yuliang; Qiu, Feng

    2011-11-01

    A spectral method of self-consistent field theory has been applied to AB cyclic block copolymers. Phase behaviors of cyclic diblock copolymers, such as order-disorder transition, order-order transition, and domain spacing size, have been studied, showing good consistency with previous experimental and theoretical results. Compared to linear diblocks, cyclic diblocks are harder to phase separate due to the topological constraint of the ring structure. A direct disorder-to-cylinder transition window is observed in the phase diagram, which is significantly different from the mean field phase diagram of linear diblock copolymers. The domain spacing size ratio between cyclic and linear diblock copolymers is typically close to 0.707, indicating in segregation that the cyclic polymer can be considered to be made up of linear diblocks with half of the original chain length. PMID:22070321

  11. Self-assembly of block copolymers grafted onto a flat substrate: Recent progress in theory and simulations

    NASA Astrophysics Data System (ADS)

    Zheng, Wang; Bao-Hui, Li

    2016-01-01

    Block copolymers are a class of soft matter that self-assemble to form ordered morphologies on the scale of nanometers, making them ideal materials for various applications. These applications directly depend on the shape and size of the self-assembled morphologies, and hence, a high degree of control over the self-assembly is desired. Grafting block copolymer chains onto a substrate to form copolymer brushes is a versatile method to fabricate functional surfaces. Such surfaces demonstrate a response to their environment, i.e., they change their surface topography in response to different external conditions. Furthermore, such surfaces may possess nanoscale patterns, which are important for some applications; however, such patterns may not form with spun-cast films under the same condition. In this review, we summarize the recent progress of the self-assembly of block copolymers grafted onto a flat substrate. We mainly concentrate on the self-assembled morphologies of end-grafted AB diblock copolymers, junction point-grafted AB diblock copolymers (i.e., Y-shaped brushes), and end-grafted ABA triblock copolymers. Special emphasis is placed on theoretical and simulation progress. Project supported by the National Natural Science Foundation of China (Grant Nos. 20990234, 20925414, and 91227121), the Program for Changjiang Scholars and Innovative Research Team in University, China (Grant No. IRT1257), the Programme of Introducing Talents of Discipline to Universities, China, and by the Tianhe No. 1, China.

  12. Unexpected consequences of block polydispersity on the self-assembly of ABA triblock copolymers.

    PubMed

    Widin, Joan M; Schmitt, Adam K; Schmitt, Andrew L; Im, Kyuhyun; Mahanthappa, Mahesh K

    2012-02-29

    Controlled/"living" polymerizations and tandem polymerization methodologies offer enticing opportunities to enchain a wide variety of monomers into new, functional block copolymer materials with unusual physical properties. However, the use of these synthetic methods often introduces nontrivial molecular weight polydispersities, a type of chain length heterogeneity, into one or more of the copolymer blocks. While the self-assembly behavior of monodisperse AB diblock and ABA triblock copolymers is both experimentally and theoretically well understood, the effects of broadening the copolymer molecular weight distribution on block copolymer phase behavior are less well-explored. We report the melt-phase self-assembly behavior of SBS triblock copolymers (S = poly(styrene) and B = poly(1,4-butadiene)) comprised of a broad polydispersity B block (M(w)/M(n) = 1.73-2.00) flanked by relatively narrow dispersity S blocks (M(w)/M(n) = 1.09-1.36), in order to identify the effects of chain length heterogeneity on block copolymer self-assembly. Based on synchrotron small-angle X-ray scattering and transmission electron microscopy analyses of seventeen SBS triblock copolymers with poly(1,4-butadiene) volume fractions 0.27 ≤ f(B) ≤ 0.82, we demonstrate that polydisperse SBS triblock copolymers self-assemble into periodic structures with unexpectedly enhanced stabilities that greatly exceed those of equivalent monodisperse copolymers. The unprecedented stabilities of these polydisperse microphase separated melts are discussed in the context of a complete morphology diagram for this system, which demonstrates that narrow dispersity copolymers are not required for periodic nanoscale assembly. PMID:22280467

  13. Unexpected Consequences of Block Polydispersity on the Self-Assembly of ABA Triblock Copolymers

    SciTech Connect

    Widin, Joan M.; Schmitt, Adam K.; Schmitt, Andrew L.; Im, Kyuhyun; Mahanthappa, Mahesh K.

    2012-05-09

    Controlled/'living' polymerizations and tandem polymerization methodologies offer enticing opportunities to enchain a wide variety of monomers into new, functional block copolymer materials with unusual physical properties. However, the use of these synthetic methods often introduces nontrivial molecular weight polydispersities, a type of chain length heterogeneity, into one or more of the copolymer blocks. While the self-assembly behavior of monodisperse AB diblock and ABA triblock copolymers is both experimentally and theoretically well understood, the effects of broadening the copolymer molecular weight distribution on block copolymer phase behavior are less well-explored. We report the melt-phase self-assembly behavior of SBS triblock copolymers (S = poly(styrene) and B = poly(1,4-butadiene)) comprised of a broad polydispersity B block (M{sub w}/M{sub n} = 1.73-2.00) flanked by relatively narrow dispersity S blocks (M{sub w}/M{sub n} = 1.09-1.36), in order to identify the effects of chain length heterogeneity on block copolymer self-assembly. Based on synchrotron small-angle X-ray scattering and transmission electron microscopy analyses of seventeen SBS triblock copolymers with poly(1,4-butadiene) volume fractions 0.27 {le} f{sub B} {le} 0.82, we demonstrate that polydisperse SBS triblock copolymers self-assemble into periodic structures with unexpectedly enhanced stabilities that greatly exceed those of equivalent monodisperse copolymers. The unprecedented stabilities of these polydisperse microphase separated melts are discussed in the context of a complete morphology diagram for this system, which demonstrates that narrow dispersity copolymers are not required for periodic nanoscale assembly.

  14. Low-Temperature Synthesis of Thermoresponsive Diblock Copolymer Nano-Objects via Aqueous Photoinitiated Polymerization-Induced Self-Assembly (Photo-PISA) using Thermoresponsive Macro-RAFT Agents.

    PubMed

    Tan, Jianbo; Bai, Yuhao; Zhang, Xuechao; Huang, Chundong; Liu, Dongdong; Zhang, Li

    2016-09-01

    Photoinitiated reversible addition-fragmentation chain transfer (RAFT) dispersion polymerization of 2-hydroxypropyl methacrylate is conducted in water at low temperature using thermoresponsive copolymers of 2-(2-methoxyethoxy) ethyl methacrylate and oligo(ethylene glycol) methacrylate (Mn = 475 g mol(-1) ) as the macro-RAFT agent. Kinetic studies confirm that quantitative monomer conversion is achieved within 15 min of visible-light irradiation (405 nm, 0.5 mW cm(-2) ), and good control is maintained during the polymerization. The polymerization can be temporally controlled by a simple "ON/OFF" switch of the light source. Finally, thermoresponsive diblock copolymer nano-objects with a diverse set of complex morphologies (spheres, worms, and vesicles) are prepared using this particular formulation. PMID:27439569

  15. Rapid self-assembly of block copolymers to photonic crystals

    DOEpatents

    Xia, Yan; Sveinbjornsson, Benjamin R; Grubbs, Robert H; Weitekamp, Raymond; Miyake, Garret M; Atwater, Harry A; Piunova, Victoria; Daeffler, Christopher Scot; Hong, Sung Woo; Gu, Weiyin; Russell, Thomas P.

    2016-07-05

    The invention provides a class of copolymers having useful properties, including brush block copolymers, wedge-type block copolymers and hybrid wedge and polymer block copolymers. In an embodiment, for example, block copolymers of the invention incorporate chemically different blocks comprising polymer size chain groups and/or wedge groups that significantly inhibit chain entanglement, thereby enhancing molecular self-assembly processes for generating a range of supramolecular structures, such as periodic nanostructures and microstructures. The present invention also provides useful methods of making and using copolymers, including block copolymers.

  16. Crystallization-driven one-dimensional self-assembly of polyethylene-b-poly(tert-butylacrylate) diblock copolymers in DMF: effects of crystallization temperature and the corona-forming block.

    PubMed

    Fan, Bin; Liu, Lei; Li, Jun-Huan; Ke, Xi-Xian; Xu, Jun-Ting; Du, Bin-Yang; Fan, Zhi-Qiang

    2016-01-01

    Crystallization-driven self-assembly of polyethylene-b-poly(tert-butylacrylate) (PE-b-PtBA) block copolymers (BCPs) in N,N-dimethyl formamide (DMF) was studied. It is found that all three PE-b-PtBA BCPs used in this work can self-assemble into one-dimensional crystalline cylindrical micelles. When the BCP solution is cooled to crystallization temperature (Tc) from 130 °C, the seed micelles may be produced via two competitive processes in the initial period: stepwise micellization/crystallization and simultaneous crystallization/micellization. Subsequently, the seed micelles can undergo growth driven by the epitaxial crystallization of the unimers. The lengths of both the seed micelles and the grown micelles are longer for the BCP with a longer PtBA block at a higher Tc. Quasi-living growth of the PE-b-PtBA crystalline cylindrical micelles is achieved at a higher Tc. A longer PtBA block evidently retards the attachment of unimers to the crystalline micelles, leading to a slower growth rate.

  17. Selective Area Control of Self-Assembled Pattern Architecture Using a Lithographically Patternable Block Copolymer

    SciTech Connect

    Black, C.T.; Bosworth, J.K.; Obert C.K.

    2009-07-01

    We leverage distinctive chemical properties of the diblock copolymer poly({alpha}-methylstyrene)-block-poly(4-hydroxystyrene) to create for the first time high-resolution selective-area regions of two different block copolymer phase morphologies. Exposure of thin films of poly({alpha}-methylstyrene)-block-poly(4-hydroxystyrene) to nonselective or block-selective solvent vapors results in polymer phase separation and self-assembly of patterns of cylindrical-phase or kinetically trapped spherical-phases, respectively. Poly(4-hydroxystyrene) acts as a high-resolution negative-tone photoresist in the presence of small amounts of a photoacid generator and cross-linker, undergoing radiation-induced cross-linking upon exposure to ultraviolet light or an electron beam. We use lithographic exposure to lock one self-assembled phase morphology in specific sample areas as small as 100 nm in width prior to film exposure to a subsequent solvent vapor to form a second self-assembled morphology in unexposed wafer areas.

  18. Mechanism for hierarchical self-assembly of nanoparticles on scaffolds derived from block copolymers.

    SciTech Connect

    Darling, S. B.

    2007-07-01

    Lithographically patterned substrates can direct the self-assembly of block copolymer films into aligned structures that, in turn, template the self-organization of colloidal nanoparticles. Deposition on pristine diblock copolymer films does not lead to reproducible selective decoration, but films modified to have nanoscale corrugation act as scaffolds for highly selective nanoparticle adsorption. The mechanism for this selectivity relies on the lateral forces inherent to spin casting to remove all of the nanoparticle suspension not confined within the nanoscopic trenches. This technique does not rely on interactions between the surfactant capping molecules and the polymer and is therefore general to a wide class of nanoparticle materials. Prospects to obtain long-range ordering and associated potential applications are discussed.

  19. Micellar cathodes from self-assembled nitroxide-containing block copolymers in battery electrolytes.

    PubMed

    Hauffman, Guillaume; Maguin, Quentin; Bourgeois, Jean-Pierre; Vlad, Alexandru; Gohy, Jean-François

    2014-01-01

    This contribution describes the synthesis of block copolymers containing electrochemically active blocks, their micellization, and finally their use as micellar cathodes in a lithium battery. The self-assembly of the synthesized poly(styrene)-block-poly(2,2,6,6-tetramethylpiperidinyloxy-4-yl methacrylate) (PS-b-PTMA) diblock copolymers is realized in a typical battery electrolyte made of 1 m lithium trifluoromethanesulfonate dissolved in a mixture of ethylene carbonate/diethyl carbonate/dimethyl carbonate(1:1:1, in volume). Dynamic light scattering and atomic force micro-scopy indicate the formation of well-defined spherical micelles with a PS core and a PTMA corona. The electrochemical properties of those micelles are further investigated. Cyclic voltammograms show a reversible redox reaction at 3.6 V (vs Li(+) /Li). The charge/discharge profiles indicate a flat and reversible plateau around 3.6 V (vs Li(+) /Li). Finally, the cycling performances of the micellar cathodes are demonstrated. Such self-assembled block copolymers open new opportunities for nanostructured organic radical batteries. PMID:24127365

  20. Micellar cathodes from self-assembled nitroxide-containing block copolymers in battery electrolytes.

    PubMed

    Hauffman, Guillaume; Maguin, Quentin; Bourgeois, Jean-Pierre; Vlad, Alexandru; Gohy, Jean-François

    2014-01-01

    This contribution describes the synthesis of block copolymers containing electrochemically active blocks, their micellization, and finally their use as micellar cathodes in a lithium battery. The self-assembly of the synthesized poly(styrene)-block-poly(2,2,6,6-tetramethylpiperidinyloxy-4-yl methacrylate) (PS-b-PTMA) diblock copolymers is realized in a typical battery electrolyte made of 1 m lithium trifluoromethanesulfonate dissolved in a mixture of ethylene carbonate/diethyl carbonate/dimethyl carbonate(1:1:1, in volume). Dynamic light scattering and atomic force micro-scopy indicate the formation of well-defined spherical micelles with a PS core and a PTMA corona. The electrochemical properties of those micelles are further investigated. Cyclic voltammograms show a reversible redox reaction at 3.6 V (vs Li(+) /Li). The charge/discharge profiles indicate a flat and reversible plateau around 3.6 V (vs Li(+) /Li). Finally, the cycling performances of the micellar cathodes are demonstrated. Such self-assembled block copolymers open new opportunities for nanostructured organic radical batteries.

  1. An inorganic-organic diblock copolymer photoresist for direct mesoporous SiCN ceramic patterns via photolithography.

    PubMed

    Nguyen, Chi Thanh; Hoang, Phan Huy; Perumal, Jayakumar; Kim, Dong-Pyo

    2011-03-28

    A high resolution negative-tone-type of inorganic-organic diblock copolymer photoresist was synthesized as a novel precursor for simple and direct fabrication of SiCN ceramic mesoporous patterns with ordered nanoscale pores by using a "top-down" photolithographic technique and the subsequent sacrificial processes of a "bottom-up" self-assembled nanostructure.

  2. Directed Self-Assembly of Block Copolymers for High Breakdown Strength Polymer Film Capacitors.

    PubMed

    Samant, Saumil P; Grabowski, Christopher A; Kisslinger, Kim; Yager, Kevin G; Yuan, Guangcui; Satija, Sushil K; Durstock, Michael F; Raghavan, Dharmaraj; Karim, Alamgir

    2016-03-01

    Emerging needs for fast charge/discharge yet high-power, lightweight, and flexible electronics requires the use of polymer-film-based solid-state capacitors with high energy densities. Fast charge/discharge rates of film capacitors on the order of microseconds are not achievable with slower charging conventional batteries, supercapacitors and related hybrid technologies. However, the current energy densities of polymer film capacitors fall short of rising demand, and could be significantly enhanced by increasing the breakdown strength (EBD) and dielectric permittivity (εr) of the polymer films. Co-extruded two-homopolymer component multilayered films have demonstrated much promise in this regard showing higher EBD over that of component polymers. Multilayered films can also help incorporate functional features besides energy storage, such as enhanced optical, mechanical, thermal and barrier properties. In this work, we report accomplishing multilayer, multicomponent block copolymer dielectric films (BCDF) with soft-shear driven highly oriented self-assembled lamellar diblock copolymers (BCP) as a novel application of this important class of self-assembling materials. Results of a model PS-b-PMMA system show ∼50% enhancement in EBD of self-assembled multilayer lamellar BCP films compared to unordered as-cast films, indicating that the breakdown is highly sensitive to the nanostructure of the BCP. The enhancement in EBD is attributed to the "barrier effect", where the multiple interfaces between the lamellae block components act as barriers to the dielectric breakdown through the film. The increase in EBD corresponds to more than doubling the energy storage capacity using a straightforward directed self-assembly strategy. This approach opens a new nanomaterial paradigm for designing high energy density dielectric materials. PMID:26942835

  3. Directed self-assembly of block copolymers for high breakdown strength polymer film capacitors

    DOE PAGESBeta

    Samant, Saumil P.; Grabowski, Christopher A.; Kisslinger, Kim; Yager, Kevin G.; Yuan, Guangcui; Satija, Sushil K.; Durstock, Michael F.; Raghavan, Dharmaraj; Karim, Alamgir

    2016-03-04

    Emerging needs for fast charge/discharge yet high-power, lightweight, and flexible electronics requires the use of polymer-film-based solid-state capacitors with high energy densities. Fast charge/discharge rates of film capacitors on the order of microseconds are not achievable with slower charging conventional batteries, supercapacitors and related hybrid technologies. However, the current energy densities of polymer film capacitors fall short of rising demand, and could be significantly enhanced by increasing the breakdown strength (EBD) and dielectric permittivity (εr) of the polymer films. Co-extruded two-homopolymer component multilayered films have demonstrated much promise in this regard showing higher EBD over that of component polymers. Multilayeredmore » films can also help incorporate functional features besides energy storage, such as enhanced optical, mechanical, thermal and barrier properties. In this work, we report accomplishing multilayer, multicomponent block copolymer dielectric films (BCDF) with soft-shear driven highly oriented self-assembled lamellar diblock copolymers (BCP) as a novel application of this important class of self-assembling materials. Results of a model PS-b-PMMA system show ~50% enhancement in EBD of self-assembled multilayer lamellar BCP films compared to unordered as-cast films, indicating that the breakdown is highly sensitive to the nanostructure of the BCP. The enhancement in EBD is attributed to the “barrier effect”, where the multiple interfaces between the lamellae block components act as barriers to the dielectric breakdown through the film. The increase in EBD corresponds to more than doubling the energy storage capacity using a straightforward directed self-assembly strategy. Lastly, this approach opens a new nanomaterial paradigm for designing high energy density dielectric materials.« less

  4. Directed Self-Assembly of Block Copolymers for High Breakdown Strength Polymer Film Capacitors.

    PubMed

    Samant, Saumil P; Grabowski, Christopher A; Kisslinger, Kim; Yager, Kevin G; Yuan, Guangcui; Satija, Sushil K; Durstock, Michael F; Raghavan, Dharmaraj; Karim, Alamgir

    2016-03-01

    Emerging needs for fast charge/discharge yet high-power, lightweight, and flexible electronics requires the use of polymer-film-based solid-state capacitors with high energy densities. Fast charge/discharge rates of film capacitors on the order of microseconds are not achievable with slower charging conventional batteries, supercapacitors and related hybrid technologies. However, the current energy densities of polymer film capacitors fall short of rising demand, and could be significantly enhanced by increasing the breakdown strength (EBD) and dielectric permittivity (εr) of the polymer films. Co-extruded two-homopolymer component multilayered films have demonstrated much promise in this regard showing higher EBD over that of component polymers. Multilayered films can also help incorporate functional features besides energy storage, such as enhanced optical, mechanical, thermal and barrier properties. In this work, we report accomplishing multilayer, multicomponent block copolymer dielectric films (BCDF) with soft-shear driven highly oriented self-assembled lamellar diblock copolymers (BCP) as a novel application of this important class of self-assembling materials. Results of a model PS-b-PMMA system show ∼50% enhancement in EBD of self-assembled multilayer lamellar BCP films compared to unordered as-cast films, indicating that the breakdown is highly sensitive to the nanostructure of the BCP. The enhancement in EBD is attributed to the "barrier effect", where the multiple interfaces between the lamellae block components act as barriers to the dielectric breakdown through the film. The increase in EBD corresponds to more than doubling the energy storage capacity using a straightforward directed self-assembly strategy. This approach opens a new nanomaterial paradigm for designing high energy density dielectric materials.

  5. Self-assembly of ABA triblock copolymers under soft confinement

    NASA Astrophysics Data System (ADS)

    Sheng, Yuping; An, Jian; Zhu, Yutian

    2015-05-01

    Using Monte Carlo method, the self-assembly of ABA triblock copolymers under soft confinement is investigated in this study. The soft confinement is achieved by a poor solvent environment for the polymer, which makes the polymer aggregate into a droplet. Various effects, including the block length ratio, the solvent quality for the blocks B, and the incompatibility between blocks A and B, on the micellar structures induced by soft confinement are examined. By increasing the solvent quality of B blocks, the micellar structure transforms from stacked lamella to bud-like structure, and then to onion-like structure for A5B8A5 triblock copolymers, while the inner micellar structure changes from spherical phase to various cylindrical phase, such as inner single helix, double helixes, stacked rings and cage-like structures, for A7B4A7 triblock copolymers. Moreover, the formation pathways of some typical aggregates are examined to illustrate their growth mechanisms.

  6. Multilayer block copolymer meshes by orthogonal self-assembly

    PubMed Central

    Tavakkoli K. G., Amir; Nicaise, Samuel M.; Gadelrab, Karim R.; Alexander-Katz, Alfredo; Ross, Caroline A.; Berggren, Karl K.

    2016-01-01

    Continued scaling-down of lithographic-pattern feature sizes has brought templated self-assembly of block copolymers (BCPs) into the forefront of nanofabrication research. Technologies now exist that facilitate significant control over otherwise unorganized assembly of BCP microdomains to form both long-range and locally complex monolayer patterns. In contrast, the extension of this control into multilayers or 3D structures of BCP microdomains remains limited, despite the possible technological applications in next-generation devices. Here, we develop and analyse an orthogonal self-assembly method in which multiple layers of distinct-molecular-weight BCPs naturally produce nanomesh structures of cylindrical microdomains without requiring layer-by-layer alignment or high-resolution lithographic templating. The mechanisms for orthogonal self-assembly are investigated with both experiment and simulation, and we determine that the control over height and chemical preference of templates are critical process parameters. The method is employed to produce nanomeshes with the shapes of circles and Y-intersections, and is extended to produce three layers of orthogonally oriented cylinders. PMID:26796218

  7. Self-assembled phases of block copolymer blend thin films.

    PubMed

    Yager, Kevin G; Lai, Erica; Black, Charles T

    2014-10-28

    The patterns formed by self-assembled thin films of blended cylindrical and lamellar polystyrene-b-poly(methyl methacrylate) block copolymers can be either a spatially uniform, single type of nanostructure or separate, coexisting regions of cylinders and lamellae, depending on fractional composition and molecular weight ratio of the blend constituents. In blends of block copolymers with different molecular weights, the morphology of the smaller molecular weight component more strongly dictates the resulting pattern. Although molecular scale chain mixing distorts microdomain characteristic length scales from those of the pure components, even coexisting morphologies exhibit the same domain spacing. We quantitatively account for the phase behavior of thin-film blends of cylinders and lamellae using a physical, thermodynamic model balancing the energy of chain distortions with the entropy of mixing. PMID:25285733

  8. Gyroid nickel nanostructures from diblock copolymer supramolecules.

    PubMed

    Vukovic, Ivana; Punzhin, Sergey; Voet, Vincent S D; Vukovic, Zorica; de Hosson, Jeff Th M; ten Brinke, Gerrit; Loos, Katja

    2014-01-01

    Nanoporous metal foams possess a unique combination of properties - they are catalytically active, thermally and electrically conductive, and furthermore, have high porosity, high surface-to-volume and strength-to-weight ratio. Unfortunately, common approaches for preparation of metallic nanostructures render materials with highly disordered architecture, which might have an adverse effect on their mechanical properties. Block copolymers have the ability to self-assemble into ordered nanostructures and can be applied as templates for the preparation of well-ordered metal nanofoams. Here we describe the application of a block copolymer-based supramolecular complex - polystyrene-block-poly(4-vinylpyridine)(pentadecylphenol) PS-b-P4VP(PDP) - as a precursor for well-ordered nickel nanofoam. The supramolecular complexes exhibit a phase behavior similar to conventional block copolymers and can self-assemble into the bicontinuous gyroid morphology with two PS networks placed in a P4VP(PDP) matrix. PDP can be dissolved in ethanol leading to the formation of a porous structure that can be backfilled with metal. Using electroless plating technique, nickel can be inserted into the template's channels. Finally, the remaining polymer can be removed via pyrolysis from the polymer/inorganic nanohybrid resulting in nanoporous nickel foam with inverse gyroid morphology. PMID:24797367

  9. Gyroid Nickel Nanostructures from Diblock Copolymer Supramolecules

    PubMed Central

    Vukovic, Ivana; Punzhin, Sergey; Voet, Vincent S. D.; Vukovic, Zorica; de Hosson, Jeff Th. M.; ten Brinke, Gerrit; Loos, Katja

    2014-01-01

    Nanoporous metal foams possess a unique combination of properties - they are catalytically active, thermally and electrically conductive, and furthermore, have high porosity, high surface-to-volume and strength-to-weight ratio. Unfortunately, common approaches for preparation of metallic nanostructures render materials with highly disordered architecture, which might have an adverse effect on their mechanical properties. Block copolymers have the ability to self-assemble into ordered nanostructures and can be applied as templates for the preparation of well-ordered metal nanofoams. Here we describe the application of a block copolymer-based supramolecular complex - polystyrene-block-poly(4-vinylpyridine)(pentadecylphenol) PS-b-P4VP(PDP) - as a precursor for well-ordered nickel nanofoam. The supramolecular complexes exhibit a phase behavior similar to conventional block copolymers and can self-assemble into the bicontinuous gyroid morphology with two PS networks placed in a P4VP(PDP) matrix. PDP can be dissolved in ethanol leading to the formation of a porous structure that can be backfilled with metal. Using electroless plating technique, nickel can be inserted into the template's channels. Finally, the remaining polymer can be removed via pyrolysis from the polymer/inorganic nanohybrid resulting in nanoporous nickel foam with inverse gyroid morphology. PMID:24797367

  10. Influence of chain rigidity on the phase behavior of wormlike diblock copolymers.

    PubMed

    Jiang, Ying; Chen, Jeff Z Y

    2013-03-29

    We utilize the wormlike chain model in the framework of the self-consistent field theory to investigate the influence of chain rigidity on the phase diagram of AB diblock copolymers in the full three-dimensional space. We develop an efficient numerical scheme that can be used to calculate the physical properties of ordered microstructures self-assembled from semiflexible block copolymers. The calculation describes the entire physical picture of the phase diagram, crossing from the flexible over to rodlike polymer behavior. PMID:23581386

  11. Aqueous dispersion polymerization: a new paradigm for in situ block copolymer self-assembly in concentrated solution.

    PubMed

    Sugihara, Shinji; Blanazs, Adam; Armes, Steven P; Ryan, Anthony J; Lewis, Andrew L

    2011-10-01

    Reversible addition-fragmentation chain transfer polymerization has been utilized to polymerize 2-hydroxypropyl methacrylate (HPMA) using a water-soluble macromolecular chain transfer agent based on poly(2-(methacryloyloxy)ethylphosphorylcholine) (PMPC). A detailed phase diagram has been elucidated for this aqueous dispersion polymerization formulation that reliably predicts the precise block compositions associated with well-defined particle morphologies (i.e., pure phases). Unlike the ad hoc approaches described in the literature, this strategy enables the facile, efficient, and reproducible preparation of diblock copolymer spheres, worms, or vesicles directly in concentrated aqueous solution. Chain extension of the highly hydrated zwitterionic PMPC block with HPMA in water at 70 °C produces a hydrophobic poly(2-hydroxypropyl methacrylate) (PHPMA) block, which drives in situ self-assembly to form well-defined diblock copolymer spheres, worms, or vesicles. The final particle morphology obtained at full monomer conversion is dictated by (i) the target degree of polymerization of the PHPMA block and (ii) the total solids concentration at which the HPMA polymerization is conducted. Moreover, if the targeted diblock copolymer composition corresponds to vesicle phase space at full monomer conversion, the in situ particle morphology evolves from spheres to worms to vesicles during the in situ polymerization of HPMA. In the case of PMPC(25)-PHPMA(400) particles, this systematic approach allows the direct, reproducible, and highly efficient preparation of either block copolymer vesicles at up to 25% solids or well-defined worms at 16-25% solids in aqueous solution. PMID:21854065

  12. Reduction-sensitive amphiphilic triblock copolymers self-assemble into stimuli-responsive micelles for drug delivery.

    PubMed

    Toughraï, Smahan; Malinova, Violeta; Masciadri, Raffaello; Menon, Sindhu; Tanner, Pascal; Palivan, Cornelia; Bruns, Nico; Meier, Wolfgang

    2015-04-01

    Polymeric nanostructures obtained through self-assembly of reduction-sensitive amphiphilic triblock copolymers were investigated as potential drug delivery systems. The characteristic feature of these polymers is their cleavable disulfide bond in the center of the hydrophobic block. Therefore, the triblock copolymers can be cleaved into amphiphilic diblock copolymers. A poly(2-hydroxyethyl methacrylate)-b-poly(butyl methacrylate)-S-S-poly(butyl methacrylate)-b-poly(2-hydroxyethyl methacrylate) (PHEMA-b-(PBMA-S-S-PBMA)-b-PHEMA) triblock copolymer was synthesized. It self-assembled into micelles which were used to encapsulate hydrophobic dye molecules (Nile Red, BodiPy 630/650) as model payloads. The self-assembled nanostructures disintegrated upon reduction of the disulfide bond, releasing their cargo and yielding larger particles that formed aggregates in solution after 24 h. A burst release of payload was shown within the first 15 min, followed by a constant release over several hours. As concentration gradients of reducing agents are commonly found in biological systems, the micelles could be used as redox-sensitive nanocarriers for the intracellular delivery of drugs.

  13. Polymerization-Induced Self-Assembly of Block Copolymer Nano-objects via RAFT Aqueous Dispersion Polymerization

    PubMed Central

    2014-01-01

    In this Perspective, we discuss the recent development of polymerization-induced self-assembly mediated by reversible addition–fragmentation chain transfer (RAFT) aqueous dispersion polymerization. This approach has quickly become a powerful and versatile technique for the synthesis of a wide range of bespoke organic diblock copolymer nano-objects of controllable size, morphology, and surface functionality. Given its potential scalability, such environmentally-friendly formulations are expected to offer many potential applications, such as novel Pickering emulsifiers, efficient microencapsulation vehicles, and sterilizable thermo-responsive hydrogels for the cost-effective long-term storage of mammalian cells. PMID:24968281

  14. On the birefringence of multilayered symmetric diblock copolymer films

    SciTech Connect

    Kim, J.; Chin, I.; Smith, B.A.; Russell, T.P. ); Mays, J.W. . Dept. of Chemistry)

    1993-09-27

    The chain extension at lamellar interfaces was studied in thin films of symmetric diblock copolymers on gold substrates. The first copolymer consisted of blocks of polystyrene (PS) and poly(2-vinylpyridine) (P2VP), denoted P(S-b-2VP). The second was a diblock copolymer of PS and poly(methyl methacrylate) (PMMA), denoted P(S-b-MMA), on a gold substrate. Using attenuated total reflectance spectroscopy, the refractive indices parallel, n[sub [parallel

  15. Cooperation of Amphiphilicity and Crystallization for Regulating the Self-Assembly of Poly(ethylene glycol)-block-poly(lactic acid) Copolymers.

    PubMed

    Wang, Zhen; Cao, Yuanyuan; Song, Jiaqi; Xie, Zhigang; Wang, Yapei

    2016-09-20

    Tuning the amphiphilicity of block copolymers has been extensively exploited to manipulate the morphological transition of aggregates. The introduction of crystallizable moieties into the amphiphilic copolymers also offers increasing possibilities for regulating self-assembled structures. In this work, we demonstrate a detailed investigation of the self-assembly behavior of amphiphilic poly(ethylene glycol)-block-poly(l-lactic acid) (PEG-b-PLLA) diblock copolymers with the assistance of a common solvent in aqueous solution. With a given length of the PEG block, the molecular weight of the PLA block has great effect on the morphologies of self-assembled nanoaggregates as a result of varying molecular amphiphilicity and polymer crystallization. Common solvents including N,N-dimethylformamide, dioxane, and tetrahydrofuran involved in the early stage of self-assembly led to the change in chain configuration, which further influences the self-assembly of block copolymers. This study expanded the scope of PLA-based copolymers and proposed a possible mechanism of the sphere-to-lozenge and platelet-to-cylinder morphological transitions. PMID:27496056

  16. Thermodynamics of the multi-stage self-assembly of pH-sensitive gradient copolymers in aqueous solutions.

    PubMed

    Černochová, Zulfiya; Bogomolova, Anna; Borisova, Olga V; Filippov, Sergey K; Černoch, Peter; Billon, Laurent; Borisov, Oleg V; Štěpánek, Petr

    2016-08-10

    The self-assembly thermodynamics of pH-sensitive di-block and tri-block gradient copolymers of acrylic acid and styrene was studied for the first time using isothermal titration calorimetry (ITC) and dynamic light scattering (DLS) performed at varying pH. We were able to monitor each step of micellization as a function of decreasing pH. The growth of micelles is a multi-stage process that is pH dependent with several exothermic and endothermic components. The first step of protonation of the acrylic acid monomer units was accompanied mainly by conformational changes and the beginning of self-assembly. In the second stage of self-assembly, the micelles become larger and the number of micelles becomes smaller. While solution acidity increases, the isothermal calorimetry data show a broad deep minimum corresponding to an exothermic process attributed to an increase in the size of hydrophobic domains and an increase in the structure's hydrophobicity. The minor change in heat capacity (ΔCp) confirms the structural changes during this exothermic process. The exothermic process terminates deionization of acrylic acid. The pH-dependence of the ζ-potential of the block gradient copolymer micelles exhibits a plateau in the regime corresponding to the pH-controlled variation of the micellar dimensions. The onset of micelle formation and the solubility of the gradient copolymers were found to be dependent on the length of the gradient block. PMID:27451979

  17. Highly ordered nanoporous films from supramolecular diblock copolymers with hydrogen-bonding junctions.

    PubMed

    Montarnal, Damien; Delbosc, Nicolas; Chamignon, Cécile; Virolleaud, Marie-Alice; Luo, Yingdong; Hawker, Craig J; Drockenmuller, Eric; Bernard, Julien

    2015-09-14

    We designed efficient precursors that combine complementary associative groups with exceptional binding affinities and thiocarbonylthio moieties enabling precise RAFT polymerization. Well defined PS and PMMA supramolecular polymers with molecular weights up to 30 kg mol(-1) are synthesized and shown to form highly stable supramolecular diblock copolymers (BCPs) when mixed, in non-polar solvents or in the bulk. Hierarchical self-assembly of such supramolecular BCPs by thermal annealing affords morphologies with excellent lateral order, comparable to features expected from covalent diblock copolymer analogues. Simple washing of the resulting materials with protic solvents disrupts the supramolecular association and selectively dissolves one polymer, affording a straightforward process for preparing well-ordered nanoporous materials without resorting to crosslinking or invasive chemical degradations. PMID:26234749

  18. Cellular Interactions and Biocompatibility of Self-Assembling Diblock Polypeptide Hydrogels

    NASA Astrophysics Data System (ADS)

    Pakstis, Lisa; Ozbas, Bulent; Pochan, Darrin; Robinson, Clifford; Nowak, Andrew; Deming, Timothy

    2002-03-01

    Self-assembling peptide based hydrogels having a unique nano- and microscopic morphology are being studied for potential use as tissue engineering scaffolds. Low molecular weight ( ~20 kg/mol), amphiphilic, diblock polypeptides of hydrophilic lysine (K) or glutamic acid (E) and hydrophobic leucine (L) or valine (V) form hydrogels in aqueous solution at neutral pH and at very low volume fraction of polymer (vol. fraction polypeptide >=0.5 wt%). The morphology of these hydrogels has been characterized using laser confocal microscopy (LCM), small angle neutron scattering (SANS), and cryogenic transmission electron microscopy (cryoTEM) imaging. Studies of the interactions of the hydrogels with bacterial and mammalian cells reveal that these materials are non-cytotoxic and biocompatible. Hence, the chemistry of the assembled diblock polypeptides allows for cellular proliferation whereas the same chemistry in the homopolyeric form is cytotoxic. Current research is directed at the design and incorporation of binding sites within the polypeptide to specifically target interactions of the hydrogel with desired cells types.

  19. Self-oscillating AB diblock copolymer developed by post modification strategy

    SciTech Connect

    Ueki, Takeshi E-mail: ryo@cross.t.u-tokyo.ac.jp; Onoda, Michika; Tamate, Ryota; Yoshida, Ryo E-mail: ryo@cross.t.u-tokyo.ac.jp; Shibayama, Mitsuhiro

    2015-06-15

    We prepared AB diblock copolymer composed of hydrophilic poly(ethylene oxide) segment and self-oscillating polymer segment. In the latter segment, ruthenium tris(2,2′-bipyridine) (Ru(bpy){sub 3}), a catalyst of the Belousov-Zhabotinsky reaction, is introduced into the polymer architecture based on N-isopropylacrylamide (NIPAAm). The Ru(bpy){sub 3} was introduced into the polymer segment by two methods; (i) direct random copolymerization (DP) of NIPAAm and Ru(bpy){sub 3} vinyl monomer and (ii) post modification (PM) of Ru(bpy){sub 3} with random copolymer of NIPAAm and N-3-aminopropylmethacrylamide. For both the diblock copolymers, a bistable temperature region (the temperature range; ΔT{sub m}), where the block copolymer self-assembles into micelle at reduced Ru(bpy){sub 3}{sup 2+} state whereas it breaks-up into individual polymer chain at oxidized Ru(bpy){sub 3}{sup 3+} state, monotonically extends as the composition of the Ru(bpy){sub 3} increases. The ΔT{sub m} of the block copolymer prepared by PM is larger than that by DP. The difference in ΔT{sub m} is rationalized from the statistical analysis of the arrangement of the Ru(bpy){sub 3} moiety along the self-oscillating segments. By using the PM method, the well-defined AB diblock copolymer having ΔT{sub m} (ca. 25 °C) large enough to cause stable self-oscillation can be prepared. The periodic structural transition of the diblock copolymer in a dilute solution ([Polymer] = 0.1 wt. %) is closely investigated in terms of the time-resolved dynamic light scattering technique at constant temperature in the bistable region. A macroscopic viscosity oscillation of a concentrated polymer solution (15 wt. %) coupled with the periodic microphase separation is also demonstrated.

  20. Nanowire polarizers by guided self-assembly of block copolymers

    NASA Astrophysics Data System (ADS)

    Roberts, Philip M. S.; Baum, Alexandra; Karamath, James; Evans, Allan; Shibata, Satoshi; Walton, Harry

    2014-01-01

    Wire-grid polarizers (WGPs) are currently limited by their wafer-scale manufacturing methods to sizes of approximately 12 to 18 in. For large-size displays, a new method for the production of large-area WGPs is required. Large-area WGPs were simulated using the finite-difference-time-domain method, and a scaleable method for their production based on a block copolymer (BCP)-nanostructured template was implemented. The nanostructured template is globally aligned through the use of a cylinder-forming liquid crystal (LC) diblock copolymer, which is first aligned on a rubbed polyimide substrate. A surface-relief template is produced using the differential dry etch rates of the cylinder-forming component and LC polymer matrix component of the BCP. The template is metalized to produce a WGP. Polarizers of arbitrary size with polarization efficiency up to 0.6 have been made in close agreement with calculated values for idealized structures. The choice of the cylinder-forming polymer is critical to the degree of alignment of the template, and the thermal stability of the LC polymer matrix is critical to the stability of the template during etching.

  1. Fluctuation effects and the stability of the Fddd network phase in diblock copolymer melts.

    PubMed

    Miao, Bing; Wickham, Robert A

    2008-02-01

    We examine the effect of composition fluctuations on the stability of the orthorhombic Fddd network phase in the diblock copolymer melt phase diagram within the self-consistent Hartree approximation to the Landau-Brazovskii theory. For weak fluctuations, the Fddd structure is an equilibrium phase; however, stronger fluctuations render this phase metastable. These results suggest a reinterpretation of a recent experiment beyond mean-field theory. Fluctuations may also explain why an equilibrium Fddd phase is not generally observed in analogous self-assembling systems. PMID:18266460

  2. Facile fabrication of diblock methoxy poly(ethylene glycol)-poly(tetramethylene carbonate) and its self-assembled micelles as drug carriers.

    PubMed

    Feng, Jun; Su, Wei; Wang, Hua-fen; Huang, Fu-wei; Zhang, Xian-zheng; Zhuo, Ren-xi

    2009-12-01

    AB type diblock methoxy poly(ethylene glycol)-b-poly(tetramethylene carbonate) (mPEG-PTeMC) copolymers were designed for the first time and used as carriers for the sustained release of the hydrophobic drug ibuprofen. In this paper, we developed a facile ring-opening polymerization (ROP) method to prepare mPEG-PTeMC copolymers under the catalysis of Novozym-435 lipase. Attractively, the polymerization has been successfully performed at 30 degrees C, close to room temperature. The data show that the copolymer compositions agree well with the feed ratio of TeMC to mPEG, indicating the controllable feature of the polymerization. The copolymer structures were characterized by (1)H NMR, IR, SEC, and DSC measurements. mPEG-PTeMC exhibits no apparent in vitro cytotoxicity toward human embryonic kidney transformed 293T cells. Those amphiphilic copolymers can readily self-assemble into nanosized micelles (about 150 nm) in aqueous solution. Their critical micelle concentrations are in the range of (1.6-9.3) x 10(-7) mol/L, determined by fluorescence spectroscopy. The micelles present high stability in PBS solution, with no obvious change in micelle diameters over 5 days. Ibuprofen can be loaded effectively in mPEG-PTeMC micelles, and its sustained release behavior is observed. Transmission electron microscopy shows that the well-dispersed spherical micelles are around 25 nm in diameter, while the diameter is 30 nm after loading ibuprofen. The release rate increases when the chain length of the PTeMC block decreases. These properties show that the micelles self-assembled from mPEG-PTeMC copolymers would have great potential as carriers for the effective encapsulation as well as sustained release of hydrophobic drugs.

  3. Worm-like micelles in water solutions of 1, 4 poly (1, 3-butadiene)-polyethylene oxide diblock copolymer.

    PubMed

    Arenas-Gómez, Brisa; Vinceković, Marko; Garza, Cristina; Castillo, Rolando

    2014-06-01

    The main purpose of this study is to determine for the first time the structure of the self-assembled aggregates in the system made of 1,4 poly(1,3-butadiene)-polyethylene oxide diblock copolymer (IUPAC name: poly(but-2-ene-1,4-diyl)-block-polyoxyethylene) and water, and the rheological behavior of the solution. The degree of polymerization of the polybutadiene and polyethylene oxide blocks is 37 and 45, respectively. The diblock copolymer concentration was limited to be ≤2.5 wt% to avoid phase separation. Small X-ray scattering revealed that the diblock copolymer self-assembles in worm-like micelles with a diameter of ∼ 12 nm. This system does not closely follow the rheological behavior of worm-like micelle solutions made of typical surfactants. The system steadily shear thins reaching very low viscosity values at large shear rates, however there are not shear-thickening peaks. In thixotropic loops, the micellar solution does not present hysteresis. The viscoelastic spectra do not follow the Maxwell model at low and intermediate frequencies. This uncommon behavior for a worm-like micellar system is explained by the slow dynamics of the self-assembly. The extremely high hydrophobicity of the polybutadiene block does not allow any micellar rearrangement. PMID:24965154

  4. Host-Guest Self-assembly in Block Copolymer Blends

    PubMed Central

    Park, Woon Ik; Kim, YongJoo; Jeong, Jae Won; Kim, Kyungho; Yoo, Jung-Keun; Hur, Yoon Hyung; Kim, Jong Min; Thomas, Edwin L.; Alexander-Katz, Alfredo; Jung, Yeon Sik

    2013-01-01

    Ultrafine, uniform nanostructures with excellent functionalities can be formed by self-assembly of block copolymer (BCP) thin films. However, extension of their geometric variability is not straightforward due to their limited thin film morphologies. Here, we report that unusual and spontaneous positioning between host and guest BCP microdomains, even in the absence of H-bond linkages, can create hybridized morphologies that cannot be formed from a neat BCP. Our self-consistent field theory (SCFT) simulation results theoretically support that the precise registration of a spherical BCP microdomain (guest, B-b-C) at the center of a perforated lamellar BCP nanostructure (host, A-b-B) can energetically stabilize the blended morphology. As an exemplary application of the hybrid nanotemplate, a nanoring-type Ge2Sb2Te5 (GST) phase-change memory device with an extremely low switching current is demonstrated. These results suggest the possibility of a new pathway to construct more diverse and complex nanostructures using controlled blending of various BCPs. PMID:24217036

  5. Real-Time observation of PS-PDMS block copolymer self-assembly under solvent vapor annealing

    NASA Astrophysics Data System (ADS)

    Bai, Wubin; Yager, Kevin; Ross, Caroline

    2015-03-01

    Solvent annealing provides a convenient way to produce microphase separation in films of block copolymers, but the morphology transition of the film during the solvent absorption, equilibrium solvent-BCP concentration and solvent desorption process are not well known. An in situ study of solvent annealing of polystyrene-block-polydimethylsiloxane (PS-PDMS, 16 kg/mol, fPDMS = 30%, period 17 nm) diblock copolymer was carried by synchrotron grazing-incidence small-angle X-ray scattering (GISAXS). The swollen film morphology was found to be strongly dependent on swelling ratio. A transition from the disordered state to a highly ordered state which contained multiple layers of in-plane cylinders was observed at a swelling ratio around 1.45 from samples with 100nm to 1000nm as-cast thickness. The rate of solvent absorption was found to be less important to the dried morphology, while the time of equilibrium solvent-BCP concentration stage was found to influence the orientation of self-assembled microdomains and the drying rate was found to affect the degree of structure deformation. The implications of the results to pattern generation for block copolymer directed self-assembly will be discussed. Semiconductor Research Corporation, National Science Foundation.

  6. Complexation Between Cationic Diblock Copolymers and Plasmid DNA

    NASA Astrophysics Data System (ADS)

    Jung, Seyoung; Reineke, Theresa; Lodge, Timothy

    Deoxyribonucleic acids (DNA), as polyanions, can spontaneously bind with polycations to form polyelectrolyte complexes. When the polycation is a diblock copolymer with one cationic block and one uncharged hydrophilic block, the polyelectrolyte complexes formed with plasmid DNA (pDNA) are often colloidally stable, and show great promise in the field of polymeric gene therapy. While the resulting properties (size, stability, and toxicity to biological systems) of the complexes have been studied for numerous cationic diblocks, the fundamentals of the pDNA-diblock binding process have not been extensively investigated. Herein, we report how the cationic block content of a diblock influences the pDNA-diblock interactions. pDNA with 7164 base pairs and poly(2-deoxy-2-methacrylamido glucopyranose)-block-poly(N-(2-aminoethyl) methacrylamide) (PMAG-b-PAEMA) are used as the model pDNA and cationic diblock, respectively. To vary the cationic block content, two PMAG-b-PAEMA copolymers with similar PMAG block lengths but distinct PAEMA block lengths and a PAEMA homopolymer are utilized. We show that the enthalpy change from pDNA-diblock interactions is dependent on the cationic diblock composition, and is closely associated with both the binding strength and the pDNA tertiary structure.

  7. Self-Assembling Diblock Polypeptide Hydrogels: Effects of Salt and Cell-Growth Media on the Self-assembly Process and Material Properties

    NASA Astrophysics Data System (ADS)

    Pakstis, Lisa; Ozbas, Bulent; Pochan, Darrin; Nowak, Andrew; Deming, Timothy

    2003-03-01

    Self-assembling peptide based hydrogels having a unique nano- and microscopic morphology are being studied for potential use as tissue engineering scaffolds. Low molecular weight ( 20 kg/mol), amphiphilic, diblock polypeptides of hydrophilic, polyelectrolyte cationic lysine (K) or anionic glutamic acid (E) and hydrophobic leucine (L) or valine (V) form hydrogels in aqueous solution at neutral pH and at very low volume fraction of polymer (vol. fraction polypeptide less than 0.5 wtbeen characterized using laser confocal microscopy (LCM), ultra-small angle neutron scattering (SANS), and cryogenic transmission electron microscopy (cryoTEM) imaging. Studies of the self-assembly process with and without significant ionic solution strength (i.e. in the presence of salt and cell growth medium) will be discussed. Interactions of the hydrogels with bacterial and mammalian cells reveal that these materials are non-cytotoxic and biocompatible. Hence, the chemistry of the assembled diblock polypeptides allows for cellular proliferation whereas the same chemistry in the homopolymeric form is cytotoxic. Proper molecular design for optimal cell viability and gel integrity in the presence of high ionic strength aqueous solution will be discussed.

  8. Molecular Exchange in Ordered Diblock Copolymer Micelles

    NASA Astrophysics Data System (ADS)

    Choi, Soo-Hyung; Lodge, Timothy; Bates, Frank

    2011-03-01

    Previously, molecular exchange between spherical micelles in dilute solution (1 vol% polymer) was investigated using time-resolved small-angle neutron scattering (TR-SANS). As the concentration of spherical micelles formed by the diblock copolymers increases, the micelles begin to overlap and eventually pack onto body-centered cubic (BCC) lattice. In this study, concentrated, ordered micelles (15 vol% polymers) prepared by dispersing isotopically labeled poly(styrene- b -ethylene-alt-propylene) in an isotopic squalane mixture was investigated to understand the micellar concentration dependence of the molecular exchange. Perfectly random mixing of isotopically labeled micelles on the BCC lattice was confirmed by SANS patterns where the interparticle contribution vanishes, resulting in an intensity that directly relates to the exchange kinetics. The measured molecular exchange process for the concentrated, ordered system is qualitatively consistent with the previous observations, but the rate is more than an order of magnitude slower than that for the dilute, disordered system. Infineum(IPrime), MRSEC(NSF), NIST.

  9. Multiple patterns of diblock copolymer confined in irregular geometries with soft surface

    NASA Astrophysics Data System (ADS)

    Li, Ying; Sun, Min-Na; Zhang, Jin-Jun; Pan, Jun-Xing; Guo, Yu-Qi; Wang, Bao-Feng; Wu, Hai-Shun

    2015-12-01

    The different confinement shapes can induce the formation of various interesting and novel morphologies, which might inspire potential applications of materials. In this paper, we study the directed self-assembly of diblock copolymer confined in irregular geometries with a soft surface by using self-consistent field theory. Two types of confinement geometries are considered, namely, one is the concave pore with one groove and the other is the concave pore with two grooves. We obtain more novel and different structures which could not be produced in other two-dimensional (2D) confinements. Comparing these new structures with those obtained in regular square confinement, we find that the range of ordered lamellae is enlarged and the range of disordered structure is narrowed down under the concave pore confinement. We also compare the different structures obtained under the two types of confinement geometries, the results show that the effect of confinement would increase, which might induce the diblock copolymer to form novel structures. We construct the phase diagram as a function of the fraction of B block and the ratio of h/L of the groove. The simulation reveals that the wetting effect of brushes and the shape of confinement geometries play important roles in determining the morphologies of the system. Our results improve the applications in the directed self-assembly of diblock copolymer for fabricating the irregular structures. Project supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20121404110004), the Research Foundation for Excellent Talents of Shanxi Provincial Department of Human Resources and Social Security, China, and the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province, China.

  10. Structure of poly(styrene-b-ethylene-alt-propylene) diblock copolymer micelles in squalane.

    PubMed

    Choi, Soo-Hyung; Bates, Frank S; Lodge, Timothy P

    2009-10-22

    The temperature dependence of the micellar structures formed by poly(styrene-b-ethylene-alt-propylene) (SEP) diblock copolymers in squalane, a highly selective solvent for the PEP blocks, has been studied using dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS). Four SEP diblock copolymers were prepared by sequential anionic polymerization of styrene and isoprene, followed by hydrogenation of the isoprene blocks, to yield SEP(17-73), SEP(26-66), SEP(36-69), and SEP(42-60), where the numbers indicate block molecular weights in kDa. All four polymers formed well-defined spherical micelles. In dilute solution, DLS provided the temperature-dependent mean hydrodynamic radius, R(h), and its distribution, while detailed fitting of the SAXS profiles gave the core radius, R(c), the equivalent hard sphere radius, R(hs), and an estimate of the aggregation number, N(agg). In general, the micelles became smaller as the critical micelle temperature (CMT) was approached, which was well above the glass transition of the core block. As concentration increased the micelles packed onto body centered cubic lattices for all four copolymers, which underwent order-disorder transitions upon heating near the dilute solution CMTs. The results are discussed in terms of current understanding of block copolymer solution self-assembly, and particular attention is paid to the issue of equilibration, given the high glass transition temperature of the core block.

  11. Structure of Poly(styrene-b-ethylene-alt-propylene) Diblock Copolymer Micelles in Squalane

    SciTech Connect

    Choi, Soo-Hyung; Bates, Frank S.; Lodge, Timothy P.

    2009-11-04

    The temperature dependence of the micellar structures formed by poly(styrene-b-ethylene-alt-propylene) (SEP) diblock copolymers in squalane, a highly selective solvent for the PEP blocks, has been studied using dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS). Four SEP diblock copolymers were prepared by sequential anionic polymerization of styrene and isoprene, followed by hydrogenation of the isoprene blocks, to yield SEP(17-73), SEP(26-66), SEP(36-69), and SEP(42-60), where the numbers indicate block molecular weights in kDa. All four polymers formed well-defined spherical micelles. In dilute solution, DLS provided the temperature-dependent mean hydrodynamic radius, R{sub h}, and its distribution, while detailed fitting of the SAXS profiles gave the core radius, R{sub c}, the equivalent hard sphere radius, R{sub hs}, and an estimate of the aggregation number, N{sub agg}. In general, the micelles became smaller as the critical micelle temperature (CMT) was approached, which was well above the glass transition of the core block. As concentration increased the micelles packed onto body centered cubic lattices for all four copolymers, which underwent order-disorder transitions upon heating near the dilute solution CMTs. The results are discussed in terms of current understanding of block copolymer solution self-assembly, and particular attention is paid to the issue of equilibration, given the high glass transition temperature of the core block.

  12. Monte Carlo Study of Degenerate Behavior of AB Diblock Copolymer/Nanoparticle under Cylindrical Confinement.

    PubMed

    Wang, Yingying; Han, Yuanyuan; Cui, Jie; Jiang, Wei; Sun, Yingchun

    2016-08-23

    Degenerate behavior (i.e., forming different self-assembled structures for a given block copolymer (BCP) under the same confinement) commonly exists in various confined systems. Understanding degenerate behavior is crucial for precise control over the structures formed by self-assembly systems under confinement. In this study, the degenerate behavior of a self-assembled AB diblock copolymer/nanoparticle (NP) mixture in a cylindrical pore is studied using Monte Carlo simulation. We find that the degenerate behavior of such a mixture depends on the introduction of the NP. Under different pore sizes, four typical degenerate structures [i.e., single helices (S-helices), double helices (D-helices), parallel cylinders, and stacked toroids] can be obtained if the NP content is zero. However, when the NP content in the mixture is increased, it is found that the number of degenerate structures decreases, that is, only blocky structures can be obtained in the case of high NP content. Moreover, the probability of forming S-helices decreases, whereas the probability of forming D-helices increases with increase in the NP content. Analysis of the interactive enthalpy densities and the chain conformation of the systems indicates that entropy plays an important role in the degenerate structure formation. This study provides some new insights into the degenerate behavior of a BCP/NP mixture under confinement, which can offer a theoretical reference for further experiments. PMID:27459708

  13. Arrangement of C60 via the self-assembly of post-functionalizable polyisocyanate block copolymer.

    PubMed

    Min, Joonkeun; Shah, Priyank N; Chae, Chang-Geun; Lee, Jae-Suk

    2012-12-13

    Poly(furfuryl isocyanate) (PFIC), which includes the reactive furan group, was synthesized by anionic polymerization using a sodium benzhydroxide (Na-BH), self-assembly initiator. We determined the optimum polymerization conditions by varying both the reaction time and the molar ratio of the monomer to the initiator. Block copolymer, poly(furfuryl isocyanate)-b-poly(n-hexyl isocyanate), was synthesized under optimized polymerization conditions. The PFIC was modified by Diels-Alder reactions with C60 for functionalization. Transmission electron microscopy (TEM) was used to study the self-assembly of block copolymers and modified block copolymer with C60. C60 formed highly ordered aggregates on the PFIC domains via self-assembly of the block copolymer.

  14. Comparison of complex coacervate core micelles from two diblock copolymers or a single diblock copolymer with a polyelectrolyte.

    PubMed

    Hofs, Bas; Voets, Ilja K; de Keizer, Arie; Cohen Stuart, Martien A

    2006-09-28

    With light scattering titrations, we show that complex coacervate core micelles (C3Ms) form from a diblock copolymer with a polyelectrolyte block and either an oppositely charged polyelectrolyte, a diblock copolymer with an oppositely charged polyelectrolyte or a mixture of the two. The effect of added salt and pH on both types of C3Ms is investigated. The hydrodynamic radius of mixed C3Ms can be controlled by varying the percentage of oppositely charged polyelectrolyte or diblock copolymer. A simple core-shell model is used to interpret the results from light scattering, giving the same trends as the experiments for both the hydrodynamic radii and the relative scattering intensities. Temperature has only a small effect on the C3Ms. Isothermal titration calorimetry shows that the complexation is mainly driven by Coulombic attraction and by the entropy gain due to counterion release.

  15. Relaxation processes in a lower disorder order transition diblock copolymer

    SciTech Connect

    Sanz, Alejandro; Ezquerra, Tiberio A.; Nogales, Aurora

    2015-02-14

    The dynamics of lower disorder-order temperature diblock copolymer leading to phase separation has been observed by X ray photon correlation spectroscopy. Two different modes have been characterized. A non-diffusive mode appears at temperatures below the disorder to order transition, which can be associated to compositional fluctuations, that becomes slower as the interaction parameter increases, in a similar way to the one observed for diblock copolymers exhibiting phase separation upon cooling. At temperatures above the disorder to order transition T{sub ODT}, the dynamics becomes diffusive, indicating that after phase separation in Lower Disorder-Order Transition (LDOT) diblock copolymers, the diffusion of chain segments across the interface is the governing dynamics. As the segregation is stronger, the diffusive process becomes slower. Both observed modes have been predicted by the theory describing upper order-disorder transition systems, assuming incompressibility. However, the present results indicate that the existence of these two modes is more universal as they are present also in compressible diblock copolymers exhibiting a lower disorder-order transition. No such a theory describing the dynamics in LDOT block copolymers is available, and these experimental results may offer some hints to understanding the dynamics in these systems. The dynamics has also been studied in the ordered state, and for the present system, the non-diffusive mode disappears and only a diffusive mode is observed. This mode is related to the transport of segment in the interphase, due to the weak segregation on this system.

  16. Relaxation processes in a lower disorder order transition diblock copolymer.

    PubMed

    Sanz, Alejandro; Ezquerra, Tiberio A; Hernández, Rebeca; Sprung, Michael; Nogales, Aurora

    2015-02-14

    The dynamics of lower disorder-order temperature diblock copolymer leading to phase separation has been observed by X ray photon correlation spectroscopy. Two different modes have been characterized. A non-diffusive mode appears at temperatures below the disorder to order transition, which can be associated to compositional fluctuations, that becomes slower as the interaction parameter increases, in a similar way to the one observed for diblock copolymers exhibiting phase separation upon cooling. At temperatures above the disorder to order transition TODT, the dynamics becomes diffusive, indicating that after phase separation in Lower Disorder-Order Transition (LDOT) diblock copolymers, the diffusion of chain segments across the interface is the governing dynamics. As the segregation is stronger, the diffusive process becomes slower. Both observed modes have been predicted by the theory describing upper order-disorder transition systems, assuming incompressibility. However, the present results indicate that the existence of these two modes is more universal as they are present also in compressible diblock copolymers exhibiting a lower disorder-order transition. No such a theory describing the dynamics in LDOT block copolymers is available, and these experimental results may offer some hints to understanding the dynamics in these systems. The dynamics has also been studied in the ordered state, and for the present system, the non-diffusive mode disappears and only a diffusive mode is observed. This mode is related to the transport of segment in the interphase, due to the weak segregation on this system. PMID:25681940

  17. Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide amphiphiles

    NASA Astrophysics Data System (ADS)

    Nowak, Andrew P.; Breedveld, Victor; Pakstis, Lisa; Ozbas, Bulent; Pine, David J.; Pochan, Darrin; Deming, Timothy J.

    2002-05-01

    Protein-based hydrogels are used for many applications, ranging from food and cosmetic thickeners to support matrices for drug delivery and tissue replacement. These materials are usually prepared using proteins extracted from natural sources, which can give rise to inconsistent properties unsuitable for medical applications. Recent developments have utilized recombinant DNA methods to prepare artificial protein hydrogels with specific association mechanisms and responsiveness to various stimuli. Here we synthesize diblock copolypeptide amphiphiles containing charged and hydrophobic segments. Dilute solutions of these copolypeptides would be expected to form micelles; instead, they form hydrogels that retain their mechanical strength up to temperatures of about 90°C and recover rapidly after stress. The use of synthetic materials permits adjustment of copolymer chain length and composition, which we varied to study their effect on hydrogel formation and properties. We find that gelation depends not only on the amphiphilic nature of the polypeptides, but also on chain conformations-α-helix, β-strand or random coil. Indeed, shape-specific supramolecular assembly is integral to the gelation process, and provides a new class of peptide-based hydrogels with potential for applications in biotechnology.

  18. Shear induced order in SEP diblock copolymer micelles: multiple BCC slip systems

    NASA Astrophysics Data System (ADS)

    Torija, Maria A.; Choi, Soohyung; Bates, Frank S.; Lodge, Timothy P.

    2010-03-01

    Poly(styrene-b-ethylene-alt-propylene) (SEP) diblock copolymers are solvated by squalane leading to glassy poly(styrene) domains dispersed in a viscoelastic medium. For diblocks containing less than about 50% by weight poly(styrene) and at SEP concentrations greater than 6 w. % these mixtures self-assemble into glassy spherical microdomains that order on a body centered cubic (BCC) lattice. We have investigated how polycrystalline configurations respond to large amplitude oscillatory shear as a function of shear rate, strain amplitude and block copolymer composition. Structure was characterized by small-angle X-ray scattering measurements while simultaneously deforming the mixtures with an in-situ rheometer. All three slip systems associated with plastic deformation in BCC metals110<111>,211<111>,321<111>, were identified with the x-ray beam oriented perpendicular to the shear plane. Higher shear rates and larger strain amplitudes produced more slip within the 211<111> system. These results represent one of the most comprehensive assessments of BCC structure in solvated copolymers and will be discussed within the context of the associated linear viscoelastic behavior.

  19. Bimetallic PdAg nanoparticle arrays from monolayer films of diblock copolymer micelles

    NASA Astrophysics Data System (ADS)

    Ehret, E.; Beyou, E.; Mamontov, G. V.; Bugrova, T. A.; Prakash, S.; Aouine, M.; Domenichini, B.; Cadete Santos Aires, F. J.

    2015-07-01

    The self-assembly technique provides a highly efficient route to generate well-ordered structures on a nanometer scale. In this paper, well-ordered arrays of PdAg alloy nanoparticles on flat substrates with narrow distributions of particle size (6-7 nm) and interparticle spacing (about 60 nm) were synthesized by the block copolymer micelle approach. A home-made PS-b-P4VP diblock copolymer was prepared to obtain a micellar structure in toluene. Pd and Ag salts were then successfully loaded in the micellar core of the PS-b-P4VP copolymer. A self-assembled monolayer of the loaded micelles was obtained by dipping the flat substrate in the solution. At this stage, the core of the micelles was still loaded with the metal precursor rather than with a metal. Physical and chemical reducing methods were used to reduce the metal salts embedded in the P4VP core into PdAg nanoparticles. HRTEM and EDX indicated that Pd-rich PdAg alloy nanoparticles were synthesized by chemical or physical reduction; UV-visible spectroscopy observations confirmed that metallic PdAg nanoparticles were quickly formed after chemical reduction; XPS measurements revealed that the PdAg alloy nanoparticles were in a metallic state after a short time of exposure to O2 plasma and after hydrazine reduction.

  20. Self-assembly of rod-coil multiblock copolymers: a strategy for creating hierarchical smectic structures.

    PubMed

    Zhu, Xiaomeng; Wang, Liquan; Lin, Jiaping

    2013-05-01

    We extended self-consistent field theory to explore self-assembly behavior of linear multiblock copolymers consisting of alternative rod and coil blocks. Such rod-coil multiblock copolymers are found to be capable of self-assembling into hierarchical smectic microstructures. For the copolymers with long rod end block, lamellae-in-lamellar structures containing two smectic C phases at small and large length scales were observed. It was found that the hierarchical smectic structures exhibit not only double periodicities in overall structure but also double orientational orders of rod blocks. Additionally, these hierarchical smectic structures can be tailed by tuning the relative length of the coil blocks. For the copolymers with long coil end block, the multiblock copolymers can self-assemble into hierarchical lamellar structures with smectic phases only at the small length scale. The findings gained through the present study may offer valuable information for understanding the self-assembly behavior of complicated rod-coil copolymers and designing polymeric materials with advanced properties.

  1. Self-Assembled Asymmetric Block Copolymer Membranes: Bridging the Gap from Ultra- to Nanofiltration.

    PubMed

    Yu, Haizhou; Qiu, Xiaoyan; Moreno, Nicolas; Ma, Zengwei; Calo, Victor Manuel; Nunes, Suzana P; Peinemann, Klaus-Viktor

    2015-11-16

    The self-assembly of block copolymers is an emerging strategy to produce isoporous ultrafiltration membranes. However, thus far, it has not been possible to bridge the gap from ultra- to nanofiltration and decrease the pore size of self-assembled block copolymer membranes to below 5 nm without post-treatment. It is now reported that the self-assembly of blends of two chemically interacting copolymers can lead to highly porous membranes with pore diameters as small as 1.5 nm. The membrane containing an ultraporous, 60 nm thin separation layer can fully reject solutes with molecular weights of 600 g mol(-1) in aqueous solutions with a water flux that is more than one order of magnitude higher than the permeance of commercial nanofiltration membranes. Simulations of the membrane formation process by dissipative particle dynamics (DPD) were used to explain the dramatic observed pore size reduction combined with an increase in water flux. PMID:26388216

  2. John H. Dillon Medal Lecture: Molecular Heterogeneity in Block Copolymer Self-Assembly

    NASA Astrophysics Data System (ADS)

    Mahanthappa, Mahesh

    2013-03-01

    Narrow molecular weight dispersity in block copolymers has long been considered necessary for well-defined, periodic structure formation, by analogy to various crystallization processes. Consequently, much attention has focused on narrow dispersity copolymers derived from controlled and ``living'' polymerization techniques. However, these methods restrict the palette of functional monomers amenable to block copolymerization, thus constraining the physical and chemical properties of the resulting materials. New polymer syntheses enable access to a ``Pandora's Box'' of block copolymers with unusual chemical functionalities and useful physical properties, at the expense of introducing significant segmental dispersities into the resulting copolymers. The development and use of these functional materials requires basic understanding of the physical implications of continuous segmental dispersity on block copolymer phase behavior. Our work aims to understand the physical principles underlying polydisperse ABA-type triblock copolymer self-assembly, in order to transform segmental dispersity into a predictable and useful tool for manipulating block copolymer morphology. We have systematically demonstrated that mid-segment dispersity in ABA triblock copolymers does not preclude the formation of classical, structurally periodic, microphase separated morphologies. Mid-segment dispersity instead shifts the locations of the composition-dependent phase windows, dilates the microdomains, and unexpectedly stabilizes the microphase separated ABA triblock copolymer melts. Studies of three different polydisperse copolymer systems have provided general insights into the consequences of chain length heterogeneity on block copolymer self-assembly.

  3. Phase Behavior of All-Hydrocarbon ``Diblock-Random'' Copolymers

    NASA Astrophysics Data System (ADS)

    Beckingham, Bryan; Register, Richard

    2013-03-01

    ``Block-random'' copolymers (AxB1-x) -(AyB1-y) , where each of the two blocks is a random copolymer of monomers A and B, present a convenient and useful variation on the typical block copolymer architecture, as the interblock interactions and physical properties can be tuned continuously through the random block's composition. The ability to tune the effective interaction parameter between the blocks continuously, allows for the order-disorder transition temperature (TODT) to be tuned independently of molecular weight using only two monomers. This flexibility makes block-random copolymers a versatile platform for the exploration of polymer phase behavior and structure-property relationships. Here, we present the phase behavior of hydrogenated derivatives of various lamellae-forming diblock-random copolymers where one block is a styrene/isoprene (S rI) random copolymer. Using small-angle x-ray scattering, we investigate a series of isoprene hydrogenated hI-S rhI with varying styrene content, determine order-disorder transition temperatures and compare the observed phase behavior to that of more typical S-hI block copolymers via mean-field theory. Additionally, diblock-random copolymers, 50 wt. % styrene in the S rI block, are synthesized with polyisoprene, polybutadiene or polystyrene blocks and we examine the phase behavior of both their hydrogenated derivatives, prepared with catalysts which either leave the S units intact or saturate them to vinylcyclohexane.

  4. Electrostatic self-assembly of PEG copolymers onto porous silica nanoparticles.

    PubMed

    Thierry, Benjamin; Zimmer, Lucie; McNiven, Scott; Finnie, Kim; Barbé, Christophe; Griesser, Hans J

    2008-08-01

    A critical requirement toward the clinical use of nanocarriers in drug delivery applications is the development of optimal biointerfacial engineering procedures designed to resist biologically nonspecific adsorption events. Minimization of opsonization increases blood residence time and improves the ability to target solid tumors. We report the electrostatic self-assembly of polyethyleneimine-polyethylene glycol (PEI-PEG) copolymers onto porous silica nanoparticles. PEI-PEG copolymers were synthesized and their adsorption by self-assembly onto silica surfaces were investigated to achieve a better understanding of structure-activity relationships. Quartz-crystal microbalance (QCM) study confirmed the rapid and stable adsorption of the copolymers onto silica-coated QCM sensors driven by strong electrostatic interactions. XPS and FT-IR spectroscopy were used to analyze the coated surfaces, which indicated the presence of dense PEG layers on the silica nanoparticles. Dynamic light scattering was used to optimize the coating procedure. Monodisperse dispersions of the PEGylated nanoparticles were obtained in high yields and the thin PEG layers provided excellent colloidal stability. In vitro protein adsorption tests using 5% serum demonstrated the ability of the self-assembled copolymer layers to resist biologically nonspecific fouling and to prevent aggregation of the nanoparticles in physiological environments. These results demonstrate that the electrostatic self-assembly of PEG copolymers onto silica nanoparticles used as drug nanocarriers is a robust and efficient procedure, providing excellent control of their biointerfacial properties.

  5. Dissipative particle dynamics simulation study on vesicles self-assembled from amphiphilic hyperbranched multiarm copolymers.

    PubMed

    Wang, Yuling; Li, Bin; Jin, Haibao; Zhou, Yongfeng; Lu, Zhongyuan; Yan, Deyue

    2014-08-01

    Hyperbranched multiarm copolymers (HMCs) have been shown to hold great potential as precursors in self-assembly, and many impressive supramolecular structures have been prepared through the self-assembly of HMCs in solution. However, theoretical studies on the corresponding self-assembly mechanism have been greatly lagging behind. Herein, we report the self-assembly of normal or reverse vesicles from amphiphilic HMCs by dissipative particle dynamics (DPD) simulation. The simulation disclosed both the self-assembly mechanisms and dynamics of vesicles. It indicates that the self-assembly of HMCs involves several steps, from randomly distributed unimolecular micelles to small spherical micelles, to membrane-like micelles, to finally small vesicles. The membranes are formed through the direct aggregation and lateral fusion of small micelles, and the bending and closing of the membranes give rise to small vesicles. Finally, large and steady vesicles are formed through the fusion of small vesicles. In addition, the bilayer or monolayer molecular packing modes as well as the mircrophase separation behaviors of HMCs in normal or reverse vesicles have also been studied. These simulation results explore details that cannot be observed in the experiments to a certain degree, and have extended the understanding of the vesicular self-assembly process of HMCs.

  6. Nanopatterned Protein Films Directed by Ionic Complexation with Water-Soluble Diblock Copolymers

    PubMed Central

    Kim, Bokyung; Lam, Christopher N.; Olsen, Bradley D.

    2014-01-01

    The use of ionic interactions to direct both protein templating and block copolymer self-assembly into nanopatterned films with only aqueous processing conditions is demonstrated using block copolymers containing both thermally responsive and pH responsive blocks. Controlled reversible addition-fragmentation chain-transfer (RAFT) polymerization is employed to synthesize poly(N-isopropylacrylamide-b-2-(dimethylamino)ethyl acrylate) (PNIPAM-b-PDMAEA) diblock copolymers. The pH-dependent ionic complexation between the fluorescent protein, mCherry, and the ionic PDMAEA block is established using dynamic light scattering (DLS) and UV-Vis spectroscopy. DLS shows that the size of the resulting coacervate micelles depends strongly on pH, while UV-Vis spectroscopy shows a correlation between the protein’s absorption maximum and the ionic microenvironment. Zeta potential measurements clearly indicate the ionic nature of the complex-forming interactions. Spin casting was used to prepare nanostructured films from the protein-block copolymer coacervates. After film formation, the lower critical solution temperature (LCST) of the PNIPAM blocks allows the nanomaterial to be effectively immobilized in aqueous environments at physiological temperatures, enabling potential use as a controlled protein release material or polymer matrix for protein immobilization. At pH 9.2 and 7.8, the release rates are at least 10 times faster than that at pH 6.4 due to weaker interaction between protein and PNIPAM-b-PDMAEA (PND) diblock copolymer. Due to the ionic environment in which protein is confined, the majority of the protein (80%) remains active, independent of pH, even after having been dehydrated in vacuum and confined in the films. PMID:24904186

  7. Nanopatterned Protein Films Directed by Ionic Complexation with Water-Soluble Diblock Copolymers.

    PubMed

    Kim, Bokyung; Lam, Christopher N; Olsen, Bradley D

    2012-06-12

    The use of ionic interactions to direct both protein templating and block copolymer self-assembly into nanopatterned films with only aqueous processing conditions is demonstrated using block copolymers containing both thermally responsive and pH responsive blocks. Controlled reversible addition-fragmentation chain-transfer (RAFT) polymerization is employed to synthesize poly(N-isopropylacrylamide-b-2-(dimethylamino)ethyl acrylate) (PNIPAM-b-PDMAEA) diblock copolymers. The pH-dependent ionic complexation between the fluorescent protein, mCherry, and the ionic PDMAEA block is established using dynamic light scattering (DLS) and UV-Vis spectroscopy. DLS shows that the size of the resulting coacervate micelles depends strongly on pH, while UV-Vis spectroscopy shows a correlation between the protein's absorption maximum and the ionic microenvironment. Zeta potential measurements clearly indicate the ionic nature of the complex-forming interactions. Spin casting was used to prepare nanostructured films from the protein-block copolymer coacervates. After film formation, the lower critical solution temperature (LCST) of the PNIPAM blocks allows the nanomaterial to be effectively immobilized in aqueous environments at physiological temperatures, enabling potential use as a controlled protein release material or polymer matrix for protein immobilization. At pH 9.2 and 7.8, the release rates are at least 10 times faster than that at pH 6.4 due to weaker interaction between protein and PNIPAM-b-PDMAEA (PND) diblock copolymer. Due to the ionic environment in which protein is confined, the majority of the protein (80%) remains active, independent of pH, even after having been dehydrated in vacuum and confined in the films. PMID:24904186

  8. Direct synthesis of inverse hexagonally ordered diblock copolymer/polyoxometalate nanocomposite films.

    PubMed

    Lunkenbein, Thomas; Kamperman, Marleen; Li, Zihui; Bojer, Carina; Drechsler, Markus; Förster, Stephan; Wiesner, Ulrich; Müller, Axel H E; Breu, Josef

    2012-08-01

    Nanostructured inverse hexagonal polyoxometalate composite films were cast directly from solution using poly(butadiene-block-2-(dimethylamino)ethyl methacrylate) (PB-b-PDMAEMA) diblock copolymers as structure directing agents for phosphomolybdic acid (H(3)[PMo(12)O(40)], H(3)PMo). H(3)PMo units are selectively incorporated into the PDMAEMA domains due to electrostatic interactions between protonated PDMAEMA and PMo(3-) anions. Long solvophilic PB chains stabilized the PDMAEMA/H(3)PMo aggregates in solution and reliably prevented macrophase separation. The choice of solvent is crucial. It appears that all three components, both blocks of the diblock copolymer as well as H(3)PMo, have to be soluble in the same solvent which turned out to be tetrahydrofuran, THF. Evaporation induced self-assembly resulted in highly ordered inverse hexagonal nanocomposite films as observed from transmission electron microscopy and small-angle X-ray scattering. This one-pot synthesis may represent a generally applicable strategy for integrating polyoxometalates into functional architectures and devices. PMID:22757978

  9. High-Performance Field-Effect Transistors Based on Polystyrene-b-Poly(3-hexylthiophene) Diblock Copolymers

    SciTech Connect

    Geohegan, David B; Sumpter, Bobby G; Hong, Kunlun; Xiao, Kai; Lavrik, Nickolay V; Yu, Xiang; Chen, Jihua

    2011-01-01

    Polystyrene-b-poly(3-hexylthiophene) (PS-b-P3HT) block copolymers with fixed PS block length have been synthesized by combined atom transfer radical polymerization (ATRP) and Grignard metathesis (GRIM) polymerization. The self-assembled structures of these diblock copolymer thin films based on PS-b-P3HT have been studied by TEM, SAED, GIXD, AFM, and additionally by first principles modeling and simulation. These block copolymers undergo microphase separation and form nanostructured spheres, lamellae, nanofibers, or nanoribbons in the films dictated by the molecular weight of the P3HT block. Within the diblock copolymer thin film, PS blocks segregate to form amorphous domains, and the covalently bonded conjugated P3HT blocks exist as highly ordered crystalline domains through intermolecular packing with their alkyl side chains aligned normal to the substrate while the thiophene rings align parallel to the substrate through stacking. The conjugated PS-b-P3HT block copolymers exhibited significant improvements in organic field-effect transistor (OFET) performance and environmental stability as compared to P3HT homopolymers, with up to a factor of 2 increase in measured mobility (0.08 cm2/(V 3 s)) for the P4 (85 wt % P3HT). Overall, this work demonstrates that the high degree of molecular order induced by block copolymer phase separation can improve the transport properties and stability of conjugating polymers, which are critical for high-performance OFETs and other organic electronics.

  10. The effect of particle size on the morphology and thermodynamics of diblock copolymer/tethered-particle membranes

    SciTech Connect

    Zhang, Bo; Edwards, Brian J.

    2015-06-07

    A combination of self-consistent field theory and density functional theory was used to examine the effect of particle size on the stable, 3-dimensional equilibrium morphologies formed by diblock copolymers with a tethered nanoparticle attached either between the two blocks or at the end of one of the blocks. Particle size was varied between one and four tenths of the radius of gyration of the diblock polymer chain for neutral particles as well as those either favoring or disfavoring segments of the copolymer blocks. Phase diagrams were constructed and analyzed in terms of thermodynamic diagrams to understand the physics associated with the molecular-level self-assembly processes. Typical morphologies were observed, such as lamellar, spheroidal, cylindrical, gyroidal, and perforated lamellar, with the primary concentration region of the tethered particles being influenced heavily by particle size and tethering location, strength of the particle-segment energetic interactions, chain length, and copolymer radius of gyration. The effect of the simulation box size on the observed morphology and system thermodynamics was also investigated, indicating possible effects of confinement upon the system self-assembly processes.

  11. The effect of particle size on the morphology and thermodynamics of diblock copolymer/tethered-particle membranes.

    PubMed

    Zhang, Bo; Edwards, Brian J

    2015-06-01

    A combination of self-consistent field theory and density functional theory was used to examine the effect of particle size on the stable, 3-dimensional equilibrium morphologies formed by diblock copolymers with a tethered nanoparticle attached either between the two blocks or at the end of one of the blocks. Particle size was varied between one and four tenths of the radius of gyration of the diblock polymer chain for neutral particles as well as those either favoring or disfavoring segments of the copolymer blocks. Phase diagrams were constructed and analyzed in terms of thermodynamic diagrams to understand the physics associated with the molecular-level self-assembly processes. Typical morphologies were observed, such as lamellar, spheroidal, cylindrical, gyroidal, and perforated lamellar, with the primary concentration region of the tethered particles being influenced heavily by particle size and tethering location, strength of the particle-segment energetic interactions, chain length, and copolymer radius of gyration. The effect of the simulation box size on the observed morphology and system thermodynamics was also investigated, indicating possible effects of confinement upon the system self-assembly processes.

  12. The effect of particle size on the morphology and thermodynamics of diblock copolymer/tethered-particle membranes

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Edwards, Brian J.

    2015-06-01

    A combination of self-consistent field theory and density functional theory was used to examine the effect of particle size on the stable, 3-dimensional equilibrium morphologies formed by diblock copolymers with a tethered nanoparticle attached either between the two blocks or at the end of one of the blocks. Particle size was varied between one and four tenths of the radius of gyration of the diblock polymer chain for neutral particles as well as those either favoring or disfavoring segments of the copolymer blocks. Phase diagrams were constructed and analyzed in terms of thermodynamic diagrams to understand the physics associated with the molecular-level self-assembly processes. Typical morphologies were observed, such as lamellar, spheroidal, cylindrical, gyroidal, and perforated lamellar, with the primary concentration region of the tethered particles being influenced heavily by particle size and tethering location, strength of the particle-segment energetic interactions, chain length, and copolymer radius of gyration. The effect of the simulation box size on the observed morphology and system thermodynamics was also investigated, indicating possible effects of confinement upon the system self-assembly processes.

  13. Thermoreversible Morphology and Conductivity of a Conjugated Polymer Network Embedded in Block Copolymer Self-Assemblies

    DOE PAGESBeta

    Han, Youngkyu; Carrillo, Jan-Michael Y.; Zhang, Zhe; Li, Yunchao; Hong, Kunlun; Sumpter, Bobby G.; Ohl, Michael; Paranthaman, Mariappan Parans; Smith, Gregory S.; Do, Changwoo

    2016-07-19

    Self-assembly of block copolymers provides numerous opportunities to create functional materials, utilizing self-assembled microdomains with a variety of morphology and periodic architectures as templates for functional nanofillers. Here new progress is reported toward the fabrication of thermally responsive and electrically conductive polymeric self-assemblies made from a water-soluble poly(thiophene) derivative with short poly(ethylene oxide) side chains and Pluronic L62 block copolymer solution in water. The structural and electrical properties of conjugated polymer-embedded self-assembled architectures are investigated by combining small-angle neutron and X-ray scattering, coarse-grained molecular dynamics simulations, and impedance spectroscopy. The L62 solution template organizes the conjugated polymers by stably incorporatingmore » them into the hydrophilic domains thus inhibiting aggregation. The changing morphology of L62 during the micellarto- lamellar phase transition defines the embedded conjugated polymer network. As a result, the conductivity is strongly coupled to the structural change of the templating L62 phase and exhibits thermally reversible behavior with no signs of quenching of the conductivity at high temperature. In conclusion, this study shows promise for enabling more flexibility in processing and utilizing water-soluble conjugated polymers in aqueous solutions for self-assembly based fabrication of stimuli-responsive nanostructures and sensory materials.« less

  14. Nanoparticle-directed self-assembly of amphiphilic block-copolymers

    NASA Astrophysics Data System (ADS)

    Park, So-Jung

    2011-03-01

    The self-assembly of nanoparticles and amphiphilic polymers provides a powerful tool for the fabrication of functional composite materials for a range of applications spanning from nanofabrication to medicine. Here, we present how the incorporation of nanoparticles affects the self-assembly behavior of amphiphilic block-copolymers and how to control the morphology of nanoparticle-encapsulating polymer assemblies. Based on the approach, we have prepared various types of well-defined nanoparticle-encapsulating polymeric nanostructures, including polymersomes packed with magnetic nanoparticles and unique cavity-like quantum dot assembles. We found that the incorporation of nanoparticles drastically affects the self-assembly structure of block-copolymers by modifying the relative volume ratio between the hydrophobic block and the hydrophilic block. In addition, the nanoparticle-polymer and nanoparticle-solvent interactions impact the arrangement and the hybridization of nanoparticles in polymer matrix. These findings should form the basis for the design rules of the self-assembly of nanoparticles and polymer amphiphiles, which will allow one to create new hybrid structures with predesigned morphology and properties. Furthermore, we demonstrated that the morphology of nanoparticle-encapsulating polymer assemblies significantly affects their properties such as magnetic relaxation properties, underscoring the importance of the overall self-assembly structure and the nanoparticle arrangement in polymer matrixes. This work was supported by the NSF career award, the ARO young investigator award, and the MRSEC seed award (University of Pennsylvania).

  15. Block Copolymer Directed Self-Assembly Approaches for Doping Planar and Non-Planar Semiconductors

    NASA Astrophysics Data System (ADS)

    Popere, Bhooshan; Russ, Boris; Heitsch, Andrew; Trefonas, Peter; Segalman, Rachel

    As electronic circuits continue to shrink, reliable nanoscale doping of functional devices presents new challenges. While directed self-assembly (DSA) of block copolymers (BCPs) has enabled excellent pitch control for lithography, controlling the 3D dopant distribution remains a fundamental challenge. To this end, we have developed a BCP self-assembly approach to confine dopants to nanoscopic domains within a semiconductor. This relies on the supramolecular encapsulation of the dopants within the core of the block copolymer (PS- b-P4VP) micelles, self-assembly of these micelles on the substrate, followed by rapid thermal diffusion of the dopants into the underlying substrate. We show that the periodic nature of the BCP domains enables precise control over the dosage and spatial position of dopant atoms on the technologically relevant length scales (10-100 nm). Additionally, as the lateral density of 2D circuit elements approaches the Moore's limit, novel 3D architectures have emerged. We have utilized our BCP self-assembly approach towards understanding the self-assembly our micelles directed by such nanoscale non-planar features. We show that the geometric confinement imposed by the hard feature walls directs the assembly of these micelles.

  16. Directed Self-Assembly of Triblock Copolymer on Chemical Patterns for Sub-10-nm Nanofabrication via Solvent Annealing.

    PubMed

    Xiong, Shisheng; Wan, Lei; Ishida, Yoshihito; Chapuis, Yves-Andre; Craig, Gordon S W; Ruiz, Ricardo; Nealey, Paul F

    2016-08-23

    Directed self-assembly (DSA) of block copolymers (BCPs) is a leading strategy to pattern at sublithographic resolution in the technology roadmap for semiconductors and is the only known solution to fabricate nanoimprint templates for the production of bit pattern media. While great progress has been made to implement block copolymer lithography with features in the range of 10-20 nm, patterning solutions below 10 nm are still not mature. Many BCP systems self-assemble at this length scale, but challenges remain in simultaneously tuning the interfacial energy atop the film to control the orientation of BCP domains, designing materials, templates, and processes for ultra-high-density DSA, and establishing a robust pattern transfer strategy. Among the various solutions to achieve domains that are perpendicular to the substrate, solvent annealing is advantageous because it is a versatile method that can be applied to a diversity of materials. Here we report a DSA process based on chemical contrast templates and solvent annealing to fabricate 8 nm features on a 16 nm pitch. To make this possible, a number of innovations were brought in concert with a common platform: (1) assembling the BCP in the phase-separated, solvated state, (2) identifying a larger process window for solvated triblock vs diblock BCPs as a function of solvent volume fraction, (3) employing templates for sub-10-nm BCP systems accessible by lithography, and (4) integrating a robust pattern transfer strategy by vapor infiltration of organometallic precursors for selective metal oxide synthesis to prepare an inorganic hard mask. PMID:27482932

  17. Self-Assembled Antimicrobial and biocompatible copolymer films on Titanium

    PubMed Central

    Pfaffenroth, Cornelia; Winkel, Andreas; Dempwolf, Wibke; Gamble, Lara J.; Castner, David G.; Stiesch, Meike; Menzel, Henning

    2013-01-01

    Biofilm formation on biomedical devices such as dental implants can result in serious infections and finally in device failure. Polymer coatings which provide antimicrobial action to surfaces without compromising the compatibility with human tissue are of great interest. Copolymers of 4-vinyl-N-hexylpyridinium bromide and dimethyl(2-methacryloyloxyethyl) phosphonate are interesting candidates in this respect. These copolymers form ultrathin polycationic layers on titanium surfaces. As the copolymerization reaction is almost ideal statistical, copolymers with varying compositions can be synthesized and immobilized onto titanium surfaces for comprehensive screening concerning antimicrobial activity and biocompatibility. Copolymer films on titanium were characterized by contact angle measurements, ellipsometry and X-ray photoelectron spectroscopy. Antibacterial properties were assessed by investigation of adherence of S. mutans which represents a strain found in the human oral cavity. Biocompatibility was rated based on human gingival fibroblast adhesion, proliferation and cell morphology. Depending on polymer composition the coatings displayed a behavior ranging from biocompatibility equal to titanium but no antibacterial action to highly antimicrobial activity but poor biocompatibility. By balancing these two opposing effects by tailoring chemical composition, copolymer coatings were fabricated, which were able to inhibit the growth of S. mutans on the surface significantly but still show a sufficient attachment of gingival fibroblasts. PMID:21818855

  18. Periodic nanostructures from self assembled wedge-type block-copolymers

    DOEpatents

    Xia, Yan; Sveinbjornsson, Benjamin R.; Grubbs, Robert H.; Weitekamp, Raymond; Miyake, Garret M.; Piunova, Victoria; Daeffler, Christopher Scot

    2015-06-02

    The invention provides a class of wedge-type block copolymers having a plurality of chemically different blocks, at least a portion of which incorporates a wedge group-containing block providing useful properties. For example, use of one or more wedge group-containing blocks in some block copolymers of the invention significantly inhibits chain entanglement and, thus, the present block copolymers materials provide a class of polymer materials capable of efficient molecular self-assembly to generate a range of structures, such as periodic nanostructures and microstructures. Materials of the present invention include copolymers having one or more wedge group-containing blocks, and optionally for some applications copolymers also incorporating one or more polymer side group-containing blocks. The present invention also provides useful methods of making and using wedge-type block copolymers.

  19. Selective directed self-assembly of coexisting morphologies using block copolymer blends

    NASA Astrophysics Data System (ADS)

    Stein, A.; Wright, G.; Yager, K. G.; Doerk, G. S.; Black, C. T.

    2016-08-01

    Directed self-assembly (DSA) of block copolymers is an emergent technique for nano-lithography, but is limited in the range of structures possible in a single fabrication step. Here we expand on traditional DSA chemical patterning. A blend of lamellar- and cylinder-forming block copolymers assembles on specially designed surface chemical line gratings, leading to the simultaneous formation of coexisting ordered morphologies in separate areas of the substrate. The competing energetics of polymer chain distortions and chemical mismatch with the substrate grating bias the system towards either line/space or dot array patterns, depending on the pitch and linewidth of the prepattern. This is in contrast to the typical DSA, wherein assembly of a single-component block copolymer on chemical templates generates patterns of either lines/spaces (lamellar) or hexagonal dot arrays (cylinders). In our approach, the chemical template encodes desired local spatial arrangements of coexisting design motifs, self-assembled from a single, sophisticated resist.

  20. Liquid-crystalline ordering helps block copolymer self-assembly.

    PubMed

    Yu, Haifeng; Kobayashi, Takaomi; Yang, Huai

    2011-08-01

    Interaction between liquid-crystalline elastic deformation and microphase separation in liquid-crystalline block copolymers enables them to supramolecularly assemble into ordered nanostructures with high regularity. With the help of liquid-crystalline alignment, parallel and perpendicular patterning of nanostructures is fabricated with excellent reproducibility and mass production, which provides nanotemplates and nanofabrication processes for preparing varieties of nanomaterials. Furthermore, nanoscale microphase separation improves the optical performance of block-copolymer fi lms by eliminating the scattering of visible light, leading to advanced applications in optical devices and actuators. Recent progress in liquid-crystalline block copolymers, including their phase diagram, structure-property relationship, nanostructure control and nanotemplate applications, is reviewed. PMID:21910267

  1. Nanostructured diblock copolymer films with embedded magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Xia, Xin; Metwalli, Ezzeldin; Ruderer, Matthias A.; Körstgens, Volker; Busch, Peter; Böni, Peter; Müller-Buschbaum, Peter

    2011-06-01

    Nanostructured diblock copolymer films with embedded magnetic nanoparticles are prepared by solution casting. The diblock copolymer polystyrene-block-polymethylmethacrylate with a fully deuterated polystyrene block of a weight ratio of 0.22 is used as a structure-directing matrix. Maghemite nanoparticles (γ-Fe2O3) are coated with polystyrene and thus have a selective affinity to the minority block of the diblock copolymer. The hybrid film morphology is investigated as a function of nanoparticle concentration. The surface structure is probed with atomic force microscopy and scanning electron microscopy. The inner film structure and the structure at the polymer-substrate interface are detected with grazing incidence small angle neutron scattering (GISANS). Irrespective of the nanoparticle concentration a well developed micro-phase separation structure is present. From the Bragg peaks observed in the GISANS data a linear nanoparticle concentration dependence of the inter-domain spacing of the micro-phase separation structure is determined. The superparamagnetic and blocking behavior can be explained with a generalized Stoner-Wohlfarth-Néel theory which includes either an elastic torque being exerted on the nanoparticles by the field or a broad distribution of anisotropy constants.

  2. Sequential Block Copolymer Self-Assemblies Controlled by Metal-Ligand Stoichiometry.

    PubMed

    Yin, Liyuan; Wu, Hongwei; Zhu, Mingjie; Zou, Qi; Yan, Qiang; Zhu, Liangliang

    2016-06-28

    While numerous efforts have been devoted to developing easy-to-use probes based on block copolymers for detecting analytes due to their advantages in the fields of self-assembly and sensing, a progressive response on block copolymers in response to a continuing chemical event is not readily achievable. Herein, we report the self-assembly of a 4-piperazinyl-1,8-naphthalimide based functional block copolymer (PS-b-PN), whose self-assembly and photophysics can be controlled by the stoichiometry-dependent metal-ligand interaction upon the side chain. The work takes advantages of (1) stoichiometry-controlled coordination-structural transformation of the piperazinyl moiety on PS-b-PN toward Fe(3+) ions, thereby resulting in a shrinkage-expansion conversion of the self-assembled nanostructures in solution as well as in thin film, and (2) stoichiometry-controlled competition between photoinduced electron transfer and spin-orbital coupling process upon naphthalimide fluorophore leading to a boost-decline emission change of the system. Except Fe(3+) ions, such a stoichiometry-dependent returnable property cannot be observed in the presence of other transition ions. The strategy for realizing the dual-channel sequential response on the basis of the progressively alterable nanomorphologies and emissions might provide deeper insights for the further development of advanced polymeric sensors.

  3. Sequential Block Copolymer Self-Assemblies Controlled by Metal-Ligand Stoichiometry.

    PubMed

    Yin, Liyuan; Wu, Hongwei; Zhu, Mingjie; Zou, Qi; Yan, Qiang; Zhu, Liangliang

    2016-06-28

    While numerous efforts have been devoted to developing easy-to-use probes based on block copolymers for detecting analytes due to their advantages in the fields of self-assembly and sensing, a progressive response on block copolymers in response to a continuing chemical event is not readily achievable. Herein, we report the self-assembly of a 4-piperazinyl-1,8-naphthalimide based functional block copolymer (PS-b-PN), whose self-assembly and photophysics can be controlled by the stoichiometry-dependent metal-ligand interaction upon the side chain. The work takes advantages of (1) stoichiometry-controlled coordination-structural transformation of the piperazinyl moiety on PS-b-PN toward Fe(3+) ions, thereby resulting in a shrinkage-expansion conversion of the self-assembled nanostructures in solution as well as in thin film, and (2) stoichiometry-controlled competition between photoinduced electron transfer and spin-orbital coupling process upon naphthalimide fluorophore leading to a boost-decline emission change of the system. Except Fe(3+) ions, such a stoichiometry-dependent returnable property cannot be observed in the presence of other transition ions. The strategy for realizing the dual-channel sequential response on the basis of the progressively alterable nanomorphologies and emissions might provide deeper insights for the further development of advanced polymeric sensors. PMID:27275516

  4. Poly(trimethylene carbonate)/Poly(malic acid) Amphiphilic Diblock Copolymers as Biocompatible Nanoparticles.

    PubMed

    Barouti, Ghislaine; Khalil, Ali; Orione, Clement; Jarnouen, Kathleen; Cammas-Marion, Sandrine; Loyer, Pascal; Guillaume, Sophie M

    2016-02-18

    Amphiphilic polycarbonate-poly(hydroxyalkanoate) diblock copolymers, namely, poly(trimethylene carbonate) (PTMC)-b-poly(β-malic acid) (PMLA), are reported for the first time. The synthetic strategy relies on commercially available catalysts and initiator. The controlled ring-opening polymerization (ROP) of trimethylene carbonate (TMC) catalyzed by the organic guanidine base 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD), associated with iPrOH as an initiator, provided iPrO-PTMC-OH, which served as a macroinitiator in the controlled ROP of benzyl β-malolactonate (MLABe) catalyzed by the neodymium triflate salt (Nd(OTf)3). The resulting hydrophobic iPrO-PTMC-b-PMLABe-OH copolymers were then hydrogenolyzed into the parent iPrO-PTMC-b-PMLA-OH copolymers. A range of well-defined copolymers, featuring different sizes of segments (Mn,NMR up to 9300 g mol(-1) ; ÐM =1.28-1.40), were thus isolated in gram quantities, as evidenced by NMR spectroscopy, size exclusion chromatography, thermogravimetric analysis, differential scanning calorimetry, and contact angle analyses. Subsequently, PTMC-b-PMLA copolymers with different hydrophilic weight fractions (11-75 %) self-assembled in phosphate-buffered saline upon nanoprecipitation into well-defined nano-objects with Dh =61-176 nm, a polydispersity index <0.25, and a negative surface charge, as characterized by dynamic light scattering and zeta-potential analyses. In addition, these nanoparticles demonstrated no significant effect on cell viability at low concentrations, and a very low cytotoxicity at high concentrations only for PTMC-b-PMLA copolymers exhibiting hydrophilic fractions over 47 %, thus illustrating the potential of these copolymers as promising nanoparticles.

  5. Micelles and polymersomes obtained by self-assembly of dextran and polystyrene based block copolymers.

    PubMed

    Houga, Clément; Giermanska, Joanna; Lecommandoux, Sébastien; Borsali, Redouane; Taton, Daniel; Gnanou, Yves; Le Meins, Jean-François

    2009-01-12

    The self-assembly of dextran-block-polystyrene (dex-b-PS) block copolymers was investigated in solution. The hydrophobic PS weight fraction in these block copolymers ranges from 7 to 92% w/w, whereas the average number molar mass of dextran was kept constant at 6600 gmol(-1). Self-assembly by direct dissolution in water could be performed only for block copolymers with a low hydrophobic content (7% w/w), whereas mixtures of tetrahydrofuran and dimethylsulfoxide were required for higher PS content, before transferring the structures into water. Core-shell micelles, ovoïds, and vesicles could be identified upon characterization by light and neutrons scattering, atomic force microscopy, and transmission electron microscopy. Most of the morphologies observed were not expected considering the chemical composition of the block copolymers. Finally, the size and shape of these nanoparticles were fixed upon cross-linking the dextran block through reaction of the hydroxyl groups with divinylsulfone. The role of the dextran conformation on the self-assembly process is discussed.

  6. Terminal groups control self-assembly of amphiphilic block copolymers in solution.

    PubMed

    Grzelakowski, M; Kita-Tokarczyk, K

    2016-03-28

    The terminal groups of amphiphilic block copolymers are shown to control macromolecular self-assembly in aqueous solutions, in the micellar/lamellar region of the phase diagram. At the same concentration and using the same self-assembly conditions, dramatic differences are observed in polymer hydration and the resulting nano-/microstructure for two series of polymers with identical block chemistry and hydrophilic-lipophilic balance (HLB). This suggests a strong contribution from end groups to the hydration as the initial step of the self-assembly process, and could be conveniently used to guide the particle morphology and size. Additionally, for polymers with those head groups which drive vesicular structures, differences in membrane organization affect their physical properties, such as permeability. PMID:26948963

  7. Terminal groups control self-assembly of amphiphilic block copolymers in solution

    NASA Astrophysics Data System (ADS)

    Grzelakowski, M.; Kita-Tokarczyk, K.

    2016-03-01

    The terminal groups of amphiphilic block copolymers are shown to control macromolecular self-assembly in aqueous solutions, in the micellar/lamellar region of the phase diagram. At the same concentration and using the same self-assembly conditions, dramatic differences are observed in polymer hydration and the resulting nano-/microstructure for two series of polymers with identical block chemistry and hydrophilic-lipophilic balance (HLB). This suggests a strong contribution from end groups to the hydration as the initial step of the self-assembly process, and could be conveniently used to guide the particle morphology and size. Additionally, for polymers with those head groups which drive vesicular structures, differences in membrane organization affect their physical properties, such as permeability.The terminal groups of amphiphilic block copolymers are shown to control macromolecular self-assembly in aqueous solutions, in the micellar/lamellar region of the phase diagram. At the same concentration and using the same self-assembly conditions, dramatic differences are observed in polymer hydration and the resulting nano-/microstructure for two series of polymers with identical block chemistry and hydrophilic-lipophilic balance (HLB). This suggests a strong contribution from end groups to the hydration as the initial step of the self-assembly process, and could be conveniently used to guide the particle morphology and size. Additionally, for polymers with those head groups which drive vesicular structures, differences in membrane organization affect their physical properties, such as permeability. Electronic supplementary information (ESI) available: Fig. S1: Particle diameters for hydrated NH2-ABA-NH2 polymers with different degrees of functionalization; Fig. S2: TEM characterization of compound micelles from BA-OH polymer after extrusion; Fig. S3: Cryo-TEM and stopped flow characterization of lipid vesicles; Fig. S4 and S5: NMR spectra for ABA and BA polymers

  8. Controlled self-assembly of conjugated rod-coil block copolymers for applications in organic optoelectronics

    NASA Astrophysics Data System (ADS)

    Tao, Yuefei

    Organic electronics are of great interest in manufacturing light weight, mechanical flexible, and inexpensive large area devices. While significant improvements have been made over the last several years and it is now clear that morphology on the lengthscale of exciton diffusion (10nm) is of crucial importance, a clear relationship between structure and device properties has not emerged. This lack of understanding largely emerges from an inability to control morphology on this lengthscale. This thesis will center around an approach, based on block copolymer self-assembly, to generate equilibrium nanostructures on the 10 nm lengthscale of exciton diffusion and study their effects on device performance. Self-assembly of semiconducting block copolymers is complicated by the non-classical chain shape of conjugated polymers. Unlike classical polymers, the chains do not assume a Gaussian coil shape which is stretched near block copolymer interfaces, instead the chains are elongated and liquid crystalline. Previous work has demonstrated how these new molecular interactions and shapes control the phase diagram of so-called rod-coil block copolymers. Here, we will focus on controlling domain size, orientation, and chemical structure. While domain size can be controlled directly through molecular weight, this requires significant additional synthesis of domain size is to be varied. Here, the domain size is controlled by blending homopolymers into a self-assembling rod-coil block copolymer. When coil-like blocks are incorporated, the domains swell, as expected. When rod-like blocks are incorporated, they interdigitate with the rods of the block copolymers. This results in an increase in interfacial area which forces the coils to rearrange and an overall decrease in domain size with increasing rod content. Control over lamellar orientation is crucial in order to design and control charge transport pathways and exciton recombination or separation interfaces. While numerous

  9. Coil fraction-dependent phase behaviour of a model globular protein–polymer diblock copolymer

    SciTech Connect

    Thomas, Carla S.; Olsen, Bradley D.

    2014-01-01

    The self-assembly of the model globular protein–polymer block copolymer mCherry-b-poly(N-isopropyl acrylamide) is explored across a range of polymer coil fractions from 0.21 to 0.82 to produce a phase diagram for these materials as a function of molecular composition. Overall, four types of morphologies were observed: hexagonally packed cylinders, perforated lamellae, lamellae, and disordered nanostructures. Across all coil fractions and morphologies, a lyotropic re-entrant order–disorder transition in water was observed, with disordered structures below 30 wt% and above 70 wt% and well-ordered morphologies at intermediate concentrations. Solid state samples prepared by solvent evaporation show moderately ordered structures similar to those observed in 60 wt% solutions, suggesting that bulk structures result from kinetic trapping of morphologies which appear at lower concentrations. While highly ordered cylindrical nanostructures are observed around a bioconjugate polymer volume fraction of 0.3 and well-ordered lamellae are seen near a volume fraction of 0.6, materials at lower or higher coil fractions become increasingly disordered. Notable differences between the phase behaviour of globular protein–polymer block copolymers and coil–coil diblock copolymers include the lack of spherical nanostructures at either high or low polymer coil fractions as well as shifted phase boundaries between morphologies which result in an asymmetric phase diagram.

  10. Coil fraction-dependent phase behaviour of a model globular protein-polymer diblock copolymer.

    PubMed

    Thomas, Carla S; Olsen, Bradley D

    2014-05-01

    The self-assembly of the model globular protein-polymer block copolymer mCherry-b-poly(N-isopropyl acrylamide) is explored across a range of polymer coil fractions from 0.21 to 0.82 to produce a phase diagram for these materials as a function of molecular composition. Overall, four types of morphologies were observed: hexagonally packed cylinders, perforated lamellae, lamellae, and disordered nanostructures. Across all coil fractions and morphologies, a lyotropic re-entrant order-disorder transition in water was observed, with disordered structures below 30 wt% and above 70 wt% and well-ordered morphologies at intermediate concentrations. Solid state samples prepared by solvent evaporation show moderately ordered structures similar to those observed in 60 wt% solutions, suggesting that bulk structures result from kinetic trapping of morphologies which appear at lower concentrations. While highly ordered cylindrical nanostructures are observed around a bioconjugate polymer volume fraction of 0.3 and well-ordered lamellae are seen near a volume fraction of 0.6, materials at lower or higher coil fractions become increasingly disordered. Notable differences between the phase behaviour of globular protein-polymer block copolymers and coil-coil diblock copolymers include the lack of spherical nanostructures at either high or low polymer coil fractions as well as shifted phase boundaries between morphologies which result in an asymmetric phase diagram. PMID:24695642

  11. Laser Writing Block Copolymer Self-Assembly on Graphene Light-Absorbing Layer.

    PubMed

    Jin, Hyeong Min; Lee, Seung Hyun; Kim, Ju Young; Son, Seung-Woo; Kim, Bong Hoon; Lee, Hwan Keon; Mun, Jeong Ho; Cha, Seung Keun; Kim, Jun Soo; Nealey, Paul F; Lee, Keon Jae; Kim, Sang Ouk

    2016-03-22

    Recent advance of high-power laser processing allows for rapid, continuous, area-selective material fabrication, typically represented by laser crystallization of silicon or oxides for display applications. Two-dimensional materials such as graphene exhibit remarkable physical properties and are under intensive development for the manufacture of flexible devices. Here we demonstrate an area-selective ultrafast nanofabrication method using low intensity infrared or visible laser irradiation to direct the self-assembly of block copolymer films into highly ordered manufacturing-relevant architectures at the scale below 12 nm. The fundamental principles underlying this light-induced nanofabrication mechanism include the self-assembly of block copolymers to proceed across the disorder-order transition under large thermal gradients, and the use of chemically modified graphene films as a flexible and conformal light-absorbing layers for transparent, nonplanar, and mechanically flexible surfaces. PMID:26871736

  12. Laser Writing Block Copolymer Self-Assembly on Graphene Light-Absorbing Layer.

    PubMed

    Jin, Hyeong Min; Lee, Seung Hyun; Kim, Ju Young; Son, Seung-Woo; Kim, Bong Hoon; Lee, Hwan Keon; Mun, Jeong Ho; Cha, Seung Keun; Kim, Jun Soo; Nealey, Paul F; Lee, Keon Jae; Kim, Sang Ouk

    2016-03-22

    Recent advance of high-power laser processing allows for rapid, continuous, area-selective material fabrication, typically represented by laser crystallization of silicon or oxides for display applications. Two-dimensional materials such as graphene exhibit remarkable physical properties and are under intensive development for the manufacture of flexible devices. Here we demonstrate an area-selective ultrafast nanofabrication method using low intensity infrared or visible laser irradiation to direct the self-assembly of block copolymer films into highly ordered manufacturing-relevant architectures at the scale below 12 nm. The fundamental principles underlying this light-induced nanofabrication mechanism include the self-assembly of block copolymers to proceed across the disorder-order transition under large thermal gradients, and the use of chemically modified graphene films as a flexible and conformal light-absorbing layers for transparent, nonplanar, and mechanically flexible surfaces.

  13. Synthesis of amphiphilic diblock copolymer for surface modification of Ethylene-Norbornene Copolymers

    NASA Astrophysics Data System (ADS)

    Levinsen, Simon; Svendsen, Winnie Edith; Horsewell, Andy; Almdal, Kristoffer

    2014-03-01

    The aim of this work is to produce polymer modifiers in order to develop hydrophilic polymeric surfaces for use in microfluidics. The use of hydrophilic polymers in microfluidics will have many advantages e.g. preventing protein absorbance. Here we present an amphiphilic diblock copolymer consisting of a bulk material compatible block and a hydrophilic block. To utilize the possibility of incorporating diblock copolymers into ethylene-norbornene copolymers, we have in this work developed a model poly(ethylene-1-butene) polymer compatible with the commercial available ethylene-norbornene copolymer TOPAS. Through matching of the radius of gyration for the model polymer and TOPAS the miscibility was achieved. The poly(ethylene-1-butene) polymer was synthesized from a hydrogenated anionic polymerized polybutadiene polymer. As hydrophilic block poly(ethylene oxide) was subsequently added also with anionic polymerization. Recent miscibility results between the model polymer and TOPAS will be presented, as well ongoing efforts to study the hydrophilic surface.

  14. In-Plane Ordering in Diblock Copolymer Brushes.

    NASA Astrophysics Data System (ADS)

    Akgun, Bulent; Ugur, Gokce; Brittain, William J.; Foster, Mark D.; Li, Xuefa; Wang, Jin

    2007-03-01

    Internal and surface structures of polystyrene-b-polyacrylate and polyacrylate-b-polystyrene diblock copolymer brushes have been studied using grazing-incidence small-angle X-ray scattering (GISAXS) and atomic force microscopy (AFM). Each asymmetric, as-deposited diblock brush that contains a poly(methyl acrylate) (PMA) block shows an in-plane structure with a spacing comparable to the PMA layer thickness. The correlation length of the in-plane ordering is about the nearest neighbor distance and grows with annealing at 180^o C. After a brush is treated with a solvent selective for the bottom block, Bragg rods appear in the GISAXS pattern. The lateral spacing corresponding to the Bragg rods is on the order of the brush total thickness. This lateral correlation is also detected by power spectral density analysis of AFM images of the samples' surfaces. The Bragg rods disappear upon heating to 80^o C.

  15. Self-assembly of miktoarm star-like ABn block copolymers: from wet to dry brushes.

    PubMed

    Xu, Yuci; Wang, Chao; Zhong, Shuo; Li, Weihua; Lin, Zhiqun

    2015-03-10

    Self-assembly of miktoarm star-like ABn block copolymer in both selective solvent (A- or B-selective) and miscible homopolymer matrix (A or B homopolymer), that is, formation of micelles, was for the first time investigated by theoretical calculations based on self-consistent mean field theory. Interestingly, the calculation revealed that the size of micelles in solvent was smaller than that in homopolymer under the same conditions. In B-selective solvent, with increasing number of B blocks n in miktoarm star-like ABn block copolymer at a fixed volume fraction of A block, the micellar size decreased gradually. In stark contrast, when miktoarm star-like ABn block copolymer dissolved in B homopolymer matrix at molecular weight ratio of B homopolymer to ABn block copolymer fH = 0.30, the overall micellar size decreased nonmonotonically as the number of B blocks n in ABn block copolymer increased. The largest micelle was formed in AB2 (i.e., n = 2). This intriguing finding can be attributed to a wet-to-dry brush transition that occurred from n = 1 to n = 2 in the micellization of miktoarm star-like ABn block copolymer. Moreover, the micellization behaviors of miktoarm star-like ABn block copolymer in A-selective solvent and A homopolymer matrix were also explored, where the overall micellar size in both scenarios was found to decrease monotonically as n in ABn block copolymer increased. These self-assembled nanostructures composed of miktoarm star-like ABn block copolymers may promise a wide range of applications in size-dependent drug delivery and bionanotechnology.

  16. Asymmetrical Self-assembly From Fluorinated and Sulfonated Block Copolymers in Aqueous Media

    SciTech Connect

    Wang, Xiaojun; Hong, Kunlun; Baskaran, Durairaj; Goswami, Monojoy; Sumpter, Bobby G; Mays, Jimmy

    2011-01-01

    Block copolymers of fluorinated isoprene and partially sulfonated styrene form novel tapered rods and ribbon-like micelles in aqueous media due to a distribution of sulfonation sites and a large Flory-Huggins interaction parameter. A combination of microscopy, light scattering, and simulation demonstrates the presence of these unique nanostructures. This study sheds light on the micellization behavior of amphiphilic block polymers by revealing a new mechanism of self-assembly.

  17. Synthesis and Characterization of Stimuli Responsive Block Copolymers, Self-Assembly Behavior and Applications

    SciTech Connect

    Determan, Michael Duane

    2005-12-17

    The central theme of this thesis work is to develop new block copolymer materials for biomedical applications. While there are many reports of stimuli-responsive amphiphilic [19-21] and crosslinked hydrogel materials [22], the development of an in situ gel forming, pH responsive pentablock copolymer is a novel contribution to the field, Figure 1.1 is a sketch of an ABCBA pentablock copolymer. The A blocks are cationic tertiary amine methacrylates blocked to a central Pluronic F127 triblock copolymer. In addition to the prerequisite synthetic and macromolecular characterization of these new materials, the self-assembled supramolecular structures formed by the pentablock were experimentally evaluated. This synthesis and characterization process serves to elucidate the important structure property relationships of these novel materials, The pH and temperature responsive behavior of the pentablock copolymer were explored especially with consideration towards injectable drug delivery applications. Future synthesis work will focus on enhancing and tuning the cell specific targeting of DNA/pentablock copolymer polyplexes. The specific goals of this research are: (1) Develop a synthetic route for gel forming pentablock block copolymers with pH and temperature sensitive properties. Synthesis of these novel copolymers is accomplished with ATRP, yielding low polydispersity and control of the block copolymer architecture. Well defined macromolecular characteristics are required to tailor the phase behavior of these materials. (2) Characterize relationship between the size and shape of pentablock copolymer micelles and gel structure and the pH and temperature of the copolymer solutions with SAXS, SANS and CryoTEM. (3) Evaluate the temperature and pH induced phase separation and macroscopic self-assembly phenomenon of the pentablock copolymer. (4) Utilize the knowledge gained from first three goals to design and formulate drug delivery formulations based on the multi

  18. Synthesis and Self-Assembly of Rod2Coil Miktoarm Star Copolymers of Poly(3-dodecxylthiophene) and Poly(methyl methacrylate) with high rod fractions

    NASA Astrophysics Data System (ADS)

    Park, Jicheol; Moon, Hong Chul; Choi, Chung-Royng; Kim, Jin Kon

    2015-03-01

    Poly(3-dodecylthiophene)-b-poly(methyl methacrylate) diblock copolymer (P3DDT- b-PMMA) can self-assembled into various microdomains such as spheres, cylinders, and lamellae depending on weight fraction of P3DDT. However, only filbril morphology was formed when weight fraction of P3DDT (wP 3 DDT) was major (wP 3 DDT ~ 0.76). Here, we introduce a new approach to obtain microdomain structures even at high wP 3 DDT by using well-defined A2B miktoarm star copolymer composed of P3DDT and PMMA ((P3DDT)2PMMA. We found via small angle X-ray scattering and transmission electron microscopy that (P3DDT)2PMMA showed PMMA cylinder packed hexagonally in the matrix of P3DDT and body-centered-cubic spheres of PMMA for wP 3 DDT of 0.66 and 0.75, respectively. This because of much reduction of the rod-rod interaction in (P3DDT)2PMMA compared with P3DDT- b-PMMA diblock copolymers.

  19. Simulating the morphology and mechanical properties of filled diblock copolymers.

    PubMed

    Buxton, Gavin A; Balazs, Anna C

    2003-03-01

    We couple a morphological study of a mixture of diblock copolymers and spherical nanoparticles with a micromechanical simulation to determine how the spatial distribution of the particles affects the mechanical behavior of the composite. The morphological studies are conducted through a hybrid technique, which combines a Cahn-Hilliard (CH) theory for the diblocks and a Brownian dynamics (BD) for the particles. Through these "CH-BD" calculations, we obtain the late-stage morphology of the diblock-particle mixtures. The output of this CH-BD model serves as the input to the lattice spring model (LSM), which consists of a three-dimensional network of springs. In particular, the location of the different phases is mapped onto the LSM lattice and the appropriate force constants are assigned to the LSM bonds. A stress is applied to the LSM lattice, and we calculate the local strain fields and overall elastic response of the material. We find that the confinement of nanoparticles within a given domain of a bicontinous diblock mesophase causes the particles to percolate and form essentially a rigid backbone throughout the material. This continuous distribution of fillers significantly increases the reinforcement efficiency of the nanoparticles and dramatically increases the Young's modulus of the material. By integrating the morphological and mechanical models, we can isolate how modifications in physical characteristics of the particles and diblocks affect both the structure of the mixture and the macroscopic behavior of the composite. Thus, we can establish how choices made in the components affect the ultimate performance of the material.

  20. Morphology of diblock copolymers under confinement

    NASA Astrophysics Data System (ADS)

    Ackerman, David; Ganapathysubramanian, Baskar

    The structure adopted by polymer chains is of particular intrest for materials design. In particular, a great deal of effort has been made to study diblock polymers due to the importance they have in industrial applications. The bulk structure of most systems has been the most widely studied. However, when under the effect of confinement, the polymer chains are forced to adopt structures differing from the familiar bulk phases. As many applications utilize polymers in sizes and shapes that lead to these non bulk structures, the confinement effects are important. A commonly used tool for computationally determining structures is the continuum self consistant field theory (SCFT). We discuss our highly scalable parallel framework for SCFT using real space methods (finite element) that is especially well suited to modelling complex geometries. This framework is capable of modeling both Gaussian and worm like chains. We illustate the use of the software framework in determining structures under varying degrees of confinement. We detail the method used and present selected results from a systematic study of confinement using arbitrary structures.

  1. Temperature and anion responsive self-assembly of ionic liquid block copolymers coating gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Junbo; Zhao, Jianlong; Wu, Wenlan; Liang, Ju; Guo, Jinwu; Zhou, Huiyun; Liang, Lijuan

    2016-06-01

    In this paper, double hydrophilic ionic liquid block copolymers (ILBCs), poly poly[1-methyl-3-(2-methacryloyloxy propylimidazolium bromine)]- block-(N-isopropylacrylamide) (PMMPImB- b-PNIPAAm) was first synthesized by reversible additionfragmentation chain transfer (RAFT) and then attached on the surface of gold nanoparticles (Au NPs) via a strong gold-sulfur bonding for preparing hybrid nanoparticles (PMMPImB- b-PNIPAAm-@-Au NPs). The hybrid NPs had a three layers micelle-like structure, including a gold core, thermo-responsive inner shell and anion responsive outer corona. The self-assembling behavior of thermal- and anion-response from shell and corona were respectively investigated by change of temperature and addition of (CF3SO2)2N-. The results showed the hybrid NPs retained a stable dispersion beyond the lower critical solution temperature (LCST) because of the space or electrostatic protecting by outer PMMPImB. However, with increasing concentration of (CF3SO2)2N-, the micellization of self-assembling PMMPImB- b-PNIPAAm-@-Au NPs was induced to form micellar structure containing the core with hydrophobic PMMPImB-(CF3SO2)2N- surrounded by composite shell of Au NPs-PNIPAAm via the anionresponsive properties of ILBCs. These results indicated that the block copolymers protected plasmonic nanoparticles remain self-assembling properties of block copolymers when phase transition from outer corona polymer.

  2. Graded porous inorganic materials derived from self-assembled block copolymer templates

    NASA Astrophysics Data System (ADS)

    Gu, Yibei; Werner, Jörg G.; Dorin, Rachel M.; Robbins, Spencer W.; Wiesner, Ulrich

    2015-03-01

    Graded porous inorganic materials directed by macromolecular self-assembly are expected to offer unique structural platforms relative to conventional porous inorganic materials. Their preparation to date remains a challenge, however, based on the sparsity of viable synthetic self-assembly pathways to control structural asymmetry. Here we demonstrate the fabrication of graded porous carbon, metal, and metal oxide film structures from self-assembled block copolymer templates by using various backfilling techniques in combination with thermal treatments for template removal and chemical transformations. The asymmetric inorganic structures display mesopores in the film top layers and a gradual pore size increase along the film normal in the macroporous sponge-like support structure. Substructure walls between macropores are themselves mesoporous, constituting a structural hierarchy in addition to the pore gradation. Final graded structures can be tailored by tuning casting conditions of self-assembled templates as well as the backfilling processes. We expect that these graded porous inorganic materials may find use in applications including separation, catalysis, biomedical implants, and energy conversion and storage.Graded porous inorganic materials directed by macromolecular self-assembly are expected to offer unique structural platforms relative to conventional porous inorganic materials. Their preparation to date remains a challenge, however, based on the sparsity of viable synthetic self-assembly pathways to control structural asymmetry. Here we demonstrate the fabrication of graded porous carbon, metal, and metal oxide film structures from self-assembled block copolymer templates by using various backfilling techniques in combination with thermal treatments for template removal and chemical transformations. The asymmetric inorganic structures display mesopores in the film top layers and a gradual pore size increase along the film normal in the macroporous sponge

  3. From supramolecular polymersomes to stimuli-responsive nano-capsules based on poly(diene-b-peptide) diblock copolymers

    NASA Astrophysics Data System (ADS)

    Chécot, F.; Lecommandoux, S.; Klok, H.-A.; Gnanou, Y.

    2003-01-01

    This paper discusses the self-assembly of block copolymers into vesicular morphology. After a brief state of art of the field, a system based on an amphiphilic poly(butadiene)-b-poly(γ-L-glutamic acid) (PB-b-PGA) diblock copolymer in aqueous solution is discussed in detail. The aggregation behavior of this block copolymer has been investigated by means of fluorescence spectroscopy, dynamic (DLS) and static (SLS) light scattering as well as transmission electron microscopy (TEM). The diblock copolymer was found to form well-defined vesicles in water. The size of these so-called polymersomes or peptosomes could be reversibly manipulated as a function of both pH and ion strength. Depending on the pH of the aqueous solution, the hydrodynamic radii of these vesicles were found to vary from 100 nm to 150 nm. By cross-linking the 1,2-vinyl double bonds present in the polybutadiene block, the ability to transform a transient supramolecular self-organized aggregate into a permanent “shape-persistent stimuli-responsive nanoparticle” has been demonstrated.

  4. Supramolecular block copolymers by kinetically controlled co-self-assembly of planar and core-twisted perylene bisimides

    NASA Astrophysics Data System (ADS)

    Görl, Daniel; Zhang, Xin; Stepanenko, Vladimir; Würthner, Frank

    2015-05-01

    New synthetic methodologies for the formation of block copolymers have revolutionized polymer science within the last two decades. However, the formation of supramolecular block copolymers composed of alternating sequences of larger block segments has not been realized yet. Here we show by transmission electron microscopy (TEM), 2D NMR and optical spectroscopy that two different perylene bisimide dyes bearing either a flat (A) or a twisted (B) core self-assemble in water into supramolecular block copolymers with an alternating sequence of (AmBB)n. The highly defined ultralong nanowire structure of these supramolecular copolymers is entirely different from those formed upon self-assembly of the individual counterparts, that is, stiff nanorods (A) and irregular nanoworms (B), respectively. Our studies further reveal that the as-formed supramolecular block copolymer constitutes a kinetic self-assembly product that transforms into thermodynamically more stable self-sorted homopolymers upon heating.

  5. Supramolecular block copolymers by kinetically controlled co-self-assembly of planar and core-twisted perylene bisimides

    PubMed Central

    Görl, Daniel; Zhang, Xin; Stepanenko, Vladimir; Würthner, Frank

    2015-01-01

    New synthetic methodologies for the formation of block copolymers have revolutionized polymer science within the last two decades. However, the formation of supramolecular block copolymers composed of alternating sequences of larger block segments has not been realized yet. Here we show by transmission electron microscopy (TEM), 2D NMR and optical spectroscopy that two different perylene bisimide dyes bearing either a flat (A) or a twisted (B) core self-assemble in water into supramolecular block copolymers with an alternating sequence of (AmBB)n. The highly defined ultralong nanowire structure of these supramolecular copolymers is entirely different from those formed upon self-assembly of the individual counterparts, that is, stiff nanorods (A) and irregular nanoworms (B), respectively. Our studies further reveal that the as-formed supramolecular block copolymer constitutes a kinetic self-assembly product that transforms into thermodynamically more stable self-sorted homopolymers upon heating. PMID:25959777

  6. Single- and Multilayered Nanostructures via Laser-Induced Block Copolymer Self-Assembly

    NASA Astrophysics Data System (ADS)

    Majewski, Pawel; Yager, Kevin; Rahman, Atikur; Black, Charles

    We present a novel method of accelerated self-assembly of block copolymer thin films utilizing laser light, called Laser Zone Annealing (LZA). In our approach, steep temperature transients are induced in block copolymer films by rastering narrowly focused laser line over the light-absorbing substrate. Extremely steep temperature gradients accelerate the process of self-assembly by several orders-of-magnitude compared to conventional oven annealing, and, when coupled to photo-thermal shearing, lead to global alignment of block copolymer domains assessed by GISXAS diffraction studies and real-space SEM imaging. We demonstrate monolithic alignment of various block-copolymer thin films including PS-b-PMMA, PS-b-PEO, PS-b-P2VP, PS-b-PI and observe different responsiveness to the shearing rate depending on the characteristic relaxation timescale of the particular material. Subsequently, we use the aligned polymeric films as templates for synthesis of single- and multi-layered arrays of inorganic, metallic or semiconducting nanowires and nanomeshes and investigate their anisotropic electro-optical properties. Research carried out in part at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886.

  7. The nature of protein interactions governing globular protein-polymer block copolymer self-assembly.

    PubMed

    Lam, Christopher N; Kim, Minkyu; Thomas, Carla S; Chang, Dongsook; Sanoja, Gabriel E; Okwara, Chimdimma U; Olsen, Bradley D

    2014-04-14

    The effects of protein surface potential on the self-assembly of protein-polymer block copolymers are investigated in globular proteins with controlled shape through two approaches: comparison of self-assembly of mCherry-poly(N-isopropylacrylamide) (PNIPAM) bioconjugates with structurally homologous enhanced green fluorescent protein (EGFP)-PNIPAM bioconjugates, and mutants of mCherry with altered electrostatic patchiness. Despite large changes in amino acid sequence, the temperature-concentration phase diagrams of EGFP-PNIPAM and mCherry-PNIPAM conjugates have similar phase transition concentrations. Both materials form identical phases at two different coil fractions below the PNIPAM thermal transition temperature and in the bulk. However, at temperatures above the thermoresponsive transition, mCherry conjugates form hexagonal phases at high concentrations while EGFP conjugates form a disordered micellar phase. At lower concentration, mCherry shows a two-phase region while EGFP forms homogeneous disordered micellar structures, reflecting the effect of changes in micellar stability. Conjugates of four mCherry variants with changes to their electrostatic surface patchiness also showed minimal change in phase behavior, suggesting that surface patchiness has only a small effect on the self-assembly process. Measurements of protein/polymer miscibility, second virial coefficients, and zeta potential show that these coarse-grained interactions are similar between mCherry and EGFP, indicating that coarse-grained interactions largely capture the relevant physics for soluble, monomeric globular protein-polymer conjugate self-assembly. PMID:24654888

  8. Charged Diblock Copolymers at Interfaces: Micelle Dissociation Upon Compression

    SciTech Connect

    Checco, A.; Theodoly, O.; Muller, P.

    2010-05-20

    We use grazing incidence X-ray scattering to study the surface micellization of charged amphiphilic diblock copolymers poly(styrene-block-acrylic acid) at the air-water interface. Scattering interference peaks are consistent with the formation of hexagonally packed micelles. The remarkable increase of inter-micelle distance upon compression is explained by a dissociation of micelles into a brush. Hence, surface micelles reorganize, whereas micelles of the same copolymers in solutions are 'frozen'. We show indeed that the energetic cost of unimer extraction from micelles is much lower for surface than for solution. Finally, a model combining electrostatic interactions and micelle/brush equilibrium explains surface pressure vs. area without free parameters. keywords - soft matter, liquids and polymers, biological physics, chemical physics and physical chemistry.

  9. Charged Diblock Copolymers at Interfaces: Micelle Dissociation Upon Compression

    SciTech Connect

    Theodoly, O.; Checco, A; Muller, P

    2010-01-01

    We use grazing incidence X-ray scattering to study the surface micellization of charged amphiphilic diblock copolymers poly(styrene-block-acrylic acid) at the air-water interface. Scattering interference peaks are consistent with the formation of hexagonally packed micelles. The remarkable increase of inter-micelle distance upon compression is explained by a dissociation of micelles into a brush. Hence, surface micelles reorganize, whereas micelles of the same copolymers in solutions are 'frozen'. We show indeed that the energetic cost of unimer extraction from micelles is much lower for surface than for solution. Finally, a model combining electrostatic interactions and micelle/brush equilibrium explains surface pressure vs. area without free parameters.

  10. Tuning phase structures of a symmetrical diblock copolymer with a patterned electric field.

    PubMed

    Kan, Di; He, Xuehao

    2016-05-11

    Electric fields can induce the orientation of the phase interfaces of block copolymers and provide a potential method to tune polymer phase structures for nanomaterial manufacture. In this work, we applied self-consistent field theory to study the self-assembly of a diblock copolymer confined between two parallel neutral substrates on which a set of electrodes was imposed to form a patterned electric field. The results showed that an alternatively distributed electric field can induce the formation of a parallel lamellar phase structure, which exists stably only in the system with selective substrates. The phase structure was proved to be sensitive to the characteristics of the electric field distribution, such as the strength of the electric field, the size and position of the electrodes, and the corresponding phase diagram was calculated in detail. The transition pathway of the phase structure from the perpendicular layered phase to the parallel layered phase was further analysed using the minimum energy path method. It is shown that the path and the active energy barrier of the phase transition depend on the electric field strength. Compound electric field patterns that can be designed to control the formation of novel and complex microphase structures were also examined. PMID:27102422

  11. Tailored Assemblies of Rod-Coil Poly(3-hexylthiophene)-b-Polystyrene Diblock Copolymers: Adaptable Building Blocks for High-Performance Organic Field-Effect Transistors

    SciTech Connect

    Xiao, Kai; Yu, Xiang; Chen, Jihua; Lavrik, Nickolay V; Hong, Kunlun; Sumpter, Bobby; Geohegan, David B

    2011-01-01

    The self-assembly process and resulting structure of a series of conductive diblock copolymer thin films of Poly(3-hexylthiophene)-b-Polystyrene (P3HT-b-PS) have been studied by TEM, SAED, GIXD and AFM and additionally by first principles modeling and simulation. By varying the molecular weight of the P3HT segment, these block copolymers undergo microphase separation and self-assemble into nanostructured sphere, lamellae, nanofiber, and nanoribbon in the films. Within the diblock copolymer thin film, the convalently bonded PS blocks segregated to form amorphous domains, however, the conductive P3HT blocks were crystalline, exhibiting highly-ordered molecular packing with their alkyl side chains aligned along to the normal to the substrate and the - stacking direction of the thiophene rings aligned parallel to the substrate. The conductive P3HY block copolymers exhibited significant improvements in organic feild-effect transistor (OFET) performance and environmental stability as compared to P3HT homopolymers, with up to a factor of two increase in measured moblity (0.08 cm2/Vs ) for the P4 (85 wt% P3HT). Overall, this work demonstrates that the high degree of molecular order induced by bock copolymer phase separation can improve the transport properties and stability of conductive polymer critical for high-performance OFET s.

  12. Chemically enhancing block copolymers for block-selective synthesis of self-assembled metal oxide nanostructures.

    PubMed

    Kamcev, Jovan; Germack, David S; Nykypanchuk, Dmytro; Grubbs, Robert B; Nam, Chang-Yong; Black, Charles T

    2013-01-22

    We report chemical modification of self-assembled block copolymer thin films by ultraviolet light that enhances the block-selective affinity of organometallic precursors otherwise lacking preference for either copolymer block. Sequential precursor loading and reaction facilitate formation of zinc oxide, titanium dioxide, and aluminum oxide nanostructures within the polystyrene domains of both lamellar- and cylindrical-phase modified polystyrene-block-poly(methyl methacrylate) thin film templates. Near-edge X-ray absorption fine structure measurements and Fourier transform infrared spectroscopy show that photo-oxidation by ultraviolet light creates Lewis basic groups within polystyrene, resulting in an increased Lewis base-acid interaction with the organometallic precursors. The approach provides a method for generating both aluminum oxide patterns and their corresponding inverses using the same block copolymer template.

  13. Self-assembly of block copolymers on lithographically patterned template with ordered posts.

    PubMed

    Xu, Dan; Liu, Hong; Xue, Yao-Hong; Sun, Yan-Bo

    2015-12-21

    Dissipative particle dynamics simulations are employed to study the self-assembly of block copolymers on a template modified with ordered posts. Templates with hexagonally arranged and rectangularly arranged posts are both studied. For the systems with hexagonally arranged posts, morphologies with bending alignments are seen most often. We find that the different kinds of patterns, which can be directly observed in experiments, are substantially induced by the pattern of the bottom layer. In the simulations with a template modified with rectangularly arranged posts, by finely adjusting the distances between neighboring posts in both x and y directions, mesh-shaped structures with different angles between the bottom and the sub-bottom layers can be obtained. These results shed light on the better design of lithographically patterned materials on the scale of 10 nm via the directed self-assembly of BCPs by templating. PMID:26566140

  14. Block copolymer self-assembly-directed synthesis of mesoporous gyroidal superconductors.

    PubMed

    Robbins, Spencer W; Beaucage, Peter A; Sai, Hiroaki; Tan, Kwan Wee; Werner, Jörg G; Sethna, James P; DiSalvo, Francis J; Gruner, Sol M; Van Dover, Robert B; Wiesner, Ulrich

    2016-01-01

    Superconductors with periodically ordered mesoporous structures are expected to have properties very different from those of their bulk counterparts. Systematic studies of such phenomena to date are sparse, however, because of a lack of versatile synthetic approaches to such materials. We demonstrate the formation of three-dimensionally continuous gyroidal mesoporous niobium nitride (NbN) superconductors from chiral ABC triblock terpolymer self-assembly-directed sol-gel-derived niobium oxide with subsequent thermal processing in air and ammonia gas. Superconducting materials exhibit a critical temperature (T c) of about 7 to 8 K, a flux exclusion of about 5% compared to a dense NbN solid, and an estimated critical current density (J c) of 440 A cm(-2) at 100 Oe and 2.5 K. We expect block copolymer self-assembly-directed mesoporous superconductors to provide interesting subjects for mesostructure-superconductivity correlation studies. PMID:27152327

  15. Sulfate-based anionic diblock copolymer nanoparticles for efficient occlusion within zinc oxide

    NASA Astrophysics Data System (ADS)

    Ning, Y.; Fielding, L. A.; Andrews, T. S.; Growney, D. J.; Armes, S. P.

    2015-04-01

    Occlusion of copolymer particles within inorganic crystalline hosts not only provides a model for understanding the crystallisation process, but also may offer a direct route for the preparation of novel nanocomposite materials with emergent properties. In the present paper, a series of new well-defined anionic diblock copolymer nanoparticles are synthesised by polymerisation-induced self-assembly (PISA) via reversible addition-fragmentation chain transfer (RAFT) aqueous emulsion polymerisation and then evaluated as crystal habit modifiers for the in situ formation of ZnO in aqueous solution. Systematic studies indicate that both the chemical nature (i.e. whether sulfate-based or carboxylate-based) and the mean degree of polymerisation (DP) of the anionic stabiliser block play vital roles in determining the crystal morphology. In particular, sulfate-functionalised nanoparticles are efficiently incorporated within the ZnO crystals whereas carboxylate-functionalised nanoparticles are excluded, thus anionic character is a necessary but not sufficient condition for successful occlusion. Moreover, the extent of nanoparticle occlusion within the ZnO phase can be as high as 23% by mass depending on the sulfate-based nanoparticle concentration. The optical properties, chemical composition and crystal structure of the resulting nanocomposite crystals are evaluated and an occlusion mechanism is proposed based on the observed evolution of the ZnO morphology in the presence of sulfate-based anionic nanoparticles. Finally, controlled deposition of a 5 nm gold sol onto porous ZnO particles (produced after calcination of the organic nanoparticles) significantly enhances the rate of photocatalytic decomposition of a model rhodamine B dye on exposure to a relatively weak UV source.Occlusion of copolymer particles within inorganic crystalline hosts not only provides a model for understanding the crystallisation process, but also may offer a direct route for the preparation of novel

  16. Tunable and rapid self-assembly of block copolymers using mixed solvent vapors

    NASA Astrophysics Data System (ADS)

    Park, Woon Ik; Tong, Sheng; Liu, Yuzi; Jung, Il Woong; Roelofs, Andreas; Hong, Seungbum

    2014-11-01

    Pattern generation of well-controlled block copolymers (BCPs) with a high Flory-Huggins interaction parameter (χ) is important for applications in sub-20 nm nanolithography. We used mixed solvents of dimethylformamide (DMF) and toluene to control the morphology as well as the time to achieve the targeted morphology via self-assembly of BCPs. By precisely controlling the volume ratio of DMF and toluene, well-ordered line, honeycomb, circular hole, and lamellar nanostructures were obtained from a cylinder-forming poly(styrene-b-2-vinylpyridine) (PS-b-P2VP) BCP with high χ. Furthermore, a well-aligned 12 nm line pattern was successfully achieved in the guiding template within one minute using the mixed solvents. This practical method may also be applicable to self-assembly of other BCPs, providing more opportunities for the next-generation sub-10 nm lithography applications.Pattern generation of well-controlled block copolymers (BCPs) with a high Flory-Huggins interaction parameter (χ) is important for applications in sub-20 nm nanolithography. We used mixed solvents of dimethylformamide (DMF) and toluene to control the morphology as well as the time to achieve the targeted morphology via self-assembly of BCPs. By precisely controlling the volume ratio of DMF and toluene, well-ordered line, honeycomb, circular hole, and lamellar nanostructures were obtained from a cylinder-forming poly(styrene-b-2-vinylpyridine) (PS-b-P2VP) BCP with high χ. Furthermore, a well-aligned 12 nm line pattern was successfully achieved in the guiding template within one minute using the mixed solvents. This practical method may also be applicable to self-assembly of other BCPs, providing more opportunities for the next-generation sub-10 nm lithography applications. Electronic supplementary information (ESI) available: PDF material includes morphological transition of SV42 BCP (Fig. S1), metal-oxide line and hole structures (Fig. S2), time-evolution of self-assembled SV42 BCP using pure

  17. Selective directed self-assembly of coexisting morphologies using block copolymer blends

    DOE PAGESBeta

    Stein, A.; Wright, G.; Yager, K. G.; Doerk, G. S.; Black, C. T.

    2016-08-02

    Directed self-assembly (DSA) of block copolymers is an emergent technique for nano-lithography, but is limited in the range of structures possible in a single fabrication step. We expand on traditional DSA chemical patterning. Moreover, a blend of lamellar- and cylinder-forming block copolymers assembles on specially designed surface chemical line gratings, leading to the simultaneous formation of coexisting ordered morphologies in separate areas of the substrate. The competing energetics of polymer chain distortions and chemical mismatch with the substrate grating bias the system towards either line/space or dot array patterns, depending on the pitch and linewidth of the prepattern. This contrastsmore » with typical DSA, wherein assembly of a single-component block copolymer on chemical templates generates patterns of either lines/spaces (lamellar) or hexagonal dot arrays (cylinders). In our approach, the chemical template encodes desired local spatial arrangements of coexisting design motifs, self-assembled from a single, sophisticated resist.« less

  18. Selective directed self-assembly of coexisting morphologies using block copolymer blends

    PubMed Central

    Stein, A.; Wright, G.; Yager, K. G.; Doerk, G. S.; Black, C. T.

    2016-01-01

    Directed self-assembly (DSA) of block copolymers is an emergent technique for nano-lithography, but is limited in the range of structures possible in a single fabrication step. Here we expand on traditional DSA chemical patterning. A blend of lamellar- and cylinder-forming block copolymers assembles on specially designed surface chemical line gratings, leading to the simultaneous formation of coexisting ordered morphologies in separate areas of the substrate. The competing energetics of polymer chain distortions and chemical mismatch with the substrate grating bias the system towards either line/space or dot array patterns, depending on the pitch and linewidth of the prepattern. This is in contrast to the typical DSA, wherein assembly of a single-component block copolymer on chemical templates generates patterns of either lines/spaces (lamellar) or hexagonal dot arrays (cylinders). In our approach, the chemical template encodes desired local spatial arrangements of coexisting design motifs, self-assembled from a single, sophisticated resist. PMID:27480327

  19. Onset of self-assembly

    SciTech Connect

    Chitanvis, S.M.

    1998-02-01

    We have formulated a theory of self-assembly based on the notion of local gauge invariance at the mesoscale. Local gauge invariance at the mesoscale generates the required long-range entropic forces responsible for self-assembly in binary systems. Our theory was applied to study the onset of mesostructure formation above a critical temperature in estane, a diblock copolymer. We used diagrammatic methods to transcend the Gaussian approximation and obtain a correlation length {xi}{approximately}(c{minus}c{sup {asterisk}}){sup {minus}{gamma}}, where c{sup {asterisk}} is the minimum concentration below which self-assembly is impossible, c is the current concentration, and {gamma} was found numerically to be fairly close to 2/3. The renormalized diffusion constant vanishes as the critical concentration is approached, indicating the occurrence of critical slowing down, while the correlation function remains finite at the transition point. {copyright} {ital 1998} {ital The American Physical Society}

  20. Self-assembly of Si-containing block copolymers with high-segregation strength: toward sub-10nm features in directed self-assembly

    NASA Astrophysics Data System (ADS)

    Reboul, C.; Fleury, G.; Aissou, K.; Brochon, C.; Cloutet, E.; Nicolet, C.; Chevalier, X.; Navarro, C.; Tiron, R.; Cunge, G.; Hadziioannou, G.

    2014-03-01

    Ordered microstructures with nanometrically defined periodicity offer promising opportunities in microelectronic applications for the production of advanced CMOS digital logic circuits. To produce the features and arrays inherent to such technologies, the combination of the "bottom-up" block copolymer self-assembly with "top-down" guiding templates has been successfully introduced leading to new technological breakthroughs. Among the materials used in the direct self-assembly methodology, poly(styrene-b-methylmethacrylate) systems have reached an unprecedented level of maturity which will lead to their introduction into the next technological nodes. However, this system suffers from deficiencies such as a low Flory Huggins parameter (X = 0.04 at 25°C) and a low chemical contrast as regards to the etching processes which could be problematic for targeting sub-22 nm features. Consequently we have developed new systems based on Si-containing block copolymers which are characterized by high segregation strength as well as strong chemical etching contrast. In this contribution, we focus on a poly(lactic acid) / poly(dimethylsiloxane) system exhibiting a cylindrical mesostructure. By controlling the surface energy at the interface between the substrate and the block copolymer domains, we show the possibility to control the orientation of the mesostructure with a methodology comparable to the one used for poly(styrene) / poly(methyl methacrylate) system but with random copolymers having distinct monomers than the block copolymers.

  1. Enhancing the Directed Self-assembly Kinetics of Block Copolymers Using Binary Solvent Mixtures.

    PubMed

    Park, Woon Ik; Choi, Young Joong; Yun, Je Moon; Hong, Suck Won; Jung, Yeon Sik; Kim, Kwang Ho

    2015-11-25

    The rapid pattern formation of well-ordered block copolymer (BCP) nanostructures is practical for next-generation nanolithography applications. However, there remain critical hurdles to achieve the rapid self-assembly of BCPs with a high Flory-Huggins interaction parameter (χ), owing to their slow kinetics. In this article, we report that a binary solvent vapor annealing methodology can significantly accelerate the self-assembly kinetics of poly(dimethylsiloxane-b-styrene) (PDMS-b-PS) BCPs with a high-χ. In particular, we systemically analyzed the effects of the mixing ratio of a binary solvent composed of a PDMS-selective solvent (heptane) and a PS-selective solvent (toluene), showing an ultrafast self-assembly time (≤1 min) to obtain a well-ordered nanostructure. Moreover, we successfully accomplished extremely fast generation of sub-20 nm dot patterns within an annealing time of 10 s in a 300 nm-wide trench by means of binary solvent annealing. We believe that these results are also applicable to other solvent-based annealing systems of BCPs and that they will contribute to the realization of next-generation ultrafine lithography applications.

  2. Interactions between plasma and block copolymers used in directed self-assembly patterning

    NASA Astrophysics Data System (ADS)

    Sirard, Stephen; Azarnouche, Laurent; Gurer, Emir; Durand, William; Maher, Michael; Mori, Kazunori; Blachut, Gregory; Janes, Dustin; Asano, Yusuke; Someya, Yasunobu; Hymes, Diane; Graves, David; Ellison, Christopher J.; Willson, C. Grant

    2016-03-01

    The directed self-assembly (DSA) of block copolymers offers a promising route for scaling feature sizes below 20 nm. At these small dimensions, plasmas are often used to define the initial patterns. It is imperative to understand how plasmas interact with each block in order to design processes with sufficient etch contrast and pattern fidelity. Symmetric lamella forming block copolymers including, polystyrene-b-poly(methyl methacrylate) and several high-χ silicon-containing and tin-containing block copolymers were synthesized, along with homopolymers of each block, and exposed to various oxidizing, reducing, and fluorine-based plasma processes. Etch rate kinetics were measured, and plasma modifications of the materials were characterized using XPS, AES, and FTIR. Mechanisms for achieving etch contrast were elucidated and were highly dependent on the block copolymer architecture. For several of the polymers, plasma photoemissions were observed to play an important role in modifying the materials and forming etch-resistant protective layers. Furthermore, it was observed for the silicon- and tin-containing polymers that an initial transient state exists, where the polymers exhibit an enhanced etch rate, prior to the formation of the etch-resistant protective layer. Plasma developed patterns were demonstrated for the differing block copolymer materials with feature sizes ranging from 20 nm down to approximately 5 nm.

  3. Filtration on block copolymer solution used in directed self assembly lithography

    NASA Astrophysics Data System (ADS)

    Umeda, Toru; Takakura, Tomoyuki; Tsuzuki, Shuichi

    2016-03-01

    In this paper, we presented the filtration effects on block copolymers (BCP) that are commonly used in directed self-assembly lithographic (DSAL) imaging schemes. Specifically we focused on filtration effects on micro-contaminants such as metal ions and metal induced gels. Gel removal efficiency studies carried out with HDPE, Nylon and PTFE filters pointed out that Nylon 6,6 membrane is the most effective in removing gels in block copolymer (BCP) solutions. Metal removal efficiency studies were conducted using multistep filtrations such as repetitive filtration of single membrane material and combination of different type of membranes. Results showed that a combination of Nylon-6,6 and ion-exchange filters is highly effective in reducing metals such as Li, Mg and Al to > 99.99% efficiency. The mechanism of metal removal efficiency is discussed in detail.

  4. Hydrophobic drug delivery by self-assembling triblock copolymer-derived nanospheres.

    PubMed

    Sheihet, Larisa; Dubin, Robert A; Devore, David; Kohn, Joachim

    2005-01-01

    We describe the synthesis and characterization of a family of biocompatible ABA-triblock copolymers that comprised of hydrophilic A-blocks of poly(ethylene glycol) and hydrophobic B-blocks of oligomers of suberic acid and desaminotyrosyl-tyrosine esters. The triblock copolymers spontaneously self-assemble in aqueous solution into nanospheres, with hydrodynamic diameters between 40 and 70 nm, that do not dissociate under chromatographic and ultracentrifugation conditions. These nanospheres form strong complexes with hydrophobic molecules, including the fluorescent dye 5-dodecanoylaminofluorescein (DAF) and the antitumor drug, paclitaxel, but not with hydrophilic molecules such as fluorescein and Oregon Green. The nanosphere-paclitaxel complexes retain in vitro the high antiproliferative activity of paclitaxel, demonstrating that these nanospheres may be useful for delivery of the hydrophobic drugs.

  5. Modeling and self-assembly behavior of PEG-PLA-PEG triblock copolymers in aqueous solution

    NASA Astrophysics Data System (ADS)

    Wu, Xiaohan; Li, Suming; Coumes, Fanny; Darcos, Vincent; Lai Kee Him, Joséphine; Bron, Patrick

    2013-09-01

    A series of poly(ethylene glycol)-polylactide-poly(ethylene glycol) (PEG-PLA-PEG) triblock copolymers with symmetric or asymmetric chain structures were synthesized by combination of ring-opening polymerization and copper-catalyzed click chemistry. The resulting copolymers were used to prepare self-assembled aggregates by dialysis. Various architectures such as nanotubes, polymersomes and spherical micelles were observed from transmission electron microscopy (TEM), cryo-TEM and atomic force microscopy (AFM) measurements. The formation of diverse aggregates is explained by modeling from the angle of both geometry and thermodynamics. From the angle of geometry, a ``blob'' model based on the Daoud-Cotton model for star polymers is proposed to describe the aggregate structures and structural changes with copolymer composition and molar mass. In fact, the copolymer chains extend in aqueous medium to form single layer polymersomes to minimize the system's free energy if one of the two PEG blocks is short enough. The curvature of polymersomes is dependent on the chain structure of copolymers, especially on the length of PLA blocks. A constant branch number of aggregates (f) is thus required to preserve the morphology of polymersomes. Meanwhile, the aggregation number (Nagg) determined from the thermodynamics of self-assembly is roughly proportional to the total length of polymer chains. Comparing f to Nagg, the aggregates take the form of polymersomes if Nagg ~ f, and change to nanotubes if Nagg > f to conform to the limits from both curvature and aggregation number. The length of nanotubes is mainly determined by the difference between Nagg and f. However, the hollow structure becomes unstable when both PEG segments are too long, and the aggregates eventually collapse to yield spherical micelles. Therefore, this work gives new insights into the self-assembly behavior of PEG-PLA-PEG triblock copolymers in aqueous solution which present great interest for biomedical and

  6. Molecular Interaction Control in Diblock Copolymer Blends and Multiblock Copolymers with Opposite Phase Behaviors

    NASA Astrophysics Data System (ADS)

    Cho, Junhan

    2014-03-01

    Here we show how to control molecular interactions via mixing AB and AC diblock copolymers, where one copolymer exhibits upper order-disorder transition and the other does lower disorder-order transition. Linear ABC triblock copolymers possessing both barotropic and baroplastic pairs are also taken into account. A recently developed random-phase approximation (RPA) theory and the self-consistent field theory (SCFT) for general compressible mixtures are used to analyze stability criteria and morphologies for the given systems. It is demonstrated that the copolymer systems can yield a variety of phase behaviors in their temperature and pressure dependence upon proper mixing conditions and compositions, which is caused by the delicate force fields generated in the systems. We acknowledge the financial support from National Research Foundation of Korea and Center for Photofunctional Energy Materials.

  7. Topography of neutron scattering from diblock copolymer film

    SciTech Connect

    Cai, Z.; Russell, T.P.

    1994-10-01

    The surface structure of a multilayered film of symmetric perdeuterated diblock copolymers of polystyrene and polymethylmethacrylate, denoted P(d-S-b-d-MMA), was investigated by neutron scattering at grazing incidence. The film surfaces were covered by islands or holes of uniform height with a lateral size of several micrometers. With the angle of incidence fixed, the off-specular neutron scattering was measured as function of scattering angle and neutron wavelength. The off-specular scattering intensity shows ridges at constant q{sub z}, the momentum transfer along the surface normal. The scattering arises from the surface domains. It was found that the off-specular ridges developed from minima in the oscillations in the specular profile corresponding to domain height. The characteristic of the off-specular scattering, which is different from that of the off-specular scattering due to the conformal roughness in a multilayered film, is interpreted in terms of the correlations of the surface domains.

  8. Elastic torsion effects in magnetic nanoparticle diblock-copolymer structures.

    PubMed

    Schulz, L; Schirmacher, W; Omran, A; Shah, V R; Böni, P; Petry, W; Müller-Buschbaum, P

    2010-09-01

    Magnetic properties of thin composite films, consisting of non-interacting polystyrene-coated γ-Fe(2)O(3) (maghemite) nanoparticles embedded into polystyrene-block-polyisoprene P(S-b-I) diblock-copolymer films are investigated. Different particle concentrations, ranging from 0.7 to 43 wt%, have been used. The magnetization measured as a function of external field and temperature shows typical features of anisotropic superparamagnets including a hysteresis at low temperatures and blocking phenomena. However, the data cannot be reconciled with the unmodified Stoner-Wohlfarth-Néel theory. Applying an appropriate generalization we find evidence for either an elastic torque being exerted on the nanoparticles by the field or a broad distribution of anisotropy constants.

  9. Directed self-assembly of block copolymer films on atomically-thin graphene chemical patterns

    PubMed Central

    Chang, Tzu-Hsuan; Xiong, Shisheng; Jacobberger, Robert M.; Mikael, Solomon; Suh, Hyo Seon; Liu, Chi-Chun; Geng, Dalong; Wang, Xudong; Arnold, Michael S.; Ma, Zhenqiang; Nealey, Paul F.

    2016-01-01

    Directed self-assembly of block copolymers is a scalable method to fabricate well-ordered patterns over the wafer scale with feature sizes below the resolution of conventional lithography. Typically, lithographically-defined prepatterns with varying chemical contrast are used to rationally guide the assembly of block copolymers. The directed self-assembly to obtain accurate registration and alignment is largely influenced by the assembly kinetics. Furthermore, a considerably broad processing window is favored for industrial manufacturing. Using an atomically-thin layer of graphene on germanium, after two simple processing steps, we create a novel chemical pattern to direct the assembly of polystyrene-block-poly(methyl methacrylate). Faster assembly kinetics are observed on graphene/germanium chemical patterns than on conventional chemical patterns based on polymer mats and brushes. This new chemical pattern allows for assembly on a wide range of guiding periods and along designed 90° bending structures. We also achieve density multiplication by a factor of 10, greatly enhancing the pattern resolution. The rapid assembly kinetics, minimal topography, and broad processing window demonstrate the advantages of inorganic chemical patterns composed of hard surfaces. PMID:27528258

  10. The potential of block copolymer's directed self-assembly for contact hole shrink and contact multiplication

    NASA Astrophysics Data System (ADS)

    Tiron, R.; Gharbi, A.; Argoud, M.; Chevalier, X.; Belledent, J.; Pimmenta Barros, P.; Servin, I.; Navarro, C.; Cunge, G.; Barnola, S.; Pain, L.; Asai, M.; Pieczulewski, C.

    2013-03-01

    The goal of this paper is to investigate the potential of Directed Self-Assembly (DSA) to address contact via level patterning, by either Critical Dimension (CD) shrink or contact multiplication. Using the 300mm pilot line available in LETI and Arkema materials, our approach is based on the graphoepitaxy of PS-b- PMMA block copolymers (BCP). The process consists in the following steps: a) the lithography of guiding patterns, b) the DSA of block copolymers and PMMA removal and finally c) the transfer of PS patterns into the under-layer by plasma etching. Several integration schemes using 193nm dry lithography are evaluated: negative tone development (NTD) resists, a tri-layer approach, frozen resists, etc. The advantages and limitations of each approach are reported. Furthermore, the impact of the BCP on the final patterns characteristics is investigated by tuning different parameters such as the molecular weight of the polymeric constituents and the interaction with the substrate. The optimization of the self-assembly process parameters in terms of film thickness or bake (temperature and time) is also reported. Finally, the transfer capabilities of the PS nanostructures in bulk silicon substrate by using plasma-etching are detailed. These results show that DSA has a high potential to be integrated directly into the conventional CMOS lithography process in order to achieve high-resolution contact holes. Furthermore, in order to prevent design restrictions, this approach may be extended to more complex structures with multiple contacts and nonhexagonal symmetries.

  11. Directed self-assembly of block copolymer films on atomically-thin graphene chemical patterns.

    PubMed

    Chang, Tzu-Hsuan; Xiong, Shisheng; Jacobberger, Robert M; Mikael, Solomon; Suh, Hyo Seon; Liu, Chi-Chun; Geng, Dalong; Wang, Xudong; Arnold, Michael S; Ma, Zhenqiang; Nealey, Paul F

    2016-01-01

    Directed self-assembly of block copolymers is a scalable method to fabricate well-ordered patterns over the wafer scale with feature sizes below the resolution of conventional lithography. Typically, lithographically-defined prepatterns with varying chemical contrast are used to rationally guide the assembly of block copolymers. The directed self-assembly to obtain accurate registration and alignment is largely influenced by the assembly kinetics. Furthermore, a considerably broad processing window is favored for industrial manufacturing. Using an atomically-thin layer of graphene on germanium, after two simple processing steps, we create a novel chemical pattern to direct the assembly of polystyrene-block-poly(methyl methacrylate). Faster assembly kinetics are observed on graphene/germanium chemical patterns than on conventional chemical patterns based on polymer mats and brushes. This new chemical pattern allows for assembly on a wide range of guiding periods and along designed 90° bending structures. We also achieve density multiplication by a factor of 10, greatly enhancing the pattern resolution. The rapid assembly kinetics, minimal topography, and broad processing window demonstrate the advantages of inorganic chemical patterns composed of hard surfaces.

  12. Directed self-assembly of block copolymer films on atomically-thin graphene chemical patterns

    NASA Astrophysics Data System (ADS)

    Chang, Tzu-Hsuan; Xiong, Shisheng; Jacobberger, Robert M.; Mikael, Solomon; Suh, Hyo Seon; Liu, Chi-Chun; Geng, Dalong; Wang, Xudong; Arnold, Michael S.; Ma, Zhenqiang; Nealey, Paul F.

    2016-08-01

    Directed self-assembly of block copolymers is a scalable method to fabricate well-ordered patterns over the wafer scale with feature sizes below the resolution of conventional lithography. Typically, lithographically-defined prepatterns with varying chemical contrast are used to rationally guide the assembly of block copolymers. The directed self-assembly to obtain accurate registration and alignment is largely influenced by the assembly kinetics. Furthermore, a considerably broad processing window is favored for industrial manufacturing. Using an atomically-thin layer of graphene on germanium, after two simple processing steps, we create a novel chemical pattern to direct the assembly of polystyrene-block-poly(methyl methacrylate). Faster assembly kinetics are observed on graphene/germanium chemical patterns than on conventional chemical patterns based on polymer mats and brushes. This new chemical pattern allows for assembly on a wide range of guiding periods and along designed 90° bending structures. We also achieve density multiplication by a factor of 10, greatly enhancing the pattern resolution. The rapid assembly kinetics, minimal topography, and broad processing window demonstrate the advantages of inorganic chemical patterns composed of hard surfaces.

  13. Polymeric Nanocylinders by Combining Block Copolymer Self-Assembly and Nanoskiving

    PubMed Central

    2015-01-01

    A new facile fabrication approach to generate polymeric nanostructures is described. Block copolymers containing immiscible segments can self-assemble to generate ordered nanostructures, such as cylinders of one block in a matrix of the other in the bulk, which can then be sectioned on the nanoscale using a microtome (nanoskiving). Dispersing these sections in a selective solvent for the matrix block results in nanocylinders. In one example, we utilized a poly(N,N-dimethylacrylamide)-block-poly(styrene) (PDMA–PS) copolymer containing 36% by volume of PS. This composition was selected as it self-assembles into cylinders of PS in a matrix of PDMA. Following a previously described procedure, the cylinders were aligned using a channel die. The aligned samples were subsequently sectioned using a microtome containing a diamond knife and dispersed in water, a selective solvent for the PDMA matrix, affording PS nanocylinders with a PDMA corona. This technique allows tuning of nanocylinders without the requirement of specialty fabrication equipment. PMID:25182218

  14. Directed self-assembly of block copolymer films on atomically-thin graphene chemical patterns.

    PubMed

    Chang, Tzu-Hsuan; Xiong, Shisheng; Jacobberger, Robert M; Mikael, Solomon; Suh, Hyo Seon; Liu, Chi-Chun; Geng, Dalong; Wang, Xudong; Arnold, Michael S; Ma, Zhenqiang; Nealey, Paul F

    2016-01-01

    Directed self-assembly of block copolymers is a scalable method to fabricate well-ordered patterns over the wafer scale with feature sizes below the resolution of conventional lithography. Typically, lithographically-defined prepatterns with varying chemical contrast are used to rationally guide the assembly of block copolymers. The directed self-assembly to obtain accurate registration and alignment is largely influenced by the assembly kinetics. Furthermore, a considerably broad processing window is favored for industrial manufacturing. Using an atomically-thin layer of graphene on germanium, after two simple processing steps, we create a novel chemical pattern to direct the assembly of polystyrene-block-poly(methyl methacrylate). Faster assembly kinetics are observed on graphene/germanium chemical patterns than on conventional chemical patterns based on polymer mats and brushes. This new chemical pattern allows for assembly on a wide range of guiding periods and along designed 90° bending structures. We also achieve density multiplication by a factor of 10, greatly enhancing the pattern resolution. The rapid assembly kinetics, minimal topography, and broad processing window demonstrate the advantages of inorganic chemical patterns composed of hard surfaces. PMID:27528258

  15. Polymeric nanocylinders by combining block copolymer self-assembly and nanoskiving.

    PubMed

    Nasiri, Mohammadreza; Bertrand, Arthur; Reineke, Theresa M; Hillmyer, Marc A

    2014-09-24

    A new facile fabrication approach to generate polymeric nanostructures is described. Block copolymers containing immiscible segments can self-assemble to generate ordered nanostructures, such as cylinders of one block in a matrix of the other in the bulk, which can then be sectioned on the nanoscale using a microtome (nanoskiving). Dispersing these sections in a selective solvent for the matrix block results in nanocylinders. In one example, we utilized a poly(N,N-dimethylacrylamide)-block-poly(styrene) (PDMA-PS) copolymer containing 36% by volume of PS. This composition was selected as it self-assembles into cylinders of PS in a matrix of PDMA. Following a previously described procedure, the cylinders were aligned using a channel die. The aligned samples were subsequently sectioned using a microtome containing a diamond knife and dispersed in water, a selective solvent for the PDMA matrix, affording PS nanocylinders with a PDMA corona. This technique allows tuning of nanocylinders without the requirement of specialty fabrication equipment. PMID:25182218

  16. Porous Diblock Copolymer Thin Films in High-Performance Semiconductor Microelectronics

    SciTech Connect

    Black, C.T.

    2011-02-01

    The engine fueling more than 40 years of performance improvements in semiconductor integrated circuits (ICs) has been industry's ability to pattern circuit elements at ever-higher resolution and with ever-greater precision. Steady advances in photolithography - the process wherein ultraviolet light chemically changes a photosensitive polymer resist material in order to create a latent image - have resulted in scaling of minimum printed feature sizes from tens of microns during the 1980s to sub-50 nanometer transistor gate lengths in today's state-of-the-art ICs. The history of semiconductor technology scaling as well as future technology requirements is documented in the International Technology Roadmap for Semiconductors (ITRS). The progression of the semiconductor industry to the realm of nanometer-scale sizes has brought enormous challenges to device and circuit fabrication, rendering performance improvements by conventional scaling alone increasingly difficult. Most often this discussion is couched in terms of field effect transistor (FET) feature sizes such as the gate length or gate oxide thickness, however these challenges extend to many other aspects of the IC, including interconnect dimensions and pitch, device packing density, power consumption, and heat dissipation. The ITRS Technology Roadmap forecasts a difficult set of scientific and engineering challenges with no presently-known solutions. The primary focus of this chapter is the research performed at IBM on diblock copolymer films composed of polystyrene (PS) and poly(methyl-methacrylate) (PMMA) (PS-b-PMMA) with total molecular weights M{sub n} in the range of {approx}60K (g/mol) and polydispersities (PD) of {approx}1.1. These materials self assemble to form patterns having feature sizes in the range of 15-20nm. PS-b-PMMA was selected as a self-assembling patterning material due to its compatibility with the semiconductor microelectronics manufacturing infrastructure, as well as the significant body

  17. Dissipative particle dynamics simulation study on self-assembly of amphiphilic hyperbranched multiarm copolymers with different degrees of branching.

    PubMed

    Tan, Haina; Wang, Wei; Yu, Chunyang; Zhou, Yongfeng; Lu, Zhongyuan; Yan, Deyue

    2015-11-21

    Hyperbranched multiarm copolymers (HMCs) have shown great potential to be excellent precursors in self-assembly to form various supramolecular structures in all scales and dimensions in solution. However, theoretical studies on the self-assembly of HMCs, especially the self-assembly dynamics and mechanisms, have been greatly lagging behind the experimental progress. Herein, we investigate the effect of degree of branching (DB) on the self-assembly structures of HMCs by dissipative particle dynamics (DPD) simulation. Our simulation results demonstrate that the self-assembly morphologies of HMCs can be changed from spherical micelles, wormlike micelles, to vesicles with the increase of DBs, which are qualitatively consistent with the experimental observations. In addition, both the self-assembly mechanisms and the dynamic processes for the formation of these three aggregates have been systematically disclosed through the simulations. These self-assembly details are difficult to be shown by experiments and are very useful to fully understand the self-assembly behaviors of HMCs. PMID:26364696

  18. Dissipative particle dynamics simulation study on self-assembly of amphiphilic hyperbranched multiarm copolymers with different degrees of branching.

    PubMed

    Tan, Haina; Wang, Wei; Yu, Chunyang; Zhou, Yongfeng; Lu, Zhongyuan; Yan, Deyue

    2015-11-21

    Hyperbranched multiarm copolymers (HMCs) have shown great potential to be excellent precursors in self-assembly to form various supramolecular structures in all scales and dimensions in solution. However, theoretical studies on the self-assembly of HMCs, especially the self-assembly dynamics and mechanisms, have been greatly lagging behind the experimental progress. Herein, we investigate the effect of degree of branching (DB) on the self-assembly structures of HMCs by dissipative particle dynamics (DPD) simulation. Our simulation results demonstrate that the self-assembly morphologies of HMCs can be changed from spherical micelles, wormlike micelles, to vesicles with the increase of DBs, which are qualitatively consistent with the experimental observations. In addition, both the self-assembly mechanisms and the dynamic processes for the formation of these three aggregates have been systematically disclosed through the simulations. These self-assembly details are difficult to be shown by experiments and are very useful to fully understand the self-assembly behaviors of HMCs.

  19. Effect of angstrom-scale surface roughness on the self-assembly of polystyrene-polydimethylsiloxane block copolymer

    PubMed Central

    Kundu, Shreya; Ganesan, Ramakrishnan; Gaur, Nikita; Saifullah, Mohammad S. M.; Hussain, Hazrat; Yang, Hyunsoo; Bhatia, Charanjit S.

    2012-01-01

    Self-assembly of block copolymers has been identified as a potential candidate for high density fabrication of nanostructures. However, the factors affecting its reliability and reproducibility as a patterning technique on various kinds of surfaces are not well-established. Studies pertaining to block copolymer self-assembly have been confined to ultra-flat substrates without taking into consideration the effect of surface roughness. Here, we show that a slight change in the angstrom-scale roughness arising from the surface of a material creates a profound effect on the self-assembly of polystyrene-polydimethylsiloxane block copolymer. Its self-assembly was found to be dependent on both the root mean square roughness (Rrms) of the surface and the type of solvent annealing system used. It was observed that surface with Rrms< 5.0 Å showed self-assembly. Above this value, the kinetic hindrance posed by the surface roughness on the block copolymer leads to its conforming to the surface without observable phase separation. PMID:22943003

  20. When block copolymer self-assembly in hierarchically ordered honeycomb films depicts the breath figure process.

    PubMed

    Escalé, Pierre; Save, Maud; Billon, Laurent; Ruokolainen, Janne; Rubatat, Laurent

    2016-01-21

    Nowadays, a challenge in the preparation of hierarchically ordered materials is the control of concomitant and interacting self-organization processes occurring in time at different length scales. In the present paper, the breath figure process is combined with block copolymer nano-phase segregation to elaborate hierarchically structured honeycomb porous films. Copolymer ordering, at the nanometer length scale, is observed and described in detail with respect to the array of pores of micrometer dimension, hence pointing out the structural interplays between both length-scales. The study is focused on two diblock copolymers made of polystyrene and poly(tert-butyl acrylate) (PS-b-PtBA) with compositions producing lamellae or hexagonal packing of cylinders at thermodynamical equilibrium. Transmission Electron Microscopy completed with Small and Ultra-Small Angle Scattering are performed to evidence the inner morphologies of the honeycomb. The structural data are discussed in the light of the honeycomb film formation process establishing the interest in using kinetically trapped block copolymer self-organization as an imprint to elucidate the complex breath figure process. PMID:26528753

  1. Kinetic control of block copolymer self-assembly into multicompartment and novel geometry nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Yingchao; Wang, Xiaojun; Zhang, Ke; Wooley, Karen; Mays, Jimmy; Percec, Virgil; Pochan, Darrin

    2012-02-01

    Micelles with the segregation of hydrophobic blocks trapped in the same nanoparticle core have been produced through co-self-assembly of two block copolymers in THF/water dilute solution. The dissolution of two block copolymer sharing the same polyacrylic acid PAA blocks in THF undergoes consequent aggregation and phase separation through either slow water titration or quick water addition that triggers the micellar formation. The combination and comparison of the two water addition kinetic pathways are the keys of forming multicompartment structures at high water content. Importantly, the addition of organic diamine provides for acid-base complexation with the PAA side chains which, in turn, plays the key role of trapping unlike hydrophobic blocks from different block copolymers into one nanoparticle core. The kinetic control of solution assembly can be applied to other molecular systems such as dendrimers as well as other block copolymer molecules. Transmission electron microscopy, cryogenic transmission electron microscopy, light scattering have been applied to characterize the micelle structures.

  2. From multi-responsive tri- and diblock copolymers to diblock-copolymer-decorated gold nanoparticles: the effect of architecture on micellization behaviors in aqueous solutions.

    PubMed

    Song, Lichun; Sun, Hui; Chen, Xiaolu; Han, Xia; Liu, Honglai

    2015-06-28

    This work reports on the aqueous stimuli-responsive behaviors of an ABA triblock copolymer, a BAB triblock copolymer, an AB diblock copolymer and citrate-based gold nanoparticles decorated with AB diblock copolymers (where A is the pH- and thermo-responsive poly[N,N-(dimethylamino)ethyl methacrylate] (PDMAEMA) and B is the thermo-responsive poly[2-(2-methoxyethoxy)ethyl methacrylate] (PMEO2MA)). The symmetric triblock polymers were synthesized via sequential atom transfer radical polymerization (ATRP) using a disulfide-functionalized initiator. Subsequently, the thiol-ended diblock copolymers were facilely obtained by reducing these triblock copolymers and were grafted onto gold nanoparticle (AuNP) surfaces via ligand exchange to yield stimuli-sensitive gold nanoparticles (Au@AB and Au@BA). The ABA and BAB triblock copolymers exhibited two-step thermo-induced aggregation behavior in water at a pH near the isoelectric point (IEP), which resulted in the formation of micelles after the first lower critical solution temperature (LCST) and large aggregates consisting of clustered micelles above the second LCST transition. The significant difference between the micelle sizes of the ABA and BAB copolymers, such that the micelle size of the BAB copolymer was smaller than that of the ABA copolymer although both had a similar unit composition, suggests a distinction between the micelle structures. The "branch" and "flower-like" micelles that are formed in the ABA and BAB aqueous solutions, respectively, ultimately governed the phase transition behaviors. The AB diblock copolymer exhibited similar micellization behavior and a micelle size roughly similar to that of the ABA triblock copolymer, although the chain length of the AB copolymer is only half that of the ABA copolymer. Both Au@PDMAEMA-PMEO2MA and Au@PMEO2MA-PDMAEMA showed similar dual LCST behaviors and pH-responsive behaviors in aqueous solutions without the addition of salt. A significant difference was observed

  3. Clear antismudge unimolecular coatings of diblock copolymers on glass plates.

    PubMed

    Macoretta, Danielle; Rabnawaz, Muhammad; Grozea, Claudia M; Liu, Guojun; Wang, Yu; Crumblehulme, Alison; Wyer, Martin

    2014-12-10

    Two poly[3-(triisopropyloxysilyl)propyl methacrylate]-block-poly[2-(perfluorooctyl)ethyl methacrylate] (PIPSMA-b-PFOEMA) samples and one poly(perfluoropropylene oxide)-block-poly-[3-(triisopropyloxysilyl)propyl methacrylate] (PFPO-b-PIPSMA) sample were synthesized, characterized, and used to coat glass plates. These coatings were formed by evaporating a dilute polymer solution containing HCl, which catalyzed PIPSMA's sol-gel chemistry. Polymer usage was minimized by targeting at diblock copolymer unimolecular (brush) layers that consisted of a sol-gelled grafted PIPSMA layer and an oil- and water-repellant fluorinated surface layer. Investigated is the effect of varying the catalyst amount, polymer amount, as well as block copolymer type and composition on the structure, morphology, and oil- and water-repellency of the coatings. Under optimized conditions, the prepared coatings were optically clear and resistant to writing by a permanent marker. The marker's trace was the faintest on PFPO-b-PIPSMA coatings. In addition, the PFPO-b-PIPSMA coatings were far more wear-resistant than the PIPSMA-b-PFOEMA coatings. PMID:25399630

  4. Clear antismudge unimolecular coatings of diblock copolymers on glass plates.

    PubMed

    Macoretta, Danielle; Rabnawaz, Muhammad; Grozea, Claudia M; Liu, Guojun; Wang, Yu; Crumblehulme, Alison; Wyer, Martin

    2014-12-10

    Two poly[3-(triisopropyloxysilyl)propyl methacrylate]-block-poly[2-(perfluorooctyl)ethyl methacrylate] (PIPSMA-b-PFOEMA) samples and one poly(perfluoropropylene oxide)-block-poly-[3-(triisopropyloxysilyl)propyl methacrylate] (PFPO-b-PIPSMA) sample were synthesized, characterized, and used to coat glass plates. These coatings were formed by evaporating a dilute polymer solution containing HCl, which catalyzed PIPSMA's sol-gel chemistry. Polymer usage was minimized by targeting at diblock copolymer unimolecular (brush) layers that consisted of a sol-gelled grafted PIPSMA layer and an oil- and water-repellant fluorinated surface layer. Investigated is the effect of varying the catalyst amount, polymer amount, as well as block copolymer type and composition on the structure, morphology, and oil- and water-repellency of the coatings. Under optimized conditions, the prepared coatings were optically clear and resistant to writing by a permanent marker. The marker's trace was the faintest on PFPO-b-PIPSMA coatings. In addition, the PFPO-b-PIPSMA coatings were far more wear-resistant than the PIPSMA-b-PFOEMA coatings.

  5. Loading of Silica Nanoparticles in Block Copolymer Vesicles during Polymerization-Induced Self-Assembly: Encapsulation Efficiency and Thermally Triggered Release.

    PubMed

    Mable, Charlotte J; Gibson, Rebecca R; Prevost, Sylvain; McKenzie, Beulah E; Mykhaylyk, Oleksandr O; Armes, Steven P

    2015-12-30

    Poly(glycerol monomethacrylate)-poly(2-hydroxypropyl methacrylate) diblock copolymer vesicles can be prepared in the form of concentrated aqueous dispersions via polymerization-induced self-assembly (PISA). In the present study, these syntheses are conducted in the presence of varying amounts of silica nanoparticles of approximately 18 nm diameter. This approach leads to encapsulation of up to hundreds of silica nanoparticles per vesicle. Silica has high electron contrast compared to the copolymer which facilitates TEM analysis, and its thermal stability enables quantification of the loading efficiency via thermogravimetric analysis. Encapsulation efficiencies can be calculated using disk centrifuge photosedimentometry, since the vesicle density increases at higher silica loadings while the mean vesicle diameter remains essentially unchanged. Small angle X-ray scattering (SAXS) is used to confirm silica encapsulation, since a structure factor is observed at q ≈ 0.25 nm(-1). A new two-population model provides satisfactory data fits to the SAXS patterns and allows the mean silica volume fraction within the vesicles to be determined. Finally, the thermoresponsive nature of the diblock copolymer vesicles enables thermally triggered release of the encapsulated silica nanoparticles simply by cooling to 0-10 °C, which induces a morphological transition. These silica-loaded vesicles constitute a useful model system for understanding the encapsulation of globular proteins, enzymes, or antibodies for potential biomedical applications. They may also serve as an active payload for self-healing hydrogels or repair of biological tissue. Finally, we also encapsulate a model globular protein, bovine serum albumin, and calculate its loading efficiency using fluorescence spectroscopy. PMID:26600089

  6. Sulfate-based anionic diblock copolymer nanoparticles for efficient occlusion within zinc oxide.

    PubMed

    Ning, Y; Fielding, L A; Andrews, T S; Growney, D J; Armes, S P

    2015-04-21

    Occlusion of copolymer particles within inorganic crystalline hosts not only provides a model for understanding the crystallisation process, but also may offer a direct route for the preparation of novel nanocomposite materials with emergent properties. In the present paper, a series of new well-defined anionic diblock copolymer nanoparticles are synthesised by polymerisation-induced self-assembly (PISA) via reversible addition-fragmentation chain transfer (RAFT) aqueous emulsion polymerisation and then evaluated as crystal habit modifiers for the in situ formation of ZnO in aqueous solution. Systematic studies indicate that both the chemical nature (i.e. whether sulfate-based or carboxylate-based) and the mean degree of polymerisation (DP) of the anionic stabiliser block play vital roles in determining the crystal morphology. In particular, sulfate-functionalised nanoparticles are efficiently incorporated within the ZnO crystals whereas carboxylate-functionalised nanoparticles are excluded, thus anionic character is a necessary but not sufficient condition for successful occlusion. Moreover, the extent of nanoparticle occlusion within the ZnO phase can be as high as 23% by mass depending on the sulfate-based nanoparticle concentration. The optical properties, chemical composition and crystal structure of the resulting nanocomposite crystals are evaluated and an occlusion mechanism is proposed based on the observed evolution of the ZnO morphology in the presence of sulfate-based anionic nanoparticles. Finally, controlled deposition of a 5 nm gold sol onto porous ZnO particles (produced after calcination of the organic nanoparticles) significantly enhances the rate of photocatalytic decomposition of a model rhodamine B dye on exposure to a relatively weak UV source.

  7. Self-Assembly of Rod-Coil Block Copolymers and Their Application in Electroluminescent Devices

    SciTech Connect

    Tao, Yuefei; Ma, Biwu; Segalman, Rachel A.

    2008-11-18

    The formation of alternating electron transporting and hole transporting 15 nm lamellae within the active layer of an organic light-emitting diode (OLED) is demonstrated to improve device performance. A new multifunctional bipolar rod-coil block copolymer containing a poly(alkoxy phenylenevinylene) (PPV) rod-shaped block as the hole transporting and emitting material and a poly(vinyloxadiazole) coil-shaped electron transporting block is synthesized. This new block copolymer is the active material of a self-assembling multicomponent electroluminescent device that can be deposited in a single step. In the thin film, grazing incidence X-ray scattering and transmission electron microscopy demonstrate that the layers form grains which are oriented bimodally: parallel and perpendicular from the anode. In this mixed orientation, the device demonstrates better performance than those with either pure PPV or a blend of the two analogous homopolymers as the active materials, i.e., higher external quantum efficiency (EQE) and brightness. This improved device performance is mainly attributed to the bipolar functionality and microphase separation of the block copolymer, which provide highly efficient hole and electron recombination at the nanodomain interfaces.

  8. Self-Assembly of Rod-Coil Block Copolymers And Their Application in Electroluminescent Devices

    SciTech Connect

    Tao, Y.; Ma, B.; Segalman, R.A.

    2009-05-26

    The formation of alternating electron transporting and hole transporting 15 nm lamellae within the active layer of an organic light-emitting diode (OLED) is demonstrated to improve device performance. A new multifunctional bipolar rod-coil block copolymer containing a poly(alkoxy phenylenevinylene) (PPV) rod-shaped block as the hole transporting and emitting material and a poly(vinyloxadiazole) coil-shaped electron transporting block is synthesized. This new block copolymer is the active material of a self-assembling multicomponent electroluminescent device that can be deposited in a single step. In the thin film, grazing incidence X-ray scattering and transmission electron microscopy demonstrate that the layers form grains which are oriented bimodally: parallel and perpendicular from the anode. In this mixed orientation, the device demonstrates better performance than those with either pure PPV or a blend of the two analogous homopolymers as the active materials, i.e., higher external quantum efficiency (EQE) and brightness. This improved device performance is mainly attributed to the bipolar functionality and microphase separation of the block copolymer, which provide highly efficient hole and electron recombination at the nanodomain interfaces.

  9. Hierarchical self-assembly of spider silk-like block copolymers

    NASA Astrophysics Data System (ADS)

    Krishnaji, Sreevidhya; Huang, Wenwen; Cebe, Peggy; Kaplan, David

    2011-03-01

    Block copolymers provide an attractive venue to study well-defined nano-structures that self-assemble to generate functionalized nano- and mesoporous materials. In the present study, a novel family of spider silk-like block copolymers was designed, bioengineered and characterized to study the impact of sequence chemistry, secondary structure and block length on assembled morphology. Genetic variants of native spider dragline silk (major ampullate spidroin I, Nephila clavipes) were used as polymer building blocks. Characterization by FTIR revealed increased ?-sheet content with increasing hydrophobic A blocks; SEM revealed spheres, rod-like structures, bowl-shaped and giant compound micelles. Langmuir Blodgett monolayers were prepared at the air-water interface at different surface pressures and monolayer films analyzed by AFM revealed oblate to prolate structures. Circular micelles, rod-like, densely packed circular structures were observed for HBA6 at increasing surface pressure. Exploiting hierarchical assembly provide a promising approach to rationale designs of protein block copolymer systems, allowing comparison to traditional synthetic systems.

  10. Synthesis and self-assembly of temperature and anion double responsive ionic liquid block copolymers

    NASA Astrophysics Data System (ADS)

    Liang, Ju; Wu, Wenlan; Li, Junbo; Han, Chen; Zhang, Shijie; Guo, Jinwu; Zhou, Huiyun

    2015-09-01

    In this paper, double hydrophilic ionic liquid block copolymers (ILBCs), poly(N-isopropylacrylamide)-block-poly[1-methyl-3-(2-methacryloyloxy propylimidazolium bromine)] (PNIPAM- b-PMMPImB), were polymerized by two-step reversible addition-fragmentation chain transfer (RAFT) process. The composition and molecular weight distributions of ILBCs were characterized using 1HNMR and gel permeation chromatography (GPC). The self-assembly and temperature- and anion-responsive behaviors of ILBCs were investigated by UV-Vis spectroscopy, TEM and dynamic light scattering (DLS). With increasing the concentration of (CF3SO2)2N-, the micellization of self-assembling PNIPAM- b-PMMPImB was induced to form a core—shell structure containing the core with hydrophilic PMMPIm-(CF3SO2)2N- surrounded by the shell of PNIPAM via the anion-responsive properties of ILBCs. However, upon temperature increasing, PNIPAM- b-PMMPImB formed the micelles composing of PNIPAM core and PMMPImB shell. The ionic liquid segment with strong hydrophilic property enhanced the hydrogen bonding interaction which expanded the temperature range of phase transition and increased the lower critical solution temperature (LCST) of the system. These results indicate that ILBCs prepared in this paper have excellent temperature and anion double responsive properties, and may be applied as a kind of potential environmental responsive polymer nanoparticles.

  11. Transport of nanoparticulate material in self-assembled block copolymer micelle solutions and crystals.

    PubMed

    Cheng, Vicki A; Walker, Lynn M

    2016-01-01

    Water soluble poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) [PEO-PPO-PEO] triblock copolymers self-assemble into thermoreversible micellar crystals comprised of periodically spaced micelles. The micelles have PPO cores surrounded by hydrated PEO coronas and the dimensions of the unit cell of the organized micelles is on the order of several to tens of nanometers. Fluorescence recovery after photobleaching (FRAP) is used to quantify nanoparticle transport in these nanostructured polymer micelle systems. Diffusivity of bovine serum albumin (BSA, Dh ∼ 7 nm) is quantified across a wide range of polymer, or micelle, concentrations covering both the disordered fluid as well as the structured micellar crystal to understand the effects of nanoscale structure on particle transport. Measured particle diffusivity in these micellar systems is reduced by as much as four orders of magnitude when compared to diffusivity in free solution. Diffusivity in the disordered micellar fluid is best understood in terms of diffusion through a polymeric solution, while transport in the structured micellar phase is possibly due to hopping between interstitial sites. These results not only show that the nanoscale structures of the micelles have a measureable impact on particle diffusivity, but also demonstrate the ability to tune nanoscale transport in self-assembled materials.

  12. NaCl-triggered self-assembly of hydrophilic poloxamine block copolymers.

    PubMed

    Bahadur, Anita; Cabana-Montenegro, Sonia; Aswal, Vinod Kumar; Lage, Emilio V; Sandez-Macho, Isabel; Concheiro, Angel; Alvarez-Lorenzo, Carmen; Bahadur, Pratap

    2015-10-15

    Tetronic 1307 (T1307) is a hydrophilic poloxamine (HLB>24) with a high molecular mass owing to its long PEO and PPO blocks. In spite of good biocompatibility, its use as a component of drug delivery systems is limited by its high critical micelle concentration (CMC) and temperature (CMT). The aim of this work was to elucidate whether the addition of NaCl or the combination of salts and temperature may bring T1307 micellization and gelling features into more practically useful values. Increasing NaCl concentration in the 0.154 M (isotonic) to 2M (hypertonic) range made the copolymer more hydrophobic and more prone to self-assemble into unimodal micelles, as observed by means of π-A isotherms, (1)H NMR, dynamic light scattering (DLS), small-angle neutron scattering (SANS), and pyrene fluorescence. The decrease in CMC and CMT observed for T1307 in 0.5 M NaCl medium (tolerable hypertonic solution), compared to water, notably favored the solubility of hydrophobic drugs such as curcumin and quercetin. Moreover, phase diagram, intrinsic viscosity and sol-to-gel transition were markedly affected by NaCl concentration. Overall, the strong dependence of T1307 self-assembly features on NaCl opens interesting possibilities for tuning the performance of T1307 as a component of nanocarriers and in situ gelling systems. PMID:26315124

  13. Amphiphilic Graft Copolymer Nanospheres: From Colloidal Self-Assembly to CO2 Capture Membranes.

    PubMed

    Jeon, Harim; Kim, Dong Jun; Park, Min Su; Ryu, Du Yeol; Kim, Jong Hak

    2016-04-13

    Colloidal nanosphere self-assembly effectively generates ordered nanostructures, prompting tremendous interest in many applications such as photonic crystals and templates for inverse opal fabrication. Here we report the self-assembly of low-cost, graft copolymer nanospheres for CO2 capture membranes. Specifically, poly(dimethylsiloxane)-graft-poly(4-vinylpyridine) (PDMS-g-P4VP) is synthesized via one-pot, free radical dispersion polymerization to give discrete monodisperse nanospheres. These nanospheres comprise a surface-anchored highly permeable PDMS layer and internal CO2-philic P4VP spherical core. Their diameter is controllable below the submicrometer range by varying grafting ratios. The colloidal dispersion forms a long-range, close-packed hexagonal array on a substrate by inclined deposition and convective assembly. The array shows dispersion medium-dependent packing characteristics. A thermodynamic correlation is determined using different solvents to obtain stable PDMS-g-P4VP dispersions and interpreted in terms of Flory-Huggins interaction parameter. As a proof-of-concept, the implementation of these nanospheres into membranes simultaneously enhances the CO2 permeability and CO2/N2 selectivity of PDMS-based transport matrixes. Upon physical aging of the solution, the CO2/N2 selectivity is improved up to 26, one of the highest values for highly permeable PDMS-based polymeric membranes. PMID:27004536

  14. Aqueous self-assembly of giant bottlebrush block copolymer surfactants as shape-tunable building blocks.

    PubMed

    Fenyves, Ryan; Schmutz, Marc; Horner, Ian J; Bright, Frank V; Rzayev, Javid

    2014-05-28

    Programmed self-assembly of well-defined molecular building blocks enables the fabrication of precisely structured nanomaterials. In this work, we explore a new class of giant polymeric surfactants (Mn = (0.7-4.4) × 10(6) g/mol) with bottlebrush architecture and show that their persistent molecular shape leads to the formation of uniform aggregates in a predictable manner. Amphiphilic bottlebrush block copolymers containing polylactide (PLA) and poly(ethylene oxide) (PEO) side chains were synthesized by a grafting-from method, and their self-assembly in aqueous environment was studied by cryogenic transmission electron microscopy. The produced micelle structures with varying interfacial curvatures and core radii (19-55 nm) boasted rod-like hydrophilic PEO brushes protruding from the hydrophobic PLA cores normal to the interface. Highly uniform spherical micelles with low dispersities were obtained from bottlebrush amphiphiles with packing parameters of ∼0.3, estimated from the polymer structural data. Long cylindrical micelles and other nonspherical aggregates were observed for the first time for compositionally less asymmetric bottlebrush surfactants. Critical micelle concentration values of 1 nM, measured for PEO-rich bottlebrush amphiphiles, indicated an enhanced thermodynamic stability of the produced micelle aggregates. Shape-dependent assembly of bottlebrush surfactants allows for the rational fabrication of a range of micelle structures in narrow morphological windows.

  15. Building non-tortuous ion-conduction pathways using self-assembled block copolymers

    NASA Astrophysics Data System (ADS)

    Kim, Onnuri; Park, Moon Jeong

    Ion-containing polymers with self-assembled morphologies are becoming important ingredients of a wide range of electrochemical devices such as lithium-ion batteries, fuel cells and electroactive actuators. Although several studies have reported the relationship between morphologies and ion transport properties of such polymers, the most of quantitative analysis have been limited to two-dimensional morphologies as they occupy a large window of the phase diagrams. In present study, we investigated the effects of morphology on the ion transport efficiency with a focus on three-dimensional symmetry. A range of three-dimensional self-assembled morphologies, i.e., ill-defined cubic, orthorhombic network (O70) , and face-centered cubic phases (fcc) were achieved for a single sulfonated block copolymer upon the addition of non-stoichiometric ionic liquids. The type of three-dimensional lattice was found out to play a crucial role in determining the ion transport properties of composite membranes, where the most efficient ion-conduction was demonstrated for fcc phases with lowest tortuosity of 1 over orthorhombic networks phases (tortuosity:1.5). This intriguing result suggests a new avenue to designing polymer electrolytes with improved transport properties.

  16. Thermodynamics of Polymer Adsorption onto Nanoporous Silica and its Application in the Large Scale Purification of Poly(styrene)-block-Poly(alkyl methacrylate) Diblock Copolymers

    NASA Astrophysics Data System (ADS)

    Abdulahad, Asem Irfan

    As a result of unavoidable inconsistencies in their synthesis via controlled radical polymerization techniques, block copolymers inherently have distributions in chemical composition and molecular weight in each block that can have significant impact on their viscoelastic properties as well as their ability to self-assemble into ordered phases. High performance liquid chromatography is routinely utilized for determining the average molecular weight distribution that exist in synthetic polymers and is becoming increasingly popular for the fractionation and purification of chemically diverse complex polymer materials such as diblock copolymers. However, the inability of HPLC fractionation to provide meaningful quantities of purified complex polymers makes this method extremely inefficient and limits the ability to characterize purified fractions further. Overall, this dissertation work can be digested in two distinct parts. In the first part, high performance liquid chromatography was used as a tool for studying the influential parameters affecting the critical adsorption point of poly(styrene) and poly(alkyl methacrylate) homopolymers. The understanding gained in the first portion was depended on for the development of large scale fractionation procedures. In the second part, a chemically diverse variety of poly(alkyl methacrylate)-block-poly(styrene) diblock copolymers synthesized by atom transfer radical polymerization and anionic polymerization were purified by large scale adsorption-based fractionation procedures that included chromatographic filtration and the sequential adsorption/desorption of bulk diblock copolymer materials. The impact of diblock copolymer purification is addressed by comparing the molecular weight distribution, chemical composition distribution, viscoelastic properties, and small-angle X-ray scattering profiles.

  17. Highly tunable refractive index visible-light metasurface from block copolymer self-assembly

    NASA Astrophysics Data System (ADS)

    Kim, Ju Young; Kim, Hyowook; Kim, Bong Hoon; Chang, Taeyong; Lim, Joonwon; Jin, Hyeong Min; Mun, Jeong Ho; Choi, Young Joo; Chung, Kyungjae; Shin, Jonghwa; Fan, Shanhui; Kim, Sang Ouk

    2016-09-01

    The refractive index of natural transparent materials is limited to 2-3 throughout the visible wavelength range. Wider controllability of the refractive index is desired for novel optical applications such as nanoimaging and integrated photonics. We report that metamaterials consisting of period and symmetry-tunable self-assembled nanopatterns can provide a controllable refractive index medium for a broad wavelength range, including the visible region. Our approach exploits the independent control of permeability and permittivity with nanoscale objects smaller than the skin depth. The precise manipulation of the interobject distance in block copolymer nanopatterns via pattern shrinkage increased the effective refractive index up to 5.10. The effective refractive index remains above 3.0 over more than 1,000 nm wavelength bandwidth. Spatially graded and anisotropic refractive indices are also obtained with the design of transitional and rotational symmetry modification.

  18. Highly tunable refractive index visible-light metasurface from block copolymer self-assembly

    PubMed Central

    Kim, Ju Young; Kim, Hyowook; Kim, Bong Hoon; Chang, Taeyong; Lim, Joonwon; Jin, Hyeong Min; Mun, Jeong Ho; Choi, Young Joo; Chung, Kyungjae; Shin, Jonghwa; Fan, Shanhui; Kim, Sang Ouk

    2016-01-01

    The refractive index of natural transparent materials is limited to 2–3 throughout the visible wavelength range. Wider controllability of the refractive index is desired for novel optical applications such as nanoimaging and integrated photonics. We report that metamaterials consisting of period and symmetry-tunable self-assembled nanopatterns can provide a controllable refractive index medium for a broad wavelength range, including the visible region. Our approach exploits the independent control of permeability and permittivity with nanoscale objects smaller than the skin depth. The precise manipulation of the interobject distance in block copolymer nanopatterns via pattern shrinkage increased the effective refractive index up to 5.10. The effective refractive index remains above 3.0 over more than 1,000 nm wavelength bandwidth. Spatially graded and anisotropic refractive indices are also obtained with the design of transitional and rotational symmetry modification. PMID:27683077

  19. Creating periodic local strain in monolayer graphene with nanopillars patterned by self-assembled block copolymer

    SciTech Connect

    Mi, Hongyi; Mikael, Solomon; Seo, Jung-Hun; Gui, Gui; Ma, Alice L.; Ma, Zhenqiang E-mail: mazq@engr.wisc.edu; Liu, Chi-Chun; Nealey, Paul F. E-mail: mazq@engr.wisc.edu

    2015-10-05

    A simple and viable method was developed to produce biaxial strain in monolayer graphene on an array of SiO{sub 2} nanopillars. The array of SiO{sub 2} nanopillars (1 cm{sup 2} in area, 80 nm in height, and 40 nm in pitch) was fabricated by employing self-assembled block copolymer through simple dry etching and deposition processes. According to high resolution micro-Raman spectroscopy and atomic force microscopy analyses, 0.9% of maximum biaxial tensile strain and 0.17% of averaged biaxial tensile strain in graphene were created. This technique provides a simple and viable method to form biaxial tensile strain in graphene and offers a practical platform for future studies in graphene strain engineering.

  20. Nanostructured Colloidal Particles by Confined Self-Assembly of Block Copolymers in Evaporative Droplets

    NASA Astrophysics Data System (ADS)

    Kim, Minsoo; Yi, Gi-Ra

    2015-06-01

    Block copolymers (BCPs) can create various morphology by self-assembly in bulk or film. Recently, using BCPs in confined geometries such as thin film (one-dimension), cylindrical template (two-dimension), or emulsion droplet (three-dimension), nanostructured BCP particles have been prepared, in which unique nanostructures of the BCP are formed via solvent annealing process and can be controlled depending on molecular weight ratio and interaction parameter of the BCPs, and droplet size. Moreover, by tuning interfacial property of the BCP particles, anisotropic particles with unique nanostructures have been prepared. Furthermore, for practical application such as drug delivery system, sensor, self-healing, metamaterial, and optoelectronic device, functional nanoparticles can be incorporated inside BCP particles. In this article, we summarize recent progress on the production of structured BCP particles and composite particles with metallic nanoparticles.

  1. Placement error in directed self-assembly of block copolymers for contact hole application

    NASA Astrophysics Data System (ADS)

    Bouanani, Shayma; Tiron, Raluca; Bos, Sandra; Gharbi, Ahmed; Barros, Patricia Pimenta; Hazart, Jérôme; Robert, Frédéric; Lapeyre, Céline; Ostrovsky, Alain; Monget, Cédric

    2016-04-01

    Directed self-assembly (DSA) of block copolymers has shown interesting results for contact hole application, as a vertical interconnection access for CMOS sub-10 nm technology. The control of critical dimension uniformity (CDU), defectivity, and placement error (PE) is challenging and depends on multiple processes and material parameters. This paper reports the work done using the 300-mm pilot line available in materials to integrate the DSA process on contact and via level patterning. In the first part, a reliable methodology for PE measurement is defined. By tuning intrinsic edge detection parameters on standard reference images, the working window is determined. The methodology is then implemented to analyze the experimental data. The impact of the planarization process on PE and the importance of PE as a complement of CDU and hole open yield for process window determination are discussed.

  2. ELEMENTARY APPROACH TO SELF-ASSEMBLY AND ELASTIC PROPERTIES OF RANDOM COPOLYMERS

    SciTech Connect

    S. M. CHITANVIS

    2000-10-01

    The authors have mapped the physics of a system of random copolymers onto a time-dependent density functional-type field theory using techniques of functional integration. Time in the theory is merely a label for the location of a given monomer along the extent of a flexible chain. We derive heuristically within this approach a non-local constraint which prevents segments on chains in the system from straying too far from each other, and leads to self-assembly. The structure factor is then computed in a straightforward fashion. The long wave-length limit of the structure factor is used to obtain the elastic modulus of the network. It is shown that there is a surprising competition between the degree of micro-phase separation and the elastic moduli of the system.

  3. How Do Spherical Diblock Copolymer Nanoparticles Grow during RAFT Alcoholic Dispersion Polymerization?

    PubMed Central

    2015-01-01

    A poly(2-(dimethylamino)ethyl methacrylate) (PDMA) chain transfer agent (CTA) is used for the reversible addition–fragmentation chain transfer (RAFT) alcoholic dispersion polymerization of benzyl methacrylate (BzMA) in ethanol at 70 °C. THF GPC analysis indicated a well-controlled polymerization with molecular weight increasing linearly with conversion. GPC traces also showed high blocking efficiency with no homopolymer contamination apparent and Mw/Mn values below 1.35 in all cases. 1H NMR studies confirmed greater than 98% BzMA conversion for a target PBzMA degree of polymerization (DP) of up to 600. The PBzMA block becomes insoluble as it grows, leading to the in situ formation of sterically stabilized diblock copolymer nanoparticles via polymerization-induced self-assembly (PISA). Fixing the mean DP of the PDMA stabilizer block at 94 units and systematically varying the DP of the PBzMA block enabled a series of spherical nanoparticles of tunable diameter to be obtained. These nanoparticles were characterized by TEM, DLS, MALLS, and SAXS, with mean diameters ranging from 35 to 100 nm. The latter technique was particularly informative: data fits to a spherical micelle model enabled calculation of the core diameter, surface area occupied per copolymer chain, and the mean aggregation number (Nagg). The scaling exponent derived from a double-logarithmic plot of core diameter vs PBzMA DP suggests that the conformation of the PBzMA chains is intermediate between the collapsed and fully extended state. This is in good agreement with 1H NMR studies, which suggest that only 5−13% of the BzMA residues of the core-forming chains are solvated. The Nagg values calculated from SAXS and MALLS are in good agreement and scale approximately linearly with PBzMA DP. This suggests that spherical micelles grow in size not only as a result of the increase in copolymer molecular weight during the PISA synthesis but also by exchange of individual copolymer chains between micelles

  4. Dodecagonal Quasicrystal Phase in a Diblock Copolymer Melt

    NASA Astrophysics Data System (ADS)

    Bates, Frank; Gillard, Timothy; Lee, Sangwoo

    Recent experiments with low molecular weight asymmetric poly(isoprene- b-lactide) (PI-PLA) diblock copolymers have established an equilibrium Frank-Kasper σ-phase at compositions between 18 and 22 percent by volume PLA, which transforms to a BCC phase followed by disordering with increasing temperature. This presentation will describe synchrotron small-angle x-ray scattering and dynamic mechanical spectroscopy experiments conducted following rapid temperature quenches from the disordered state to temperatures associated with the σ-phase. We document the development of a long-lived dodecagonal quasicrystalline (DQC) phase that transforms with time into the associated quasicrystal approximate σ-phase at a rate that is highly temperature dependent. Remarkably, the DQC does not form from either the σ-phase or BCC state. These finding will be discussed in the context of an apparent spontaneous structural transition that occurs when the disordered melt is supercooled below a threshold temperature coincident with the BCC to σ-phase order-order transition temperature. Support provided by the National Science Foundation (1104368).

  5. Non-Newtonian Behavior of Diblock and Triblock Copolymer Solutions

    NASA Astrophysics Data System (ADS)

    Watanabe, Hiroshi

    2006-03-01

    Non-Newtonian flow behavior was examined for butadiene-styrene (BS) diblock and BSB triblock copolymers dissolved in a S-selective solvent, dibutyl phthalate (DBP). Spherical domains of the non-solvated B blocks were arranged on a bcc lattice in both solutions at equilibrium, as revealed from SANS. The solutions exhibited significant thinning under steady flow, which was well correlated with the disruption of the bcc lattice detected with SANS. The lattice disruption was most prominent at a shear rate comparable to the frequency of B/S concentration fluctuation. For the BS/DBP solution, the recovery of the lattice structure after cessation of flow was the slowest for the most heavily disrupted lattice, as naturally expected. In contrast, for the BSB/DBP solution, the recovery rate was insensitive to the magnitude of lattice disruption. This peculiar behavior of the BSB solution suggests that the rate-determining step of the recovery in this solution is the transient B/S mixing required for reformation of the S bridges connecting the B domains.

  6. Brownian dynamics simulation study on the self-assembly of incompatible star-like block copolymers in dilute solution.

    PubMed

    Li, Bin; Zhu, You-Liang; Liu, Hong; Lu, Zhong-Yuan

    2012-04-14

    We study the self-assembly of symmetric star-like block copolymers (A(x))(y)(B(x))(y)C in dilute solution by using Brownian dynamics simulations. In the star-like block copolymer, incompatible A and B components are both solvophobic, and connected to the center bead C of the polymer. Therefore, this star-like block copolymer can be taken as a representative of soft and deformable Janus particles. In our Brownian dynamics simulations, these "soft Janus particles" are found to self-assemble into worm-like lamellar structures, loose aggregates and so on. By systematically varying solvent conditions and temperature, we build up the phase diagram to illustrate the effects of polymer structure and temperature on the aggregate structures. At lower temperatures, we can observe large worm-like lamellar aggregates. Upon increasing the temperature, some block copolymers detach from the aggregate; this phenomenon is especially sensitive for the polymers with less arms. The aggregate structure will be quite disordered when the temperature is high. The incompatibility between the two parts in the star-like block copolymer also affects the self-assembled structures. We find that the worm-like structure is longer and narrower as the incompatibility between the two parts is stronger. PMID:22395808

  7. Phase Behavior and Ionic Conductivity of Concentrated Solutions of Polystyrene-Poly(ethylene oxide) Diblock Copolymers in an Ionic Liquid

    SciTech Connect

    Simone, Peter M.; Lodge, Timothy P.

    2010-03-16

    Concentrated solutions of poly(styrene-b-ethylene oxide) (PS-PEO) diblock copolymers were prepared using the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [EMI][TFSI] as the solvent. The self-assembled microstructures adopted by the copolymer solutions have been characterized using small-angle X-ray scattering. Lyotropic mesophase transitions were observed, with a progression from hexagonally packed cylinders of PEO, to lamellae, to hexagonally packed cylinders of PS upon increasing [EMI][TFSI] content. The change in lamellar domain spacing with ionic liquid concentration was found to be comparable to that reported for other block copolymers in strongly selective solvents. The ionic conductivity of the concentrated PS-PEO/[EMI][TFSI] solutions was measured via impedance spectroscopy, and ranged from 1 x 10{sup -7} to 1 x 10{sup -3} S/cm at temperatures from 25-100 C. Additionally, the ionic conductivity of the solutions was found to increase with both ionic liquid concentration and molecular weight of the PEO blocks. The ionic conductivity of PEO homopolymer/[EMI][TFSI] solutions was also measured in order to compare the conductivity of the PS-PEO solutions to the expected limit for a lamellar sample with randomly oriented microstructure grains.

  8. Block copolymer self-assembly fundamentals and applications in formulation of nano-structured fluids

    NASA Astrophysics Data System (ADS)

    Sarkar, Biswajit

    Dispersions of nanoparticles in polymer matrices form hybrid materials that can exhibit superior structural and functional properties and find applications in e.g. thermo-plastics, electronics, polymer electrolytes, catalysis, paint formulations, and drug delivery. Control over the particle location and orientation in the polymeric matrices are essential in order to realize the enhanced mechanical, electrical, and optical properties of the nanohybrids. Block copolymers, composed of two or more different monomers, are promising for controlling particle location and orientation because of their ability to organize into ordered nanostructures. Fundamental questions pertaining to nanoparticle-polymer interfacial interactions remain open and formulate the objectives of our investigation. Particle-polymer enthalpic and entropic interactions control the nanoparticle dispersion in polymer matrices. Synthetic chemical methods for modifying the particle surface in order to control polymer-particle interactions are involved and large scale production is not possible. In the current approach, a physical method is employed to control polymer-particle interactions. The use of commercially available solvents is found to be effective in modifying particle-polymer interfacial interactions. The approach is applicable to a wide range of particle-polymer systems and can thereby enable large scale processing of polymer nanohybrids. The systems of silica nanoparticles dispersed in long-range or short-range self-assembled structures of aqueous poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) block copolymers (Pluronics) is considered here. The effect of various parameters such as the presence of organic solvents, pH, and particle size on the block copolymer organization and the ensuing particle-polymer interactions are investigated. Favorable surface interactions between the deprotonated silica nanoparticle and PEO-rich domain facilitate particle

  9. Self-Assembly of Magnetic Nanoparticles at the Surface and Within Block Copolymer Films

    NASA Astrophysics Data System (ADS)

    Xu, Chen; Ohno, Kohji; Composto, Russell

    2007-03-01

    We investigate the self-assembly of magnetic Fe3O4 nanoparticles in thin films of a symmetric block copolymer of poly(styrene-b-methyl methacrylate), PS-b-PMMA (75 kg/mol). The Fe3O4 nanoparticles (4nm) are grafted by poly(methyl methacrylate) (PMMA) (2.7 kg/mol) brushes to improve their compatibility. The weight percent of Fe3O4 in PS-b-PMMA is 1, 4 and 10. The Fe3O4 reside at the intermaterial dividing surface and also form small disk-like aggregates within the PMMA phase. The addition of Fe3O4 slows down the transition from perpendicular to parallel lamellae morphology at the surface and slowing down increases as weight percent Fe3O4 increases. Using cross-sectional TEM, nanoparticles are found to be rejected from the parallel lamellae and gather preferentially within the perpendicular lamellae. These studies demonstrate that the Fe3O4 particles influence thin film morphology and visa versa. Because of widespread interest in nanodevices, this study shows that arrays of functional nanoparticles can be formed using block copolymer templates.

  10. Tuning Ordered Pattern of Pd Species through Controlled Block Copolymer Self-Assembly.

    PubMed

    De Rosa, Claudio; Auriemma, Finizia; Malafronte, Anna; Di Girolamo, Rocco; Lazzari, Massimo; Nieto-Suárez, Marina; Hermida-Merino, Daniel; Hamley, Ian William; Portale, Giuseppe

    2016-07-14

    We report a method for the preparation of ordered patterns of Pd species on a substrate based on the use of polystyrene-block-poly(ethylene oxide) copolymer (PS-b-PEO) templates and selective inclusion of palladium (Pd) species in the PEO domains. PS-b-PEO samples of different total molecular masses self-assemble in a cylindrical microphase-separated morphology, in which vertically aligned PEO cylinders, with different diameters depending on the molecular mass, are organized in a hexagonal array of different lateral spacings. The cylindrical nanostructure is maintained after the selective inclusion of Pd species (Pd acetate and Pd nanoparticles (NPs) after reduction of Pd ions of the salt) in the PEO cylinders so that the characteristic sizes (diameters and lateral spacings) of the included Pd species are tuned by the characteristic sizes of the block copolymer (BCP) template, which are regulated by molecular mass. Treatment of nanocomposites at elevated temperatures in air removes the polymer matrix and leads to the formation of arrays of palladium oxide (PdO) NPs covering a solid support. The patterns of PdO NPs are characterized by different particle diameters and gap distances, mirroring the patterns and characteristic nanodimensions of the parent BCPs used as templates. PMID:27286502

  11. Tuning Ordered Pattern of Pd Species through Controlled Block Copolymer Self-Assembly.

    PubMed

    De Rosa, Claudio; Auriemma, Finizia; Malafronte, Anna; Di Girolamo, Rocco; Lazzari, Massimo; Nieto-Suárez, Marina; Hermida-Merino, Daniel; Hamley, Ian William; Portale, Giuseppe

    2016-07-14

    We report a method for the preparation of ordered patterns of Pd species on a substrate based on the use of polystyrene-block-poly(ethylene oxide) copolymer (PS-b-PEO) templates and selective inclusion of palladium (Pd) species in the PEO domains. PS-b-PEO samples of different total molecular masses self-assemble in a cylindrical microphase-separated morphology, in which vertically aligned PEO cylinders, with different diameters depending on the molecular mass, are organized in a hexagonal array of different lateral spacings. The cylindrical nanostructure is maintained after the selective inclusion of Pd species (Pd acetate and Pd nanoparticles (NPs) after reduction of Pd ions of the salt) in the PEO cylinders so that the characteristic sizes (diameters and lateral spacings) of the included Pd species are tuned by the characteristic sizes of the block copolymer (BCP) template, which are regulated by molecular mass. Treatment of nanocomposites at elevated temperatures in air removes the polymer matrix and leads to the formation of arrays of palladium oxide (PdO) NPs covering a solid support. The patterns of PdO NPs are characterized by different particle diameters and gap distances, mirroring the patterns and characteristic nanodimensions of the parent BCPs used as templates.

  12. Polydispersity-Driven Block Copolymer Amphiphile Self-Assembly into Prolate-Spheroid Micelles

    SciTech Connect

    Schmitt, Andrew L.; Repollet-Pedrosa, Milton H.; Mahanthappa, Mahesh K.

    2013-09-26

    The aqueous self-assembly behavior of polydisperse poly(ethylene oxide-b-1,4-butadiene-b-ethylene oxide) (OBO) macromolecular triblock amphiphiles is examined to discern the implications of continuous polydispersity in the hydrophobic block on the resulting aqueous micellar morphologies of otherwise monodisperse polymer surfactants. The chain length polydispersity and implicit composition polydispersity of these samples furnishes a distribution of preferred interfacial curvatures, resulting in dilute aqueous block copolymer dispersions exhibiting coexisting spherical and rod-like micelles with vesicles in a single sample with a O weight fraction, w{sub O}, of 0.18. At higher w{sub O} = 0.51-0.68, the peak in the interfacial curvature distribution shifts and we observe the formation of only American football-shaped micelles. We rationalize the formation of these anisotropically shaped aggregates based on the intrinsic distribution of preferred curvatures adopted by the polydisperse copolymer amphiphiles and on the relief of core block chain stretching by chain-length-dependent intramicellar segregation.

  13. Large-scale parallel arrays of silicon nanowires via block copolymer directed self-assembly.

    PubMed

    Farrell, Richard A; Kinahan, Niall T; Hansel, Stefan; Stuen, Karl O; Petkov, Nikolay; Shaw, Matthew T; West, Laetitia E; Djara, Vladimir; Dunne, Robert J; Varona, Olga G; Gleeson, Peter G; Jung, Soon-Jung; Kim, Hye-Young; Koleśnik, Maria M; Lutz, Tarek; Murray, Christopher P; Holmes, Justin D; Nealey, Paul F; Duesberg, Georg S; Krstić, Vojislav; Morris, Michael A

    2012-05-21

    Extending the resolution and spatial proximity of lithographic patterning below critical dimensions of 20 nm remains a key challenge with very-large-scale integration, especially if the persistent scaling of silicon electronic devices is sustained. One approach, which relies upon the directed self-assembly of block copolymers by chemical-epitaxy, is capable of achieving high density 1 : 1 patterning with critical dimensions approaching 5 nm. Herein, we outline an integration-favourable strategy for fabricating high areal density arrays of aligned silicon nanowires by directed self-assembly of a PS-b-PMMA block copolymer nanopatterns with a L(0) (pitch) of 42 nm, on chemically pre-patterned surfaces. Parallel arrays (5 × 10(6) wires per cm) of uni-directional and isolated silicon nanowires on insulator substrates with critical dimension ranging from 15 to 19 nm were fabricated by using precision plasma etch processes; with each stage monitored by electron microscopy. This step-by-step approach provides detailed information on interfacial oxide formation at the device silicon layer, the polystyrene profile during plasma etching, final critical dimension uniformity and line edge roughness variation nanowire during processing. The resulting silicon-nanowire array devices exhibit Schottky-type behaviour and a clear field-effect. The measured values for resistivity and specific contact resistance were ((2.6 ± 1.2) × 10(5)Ωcm) and ((240 ± 80) Ωcm(2)) respectively. These values are typical for intrinsic (un-doped) silicon when contacted by high work function metal albeit counterintuitive as the resistivity of the starting wafer (∼10 Ωcm) is 4 orders of magnitude lower. In essence, the nanowires are so small and consist of so few atoms, that statistically, at the original doping level each nanowire contains less than a single dopant atom and consequently exhibits the electrical behaviour of the un-doped host material. Moreover this indicates that the processing

  14. Controlling Directed Self-Assembly and Sintering of Gold Nanorods in Patterned Block Copolymer Thin Films

    NASA Astrophysics Data System (ADS)

    Lai, Fengyuan

    As the miniaturization of electronic devices continues, proper thermal management is crucial to ensure the optimum performance and reliability of such devices within their specification. Of primary interest are the so-called thermal interface materials to minimize the thermal resistance between the heat source and the heat sink. To this end, polymer nanocomposites composed of a polymer matrix and nanoscale fillers with high thermal conductivity have attracted tremendous attention. It has been demonstrated that the formation of a nanoparticle assembly inside the polymer matrix provides a continuous pathway for efficient heat transfer, and thus it is essential for achieving high thermal conductivity. In this work, we explored the ability to direct the self-assembly of gold nanorods (AuNRs) via patterned block copolymer (BCP) thin films. Selective sequestration of AuNRs with various aspect ratios in one block domain was achieved, with over 30% of the surface covered by an ordered AuNR assembly orienting parallel to the geometric confinement. The final nanostructure resulting from the directed self-assembly process is determined by the competition between thermodynamic consideration and kinetic factors. The coalescence and sintering of the AuNR assembly was accomplished by both furnace thermal annealing and rapid thermal annealing at low temperatures. The mechanism through which efficient sintering occurred is investigated with scanning electron microscopy. It is found that the sintering process initially takes place locally, resulting in small AuNR aggregates. Eventually the aggregates grow into a globally continuous, percolating network structure. In addition, the overall heat transfer coefficient was measured in an environmental scanning electron microscope by following droplet growth over time. The present study opens up new opportunities to accomplish controlled assembly of nanoparticles with high concentration for different nanorod-based applications as well as

  15. Microphase separation in thin films of lamellar forming polydisperse di-block copolymers

    SciTech Connect

    Kumar, Rajeev; Lokitz, Bradley S.; Sides, Scott W.; Chen, Jihua; Heller, William T.; Ankner, John F.; Browning, James F.; Kilbey, II, S. Michael; Sumpter, Bobby G.

    2015-02-03

    Despite the ubiquity of polydispersity in chain lengths of di-block copolymers, its effects on microphase separation in thin films have eluded a clear understanding. In this paper, we have studied effects of polydispersity on the microphase separation in thin films of lamellar forming di-block copolymers using self-consistent field theory (SCFT) and neutron reflectivity experiments. Di-block copolymers containing a polydisperse block of poly(glycidylmethacrylate) (PGMA) connected to a near-monodisperse block poly(2-vinyl-4,4-dimethyl-d6 azlactone) (PVDMA-d6) are considered in this work. Effects of chain length polydispersity, film thickness, substrate–monomer and monomer–monomer interactions on the microphase segregation are studied using SCFT. The theoretical study reveals that in comparison to a film created with monodisperse di-block copolymers, an increase in polydispersity tends to decrease the number of lamellar strata that can be packed in a film of given thickness. This is a direct consequence of an increase in lamellar domain spacing with an increase in polydispersity index. Furthermore, it is shown that polydispersity induces conformational asymmetry and an increase in the polydispersity index leads to an increase in the effective Kuhn segment length of the polydisperse blocks. It is shown that the conformational asymmetry effects, which are entropic in origin and of increasing importance as film thickness decreases, drive the polydisperse blocks to the middle of the films despite favorable substrate interactions. These predictions are verified by results from neutron reflectivity experiments on thin films made from moderately polydisperse PGMA-PVDMA-d6 di-block copolymer deposited on silicon substrates. In conclusion, results from SCFT are used to predict neutron reflectivity profiles, providing a facile and robust route to obtain useful physical insights into the structure of polydisperse diblock copolymers at

  16. Microphase separation in thin films of lamellar forming polydisperse di-block copolymers

    DOE PAGESBeta

    Kumar, Rajeev; Lokitz, Bradley S.; Sides, Scott W.; Chen, Jihua; Heller, William T.; Ankner, John F.; Browning, James F.; Kilbey, II, S. Michael; Sumpter, Bobby G.

    2015-02-03

    Despite the ubiquity of polydispersity in chain lengths of di-block copolymers, its effects on microphase separation in thin films have eluded a clear understanding. In this paper, we have studied effects of polydispersity on the microphase separation in thin films of lamellar forming di-block copolymers using self-consistent field theory (SCFT) and neutron reflectivity experiments. Di-block copolymers containing a polydisperse block of poly(glycidylmethacrylate) (PGMA) connected to a near-monodisperse block poly(2-vinyl-4,4-dimethyl-d6 azlactone) (PVDMA-d6) are considered in this work. Effects of chain length polydispersity, film thickness, substrate–monomer and monomer–monomer interactions on the microphase segregation are studied using SCFT. The theoretical study reveals thatmore » in comparison to a film created with monodisperse di-block copolymers, an increase in polydispersity tends to decrease the number of lamellar strata that can be packed in a film of given thickness. This is a direct consequence of an increase in lamellar domain spacing with an increase in polydispersity index. Furthermore, it is shown that polydispersity induces conformational asymmetry and an increase in the polydispersity index leads to an increase in the effective Kuhn segment length of the polydisperse blocks. It is shown that the conformational asymmetry effects, which are entropic in origin and of increasing importance as film thickness decreases, drive the polydisperse blocks to the middle of the films despite favorable substrate interactions. These predictions are verified by results from neutron reflectivity experiments on thin films made from moderately polydisperse PGMA-PVDMA-d6 di-block copolymer deposited on silicon substrates. In conclusion, results from SCFT are used to predict neutron reflectivity profiles, providing a facile and robust route to obtain useful physical insights into the structure of polydisperse diblock copolymers at interfaces.« less

  17. Hierarchical Nanostructures Self-Assembled from a Mixture System Containing Rod-Coil Block Copolymers and Rigid Homopolymers

    PubMed Central

    Li, Yongliang; Jiang, Tao; Lin, Shaoliang; Lin, Jiaping; Cai, Chunhua; Zhu, Xingyu

    2015-01-01

    Self-assembly behavior of a mixture system containing rod-coil block copolymers and rigid homopolymers was investigated by using Brownian dynamics simulations. The morphologies of formed hierarchical self-assemblies were found to be dependent on the Lennard-Jones (LJ) interaction εRR between rod blocks, lengths of rod and coil blocks in copolymer, and mixture ratio of block copolymers to homopolymers. As the εRR value decreases, the self-assembled structures of mixtures are transformed from an abacus-like structure to a helical structure, to a plain fiber, and finally are broken into unimers. The order parameter of rod blocks was calculated to confirm the structure transition. Through varying the length of rod and coil blocks, the regions of thermodynamic stability of abacus, helix, plain fiber, and unimers were mapped. Moreover, it was discovered that two levels of rod block ordering exist in the helices. The block copolymers are helically wrapped on the homopolymer bundles to form helical string, while the rod blocks are twistingly packed inside the string. In addition, the simulation results are in good agreement with experimental observations. The present work reveals the mechanism behind the formation of helical (experimentally super-helical) structures and may provide useful information for design and preparation of the complex structures. PMID:25965726

  18. Hierarchical Nanostructures Self-Assembled from a Mixture System Containing Rod-Coil Block Copolymers and Rigid Homopolymers

    NASA Astrophysics Data System (ADS)

    Li, Yongliang; Jiang, Tao; Lin, Shaoliang; Lin, Jiaping; Cai, Chunhua; Zhu, Xingyu

    2015-05-01

    Self-assembly behavior of a mixture system containing rod-coil block copolymers and rigid homopolymers was investigated by using Brownian dynamics simulations. The morphologies of formed hierarchical self-assemblies were found to be dependent on the Lennard-Jones (LJ) interaction ɛRR between rod blocks, lengths of rod and coil blocks in copolymer, and mixture ratio of block copolymers to homopolymers. As the ɛRR value decreases, the self-assembled structures of mixtures are transformed from an abacus-like structure to a helical structure, to a plain fiber, and finally are broken into unimers. The order parameter of rod blocks was calculated to confirm the structure transition. Through varying the length of rod and coil blocks, the regions of thermodynamic stability of abacus, helix, plain fiber, and unimers were mapped. Moreover, it was discovered that two levels of rod block ordering exist in the helices. The block copolymers are helically wrapped on the homopolymer bundles to form helical string, while the rod blocks are twistingly packed inside the string. In addition, the simulation results are in good agreement with experimental observations. The present work reveals the mechanism behind the formation of helical (experimentally super-helical) structures and may provide useful information for design and preparation of the complex structures.

  19. Hierarchical nanostructures self-assembled from a mixture system containing rod-coil block copolymers and rigid homopolymers.

    PubMed

    Li, Yongliang; Jiang, Tao; Lin, Shaoliang; Lin, Jiaping; Cai, Chunhua; Zhu, Xingyu

    2015-05-12

    Self-assembly behavior of a mixture system containing rod-coil block copolymers and rigid homopolymers was investigated by using Brownian dynamics simulations. The morphologies of formed hierarchical self-assemblies were found to be dependent on the Lennard-Jones (LJ) interaction εRR between rod blocks, lengths of rod and coil blocks in copolymer, and mixture ratio of block copolymers to homopolymers. As the εRR value decreases, the self-assembled structures of mixtures are transformed from an abacus-like structure to a helical structure, to a plain fiber, and finally are broken into unimers. The order parameter of rod blocks was calculated to confirm the structure transition. Through varying the length of rod and coil blocks, the regions of thermodynamic stability of abacus, helix, plain fiber, and unimers were mapped. Moreover, it was discovered that two levels of rod block ordering exist in the helices. The block copolymers are helically wrapped on the homopolymer bundles to form helical string, while the rod blocks are twistingly packed inside the string. In addition, the simulation results are in good agreement with experimental observations. The present work reveals the mechanism behind the formation of helical (experimentally super-helical) structures and may provide useful information for design and preparation of the complex structures.

  20. Prediction of Electric Field Effects on Defect-Free Self-Assembled Nano-Patterning of Block Copolymer.

    PubMed

    Kim, Sang-Kon

    2016-03-01

    For future semiconductor device scaling, self-assembly, directed self-assembly (DSA) of block copolymers (BCPs), is a promising method with simplified processing conditions; however, critical challenge is defect control for fine pattern. Electric field is a method for the defect control. In this paper, for electric field effects to jog defects, the electric field induced self-assembled patterns is modeled and simulated by using the Monte Carlo method of dielectric polymers, the self-consistent-field theory (SCFT), and the Navier-Stokes equation. Electric field effects are quantified by using defect degree. Defective patterns are forced to undergo a phase transition to lamellar phase under electric field. For the high electric field, the excess free energy for the defect-free state becomes small. Simulation results can help to optimize electric field and process time in terms of defect area. PMID:27455694

  1. In Situ Visualization of Block Copolymer Self-Assembly in Organic Media by Super-Resolution Fluorescence Microscopy.

    PubMed

    Boott, Charlotte E; Laine, Romain F; Mahou, Pierre; Finnegan, John R; Leitao, Erin M; Webb, Stephen E D; Kaminski, Clemens F; Manners, Ian

    2015-12-14

    Analytical methods that enable visualization of nanomaterials derived from solution self-assembly processes in organic solvents are highly desirable. Herein, we demonstrate the use of stimulated emission depletion microscopy (STED) and single molecule localization microscopy (SMLM) to map living crystallization-driven block copolymer (BCP) self-assembly in organic media at the sub-diffraction scale. Four different dyes were successfully used for single-colour super-resolution imaging of the BCP nanostructures allowing micelle length distributions to be determined in situ. Dual-colour SMLM imaging was used to measure and compare the rate of addition of red fluorescent BCP to the termini of green fluorescent seed micelles to generate block comicelles. Although well-established for aqueous systems, the results highlight the potential of super-resolution microscopy techniques for the interrogation of self-assembly processes in organic media.

  2. H-bonding-directed self-assembly of synthetic copolymers containing nucleobases: organization and colloidal fusion in a noncompetitive solvent.

    PubMed

    Lutz, Jean-François; Pfeifer, Sebastian; Chanana, Munish; Thünemann, Andreas F; Bienert, Ralf

    2006-08-15

    The self-organization of random copolymers composed of a nucleobase monomer (either 1-(4-vinylbenzyl)thymine or 9-(4-vinylbenzyl)adenine) and dodecyl methacrylate (DMA) was studied in dilute chloroform solutions. The balance between the molar fractions of the nucleobase monomer (leading to intermolecular H-bonding) and DMA (soluble moiety in chloroform) in the polymer chains was found to be the parameter that principally influences the self-organization. DMA-rich copolymers are molecularly soluble in chloroform, whereas nucleobase-rich copolymers are insoluble in this solvent. Copolymers possessing an equimolar comonomer composition self-assemble into micrometer-sized particles physically cross-linked by intermolecular H-bonds (either thymine-thymine or adenine-adenine interactions, depending on the studied copolymer). Nevertheless, when mixed together, thymine- and adenine-based colloids fuse into thermodynamically stable microspheres cross linked by adenine-thymine interactions.

  3. “Smart” Diblock Copolymers as Templates for Magnetic-Core Gold-Shell Nanoparticle Synthesis

    SciTech Connect

    Nash, Michael A.; Lai, James J.; Hoffman, Allan S.; Yager, Paul; Stayton, Partick S.

    2010-01-13

    We report a new strategy for synthesizing temperature-responsive γ-Fe2O3-core/Au-shell nanoparticles (Au-mNPs) from diblock copolymer micelles. The amphiphilic diblock copolymer chains were synthesized using reversible addition-fragmentation chain-transfer (RAFT) with a thermally responsive “smart” poly(N-isopropylacrylamide) (pNIPAAm) block and an amine-containing poly(N,N-dimethylaminoethylacrylamide) (DMAEAm) block that acted as a reducing agent during gold shell formation. The Au-mNPs reversibly aggregated upon heating the solution above the transition temperature of pNIPAAm, resulting in a red-shifted localized surface plasmon resonance.

  4. Biocompatible Polysiloxane-Containing Diblock Copolymer PEO-b-PγMPS for Coating Magnetic Nanoparticles

    PubMed Central

    Chen, Hongwei; Wu, Xinying; Duan, Hongwei; Wang, Y. Andrew; Wang, Liya; Zhang, Minming; Mao, Hui

    2009-01-01

    We report a biocompatible polysiloxane containing amphiphilic diblock copolymer, poly(ethylene oxide)-block-poly(γ-methacryloxypropyltrimethoxysilane) (PEO-b-PγMPS), for coating and stabilizing nanoparticles for biomedical applications. Such amphiphilic diblock copolymer which comprises both a hydrophobic segment with “surface anchoring moiety” (silane group) and a hydrophilic segment with PEO (Mn=5000 g/mol) was obtained by the reversible addition fragmentation chain transfer (RAFT) polymerization using the PEO macromolecular chain transfer agent. When used for coating paramagnetic iron oxide nanoparticles (IONPs), copolymers were mixed with hydrophobic oleic acid coated core size uniformed IONPs (D=13 nm) in co-solvent tetrahydrofuran. After being aged over a period of time, resulting monodispersed IONPs can be transferred into aqueous medium. With proper PγMPS block length (Mn=10,000 g/mol), polysiloxane containing diblock copolymers formed a thin layer of coating (~3 nm) around monocrystalline nanoparticles as measured by transmission electron microscopy (TEM). Magnetic resonance imaging (MRI) experiments showed excellent T2 weighted contrast effect from coated IONPs with a transverse relaxivity r2=98.6 mM−1s−1 (at 1.5 Tesla). Such thin coating layer has little effect on the relaxivity when compared to that of IONPs coated with conventional amphiphilic copolymer. Polysiloxane containing diblock copolymer coated IONPs are stable without aggregation or binding to proteins in serum when incubated for 24 h in culture medium containing 10% serum. Furthermore, much lower level of intracellular uptake by macrophage cells was observed with polysiloxane containing diblock copolymers coated IONPs, suggesting the reduction of non-specific cell uptakes and antibiofouling effect. PMID:20161520

  5. Resistive switching in high-density nanodevices fabricated by block copolymer self-assembly.

    PubMed

    Frascaroli, Jacopo; Brivio, Stefano; Ferrarese Lupi, Federico; Seguini, Gabriele; Boarino, Luca; Perego, Michele; Spiga, Sabina

    2015-03-24

    Bipolar resistive switching memories based on metal oxides offer a great potential in terms of simple process integration, memory performance, and scalability. In view of ultrahigh density memory applications, a reduced device size is not the only requirement, as the distance between different devices is a key parameter. By exploiting a bottom-up fabrication approach based on block copolymer self-assembling, we obtained the parallel production of bilayer Pt/Ti top electrodes arranged in periodic arrays over the HfO2/TiN surface, building memory devices with a diameter of 28 nm and a density of 5 × 10(10) devices/cm(2). For an electrical characterization, the sharp conducting tip of an atomic force microscope was adopted for a selective addressing of the nanodevices. The presence of devices showing high conductance in the initial state was directly connected with scattered leakage current paths in the bare oxide film, while with bipolar voltage operations we obtained reversible set/reset transitions irrespective of the conductance variability in the initial state. Finally, we disclosed a scalability limit for ultrahigh density memory arrays based on continuous HfO2 thin films, in which a cross-talk between distinct nanodevices can occur during both set and reset transitions. PMID:25743480

  6. Toughening of Epoxies: Novel Self-Assembling Block Copolymers Versus Traditional Telechelic Oligomers

    NASA Astrophysics Data System (ADS)

    Bacigalupo, Lauren N.

    Epoxy resins are commonly utilized because of their adhesive capacity and high strength. However, epoxies are inherently brittle; so much research has been dedicated to improving their fracture toughness. This study will focus on a comparing a traditional telechelic oligomer, CTBN, and a novel self-assembling block copolymer, SBM, as it relates to improving the fracture toughness of a lightly crosslinked epoxy system. After characterizing the modified systems for fracture toughness, mechanical and thermal properties, namely yield stress and the glass transition, will be determined in order to discern the impact these modifiers have on the overall properties of the blend. TEM, SEM and TOM techniques will be utilized for characterizing morphology, fractography and subsurface damage, respectively. Once this was accomplished, it was deduced that the toughening mechanisms of CTBN and SBM-modified epoxies are very similar. The main difference between the two is that the inherent structure of SBM allows the SBM-modified epoxy to retain its compressive yield strength. This, consequently, makes SBM ideal for thin bondline applications in the industrial adhesive and/or electronics industry.

  7. Post-directed-self-assembly membrane fabrication for in situ analysis of block copolymer structures

    NASA Astrophysics Data System (ADS)

    Ren, J.; Ocola, L. E.; Divan, R.; Czaplewski, D. A.; Segal-Peretz, T.; Xiong, S.; Kline, R. J.; Arges, C. G.; Nealey, P. F.

    2016-10-01

    Full characterization of the three-dimensional structures resulting from the directed self-assembly (DSA) of block copolymers (BCP) remains a difficult challenge. Transmission electron microscope (TEM) tomography and resonant soft x-ray scattering have emerged as powerful and complementary methods for through-film characterization; both techniques require samples to be prepared on specialized membrane substrates. Here we report a generalizable process to implement BCP DSA with density multiplication on silicon nitride membranes. A key feature of the process developed here is that it does not introduce any artefacts or damage to the polymer assemblies as DSA is performed prior to back-etched membrane formation. Because most research and applications of BCP lithography are based on silicon substrates, process variations introduced by implementing DSA on a silicon nitride/silicon stack versus silicon were identified and mitigated. Using full-wafers, membranes were fabricated with different sizes and layouts to enable both TEM and x-ray characterization. Finally, both techniques were used to characterize structures resulting from the DSA of lamella-forming BCP with density multiplication.

  8. Tuning the strength of chemical patterns for directed self-assembly of block copolymers

    NASA Astrophysics Data System (ADS)

    Williamson, Lance; Lin, Guanyang; Cao, Yi; Gronheid, Roel; Nealey, Paul

    2014-03-01

    Directed self-assembly (DSA) of block copolymers (BCP) via chemo-epitaxy is a potential lithographic solution to patterns of dense features. The LiNe (Liu-Nealey) flow was used to fabricate the chemical pattern, which guides the BCP due to the different wetting behavior of the materials. Fine control of both the chemical pattern chemistry and geometry are important for DSA of BCP. Furthermore, wetting behavior considerations for DSA extend beyond pattern design and include the surrounding region. BCP DSA would be easier to integrate into device design if the patterned region were isolated with a featureless region (horizontal lamellar BCP assembly) rather than undirected BCP fingerprint structures. This paper addresses two processing steps found to be modifying the guide material. For one, the backfill brush grafts to the cross-linked polystyrene (XPS), albeit at a lower rate than the brush grafts to the exposed substrate. Undersaturating the backfill brush only moderately improves the XPS wetting behavior, but also negatively impacts the background region of the chemical pattern. Replacing the brush grafting functionality so that the brush grafts at lower annealing conditions also did not avoid the side reaction between the brush and the XPS. The other step modifying the XPS is the trim etch. Replacing the trim etch process was effective at generating a chemical pattern that can orient the BCP horizontally on a stripe 11 L0 wide passing through a field of chemical pattern.

  9. Biomimetic Nanocomposites of Calcium Phosphate and Self-Assembling Triblock and Pentablock Copolymers

    SciTech Connect

    Enlow, Drew Lenzen

    2006-01-01

    In an effort to mimic the growth of natural bone, self-assembling, micelle and gel-forming copolymers were used as a template for calcium phosphate precipitation. Because of the cationic characteristics imparted by PDEAEM end group additions to commercially available Pluronic{reg_sign} Fl27, a direct ionic attraction mechanism was utilized and a polymer-brushite nanocomposite spheres were produced. Brushite coated spherical micelles with diameters of ~40 nm, and agglomerates of these particles (on the order of 0.5 μm) were obtained. Thickness and durability of the calcium phosphate coating, and the extent of agglomeration were studied. The coating has been shown to be robust enough to retain its integrity even below polymer critical micelle concentration and/or temperature. Calcium phosphate-polymer gel nanocomposites were also prepared. Gel samples appeared as a single phase network of agglomerated spherical micelles, and had a final calcium phosphate concentration of up to 15 wt%. Analysis with x-ray diffraction and NMR indicated a disordered brushite phase with the phosphate groups linking inorganic phase to the polymer.

  10. Solvent-induced size reduction of self-assembled siRNA/copolymer nanoparticles

    NASA Astrophysics Data System (ADS)

    Qu, Wei; Wu, Juan; Mao, Hai-Quan; Luijten, Erik

    2013-03-01

    Small interfering RNA (siRNA) therapeutics has a demonstrated potential for treating numerous liver diseases. However, traditional polycation vectors used for siRNA delivery typically produce siRNA-containing particles of large size (> 100 nm), along with high cytotoxicity and low colloidal stability. Inspired by earlier work on nanoparticles for plasmid DNA delivery, we graft hydrophilic and biocompatible polyethylene glycol (PEG) blocks to the polycation vector to overcome these limitations. We find that the PEG-grafted polycations result in slightly larger particle size, even though the hydrophilic PEG blocks are expected to hinder the formation of larger aggregates. To explain this observation, we investigate siRNA/copolymer self-assembly via computer simulations of coarse-grained polymer and siRNA models. Our calculations suggest that hydrogen bonding between PEG and the polycation leads to the increased particle size, and that smaller particles can be obtained by inhibiting hydrogen bonding in such system. Subsequent experiments employing solvents of lower polarity indeed lead to particles with smaller size.

  11. Synthesis and Characterization of Fluorescently Labeled Diblock Copolymers for Location-Specific Measurements of The Glass Transition Temperature

    NASA Astrophysics Data System (ADS)

    Christie, Dane; Register, Richard; Priestley, Rodney

    Interfaces play a determinant role in the size dependence of the glass transition temperature (Tg) of polymers confined to nanometric length scales. Interfaces are intrinsic in diblock copolymers, which, depending on their molecular weight and composition, are periodically nanostructured in the bulk. As a result diblock copolymers are model systems for characterizing the effect of interfaces on Tg in bulk nanostructured materials. Investigating the effect of intrinsic interfaces on Tg in diblock copolymers has remained unexplored due to their small periodic length scale. By selectively incorporating trace amounts of a fluorescent probe into a diblock copolymer, Tg can be characterized relative to the diblock copolymer's intrinsic interface using fluorescence spectroscopy. Here, pyrene is selectively incorporated into the poly(methyl methacrylate) (PMMA) block of lamellar forming diblock copolymers of poly(butyl- b-methyl methacrylate) (PBMA-PMMA). Preliminary results show a correlation of Tg as measured by fluorescence with the onset of Tg as measured by calorimetry in labeled homopolymers of PMMA. This result is consistent with previous characterizations of Tg using fluorescence spectroscopy. In selectively labeled diblock copolymers Tg is found to vary systematically depending on the distance of the probe from the PBMA-PMMA interface. We acknowledge funding from the Princeton Center for Complex Materials, a MRSEC supported by NSF Grant DMR 1420541.

  12. Towards the development of polycaprolactone based amphiphilic block copolymers: molecular design, self-assembly and biomedical applications.

    PubMed

    Li, Zibiao; Tan, Beng Hoon

    2014-12-01

    Polycaprolactone (PCL) and its copolymers are a type of hydrophobic aliphatic polyester based on hydroxyalkanoic acids. They possess exceptional qualities: biocompatibility; FDA approval for clinical use; biodegradability by enzyme and hydrolysis under physiological conditions and low immunogenicity. These critical properties have facilitated their value as sutures, drug delivery vehicles and tissue engineering scaffolds in pharmaceutical and biomedical applications. However, the hydrophobicity of PCL and its copolymers remains a concern for further biological and biomedical applications. One promising approach is to design and synthesize well-controlled PCL-based amphiphilic block copolymers. This review summarizes recent advances in the synthesis and self-assembly of PCL-containing amphiphilic block copolymers and their bio-related applications including drug delivery and tissue engineering.

  13. Template-Free Bottom-Up Method for Fabricating Diblock Copolymer Patchy Particles.

    PubMed

    Ye, Xianggui; Li, Zhan-Wei; Sun, Zhao-Yan; Khomami, Bamin

    2016-05-24

    Patchy particles are one of most important building blocks for hierarchical structures because of the discrete patches on their surface. We have demonstrated a convenient, simple, and scalable bottom-up method for fabricating diblock copolymer patchy particles through both experiments and dissipative particle dynamics (DPD) simulations. The experimental method simply involves reducing the solvent quality of the diblock copolymer solution by the slow addition of a nonsolvent. Specifically, the fabrication of diblock copolymer patchy particles begins with a crew-cut soft-core micelle, where the micelle core is significantly swelled by the solvent. With water addition at an extremely slow rate, the crew-cut soft-core micelles first form a larger crew-cut micelle. With further water addition, the corona-forming blocks of the crew-cut micelles begin to aggregate and eventually form well-defined patches. Both experiments and DPD simulations indicate that the number of patches has a very strong dependence on the diblock copolymer composition-the particle has more patches on the surface with a lower volume fraction of patch-forming blocks. Furthermore, particles with more patches have a greater ability to assemble, and particles with fewer patches have a greater ability to merge once assembled. PMID:27109249

  14. Biocompatibility of poly(epsilon-caprolactone)/poly(ethylene glycol) diblock copolymers with nanophase separation.

    PubMed

    Hsu, Shan-Hui; Tang, Cheng-Ming; Lin, Chu-Chieh

    2004-11-01

    In this study, we prepared diblock copolymers of poly(epsilon-caprolactone) (PCL) and poly(ethylene glycol) (PEG) by aluminum alkoxide catalysts. The biological responses to the spin cast surface of different PCL/PEG diblock copolymers were investigated in vitro. Our results showed that surface hydrophilicity improved with the increased PEG segments in diblock copolymers and that bacteria adhesion was inhibited by increased PEG contents. PCL-PEG 23:77 showed nanotopography on the surface. The number of adhered endothelial cells, platelets and monocytes on diblock copolymer surfaces was inhibited in PCL-PEG 77:23 and enhanced in PCL-PEG 23:77. Nevertheless, the platelet and monocyte activation on PCL-PEG 23:77 was reduced. PCL-PEG 23:77 had better cellular response as well as lower degree of platelet and monocyte activation. The current study was the first one to demonstrate that surface nanotopography could influence not only cell adhesion and growth but also platelet and monocyte activation.

  15. Template-Free Bottom-Up Method for Fabricating Diblock Copolymer Patchy Particles.

    PubMed

    Ye, Xianggui; Li, Zhan-Wei; Sun, Zhao-Yan; Khomami, Bamin

    2016-05-24

    Patchy particles are one of most important building blocks for hierarchical structures because of the discrete patches on their surface. We have demonstrated a convenient, simple, and scalable bottom-up method for fabricating diblock copolymer patchy particles through both experiments and dissipative particle dynamics (DPD) simulations. The experimental method simply involves reducing the solvent quality of the diblock copolymer solution by the slow addition of a nonsolvent. Specifically, the fabrication of diblock copolymer patchy particles begins with a crew-cut soft-core micelle, where the micelle core is significantly swelled by the solvent. With water addition at an extremely slow rate, the crew-cut soft-core micelles first form a larger crew-cut micelle. With further water addition, the corona-forming blocks of the crew-cut micelles begin to aggregate and eventually form well-defined patches. Both experiments and DPD simulations indicate that the number of patches has a very strong dependence on the diblock copolymer composition-the particle has more patches on the surface with a lower volume fraction of patch-forming blocks. Furthermore, particles with more patches have a greater ability to assemble, and particles with fewer patches have a greater ability to merge once assembled.

  16. Formation of Frank-Kasper σ-phase from polydisperse diblock copolymers

    NASA Astrophysics Data System (ADS)

    Liu, Meijiao; Li, Weihua; Shi, An-Chang

    Recent experimental and theoretical studies have revealed a number of complex spherical phases including the complex Frank-Kasper σ-phase, which consists of 30 spheres in a unit cell. It is desirable to understand the mechanisms for the formation of the complex spherical phases such as the A15-phase and the Frank-Kasper σ-phase in block copolymers. Based on the observation that the A15-phase and the Frank-Kasper σ-phase are composed of spherical domains with different sizes, we hypothesize that polydispersity of the block copolymers could be used to obtain these complex phases. We tested this hypothesis by carrying out self-consistent field theory for polydisperse AB diblock copolymers. Specially we studied the relative stability of various spherical phases, including the fcc, bcc, A15 and Frank_Kasper σ-phase, in binary blends composed of AB block copolymers different lengths of the A-blocks. Our results revealed that the Frank-Kasper σ-phase could be stabilized by tailoring the length ratio as well as the compositions of the two diblock copolymers. The distribution of the diblocks in the system indicates that copolymer segregation is the origin of the formation of spherical domains with different sizes.

  17. Self-assembled Oniontype Multiferroic Nanostructures

    NASA Astrophysics Data System (ADS)

    Ren, Shenqiang; Briber, Robert M.; Wuttig, Manfred

    2009-03-01

    Spontaneously self-assembled oniontype multiferroic nanostructures based on block copolymers as templating materials are reported. Diblock copolymer containing two different magnetoelectric precursors separately segregated to the two microdomains have been shown to form well-ordered templated lamellar structures. Onion-type multilamellar ordered multiferroic (PZT/CoFe2O4) nanostructures have been induced by room temperature solvent annealing in a magnetic field oriented perpendicular to the plane of the film. The evolution of the onion-like microstructure has been characterized by AFM, MFM, and TEM. The structure retains lamellar periodicity observed at zero field. The onion structure is superparamagnetic above and antiferromagnetic below the blocking temperature. This templating process opens a route for nanometer-scale patterning of magnetic toroids by means of self-assembly on length scales that are difficult to obtain by standard lithography techniques.

  18. Templated self-assembly of square symmetry arrays from an ABC triblock terpolymer.

    PubMed

    Chuang, Vivian P; Gwyther, Jessica; Mickiewicz, Rafal A; Manners, Ian; Ross, Caroline A

    2009-12-01

    Self-assembly provides the ability to create well-controlled nanostructures with electronic or chemical functionality and enables the synthesis of a wide range of useful devices. Diblock copolymers self-assemble into periodic arrays of microdomains with feature sizes of typically 10-50 nm, and have been used to make a wide range of devices such as silicon capacitors and transistors, photonic crystals, and patterned magnetic media(1-3). However, the cylindrical or spherical microdomains in diblock copolymers generally form close-packed structures with hexagonal symmetry, limiting their device applications. Here we demonstrate self-assembly of square-symmetry patterns from a triblock terpolymer in which one organometallic block imparts high etch selectivity and etch resistance. Long-range order is imposed on the microdomain arrays by self-assembly on topographical substrates, and the orientation of both square lattices and in-plane cylinders is controlled by the substrate chemistry. Pattern transfer is demonstrated by making an array of square-packed 30 nm tall, 20 nm diameter silica pillars. Templated self-assembly of triblock terpolymers can generate nanostructures with geometries that are unattainable from diblock copolymers, significantly enhancing the capabilities of block copolymer lithography.

  19. Synthesis of Polystyrene-Polylactide Bottlebrush Block Copolymers and Their Melt Self-Assembly into Large Domain Nanostructures

    SciTech Connect

    Rzayev, J.

    2009-04-07

    High molecular weight polystyrene-polylactide (PS-PLA) bottlebrush block copolymers have been shown to self-assemble into highly ordered lamellae structures with domain spacings as large as 163 nm, as identified by ultrasmall-angle X-ray scattering. Bottlebrush block copolymers were synthesized by a combination of living radical and ring-opening polymerizations. The backbone was prepared by RAFT block copolymerization of solketal methacrylate (SM) and 2-(bromoisobutyryl)ethyl methacrylate (BIEM). Polystyrene branches were grafted by ATRP from poly(BIEM) block, and PLA branches were grafted from the poly(SM) block after the removal of ketal groups. The investigation into the self-assembly of PS-PLA bottlebrush block copolymers with varying lengths of branches and backbones revealed a number of unusual trends, which were attributed to their dynamic, three-dimensional structure. The results suggest that in phase-separated melts the bottlebrush block copolymer backbone, while extended, still possesses a certain degree of flexibility to accommodate for different interfacial areas necessary to pack into lamellae microstructures.

  20. Guided self-assembly of Si-containing block copolymer with a topcoat surface treatment

    NASA Astrophysics Data System (ADS)

    Seshimo, Takehiro; Utsumi, Yoshiyuki; Dazai, Takahiro; Maehashi, Takaya; Ohmori, Katsumi

    2014-03-01

    Directed self-assembly (DSA) of block copolymers (BCPs) is one of candidate for next generation patterning technique. Many good demonstrations of DSA have been reported using polystyrene-block-poly(methyl methacrylate) (PS-b- PMMA) these days. On the other hands, BCPs which show high chi parameter are being developed because the BCPs can be formed smaller features than PS-b-PMMA. Si-containing BCPs are one of them. Moreover Si-containing BCPs show higher etch selectivity than PS-b-PMMA because of higher etch resistance of Si-containing block. Unfortunately, while Si-containing BCPs can be aligned by solvent annealing, they but cannot be aligned perpendicular to the substrate by thermal annealing. Because Si-containing block which has low surface energy achieves maximum interaction with air interface by forming a top parallel wetting layer to the substrate. One solution to control of surface energy on top surface is the use of Top-Coat (TC). It has been already demonstrated that TC with Si-containing BCP could form perpendicular pattern. The challenges are TC coating onto BCP film and TC stripping after annealing. In order to solve these problems, polarity-changeable type TC has been developed. The effect of TC materials to generate finger print of BCP has been reported. However, this TC process should combine with DSA process to form aligned patterns. Graphoepitaxy is one of the DSA technique to align BCP pattern using guide pattern. In this technique, the characteristic of guide pattern side wall is very important to control BCP pattern alignment for the Graphoepitaxy process. Also, in order to establish the process, there are two key parameters for the materials. One is BCP and guide pattern should have enough resistance to TC solvent through TC coating process. The other is TC can be removed easily with basic aqueous solution before BCP patterning. In this report, a detail of examination for TC Graphoepitaxy process will be discussed.

  1. Role of block copolymer adsorption versus bimodal grafting on nanoparticle self-assembly in polymer nanocomposites.

    PubMed

    Zhao, Dan; Di Nicola, Matteo; Khani, Mohammad M; Jestin, Jacques; Benicewicz, Brian C; Kumar, Sanat K

    2016-09-14

    We compare the self-assembly of silica nanoparticles (NPs) with physically adsorbed polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) copolymers (BCP) against NPs with grafted bimodal (BM) brushes comprised of long, sparsely grafted PS chains and a short dense carpet of P2VP chains. As with grafted NPs, the dispersion state of the BCP NPs can be facilely tuned in PS matrices by varying the PS coverage on the NP surface or by changes in the ratio of the PS graft to matrix chain lengths. Surprisingly, the BCP NPs are remarkably better dispersed than the NPs tethered with bimodal brushes at comparable PS grafting densities. We postulate that this difference arises because of two factors inherent in the synthesis of the NPs: In the case of the BCP NPs the adsorption process is analogous to the chains being "grafted to" the NP surface, while the BM case corresponds to "grafting from" the surface. We have shown that the "grafted from" protocol yields patchy NPs even if the graft points are uniformly placed on each particle. This phenomenon, which is caused by chain conformation fluctuations, is exacerbated by the distribution function associated with the (small) number of grafts per particle. In contrast, in the case of BCP adsorption, each NP is more uniformly coated by a P2VP monolayer driven by the strongly favorable P2VP-silica interactions. Since each P2VP block is connected to a PS chain we conjecture that these adsorbed systems are closer to the limit of spatially uniform sparse brush coverage than the chemically grafted case. We finally show that the better NP dispersion resulting from BCP adsorption leads to larger mechanical reinforcement than those achieved with BM particles. These results emphasize that physical adsorption of BCPs is a simple, effective and practically promising strategy to direct NP dispersion in a chemically unfavorable polymer matrix. PMID:27502154

  2. Aqueous Self-Assembly of Non-Ionic Bottlebrush Block Copolymer Surfactants with Tunable Molecular Shapes

    NASA Astrophysics Data System (ADS)

    Rzayev, Javid

    2015-03-01

    Polymer amphiphiles provide a robust and versatile platform for the fabrication of nanostructured soft matter. In this research, we explore a new class of polymer surfactants based on comb-like bottlebrush architecture as highly tunable molecular building blocks for aqueous self-assembly. Excluded volume interactions between densely grafted polymer side chains in the bottlebrush architecture are alleviated by backbone stretching, which leads to the formation of shape-persistent cylindrical macromolecules whose molecular dimensions can be precisely tailored during chemical synthesis. Amphiphilic bottlebrush block copolymers containing hydrophobic polylactide (PLA) and hydrophilic poly(oligoethylene oxide methacrylate) (PEO) side chains of various lengths were synthesized by a combination of controlled radical and ring-opening polymerizations. In dilute aqueous solutions, bottlebrush surfactants rapidly assembled into spherical, cylindrical and bilayer aggregates, as visualized by cryogenic transmission electron microscopy (cryo-TEM). Depending on the compositional side chain asymmetry, the formation of spherical micelles with different sizes and dispersities was observed. The molecular shape-dependent assembly was analyzed with help of a packing parameter (p) computed from the molecular composition data akin to small molecule surfactants, with most uniform spherical aggregates observed for bottlebrush amphiphiles with p close to 0.3. The formation of highly uniform micelles and the presence of a rich morphological diagram with relatively narrow compositional windows were attributed to the lack of conformational freedom in bottlebrush surfactants. Similarly, the unusual formation of cylindrical micelles with long aspect ratios for such high molecular weight amphiphiles was attributed to their inability to stabilize morphological defects, such as Y-junctions, with large deviations from mean curvature. Financial support for this work was provided by the National

  3. Streamlined etch integration with a unique neutral layer for self-assembled block copolymers (BCPs)

    NASA Astrophysics Data System (ADS)

    Hockey, Mary Ann; Xu, Kui; Wang, Yubao; Guerrero, Douglas J.; Calderas, Eric

    2014-03-01

    A multifunctional hardmask neutral layer (HM NL) was developed to improve etch resistance capabilities, enhance reflectance control, and match the surface energy properties required for polystyrene block copolymers (PS-b-PMMA). This HM NL minimizes the number of substrate deposition steps required in graphoepitaxy directed self-assembly (DSA) process flows. A separate brush layer is replaced by incorporating neutral layer properties into the hardmask to achieve microphase separation of BCP during thermal annealing. The reflection control and etch resistance capabilities are inherent in the chemical composition, thus eliminating the need for separate thin film layers to address absorbance and etch criteria. We initially demonstrated successful implementation of the HM NL using conventional PS-b-PMMA. A series of BCP formulations were synthesized with L0 values ranging from 28 nm to 17 nm to test the versatility of the HM NL. Quality "fingerprint" patterns or microphase separation using 230°-250°C annealing for 3-5 minutes was achieved for an array of modified BCP materials. The HM NL had water contact angles at 78°-80° and polarities in the 5-6 dyne/cm range. The scope of BCP platform compositions evaluated consists of a 20° water contact angle variance and a 10-dyne/cm range in polarities. All BCP derivatives were coated directly onto the HM NL followed by thermal annealing followed by SEM analysis for effective "fingerprint" patterns. We offer a simplified alternative path for high etch resistance in a graphoepitaxy DSA flow employing a single-layer hardmask for etch resistance demonstrated to be compatible with diverse BCP-modified chemical formulations.

  4. John H. Dillon Medal Lecture: Magnetic Field Directed Self-Assembly of Block Copolymers and Surfactant Mesophases

    NASA Astrophysics Data System (ADS)

    Osuji, Chinedum

    2015-03-01

    Molecular self-assembly of block copolymers and small molecule surfactants gives rise to a rich phase behavior as a function of temperature, composition, and other variables. We consider the directed self-assembly of such soft mesophases using magnetic fields, principally through the use of in situ x-ray scattering studies. Field alignment is predicated on a sufficiently large product of magnetic anisotropy and grain size to produce magnetostatic interactions which are substantive relative to thermal forces. We examine the role of field strength on the phase behavior and alignment dynamics of a series of soft mesophases, outlining the possibility to readily create highly ordered functional materials over macroscopic length scales. We show that magnetic fields as large as 10 T have little discernable impact on the stability of block copolymer systems considered, with shifts in order-disorder transition temperatures of roughly 5 mK or smaller. Consequently, directed self-assembly in these systems proceeds by nucleation of randomly aligned grains which thereafter rotate into registry with the field. We highlight the tradeoff between decreasing mobility and increasing anisotropic field interaction that dictates alignment kinetics while transiting from a high temperature disordered state to an ordered system at lower temperatures. NSF support through DMR-0847534 is gratefully acknowledged.

  5. Amphiphilic graft copolymers with ethyl cellulose backbone: Synthesis, self-assembly and tunable temperature-CO2 response.

    PubMed

    Yuan, Weizhong; Zou, Hui; Shen, Jin

    2016-01-20

    Amphiphilic ethyl cellulose-graft-poly(N,N-dimethylaminoethyl methacrylate) (EC-g-PDMAEMA) and ethyl cellulose-graft-poly(2-(2-methoxyethoxy)ethyl methacrylate-co-N,N-dimethylaminoethyl methacrylate) (EC-g-P(MEO2MA-co-DMAEMA)) graft copolymers were easily synthesized by atom transfer radical polymerization (ATRP). The micelles self-assembled from the copolymer presented switchable temperature-CO2 dually responsive properties. The value of lower critical solution temperature (LCST) for the copolymer micelle solutions could be adjusted by CO2/Ar. Moreover, due to the alteration of the ratio of DMAEMA to MEO2MA, the LCST values of the micelle solutions decreased with the increase of MEO2MA in copolymer. The temperature-CO2 dually responsive properties of the copolymer were reversible and could be accomplished through altering the temperature and bubbling CO2/Ar. The hydrodynamic radius (Rh) of the copolymer micelles was also influenced by the ratio of DMAEMA to MEO2MA and the stimuli of temperature and CO2/Ar. As a drug release system, the copolymer micelles could achieve the control release of doxorubicin (DOX) by changing the temperature and alternatively bubbling CO2/Ar.

  6. Cross-Linked Conjugated Polymer Fibrils: Robust Nanowires from Functional Polythiophene Diblock Copolymers

    SciTech Connect

    Hammer, Brenton A. G.; Bokel, Felicia A.; Hayward, Ryan C.; Emrick, Todd

    2011-09-27

    A series of poly(3-hexyl thiophene) (P3HT)-based diblock copolymers were prepared and examined in solution for their assembly into fibrils, and post-assembly cross-linking into robust nanowire structures. P3HT-b-poly(3-methanol thiophene) (P3MT), and P3HT-b-poly(3-aminopropyloxymethyl thiophene) (P3AmT) diblock copolymers were synthesized using Grignard metathesis (GRIM) polymerization. Fibrils formed from solution assembly of these copolymers are thus decorated with hydroxyl and amine functionality, and cross-linking is achieved by reaction of diisocyanates with the hydroxyl and amine groups. A variety of cross-linked structures, characterized by transmission electron microscopy (TEM), were produced by this method, including dense fibrillar sheets, fibril bundles, or predominately individual fibrils, depending on the chosen reaction conditions. In solution, the cross-linked fibrils maintained their characteristic vibronic structure in solvents that would normally disrupt (dissolve) the structures.

  7. Hybrid hydrogels self-assembled from graft copolymers containing complementary β-sheets as hydroxyapatite nucleation scaffolds

    PubMed Central

    Wu, Larisa C.; Yang, Jiyuan; Kopeček, Jindřich

    2011-01-01

    A biomimetic material that can assist bone tissue regeneration was proposed. A bone scaffold based on a hybrid hydrogel self-assembled from N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers grafted with complementary β-sheet peptides was designed. Investigation of self-assembly by circular dichroism spectroscopy suggested that hydrogel formation was triggered through association of the complementary β-sheet motifs. Congo Red and thioflavin T binding, as well as transmission electron microscopy confirmed the formation of a fibril network. Besides mimicking the natural bone extracellular matrix and maintaining preosteoblast cells viability, this hydrogel, as shown by scanning electron microscopy and Fourier transform infrared spectroscopy, provided surfaces characterized by epitaxy that favored hydroxyapatite-like crystal nucleation and growth potentially beneficial for biointegration. PMID:21549421

  8. Hybrid hydrogels self-assembled from graft copolymers containing complementary β-sheets as hydroxyapatite nucleation scaffolds.

    PubMed

    Wu, Larisa C; Yang, Jiyuan; Kopeček, Jindřich

    2011-08-01

    A biomimetic material that can assist bone tissue regeneration was proposed. A bone scaffold based on a hybrid hydrogel self-assembled from N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers grafted with complementary β-sheet peptides was designed. Investigation of self-assembly by circular dichroism spectroscopy suggested that hydrogel formation was triggered through association of the complementary β-sheet motifs. Congo Red and thioflavin T binding, as well as transmission electron microscopy confirmed the formation of a fibril network. Besides mimicking the natural bone extracellular matrix and maintaining preosteoblast cells viability, this hydrogel, as shown by scanning electron microscopy and Fourier transform infrared spectroscopy, provided surfaces characterized by epitaxy that favored hydroxyapatite-like crystal nucleation and growth potentially beneficial for biointegration. PMID:21549421

  9. Complex macrophase-separated nanostructure induced by microphase separation in binary blends of lamellar diblock copolymer thin films.

    PubMed

    Zhang, Jianqi; Posselt, Dorthe; Smilgies, Detlef-M; Perlich, Jan; Kyriakos, Konstantinos; Jaksch, Sebastian; Papadakis, Christine M

    2014-09-01

    The nanostructures of thin films spin-coated from binary blends of compositionally symmetric polystyrene-b-polybutadiene (PS-b-PB) diblock copolymer having different molar masses are investigated by means of atomic force microscopy (AFM) and grazing-incidence small-angle X-ray scattering (GISAXS) after spin-coating and after subsequent solvent vapor annealing (SVA). In thin films of the pure diblock copolymers having high or low molar mass, the lamellae are perpendicular or parallel to the substrate, respectively. The as-prepared binary blend thin films feature mainly perpendicular lamellae in a one-phase state, indicating that the higher molar mass diblock copolymer dominates the lamellar orientation. The lamellar thickness decreases linearly with increasing volume fraction of the low molar mass diblock copolymer. After SVA, well-defined macrophase-separated nanostructures appear, which feature parallel lamellae near the film surface and perpendicular ones in the bulk. PMID:25159458

  10. Directing Hybrid Structures by Combining Self-Assembly of Functional Block Copolymers and Atomic Layer Deposition: A Demonstration on Hybrid Photovoltaics.

    PubMed

    Moshonov, Moshe; Frey, Gitti L

    2015-11-24

    The simplicity and versatility of block copolymer self-assembly offers their use as templates for nano- and meso-structured materials. However, in most cases, the material processing requires multiple steps, and the block copolymer is a sacrificial building block. Here, we combine a self-assembled block copolymer template and atomic layer deposition (ALD) of a metal oxide to generate functional hybrid films in a simple process with no etching or burning steps. This approach is demonstrated by using the crystallization-induced self-assembly of a rod-coil block copolymer, P3HT-b-PEO, and the ALD of ZnO. The block copolymer self-assembles into fibrils, ∼ 20 nm in diameter and microns long, with crystalline P3HT cores and amorphous PEO corona. The affinity of the ALD precursors to the PEO corona directs the exclusive deposition of crystalline ZnO within the PEO domains. The obtained hybrid structure possesses the properties desired for photovoltaic films: donor-acceptor continuous nanoscale interpenetrated networks. Therefore, we integrated the films into single-layer hybrid photovoltaics devices, thus demonstrating that combining self-assembly of functional block copolymers and ALD is a simple approach to direct desired complex hybrid morphologies.

  11. Tuning self-assembly and photo-responsive behavior of azobenzene-containing triblock copolymers by combining homopolymers

    NASA Astrophysics Data System (ADS)

    Lin, Shaoliang; Wang, Yingying; Cai, Chunhua; Xing, Yaohui; Lin, Jiaping; Chen, Tao; He, Xiaohua

    2013-03-01

    The self-assembly behavior of azobenzene-based triblock copolymers poly(ethylene oxide)-block-polystyrene-block-poly[6-(4-methoxy-4‧-oxy-azobenzene) hexyl methacrylate] (PEO-b-PS-b-PMMAZO) and their mixtures with PS or PMMAZO homopolymers was studied by means of transmission electron microscopy, scanning electron microscopy, laser light scattering and UV-vis spectrophotometry. It was found that pure block copolymers self-assembled into spherical micelles with core-shell structures. The addition of PS or PMMAZO homopolymers can not only increase the aggregate size but also have a significant influence on the photo-isomerization behavior and photo-deformation behavior of the aggregate. The photo-isomerization study revealed that a complete trans-cis or cis-trans isomerization of azobenzene chromophores can be acquired when irradiated with UV or visible light for polymers both in organic solutions and in micelles. The photo-isomerization rate of azobenzene chromophores increases when PS homopolymers were incorporated into micelles, while with the addition of PMMAZO homopolymers, it decreases. The photo-induced elongation of the aggregates by irradiation of a linearly polarized laser was observed for all the samples, and the deformation degree increases with the weight fraction of azobenzene groups in the parent copolymers, as well as the PMMAZO content for the mixture micelles.

  12. Directed self-assembly of block copolymers in thin films on surfaces patterned by electro-oxidation nanolithography

    NASA Astrophysics Data System (ADS)

    Xu, Ji

    We have studied the wetting and self-assembly behavior of block copolymer thin films on chemical patterns in various geometries. Carboxylic-terminated, mesh-like patterns were generated on OTS modified silicon wafers by AFM electro-oxidation lithography. The films were pinned on the carboxylic regions due to the strong interaction of the minor component block with the surface which was also found to suppress film dewetting over the unpatterned methyl regions. We have found that the cylindrical microdomains orient normal to the methyl-terminated patterns and remain laterally confined within them. Defect-free, hexagonally packed cylindrical microdomains could be obtained thanks to the "corralling" action of the patterns. Domain deformation or point defects arose when the dimensions or shapes of the patterns were not commensurate with the natural packing of the copolymers. Tetragonal packing of microdomains was observed when a square-shaped confinement geometry, with dimension comparable to 2L 0 (natural period), was used. The stretching or compression of polymer chains was found to accomendate the incommensurable confinement imposed by chemical patterns, and a free energy model was applied for interpretation. Solvent annealing was conbined with chemical dot patterns to direct the self-assembly of block copolymers in thin films, and silicon oxide nanodots were fabricated through a tone-reversal process.

  13. Morphological Control of Anisotropic Self-Assemblies from Alternating Poly(p-dioxanone)-poly(ethylene glycol) Multiblock Copolymer Depending on the Combination Effect of Crystallization and Micellization.

    PubMed

    Wang, Mei-Jia; Wang, Hao; Chen, Si-Chong; Chen, Cheng; Liu, Ya

    2015-06-30

    A novel and facile method was developed for morphological controlling of self-assemblies prepared by crystallization induced self-assembly of crystalline-coil copolymer depending on the combination effect of crystallization and micellization. The morphological evolution of the self-assemblies of alternating poly(p-dioxanone)-block-poly(ethylene glycol) (PPDO-PEG) multiblock copolymer prepared by different solvent mixing methods in aqueous solution were investigated. "Chrysanthemum"-like and "star anise"-like self-assemblies were obtained at different rates of solvent mixing. The results suggested gradually change in solvent quality (slowly dropping water into DMF solution) leaded to a hierarchical micellization-crystallization process of core-forming PPDO blocks, and flake-like particles were formed at the initial stage of crystallization. Meanwhile, crystallization induced micellization process occurred when solvent quality changed drastically. Shuttle-like particles, which have much smaller size than those of flake-like particles, were formed at the initial stage of crystallization when quickly injecting water into DMF solution of the copolymer. Therefore, owing to the different changing rate of solvent quality, which may result in different combination effect of crystallization and micellization during self-assembly of the copolymer, PPDO-PEG self-assemblies with different hierarchical morphology in nano scale could be obtained. PMID:26061590

  14. Polystyrene-poly(ethylene oxide) diblock copolymer: the effect of polystyrene and spreading concentration at the air/water interface.

    PubMed

    Glagola, Cameron P; Miceli, Lia M; Milchak, Marissa A; Halle, Emily H; Logan, Jennifer L

    2012-03-20

    Polystyrene-block-poly(ethylene oxide) (PS-PEO) is an amphiphilic diblock copolymer that undergoes microphase separation when spread at the air/water interface, forming nanosized domains. In this study, we investigate the impact of PS by examining a series of PS-PEO samples containing constant PEO (~17,000 g·mol(-1)) and variable PS (from 3600 to 200,000 g·mol(-1)) through isothermal characterization and atomic force microscopy (AFM). The polymers separated into two categories: predominantly hydrophobic and predominantly hydrophilic with a weight percent of PEO of ~20% providing the boundary between the two. AFM results indicated that predominantly hydrophilic PS-PEO forms dots while more hydrophobic samples yield a mixture of dots and spaghetti with continent-like structures appearing at ~7% PEO or less. These structures reflect a blend of polymer spreading, entanglement, and vitrification as the solvent evaporates. Changing the spreading concentration provides insight into this process with higher concentrations representing earlier kinetic stages and lower concentrations demonstrating later ones. Comparison of isothermal results and AFM analysis shows how polymer behavior at the air/water interface correlates with the observed nanostructures. Understanding the impact of polymer composition and spreading concentration is significant in leading to greater control over the nanostructures obtained through PS-PEO self-assembly and their eventual application as polymer templates.

  15. Occlusion of Sulfate-Based Diblock Copolymer Nanoparticles within Calcite: Effect of Varying the Surface Density of Anionic Stabilizer Chains

    PubMed Central

    2016-01-01

    Polymerization-induced self-assembly (PISA) offers a highly versatile and efficient route to a wide range of organic nanoparticles. In this article, we demonstrate for the first time that poly(ammonium 2-sulfatoethyl methacrylate)-poly(benzyl methacrylate) [PSEM–PBzMA] diblock copolymer nanoparticles can be prepared with either a high or low PSEM stabilizer surface density using either RAFT dispersion polymerization in a 2:1 v/v ethanol/water mixture or RAFT aqueous emulsion polymerization, respectively. We then use these model nanoparticles to gain new insight into a key topic in materials chemistry: the occlusion of organic additives into inorganic crystals. Substantial differences are observed for the extent of occlusion of these two types of anionic nanoparticles into calcite (CaCO3), which serves as a suitable model host crystal. A low PSEM stabilizer surface density leads to uniform nanoparticle occlusion within calcite at up to 7.5% w/w (16% v/v), while minimal occlusion occurs when using nanoparticles with a high PSEM stabilizer surface density. This counter-intuitive observation suggests that an optimum anionic surface density is required for efficient occlusion, which provides a hitherto unexpected design rule for the incorporation of nanoparticles within crystals. PMID:27509298

  16. Inducing an Order–Order Morphological Transition via Chemical Degradation of Amphiphilic Diblock Copolymer Nano-Objects

    PubMed Central

    2016-01-01

    The disulfide-based cyclic monomer, 3-methylidene-1,9-dioxa-5,12,13-trithiacyclopentadecane-2,8-dione (MTC), is statistically copolymerized with 2-hydroxypropyl methacrylate to form a range of diblock copolymer nano-objects via reversible addition–fragmentation chain transfer (RAFT) polymerization. Poly(glycerol monomethacrylate) (PGMA) is employed as the hydrophilic stabilizer block in this aqueous polymerization-induced self-assembly (PISA) formulation, which affords pure spheres, worms or vesicles depending on the target degree of polymerization for the core-forming block. When relatively low levels (<1 mol %) of MTC are incorporated, high monomer conversions (>99%) are achieved and high blocking efficiencies are observed, as judged by 1H NMR spectroscopy and gel permeation chromatography (GPC), respectively. However, the side reactions that are known to occur when cyclic allylic sulfides such as MTC are statistically copolymerized with methacrylic comonomers lead to relatively broad molecular weight distributions. Nevertheless, the worm-like nanoparticles obtained via PISA can be successfully transformed into spherical nanoparticles by addition of excess tris(2-carboxyethyl)phosphine (TCEP) at pH 8–9. Surprisingly, DLS and TEM studies indicate that the time scale needed for this order–order transition is significantly longer than that required for cleavage of the disulfide bonds located in the worm cores indicated by GPC analysis. This reductive degradation pathway may enable the use of these chemically degradable nanoparticles in biomedical applications, such as drug delivery systems and responsive biomaterials. PMID:27228898

  17. Investigation of Universal Behavior in Symmetric Diblock Copolymer Melts

    NASA Astrophysics Data System (ADS)

    Medapuram, Pavani

    Coarse-grained theories of dense polymer liquids such as block copolymer melts predict a universal dependence of equilibrium properties on a few dimensionless parameters. For symmetric diblock copolymer melts, such theories predict a universal dependence on only chieN and N¯, where chie is an effective interaction parameter, N is the degree of polymerization, and N¯ is a measure of overlap. This thesis focuses on testing the universal behavior hypothesis by comparing results for various properties obtained from different coarse-grained simulation models to each other. Specifically, results from pairs of simulations of different models that have been designed to have matched values of N¯ are compared over a range of values of chiN. The use of vastly different simulation models allows us to cover a vast range of chi eN ≃ 200 - 8000 that includes most of the experimentally relevant range. Properties studied here include collective and single-chain correlations in the disordered phase, block and chain radii of gyration in the disordered phase, the value of chieN at the order-disorder transition (ODT), the free energy per chain, the latent heat of transition, the layer spacing, the composition profile, and compression modulus in the ordered phase. All results strongly support the universal scaling hypothesis, even for rather short chains, confirming that it is indeed possible to give an accurate universal description of simulation models that differ in many details. The underlying universality becomes apparent, however, only if data are analyzed using an adequate estimate of chie, which we obtained by fitting the structure factor S( q) in the disordered state to predictions of the recently developed renormalized one-loop (ROL) theory. The ROL theory is shown to provide an excellent description of the dependence of S(q on chain length and thermodynamic conditions for all models, even for very short chains, if we allow for the existence of a nonlinear dependence of

  18. pH and Salt Effects on Surface Activity and Self-Assembly of Copolymers Containing a Weak Polybase.

    PubMed

    Cohen, Neta; Binyamin, Lana; Levi-Kalisman, Yael; Berguig, Geoffrey Y; Convertine, Anthony; Stayton, Patrick; Yerushalmi Rozen, Rachel

    2016-09-13

    Copolymers with well-defined architectures, controlled molecular weights, and narrow molar mass dispersities (Đ) were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. The resultant polymers contain different combinations of the pH-responsive monomer 2-(diethylaminoethyl) methacrylate (DEAEMA), the hydrophobic comonomer butyl methacrylate (BMA), and a neutral hydrophilic stabilizing monomer polyethylene glycol monomethyl ether methacrylate (designated O950). Surface tension and cryo-TEM measurements of native and heavy-atom stained samples were used to characterize the pH and salt responsiveness of the different polymers as a function of their composition. These studies indicate that while the polymers predominately self-assemble to form spherical micelles, a narrow size distribution is observed in aqueous solutions of poly(O950)-b-(BMA) and poly(O950)-b-(DEAEMA-co-BMA), whereas a broad size distribution characterizes the assemblies of poly(O950)-b-(DEAEMA) and poly(DEAEMA-co-BMA). In the latter case, micelles having diameters around 15-25 nm are found along with smaller aggregates (about 10 nm) mostly arranged in elongated necklace-like structures. The pH and salt-responsiveness of the DEAEMA residue, as indicated by the surface activity of the copolymers, was found to depend on the nature of the additional components: covalently linked hydrophobic groups (BMA) moderated the pH response of the copolymer as compared to nonionic and hydrophilic groups as in poly(O950)-b-(DEAEMA). These results suggest that mutual interactions among the building blocks of self-assembling copolymers should be taken into account when designing responsive copolymers. PMID:27556595

  19. Synthesis and self-assembly behavior of a biodegradable and sustainable soybean oil-based copolymer nanomicelle

    NASA Astrophysics Data System (ADS)

    Bao, Lixia; Bian, Longchun; Zhao, Mimi; Lei, Jingxin; Wang, Jiliang

    2014-08-01

    Herein, we report a novel amphiphilic biodegradable and sustainable soybean oil-based copolymer (SBC) prepared by grafting hydrophilic and biocompatible hydroxyethyl acrylate (HEA) polymeric segments onto the natural hydrophobic soybean oil chains. FTIR, H1-NMR, and GPC measurements have been used to investigate the molecular structure of the obtained SBC macromolecules. Self-assembly behaviors of the prepared SBC in aqueous solution have also been extensively evaluated by fluorescence spectroscopy and transmission electron microscopy. The prepared SBC nanocarrier with the size range of 40 to 80 nm has a potential application in the biomedical field.

  20. Poly(ethylene oxide)-b-poly(L-lactide) diblock copolymer/carbon nanotube-based nanocomposites: LiCl as supramolecular structure-directing agent.

    PubMed

    Meyer, Franck; Raquez, Jean-Marie; Verge, Pierre; Martínez de Arenaza, Inger; Coto, Borja; Van Der Voort, Pascal; Meaurio, Emilio; Dervaux, Bart; Sarasua, Jose-Ramon; Du Prez, Filip; Dubois, Philippe

    2011-11-14

    This work relies on the CNT dispersion in either solution or a polymer matrix through the formation of a three-component supramolecular system composed of PEO-b-PLLA diblock copolymer, carbon nanotubes (CNTs), and lithium chloride. According to a one-pot procedure in solution, the "self-assembly" concept has demonstrated its efficiency using suspension tests of CNTs. Characterizations of the supramolecular system by photon correlation spectroscopy, Raman spectroscopy, and molecular dynamics simulations highlight the charge transfer interaction from the CNTs toward the PEO-b-PLLA/LiCl complex. Finally, this concept was successfully extended in bulk (absence of solvent) via melt-processing techniques by dispersing these complexes in a commercial polylactide (PLA) matrix. Electrical conductivity measurements and transmission electron microscopy attested for the remarkable dispersion of CNTs, confirming the design of high-performance PLA-based materials. PMID:21936499

  1. Synthesis and Self-Assembly of Discrete Dimethylsiloxane-Lactic Acid Diblock Co-oligomers: The Dononacontamer and Its Shorter Homologues.

    PubMed

    van Genabeek, Bas; de Waal, Bas F M; Gosens, Mark M J; Pitet, Louis M; Palmans, Anja R A; Meijer, E W

    2016-03-30

    Most of the theoretical and computational descriptions of the phase behavior of block copolymers describe the chain ensembles of perfect and uniform polymers. In contrast, experimental studies on block copolymers always employ materials with disperse molecular makeup. Although most polymers are so-called monodisperse, they still have a molecular weight dispersity. Here, we describe the synthesis and properties of a series of discrete length diblock co-oligomers, based on oligo-dimethylsiloxane (oDMS) and oligo-lactic acid (oLA), diblock co-oligomers with highly noncompatible blocks. By utilizing an iterative synthetic protocol, co-oligomers with molar masses up to 6901 Da, ultralow molar mass dispersities (Đ ≤ 1.00002), and unique control over the co-oligomer composition are synthesized and characterized. This specific block co-oligomer required the development of a new divergent strategy for the oDMS structures by which both bis- and monosubstituted oDMS derivatives up to 59 Si-atoms became available. The incompatibility of the two blocks makes the final coupling more demanding the longer the blocks become. These optimized synthetic procedures granted access to multigram quantities of most of the block co-oligomers, useful to study the lower limits of block copolymer phase segregation in detail. Cylindrical, gyroid, and lamellar nanostructures, as revealed by DSC, SAXS, and AFM, were generated. The small oligomeric size of the block co-oligomers resulted in exceptionally small feature sizes (down to 3.4 nm) and long-range organization. PMID:26999049

  2. Self-Assembly of Oligosaccharide-b-PMMA Block Copolymer Systems: Glyco-Nanoparticles and Their Degradation under UV Exposure.

    PubMed

    Zepon, Karine M; Otsuka, Issei; Bouilhac, Cécile; Muniz, Edvani C; Soldi, Valdir; Borsali, Redouane

    2016-05-10

    This paper discusses the self-assembly of oligosaccharide-containing block copolymer and the use of ultraviolet (UV) to obtain nanoporous glyco-nanoparticles by photodegradation of the synthetic polymer block. Those glyco-nanoparticles consisting of oligosaccharide-based shell and a photodegradable core domain were obtained from the self-assembly of maltoheptaose-block-poly(methyl methacrylate) (MH-b-PMMA48) using the nanoprecipitation protocol. MH-b-PMMA48 self-assembled into well-defined spherical micelles (major compound) with a hydrodynamic radius (Rh) of ca. 10 nm and also into large compound micellar aggregates (minor compound) with an Rh of ca. 65 nm. The oligosaccharide shells of these glyco-nanoparticles were cross-linked through the Michael-type addition of divinyl sulfone under dilute conditions to minimize the intermicellar cross-linking. The core domain photodegradation of the cross-linked glyco-nanoparticles was induced under exposure to 254 nm UV radiation, resulting in porous glyco-nanoparticles with an Rh of ca. 44 nm. The morphology of the cross-linked shell and the core photodegradation of these glyco-nanoparticles were characterized using static light scattering, dynamic light scattering, Fourier transform infrared spectroscopy, proton nuclear magnetic resonance, field-emission gun-scanning electron microscopy, and transmission electron microscopy. The innovative aspect of this approach concerns the fact that after removing the PMMA domains the porous nanoparticles are mostly composed of biocompatible and nontoxic oligosaccharides. PMID:27054350

  3. Unexpected multivalent display of proteins by temperature triggered self-assembly of elastin-like polypeptide block copolymers

    PubMed Central

    Hassouneh, Wafa; Fischer, Karl; MacEwan, Sarah R.; Branscheid, Robert; Fu, Chuan Lawrence; Liu, Rihe; Schmidt, Manfred; Chilkoti, Ashutosh

    2012-01-01

    We report herein the unexpected temperature triggered self-assembly of proteins fused to thermally responsive elastin-like polypeptides (ELPs) into spherical micelles. Six ELP block copolymers (ELPBC) with different hydrophilic and hydrophobic block lengths were genetically fused to two single domain proteins, thioredoxin (Trx) and a fibronectin type III domain (Fn3) that binds the αvβ3 integrin. The self-assembly of these protein-ELPBC fusions as a function of temperature was investigated by UV spectroscopy, light scattering, and cryo-TEM. Self-assembly of the ELPBC was –unexpectedly- retained upon fusion to the two proteins, resulting in the formation of spherical micelles with a hydrodynamic radius that ranged from 24–37 nm, depending on the protein and ELPBC. Cryo-TEM images confirmed the formation of spherical particles with a size that was consistent with that measured by light scattering. The bioactivity of Fn3 was retained when presented by the ELPBC micelles as indicated by the enhanced uptake of the Fn3-decorated ELPBC micelles in comparison to the unimer by cells that overexpress the αvβ3 integrin. The fusion of single domain proteins to ELPBCs may provide a ubiquitous platform for the multivalent presentation of proteins. PMID:22515311

  4. Self-Assembly of Oligosaccharide-b-PMMA Block Copolymer Systems: Glyco-Nanoparticles and Their Degradation under UV Exposure.

    PubMed

    Zepon, Karine M; Otsuka, Issei; Bouilhac, Cécile; Muniz, Edvani C; Soldi, Valdir; Borsali, Redouane

    2016-05-10

    This paper discusses the self-assembly of oligosaccharide-containing block copolymer and the use of ultraviolet (UV) to obtain nanoporous glyco-nanoparticles by photodegradation of the synthetic polymer block. Those glyco-nanoparticles consisting of oligosaccharide-based shell and a photodegradable core domain were obtained from the self-assembly of maltoheptaose-block-poly(methyl methacrylate) (MH-b-PMMA48) using the nanoprecipitation protocol. MH-b-PMMA48 self-assembled into well-defined spherical micelles (major compound) with a hydrodynamic radius (Rh) of ca. 10 nm and also into large compound micellar aggregates (minor compound) with an Rh of ca. 65 nm. The oligosaccharide shells of these glyco-nanoparticles were cross-linked through the Michael-type addition of divinyl sulfone under dilute conditions to minimize the intermicellar cross-linking. The core domain photodegradation of the cross-linked glyco-nanoparticles was induced under exposure to 254 nm UV radiation, resulting in porous glyco-nanoparticles with an Rh of ca. 44 nm. The morphology of the cross-linked shell and the core photodegradation of these glyco-nanoparticles were characterized using static light scattering, dynamic light scattering, Fourier transform infrared spectroscopy, proton nuclear magnetic resonance, field-emission gun-scanning electron microscopy, and transmission electron microscopy. The innovative aspect of this approach concerns the fact that after removing the PMMA domains the porous nanoparticles are mostly composed of biocompatible and nontoxic oligosaccharides.

  5. Understanding self-assembly of charged-neutral block copolymer (BCP) and surfactant complexes using molecular dynamics (MD) simulation

    NASA Astrophysics Data System (ADS)

    Goswami, Monojoy; Sumpter, Bobby; Kilbey, Michael

    Here we report the formation of phase separated BCP-surfactant complexes resulting from the electrostatic self-assembly of charge-neutral block copolymers with oppositely charged surfactants. Complexation behaviors of oppositely charged polyelectrolytes has gained considerable attention in the field of soft condensed matter physics due to their potential application as functional nanomaterials for batteries, wastewater treatment and drug delivery systems. Numerous experiments have examined the self-assembled structures resulting from complexation of charge-neutral BCP and surfactants, however, there is a lack of comprehensive understanding at the fundamental level. To help bridge this gap, we use, MD simulations to study self-assembly and dynamics of the BCP-surfactant complex at the molecular level. Our results show an overcharging effect in BCPs with hydrophobic neutral blocks and a formation of core-shell colloidal structure. Hydrophilic neutral blocks, on the other hand, show stable, hairy colloidal structures with neutral blocks forming a loosely-bound, fuzzy outer layer. Our results qualitatively agree with previous SANS and SAXS experiments. This work was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Materials Science and Engineering Division.

  6. John H. Dillon Medal: Tapered Block Copolymers: Tuning Self-Assembly and Properties by Manipulating Monomer Segment Distributions

    NASA Astrophysics Data System (ADS)

    Epps, Thomas

    The self-assembly of block copolymers (BCPs) presents unique opportunities to design materials with attractive chemical and mechanical properties based on the ability of BCPs to form periodic structures with nanoscale domain spacings. One area of recent progress in our group focuses on the behavior of tapered BCPs in which the segment distribution at the interface between blocks is synthetically varied to tune morphology, domain density profiles, thermal transitions as well as mechanical and transport properties. Two application targets for these materials are lithium-ion conducting membranes for batteries and nanostructured thin films for nanotemplates and barrier membranes. In the first target area, we found that the taper volume fraction and composition allow us to manipulate the self-assembly of salt-doped BCPs in a well-defined manner that permits optimization of morphology and ion-content. Additionally, we found that the tapered interfaces influence the glass-transition behavior of the ion-conducting block leading to significant changes in lithium-ion transport (ion conductivity). In the second target area, we found the taper content alters the rate of self-assembly as well as the rate of island/hole formation (and ultimate island/hole size) upon thermal annealing. Additionally, using reflectivity techniques, we probed the domain density profiles as a function of taper composition and linked these profiles to changes in domain spacing and glass transition temperature. Overall, these studies show the versatility of tapering to provide a unique handle for simultaneously optimizing multiple materials properties.

  7. Directed Self-assembly of Block Copolymer with Sub-15 nm Domain Spacing Using Nanoimprinted Photoresist Templates

    NASA Astrophysics Data System (ADS)

    Sun, Zhiwei; Chen, Zhenbin; Zhang, Wenxu; Coughlin, E. Bryan; Xiao, Shuaigang; Russell, Thomas

    There has been increasing interest in preparing block copolymer thin films with ultra-small domain spacings for use as etching masks for ultra-high resolution nanolithography. One method to prepare block copolymer materials with small feature sizes is salt doping, increasing the Flory-Huggins interaction and allowing microphase separation to be maintained at lower molecular weights. Lamellae-forming P2VP- b-PS- b-P2VP block copolymer with various molecular weight was synthesized using RAFT polymerization with a dual functional chain transfer agent. Copper (II) Chloride or Gold (III) chloride was found to be selectively associated with P2VP block and increase the unfavorable interactions between PS and P2VP blocks, driving the disordered block copolymer into the ordered state. A 14 nm lamellar spacing of P2VP- b-PS- b-P2VP thin film was prepared using copper (II) Chloride doping after acetone vapor annealing on neutral brushes. Metallic nano-wire arrays were prepared after selective infiltration of platinum salt into the P2VP domain and oxygen plasma treatment. The directed self-assembly of salt doped P2VP- b-PS- b-P2VP triblock copolymer having long-rang lateral order on nanoimprinted photoresist templates with shallow trenches was also studied.

  8. Strong stretching theory for diblock copolymers in thin films under application of electric fields.

    PubMed

    Harrach, Michael F; Heckmann, Marianne; Drossel, Barbara

    2012-07-28

    We investigate the microphases of asymmetric AB diblock copolymers confined to thin films in the strong segregation limit under the application of electric fields. We evaluate the free energy of a given set of possible phases and present phase diagrams for diblock copolymers with a cylindrical bulk phase in dependence of the film thickness and the attraction between the confining walls and the A or B monomers. This is done for different field strengths and volume fractions. We find that with increasing field strength structures show a preference for alignment with the field. The alignment is stronger when the permittivity of the minority monomer is larger than that of the majority monomer. Depending on the strength of the wall potential and the film thickness, the walls can become completely wetted by the minority monomer. PMID:22852656

  9. Synergistic effects of ion pairs on the dielectric properties of diblock copolymer melts.

    PubMed

    Nakamura, Issei

    2014-12-28

    We study the solvation of ion pairs in diblock copolymer melts. Our theory accounts for the size of the ions, the permanent dipole moment and the molecular polarizability of the monomers, the Kuhn length, the compressibility of the liquid mixtures, and the degrees of polymerization. We demonstrate that the electrostatic field near an ion pair causes marked, synergistic effects on the volume fractions of the two blocks and hence the dielectric function. In particular, we illustrate the oscillatory behavior of the dielectric function near an ion pair and the disparity of the dielectric functions between like and unlike charges. These results depend significantly on the chain length and Kuhn length of the diblock copolymers on the nanometer scale.

  10. Molecular modeling of directed self-assembly of block copolymers: Fundamental studies of processing conditions and evolutionary pattern design

    NASA Astrophysics Data System (ADS)

    Khaira, Gurdaman Singh

    Rapid progress in the semi-conductor industry has pushed for smaller feature sizes on integrated electronic circuits. Current photo-lithographic techniques for nanofabrication have reached their technical limit and are problematic when printing features small enough to meet future industrial requirements. "Bottom-up'' techniques, such as the directed self-assembly (DSA) of block copolymers (BCP), are the primary contenders to compliment current "top-down'' photo-lithography ones. For industrial requirements, the defect density from DSA needs to be less than 1 defect per 10 cm by 10 cm. Knowledge of both material synthesis and the thermodynamics of the self-assembly process are required before optimal operating conditions can be found to produce results adequate for industry. The work present in this thesis is divided into three chapters, each discussing various aspects of DSA as studied via a molecular model that contains the essential physics of BCP self-assembly. Though there are various types of guiding fields that can be used to direct BCPs over large wafer areas with minimum defects, this study focuses only on chemically patterned substrates. The first chapter addresses optimal pattern design by describing a framework where molecular simulations of various complexities are coupled with an advanced optimization technique to find a pattern that directs a target morphology. It demonstrates the first ever study where BCP self-assembly on a patterned substrate is optimized using a three-dimensional description of the block-copolymers. For problems pertaining to DSA, the methodology is shown to converge much faster than the traditional random search approach. The second chapter discusses the metrology of BCP thin films using TEM tomography and X-ray scattering techniques, such as CDSAXS and GISAXS. X-ray scattering has the advantage of being able to quickly probe the average structure of BCP morphologies over large wafer areas; however, deducing the BCP morphology

  11. Self-Assembly of Amphiphilic Block Copolymers Containing Poly(n-octadecyl acrylate) Block in Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Akiba, Isamu; Akino, Yusuke; Masunaga, Hiroyasu; Sakurai, Kazuo

    2010-11-01

    Synchrotron small-angle X-ray scattering (SAXS) experiments were carried out for poly(acrylic acid)-block-poly(n-octadecyl acrylate) (PAA-b-PODA) and PAA-b-PODA-b-PAA micelles in aqueous solutions. SAXS results indicated that PAA-b-PODA and PAA-b-PODA-b-PAA formed core-shell micelles with disk-like morphology below melting temperature of PODA in aqueous solutions. The thickness of PAA-b-PODA (diblock copolymer) micelle was larger than that of PAA-b-PODA-b-PAA (triblock copolymer) micelle. The difference of sizes between these micelles was related to difference of molecular architectures of PAA-b-PODA and PAA-b-PODA-b-PAA. PAA-b-PODA micelle showed morphological transition from disk to spherical shape with elevating temperature. On the contrary, PAA-b-PODA-b-PAA micelle maintained disk-like shape above melting temperature, although enlargement of micelle thickness is caused.

  12. Nanoparticle Vesicles with Controllable Surface Topographies through Block Copolymer-Mediated Self-Assembly of Silica Nanospheres.

    PubMed

    Zhou, Shujun; Sugawara-Narutaki, Ayae; Tsuboike, Sachio; Wang, Junzheng; Shimojima, Atsushi; Okubo, Tatsuya

    2015-12-01

    Silica nanoparticle vesicles (NPVs) with encapsulating capability and surface permeability are highly attractive in nanocatalysis, biosensing, and drug delivery systems. Herein, we report the facile fabrication of silica NPVs composed of a monolayer of silica nanospheres (SNSs, ca. 15 nm in diameter) through the block copolymer-mediated self-assembly of SNSs. The silica NPVs gain different surface topographies, such as raspberry- and brain coral-like topographies, under controlled heat treatment conditions. The vesicular assembly of SNSs is successful with a series of poly(propylene oxide)-poly(ethylene oxide)-poly(propylene oxide) block copolymers, and the size of NPVs can be tuned by changing their molecular weight. The polymer is easily extracted from the NPVs with their colloidal dispersibility and structural integrity intact. The polymer-free silica NPVs further serve as a reaction vessel and host for functional materials such as tin oxide nanoparticles.

  13. Supramolecular cooperative self assembling in statistical copolymers - from two-dimensional to three dimensional assemblies

    SciTech Connect

    Stadler, R.; Hellmann, J.; Schirle, M.; Beckmann, J.

    1993-12-31

    Based on on previous work where it was shown that 4-urazoyl benzoic acid groups (U4A), which were statistically attached to polybutadiene, form ordered supramolecular arrays in the polymer matrix. The present work describes the synthesis of a new molecular building block capable for self assembling in the unpolar matrix. 5-urazoylisophthalic acid groups (U35A) attached to 1,4-polybutadiene chains show an endothermic transition, characteristic for supramolecular self assembling. The melting temperature increases for low levels of modification from 130{degrees}C up to 190{degrees}C. The IR-data indicate than the 5-urazoylisophthalic acid groups are 4-functional with respect to supramolecular self-addressing. Based on the detailed knowledge of the structure of the self-assembled domains in 4-urazoyl benzoic acid groups, a model is developed which describes qualitatively the observed material properties.

  14. Strain rate effects on symmetric diblock copolymer liquid bridges: order-induced stability of polymer fibres.

    PubMed

    Peters, Robert D; Dalnoki-Veress, Kari

    2014-10-01

    Optical microscopy is used to study the effect of lamellar order on the evolution of polymer-melt bridges. Measurements are performed on symmetric diblock copolymers and linear homopolymers in the melt state. Diblock copolymer bridges measured in the disordered phase are shown to exhibit the same strain rate response as their homopolymer counterparts: shear thinning at low strain rates and shear thickening at high strain rates. However, when measured in the ordered phase, copolymer-melt bridges demonstrate an increased effective viscosity due to the lamellar order and a shear thinning response over the entire range of strain rates probed. The increased viscosity demonstrates an enhanced stability in lamellae forming diblock liquid bridges, presumed to be caused by the isotropic orientational order of lamellar domains that provide energy barriers to flow within the bridge. The shear thinning can be understood as an alignment of lamellae along the axis of the bridge due to flow, facilitating unimpeded diffusion of polymer out of the liquid bridge along lamellar boundaries.

  15. Morphologies of charged diblock copolymers simulated with a neutral coarse-grained model.

    PubMed

    Pantano, Diego A; Klein, Michael L; Discher, Dennis E; Moore, Preston B

    2011-04-28

    We present the results of coarse grained molecular dynamics simulation using a charge free model that is able to capture different regions of the morphological phase diagram of charged diblock copolymers. Specifically, we were able to reproduce many phases of the poly(acrylic acid)-(1,4)-polybutadiene (PAA-PBA) diblock copolymer, Ca(2+) and water systems as a function of pH and calcium concentration with short-range LJ type potentials. The morphologies observed range from bilayers to cylinders to spherical micelles. Such polyanionic/cationic amphiphiles in water typically present multiple challenges for molecular simulations, particularly due to the many charge interactions that are long ranged and computationally costly. Further, it is precisely these interactions that are thought to modulate large amphiphile assemblies of interest such as lipid rafts. However, our model is able to reproduce different morphologies due to pH and with or without the addition of Ca(2+) as well as the lateral phase segregation and the domain registration observed in neutral and charged diblock copolymer mixtures. The results suggest that the overall effect of charges is a local structural rearrangement that renormalizes the steric repulsion between the headgroups. This simple model, which is devoid of charges, is able to reproduce the complex phase diagram and can be used to investigate collective phenomena in these charged systems such as domain formation and registration or colocalization of lipid rafts across bilayer leaflets.

  16. Galactose-functionalized cationic polycarbonate diblock copolymer for targeted gene delivery to hepatocytes.

    PubMed

    Ong, Zhan Yuin; Yang, Chuan; Gao, Shu Jun; Ke, Xi-Yu; Hedrick, James L; Yan Yang, Yi

    2013-11-01

    To mediate selective gene delivery to hepatocytes via the asialoglycoprotein receptors (ASGP-Rs), we designed and synthesized well-defined and narrowly dispersed galactose- and glucose-functionalized cationic polycarbonate diblock copolymers (designated as Gal-APC and Glu-APC, respectively) using organocatalytic ring-opening polymerization of functionalized carbonate monomers, with a subsequent quaternization step using bis-tertiary amines to confer quaternary and tertiary amines for DNA binding and endosomal buffering, respectively. The sugar-functionalized diblock copolymers effectively bound and condensed DNA to form positively charged nanoparticles (<100 nm in diameter and ≈30 mV zeta-potential) that were stable under high physiological salt conditions. In comparison to the control Glu-APC/DNA complexes, Gal-APC/DNA complexes mediated significantly higher gene expression in ASGP-R positive HepG2 cells with no significant difference observed in ASGP-R negative HeLa cells. The co-incubation of Gal-APC/DNA complexes with a natural ASGP-R ligand effectively led to a decrease in gene expression, hence providing evidence for the ASGP-R mediated endocytosis of the polyplexes. Importantly, the Gal-APC/DNA complexes induced minimal cytotoxicities in HepG2 cells at the N/P ratios tested. Taken together, the galactose-functionalized cationic polycarbonate diblock copolymer has potential for use as a non-viral gene vector for the targeted delivery of therapeutic genes to hepatocytes in the treatment of liver diseases.

  17. Novel synthesis of cellulose-based diblock copolymer of poly(hydroxyethyl methacrylate) by mechanochemical reaction.

    PubMed

    Ohura, Takeshi; Tsutaki, Yusaku; Sakaguchi, Masato

    2014-01-01

    The mechanical fracture of polymer produces polymeric free radical chain-ends, by which liner block copolymers have been synthesized. A diblock copolymer of microcrystalline cellulose (MCC) and poly 2-hydroxyethyl methacrylate (pHEMA) was produced by the mechanochemical polymerization under vacuum and room temperature. The fraction of pHEMA in MCC-block-pHEMA produced by the mechanochemical polymerization increased up to 21 mol% with increasing fracture time (~6 h). Then, the tacticities of HEMA sequences in MCC-block-pHEMA varied according to the reaction time. In the process of mechanochemical polymerization, cellulose could play the role of a radical polymerization initiator capable of controlling stereoregularity.

  18. "Schizophrenic" hemocompatible copolymers via switchable thermoresponsive transition of nonionic/zwitterionic block self-assembly in human blood.

    PubMed

    Shih, Yu-Ju; Chang, Yung; Deratani, Andre; Quemener, Damien

    2012-09-10

    "Schizophrenic" diblock copolymers containing nonionic and zwitterionic blocks were prepared with well-controlled molecular weights via atom-transfer radical polymerization (ATRP). In this work, we report a systematic study of how morphological changes of poly(N-isopropylacrylamide)-block-poly(sulfobetaine methacrylate) (PNIPAAm-b-PSBMA) copolymers affect hemocompatibility in human blood solution. The "schizophrenic" behavior of PNIPAAm-b-PSBMA was observed by (1)H NMR, dynamic light scattering (DLS), and turbidity measurement with double morphological transition, exhibiting both lower critical solution temperature (LCST) and upper critical solution temperature (UCST) in aqueous solution. Below the UCST of PSBMA block, micelles were obtained with a core of insoluble PSBMA association and a shell of soluble PNIPAAm, whereas the opposite micelle structure was observed above the LCST of PNIPAAm block. In between the UCST and LCST, unimers with both soluble blocks were detected. Hydrodynamic size of prepared polymers and copolymers is determined to illustrate the correlations between intermolecular nonionic/zwitterionic associations and blood compatibility of PNIPAAm, PNIPAAm-b-PSBMA, and PSBMA suspension in human blood. Human fibrinogen adsorption onto the PNIPAAm-b-PSBMA copolymers from single-protein solutions was measured by DLS to determine the nonfouling stability of copolymer suspension. The new nonfouling nature of PNIPAAm-b-PSBMA copolymers was demonstrated to show extremely high anticoagulant activity and antihemolytic activity in human blood over a wide range of explored temperatures from 4 to 40 °C. The temperature-independent blood compatibility of nonionic/zwitterionic block copolymer along with their schizophrenic phase behavior in aqueous solution suggests their potential in blood-contacting applications. PMID:22838402

  19. Influence of Variations in Liquid-Crystalline Content upon the Self-Assembly Behavior of Siloxane-Based Block Copolymers

    SciTech Connect

    Verploegen,E.; Zhang, T.; Murlo, N.; Hammond, P.

    2008-01-01

    A series of well-defined smectic side chain liquid-crystalline (LC) block copolymers with a low glass transition (Tg) siloxane block has been synthesized via anionic polymerization; these systems consist of a glassy polystyrene block and a unique low glass transition temperature LC block based on poly(vinylmethylsiloxane) to which six different LCs have been synthesized and attached. The synthesis techniques used provide systematic control over covalent LC side chain content, allowing for a range of morphologies to be obtained from a single block copolymer backbone during a one-step LC attachment reaction. Variations in the LC structure and content significantly affect the morphology of the LC mesophase, allowing the smectic-to-isotropic transition temperature to be tuned from room temperature up to 150 C. There are two key driving forces in the self-assembly behavior of these materials that are significantly affected by the LC content. The first is the segmental interaction parameter (?) between the blocks, which is a function of the amount of LC attached to the siloxane block. The attachment percent of the LCs to the siloxane block determines the packing density, which affects the stability of the LC mesophase and its interactions with the inter-material dividing surface. The self-assembled morphologies are characterized as a function of LC content and the mechanisms for the observed behavior are detailed. Additional insights into the interactions between the LC and block copolymer mesophases are gained by investigating the morphologies in response to mechanical deformation. The elastic modulus of this system can be tailored over several orders of magnitude by controlling the LC content, and the thermo-mechanical behavior is also highly dependent. The ability to precisely control the degree of LC functionalization enables the custom design and tailoring of material properties for specific applications such as electro-mechanical, damping, and mechano

  20. Phase Behavior of Weakly Ordered Diblock Copolymers in the High Molecular Weight Limit

    NASA Astrophysics Data System (ADS)

    Patel, Amish; Balsara, Nitash

    2004-03-01

    Poly(tert-butylstyrene-block-polydiene) (TBS-D) diblock copolymers with molecular weights ranging from 10 kg/mol to 500 kg/mol have been synthesized. The dienes studied thus far are 1-4 polyisoprene and 1-2 polybutadiene. The Flory-Huggins interaction parameters (kii) between TBS and D chains are negative at room temperature. Thus, the mean field theory of polymer blends predicts that TBS-D diblock copolymers must be disordered, regardless of their molecular weight. With increasing temperature, kii increases, and we thus expect the formation of ordered phases. The nature of these transitions can be also predicted by mean-field theory. We are conducting small-angle X-ray scattering and optical birefringence experiments on the TBS-D block copolymers to test the applicability of the mean-field theory. This enables a test of the mean-field theory of block copolymers over an unprecedented range of molecular weights. The results of these tests will be presented at the meeting.

  1. Donor/acceptor morphology control for efficient and stable photovoltaic cells by using semiconducting diblock copolymers

    NASA Astrophysics Data System (ADS)

    Tajima, Keisuke; Miyanishi, Shoji; Zhang, Yue; Hashimoto, Kazuhito

    2012-09-01

    Poly(3-alkylthiophene)-based diblock copolymers with controllable block lengths were synthesized by combining Grignard metathesis (GRIM) method, Ni-catalyzed quasi-living polymerization and a subsequent azide-alkyne click reaction to introduce a fullerene functionality into the side chains of one of the blocks. The fullerene-attached copolymers had good solubility (> 30 g L-1 in chlorobenzene) with high molecular weights (Mn > 20000). The diblock copolymer films showed the formation of clear nanostructures with the size of 20 nm in AFM phase image driven by the crystallization of poly(3-hexylthiophene) block and aggregation of the fullerene groups. The photovoltaic device based on the copolymers showed a power conversion efficiency of 2.5% with a much higher fill factor of 0.63 compared with the single component devices previously reported. These results indicate that the rational material designs enable to construct the donor-acceptor nanostructure suitable for the photovoltaic application without relying on the mixing of the materials.

  2. Block copolymer micelles as nanoreactors for self-assembled morphologies of gold nanoparticles.

    PubMed

    Khullar, Poonam; Singh, Vijender; Mahal, Aabroo; Kumar, Harsh; Kaur, Gurinder; Bakshi, Mandeep Singh

    2013-03-14

    Self-assembled gold (Au) nanoparticles (NPs) were synthesized in micelle surface cavities of a L121 block polymer in the presence of zwitterionic (viz. DPS, TPS, and HPS) and sugar surfactants (OG and DDM) in aqueous phase at 70 °C by using the surface cavities of L121 as reducing sites for converting Au(III) into Au(0). All reactions were monitored simultaneously by UV-visible spectroscopy to determine the growth kinetics in gold nucleating centers on the basis of surface plasmon resonance that also helped in tracing the structure micelle transitions over a wide temperature range of 10-70 °C. The surfactant/L121 mole ratio was changed systematically from 0.5 to 2.5 by keeping L121 and HAuCl4 concentrations constant at 10 and 0.25 mM, respectively, to determine the shape and size of the micelles and their relation to the self-assembled behavior of Au NPs. TEM studies were used to have a direct insight into the morphology of micelle templates and their shape and size for self-assembled NPs. L121 along with DPS (C12 carbon chain) produced well-defined micelles loaded with tiny NPs of 3-6 nm in the L121-rich region of the mixture, while large flower-like compound micelles with a clear core-shell morphology were produced in the DPS-rich region. TPS and HPS (C14 and C16 hydrocarbon chains, respectively) with stronger hydrophobicity than DPS also produced almost similar micelles loaded with tiny NPs in the L121-rich region, but they disappear in the surfactant-rich region. Replacement of zwitterionic with ionic surfactants did not yield micelle templates for self-assembled NPs. Results conclude that well-defined micelles of L121 are the fine templates for self-assembled NPs that can only be achieved in the presence of a neutral surfactant with low concentration and low hydrophobicity.

  3. Micelle Formation of Diblock Copolymers in Thin Film Homopolymers and Homopolymer Blends

    NASA Astrophysics Data System (ADS)

    Chen, Chelsea; Green, Peter

    2010-03-01

    A-b-B diblock copolymers, at very small concentrations, form micelles in a melt of homopolymer chains of type A or B. In the bulk, the critical micelle concentration, φcmc, is a function of the symmetry of the copolymer chain and exhibits a strong dependence on χN, where χ is the interaction parameter and N is the degree of polymerization of the copolymer. We examined micelle formation in thin film mixtures of: (1) polystyrene-b-poly(2-vinylpyridine) (PS-b-PVP)/polystyrene (PS); (2) PS-b-PVP/ blend of PS and tetramethyl bisphenol-A polycarbonate (TMPC); and (3) polystyrene-b-poly(methyl methacrylate) (PS-b-PMMA)/PS. The critical micelle concentration is found to be orders of magnitude larger than the bulk; it is a strong function of film thickness, the substrate/chain segment interactions and the interactions between the different polymeric segments in the system.

  4. Directed self-assembly of high-chi block copolymer for nano fabrication of bit patterned media via solvent annealing

    NASA Astrophysics Data System (ADS)

    Xiong, Shisheng; Chapuis, Yves-Andre; Wan, Lei; Gao, He; Li, Xiao; Ruiz, Ricardo; Nealey, Paul F.

    2016-10-01

    We report the formation of nanoimprint master templates that can be used for the fabrication of bit patterned media (BPM). The template was formed by directed self-assembly, with solvent annealing, of a symmetric ABA triblock copolymer to form perpendicularly oriented lamellae on chemical patterns. We used a high-χ block copolymer, poly(2-vinyl pyridine)-block-polystyrene-block-poly(2-vinyl pyridine) to achieve smaller feature sizes than are possible with polystyrene-block-poly(methyl methacrylate). The work shows that triblock copolymers can provide a large processing window in terms of pitch commensurability. Using block-selective infiltration (atomic layer deposition with sequential long soaking/purge cycles), an alumina composite with high etch resistance was specifically incorporated into the polar and hydrophilic P2VP domains. Subsequently, the surface pattern was successfully transferred into underlying Si substrates by etching with a fluorine-containing plasma to create a nanoimprint master. The line/space pattern of the nanoimprint master met the BPM fabrication requirement of defectivity <10-3. For demonstration purposes, the nanoimprint master was used to imprint a replica pattern of photoresist on a quartz wafer.

  5. Directed self-assembly of high-chi block copolymer for nano fabrication of bit patterned media via solvent annealing.

    PubMed

    Xiong, Shisheng; Chapuis, Yves-Andre; Wan, Lei; Gao, He; Li, Xiao; Ruiz, Ricardo; Nealey, Paul F

    2016-10-14

    We report the formation of nanoimprint master templates that can be used for the fabrication of bit patterned media (BPM). The template was formed by directed self-assembly, with solvent annealing, of a symmetric ABA triblock copolymer to form perpendicularly oriented lamellae on chemical patterns. We used a high-χ block copolymer, poly(2-vinyl pyridine)-block-polystyrene-block-poly(2-vinyl pyridine) to achieve smaller feature sizes than are possible with polystyrene-block-poly(methyl methacrylate). The work shows that triblock copolymers can provide a large processing window in terms of pitch commensurability. Using block-selective infiltration (atomic layer deposition with sequential long soaking/purge cycles), an alumina composite with high etch resistance was specifically incorporated into the polar and hydrophilic P2VP domains. Subsequently, the surface pattern was successfully transferred into underlying Si substrates by etching with a fluorine-containing plasma to create a nanoimprint master. The line/space pattern of the nanoimprint master met the BPM fabrication requirement of defectivity <10(-3). For demonstration purposes, the nanoimprint master was used to imprint a replica pattern of photoresist on a quartz wafer. PMID:27606926

  6. Directed self-assembly of high-chi block copolymer for nano fabrication of bit patterned media via solvent annealing.

    PubMed

    Xiong, Shisheng; Chapuis, Yves-Andre; Wan, Lei; Gao, He; Li, Xiao; Ruiz, Ricardo; Nealey, Paul F

    2016-10-14

    We report the formation of nanoimprint master templates that can be used for the fabrication of bit patterned media (BPM). The template was formed by directed self-assembly, with solvent annealing, of a symmetric ABA triblock copolymer to form perpendicularly oriented lamellae on chemical patterns. We used a high-χ block copolymer, poly(2-vinyl pyridine)-block-polystyrene-block-poly(2-vinyl pyridine) to achieve smaller feature sizes than are possible with polystyrene-block-poly(methyl methacrylate). The work shows that triblock copolymers can provide a large processing window in terms of pitch commensurability. Using block-selective infiltration (atomic layer deposition with sequential long soaking/purge cycles), an alumina composite with high etch resistance was specifically incorporated into the polar and hydrophilic P2VP domains. Subsequently, the surface pattern was successfully transferred into underlying Si substrates by etching with a fluorine-containing plasma to create a nanoimprint master. The line/space pattern of the nanoimprint master met the BPM fabrication requirement of defectivity <10(-3). For demonstration purposes, the nanoimprint master was used to imprint a replica pattern of photoresist on a quartz wafer.

  7. Self-Assembly-Assisted Biomolecule-Enriched Surface and High Selectivity Performance of Simple Solution-Coatable Biomimicking Brush Copolymers.

    PubMed

    Kwon, Kyungho; Kim, Changsub; Lee, Jongchan; Kim, Heesoo; Ree, Moonhor

    2016-03-14

    Poly(oxy(11-(biotinyl)undecylthiomethyl)ethylene-co-oxy(11-phosphoryl-cholineundecylthiomethyl)ethylene)s (PECH-BTmPCn: m = 0-100 mol % biotin (BT)-containing bristle; n = 100-0 mol % phosphorylcholine (PC)-containing bristle) were newly synthesized. All polymers exhibited excellent solution processability. They favorably self-assembled horizontal multibilayer structures in thin films with BT- and PC-enriched surfaces, which were driven by the lateral ordering of the fully extended upright bristles and the partial interdigitation between the BT and PC end groups of the bristles. Both hydrophilicity and water sorption of the films increased with the PC content. The PECH-BT100 films revealed remarkably distinctive sensitivity, selectivity, and adsorption ability for avidin against other proteins. Such remarkable performance was further significantly enhanced on the PECH-BTmPCn films in which PC moieties were incorporated to the BT-rich surface; in particular, the PECH-BT75PC25 films demonstrated the highest performance. Overall, the self-assembly brush copolymers of this study are very suitable for use in the high performance detection, adsorption, and separation of proteins and receptors, including avidin, which can reveal high affinity and selectivity to BT moiety. PMID:26809808

  8. Controllable stacked disk morphologies of charged diblock copolymers

    SciTech Connect

    Goswami, Monojoy; Sumpter, Bobby G; Mays, Jimmy

    2010-01-01

    Monte Carlo simulations are used to demonstrate the controlled stacking of charged block copolymer disk morphologies that can be obtained under certain thermodynamic conditions. We examine a partially charged block copolymer where 75% of the blocks are neutral and 25% of the blocks are charged. The presence of strong electrostatic interactions promotes charge agglomeration thereby changing morphologies in these systems. This study relates different thermodynamic quantities for which disk-like stackings can be obtained. The long-range order can be sustained even if hydrophobicity is increased albeit with lower dimensional structures. Our simulation results agree very well with recent experiments and are consistent with theoretical observations of counterion adsorption on flexible polyelectrolytes.

  9. Mechanical characterization of diblock copolymer ``armored'' emulsion droplets

    NASA Astrophysics Data System (ADS)

    Rozairo, Damith; Croll, Andrew

    2013-03-01

    There has been an increased interest in block copolymer vesicles due to a plethora of possible application ranging from targeted drug delivery to cosmetically active agents. In this regard, understanding the physics of the block copolymer vesicle and its morphology is critical to the rational development of these technologies. As a step towards more complex vesicle structures, we describe experiments in which we carefully examine the interface and morphology of polystyrene-b-polyethyleneoxide (PS-PEO) emulsion drops. In our study, PS-PEO acts as a surfactant and at the toluene-water interface creates a monolayer, inhibiting drop recombination and minimizing interfacial energies. Our experiments are conducted in a water cell where the buoyant force is exploited to push drops against a thin sheet of mica. The shape of the drops is measured using an upright confocal microscope and compared with a Bashforth-Adams model in order to examine the mechanical response to the buoyant force. We observe unique dynamics as the drops buckle at short timescales trapping a small pocket of fluid which slowly drains away. Furthermore, the influence of polymer concentration, changes in pH and block copolymer architecture on the morphology and dynamics of the droplets is examined.

  10. Distinct Adsorption Configurations and Self-Assembly Characteristics of Fibrinogen on Chemically Uniform and Alternating Surfaces including Block Copolymer Nanodomains

    PubMed Central

    2015-01-01

    Understanding protein–surface interactions is crucial to solid-state biomedical applications whose functionality is directly correlated with the precise control of the adsorption configuration, surface packing, loading density, and bioactivity of protein molecules. Because of the small dimensions and highly amphiphilic nature of proteins, investigation of protein adsorption performed on nanoscale topology can shed light on subprotein-level interaction preferences. In this study, we examine the adsorption and assembly behavior of a highly elongated protein, fibrinogen, on both chemically uniform (as-is and buffered HF-treated SiO2/Si, and homopolymers of polystyrene and poly(methyl methacrylate)) and varying (polystyrene-block-poly(methyl methacrylate)) surfaces. By focusing on high-resolution imaging of individual protein molecules whose configurations are influenced by protein–surface rather than protein–protein interactions, fibrinogen conformations characteristic to each surface are identified and statistically analyzed for structural similarities/differences in key protein domains. By exploiting block copolymer nanodomains whose repeat distance is commensurate with the length of the individual protein, we determine that fibrinogen exhibits a more neutral tendency for interaction with both polystyrene and poly(methyl methacrylate) blocks relative to the case of common globular proteins. Factors affecting fibrinogen–polymer interactions are discussed in terms of hydrophobic and electrostatic interactions. In addition, assembly and packing attributes of fibrinogen are determined at different loading conditions. Primary orientations of fibrinogen and its rearrangements with respect to the underlying diblock nanodomains associated with different surface coverage are explained by pertinent protein interaction mechanisms. On the basis of two-dimensional stacking behavior, a protein assembly model is proposed for the formation of an extended fibrinogen network

  11. Adsorption and aqueous lubricating properties of charged and neutral amphiphilic diblock copolymers at a compliant, hydrophobic interface.

    PubMed

    Røn, Troels; Javakhishvili, Irakli; Jankova, Katja; Hvilsted, Søren; Lee, Seunghwan

    2013-06-25

    We have investigated the adsorption and lubricating properties of neutral and charged amphiphilic diblock copolymers at a hydrophobic polydimethylsiloxane (PDMS) interface in an aqueous environment. The diblock copolymers consist of a hydrophilic block of either neutral poly(ethylene glycol) (PEG) or negatively charged poly(acrylic acid) (PAA) and of a hydrophobic block of polystyrene (PS) or poly(2-methoxyethyl acrylate) (PMEA), thus generating PEG-b-X or PAA-b-X, where X block is either PS or PMEA. The molecular weight ratios were roughly 1:1 with each block ca. 5 kDa. Comparing the neutral PEG and charged PAA buoyant blocks with all other conditions identical, the former showed superior adsorption onto nonpolar, hydrophobic PDMS surfaces from a neutral aqueous solution. PEG-based copolymers showed substantial adsorption for both PS and PMEA as the anchoring block, whereas PAA-based copolymers showed effective adsorption only when PMEA was employed as the anchoring block. For PAA-b-PS, the poor adsorption properties are chiefly attributed to micellization due to the high interfacial tension between the PS core and water. The poor lubricating properties of PAA-b-PS diblock copolymer for a PDMS-PDMS sliding contact was well correlated with the poor adsorption properties. PAA-b-PMEA copolymers, despite their sizable amount of adsorbed mass, showed insignificant lubricating effects. When the charges of the PAA-b-PMEA diblock copolymers were screened by either adding NaCl to the aqueous solution or by lowering the pH, both the adsorption and lubricity improved. We ascribe the poor adsorption and inferior aqueous lubricating properties of the PAA-based diblock copolymers compared to their PEG-based counterparts mainly to the electrostatic repulsion between charged PAA blocks, hindering the facile formation of the lubricating layer under cyclic tribological stress at the sliding PDMS-PDMS interface. PMID:23725290

  12. Block Copolymer Bottlebrushes: New Routes to Ever Smaller Microdomain Sizes

    NASA Astrophysics Data System (ADS)

    Mahanthappa, Mahesh; Speetjens, Frank

    Block copolymer self-assembly presents exciting opportunities for the development of nanotemplates for advanced lithography applications, wherein the microdomain sizes (~10-100 nm) are governed by the total copolymer degree of polymerization, N. However, this methodology is limited in its smallest achievable length scale, since AB diblock copolymers self-assemble only above a critical N that depends on the magnitude of the effective segmental interaction parameter χAB. Numerous recent reports have focused on developing ``high χAB'' AB diblocks that self-assemble at low values of N. In this talk we explore the ability of non-linear polymer architectures to induce block copolymer ordering at reduced length scales. Thus, we describe the melt and thin-film self-assembly behavior of block copolymer bottlebrushes derived from linking the block junctions of low molecular weight AB diblocks. We quantitatively demonstrate that increasing the bottlebrush backbone degree of polymerization (Nbackbone) results in a larger reduction in the critical copolymer arm degree of polymerization (Narm) required for self-assembly, thus reducing the length scales at which these materials self-assemble.

  13. Influence of polydispersity on the isotropic-nematic boundary in melt of semiflexible diblock copolymer

    NASA Astrophysics Data System (ADS)

    Aliev, M. A.

    2015-12-01

    The analytical expressions have been obtained to describe the dependence of spinodal curve at which isotropic state of polydisperse melt of semiflexible diblock copolymer becomes unstable with respect to formation of nematic state on the polydispersity indices of the blocks, parameters of anisotropic interactions, and flexibility of blocks. The flexibility of blocks is taken into account within discrete worm-like chain model, lengths of blocks are assumed to be distributed by the Schulz-Zimm distribution. It is shown that increase of degree of polydispersity of blocks yields the increase of nematic spinodal temperature.

  14. Ordered phases of diblock copolymers in selective solvent

    NASA Astrophysics Data System (ADS)

    Grason, Gregory M.

    2007-03-01

    The authors propose a mean-field model to explore the equilibrium coupling between micelle aggregation and lattice choice in neutral copolymer and selective solvent mixtures. They find both thermotropic and lyotropic transitions from face-centered cubic to body-centered cubic ordered phases of spherical micelles, in agreement with experimental observations of these systems over a broad range of conditions. The stability of the nonclosed packed phase can be attributed to two physical mechanisms: the large entropy of lattice phonons near crystal melting and the preference of the intermicelle repulsions for the body-centered cubic structure when the lattice becomes sufficiently dense at higher solution concentrations. Both mechanisms are controlled by the decrease of micelle aggregation and subsequent increase of lattice density as solvent selectivity is reduced. These results shed new light on the relationship between micelle structure—"crewcut" or "hairy"—and long-range order in micelle solutions.

  15. Synthesis and Melt Self-Assembly of PS-PMMA-PLA Triblock Bottlebrush Copolymers

    SciTech Connect

    Bolton, Justin; Rzayev, Javid

    2014-07-03

    Polystyrene–poly(methyl methacrylate)–polylactide (PS–PMMA–PLA) triblock bottlebrush copolymer with nearly symmetric volume fractions was synthesized by grafting from a symmetrical triblock backbone and the resulting melt was characterized by scanning electron microscopy and small-angle X-ray scattering. The copolymer backbone was prepared by sequential reversible addition–fragmentation chain transfer (RAFT) polymerization of solketal methacrylate (SM), 2-(bromoisobutyryl)ethyl methacrylate (BIEM), and 5-(trimethylsilyl)-4-pentyn-1-ol methacrylate (TPYM). PMMA branches were grafted by atom transfer radical polymerization from the poly(BIEM) segment, PS branches were grafted by RAFT polymerization from the poly(TPYM) block after installment of the RAFT agents, while PLA side chains were grafted from the deprotected poly(SM) block. The resulting copolymer was found to exhibit a lamellae morphology with a domain spacing of 79 nm. Differential scanning calorimetry analysis indicated that PMMA was preferentially mixing with PS while phase separating from PLA domains.

  16. Ordered porous mesostructured materials from nanoparticle-block copolymer self-assembly

    DOEpatents

    Warren, Scott; Wiesner, Ulrich; DiSalvo, Jr., Francis J

    2013-10-29

    The invention provides mesostructured materials and methods of preparing mesostructured materials including metal-rich mesostructured nanoparticle-block copolymer hybrids, porous metal-nonmetal nanocomposite mesostructures, and ordered metal mesostructures with uniform pores. The nanoparticles can be metal, metal alloy, metal mixture, intermetallic, metal-carbon, metal-ceramic, semiconductor-carbon, semiconductor-ceramic, insulator-carbon or insulator-ceramic nanoparticles, or combinations thereof. A block copolymer/ligand-stabilized nanoparticle solution is cast, resulting in the formation of a metal-rich (or semiconductor-rich or insulator-rich) mesostructured nanoparticle-block copolymer hybrid. The hybrid is heated to an elevated temperature, resulting in the formation of an ordered porous nanocomposite mesostructure. A nonmetal component (e.g., carbon or ceramic) is then removed to produce an ordered mesostructure with ordered and large uniform pores.

  17. Challenges in Fabrication of Mesoporous Carbon Films with Ordered Cylindrical Pores via Phenolic Oligomer Self-Assembly with Triblock Copolymers

    SciTech Connect

    Song, Lingyan; Feng, Dan; Fredin, Nathaniel J.; Yager, Kevin G.; Jones, Ronald L.; Wu, Quanyan; Zhao, Dongyuan; Vogt, Bryan D.

    2010-06-22

    Mesoporous phenol formaldehyde (PF) polymer resin and carbon films are prepared by a solution self-assembly of PF oligomers with amphiphilic triblock copolymers. After thermopolymerization of the PF to cross-link the network, the films show an ordered morphology as determined by X-ray diffraction and grazing incidence small-angle X-ray scattering (GISAXS). Our results show that the amphiphilic triblock copolymer template greatly influences the stability of the final porous mesostructures. The pyrolysis of the two-dimensional (2-D) hexagonal films with p6mm symmetry templated by Pluronic F127 yields a disordered porous structure following the template removal. Conversely, films templated by Pluronic P123 can exhibit well-ordered cylindrical pores after the template removal, but the solution composition range to yield ordered cylindrical mesopores is significantly reduced (nearly 70%) for thin films in comparison to bulk powders. We propose two dominant difficulties in fabricating well-ordered cylindrical mesopores in films: first, the stress from contraction during the pyrolysis can lead to a collapse of the mesostructure if the wall thickness is insufficient, and second, the surface wetting behavior in thin films leads to a small compositional range.

  18. Self-assembled block copolymer micelles with silver-carbon nanotube hybrid fillers for high performance thermal conduction.

    PubMed

    Choi, Jae Ryung; Yu, Seunggun; Jung, Haejong; Hwang, Sun Kak; Kim, Richard Hahnkee; Song, Giyoung; Cho, Sung Hwan; Bae, Insung; Hong, Soon Man; Koo, Chong Min; Park, Cheolmin

    2015-02-01

    The development of polymer-filled composites with an extremely high thermal conductivity (TC) that is competitive with conventional metals is in great demand due to their cost-effective process, light weight, and easy shape-forming capability. A novel polymer composite with a large thermal conductivity of 153 W m(-1) K(-1) was prepared based on self-assembled block copolymer micelles containing two different fillers of micron-sized silver particles and multi-walled carbon nanotubes. Simple mechanical mixing of the components followed by conventional thermal compression at a low processing temperature of 160 °C produced a novel composite with both structural and thermal stability that is durable for high temperature operation up to 150 °C as well as multiple heating and cooling cycles of ΔT = 100 °C. The high performance in thermal conduction of our composite was mainly attributed to the facile deformation of Ag particles during the mixing in a viscous thermoplastic medium, combined with networked carbon nanotubes uniformly dispersed in the nanoscale structural matrix of block copolymer micelles responsible for its high temperature mechanical stability. Furthermore, micro-imprinting on the composite allowed for topographically periodic surface micropatterns, which offers broader suitability for numerous micro-opto-electronic systems. PMID:25526528

  19. Liquid-liquid interfaces of semifluorinated alkane diblock copolymers with water, alkanes, and perfluorinated alkanes.

    SciTech Connect

    Perahia, Dvora, Dr.; Pierce, Flint; Tsige, Mesfin; Grest, Gary Stephen, Dr.

    2008-08-01

    The liquid-liquid interface between semifluorinated alkane diblock copolymers of the form F3C(CF2)n-1-(CH2)m-1CH3 and water, protonated alkanes, and perfluorinated alkanes are studied by fully atomistic molecular dynamics simulations. A modified version of the OPLS-AA (Optimized Parameter for Liquid Simulation All-Atom) force field of Jorgensen et al. has been used to study the interfacial behavior of semifluorinated diblocks. Aqueous interfaces are found to be sharp, with correspondingly large values of the interfacial tension. Due to the reduced hydrophobicity of the protonated block compared to the fluorinated block, hydrogen enhancement is observed at the interface. Water dipoles in the interfacial region are found to be oriented nearly parallel to the liquid-liquid interface. A number of protonated alkanes and perfluorinated alkanes are found to be mutually miscible with the semifluorinated diblocks. For these liquids, interdiffusion follows the expected Fickian behavior, and concentration-dependent diffusivities are determined.

  20. Spotted Polymersomes and Striped Worms - a theoretical analysis of lateral segregation of diblock copolymers

    NASA Astrophysics Data System (ADS)

    Ellenbroek, Wouter G.; Christian, David A.; Tian, Aiwei; Liu, Andrea J.; Baumgart, Tobias; Discher, Dennis E.

    2008-03-01

    Lipids and amphiphilic block copolymers are both known to assemble into vesicle and worm-like micelle morphologies, but only mixtures of lipids in vesicles have been directly seen to phase separate into meso-scale lateral domains. Here we show direct visualization of meso-scale spots in tough polymersomes and micron-length stripes in stable worms that result from strong lateral segregation of polyanionic and neutral diblock copolymers. We present a model for understanding the crucial role of calcium ions on segregation behavior, which incorporates counterion condensation and ``crosslinking'' (ion bridging). We find a tendency towards segregation near the isoelectric point as a result of competition among counterion entropy, repulsion due to the net charge, and attraction due to crosslinking. These results portend new classes of robust membranes and cylinders that exhibit lateral patterns at the meso-scale.

  1. Optoelectronic properties and charge transfer in donor-acceptor all-conjugated diblock copolymers.

    SciTech Connect

    Botiz, I.; Schaller, R. D.; Verduzco, R.; Darling, S. B.

    2011-05-12

    All-conjugated block copolymers, which can self-assemble into well-ordered morphologies, provide exciting opportunities to rationally design and control the nanoscale organization of electron-donor and electron-acceptor moieties in optoelectronic active layers. Here we report on the steady-state and time-resolved optical characterization of block copolymer films and solutions containing poly(3-hexylthiophene) as the donor block and poly(9,9-dioctylfluorene) with and without copolymerization with benzothiadiazole as the acceptor block. Transient absorption measurements suggest rapid charge transfer occurs in both systems, with higher efficiency observed in the latter composition. These results indicate that this class of materials has promise in preparing highly ordered bulk heterojunction all-polymer organic photovoltaic devices.

  2. Microfluidic Fabrication of Bio-compatible Vesicles by Self-assembly in Double Emulsions

    NASA Astrophysics Data System (ADS)

    Cheung Shum, Ho; Kim, Jinwoong; Lee, Daeyeon; Weitz, David

    2008-03-01

    Vesicles are compartments surrounded by bilayered membranes of amphiphilic molecules such as diblock copolymers and phospholipids. To minimize the exposure of their hydrophobic part to water, amphiphilic molecules self-assemble into aggregates of different structures. When the hydrophobic to hydrophilic ratio is close to unity, amphiphiles self assemble into bilayers, which tend to fold themselves into vesicles. These vesicles are useful for encapsulating and transporting actives such as drugs, flavor, and fragrance. To solve the problems of low encapsulation efficiency and large vesicle size distributions afforded by traditional techniques to create vesicles, we engineer a novel route to generate vesicles using monodisperse double emulsions prepared in microfluidics as templates. The double emulsion-to-vesicle transition exhibits different behaviors depending on the properties of the amphiphilic molecules such as the hydrophobic-to-hydrophilic ratio. Using this technique, we have fabricated both bio-compatible diblock copolymer vesicles, also known as polymersomes, and also lipid vesicles with high encapsulation efficiency.

  3. pH-Sensitive micelles self-assembled from amphiphilic copolymer brush for delivery of poorly water-soluble drugs.

    PubMed

    Yang, You Qiang; Zheng, Ling Shan; Guo, Xin Dong; Qian, Yu; Zhang, Li Juan

    2011-01-10

    A novel pH-sensitive amphiphilic copolymer brush poly(methyl methacrylate-co-methacrylic acid)-b-poly(poly(ethylene glycol) methyl ether monomethacrylate) [P(MMA-co-MAA)-b-PPEGMA] was defined and synthesized by atom transfer radical polymerization (ATRP) technique. The molecular structures and characteristics of this copolymer and its precursors were confirmed by (1)H NMR, FT-IR, and GPC. The CMC of P(MMA-co-MAA)-b-PPEGMA in aqueous medium was determined to be 1-4 mg/L. This copolymer could self-assemble into micelles in aqueous solution with an average size of 120-250 nm determined by DLS. The morphologies of the micelles were found to be spherical by SEM and TEM. Ibuprofen (IBU), a poorly water-soluble drug, was selected as the model drug and wrapped into the core of micelles via dialysis method. Drug entrapment efficiency reached to 90%. The in vitro release behavior of IBU from these micelles was pH-dependent. The cumulative release percent of IBU was less than 20% of the initial drug content in simulated gastric fluid (SGF, pH 1.2) over 12 h, but 90% was released in simulated intestinal fluid (SIF, pH 7.4) within 6 h. The release profiles showed that the P(MMA-co-MAA)-b-PPEGMA micelles could inhibit the premature burst drug release under the intestinal conditions. All the results indicate that the P(MMA-co-MAA)-b-PPEGMA micelle may be a potential oral drug delivery carrier for poorly water-soluble drugs. PMID:21121600

  4. Self-assembled polymersomes formed by symmetric, asymmetric and side-chain-tethered coil-rod-coil triblock copolymers.

    PubMed

    Lin, Yung-Lung; Chang, Hung-Yu; Sheng, Yu-Jane; Tsao, Heng-Kwong

    2014-03-21

    Self-assembly behaviors of coil-rod-coil copolymers in selective solvents are explored by dissipative particle dynamics. The morphological phase diagram as a function of rod length and coil length shows five distinct types of aggregates, including spherical micelles, worm-like micelles, disk-like aggregates, honeycomb structures, and polymersomes. Small polymersomes are formed at rather poor alignment associated with monolayered rod domains. Some of the rods are even lying perpendicular to the radial direction. For symmetric copolymers (CmRxCm), the condition of vesicle formation is restricted to short coil and rod lengths. To favor the formation of CRC-polymersomes, two architecture modifications are adopted. One is to increase the coil length asymmetrically to be CmRxCn, where n > m. The other one is to tether a T-block onto the middle of the rod-block as Cm(RxTy)Cm copolymers. For those CRC-polymersomes, structural, transport, and mechanical properties of the vesicular membrane are determined, including membrane thickness, area density of coil blocks, order parameter, solvent permeability, frequency of flip-flop, membrane tension, and stretching and bending moduli. The influences of the coil length (n) and tethered block length (y) on membrane properties are examined. Finally, the mechanism of membrane fusion between CRC-polymersomes is investigated. The fusion process involves four stages and in the contact region the rods lying perpendicular to the radial direction of the polymersome play the key role. The encounter of two vesicles may result in a fused, hemifused, or non-fused polymersome. The final fate is determined by the competition between membrane tension and the steric barrier of the coil corona. The fusion outcome may change if the tension is altered by manipulating the lumen pressure.

  5. Self-assembled polymersomes formed by symmetric, asymmetric and side-chain-tethered coil-rod-coil triblock copolymers.

    PubMed

    Lin, Yung-Lung; Chang, Hung-Yu; Sheng, Yu-Jane; Tsao, Heng-Kwong

    2014-03-21

    Self-assembly behaviors of coil-rod-coil copolymers in selective solvents are explored by dissipative particle dynamics. The morphological phase diagram as a function of rod length and coil length shows five distinct types of aggregates, including spherical micelles, worm-like micelles, disk-like aggregates, honeycomb structures, and polymersomes. Small polymersomes are formed at rather poor alignment associated with monolayered rod domains. Some of the rods are even lying perpendicular to the radial direction. For symmetric copolymers (CmRxCm), the condition of vesicle formation is restricted to short coil and rod lengths. To favor the formation of CRC-polymersomes, two architecture modifications are adopted. One is to increase the coil length asymmetrically to be CmRxCn, where n > m. The other one is to tether a T-block onto the middle of the rod-block as Cm(RxTy)Cm copolymers. For those CRC-polymersomes, structural, transport, and mechanical properties of the vesicular membrane are determined, including membrane thickness, area density of coil blocks, order parameter, solvent permeability, frequency of flip-flop, membrane tension, and stretching and bending moduli. The influences of the coil length (n) and tethered block length (y) on membrane properties are examined. Finally, the mechanism of membrane fusion between CRC-polymersomes is investigated. The fusion process involves four stages and in the contact region the rods lying perpendicular to the radial direction of the polymersome play the key role. The encounter of two vesicles may result in a fused, hemifused, or non-fused polymersome. The final fate is determined by the competition between membrane tension and the steric barrier of the coil corona. The fusion outcome may change if the tension is altered by manipulating the lumen pressure. PMID:24651905

  6. Quantifying Fluctuation Effects on the Order-Disorder Transition of Symmetric Diblock Copolymers

    NASA Astrophysics Data System (ADS)

    Zong, Jing; Wang

    2012-02-01

    How fluctuations change the order-disorder transition (ODT) of symmetric diblock copolymers is a classic yet unsolved problem in polymer physics.ootnotetextL. Leibler, Macromolecules, 13, 1602 (1980); G. H. Fredrickson and E. Helfand, J. Chem. Phys., 87, 697 (1987). Here we unambiguously quantify the fluctuation effects by direct comparisons between fast off-lattice Monte Carlo (FOMC) simulationsootnotetextQ. Wang and Y. Yin, J. Chem. Phys., 130, 104903 (2009). and mean-field theory using exactly the same model system (Hamiltonian), thus without any parameter-fitting. The symmetric diblock copolymers are modeled as discrete Gaussian chains with soft, finite-range repulsions as commonly used in dissipative-particle dynamics simulations. The effects of chain discretization and finite-range interactions on ODT are properly accounted for in our mean-field theory.ootnotetextQ. Wang, J. Chem. Phys., 129, 054904 (2008); 131, 234903 (2009). Our FOMC simulations are performed in a canonical ensemble with variable box lengths to eliminate the adverse effects of fixed box sizes on ODT.ootnotetextQ. Wang et al., J. Chem. Phys., 112, 450 (2000). Furthermore, with a new order parameter for the lamellar phase, we use replica exchange and multiple histogram reweighting to accurately locate ODT in our simulations.

  7. A Small-Angle Scattering Study of the Bulk Structure of a Symmetric Diblock Copolymer System

    NASA Astrophysics Data System (ADS)

    Papadakis, Christine M.; Almdal, Kristoffer; Mortensen, Kell; Posselt, Dorthe

    1997-12-01

    The bulk structure of a homologous series of symmetric polystyrene-polybutadiene (SB) diblock copolymers is investigated using small-angle X-ray and neutron scattering (SANS). The study focuses on the lamellar thickness, the lamellar correlation length and the concentration profile as a function of the chain length and the preparation method applied. The characteristic length, D, scales with the chain length, N, in the whole range studied, but with a clear change in scaling exponent near χ N = 29, in accordance with theoretical predictions of a crossover from an Intermediate-Segregation Regime (ISR) to the Strong-Segregation Limit (SSL). In the ISR (χ N simeq 5-29), D is found to scale like D propto N^{0.83} and in the SSL (χ N > 29) like D propto N^{0.61} . The temperature dependence of the SANS spectra is studied for a low molar mass sample in an interval around the order-disorder transition temperature (TODT). The peak position is found to vary more strongly with temperature than expected for Gaussian chains. Only a weak discontinuity of the peak position at TODT is observed. In summary, the phase behavior of symmetric SB diblock copolymers in the bulk spans three regimes: the Gaussian regime in the region χ N < 5, the ISR for 5 < χ N < 29 and the SSL for χ N > 29.

  8. Microphase separation patterns in diblock copolymers on curved surfaces using a nonlocal Cahn-Hilliard equation.

    PubMed

    Jeong, Darae; Kim, Junseok

    2015-11-01

    We investigate microphase separation patterns on curved surfaces in three-dimensional space by numerically solving a nonlocal Cahn-Hilliard equation for diblock copolymers. In our model, a curved surface is implicitly represented as the zero level set of a signed distance function. We employ a discrete narrow band grid that neighbors the curved surface. Using the closest point method, we apply a pseudo-Neumann boundary at the boundary of the computational domain. The boundary treatment allows us to replace the Laplace-Beltrami operator by the standard Laplacian operator. In particular, we can apply standard finite difference schemes in order to approximate the nonlocal Cahn-Hilliard equation in the discrete narrow band domain. We employ a type of unconditionally stable scheme, which was introduced by Eyre, and use the Jacobi iterative to solve the resulting implicit discrete system of equations. In addition, we use the minimum number of grid points for the discrete narrow band domain. Therefore, the algorithm is simple and fast. Numerous computational experiments are provided to study microphase separation patterns for diblock copolymers on curved surfaces in three-dimensional space. PMID:26577816

  9. Structure and phase behaviour of diblock copolymer monolayers investigated by means of Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Słyk, Edyta; Rżysko, Wojciech; Bryk, Paweł

    2015-10-01

    We use grand canonical Monte Carlo simulation paired with multiple histogram reweighting, hyperparallel tempering and finite size scaling to investigate the structure and phase behaviour of monolayers of diblock copolymers. The chain molecules are arranged on the square lattice and we consider both fully flexible and rod-coil polymer models. In contrast to the majority of previous studies we assume that the interactions between the segments belonging to one of the two subunits are weaker than the remaining segment-segment interactions. We find that when the diblock copolymer is fully flexible, this choice of the interactions leads to a suppression of the ordered phase, and the phase behaviour is analogous to that of the fully flexible homopolymer model. However, when one of the subunits is rigid, we observe the formation of a novel hairpin chessboard ordered structure with fully stretched chains bent in the middle. The topology of the phase diagram depends on the chain length. For shorter chains the global phase diagram features a critical point and a triple point. For longer chains the gas—disordered liquid phase transition is suppressed and only the order-disorder transition remains stable. The resulting phase diagram is of the swan neck type.

  10. Structure and phase behaviour of diblock copolymer monolayers investigated by means of Monte Carlo simulation.

    PubMed

    Słyk, Edyta; Rżysko, Wojciech; Bryk, Paweł

    2015-10-21

    We use grand canonical Monte Carlo simulation paired with multiple histogram reweighting, hyperparallel tempering and finite size scaling to investigate the structure and phase behaviour of monolayers of diblock copolymers. The chain molecules are arranged on the square lattice and we consider both fully flexible and rod-coil polymer models. In contrast to the majority of previous studies we assume that the interactions between the segments belonging to one of the two subunits are weaker than the remaining segment-segment interactions. We find that when the diblock copolymer is fully flexible, this choice of the interactions leads to a suppression of the ordered phase, and the phase behaviour is analogous to that of the fully flexible homopolymer model. However, when one of the subunits is rigid, we observe the formation of a novel hairpin chessboard ordered structure with fully stretched chains bent in the middle. The topology of the phase diagram depends on the chain length. For shorter chains the global phase diagram features a critical point and a triple point. For longer chains the gas-disordered liquid phase transition is suppressed and only the order-disorder transition remains stable. The resulting phase diagram is of the swan neck type. PMID:26414501

  11. Congruent Lamellar-to-Disorder Phase Transitions in Diblock Copolymer-Homopolymer Ternary Blends

    NASA Astrophysics Data System (ADS)

    Hickey, Robert; Gillard, Timothy; Irwin, Matthew; Lodge, Timothy; Bates, Frank

    Symmetric ternary blends of AB diblock copolymers and the corresponding A and B homopolymers are predicted to be characterized by a multicritical Lifshitz point within mean-field theory. Previous studies have shown that fluctuations destroy the predicted Lifshitz point and lead to a bicontinuous microemulsion (B μE) channel, which separates the lamellar and 2-phase regions in the ternary phase prism. Here, we establish the existence of a line of congruent first-order lamellar-to-disorder transitions when appropriate amounts of poly(cyclohexylethylene) (C) and poly(ethylene) (E) homopolymers are mixed with the corresponding symmetric CE diblock copolymer. We present complimentary optical transmission, small-angle X-ray scattering, transmission electron microscopy (TEM), and rheological results obtained using two experimental protocols: (1) fixing the CE volume fraction and varying the C/E ratio, and (2) setting the C/E ratio at the condition of congruency and varying CE volume fraction from 0 to 1. These results establish a quantitative and facile method for identifying the detailed phase behavior in the vicinity of the B μE, and provide fresh insight into the nature of such mixtures near the nominal Lifshitz conditions. Surprisingly, well-ordered lamellae are revealed by TEM at compositions within 1% of the B μE channel, suggesting a remarkably close approach to the predicted, mean-field unbinding transition. Moreover, the width of the B μE narrows to about 1% under congruent conditions.

  12. Stable gene transfection mediated by polysulfobetaine/PDMAEMA diblock copolymer in salted medium.

    PubMed

    Dai, Fengying; Liu, Yuan; Wang, Wei; Liu, Wenguang

    2013-01-01

    Cationic polyplexes would aggregate immediately after intravenous injection due to the plasma proteins and high ionic strength. A cationic polyplexes with long-term and salt stability was very important for a systemic gene therapy. In this research, a polysulfobetaine-b-polycation diblock copolymer composed of cationic block of poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) and zwtterionic block of poly(propylsulfonate dimethylammonium ethylmethacrylate) (PSPE) was conveniently synthesized by atom transfer radical polymerization method to obtain a cationic polymers with long-term and salt stability. The results of agarose gel electrophoresis and transmission electron microscope indicated that copolymerization of PSPE did not compromise the DNA condensation ability of PDMAEMA, meanwhile exhibiting lower cytotoxicity. The effect of salt on the absorbance and particle size of PDMAEMA100/DNA and PDMAEMA100-PSPEy/DNA complexes was investigated, which showed that PSPE block could increase the resistance of polyplexes against salt-induced aggregation owing to the antielectrolyte effect. In comparison with PDMAEMA homopolymer, PDMAEMA100-PSPEy retained more stable gene transfection in a certain range of salt concentration. The expression of red fluorescence protein (RFP) was evaluated by small animal in vivo fluorescence imaging system and the results showed that the expression of RFP was much higher in the mice injected with PDMAEMA100-PSPE20/pDNA-RFP than with PDMAEMA/pDNA-RFP. Both in vitro and in vivo results suggested that PDMAEMA-PSPE diblock copolymer may be potentially used as a vector for systemic gene therapy. PMID:23565651

  13. New glycosylated conjugate copolymer N-acetyl-β-D-glucosaminyl-pluronic: Synthesis, self-assembly and biological assays.

    PubMed

    Frizon, Tiago Elias Allievi; Micheletto, Yasmine Miguel Serafini; Westrup, José Luiz; Wakabayashi, Priscila Sayoko Silva; Serafim, Francieli Rocha; Damiani, Adriani Paganini; Longaretti, Luiza Martins; de Andrade, Vanessa Moraes; Giacomelli, Fernando Carlos; Fort, Sébastien; Dal Bó, Alexandre Gonçalves

    2015-09-01

    This work describes the synthesis of a new glycosylated conjugate copolymer, GlcNAc-PEO75-PPO30-PEO75-GlcNAc (GlcNAc-PluronicF68-GlcNAc), using click chemistry from Pluronic(®) F68 and propargyl-2-N-acetamido-2-deoxy-β-D-glucopyranoside. Micelles were prepared by the self-assembly of GlcNAc-PluronicF68-GlcNAc in phosphate-buffered solution. The critical micelle concentration was determined by fluorescence spectroscopy, and the value was found to be equal to 5.8mgmL(-1). The Gibbs free energy (ΔG) of micellization is negative, indicating that the organization of amphiphiles is governed by the hydrophobic effects in an entropy-driven process. The scattering characterization of GlcNAc-PluronicF68-GlcNAc micelles showed a hydrodynamic radius of 8.7nm and negative zeta potential (-21.0±0.9mV). The TEM image evidences the spherical shape of the objects self-assemble into highly regular micelles having a mean diameter of 10nm. The SAXS profile confirmed the spherical shape of the assemblies comprising a swollen PPO core (Rcore=2.25nm) stabilized by PEO chains following Gaussian statistics. The results of the comet assay showed that the GlcNAc-PluronicF68-GlcNAc micelles were not genotoxic, and the cell viability test was higher than 97% for all concentrations, demonstrating that GlcNAc-PluronicF68-GlcNAc is not toxic. PMID:26123853

  14. Tissue anti-adhesion potential of ibuprofen-loaded PLLA-PEG diblock copolymer films.

    PubMed

    Lee, Jin Ho; Go, Ae Kyung; Oh, Se Heang; Lee, Ka Eul; Yuk, Soon Hong

    2005-02-01

    This study was designed to evaluate the effect of polyethylene glycol (PEG) and nonsteroidal anti-inflammatory drug (ibuprofen) on the prevention of postsurgical tissue adhesion. For this, poly(L-lactic acid) (PLLA)-PEG diblock copolymers were synthesized by ring opening polymerization of L-lactide and methoxy polyethylene glycol (Mw 5000) of different compositions. The synthesized copolymers were characterized by gel permeation chromatography and 1H-nuclear magnetic resonance spectroscopy. PLLA-PEG copolymer films were prepared by solvent casting. The prepared copolymer films were more flexible and hydrophilic than the control PLLA film, as investigated by the measurements of glass transition temperature, water absorption content, and water contact angle. The drug release behavior from the ibuprofen (10 wt%)-loaded copolymer films was examined by high performance liquid chromatography. It was observed that the drug was released gradually up to about 40% of total loading amount after 20 days, depending on PEG composition; more drug release from the films with higher PEG compositions. In vitro cell adhesions on the copolymer films with/without drug were compared by the culture of NIH/3T3 mouse embryo fibroblasts on the surfaces. For in vivo evaluation of tissue anti-adhesion potential, the copolymer films with/without drug were implanted between the cecum and peritoneal wall defects of rats and their tissue adhesion extents were compared. It was observed that the ibuprofen-containing PLLA-PEG films with high PEG composition (particularly PLLA113-PEG113 film with PEG composition, 50 mol%) were very effective in preventing cell or tissue adhesion on the film surfaces, probably owing to the synergistic effects of highly mobile, hydrophilic PEG and anti-inflammatory drug, ibuprofen.

  15. Prediction of solvent-induced morphological changes of polyelectrolyte diblock copolymer micelles.

    PubMed

    Li, Nan K; Fuss, William H; Tang, Lei; Gu, Renpeng; Chilkoti, Ashutosh; Zauscher, Stefan; Yingling, Yaroslava G

    2015-11-14

    Self-assembly processes of polyelectrolyte block copolymers are ubiquitous in industrial and biological processes; understanding their physical properties can also provide insights into the design of polyelectrolyte materials with novel and tailored properties. Here, we report systematic analysis on how the ionic strength of the solvent and the length of the polyelectrolyte block affect the self-assembly and morphology of the polyelectrolyte block copolymer materials by constructing a salt-dependent morphological phase diagram using an implicit solvent ionic strength (ISIS) method for dissipative particle dynamics (DPD) simulations. This diagram permits the determination of the conditions for the morphological transition into a specific shape, namely vesicles or lamellar aggregates, wormlike/cylindrical micelles, and spherical micelles. The scaling behavior for the size of spherical micelles is predicted, in terms of radius of gyration (R(g,m)) and thickness of corona (Hcorona), as a function of solvent ionic strength (c(s)) and polyelectrolyte length (NA), which are R(g,m) ∼ c(s)(-0.06)N(A)(0.54) and Hcorona ∼ c(s)(-0.11)N(A)(0.75). The simulation results were corroborated through AFM and static light scattering measurements on the example of the self-assembly of monodisperse, single-stranded DNA block-copolynucleotides (polyT50-b-F-dUTP). Overall, we were able to predict the salt-responsive morphology of polyelectrolyte materials in aqueous solution and show that a spherical-cylindrical-lamellar change in morphology can be obtained through an increase in solvent ionic strength or a decrease of polyelectrolyte length. PMID:26315065

  16. Self-assembled block copolymer-nanoparticle hybrids: interplay between enthalpy and entropy.

    PubMed

    Sarkar, Biswajit; Alexandridis, Paschalis

    2012-11-13

    The dispersion of nanoparticles in ordered block copolymer nanostructures can provide control over particle location and orientation, and pave the way for engineered nanomaterials that have enhanced mechanical, electrical, or optical properties. Fundamental questions pertaining to the role of enthalpic and entropic particle-polymer interactions remain open and motivate the present work. We consider here a system of 10.6 nm silica nanoparticles (NPs) dispersed in ordered cylinders formed by hydrated poly(ethylene oxide)-poly(propylene oxide) block copolymers (Pluronic P105: EO(37)PO(56)EO(37)). Protonation of silica was used to vary the NP-polymer enthalpic interactions, while polar organic solvents (glycerol, DMSO, ethanol, and DMF) were used to modulate the NP-polymer entropic interactions. The introduction of deprotonated NPs in the place of an equal mass of water did not affect the lattice parameter of the PEO-PPO-PEO block copolymer hexagonal lyotropic liquid crystalline structures. However, the dispersion of protonated NPs led to an increase in the lattice parameter, which was attributed to stronger NP-polymer hydrogen bonding (enthalpic) interactions. Dispersion of protonated NPs into cylindrical structures formed by Pluronic P105 in 80/20 water/organic solvents does not influence the lattice parameter, different from the case of protonated NP in plain water. Organic solvents appear to screen the NP-polymer hydrogen bonding interactions.

  17. Lyotropic Phase Behavior of Polybutadiene-Poly(ethylene oxide) Diblock Copolymers in Ionic Liquids

    SciTech Connect

    Simone, Peter M.; Lodge, Timothy P.

    2008-08-26

    The lyotropic phase behavior of three poly(1,2-butadiene-b-ethylene oxide) diblock copolymers (PB-PEO) with different monomer volume fractions has been studied in two different ionic liquids, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMI][TFSI]) and 1-butyl-3-methylimidazolium hexafluorophosphate ([BMI][PF{sub 6}]), across the complete concentration range. The ordered microstructures present in the solutions were characterized via small-angle X-ray scattering (SAXS). The phase diagrams for the PB-PEO/ionic liquid solutions include regions corresponding to the classical copolymer microstructures: body-centered-cubic lattices of spheres, hexagonally ordered cylinders, and lamellae. Additionally, the phase diagrams also include wide regions of coexisting microstructures and regions apparently corresponding to a disordered network microstructure. The phase behavior of the PB-PEO copolymers in both ionic liquids was comparable to their previously reported aqueous solution behavior. The temperature dependence of the phase diagrams was very modest, indicative of a highly segregated system. The level of solvent selectivity was also investigated via cryogenic transmission electron microscopy (cryo-TEM) on dilute solutions. On the basis of the morphology of the dilute solution copolymer aggregate structures in the ionic liquid solvents, and on the structural length scales of the concentrated solutions, it was concluded that for PB-PEO [BMI][PF{sub 6}] behaves as a more selective solvent than [EMI][TFSI].

  18. Mimicking bone nanostructure by combining block copolymer self-assembly and 1D crystal nucleation.

    PubMed

    Chen, Xi; Wang, Wenda; Cheng, Shan; Dong, Bin; Li, Christopher Y

    2013-09-24

    The orientation and spatial distribution of nanocrystals in the organic matrix are two distinctive structural characteristics associated with natural bone. Synthetic soft materials have been used to successfully control the orientation of mineral crystals. The spatial distribution of minerals in a synthetic scaffold, however, has yet to be reproduced in a biomimetic manner. Herein, we report using block copolymer-decorated polymer nanofibers to achieve biomineralized fibrils with precise control of both mineral crystal orientation and spatial distribution. Exquisite nanoscale structural control in biomimetic hybrid materials has been demonstrated.

  19. Process-directed self-assembly of multiblock copolymers: Solvent casting vs spray coating

    NASA Astrophysics Data System (ADS)

    Tang, Q.; Tang, J.; Müller, M.

    2016-07-01

    Using computer simulation of a soft, coarse-grained model and self-consistent field theory we investigate how collapsed, globular chain conformations in the initial stages of structure formation, which are produced by spray-coating, affect the single-chain structure and morphology of microphase-separated multiblock copolymers. Comparing spray-coated films with films that start from a disordered state of Gaussian chains, we observe that the collapsed molecular conformations in the initial stage give rise to (1) a smaller fraction of blocks that straddle domains (bridges), (2) a significant reduction of the molecular extension normal to the internal interfaces, and (3) a slightly larger lamellar domain spacing in the final morphology. The relaxation of molecular conformations towards equilibrium is very protracted for both processes - solvent casting and spray coating. These findings illustrate that the process conditions of the copolymer materials may significantly affect materials properties (such as mechanical properties) because the system does not reach thermal equilibrium on the relevant time scales.

  20. Intermolecular interactions and solvent diffusion in ordered nanostructures formed by self-assembly of block copolymers

    NASA Astrophysics Data System (ADS)

    Gu, Zhiyong

    Hydrogels formed by Poloxamer poly(ethylene oxide)-poly(propylene oxide) (PEO-PPO) block copolymers find various pharmaceutical and biomedical applications. A variety of ordered structures can be exhibited by Poloxamer block copolymers in selective solvents such as water, for example, micellar cubic phase, hexagonal phase, lamellar phase, etc. We are interested in the thermodynamic and transport properties of water in such hydrogels that have an ordered (lyotropic liquid crystalline) structure. We have investigated the time evolution of water loss from Poloxamer gel films under a driving force of known water vapor pressure in the air in contact with the film. The experimental data on the drying process have been fitted to the diffusion equation for water in the film, under a boundary condition that includes the water concentration in the gel at infinite time; the water diffusion coefficient and other parameters have thus been obtained. The water chemical potential and osmotic pressure in the gel have been obtained from osmotic stress measurements. The osmotic pressure (force), together with data on the corresponding lyotropic liquid crystal spacing (distance) that we obtained from Small Angle X-Ray Scattering (SAXS) measurements, have been analyzed to provide information on the prevailing intermolecular (inter-assembly) forces in the gel. The forces in the gel reveal interactions that occur at two levels, that of the PEO coil and that of the PEO segment.

  1. Synergistic templated self-assembly of cellulose nanocrystals in thin block copolymer films

    NASA Astrophysics Data System (ADS)

    Grolman, Danielle; Gilman, Jeffrey; Davis, Chelsea; Karim, Alamgir

    2015-03-01

    Nanofillers in thin polymer films offer unique advantage to potentially modify the film's thermal, optical, electrical and mechanical properties due to the high surface area to volume ratio and intrinsic property change at the nanoscale. Nanofilled polymer films have been shown to exhibit unusual film stability to dewetting with a nonmonotonic behavior with nanofiller loading, potentially arising from factors such as competitive phase behavior and filler aggregation, particularly in the high nanofiller concentration limit. In this regard, block copolymer films can act as ideal nanoscale structured templates to selectively sequester and organize nanofillers. In conjunction with incorporated cellulose nanocrystals (CNCs), we seek to understand how individual anisotropic nanofillers can provide synergistic reinforcement to inherently anisotropic nanostructured block copolymer films. A clear enhancement in the Young's Modulus was observed with increased CNC loading using strain-induced elastic buckling instability for mechanical measurements (SIEBIMM) for thin films. To this end, we examine the nanoscale to microscale morphology of the blend film through AFM, TEM and grazing incidence small-angle x-ray scattering (GISAXS), and CNC dispersion and percolation through high-intensity grazing incidence wide-angle x-ray scattering (GIWAXS) analysis.

  2. Self-assembled micelles of novel amphiphilic copolymer cholesterol-coupled F68 containing cabazitaxel as a drug delivery system.

    PubMed

    Song, Yanzhi; Tian, Qingjing; Huang, Zhenjun; Fan, Di; She, Zhennan; Liu, Xinrong; Cheng, Xiaobo; Yu, Bin; Deng, Yihui

    2014-01-01

    Despite being one of the most promising amphiphilic block copolymers, use of Pluronic F68 in drug delivery is limited due to its high critical micelle concentration (CMC). In this study, we developed a novel F68 derivative, cholesterol-coupled F68 (F68-CHMC). This new derivative has a CMC of 10 μg/mL, which is 400-fold lower than that of F68. The drug-loading capacity of F68-CHMC was investigated by encapsulating cabazitaxel, a novel antitumor drug. Drug-loaded micelles were fabricated by a self-assembly method with simple dilution. The optimum particle size of the micelles was 17.5±2.1 nm, with an entrapment efficiency of 98.1% and a drug loading efficiency of 3.16%. In vitro release studies demonstrated that cabazitaxel-loaded F68-CHMC micelles had delayed and sustained-release properties. A cytotoxicity assay of S180 cells showed that blank F68-CHMC was noncytotoxic with a cell viability of nearly 100%, even at a concentration of 1,000 μg/mL. The IC50 revealed that cabazitaxel-loaded F68-CHMC micelles were more cytotoxic than Tween 80-based cabazitaxel solution and free cabazitaxel. In vivo antitumor activity against S180 cells also indicated better tumor inhibition by the micelles (79.2%) than by Tween 80 solution (56.2%, P<0.05). Based on these results, we conclude that the F68-CHMC copolymer may be a potential nanocarrier to improve the solubility and biological activity of cabazitaxel and other hydrophobic drugs.

  3. Model photo-responsive elastomers based on the self-assembly of side group liquid crystal triblock copolymers (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Kurji, Zuleikha; Kornfield, Julia A.; Kuzyk, Mark G.

    2015-10-01

    We report the synthesis of azobenzene-containing coil-liquid crystal-coil triblock copolymers that form uniform and highly reproducible elastomers by self-assembly. To serve as actuators to (non-invasively) steer a fiber optic, for example in deep brain stimulation, the polymers are designed to become monodomain "single liquid crystal" elastomers during the fiber-draw process and to have a large stress/strain response to stimulation with either light or heat. A fundamental scientific question that we seek to answer is how the interplay between the concentration of photoresponsive mesogens and the proximity to the nematic-isotropic transition governs the sensitivity of the material to stimuli. Specifically, a matched pair of polymers, one with ~5% azobenzene-containing side groups (~95% cyanobiphenyl side groups) and the other with 100% cyanobiphenyl side groups were synthesized from identical triblock pre-polymers (with polystyerene end blocks and 1,2-polybutadiene midblocks). These can be blended in various ratios to prepare a series of elastomers that are precisely matched in terms of the backbone length between physical crosslinks (because each polymer is derived from the same pre-polymer), while differing in % azobenzene side groups, allowing the effect of concentration of photoresponsive groups to be unambiguously determined.

  4. Self assembly of amphiphilic (PEG)(3)-PLA copolymer as polymersomes: preparation, characterization, and their evaluation as drug carrier.

    PubMed

    Jain, Jay Prakash; Kumar, Neeraj

    2010-04-12

    (PEG)(3)-PLA copolymer has been explored for the formation of polymersomes. For this, three chains of methoxy-PEG(1100) were directly attached to citric acid by esterification. (Methoxy-PEG(1100))(3)-citrate was then reacted at its hydroxyl terminal with different moles of d,l-lactide by ring-opening polymerization to obtain polymers with five different PEG-to-PLA ratios ranging from 10:90 to 90:10. Polymers were characterized by GPC, FTIR, (1)H NMR, and DSC, films were characterized for hydrophilicity by contact angle, and surface topography was observed by SEM and AFM. All five polymers were evaluated for the formation of polymersomes. Among these, polymers with PEG content of 10-30% were able to self-assemble into polymersomes. To affirm their self-arrangement and drug carrier properties, hydrophilic and hydrophobic dyes were simultaneously encapsulated in these structures. SEM and TEM analysis of the blank polymersomes confirmed the vesicular nature of the polymersomes, whereas CLSM analysis of dye-loaded polymersomes demonstrated the presence of two separate regions viz. hydrophilic core and hydrophobic wall. Hydrophobic dye, fluorescein was released relatively faster from the wall of polymersomes, whereas hydrophilic dye, propidium iodide, was released in controlled fashion up to 18 days. It is expected that these systems may serve as a suitable carrier for simultaneous or separate delivery of drug molecules with varying physicochemical properties.

  5. Co-delivery of drugs and DNA from cationic core-shell nanoparticles self-assembled from a biodegradable copolymer

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Gao, Shujun; Ye, Wen-Hui; Yoon, Ho Sup; Yang, Yi-Yan

    2006-10-01

    Non-viral gene-delivery systems are safer to use and easier to produce than viral vectors, but their comparatively low transfection efficiency has limited their applications. Co-delivery of drugs and DNA has been proposed to enhance gene expression or to achieve the synergistic/combined effect of drug and gene therapies. Attempts have been made to deliver drugs and DNA simultaneously using liposomes. Here we report cationic core-shell nanoparticles that were self-assembled from a biodegradable amphiphilic copolymer. These nanoparticles offer advantages over liposomes, as they are easier to fabricate, and are more readily subject to modulation of their size and degree of positive charge. More importantly, they achieve high gene-transfection efficiency and the possibility of co-delivering drugs and genes to the same cells. Enhanced gene transfection with the co-delivery of paclitaxel has been demonstrated by in vitro and in vivo studies. In particular, the co-delivery of paclitaxel with an interleukin-12-encoded plasmid using these nanoparticles suppressed cancer growth more efficiently than the delivery of either paclitaxel or the plasmid in a 4T1 mouse breast cancer model. Moreover, the co-delivery of paclitaxel with Bcl-2-targeted small interfering RNA (siRNA) increased cytotoxicity in MDA-MB-231 human breast cancer cells.

  6. Investigation of cross-linking poly(methyl methacrylate) as a guiding material in block copolymer directed self-assembly

    NASA Astrophysics Data System (ADS)

    Seidel, Robert; Rincon Delgadillo, Paulina; Ramirez-Hernandez, Abelardo; Wu, Hengpeng; Her, Youngjun; Yin, Jian; Nealey, Paul; de Pablo, Juan; Gronheid, Roel

    2014-03-01

    Directed self-assembly (DDSA) of block copolymers ((BCP) is attracting a growing amount of interest as a techhnique to expand traditional lithography beyond its current limits. It has reecently been demonstrated that chemoepitaxy can be used to successfully ddirect BCP assembly to form large arrays off high-density features. The imec DSA LiNe flow uses lithography and trim-etch to produce a "prepattern" of cross-linked polystyrene (PS) stripes, which in turn guide the formation of assembled BCPP structures. Thhe entire process is predicated on the preferential interaction of the respective BCP domains with particular regionss of the underlying prepattern. The use of polystyrene as the guiding material is not uniquely required, however, and in fact may not even be preferable. This study investigates an alternate chemistry -- crosslinked poly(methyl methacrylate), X-PMMA, -- as the underlying polymer mat, providing a route to higher auto-affinity and therefore a stronger guiding ability. In addition to tthe advantages of the chemistry under investigation, this study explores the broader theme of extending BCP DSA to other materials.

  7. Solid-State Structure and Crystallization in Double-Crystalline Diblock Copolymers of Linear Polyethylene and Hydrogenated Polynorbornene

    SciTech Connect

    Li, Sheng; Myers, Sasha B.; Register, Richard A.

    2012-10-10

    Double-crystalline diblock copolymers of linear polyethylene (LPE) and hydrogenated polynorbornene (hPN) are synthesized, and their crystallization behavior and morphology are examined using small-angle (SAXS) and wide-angle X-ray scattering (WAXS). In symmetric hPN/LPE diblocks with molecular weights above 50 kg/mol, the hPN block has previously been shown to crystallize first and set the solid-state microstructure. Two-dimensional WAXS on hand-drawn fiber specimens reveals that the LPE crystals formed in confinement stack orthogonally to the hPN crystals. By adjusting total molecular weight, the order of block crystallization may be reversed, even while holding the block length ratio fixed. At a diblock molecular weight of 20 kg/mol, simultaneous time-resolved SAXS/WAXS reveals that the LPE block crystallizes first, even when LPE is the minority component, and restricts hPN to crystallize between the LPE lamellae. The relative orientation of the LPE and hPN crystals in the lower molecular weight diblocks is examined by modeling changes in the SAXS primary peak intensity on cooling two diblocks through the hPN crystal-crystal transition, where hPN densifies as it adopts a rotationally ordered crystal structure. Only a perpendicular stacking of hPN and LPE crystals consistently yields the large reduction in primary SAXS peak intensity observed for both diblocks. Thus, even though the templating block switches from hPN to LPE as the diblock molecular weight is reduced, the orthogonal stacking motif is retained for both high- and low-molecular-weight copolymers.

  8. Structure-Property Relationships in CO2-philic (Co)polymers: Phase Behavior, Self-Assembly, and Stabilization of Water/CO2 Emulsions.

    PubMed

    Girard, Etienne; Tassaing, Thierry; Marty, Jean-Daniel; Destarac, Mathias

    2016-04-13

    This Review provides comprehensive guidelines for the design of CO2-philic copolymers through an exhaustive and precise coverage of factors governing the solubility of different classes of polymers. Starting from computational calculations describing the interactions of CO2 with various functionalities, we describe the phase behavior in sc-CO2 of the main families of polymers reported in literature. The self-assembly of amphiphilic copolymers of controlled architecture in supercritical carbon dioxide and their use as stabilizers for water/carbon dioxide emulsions then are covered. The relationships between the structure of such materials and their behavior in solutions and at interfaces are systematically underlined throughout these sections.

  9. Protonation-induced microphase separation in thin films of a polyelectrolyte-hydrophilic diblock copolymer

    NASA Astrophysics Data System (ADS)

    Stewart-Sloan, Charlotte; Olsen, Bradley

    2014-03-01

    Materials with easily and controllably tuneable morphologies are of interest for many applications where the relevant properties depend upon the microstructure. Here, we present a novel double hydrophilic diblock copolymer whose solid state morphology is responsive to protonation. It contains one block which is neutral and hydrophilic at all values of pH, poly(oligoethylene glycol methyl ether methacrylate) (POEGMA), and one block which is neutral and hydrophobic above its pKa but positively charged and hydrophilic when protonated, poly(2-vinylpyridine) (P2 VP). This material is disordered when cast from acid-free solutions but displays increasing segregation between the two blocks with increasing protonation of the pyridine groups. The protonation-induced microphase separation is shown to be due to ionomer-like effects and not to the selective solubilzation of ions in one of the blocks. Order-disorder transitions occur between 1:0.28 and 1:0.55 pyridine group:acid content for thin films of a 50kg/mol POEGMA-30kg/mol P2VP diblock and between 1:0.8 and 1:0.9 pyridine group:acid content for thin films of a 43kg/mol POEGMA-13kg/mol P2VP diblock. The latter also displays an order-order transition between spheres and in-plane cylinders between 1:1 and 1:1.1 pyridine group:acid loading. These films can be annealed in aqueous as well as polar organic solvents, allowing for both traditional polymer processing and environmentally friendly water-based casting and annealing.

  10. Protonation-Induced Microphase Separation in Thin Films of a Polyelectrolyte-Hydrophilic Diblock Copolymer.

    PubMed

    Stewart-Sloan, Charlotte R; Olsen, Bradley D

    2014-05-20

    Block copolymers composed of poly(oligo ethylene glycol methyl ether methacrylate) and poly(2-vinylpyridine) are disordered in the neat state but can be induced to order by protonation of the P2VP block, demonstrating a tunable and responsive method for triggering assembly in thin films. Comparison of protonation with the addition of salts shows that microphase separation is due to selective protonation of the P2VP block. Increasing acid incorporation and increasing 2-vinylpyridine content for P2VP minority copolymers both promote increasingly phase-separated morphologies, consistent with protonation increasing the effective strength of segregation between the two blocks. The self-assembled nanostructures formed after casting from acidic solutions may be tuned based on the amount and type of acid incorporation as well as the annealing treatment applied after casting, where both aqueous and polar organic solvents are shown to be effective. Therefore, POEGMA-b-P2VP is a novel ion-containing block copolymer whose morphologies can be facilely tuned during casting and processing by controlling its exposure to acid. PMID:24910809

  11. Protonation-Induced Microphase Separation in Thin Films of a Polyelectrolyte-Hydrophilic Diblock Copolymer

    PubMed Central

    2015-01-01

    Block copolymers composed of poly(oligo ethylene glycol methyl ether methacrylate) and poly(2-vinylpyridine) are disordered in the neat state but can be induced to order by protonation of the P2VP block, demonstrating a tunable and responsive method for triggering assembly in thin films. Comparison of protonation with the addition of salts shows that microphase separation is due to selective protonation of the P2VP block. Increasing acid incorporation and increasing 2-vinylpyridine content for P2VP minority copolymers both promote increasingly phase-separated morphologies, consistent with protonation increasing the effective strength of segregation between the two blocks. The self-assembled nanostructures formed after casting from acidic solutions may be tuned based on the amount and type of acid incorporation as well as the annealing treatment applied after casting, where both aqueous and polar organic solvents are shown to be effective. Therefore, POEGMA-b-P2VP is a novel ion-containing block copolymer whose morphologies can be facilely tuned during casting and processing by controlling its exposure to acid. PMID:24910809

  12. Chiral selection of single helix formed by diblock copolymers confined in nanopores.

    PubMed

    Deng, Hanlin; Qiang, Yicheng; Zhang, Tingting; Li, Weihua; Yang, Tao

    2016-09-21

    Chiral selection has attracted tremendous attention from the scientific communities, especially from biologists, due to the mysterious origin of homochirality in life. The self-assembly of achiral block copolymers confined in nanopores offers a simple but useful model of forming helical structures, where the helical structures possess random chirality selection, i.e. equal probability of left-handedness and right-handedness. Based on this model, we study the stimulus-response of chiral selection to external conditions by introducing a designed chiral pattern onto the inner surface of a nanopore, aiming to obtain a defect-free helix with controllable homochirality. A cell dynamics simulation based on the time-dependent Ginzburg-Landau theory is carried out to demonstrate the tuning effect of the patterned surface on the chiral selection. Our results illustrate that the chirality of the helix can be successfully controlled to be consistent with that of the tailored surface patterns. This work provides a successful example for the stimulus response of the chiral selection of self-assembled morphologies from achiral macromolecules to external conditions, and hence sheds light on the understanding of the mechanism of the stimulus response. PMID:27536966

  13. Self-assembled pentablock copolymers for selective and sustained gene delivery

    SciTech Connect

    Zhang, Bingqi

    2011-05-15

    The poly(diethylaminoethyl methacrylate) (PDEAEM) - Pluronic F127 - PDEAEM pentablock copolymer (PB) gene delivery vector system has been found to possess an inherent selectivity in transfecting cancer cells over non-cancer cells in vitro, without attaching any targeting ligands. In order to understand the mechanism of this selective transfection, three possible intracellular barriers to transfection were investigated in both cancer and non-cancer cells. We concluded that escape from the endocytic pathway served as the primary intracellular barrier for PB-mediated transfection. Most likely, PB vectors were entrapped and rendered non-functional in acidic lysosomes of non-cancer cells, but survived in less acidic lysosomes of cancer cells. The work highlights the importance of identifying intracellular barriers for different gene delivery systems and provides a new paradigm for designing targeting vectors based on intracellular differences between cell types, rather than through the use of targeting ligands. The PB vector was further developed to simultaneously deliver anticancer drugs and genes, which showed a synergistic effect demonstrated by significantly enhanced gene expression in vitro. Due to the thermosensitive gelation behavior, the PB vector packaging both drug and gene was also investigated for its in vitro sustained release properties by using polyethylene glycol diacrylate as a barrier gel to mimic the tumor matrix in vivo. Overall, this work resulted in the development of a gene delivery vector for sustained and selective gene delivery to tumor cells for cancer therapy.

  14. Self-assembly of a series of random copolymers bearing amphiphilic side chains.

    PubMed

    Wu, Xu; Qiao, Yingjie; Yang, Hui; Wang, Jinben

    2010-09-15

    A novel series of comb-like random copolymers were prepared by polymerization of amphiphilic macromonomers, 2-(acrylamido)-octane sulfonic acid (AMC(8)S), 2-(acrylamido)-dodecane sulfonic acid (AMC(12)S), and 2-(acrylamido)-hexadecane sulfonic acid (AMC(16)S), with 2-(acrylamido)-2-methylpropanesulfonic acid (AMPS) respectively. The synthesis of the polymers with the same contents of amphiphilic units as side chains, but different chain length, enabled us to study the chain length dependence of their association in salt solution. Steady-state fluorescence measurements with pyrene as a polarity probe, quasielastic light scattering techniques (QELS) and transmission electron micrograph (TEM) were employed to investigate the associative properties of the system. The above investigations showed that all kinds of side chains begin to assemble at certain polymer concentrations and the critical aggregation concentration (CAC) decrease dramatically with the increase in the length and content of alkyl. An interesting phenomenon is that the assembly tends more favorably to occur among different molecules rather than within single molecule when the number of carbon atoms in the alkyl groups or the polymer concentration increases, leading to the formation of larger multimolecular micelle-like aggregate. The aim of the present work is to establish the fundamental preconditions of intramolecular and intermolecular association fashions for the polymers, which is useful for the exploitation of functional groups and contributes to the development of amphiphilic random polymers. PMID:20576273

  15. Self-assembled pentablock copolymers for selective and sustained gene delivery

    NASA Astrophysics Data System (ADS)

    Zhang, Bingqi

    The poly(diethylaminoethyl methacrylate) (PDEAEM) - Pluronic F127 - PDEAEM pentablock copolymer (PB) gene delivery vector system has been found to possess an inherent selectivity in transfecting cancer cells over non-cancer cells in vitro, without attaching any targeting ligands. In order to understand the mechanism of this selective transfection, three possible intracellular barriers to transfection were investigated in both cancer and non-cancer cells. We concluded that escape from the endocytic pathway served as the primary intracellular barrier for PB-mediated transfection. Most likely, PB vectors were entrapped and rendered non-functional in acidic lysosomes of non-cancer cells, but survived in less acidic lysosomes of cancer cells. The work highlights the importance of identifying intracellular barriers for different gene delivery systems and provides a new paradigm for designing targeting vectors based on intracellular differences between cell types, rather than through the use of targeting ligands. The PB vector was further developed to simultaneously deliver anticancer drugs and genes, which showed a synergistic effect demonstrated by significantly enhanced gene expression in vitro. Due to the thermosensitive gelation behavior, the PB vector packaging both drug and gene was also investigated for its in vitro sustained release properties by using polyethylene glycol diacrylate as a barrier gel to mimic the tumor matrix in vivo . Overall, this work resulted in the development of a gene delivery vector for sustained and selective gene delivery to tumor cells for cancer therapy.

  16. Amphiphilic, cross-linkable diblock copolymers for multifunctionalized nanoparticles as biological probes

    NASA Astrophysics Data System (ADS)

    Schmidtke, Christian; Pöselt, Elmar; Ostermann, Johannes; Pietsch, Andrea; Kloust, Hauke; Tran, Huong; Schotten, Theo; Bastús, Neus G.; Eggers, Robin; Weller, Horst

    2013-07-01

    Nanoparticles (NPs) play an increasingly important role in biological labeling and imaging applications. However, preserving their useful properties in an aqueous biological environment remains challenging, even more as NPs therein have to be long-time stable, biocompatible and nontoxic. For in vivo applications, size control is crucial in order to route excretion pathways, e.g. renal clearance vs. hepato-biliary accumulation. Equally necessary, cellular and tissue specific targeting demands suitable linker chemistry for surface functionalization with affinity molecules, like peptides, proteins, carbohydrates and nucleotides. Herein, we report a three stage encapsulation process for NPs comprised of (1) a partial ligand exchange by a multidentate polyolefinic amine ligand, PI-N3, (2) micellar encapsulation with a precisely tuned amphiphilic diblock PI-b-PEG copolymer, in which the PI chains intercalate to the PI-N3 prepolymer and (3) radical cross-linking of the adjacent alkenyl bonds. As a result, water-soluble NPs were obtained, which virtually maintained their primal physical properties and were exceptionally stable in biological media. PEG-terminal functionalization of the diblock PI-b-PEG copolymer with numerous functional groups was mostly straightforward by chain termination of the living anionic polymerization (LAP) with the respective reagents. More complex affinity ligands, e.g. carbohydrates or biotin, were introduced in a two-step process, prior to micellar encapsulation. Advantageously, this pre-assembly approach opens up rapid access to precisely tuned multifunctional NPs, just by using mixtures of diverse functional PI-b-PEG polymers in a combinatorial manner. All constructs showed no toxicity from 0.001 to 1 μM (particle concentration) in standard WST and LDH assays on A549 cells, as well as only marginal unspecific cellular uptake, even in serum-free medium.Nanoparticles (NPs) play an increasingly important role in biological labeling and imaging

  17. Anisotropic Lithium Ion Conductivity in Single-Ion Diblock Copolymer Electrolyte Thin Films.

    PubMed

    Aissou, Karim; Mumtaz, Muhammad; Usluer, Özlem; Pécastaings, Gilles; Portale, Giuseppe; Fleury, Guillaume; Cloutet, Eric; Hadziioannou, Georges

    2016-02-01

    Well-defined single-ion diblock copolymers consisting of a Li-ion conductive poly(styrenesulfonyllithium(trifluoromethylsulfonyl)imide) (PSLiTFSI) block associated with a glassy polystyrene (PS) block have been synthesized via reversible addition fragmentation chain transfer polymerization. Conductivity anisotropy ratio up to 1000 has been achieved from PS-b-PSLiTFSI thin films by comparing Li-ion conductivities of out-of-plane (aligned) and in-plane (antialigned) cylinder morphologies at 40 °C. Blending of PS-b-PSLiTFSI thin films with poly(ethylene oxide) homopolymer (hPEO) enables a substantial improvement of Li-ion transport within aligned cylindrical domains, since hPEO, preferentially located in PSLiTFSI domains, is an excellent lithium-solvating material. Results are also compared with unblended and blended PSLiTFSI homopolymer (hPSLiTFSI) homologues, which reveals that ionic conductivity is improved when thin films are nanostructured.

  18. Phase diagram of rod-coil diblock copolymer melts by self-consistent field theory

    NASA Astrophysics Data System (ADS)

    Yan, Dadong; Tang, Jiuzhou; Jiang, Ying; Zhang, Xinghua; Chen, Jeff

    A unified phase diagram is presented for rod-coil diblock copolymer melts in the isotropic phase regime as a function of the asymmetric parameter. The study is based on free-energy calculation, which incorporates three-dimensional spatial variations of the volume fraction with angular dependence. The wormlike-chain model is used in a self-consistent field treatment. Body-centered cubic, A15, hexagonal, gyroid, and lamellar structures where the rod segments are packed inside the convex rod-coil interface are found stable. As the conformational asymmetric parameter increases, the A15 phase region expands and the gyroid phase region reduces. The stability of the structures is analyzed by concepts such as packing frustration, spinodal limit, and interfacial curvature.

  19. Surface Engineering of Cellulose Nanofiber by Adsorption of Diblock Copolymer Dispersant for Green Nanocomposite Materials.

    PubMed

    Sakakibara, Keita; Yano, Hiroyuki; Tsujii, Yoshinobu

    2016-09-21

    An effective approach for the dispersion of hydrophilic cellulose nanofiber (CNF) in hydrophobic high-density polyethylene (HDPE) is presented using adsorption of a diblock copolymer dispersant. The dispersant consists of both resin compatible poly(lauryl methacrylate) (PLMA) and cellulose interactive poly(2-hydroxyethyl methacrylate) blocks. The PLMA-adsorbed CNFs are characterized by FT-IR and contact angle measurement, revealing successful hydrophobization. X-ray CT imaging shows there are apparently less CNF aggregates in the nanocomposites if adding amount of the dispersant was enough. The good dispersion results in a high mechanical reinforcement, corresponding to 140% higher Young's modulus and 84% higher tensile strength than the neat HDPE. This approach is broadly applicable and allows for easy manufacturing process for strong and lightweight CNF-reinforced nanocomposite materials. PMID:27559606

  20. Crystallization in diblock copolymer thin films at different degrees of supercooling.

    PubMed

    Darko, C; Botiz, I; Reiter, G; Breiby, D W; Andreasen, J W; Roth, S V; Smilgies, D-M; Metwalli, E; Papadakis, C M

    2009-04-01

    The crystalline structures in thin films of polystyrene-b-poly(ethylene oxide) (PS-b-PEO) diblock copolymers were studied in dependence on the degree of supercooling. Atomic force microscopy showed that the crystalline domains (lamellae) consist of grains, which are macroscopic at low and intermediate degrees of supercooling, but of submicrometer size for strong supercooling. Using grazing-incidence wide-angle x-ray scattering, we could determine the grain orientation distribution function which shows that the chain stems are perpendicular to the lamellae at low supercooling, but tilted at intermediate and strong supercooling. These results suggest that, at intermediate and strong supercooling, the crystalline PEO lamellae do not grow homogeneously, but by the formation of small crystallites at the growth front.

  1. Effects of polydispersity on the order-disorder transition of diblock copolymer melts

    NASA Astrophysics Data System (ADS)

    Beardsley, Tom; Matsen, Mark

    2009-03-01

    The effect of polydispersity on an AB diblock copolymer melt is investigated using lattice based Monte Carlo simulations with parallel tempering (PT) techniques. We consider melts where the B blocks are monodisperse and the A blocks are polydisperse with a Schultz-Zimm distribution. Expanding our previous work on polydisperse melts of symmetric composition, we now construct a polydisperse phase diagram, investigating the size of the domains and locations of the order-disorder (ODT) and order-order (OOT) transitions. The PT method has yielded a number of benefits over single-processor temperature scans, including: simulating a number of temperatures simultaneously, annealing out defects in the configurations more readily and capturing the distinctive spike in the heat capacity that occurs at the ODT, allowing the location of the transition to be determined more accurately than in previous studies. The results are compared to those of experiment and to the predictions of self-consistent field theory (SCFT).

  2. A Quantitative Study of Tethered Chains in Various Solution Conditions Using Langmuir Diblock Copolymer Monolayers

    SciTech Connect

    Kent, Michael S.

    1999-08-13

    This article summarizes our investigations of tethered chain systems using Langmuir monolayer of polydimethysiloxane-poly styrene (PDMS-PS) diblock copolymers on organic liquids. In this system, the PDMS block adsorbs to the air surface while the PS block dangles into the subphase liquid. The air surface can be made either repulsive or attractive for the tethered PS chain segments by choosing a subphase liquid which has a surface tension lower or greater than that of PS, respectively. The segment profile of the PS block is determined by neutron reflection as a function of the surface density, the molecular weights of the PS and PDMS blocks, and the solution conditions. We cover the range of reduced surface density (SIGMA) characteristic of the large body of data in the literature for systems of chains tethered onto solid surfaces from dilute solution in good or theta solvent conditions (SIGMA < 12). We emphasize quantitative comparisons with analytical profile forms and scaling predictions. We find that the strong-stretching limit invoked in analytical SCF and scaling theories is not valid over this Z range. On the other hand, over a large portion of this range (SIGMA < 5) tethered layers are well described by a renormalization group theory addressing weakly interacting or noninteracting chains. Simultaneous with the study of the profile form, the free energy of the chains is examined through the surface tension. A strong increase in the surface pressure is observed with increasing surface density which determines the maximum surface density which can be achieved. This apparently nonequilibrium effect is attributed to steric interactions and limited lateral interpenetration. This effect may explain several outstanding discrepancies regarding the adsorption of end-functionalized chains and diblock copolymers onto solid surfaces.

  3. Lyotropic Phase Behavior of Poly(ethylene oxide)-Poly(butadiene) Diblock Copolymers: Evolution of the Random Network Morphology

    SciTech Connect

    Jain, Sumeet; Dyrdahl, Mitchell H.E.; Gong, Xiaobo; Scriven, L.E.; Bates, Frank S.

    2008-10-24

    The phase behavior of poly(ethylene oxide)-poly(butadiene) (PEO-PB) diblock copolymers mixed with water was studied using small-angle X-ray scattering (SAXS), cryogenic scanning electron microscopy (cryo-SEM), cryogenic transmission electron microscopy (cryo-TEM), and dynamic mechanical spectroscopy. Two sets of diblocks were synthesized by adding different lengths of PEO to hydroxy terminated PB with degrees of polymerization N{sub PB} = 46 and 170. Two-component mixtures were investigated as a function of block composition and copolymer molecular weight, between 1 and 100 wt % polymer content. Melt phase behavior is consistent with established theory and known experimental behavior for diblock copolymers. Various lyotropic liquid crystalline structures, notably lamellae (L), hexagonally packed cylinders (H), and spheres (S) arranged on cubic (body-centered cubic, face-centered cubic) lattices, were documented as a function of water content. At the higher molecular weights (N{sub PB} = 170), a random network phase (N) was identified over a sizable portion of the phase portrait, located between hexagonally ordered cylinders and ordered lamellae. This new structure, along with branching of cylindrical micelles in the dilute limit, bear a striking similarity to experimentally observed and theoretically predicted phase behavior in certain ternary water/oil/surfactant systems. These findings demonstrate that block copolymer surfactants are characterized by at least four structural building blocks -- spheres, cylinders, bilayers, and branched cylinders -- above a threshold molecular weight.

  4. Nanoparticle self-assembly in mixtures of phospholipids with styrene/maleic acid copolymers or fluorinated surfactants

    NASA Astrophysics Data System (ADS)

    Vargas, Carolyn; Arenas, Rodrigo Cuevas; Frotscher, Erik; Keller, Sandro

    2015-12-01

    Self-assembling nanostructures in aqueous mixtures of bilayer-forming lipids and micelle-forming surfactants are relevant to in vitro studies on biological and synthetic membranes and membrane proteins. Considerable efforts are currently underway to replace conventional detergents by milder alternatives such as styrene/maleic acid (SMA) copolymers and fluorinated surfactants. However, these compounds and their nanosized assemblies remain poorly understood as regards their interactions with lipid membranes, particularly, the thermodynamics of membrane partitioning and solubilisation. Using 19F and 31P nuclear magnetic resonance spectroscopy, static and dynamic light scattering, and isothermal titration calorimetry, we have systematically investigated the aggregational state of a zwitterionic bilayer-forming phospholipid upon exposure to an SMA polymer with a styrene/maleic acid ratio of 3 : 1 or to a fluorinated octyl phosphocholine derivative called F6OPC. The lipid interactions of SMA(3 : 1) and F6OPC can be thermodynamically conceptualised within the framework of a three-stage model that treats bilayer vesicles, discoidal or micellar nanostructures, and the aqueous solution as distinct pseudophases. The exceptional solubilising power of SMA(3 : 1) is reflected in very low membrane-saturating and solubilising polymer/lipid molar ratios of 0.10 and 0.15, respectively. Although F6OPC saturates bilayers at an even lower molar ratio of 0.031, this nondetergent does not solubilise lipids even at >1000-fold molar excess, thus highlighting fundamental differences between these two types of mild membrane-mimetic systems. We rationalise these findings in terms of a new classification of surfactants based on bilayer-to-micelle transfer free energies and discuss practical implications for membrane-protein research.Self-assembling nanostructures in aqueous mixtures of bilayer-forming lipids and micelle-forming surfactants are relevant to in vitro studies on biological and

  5. Organic-inorganic random copolymers from methacrylate-terminated poly(ethylene oxide) with 3-methacryloxypropylheptaphenyl polyhedral oligomeric silsesquioxane: synthesis via RAFT polymerization and self-assembly behavior.

    PubMed

    Wei, Kun; Li, Lei; Zheng, Sixun; Wang, Ge; Liang, Qi

    2014-01-14

    In this contribution, we report the synthesis of organic-inorganic random polymers from methacrylate-terminated poly(ethylene oxide) (MAPEO) (Mn = 950) and 3-methacryloxypropylheptaphenyl polyhedral oligomeric silsesquioxane (MAPOSS) macromers via reversible addition-fragmentation chain transfer (RAFT) polymerization with 4-cyano-4-(thiobenzoylthio) valeric acid (CTBTVA) as the chain transfer agent. The organic-inorganic random copolymers were characterized by means of (1)H NMR spectroscopy, gel permeation chromatography (GPC) and differential scanning calorimetry (DSC). The results of GPC indicate that the polymerizations were carried out in a controlled fashion. Transmission electron microscopy (TEM) showed that the organic-inorganic random copolymers in bulk were microphase-separated and the POSS microdomains were formed via POSS-POSS interactions. In aqueous solutions the organic-inorganic random copolymers were capable of self-assembling into spherical nanoobjects as evidenced by transmission electron microscopy (TEM) and dynamic laser scattering (DLS). The self-assembly behavior of the organic-inorganic random copolymers was also found to occur in the mixtures with the precursors of epoxy. The nanostructures were further fixed via subsequent curing reaction and thus the organic-inorganic nanocomposites were obtained. The formation of nanophases in epoxy thermosets was confirmed by transmission electron microscopy (TEM) and dynamic mechanical thermal analysis (DMTA). The organic-inorganic nanocomposites displayed the enhanced surface hydrophobicity as evidenced by surface contact angle measurements.

  6. Highly Tunable Complementary Micro/Submicro-Nanopatterned Surfaces Combining Block Copolymer Self-Assembly and Colloidal Lithography.

    PubMed

    Chang, Tongxin; Du, Binyang; Huang, Haiying; He, Tianbai

    2016-08-31

    Two kinds of large-area ordered and highly tunable micro/submicro-nanopatterned surfaces in a complementary manner were successfully fabricated by elaborately combining block copolymer self-assembly and colloidal lithography. Employing a monolayer of polystyrene (PS) colloidal spheres assembled on top as etching mask, polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) or polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) micelle films were patterned into micro/submicro patches by plasma etching, which could be further transferred into micropatterned metal nanoarrays by subsequent metal precursor loading and a second plasma etching. On the other hand, micro/submicro-nanopatterns in a complementary manner were generated via preloading a metal precursor in initial micelle films before the assembly of PS colloidal spheres on top. Both kinds of micro/submicro-nanopatterns showed good fidelity at the micro/submicroscale and nanoscale; meanwhile, they could be flexibly tuned by the sample and processing parameters. Significantly, when the PS colloidal sphere size was reduced to 250 nm, a high-resolution submicro-nanostructured surface with 3-5 metal nanoparticles in each patch or a single-nanoparticle interconnected honeycomb network was achieved. Moreover, by applying gold (Au) nanoparticles as anchoring points, micronanopatterned Au arrays can serve as a flexible template to pattern bovine serum albumin (BSA) molecules. This facile and cost-effective approach may provide a novel platform for fabrication of micropatterned nanoarrays with high tunability and controllability, which are promising in the applications of biological and microelectronic fields. PMID:27509255

  7. Modulating the self-assembly of amphiphilic X-shaped block copolymers with cyclodextrins: structure and mechanisms.

    PubMed

    González-Gaitano, Gustavo; Müller, Céline; Radulescu, Aurel; Dreiss, Cécile A

    2015-04-14

    Inclusion complexes between cyclodextrins and polymers-so-called pseudopolyrotaxanes (PPR)-are at the origin of fascinating supramolecular structures, which are finding increasing uses in biomedical and technological fields. Here we explore the impact of both native and a range of modified cyclodextrins (CD) on the self-assembly of X-shaped poly(ethylene oxide)-poly(propylene oxide) block copolymers, so-called Tetronics or poloxamines, by focusing on Tetronic 904 (T904, Mw 6700). The effects are markedly dependent on the type and arrangement of the substituents on the macrocycle. While native CDs drive the formation of a solid PPR, most substituted CDs induce micellar breakup, with dimethylated β-CD (DIMEB) having the strongest impact and randomly substituted CDs a much weaker disruptive effect. Using native α-CD as a "molecular trap", we perform competitive binding experiments-where two types of CDs thread together onto the polymer chains-to establish that DIMEB indeed has the highest propensity to form an inclusion complex with the polymer, while hydroxypropylated CDs do not thread. 1D (1)H NMR and ROESY experiments confirm the formation of a soluble PPR with DIMEB in which the CD binds preferentially to the PO units, thus providing the drive for the observed demicellization. A combination of dynamic light scattering (DLS) and small-angle neutron scattering (SANS) is used to extract detailed structural parameters on the micelles. A binding model is proposed, which exploits the chemical shifts of selected protons from the CD in conjunction with the Hill equation, to prove that the formation of the PPR is a negatively cooperative process, in which threaded DIMEBs hamper the entrance of subsequent macrocycles.

  8. Sub-10nm lines and spaces patterning using grapho-epitaxial directed self-assembly of lamellar block copolymers

    NASA Astrophysics Data System (ADS)

    Seino, Yuriko; Sato, Hironobu; Kasahara, Yusuke; Minegishi, Shinya; Miyagi, Ken; Kubota, Hitoshi; Kanai, Hideki; Kodera, Katsuyoshi; Shiraishi, Masayuki; Kihara, Naoko; Kawamonzen, Yoshiaki; Tobana, Toshikatsu; Kobayashi, Katsutoshi; Yamano, Hitoshi; Azuma, Tsukasa; Nomura, Satoshi

    2016-04-01

    Our target at EIDEC is to study the feasibility of directed self-assembly (DSA) technology for semiconductor device manufacturing through electrical yield verification by development of such as process, material, metrology, simulation and design for DSA. We previously developed a grapho/chemo-hybrid coordinated line epitaxial process for sub-15-nm line-and-space (L/S) patterning using polystyrene-block-poly(methyl methacrylate) lamellar block copolymers (BCPs)1- 3. Electrical yield verification results showed that a 30% open yield was successfully achieved with a metal wire line length of 700 μm 4. In the next stage of the evaluation, a sub-10-nm L/S DSA patterning process based on graphoepitaxial DSA of 20-nm lamellar period organic BCPs was developed based on neutral layer and guide space width optimization. At a 30-nm guide height, problems such as BCP overflow and DSA line shorts were observed after the dry development. At a 60-nm guide height, grid-like short defects were observed under dry development shallow etch conditions and sub-10-nm L/S patterns were formed under optimized etch conditions with a suitable BCP film thickness margin. The process performance was evaluated in terms of defects and critical dimension measurements using an electron beam inspection system and critical dimension-scanning electron microscope metrology. The main DSA defects were short defects, and the spatial roughness appeared to be caused by the periodic pitches of these short defects and the guide roughness. We successfully demonstrated the fabrication of sub-10-nm metal wires consists of L/S, pad, connect and cut patterns with controlled alignment and stack structure through lithography, etching and CMP process on a 300- mm wafer using the fully integrated DSA process and damascene processing.

  9. Modulating the self-assembly of amphiphilic X-shaped block copolymers with cyclodextrins: structure and mechanisms.

    PubMed

    González-Gaitano, Gustavo; Müller, Céline; Radulescu, Aurel; Dreiss, Cécile A

    2015-04-14

    Inclusion complexes between cyclodextrins and polymers-so-called pseudopolyrotaxanes (PPR)-are at the origin of fascinating supramolecular structures, which are finding increasing uses in biomedical and technological fields. Here we explore the impact of both native and a range of modified cyclodextrins (CD) on the self-assembly of X-shaped poly(ethylene oxide)-poly(propylene oxide) block copolymers, so-called Tetronics or poloxamines, by focusing on Tetronic 904 (T904, Mw 6700). The effects are markedly dependent on the type and arrangement of the substituents on the macrocycle. While native CDs drive the formation of a solid PPR, most substituted CDs induce micellar breakup, with dimethylated β-CD (DIMEB) having the strongest impact and randomly substituted CDs a much weaker disruptive effect. Using native α-CD as a "molecular trap", we perform competitive binding experiments-where two types of CDs thread together onto the polymer chains-to establish that DIMEB indeed has the highest propensity to form an inclusion complex with the polymer, while hydroxypropylated CDs do not thread. 1D (1)H NMR and ROESY experiments confirm the formation of a soluble PPR with DIMEB in which the CD binds preferentially to the PO units, thus providing the drive for the observed demicellization. A combination of dynamic light scattering (DLS) and small-angle neutron scattering (SANS) is used to extract detailed structural parameters on the micelles. A binding model is proposed, which exploits the chemical shifts of selected protons from the CD in conjunction with the Hill equation, to prove that the formation of the PPR is a negatively cooperative process, in which threaded DIMEBs hamper the entrance of subsequent macrocycles. PMID:25785814

  10. Nanoparticle self-assembly in mixtures of phospholipids with styrene/maleic acid copolymers or fluorinated surfactants.

    PubMed

    Vargas, Carolyn; Arenas, Rodrigo Cuevas; Frotscher, Erik; Keller, Sandro

    2015-12-28

    Self-assembling nanostructures in aqueous mixtures of bilayer-forming lipids and micelle-forming surfactants are relevant to in vitro studies on biological and synthetic membranes and membrane proteins. Considerable efforts are currently underway to replace conventional detergents by milder alternatives such as styrene/maleic acid (SMA) copolymers and fluorinated surfactants. However, these compounds and their nanosized assemblies remain poorly understood as regards their interactions with lipid membranes, particularly, the thermodynamics of membrane partitioning and solubilisation. Using (19)F and (31)P nuclear magnetic resonance spectroscopy, static and dynamic light scattering, and isothermal titration calorimetry, we have systematically investigated the aggregational state of a zwitterionic bilayer-forming phospholipid upon exposure to an SMA polymer with a styrene/maleic acid ratio of 3 : 1 or to a fluorinated octyl phosphocholine derivative called F(6)OPC. The lipid interactions of SMA(3 : 1) and F(6)OPC can be thermodynamically conceptualised within the framework of a three-stage model that treats bilayer vesicles, discoidal or micellar nanostructures, and the aqueous solution as distinct pseudophases. The exceptional solubilising power of SMA(3 : 1) is reflected in very low membrane-saturating and solubilising polymer/lipid molar ratios of 0.10 and 0.15, respectively. Although F(6)OPC saturates bilayers at an even lower molar ratio of 0.031, this nondetergent does not solubilise lipids even at >1000-fold molar excess, thus highlighting fundamental differences between these two types of mild membrane-mimetic systems. We rationalise these findings in terms of a new classification of surfactants based on bilayer-to-micelle transfer free energies and discuss practical implications for membrane-protein research.

  11. Nanoparticle self-assembly in mixtures of phospholipids with styrene/maleic acid copolymers or fluorinated surfactants.

    PubMed

    Vargas, Carolyn; Arenas, Rodrigo Cuevas; Frotscher, Erik; Keller, Sandro

    2015-12-28

    Self-assembling nanostructures in aqueous mixtures of bilayer-forming lipids and micelle-forming surfactants are relevant to in vitro studies on biological and synthetic membranes and membrane proteins. Considerable efforts are currently underway to replace conventional detergents by milder alternatives such as styrene/maleic acid (SMA) copolymers and fluorinated surfactants. However, these compounds and their nanosized assemblies remain poorly understood as regards their interactions with lipid membranes, particularly, the thermodynamics of membrane partitioning and solubilisation. Using (19)F and (31)P nuclear magnetic resonance spectroscopy, static and dynamic light scattering, and isothermal titration calorimetry, we have systematically investigated the aggregational state of a zwitterionic bilayer-forming phospholipid upon exposure to an SMA polymer with a styrene/maleic acid ratio of 3 : 1 or to a fluorinated octyl phosphocholine derivative called F(6)OPC. The lipid interactions of SMA(3 : 1) and F(6)OPC can be thermodynamically conceptualised within the framework of a three-stage model that treats bilayer vesicles, discoidal or micellar nanostructures, and the aqueous solution as distinct pseudophases. The exceptional solubilising power of SMA(3 : 1) is reflected in very low membrane-saturating and solubilising polymer/lipid molar ratios of 0.10 and 0.15, respectively. Although F(6)OPC saturates bilayers at an even lower molar ratio of 0.031, this nondetergent does not solubilise lipids even at >1000-fold molar excess, thus highlighting fundamental differences between these two types of mild membrane-mimetic systems. We rationalise these findings in terms of a new classification of surfactants based on bilayer-to-micelle transfer free energies and discuss practical implications for membrane-protein research. PMID:26599076

  12. Directed Assembly of Lamellae Forming Block Copolymer Thin Films near the Order-Disorder Transition

    SciTech Connect

    Kim, Sangwon; Nealey, Paul F.; Bates, Frank S.

    2014-08-07

    The impact of thin film confinement on the ordering of lamellae was investigated using symmetric poly(styrene-b-[isoprene-ran-epoxyisoprene]) diblock copolymers bound by nonpreferential wetting interfaces. The order–disorder transition temperature (TODT) and the occurrence of composition fluctuations in the disordered state are not significantly affected by two-dimensional confinement. Directed self-assembly using chemical patterning is demonstrated near TODT. These results establish the minimum feature size attainable using directed self-assembly of a given diblock copolymer system.

  13. Structural development of gold and silver nanoparticles within hexagonally ordered spherical micellar diblock copolymer thin films.

    PubMed

    Chen, Chia-Min; Huang, Yi-Jiun; Wei, Kung-Hwa

    2014-06-01

    The spatial arrangement of metal nanoparticle (NP) arrays in block copolymers has many potential applications in OFET-type memory devices. In this study, we adopted a trapping approach in which we used a monolayer thin film of polystyrene-block-poly(4-vinylpyridine) (PS56k-b-P4VP8k)-a highly asymmetric diblock copolymer having a spherical micelle morphology-to incorporate various amounts of one-phase-synthesized dodecanethiol-passivated silver (DT-Ag) NPs and a fixed amount of ligand-exchanged pyridine-coated gold (Py-Au) NPs into the polystyrene (PS) and poly(4-vinylpyridine) (P4VP) blocks, respectively. We characterized the packing of these metal NPs in the two blocks of the nanostructured diblock copolymer using reciprocal-space synchrotron grazing incidence small-angle X-ray scattering (GISAXS) as well as atomic force microscopy (AFM) and transmission electron microscopy (TEM) in the real space. The packing of the Ag NPs in the PS block was dependent on their content, which we tuned by varying the concentrations in the composite solution at a constant rate of spin-coating. The two-dimensional hierarchical arrangement of Ag and Au NPs within the BCP thin films was enhanced after addition of the Py-Au NPs into the P4VP block and after spin-coating a thinner film from a low concentration solution (0.1 wt%), due to the DT-Ag NPs accumulating around the Py-Au/P4VP cores; this two-dimensional hierarchical arrangement decreased at a critical DT-Ag NP weight ratio (c) of 0.8 when incorporating the Py-Au NPs into the P4VP domains through spin-coating at higher solution concentration (0.5 wt%), where the DT-Ag NPs realigned by rotating 20° along the z axis in the real space, due to oversaturation of the DT-Ag NPs within the PS domains.

  14. Structural Evolution of Low-Molecular-Weight Poly(ethylene oxide)-block-polystyrene Diblock Copolymer Thin Film

    PubMed Central

    Huang, Xiaohua

    2013-01-01

    The structural evolution of low-molecular-weight poly(ethylene oxide)-block-polystyrene (PEO-b-PS) diblock copolymer thin film with various initial film thicknesses on silicon substrate under thermal annealing was investigated by atomic force microscopy, optical microscopy, and contact angle measurement. At film thickness below half of the interlamellar spacing of the diblock copolymer (6.2 nm), the entire silicon is covered by a polymer brush with PEO blocks anchored on the Si substrate due to the substrate-induced effect. When the film is thicker than 6.2 nm, a dense polymer brush which is equal to half of an interlamellar layer was formed on the silicon, while the excess material dewet this layer to form droplets. The droplet surface was rich with PS block and the PEO block crystallized inside the bigger droplet to form spherulite. PMID:24302862

  15. The self-assembly of copolymers with one hydrophobic and one polyelectrolyte block in aqueous media: a dissipative particle dynamics study.

    PubMed

    Lísal, Martin; Limpouchová, Zuzana; Procházka, Karel

    2016-06-28

    The reversible self-assembly of symmetrical block copolymers consisting of one hydrophobic block and one ionizable polyelectrolyte block of the same length has been studied in aqueous solutions by dissipative particle dynamics simulations. In addition to three standard dissipative particle dynamics forces (conservative soft repulsion, dissipative and stochastic forces), explicit interaction between smeared charges on ions and on ionized polymer beads described by the electrostatic potential with appropriately localized charges was taken into account. The self-assembly and properties of formed core-shell micelles were investigated as functions of the degree of ionization for systems differing in the hydrophobicity of the non-ionized polyelectrolyte block and in the compatibility of the polymer blocks. This study shows that micelles undergo massive dissociation with increasing degree of ionization. The simulation data compare well with the predictions of scaling theories for systems with soluble polyelectrolytes on a semi-quantitative level and broaden the knowledge of systems in poor solvents. PMID:27254381

  16. The self-assembly of copolymers with one hydrophobic and one polyelectrolyte block in aqueous media: a dissipative particle dynamics study.

    PubMed

    Lísal, Martin; Limpouchová, Zuzana; Procházka, Karel

    2016-06-28

    The reversible self-assembly of symmetrical block copolymers consisting of one hydrophobic block and one ionizable polyelectrolyte block of the same length has been studied in aqueous solutions by dissipative particle dynamics simulations. In addition to three standard dissipative particle dynamics forces (conservative soft repulsion, dissipative and stochastic forces), explicit interaction between smeared charges on ions and on ionized polymer beads described by the electrostatic potential with appropriately localized charges was taken into account. The self-assembly and properties of formed core-shell micelles were investigated as functions of the degree of ionization for systems differing in the hydrophobicity of the non-ionized polyelectrolyte block and in the compatibility of the polymer blocks. This study shows that micelles undergo massive dissociation with increasing degree of ionization. The simulation data compare well with the predictions of scaling theories for systems with soluble polyelectrolytes on a semi-quantitative level and broaden the knowledge of systems in poor solvents.

  17. Influence of composition fluctuations on the linear viscoelastic properties of symmetric diblock copolymers near the order-disorder transition

    SciTech Connect

    Hickey, Robert J.; Gillard, Timothy M.; Lodge, Timothy P.; Bates, Frank S.

    2015-08-28

    Rheological evidence of composition fluctuations in disordered diblock copolymers near the order disorder transition (ODT) has been documented in the literature over the past three decades, characterized by a failure of time–temperature superposition (tTS) to reduce linear dynamic mechanical spectroscopy (DMS) data in the terminal viscoelastic regime to a temperature-independent form. However, for some materials, most notably poly(styrene-b-isoprene) (PS–PI), no signature of these rheological features has been found. We present small-angle X-ray scattering (SAXS) results on symmetric poly(cyclohexylethylene-b-ethylene) (PCHE–PE) diblock copolymers that confirm the presence of fluctuations in the disordered state and DMS measurements that also show no sign of the features ascribed to composition fluctuations. Assessment of DMS results published on five different diblock copolymer systems leads us to conclude that the effects of composition fluctuations can be masked by highly asymmetric block dynamics, thereby resolving a long-standing disagreement in the literature and reinforcing the importance of mechanical contrast in understanding the dynamics of ordered and disordered block polymers.

  18. Diblock copolymers of polystyrene-b-poly(1,3-cyclohexadiene) exhibiting unique three-phase microdomain morphologies

    DOE PAGESBeta

    Misichronis, Konstantinos; Chen, Jihua; Kahk, Jong K.; Imel, Adam; Dadmun, Mark; Hong, Kunlun; Hadjichristidis, Nikos; Mays, Jimmy W.; Avgeropoulos, Apostolos

    2016-03-29

    Here, the synthesis and molecular characterization of a series of conformationally asymmetric polystyrene-block-poly(1,3-cyclohexadiene) (PS-b-PCHD) diblock copolymers (PCHD: ~90% 1,4 and ~10% 1,2), by sequential anionic copolymerization high vacuum techniques, is reported. A wide range of volume fractions (0.27 ≤ ΦPS ≤ 0.91) was studied by transmission electron microscopy and small-angle X-ray scattering in order to explore in detail the microphase separation behavior of these flexible/semiflexible diblock copolymers. Unusual morphologies, consisting of PCHD core(PCHD-1,4)–shell(PCHD-1,2) cylinders in PS matrix and three-phase (PS, PCHD-1,4, PCHD-1,2) four-layer lamellae, were observed suggesting that the chain stiffness of the PCHD block and the strong dependence ofmore » the interaction parameter χ on the PCHD microstructures are important factors for the formation of this unusual microphase separation behavior in PS-b-PCHD diblock copolymers. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016, 54, 1564–1572« less

  19. Micelles of a diblock copolymer of styrene and ethylene oxide in mixtures of 2,6-lutidine and water.

    PubMed

    Tuzar, Z; Kadlec, P; Stepánek, P; Kríz, J; Nallet, F; Noirez, L

    2008-12-16

    We studied the micelle formation of a diblock copolymer of styrene and ethylene oxide in mixtures of 2,6-dimethylpyridine (2,6-lutidine) and water. Micelles are formed in a broad solvent composition range with a volume fraction of water ranging from 0.05 to 0.85, where neither polystyrene nor polyethylene oxide homopolymers are soluble. The diffusion behavior of pure solvent mixtures and in solutions of copolymer micelles is reported. In LTD/water mixtures, two diffusive processes corresponding to self-difusion and two modes belonging to mutual diffusion and diffusion of solvent clusters have been found. In copolymer solutions, the mode of copolymer micelle diffusion replaces the mode of solvent cluster diffusion. Quasielastic light scattering, small-angle neutron scattering, and pulsed-field gradient NMR have been employed in our study.

  20. Self-assemblies of γ-CDs with pentablock copolymers PMA-PPO-PEO-PPO-PMA and endcapping via atom transfer radical polymerization of 2-methacryloyloxyethyl phosphorylcholine

    PubMed Central

    Lin, Jing; Kong, Tao; Ye, Lin; Zhang, Ai-ying

    2015-01-01

    Summary Pentablock copolymers PMA-PPO-PEO-PPO-PMA synthesized via atom transfer radical polymerization (ATRP) were self-assembled with varying amounts of γ-CDs to prepare poly(pseudorotaxanes) (PPRs). When the concentration of γ-CDs was lower, the central PEO segment served as a shell of the micelles and was preferentially bent to pass through the γ-CD cavity to construct double-chain-stranded tight-fit PPRs characterized by a channel-like crystal structure. With an increase in the amount of γ-CDs added, they began to accommodate the poly(methyl acrylate) (PMA) segments dissociated from the core of the micelles. When more γ-CDs were threaded and slipped over the segments, the γ-CDs were randomly distributed along the pentablock copolymer chain to generate single-chain-stranded loose-fit PPRs and showed no characteristic channel-like crystal structure. All the self-assembly processes of the pentablock copolymers resulted in the formation of hydrogels. After endcapping via in situ ATRP of 2-methacryloyloxyethyl phosphorylcholine (MPC), these single-chain-stranded loose-fit PPRs were transformed into conformational identical polyrotaxanes (PRs). The structures of the PPRs and PRs were characterized by means of 1H NMR, GPC, 13C CP/MAS NMR, 2D 1H NOESY NMR, FTIR, WXRD, TGA and DSC analyses. PMID:26732122

  1. Structural development of gold and silver nanoparticles within hexagonally ordered spherical micellar diblock copolymer thin films

    NASA Astrophysics Data System (ADS)

    Chen, Chia-Min; Huang, Yi-Jiun; Wei, Kung-Hwa

    2014-05-01

    The spatial arrangement of metal nanoparticle (NP) arrays in block copolymers has many potential applications in OFET-type memory devices. In this study, we adopted a trapping approach in which we used a monolayer thin film of polystyrene-block-poly(4-vinylpyridine) (PS56k-b-P4VP8k)--a highly asymmetric diblock copolymer having a spherical micelle morphology--to incorporate various amounts of one-phase-synthesized dodecanethiol-passivated silver (DT-Ag) NPs and a fixed amount of ligand-exchanged pyridine-coated gold (Py-Au) NPs into the polystyrene (PS) and poly(4-vinylpyridine) (P4VP) blocks, respectively. We characterized the packing of these metal NPs in the two blocks of the nanostructured diblock copolymer using reciprocal-space synchrotron grazing incidence small-angle X-ray scattering (GISAXS) as well as atomic force microscopy (AFM) and transmission electron microscopy (TEM) in the real space. The packing of the Ag NPs in the PS block was dependent on their content, which we tuned by varying the concentrations in the composite solution at a constant rate of spin-coating. The two-dimensional hierarchical arrangement of Ag and Au NPs within the BCP thin films was enhanced after addition of the Py-Au NPs into the P4VP block and after spin-coating a thinner film from a low concentration solution (0.1 wt%), due to the DT-Ag NPs accumulating around the Py-Au/P4VP cores; this two-dimensional hierarchical arrangement decreased at a critical DT-Ag NP weight ratio (c) of 0.8 when incorporating the Py-Au NPs into the P4VP domains through spin-coating at higher solution concentration (0.5 wt%), where the DT-Ag NPs realigned by rotating 20° along the z axis in the real space, due to oversaturation of the DT-Ag NPs within the PS domains.The spatial arrangement of metal nanoparticle (NP) arrays in block copolymers has many potential applications in OFET-type memory devices. In this study, we adopted a trapping approach in which we used a monolayer thin film of

  2. Self-assembled supramolecular hydrogel based on PCL-PEG-PCL triblock copolymer and γ-cyclodextrin inclusion complex for sustained delivery of dexamethasone.

    PubMed

    Khodaverdi, Elham; Gharechahi, Marzieh; Alibolandi, Mona; Tekie, Farnaz Sadat Mirzazadeh; Khashyarmanesh, Bibi Zahra; Hadizadeh, Farzin

    2016-01-01

    In this study, thermosensitive, water-soluble, and biodegradable triblock copolymer PCL600-PEG6000-PCL600 was used to form supramolecular hydrogel (SMGel) by inclusion complexation with γ-cyclodextrin (γ-CD). The prepared SMGel was investigated as a carrier for sustained release of dexamethasone. The triblock copolymer PCL-PEG-PCL [where PCL = polycaprolactone, PEG = poly(ethylene glycol)] was synthesized by the ring-opening polymerization method using microwave irradiation. The polymerization reaction and the copolymer structures were evaluated by nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC). SMGel was prepared in aqueous solution by blending an aqueous γ-CD solution with aqueous solution of PCL-PEG-PCL triblock copolymer at room temperature. The sol-to-gel transition time was measured at various concentrations of copolymer and γ-CD. As-prepared SMGel was used to prepare a sustained, controllable drug delivery system of dexamethasone sodium phosphate. The SMGel was also characterized in terms of rheological, morphological, and structural properties. Results obtained from proton nuclear magnetic resonance ( (1)H-NMR) and GPC demonstrated that microwave irradiation is a simple and reliable method for synthesis of PEG-PCL copolymer. The SMGel with excellent syringability was prepared by mixing of 20% wt γ-CD and 10% wt of copolymer within 4 s. The SMGel containing 10% wt copolymer, 20% wt γ-CD, and 0.5% or 0.1% wt dexamethasone released approximately 100% and 45% of drug over up to 23 days, respectively. It could be concluded that SMGel based on self-assembly of inclusion complexes between PCL-PEG-PCL copolymer and γ-CD could be used as a basis for injectable drug delivery systems that provide sustained and controlled release of macromolecular drugs such as dexamethasone. PMID:27051627

  3. Self-assembled supramolecular hydrogel based on PCL-PEG-PCL triblock copolymer and γ-cyclodextrin inclusion complex for sustained delivery of dexamethasone

    PubMed Central

    Khodaverdi, Elham; Gharechahi, Marzieh; Alibolandi, Mona; Tekie, Farnaz Sadat Mirzazadeh; Khashyarmanesh, Bibi Zahra; Hadizadeh, Farzin

    2016-01-01

    In this study, thermosensitive, water-soluble, and biodegradable triblock copolymer PCL600-PEG6000-PCL600 was used to form supramolecular hydrogel (SMGel) by inclusion complexation with γ-cyclodextrin (γ-CD). The prepared SMGel was investigated as a carrier for sustained release of dexamethasone. The triblock copolymer PCL-PEG-PCL [where PCL = polycaprolactone, PEG = poly(ethylene glycol)] was synthesized by the ring-opening polymerization method using microwave irradiation. The polymerization reaction and the copolymer structures were evaluated by nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC). SMGel was prepared in aqueous solution by blending an aqueous γ-CD solution with aqueous solution of PCL-PEG-PCL triblock copolymer at room temperature. The sol-to-gel transition time was measured at various concentrations of copolymer and γ-CD. As-prepared SMGel was used to prepare a sustained, controllable drug delivery system of dexamethasone sodium phosphate. The SMGel was also characterized in terms of rheological, morphological, and structural properties. Results obtained from proton nuclear magnetic resonance ( 1H-NMR) and GPC demonstrated that microwave irradiation is a simple and reliable method for synthesis of PEG-PCL copolymer. The SMGel with excellent syringability was prepared by mixing of 20% wt γ-CD and 10% wt of copolymer within 4 s. The SMGel containing 10% wt copolymer, 20% wt γ-CD, and 0.5% or 0.1% wt dexamethasone released approximately 100% and 45% of drug over up to 23 days, respectively. It could be concluded that SMGel based on self-assembly of inclusion complexes between PCL-PEG-PCL copolymer and γ-CD could be used as a basis for injectable drug delivery systems that provide sustained and controlled release of macromolecular drugs such as dexamethasone. PMID:27051627

  4. Arbitrary lattice symmetries via block copolymer nanomeshes

    PubMed Central

    Majewski, Pawel W.; Rahman, Atikur; Black, Charles T.; Yager, Kevin G.

    2015-01-01

    Self-assembly of block copolymers is a powerful motif for spontaneously forming well-defined nanostructures over macroscopic areas. Yet, the inherent energy minimization criteria of self-assembly give rise to a limited library of structures; diblock copolymers naturally form spheres on a cubic lattice, hexagonally packed cylinders and alternating lamellae. Here, we demonstrate multicomponent nanomeshes with any desired lattice symmetry. We exploit photothermal annealing to rapidly order and align block copolymer phases over macroscopic areas, combined with conversion of the self-assembled organic phase into inorganic replicas. Repeated photothermal processing independently aligns successive layers, providing full control of the size, symmetry and composition of the nanoscale unit cell. We construct a variety of symmetries, most of which are not natively formed by block copolymers, including squares, rhombuses, rectangles and triangles. In fact, we demonstrate all possible two-dimensional Bravais lattices. Finally, we elucidate the influence of nanostructure on the electrical and optical properties of nanomeshes. PMID:26100566

  5. Chemical modifications to vesicle forming diblock copolymers: Development of smart functional polymersome membranes

    NASA Astrophysics Data System (ADS)

    Katz, Joshua S.

    2011-07-01

    A major limitation to current treatment regimens for diseases is the inability to adequately deliver therapeutics. Many routes to encapsulation of these materials have been explored to improve biodistribution and better protect encapsulants from harsh biological conditions. One vehicle particularly attractive for encapsulation of such materials is the polymersome. While promising for translation to clinical use, there are still limitations in polymer chemistry and resulting polymersome behavior that will slow their adaptation. This thesis addresses several of these limitations. The first major limitation to polymersomes is lack of control over their release rate. Release is generally by simple diffusion, leading to a burst. To address this burst, Aim 1 proposes a route to stabilizing polymersome membranes through their polymerization. PCL-PEG copolymers were terminally acrylated and the acrylates polymerized in the membrane following vesicle assembly. Polymerization enhanced mechanical robustness of the membranes and reduced diffusion of encapsulated contents. To ultimately trigger release, Aim 2 presents a novel route to synthesizing diblock copolymers, enabling insertion of a functional group at the blocks' junction. To facilitate triggering of release, we inserted UV-cleavable 2-nitrophenylalanine. Polymersomes assembled from this polymer collapse upon exposure to light and molecules release. Demonstrating further utility of this synthetic route, fluorescent vesicles were prepared using fluorescent lysine as the joining molecule. These vesicles labeled dendritic cells, providing a novel route to cell labeling and tracking. The second limitation to vesicles promising for biomedical applications (made of PCL-PEG) is their solid membranes. Aim 3 demonstrates partial (or full) replacement of the PCL block with a caprolactone analogue, TOSUO, which is non-crystalline and assembles into soft, deformable vesicles. Increasing TOSUO content in the copolymer leads to

  6. Complex self-assembly of reverse poly(butylene oxide)-poly(ethylene oxide)-poly(butylene oxide) triblock copolymers with long hydrophobic and extremely lengthy hydrophilic blocks.

    PubMed

    Cambón, Adriana; Figueroa-Ochoa, Edgar; Juárez, Josué; Villar-Álvarez, Eva; Pardo, Alberto; Barbosa, Silvia; Soltero, J F Armando; Taboada, Pablo; Mosquera, Víctor

    2014-05-15

    Amphiphilic block copolymers have emerged during last years as a fascinating substrate material to develop micellar nanocontainers able to solubilize, protect, transport, and release under external or internal stimuli different classes of cargos to diseased cells or tissues. However, this class of materials can also induce biologically relevant actions, which complement the therapeutic activity of their cargo molecules through their mutual interactions with biologically relevant entities (cellular membranes, proteins, organelles...); these interactions at the same time, are regulated by the nature, conformation, and state of the copolymeric chains. For these reasons, in this paper we investigated the self-assembly process and physico-chemcial properties of two reverse triblock poly(butylene oxide)-poly(ethylene oxide)-poly(butylene oxide) block copolymers, BO14EO378BO14 and BO21EO385BO21, which have been recently found to be very useful as drug delivery nanovehicles and biological response modifiers under certain conditions (A. Cambón et al. Int. J. Pharm. 2013, 445, 47-57) in order to obtain a clear picture of the solution behavior of this class or block copolymers and to understand their biological activity. These block copolymers are characterized by possessing long BO blocks and extremely lengthy central EO ones, which provide them with a rich rheological behavior characterized by the formation of flowerlike micelles with sizes ranging from 20 to 40 nm in aqueous solution and the presence of intermicellar bridging even at low copolymers concentrations as denoted by atomic force microscopy. Bridging is also clearly observed by analyzing the rheological response of these block copolymers both storage and loss moduli upon changes on time, temperature, and or concentration. Strikingly, the relatively wide Poisson distribution of the polymeric chains make the present copolymers behave rather distinctly to conventional associative thickeners. The observed rich

  7. Soft self-assembled nanoparticles with temperature-dependent properties

    NASA Astrophysics Data System (ADS)

    Rovigatti, Lorenzo; Capone, Barbara; Likos, Christos N.

    2016-02-01

    The fabrication of versatile building blocks that reliably self-assemble into desired ordered and disordered phases is amongst the hottest topics in contemporary materials science. To this end, microscopic units of varying complexity, aimed at assembling the target phases, have been thought, designed, investigated and built. Such a path usually requires laborious fabrication techniques, especially when specific functionalisation of the building blocks is required. Telechelic star polymers, i.e., star polymers made of a number of f di-block copolymers consisting of solvophobic and solvophilic monomers grafted on a central anchoring point, spontaneously self-assemble into soft patchy particles featuring attractive spots (patches) on the surface. Here we show that the tunability of such a system can be widely extended by controlling the physical and chemical parameters of the solution. Indeed, under fixed external conditions the self-assembly behaviour depends only on the number of arms and on the ratio of solvophobic to solvophilic monomers. However, changes in temperature and/or solvent quality make it possible to reliably change the number and size of the attractive patches. This allows the steering of the mesoscopic self-assembly behaviour without modifying the microscopic constituents. Interestingly, we also demonstrate that diverse combinations of the parameters can generate stars with the same number of patches but different radial and angular stiffness. This mechanism could provide a neat way of further fine-tuning the elastic properties of the supramolecular network without changing its topology.

  8. Effects of amphiphilic diblock copolymer on drug nanoparticle formation and stability

    PubMed Central

    Zhu, Zhengxi

    2013-01-01

    This study systematically compares the effects of amphiphilic diblock copolymer (di-BCP) on stabilizing hydrophobic drug nanoparticles formed by flash nanoprecipitation (FNP), and provides a guideline on choosing suitable di-BCPs. Four widely used di-BCPs, i.e., polystyrene-block-poly(ethylene glycol) (PS-b-PEG), polycaprolactone-block-poly(ethylene glycol) (PCL-b-PEG), polylactide-block-poly(ethylene glycol) (PLA-b-PEG), and poly(lactic-co-glycolic acid) (PLGA-b-PEG), and β-carotene as a model drug were used. The study showed that PLGA-b-PEG was the most suitable one, whose hydrophobic block was biodegradable and noncrystallizable as well as had relatively high glass transition temperature (Tg) and a right solubility parameter (δ). The molecular weight of PLGA block over the range from 5k to 15k showed an insignificant effect on controlling the particle size. Amorphous drug particles with a high drug loading of over 83 wt% can be achieved. Much remarkable evidence supported the nanoparticles with kinetically frozen and nonequilibrium packing structures of polymer chains rather than either the micelles or micellar nanoparticles with two well segregated polymer blocks. The thermodynamic effects of the drug and BCP on the particle stability, size and structures were discussed by using solubility parameters. PMID:24070569

  9. Disentangle Model Differences and Fluctuation Effects in DPD Simulations of Diblock Copolymers

    NASA Astrophysics Data System (ADS)

    Wang, David (Qiang); Sandhu, Paramvir; Jong, Jing; Yang, Delian

    2013-03-01

    In the widely used dissipative particle dynamics (DPD) simulations [Hoogerbrugge and Koelman, Europhys. Lett. 19, 155 (1992); Groot and Warren, J. Chem. Phys. 107, 4423 (1997)], polymers are commonly modeled as discrete Gaussian chains interacting with soft, finite-range repulsions. In the original DPD simulations of microphase separation of diblock copolymer melts by Groot and Madden [J. Chem. Phys. 108, 8713 (1998)], the simulation results were compared and found to be consistent with the phase diagram for the ``standard model'' of continuous Gaussian chains with Dirac ?-function interactions obtained from self-consistent field (SCF) calculations. Since SCF theory is a mean-field theory neglecting system fluctuations/correlations while DPD simulations fully incorporate such effects, the model differences are mixed with the fluctuation/correlation effects in their comparison. Here we report the SCF phase diagram for exactly the same model system as used in DPD simulations. Comparing our phase diagram with that for the standard model highlights the effects of chain discretization and finite-range interactions, while comparing our phase diagram with DPD simulation results reveal without any parameter-fitting the effects of fluctuations/correlations neglected in the SCF theory.

  10. Phase diagrams of diblock copolymers in electric fields: a self-consistent field theory study.

    PubMed

    Wu, Ji; Wang, Xianghong; Ji, Yongyun; He, Linli; Li, Shiben

    2016-04-21

    We investigated the phase diagrams of diblock copolymers in external electrostatic fields by using real-space self-consistent field theory. The lamella, cylinder, sphere, and ellipsoid structures were observed and analyzed by their segment distributions, which were arranged to two types of phase diagrams to examine the phase behavior in weak and strong electric fields. One type was constructed on the basis of Flory-Huggins interaction parameter and volume fraction. We identified an ellipsoid structure with a body-centered cuboid arrangement as a stable phase and discussed the shift of phase boundaries in the electric fields. The other type of phase diagrams was established on the basis of the dielectric constants of two blocks in the electric fields. We then determined the regions of ellipsoid phase in the phase diagrams to examine the influence of dielectric constants on the phase transition between ellipsoidal and hexagonally packed cylinder phases. A general agreement was obtained by comparing our results with those described in previous experimental and theoretical studies. PMID:27020849

  11. Water Diffusion Dependence on Amphiphilic Block Design in (Amphiphilic-Hydrophobic) Diblock Copolymer Membranes.

    PubMed

    Dorenbos, Gert

    2016-06-30

    Polyelectrolyte membranes (PEMs) are applied in polyelectrolyte fuel cells (PEFC). The proton conductive pathways within PEMs are provided by nanometer-sized water containing pores. Large-scale application of PEFC requires the production of low-cost membranes with high proton conductivity and therefore good connected pore networks. Pore network formation within four alternative model diblock (hydrophobic_amphiphilic) copolymers in the presence of water is studied by dissipative particle dynamics. Each hydrophobic block contains 50 consecutively connected hydrophobic (A) fragments, and amphiphilic blocks contain 40 hydrophobic A beads and 10 hydrophilic C beads. For one amphiphilic block the C beads are distributed uniformly along the backbone. For the other architectures C beads are located at the end of the side chains attached at regular intervals along the backbone. Water diffusion through the pores is modeled by Monte Carlo tracer diffusion through mapped morphologies. Diffusion is highest for the grafted architectures and increases with increase of length of the side chains. A consistent picture emerges in which diffusion strongly increases with the value of ⟨Nbond⟩ within the amphiphilic block, where ⟨Nbond⟩ is the average number of bonds between hydrophobic A beads and the nearest C bead. PMID:27266679

  12. Water Diffusion Dependence on Amphiphilic Block Design in (Amphiphilic-Hydrophobic) Diblock Copolymer Membranes.

    PubMed

    Dorenbos, Gert

    2016-06-30

    Polyelectrolyte membranes (PEMs) are applied in polyelectrolyte fuel cells (PEFC). The proton conductive pathways within PEMs are provided by nanometer-sized water containing pores. Large-scale application of PEFC requires the production of low-cost membranes with high proton conductivity and therefore good connected pore networks. Pore network formation within four alternative model diblock (hydrophobic_amphiphilic) copolymers in the presence of water is studied by dissipative particle dynamics. Each hydrophobic block contains 50 consecutively connected hydrophobic (A) fragments, and amphiphilic blocks contain 40 hydrophobic A beads and 10 hydrophilic C beads. For one amphiphilic block the C beads are distributed uniformly along the backbone. For the other architectures C beads are located at the end of the side chains attached at regular intervals along the backbone. Water diffusion through the pores is modeled by Monte Carlo tracer diffusion through mapped morphologies. Diffusion is highest for the grafted architectures and increases with increase of length of the side chains. A consistent picture emerges in which diffusion strongly increases with the value of ⟨Nbond⟩ within the amphiphilic block, where ⟨Nbond⟩ is the average number of bonds between hydrophobic A beads and the nearest C bead.

  13. Tethered Chains in Poor Solvent Conditions: An Experimental Study Involving Langmuir Diblock Copolymer Monolayers

    SciTech Connect

    Kent, M.S.; Lee, L.T.; Majewski, J.; Satija, S.; Smith, G.S.

    1998-10-13

    We have employed Langmuir monolayer of highly asymmetric polydimethylsiloxane- polystyrene (PDMS-PS) diblock copolymers on dioctyl phthalate (DOP) at temperatures ranging from 22 "C to -35 `C as a model system for tethered chains in poor solvent conditions. The thicknesses of the tethered PS layers extending into the DOP subphase, measured by neutron reflection, decrease with decreasing temperature (T) over this entire r~ge. However, the v~iation with T becomes weak below -20 "C. At the ]owest T, the layer thicknesses are contracted 55 % -75 `% of their values at the theta condition (T8 = 22 "C), but are still quite swollen compared to the fully collapsed, nonsolvent limit. The contraction of the layer with decreasing T is determined as a function of surface density and molecular weight. These data are compared to universal scaling forms. The PS segments are depleted from the air surface over the entire T range, the thickness of the depletion layer increasing slightly with decreasing T. The free energy of the surface layer is probed by surface tension measurements. Negative surface pressures are observed at low coverages for both PDMS-PS and PDMS monolayer, indicating metastability toward lateral phase separation. Evidence for a trruisition from a dispersed phase to a condensed phase with decreasing T was observed in the reflectivity at very low PDMS-PS coverage.

  14. Incorporating Diblock Copolymer Nanoparticles into Calcite Crystals: Do Anionic Carboxylate Groups Alone Ensure Efficient Occlusion?

    PubMed Central

    2016-01-01

    New spherical diblock copolymer nanoparticles were synthesized via RAFT aqueous dispersion polymerization of 2-hydroxypropyl methacrylate (HPMA) at 70 °C and 20% w/w solids using either poly(carboxybetaine methacrylate) or poly(proline methacrylate) as the steric stabilizer block. Both of these stabilizers contain carboxylic acid groups, but poly(proline methacrylate) is anionic above pH 9.2, whereas poly(carboxybetaine methacrylate) has zwitterionic character at this pH. When calcite crystals are grown at an initial pH of 9.5 in the presence of these two types of nanoparticles, it is found that the anionic poly(proline methacrylate)-stabilized particles are occluded uniformly throughout the crystals (up to 6.8% by mass, 14.0% by volume). In contrast, the zwitterionic poly(carboxybetaine methacrylate)-stabilized particles show no signs of occlusion into calcite crystals grown under identical conditions. The presence of carboxylic acid groups alone therefore does not guarantee efficient occlusion: overall anionic character is an additional prerequisite. PMID:27042383

  15. Effect of mobile ions on the electric field needed to orient charged diblock copolymer thin films

    SciTech Connect

    Dehghan, Ashkan; Shi, An-Chang; Schick, M.

    2015-10-07

    We examine the behavior of lamellar phases of charged/neutral diblock copolymer thin films containing mobile ions in the presence of an external electric field. We employ self-consistent field theory and focus on the aligning effect of the electric field on the lamellae. Of particular interest are the effects of the mobile ions on the critical field, the value required to reorient the lamellae from the parallel configuration favored by the surface interaction to the perpendicular orientation favored by the field. We find that the critical field depends strongly on whether the neutral or charged species is favored by the substrates. In the case in which the neutral species is favored, the addition of charges decreases the critical electric field significantly. The effect is greater when the mobile ions are confined to the charged lamellae. In contrast, when the charged species is favored by the substrate, the addition of mobile ions stabilizes the parallel configuration and thus results in an increase in the critical electric field. The presence of ions in the system introduces a new mixed phase in addition to those reported previously.

  16. On the order-disorder transition of compressible diblock copolymer melts

    SciTech Connect

    Zong, Jing; Wang, Qiang

    2015-11-14

    We performed both the fast off-lattice Monte Carlo simulations of symmetric diblock copolymers (DBC) in an isothermal-isobaric ensemble and the self-consistent field calculations of asymmetric DBC to properly determine the order-disorder transition (ODT) of a model system of compressible DBC melts used in the literature when it is a first-order phase transition, and studied for the first time the co-existence of the two phases at ODT. We found that the co-existing region is quite small and decreases as the system becomes less compressible, which justifies the previous ODT results obtained by equating the Helmholtz free energy per chain of the two phases. We also found that for the most compressible system where there is no repulsion between the same type of segments, the self-consistent field theory predicts that ODT is a second-order phase transition even for asymmetric DBC melts due to its mean-field approximation.

  17. Morphology-Conductivity Relationship in Salt-containing Diblock Copolymer/Homopolymer Mixtures

    NASA Astrophysics Data System (ADS)

    Irwin, Matthew; Hickey, Robert

    2015-03-01

    In order to unravel how ion conductivity is affected by material morphology, a model system of polystyrene (PS), poly(ethylene oxide) (PEO), PS-block-PEO, and lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) was fabricated and characterized. These pseudo-ternary polymer blends, in which the lithium salt associates nearly exclusively with the ethylene oxide, have the potential to form a variety of morphologies such as lamellae and the three-dimensionally interpenetrating bicontinuous microemulsion by simply changing blend composition. Similar to what has been observed in salt-containing diblock copolymers, both the order-disorder transition (ODT) temperature and the ODT temperature window of these blends increase sharply with salt loading. By modulating the relative volume fraction of the homopolymers in the blends, it was shown that, although less than order-of-magnitude changes in the domain spacing do not appreciably affect ion conductivity, some morphologies can result in significantly better conductivity than others. These results outline what factors matter most when designing polymer electrolytes for applications such as rechargeable lithium metal batteries and proton exchange membranes.

  18. Synthesis and self-assembly of chitosan-g-polystyrene copolymer: a new route for the preparation of heavy metal nanoparticles.

    PubMed

    Francis, Raju; Baby, Deepa K; Gnanou, Yves

    2015-01-15

    Amphiphilic graft copolymers made of a Chitosan (CS) backbone and three arm polystyrene (PS) grafts were prepared by "grafting onto" strategy using Toluene Diisocyanate. IR spectroscopy and SEC show the successful grafting process. SEM pictures of Chitosan-g-Polystyrene (CS-g-PS) indicate a spherulite like surface and exhibit properties that result from the disappearance of Chitosan crystallinity. The introduced polystyrene star grafts units improve hydrophobic properties considerably as confirmed by the very high solubility of (CS-g-PS) in organic solvents. The graft copolymer which self-assembles into polymeric micelles in organic media demonstrates much better adsorption of transition and inner transition metal ions than pure Chitosan whose amine groups are not necessarily available due to crystallinity. PMID:25454432

  19. Tuning thermoresponsive behavior of diblock copolymers and their gold core hybrids. Part 2. How properties change depending on block attachment to gold nanoparticles.

    PubMed

    Chen, Ning; Xiang, Xu; Heiden, Patricia A

    2013-04-15

    Thermoresponsive diblock copolymers of di(ethylene glycol) methyl ether methacrylate (DEGMA) and oligo(ethylene glycol) methyl ether acrylate (OEGA) were synthesized by reversible addition-fragmentation chain transfer polymerization, allowing us to prepare diblocks with a thiol group at the desired chain end, and bond that block to a ~20 nm gold nanoparticle core. The cloud point and coil-globule transition window were measured by UV-vis spectroscopy. The gold core lowered the cloud point and narrowed the coil-globule transition window of all the diblock hybrids, but raised the cloud point of statistical copolymer hybrids that had similar cloud points. The extent of the change in the thermo-response properties of the hybrid diblock copolymers was more significant when the gold was bonded to the DEGMA block than the OEGA block. This block is less hydrophilic and sterically hindered than OEGA and may adsorb more effectively to the gold so that the hydration of the outer OEGA block is relatively unaffected by the Au core. This work indicates that diblock copolymers allow factors such as steric bulk and the effects on arrangement around a metal core to be effective tools for manipulating thermo-responsive properties that are not as significant with statistical copolymers.

  20. Bimodal mesoporous carbon synthesized from large organic precursor and amphiphilic tri-block copolymer by self assembly

    SciTech Connect

    Saha, Dipendu; Contescu, Cristian I; Gallego, Nidia C

    2012-01-01

    Owing to several disadvantages of traditional hard template based synthesis, soft-template or self-assembly was adopted to synthesize mesoporous carbon. In this work, we have introduced hexaphenol as a new and large organic precursor for the synthesis of mesoporous carbon by self-assembly with pluronic P123 as structure dictating agent. The resultant mesoporous carbon is bimodal in nature with median pore widths of 29 and 45 and BET surface area of 312 m2/g. Unlike previously synthesized mesoporous carbon, this carbon possesses negligible micropore volume. This mesoporous carbon is very suitable candidate for several applications including membrane separation, chemical sensor or selective sorption of larger molecules.

  1. Substrate effect on nanoporous structure of silica wires by channel-confined self-assembly of block-copolymer and sol-gel precursors

    DOE PAGESBeta

    Hu, Michael Z.; Lai, Peng

    2015-09-22

    Nanoporous silica wires of various wire diameters were developed by space-confined molecular self-assembly of triblock copolymer ethylene/propylene/ethylene (P123) and silica alkoxide precursor (tetraethylorthosilicate, TEOS). Two distinctive hard-templating substrates, anodized aluminum oxide (AAO) and track-etched polycarbonate (EPC), with channel diameters in the range between 10 nm and 200 nm were employed for space-confinement of soft molecular self-assembly driven by the block-copolymer microphase separation. It was observed in the scanning and transmission electron microscope (STEM) studies that the substrate geometry and material characteristics had pronounced effects on the structure and morphology of the silica nanowires. A substrate wall effect was proposed tomore » explain the ordering and orientation of the intra-wire mesostructure. Circular and spiral nanostructures were found only in wires formed in AAO substrate, not in EPC. Pore-size differences and distinctive wall morphologies of the nanowires relating to the substrates were discussed. It was shown that the material and channel wall characteristics of different substrates play key roles in the ordering and morphology of the intra-wire nanostructures.« less

  2. Substrate effect on nanoporous structure of silica wires by channel-confined self-assembly of block-copolymer and sol-gel precursors

    SciTech Connect

    Hu, Michael Z.; Lai, Peng

    2015-09-22

    Nanoporous silica wires of various wire diameters were developed by space-confined molecular self-assembly of triblock copolymer ethylene/propylene/ethylene (P123) and silica alkoxide precursor (tetraethylorthosilicate, TEOS). Two distinctive hard-templating substrates, anodized aluminum oxide (AAO) and track-etched polycarbonate (EPC), with channel diameters in the range between 10 nm and 200 nm were employed for space-confinement of soft molecular self-assembly driven by the block-copolymer microphase separation. It was observed in the scanning and transmission electron microscope (STEM) studies that the substrate geometry and material characteristics had pronounced effects on the structure and morphology of the silica nanowires. A substrate wall effect was proposed to explain the ordering and orientation of the intra-wire mesostructure. Circular and spiral nanostructures were found only in wires formed in AAO substrate, not in EPC. Pore-size differences and distinctive wall morphologies of the nanowires relating to the substrates were discussed. It was shown that the material and channel wall characteristics of different substrates play key roles in the ordering and morphology of the intra-wire nanostructures.

  3. Oxidation effect on templating of metal oxide nanoparticles within block copolymers

    SciTech Connect

    Akcora, Pinar; Briber, Robert M.; Kofinas, Peter

    2009-06-30

    Amphiphilic norbornene-b-(norbornene dicarboxylic acid) diblock copolymers with different block ratios were prepared as templates for the incorporation of iron ions using an ion exchange protocol. The disordered arrangement of iron oxide particles within these copolymers was attributed to the oxidation of the iron ions and the strong interactions between iron oxide nanoparticles, particularly at high iron ion concentrations, which was found to affect the self-assembly of the block copolymer morphologies.

  4. Small angle neutron scattering study of complex coacervate micelles and hydrogels formed from ionic diblock and triblock copolymers.

    PubMed

    Krogstad, Daniel V; Choi, Soo-Hyung; Lynd, Nathaniel A; Audus, Debra J; Perry, Sarah L; Gopez, Jeffrey D; Hawker, Craig J; Kramer, Edward J; Tirrell, Matthew V

    2014-11-13

    A complex coacervate is a fluid phase that results from the electrostatic interactions between two oppositely charged macromolecules. The nature of the coacervate core structure of hydrogels and micelles formed from complexation between pairs of diblock or triblock copolymers containing oppositely charged end-blocks as a function of polymer and salt concentration was investigated. Both ABA triblock copolymers of poly[(allyl glycidyl ether)-b-(ethylene oxide)-b-(allyl glycidyl ether)] and analogous poly[(allyl glycidyl ether)-b-(ethylene oxide)] diblock copolymers, which were synthesized to be nearly one-half of the symmetrical triblock copolymers, were studied. The poly(allyl glycidyl ether) blocks were functionalized with either guanidinium or sulfonate groups via postpolymerization modification. Mixing of oppositely charged block copolymers resulted in the formation of nanometer-scale coacervate domains. Small angle neutron scattering (SANS) experiments were used to investigate the size and spacing of the coacervate domains. The SANS patterns were fit using a previously vetted, detailed model consisting of polydisperse core-shell micelles with a randomly distributed sphere or body-centered cubic (BCC) structure factor. For increasing polymer concentration, the size of the coacervate domains remained constant while the spatial extent of the poly(ethylene oxide) (PEO) corona decreased. However, increasing salt concentration resulted in a decrease in both the coacervate domain size and the corona size due to a combination of the electrostatic interactions being screened and the shrinkage of the neutral PEO blocks. Additionally, for the triblock copolymers that formed BCC ordered domains, the water content in the coacervate domains was calculated to increase from approximately 16.8% to 27.5% as the polymer concentration decreased from 20 to 15 wt %.

  5. Short-range ordered photonic structures of lamellae-forming diblock copolymers for excitation-regulated fluorescence enhancement

    NASA Astrophysics Data System (ADS)

    Kim, Se Hee; Kim, Ki-Se; Char, Kookheon; Yoo, Seong Il; Sohn, Byeong-Hyeok

    2016-05-01

    Photonic crystals can be represented by periodic nanostructures with alternating refractive indices, which create artificial stop bands with the appearance of colors. In this regard, nanodomains of block copolymers and the corresponding structural colors have been intensively studied in the past. However, the practical application of photonic crystals of block copolymers has been limited to a large degree because of the presence of large defects and grain boundaries in the nanodomains of block copolymers. The present study focuses on the alternative opportunity of short-range ordered nanodomains of block copolymers for fluorescence enhancement, which also has a direct relevance to the development of fluorescence sensors or detectors. The enhancement mechanism was found to be interconnected with the excitation process rather than the alternation of the decay kinetics. In particular, we demonstrate that randomly oriented, but regular grains of lamellae of polystyrene-block-polyisoprene, PS-b-PI, diblock copolymers and their blend with PS homopolymers can behave as Bragg mirrors to induce multiple reflections of the excitation source inside the photonic structures. This process in turn significantly increases the effective absorption of the given fluorophores inside the polymeric photonic structures to amplify the fluorescence signal.Photonic crystals can be represented by periodic nanostructures with alternating refractive indices, which create artificial stop bands with the appearance of colors. In this regard, nanodomains of block copolymers and the corresponding structural colors have been intensively studied in the past. However, the practical application of photonic crystals of block copolymers has been limited to a large degree because of the presence of large defects and grain boundaries in the nanodomains of block copolymers. The present study focuses on the alternative opportunity of short-range ordered nanodomains of block copolymers for fluorescence

  6. Bespoke contrast-matched diblock copolymer nanoparticles enable the rational design of highly transparent Pickering double emulsions

    NASA Astrophysics Data System (ADS)

    Rymaruk, Matthew J.; Thompson, Kate L.; Derry, Matthew J.; Warren, Nicholas J.; Ratcliffe, Liam P. D.; Williams, Clive N.; Brown, Steven L.; Armes, Steven P.

    2016-07-01

    We report the preparation of highly transparent oil-in-water Pickering emulsions using contrast-matched organic nanoparticles. This is achieved via addition of judicious amounts of either sucrose or glycerol to an aqueous dispersion of poly(glycerol monomethacrylate)56-poly(2,2,2-trifluoroethyl methacrylate)500 [PGMA-PTFEMA] diblock copolymer nanoparticles prior to high shear homogenization with an equal volume of n-dodecane. The resulting Pickering emulsions comprise polydisperse n-dodecane droplets of 20-100 μm diameter and exhibit up to 96% transmittance across the visible spectrum. In contrast, control experiments using non-contrast-matched poly(glycerol monomethacrylate)56-poly(benzyl methacrylate)300 [PGMA56-PBzMA300] diblock copolymer nanoparticles as a Pickering emulsifier only produced conventional highly turbid emulsions. Thus contrast-matching of the two immiscible phases is a necessary but not sufficient condition for the preparation of highly transparent Pickering emulsions: it is essential to use isorefractive nanoparticles in order to minimize light scattering. Furthermore, highly transparent oil-in-water-in-oil Pickering double emulsions can be obtained by homogenizing the contrast-matched oil-in-water Pickering emulsion prepared using the PGMA56-PTFEMA500 nanoparticles with a contrast-matched dispersion of hydrophobic poly(lauryl methacrylate)39-poly(2,2,2-trifluoroethyl methacrylate)800 [PLMA39-PTFEMA800] diblock copolymer nanoparticles in n-dodecane. Finally, we show that an isorefractive oil-in-water Pickering emulsion enables fluorescence spectroscopy to be used to monitor the transport of water-insoluble small molecules (pyrene and benzophenone) between n-dodecane droplets. Such transport is significantly less efficient than that observed for the equivalent isorefractive surfactant-stabilized emulsion. Conventional turbid emulsions do not enable such a comparison to be made because the intense light scattering leads to substantial spectral

  7. Bespoke contrast-matched diblock copolymer nanoparticles enable the rational design of highly transparent Pickering double emulsions.

    PubMed

    Rymaruk, Matthew J; Thompson, Kate L; Derry, Matthew J; Warren, Nicholas J; Ratcliffe, Liam P D; Williams, Clive N; Brown, Steven L; Armes, Steven P

    2016-08-14

    We report the preparation of highly transparent oil-in-water Pickering emulsions using contrast-matched organic nanoparticles. This is achieved via addition of judicious amounts of either sucrose or glycerol to an aqueous dispersion of poly(glycerol monomethacrylate)56-poly(2,2,2-trifluoroethyl methacrylate)500 [PGMA-PTFEMA] diblock copolymer nanoparticles prior to high shear homogenization with an equal volume of n-dodecane. The resulting Pickering emulsions comprise polydisperse n-dodecane droplets of 20-100 μm diameter and exhibit up to 96% transmittance across the visible spectrum. In contrast, control experiments using non-contrast-matched poly(glycerol monomethacrylate)56-poly(benzyl methacrylate)300 [PGMA56-PBzMA300] diblock copolymer nanoparticles as a Pickering emulsifier only produced conventional highly turbid emulsions. Thus contrast-matching of the two immiscible phases is a necessary but not sufficient condition for the preparation of highly transparent Pickering emulsions: it is essential to use isorefractive nanoparticles in order to minimize light scattering. Furthermore, highly transparent oil-in-water-in-oil Pickering double emulsions can be obtained by homogenizing the contrast-matched oil-in-water Pickering emulsion prepared using the PGMA56-PTFEMA500 nanoparticles with a contrast-matched dispersion of hydrophobic poly(lauryl methacrylate)39-poly(2,2,2-trifluoroethyl methacrylate)800 [PLMA39-PTFEMA800] diblock copolymer nanoparticles in n-dodecane. Finally, we show that an isorefractive oil-in-water Pickering emulsion enables fluorescence spectroscopy to be used to monitor the transport of water-insoluble small molecules (pyrene and benzophenone) between n-dodecane droplets. Such transport is significantly less efficient than that observed for the equivalent isorefractive surfactant-stabilized emulsion. Conventional turbid emulsions do not enable such a comparison to be made because the intense light scattering leads to substantial spectral

  8. Bespoke contrast-matched diblock copolymer nanoparticles enable the rational design of highly transparent Pickering double emulsions.

    PubMed

    Rymaruk, Matthew J; Thompson, Kate L; Derry, Matthew J; Warren, Nicholas J; Ratcliffe, Liam P D; Williams, Clive N; Brown, Steven L; Armes, Steven P

    2016-08-14

    We report the preparation of highly transparent oil-in-water Pickering emulsions using contrast-matched organic nanoparticles. This is achieved via addition of judicious amounts of either sucrose or glycerol to an aqueous dispersion of poly(glycerol monomethacrylate)56-poly(2,2,2-trifluoroethyl methacrylate)500 [PGMA-PTFEMA] diblock copolymer nanoparticles prior to high shear homogenization with an equal volume of n-dodecane. The resulting Pickering emulsions comprise polydisperse n-dodecane droplets of 20-100 μm diameter and exhibit up to 96% transmittance across the visible spectrum. In contrast, control experiments using non-contrast-matched poly(glycerol monomethacrylate)56-poly(benzyl methacrylate)300 [PGMA56-PBzMA300] diblock copolymer nanoparticles as a Pickering emulsifier only produced conventional highly turbid emulsions. Thus contrast-matching of the two immiscible phases is a necessary but not sufficient condition for the preparation of highly transparent Pickering emulsions: it is essential to use isorefractive nanoparticles in order to minimize light scattering. Furthermore, highly transparent oil-in-water-in-oil Pickering double emulsions can be obtained by homogenizing the contrast-matched oil-in-water Pickering emulsion prepared using the PGMA56-PTFEMA500 nanoparticles with a contrast-matched dispersion of hydrophobic poly(lauryl methacrylate)39-poly(2,2,2-trifluoroethyl methacrylate)800 [PLMA39-PTFEMA800] diblock copolymer nanoparticles in n-dodecane. Finally, we show that an isorefractive oil-in-water Pickering emulsion enables fluorescence spectroscopy to be used to monitor the transport of water-insoluble small molecules (pyrene and benzophenone) between n-dodecane droplets. Such transport is significantly less efficient than that observed for the equivalent isorefractive surfactant-stabilized emulsion. Conventional turbid emulsions do not enable such a comparison to be made because the intense light scattering leads to substantial spectral

  9. Coexistence of ordered and disordered phases in a nearly symmetric diblock copolymer near an order-disorder transition point.

    PubMed

    Koga, T; Koga, T; Hashimoto, T

    1999-08-01

    We investigated the phase behavior near the order-disorder transition (ODT) temperature in a nearly symmetric diblock copolymer, using ultra-small-angle x-ray scattering method. In a narrow temperature range very close to the ODT temperature, we observed the scattering profiles that can be interpreted as a linear combination of the scattering from the disordered state and that from the ordered lamellar state. These profiles were stable during the observation time (50 h), revealing that the two-phase coexistence occurs at thermal equilibrium within this temperature range. PMID:11969941

  10. Diblock Copolymer Micelles and Supported Films with Noncovalently Incorporated Chromophores: A Modular Platform for Efficient Energy Transfer

    DOE PAGESBeta

    Adams, Peter G.; Collins, Aaron M.; Sahin, Tuba; Subramanian, Vijaya; Urban, Volker S.; Vairaprakash, Pothiappan; Tian, Yongming; Evans, Deborah G.; Shreve, Andrew P.; Montaño, Gabriel A.

    2015-04-08

    Here we report generation of modular, artificial light-harvesting assemblies where an amphiphilic diblock copolymer, poly(ethylene oxide)-block-poly(butadiene), serves as the framework for noncovalent organization of BODIPY-based energy donor and bacteriochlorin-based energy acceptor chromophores. The assemblies are adaptive and form well-defined micelles in aqueous solution and high-quality monolayer and bilayer films on solid supports, with the latter showing greater than 90% energy transfer efficiency. Ultimately, this study lays the groundwork for further development of modular, polymer-based materials for light harvesting and other photonic applications.

  11. Morphological Phase Behavior of Poly(RTIL)-Containing Diblock Copolymer Melts

    SciTech Connect

    Scalfani, VF; Wiesenauer, EF; Ekblad, JR; Edwards, JP; Gin, DL; Bailey, TS

    2012-05-22

    The development of nanostructured polymeric systems containing directionally continuous poly(ionic liquid) (poly(IL)) domains has considerable implications toward a range of transport-dependent, energy-based technology applications. The controlled, synthetic integration of poly(IL)s into block copolymer (BCP) architectures provides a promising means to this end, based on their inherent ability to self-assemble into a range of defined, periodic morphologies. In this work, we report the melt-state phase behavior of an imidazolium-containing alkyl ionic BCP system, derived from the sequential ring-opening metathesis polymerization (ROMP) of imidazolium- and alkyl-substituted norbornene monomer derivatives. A series of 16 BCP samples were synthesized, varying both the relative volume fraction of the poly(norbornene dodecyl ester) block (f(DOD) = 0.42-0.96) and the overall molecular weights of the block copolymers (M-n values from 5000-20 100 g mol(-1)). Through a combination of small-angle X-ray scattering (SAXS) and dynamic rheology, we were able to delineate clear compositional phase boundaries for each of the classic BCP phases, including lamellae (Lam), hexagonally packed cylinders (Hex), and spheres on a body-centered-cubic lattice (S-BCC). Additionally, a liquid-like packing (LLP) of spheres was found for samples located in the extreme asymmetric region of the phase diagram, and a persistent coexistence of Lam and Hex domains was found in lieu of the bicontinuous cubic gyroid phase for samples located at the intersection of Hex and Lam regions. Thermal disordering was opposed even in very low molecular weight samples, detected only when the composition was highly asymmetric (f(DOD) = 0.96). Annealing experiments on samples exhibiting Lam and Hex coexistence revealed the presence of extremely slow transition kinetics, ultimately selective for one or the other but not the more complex gyroid phase. In fact, no evidence of the bicontinuous network was detected over

  12. Morphological Phase Behavior of Poly(RTIL)-Containing Diblock Copolymer Melts

    SciTech Connect

    Scalfani, Vincent F.; Wiesenauer, Erin F.; Ekblad, John R.; Edwards, Julian P.; Gin, Douglas L.; Bailey, Travis S.

    2012-10-23

    The development of nanostructured polymeric systems containing directionally continuous poly(ionic liquid) (poly(IL)) domains has considerable implications toward a range of transport-dependent, energy-based technology applications. The controlled, synthetic integration of poly(IL)s into block copolymer (BCP) architectures provides a promising means to this end, based on their inherent ability to self-assemble into a range of defined, periodic morphologies. In this work, we report the melt-state phase behavior of an imidazolium-containing alkyl-ionic BCP system, derived from the sequential ring-opening metathesis polymerization (ROMP) of imidazolium- and alkyl-substituted norbornene monomer derivatives. A series of 16 BCP samples were synthesized, varying both the relative volume fraction of the poly(norbornene dodecyl ester) block (f{sub DOD} = 0.42-0.96) and the overall molecular weights of the block copolymers (M{sub n} values from 5000-20,100 g mol{sup -1}). Through a combination of small-angle X-ray scattering (SAXS) and dynamic rheology, we were able to delineate clear compositional phase boundaries for each of the classic BCP phases, including lamellae (Lam), hexagonally packed cylinders (Hex), and spheres on a body-centered-cubic lattice (S{sub BCC}). Additionally, a liquid-like packing (LLP) of spheres was found for samples located in the extreme asymmetric region of the phase diagram, and a persistent coexistence of Lam and Hex domains was found in lieu of the bicontinuous cubic gyroid phase for samples located at the intersection of Hex and Lam regions. Thermal disordering was opposed even in very low molecular weight samples, detected only when the composition was highly asymmetric (f{sub DOD} = 0.96). Annealing experiments on samples exhibiting Lam and Hex coexistence revealed the presence of extremely slow transition kinetics, ultimately selective for one or the other but not the more complex gyroid phase. In fact, no evidence of the bicontinuous

  13. Sub-10 nm features obtained from directed self-assembly of semicrystalline polycarbosilane-based block copolymer thin films.

    PubMed

    Aissou, Karim; Mumtaz, Muhammad; Fleury, Guillaume; Portale, Giuseppe; Navarro, Christophe; Cloutet, Eric; Brochon, Cyril; Ross, Caroline A; Hadziioannou, Georges

    2015-01-14

    Highly-ordered arrays with sub-10 nm features are produced with topographical-directed self-assembly of low-molecular-weight poly(1,1-dimethyl silacyclobutane)-block-poly(methyl methacrylate). This system turns out to be of high interest for lithographic applications since the domain orientation is solely controlled through the polymer layer thickness, while the promotion of the microphase separation is obtained by a short thermal annealing process under mild conditions.

  14. Polyelectrolyte Complex Hydrogels: Self-assembly and the Influence of Charged and Neutral Blocks

    NASA Astrophysics Data System (ADS)

    Srivastava, Samanvaya; Goldfeld, David; Levi, Adam; Mao, Jun; Chen, Wei; Tirrell, Matthew

    Polyelectrolyte complexes (PEC) form when oppositely charged polyelectrolyte chains spontaneously associate and phase separate in aqueous mediums. Bulk phase separation of the PECs can be evaded by combining one or both of the polyelectrolytes with a neutral polymer, thus engineering pathways for self-assembled PEC micelles and hydrogels. The PEC domains in these assemblies can encapsulate therapeutics as well as genetic materials and thus have tremendous potential in drug delivery and tissue engineering applications. We will present insights on the equilibrium structure and self-assembly kinetics of PEC hydrogels with large-scale ordering of the nanoscale PEC domains through detailed structure characterization and rheology studies of self-assembled materials comprising of functionalized polyallyl glycidyl ethers (PAGE) connected to either single poly(ethylene glycol) (PEG) chain to form diblock copolymers or as functionalized end-groups on a triblock copolymer with a PEG midblock. The effect of key parameters such as polymer concentration, polymer block lengths, salt, ionic strength, and degree of charge mismatch on the equilibrium materials properties will be discussed, with a special emphasis on the structure-defining role of the charged blocks and the structure-directing role of neutral blocks. Additionally, interesting similarities, and differences between structures and dynamics of hydrogels comprising diblock and corresponding triblock polyelectrolytes, respectively, will be discussed.

  15. Short-range ordered photonic structures of lamellae-forming diblock copolymers for excitation-regulated fluorescence enhancement.

    PubMed

    Kim, Se Hee; Kim, Ki-Se; Char, Kookheon; Yoo, Seong Il; Sohn, Byeong-Hyeok

    2016-05-19

    Photonic crystals can be represented by periodic nanostructures with alternating refractive indices, which create artificial stop bands with the appearance of colors. In this regard, nanodomains of block copolymers and the corresponding structural colors have been intensively studied in the past. However, the practical application of photonic crystals of block copolymers has been limited to a large degree because of the presence of large defects and grain boundaries in the nanodomains of block copolymers. The present study focuses on the alternative opportunity of short-range ordered nanodomains of block copolymers for fluorescence enhancement, which also has a direct relevance to the development of fluorescence sensors or detectors. The enhancement mechanism was found to be interconnected with the excitation process rather than the alternation of the decay kinetics. In particular, we demonstrate that randomly oriented, but regular grains of lamellae of polystyrene-block-polyisoprene, PS-b-PI, diblock copolymers and their blend with PS homopolymers can behave as Bragg mirrors to induce multiple reflections of the excitation source inside the photonic structures. This process in turn significantly increases the effective absorption of the given fluorophores inside the polymeric photonic structures to amplify the fluorescence signal.

  16. Internal Nanoparticle Structure of Temperature-Responsive Self-Assembled PNIPAM-b-PEG-b-PNIPAM Triblock Copolymers in Aqueous Solutions: NMR, SANS, and Light Scattering Studies.

    PubMed

    Filippov, Sergey K; Bogomolova, Anna; Kaberov, Leonid; Velychkivska, Nadiia; Starovoytova, Larisa; Cernochova, Zulfiya; Rogers, Sarah E; Lau, Wing Man; Khutoryanskiy, Vitaliy V; Cook, Michael T

    2016-05-31

    In this study, we report detailed information on the internal structure of PNIPAM-b-PEG-b-PNIPAM nanoparticles formed from self-assembly in aqueous solutions upon increase in temperature. NMR spectroscopy, light scattering, and small-angle neutron scattering (SANS) were used to monitor different stages of nanoparticle formation as a function of temperature, providing insight into the fundamental processes involved. The presence of PEG in a copolymer structure significantly affects the formation of nanoparticles, making their transition to occur over a broader temperature range. The crucial parameter that controls the transition is the ratio of PEG/PNIPAM. For pure PNIPAM, the transition is sharp; the higher the PEG/PNIPAM ratio results in a broader transition. This behavior is explained by different mechanisms of PNIPAM block incorporation during nanoparticle formation at different PEG/PNIPAM ratios. Contrast variation experiments using SANS show that the structure of nanoparticles above cloud point temperatures for PNIPAM-b-PEG-b-PNIPAM copolymers is drastically different from the structure of PNIPAM mesoglobules. In contrast with pure PNIPAM mesoglobules, where solidlike particles and chain network with a mesh size of 1-3 nm are present, nanoparticles formed from PNIPAM-b-PEG-b-PNIPAM copolymers have nonuniform structure with "frozen" areas interconnected by single chains in Gaussian conformation. SANS data with deuterated "invisible" PEG blocks imply that PEG is uniformly distributed inside of a nanoparticle. It is kinetically flexible PEG blocks which affect the nanoparticle formation by prevention of PNIPAM microphase separation. PMID:27159129

  17. Morphology and mechanical behavior of blends and diblock copolymers of 1,2 and 1,4 polybutadiene

    SciTech Connect

    Cohen, R.E.; Wilfong, D.E.

    1981-02-25

    The structure and mechanical properties of a series of polymer blends and block copolymers comprised of medium cis 1,4-polybutadiene and 99% 1,2-polybutadiene have been investigated. Thermal properties (DSC) were determined at two levels of radiation crosslinking and for various sample preparation procedures (solvent and thermal history). Dynamic mechanical spectra (3.5 Hz) were measured over temperature range from 180 to 310K. Transmission electron microscopy was also used for establishing the number phases and the domain size and geometry in the heterogeneous materials. Stress-strain curves were determined for the various samples as a function of crosslink density and casting solvent. Equilibrium swelling ratios were measured for each specimen at the same radiation dose in a good solvent. Swelling values were also obtained in a series of solvents for the parent homopolymers and for a diblock copolymer containing 45% 1,2 polybutadiene.

  18. Parallel versus perpendicular lamellar-within-lamellar self-assembly of A-b-(B-b-A)(n)-b-C ternary multiblock copolymer melts.

    PubMed

    Subbotin, A; Markov, V; ten Brinke, G

    2010-04-29

    Different types of lamellar-within-lamellar structure formations in A-b-(B-b-A)(n)-b-C terpolymer melts, with a volume fraction of components A, B, and C in the ratio of 1:1:2, are analyzed in the strong segregation limit using a simple theoretical approach. We consider the lamellar, parallel lamellar-within-lamellar, and perpendicular lamellar-within-lamellar self-assembled states. The influence of the copolymer chain length N, the value of the Flory-Huggins interaction parameters chi(AB), chi(AC), and chi(BC), and the number of blocks n in the AB multiblock chain on the phase behavior is discussed. We show that in the limiting case of n > 1, the perpendicular lamellar-within-lamellar state becomes stable when the interaction parameters satisfy the relation 0 < chi(BC) < 0.22 chi(AC). PMID:20369859

  19. Hierarchical Helical-Assembly of Conjugated Poly(3-hexylthiophene)- b-poly(3-triethylene glycol-thiophene) Diblock Copolymers

    NASA Astrophysics Data System (ADS)

    Lee, Eunji; Hammer, Brenton; Emrick, Todd; Hayward, Ryan C.

    2011-03-01

    One-dimensional crystalline fibrillar assemblies of poly(3-hexylthiophene) (P3HT)-based materials hold significant potential for fabrication of low-cost optoelectronic devices. We have studied the crystallization-driven assembly of a series of poly(3-hexylthiophene)-block-poly(3-triethylene glycol-thiophene) (P3HT- b -P3TEGT) diblock copolymers, which provide a large contrast in solubility due to the presence of non-polar (hexyl) and polar (TEG) side-chains. P3HT- b -P3TEGT diblock copolymers were found to form well-defined fibrillar structures in mixed solvents of chloroform and methanol, with lengths could be tuned easily by changing the solvent composition or relative block lengths. For polymers containing relatively short P3TEGT blocks, the resulting fibers show twisted ribbon-like structures. For appropriate block ratios, complexation of the TEG side chains to alkali metal cations drives formation of clearly defined single helical ribbons and superhelical structures.

  20. Glyco-Nanoparticles Made from Self-Assembly of Maltoheptaose-block-Poly(methyl methacrylate): Micelle, Reverse Micelle, and Encapsulation.

    PubMed

    Zepon, Karine M; Otsuka, Issei; Bouilhac, Cécile; Muniz, Edvani C; Soldi, Valdir; Borsali, Redouane

    2015-07-13

    The synthesis and the solution-state self-assembly of the "hybrid" diblock copolymers, maltoheptaose-block-poly(methyl methacrylate) (MH-b-PMMA), into large compound micelles (LCMs) and reverve micelle-type nanoparticles, are reported in this paper. The copolymers were self-assembled in water and acetone by direct dissolution method, and the morphologies of the nanoparticles were investigated by dynamic light scattering (DLS), nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), atomic force microscopy (AFM), proton nuclear magnetic resonance ((1)H NMR), and fluorescence spectroscopy as a function of the volume fraction of the copolymer hydrophobic block, copolymer concentration, stirring speed, and solvent polarity. The DLS measurements and TEM images showed that the hydrodynamic radius (Rh) of the LCMs obtained in water increases with the copolymer concentration. Apart from that, increasing the stirring speed leads to polydispersed aggregations of the LCMs. On the other hand, in acetone, the copolymers self-assembled into reverse micelle-type nanoparticles having Rh values of about 6 nm and micellar aggregates, as revealed the results obtained from DLS, AFM, and (1)H NMR analyses. The variation in micellar structure, that is, conformational inversion from LCMs to reverse micelle-type structures in response to polarity of the solvent, was investigated by apparent water contact angle (WCA) and (1)H NMR analyses. This conformational inversion of the nanoparticles was further confirmed by encapsulation and release of hydrophobic guest molecule, Nile red, characterized by fluorescence spectroscopy. PMID:25974198

  1. Virtual fabrication using directed self-assembly for process optimization in a 14nm DRAM

    NASA Astrophysics Data System (ADS)

    Kamon, Mattan; Akbulut, Mustafa; Yan, Yiguang; Faken, Daniel; Pap, Andras; Allampalli, Vasanth; Greiner, Ken; Fried, David

    2016-03-01

    For Directed Self-Assembly (DSA) to be deployed in advanced semiconductor technologies, it must reliably integrate into a full process flow. We present a methodology for using virtual fabrication software, including predictive DSA process models, to develop and analyze the replacement of SAQP patterning with LiNe chemoepitaxy on a 14nm DRAM process. To quantify the impact of this module replacement, we investigate a key process yield metric for DRAM: interface area between the capacitor contacts and transistor source/drain. Additionally, we demonstrate virtual fabrication of the DRAM cell's hexagonally-packed capacitors patterned with an array of diblock copolymer cylinders in place of LE4 patterning.

  2. Polymer adsorption-driven self-assembly of nanostructures.

    PubMed

    Chakraborty, A K; Golumbfskie, A J

    2001-01-01

    Driven by prospective applications, there is much interest in developing materials that can perform specific functions in response to external conditions. One way to design such materials is to create systems which, in response to external inputs, can self-assemble to form structures that are functionally useful. This review focuses on the principles that can be employed to design macromolecules that when presented with an appropriate two-dimensional surface, will self-assemble to form nanostructures that may be functionally useful. We discuss three specific examples: (a) biomimetic recognition between polymers and patterned surfaces. (b) control and manipulation of nanomechanical motion generated by biopolymer adsorption and binding, and (c) creation of patterned nanostructuctures by exposing molten diblock copolymers to patterned surfaces. The discussion serves to illustrate how polymer sequence can be manipulated to affect self-assembly characteristics near adsorbing surfaces. The focus of this review is on theoretical and computational work aimed toward elucidating the principles underlying the phenomena pertinent to the three topics noted above. However, synergistic experiments are also described in the appropriate context.

  3. Polymer adsorption-driven self-assembly of nanostructures.

    PubMed

    Chakraborty, A K; Golumbfskie, A J

    2001-01-01

    Driven by prospective applications, there is much interest in developing materials that can perform specific functions in response to external conditions. One way to design such materials is to create systems which, in response to external inputs, can self-assemble to form structures that are functionally useful. This review focuses on the principles that can be employed to design macromolecules that when presented with an appropriate two-dimensional surface, will self-assemble to form nanostructures that may be functionally useful. We discuss three specific examples: (a) biomimetic recognition between polymers and patterned surfaces. (b) control and manipulation of nanomechanical motion generated by biopolymer adsorption and binding, and (c) creation of patterned nanostructuctures by exposing molten diblock copolymers to patterned surfaces. The discussion serves to illustrate how polymer sequence can be manipulated to affect self-assembly characteristics near adsorbing surfaces. The focus of this review is on theoretical and computational work aimed toward elucidating the principles underlying the phenomena pertinent to the three topics noted above. However, synergistic experiments are also described in the appropriate context. PMID:11326074

  4. Bacterial resistance of self-assembled surfaces using PPOm-b-PSBMAn zwitterionic copolymer - concomitant effects of surface topography and surface chemistry on attachment of live bacteria.

    PubMed

    Hsiao, Sheng-Wen; Venault, Antoine; Yang, Hui-Shan; Chang, Yung

    2014-06-01

    Three well-defined diblock copolymers made of poly(sulfobetaine methacrylate) (poly(SBMA)) and poly(propylene oxide) (PPO) groups were synthesized by atom transfer radical polymerization (ATRP) method. They were physically adsorbed onto three types of surfaces having different topography, including smooth flat surface, convex surface, and indented surface. Chemical state of surfaces was characterized by XPS while the various topographies were examined by SEM and AFM. Hydrophilicity of surfaces was dependent on both the surface chemistry and the surface topography, suggesting that orientation of copolymer brushes can be tuned in the design of surfaces aimed at resisting bacterial attachment. Escherichia coli, Staphylococcus epidermidis, Streptococcus mutans and Escherichia coli with green fluorescent protein (E. coli GFP) were used in bacterial tests to assess the resistance to bacterial attachment of poly(SBMA)-covered surfaces. Results highlighted a drastic improvement of resistance to bacterial adhesion with the increasing of poly(SBMA) to PPO ratio, as well as an important effect of surface topography. The chemical effect was directly related to the length of the hydrophilic moieties. When longer, more water could be entrapped, leading to improved anti-bacterial properties. The physical effect impacted on the orientation of the copolymer brushes, as well as on the surface contact area available. Convex surfaces as well as indented surfaces wafer presented the best resistance to bacterial adhesion. Indeed, bacterial attachment was more importantly reduced on these surfaces compared with smooth surfaces. It was explained by the non-orthogonal orientation of copolymer brushes, resulting in a more efficient surface coverage of zwitterionic molecules. This work suggests that not only the control of surface chemistry is essential in the preparation of surfaces resisting bacterial attachment, but also the control of surface topography and orientation of antifouling

  5. Bacterial resistance of self-assembled surfaces using PPOm-b-PSBMAn zwitterionic copolymer - concomitant effects of surface topography and surface chemistry on attachment of live bacteria.

    PubMed

    Hsiao, Sheng-Wen; Venault, Antoine; Yang, Hui-Shan; Chang, Yung

    2014-06-01

    Three well-defined diblock copolymers made of poly(sulfobetaine methacrylate) (poly(SBMA)) and poly(propylene oxide) (PPO) groups were synthesized by atom transfer radical polymerization (ATRP) method. They were physically adsorbed onto three types of surfaces having different topography, including smooth flat surface, convex surface, and indented surface. Chemical state of surfaces was characterized by XPS while the various topographies were examined by SEM and AFM. Hydrophilicity of surfaces was dependent on both the surface chemistry and the surface topography, suggesting that orientation of copolymer brushes can be tuned in the design of surfaces aimed at resisting bacterial attachment. Escherichia coli, Staphylococcus epidermidis, Streptococcus mutans and Escherichia coli with green fluorescent protein (E. coli GFP) were used in bacterial tests to assess the resistance to bacterial attachment of poly(SBMA)-covered surfaces. Results highlighted a drastic improvement of resistance to bacterial adhesion with the increasing of poly(SBMA) to PPO ratio, as well as an important effect of surface topography. The chemical effect was directly related to the length of the hydrophilic moieties. When longer, more water could be entrapped, leading to improved anti-bacterial properties. The physical effect impacted on the orientation of the copolymer brushes, as well as on the surface contact area available. Convex surfaces as well as indented surfaces wafer presented the best resistance to bacterial adhesion. Indeed, bacterial attachment was more importantly reduced on these surfaces compared with smooth surfaces. It was explained by the non-orthogonal orientation of copolymer brushes, resulting in a more efficient surface coverage of zwitterionic molecules. This work suggests that not only the control of surface chemistry is essential in the preparation of surfaces resisting bacterial attachment, but also the control of surface topography and orientation of antifouling

  6. Morphological control via chemical and shear forces in block copolymer self-assembly in the lab-on-chip.

    PubMed

    Wang, Chih-Wei; Sinton, David; Moffitt, Matthew G

    2013-02-26

    We investigate the effects of variation in chemical conditions (solvent composition, water content, polymer concentration, and added salt) on the morphologies formed by PS-b-PAA in DMF/dioxane/water mixtures in a two-phase gas-liquid segmented microfluidic reactor. The differences in morphologies between off-chip and on-chip self-assembly and on-chip morphological trends for different chemical conditions are explained by the interplay of top-down shear effects (coalescence and breakup) and bottom-up chemical forces. Using off-chip morphology results, we construct a water content-solvent composition phase diagram showing disordered, sphere, cylinder, and vesicle regions. On-chip morphologies are found to deviate from off-chip morphologies by three identified shear-induced paths: 1) sphere-to-cylinder, and 2) sphere-to-vesicle transitions, both via shear-induced coalescence when initial micelle sizes are small, and 3) cylinder-to-sphere transitions via shear-induced breakup when initial micelle sizes are large (high capillary number conditions). These pathways contribute to the generation of large extended bilayer aggregates uniquely on-chip, at either increased polymer or salt concentrations. Collectively these results demonstrate the broad utility of top-down directed molecular self-assembly in conjunction with chemical forces to control morphology and size of polymer colloids at the nanoscale. PMID:23311400

  7. bFGF interaction and in vivo angiogenesis inhibition by self-assembling sulfonic acid-based copolymers.

    PubMed

    García-Fernández, L; Aguilar, M R; Ochoa-Callejero, L; Abradelo, C; Martínez, A; San Román, J

    2012-01-01

    The antiangiogenic activity of different families of biocompatible and non-toxic polymer drugs based on 2-acrylamido-2-methylpropane sulfonic acid (AMPS) or polymethacrylic derivatives of 5-aminonaphthalen sulfonic acid (MANSA) is analyzed using directed in vivo angiogenesis assay and correlated with in vitro results. These active compounds were copolymerized with butylacrylate (BA) and N-vinylpyrrolidone in order to obtain two families of copolymers with different properties in aqueous media. The most hydrophobic copolymers poly(BA-co-MANSA) and poly(BA-co-AMPS) formed amphiphilic copolymers and presented micellar morphology in aqueous media. This supramolecular organization of the copolymers had a clear effect on bioactivity. Poly(BA-co-MANSA) copolymers showed the best antiangiogenic activity and very low toxicity at relatively low dose, with the possibility to be injected directly in the solid tumors alone or in combination with other therapeutic agents such as anti-VEGF drugs. The obtained results demonstrate that not only the chemical structure but also the supramolecular organization of the macromolecules plays a key role in the anti-angiogenic activity of these active polymers.

  8. Self-consistent field theory and numerical scheme for calculating the phase diagram of wormlike diblock copolymers.

    PubMed

    Jiang, Ying; Chen, Jeff Z Y

    2013-10-01

    This paper concerns establishing a theoretical basis and numerical scheme for studying the phase behavior of AB diblock copolymers made of wormlike chains. The general idea of a self-consistent field theory is the combination of the mean-field approach together with a statistical weight that describes the configurational properties of a polymer chain. In recent years, this approach has been extensively used for structural prediction of block copolymers, based on the Gaussian-model description of a polymer chain. The wormlike-chain model has played an important role in the description of polymer systems, covering the semiflexible-to-rod crossover of the polymer properties and the highly stretching regime, which the Gaussian-chain model has difficulties to describe. Although the idea of developing a self-consistent field theory for wormlike chains could be traced back to early development in polymer physics, the solution of such a theory has been limited due to technical difficulties. In particular, a challenge has been to develop a numerical algorithm enabling the calculation of the phase diagram containing three-dimensional structures for wormlike AB diblock copolymers. This paper describes a computational algorithm that combines a number of numerical tricks, which can be used for such a calculation. A phase diagram covering major parameter areas was constructed for the wormlike-chain system and reported by us, where the ratio between the total length and the persistence length of a constituent polymer is suggested as another tuning parameter for the microphase-separated structures; all detailed technical issues are carefully addressed in the current paper. PMID:24229202

  9. Self-consistent field theory and numerical scheme for calculating the phase diagram of wormlike diblock copolymers

    NASA Astrophysics Data System (ADS)

    Jiang, Ying; Chen, Jeff Z. Y.

    2013-10-01

    This paper concerns establishing a theoretical basis and numerical scheme for studying the phase behavior of AB diblock copolymers made of wormlike chains. The general idea of a self-consistent field theory is the combination of the mean-field approach together with a statistical weight that describes the configurational properties of a polymer chain. In recent years, this approach has been extensively used for structural prediction of block copolymers, based on the Gaussian-model description of a polymer chain. The wormlike-chain model has played an important role in the description of polymer systems, covering the semiflexible-to-rod crossover of the polymer properties and the highly stretching regime, which the Gaussian-chain model has difficulties to describe. Although the idea of developing a self-consistent field theory for wormlike chains could be traced back to early development in polymer physics, the solution of such a theory has been limited due to technical difficulties. In particular, a challenge has been to develop a numerical algorithm enabling the calculation of the phase diagram containing three-dimensional structures for wormlike AB diblock copolymers. This paper describes a computational algorithm that combines a number of numerical tricks, which can be used for such a calculation. A phase diagram covering major parameter areas was constructed for the wormlike-chain system and reported by us, where the ratio between the total length and the persistence length of a constituent polymer is suggested as another tuning parameter for the microphase-separated structures; all detailed technical issues are carefully addressed in the current paper.

  10. Nanoimprint-assisted directed self-assembly of low-molecular weight block copolymers: a route for 3D and multilevel nanostructures

    NASA Astrophysics Data System (ADS)

    Simão, C.; Khunsin, W.; Kehagias, N.; Francone, A.; Zelsmann, M.; Morris, M. A.; Sotomayor Torres, C. M.

    2014-06-01

    Multilevel controllable nanoimprint driven molecular orientation has been obtained in thin films of block copolymer polystyrene-b-polyethylene oxide( PS-b-PEO) by means of solvent vapours assisted nanoimprint lithography (SAIL). The NIL setup using solvent vapours was capable of imprinting nanoscale features over a large area and simultaneously annealing PS-b-PEO thin films. A line pattern stamp was replicated in the BCP film in over a large area with a high resolution registry, and was also observed that the PS-b-PEO film exhibited microphase segregation in the residual layer exhibits a nanodot array from showing hexagonally packed PEO dots in the PS matrix, with a diameter of 20 nm with 40 nm pitch. The order of the hexagonally arranged nanodot lattice seen in the nanodots array was quantified from SEM images using by the opposite partner method from SEM images analysis and compared with to conventionally solvent annealed BCP films, demonstrating an improvement of the ordering of up to 50%. Grazing-incidence small-angle X-ray scattering (GISAXS) study demonstrates the excellent fidelity of the pattern transfer and confirms the periodicity of the BCP in the mesas. In addition, applying the SAIL methodology to BCP thin films in nanopatterned silsequioxane substrates, it was possible to obtain multilevel structures decorated with the BCP microphase segregation. The SAIL technique is a versatile and robust platform to obtain complex high density periodic nanostructures, particularly for second generation block copolymers directed self-assembly.

  11. Integration of nanoimprint lithography with block copolymer directed self-assembly for fabrication of a sub-20 nm template for bit-patterned media.

    PubMed

    Yang, XiaoMin; Xiao, Shuaigang; Hu, Wei; Hwu, Justin; van de Veerdonk, René; Wago, Koichi; Lee, Kim; Kuo, David

    2014-10-01

    We propose a novel strategy to integrate the nanoimprint lithography (NIL) technique with directed self-assembly (DSA) of block copolymer (BCP) for providing a robust, high-yield, and low-defect-density path to sub-20 nm dense patterning. Through this new NIL-DSA method, UV nanoimprint resist is used as the DSA copolymer pre-pattern to expedite the DSA process. This method was successfully used to fabricate a 1.0 Td in(-2) servo-integrated nanoimprint template for bit-patterned media (BPM) application. The fabricated template was used for UV-cure NIL on a 2.5-inch disk. The imprint resist patterns were further transferred into the underlying CoCrPt magnetic layer through a carbon hard mask using ion beam etching. The successful integration of the NIL technique with the DSA process provides us with a new route to BPM nanofabrication, which includes the following three major advantages: (1) a simpler and faster way to implement DSA for high-density BPM patterning; (2) a novel method for fabricating a high-quality dot pattern template through an iterative imprint-DSA-template procedure; and (3) an uncomplicated integration scheme for implementing non-periodic servo features with BCP patterns, thus accelerating the transition of moving the DSA technique from laboratory research to the BPM manufacturing environment.

  12. Integration of nanoimprint lithography with block copolymer directed self-assembly for fabrication of a sub-20 nm template for bit-patterned media.

    PubMed

    Yang, XiaoMin; Xiao, Shuaigang; Hu, Wei; Hwu, Justin; van de Veerdonk, René; Wago, Koichi; Lee, Kim; Kuo, David

    2014-10-01

    We propose a novel strategy to integrate the nanoimprint lithography (NIL) technique with directed self-assembly (DSA) of block copolymer (BCP) for providing a robust, high-yield, and low-defect-density path to sub-20 nm dense patterning. Through this new NIL-DSA method, UV nanoimprint resist is used as the DSA copolymer pre-pattern to expedite the DSA process. This method was successfully used to fabricate a 1.0 Td in(-2) servo-integrated nanoimprint template for bit-patterned media (BPM) application. The fabricated template was used for UV-cure NIL on a 2.5-inch disk. The imprint resist patterns were further transferred into the underlying CoCrPt magnetic layer through a carbon hard mask using ion beam etching. The successful integration of the NIL technique with the DSA process provides us with a new route to BPM nanofabrication, which includes the following three major advantages: (1) a simpler and faster way to implement DSA for high-density BPM patterning; (2) a novel method for fabricating a high-quality dot pattern template through an iterative imprint-DSA-template procedure; and (3) an uncomplicated integration scheme for implementing non-periodic servo features with BCP patterns, thus accelerating the transition of moving the DSA technique from laboratory research to the BPM manufacturing environment. PMID:25189432

  13. Effect of PEG-PLLA diblock copolymer on macroporous PLLA scaffolds by thermally induced phase separation.

    PubMed

    Kim, Hyun Do; Bae, Eun Hee; Kwon, Ick Chan; Pal, Ravindra Ramsurat; Nam, Jae Do; Lee, Doo Sung

    2004-05-01

    A regular and highly interconnected macroporous poly(L-lactic acid) (PLLA) scaffold was fabricated from a PLLA-dioxane-water ternary system with added polyethylene glycol (PEG)-PLLA diblock using thermally induced phase separation (TIPS). The morphology of the scaffold was investigated in detail by controlling the following TIPS parameters: quenching temperature, aging time, polymer concentration, molecular structure, and diblock concentration. The phase diagram was assessed visually on the basis of the turbidity. The cloud-point curve shifted to higher temperatures with increasing PEG content in the additives (PEG-PLLA diblocks), due to a stronger interaction between PEG and water in solution. The addition of diblock series (0.5 wt% in solution) stabilized interconnections of pores at a later stage without segregation or sedimentation. The pore size of the scaffold could be easily controlled in the range 50-300 microm. A macroporous PLLA scaffold was used to study an MC3T3-E1 cell (an osteoblast-like cell) culture. The cells successfully proliferated in the PLLA scaffold in the presence of added PEG-PLLA diblock for 4 weeks.

  14. Effects of Bile Salt Sodium Glycodeoxycholate on the Self-Assembly of PEO-PPO-PEO Triblock Copolymer P123 in Aqueous Solution.

    PubMed

    Bayati, Solmaz; Galantini, Luciano; Knudsen, Kenneth D; Schillén, Karin

    2015-12-22

    A comprehensive experimental study on the interaction between the PEO-PPO-PEO block copolymer P123 (EO20PO68EO20) and the anionic bile salt sodium glycodeoxycholate (NaGDC) in water has been performed. The work was aimed at investigating the suitability of using P123 as bile salt sequestrant beside the fundamental aspects of PEO-PPO-PEO block copolymer-bile salt interactions. Various experimental techniques including dynamic and static light scattering, small-angle X-ray scattering, and differential scanning calorimetry (DSC) were employed in combination with electrophoretic mobility measurements. The system was investigated at a constant P123 concentration of 1.74 mM and with varying bile salt concentrations up to approximately 250 mM NaGDC (or a molar ratio n(NaGDC)/n(P123) = 144). In the mixed P123-NaGDC solutions, the endothermic process related to the self-assembly of P123 was observed to gradually decrease in enthalpy and shift to higher temperatures upon progressive addition of NaGDC. To explain this effect, the formation of NaGDC micelles carrying partly dehydrated P123 unimers was proposed and translated into a stoichiometric model, which was able to fit the experimental DSC data. In the mixtures at low molar ratios, NaGDC monomers associated with the P123 micelle forming a charged "P123 micelle-NaGDC" complex with a dehydrated PPO core. These complexes disintegrated upon increasing NaGDC concentration to form small "NaGDC-P123" complexes visualized as bile salt micelles including one or a few P123 copolymer chains.

  15. Synthesis and self-assembly of amphiphilic poly(acrylicacid)-poly(ɛ-caprolactone)-poly(acrylicacid) block copolymer as novel carrier for 7-ethyl-10-hydroxy camptothecin.

    PubMed

    Djurdjic, Beti; Dimchevska, Simona; Geskovski, Nikola; Petrusevska, Marija; Gancheva, Valerya; Georgiev, Georgi; Petrov, Petar; Goracinova, Katerina

    2015-01-01

    The process of molecular self-assembly plays a crucial role in formulation of polymeric nanoparticulated drug delivery carriers as it creates the possibility for enhanced drug encapsulation and carrier surface engineering. This study aimed to develop a novel self-assembled polymeric micelles for targeted delivery in tumor cells in order to overcome not only various drawbacks of 7-ethyl-10-hydroxy camptothecin (SN-38) but also various reported limitations of other drug delivery systems, especially low drug loading and premature release. Custom synthesized amphiphilic triblock copolymer poly(acrylic acid)-poly(ɛ-caprolactone)-poly(acrylic acid) (PAA(13)-PCL(35)-PAA(13)) was used to prepare kinetically stable micelles by nanoprecipitation and modified nanoprecipitation procedure. Core-shell micelles with diameter of 120-140 nm, negative zeta potential and satisfactory drug loading were produced. The prepared formulations were stable in pH range of 3-12 and in media with NaCl concentration <1 mol/l. Screening mixed level factorial 3 × 2(2) design identified that the process temperature as well as the type of organic solvent has influence upon the efficacy of encapsulation, particle size, dissolution rate and burst release. Fourier transform infrared and differential scanning calorimetry analyses confirmed the entrapment of the active substance into the micelles. The kinetic analysis of dissolution studies revealed that the main mechanism of drug release from the prepared formulations is Fickian diffusion. Growth inhibition studies as well as DNA fragmentation assay performed on SW-480 cell lines clearly demonstrated increased growth inhibition effect and presence of fragmented DNA in cells treated with loaded micelles compared to SN-38 solution. Altogether, these results point out to potential biomedical and clinical application of PAA-PCL-PAA systems in the future.

  16. Novel Diblock Copolymer-Grafted Multiwalled Carbon Nanotubes via a combination of Living and Controlled/Living Surface Polymerizations

    SciTech Connect

    Priftis, Dimitrios; Sakellariou, Georgios; Mays, Jimmy; Hadjichristidis, Nikos

    2010-01-01

    Diels Alder cycloaddition reactions were used to functionalize multiwalled carbon nanotubes (MWNTs) with 1-benzocylcobutene-10-phenylethylene (BCB-PE) or 4-hydroxyethylbenzocyclobutene (BCB-EO). The covalent functionalization of the nanotubes with these initiator precursors was verified by FTIR and thermogravimetric analysis (TGA). After appropriate transformations/additions, the functionalized MWNTs were used for surface initiated anionic and ring opening polymerizations of ethylene oxide and e-caprolactone (e-CL), respectively. The OH-end groups were transformed to isopropylbromide groups by reaction with 2-bromoisobutyryl bromide, for subsequent atom transfer radical polymerization of styrene or 2-dimethylaminoethyl methacrylate to afford the final diblock copolymers. 1H NMR, differential scanning calorimetry (DSC), TGA, and transmission electron microscopy (TEM) were used for the characterization of the nanocomposite materials. TEM images showed the presence of a polymer layer around the MWNTs as well as the dissociation of MWNT bundles. Consequently, this general methodology, employing combinations of different polymerization techniques, increases the diversity of diblocks that can be grafted from MWNTs.

  17. Fluctuation Effects in AB/A/B Diblock Copolymer-Homopolymer Ternary Mixtures near the Lamellar-Disorder Transition

    NASA Astrophysics Data System (ADS)

    Gillard, Timothy; Hickey, Robert; Habersberger, Brian; Lodge, Timothy; Bates, Frank

    2015-03-01

    Fluctuations profoundly influence the phase behavior of block polymer-based soft materials. In ternary blends of an AB diblock copolymer with A- and B-type homopolymers, fluctuations destroy a mean-field predicted higher-order multicritical Lifshitz point and lead to the formation of the technologically important polymeric bicontinuous microemulsion phase (B μE). Here we report a fascinating change in character of the lamellar-to-disorder phase transition as the composition of homopolymer in the ternary blend is increased from zero (neat diblock) to the onset of the B μE channel. As the B μE channel is approached, the transition exhibits increasingly second-order character with the development of large-scale fluctuating smectic correlations in the disordered state near the transition. This change in character of the transition is documented with a combination of scattering, optical transmission, rheology, and TEM experiments in model blends of poly(cyclohexylethylene- b-ethylene) with the constituent homopolymers.

  18. Minimal Topographic Surfaces for Directed Self-assembly of Cylinder-forming Block Copolymer Thin films with Lateral Order

    NASA Astrophysics Data System (ADS)

    Choi, Jaewon; Carter, Kenneth; Russell, Thomas

    2015-03-01

    Controlling the orientation of cylinder-forming block copolymer microdomains in thin films is important for block copolymer applications such as lithographic masks and bit patterned media. However, it is still challenging to produce perfectly ordered cylindrical microdomains with perpendicular orientation over very large areas by using topographical surfaces. Here, we investigate the generation of a single hexagonal array of cylindrical poly(styrene-b-ethylene oxide) (PS-b-PEO) microdomains with perpendicular orientation on minimally patterned surfaces over large areas by thermal annealing without a brush layer. Key factors, such as pattern dimension and film thickness, emerge as being critical for inducing a single grain of perpendicular orientation of PS-b-PEO microdomains over large areas. We systematically investigated the effect of pattern dimension on the generation of perpendicular cylindrical PS-b-PEO microdomains. Furthermore, by solvent vapor annealing, we produced a single grain of parallel cylindrical PS-b-PEO microdomains over large areas on the same minimally patterned surfaces. This simple approach can be an alternative route to achieve the desired orientation of cylinder-forming block copolymer microdomains over large areas.

  19. Graft-through Synthesis and Assembly of Janus Bottlebrush Polymers from A-Branch-B Diblock Macromonomers.

    PubMed

    Kawamoto, Ken; Zhong, Mingjiang; Gadelrab, Karim R; Cheng, Li-Chen; Ross, Caroline A; Alexander-Katz, Alfredo; Johnson, Jeremiah A

    2016-09-14

    We report the synthesis of Janus bottlebrush block copolymers by graft-through polymerization of branched diblock macromonomers. Self-assembly of the bottlebrushes was characterized by small-angle X-ray scattering, atomic force microscopy, and scanning electron microscopy. Phase separation and packing models of the bottlebrushes were computed, and their self-assembly behavior was corroborated experimentally in bulk and in thin films. Lamellar, hexagonal cylinder, and gyroid phases were observed and modeled. The A-branch-B Janus bottlebrush structure provides several unique advantages in the context of bottlebrush polymer assembly, including access to the first examples of gyroid phases.

  20. Graft-through Synthesis and Assembly of Janus Bottlebrush Polymers from A-Branch-B Diblock Macromonomers.

    PubMed

    Kawamoto, Ken; Zhong, Mingjiang; Gadelrab, Karim R; Cheng, Li-Chen; Ross, Caroline A; Alexander-Katz, Alfredo; Johnson, Jeremiah A

    2016-09-14

    We report the synthesis of Janus bottlebrush block copolymers by graft-through polymerization of branched diblock macromonomers. Self-assembly of the bottlebrushes was characterized by small-angle X-ray scattering, atomic force microscopy, and scanning electron microscopy. Phase separation and packing models of the bottlebrushes were computed, and their self-assembly behavior was corroborated experimentally in bulk and in thin films. Lamellar, hexagonal cylinder, and gyroid phases were observed and modeled. The A-branch-B Janus bottlebrush structure provides several unique advantages in the context of bottlebrush polymer assembly, including access to the first examples of gyroid phases. PMID:27580971

  1. Ordered, microphase-separated, noncharged-charged diblock copolymers via the sequential ATRP of styrene and styrenic imidazolium monomers

    SciTech Connect

    Shi, ZX; Newell, BS; Bailey, TS; Gin, DL

    2014-12-15

    A series of imidazolium-based noncharged-charged diblock copolymers (1) was synthesized by the direct, sequential ATRP of styrene and styrenic imidazolium bis(trifluoromethyl)sulfonamide monomers with methyl, n-butyl, and n-decyl side-chains. Small-angle X-ray scattering studies on initial examples of 1 with a total of 50 repeat units and styrene:imidazolium-styrene repeat unit ratios of 25:25, 20:30, and 15:35 showed that their ability to form ordered nanostructures (i.e., sphere and cylinder phases) in their neat states depends on both the block ratio and the length of the alkyl side-chain on the imidazolium monomer. To our knowledge, the synthesis of imidazolium-based BCPs that form ordered, phase-separated nanostructures via direct ATRP of immiscible co-monomers is unprecedented. (C) 2014 Elsevier Ltd. All rights reserved.

  2. Highly symmetric patchy multicompartment nanoparticles from the self-assembly of ABC linear terpolymers in C-selective solvents.

    PubMed

    Kong, Weixin; Jiang, Wei; Zhu, Yutian; Li, Baohui

    2012-08-14

    Multicompartment micelles, especially those with highly symmetric surfaces such as patchy-like, patchy, and Janus micelles, have tremendous potential as building blocks of hierarchical multifunctional nanomaterials. One of the most versatile and powerful methods to obtain patchy multicompartment micelles is by the solution-state self-assembly of linear triblock copolymers. In this article, we applied the simulated annealing method to study the self-assembly of ABC linear terpolymers in C-selective solvents. Simulations predict a variety of patchy and patchy-like multicompartment micelles with high symmetry and also yield a detailed phase diagram to reveal how to control the patchy multicompartment micelle morphologies precisely. The phase diagram demonstrates that the internal segregated micellar structure depends on the ratio between the volume fractions of the two solvophobic blocks and their incompatibility, whereas the overall micellar shape depends on the copolymer concentration. The relationship between the interfacial energy, stretching energy of chains and the micellar morphology, micellar morphological transition are elucidated by computing the average contact number among the species, the mean square end-to-end distances of the whole terpolymers, the AB blocks in the terpolymers, the AB diblock copolymers, and angle distribution of terpolymers. The anchoring effect of the solvophilic C block on micellar structures is also examined by comparing the morphologies formed from ABC terpolymers and AB diblock copolymers. PMID:22804956

  3. Effects of thermal fluctuations and block copolymers compositions on defects in directed self-assembly hole shrink process

    NASA Astrophysics Data System (ADS)

    Fukawatase, Ken; Yoshimoto, Kenji; Ohshima, Masahiro

    2015-06-01

    We investigated the two critical defects on the directed self-assembly hole shrink process, i.e., polystyrene (PS) residue and placement error, by performing dynamic simulations with the Ohta-Kawasaki model. In the simulations, the thermal noise was added to generate stochastic variations in shape and location of the poly(methyl methacrylate) (PMMA) cylindrical domains. For the PS residue issue, we found that the volume fraction of the PMMA minor block, fPMMA, was an effective parameter, and that the PS residue could be minimized by increasing fPMMA from a conventional value of 0.30 to 0.40. On the other hand, the placement error of the PMMA cylindrical domain was affected little by the change in shape and size of the guide hole and by the connectivity to the guide bottom wall. It is speculated that the interfacial stiffness between the PMMA and PS domains would be essential to control the placement error of the PMMA cylindrical domains.

  4. In-situ crosslinkable and self-assembling elastin-like polypeptide block copolymers for cartilage tissue repair

    NASA Astrophysics Data System (ADS)

    Lim, Dong Woo

    This work describes the development of genetically engineered elastin-like polypeptide (ELP) block copolymers as in-situ gelling scaffolds for cartilage tissue repair. The central hypothesis underlying this work is that ELP based biopolymers can be exploited as injectable biomaterials by rapid chemical crosslinking. To prove this, gene libraries encoding ELP having different molecular weights and amino acid sequences, and ELP block copolymers composed of various ELP blocks having diverse amino acid composition, length, and phase transition behavior were synthesized by recursive directional ligation, expressed in E. Coli and purified by inverse transition cycling. Mannich-type condensation of hydroxymethylphosphines (HMPs) with primary- and secondary-amines of amino acids was developed as a new crosslinking method of polypeptides. Chemically crosslinked ELP hydrogels were formed rapidly in an aqueous solution by reaction of ELPs containing periodic lysine residues with HMPs. The crosslinking density and mechanical property of the ELP hydrogels were controlled at the sequence level by varying the Lys density in ELPs composed of mono-block as well as by segregation of the Lys residues within specific blocks of tri-block architectures. Fibroblasts embedded in ELP hydrogels survived the crosslinking process and were viable after in vitro culture for at least 3 days. The DNA content of fibroblasts within the tri-block gels was significantly higher than that in the mono-block gels at day 3. These results suggest that the HMP crosslinked ELP block copolymer hydrogels show finely tuned mechanical properties and different microenvironments for cell viability as well as potential as in-situ crosslinkable biopolymers for tissue repair applications with load-bearing environments. As an alternative, rheological behavior of the ELP block copolymers and ELP-grafted hyaluronic acids (HAs) as artificial extracellular matrices (ECMs) showed that they were thermally aggregated into

  5. Bespoke contrast-matched diblock copolymer nanoparticles enable the rational design of highly transparent Pickering double emulsions

    NASA Astrophysics Data System (ADS)

    Rymaruk, Matthew J.; Thompson, Kate L.; Derry, Matthew J.; Warren, Nicholas J.; Ratcliffe, Liam P. D.; Williams, Clive N.; Brown, Steven L.; Armes, Steven P.

    2016-07-01

    We report the preparation of highly transparent oil-in-water Pickering emulsions using contrast-matched organic nanoparticles. This is achieved via addition of judicious amounts of either sucrose or glycerol to an aqueous dispersion of poly(glycerol monomethacrylate)56-poly(2,2,2-trifluoroethyl methacrylate)500 [PGMA-PTFEMA] diblock copolymer nanoparticles prior to high shear homogenization with an equal volume of n-dodecane. The resulting Pickering emulsions comprise polydisperse n-dodecane droplets of 20-100 μm diameter and exhibit up to 96% transmittance across the visible spectrum. In contrast, control experiments using non-contrast-matched poly(glycerol monomethacrylate)56-poly(benzyl methacrylate)300 [PGMA56-PBzMA300] diblock copolymer nanoparticles as a Pickering emulsifier only produced conventional highly turbid emulsions. Thus contrast-matching of the two immiscible phases is a necessary but not sufficient condition for the preparation of highly transparent Pickering emulsions: it is essential to use isorefractive nanoparticles in order to minimize light scattering. Furthermore, highly transparent oil-in-water-in-oil Pickering double emulsions can be obtained by homogenizing the contrast-matched oil-in-water Pickering emulsion prepared using the PGMA56-PTFEMA500 nanoparticles with a contrast-matched dispersion of hydrophobic poly(lauryl methacrylate)39-poly(2,2,2-trifluoroethyl methacrylate)800 [PLMA39-PTFEMA800] diblock copolymer nanoparticles in n-dodecane. Finally, we show that an isorefractive oil-in-water Pickering emulsion enables fluorescence spectroscopy to be used to monitor the transport of water-insoluble small molecules (pyrene and benzophenone) between n-dodecane droplets. Such transport is significantly less efficient than that observed for the equivalent isorefractive surfactant-stabilized emulsion. Conventional turbid emulsions do not enable such a comparison to be made because the intense light scattering leads to substantial spectral

  6. Facile synthesis for colloid silica cross-linked threadlike micelles based on block copolymer self-assembly.

    PubMed

    Qiao, Zhen-An; Dai, Tianyi; Liu, Yunling; Huo, Qisheng

    2010-12-15

    A new class of silica cross-linked threadlike micelles has been successfully synthesized in the form of stable colloidal suspensions by using block copolymer P123 (EO(20)PO(70)EO(20)) as template, tetramethyl orthosilicate as silica source, and 3-aminopropyltriethoxysilane as stabilizing agent. The aggregation of threadlike hybrid micelles is suppressed by electrostatic repulsion from the positive -NH(3)(+) on the surfaces of threadlike hybrid micelles in strong acidic media. Compared with P123 micelles, the threadlike hybrid micelles have significantly improved stability against dilution. Furthermore, the threadlike hybrid micelles are potential drug carrier and have a higher loading capacity and a slower release rate.

  7. A Robust Cross-Linking Strategy for Block Copolymer Worms Prepared via Polymerization-Induced Self-Assembly

    PubMed Central

    2016-01-01

    A poly(glycerol monomethacrylate) (PGMA) chain transfer agent is chain-extended by reversible addition–fragmentation chain transfer (RAFT) statistical copolymerization of 2-hydroxypropyl methacrylate (HPMA) with glycidyl methacrylate (GlyMA) in concentrated aqueous solution via polymerization-induced self-assembly (PISA). A series of five free-standing worm gels is prepared by fixing the overall degree of polymerization of the core-forming block at 144 while varying its GlyMA content from 0 to 20 mol %. 1H NMR kinetics indicated that GlyMA is consumed much faster than HPMA, producing a GlyMA-rich sequence close to the PGMA stabilizer block. Temperature-dependent oscillatory rheological studies indicate that increasing the GlyMA content leads to progressively less thermoresponsive worm gels, with no degelation on cooling being observed for worms containing 20 mol % GlyMA. The epoxy groups in the GlyMA residues can be ring-opened using 3-aminopropyltriethoxysilane (APTES) in order to prepare core cross-linked worms via hydrolysis-condensation with the siloxane groups and/or hydroxyl groups on the HPMA residues. Perhaps surprisingly, 1H NMR analysis indicates that the epoxy–amine reaction and the intermolecular cross-linking occur on similar time scales. Cross-linking leads to stiffer worm gels that do not undergo degelation upon cooling. Dynamic light scattering studies and TEM analyses conducted on linear worms exposed to either methanol (a good solvent for both blocks) or anionic surfactant result in immediate worm dissociation. In contrast, cross-linked worms remain intact under such conditions, provided that the worm cores comprise at least 10 mol % GlyMA. PMID:27134311

  8. Mesoporous carbon-vanadium oxide films by resol-assisted, triblock copolymer-templated cooperative self-assembly.

    PubMed

    Bhaway, Sarang M; Kisslinger, Kim; Zhang, Lihua; Yager, Kevin G; Schmitt, Andrew L; Mahanthappa, Mahesh K; Karim, Alamgir; Vogt, Bryan D

    2014-11-12

    Unlike other crystalline metal oxides amenable to templating by the combined assemblies of soft and hard chemistries (CASH) method, vanadium oxide nanostructures templated by poly(ethylene oxide-b-1,4-butadiene-b-ethylene oxide) (OBO) triblock copolymers are not preserved upon high temperature calcination in argon. Triconstituent cooperative assembly of a phenolic resin oligomer (resol) and an OBO triblock in a VOCl3 precursor solution enhances the carbon yield and can prevent breakout crystallization of the vanadia during calcination. However, the calcination environment significantly influences the observed mesoporous morphology in these composite thin films. Use of an argon atmosphere in this processing protocol leads to nearly complete loss of carbon-vanadium oxide thin film mesostructure, due to carbothermal reduction of vanadium oxide. This reduction mechanism also explains why the CASH method is not more generally successful for the fabrication of ordered mesoporous vanadia. Carbonization under a nitrogen atmosphere at temperatures up to 800 °C instead enables formation of a block copolymer-templated mesoporous structure, which apparently stems from the formation of a minor fraction of a stabilizing vanadium oxynitride. Thus, judicious selection of the inert gas for template removal is critical for the synthesis of well-defined, mesoporous vanadia-carbon composite films. This resol-assisted assembly method may generally apply to the fabrication of other mesoporous materials, wherein inorganic framework crystallization is problematic due to kinetically competitive carbothermal reduction processes.

  9. Azobenzene photoswitching as a tool for controlling block copolymer self-assembly in dip-coated thin films

    NASA Astrophysics Data System (ADS)

    Vapaavuori, Jaana; Grosrenaud, Josué; Borozenko, Kateryna; Pellerin, Christian; Bazuin, Geraldine; Department of Chemistry, University of Montreal Team

    Understanding how to control the characteristics of microphase-separated block copolymer thin films is of crucial importance for developing nanotechnological applications, such as producing nanoscale lithography templates for the electronics industry. The supramolecular complexation of small molecules selectively to one of the blocks in suitable block copolymers enables modulating the block volume fractions and thereby controlling the type of surface morphology obtained in thin films. In this contribution, we show that the morphology of dip-coated polystyrene-b-poly(4-vinylpyridine) polymer films containing a hydrogen-bonding azobenzene guest can be further controlled using light as an external in situ stimulus during the dip-coating procedure. A change from spherical to cylindrical morphology was demonstrated when the geometry of the azobenzene units was switched by illumination at 365 nm. Film thickness measurements revealed that the thickness of the films can also be tailored by light, since films prepared under irradiation are significantly thicker than non-irradiated ones. The photochemical requirements to guide the choice of azobenzene molecule and the nature of the solvent used will be discussed in view of an optimal material combination for easily directable systems.

  10. Structural color-tunable mesoporous bragg stack layers based on graft copolymer self-assembly for high-efficiency solid-state dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Lee, Chang Soo; Park, Jung Tae; Kim, Jong Hak

    2016-08-01

    We present a facile fabrication route for structural color-tunable mesoporous Bragg stack (BS) layers based on the self-assembly of a cost-effective graft copolymer. The mesoporous BS layers are prepared through the alternating deposition of organized mesoporous-TiO2 (OM-TiO2) and -SiO2 (OM-SiO2) films on the non-conducting side of the counter electrode in dye-sensitized solar cells (DSSCs). The OM layers with controlled porosity, pore size, and refractive index are templated with amphiphilic graft copolymers consisting of poly(vinyl chloride) backbones and poly(oxyethylene methacrylate) side chains, i.e., PVC-g-POEM. The morphology and properties of the structural color-tunable mesoporous BS-functionalized electrodes are characterized using energy filtered transmission electron microscopy (EF-TEM), field emission-scanning electron microscopy (FE-SEM), spectroscopic ellipsometry, and reflectance spectroscopy. The solid-state DSSCs (ssDSSCs) based on a structural color-tunable mesoporous BS counter electrode with a single-component solid electrolyte show an energy conversion efficiency (η) of 7.1%, which is much greater than that of conventional nanocrystalline TiO2-based cells and one of the highest values for N719 dye-based ssDSSCs. The enhancement of η is due to the enhancement of current density (Jsc), attributed to the improved light harvesting properties without considerable decrease in fill factor (FF) or open-circuit voltage (Voc), as confirmed by incident photon-to-electron conversion efficiency (IPCE) and electrochemical impedance spectroscopy (EIS).

  11. A route for industry compatible directed self-assembly of high-chi PS-PDMS block copolymers

    NASA Astrophysics Data System (ADS)

    Böhme, S.; Girardot, C.; Garnier, J.; Arias-Zapata, J.; Arnaud, S.; Tiron, R.; Marconot, O.; Buttard, D.; Zelsmann, M.

    2016-04-01

    In this work, we present completely industry adapted processes for high-chi PS-PDMS block copolymers. DSA was performed on trenches fabricated within standard photolithography stacks and pattern transfer was made by using etching processes similar to those used for gate etching in industry. We propose the alignment of two different PS-PDMS (45.5kg/mol, 16kg/mol) solely by thermal annealing. By adding plasticizer molecules in the high molecular weight BCP (45.5k), we have not only avoided solvent vapor annealing but also reduced significantly the processing time. The properties of the guiding lines and the quality of the final BCP hard mask (CD uniformity, LWR, LER) were investigated.

  12. Nanomechanical properties of solvent cast polystyrene and poly(methyl methacrylate) polymer blends and self-assembled block copolymers

    NASA Astrophysics Data System (ADS)

    Lorenzoni, Matteo; Evangelio, Laura; Nicolet, Célia; Navarro, Christophe; San Paulo, Alvaro; Rius, Gemma; Pérez-Murano, Francesc

    2015-07-01

    The nanomechanical properties of solvent-cast polymer thin films have been investigated using PeakForce™ Quantitative Nanomechanical Mapping. The samples consisted of films of polystyrene (PS) and poly(methyl methacrylate) (PMMA) obtained after the dewetting of toluene solution on a polymeric brush layer. Additionally, we have probed the mechanical properties of poly(styrene-b-methyl methacrylate) block copolymers (BCP) as randomly oriented thin films. The probed films have a critical thickness <50 nm and present features to be resolved <42 nm. The Young's modulus values obtained through several nanoindentation experiments present a good agreement with previous literature, suggesting that the PeakForce™ technique could be crucial for BCP investigations, e.g., as a predictor of the mechanical stability of the different phases.

  13. A Comparative Study of Cellular Uptake and Subcellular Localization of Doxorubicin Loaded in Self-Assemblies of Amphiphilic Copolymers with Pendant Dendron by MDA-MB-231 Human Breast Cancer Cells.

    PubMed

    Viswanathan, Geetha; Hsu, Yu-Hsuan; Voon, Siew Hui; Imae, Toyoko; Siriviriyanun, Ampornphan; Lee, Hong Boon; Kiew, Lik Voon; Chung, Lip Yong; Yusa, Shin-Ichi

    2016-06-01

    Previously synthesized amphiphilic diblock copolymers with pendant dendron moieties have been investigated for their potential use as drug carriers to improve the delivery of an anticancer drug to human breast cancer cells. Diblock copolymer (P71 D3 )-based micelles effectively encapsulate the doxorubicin (DOX) with a high drug-loading capacity (≈95%, 104 DOX molecules per micelle), which is approximately double the amount of drug loaded into the diblock copolymer (P296 D1 ) vesicles. DOX released from the resultant P71 D3 /DOX micelles is approximately 1.3-fold more abundant, at a tumoral acidic pH of 5.5 compared with a pH of 7.4. The P71 D3 /DOX micelles also enhance drug potency in breast cancer MDA-MB-231 cells due to their higher intracellular uptake, by approximately twofold, compared with the vesicular nanocarrier, and free DOX. Micellar nanocarriers are taken up by lysosomes via energy-dependent processes, followed by the release of DOX into the cytoplasm and subsequent translocation into the nucleus, where it exert its cytotoxic effect.

  14. Durability and performance of polystyrene- b -poly(vinylbenzyl trimethylammonium) diblock copolymer and equivalent blend anion exchange membranes

    SciTech Connect

    Vandiver, Melissa A.; Caire, Benjamin R.; Poskin, Zach; Li, Yifan; Seifert, Sönke; Knauss, Daniel M.; Herring, Andrew M.; Liberatore, Matthew W.

    2014-11-01

    Anion exchange membranes (AEM) are solid polymer electrolytes that facilitate ion transport in fuel cells. In this study, a polystyrene-b-poly(vinylbenzyl trimethylammonium) diblock copolymer was evaluated as potential AEM and compared with the equivalent homopolymer blend. The diblock had a 92% conversion of reactive sites with an IEC of 1.72 ± 0.05 mmol g-1, while the blend had a 43% conversion for an IEC of 0.80 ± 0.03 mmol g-1. At 50°C and 95% relative humidity, the chloride conductivity of the diblock was higher, 24–33 mS cm-1, compared with the blend, 1–6 mS cm-1. The diblock displayed phase separation on the length scale of 100 nm, while the blend displayed microphase separation (~10 μm). Mechanical characterization of films from 40 to 90 microns thick found that elasticity and elongation decreased with the addition of cations to the films. At humidified conditions, water acted as a plasticizer to increase film elasticity and elongation. While the polystyrene-based diblock displayed sufficient ionic conductivity, the films' mechanical properties require improvement, i.e., greater elasticity and strength, before use in fuel cells. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015, 132, 41596.

  15. Ellipsometric characterization of ethylene oxide-butylene oxide diblock copolymer adsorption at the air-water interface.

    PubMed

    Blomqvist, B Rippner; Benjamins, J-W; Nylander, T; Arnebrant, T

    2005-05-24

    Ellipsometry was used to determine the adsorbed layer thickness (d) and the surface excess (adsorbed amount, Gamma) of a nonionic diblock copolymer, E(106)B(16), of poly(ethylene oxide) (E) and poly(butylene oxide) (B) at the air-water interface. The results were obtained (i) by the conventional ellipsometric evaluation procedure using the change of both ellipsometric angles Psi and Delta and (ii) by using the change of Delta only and assuming values of the layer thickness. It was demonstrated that the calculated surface excesses from the different methods were in close agreement, independent of the evaluation procedure, with a plateau adsorption of about 2.5 mg/m(2) (400 A(2)/molecule). Furthermore, the amount of E(106)B(16) adsorbed at the air-water interface was found to be almost identical to that adsorbed from aqueous solution onto a hydrophobic solid surface. In addition, the possibility to use combined measurements with H(2)O or D(2)O as substrates to calculate values of d and Gamma was investigated and discussed. We also briefly discuss within which limits the Gibbs equation can be used to determine the surface excess of polydisperse block copolymers. PMID:15896051

  16. Preparation and solution behavior of a thermoresponsive diblock copolymer of poly(ethyl glycidyl ether) and poly(ethylene oxide).

    PubMed

    Ogura, Michihiro; Tokuda, Hiroyuki; Imabayashi, Shin-ichiro; Watanabe, Masayoshi

    2007-08-28

    A thermoresponsive diblock copolymer, poly(ethyl glycidyl ether)-block-poly(ethylene oxide) (PEGE-b-PEO), is synthesized by successive anionic ring-opening polymerization of ethyl glycidyl ether and ethylene oxide using 2-phenoxyethanol as a starting material, and its solution behavior is elucidated in water. In a dilute 1 wt % solution, the temperature-dependent alteration in the polymer hydrodynamic radius (RH) is measured in the temperature range between 5 and 45 degrees C by pulse-gradient spin-echo NMR and dynamic light scattering. The RH value increased with temperature in two steps, where the first step at 15 degrees C corresponds to the core-shell micelle formation and the second step at 40 degrees C corresponds to the aggregation of the core-shell micelles. The formation of the core-shell micelles is supported by the solubilization of a dye (1,6-diphenyl-1,3,5-hexatriene) in the hydrophobic core, which is recognized for a copolymer solution in the temperature range between 20 and 40 degrees C. In this temperature range, the core-shell micelles and the unimers coexist and the fraction of the former gradually increases with increasing temperature, suggesting equilibrium between the micelles and the unimers. In the concentrated regime (40 wt % solution), the solution forms a gel and the small-angle X-ray scattering measurements reveal the successive formation of hexagonal and lamellar liquid crystal phases with increasing temperature.

  17. Directed Self-Assembly of Poly(2-vinylpyridine)-b-polystyrene-b-poly(2-vinylpyridine) Triblock Copolymer with Sub-15 nm Spacing Line Patterns Using a Nanoimprinted Photoresist Template.

    PubMed

    Sun, Zhiwei; Chen, Zhenbin; Zhang, Wenxu; Choi, Jaewon; Huang, Caili; Jeong, Gajin; Coughlin, E Bryan; Hsu, Yautzong; Yang, XiaoMin; Lee, Kim Y; Kuo, David S; Xiao, Shuaigang; Russell, Thomas P

    2015-08-01

    Low molecular weight P2VP-b-PS-b-P2VP triblock copolymer (poly(2-vinlypyridine)-block-polystyrene-block-poly(2-vinylpyridine)] is doped with copper chloride and microphase separated into lamellar line patterns with ultrahigh area density. Salt-doped P2VP-b-PS-b-P2VP triblock copolymer is self-assembled on the top of the nanoimprinted photoresist template, and metallic nanowires with long-range ordering are prepared with platinum-salt infiltration and plasma etching. PMID:26088198

  18. Influence of Architecture on the Behavior of Microphase Separated Block Copolymers

    NASA Astrophysics Data System (ADS)

    Speetjens, Frank W., II

    The nanoscale self-assembly of block copolymers at the ˜10-100 nm length scale has exciting potential applications in next-generation nanolithography and nanotemplating, wherein the feature sizes are governed by the overall copolymer degree of polymerization, N. However, the thermodynamics of block copolymer microphase separation intrinsically limit the size of the smallest features accessible by this approach. This limitation stems from the fact that AB diblock copolymer self-assembly only occurs above a critical N that depends inversely on the magnitude of the effective interaction parameter Chi, which quantifies the energetic repulsions between the dissimilar monomer segments. In this dissertation, we first provide an overview of current routes to smaller periodicities in self-assembled block copolymers. While numerous reports have focused on developing "high Chi" AB diblocks that self-assemble at smaller values of N, the use of complex macromolecular architectures to stabilize ordered block copolymer nanostructures remains relatively unexplored. We report the melt-phase self-assembly behavior of block copolymer bottlebrushes derived from linking the block junctions of low molecular weight, symmetric poly(styrene-b-lactide) (PS-b-PLA) copolymers. These studies quantitatively demonstrate that increasing the bottlebrush backbone degree of polymerization (Nbackbone) reduces the critical PS-b-PLA copolymer arm degree of polymerization (Narm) required for self-assembly into lamellar mesophases by as much as 75%, thus reducing the nanoscale feature sizes accessible with this monomer chemistry. In studies of asymmetric block copolymer bottlebrushes, we observe a less significant reduction in the Narm required for self-assembly into a hexagonally-packed cylinders morphology. These results are rationalized in terms of how monomer concentration fluctuation effects manifest upon ordering a disordered copolymer into either a lamellar or cylindrical morphology. Finally, the

  19. Strongly segregated cubic microdomain morphology consistent with the double gyroid phase in high molecular weight diblock copolymers of polystyrene and poly(dimethylsiloxane)

    SciTech Connect

    Politakos, N.; Ntoukas, E; Avgeropoulos, A; Krikorian, V; Pate, B; Thomas, E; Hill, R

    2009-01-01

    We report the observation of a cubic phase consistent with the double gyroid structure in strongly segregated diblock copolymers of PS-b-PDMS over a volume fraction ({phi}{sub PDMS}) range of {approx}0.39 to 0.45. The samples have respective molecular weights of 127 kg/mol and 73 kg/mol and degree of segregation N{sub {chi}} equal to 187 and 106, respectively, at annealing temperature of 130 C. It is important to highlight that two out of the total four samples investigated, exhibited hexagonally close packed cylindrical domains of PDMS and alternating lamellae at {phi}{sub PDMS} = 0.39 and 0.45, respectively, indicating the possible narrow range of the DG morphology for the specific diblock copolymers.

  20. Self-assembled biomimetic nanoreactors I: Polymeric template

    NASA Astrophysics Data System (ADS)

    McTaggart, Matt; Malardier-Jugroot, Cecile; Jugroot, Manish

    2015-09-01

    The variety of nanoarchitectures made feasible by the self-assembly of alternating copolymers opens new avenues for biomimicry. Indeed, self-assembled structures allow the development of nanoreactors which combine the efficiency of high surface area metal active centres to the effect of confinement due to the very small cavities generated by the self-assembly process. A novel self-assembly of high molecular weight alternating copolymers is characterized in the present study. The self-assembly is shown to organize into nanosheets, providing a 2 nm hydrophobic cavity with a 1D confinement.

  1. Terminal modification on mPEG-dendritic poly-(l)-lysine cationic diblock copolymer for efficient gene delivery.

    PubMed

    Sheng, Ruilong; Xia, Kejia; Chen, Jian; Xu, Yuhong; Cao, Amin

    2013-01-01

    The development of new non-viral gene vectors with the advantages of low cytotoxicity and high gene transfection efficiency is a recent trend in gene therapy. In this work, we developed a series of termini-modified mPEG-dendritic poly-(l)-lysine cationic diblock copolymers (mPEG5k-DPL4-CG) by coupling various cationic groups to the dendritic skeleton. Their molecular structures were characterized by (1)H NMR, and the buffering capacities were measured by acid titration. The plasmid DNA (pDNA) binding affinities of the mPEG5k-DPL4-CG copolymers were investigated by EB displacement and agarose gel retardation assay, and the average particle size and surface charge of the polyplexes were analyzed by dynamic light scattering. Cytotoxicity and in vitro gene transfection were evaluated in several cell lines in the presence and absence of serum by the luciferase expression assay. The results indicated that the low molecular weight polyethylenimine (PEI800) termini-modified copolymer, mPEG5k-DPL4-PEI800, possessed high pDNA binding affinity, low cytotoxicity, and high gene transfection capability which were maintained in the presence of serum (10% FBS). It is worth noting that the gene delivery efficiency of the dendritic poly-(l)-lysine gene vector was enhanced by termini modification of suitable cationic blocks. The low cytotoxicity and serum-resistance properties of mPEG5k-DPL4-PEI800 make it a potential long-circulating gene vector in gene therapy applications.

  2. End Groups of Functionalized Siloxane Oligomers Direct Block-Copolymeric or Liquid-Crystalline Self-Assembly Behavior

    PubMed Central

    2016-01-01

    Monodisperse oligodimethylsiloxanes end-functionalized with the hydrogen-bonding ureidopyrimidinone (UPy) motif undergo phase separation between their aromatic end groups and dimethylsiloxane midblocks to form ordered nanostructures with domain spacings of <5 nm. The self-assembly behavior of these well-defined oligomers resembles that of high degree of polymerization (N)–high block interaction parameter (χ) linear diblock copolymers despite their small size. Specifically, the phase morphology varies from lamellar to hexagonal to body-centered cubic with increasing asymmetry in molecular volume fraction. Mixing molecules with different molecular weights to give dispersity >1.13 results in disorder, showing importance of molecular monodispersity for ultrasmall ordered phase separation. In contrast, oligodimethylsiloxanes end-functionalized with an O-benzylated UPy derivative self-assemble into lamellar nanostructures regardless of volume fraction because of the strong preference of the end groups to aggregate in a planar geometry. Thus, these molecules display more classically liquid-crystalline self-assembly behavior where the lamellar bilayer thickness is determined by the siloxane midblock. Here the lamellar nanostructure is tolerant to molecular polydispersity. We show the importance of end groups in high χ–low N block molecules, where block-copolymer-like self-assembly in our UPy-functionalized oligodimethylsiloxanes relies upon the dominance of phase separation effects over directional end group aggregation. PMID:27054381

  3. Sequentially Different AB Diblock and ABA Triblock Copolymers as P3HT:PCBM Interfacial Compatibilizers for Bulk-Heterojunction Photovoltaics.

    PubMed

    Fujita, Hiroyuki; Michinobu, Tsuyoshi; Fukuta, Seijiro; Koganezawa, Tomoyuki; Higashihara, Tomoya

    2016-03-01

    The P3HT:PCBM (P3HT = poly(3-hexylthiophene, PCBM = phenyl-C61-butyric acid methyl ester) bulk-heterojunction (BHJ) organic photovoltaic (OPV) cells using the AB diblock and ABA triblock copolymers (A = polystyrene derivative with donor-acceptor units (PTCNE) and B = P3HT) as compatibilizers were fabricated. Under the optimized blend ratio of the block copolymer, the power conversion efficiency (PCE) was enhanced. This PCE enhancement was clearly related to the increased short-circuit current (J(sc)) and fill factor (FF). The incident photon to current efficiency (IPCE) measurement suggested that the P3HT crystallinity was improved upon addition of the block copolymers. The increased P3HT crystallinity was consistent with the increased photovoltaic parameters, such as J(sc), FF, and consequently the PCE. The surface energies of these block copolymers suggested their thermodynamically stable location at the interface of P3HT:PCBM, showing the efficient compatibilizing performance, resulting in enlarging and fixing the interfacial area and suppressing the recombination of the generated carriers. Grazing incidence X-ray scattering (GIXS) results confirmed the superior compatibilizing performance of the ABA triblock copolymer when compared to the AB diblock copolymer by the fact that, after blending the ABA triblock copolymer in the P3HT:PCBM system, the enhanced crystallinity of matrix P3HT was observed in the excluded areas of the less-aggregated PCBM domains, changing the P3HT crystalline domain orientation from "edge-on" to "isotropic". This is, to the best of our knowledge, the first sequential effect (AB vs ABA) of the block copolymers on the compatibilizing performances based on BHJ OPV device systems. PMID:26864393

  4. Sequentially Different AB Diblock and ABA Triblock Copolymers as P3HT:PCBM Interfacial Compatibilizers for Bulk-Heterojunction Photovoltaics.

    PubMed

    Fujita, Hiroyuki; Michinobu, Tsuyoshi; Fukuta, Seijiro; Koganezawa, Tomoyuki; Higashihara, Tomoya

    2016-03-01

    The P3HT:PCBM (P3HT = poly(3-hexylthiophene, PCBM = phenyl-C61-butyric acid methyl ester) bulk-heterojunction (BHJ) organic photovoltaic (OPV) cells using the AB diblock and ABA triblock copolymers (A = polystyrene derivative with donor-acceptor units (PTCNE) and B = P3HT) as compatibilizers were fabricated. Under the optimized blend ratio of the block copolymer, the power conversion efficiency (PCE) was enhanced. This PCE enhancement was clearly related to the increased short-circuit current (J(sc)) and fill factor (FF). The incident photon to current efficiency (IPCE) measurement suggested that the P3HT crystallinity was improved upon addition of the block copolymers. The increased P3HT crystallinity was consistent with the increased photovoltaic parameters, such as J(sc), FF, and consequently the PCE. The surface energies of these block copolymers suggested their thermodynamically stable location at the interface of P3HT:PCBM, showing the efficient compatibilizing performance, resulting in enlarging and fixing the interfacial area and suppressing the recombination of the generated carriers. Grazing incidence X-ray scattering (GIXS) results confirmed the superior compatibilizing performance of the ABA triblock copolymer when compared to the AB diblock copolymer by the fact that, after blending the ABA triblock copolymer in the P3HT:PCBM system, the enhanced crystallinity of matrix P3HT was observed in the excluded areas of the less-aggregated PCBM domains, changing the P3HT crystalline domain orientation from "edge-on" to "isotropic". This is, to the best of our knowledge, the first sequential effect (AB vs ABA) of the block copolymers on the compatibilizing performances based on BHJ OPV device systems.

  5. Aligned silicon nanofins via the directed self-assembly of PS-b-P4VP block copolymer and metal oxide enhanced pattern transfer

    NASA Astrophysics Data System (ADS)

    Cummins, Cian; Gangnaik, Anushka; Kelly, Roisin A.; Borah, Dipu; O'Connell, John; Petkov, Nikolay; Georgiev, Yordan M.; Holmes, Justin D.; Morris, Michael A.

    2015-04-01

    `Directing' block copolymer (BCP) patterns is a possible option for future semiconductor device patterning, but pattern transfer of BCP masks is somewhat hindered by the inherently low etch contrast between blocks. Here, we demonstrate a `fab' friendly methodology for forming well-registered and aligned silicon (Si) nanofins following pattern transfer of robust metal oxide nanowire masks through the directed self-assembly (DSA) of BCPs. A cylindrical forming poly(styrene)-block-poly(4-vinyl-pyridine) (PS-b-P4VP) BCP was employed producing `fingerprint' line patterns over macroscopic areas following solvent vapor annealing treatment. The directed assembly of PS-b-P4VP line patterns was enabled by electron-beam lithographically defined hydrogen silsequioxane (HSQ) gratings. We developed metal oxide nanowire features using PS-b-P4VP structures which facilitated high quality pattern transfer to the underlying Si substrate. This work highlights the precision at which long range ordered ~10 nm Si nanofin features with 32 nm pitch can be defined using a cylindrical BCP system for nanolithography application. The results show promise for future nanocircuitry fabrication to access sub-16 nm critical dimensions using cylindrical systems as surface interfaces are easier to tailor than lamellar systems. Additionally, the work helps to demonstrate the extension of these methods to a `high χ' BCP beyond the size limitations of the more well-studied PS-b-poly(methyl methylacrylate) (PS-b-PMMA) system.`Directing' block copolymer (BCP) patterns is a possible option for future semiconductor device patterning, but pattern transfer of BCP masks is somewhat hindered by the inherently low etch contrast between blocks. Here, we demonstrate a `fab' friendly methodology for forming well-registered and aligned silicon (Si) nanofins following pattern transfer of robust metal oxide nanowire masks through the directed self-assembly (DSA) of BCPs. A cylindrical forming poly

  6. Mesoscale simulation of polymer reaction equilibrium: Combining dissipative particle dynamics with reaction ensemble Monte Carlo. II. Supramolecular diblock copolymers

    NASA Astrophysics Data System (ADS)

    Lísal, Martin; Brennan, John K.; Smith, William R.

    2009-03-01

    We present an alternative formulation of the reaction ensemble dissipative particle dynamics (RxDPD) method [M. Lísal, J. K. Brennan, and W. R. Smith, J. Chem. Phys. 125, 16490 (2006)], a mesoscale simulation technique for studying polymer systems in reaction equilibrium. The RxDPD method combines elements of dissipative particle dynamics (DPD) and reaction ensemble Monte Carlo (RxMC), and is primarily targeted for the prediction of the system composition, thermodynamic properties, and phase behavior of reaction equilibrium polymer systems. The alternative formulation of the RxDPD method is demonstrated by considering a supramolecular diblock copolymer (SDC) melt in which two homopolymers, An and Bm, can reversibly bond at terminal binding sites to form a diblock copolymer, AnBm. We consider the effect of the terminal binding sites and the chemical incompatibility between A- and B-segments on the phase behavior. Both effects are found to strongly influence the resulting phase behavior. Due to the reversible nature of the binding, the SDC melt can be treated as the reaction equilibrium system An+Bm⇌AnBm. To simulate the An+Bm⇌AnBm melt, the system contains, in addition to full An, Bm, and AnBm polymers, two fractional polymers: one fractional polymer either fAn or fBm, and one fractional polymer fAnBm, which have fractional particles at the ends of the polymer chains. These fractional particles are coupled to the system via a coupling parameter. The time evolution of the system is governed by the DPD equations of motion, accompanied by random changes in the coupling parameter. Random changes in the coupling parameter mimic forward and reverse reaction steps as in the RxMC approach, and they are accepted with a probability derived from the expanded ensemble grand canonical partition function. Unlike the original RxDPD method that considers coupling of entire fractional polymers to the system, the expanded ensemble framework allows a stepwise coupling, thus

  7. Precision synthesis of poly(ionic liquid)-based block copolymers by cobalt-mediated radical polymerization and preliminary study of their self-assembling properties.

    PubMed

    Coupillaud, Paul; Fèvre, Maréva; Wirotius, Anne-Laure; Aissou, Karim; Fleury, Guillaume; Debuigne, Antoine; Detrembleur, Christophe; Mecerreyes, David; Vignolle, Joan; Taton, Daniel

    2014-02-01

    A poly(ionic liquid)-based block copolymer (PIL BCP), namely, poly(vinyl acetate)-b-poly(N-vinyl-3-butylimidazolium bromide), PVAc-b-PVBuImBr, is synthesized by sequential cobalt-mediated radical polymerization (CMRP). A PVAc precursor is first prepared at 30 °C in bulk by CMRP of VAc, using bis(acetylacetonato)cobalt(II), Co(acac)2, and a radical source (V-70). Growth of PVBuImBr from PVAc-Co(acac)2 is accomplished by CMRP in DMF/MeOH (2:1, v/v). This PIL BCP self-assembles in the sub-micron size range into aggregated core-shell micelles in THF, whereas polymeric vesicles are observed in water, as evidenced by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Thin-solid sample cut from raw materials analyzed by TEM shows an ordered lamellar organization by temperature-dependent synchrotron small-angle X-ray scattering (SAXS). Anion exchange can be accomplished to achieve the corresponding PIL BCP with bis(trifluorosulfonyl)imide (Tf2 N(-)) anions, which also gives rise to an ordered lamellar phase in bulk samples. A complete suppression of SAXS second-order reflection suggests that this compound has a symmetric volume fraction (f ≈ 0.5). SAXS characterization of both di- and triblock PIL BCP analogues previously reported also shows a lamellar phase of very similar behavior, with only an increase of the period by about 8% at 60 °C.

  8. RAFT aqueous dispersion polymerization yields poly(ethylene glycol)-based diblock copolymer nano-objects with predictable single phase morphologies.

    PubMed

    Warren, Nicholas J; Mykhaylyk, Oleksandr O; Mahmood, Daniel; Ryan, Anthony J; Armes, Steven P

    2014-01-22

    A poly(ethylene glycol) (PEG) macromolecular chain transfer agent (macro-CTA) is prepared in high yield (>95%) with 97% dithiobenzoate chain-end functionality in a three-step synthesis starting from a monohydroxy PEG113 precursor. This PEG113-dithiobenzoate is then used for the reversible addition-fragmentation chain transfer (RAFT) aqueous dispersion polymerization of 2-hydroxypropyl methacrylate (HPMA). Polymerizations conducted under optimized conditions at 50 °C led to high conversions as judged by (1)H NMR spectroscopy and relatively low diblock copolymer polydispersities (M(w)/M(n) < 1.25) as judged by GPC. The latter technique also indicated good blocking efficiencies, since there was minimal PEG113 macro-CTA contamination. Systematic variation of the mean degree of polymerization of the core-forming PHPMA block allowed PEG113-PHPMA(x) diblock copolymer spheres, worms, or vesicles to be prepared at up to 17.5% w/w solids, as judged by dynamic light scattering and transmission electron microscopy studies. Small-angle X-ray scattering (SAXS) analysis revealed that more exotic oligolamellar vesicles were observed at 20% w/w solids when targeting highly asymmetric diblock compositions. Detailed analysis of SAXS curves indicated that the mean number of membranes per oligolamellar vesicle is approximately three. A PEG113-PHPMA(x) phase diagram was constructed to enable the reproducible targeting of pure phases, as opposed to mixed morphologies (e.g., spheres plus worms or worms plus vesicles). This new RAFT PISA formulation is expected to be important for the rational and efficient synthesis of a wide range of biocompatible, thermo-responsive PEGylated diblock copolymer nano-objects for various biomedical applications. PMID:24400622

  9. Colloid-Assisted Self-Assembly of Robust, Three-Dimensional Networks of Carbon Nanotubes over Large Areas.

    PubMed

    Jurewicz, Izabela; King, Alice A K; Worajittiphon, Patnarin; Asanithi, Piyapong; Brunner, Eric W; Sear, Richard P; Hosea, Thomas J C; Keddie, Joseph L; Dalton, Alan B

    2010-04-01

    Natural materials, such as bone and spider silk, possess remarkable properties as a result of sophisticated nanoscale structuring. They have inspired the design of synthetic materials whose structure at the nanoscale is carefully engineered or where nanoparticles, such as rods or wires, are self-assembled. Although much work has been done in recent years to create ordered structures using diblock copolymers and template-assisted assembly, no reports describe highly ordered, three-dimensional nanotube arrays within a polymeric material. There are only reports of two-dimensional network structures and structures on micrometer-size scales. Here, we describe an approach that uses plasticized colloidal particles as a template for the self-assembly of carbon nanotubes (CNTs) into ordered, three-dimensional networks. The nanocomposites can be strained by over 200% and still retain high conductivity when relaxed. The method is potentially general and so may find applications in areas such as sensing, photonics, and functional composites. PMID:21590948

  10. Static and dynamic evanescent wave light scattering studies of diblock copolymers adsorbed at the air/water interface

    NASA Astrophysics Data System (ADS)

    Lin, Binhua; Rice, Stuart A.; Weitz, D. A.

    1993-11-01

    We report the results of static and dynamic evanescent wave light scattering studies of a monolayer of a diblock copolymer, polystyrene-b-polymethylmethacrylate (PS-b-PMMA) with weight averaged molecular weights (Mw) of 880 000:290 000 supported at the air/water interface. Our studies probe the interfacial structural and dynamic properties of the monolayer on a length scale which is a fraction of the wavelength of light. The static light scattering studies were carried out as a function of polymer surface coverage and temperature; we also report some preliminary data for the dependence of the static structure function on the relative molecular weights of the PS and PMMA blocks. The complementary dynamic light scattering studies were carried out only as a function of surface coverage. Our data suggest that, upon spreading in the air/water interface, PS-b-PMMA (880:290 K) copolymers form thin disklike aggregates containing about 240 molecules. These data are consistent with a model in which each such aggregate is a ``furry disk'' with a dense core consisting of a layer of collapsed PS blocks atop a thin layer of extended PMMA blocks on the water surface and a brushlike boundary of extended PMMA blocks. The data show that the furry disks diffuse freely when the surface coverage is small, but when the surface coverage is large, they are immobile. Our data also suggest that the furry disks can aggregate to form even larger ``islands'' of disks with an extension greater than 20 μm. The static structure function of the assembly of furry disks is well described, over a wide range of surface coverage, by the structure factor of a two-dimensional hard disk fluid modulated by a two-dimensional hard disk form factor.

  11. Functionalization of Cellulose Nanocrystals with PEG-Metal-Chelating Diblock Copolymers via Controlled Conjugation in Aqueous Medium

    NASA Astrophysics Data System (ADS)

    Guo, Melinda

    The surface of cellulose nanocrystals (CNCs) was successfully functionalized with metal chelating diblock copolymers via HyNic-4FB conjugation. Two types of PEG-metal-chelating block polymers with hydrazinonicotinate acetone hydrazine (HyNic) end groups were synthesized: mPEG-PGlu(DTPA) 18-HyNic and mPEG-PGlu(DTPA)25-HyNic. These two polymers both had a methoxy PEG (M ˜ 2000 Da) block that differed in the mean degree of polymerization of the metal-chelating block. They were characterized by 1H NMR spectroscopy and gel-permeation chromatography (GPC). 4-Formylbenzamide (4FB) groups were introduced onto the surface of CNCs and quantified through their reaction with 2-hydrazinopyridine. The polymers were grafted onto the surface of CNCs via bis-aryl hydrazone bond formation, and the kinetics of this reaction was explored by UV/Vis spectroscopy. The CNCs were also labeled with rhodamine and Alexa FluorRTM 488 dyes. Students in our collaborator's group in Pharmacy are examining applications of these materials as radiotherapeutic agents for cancer treatment.

  12. Face-on and Edge-on Orientation Transition and Self-epitaxial Crystallization of All-conjugated Diblock Copolymer

    NASA Astrophysics Data System (ADS)

    Yang, Hua; Han, Yanchun

    The orientation transition and self-epitaxial crystallization of all-conjugated diblock copolymers poly(p-phenylene)-block-(3-hexylthiophene) (PPP- b-P3HT, BmTn) were systematically investigated by in-situ temperature-resolved two-dimensional grazing incidence X-ray diffraction (2D GIXD) in step-by-step heating and cooling process. B39T18 was selected, the results of 2D GIXD showed that the PPP block crystal adopted a face-on orientation while the crystallization of P3HT block was hindered in as-casted films. Three different molecular orientations transition were obtained in self-epitaxial crystallization circles. First, P3HT crystallize with edge-on during the heating process and induced the PPP blocks crystallized with edge-on during the cooling process. Then, the as-casted film was heated in the melting temperature region of PPP blocks and isothermally crystallized. The partial melting of PPP blocks promoted the P3HT blocks crystallize in a face-on due to the steric limitation effect, PPP blocks crystallized with a face-on via the self-epitaxy during cooling. Furthermore, the face-on transformed to thermodynamically stable edge-on in the melt annealing process. The financial support from the National Basic Research Program of China (973 Program, 2012CB821500) is gratefully acknowledged.

  13. Conformation and structural changes of diblock copolymers with octopus-like micelle formation in the presence of external stimuli

    NASA Astrophysics Data System (ADS)

    Dammertz, K.; Saier, A. M.; Marti, O.; Amirkhani, M.

    2014-04-01

    External stimuli such as vapours and electric fields can be used to manipulate the formation of AB-diblock copolymers on surfaces. We study the conformational variation of PS-b-PMMA (polystyrene-block-poly(methyl methacrylate)), PS and PMMA adsorbed on mica and their response to saturated water or chloroform atmospheres. Using specimens with only partial polymer coverage, new unanticipated effects were observed. Water vapour, a non-solvent for all three polymers, was found to cause high surface mobility. In contrast, chloroform vapour (a solvent for all three polymers) proved to be less efficient. Furthermore, the influence of an additional applied electric field was investigated. A dc field oriented parallel to the sample surface induces the formation of polymer islands which assemble into wormlike chains. Moreover, PS-b-PMMA forms octopus-like micelles (OLMs) on mica. Under the external stimuli mentioned above, the wormlike formations of OLMs are able to align in the direction of the external electric field. In the absence of an electric field, the OLMs disaggregate and exhibit phase separated structures under chloroform vapour.

  14. Nucleation of the BCC phase from disorder in a diblock copolymer melt: Testing approximate theories through simulation

    NASA Astrophysics Data System (ADS)

    Spencer, Russell K. W.; Curry, Paul F.; Wickham, Robert A.

    2016-10-01

    We examine nucleation of the stable body-centred-cubic (BCC) phase from the metastable uniform disordered phase in an asymmetric diblock copolymer melt. Our comprehensive, large-scale simulations of the time-dependent, mean-field Landau-Brazovskii model find that spherical droplets of the BCC phase nucleate directly from disorder. Near the order-disorder transition, the critical nucleus is large and has a classical profile, attaining the bulk BCC phase in an interior that is separated from disorder by a sharp interface. At greater undercooling, the amplitude of BCC order in the interior decreases and the nucleus interface broadens, leading to a diffuse critical nucleus. This diffuse nucleus becomes large as the simulation approaches the disordered phase spinodal. We show that our simulation follows the same nucleation pathway that Cahn and Hilliard found for an incompressible two-component fluid, across the entire metastable region. In contrast, a classical nucleation theory calculation based on the free energy of a planar interface between coexisting BCC and disordered phases agrees with simulation only in the limit of very small undercooling; we can expand this region of validity somewhat by accounting for the curvature of the droplet interface. A nucleation pathway involving a classical droplet persists, however, to deep undercooling in our simulation, but this pathway is energetically unfavourable. As a droplet grows in the simulation, its interface moves with a constant speed, and this speed is approximately proportional to the undercooling.

  15. Self-assembling nanoparticles into holographic nanopatterns

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Heon; Diana, Frédéric S.; Badolato, Antonio; Petroff, Pierre M.; Kramer, Edward J.

    2004-05-01

    We demonstrate a method to self-assemble metal nanoparticles into two-dimensional lattices. Monodisperse cobalt nanoparticles were synthesized within inverse micelles of polystyrene-block-poly(2-vinylpyridine) copolymer in toluene. A periodic hole pattern of photoresist (PR) was fabricated on a GaAs substrate by holographic lithography. The nanoparticles as prepared above were self-assembled onto the PR nanopatterns by dip or spin casting. They were selectively positioned in the holes due to the capillary forces related to the pattern geometry. Our study reveals that self-assembled nanoparticles in two-dimensional lattices can be obtained with a controllable number of particles per lattice point.

  16. Synthesis and Characterization of a Poly(ethylene glycol)-Poly(simvastatin) Diblock Copolymer

    PubMed Central

    Asafo-Adjei, Theodora A.; Dziubla, Thomas D.; Puleo, David A.

    2014-01-01

    Biodegradable polyesters are commonly used as drug delivery vehicles, but their role is typically passive, and encapsulation approaches have limited drug payload. An alternative drug delivery method is to polymerize the active agent or its precursor into a degradable polymer. The prodrug simvastatin contains a lactone ring that lends itself to ring-opening polymerization (ROP). Consequently, simvastatin polymerization was initiated with 5 kDa monomethyl ether poly(ethylene glycol) (mPEG) and catalyzed via stannous octoate. Melt condensation reactions produced a 9.5 kDa copolymer with a polydispersity index of 1.1 at 150 °C up to a 75 kDa copolymer with an index of 6.9 at 250 °C. Kinetic analysis revealed first-order propagation rates. Infrared spectroscopy of the copolymer showed carboxylic and methyl ether stretches unique to simvastatin and mPEG, respectively. Slow degradation was demonstrated in neutral and alkaline conditions. Lastly, simvastatin, simvastatin-incorporated molecules, and mPEG were identified as the degradation products released. The present results show the potential of using ROP to polymerize lactone-containing drugs such as simvastatin. PMID:25431653

  17. Preparation of shell cross-linked nano-objects from hybrid-peptide block copolymers.

    PubMed

    Rodríguez-Hernández, Juan; Babin, Jérôme; Zappone, Bruno; Lecommandoux, Sébastien

    2005-01-01

    Supramolecular structures formed by self-assembly of diblock copolymers in solution are stable over restricted environmental conditions: concentration, temperature, pH, or ion strength among others. To enlarge their domain of application, it appears necessary to develop stabilization strategies. We report here different strategies to stabilize the shell of micelles formed by self-assembly of amphiphilic polydiene-b-polypeptide diblock copolymers. For this purpose, covalent bonds can be formed between either amine or carboxylic acid groups distributed along the soluble peptide block and a cross-linking agent that contains respectively aldehyde or amine functions. Shell stabilization affords systems with unique properties that combine three main advantages: shape persistence, control of the porosity, and stimuli-responsive behavior. The covalent capture of such macromolecular objects has been studied by light scattering, AFM, and conductimetry measurements.

  18. Chemoepitaxial guiding underlayers for density asymmetric and energetically asymmetric diblock copolymers

    NASA Astrophysics Data System (ADS)

    Nation, Benjamin D.; Ludovice, Peter J.; Henderson, Clifford L.

    2016-04-01

    Block copolymers, polymers composed of two or more homopolymers covalently bonded together, are currently being investigated as a method to extend optical lithography due to their ability to microphase separate on small size scales. In order to drive down the size that these BCPs phase separate, the BCPs with larger Flory-Huggin's χparameter needs to be found. Typically these BCPs are composed of more dissimilar homopolymers. However, changing these interactions also changes how BCPs interact with their guiding underlayers. In this paper, several block copolymers are simulated annealing on chemoepitaxial guiding underlayers using a coarse-grained molecular dynamics model in order to explore the effect that either energetic asymmetry or density asymmetry in the BCP have on the pattern registration. It is found that energetic asymmetry in BCPs causes one of the blocks to desire to skin, which shifts the composition of the background region that leads to well aligned vertical lamellae formation. It is hypothesized that moderate footing and undercutting at the underlayer or slight skinning at the free surface can increase the kinetics of defect annihilation by decreasing the distance that bridges must form. The density asymmetric BCPs simulated in this paper have different mechanical properties which lead to straighter sidewalls in the BCP film and potentially lead to better pattern registration. It is hypothesized that altering the compressibility of the blocks can alter equilibrium defectivity.

  19. The Lifshitz line of the disordered and microemulsion phase in an A/B/A-B three component homopolymer/diblock copolymer mixture

    NASA Astrophysics Data System (ADS)

    Pipich, Vitaliy; Schwahn, Dietmar; Willner, Lutz

    2004-07-01

    Thermal composition fluctuations were measured in a homopolymer blend dPB/PS (dPB/dPS) of critical composition mixed with different amounts of a symmetric diblock copolymer dPB-PS (PB and PS being polybutadiene and polystyrene, respectively) with small-angle neutron scattering (SANS). From thermal fluctuations the two-phase boundary, two critical universality classes and the Lifshitz line were derived. The bicontinuous microemulsion phase could be identified by the characteristic peak positions of samples prepared in bulk, block and film contrast. A non-monotonic Lifshitz line (LL) showing a dependence on temperature was found. LL is located in the disordered and bicontinuous microemulsion phase.

  20. On the comparisons between dissipative particle dynamics simulations and self-consistent field calculations of diblock copolymer microphase separation

    NASA Astrophysics Data System (ADS)

    Sandhu, Paramvir; Zong, Jing; Yang, Delian; Wang, Qiang

    2013-05-01

    To highlight the importance of quantitative and parameter-fitting-free comparisons among different models/methods, we revisited the comparisons made by Groot and Madden [J. Chem. Phys. 108, 8713 (1998), 10.1063/1.476300] and Chen et al. [J. Chem. Phys. 122, 104907 (2005), 10.1063/1.1860351] between their dissipative particle dynamics (DPD) simulations of the DPD model and the self-consistent field (SCF) calculations of the "standard" model done by Matsen and Bates [Macromolecules 29, 1091 (1996), 10.1021/ma951138i] for diblock copolymer (DBC) A-B melts. The small values of the invariant degree of polymerization used in the DPD simulations do not justify the use of the fluctuation theory of Fredrickson and Helfand [J. Chem. Phys. 87, 697 (1987), 10.1063/1.453566] by Groot and Madden, and their fitting between the DPD interaction parameters and the Flory-Huggins χ parameter in the "standard" model also has no rigorous basis. Even with their use of the fluctuation theory and the parameter-fitting, we do not find the "quantitative match" for the order-disorder transition of symmetric DBC claimed by Groot and Madden. For lamellar and cylindrical structures, we find that the system fluctuations/correlations decrease the bulk period and greatly suppress the large depletion of the total segmental density at the A-B interfaces as well as its oscillations in A- and B-domains predicted by our SCF calculations of the DPD model. At all values of the A-block volume fractions in the copolymer f (which are integer multiples of 0.1), our SCF calculations give the same sequence of phase transitions with varying χN as the "standard" model, where N denotes the number of segments on each DBC chain. All phase boundaries, however, are shifted to higher χN due to the finite interaction range in the DPD model, except at f = 0.1 (and 0.9), where χN at the transition between the disordered phase and the spheres arranged on a body-centered cubic lattice is lower due to N = 10 in the DPD

  1. Surface characterization of poly(L-lactic acid)-methoxy poly(ethylene glycol) diblock copolymers by static and dynamic contact angle measurements, FTIR, and ATR-FTIR.

    PubMed

    Mert, O; Doganci, E; Erbil, H Y; Demir, A S

    2008-02-01

    The surface composition and surface free energy properties of two types of amphiphilic and semicrystalline diblock copolymers consisting of poly(L-lactic acid) coupled to (methoxy poly(ethylene glycol) (PLLA-MePEG) having differing block lengths of PEG were investigated by using static and dynamic contact angle measurements, transmission Fourier infrared spectroscopy (FTIR), and attenuated total reflection spectroscopy (ATR-FTIR) and compared with results obtained from PLLA and MePEG homopolymers. The contact angle results were evaluated by using the van Oss-Good method (acid-base method), and it was determined that the Lewis base surface tension coefficient (gamma-) of the copolymers increased with an increase of the PEG molar content at the copolymer surface. This result is in good agreement with the transmission FTIR and ATR-FTIR results but not proportional to them, indicating that the surfaces of the copolymers are highly mobile and that the molecular rearrangement takes place upon contact with a polar liquid drop. The dynamic contact angle measurements showed that the strong acid-base interaction between the oxygen atoms in the copolymer backbone of the relatively more hydrophilic PEG segments with the Lewis acidic groups of the polar and hydrogen-bonding water molecules enabled the surface molecules to restructure (conformational change) at the contact area, so that the PEG segments moved upward, whereas the apolar methyl pendant groups of PLLA segments buried downward.

  2. Metallopolymer-peptide conjugates: synthesis and self-assembly of polyferrocenylsilane graft and block copolymers containing a beta-sheet forming Gly-Ala-Gly-Ala tetrapeptide segment.

    PubMed

    Vandermeulen, Guido W M; Kim, Kyoung Taek; Wang, Zhuo; Manners, Ian

    2006-04-01

    We describe the synthesis and self-assembly of two beta-sheet forming metallopolymer-peptide conjugates. The ability of the oligotetrapeptide sequence Gly-Ala-Gly-Ala (GAGA) to form antiparallel beta-sheets was retained in PFS-b-AGAG (PFS = polyferrocenylsilane) and PFS-g-AGAG conjugates with block and graft architectures, respectively. In the solid state, DSC experiments suggest a phase separation between the peptide and PFS domains. In toluene, PFS-b-AGAG interestingly forms a fibrous network which consists of a core containing the self-assembled antiparallel beta-sheet peptide and a corona of organometallic PFS. The self-assembly of the peptide into antiparallel beta-sheets is the driving force for the fiber formation, whereas PFS prevents uncontrolled lateral aggregation of the fibers. The use of an oligopeptide to self-assemble an otherwise random coiled organometallic polymer may be a useful strategy to enhance nanostructure formation. In the cases described here, the conjugates may be used to create nanopatterned ceramics, and the redox properties of the resulting supramolecular aggregates are of significant interest. PMID:16602714

  3. Diblock Copolymer Foams with Adhesive Nano-domains Promote Stem Cell Differentiation

    NASA Astrophysics Data System (ADS)

    Engler, Adam

    2012-02-01

    Adhesions play an important role in cell behavior, including differentiation. Substrates are typically modified with homogeneous protein coatings; extracellular matrices in vivo provide heterogeneous adhesive sites. To mimic adhesive heterogeneity, internal phase emulsion foams were polymerized with polystyrene-polyacrylic acid (PAA) and polystyrene-polyethylene oxide (PEO) to determine if interface de-mixing would form patch-like surfaces. PEO/PAA mole ratios were confirmed by XPS and water contact angle while spatial distribution was measured by chemical force spectroscopy. This method confirmed the presence of patch-like PAA domains. Protein differentially adsorbs on PEO and PAA, so adsorption on foam mixtures was copolymer ratio dependent. Bone marrow-derived mesenchymal stem cell (BMSC) adhesion was ratio dependent, but the highest density and vinculin expression was observed for 75PEO/25PAA. BMSCs appeared to change lineage expression the most on this composition, suggesting that this foam, which exhibits small adhesive PAA domains, may be more biomemetic than uniformally adhesive scaffolds, e.g. 0PEO/100PAA.

  4. Structure and Morphology of PEO-b-PLLA Diblock Copolymer Single Crystal

    NASA Astrophysics Data System (ADS)

    Li, Lingyu

    2005-03-01

    Poly (L-lactide) (PLLA) is an important biodegradable synthetic polymer of interest for medical applications such as controlled drug delivery, resorbable sutures, medical implants, and scaffolds for tissue engineering. Combining PLLA with Poly (ethylene oxide) (PEO) to form a block copolymer PEO-b-PLLA has attracted the interests of material scientists because modifications of physical and chemical properties lead to an accelerated biodegradability. Generally, the rate of degradation strongly depends on the solid state structure of the material therefore clear understanding of crystallization behavior of PEO-b-PLLA is important. Crystallization of PEO-b-PLLA primarily depends on crystallization temperature (Tc). Solution cast thin film crystallization method was used to obtain the PEO-b-PLLA single crystals. At temperatures above Tm of PEO and below that of PLLA, PLLA crystallizes and forms lozenge-shaped single crystal .When cooled to room temperature, PEO begins to crystallize and form fractal-like single crystal on the top of already formed PLLA crystals. However, at temperatures below Tm of PEO, only the fractal-like PEO single crystals were observed. Structure and morphology of this novel single crystal was explored using TEM and AFM.

  5. Langmuir structure of poly (2-vinylpyridine-b-hexyl isocyanate) rod-coil diblock copolymers at the air/water Interface

    NASA Astrophysics Data System (ADS)

    Ahmad, Farhan

    2005-03-01

    We conducted a systematic interfacial study for the complete range (5%-90% of rod mole percentage) of an amphiphilic rod-coil system, poly (hexyl isocyanate)-b-(2-vinylpyridine) at the air/water and air/solid interface. We applied Langmuir balance technique, scanning probe microscopy (SPM), transmission electron microscopy (TEM) and X-ray reflectivity for the complete characterization of the monolayer at the interfaces. The phase isotherms showed the well amphiphilic balance for the diblock copolymers, and the formation of stable monolayers. With the increasing rod content, the consistent increase in the monolayer packing density was observed by the phase isotherms and supported by X-ray reflectivity. SPM and TEM characterization showed their interesting surface morphology according to the varying rod mole percentage in the rod-coil system. Rod mole percentage 5%-15% showed micellar morphology. Rod mole percentage 23%-32% showed distinct and dispersed rods, whereas rod mole percentage 70%-90% showed well packed structure similar to lamella phase. We found the tendency of the diblock system to adopt a packed monomolecular structure has increased by the increasing rod content. This lead us to conclude that it is the hexyl-isocyanate (rod part) that governs mostly the interfacial behavior of rod-coil block copolymers.

  6. Broadband pH-Sensing Organic Transistors with Polymeric Sensing Layers Featuring Liquid Crystal Microdomains Encapsulated by Di-Block Copolymer Chains.

    PubMed

    Seo, Jooyeok; Song, Myeonghun; Jeong, Jaehoon; Nam, Sungho; Heo, Inseok; Park, Soo-Young; Kang, Inn-Kyu; Lee, Joon-Hyung; Kim, Hwajeong; Kim, Youngkyoo

    2016-09-14

    We report broadband pH-sensing organic field-effect transistors (OFETs) with the polymer-dispersed liquid crystal (PDLC) sensing layers. The PDLC layers are prepared by spin-coating using ethanol solutions containing 4-cyano-4'-pentyl-biphenyl (5CB) and a diblock copolymer (PAA-b-PCBOA) that consists of LC-philic block [poly(4-cyano-biphenyl-4-oxyundecyl acrylate) (PCBOA)] and acrylic acid block [poly(acrylic acid) (PAA)]. The spin-coated sensing layers feature of 5CB microdomains (<5 μm) encapsulated by the PAA-b-PCBOA polymer chains. The resulting LC-integrated-OFETs (PDLC-i-OFETs) can detect precisely and reproducibly a wide range of pH with only small amounts (10-40 μL) of analyte solutions in both static and dynamic perfusion modes. The positive drain current change is measured for acidic solutions (pH < 7), whereas basic solutions (pH > 7) result in the negative change of drain current. The drain current trend in the present PDLC-i-OFET devices is explained by the shrinking-expanding mechanism of the PAA chains in the diblock copolymer layers. PMID:27557404

  7. Size selective incorporation of gold nanoparticles in diblock copolymer vesicle wall.

    PubMed

    Xu, Jiangping; Han, Yuanyuan; Cui, Jie; Jiang, Wei

    2013-08-20

    A systematic study is conducted to reveal how far the polymeric vesicle wall can embed gold nanoparticles (AuNPs) with different sizes by combining experiments and self-consistent field simulations. Both the experimental and simulative results indicate that the location of AuNPs in vesicle wall or in spherical micelle is heavily size dependent. Whether the AuNPs enter the vesicle wall or not is determined by a ratio of the diameter of AuNPs (D0) to the thickness of the vesicle wall (d(w0)). The 1-dodecanethiol-coated AuNPs (Au(x)R) with D0/d(w0) < 0.3 will stably disperse in the vesicle walls. For polystyrene-coated AuNPs (Au(x)S), a criterion of D0/d(w0) is proposed based on the phase diagram; i.e., the Au(x)S with D0/d(w0) < 0.5 can be located in the vesicle wall. Otherwise, the Au(x)R and the Au(x)S prefer to locate in spherical micelles. Moreover, the contributions of enthalpy and entropy to the total free energy of the system are respectively calculated to reveal the mechanism of the size selective distribution of AuNPs. The results demonstrate that the escape of AuNPs from vesicle walls and their selective distribution in spherical micelles is an entropy-driven process. Our study provides an important guideline for fabricating nanoparticle/block copolymer hybrid vesicles in dilute solution. PMID:23875535

  8. Phase Change Nanodots Patterning using a Self-Assembled Polymer Lithography and Crystallization Analysis

    SciTech Connect

    Zhang, Y.; Raoux, S; Krebs, D; Krupp, L; Topuria, T; Caldwell, M; Milliron, D; Kellock, A; Rice, P; et. al.

    2008-01-01

    Crystallization behavior of scalable phase change materials can be studied on nanoscale structures. In this paper, high density ordered phase change nanodot arrays were fabricated using the lift-off technique on a self-assembled diblock copolymer template, polystyrene-poly(methyl-methacrylate). The size of the nanodots was less than 15 nm in diameter with 40 nm spacing. This method is quite flexible regarding the patterned materials and can be used on different substrates. The crystallization behavior of small scale phase change nanodot arrays was studied using time-resolved x-ray diffraction, which showed the phase transition for different materials such as Ge15Sb85, Ge2Sb2Te5, and Ag and In doped Sb2Te. The transition temperatures of these nanodot samples were also compared with their corresponding blanket thin films, and it was found that the nanodots had higher crystallization temperatures and crystallized over a broader temperature range.

  9. Radical-cured block copolymer-modified thermosets

    SciTech Connect

    Redline, Erica M.; Francis, Lorraine F.; Bates, Frank S.

    2013-01-10

    Poly(ethylene-alt-propylene)-b-poly(ethylene oxide) (PEP-PEO) diblock copolymers were synthesized and added at 4 wt % to 2,2-bis[4-(2-hydroxy-3-methacryloxypropoxy)phenyl]propane (BisGMA), a monomer that cures using free radical chemistry. In separate experiments, poly(ethylene glycol) dimethacrylate (PEGDMA) was combined as a secondary monomer with BisGMA and the monomers were loaded with 4 wt % PEP-PEO. The diblock copolymers self-assembled into well-dispersed spherical micelles with PEP cores and PEO coronas. No appreciable change in the final extent of cure of the thermosets was caused by the addition of diblock copolymer, except in the case of BisGMA, where the addition of the block copolymer increased extent of cure by 12%. Furthermore, the extent of cure was increased by 29% and 37% with the addition of 25 and 50 wt % PEGDMA, respectively. Elastic modulus and fracture resistance were also determined, and the values indicate that the addition of block copolymers does not significantly toughen the thermoset materials. This finding is surprising when compared with the large increase in fracture resistance seen in block copolymer-modified epoxies, and an explanation is proposed.

  10. Enabling complex nanoscale pattern customization using directed self-assembly

    NASA Astrophysics Data System (ADS)

    Doerk, Gregory S.; Cheng, Joy Y.; Singh, Gurpreet; Rettner, Charles T.; Pitera, Jed W.; Balakrishnan, Srinivasan; Arellano, Noel; Sanders, Daniel P.

    2014-12-01

    Block copolymer directed self-assembly is an attractive method to fabricate highly uniform nanoscale features for various technological applications, but the dense periodicity of block copolymer features limits the complexity of the resulting patterns and their potential utility. Therefore, customizability of nanoscale patterns has been a long-standing goal for using directed self-assembly in device fabrication. Here we show that a hybrid organic/inorganic chemical pattern serves as a guiding pattern for self-assembly as well as a self-aligned mask for pattern customization through cotransfer of aligned block copolymer features and an inorganic prepattern. As informed by a phenomenological model, deliberate process engineering is implemented to maintain global alignment of block copolymer features over arbitrarily shaped, ‘masking’ features incorporated into the chemical patterns. These hybrid chemical patterns with embedded customization information enable deterministic, complex two-dimensional nanoscale pattern customization through directed self-assembly.

  11. A new formulation of curcumin using poly (lactic-co-glycolic acid)—polyethylene glycol diblock copolymer as carrier material

    NASA Astrophysics Data System (ADS)

    Phuong Tuyen Dao, Thi; Hoai Nguyen, To; To, Van Vinh; Ho, Thanh Ha; Nguyen, Tuan Anh; Chien Dang, Mau

    2014-09-01

    The aim of this study is to fabricate a nanoparticle formulation of curcumin using a relatively new vehicle as the matrix polymer: poly(lactic-co-glycolic acid) (PLGA)- polyethylene glycol (PEG) diblock copolymer, and to investigate the effects of the various processing parameters on the characteristics of nanoparticles (NPs). We successfully synthesized the matrix polymer of PLGA-PEG by conjugation of PLGA copolymer with a carboxylate end group to a heterobifunctional amine-PEG-methoxy using N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride and N-hydroxysuccinimide as conjugation crosslinkers. The composition of the formed product (PLGA-PEG) was characterized with 500 MHz 1H nuclear magnetic resonance (NMR). The conjugation of PLGA-PEG was confirmed using Fourier transform infrared (FTIR) spectrum study. This diblock copolymer was then used to prepare the curcumin-loaded NPs through nanoprecipitation technique. With this method, we found that the size distribution depends on the type of solvent, the concentration of polymer and the concentration of surfactant. The particle size and size distribution were measured by dynamic light scattering (DLS). Transmission electron microscope (TEM) and scanning electron microscope (SEM) were used to confirm the size, structure and morphology of the successfully prepared NPs. All of our results showed that they are spherical and quite homologous with mean diameter around of 100-300 nm. Further, we evaluated encapsulation efficiency and some characteristics of NPs through high performance liquid chromatography (HPLC) analyses, zeta-potential measurements and x-ray diffraction studies. The HPLC analyses were performed to determine the amount of curcumin entrapped in NPs. The zeta-potential measurements confirmed the stability of NPs and the successful encapsulation of curcumin within NPs and the x-ray diffraction patterns showed the disordered-crystalline phase of curcumin inside the polymeric matrix.

  12. Confined Cylinders Constructed by a Poly(ethylene oxide)-b-polystyrene Diblock Copolymer and a Blend of Poly(ethylene Oxide)-b-Polystyrene and Polystyrene

    SciTech Connect

    Huang,P.; Guo, Y.; Quirk, R.; Ruan, J.; Lotz, B.; Thomas, E.; Hsiao, B.; Avila-Orta, C.; Sics, I.; Cheng, S.

    2006-01-01

    A poly(ethylene oxide)-b-polystyrene (PEO-b-PS) diblock copolymer with a number average molecular weight of PEO blocks, M{sub N}{sup PEO}=8.8 kg/mol, and a number average molecular weight of PS blocks, M{sub N}{sup PS}=24.5 kg/mol, (volume fraction of the PEO blocks, f{sub PEO}, was 0.26) exhibited a hexagonal cylinder (HC) phase structure. Small angle X-ray scattering results showed that the PEO cylinder diameter was 13.3 nm, and the hexagonal lattice was a=25.1 nm. The cylinder diameter of this HC phase structure was virtually the same as that in the blend system constructed by a PEO-b-PS diblock copolymer (M{sub N}{sup PEO}=8.7 kg/mol and M{sub N}{sup PS}=9.2 kg/mol) and a PS homo-polymer (M{sub N}{sup PS}=4.6 kg/mol) in which the f{sub PEO} was 0.32. The cylinder diameter in this blend sample was 13.7 nm and the hexagonal lattice was a=23.1 nm. Comparing crystal orientation and crystallization behaviors of this PEO-b-PS copolymer with the blend, it was found that the crystal orientation change with respect to crystallization temperature was almost identical. This is attributed to the fact that in both cases the PEO block tethering densities and confinement sizes are very similar. This indicates that when the M{sub N}{sup PS} of PS homo-polymer is lower than the PS blocks, the PS homo-polymer is located inside of the PS matrix rather than at the interface between the PEO and PS in the HC phase structure. On the other hand, a substantial difference of crystallization behaviors was observed between these two samples. The PEO-b-PS copolymer exhibited much more retarded crystallization kinetics than that of the blend. Based on the small angle X-ray scattering results, it was found that in the blend sample, the HC phase structure was not as regularly ordered as that in the PEO-b-PS copolymer, and thus, the HC phase structure contained more defects in the blend. This led to a suggestion that the primary nucleation process in the confined crystallization is a defect

  13. Self-assembled micelles composed of doxorubicin conjugated Y-shaped PEG-poly(glutamic acid)2 copolymers via hydrazone linkers.

    PubMed

    Sui, Bowen; Xu, Hui; Jin, Jian; Gou, Jingxin; Liu, Jingshuo; Tang, Xing; Zhang, Yu; Xu, Jinghua; Zhang, Hongfeng; Jin, Xiangqun

    2014-01-01

    In this work, micelles composed of doxorubicin-conjugated Y-shaped copolymers (YMs) linked via an acid-labile linker were constructed. Y-shaped copolymers of mPEG-b-poly(glutamate-hydrazone-doxorubicin)2 and linear copolymers of mPEG-b-poly(glutamate-hydrazone-doxorubicin) were synthesized and characterized. Particle size, size distribution, morphology, drug loading content (DLC) and drug release of the micelles were determined. Alterations in size and DLC of the micelles could be achieved by varying the hydrophobic block lengths. Moreover, at fixed DLCs, YMs showed a smaller diameter than micelles composed of linear copolymers (LMs). Also, all prepared micelles showed sustained release behaviors under physiological conditions over 72 h. DOX loaded in YMs was released more completely, with 30% more drug released in acid. The anti-tumor efficacy of the micelles against HeLa cells was evaluated by MTT assays, and YMs exhibited stronger cytotoxic effects than LMs in a dose- and time-dependent manner. Cellular uptake studied by CLSM indicated that YMs and LMs were readily taken up by HeLa cells. According to the results of this study, doxorubicin-conjugated Y-shaped PEG-(polypeptide)2 copolymers showed advantages over linear copolymers, like assembling into smaller nanoparticles, faster drug release in acid, which may correspond to higher cellular uptake and enhanced extracellular/intracellular drug release, indicating their potential in constructing nano-sized drug delivery systems.

  14. Reduction of the inflammatory responses against alginate-poly-L-lysine microcapsules by anti-biofouling surfaces of PEG-b-PLL diblock copolymers.

    PubMed

    Spasojevic, Milica; Paredes-Juarez, Genaro A; Vorenkamp, Joop; de Haan, Bart J; Schouten, Arend Jan; de Vos, Paul

    2014-01-01

    Large-scale application of alginate-poly-L-lysine (alginate-PLL) capsules used for microencapsulation of living cells is hampered by varying degrees of success, caused by tissue responses against the capsules in the host. A major cause is proinflammatory PLL which is applied at the surface to provide semipermeable properties and immunoprotection. In this study, we investigated whether application of poly(ethylene glycol)-block-poly(L-lysine hydrochloride) diblock copolymers (PEG-b-PLL) can reduce the responses against PLL on alginate-matrices. The application of PEG-b-PLL was studied in two manners: (i) as a substitute for PLL or (ii) as an anti-biofouling layer on top of a proinflammatory, but immunoprotective, semipermeable alginate-PLL100 membrane. Transmission FTIR was applied to monitor the binding of PEG-b-PLL. When applied as a substitute for PLL, strong host responses in mice were observed. These responses were caused by insufficient binding of the PLL block of the diblock copolymers confirmed by FTIR. When PEG-b-PLL was applied as an anti-biofouling layer on top of PLL100 the responses in mice were severely reduced. Building an effective anti-biofouling layer required 50 hours as confirmed by FTIR, immunocytochemistry and XPS. Our study provides new insight in the binding requirements of polyamino acids necessary to provide an immunoprotective membrane. Furthermore, we present a relatively simple method to mask proinflammatory components on the surface of microcapsules to reduce host responses. Finally, but most importantly, our study illustrates the importance of combining physicochemical and biological methods to understand the complex interactions at the capsules' surface that determine the success or failure of microcapsules applicable for cell-encapsulation.

  15. Block and Graft Copolymers of Polyhydroxyalkanoates

    NASA Astrophysics Data System (ADS)

    Marchessault, Robert H.; Ravenelle, François; Kawada, Jumpei

    2004-03-01

    Polyhydroxyalkanoates (PHAs) were modified for diblock copolymer and graft polymer by catalyzed transesterification in the melt and by chemical synthesis to extend the side chains of the PHAs, and the polymers were studied by transmission electron microscopy (TEM) X-ray diffraction, thermal analysis and nuclear magnetic resonance (NMR). Catalyzed transesterification in the melt is used to produce diblock copolymers of poly[3-hydroxybutyrate] (PHB) and monomethoxy poly[ethylene glycol] (mPEG) in a one-step process. The resulting diblock copolymers are amphiphilic and self-assemble into sterically stabilized colloidal suspensions of PHB crystalline lamellae. Graft polymer was synthesized in a two-step chemical synthesis from biosynthesized poly[3-hydroxyoctanoate-co-3-hydroxyundecenoate] (PHOU) containing ca. 25 mol chains. 11-mercaptoundecanoic acid reacts with the side chain alkenes of PHOU by the radical addition creating thioether linkage with terminal carboxyl functionalities. The latter groups were subsequently transformed into the amide or ester linkage by tridecylamine or octadecanol, respectively, producing new graft polymers. The polymers have different physical properties than poly[3-hydroxyoctanoate] (PHO) which is the main component of the PHOU, such as non-stickiness and higher thermal stability. The combination of biosynthesis and chemical synthesis produces a hybrid thermoplastic elastomer with partial biodegradability.

  16. A novel diblock of copolymer of (monomethoxy poly [ethylene glycol]-oleate) with a small hydrophobic fraction to make stable micelles/polymersomes for curcumin delivery to cancer cells

    PubMed Central

    Erfani-Moghadam, Vahid; Nomani, Alireza; Zamani, Mina; Yazdani, Yaghoub; Najafi, Farhood; Sadeghizadeh, Majid

    2014-01-01

    Curcumin is a potent natural anticancer agent, but its effectiveness is limited by properties such as very low solubility, high rate of degradation, and low rate of absorption of its hydrophobic molecules in vivo. To date, various nanocarriers have been used to improve the bioavailability of this hydrophobic biomaterial. This study investigates the encapsulation of curcumin in a novel nanostructure of monomethoxy poly(ethylene glycol)-oleate (mPEG-OA) and its anticancer effect. Tests were done to determine the critical micelle concentration (CMC), encapsulation efficiency, drug-loading efficiency, and cytotoxicity (against U87MG brain carcinoma cells and HFSF-PI3 cells as normal human fibroblasts) of some nanodevice preparations. The results of fluorescence microscopy and cell-cycle analyses indicated that the in vitro bioavailability of the encapsulated curcumin was significantly greater than that of free curcumin. Cytotoxicity evaluations showed that half maximal inhibitory concentrations of free curcumin and curcumin-loaded mPEG-OA for the U87MG cancer cell line were 48 μM and 24 μM, respectively. The Annexin-V-FLUOS assay was used to quantify the apoptotic effect of the prepared nanostructures. Apoptosis induction was observed in a dose-dependent manner after curcumin-loaded mPEG-OA treatments. Two common self-assembling structures, micelles and polymersomes, were observed by atomic force microscopy and dynamic light scattering, and the abundance of each structure was dependent on the concentration of the diblock copolymer. The mPEG-OA micelles had a very low CMC (13.24 μM or 0.03 g/L). Moreover, atomic force microscopy and dynamic light scattering showed that the curcumin-loaded mPEG-OA polymersomes had very stable structures, and at concentrations 1,000 times less than the CMC, at which the micelles disappear, polymersomes were the dominant structures in the dispersion with a reduced size distribution below 150 nm. Overall, the results from these tests