Science.gov

Sample records for dibutyl hydrogen phosphate

  1. Recovery of uranium from 30 vol % tributyl phosphate solvents containing dibutyl phosphate

    SciTech Connect

    Mailen, J.C.; Tallent, O.K.

    1986-01-01

    A number of solid sorbents were tested for the removal of uranium and dibutyl phosphate (DBP) from 30% tributyl phosphate (TBP) solvent. The desired clean uranium product can be obtained either by removing the DBP, leaving the uranium in the solvent for subsequent stripping, or by removing the uranium, leaving the DBP in the solvent for subsequent treatment. The tests performed show that it is relatively easy to preferentially remove uranium from solvents containing uranium and DBP, but quite difficult to remove DBP preferentially. The current methods could be used by removing the uranium (as by a cation exchange resin) and then using either an anion exchange resin in the hydroxyl form or a conventional treatment with a basic solution to remove the DBP. Treatment of a solvent with a cation exchange resin could be useful for recovery of valuable metals from solvents containing DBP and might be used to remove cations before scrubbing a solvent with a basic solution to minimize emulsion formation. 6 refs., 9 figs.

  2. Dibutyl phthalate

    Integrated Risk Information System (IRIS)

    Dibutyl phthalate ; CASRN 84 - 74 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  3. Fourier Transform Infrared Spectroscopy and Multivariate Analysis for Online Monitoring of Dibutyl Phosphate Degradation Product in Tributyl Phosphate /n-Dodecane/Nitric Acid Solvent

    SciTech Connect

    Levitskaia, Tatiana G.; Peterson, James M.; Campbell, Emily L.; Casella, Amanda J.; Peterman, Dean; Bryan, Samuel A.

    2013-11-05

    In liquid-liquid extraction separation processes, accumulation of organic solvent degradation products is detrimental to the process robustness and frequent solvent analysis is warranted. Our research explores feasibility of online monitoring of the organic solvents relevant to used nuclear fuel reprocessing. This paper describes the first phase of developing a system for monitoring the tributyl phosphate (TBP)/n-dodecane solvent commonly used to separate used nuclear fuel. In this investigation, the effect of extraction of nitric acid from aqueous solutions of variable concentrations on the quantification of TBP and its major degradation product dibutyl phosphoric acid (HDBP) was assessed. Fourier Transform Infrared Spectroscopy (FTIR) spectroscopy was used to discriminate between HDBP and TBP in the nitric acid-containing TBP/n-dodecane solvent. Multivariate analysis of the spectral data facilitated the development of regression models for HDBP and TBP quantification in real time, enabling online implementation of the monitoring system. The predictive regression models were validated using TBP/n-dodecane solvent samples subjected to the high dose external gamma irradiation. The predictive models were translated to flow conditions using a hollow fiber FTIR probe installed in a centrifugal contactor extraction apparatus demonstrating the applicability of the FTIR technique coupled with multivariate analysis for the online monitoring of the organic solvent degradation products.

  4. Fourier Transform Infrared Spectroscopy and Multivariate Analysis for Online Monitoring of Dibutyl Phosphate Degradation Product in Tributyl Phosphate/n-Dodecane/Nitric Acid Solvent

    SciTech Connect

    Tatiana G. Levitskaia; James M. Peterson; Emily L. Campbell; Amanda J. Casella; Dean R. Peterman; Samuel A. Bryan

    2013-12-01

    In liquid–liquid extraction separation processes, accumulation of organic solvent degradation products is detrimental to the process robustness, and frequent solvent analysis is warranted. Our research explores the feasibility of online monitoring of the organic solvents relevant to used nuclear fuel reprocessing. This paper describes the first phase of developing a system for monitoring the tributyl phosphate (TBP)/n-dodecane solvent commonly used to separate used nuclear fuel. In this investigation, the effect of extraction of nitric acid from aqueous solutions of variable concentrations on the quantification of TBP and its major degradation product dibutylphosphoric acid (HDBP) was assessed. Fourier transform infrared (FTIR) spectroscopy was used to discriminate between HDBP and TBP in the nitric acid-containing TBP/n-dodecane solvent. Multivariate analysis of the spectral data facilitated the development of regression models for HDBP and TBP quantification in real time, enabling online implementation of the monitoring system. The predictive regression models were validated using TBP/n-dodecane solvent samples subjected to high-dose external ?-irradiation. The predictive models were translated to flow conditions using a hollow fiber FTIR probe installed in a centrifugal contactor extraction apparatus, demonstrating the applicability of the FTIR technique coupled with multivariate analysis for the online monitoring of the organic solvent degradation products.

  5. Bis(adamantan-1-aminium) hydrogen phosphate fumaric acid sesquisolvate

    PubMed Central

    Mrad, Mohamed Lahbib; Zeller, Matthias; Hernandez, Kristen J.; Rzaigui, Mohamed; Ben Nasr, Cherif

    2012-01-01

    The asymmetric unit of the title compound, 2C10H18N+·HPO4 2−·1.5C4H4O4, contains two adamantan-1-aminium cations, one hydrogen phosphate anion, and one and a half mol­ecules of fumaric acid, one of which exhibits crystallographic inversion symmetry. Each HPO4 2− anion is hydrogen bonded, via all of its O atoms, to four NH3 + groups of the adamantan-1-aminium cations, forming chains along [100]. These chains are, in turn, inter­connected via a set of O—H⋯O hydrogen bonds involving the fumaric acid solvent mol­ecules, forming layers parallel to (001). Weak C—H⋯O inter­actions lead to a consolidation of the three-dimensional set-up. PMID:22904965

  6. Intercalation Reactions of the Neptunyl(VI) Dication with Hydrogen Uranyl Phosphate and Hydrogen Neptunyl Phosphate Host Lattices

    DTIC Science & Technology

    1989-05-17

    Aqueous reactions of HU with U01 an;f72Pwih(U 2 3 P0)U0u and of HNpP with NpO2, lead to hydrated layered solids, (U02 ( 4 )2, UP, and (Np0 2 ) 3 (P04)2...Abstract The hydrated layered solids, hydrogen uranyl phosphate , HUO 2 PO 4 , HUP, and its isostructural neptunyl analog, HNpO2PO4 , HNpP, can be...host-lattice for intercalation chemistry. 1- 3 Among the intercalating species we have employed is the uranyl ion itself. 4 ,5 In these earlier studies we

  7. Barium hydrogen phosphate/gelatin composites versus gelatin-free barium hydrogen phosphate: synthesis and characterization of properties.

    PubMed

    Gashti, Mazeyar Parvinzadeh; Burgener, Matthias; Stir, Manuela; Hulliger, Jürg

    2014-10-01

    Recently, attention has been spent on crystal growth of phosphate compounds in gels for studying the mechanism of in vitro crystallization processes. Here, we present a gel-based approach for the synthesis of barium hydrogen phosphate (BHP) crystals using single and double diffusion techniques in gelatin. The composite crystals were compared with analytical grade BHP powder, single and polycrystalline BHP materials using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), scanning pyroelectric microscopy (SPEM), optical microscopy (OM), thermal gravimetric analysis (TGA) and X-ray diffraction (XRD). FTIR spectra showed surface adsorption of gelatin molecules by using BHP stacked sheets due to CH2 stretching, CH2 bending and amide I vibrations are found in a gelatin content of about 2% determined by dissolution. SEM shows various crystal morphologies of the BHP/gelatin composites forming bundled micro-flakes to irregular bundled needles and spheres different from gel-free crystals. The variety in morphology depends on the ion concentration, pH of gel as well as the method of crystal growth. SPEM investigation of BHP/gelatin aggregates revealed polar domains showing alteration of the polarization. Moreover, BHP/gelatin composite crystals showed a higher thermal stability in comparison with analytical grade BHP or/and BHP single crystals due to strong interactions between gelatin and BHP. The XRD diffraction analysis demonstrated that the single and double diffusion techniques in gelatin led to the formation of orthorhombic BHP. This study demonstrates that gelatin is a useful high molecular weight biomacromolecule for controlling the crystallization of a composite material by producing a variety of morphological forms.

  8. Intercalation reactions of the neptunyl(vi) dication with hydrogen uranyl phosphate and hydrogen neptunyl phosphate host lattices. Technical report

    SciTech Connect

    Dorhout, P.K.; Kissane, R.J.; Abney, K.D.; Avens, L.R.; Eller, G.

    1989-05-17

    The hydrated layered solids, hydrogen uranyl phosphate. HUO/sub 2/PO/sub 4/, HUP, and its isostructural neptunyl analog, HNpO/sub 2/PO/sub 4/, HNPP, can be intercalated with UO/sub 2/(2+) and NPO/sub 2/(2+) ions to yield a family of layered, hydrated solids that have been characterized by X-ray powder diffraction and by infrared, Raman, and electronic spectroscopy. Aqueous reactions of HUP with UO/sub 2/(2+) and of HNPP with NPO/sub 2/(2+) lead to hydrated layered solids, (UO/sub 2/)3(PO/sub 4/)/sub 2/, UP, and (NPO/sub 2/)/sub 3/(PO/sub 4/)/sub 2/, NPP; preparation of UP from HUP and of NPP from HNPP can also be effected by thermal decomposition of the parent solids, thus affording a set of self intercalation reactions that are reversible. Cross-intercalation reactions (UO/sub 2/(2+) into HNPP; NPO/sub 2/(2+) into HUP) also proceed under stoichiometric conditions.

  9. Chiral gold phosphate catalyzed tandem hydroamination/asymmetric transfer hydrogenation enables access to chiral tetrahydroquinolines.

    PubMed

    Du, Yu-Liu; Hu, Yue; Zhu, Yi-Fan; Tu, Xi-Feng; Han, Zhi-Yong; Gong, Liu-Zhu

    2015-05-01

    A highly efficient chiral gold phosphate-catalyzed tandem hydroamination/asymmetric transfer hydrogenation reaction is described. A series of chiral tetrahydroquinolines were obtained in excellent yields and enantioselectivities. In this reaction, the gold catalyst enables both the hydroamination step as a π-Lewis acid and the asymmetric hydrogen-transfer process as an effective chiral Lewis acid.

  10. Intercalation reactions of the neptunyl(VI) dication with hydrogen uranyl phosphate and hydrogen neptunyl phosphate host lattices

    SciTech Connect

    Dorhout, P.K. ); Kissane, R.J.; Abney, K.D.; Avens, L.R.; Eller, P.G.; Ellis, A.B. )

    1989-07-26

    The hydrated layered solids hydrogen uranyl phosphate, HUO{sub 2}PO{sub 4}, HUP, and its isostructural neptunyl analogue, HNpO{sub 2}PO{sub 4}, HNpP, can be intercalated with UO{sub 2}{sup 2+} and NpO{sub 2}{sup 2+} ions to yield a family of layered, hydrated solids that have been characterized by x-ray powder diffraction and by infrared, Raman, and electronic spectroscopy. Aqueous reactions of HUP with UO{sub 2}{sup 2+} and HNpP with NpO{sub 2}{sup 2+} lead to hydrated layered solids (UO{sub 2}){sub 3}(PO{sub 4}){sub 2}, UP, and (NpO{sub 2}){sub 3}(PO{sub 4}){sub 2}, NpP; preparation of UP from HUP and of NpP from HNpP can also be effected by thermal decomposition of the parent solids, thus affording a set of self-intercalation reactions that are reversible. Cross-intercalation reactions (UO{sub 2}{sup 2+} into HNpP; NpO{sub 2}{sup 2+} into HUP) also proceed under stoichiometric conditions. Conducting the cross-intercalation reactions with high concentrations of intercalating ion leads to substantial substitution of actinyl ions in the host lattice sheets. The intercalation reactions of HUP and HNpP are shown to be selective by the marked preference found for intercalating Np(VI) over Np(V), as evidenced by the lack of reactivity of NpO{sub 2}{sup +} toward either host. Characterization by x-ray powder diffraction revealed that all of the solids could be indexed on the basis of tetragonal unit cells; the a lattice constant is {approx} 6.95 {angstrom} in all samples, but intercalation of actinyl ions increases the interlamellar spacing, c/2, from {approx} 8.7 {angstrom} in HUP and HNpP to {approx} 11.2 {angstrom}. Vibrational and optical properties of the intercalated solids are derived from transitions characteristic of the actinyl ions comprising the solids. 24 refs., 5 figs., 1 tab.

  11. Dipotassium hydrogen phosphate as reducing agent for the efficient reduction of graphene oxide nanosheets.

    PubMed

    Zhang, Xinmeng; Li, Kezhi; Li, Hejun; Lu, Jinhua

    2013-11-01

    By using dipotassium hydrogen phosphate (K2HPO4·3H2O), an efficient and environmentally friendly route for the reduction of the exfoliated graphene oxide nanosheets (GO) is reported in this work. The chemically reduced graphene oxide nanosheets (RGO) have been analyzed by X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectra, X-ray photoelectron spectroscopy, Field emission transmission electron microscopy, Atomic force microscopy, and Thermogravimetric analysis. Considering the analysis results, dipotassium hydrogen phosphate plays a key role in the efficient removal of the oxygen-containing groups in GO, which avoids the use of high toxic and hazardous reducing agents commonly used to obtain RGO in chemical reduction of GO. Dipotassium hydrogen phosphate itself and prepared graphene are environmentally friendly and inexpensive, which may open new opportunities for mass production of graphene by reducing GO.

  12. Gadolinium-hydrogen ion exchange of zirconium phosphate

    NASA Technical Reports Server (NTRS)

    Liu, D. C.; Power, J. L.

    1972-01-01

    The Gd(+3)/H(+) ion exchange on a commercial zirconium phosphate ion exchanger was investigated in chloride, sulfate, and phosphate solutions of Gd(+3) at gadolinium concentrations of 0.001 to 1 millimole per cc and in the pH range of 0 to 3.5. Relatively low Gd(+3) capacities, in the range of 0.01 to 0.1 millimole per g of ion exchanger were found at room temperature. A significant difference in Gd(+3) sorption was observed, depending on whether the ion exchanger was converted from initial conditions of greater or lesser Gd(+3) sorption than the specific final conditions. Correlations were found between decrease in Gd(+3) capacity and loss of exchanger phosphate groups due to hydrolysis during washing and between increase in capacity and treatment with H3PO4. Fitting of the experimental data to ideal ion exchange equilibrium expressions indicated that each Gd(+3) ion is sorbed on only one site of the ion exchanger. The selectivity quotient was determined to be 2.5 + or - 0.4 at room temperature on gadolinium desorption in chloride solutions.

  13. Role of high-energy phosphate metabolism in hydrogen peroxide-induced cardiac dysfunction.

    PubMed

    Matsumoto, Y; Kaneko, M; Iimuro, M; Fujise, Y; Hayashi, H

    2000-01-01

    This study was undertaken to clarify the role of high-energy phosphate metabolism in hydrogen peroxide-induced cardiac dysfunction using phosphorus and fluorine nuclear magnetic resonance spectroscopy. The exposure of a Langendorff-perfused heart to hydrogen peroxide (200-400 micromol/L, 8 min) provoked biphasic contractile dysfunction characterized by a transient depression of left ventricular developed pressure during the administration of hydrogen peroxide and a delayed elevation of left ventricular end-diastolic pressure after the washout of hydrogen peroxide. The initial phase of cardiac dysfunction correlated well with the accumulation of sugar phosphates (r = 0.89, p < 0.01). Furthermore, we demonstrated that glibenclamide, a potent inhibitor of the ATP-sensitive K+ channel, attenuated the initial depression of developed pressure. On the other hand, the delayed elevation of end-diastolic pressure correlated well with the total ATP depletion (r = 0.96, p < 0.01). However, ATP loss was supposed to be a mere result from the increased ATP consumption corresponding to a rise in intracellular free Ca2+ (from the control value of 315+/-23 nmol/L to 708+/-104 after the administration of hydrogen peroxide, p < 0.01), which also paralleled the elevation of end-diastolic pressure. Thus glycolytic inhibition and intracellular Ca2+ overload are independently responsible for the biphasic contractile dysfunction induced by hydrogen peroxide.

  14. Critical hydrogen bonds and protonation states of pyridoxal 5'-phosphate revealed by NMR.

    PubMed

    Limbach, Hans-Heinrich; Chan-Huot, Monique; Sharif, Shasad; Tolstoy, Peter M; Shenderovich, Ilya G; Denisov, Gleb S; Toney, Michael D

    2011-11-01

    In this contribution we review recent NMR studies of protonation and hydrogen bond states of pyridoxal 5'-phosphate (PLP) and PLP model Schiff bases in different environments, starting from aqueous solution, the organic solid state to polar organic solution and finally to enzyme environments. We have established hydrogen bond correlations that allow one to estimate hydrogen bond geometries from (15)N chemical shifts. It is shown that protonation of the pyridine ring of PLP in aspartate aminotransferase (AspAT) is achieved by (i) an intermolecular OHN hydrogen bond with an aspartate residue, assisted by the imidazole group of a histidine side chain and (ii) a local polarity as found for related model systems in a polar organic solvent exhibiting a dielectric constant of about 30. Model studies indicate that protonation of the pyridine ring of PLP leads to a dominance of the ketoenamine form, where the intramolecular OHN hydrogen bond of PLP exhibits a zwitterionic state. Thus, the PLP moiety in AspAT carries a net positive charge considered as a pre-requisite to initiate the enzyme reaction. However, it is shown that the ketoenamine form dominates in the absence of ring protonation when PLP is solvated by polar groups such as water. Finally, the differences between acid-base interactions in aqueous solution and in the interior of proteins are discussed. This article is part of a special issue entitled: Pyridoxal Phosphate Enzymology.

  15. Di­hydrogen phosphate mediated supra­molecular frameworks in 2- and 4-chloro­anilinium dihydrogen phosphate salts

    PubMed Central

    Balamurugan, P.; Jagan, R.; Sivakumar, K.

    2010-01-01

    The title compounds, 2-chloro­anilinium dihydrogen phosphate (2CADHP) and 4-chloro­anilinium di­hydrogen phosphate (4CADHP), both C6H7NCl+·H2PO4 −, form two-dimensional supra­molecular organic–inorganic hybrid frameworks. In 2CADHP, the dihydrogen phosphate anions form a double-stranded anionic chain generated parallel to the [010] direction through O—H⋯O hydrogen bonds, whereas in 4CADHP they form a two-dimensional supra­molecular net extending parallel to the crystallographic (001) plane into which the cations are linked through strong N—H⋯O hydrogen bonds. PMID:20203405

  16. Simultaneous removal of nitrate, hydrogen peroxide and phosphate in semiconductor acidic wastewater by zero-valent iron.

    PubMed

    Yoshino, Hiroyuki; Tokumura, Masahiro; Kawase, Yoshinori

    2014-01-01

    The zero-valent iron (ZVI) wastewater treatment has been applied to simultaneous removal of nitrate, hydrogen peroxide and phosphate in semiconductor acidic wastewaters. The simultaneous removal occurs by the reactions performed due to the sequential transformation of ZVI under the acidic condition. Fortunately the solution pH of semiconductor acidic wastewaters is low which is effective for the sequential transformation of ZVI. Firstly the reduction of nitrate is taken place by electrons generated by the corrosion of ZVI under acidic conditions. Secondly the ferrous ion generated by the corrosion of ZVI reacts with hydrogen peroxide and generates ·OH radical (Fenton reaction). The Fenton reaction consists of the degradation of hydrogen peroxide and the generation of ferric ion. Finally phosphate precipitates out with iron ions. In the simultaneous removal process, 1.6 mM nitrate, 9.0 mM hydrogen peroxide and 1.0 mM phosphate were completely removed by ZVI within 100, 15 and 15 min, respectively. The synergy among the reactions for the removal of nitrate, hydrogen peroxide and phosphate was found. In the individual pollutant removal experiment, the removal of phosphate by ZVI was limited to 80% after 300 min. Its removal rate was considerably improved in the presence of hydrogen peroxide and the complete removal of phosphate was achieved after 15 min.

  17. NMR Scalar Couplings across Intermolecular Hydrogen Bonds between Zinc-Finger Histidine Side Chains and DNA Phosphate Groups.

    PubMed

    Chattopadhyay, Abhijnan; Esadze, Alexandre; Roy, Sourav; Iwahara, Junji

    2016-10-10

    NMR scalar couplings across hydrogen bonds represent direct evidence for the partial covalent nature of hydrogen bonds and provide structural and dynamic information on hydrogen bonding. In this article, we report heteronuclear (15)N-(31)P and (1)H-(31)P scalar couplings across the intermolecular hydrogen bonds between protein histidine (His) imidazole and DNA phosphate groups. These hydrogen-bond scalar couplings were observed for the Egr-1 zinc-finger-DNA complex. Although His side-chain NH protons are typically undetectable in heteronuclear (1)H-(15)N correlation spectra due to rapid hydrogen exchange, this complex exhibited two His side-chain NH signals around (1)H 14.3 ppm and (15)N 178 ppm at 35 °C. Through various heteronuclear multidimensional NMR experiments, these signals were assigned to two zinc-coordinating His side chains in contact with DNA phosphate groups. The data show that the Nδ1 atoms of these His side chains are protonated and exhibit the (1)H-(15)N cross-peaks. Using heteronuclear (1)H, (15)N, and (31)P NMR experiments, we observed the hydrogen-bond scalar couplings between the His (15)Nδ1/(1)Hδ1 and DNA phosphate (31)P nuclei. These results demonstrate the direct involvement of the zinc-coordinating His side chains in the recognition of DNA by the Cys2His2-class zinc fingers in solution.

  18. Molecular dynamics simulations of binary mixtures of methane and hydrogen in zeolite A and a novel zinc phosphate

    NASA Astrophysics Data System (ADS)

    Mitchell, Martha C.; Autry, James D.; Nenoff, Tina M.

    Molecular dynamics simulations have been used to study binary mixtures of hydrogen and methane in two molecular sieve structures, zeolite NaA and a novel zinc phosphate molecular sieve, Na3ZnO(PO4)3, which has a pore size tuned to light gas separations. Simulations were run at high temperature, T = 500 °C. Equimolar mixtures of methane and hydrogen in both molecular sieve structures were simulated at loadings of 2-16 molecules per unit cell. Self-diffusion coefficients were calculated using the Einstein relationship. Hydrogen was found to have higher self-diffusion coefficients than methane in both the molecular sieve structures under study. However, in the zinc phosphate molecular sieve the methane remained immobile, allowing for purification and separation of hydrogen, whereas in Zeolite A the methane experienced appreciable cage-to-cage motion.

  19. Bioreduction of hydrogen uranyl phosphate: mechanisms and U(IV) products.

    PubMed

    Rui, Xue; Kwon, Man Jae; O'Loughlin, Edward J; Dunham-Cheatham, Sarrah; Fein, Jeremy B; Bunker, Bruce; Kemner, Kenneth M; Boyanov, Maxim I

    2013-06-04

    The mobility of uranium (U) in subsurface environments is controlled by interrelated adsorption, redox, and precipitation reactions. Previous work demonstrated the formation of nanometer-sized hydrogen uranyl phosphate (abbreviated as HUP) crystals on the cell walls of Bacillus subtilis, a non-U(VI)-reducing, Gram-positive bacterium. The current study examined the reduction of this biogenic, cell-associated HUP mineral by three dissimilatory metal-reducing bacteria, Anaeromyxobacter dehalogenans strain K, Geobacter sulfurreducens strain PCA, and Shewanella putrefaciens strain CN-32, and compared it to the bioreduction of abiotically formed and freely suspended HUP of larger particle size. Uranium speciation in the solid phase was followed over a 10- to 20-day reaction period by X-ray absorption fine structure spectroscopy (XANES and EXAFS) and showed varying extents of U(VI) reduction to U(IV). The reduction extent of the same mass of HUP to U(IV) was consistently greater with the biogenic than with the abiotic material under the same experimental conditions. A greater extent of HUP reduction was observed in the presence of bicarbonate in solution, whereas a decreased extent of HUP reduction was observed with the addition of dissolved phosphate. These results indicate that the extent of U(VI) reduction is controlled by dissolution of the HUP phase, suggesting that the metal-reducing bacteria transfer electrons to the dissolved or bacterially adsorbed U(VI) species formed after HUP dissolution, rather than to solid-phase U(VI) in the HUP mineral. Interestingly, the bioreduced U(IV) atoms were not immediately coordinated to other U(IV) atoms (as in uraninite, UO2) but were similar in structure to the phosphate-complexed U(IV) species found in ningyoite [CaU(PO4)2·H2O]. This indicates a strong control by phosphate on the speciation of bioreduced U(IV), expressed as inhibition of the typical formation of uraninite under phosphate-free conditions.

  20. Advanced oxidation process using hydrogen peroxide/microwave system for solubilization of phosphate.

    PubMed

    Liao, Ping Huang; Wong, Wayne T; Lo, Kwang Victor

    2005-01-01

    An advanced oxidation process (AOP) combining hydrogen peroxide and microwave heating was used for the solubilization of phosphate from secondary municipal sludge from an enhanced biological phosphorus removal process. The microwave irradiation is used as a generator agent of oxidizing radicals as well as a heating source in the process. This AOP process could facilitate the release of a large amount of the sludge-bound phosphorus from the sewage sludge. More than 84% of the total phosphorous could be released at a microwave heating time of 5 min at 170 degrees C. This innovative process has the potential of being applied to simple sludge treatment processes in domestic wastewater treatment and to the recovery of phosphorus from the wastewater.

  1. Studies on various properties of pure and Li-doped Barium Hydrogen Phosphate (BHP) single crystals

    NASA Astrophysics Data System (ADS)

    Nallamuthu, D.; Selvarajan, P.; Freeda, T. H.

    2010-12-01

    Single crystals of pure and Li-doped barium hydrogen phosphate (BHP) were grown by solution method with gel technique. Various properties of the harvested crystals were studied by carrying out single crystal and powder XRD, FTIR, TG/DTA, microhardness and dielectric studies. Atomic absorption study was carried out for Li-doped BHP crystal to check the presence of Li dopants. Unit cell dimensions and diffracting planes of the grown crystals have been identified from XRD studies. Functional groups of the title compounds have been identified from FTIR studies. Density of the grown crystals was calculated using the XRD data. Thermal stability of the samples was checked by TG/DTA studies. Mechanical and dielectric characterizations of the harvested pure and Li-doped BHP crystals reveal the mechanical strength and ferroelectric transition. The observed results are reported and discussed.

  2. Thermodynamic properties of autunite, uranyl hydrogen phosphate, and uranyl orthophosphate from solubility and calorimetric measurements

    SciTech Connect

    Gorman-Lewis, Drew; Shareva, Tatiana; kubatko, Karrie-Ann; burns, Peter; Wellman, Dawn M.; McNamara, Bruce K.; szymanowski, jennifer; Navrotsky, Alexandra; Fein, Jeremy B.

    2009-10-01

    In this study, we use solubility and oxide melt solution calorimetry measurements to determine the thermodynamic properties of the uranyl phosphate phases autunite (abbreviated: CaUP), uranyl hydrogen phosphate (HUP), and uranyl orthophosphate (UP). Solubility measurements from both supersaturated and undersaturated conditions, as well as under different pH conditions, rigorously demonstrate attainment of equilibrium and yield well-constrained solubility product values of -48.36 (-0.03 /+ 0.03), -13.17 (-0.11 / +0.07), and -49.36 (-0.04 / +0.02) for CaUP, HUP, and UP, respectively. We use the solubility data to calculate standard state Gibbs free energies of formation for all phases (-7630.61 ± 9.69, -3072.27 ± 4.76, and -6138.95 ± 12.24 kJ mol-1 for CaUP, HUP, and UP, respectively), and calorimetry data to calculate standard state enthalpies of formation of -3223.22 ± 4.00 and -7001.01 ± 15.10 kJ mol-1 for HUP and UP, respectively. Combining these results allows us also to calculate the standard state entropies of formation of -506.54 ± 10.48 and -2893.12 ± 19.44 kJ mol-1 K-1 for HUP and UP phases, respectively. The results from this study are part of a combined effort to develop reliable and internally consistent thermodynamic data for environmentally relevant uranyl minerals. Data such as these are required in order to optimize and quantitatively assess the effect of phosphate amendment remediation technologies for uranium contaminated systems.

  3. La(III)-hydrogen peroxide cooperativity in phosphate diester cleavage. A mechanistic study

    SciTech Connect

    Takasaki, B.K.; Chin, J.

    1995-08-23

    La(III), Pr(III), Nd(III), and Eu(III) (2 mM) can each combine with hydrogen peroxide to provide close to 9 orders of magnitude rate acceleration for hydrolyzing BNPP (bis(p-nitrophenyl) phosphate) at pH 7 and 25{degree}C. The rate of the reaction is second order each in [(III)] and [H{sub 2}O{sub 2}], indicating that the active core 4 of the catalyst consists of two La(III) with two peroxides. The equilibrium constant for binding of BNPP to 4 (K{sub 1} = (1.3 {+-} 0.1) x 10{sup +3} M{sup -1}) and the rate constant for hydrolysis of the bound phosphate (k{sub 2} = (1.8 {+-} 0.1) x 10{sup -7} 5{sup -1}) have been determined. {sup 18}O labeling studies reveal that the peroxide is a nucleophilic catalyst in cleaving the diester. 17 refs., 5 figs., 1 tab.

  4. Hydrogen-substituted β-tricalcium phosphate synthesized in organic media

    PubMed Central

    Stähli, Christoph; Thüring, Jürg; Galea, Laëtitia; Tadier, Solène; Bohner, Marc; Döbelin, Nicola

    2016-01-01

    β-Tricalcium phosphate (β-TCP) platelets synthesized in ethylene glycol offer interesting geometries for nano-structured composite bone substitutes but were never crystallographically analyzed. In this study, powder X-ray diffraction and Rietveld refinement revealed a discrepancy between the platelet structure and the known β-TCP crystal model. In contrast, a model featuring partial H for Ca substitution and the inversion of P1O4 tetrahedra, adopted from the whitlockite structure, allowed for a refinement with minimal misfits and was corroborated by HPO4 2− absorptions in Fourier-transform IR spectra. The Ca/P ratio converged to 1.443 ± 0.003 (n = 36), independently of synthesis conditions. As a quantitative verification, the platelets were thermally decomposed into hydrogen-free β-TCP and β-calcium pyrophosphate which resulted in a global Ca/P ratio in close agreement with the initial β-TCP Ca/P ratio (ΔCa/P = 0.003) and with the chemical composition measured by inductively coupled plasma (ΔCa/P = 0.003). These findings thus describe for the first time a hydrogen-substituted β-TCP structure, i.e. a Mg-free whitlockite, represented by the formula Ca21 − x(HPO4)2x(PO4)14 − 2x, where x = 0.80 ± 0.04, and may have implications for resorption properties of bone regenerative materials. PMID:27910838

  5. The desorption and reactivity of butanol adsorbed on lithium iron phosphate (LISICON) activated in a hydrogen plasma

    NASA Astrophysics Data System (ADS)

    Pylinina, A. I.; Mikhalenko, I. I.; Yagodovskaya, T. V.; Yagodovskii, V. D.

    2010-12-01

    The reactivity and desorption of butanol-2 adsorbed on Li3Fe2(PO4)3 not subjected and subjected to treatment in a glow discharge hydrogen plasma were studied under flow conditions with a gas chromatographic analysis of products. X-ray photoelectron spectroscopy data showed that the number of phosphate groups on the surface of the phosphate was two times larger than the stoichiometric number and increased after plasma chemical treatment. The strength of butanol-phosphate bonds also increased, and the selectivity of alcohol decomposition with the formation of an olefin (dehydration) and ketone (dehydrogenation) changed. After plasma treatment, dehydrogenation centers were deactivated. The selectivities of alcohol transformations in the adsorbed state and under vapor phase conditions were different. Ketone was formed from adsorbed alcohol because the activation energies of dehydrogenation were equal for the two reaction variants.

  6. New hydrogen titanium phosphate sulfate electrodes for Li-ion and Na-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhao, Ran; Mieritz, Daniel; Seo, Dong-Kyun; Chan, Candace K.

    2017-03-01

    NASICON-type materials with general formula AxM2(PO4)3 (A = Li or Na, M = Ti, V, and Fe) are promising candidates for Li- and Na-ion batteries due to their open three-dimensional framework structure. Here we report the electrochemical properties of hydrogen titanium phosphate sulfate, H0.4Ti2(PO4)2.4(SO4)0.6 (HTPS), a new mixed polyanion material with NASICON structure. Micron-sized HTPS aggregates with crystallite grain size of ca. 23 nm are synthesized using a sol-gel synthesis in an acidic medium. The properties of the as-synthesized HTPS, ball-milled HTPS, and samples prepared as carbon composites using an in-situ glucose decomposition reaction are investigated. A capacity of 148 mAh g-1 corresponding to insertion of 2 Li+ per formula unit is observed in the ball-milled HTPS over the potential window of 1.5-3.4 V vs. Li/Li+. Lithiation at ca. 2.8 and 2.5 V is determined to occur through filling of the M1 and M2 sites, respectively. Powder X-ray diffraction (PXRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) are used characterize the HTPS before and after cycling. Evaluation of the HTPS in a Na-ion cell is also performed. A discharge capacity of 93 mAh g-1 with sodiation at ca. 2.9 and 2.2 V vs. Na/Na+ is observed.

  7. Use of triphenyl phosphate as risk mitigant for metal amide hydrogen storage materials

    DOEpatents

    Cortes-Concepcion, Jose A.; Anton, Donald L.

    2016-04-26

    A process in a resulting product of the process in which a hydrogen storage metal amide is modified by a ball milling process using an additive of TPP. The resulting product provides for a hydrogen storage metal amide having a coating that renders the hydrogen storage metal amide resistant to air, ambient moisture, and liquid water while improving useful hydrogen storage and release kinetics.

  8. Sustained drug release and electrochemical performance of ethyl cellulose-magnesium hydrogen phosphate composite.

    PubMed

    Mohammad, Faruq; Arfin, Tanvir; Al-Lohedan, Hamad A

    2017-02-01

    In this, a sol-gel method was applied to prepare ethyl cellulose-magnesium hydrogen phosphate (EC-MgHPO4) composite that can have potential applications in the sensory, pharmaceutical, and biomedical sectors. The formed composite was thoroughly characterized by making use of the instrumental analysis such as UV-Vis, FT-IR, HRTEM, EDAX, SEM and XRD. For the composite, the other parameters determined includes the water uptake, porosity, thickness, bulk and tapped densities, angle of repose, Carr's index and Hausner ratio. From the results, the material found to exhibit good flowing properties with a Carr's index of 11.11%, Hausner ratio of 1.125, and angle of response of 33°. The EDAX spectrum and HRTEM analysis confirmed for the composite formation and the particles size is investigated to be around 52nm. The surface porosity due to the EC matrices was confirmed by the SEM analysis, which further used for the loading of drug, Proguanil. In addition, the material's conductivity was studied by taking uni-univalent electrolyte solution (KCl and NaCl) indicated that the conductivity follows the order of KCl>NaCl, while the activation energy obtained from Arrhenius method resembled that the conductivity is strongly influenced by the electrolyte type used. We found from the analysis that, with a decrease in the size of hydrated radii of ions, the conductivity of EC-MgHPO4 material also observed to be decreased in the order K(+)>Na(+) and the material proved to be mechanically stable and can be operated over a range of pHs, temperatures, and electrolyte solutions. Further, the drug loading and efficiency studies indicated that the material can trap up to 80% of Proguanil (antimalarial drug) applied for its loading. The Proguanil drug release profiles confirmed for the controlled and sustained release from the EC-MgHPO4 matrix, as the material can release up to 87% of its total loaded drug over a 90min period. Finally, the cell viability and proliferation studies tested

  9. Tris(5-amino-1H-1,2,4-triazol-4-ium) dihydrogenphosphate hydrogen­phosphate trihydrate

    PubMed Central

    Mrad, Mohamed Lahbib; Zeller, Matthias; Hernandez, Kristen J.; Rzaigui, Mohamed; Ben Nasr, Cherif

    2012-01-01

    In the crystal structure of the title molecular salt, 3C2H5N4 +·HPO4 2−·H2PO4 −·3H2O, the phosphate-based framework is built upon layers parallel to (010) made up from the H2PO4 − and HPO4 2− anions and water mol­ecules, which are inter­connected through O—H⋯O hydrogen bonds. The organic cations are located between the phosphate–water layers and are connected to them via N—H⋯O hydrogen bonds. The bond-length features are consistent with an imino resonance form for the exocyclic amino group, as is commonly found for a C—N single bond involving sp 2-hybridized C and N atoms. PMID:23468776

  10. Amended final report of the safety assessment of dibutyl adipate as used in cosmetics.

    PubMed

    Andersen, Alan

    2006-01-01

    Dibutyl Adipate, the diester of butyl alcohol and adipic acid, functions as a plasticizer, skin-conditioning agent, and solvent in cosmetic formulations. It is reportedly used at a concentration of 5% in nail polish and 8% in suntan gels, creams, and liquids. Dibutyl Adipate is soluble in organic solvents, but practically insoluble in water. Dibutyl Adipate does not absorb radiation in the ultraviolet (UV) region of the spectrum. Dibutyl Adipate is not toxic in acute oral or dermal animal toxicity tests. In a subchronic dermal toxicity study, 1.0 ml/kg day-1 caused a significant reduction in body weight gain in rabbits, but 0.5 ml/kg/day1 was without effect. In a study with dogs, no adverse effects were observed when an emulsion containing 6.25% Dibutyl Adipate was applied to the entire body twice a week for 3 months. Dibutyl Adipate was tested for dermal irritation using rabbits and mice and a none to minimal irritation was observed. Dibutyl Adipate at a concentration of 25% was not a sensitizer in a guinea pig maximization study. Undiluted Dibutyl Adipate was minimally irritating to the eyes of rabbits and 0.1% was nonirritating. A significant increase in fetal gross abnormalities was observed in rats given intraperitoneal injections of Dibutyl Adipate at 1.75 ml/kg on 3 separate days during gestation, but no effect was seen in animals given 1.05 ml/kg. Dibutyl Adipate was not genotoxic in either bacterial or mammalian test systems. Clinical patch tests confirmed the absence of skin irritation found in animal tests. Clinical phototoxicity tests were negative. Dibutyl Adipate at 0.1% was not an ocular irritant in two male volunteers. In a clinical test of comedogenicity, Dibutyl Adipate produced no effect. The Cosmetic Ingredient Review (CIR) Expert Panel recognized that use of Dibutyl Adipate in suntan cosmetic products will result in repeated, frequent exposure in a leave-on product. The available data demonstrate no skin sensitization or cumulative skin

  11. 40 CFR 721.10115 - 1-Hexadecanaminium, N,N-dibutyl-N-(2-hydroxyethyl)-, bromide (1:1).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false 1-Hexadecanaminium, N,N-dibutyl-N-(2... New Uses for Specific Chemical Substances § 721.10115 1-Hexadecanaminium, N,N-dibutyl-N-(2... chemical substance identified as 1-hexadecanaminium, N,N-dibutyl-N-(2-hydroxyethyl)-, bromide (1:1) (PMN...

  12. 40 CFR 721.10115 - 1-Hexadecanaminium, N,N-dibutyl-N-(2-hydroxyethyl)-, bromide (1:1).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false 1-Hexadecanaminium, N,N-dibutyl-N-(2... New Uses for Specific Chemical Substances § 721.10115 1-Hexadecanaminium, N,N-dibutyl-N-(2... chemical substance identified as 1-hexadecanaminium, N,N-dibutyl-N-(2-hydroxyethyl)-, bromide (1:1) (PMN...

  13. 40 CFR 721.10115 - 1-Hexadecanaminium, N,N-dibutyl-N-(2-hydroxyethyl)-, bromide (1:1).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false 1-Hexadecanaminium, N,N-dibutyl-N-(2... New Uses for Specific Chemical Substances § 721.10115 1-Hexadecanaminium, N,N-dibutyl-N-(2... chemical substance identified as 1-hexadecanaminium, N,N-dibutyl-N-(2-hydroxyethyl)-, bromide (1:1) (PMN...

  14. 40 CFR 721.10115 - 1-Hexadecanaminium, N,N-dibutyl-N-(2-hydroxyethyl)-, bromide (1:1).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false 1-Hexadecanaminium, N,N-dibutyl-N-(2... New Uses for Specific Chemical Substances § 721.10115 1-Hexadecanaminium, N,N-dibutyl-N-(2... chemical substance identified as 1-hexadecanaminium, N,N-dibutyl-N-(2-hydroxyethyl)-, bromide (1:1) (PMN...

  15. 40 CFR 721.10115 - 1-Hexadecanaminium, N,N-dibutyl-N-(2-hydroxyethyl)-, bromide (1:1).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false 1-Hexadecanaminium, N,N-dibutyl-N-(2... New Uses for Specific Chemical Substances § 721.10115 1-Hexadecanaminium, N,N-dibutyl-N-(2... chemical substance identified as 1-hexadecanaminium, N,N-dibutyl-N-(2-hydroxyethyl)-, bromide (1:1) (PMN...

  16. Coupling of functional hydrogen bonds in pyridoxal-5'-phosphate-enzyme model systems observed by solid-state NMR spectroscopy.

    PubMed

    Sharif, Shasad; Schagen, David; Toney, Michael D; Limbach, Hans-Heinrich

    2007-04-11

    We present a novel series of hydrogen-bonded, polycrystalline 1:1 complexes of Schiff base models of the cofactor pyridoxal-5'-phosphate (PLP) with carboxylic acids that mimic the cofactor in a variety of enzyme active sites. These systems contain an intramolecular OHN hydrogen bond characterized by a fast proton tautomerism as well as a strong intermolecular OHN hydrogen bond between the pyridine ring of the cofactor and the carboxylic acid. In particular, the aldenamine and aldimine Schiff bases N-(pyridoxylidene)tolylamine and N-(pyridoxylidene)methylamine, as well as their adducts, were synthesized and studied using 15N CP and 1H NMR techniques under static and/or MAS conditions. The geometries of the hydrogen bonds were obtained from X-ray structures, 1H and 15N chemical shift correlations, secondary H/D isotope effects on the 15N chemical shifts, or directly by measuring the dipolar 2H-15N couplings of static samples of the deuterated compounds. An interesting coupling of the two "functional" OHN hydrogen bonds was observed. When the Schiff base nitrogen atoms of the adducts carry an aliphatic substituent such as in the internal and external aldimines of PLP in the enzymatic environment, protonation of the ring nitrogen shifts the proton in the intramolecular OHN hydrogen bond from the oxygen to the Schiff base nitrogen. This effect, which increases the positive charge on the nitrogen atom, has been discussed as a prerequisite for cofactor activity. This coupled proton transfer does not occur if the Schiff base nitrogen atom carries an aromatic substituent.

  17. Synthesis of hierarchical iron hydrogen phosphate crystal as a robust peroxidase mimic for stable H₂O₂ detection.

    PubMed

    Zhang, Tongbao; Lu, Yangcheng; Luo, Guangsheng

    2014-08-27

    To develop a green, cost-efficient and robust peroxidase mimic, micro/nano hierarchical morphology (for ease of separation and reuse), relative chemically stable composition (for ease of storage) and stable crystal structure (for long-term stability) are highly desired. Herein, using phosphoric acid as a chelating ligand to control the release of iron ions, hierarchical iron(III) hydrogen phosphate hydrate crystals are successfully prepared by nanosheets formation and following self-assembling in a facile low-temperature hydrothermal process. They are first found to have peroxidase-like activity and showed higher affinity for H2O2 and lower affinity for 3,3',5,5'-tetramethylbenzidine compared with horseradish peroxidase. The affinity feature is used for quantitative detection of H2O2 and shows a wide linear detection range from 57.4 to 525.8 μM (R(2) = 0.994) with a low detection limit of 1 μM. Benefited from chemical stability of hierarchical iron(III) salt crystals, they own good reproducibility (relative standard deviation = 1.95% for 10 independent measurements), long-term stability (no activity loss after 10 cycles), and ease of recovery (by simple centrifugation). Because the method is easily accessible, iron hydrogen phosphate hierarchical crystals have great potential for practical use of H2O2 sensing and detection under harsh conditions.

  18. I. Electroluminescence from Hydrogen Uranyl Phosphate. I. Indium-Substituted Bismuth Copper Oxide Superconductors

    NASA Astrophysics Data System (ADS)

    Dieckmann, Gunnar Rudolph

    1990-01-01

    Chapter 1. A review of the general aspects of solid electrolytes is presented along with a summary of the electrical and optical properties of hydrogen uranyl phosphate (HUO_2PO_4 bullet4H_2O, HUP). A review of impedance spectroscopy, as it relates to the determination of ionic conductivities and dielectric constants of solid electrolytes is presented. The final section covers some aspects of gas plasma display devices. Chapter 2. Electroluminescence (EL) cells have been constructed with the ionically conducting solid HUP as the emissive medium. With ac excitation, both uranyl emission and molecular nitrogen plasma emission are observed, with the latter appearing to excite the former. Similar results were obtained with fully-substituted sodium (NaUP), magnesium (Mg_{0.5}UP), and pyridinium (pyHUP) derivatives of HUP. For all of these solids, the dependence of the EL intensity on sample thickness, ac frequency, and applied voltage has been determined. Impedance measurements permitted acquisition of dielectric constants and ionic conductivities for these solids, both of which decrease in the order HUP > NaUP > Mg_{0.5}UP > pyHUP. A model describing the dependence of EL intensity on cell parameters is presented. Chapter 3. The copper oxide superconductors can be structurally classified into five major families, represented by the compositions, (La,Sr)_2CuO _4, YBa_2Cu_3O_7, Pb_2Sr_2(Y,Ca)Cu_3O_8, (TIO)_{m}Ca_{n-1}Ba_2Cu _{n}O_{2n+2}, and Bi_2Sr_2(Ln_{1-x}Ce _{x})_2Cu_2O_{10+y }. All families are linked by a CuO _2 layer, which is crucial for superconductivity. The structural and chemical aspects of each family is covered with emphasis on the bismuth and thallium systems. The effects of substitution and oxygen annealing are also briefly considered. Chapter 4. The attempted substitution of indium into the rm Bi_2(Ca,Sr)_2CuO _6 and Bi_2(Ca,Sr) _3Cu_2O _8 systems is reported. Previously unreported side products, (Ca,Sr)In_2O _4 and Bi-Ca-Sr-O, viz., produced in the

  19. NMR studies of coupled low- and high-barrier hydrogen bonds in pyridoxal-5'-phosphate model systems in polar solution.

    PubMed

    Sharif, Shasad; Denisov, Gleb S; Toney, Michael D; Limbach, Hans-Heinrich

    2007-05-16

    The 1H and 15N NMR spectra of several 15N-labeled pyridoxal-5'-phosphate model systems have been measured at low temperature in various aprotic and protic solvents of different polarity, i.e., dichloromethane-d2, acetonitrile-d3, tetrahydrofuran-d8, freon mixture CDF3/CDClF2, and methanol. In particular, the 15N-labeled 5'-triisopropyl-silyl ether of N-(pyridoxylidene)-tolylamine (1a), N-(pyridoxylidene)-methylamine (2a), and the Schiff base with 15N-2-methylaspartic acid (3a) and their complexes with proton donors such as triphenylmethanol, phenol, and carboxylic acids of increasing strength were studied. With the use of hydrogen bond correlation techniques, the 1H/15N chemical shift and scalar coupling data could be associated with the geometries of the intermolecular O1H1N1 (pyridine nitrogen) and the intramolecular O2H2N2 (Schiff base) hydrogen bonds. Whereas O1H1N1 is characterized by a series of asymmetric low-barrier hydrogen bonds, the proton in O2H2N2 faces a barrier for proton transfer of medium height. When the substituent on the Schiff base nitrogen is an aromatic ring, the shift of the proton in O1H1N1 from oxygen to nitrogen has little effect on the position of the proton in the O2H2N2 hydrogen bond. By contrast, when the substituent on the Schiff base nitrogen is a methyl group, a proton shift from O to N in O1H1N1 drives the tautomeric equilibrium in O2H2N2 from the neutral O2-H2...N2 to the zwitterionic O2-...H2-N(2+) form. This coupling is lost in aqueous solution where the intramolecular O2H2N2 hydrogen bond is broken by solute-solvent interactions. However, in methanol, which mimics hydrogen bonds to the Schiff base in the enzyme active site, the coupling is preserved. Therefore, the reactivity of Schiff base intermediates in pyridoxal-5'-phosphate enzymes can likely be tuned to the requirements of the reaction being catalyzed by differential protonation of the pyridine nitrogen.

  20. Subungual penetration of dibutyl phthalate in human fingernails.

    PubMed

    Jackson, E M

    2008-01-01

    Dibutyl phthalate (DBP) has a wide variety of manufacturing applications and is used in both commercial and consumer products. Results of animal reproductive toxicity and teratogenicity animal studies have not been consistent in identifying DBP as a reproductive toxicant. Expert reviews for its use in consumer products have consistently concluded that it is not a reproductive risk to consumers. Results from a subungual penetration study of 100% fluid DBP applied to human fingernails showed levels of penetration at the limits of chemical detection. Even if DBP penetrated the human fingernail, its rapid metabolism by the human body would prevent its having any toxic reproductive effects. Furthermore, DBP functions as a plasticizer in consumer products such as cosmetic nail products (nail polish, basecoats, topcoats, nail hardeners), resulting in its becoming unavailable for subungual penetration seconds after application of the cosmetic nail product since it is then trapped in the rapidly forming coating.

  1. Adsorption behaviour of dibutyl phthalate on marine sediments.

    PubMed

    Xu, Xiang-Rong; Li, Xiao-Yan

    2008-01-01

    Laboratory experiments were carried out to investigate the adsorption behaviour of dibutyl phthalate (DBP) on marine sediments collected from five different sites in Victoria Harbour, Hong Kong. DBP adsorption can be well described by the Langmuir isotherm. The maximum DBP adsorption capacity (Q(max)) of the marine sediments ranges from 53 to 79 mg g(-1), which has a positive correlation with their organic content. Around 90% of the organic can be removed from the sediments with treatment by H(2)O(2) oxidation, and the Q(max) then decreases to a range between 13 and 22 mg g(-1). The black carbon content of the sediments has a much greater DBP adsorption capacity than does the natural organic matter of the sediments. The amount of DBP adsorbed on the sediments increases as the salinity of the marine water increases.

  2. Lattice dynamics, phase transitions and hydrogen effective charges of betaine phosphite: a comparison with betaine phosphate and their deuterated analogues

    NASA Astrophysics Data System (ADS)

    Santos, M. L.; Almeida, A.; Agostinho Moreira, J.; Chaves, M. R.; Klöpperpieper, A.; Gervais, F.

    1998-07-01

    The temperature dependence of complete infrared reflection spectra of a betaine phosphite single crystal is reported for the polarizations parallel to a and b axes in the wavenumber range from 10 to 0953-8984/10/27/015/img8. They are compared with previous data that were limited to the range 0953-8984/10/27/015/img9. They are also compared with reflectivity spectra of betaine phosphate, betaine arsenate, deuterated betaine phosphite single crystals and betaine compressed powder. These comparisons allow a mode assignment. Spectra were fitted with the factorized form of the dielectric function. The role of phonons in the behaviour of the dielectric constant in the vicinity of the ferroelectric (FE)-paraelectric (PE) phase transition is discussed. The decrease of effective charges along the FE axis below the FE-PE phase transition is assigned to an increase of oxygen-hydrogen electronic orbital hybridization related to the change of average bond-length.

  3. Structure of selected basic zinc/copper (II) phosphate minerals based upon near-infrared spectroscopy - Implications for hydrogen bonding

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; Reddy, B. Jagannadha; Palmer, Sara J.; Keeffe, Eloise C.

    2011-03-01

    The NIR spectra of reichenbachite, scholzite and parascholzite have been studied at 298 K. The spectra of the minerals are different, in line with composition and crystal structural variations. Cation substitution effects are significant in their electronic spectra and three distinctly different electronic transition bands are observed in the near-infrared spectra at high wavenumbers in the 12,000-7600 cm -1 spectral region. Reichenbachite electronic spectrum is characterised by Cu(II) transition bands at 9755 and 7520 cm -1. A broad spectral feature observed for ferrous ion in the 12,000-9000 cm -1 region both in scholzite and parascholzite. Some what similarities in the vibrational spectra of the three phosphate minerals are observed particularly in the OH stretching region. The observation of strong band at 5090 cm -1 indicates strong hydrogen bonding in the structure of the dimorphs, scholzite and parascholzite. The three phosphates exhibit overlapping bands in the 4800-4000 cm -1 region resulting from the combinations of vibrational modes of (PO 4) 3- units.

  4. Physical and chemical indices of cucumber seedling leaves under dibutyl phthalate stress.

    PubMed

    Zhang, Ying; Du, Na; Wang, Lei; Zhang, Hui; Zhao, Jiaying; Sun, Guoqiang; Wang, Pengjie

    2015-03-01

    Phthalic acid ester (PAE) pollution to soil can lead to phytotoxicity in plants and potential health risks to human being. Dibutyl phthalate (DBP) as a kind of PAE has a large usage amount and large residues in soil. To analyze antioxidant responses of plants to DBP stress, effects of varying DBP concentrations on cucumber seedlings growth had been investigated. Malonaldehyde (MDA), hydrogen peroxide (H2O2), chlorophyll, proline, glutathione (GSH), and oxidized glutathione (GSSH) contents and activities of antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and peroxidase (POD) were studied. The results showed that H2O2 content increased in cucumber seedlings with the increase of DBP concentration. The chlorophyll content in the higher DBP significantly declined compared to the control. In the present study, a disturbance of the GSH redox balance was evidenced by a marked decrease in GSH/GSSG ratio in cucumber seedlings subjected DBP stress. Our results indicated that DBP treatment not only inhibited antioxidant capacity and antioxidant enzyme activity in seedlings' leaves but might also induce chlorophyll degradation or reduce the synthesis of chlorophyll. Moreover, it could also enhance the accumulation of reactive oxygen species (ROS) which induced membrane lipid peroxidation. DBP also altered the ultrastructure of mesophyll cells, damaged membrane structure of chloroplast and mitochondrion, and increased the number and size of starch grains in chloroplasts reducing the photosynthetic capacity.

  5. Engineering scoping study of the production of hydrogen and oxygen from the cerium oxide-sodium phosphate/carbonate thermochemical cycle

    SciTech Connect

    Goeller, H.E.

    1984-04-01

    One potential industrial application of solar energy is for the production of hydrogen (and oxygen) using a cycle of thermochemical reactions. This report provides a preliminary evaluation of the engineering feasibility of such an operation based on the cerium oxide-sodium phosphate/carbonate thermochemical cycle to produce 2 metric tons of hydrogen per day. Material and heat balances were developed, and equipment was sized. The preliminary pilot plant layout was then compared with a plant of the same capacity for producing hydrogen by the electrolysis of water. The use of water electrolysis seems superior and cheaper in all respects. 7 figures, 4 tables.

  6. Supramolecular open-framework based on 1-D iron phosphate-diphosphate chains assembled through hydrogen bonding

    SciTech Connect

    Salvado, Miguel A.; Pertierra, Pilar; Trobajo, Camino; Garcia, Jose R.

    2008-05-15

    Fe(H{sub 2}PO{sub 4})(H{sub 2}P{sub 2}O{sub 7}).C{sub 5}H{sub 5}N, a new iron(III) phosphate with an open-framework has been synthesized hydrothermally using pyridine as organic template. The crystal structure was solved ab initio using conventional powder X-ray diffraction data. The unit cell is orthorhombic, a=9.5075(2), b=10.1079(1), c=13.3195(2) A, space group P2{sub 1}2{sub 1}2{sub 1}, Z=4. The structure consists of FeO{sub 6} octahedra joined by H{sub 2}PO{sub 4} and H{sub 2}P{sub 2}O{sub 7} groups forming linear chains interconnected by hydrogen bonding to give rise to a supramolecular framework enclosing tunnels in which the pyridine molecules reside. - Graphical abstract: The low temperature hydrothermal synthesis offers many possibilities in the preparation of new materials with mixed octahedral-tetrahedral open-frameworks. Fe(H{sub 2}PO{sub 4})(H{sub 2}P{sub 2}O{sub 7}).C{sub 5}H{sub 5}N is constituted by linear chains of FeO{sub 6} octahedra joined through of both dihydrogenphosphate and dihydrogendiphosphate bridges, interconnected by hydrogen bonds, originating channels where the pyridine molecules are located.

  7. Hydrogen Cyanide in the Rhizosphere: Not Suppressing Plant Pathogens, but Rather Regulating Availability of Phosphate.

    PubMed

    Rijavec, Tomaž; Lapanje, Aleš

    2016-01-01

    Plant growth promoting rhizobacteria produce chemical compounds with different benefits for the plant. Among them, HCN is recognized as a biocontrol agent, based on its ascribed toxicity against plant pathogens. Based on several past studies questioning the validity of this hypothesis, we have re-addressed the issue by designing a new set of in vitro experiments, to test if HCN-producing rhizobacteria could inhibit the growth of phytopathogens. The level of HCN produced by the rhizobacteria in vitro does not correlate with the observed biocontrol effects, thus disproving the biocontrol hypothesis. We developed a new concept, in which HCN does not act as a biocontrol agent, but rather is involved in geochemical processes in the substrate (e.g., chelation of metals), indirectly increasing the availability of phosphate. Since this scenario can be important for the pioneer plants living in oligotrophic alpine environments, we inoculated HCN producing bacteria into sterile mineral sand together with germinating plants and showed that the growth of the pioneer plant French sorrel was increased on granite-based substrate. No such effect could be observed for maize, where plantlets depend on the nutrients stored in the endosperm. To support our concept, we used KCN and mineral sand and showed that mineral mobilization and phosphate release could be caused by cyanide in vitro. We propose that in oligotrophic alpine environments, and possibly elsewhere, the main contribution of HCN is in the sequestration of metals and the consequential indirect increase of nutrient availability, which is beneficial for the rhizobacteria and their plant hosts.

  8. Hydrogen Cyanide in the Rhizosphere: Not Suppressing Plant Pathogens, but Rather Regulating Availability of Phosphate

    PubMed Central

    Rijavec, Tomaž; Lapanje, Aleš

    2016-01-01

    Plant growth promoting rhizobacteria produce chemical compounds with different benefits for the plant. Among them, HCN is recognized as a biocontrol agent, based on its ascribed toxicity against plant pathogens. Based on several past studies questioning the validity of this hypothesis, we have re-addressed the issue by designing a new set of in vitro experiments, to test if HCN-producing rhizobacteria could inhibit the growth of phytopathogens. The level of HCN produced by the rhizobacteria in vitro does not correlate with the observed biocontrol effects, thus disproving the biocontrol hypothesis. We developed a new concept, in which HCN does not act as a biocontrol agent, but rather is involved in geochemical processes in the substrate (e.g., chelation of metals), indirectly increasing the availability of phosphate. Since this scenario can be important for the pioneer plants living in oligotrophic alpine environments, we inoculated HCN producing bacteria into sterile mineral sand together with germinating plants and showed that the growth of the pioneer plant French sorrel was increased on granite-based substrate. No such effect could be observed for maize, where plantlets depend on the nutrients stored in the endosperm. To support our concept, we used KCN and mineral sand and showed that mineral mobilization and phosphate release could be caused by cyanide in vitro. We propose that in oligotrophic alpine environments, and possibly elsewhere, the main contribution of HCN is in the sequestration of metals and the consequential indirect increase of nutrient availability, which is beneficial for the rhizobacteria and their plant hosts. PMID:27917154

  9. Selective Sensing of Phosphates by a New Bis-heteroleptic Ru(II) Complex through Halogen Bonding: A Superior Sensor over Its Hydrogen-Bonding Analogue.

    PubMed

    Chowdhury, Bijit; Sinha, Sanghamitra; Ghosh, Pradyut

    2016-12-12

    The selective phosphate-sensing property of a bis-heteroleptic Ru(II) complex, 1[PF6 ]2 , which has a halogen-bonding iodotriazole unit, is demonstrated and is shown to be superior to its hydrogen-bonding analogue, 2[PF6 ]2 . Complex 1[PF6 ]2 , exploiting halogen-bonding interactions, shows enhanced phosphate recognition in both acetonitrile and aqueous acetonitrile compared with its hydrogen-bonding analogue, owing to considerable amplification of the Ru(II) -center-based metal-to-ligand charge transfer (MLCT) emission response and luminescence lifetime. Detailed solution-state studies reveal a higher association constant, lower limit of detection, and greater change in lifetime for complex 1 in the presence of phosphates compared with its hydrogen-bonding analogue, complex 2. The (1) H NMR titration study with H2 PO4(-) ascertains that the binding of H2 PO4(-) occurs exclusively through halogen-bonding or hydrogen-bonding interactions in complexes 1[PF6 ]2 and 2[PF6 ]2 , respectively. Importantly, the single-crystal X-ray structure confirms the first ever report on metal-assisted second-sphere recognition of H2 PO4(-) and H2 P2 O7(2-) with 1 through a solitary C-I⋅⋅⋅anion halogen-bonding interaction.

  10. Chirality of the hydrogen transfer to the coenzyme catalyzed by ribitol dehydrogenase from Klebsiella pneumoniae and D-mannitol 1-phosphate dehydrogenase from Escherichia coli.

    PubMed

    Alizade, M A; Gaede, K; Brendel, K

    1976-08-01

    The stereochemistry of the hydrogen transfer to NAD catalyzed by ribitol dehydrogenase (ribitol:NAD 2-oxidoreductase, EC 1.1.1.56) from Klebsiella pneumoniae and D-mannitol-1-phosphate dehydrogenase (D-mannitol-1-phosphate:NAD 2-oxidoreductase, EC 1.1.1.17) from Escherichia coli was investigated. [4-3H]NAD was enzymatically reduced with nonlabelled ribitol in the presence of ribitol dehydrogenase and with nonlabelled D-mannitol 1-phosphate and D-mannitol 1-phosphate dehydrogenase, respectively. In both cases the [4-3H]-NADH produced was isolated and the chirality at the C-4 position determined. It was found that after the transfer of hydride, the label was in both reactions exclusively confined to the (4R) position of the newly formed [4-3H]NADH. In order to explain these results, the hydrogen transferred from the nonlabelled substrates to [4-3H]NAD must have entered the (4S) position of the nicotinamide ring. These data indicate for both investigated inducible dehydrogenases a classification as B or (S) type enzymes. Ribitol also can be dehydrogenated by the constitutive A-type L-iditol dehydrogenase (L-iditol:NAD 5-oxidoreductase, EC 1.1.1.14) from sheep liver. When L-iditol dehydrogenase utilizes ribitol as hydrogen donor, the same A-type classification for this oxidoreductase, as expected, holds true. For the first time, opposite chirality of hydrogen transfer to NAD in one organic reaction--ribitol + NAD = D-ribu + NADH + H--is observed when two different dehydrogenases, the inducible ribitol dehydrogenase from K. pneumoniae and the constitutive L-iditol dehydrogenase from sheep liver, are used as enzymes. This result contradicts the previous generalization that the chirality of hydrogen transfer to the coenzyme for the same reaction is independent of the source of the catalyzing enzyme.

  11. Theoretical calculation of spectra of dibutyl phthalate and dioctyl phthalate

    NASA Astrophysics Data System (ADS)

    Du, Jian-Bin; Tang, Yan-Lin; Long, Zheng-Wen; Hu, Shuang-Hui; Li, Tao

    2014-05-01

    Dibutyl phthalate DBP and dioctyl phthalate DOP are the main components of the plasticizers. In order to investigate their molecular structure, chemical bond and spectrum, the geometrical parameters of the ground state and infrared (IR) spectrum are calculated using the density functional theory B3LYP method at the level of 6-311++G( d, p). On this basis, the first twenty-six excited states and the UV-Vis absorption spectra of DBP and DOP are studied using the time-dependent density functional theory (TDDFT) in the same fundamental group and compared with the ultraviolet absorption peak of the molecules measured with UNICO UV-Vis spectrophotometer. The two kinds of molecular spectra are then classified and compared with that in reference. The results show that the strong absorption of IR spectra of DOP and DBP are produced by C-H bending in-plane vibration and C=O telescopic vibration producing. The most absorption of UV-Vis absorption spectra appears in the end absorption belt from n to σ* transition, and the stronger absorption in the E belt of benzene electronic transition from π to π*. There are blue shift for DOP end absorption belt from n to σ* transition and red shift for DOP E absorption belt from π to π* transition relative to that of DBP. This calculation results are better in accord with the spectral data measured by UNICO ultraviolet and visible spectrophotometer.

  12. Enhanced performance and stability of high temperature proton exchange membrane fuel cell by incorporating zirconium hydrogen phosphate in catalyst layer

    NASA Astrophysics Data System (ADS)

    Barron, Olivia; Su, Huaneng; Linkov, Vladimir; Pollet, Bruno G.; Pasupathi, Sivakumar

    2015-03-01

    Zirconium hydrogen phosphate (ZHP) together with polytetrafluoroethylene (PTFE) polymer binder is incorporated into the catalyst layers (CLs) of ABPBI (poly(2,5-benzimidazole))-based high temperature polymer electrolyte membrane fuel cell (HT-PEMFCs) to improve its performance and durability. The influence of ZHP content (normalised with respect to dry PTFE) on the CL properties are structurally characterised by scanning electron microscopy (SEM) and mercury intrusion porosimetry. Electrochemical analyses of the resultant membrane electrode assemblies (MEAs) are performed by recording polarisation curves and impedance spectra at 160 °C, ambient pressure and humidity. The result show that a 30 wt.% ZHP/PTFE content in the CL is optimum for improving fuel cell performance, the resultant MEA delivers a peak power of 592 mW cm-2 at a cell voltage of 380 mV. Electrochemical impedance spectra (EIS) indicate that 30% ZHP in the CL can increase the proton conductivity compared to the pristine PTFE-gas diffusion electrode (GDE). A short term stability test (∼500 h) on the 30 wt.% ZHP/PTFE-GDE shows a remarkable high durability with a degradation rate as low as ∼19 μV h-1 at 0.2 A cm-2, while 195 μV h-1 was obtained for the pristine GDE.

  13. Single crystal growth of bis guanidinium hydrogen phosphate monohydrate by Sankaranarayanan-Ramasamy method and investigation of its linear and nonlinear optical properties

    NASA Astrophysics Data System (ADS)

    Jauhar, RO. MU.; Vinitha, G.; Murugakoothan, P.

    2016-12-01

    Transparent single crystal of bis guanidinium hydrogen phosphate monohydrate of length 45 mm and diameter 16 mm have been grown from saturated solution of deionized water adopting Sankaranarayanan-Ramasamy method. Optical properties such as its transmittance, band gap, Phase-matching angle, spectral phase matching bandwidth were measured and their values are compared with the standard compounds. Third order nonlinear optical property was found using Z-scan technique. Optical limiting property of the title material has also been discussed.

  14. Synthesis and characterization of two polyoxometalates consisting of different Cu-ligand hydrogen phosphate units

    SciTech Connect

    Yan, Jinshuang; Zhao, Xiaofang; Huang, Jiao; Gong, Kaining; Han, Zhangang Zhai, Xueliang

    2014-03-15

    Two polyoxometalates [(Cu-mbpy){sub 4}(HPO{sub 4}){sub 2}(H{sub 2}O){sub 2}][PMo{sub 12}O{sub 40}]·H{sub 2}O (1) and [(Cu-mbpy){sub 6}(HPO{sub 4}){sub 4}][PW{sub 12}O{sub 40}]·4H{sub 2}O (2) (mbpy=4,4'-dimethyl-2,2'-dipyridyl in 1; 5,5″-dimethyl-2,2'-dipyridyl in 2) have been synthesized and characterized by IR, X-ray powder diffraction, TG analysis and electrochemical property. The structural features of 1–2 are in their cationic moieties consisting of different linkages of [Cu-mbpy]{sup 2+} and HPO{sub 4}{sup 2−} groups. In 1 four Cu-mbpy bridged by two HPO{sub 4}{sup 2−} ions form a discrete cluster with an interesting octahedron of (Cu{sub 4}P{sub 2}), while in 2 Cu-mbpy fragments are bridged by HPO{sub 4}{sup 2−} ions into 1D structure consisting of trigonal bipyramidal polyhedra of (Cu{sub 3}P{sub 2}). Photocatalytic experiments indicate that compounds 1 and 2 are actively photocatalytic for degradation of methyl orange in the presence of H{sub 2}O{sub 2} under UV light irradiation. -- Graphical abstract: Two polyoxometalate-based supramolecular compounds consisting of different linkages based on Cu-ligand and HPO{sub 4}{sup 2−} groups have been synthesized and characterized. The photocatalytic activity are studied. Highlights: • Two polyoxometalate-based supramolecular compounds consisting of different linkages based on Cu-ligand and HPO{sub 4}{sup 2−} groups have been synthesized. • Hydrogen bonding and π…π interactions play important roles in constructing crystal supramolecular frameworks. • Two compounds represent a high photocatalytic activity in the degradation of methyl orange.

  15. Comparative study of the hydration systems formed during interactions of hydrogen phosphate dianions with putrescine, nor-putrescine and magnesium dications

    NASA Astrophysics Data System (ADS)

    Figlerowicz, M.; Utzig, E.; Alejska, M.; Bratek-Wiewiórowska, M. D.; Wiewiórowski, M.

    1997-10-01

    A comparative study of hydration systems, formed as a result of the interaction between hydrogen phosphate dianions and three naturally occurring cations (putrescine (Put), its nor-homologue (nPut) and magnesium), is presented. On the basis of X-ray data and IR, NMR and calorimetric measurements, we have determined how the structure and physicochemical properties of the cations influence the system of phosphate residue hydration. Our study demonstrates that the stability of the hydration systems depends not only on the character of the bonds used by water to link with other salt components (coordinate or hydrogen bonds), but also on the location of the water molecules in the crystal lattice. In addition, contrary to magnesium salts, the dehydration of diamine (Put and nPut) hydrogen phosphates is reversible. Both dehydration and rehydration processes take place in the solid state. During rehydration, the crystalline anhydrous salt absorbs water molecules from the atmosphere. This leads to the reconstruction of the hydrated salt structure; this means that the salt which is the product of rehydration is identical with that obtained by crystallization from water solution.

  16. 40 CFR 721.10609 - Imidodicarbonic diamide, N,N′-dibutyl-N′,2-bis[4-[(4-isocyanatophenyl)methyl]phenyl]-.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Imidodicarbonic diamide, N,Nâ²-dibutyl... New Uses for Specific Chemical Substances § 721.10609 Imidodicarbonic diamide, N,N′-dibutyl-N′,2-bis... substance identified as imidodicarbonic diamide, N,N′-dibutyl-N′,2-bis phenyl]-(PMN P-11-548; CAS...

  17. The influence of tributyl phosphate on molybdenum extraction with solutions of dibutyl phosphoric acid

    NASA Astrophysics Data System (ADS)

    Goletskiy, N. D.; Zilberman, B. Ya.; Fedorov, Yu. S.; Khonina, I. V.; Kukharev, D. N.

    2006-01-01

    Comparative investigations were carried out to study the influence of TBP on Mo extraction by HDBP solutions in xylene and TBP in xylene. The dependences of DMo on HNO3 concentration for both HDBP and D2EHPA have minima at about 3 mol/L HNO3. This shows similar extraction properties of HDBP and D2EHPA. The presence of TBP in the solvent results in the reduction of Mo extraction and in an increase in the formal slopes of the falling and rising parts of the logDMo — log[HNO3] curve from -0.5 and +2 up to -2 and +4. Solvent loading curves with Mo show that in the absence of TBP a molybdenum solvate with two molecules of HDBP is formed at low acidity. Anomalous increase in the maximum solvent loading in the presence of TBP is caused by the ability of TBP to extract Mo from oversaturated low acidity solutions following the acidic mechanism. A molybdenum solvate with two HDBP molecules and one HNO3 molecule is possibly formed at high acidity. A flowsheet for Mo recovery from HLW with HDBP-TBP solvent was tested in centrifugal contactors.

  18. Extraction of transplutionium and rare-earth elements, molybdenum and iron with zirconium salt of dibutyl phosphoric acid

    NASA Astrophysics Data System (ADS)

    Zilberman, B. Ya.; Fedorov, Yu. S.; Shmidt, O. V.; Goletsky, N. D.; Sukhareva, S. Yu.; Puzikov, E. A.; Suglobov, D. N.; Mashirov, L. G.; Choppin, G. R.

    2003-01-01

    Zirconium salt of dibutyl phosphoric acid (ZS-HDBP) dissolved in dilute tributyl phosphate (TBP) is proposed as a solvent for separation of transplutonium and rare-earth elements (TPE, RE), including yttrium, from high-level waste in the presence of molybdenum and iron. The optimum HDBP:Zr ratio is 9 for RE and TPE extraction and is 12.5 for Mo. IR spectra indicate formation of Zr(DBP)4(HDBP)4 complex as a base of solvation. HNO3 depresses RE and TPE extraction, while Mo extraction is characterised by a minimum at 2.5 mol/L HNO3. Presence of TBP in the solvent, independently of the used diluent, leads to reduction of the distribution coefficients, but ZS-HDBP extraction capacity for the above elements is increased, as well as solubility of their solvates. Two types of complexes M(DBP)3 and MNO3(DBP)2 are formed at RE and TPE extraction by ZS-HDBP in dilute TBP. Molybdenum extraction is based both on cation exchange and on Mo solvation with HDBP as a neutral ligand. Iron extraction is formally similar to that of Mo, being influenced by the latter if both metals are present in the solution.

  19. Effects of Di-butyl Phthalate (DBP) on Developing Medaka Embryos

    ERIC Educational Resources Information Center

    Tang, Sherry

    2012-01-01

    Plasticizers are chemical additives that enhance plastic flexibility. They are ubiquitous environmental contaminants and are commonly found in river and lake waters (Fromme et al 2002). The present study aimed to investigate the effects of a water-soluble plasticizer, dibutyl phthalate (DBP) on developing Medaka ("Oryzias latipes") embryos. Three…

  20. IRIS Toxicological Review of Dibutyl Phthalate (DBP) (External Review Draft) 2006

    EPA Science Inventory

    The U.S. EPA has conducted a peer review of the scientific basis supporting the human health hazard and dose-response assessment of dibutyl phthalate that will appear on the Integrated Risk Information System (IRIS) database. Peer review is meant to ensure that science is used cr...

  1. Toxicity of 17 {beta}-estradiol and dibutyl-n-phthalate to Japanese medaka (Oryzias latipes)

    SciTech Connect

    Patvna, P.J.; Cooper, K.R. |

    1995-12-31

    Phthalate esters are ubiquitous environmental contaminants that are hypothesized to cause developmental toxicity in aquatic organisms via an estrogenic mechanism. Japanese medaka embryos and larvae provide an excellent model for the study of toxicant effects on embryonic development. The following groups were examined (N = 10--20): a non-treatment control, a vehicle control, 17 {beta}-estradiol and Dibutyl-n-phthalate, in individual glass vials. The medaka embryos were treated beginning at the blastula stage, for ten days. At day 10, embryos were changed into fresh rearing solution. The embryos were observed daily, until three days post-hatching, for toxic developmental effects. Exposure to 17 {beta}-estradiol caused urinary bladder lesions at the lowest doses tested. At concentrations {le} 3 {micro}M/0.82 ppm, 17 {beta}-estradiol caused inhibition of swim bladder inflation, pericardial edema, and marked cachexia. Dibutyl-n-phthalate caused pronounced enlargement of the urinary bladder. No other gross lesions were observed. Both 17 {beta}-estradiol and Dibutyl-n-phthalate caused effects on the urinary tract which will be characterized at the light microscopic level. The lesions observed in the embryo medaka following Dibutyl-n-phthalate exposure were at or below water solubility and are in agreement with previously reported toxic levels.

  2. EFFECTS OF DIBUTYL PHTHALATE IN MALE RABBITS FOLLOWING IN UTERO, ADOLESCENT OR POST-PUBERTAL EXPOSURE

    EPA Science Inventory

    Effects of dibutyl phthalate in male rabbits following in utero, adolescent, or post-pubertal exposure
    Ty T. Higuchi1, Jennifer S. Palmer1, L. Earl Gray Jr2., and D. N. Rao Veeramachaneni1
    1Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort

  3. Salt, phosphate and the Bohr effect at the hemoglobin beta chain C terminus studied by hydrogen exchange.

    PubMed

    Louie, G; Englander, J J; Englander, S W

    1988-06-20

    Hydrogen exchange experiments using functional labeling and fragment separation methods were performed to study interactions at the C terminus of the hemoglobin beta subunit that contribute to the phosphate effect and the Bohr effect. The results show that the H-exchange behavior of several peptide NH at the beta chain C terminus is determined by a transient, concerted unfolding reaction involving five or more residues, from the C-terminal His146 beta through at least Ala142 beta, and that H-exchange rate can be used to measure the stabilization free energy of interactions, both individually and collectively, at this locus. In deoxy hemoglobin at pH 7.4 and 0 degrees C, the removal of 2,3-diphosphoglycerate (DPG) or pyrophosphate (loss of a salt to His143 beta) speeds the exchange of the beta chain C-terminal peptide NH protons by 2.5-fold (at high salt), indicating a destabilization of the C-terminal segment by 0.5 kcal of free energy. Loss of the His146 beta 1 to Asp94 beta 1 salt link speeds all these protons by 6.3-fold, indicating a bond stabilization free energy of 1.0 kcal. When both these salt links are removed together, the effect is found to be strictly additive; all the protons exchange faster by 16-fold indicating a loss of 1.5 kcal in stabilization free energy. Added salt is slightly destabilizing when DPG is present but provides some increased stability, in the 0.2 kcal range, when DPG is absent. The total allosteric stabilization energy at each beta chain C terminus in deoxy hemoglobin under these conditions is measured to be 3.8 kcal (pH 7.4, 0 degrees C, with DPG). In oxy hemoglobin at pH 7.4 and 0 degrees C, stability at the beta chain C terminus is essentially independent of salt concentration, and the NES modification, which in deoxy hemoglobin blocks the His146 beta to Asp94 beta salt link, has no destabilizing effect, either at high or low salt. These results appear to show that the His146 beta salt link, which participates importantly in the

  4. Synthesis and crystal structure of 4-fluoro­benzyl­ammonium di­hydrogen phosphate, [FC6H4CH2NH3]H2PO4

    PubMed Central

    Rayes, Ali; Dadi, Ahlem; Mahbouli Rhouma, Najla; Mezzadri, Francesco; Calestani, Gianluca

    2016-01-01

    The asymmetric unit of the title salt, [p-FC6H4CH2NH3]+·H2PO4 −, contains one 4-fluoro­benzyl­ammonium cation and one di­hydrogen phosphate anion. In the crystal, the H2PO4 − anions are linked by O—H⋯O hydrogen bonds to build corrugated layers extending parallel to the ab plane. The FC6H4CH2NH3 + cations lie between these anionic layers to maximize the electrostatic inter­actions and are linked to the H2PO4 − anions through N—H⋯O hydrogen bonds, forming a three-dimensional supra­molecular network. Two hydrogen atoms belonging to the di­hydrogen phosphate anion are statistically occupied due to disorder along the OH⋯HO direction. PMID:27980837

  5. An approach for integrating toxicogenomic data in risk assessment: The dibutyl phthalate case study

    SciTech Connect

    Euling, Susan Y.; Thompson, Chad M.; Chiu, Weihsueh A.; Benson, Robert

    2013-09-15

    An approach for evaluating and integrating genomic data in chemical risk assessment was developed based on the lessons learned from performing a case study for the chemical dibutyl phthalate. A case study prototype approach was first developed in accordance with EPA guidance and recommendations of the scientific community. Dibutyl phthalate (DBP) was selected for the case study exercise. The scoping phase of the dibutyl phthalate case study was conducted by considering the available DBP genomic data, taken together with the entire data set, for whether they could inform various risk assessment aspects, such as toxicodynamics, toxicokinetics, and dose–response. A description of weighing the available dibutyl phthalate data set for utility in risk assessment provides an example for considering genomic data for future chemical assessments. As a result of conducting the scoping process, two questions—Do the DBP toxicogenomic data inform 1) the mechanisms or modes of action?, and 2) the interspecies differences in toxicodynamics?—were selected to focus the case study exercise. Principles of the general approach include considering the genomics data in conjunction with all other data to determine their ability to inform the various qualitative and/or quantitative aspects of risk assessment, and evaluating the relationship between the available genomic and toxicity outcome data with respect to study comparability and phenotypic anchoring. Based on experience from the DBP case study, recommendations and a general approach for integrating genomic data in chemical assessment were developed to advance the broader effort to utilize 21st century data in risk assessment. - Highlights: • Performed DBP case study for integrating genomic data in risk assessment • Present approach for considering genomic data in chemical risk assessment • Present recommendations for use of genomic data in chemical risk assessment.

  6. XPS evidence for structure-performance relationship in selective hydrogenation of crotonaldehyde to crotyl alcohol on platinum systems supported on natural phosphates.

    PubMed

    Hidalgo-Carrillo, Jesús; Sebti, Jalila; Marinas, Alberto; Marinas, José M; Sebti, Said; Urbano, Francisco J

    2012-09-15

    Natural phosphates are an important natural resource in Morocco, which needs to be valorised. They can be used not only as fertilisers but also as catalysts. Here, we report for the first time on its use as support for platinum and the application of the resulting systems to the liquid-phase selective hydrogenation of an α,β-unsaturated carbonyl compound (crotonaldehyde) to the corresponding unsaturated alcohol (crotyl alcohol), a process of interest in the production of pharmaceuticals, agrochemicals and fragrances. Catalytic results are related to the surface solid structure as determined by XPS. Therefore, the most active systems showed new surface interactions as evidenced by the appearance of new P, O, Ca, F and C peaks and the shift of Pt ones to lower binding energies. Further modification of the most active system with FeCl(2) led to 70% selectivity to crotyl alcohol at 34% conversion.

  7. An Innovative Approach to Treat Incisors Hypomineralization (MIH): A Combined Use of Casein Phosphopeptide-Amorphous Calcium Phosphate and Hydrogen Peroxide-A Case Report.

    PubMed

    Mastroberardino, Stefano; Campus, Guglielmo; Strohmenger, Laura; Villa, Alessandro; Cagetti, Maria Grazia

    2012-01-01

    Molar Incisor Hypomineralization (MIH) is characterized by a developmentally derived deficiency in mineral enamel. Affected teeth present demarcated enamel opacities, ranging from white to brown; also hypoplasia can be associated. Patient frequently claims aesthetic discomfort if anterior teeth are involved. This problem leads patients to request a bleaching treatment to improve aestheticconditions.Nevertheless, hydrogen peroxide can produce serious side-effects, resulting from further mineral loss. Microabrasion and/or a composite restoration are the treatments of choice in teeth with mild/moderate MIH, but they also need enamel loss. Recently, a new remineralizing agent based on Casein Phosphopeptide-Amorphous Calcium Phosphate (CPP-ACP) has been proposed to be effective in hypomineralized enamel, improving also aesthetic conditions. The present paper presents a case report of a young man with white opacities on incisors treated with a combined use of CPP-ACP mousse and hydrogen peroxide gel to correct the aesthetic defect. The patient was instructed to use CPP-ACP for two hours per day for three months in order to obtain enamel remineralization followed by a combined use of CPP-ACP and bleaching agent for further two months. At the end of this five-month treatment, a noticeable aesthetic improvement of the opacities was observed.

  8. An Innovative Approach to Treat Incisors Hypomineralization (MIH): A Combined Use of Casein Phosphopeptide-Amorphous Calcium Phosphate and Hydrogen Peroxide—A Case Report

    PubMed Central

    Mastroberardino, Stefano; Campus, Guglielmo; Strohmenger, Laura; Villa, Alessandro; Cagetti, Maria Grazia

    2012-01-01

    Molar Incisor Hypomineralization (MIH) is characterized by a developmentally derived deficiency in mineral enamel. Affected teeth present demarcated enamel opacities, ranging from white to brown; also hypoplasia can be associated. Patient frequently claims aesthetic discomfort if anterior teeth are involved. This problem leads patients to request a bleaching treatment to improve aestheticconditions.Nevertheless, hydrogen peroxide can produce serious side-effects, resulting from further mineral loss. Microabrasion and/or a composite restoration are the treatments of choice in teeth with mild/moderate MIH, but they also need enamel loss. Recently, a new remineralizing agent based on Casein Phosphopeptide-Amorphous Calcium Phosphate (CPP-ACP) has been proposed to be effective in hypomineralized enamel, improving also aesthetic conditions. The present paper presents a case report of a young man with white opacities on incisors treated with a combined use of CPP-ACP mousse and hydrogen peroxide gel to correct the aesthetic defect. The patient was instructed to use CPP-ACP for two hours per day for three months in order to obtain enamel remineralization followed by a combined use of CPP-ACP and bleaching agent for further two months. At the end of this five-month treatment, a noticeable aesthetic improvement of the opacities was observed. PMID:23243519

  9. Hydrogen peroxide and nitric oxide mediated cold- and dehydration-induced myo-inositol phosphate synthase that confers multiple resistances to abiotic stresses.

    PubMed

    Tan, Jiali; Wang, Congying; Xiang, Bin; Han, Ruihong; Guo, Zhenfei

    2013-02-01

    myo-Inositol phosphate synthase (MIPS) is the key enzyme of myo-inositol synthesis, which is a central molecule required for cell metabolism and plant growth as a precursor to a large variety of compounds. A full-length fragment of MfMIPS1 cDNA was cloned from Medicago falcata that is more cold-tolerant than Medicago sativa. While MfMIPS1 transcript was induced in response to cold, dehydration and salt stress, MIPS transcript and myo-inositol were maintained longer and at a higher level in M. falcata than in M. sativa during cold acclimation at 5 °C. MfMIPS1 transcript was induced by hydrogen peroxide (H(2) O(2)) and nitric oxide (NO), but was not responsive to abscisic acid (ABA). Pharmacological experiments revealed that H(2) O(2) and NO are involved in the regulation of MfMIPS1 expression by cold and dehydration, but not by salt. Overexpression of MfMIPS1 in tobacco increased the MIPS activity and levels of myo-inositol, galactinol and raffinose, resulting in enhanced resistance to chilling, drought and salt stresses in transgenic tobacco plants. It is suggested that MfMIPS1 is induced by diverse environmental factors and confers resistance to various abiotic stresses.

  10. Kinetics of reduction of sulfur dioxide by hydrogen sulfide in the presence of sulfoxides, pyridine N-oxide, trioctylphosphine oxide and tributyl phosphate

    SciTech Connect

    Bikbaeva, G.G.; Baranovskaya, E.M.; Nikitin, Yu.E.

    1989-01-01

    The kinetic regularities were studied of the reduction of SO/sub 2/ by hydrogen sulfide in m-xylene containing 0.025 M of aliphatic sulfoxides, (C/sub 1/-C/sub 8/alkyl), diphenyl-, dibenzyl sulfoxides, tributyl phosphate (TBP), trioctylphosphine oxide (TOPO) at 25/degree/C, and 0.001-0.003 M pyridine N-oxide (PyO) at 21-60/degree/C. It was shown that the reaction proceeds with the participation of an SO/sub 2/ complex having the composition of R/sub n/XO...SO/sub 2/ (where X = S, P, N). The kinetic regularities for the reaction taking place in the presence of aromatic sulfoxides are explainable by the contribution to the reaction of intermediate SO/sub 2/ complexes. The equilibrium constants of the complexation of SO/sub 2/ with aliphatic sulfoxides, PyO, TOPO, and TBP and the rate constant of the limiting stage of the reaction were calculated.

  11. Involvement of glucose-6-phosphate dehydrogenase in reduced glutathione maintenance and hydrogen peroxide signal under salt stress.

    PubMed

    Wang, Xiaomin; Ma, Yuanyuan; Huang, Chenghong; Li, Jisheng; Wan, Qi; Bi, Yurong

    2008-06-01

    Cellular redox homeostasis is essential for plant growth, development as well as for the resistance to biotic and abiotic stresses, which is governed by the complex network of prooxidant and antioxidant systems. Recently, new evidence has been published that NADPH, produced by glucose-6-phosephate dehydrogenase enzyme (G6PDH), not only acted as the reducing potential for the output of reduced glutathione (GSH), but was involved in the activity of plasma membrane (PM) NADPH oxidase under salt stress, which resulted in hydrogen peroxide (H(2)O(2)) accumulation. H(2)O(2) acts as a signal in regulating G6PDH activity and expression, and the activities of the enzymes in the glutathione cycle as well, through which the ability of GSH regeneration was increased under salt stress. Thus, G6PDH plays a critical role in maintaining cellular GSH levels under long-term salt stress. In this addendum, a hypothetical model for the roles of G6PDH in modulating the intracellular redox homeostasis under salt stress is presented.

  12. Use of Genomic Data in Risk Assessment Caes Study: II. Evaluation of the Dibutyl Phthalate Toxicogenomic Dataset

    EPA Science Inventory

    An evaluation of the toxicogenomic data set for dibutyl phthalate (DBP) and male reproductive developmental effects was performed as part of a larger case study to test an approach for incorporating genomic data in risk assessment. The DBP toxicogenomic data set is composed of ni...

  13. Adaptive microlens array based on electrically charged polyvinyl chloride/dibutyl phthalate gel

    NASA Astrophysics Data System (ADS)

    Xu, Miao; Ren, Hongwen

    2016-09-01

    We prepared an adaptive microlens array (MLA) using a polyvinyl chloride/dibutyl phthalate gel and an indium-tin-oxide (ITO) glass substrate. The gel forms a membrane on the glass substrate and the ITO electrode has a ring array pattern. When the membrane is electrically charged by a DC voltage, the surface of the membrane above each circular electrode in the ring array can be deformed with a convex shape. As a result, the membrane functions as an MLA. By applying a voltage from 20 to ˜65 V to the electrode, the focal length of each microlens can be tuned from 300 to ˜160 μm. The dynamic response time can by reduced largely by changing the polarity of the DC voltage. Due to the advantages of optical isotropy, compact structure, and good stability, our MLA has potential applications in imaging, biometrics, and electronic displays.

  14. Effect of Cd⁺² on phosphate solubilizing abilities and hydrogen peroxide production of soil-borne micromycetes isolated from Phragmites australis-rhizosphere.

    PubMed

    Zúñiga-Silva, Jose Roberto; Chan-Cupul, Wilberth; Kuschk, Peter; Loera, Octavio; Aguilar-López, Ricardo; Rodríguez-Vázquez, Refugio

    2016-03-01

    The aims of this work were to evaluate the phosphate-solubilization and hydrogen peroxide (H2O2) production by the soil-borne micromycetes, Aspergillus japonicus, Penicillium italicum and Penicillium dipodomyicola, isolated from Phragmites australis rhizosphere and to study the effect of several concentrations of Cadmium (Cd(2+)) on both variables. Our results showed that P. italicum achieved a higher P-solubilization and H2O2 production than A. japonicus and P. dipodomyicola, as only P. italicum showed a positive correlation (R(2) = 0.71) between P-solubilization and H2O2 production. In dose-response assays, P. italicum was also more tolerant to Cd(2+) (0.31 mM) in comparison to A. japonicus (0.26 mM). Analysis of the 2(4) factorial experimental design showed that P-solubilization by P. italicum was negatively affected by increases in Cd(2+) (p = 0.04) and yeast extract (p = 0.02) in the culture medium. The production of H2O2 was positively affected only by glucose (p = 0.002). Fungal biomass production was reduced significantly (p = 0.0009) by Cd(2+) and increased (p = 0.0003) by high glucose concentration in the culture medium. The tolerance and correlation between P-solubilization and H2O2 production in the presence of Cd(2+) was strain and species dependent. The effects of Cd(2+), glucose, ammonium sulfate and yeast extract on those variables were evaluated through a two-level factorial design. P. italicum is promising for P-solubilization in soils contaminated with Cd(2+) and may be an alternative for manufacture of biofertilizers to replace chemical fertilizers.

  15. A Novel Monomeric Tin(II) Phosphate, [N(C 2H 5NH 3) 3] 3+[Sn(PO 4)(HPO 4)] 3-·4H 2O, Connected through Hydrogen Bonding

    NASA Astrophysics Data System (ADS)

    Ayyappan, S.; Cheetham, A. K.; Natarajan, Srinivasan; Rao, C. N. R.

    1998-08-01

    The tin(II) phosphate, [N(C 2H 5NH 3) 3] 3+[Sn(PO 4)(HPO 4)] 3-4H 2O, contains monomeric Sn 2(PO 4) 2(HPO 4) 2units which form a hydrogen-bonded network with the TREN amine (TREN=N(C 2H 5NH 3) 3+3); triclinic, space group P1 (no. 2), a=9.579(1), b=10.507(1), c=10.976(1) Å; α=72.93(1)°, β=78.03(1)°, γ=69.82(1)°, V=984.2(1) Å 3, Z=2. The Sn 2P 2O 4core of this unit is a common structural feature of open-framework tin phosphates and may play a role as a building block for this class of materials.

  16. Effect of Mineral Trioxide Aggregate, Calcium-Enriched Mixture Cement and Mineral Trioxide Aggregate with Disodium Hydrogen Phosphate on BMP-2 Production

    PubMed Central

    Ghasemi, Negin; Rahimi, Saeed; Lotfi, Mehrdad; Solaimanirad, Jafar; Shahi, Shahriar; Shafaie, Hajar; Salem Milani, Amin; Shakuie, Sahar; Zand, Vahid; Abdolrahimi, Majid

    2014-01-01

    Introduction: One of the hypotheses regarding the calcification induction by mineral trioxide aggregate (MTA) is the involvement of transforming growth factor-Beta (TGF-β) super family. Calcium-enriched mixture (CEM) cement is one of the endodontic biomaterials with clinical applications similar to MTA. The aim of the present in vitro study was to compare the induction of bone morphogenic protein-2 (BMP-2) by a combination of disodium hydrogen phosphate (DSHP) and tooth colored ProRoot MTA (WMTA), to that of CEM cement and WMTA. Methods and Materials: Human gingival fibroblasts (HGFs) were obtained from the attached gingiva of human premolars. HGFs were cultured in Dulbecco’s Modified Eagle’s medium, supplemented with 10% fetal calf serum, penicillin, and streptomycin. Cells in groups 1, 2 and 3 were exposed to WMTA, CEM and WMTA+DSHP discs, respectively. The fourth group served as the control. After 72 h of exposure, HGF viability was determined by Mosmann’s tetrazolium toxicity (MTT) assay. BMP-2 levels in cell-free culture media were determined by enzyme-linked immunosorbent assay (ELISA). Statistical analysis was performed using the one-way ANOVA, followed by the post hoc Games-Howell test for BMP-2 and post hoc Tukey’s test for the results of MTT assay. Results: Cellular viability was significantly higher in group 3 compared to the other groups (P<0.05); however, CEM and WMTA did not exhibit significant differences (P=0.08). The control group exhibited significantly higher cellular viability in comparison to the other groups of the study (P<0.05). The highest and lowest protein production rates were observed in the WMTA (3167±274.46 pg/mL) and WMTA+DSHP (1796±839.49 pg/mL) groups, respectively. There were no significant differences between the control, WMTA and CEM groups (P>0.05). Conclusion: WMTA and CEM did not exhibit any significant differences in terms of inducing BMP-2 production; however, incorporation of DSHP into WMTA resulted in a

  17. Significantly Dense Two-Dimensional Hydrogen-Bond Network in a Layered Zirconium Phosphate Leading to High Proton Conductivities in Both Water-Assisted Low-Temperature and Anhydrous Intermediate-Temperature Regions.

    PubMed

    Gui, Daxiang; Zheng, Tao; Xie, Jian; Cai, Yawen; Wang, Yaxing; Chen, Lanhua; Diwu, Juan; Chai, Zhifang; Wang, Shuao

    2016-12-19

    A highly stable layered zirconium phosphate, (NH4)2[ZrF2(HPO4)2] (ZrP-1), was synthesized by an ionothermal method and contains an extremely dense two-dimensional hydrogen-bond network that is thermally stable up to 573 K, leading to combined ultrahigh water-assisted proton conductivities of 1.45 × 10(-2) S cm(-1) at 363 K/95% relative humidity and sustainable anhydrous proton conductivity of 1.1 × 10(-5) S cm(-1) at 503 K.

  18. Dibutyl phthalate contributes to the thyroid receptor antagonistic activity in drinking water processes.

    PubMed

    Li, Na; Wang, Donghong; Zhou, Yiqi; Ma, Mei; Li, Jian; Wang, Zijian

    2010-09-01

    It has long been recognized that thyroid hormone (TH) is essential for normal brain development in both humans and animals, and there is growing evidence that environmental chemicals can disrupt the thyroid system. In the present work, we used a two-hybrid yeast assay to screen for agonistic or antagonistic thyroid receptor (TR) mediated effects in drinking waters. We found no TR agonistic, but TR antagonistic activities in all samples from the drinking water processes. The TR antagonistic activities in organic extracts of water samples were then calibrated regarding to a known TR-inhibitor, NH3, and were expressed as the NH3 equivalents (TEQbio). The observed TEQbio in waters ranged from 180.8+/-24.8 to 280.2+/-48.2 microg/L NH3. To identify the specific compounds responsible for TR disrupting activities, the concentrations of potentially thyroid-disrupting chemicals including organochlorine pesticides (OCPs), phenols, and phthalates in organic extracts were quantitatively determined and their toxic equivalents with respect to NH3 (TEQcal) were estimated from their concentration-dependent relationships, respectively, using the same set of bioassays. Based on the TEQ approach, it was revealed that dibutyl phthalate (DBP) accounted for 53.7+/-8.2% to 105.5+/-16.7% of TEQbio. There was no effective removal of these potential thyroid disrupting substances throughout drinking water treatment processes.

  19. A dibutyl phthalate sensor based on a nanofiber polyaniline coated quartz crystal monitor.

    PubMed

    Wang, You; Ding, Pengfei; Hu, Ruifen; Zhang, Jianming; Ma, Xingfa; Luo, Zhiyuan; Li, Guang

    2013-03-18

    Dibutyl phthalate (DBP) is a commonly used plasticizer and additive to adhesives, printing inks and nail polishes. Because it has been found to be a powerful reproductive and developmental toxicant, a sensor to monitor DBP in some working spaces and the environment is required. In this work polyaniline nanofibers were deposited on the electrode of a quartz crystal oscillator to form a Quartz Crystal Microbalance gas sensor. The coated quartz crystal and a non-coated quartz crystal were mounted in a sealed chamber, and their frequency difference was monitored. When DBP vapor was injected into the chamber, gas adsorption decreased the frequency of the coated quartz crystal oscillator and thereby caused an increase in the frequency difference between the two crystals. The change of the frequency difference was recorded as the sensor response. The sensor was extremely sensitive to DBP and could be easily recovered by N2 purging. A low measurement limit of 20 ppb was achieved. The morphologies of the polyaniline films prepared by different approaches have been studied by SEM and BET. How the nanofiber-structure can improve the sensitivity and stability is discussed, while its selectivity and long-term stability were investigated.

  20. Development of an Enzyme-Linked Immunosorbent Assay for Dibutyl Phthalate in Liquor

    PubMed Central

    Kuang, Hua; Liu, Liqiang; Xu, Liguang; Ma, Wei; Guo, Lingling; Wang, Libing; Xu, Chuanlai

    2013-01-01

    A monoclonal antibody specifically recognizing dibutyl phthalate (DBP) was prepared based on a hapten (di-n-butyl-4-aminophthalate). After optimizing various parameters such as concentrations of antibody, coating antigen and composition of the assay buffer, an inhibition curve was plotted with the 50% inhibition concentration value (IC50) 33.6 ± 2.5 ng/mL. A low level of cross-reactivity (<5%) was found for other phthalate esters. Recovery tests were conducted using liquor simulant (a mixture of water and ethanol) at two fortification levels (100 ng/mL and 300 ng/mL). The recovery rates ranged from 84.7% to 94.5% with a coefficient of variation between 7.1% and 12.8%. Nine liquor samples of different alcoholic strengths were detected using the proposed measure and confirmatory analysis was performed using liquid chromatography-mass spectroscopy (LC-MS). The detection results showed good consistency between the two measures and all the data above indicated that the proposed ELISA could be applied in DBP screening. PMID:23807690

  1. Usage of Dibutyl Phosphoric Acid and Its Zirconium Salt for Extraction of Transplutonium Elements and Rare Earths with Their Partitioning

    SciTech Connect

    Zilberman, B.Ya.; Fedorov, Yu.S.; Shmidt, O.V.; Goletskiy, N.D.; Shishkin, D.N.; Esimantovskiy, V.M.; Rodionov, S.A.; Egorova, O.N.; Palenik, Yu.V.

    2007-07-01

    Dibutyl phosphoric acid (HDBP) formed by tributyl phosphate (TBP) destruction is soluble both in aqueous alkaline solutions and in organic solvents in acidic media. So, the solvent based on HDBP and its zirconium salt (ZS-HDBP) dissolved in polar diluent, e.g. in diluted TBP, is interesting for radwaste treatment, minimizing the amount of secondary organic wastes. Addition of Zr to 0.2 mol/L HDBP dissolved in 30% TBP results in successful extraction of lanthanides and actinides at the optimum ratio Zr:HDBP=1:(8-9) from 1.5 mol/L HNO{sub 3}, followed by their back-washing with 5 mol/L HNO{sub 3}. Partitioning of yttrium and cerium RE subgroups (the latter together with TPE) with the separation factor from 5 to 50 is also possible with purification from molybdenum. Strontium is extracted by 0.4 mol/L ZS HDBP from 0.3 mol/L HNO{sub 3} and stripped with 1.5 mol/L HNO{sub 3}. ZS-HDBP solution in 30% TBP is also capable of extraction of residual Np, Pu and corrosion-born iron. Stripping of these elements requires salt-free complexants. Solvents containing ZS-HDBP have high capacity, while TBP presence doubles it because of synergetic effect. The maximum solvent loading of 0.2 mol/L ZSHDBP in xylene was found as 8.0 g/L Eu and {approx}6 g/L Mo. The mixture of DTPA and formic acid is suitable for TPE/RE partitioning using ZS-HDBP as a solvent with separation factors for Ce/Am and Eu/Am of 67 and 9, respectively. Two variants of two-cycle flowsheet for TPE and RE partitioning after their joint recovery have been proposed, which differs by order of the cycles with acidic and buffer media at the partitioning. Both variants were successfully tested using simulate solutions on the centrifugal contactor rig with TPE/RE separation factor being {approx}60, the major impurity being Nd. Correction of the solvent composition because of HDBP loss due to its solubility in aqueous phase, especially at acidity less than 0.2 mol/L HNO{sub 3}, was also taken into consideration. Further

  2. The results of HLW processing using zirconium salt of dibutyl phosphoric acid

    SciTech Connect

    Fedorov, Yury; Zilberman, Boris; Shmidt, Olga; Saprikin, Vladimir; Ryasantsev, Valery

    2007-07-01

    Available in abstract form only. Full text of publication follows: Zirconium salt of dibutyl-phosphoric acid (ZS HDBP) dissolved in a diluent, is a promising solvent for liquid HLW processing. The investigations carried out earlier showed that ZS HDBP can recover a series of radionuclides (TPE, RE, U, Pu, Np, Sr) and some other elements (Mo, Ca, Fe) from aqueous solutions. The possibility of TPE and RE effective recovery and separation into appropriate fractions with high purification from each other was demonstrated as well. The results of extraction tests in the mixer-settlers in the course of liquid HLW treatment in hot cells, using ZS HDBP (0.4 M HDBP and 0.044 M Zr) dissolved in 30% TBP are presented. 30 liters of the feed solution containing TPE, RE, Sr and Cs with the total specific activity of 520 MBq/L and acidity of 2 M HNO{sub 3} were processed using the two-cycle flowsheet. TPE and RE recovery with subsequent stripping was realized in the first cycle, while Sr was recovered and concentrated in the second cycle. Raffinate of the latter contained almost all Cs. The degree of TPE and RE recovery was 104, and that of Sr was {approx}10. Decontamination factor of TPE and RE from Cs and Sr was 104, and that of Sr from TPE and Cs was 103. So, ZS HDBP can be used for separation of long-lived radionuclides from HLW with respect to radio-toxic category of the process products. (authors)

  3. Inhibitory effects and oxidative target site of dibutyl phthalate on Karenia brevis.

    PubMed

    Li, Feng-min; Wu, Miao; Yao, Yuan; Zheng, Xiang; Zhao, Jian; Wang, Zhen-yu; Xing, Bao-shan

    2015-08-01

    The inhibitory action and possible damage mechanism of dibutyl phthalate (DBP) on the red tide algae Karenia brevis were investigated. The results showed that the algae experienced oxidative stress after exposure to 5mgL(-1) DBP. Malondialdehyde (MDA) peaked after 72h, with a value approximately 2.3 times higher than that observed for untreated cells. The superoxide dismutase (SOD) and catalase (CAT) activities significantly increased as an adaptive reaction after 48h. DBP induced the overproduction of reactive oxygen species (ROS), the OH concentration showed a peak of 33UmL(-1) at 48h, and the highest H2O2 content was approximately 250nmol/10(7) cells at 72h; these latter two values were 2.5 and 4.4 times higher than observed for the control, respectively. TEM images showed that a number of small vacuoles or apical tubers were commonly found around the cell membrane, and the membrane structure was ultimately disintegrated. Further experiments were carried out to locate the original ROS production sites following DBP exposure. The activity of CuZn-SOD (a mainly cytosolic isoform, with some also found in chloroplasts) under DBP exposure was approximately 2.5 times higher than the control, whereas the Mn-SOD (mitochondrial isoform) activity was significantly inhibited. No significant difference was observed in the activity of Fe-SOD (chloroplastic isoform). In addition, dicumarol (an inhibitor of the electron transport chain in the plasma membrane) stimulated DBP-induced ROS production, whereas rotenone (an inhibitor of the mitochondria electron transport chain complex I) decreased DBP-induced ROS production. These results suggested that mitochondria could be the main target sites for DBP attack.

  4. Effects of dibutyl phthalate in male rabbits following in utero, adolescent, or postpubertal exposure.

    PubMed

    Higuchi, Ty T; Palmer, Jennifer S; Gray, L Earl; Veeramachaneni, D N Rao

    2003-04-01

    We evaluated sequelae in male rabbits following exposure to dibutyl phthalate (DBP) at a dose level known to adversely affect testicular function in rodents without causing systemic toxicity. Because rabbits have a relatively long phase of reproductive development simulating better than rodents the reproductive development of humans, and because the use of rabbits facilitates multiple evaluations of mating ability and seminal quality, we used this animal model. Rabbits were exposed to 0 or 400 mg DBP/kg/day in utero (gestation days [GD] 15-29) or during adolescence (postnatal weeks [PNW] 4-12), and male offspring were examined at 6, 12, and 25 weeks of age. Another group was exposed after puberty (for 12 weeks) and examined at the conclusion of exposure. The most pronounced reproductive effects were in male rabbits exposed in utero. Male offspring in this group exhibited reduction in numbers of ejaculated sperm (down 43%; p < 0.01), in weights of testes (at 12 weeks, down 23%; p < 0.05) and in accessory sex glands (at 12 and 25 weeks, down 36%; p < 0.01 and down 27%; p < 0.05, respectively). Serum testosterone levels were down (at 6 weeks, 32%; p < 0.05); a slight increase in histological alterations of the testis (p < 0.05) and a doubling in the percentage (from 16 to 30%, p < 0.01) of abnormal sperm; and 1/17 males manifesting hypospadias, hypoplastic prostate, and cryptorchid testes with carcinoma in situ-like cells. In the DBP group exposed during adolescence, basal serum testosterone levels were reduced at 6 weeks (p < 0.01) while at 12 weeks, testosterone production in vivo failed to respond normally to a GnRH challenge (p < 0.01). In addition, weight of accessory sex glands was reduced at 12 weeks but not at 25 weeks after a recovery period; there was a slight increase in the percentage of abnormal sperm in the ejaculate; and 1/11 males was unilaterally cryptorchid. In both of these DBP-treated groups, daily sperm production, epididymal sperm counts, mating

  5. In situ template generation for zincophosphate synthesis leading to guanylurea zinc phosphate, C 2H 7N 4O·ZnPO 4, containing template-to-template NH⋯O hydrogen bonds

    NASA Astrophysics Data System (ADS)

    Harrison, William T. A.; Rodgers, Jennifer A.; Phillips, Mark L. F.; Nenoff, Tina M.

    2002-06-01

    The synthesis and structure of C 2H 7N 4O·ZnPO 4 (guanylurea zinc phosphate) are reported. The cationic [C 2H 7N 4O] + template was prepared in situ by the slow hydrolysis of the neutral 2-cyanoguanidine starting material. The resulting structure contains an unusual, unprotonated, zincophosphate layer topology as well as NH⋯O template-to-template hydrogen bonds which help to stabilize a "double sandwich" of templating cations between the inorganic sheets. Crystal data: C 2H 7N 4O·ZnPO 4, Mr=263.48, monoclinic, P2 1/c, a=13.6453(9) , b=5.0716(3), c=10.6005(7) Å, β=95.918(2)°, Z=4, V=729.7(1) Å 3, R( F)=0.034, wR( F)=0.034.

  6. Square-wave adsorptive stripping voltammetric determination of nanomolar levels of bezafibrate using a glassy carbon electrode modified with multi-walled carbon nanotubes within a dihexadecyl hydrogen phosphate film.

    PubMed

    Ardila, Jorge Armando; Oliveira, Geiser Gabriel; Medeiros, Roberta Antigo; Fatibello-Filho, Orlando

    2014-04-07

    A highly sensitive method for bezafibrate determination using a glassy carbon electrode (GCE) modified with multi-walled carbon nanotubes within a dihexadecyl hydrogen phosphate film based on square-wave adsorptive stripping voltammetry (SWAdSV) is proposed. The electrochemical behaviour of bezafibrate has been studied by cyclic voltammetry, showing an irreversible anodic peak at a potential of 1.09 V in 0.1 mol L(-1) phosphate buffer solution (pH 2.0). A study of the scan rate showed that the oxidation of bezafibrate is an adsorptive-controlled process, involving the transfer of two electrons and two protons per molecule. The analytical curve was linear over a bezafibrate concentration range from 50 to 910 nmol L(-1), with a detection limit of 16 nmol L(-1). This analytical method was successfully applied for benzafibrate determination in pharmaceutical formulations, with results showing good agreement with those obtained using a comparative spectrophotometric method, and has the potential for field application.

  7. Phosphate salts

    MedlinePlus

    ... sodium if you have heart disease. Fluid retention (edema): Avoid using phosphate salts that contain sodium if ... heart failure, or other conditions that can cause edema. High levels of calcium in the blood (hypercalcemia): ...

  8. Defining the Borders of Dose Addition: Mixture Effects of 2,3,7,8-Tetrachlorodibenzo-p-dioxin and Dibutyl phthalate on Male Rat Reproductive Tract Development

    EPA Science Inventory

    In utero exposure to either dibutyl phthalate (DBP) or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) disrupts male rat reproductive tract differentiation. However, they act via different modes of toxicity and induce distinct postnatal phenotypes. DBP exposure decreases anogenital di...

  9. An Approach to Using Toxicogenomic Data in U.S. EPA Human Health Risk Assessments: A Dibutyl Phthalate (Dbp) Case Study (External Review Draft)

    EPA Science Inventory

    This draft report is a description of an approach to evaluate genomic data for use in risk assessment and a case study to illustrate the approach. The dibutyl phthalate (DBP) case study example focuses on male reproductive developmental effects and the qualitative application of...

  10. An Approach to Using Toxicogenomic Data in U.S. EPA Human Health Risk Assessments: A Dibutyl Phthalate Case Study (Final Report, 2010)

    EPA Science Inventory

    EPA announced the availability of the final report, An Approach to Using Toxicogenomic Data in U.S. EPA Human Health Risk Assessments: A Dibutyl Phthalate Case Study. This report outlines an approach to evaluate genomic data for use in risk assessment and a case study to ...

  11. An Approach to Using Toxicogenomic Data in U.S. EPA Human Health Risk Assessments: A Dibutyl Phthalate Case Study (Final Report) 2009

    EPA Science Inventory

    Cover of the <span class=Dibutyl Phthalate (DBP) Case Study Report"> This final report is a description of an approach to evaluate genomic data for use in ris...

  12. AN APPROACH TO USING TOXICOGENOMIC DATA IN U.S. EPA HUMAN HEALTH RISK ASSESSMENTS: A DIBUTYL PHTHALATE (DBP) CASE STUDY (EXTERNAL REVIEW DRAFT)

    EPA Science Inventory

    This draft report is a description of an approach to evaluate genomic data for use in risk assessment and a case study to illustrate the approach. The dibutyl phthalate (DBP) case study example focuses on male reproductive developmental effects and the qualitative application of...

  13. An Approach to Using Toxicogenomic Data in U.S. EPA Human Health Risk Assessments: A Dibutyl Phthalate Case Study (Final Report)

    EPA Science Inventory

    EPA announced the availability of the final report, An Approach to Using Toxicogenomic Data in U.S. EPA Human Health Risk Assessments: A Dibutyl Phthalate Case Study. This report outlines an approach to evaluate genomic data for use in risk assessment and a case study to ...

  14. Anchored [RuCl2(p-cymene)]2 in hybrid zirconium phosphate-phosphonate coated and pillared with double-stranded hydrophobic linear polystyrene as heterogeneous catalyst suitable for aqueous asymmetric transfer hydrogenation.

    PubMed

    Wang, Rui; Wan, Jingwei; Ma, Xuebing; Xu, Xiao; Liu, Liu

    2013-05-14

    A novel type of phosphonate-containing polystyrene copolymers 1a-e bearing an N'-alkylated TsDPEN chiral ligand and double-stranded polystyrene chains were prepared for the first time using simple radical copolymerization of 1-phosphonate styrene with (R,R)-N'-4'-vinylbenzyl-N-4-vinylbenzenesulfonyl-1,2-diphenylethylene-1,2-diamine. Through the coprecipitation of their supported Ru polystyrene copolymers 2a-e and NaH2PO4 with ZrOCl2, pillared hybrid zirconium phosphate-phosphonate-anchored Ru catalysts 3a-e and 4d1-d5 were obtained as heterogeneous catalysts suitable for aqueous asymmetric transfer hydrogenation. In the aqueous asymmetric transfer hydrogenation of aromatic ketones, the anchored Ru catalysts showed good catalytic activities, chemoselectivities (~100%), and enantioselectivities (73.6% ee to 95.6% ee). The Ru catalysts retained their catalytic properties even at the fifth recycle time (92.2% conv., 92.1% ee). However, corresponding supported Ru catalyst 3d' resulted in disappointing reusability because of the loss of ruthenium in every recycle process. The conversions of aromatic ketones were closely related to the o-, m- or p-positions of the substituents on the aromatic ring caused by shape-selective matching.

  15. Effects of Dietary Supplementation of Magnesium Hydrogen Phosphate (MgHPO4) as an Alternative Phosphorus Source on Growth and Feed Utilization of Juvenile Far Eastern Catfish (Silurus asotus).

    PubMed

    Yoon, Tae-Hyun; Lee, Dong-Hoon; Won, Seung-Gun; Ra, Chang-Six; Kim, Jeong-Dae

    2014-08-01

    The present study was conducted to investigate a supplemental effect of magnesium hydrogen phosphate (MHP, MgHPO4) as an alternative phosphorus (P) source on growth and feed utilization of juvenile far eastern catfish (Silurus asotus) in comparison with three conventional P additives (monocalcium phosphate (MCP), dicalcium phosphate (DCP) and tricalcium phosphate [TCP]) as positive controls. A basal diet as a negative control was prepared without P supplementation and four supplemental P sources were added at the level of 2%. Five groups of 450 fish having mean body weight of 11.3 g following 24 h fasting after three week adaptation period were randomly distributed into each of 15 tanks (30 fish/tank). Fish were hand-fed to apparent satiety twice a day for 8 weeks. Fish fed MHP had weight gain (WG), protein efficiency ratio and specific growth rate comparable to those fed MCP. Fish fed MHP and MCP had feed efficiency (FE) significantly higher (p<0.05) than those fed DCP. Fish groups fed control and TCP showed the lower FE than the other groups which was significantly different (p<0.05) from those of fish fed the other diets. Survival rate was not significantly different (p>0.05) among treatments. Fish fed control had the lowest hematocrit, which was significantly different (p<0.05) from that of fish fed MHP. Fish fed MCP and MHP had plasma P higher (p<0.05) than fish fed the other diets. Relative efficiencies of MCP, DCP and TCP to MHP were found to be 100.5 and 101.3%, 92.0 and 91.6%, and 79.1 and 80.9% for WG and FE, respectively. P availability was determined to be 88.1%, 75.2%, 8.7%, and 90.9% for MCP, DCP, TCP, and MHP, respectively. Consequently, MHP recovered from wastewater stream showed that as an alternative P source its performance was comparative with MCP on growth and feed utilization of juvenile far eastern catfish.

  16. Effects of Dietary Supplementation of Magnesium Hydrogen Phosphate (MgHPO4) as an Alternative Phosphorus Source on Growth and Feed Utilization of Juvenile Far Eastern Catfish (Silurus asotus)

    PubMed Central

    Yoon, Tae-Hyun; Lee, Dong-Hoon; Won, Seung-Gun; Ra, Chang-Six; Kim, Jeong-Dae

    2014-01-01

    The present study was conducted to investigate a supplemental effect of magnesium hydrogen phosphate (MHP, MgHPO4) as an alternative phosphorus (P) source on growth and feed utilization of juvenile far eastern catfish (Silurus asotus) in comparison with three conventional P additives (monocalcium phosphate (MCP), dicalcium phosphate (DCP) and tricalcium phosphate [TCP]) as positive controls. A basal diet as a negative control was prepared without P supplementation and four supplemental P sources were added at the level of 2%. Five groups of 450 fish having mean body weight of 11.3 g following 24 h fasting after three week adaptation period were randomly distributed into each of 15 tanks (30 fish/tank). Fish were hand-fed to apparent satiety twice a day for 8 weeks. Fish fed MHP had weight gain (WG), protein efficiency ratio and specific growth rate comparable to those fed MCP. Fish fed MHP and MCP had feed efficiency (FE) significantly higher (p<0.05) than those fed DCP. Fish groups fed control and TCP showed the lower FE than the other groups which was significantly different (p<0.05) from those of fish fed the other diets. Survival rate was not significantly different (p>0.05) among treatments. Fish fed control had the lowest hematocrit, which was significantly different (p<0.05) from that of fish fed MHP. Fish fed MCP and MHP had plasma P higher (p<0.05) than fish fed the other diets. Relative efficiencies of MCP, DCP and TCP to MHP were found to be 100.5 and 101.3%, 92.0 and 91.6%, and 79.1 and 80.9% for WG and FE, respectively. P availability was determined to be 88.1%, 75.2%, 8.7%, and 90.9% for MCP, DCP, TCP, and MHP, respectively. Consequently, MHP recovered from wastewater stream showed that as an alternative P source its performance was comparative with MCP on growth and feed utilization of juvenile far eastern catfish. PMID:25083108

  17. Predicting laser-induced bulk damage and conditioning for deuterated potassium di-hydrogen phosphate crystals using ADM (absorption distribution model)

    SciTech Connect

    Liao, Z M; Spaeth, M L; Manes, K; Adams, J J; Carr, C W

    2010-02-26

    We present an empirical model that describes the experimentally observed laser-induced bulk damage and conditioning behavior in deuterated Potassium dihydrogen Phosphate (DKDP) crystals in a self-consistent way. The model expands on an existing nanoabsorber precursor model and the multi-step absorption mechanism to include two populations of absorbing defects, one with linear absorption and another with nonlinear absorption. We show that this model connects previously uncorrelated small-beam damage initiation probability data to large-beam damage density measurements over a range of ns pulse widths relevant to ICF lasers such as the National Ignition Facility (NIF). In addition, this work predicts the damage behavior of laser-conditioned DKDP and explains the upper limit to the laser conditioning effect. The ADM model has been successfully used during the commissioning and early operation of the NIF.

  18. The influenza fusion peptide promotes lipid polar head intrusion through hydrogen bonding with phosphates and N-terminal membrane insertion depth.

    PubMed

    Légaré, Sébastien; Lagüe, Patrick

    2014-09-01

    Influenza infection requires fusion between the virus envelope and a host cell endosomal membrane. The influenza hemagglutinin fusion peptide (FP) is essential to viral membrane fusion. It was recently proposed that FPs would fuse membranes by increasing lipid tail protrusion, a membrane fusion transition state. The details of how FPs induce lipid tail protrusion, however, remain to be elucidated. To decipher the molecular mechanism by which FPs promote lipid tail protrusion, we performed molecular dynamics simulations of the wild-type (WT) FP, fusogenic mutant F9A, and nonfusogenic mutant W14A in model bilayers. This article presents the peptide-lipid interaction responsible for lipid tail protrusion and a related lipid perturbation, polar head intrusion, where polar heads are sunk under the membrane surface. The backbone amides from the four N-terminal peptide residues, deeply inserted in the membrane, promoted both perturbations through H bonding with lipid phosphates. Polar head intrusion correlated with peptides N-terminal insertion depth and activity: the N-termini of WT and F9A were inserted deeper into the membrane than nonfusogenic W14A. Based on these results, we propose that FP-induced polar head intrusion would complement lipid tail protrusion in catalyzing membrane fusion by reducing repulsions between juxtaposed membranes headgroups. The presented model provides a framework for further research on membrane fusion and influenza antivirals.

  19. Synthesis of zigzag-chain and cyclic-octanuclear calcium complexes and hexanuclear bulky aryl-phosphate sodium complexes with ortho-amide groups: structural transformation involving a network of inter- and intramolecular hydrogen bonds.

    PubMed

    Onoda, Akira; Yamada, Yusuke; Okamura, Taka-aki; Doi, Mototsugu; Yamamoto, Hitoshi; Ueyama, Norikazu

    2002-02-13

    Three new polynuclear Ca(II)- and Na(I) phosphate complexes with two strategically oriented bulky amide groups, 2,6-(PhCONH)(2)C(6)H(3)OPO(3)H(2), were synthesized, including one with a zigzag-chain, [Ca(II)[O(3)POC(6)H(3)-2,6-(NHCOPh)(2)](H(2)O)(4)(EtOH)](n), a cyclic-octanuclear form, [Ca(II)(8)[O(3)POC(6)H(3)-2,6-(NHCOPh)(2)](8)(O=CHNMe(2))(8)(H(2)O)(12)], and a hexanuclear complex, (NHEt(3))[Na(3)[O(3)POC(6)H(3)-2,6-(NHCOPh)(2)](2)(H(2)O)(MeOH)(7)]. X-ray crystallography revealed that all have an unsymmetric ligand position due to the bulky amide groups. A dynamic transformation of the Ca(II) zigzag-chain structure to the cyclic-octanuclear complex was induced by changing coordination of DMF molecules, which caused a reorganization of the intermolecular/intramolecular hydrogen bond network.

  20. Nucleation reduction strategy of BaNH{4}MgHPO{4} (barium ammonium magnesium hydrogen phosphate, in vitro approach-1) crystals grown in silica gel medium and its characterization studies

    NASA Astrophysics Data System (ADS)

    Suresh, P.; Kanchana, G.; Sundaramoorthi, P.

    2009-02-01

    Kidney stones consist of various organic, inorganic and semi-organic compounds. Mineral oxalate monohydrate and di-hydrate is the main inorganic constituent of kidney stones. However, the mechanisms for the formation of crystal mineral oxalate are not clearly understood. In this field of study there are many hypothesis including nucleation, crystal growth and or aggregation of formation of AOMH (ammonium oxalate monohydrate) and AODH (ammonium oxalate di-hydrate) crystals. The effect of some urinary species such as ammonium oxalates, calcium, citrate, proteins and trace mineral elements have been previously reported by the author. The kidney stone constituents are grown in the kidney environments, the sodium meta silica gel medium (SMS) provides the necessary growth simulation (in vitro). In the artificial urinary stone growth process, growth parameters within the different chemical environments are identified. The author has reported the growth of urinary crystals such as CHP, SHP, BHP and AHP. In the present study, BaNH{4}MgHPO{4} (barium ammonium magnesium hydrogen phosphate) crystals have been grown in three different growth faces to attain the total nucleation reductions. As an extension of this research, many characterization studies have been carried out and the results are reported.

  1. Use of genomic data in risk assessment case study: II. Evaluation of the dibutyl phthalate toxicogenomic data set

    SciTech Connect

    Euling, Susan Y.; White, Lori D.; Kim, Andrea S.; Sen, Banalata; Wilson, Vickie S.; Keshava, Channa; Keshava, Nagalakshmi; Hester, Susan; Ovacik, Meric A.; Ierapetritou, Marianthi G.; Androulakis, Ioannis P.; Gaido, Kevin W.

    2013-09-15

    An evaluation of the toxicogenomic data set for dibutyl phthalate (DBP) and male reproductive developmental effects was performed as part of a larger case study to test an approach for incorporating genomic data in risk assessment. The DBP toxicogenomic data set is composed of nine in vivo studies from the published literature that exposed rats to DBP during gestation and evaluated gene expression changes in testes or Wolffian ducts of male fetuses. The exercise focused on qualitative evaluation, based on a lack of available dose–response data, of the DBP toxicogenomic data set to postulate modes and mechanisms of action for the male reproductive developmental outcomes, which occur in the lower dose range. A weight-of-evidence evaluation was performed on the eight DBP toxicogenomic studies of the rat testis at the gene and pathway levels. The results showed relatively strong evidence of DBP-induced downregulation of genes in the steroidogenesis pathway and lipid/sterol/cholesterol transport pathway as well as effects on immediate early gene/growth/differentiation, transcription, peroxisome proliferator-activated receptor signaling and apoptosis pathways in the testis. Since two established modes of action (MOAs), reduced fetal testicular testosterone production and Insl3 gene expression, explain some but not all of the testis effects observed in rats after in utero DBP exposure, other MOAs are likely to be operative. A reanalysis of one DBP microarray study identified additional pathways within cell signaling, metabolism, hormone, disease, and cell adhesion biological processes. These putative new pathways may be associated with DBP effects on the testes that are currently unexplained. This case study on DBP identified data gaps and research needs for the use of toxicogenomic data in risk assessment. Furthermore, this study demonstrated an approach for evaluating toxicogenomic data in human health risk assessment that could be applied to future chemicals

  2. An Immunoassay for Dibutyl Phthalate Based on Direct Hapten Linkage to the Polystyrene Surface of Microtiter Plates

    PubMed Central

    Wei, Chenxi; Ding, Shumao; You, Huihui; Zhang, Yaran; Wang, Yao; Yang, Xu; Yuan, Junlin

    2011-01-01

    Background Dibutyl phthalate (DBP) is predominantly used as a plasticizer inplastics to make them flexible. Extensive use of phthalates in both industrial processes and other consumer products has resulted in the ubiquitous presence of phthalates in the environment. In order to better determine the level of pollution in the environment and evaluate the potential adverse effects of exposure to DBP, immunoassay for DBP was developed. Methodology/Principal Findings A monoclonal antibody specific to DBP was produced from a stable hybridoma cell line generated by lymphocyte hybridoma technique. An indirect competitive enzyme-linked immunosorbent assay (icELISA) employing direct coating of hapten on polystyrene microtiter plates was established for the detection of DBP. Polystyrene surface was first oxidized by permanganate in dilute sulfuric acid to generate carboxyl groups. Then dibutyl 4-aminophthalate, which is an analogue of DBP, was covalently linked to the carboxyl groups of polystyrene surface with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC). Compared with conjugate coated format (IC50 = 106 ng/mL), the direct hapten coated format (IC50 = 14.6 ng/mL) improved assay sensitivity after careful optimization of assay conditions. The average recovery of DBP from spiked water sample was 104.4% and the average coefficient of variation was 9.95%. Good agreement of the results obtained by the hapten coated icELISA and gas chromatography-mass spectrometry further confirmed the reliability and accuracy of the icELISA for the detection of DBP in certain plastic and cosmetic samples. Conclusions/Significance The stable and efficient hybridoma cell line obtained is an unlimited source of sensitive and specific antibody to DBP. The hapten coated format is proposed as generally applicable because the carboxyl groups on modified microtiter plate surface enables stable immobilization of aminated or hydroxylated hapten with EDC. The developed hapten

  3. Effect of dibutyl phthalate on expression of connexin 43 and testosterone production of leydig cells in adult rats.

    PubMed

    Zhang, Jing; Jin, Shuguang; Zhao, Jinchang; Li, Huan

    2016-10-01

    To investigate the adverse effect of dibutyl phthalate (DBP) on Leydig cells and its mechanism related to gap junction, Leydig cells isolated from adult rats were treated with 0.1% dimethylsulfoxide (DMSO), 50mg/L DBP, 50mg/L DBP+10μM prostaglandin E2 (PGE2) and 40μM flutamide respectively. Radioimmunoassay, semi-quantitative RT-PCR, immunofluorescence and Western blot were applied to determine the expression of testosterone and Connexin 43 (Cx43) in Leydig cells. The expression of testosterone and Cx43 were both decreased in DBP group (P<0.05). While Cx43 was up-regulated after administered to PGE2, there was no significant change in testosterone. However, testosterone was down-regulated with a significant decrease of Cx43 in flutamide group. The results indicated that the inhibitory effect of DBP on testosterone production was not through the down-regulation of Cx43. On the contrary, the change of testosterone can influence the expression of Cx43 in Leydig cells.

  4. A sensitive and selective molecularly imprinted sensor combined with magnetic molecularly imprinted solid phase extraction for determination of dibutyl phthalate.

    PubMed

    Zhang, Zhaohui; Luo, Lijuan; Cai, Rong; Chen, Hongjun

    2013-11-15

    A highly sensitive and selective molecularly imprinted (MIP) sensor combined with magnetic molecularly imprinted solid phase extraction (MMISPE) was developed for the determination of dibutyl phthalate (DBP) in complex matrixes. The magnetic molecularly imprinted polymer (MMIP) was synthesized as solid phase extraction (SPE) sorbet to extract DBP from complex matrixes and as sensing element to improve the selectivity of the imprinted sensor. The morphologies of MMIP and MIP-sensor were characterized by using scanning electron microscope (SEM) and transmission electron microscopy (TEM). The electrochemical performances of MIP-sensor were investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The conditions of preconcentration, elution and electrochemical determination were studied in detail. Under the optimized experimental conditions, the response currents of the MIP-sensor exhibited a linear relationship towards DBP concentrations ranging from 1.0 × 10(-8)g/L to 1.0 × 10(-3)g/L. The limit of detection of the MMIP-sensor coupled with the MMISPE was calculated as 0.052 ng/L. The MMIP-sensor coupled with the MMISPE was applied to detect DBP in complex samples successfully.

  5. Electrochemical sensor based on magnetic graphene oxide@gold nanoparticles-molecular imprinted polymers for determination of dibutyl phthalate.

    PubMed

    Li, Xiangjun; Wang, Xiaojiao; Li, Leilei; Duan, Huimin; Luo, Chuannan

    2015-01-01

    A novel composite of magnetic graphene oxide @ gold nanoparticles-molecular imprinted polymers (MGO@AuNPs-MIPs) was synthesized and applied as a molecular recognition element to construct dibutyl phthalate (DBP) electrochemical sensor. The composite of MGO@AuNPs was first synthesized using coprecipitation and self-assembly technique. Then the template molecules (DBP) were absorbed at the MGO@AuNPs surface due to their excellent affinity, and subsequently, selective copolymerization of methacrylic acid and ethylene glycol dimethacrylate was further achieved at the MGO@AuNPs surface. Potential scanning was presented to extract DBP molecules from the imprinted polymers film rapidly and completely. As a consequence, an electrochemical sensor for highly sensitive and selective detection of DBP was successfully constructed as demonstration based on the synthesized MGO@AuNPs-MIPs composite. Under optimal experimental conditions, selective detection of DBP in a linear concentration range of 2.5 × 10(-9)-5.0 × 10(-6)mol/L was obtained. The new DBP electrochemical sensor also exhibited excellent repeatability, which expressed as relative standard deviation (RSD) was about 2.50% for 30 repeated analyses of 2.0 × 10(-6)mol/L DBP.

  6. Heterogeneous catalytic ozonation of dibutyl phthalate in aqueous solution in the presence of iron-loaded activated carbon.

    PubMed

    Huang, Yuanxing; Cui, Chenchen; Zhang, Daofang; Li, Liang; Pan, Ding

    2015-01-01

    Iron-loaded activated carbon was prepared and used as catalyst in heterogeneous catalytic ozonation of dibutyl phthalate (DBP). The catalytic activity of iron-loaded activated carbon was investigated under various conditions and the mechanisms of DBP removal were deduced. Characterization of catalyst indicated that the iron loaded on activated carbon was mainly in the form of goethite, which reduced its surface area, pore volume and pore diameter. The presence of metals on activated carbon positively contributed to its catalytic activity in ozonation of DBP. Iron loading content of 15% and initial water pH of 8 achieved highest DBP removal among all the tried conditions. Catalyst dosage of 10 mg L(-1) led to approximately 25% of increase in DBP (initial concentration 2 mg L(-1)) removal in 60 min as compared with ozone alone, and when catalyst dosage increased to 100 mg L(-1), the DBP removal was further improved by 46%. Based on a comparison of reaction rates for direct and indirect transformation of DBP, the increased removal of DBP in this study likely occurred via transformation of ozone into hydroxyl radicals on the catalyst surface.

  7. Properties of the plant- and manure-derived biochars and their sorption of dibutyl phthalate and phenanthrene

    PubMed Central

    Qiu, Mengyi; Sun, Ke; Jin, Jie; Gao, Bo; Yan, Yu; Han, Lanfang; Wu, Fengchang; Xing, Baoshan

    2014-01-01

    The properties of plant residue-derived biochars (PLABs) and animal waste-derived biochars (ANIBs) obtained at low and high heating treatment temperatures (300 and 450°C) as well as their sorption of dibutyl phthalate (DBP) and phenanthrene (PHE) were investigated in this study. The higher C content of PLABs could explain that CO2-surface area (CO2-SA) of PLABs was remarkably high relative to ANIBs. OC and aromatic C were two key factors influencing the CO2-SA of the biochars. Much higher surface C content of the ANIBs than bulk C likely explained that the ANIBs exhibited higher sorption of DBP and PHE compared to the PLABs. H-bonding should govern the adsorption of DBP by most of the tested biochars and π-π interaction play an important role in the adsorption of PHE by biochars. High CO2-SA (>200 m2 g−1) demonstrated that abundant nanopores of OC existed within the biochars obtained 450°C (HTBs), which likely result in high and nonlinear sorption of PHE by HTBs. PMID:24924925

  8. Ion-induced nucleation of dibutyl phthalate vapors on spherical and nonspherical singly and multiply charged polyethylene glycol ions.

    PubMed

    Nasibulin, Albert G; de la Mora, Juan Fernandez; Kauppinen, Esko I

    2008-02-14

    Dibutyl phthalate vapor nucleation induced by positive polyethylene glycol (PEG) ions with controlled sizes and charges was experimentally studied. The ions were produced by electrospray ionization, classified in a high-resolution differential mobility analyzer, and studied in a nano condensation nucleus counter of the mixing type. Ionic radii of PEG varied from 0.52 to 1.56 nm, including from singly to quadruply charged ions. Some of these ions are fully stretched chains, other are spherical, and others have intermediate forms, all of them having been previously characterized by mobility and mass spectrometry studies. Activation of PEG1080(+2) requires a supersaturation almost as high as that required for small singly charged ions and higher than for PEG1080(+). This anomaly is explained by the Coulombic stretching of the ion into a long chain, where the two charged centers appear to be relatively decoupled from each other. The critical supersaturation for singly charged spherical ions falls below Thomson's (capillary) theory and even below the already low values seen previously for tetraheptyl ammonium bromide clusters. Spherical PEG4120(+2) falls close to the Thomson curve. The trends observed for slightly nonspherical PEG4120(+3) and highly nonspherical (but not quite linear) PEG4120(+4) are intermediate between those of multiply charged spheres and small singly charged ions.

  9. Species-Specific Dibutyl Phthalate Fetal Testis Endocrine Disruption Correlates with Inhibition of SREBP2-Dependent Gene Expression Pathways

    PubMed Central

    Johnson, Kamin J.; McDowell, Erin N.; Viereck, Megan P.; Xia, Jessie Q.

    2011-01-01

    Fetal rat phthalate exposure produces a spectrum of male reproductive tract malformations downstream of reduced Leydig cell testosterone production, but the molecular mechanism of phthalate perturbation of Leydig cell function is not well understood. By bioinformatically examining fetal testis expression microarray data sets from susceptible (rat) and resistant (mouse) species after dibutyl phthalate (DBP) exposure, we identified decreased expression of several metabolic pathways in both species. However, lipid metabolism pathways transcriptionally regulated by sterol regulatory element–binding protein (SREBP) were inhibited in the rat but induced in the mouse, and this differential species response corresponded with repression of the steroidogenic pathway. In rats exposed to 100 or 500 mg/kg DBP from gestational days (GD) 16 to 20, a correlation was observed between GD20 testis steroidogenic inhibition and reductions of testis cholesterol synthesis endpoints including testis total cholesterol levels, Srebf2 gene expression, and cholesterol synthesis pathway gene expression. SREBP2 expression was detected in all fetal rat testis cells but was highest in Leydig cells. Quantification of SREBP2 immunostaining showed that 500 mg/kg DBP exposure significantly reduced SREBP2 expression in rat fetal Leydig cells but not in seminiferous cords. By Western analysis, total rat testis SREBP2 levels were not altered by DBP exposure. Together, these data suggest that phthalate-induced inhibition of fetal testis steroidogenesis is closely associated with reduced activity of several lipid metabolism pathways and SREBP2-dependent cholesterologenesis in Leydig cells. PMID:21266533

  10. Enhanced Dibutyl Phthalate Sensing Performance of a Quartz Crystal Microbalance Coated with Au-Decorated ZnO Porous Microspheres

    PubMed Central

    Zhang, Kaihuan; Fan, Guokang; Hu, Ruifen; Li, Guang

    2015-01-01

    Noble metals addition on nanostructured metal oxides is an attractive way to enhance gas sensing properties. Herein, hierarchical zinc oxide (ZnO) porous microspheres decorated with cubic gold particles (Au particles) were synthesized using a facile hydrothermal method. The as-prepared Au-decorated ZnO was then utilized as the sensing film of a gas sensor based on a quartz crystal microbalance (QCM). This fabricated sensor was applied to detect dibutyl phthalate (DBP), which is a widely used plasticizer, and its coating load was optimized. When tested at room temperature, the sensor exhibited a high sensitivity of 38.10 Hz/ppb to DBP in a low concentration range from 2 ppb to 30 ppb and the calculated theoretical detection limit is below 1 ppb. It maintains good repeatability as well as long-term stability. Compared with the undecorated ZnO based QCM, the Au-decorated one achieved a 1.62-time enhancement in sensitivity to DBP, and the selectivity was also improved. According to the experimental results, Au-functionalized ZnO porous microspheres displayed superior sensing performance towards DBP, indicating its potential use in monitoring plasticizers in the gaseous state. Moreover, Au decoration of porous metal oxide nanostructures is proved to be an effective approach for enhancing the gas sensing properties and the corresponding mechanism was investigated. PMID:26343661

  11. Templated, layered manganese phosphate

    DOEpatents

    Thoma, Steven G.; Bonhomme, Francois R.

    2004-08-17

    A new crystalline maganese phosphate composition having an empirical formula: O). The compound was determined to crystallize in the trigonal space group P-3c1 with a=8.8706(4) .ANG., c=26.1580(2) .ANG., and V (volume)=1783 .ANG..sup.3. The structure consists of sheets of corner sharing Mn(II)O.sub.4 and PO.sub.4 tetrahedra with layers of (H.sub.3 NCH.sub.2 CH.sub.2).sub.3 N and water molecules in-between. The pronated (H.sub.3 NCH.sub.2 CH.sub.2).sub.3 N molecules provide charge balancing for the inorganic sheets. A network of hydrogen bonds between water molecules and the inorganic sheets holds the structure together.

  12. Sphingosine-1-phosphate (S1P) mediates darkness-induced stomatal closure through raising cytosol pH and hydrogen peroxide (H₂O₂) levels in guard cells in Vicia faba.

    PubMed

    Ma, Yinli; She, Xiaoping; Yang, Shushen

    2012-11-01

    The role and signaling of sphingosine-1-phosphate (S1P) during darkness-induced stomatal closure were examined in Vicia faba. Darkness substantially raised S1P and hydrogen peroxide (H(2)O(2)) levels and closed stomata. These darkness effects were significantly suppressed by DL-threo-dihydrosphingosine (DL-threo-DHS) and N,N-dimethylsphingosine (DMS), two inhibitors of long-chain base kinases. Exogenous S1P led to stomatal closure and H(2)O(2) production, and the effects of S1P were largely prevented by the H(2)O(2) modulators ascorbic acid, catalase, and diphenyleneiodonium. These results indicated that S1P mediated darkness-induced stomatal closure by triggering H(2)O(2) production. In addition, DL-threo-DHS and DMS significantly suppressed both darkness-induced cytosolic alkalization in guard cells and stomatal closure. Exogenous S1P caused cytosolic alkalization and stomatal closure, which could be largely abolished by butyric acid. These results demonstrated that S1P synthesis was necessary for cytosolic alkalization during stomatal closure caused by darkness. Furthermore, together with the data described above, inhibition of darkness-induced H(2)O(2) production by butyric acid revealed that S1P synthesis-induced cytosolic alkalization was a prerequisite for H(2)O(2) production during stomatal closure caused by darkness, a conclusion supported by the facts that the pH increase caused by exogenous S1P had a shorter lag and peaked faster than H(2)O(2) levels and that butyric acid prevented exogenous S1P-induced H(2)O(2) production. Altogether, our data suggested that darkness induced S1P synthesis, causing cytosolic alkalization and subsequent H(2)O(2) production, finally leading to stomatal closure.

  13. A microflow chemiluminescence sensor for indirect determination of dibutyl phthalate by hydrolyzing based on biological recognition materials.

    PubMed

    Qiu, Huamin; Fan, Lulu; Li, Xiangjun; Li, Leilei; Sun, Min; Luo, Chuannan

    2013-03-05

    A microflow chemiluminescence (CL) sensor for determination of dibutyl phthalate (DBP) based on magnetic molecularly imprinted polymer (MMIP) as recognition element was fabricated. Briefly, a hydrophilic molecularly imprinted polymer layer was produced at the surface of Fe₃O₄@SiO₂ magnetic nanoparticles (MNPs) via combination of molecular imprinting and reversible stimuli responsive hydrogel. In this protocol, the initial step involved co-precipitation of Fe²⁺ and Fe³⁺ in an ammonia solution. Silica was then coated on the Fe₃O₄ nanoparticles using a sol-gel method to obtain silica shell magnetic nanoparticles. The MMIP was synthesized using methacrylic acid (MAA) as functional monomer and ethylene glycol dimethacrylate (EGDMA) as cross-linker and 2,2-azobisisobutyronitrile (AIBN) as initiator in chloroform. Then the synthesized MMIP and magnetic non-molecular imprinted polymers (MNIP) were employed as recognition by packing into lab-made straight shape tubes, connected in CL analyzer for establishing the novel sensor with a single channel syringe pump. And a mixer for hydrolyzing of DBP was followed. Based on this experiment principle, DBP was determined indirectly. And the MMIP showed satisfactory recognition capacity to DBP, resulting to the wide linear range of 3.84 × 10⁻⁸ to 2.08 × 10⁻⁵ M and the low detection limit of 2.09 × 10⁻⁹ M (3σ) for DBP. The relative standard deviation (RSD) for DBP (3.20 × 10⁻⁶ M) was 1.40% (n=11). Besides improving sensitivity and selectivity, the sensor was reusable. The proposed DBP-MMIP-CL sensor has been successfully applied to determine DBP in drink samples.

  14. Glucose-6-phosphate dehydrogenase-dependent hydrogen peroxide production is involved in the regulation of plasma membrane H+-ATPase and Na+/H+ antiporter protein in salt-stressed callus from Carex moorcroftii.

    PubMed

    Li, Jisheng; Chen, Guichen; Wang, Xiaomin; Zhang, Yanli; Jia, Honglei; Bi, Yurong

    2011-03-01

    Glucose-6-phosphate dehydrogenase (G6PDH) is important for the activation of plant resistance to environmental stresses, and ion homeostasis is the physiological foundation for living cells. In this study, we investigated G6PDH roles in modulating ion homeostasis under salt stress in Carex moorcroftii callus. G6PDH activity increased to its maximum in 100 mM NaCl treatment and decreased with further increased NaCl concentrations. K+/Na+ ratio in 100 mM NaCl treatment did not exhibit significant difference compared with the control; however, in 300 mM NaCl treatment, it decreased. Low-concentration NaCl (100 mM) stimulated plasma membrane (PM) H+-ATPase and NADPH oxidase activities as well as Na+/H+ antiporter protein expression, whereas high-concentration NaCl (300 mM) decreased their activity and expression. When G6PDH activity and expression were reduced by glycerol treatments, PM H+-ATPase and NADPH oxidase activities, Na+/H+ antiporter protein level and K+/Na+ ratio dramatically decreased. Simultaneously, NaCl-induced hydrogen peroxide (H₂O₂) accumulation was abolished. Exogenous application of H₂O₂ increased G6PDH, PM H+-ATPase and NADPH oxidase activities, Na+/H+ antiporter protein expression and K+/Na+ ratio in the control and glycerol treatments. Diphenylene iodonium (DPI), the NADPH oxidase inhibitor, which counteracted NaCl-induced H₂O₂ accumulation, decreased G6PDH, PM H+-ATPase and NADPH oxidase activities, Na+/H+ antiporter protein level and K+/Na+ ratio. Western blot result showed that G6PDH expression was stimulated by NaCl and H₂O₂, and blocked by DPI. Taken together, G6PDH is involved in H₂O₂ accumulation under salt stress. H₂O₂, as a signal, upregulated PM H+-ATPase activity and Na+/H+ antiporter protein level, which subsequently resulted in the enhanced K+/Na+ ratio. G6PDH played a central role in the process.

  15. Are Polyphosphates or Phosphate Esters Prebiotic Reagents?

    NASA Technical Reports Server (NTRS)

    Keefe, Anthony D.; Miller, Stanley L.

    1995-01-01

    It is widely held that there was a phosphate compound in prebiotic chemistry that played the role of adenosine triphosphate and that the first living organisms had ribose-phosphate in the backbone of their genetic material. However, there are no known efficient prebiotic synthesis of high-energy phosphates or phosphate esters. We review the occurrence of phosphates in nature, the efficiency of the volcanic synthesis of P4O10, the efficiency of polyphosphate synthesis by heating phosphate minerals under geological conditions, and the use of high-energy organic compounds such as cyanamide or hydrogen cyanide. These are shown to be inefficient processes especially when the hydrolysis of the polyphosphates is taken into account. For example, if a whole atmosphere of methane or carbon monoxide were converted to cyanide which somehow synthesized polyphosphates quantitatively, the polyphosphate concentration in the ocean would still have been insignificant. We also attempted to find more efficient high-energy polymerizing agents by spark discharge syntheses, but without success. There may still be undiscovered robust prebiotic syntheses of polyphosphates, or mechanisms for concentrating them, but we conclude that phosphate esters may not have been constituents of the first genetic material. Phosphoanhydrides are also unlikely as prebiotic energy sources.

  16. Microbial solubilization of phosphate

    DOEpatents

    Rogers, Robert D.; Wolfram, James H.

    1993-01-01

    A process is provided for solubilizing phosphate from phosphate containing ore by treatment with microorganisms which comprises forming an aqueous mixture of phosphate ore, microorganisms operable for solubilizing phosphate from the phosphate ore and maintaining the aqueous mixture for a period of time and under conditions operable to effect the microbial solubilization process. An aqueous solution containing soluble phosphorous can be separated from the reacted mixture by precipitation, solvent extraction, selective membrane, exchange resin or gravity methods to recover phosphate from the aqueous solution.

  17. Microbial solubilization of phosphate

    DOEpatents

    Rogers, R.D.; Wolfram, J.H.

    1993-10-26

    A process is provided for solubilizing phosphate from phosphate containing ore by treatment with microorganisms which comprises forming an aqueous mixture of phosphate ore, microorganisms operable for solubilizing phosphate from the phosphate ore and maintaining the aqueous mixture for a period of time and under conditions operable to effect the microbial solubilization process. An aqueous solution containing soluble phosphorus can be separated from the reacted mixture by precipitation, solvent extraction, selective membrane, exchange resin or gravity methods to recover phosphate from the aqueous solution. 6 figures.

  18. Phosphate homeostasis and disorders.

    PubMed

    Manghat, P; Sodi, R; Swaminathan, R

    2014-11-01

    Recent studies of inherited disorders of phosphate metabolism have shed new light on the understanding of phosphate metabolism. Phosphate has important functions in the body and several mechanisms have evolved to regulate phosphate balance including vitamin D, parathyroid hormone and phosphatonins such as fibroblast growth factor-23 (FGF23). Disorders of phosphate homeostasis leading to hypo- and hyperphosphataemia are common and have clinical and biochemical consequences. Notably, recent studies have linked hyperphosphataemia with an increased risk of cardiovascular disease. This review outlines the recent advances in the understanding of phosphate homeostasis and describes the causes, investigation and management of hypo- and hyperphosphataemia.

  19. Dentin is dissolved by high concentrations of L-ascorbic acid 2-[3,4-dihydro-2,5,7,8-tetramethyl-2-(4,8,12-trimethyltridecyl)-2H-1-benzopyran-6-yl-hydrogen phosphate] potassium salt with or without hydrogen peroxide.

    PubMed

    Kozuka, Masahiro; Tsujimoto, Yasuhisa

    2004-06-01

    L-Ascorbic acid 2-[3,4-dihydro-2,5,7,8-tetramethyl-2-(4,8,12-trimethyltridecyl)-2H-1-benzopyran-6-yl-hydrogen phosphate] potassium salt (EPC-K(1)) is a conjugate of vitamin C and vitamin E that is water-soluble and stable at room temperature. EPC-K(1) has been developed as a hydroxyl radical (.OH) scavenger and antioxidant. In a previous tooth whitening experiment, it was accidentally found that tooth (dentin) blocks were dissolved by EPC-K(1) with H(2)O(2). In the current study, high concentrations of EPC-K(1) (2.5, 25 mM) with 3% H(2)O(2) dissolved and caused the collapse of dentin blocks. Similar concentrations of EPC-K(1) without 3% H(2)O(2), however, dissolved the dentin blocks without collapse over a 3-week period. In these cases, a.OH-like signal was detected using an ESR spin-trapping method. The volume of calcium in solution (including the dentin block) increased on the addition of EPC-K(1) in a concentration-dependent manner. In addition, the calcium : phosphorus ratio changed from 2 : 1 in sound dentin to 1 : 2 in the collapsed dentin block. High concentrations of EPC-K(1) are therefore considered to have calcium chelating and dentin dissolving activity. The dentin dissolving activity was enhanced when EPC-K(1) was used with H(2)O(2). EPC-K(1) had no protective effect when used in tooth whitening with H(2)O(2).

  20. Crystal structure of the phosphate-binding protein (PBP-1) of an ABC-type phosphate transporter from Clostridium perfringens

    PubMed Central

    Gonzalez, Daniel; Richez, Magali; Bergonzi, Celine; Chabriere, Eric; Elias, Mikael

    2014-01-01

    Phosphate limitation is an important environmental stress that affects the metabolism of various organisms and, in particular, can trigger the virulence of numerous bacterial pathogens. Clostridium perfringens, a human pathogen, is one of the most common causes of enteritis necroticans, gas gangrene and food poisoning. Here, we focused on the high affinity phosphate-binding protein (PBP-1) of an ABC-type transporter, responsible for cellular phosphate uptake. We report the crystal structure (1.65 Å resolution) of the protein in complex with phosphate. Interestingly, PBP-1 does not form the short, low-barrier hydrogen bond with phosphate that is typical of previously characterized phosphate-binding proteins, but rather a canonical hydrogen bond. In its unique binding configuration, PBP-1 forms an unusually high number of hydrogen bonds (14) with the phosphate anion. Discrimination experiments reveal that PBP-1 is the least selective PBP characterised so far and is able to discriminate phosphate from its close competing anion, arsenate, by ~150-fold. PMID:25338617

  1. Evaluation of alternate extractants to tributyl phosphate. Phase I

    SciTech Connect

    Arnold, W.D.; Crouse, D.J.

    1981-04-01

    Preliminary evaluations have indicated that tri(n-hexyl) phosphate (THP) and tri(2-ethylhexyl) phosphate (TEHP) have some significant advantages over tri(n-butyl) phosphate (TBP) for fuel reprocessing although they also have some disadvantages. The longer alkyl chains in these new extractants decrease their aqueous phase solubility and increase the organic phase solubility of their metal complexes and the metal complexes of their degradation products. Both THP and TEHP extract uranium and plutonium more strongly than TBP; thorium extraction is in the order THP > TBP > TEHP. Tritium extraction is highest with TBP because of slightly higher water extraction. In extractions of thorium, a third liquid phase was formed using TBP at a solvent loading of about 40 g/L of thorium and above. Third-phase formation did not occur with THP or TEHP. The dialkyl phosphoric acid degradation products of THP and TEHP showed a markedly lower tendency to precipitate with thorium than did dibutyl phosphoric acid (HDBP). Chemical stability studies showed TEHP to have much greater stability to acid hydrolysis than TBP and THP, which were about equivalent. No differences were detected in the radiation stability of the three extractants. The phase separation properties of THP and TEHP are inferior to those of TBP in both the nitric acid and sodium carbonate (solvent wash) systems. Phase separation was improved appreciably by using a lower extractant concentration than 1.09 M (equivalent to 30 vol % TBP). Difficulties were encountered with TEHP, however, owing to rapid degradation of its phase separation properties with time of contact with HNO{sub 3}; this problem requires additional study.

  2. [Effects of Phosphate and Zeolite on the Transformation of Cd Speciation in Soil].

    PubMed

    Wang, Xiu-li; Liang, Cheng-hua; Ma, Zi-hui; Han, Yue

    2015-04-01

    The test simulated exogenous Cd contaminated soil indoors, and studied separate application of potassium dihydrogen phosphate, diammonium hydrogen phosphate and zeolite, and combined application of zeolite and dipotassium hydrogen phosphate, zeolite and diammonium hydrogen phosphate, as well as the effect on the morphological changes of Cd contaminated soil. The results showed that soil exchangeable Cd contents were reduced in different degrees after the application of different modifiers, and the carbonate bound and Fe-Mn oxide bound, organic bound and residual Cd contents increased. By comparison, the separate application of potassium dihydrogen phosphate, diammonium hydrogen phosphate and zeolite, and the combined application of zeolite and dipotassium hydrogen phosphate, zeolite and diammonium hydrogen phosphate respectively reduced the soil available Cd contents at 25.2% -51.7%, 21.6% - 46.8%, 6.4% - 23.2%, 38.6% - 61.4%, and 34.1% - 56.4%. All treatments could increase the soil available phosphorus contents, making the soil available phosphorus contents negatively correlated with the available Cd contents significantly, with the correlation coefficient r = - 0.902 6, and the soil pH values had a negative correlation with the available Cd content during the treatments. Therefore, it could be known that the changes of soil available phosphorus contents were the major factor in reducing the availability of soil cadmium under the conditions of the application of phosphate and natural zeolite.

  3. Chloroquine Phosphate Oral

    MedlinePlus

    Chloroquine phosphate is in a class of drugs called antimalarials and amebicides. It is used to prevent and treat ... Chloroquine phosphate comes as a tablet to take by mouth. For prevention of malaria in adults, one dose is ...

  4. S-Transnitrosation reactions of hydrogen sulfide (H2S/HS(-)/S(2-)) with S-nitrosated cysteinyl thiols in phosphate buffer of pH 7.4: Results and review of the literature.

    PubMed

    Tsikas, Dimitrios; Böhmer, Anke

    2017-02-06

    Cysteine (CysSH) and its derivatives including N-acetylcysteine (NAC) and glutathione (GSH), and cysteine residues in proteins and enzymes are nitrosated with nitric oxide (NO) reaction products such as N2O3 to form S-nitrosated cysteine thiols (RCysSNO). RCysSNO undergo with cysteine thiols (RCysSH) S-transnitrosation reactions, thereby transferring reversibly their nitrosyl ((+)NO) group to RCysSH to form RCysSNO. (•)NO release from RCysSNO and S-transnitrosation are considered the most important features and signalling pathways of RCysSNO. Hydrogen sulfide (H2S: pKa1, 7; HS(-): pKa2, 12.9) is an endogenous product of cysteine metabolism. We hypothesized that RCysSNO would also undergo S-transnitrosation reaction with H2S/HS(-)/S(2-) to form thionitrite (ONS(-)), the smallest S-nitrosated thiol. This article describes spectrophotometric and mass spectrometric investigations of S-transnitrosation reactions in phosphate buffered saline (PBS) of pH 7.4 between H2S/HS(-)/S(2-) (supplied as Na2S) and S-nitrosoglutathione (GSNO), S-nitroso-l-cysteine (CysSNO), S-nitroso-N-acetyl-l-cysteine (SNAC), and the synthetic S-nitroso-N-acetyl-l-cysteine ethyl ester (SNACET). For comparison, we also investigated the reactions of H2S/HS(-)/S(2-) with NO(+)BF4(-) and NO2(+)BF4(-), direct ON(+) and O2N(+) donors, respectively, and assumed formation of ONS(-) and thionitrate (O2NS(-)), respectively. Addition of Na2S (at 1 mM) to buffered RCysSNO solutions resulted in decreases of the absorbance at 340 nm and concomitant increases in the absorbance at 410 nm depending upon the nature and concentration of RCysSNO (range, 25-1000 μM). The reactivity order of RCysSNO against H2S/HS(-)/S(2-) was: CysSNO > SNACET > GSNO > SNAC. Our spectrophotometric and GC-MS analyses indicate that H2S/HS(-)/S(2-) and RCysSNO undergo multiple reactions. Major final reaction products were found to be nitrite and nitrate. ONS(-) and O2NS(-) were not detected by GC-MS, suggesting rapid and

  5. Isotherms and kinetic study of dihydrogen and hydrogen phosphate ions (H{2}PO{4}- and HPO{4}2-) adsorption onto crushed plant matter of the semi-arid zones of Morocco: Asphodelus microcarpus, Asparagus albus and Senecio anthophorbium

    NASA Astrophysics Data System (ADS)

    Chiban, M.; Benhima, H.; Saadi, B.; Nounah, A.; Sinan, F.

    2005-03-01

    In the present work H{2}PO4- and HPO42- ions adsorption onto organic matter (OM) obtained from ground dried three plants growing in arid zones of Morocco has been studied. The adsorption process is affected by various parameters such as contact time, particle size and initial concentration of phosphate solution (Ci ≤ 30 mg/l). The uptake of both ions is increased by increasing the concentration of them selves. The retention of phosphate ions by Asphodelus microcarpus, Asparagus albus are well defined by several isotherms such as the Langmuir, Temkin and Freundlich.

  6. Why nature chose phosphates.

    PubMed

    Westheimer, F H

    1987-03-06

    Phosphate esters and anhydrides dominate the living world but are seldom used as intermediates by organic chemists. Phosphoric acid is specially adapted for its role in nucleic acids because it can link two nucleotides and still ionize; the resulting negative charge serves both to stabilize the diesters against hydrolysis and to retain the molecules within a lipid membrane. A similar explanation for stability and retention also holds for phosphates that are intermediary metabolites and for phosphates that serve as energy sources. Phosphates with multiple negative charges can react by way of the monomeric metaphosphate ion PO3- as an intermediate. No other residue appears to fulfill the multiple roles of phosphate in biochemistry. Stable, negatively charged phosphates react under catalysis by enzymes; organic chemists, who can only rarely use enzymatic catalysis for their reactions, need more highly reactive intermediates than phosphates.

  7. Long-term effects of binary mixtures of 17α-ethinyl estradiol and dibutyl phthalate in a partial life-cycle test with zebrafish (Danio rerio).

    PubMed

    Chen, Pengyu; Li, Song; Liu, Lei; Xu, Nan

    2015-03-01

    Using 17α-ethinyl estradiol (EE2) and dibutyl phthalate (DBP) as a typical estrogen and phthalate ester, respectively, their combined in vivo effects on zebrafish (Danio rerio) were investigated from the juvenile state to the adult stage. The authors spiked EE2 (5 ng/L and 20 ng/L) and DBP (0.1 mg/L and 0.5 mg/L) either individually or in mixture. At 45 d postfertilization (dpf), the survival rate of zebrafish was comparable in all treatments. Dibutyl phthalate did not induce vitellogenin (VTG) synthesis, and no interaction was found between EE2 and DBP on VTG induction. At 90 dpf, both liver and gill were subject to more severe damage (lipid vacuoles of hepatocytes, amalgamation of gill lamellae, and clubbing at the tips of the secondary lamellae) when coexposed to these 2 chemicals, compared with single exposure. At 115 dpf, generally none of the binary mixture groups showed significantly different growth and sex ratios compared with the corresponding EE2 alone groups. In conclusion, no obvious interactions were detected between EE2 and DBP on the growth, VTG induction, or sex ratio of zebrafish, and they may act independently. However, the influence on morphology of gonad, liver, and gill induced by exposure to the mixture of EE2 and DBP was generally more potent than that by single exposure to EE2 or DBP, indicating the combined long-term harmful effects of EE2 and DBP on the development of zebrafish. Environ Toxicol Chem 2015;34:518-526. © 2014 SETAC.

  8. Research and engineering assessment of biological solubilization of phosphate

    SciTech Connect

    Rogers, R.D.; McIlwain, M.E.; Losinski, S.J.; Taylor, D.D.

    1993-03-01

    This research and engineering assessment examined a microbial phosphate solubilization process as a method of recovering phosphate from phosphorus containing ore compared to the existing wet acid and electric arc methods. A total of 860 microbial isolates, collected from a range of natural environments were tested for their ability to solubilize phosphate from rock phosphate. A bacterium (Pseudomonas cepacia) was selected for extensive characterization and evaluation of the mechanism of phosphate solubilization and of process engineering parameters necessary to recover phosphate from rock phosphate. These studies found that concentration of hydrogen ion and production of organic acids arising from oxidation of the carbon source facilitated microbial solubilization of both pure chemical insoluble phosphate compounds and phosphate rock. Genetic studies found that phosphate solubilization was linked to an enzyme system (glucose dehydrogenase). Process-related studies found that a critical solids density of 1% by weight (ore to liquid) was necessary for optimal solubilization. An engineering analysis evaluated the cost and energy requirements for a 2 million ton per year sized plant, whose size was selected to be comparable to existing wet acid plants.

  9. Hydrogen production

    NASA Technical Reports Server (NTRS)

    England, C.; Chirivella, J. E.; Fujita, T.; Jeffe, R. E.; Lawson, D.; Manvi, R.

    1975-01-01

    The state of hydrogen production technology is evaluated. Specific areas discussed include: hydrogen production fossil fuels; coal gasification processes; electrolysis of water; thermochemical production of hydrogen; production of hydrogen by solar energy; and biological production of hydrogen. Supply options are considered along with costs of hydrogen production.

  10. Phosphate, inositol and polyphosphates.

    PubMed

    Livermore, Thomas M; Azevedo, Cristina; Kolozsvari, Bernadett; Wilson, Miranda S C; Saiardi, Adolfo

    2016-02-01

    Eukaryotic cells have ubiquitously utilized the myo-inositol backbone to generate a diverse array of signalling molecules. This is achieved by arranging phosphate groups around the six-carbon inositol ring. There is virtually no biological process that does not take advantage of the uniquely variable architecture of phosphorylated inositol. In inositol biology, phosphates are able to form three distinct covalent bonds: phosphoester, phosphodiester and phosphoanhydride bonds, with each providing different properties. The phosphoester bond links phosphate groups to the inositol ring, the variable arrangement of which forms the basis of the signalling capacity of the inositol phosphates. Phosphate groups can also form the structural bridge between myo-inositol and diacylglycerol through the phosphodiester bond. The resulting lipid-bound inositol phosphates, or phosphoinositides, further expand the signalling potential of this family of molecules. Finally, inositol is also notable for its ability to host more phosphates than it has carbons. These unusual organic molecules are commonly referred to as the inositol pyrophosphates (PP-IPs), due to the presence of high-energy phosphoanhydride bonds (pyro- or diphospho-). PP-IPs themselves constitute a varied family of molecules with one or more pyrophosphate moiety/ies located around the inositol. Considering the relationship between phosphate and inositol, it is no surprise that members of the inositol phosphate family also regulate cellular phosphate homoeostasis. Notably, the PP-IPs play a fundamental role in controlling the metabolism of the ancient polymeric form of phosphate, inorganic polyphosphate (polyP). Here we explore the intimate links between phosphate, inositol phosphates and polyP, speculating on the evolution of these relationships.

  11. Phosphate taxis in Pseudomonas aeruginosa.

    PubMed

    Kato, J; Ito, A; Nikata, T; Ohtake, H

    1992-08-01

    Pseudomonas aeruginosa was shown to be attracted to phosphate. The chemotactic response was induced by phosphate starvation. The specificity of chemoreceptors for phosphate was high so that no other tested phosphorus compounds elicited a chemotactic response as strong as that elicited by phosphate. Competition experiments showed that the chemoreceptors for phosphate appeared to be different from those for the common amino acids. Mutants constitutive for alkaline phosphatase showed the chemotactic response to phosphate regardless of whether the cells were starved for phosphate.

  12. Hydrogen systems

    SciTech Connect

    Veziroglu, T.N.; Zhu, Y.; Bao, D.

    1985-01-01

    This book presents the papers given at a symposium on hydrogen fuels. Topics considered at the symposium included hydrogen from fossil fuels, electrolysis, photolytic hydrogen generation, thermochemical and photochemical methods of hydrogen production, catalysts, hydrogen biosynthesis, novel and hybrid methods of hydrogen production, storage and handling, metal hydrides and their characteristics, utilization, hydrogen fueled internal combustion engines, hydrogen gas turbines, hydrogen flow and heat transfer, fuel cells, synthetic hydrocarbon fuels, thermal energy transfer, hydrogen purification, research programs, economics, primary energy sources, environmental impacts, and safety.

  13. Zinc phosphate conversion coatings

    DOEpatents

    Sugama, T.

    1997-02-18

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate {alpha}-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal. 33 figs.

  14. Zinc phosphate conversion coatings

    DOEpatents

    Sugama, Toshifumi

    1997-01-01

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate .alpha.-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal.

  15. Solvothermal synthesis of strontium phosphate chloride nanowire

    NASA Astrophysics Data System (ADS)

    Lam, W. M.; Wong, C. T.; Li, Z. Y.; Luk, K. D. K.; Chan, W. K.; Yang, C.; Chiu, K. Y.; Xu, B.; Lu, W. W.

    2007-08-01

    Strontium phosphate chloride nanowire was synthesized via a solvothermal treatment of strontium tri-polyphosphate and Collin salt in 1,4-dioxane at 150 °C. The effects of 1,4-dioxane concentration on particle morphology, crystallinity and phase purity were investigated in this study. The specimen morphology was analyzed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). When the concentration of 1,4-dioxane was below 10%, micron-sized whisker was the dominant form. At 20-25% concentration of 1,4-dioxane, strontium phosphate chloride single-crystalline nanowire was 31±12 nm in diameter and 1.43±0.6 μm in length with an aspect ratio of 52.28±29.41. X-ray diffraction (XRD) pattern of this nanowire matched with that of strontium phosphate chloride (JCPDS #083-0973). When 1,4-dioxane concentration exceeded 25%, nanorod aggregate was the dominant form instead of nanowire. At 20-25% 1,4-dioxane concentration suitable strontium concentration combine with high chemical potential environment favors the formation of nanowires. By adding 1,4-dioxane impure phase such as β-strontium hydrogen phosphate, nanorod formation was suppressed. This method provides an efficient way to synthesize high aspect ratio strontium phosphate chloride nanowire. It has potential bioactive nanocomposite, high mechanical performance bioactive bone cement filler and fluorescent material applications.

  16. CADMIUM PHOSPHATE GLASS

    DOEpatents

    Carpenter, H.W.; Johnson, P.D.

    1963-04-01

    A method of preparing a cadmium phosphate glass that comprises providing a mixture of solid inorganic compounds of cadmuim and phosphate having vaporizable components and heating the resulting composition to a temperature of at least 850 un. Concent 85% C is presented. (AEC)

  17. Hydrogen sensor

    DOEpatents

    Duan, Yixiang; Jia, Quanxi; Cao, Wenqing

    2010-11-23

    A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

  18. Phytosphingosine-1-phosphate represses the hydrogen peroxide-induced activation of c-Jun N-terminal kinase in human dermal fibroblasts through the phosphatidylinositol 3-kinase/Akt pathway.

    PubMed

    Lee, Jeong Pyo; Cha, Hwa Jun; Lee, Kwang Sik; Lee, Kun Kook; Son, Ju Hyun; Kim, Kwang Nyeon; Lee, Dong Kyu; An, Sungkwan

    2012-10-01

    Dermal fibroblasts are differentiated mesenchymal cells that regulate the extracellular matrix through the production of dermis components. Dermal fibroblasts can be damaged by reactive oxygen species induced by ultraviolet rays and chemicals. In addition to its effects on the dermis, oxidative stress poses a major threat to organisms and is believed to play an essential role in many disease processes. In this study, we show that human dermal fibroblasts (HDFs) express sphingosine-1-phosphate (S1P) receptors S1P(1), S1P(2), and S1P(3). In addition, cell viability of HDFs is increased by phytosphingosine-1-phosphate (PhS1P) via regulation of the Jun N-terminal kinase (JNK)/Akt pathway. Interestingly, regulation of the JNK/Akt pathway by PhS1P attenuated H(2)O(2)-induced cell growth arrest. Together, our data indicate that PhS1P attenuates H(2)O(2)-induced growth arrest through regulation of the signal molecules Akt and JNK, and suggest that PhS1P may have value as an anti-aging material in cosmetics and medicine.

  19. Accessing alkali-free NASICON-type compounds through mixed oxoanion sol-gel chemistry: Hydrogen titanium phosphate sulfate, H1-xTi2(PO4)3-x(SO4)x (x=0.5-1)

    NASA Astrophysics Data System (ADS)

    Mieritz, Daniel; Davidowski, Stephen K.; Seo, Dong-Kyun

    2016-10-01

    We report a direct sol-gel synthesis and characterization of new proton-containing, rhombohedral NASICION-type titanium compounds with mixed phosphate and sulfate oxoanions. The synthetic conditions were established by utilizing peroxide ion as a decomposable and stabilizing ligand for titanyl ions in the presence of phosphates in a strong acidic medium. Thermogravimetric analysis (TGA), powder X-ray diffraction (PXRD), induction-coupled plasma optical emission spectroscopic (ICP-OES) elemental analysis, and Raman and 1H magic angle spinning nuclear magnetic resonance (MAS-NMR) spectroscopic studies have determined the presence of sulfate and proton ions in the structure, for which the compositional range has been found to be H1-xTi2(PO4)3-x(SO4)x (x=0.5-1). The particulate products exhibit a nanocrystalline nature observed through characterization with scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The N2 sorption isotherm measurements and subsequent Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) analyses confirmed the presence of the textural meso- and macropores in the materials. Future studies would determine the potential of the new compounds in various applications as battery materials, proton conductors and solid acid catalysts.

  20. PHOSPHATE MANAGEMENT: FY2010 RESULTS OF PHOSPHATE PRECIPITATION TESTS

    SciTech Connect

    Hay, M.; King, W.

    2011-04-04

    The Phosphate Management program seeks to develop treatment options for caustic phosphate solutions resulting from the caustic leaching of the bismuth phosphate sludge. The SRNL subtask investigated the precipitation of phosphate salts from caustic solutions through addition of fluoride and by crystallization. The scoping tests examined the: precipitation of phosphate by the addition of sodium fluoride to form the sodium fluorophosphate double salt, Na{sub 7}F(PO{sub 4}){sub 2} {center_dot} 19H{sub 2}O, crystallization of phosphate by reducing the temperature of saturated phosphate solutions, and combinations of precipitation and crystallization. A simplified leachate simulant was used in the study produced by dissolving sodium phosphate in 1 M to 3.5 M sodium hydroxide solutions. The results show that all three processes; precipitation with sodium fluoride, crystallization, and combined precipitation/crystallization can be effective for removing large amounts of phosphate from solution. The combined process of precipitation/crystallization showed >90% removal of phosphate at all hydroxide concentrations when cooling a non-saturated phosphate solution from 65 C to 25 C. Based on the measured solubility of sodium phosphate, pH adjustment/caustic addition will also remove large amounts of phosphate from solution (>80%). For all three processes, the phosphate concentration in the caustic solution must be managed to keep the phosphate from becoming too concentrated and thereby potentially forming a solid mass of sodium phosphate after an effective phosphate removal process.

  1. Migration from plasticized films into foods. 3. Migration of phthalate, sebacate, citrate and phosphate esters from films used for retail food packaging.

    PubMed

    Castle, L; Mercer, A J; Startin, J R; Gilbert, J

    1988-01-01

    A UK survey of plasticizer levels in retail foods (73 samples) wrapped in plasticized films or materials with plasticized coatings has been carried out. A wide range of different food-types packaged in vinylidene chloride copolymers (PVDC), nitrocellulose-coated regenerated cellulose film (RCF) and cellulose acetate were purchased from retail and 'take-away' outlets. Plasticizers found in these films were dibutyl sebacate (DBS) and acetyl tributyl citrate (ATBC) in PVDC, dibutyl phthalate (DBP), dicyclohexyl phthalate (DCHP), butylbenzyl phthalate (BBP), and diphenyl 2-ethylhexyl phosphate (DPOP) in RCF coatings, and diethyl phthlate (DEP) in cellulose acetate. Foodstuffs analysed included cheese, pate, chocolate and confectionery products, meat pies, cake, quiches and sandwiches. Analysis was by stable isotope dilution GC/MS for DBP, DCHP and DEP, GC/MS (selected ion monitoring) for BBP and DPOP, and GC with flame ionization detection for DBS and ATBC, but with mass spectrometric confirmation. Levels of plasticizers found in foods were in the following ranges: ATBC in cheese, 2-8 mg/kg; DBS in processed cheese and cooked meats, 76-137 mg/kg; 76-137 mg/kg; DBP, DCHP, BBP, and DPOP found individually or in combination in confectionery, meat pies, cake and sandwiches, total levels from 0.5 to 53 mg/kg; and DEP in quiches, 2-4 mg/kg.

  2. Intramolecular general acid catalysis of the hydrolysis of 2-(2'-imidazolium)phenyl phosphate, and bond length-reactivity correlations for reactions of phosphate monoester monoanions.

    PubMed

    Brandão, Tiago A S; Orth, Elisa S; Rocha, Willian R; Bortoluzzi, Adailton J; Bunton, Clifford A; Nome, Faruk

    2007-05-11

    Rate constants for the hydrolysis of 2-(2'-imidazolium)phenyl hydrogen phosphate (IMPP) in water at pH<6 indicate that activation by the imidazolium moiety disappears with the deprotonation of the phosphate group, and the reaction involves the hydrogen-bonding of the imidazolium NH with the aryl oxygen leaving group. The reaction should involve a near-planar conformation of the imidazolium and the phenyl groups in the activated complex, which favors proton-transfer. The crystal structure of IMPP was solved, and a bond length-reactivity correlation for reactions of phosphate monoester monoanions is described.

  3. Hydrogenation apparatus

    DOEpatents

    Friedman, Joseph [Encino, CA; Oberg, Carl L [Canoga Park, CA; Russell, Larry H [Agoura, CA

    1981-01-01

    Hydrogenation reaction apparatus comprising a housing having walls which define a reaction zone and conduits for introducing streams of hydrogen and oxygen into the reaction zone, the oxygen being introduced into a central portion of the hydrogen stream to maintain a boundary layer of hydrogen along the walls of the reaction zone. A portion of the hydrogen and all of the oxygen react to produce a heated gas stream having a temperature within the range of from 1100.degree. to 1900.degree. C., while the boundary layer of hydrogen maintains the wall temperature at a substantially lower temperature. The heated gas stream is introduced into a hydrogenation reaction zone and provides the source of heat and hydrogen for a hydrogenation reaction. There also is provided means for quenching the products of the hydrogenation reaction. The present invention is particularly suitable for the hydrogenation of low-value solid carbonaceous materials to provide high yields of more valuable liquid and gaseous products.

  4. Sources of conductance changes during bacterial reduction of trimethylamine oxide to trimethylammonium in phosphate buffer.

    PubMed

    Owens, J D; Miskin, D R; Wacher-Viveros, M C; Benge, L C

    1985-06-01

    The sources of conductance changes during reduction of trimethylamine oxide to trimethylamine by Escherichia coli with formate as electron donor and in the presence of phosphate buffer were investigated. Theoretical considerations and experimental results suggest that the major source of conductance change is the conversion of dihydrogen phosphate to hydrogen phosphate. This transformation contributes almost twice as much to the total conductance change as does the conversion of uncharged trimethylamine oxide to charged trimethylammonium.

  5. Investigation of structural mimetics of natural phosphate ion binding motifs.

    PubMed

    Kataev, Evgeny A; Shumilova, Tatiana A

    2015-02-16

    Phosphates are ubiquitous in biology and nearly half of all proteins interact with their partners by means of recognition of phosphate residues. Therefore, a better understanding of the phosphate ion binding by peptidic structures is highly desirable. Two new receptors have been designed and synthesized and their anion binding properties in an acetonitrile solution have been determined. The structure of hosts mimics a part of the kinase active site that is responsible for the recognition of the phosphate residue. New hosts contain additional free amino groups with the aim to facilitate coordination of protonated anions, such as dihydrogen phosphate. According to spectrophotometric measurements, stepwise 1:1 and 1:2 binding modes have been observed for both receptors in the presence of acetate, hydrogen sulfate and dihydrogen phosphate. Compared with the acyclic receptor, the macrocyclic receptor has demonstrated a remarkably enhanced selectivity for dihydrogen phosphate over other anions. Fluorometric measurements have revealed different responses of the acyclic and macrocyclic receptors towards anions. However, in both cases, a 5-8 nm hypsochromic shift of fluorescence maximum has been observed upon interaction of acetate and dihydrogen phosphate with receptors.

  6. Use of genomic data in risk assessment case study: I. Evaluation of the dibutyl phthalate male reproductive development toxicity data set

    SciTech Connect

    Makris, Susan L.; Euling, Susan Y.; Gray, L. Earl; Benson, Robert; Foster, Paul M.D.

    2013-09-15

    A case study was conducted, using dibutyl phthalate (DBP), to explore an approach to using toxicogenomic data in risk assessment. The toxicity and toxicogenomic data sets relative to DBP-related male reproductive developmental outcomes were considered conjointly to derive information about mode and mechanism of action. In this manuscript, we describe the case study evaluation of the toxicological database for DBP, focusing on identifying the full spectrum of male reproductive developmental effects. The data were assessed to 1) evaluate low dose and low incidence findings and 2) identify male reproductive toxicity endpoints without well-established modes of action (MOAs). These efforts led to the characterization of data gaps and research needs for the toxicity and toxicogenomic studies in a risk assessment context. Further, the identification of endpoints with unexplained MOAs in the toxicity data set was useful in the subsequent evaluation of the mechanistic information that the toxicogenomic data set evaluation could provide. The extensive analysis of the toxicology data set within the MOA context provided a resource of information for DBP in attempts to hypothesize MOAs (for endpoints without a well-established MOA) and to phenotypically anchor toxicogenomic and other mechanistic data both to toxicity endpoints and to available toxicogenomic data. This case study serves as an example of the steps that can be taken to develop a toxicological data source for a risk assessment, both in general and especially for risk assessments that include toxicogenomic data.

  7. Pathway modeling of microarray data: A case study of pathway activity changes in the testis following in utero exposure to dibutyl phthalate (DBP)

    SciTech Connect

    Ovacik, Meric A.; Sen, Banalata; Euling, Susan Y.; Gaido, Kevin W.; Ierapetritou, Marianthi G.; Androulakis, Ioannis P.

    2013-09-15

    Pathway activity level analysis, the approach pursued in this study, focuses on all genes that are known to be members of metabolic and signaling pathways as defined by the KEGG database. The pathway activity level analysis entails singular value decomposition (SVD) of the expression data of the genes constituting a given pathway. We explore an extension of the pathway activity methodology for application to time-course microarray data. We show that pathway analysis enhances our ability to detect biologically relevant changes in pathway activity using synthetic data. As a case study, we apply the pathway activity level formulation coupled with significance analysis to microarray data from two different rat testes exposed in utero to Dibutyl Phthalate (DBP). In utero DBP exposure in the rat results in developmental toxicity of a number of male reproductive organs, including the testes. One well-characterized mode of action for DBP and the male reproductive developmental effects is the repression of expression of genes involved in cholesterol transport, steroid biosynthesis and testosterone synthesis that lead to a decreased fetal testicular testosterone. Previous analyses of DBP testes microarray data focused on either individual gene expression changes or changes in the expression of specific genes that are hypothesized, or known, to be important in testicular development and testosterone synthesis. However, a pathway analysis may inform whether there are additional affected pathways that could inform additional modes of action linked to DBP developmental toxicity. We show that Pathway activity analysis may be considered for a more comprehensive analysis of microarray data.

  8. Using Carbon-14 Isotope Tracing to Investigate Molecular Structure Effects of the Oxygenate Dibutyl Maleate on Soot Emissions from a DI Diesel Engine

    SciTech Connect

    Buchholz, B A; Mueller, C J; Upatnieks, A; Martin, G C; Pitz, W J; Westbrook, C K

    2004-01-07

    The effect of oxygenate molecular structure on soot emissions from a DI diesel engine was examined using carbon-14 ({sup 14}C) isotope tracing. Carbon atoms in three distinct chemical structures within the diesel oxygenate dibutyl maleate (DBM) were labeled with {sup 14}C. The {sup 14}C from the labeled DBM was then detected in engine-out particulate matter (PM), in-cylinder deposits, and CO{sub 2} emissions using accelerator mass spectrometry (AMS). The results indicate that molecular structure plays an important role in determining whether a specific carbon atom either does or does not form soot. Chemical-kinetic modeling results indicate that structures that produce CO{sub 2} directly from the fuel are less effective at reducing soot than structures that produce CO before producing CO{sub 2}. Because they can follow individual carbon atoms through a real combustion process, {sup 14}C isotope tracing studies help strengthen the connection between actual engine emissions and chemical-kinetic models of combustion and soot formation/oxidation processes.

  9. Hydrogen in Martian Meteorites

    NASA Technical Reports Server (NTRS)

    Peslier, A. H.; Hervig, R.; Irving, T.

    2017-01-01

    Most volatile studies of Mars have targeted its surface via spacecraft and rover data, and have evidenced surficial water in polar caps and the atmosphere, in the presence of river channels, and in the detection of water bearing minerals. The other focus of Martian volatile studies has been on Martian meteorites which are all from its crust. Most of these studies are on hydrous phases like apatite, a late-stage phase, i.e. crystallizing near the end of the differentiation sequence of Martian basalts and cumulates. Moreover, calculating the water content of the magma a phosphate crystallized from is not always possible, and yet is an essential step to estimate how much water was present in a parent magma and its source. Water, however, is primarily dissolved in the interiors of differentiated planets as hydrogen in lattice defects of nominally anhydrous minerals (olivine, pyroxene, feldspar) of the crust and mantle. This hydrogen has tremendous influence, even in trace quantities, on a planet's formation, geodynamics, cooling history and the origin of its volcanism and atmosphere as well as its potential for life. Studies of hydrogen in nominally anhydrous phases of Martian meteorites are rare. Measuring water contents and hydrogen isotopes in well-characterized nominally anhydrous minerals of Martian meteorites is the goal of our study. Our work aims at deciphering what influences the distribution and origin of hydrogen in Martian minerals, such as source, differentiation, degassing and shock.

  10. Acute phosphate nephropathy.

    PubMed

    Monfared, Ali; Habibzadeh, Seyed Mahmoud; Mesbah, Seyed Alireza

    2014-05-01

    We present acute phosphate nephropathy in a 28-year-old man, which was developed after a car accident due to rhabdomyolysis. Treatment of acute kidney injury was done with administration of sodium bicarbonate.

  11. Metal-phosphate binders

    DOEpatents

    Howe, Beth Ann [Lewistown, IL; Chaps-Cabrera, Jesus Guadalupe [Coahuila, MX

    2009-05-12

    A metal-phosphate binder is provided. The binder may include an aqueous phosphoric acid solution, a metal-cation donor including a metal other than aluminum, an aluminum-cation donor, and a non-carbohydrate electron donor.

  12. Phosphate control in dialysis

    PubMed Central

    Cupisti, Adamasco; Gallieni, Maurizio; Rizzo, Maria Antonietta; Caria, Stefania; Meola, Mario; Bolasco, Piergiorgio

    2013-01-01

    Prevention and correction of hyperphosphatemia is a major goal of chronic kidney disease–mineral and bone disorder (CKD–MBD) management, achievable through avoidance of a positive phosphate balance. To this aim, optimal dialysis removal, careful use of phosphate binders, and dietary phosphate control are needed to optimize the control of phosphate balance in well-nourished patients on a standard three-times-a-week hemodialysis schedule. Using a mixed diffusive–convective hemodialysis tecniques, and increasing the number and/or the duration of dialysis tecniques are all measures able to enhance phosphorus (P) mass removal through dialysis. However, dialytic removal does not equal the high P intake linked to the high dietary protein requirement of dialysis patients; hence, the use of intestinal P binders is mandatory to reduce P net intestinal absorption. Unfortunately, even a large dose of P binders is able to bind approximately 200–300 mg of P on a daily basis, so it is evident that their efficacy is limited in the case of an uncontrolled dietary P load. Hence, limitation of dietary P intake is needed to reach the goal of neutral phosphate balance in dialysis, coupled to an adequate protein intake. To this aim, patients should be informed and educated to avoid foods that are naturally rich in phosphate and also processed food with P-containing preservatives. In addition, patients should preferentially choose food with a low P-to-protein ratio. For example, patients could choose egg white or protein from a vegetable source. Finally, boiling should be the preferred cooking procedure, because it induces food demineralization, including phosphate loss. The integrated approach outlined in this article should be actively adapted as a therapeutic alliance by clinicians, dieticians, and patients for an effective control of phosphate balance in dialysis patients. PMID:24133374

  13. Phosphate control in dialysis.

    PubMed

    Cupisti, Adamasco; Gallieni, Maurizio; Rizzo, Maria Antonietta; Caria, Stefania; Meola, Mario; Bolasco, Piergiorgio

    2013-10-04

    Prevention and correction of hyperphosphatemia is a major goal of chronic kidney disease-mineral and bone disorder (CKD-MBD) management, achievable through avoidance of a positive phosphate balance. To this aim, optimal dialysis removal, careful use of phosphate binders, and dietary phosphate control are needed to optimize the control of phosphate balance in well-nourished patients on a standard three-times-a-week hemodialysis schedule. Using a mixed diffusive-convective hemodialysis tecniques, and increasing the number and/or the duration of dialysis tecniques are all measures able to enhance phosphorus (P) mass removal through dialysis. However, dialytic removal does not equal the high P intake linked to the high dietary protein requirement of dialysis patients; hence, the use of intestinal P binders is mandatory to reduce P net intestinal absorption. Unfortunately, even a large dose of P binders is able to bind approximately 200-300 mg of P on a daily basis, so it is evident that their efficacy is limited in the case of an uncontrolled dietary P load. Hence, limitation of dietary P intake is needed to reach the goal of neutral phosphate balance in dialysis, coupled to an adequate protein intake. To this aim, patients should be informed and educated to avoid foods that are naturally rich in phosphate and also processed food with P-containing preservatives. In addition, patients should preferentially choose food with a low P-to-protein ratio. For example, patients could choose egg white or protein from a vegetable source. Finally, boiling should be the preferred cooking procedure, because it induces food demineralization, including phosphate loss. The integrated approach outlined in this article should be actively adapted as a therapeutic alliance by clinicians, dieticians, and patients for an effective control of phosphate balance in dialysis patients.

  14. Biomineralization of calcium phosphate crystals on chitin nanofiber hydrogel for bone regeneration material.

    PubMed

    Kawata, Mari; Azuma, Kazuo; Izawa, Hironori; Morimoto, Minoru; Saimoto, Hiroyuki; Ifuku, Shinsuke

    2016-01-20

    We previously reported a chitin nanofiber hydrogel from squid pen β-chitin by a simple NaOH treatment. In the present study, a calcium phosphate/chitin nanofiber hydrogel was prepared for bone tissue engineering. Calcium phosphate was mineralized on the hydrogel by incubation in a solution of diammonium hydrogen phosphate solution followed by calcium nitrate tetrahydrate. X-ray diffractometry and Fourier transform infrared spectroscopy showed the formation of calcium phosphate crystals. The morphology of the calcium phosphate crystals changed depending on the calcification time. After mineralization, the mechanical properties of the hydrogel improved due to the reinforcement effect of calcium phosphate crystal. In an animal experiment, calcium phosphate/chitin nanofiber hydrogel accelerated mineralization in subcutaneous tissues. Morphological osteoblasts were observed.

  15. Suppression of peak tailing of phosphate prodrugs in reversed-phase liquid chromatography.

    PubMed

    Zhang, Jin; Wang, Qinggang; Kleintop, Brent; Raglione, Thomas

    2014-09-01

    Peak tailing of phosphate prodrugs in acidic mobile phases was thoroughly investigated. The results indicated that both metal-phosphate interactions and silanophilic interactions contributed to the observed peak tailing. Column pretreatment with phosphate buffers was demonstrated to be an effective and robust approach in suppressing metal-phosphate interaction. Silanophilic interactions, such as hydrogen bonding interactions between protonated isolated silanol groups and partially deprotonated phosphate groups were mobile phase pH dependent. The combination of column pretreatment and volatile low pH mobile phase buffers can be used to mitigate peak tailing issues in developing MS compatible RPLC methods for phosphate prodrugs. The use of non-endcapped columns should be avoided in RPLC analysis for phosphate prodrugs due to large amount of residual silanol groups in the stationary phases.

  16. Improved Manganese Phosphate Coatings

    DTIC Science & Technology

    1975-04-01

    Conversion coatings 3 . Phosphating bath 20 AGrjC onln odd*. ta It .. c..soMV midP 1J.,alft. by block noc.mb) Work was conducted to determine the mechanism by...34 TABULAR DATA Table I Analyses of Solution and Coating for Phosphating Baths 4 of Di-ferlng Compositions 11 Atomic Absorption...manganese and iron phosphate coating: k * a. Mn(H 2PO4) 2 Nn-P0 4 + H3PO0 k2 k) b. 3MnHPO4 - Mn3 (P04) 2 + H3i’O4 k4 k5 c. Fe(H 2PO4) 2 -01 FeHPO4

  17. Phosphate Mines, Jordan

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Jordan's leading industry and export commodities are phosphate and potash, ranked in the top three in the world. These are used to make fertilizer. The Jordan Phosphate Mines Company is the sole producer, having started operations in 1935. In addition to mining activities, the company produces phosphoric acid (for fertilizers, detergents, pharmaceuticals), diammonium phosphate (for fertilizer), sulphuric acid (many uses), and aluminum fluoride (a catalyst to make aluminum and magnesium).

    The image covers an area of 27.5 x 49.4 km, was acquired on September 17, 2005, and is located near 30.8 degrees north latitude, 36.1 degrees east longitude.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  18. Hydrogen generator

    SciTech Connect

    Adlhart, O. J.

    1985-04-23

    This disclosure relates to a replaceable cartridge hydrogen generator of the type which relies at least partially on the process of anodic corrosion to produce hydrogen. A drum contains a plurality of the cartridges.

  19. Characterization of the phosphatic mineral of the barnacle Ibla cumingi at atomic level by solid-state nuclear magnetic resonance: comparison with other phosphatic biominerals

    PubMed Central

    Reid, David G.; Mason, Matthew J.; Chan, Benny K. K.; Duer, Melinda J.

    2012-01-01

    Ibliform barnacles are among the few invertebrate animals harnessing calcium phosphate to construct hard tissue. The 31P solid-state NMR (SSNMR) signal from the shell plates of Ibla cumingi (Iblidae) is broader than that of bone, and shifted by ca 1 ppm to low frequency. 1H–31P heteronuclear correlation (HETCOR) experiments show a continuum of different phosphorus/phosphate atomic environments, close to hydrogen populations with resonance frequencies between ca 10 and 20 ppm. Associated 1H and 31P chemical shifts argue the coexistence of weakly (high 31P frequency, low 1H frequency) to more strongly (lower 31P frequency, higher 1H frequency) hydrogen-bonded hydrogen phosphate-like molecular/ionic species. There is no resolved signal from discrete OH− ions. 13C SSNMR shows chitin, protein and other organic biomolecules but, unlike bone, there are no significant atomic scale organic matrix–mineral contacts. The poorly ordered hydrogen phosphate-like iblid mineral is strikingly different, structurally and compositionally, from both vertebrate bone mineral and the more crystalline fluoroapatite of the linguliform brachiopods. It probably represents a previously poorly characterized calcium phosphate biomineral, the evolution of which may have reflected either the chemical conditions of ancestral seas or the mechanical advantages of phosphatic biomineralization over a calcium carbonate equivalent. PMID:22298816

  20. Hydrogen Generator

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A unit for producing hydrogen on site is used by a New Jersey Electric Company. The hydrogen is used as a coolant for the station's large generator; on-site production eliminates the need for weekly hydrogen deliveries. High purity hydrogen is generated by water electrolysis. The electrolyte is solid plastic and the control system is electronic. The technology was originally developed for the Gemini spacecraft.

  1. Synthesis and controllable wettability of micro- and nanostructured titanium phosphate thin films formed on titanium plates.

    PubMed

    Yada, Mitsunori; Inoue, Yuko; Sakamoto, Ayako; Torikai, Toshio; Watari, Takanori

    2014-05-28

    The hydrothermal treatment of a titanium plate in a mixed aqueous solution of hydrogen peroxide and aqueous phosphoric acid under different conditions results in the formation of various titanium phosphate thin films. The films have various crystal structures such as Ti2O3(H2PO4)2·2H2O, α-titanium phosphate (Ti(HPO4)2·H2O), π-titanium phosphate (Ti2O(PO4)2·H2O), or low-crystallinity titanium phosphate and different morphologies that have not been previously reported such as nanobelts, microflowers, nanosheets, nanorods, or nanoplates. The present study also suggests the mechanisms behind the formation of these thin films. The crystal structure and morphology of the titanium phosphate thin films depend strongly on the concentration of the aqueous hydrogen peroxide solution, the amount of phosphoric acid, and the reaction temperature. In particular, hydrogen peroxide plays an important role in the formation of the titanium phosphate thin films. Moreover, controllable wettability of the titanium phosphate thin films, including superhydrophilicity and superhydrophobicity, is reported. Superhydrophobic surfaces with controllable adhesion to water droplets are obtained on π-titanium phosphate nanorod thin films modified with alkylamine molecules. The adhesion force between a water droplet and the thin film depends on the alkyl chain length of the alkylamine and the duration of ultraviolet irradiation utilized for photocatalytic degradation.

  2. Hydrogen Production

    SciTech Connect

    2014-09-01

    This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produce hydrogen. It includes an overview of research goals as well as “quick facts” about hydrogen energy resources and production technologies.

  3. Hydrogen Storage

    SciTech Connect

    2008-11-01

    This 2-page fact sheet provides a brief introduction to hydrogen storage technologies. Intended for a non-technical audience, it explains the different ways in which hydrogen can be stored, as well as the technical challenges and research goals for storing hydrogen on board a vehicle.

  4. Analysis of phosphate esters in plant material

    PubMed Central

    Isherwood, F. A.; Barrett, F. C.

    1967-01-01

    1. A critical study was made of the quantitative extraction of nucleotide and sugar phosphates from plant tissue by either boiling aqueous ethanol or cold trichloroacetic acid. The effect of the extraction technique on the inactivation of the enzymes in the plant tissue and the possibility of adsorption of the phosphate esters on the cell wall were especially considered. 2. In the recommended method the plant tissue was frozen in liquid nitrogen, ground to a powder and then blended with cold aqueous trichloroacetic acid containing 8-hydroxyquinoline to prevent adsorption. 3. The extract contained large amounts of trichloroacetic acid, cations, chloride, sugars, amino acids, hydroxy organic acids, phytic acid, orthophosphoric acid and high-molecular-weight material including some phosphorus-containing compounds. All of these were removed as they were liable to interfere with the chromatographic or enzymic assay of the individual nucleotide or sugar phosphates. 4. The procedure was as follows: the last traces of trichloroacetic acid were extracted with ether after the solution had been passed through a column of Dowex AG 50 in the hydrogen form to remove all cations. High-molecular-weight compounds were removed by ultrafiltration and low-molecular-weight solutes by a two-stage chromatography on cellulose columns with organic solvents. In the first stage, sugars, amino acids, chloride and phytic acid were separated by using a basic solvent (propan-1-ol–water–aqueous ammonia) and, in the second stage, the organic acids and orthophosphoric acid were separated by using an acidic solvent (di-isopropyl ether–formic acid–2-methylpropan-2-ol–water). The final solution of nucleotide and sugar phosphates was substantially free from other solutes and was suitable for the detection of individual phosphate esters by either chromatography or enzymic assay. 5. The recovery of d-glucose 6-phosphate or adenosine 5′-triphosphate added to a trichloroacetic acid extract

  5. Domestic phosphate deposits

    USGS Publications Warehouse

    McKelvey, V.E.; Cathcart, J.B.; Altschuler, Z.S.; Swanson, R.W.; Lutz, Katherine

    1953-01-01

    Most of the worlds phosphate deposits can be grouped into six types: 1) igneous apatite deposits; 2) marine phosphorites; 3) residual phosphorites; 4) river pebble deposits; 5) phosphatized rock; and 6) guano. The igneous apatites and marine phosphorites form deposits measurable in millions or billions of tons; the residual deposits are measurable in thousands or millions; and the other types generally only in thousands of tons. Igneous apatite deposits have been mined on a small scale in New York, New Jersey, and Virginia. Marine phosphorites have been mined in Montana, Idaho, Utah, Wyoming, Arkansas, Tennessee, North Carolina, South Carolina, Georgia, and Florida. Residual phosphorites have been mined in Tennessee, Pennsylvania, and Florida. River pebble has been produced in South Carolina and Florida; phosphatized rock in Tennessee and Florida; and guano in New Mexico and Texas. Present production is limited almost entirely to Florida, Tennessee, Montana, Idaho, and Wyoming. Incomplete but recently partly revised estimates indicate the presence of about 5 billion tons of phosphate deposits in the United States that is minable under present economic conditions. Deposits too lean in quality or thickness to compete with those in the western and southeastern fields probably contain tens of billions of tons.

  6. Glucose-6-phosphate dehydrogenase

    MedlinePlus

    ... Elsevier Saunders; 2012:chap 42. Read More Enzyme Glucose-6-phosphate dehydrogenase deficiency Hemoglobin Review Date 2/11/2016 Updated by: ... A.M. Editorial team. Related MedlinePlus Health Topics G6PD Deficiency Browse the Encyclopedia A.D.A.M., Inc. ...

  7. Hydrogenation apparatus

    DOEpatents

    Friedman, J.; Oberg, C. L.; Russell, L. H.

    1981-06-23

    Hydrogenation reaction apparatus is described comprising a housing having walls which define a reaction zone and conduits for introducing streams of hydrogen and oxygen into the reaction zone, the oxygen being introduced into a central portion of the hydrogen stream to maintain a boundary layer of hydrogen along the walls of the reaction zone. A portion of the hydrogen and all of the oxygen react to produce a heated gas stream having a temperature within the range of from 1,100 to 1,900 C, while the boundary layer of hydrogen maintains the wall temperature at a substantially lower temperature. The heated gas stream is introduced into a hydrogenation reaction zone and provides the source of heat and hydrogen for a hydrogenation reaction. There also is provided means for quenching the products of the hydrogenation reaction. The present invention is particularly suitable for the hydrogenation of low-value solid carbonaceous materials to provide high yields of more valuable liquid and gaseous products. 2 figs.

  8. Phosphate enhances Fgf23 expression through reactive oxygen species in UMR-106 cells.

    PubMed

    Hori, Michiko; Kinoshita, Yuka; Taguchi, Manabu; Fukumoto, Seiji

    2016-03-01

    Fibroblast growth factor 23 (FGF23) has been shown to work as a phosphotropic hormone. Although FGF23 reduces the serum phosphate level, it has not been established that phosphate directly regulates FGF23 production. In this study, we investigated whether phosphate can enhance Fgf23 expression using the rat osteoblastic cell line UMR-106, which has been shown to express Fgf23 in response to 1,25-dihydroxyvitamin D [1,25(OH)2D]. Phosphate increased Fgf23 expression in a dose- and time-dependent manner in the presence of 1,25(OH)2D. Phosphate also increased Fgf23 promoter activity, but showed no effect on the half-life of Fgf23 messenger RNA. Phosphonoformic acid and PD98059, an inhibitor of MEK, inhibited the effects of phosphate on Fgf23 expression and promoter activity. In addition, phosphate enhanced production of reactive oxygen species (ROS) in UMR-106 cells, and hydrogen peroxide enhanced FGF23 production in a dose- and time-dependent manner. Hydrogen peroxide also enhanced Elk1 reporter activity, a target of the MEK-extracellular-signal-regulated kinase (ERK) pathway. Furthermore, the effect of phosphate on ROS production and Fgf23 expression was inhibited by apocynin, an inhibitor of NADPH oxidase. These results indicate that phosphate directly enhances Fgf23 transcription without affecting the stability of Fgf23 messenger RNA by stimulating NADPH-induced ROS production and the MEK-ERK pathway in UMR-106 cells.

  9. Preliminary time-of-flight neutron diffraction studies of Escherichia coli ABC transport receptor phosphate-binding protein at the Protein Crystallography Station

    PubMed Central

    Sippel, K. H.; Bacik, J.; Quiocho, F. A.; Fisher, S. Z.

    2014-01-01

    Inorganic phosphate is an essential molecule for all known life. Organisms have developed many mechanisms to ensure an adequate supply, even in low-phosphate conditions. In prokaryotes phosphate transport is instigated by the phosphate-binding protein (PBP), the initial receptor for the ATP-binding cassette (ABC) phosphate transporter. In the crystal structure of the PBP–phosphate complex, the phosphate is completely desolvated and sequestered in a deep cleft and is bound by 13 hydrogen bonds: 12 to protein NH and OH donor groups and one to a carboxylate acceptor group. The carboxylate plays a key recognition role by accepting a phosphate hydrogen. PBP phosphate affinity is relatively consistent across a broad pH range, indicating the capacity to bind monobasic (H2PO4 −) and dibasic (HPO4 2−) phosphate; however, the mechanism by which it might accommodate the second hydrogen of monobasic phosphate is unclear. To answer this question, neutron diffraction studies were initiated. Large single crystals with a volume of 8 mm3 were grown and subjected to hydrogen/deuterium exchange. A 2.5 Å resolution data set was collected on the Protein Crystallography Station at the Los Alamos Neutron Science Center. Initial refinement of the neutron data shows significant nuclear density, and refinement is ongoing. This is the first report of a neutron study from this superfamily. PMID:24915101

  10. Evaluation of Manganese Phosphate Coatings.

    DTIC Science & Technology

    1984-02-01

    84003 _____________ 4 . TTLE and -bitle)5. TYPE OF REPORT & PERIOD COVERED EVALUATION OF MANGANESE PHOSPHATE COATINGS Final 6. PERFORMING ORG. REPORT...rosion resistance of the Endurion phosphate was significantly superior to the 4 . basic manganese phosphate . Endurion phosphate with a Supplementary...OF CONTENTS Page STATEMENT OF THE PROBLEM 1 BACKGROUND 1 APPROACH TO THE PROBLEM 3 RESULTS 4 CONCLUSIONS 7 TABLES I. Falex Wear Life Test Procedure 8

  11. Expanding sapphyrin: towards selective phosphate binding.

    PubMed

    Katayev, Evgeny A; Boev, Nikolay V; Myshkovskaya, Ekaterina; Khrustalev, Victor N; Ustynyuk, Yu A

    2008-01-01

    The anion-templated syntheses and binding properties of novel macrocyclic oligopyrrole receptors in which pyrrole rings are linked through amide or imine bonds are described. The efficient synthesis was accomplished by anion-templated [1+1] Schiff-base condensation and acylation macrocyclization reactions. Free receptors and their host-guest complexes with hydrochloric acid, acetic acid, tetrabutylammonium chloride, and hydrogen sulfate were analyzed by single-crystal X-ray diffraction analysis. Stability constants with different tetrabutylammonium salts of inorganic acids were determined by standard 1H NMR and UV/Vis titration techniques in [D6]DMSO/0.5% water solution. According to the titration data, receptors containing three pyrrole rings (10 and 12) exhibit high affinity (log Ka=5-7) for bifluoride, acetate, and dihydrogen phosphate, and interact weakly with chloride and hydrogen sulfate. The amido-bipyrrole receptors 11 and 13 with four pyrrole rings exhibit 10(4)- and 10(2)-fold selectivity for dihydrogen phosphate, respectively, as inferred from competitive titrations in the presence of tetrabutylammonium acetate.

  12. Calcium Phosphates and Human Beings

    NASA Astrophysics Data System (ADS)

    Dorozhkin, Sergey V.

    2006-05-01

    This article describes the general importance of calcium phosphates for human beings. The basic information on the structure and chemical properties of the biologically relevant calcium phosphates is summarized. Basic facts on the natural occurrence and the industrial use of natural calcium phosphates are discussed. Fundamental details on the presence of calcium phosphates in major calcified tissues (bones and teeth) of humans and mammals, as well as on biomaterials made of calcium phosphates are discussed. The article will be of value for chemistry teachers for expansion of their general background and point the students' attention to the rapidly growing topic of bone-substituting biomaterials.

  13. 21 CFR 184.1434 - Magnesium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Magnesium phosphate. 184.1434 Section 184.1434... Listing of Specific Substances Affirmed as GRAS § 184.1434 Magnesium phosphate. (a) Magnesium phosphate includes both magnesium phosphate, dibasic, and magnesium phosphate, tribasic. Magnesium phosphate,...

  14. 21 CFR 184.1434 - Magnesium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Magnesium phosphate. 184.1434 Section 184.1434... Listing of Specific Substances Affirmed as GRAS § 184.1434 Magnesium phosphate. (a) Magnesium phosphate includes both magnesium phosphate, dibasic, and magnesium phosphate, tribasic. Magnesium phosphate,...

  15. 21 CFR 184.1434 - Magnesium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Magnesium phosphate. 184.1434 Section 184.1434... GRAS § 184.1434 Magnesium phosphate. (a) Magnesium phosphate includes both magnesium phosphate, dibasic, and magnesium phosphate, tribasic. Magnesium phosphate, dibasic (MgHPO4·3H2O, CAS Reg. No....

  16. Hydrogen energy progress 5678

    SciTech Connect

    Veziroglu, T.N. )

    1990-01-01

    This book covers the proceedings of the 8th World Hydrogen Energy Conference, and includes: international hydrogen energy programs; hydrogen production; storage of hydrogen; hydrogen transmission and distribution; combustion systems/hydrogen engines; fuel cells; and synfuel production.

  17. Biomediated continuous release phosphate fertilizer

    DOEpatents

    Goldstein, Alan H.; Rogers, Robert D.

    1999-01-01

    A composition is disclosed for providing phosphate fertilizer to the root zone of plants. The composition comprises a microorganism capable of producing and secreting a solubilization agent, a carbon source for providing raw material for the microorganism to convert into the solubilization agent, and rock phosphate ore for providing a source of insoluble phosphate that is solubilized by the solubilization agent and released as soluble phosphate. The composition is provided in a physical form, such as a granule, that retains the microorganism, carbon source, and rock phosphate ore, but permits water and soluble phosphate to diffuse into the soil. A method of using the composition for providing phosphate fertilizer to plants is also disclosed.

  18. Biomediated continuous release phosphate fertilizer

    DOEpatents

    Goldstein, A.H.; Rogers, R.D.

    1999-06-15

    A composition is disclosed for providing phosphate fertilizer to the root zone of plants. The composition comprises a microorganism capable of producing and secreting a solubilization agent, a carbon source for providing raw material for the microorganism to convert into the solubilization agent, and rock phosphate ore for providing a source of insoluble phosphate that is solubilized by the solubilization agent and released as soluble phosphate. The composition is provided in a physical form, such as a granule, that retains the microorganism, carbon source, and rock phosphate ore, but permits water and soluble phosphate to diffuse into the soil. A method of using the composition for providing phosphate fertilizer to plants is also disclosed. 13 figs.

  19. Renal phosphate handling: Physiology

    PubMed Central

    Prasad, Narayan; Bhadauria, Dharmendra

    2013-01-01

    Phosphorus is a common anion. It plays an important role in energy generation. Renal phosphate handling is regulated by three organs parathyroid, kidney and bone through feedback loops. These counter regulatory loops also regulate intestinal absorption and thus maintain serum phosphorus concentration in physiologic range. The parathyroid hormone, vitamin D, Fibrogenic growth factor 23 (FGF23) and klotho coreceptor are the key regulators of phosphorus balance in body. PMID:23961477

  20. Hydrogen generator

    SciTech Connect

    Hansen, J.R.

    1984-06-19

    A hydrogen generator decomposes water into hydrogen and oxygen, and includes an induction coil which is electrically heated to a temperature sufficient to decompose water passing therethrough. A generator coil is connected in communicating relation to the induction coil, and is positioned in a fire resistant crucible containing ferrous oxide pellets. Oxygen and hydrogen produced by decomposition of water pass through the ferrous oxide pellets where the oxygen reacts with the ferrous oxide and the hydrogen is burned to produce heat for heating a building, such as a conventional home.

  1. Structure of dihydroxyacetone phosphate dimethyl acetal, a stable dihydroxyacetone phosphate precursor, in the crystalline state.

    PubMed

    Slepokura, Katarzyna; Lis, Tadeusz

    2006-03-20

    Crystal and molecular structures of four different salts of a dihydroxyacetone phosphate (DHAP) precursor, its dimethyl acetal [2,2-dimethoxy-1,3-propanediol phosphate, C(5)H(13)O(7)P, (MeO)(2)DHAP]: (cha)(2)[(MeO)(2)DHAP].H(2)O (6a), (cha)[(MeO)(2)DHAP] (6b), Na(2)[(MeO)(2)DHAP].5.75H(2)O (6c) and K(2)[(MeO)(2)DHAP].H(2)O (6d), along with the cyclohexylammonium (cha) salt of its phenyl ester (cha)[(MeO)(2)DHAP(Ph)] (6e) are described. In the (MeO)(2)DHAP mono- and dianions, slightly different orientation of the phosphate group in relation to the acetal carbon atom is observed, with a delicate tendency of phosphate group to be located antiperiplanar in the monoanions and anticlinal in the dianions. The 2,2-dimethoxy-1,3-propandiol moiety, (MeO)(2)DHA, seems to be very rigid and its conformation is independent of phosphorylation, the ionization state of the inserted phosphate group and its additional substitution. The overall structures of the cyclohexylammonium (6a,b) and potassium salts (6d) have a double-layered architecture, while the sodium cation network in 6c forms the system of channels, which are filled up with the [(MeO)(2)DHAP](2-) ions. The different architectures of 6c and 6d crystals result from the different ways in which the relevant dianions coordinate to sodium and potassium ions and affect also the hydrogen bonding system observed in 6c and 6d crystals.

  2. Hydrogen Bibliography

    SciTech Connect

    Not Available

    1991-12-01

    The Hydrogen Bibliography is a compilation of research reports that are the result of research funded over the last fifteen years. In addition, other documents have been added. All cited reports are contained in the National Renewable Energy Laboratory (NREL) Hydrogen Program Library.

  3. Selective flotation of phosphate minerals with hydroxamate collectors

    DOEpatents

    Miller, Jan D.; Wang, Xuming; Li, Minhua

    2002-01-01

    A method is disclosed for separating phosphate minerals from a mineral mixture, particularly from high-dolomite containing phosphate ores. The method involves conditioning the mineral mixture by contacting in an aqueous in environment with a collector in an amount sufficient for promoting flotation of phosphate minerals. The collector is a hydroxamate compound of the formula; ##STR1## wherein R is generally hydrophobic and chosen such that the collector has solubility or dispersion properties it can be distributed in the mineral mixture, typically an alkyl, aryl, or alkylaryl group having 6 to 18 carbon atoms. M is a cation, typically hydrogen, an alkali metal or an alkaline earth metal. Preferably, the collector also comprises an alcohol of the formula, R'--OH wherein R' is generally hydrophobic and chosen such that the collector has solubility or dispersion properties so that it can be distributed in the mineral mixture, typically an alkyl, aryl, or alkylaryl group having 6 to 18 carbon atoms.

  4. ION EXCHANGE SUBSTANCES BY SAPONIFICATION OF ALLYL PHOSPHATE POLYMERS

    DOEpatents

    Kennedy, J.

    1959-04-14

    An ion exchange resin having a relatively high adsorption capacity tor uranyl ion as compared with many common cations is reported. The resin comprises an alphyl-allyl hydrogen phosphate polymer, the alphyl group being either allyl or a lower alkyl group having up to 5 carbon atoins. The resin is prepared by polymerizing compounds such as alkyl-diallyl phosphate and triallyl phosphate in the presence of a free radical generating substance and then partially hydrolyzing the resulting polymer to cause partial replacement of organic radicals by cations. A preferred free radical gencrating agent is dibenzoyl peroxide. The partial hydrolysis is brought about by refluxing the polymer with concentrated aqueous NaOH for three or four hours.

  5. Carbonic anhydrase inhibitors. Interaction of isozymes I, II, IV, V, and IX with phosphates, carbamoyl phosphate, and the phosphonate antiviral drug foscarnet.

    PubMed

    Rusconi, Stefano; Innocenti, Alessio; Vullo, Daniela; Mastrolorenzo, Antonio; Scozzafava, Andrea; Supuran, Claudiu T

    2004-12-06

    A detailed inhibition study of five carbonic anhydrase (CA, EC 4.2.1.1) isozymes with inorganic phosphates, carbamoyl phosphate, the antiviral phosphonate foscarnet as well as formate is reported. The cytosolic isozyme hCA I was weakly inhibited by neutral phosphate, strongly inhibited by carbamoyl phosphate (K(I) of 9.4 microM), and activated by hydrogen- and dihydrogenphosphate, foscarnet and formate (best activator foscarnet, K(A)=12 microM). The cytosolic isozyme hCA II was weakly inhibited by all the investigated anions, with carbamoyl phosphate showing a K(I) of 0.31 mM. The membrane-associated isozyme hCA IV was the most sensitive to inhibition by phosphates/phosphonates, showing a K(I) of 84 nM for PO(4)(3-), of 9.8 microM for HPO(4)(2-), and of 9.9 microM for carbamoyl phosphate. Foscarnet was the best inhibitor of this isozyme (K(I) of 0.82 mM) highly abundant in the kidneys, which may explain some of the renal side effects of the drug. The mitochondrial isozyme hCA V was weakly inhibited by all phosphates/phosphonates, except carbamoyl phosphate, which showed a K(I) of 8.5 microM. Thus, CA V cannot be the isozyme involved in the carbamoyl phosphate synthetase I biosynthetic reaction, as hypothesized earlier. Furthermore, the relative resistance of CA V to inhibition by inorganic phosphates suggests an evolutionary adaptation of this mitochondrial isozyme to the presence of high concentrations of such anions in these energy-converting organelles, where high amounts of ATP are produced by ATP synthetase, from ADP and inorganic phosphates. The transmembrane, tumor-associated isozyme hCA IX was on the other hand slightly inhibited by all these anions.

  6. Hydrogen carriers

    NASA Astrophysics Data System (ADS)

    He, Teng; Pachfule, Pradip; Wu, Hui; Xu, Qiang; Chen, Ping

    2016-12-01

    Hydrogen has the potential to be a major energy vector in a renewable and sustainable future energy mix. The efficient production, storage and delivery of hydrogen are key technical issues that require improvement before its potential can be realized. In this Review, we focus on recent advances in materials development for on-board hydrogen storage. We highlight the strategic design and optimization of hydrides of light-weight elements (for example, boron, nitrogen and carbon) and physisorbents (for example, metal-organic and covalent organic frameworks). Furthermore, hydrogen carriers (for example, NH3, CH3OH-H2O and cycloalkanes) for large-scale distribution and for on-site hydrogen generation are discussed with an emphasis on dehydrogenation catalysts.

  7. Structural Basis for Substrate Specificity in Phosphate Binding (beta/alpha)8-Barrels: D-Allulose 6-Phosphate 3-Epimerase from Escherichia coli K-12

    SciTech Connect

    Chan,K.; Fedorov, A.; Almo, S.; Gerlt, J.

    2008-01-01

    Enzymes that share the ({beta}/{alpha})8-barrel fold catalyze a diverse range of reactions. Many utilize phosphorylated substrates and share a conserved C-terminal ({beta}/a)2-quarter barrel subdomain that provides a binding motif for the dianionic phosphate group. We recently reported functional and structural studies of d-ribulose 5-phosphate 3-epimerase (RPE) from Streptococcus pyogenes that catalyzes the equilibration of the pentulose 5-phosphates d-ribulose 5-phosphate and d-xylulose 5-phosphate in the pentose phosphate pathway [J. Akana, A. A. Fedorov, E. Fedorov, W. R. P. Novack, P. C. Babbitt, S. C. Almo, and J. A. Gerlt (2006) Biochemistry 45, 2493-2503]. We now report functional and structural studies of d-allulose 6-phosphate 3-epimerase (ALSE) from Escherichia coli K-12 that catalyzes the equilibration of the hexulose 6-phosphates d-allulose 6-phosphate and d-fructose 6-phosphate in a catabolic pathway for d-allose. ALSE and RPE prefer their physiological substrates but are promiscuous for each other's substrate. The active sites (RPE complexed with d-xylitol 5-phosphate and ALSE complexed with d-glucitol 6-phosphate) are superimposable (as expected from their 39% sequence identity), with the exception of the phosphate binding motif. The loop following the eighth {beta}-strand in ALSE is one residue longer than the homologous loop in RPE, so the binding site for the hexulose 6-phosphate substrate/product in ALSE is elongated relative to that for the pentulose 5-phosphate substrate/product in RPE. We constructed three single-residue deletion mutants of the loop in ALSE, ?T196, ?S197 and ?G198, to investigate the structural bases for the differing substrate specificities; for each, the promiscuity is altered so that d-ribulose 5-phosphate is the preferred substrate. The changes in kcat/Km are dominated by changes in kcat, suggesting that substrate discrimination results from differential transition state stabilization. In both ALSE and RPE, the phosphate

  8. Metallic Hydrogen

    NASA Astrophysics Data System (ADS)

    Silvera, Isaac F.; Dias, Ranga; Noked, Ori; Salamat, Ashkan; Zaghoo, Mohamed

    2017-04-01

    One of the great challenges in condensed matter physics has been to produce metallic hydrogen (MH) in the laboratory. There are two approaches: solid molecular hydrogen can be compressed to high density at extreme pressures of order 5-6 megabars. The transition to MH should take place at low temperatures and is expected to occur as a structural first-order phase transition with dissociation of molecules into atoms, rather than the closing of a gap. A second approach is to produce dense molecular hydrogen at pressures of order 1-2 megabars and heat the sample. With increasing temperature, it was predicted that molecular hydrogen first melts and then dissociates to atomic metallic liquid hydrogen as a first-order phase transition. We have observed this liquid-liquid phase transition to metallic hydrogen, also called the plasma phase transition. In low-temperature studies, we have pressurized HD to over 3 megabars and observed two new phases. Molecular hydrogen has been pressurized to 4.2 megabars. A new phase transition has been observed at 3.55 megabars, but it is not yet metallic.

  9. The molecular basis of phosphate discrimination in arsenate-rich environments.

    PubMed

    Elias, Mikael; Wellner, Alon; Goldin-Azulay, Korina; Chabriere, Eric; Vorholt, Julia A; Erb, Tobias J; Tawfik, Dan S

    2012-11-01

    Arsenate and phosphate are abundant on Earth and have striking similarities: nearly identical pK(a) values, similarly charged oxygen atoms, and thermochemical radii that differ by only 4% (ref. 3). Phosphate is indispensable and arsenate is toxic, but this extensive similarity raises the question whether arsenate may substitute for phosphate in certain niches. However, whether it is used or excluded, discriminating phosphate from arsenate is a paramount challenge. Enzymes that utilize phosphate, for example, have the same binding mode and kinetic parameters as arsenate, and the latter's presence therefore decouples metabolism. Can proteins discriminate between these two anions, and how would they do so? In particular, cellular phosphate uptake systems face a challenge in arsenate-rich environments. Here we describe a molecular mechanism for this process. We examined the periplasmic phosphate-binding proteins (PBPs) of the ABC-type transport system that mediates phosphate uptake into bacterial cells, including two PBPs from the arsenate-rich Mono Lake Halomonas strain GFAJ-1. All PBPs tested are capable of discriminating phosphate over arsenate at least 500-fold. The exception is one of the PBPs of GFAJ-1 that shows roughly 4,500-fold discrimination and its gene is highly expressed under phosphate-limiting conditions. Sub-ångström-resolution structures of Pseudomonas fluorescens PBP with both arsenate and phosphate show a unique mode of binding that mediates discrimination. An extensive network of dipole-anion interactions, and of repulsive interactions, results in the 4% larger arsenate distorting a unique low-barrier hydrogen bond. These features enable the phosphate transport system to bind phosphate selectively over arsenate (at least 10(3) excess) even in highly arsenate-rich environments.

  10. 21 CFR 184.1301 - Ferric phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ferric phosphate. 184.1301 Section 184.1301 Food... GRAS § 184.1301 Ferric phosphate. (a) Ferric phosphate (ferric orthophosphate, iron (III) phosphate, Fe... from one to four molecules of water of hydration. It is prepared by reaction of sodium phosphate...

  11. Direct observation of grafting interlayer phosphate in Mg/Al layered double hydroxides

    SciTech Connect

    Shimamura, Akihiro; Kanezaki, Eiji; Jones, Mark I.; Metson, James B.

    2012-02-15

    The grafting of interlayer phosphate in synthetic Mg/Al layered double hydroxides with interlayer hydrogen phosphate (LDH-HPO{sub 4}) has been studied by XRD, TG/DTA, FT-IR, XPS and XANES. The basal spacing of crystalline LDH-HPO{sub 4} decreases in two stages with increasing temperature, from 1.06 nm to 0.82 nm at 333 K in the first transition, and to 0.722 nm at 453 K in the second. The first stage occurs due to the loss of interlayer water and rearrangement of the interlayer HPO{sub 4}{sup 2-}. In the second transition, the interlayer phosphate is grafted to the layer by the formation of direct bonding to metal cations in the layer, accompanied by a change in polytype of the crystalline structure. The grafted phosphate becomes immobilized and cannot be removed by anion-exchange with 1-octanesulfonate. The LDH is amorphous at 743 K but decomposes to Mg{sub 3}(PO{sub 4}){sub 2}, AlPO{sub 4}, MgO and MgAl{sub 2}O{sub 4} after heated to 1273 K. - Graphical abstract: The cross section of the synthetic Mg, Al layered double hydroxides in Phase 1, with interlayer hydrogen phosphate Phase 2, and with grafted phosphate, Phase 3. Highlights: Black-Right-Pointing-Pointer The grafting of hydrogen phosphate intercalated Mg/Al-LDH has been studied. Black-Right-Pointing-Pointer The basal spacing of crystalline LDH-HPO{sub 4} decreases in two stages with increasing temperature. Black-Right-Pointing-Pointer The first decrease is due to loss of interlayer water, the second is attributed to phosphate grafting. Black-Right-Pointing-Pointer The grafted interlayer phosphate becomes immobilized and cannot be removed by anion-exchange.

  12. Folding of RNA tertiary structure: Linkages between backbone phosphates, ions, and water.

    PubMed

    Draper, David E

    2013-12-01

    The functional forms of many RNAs have compact architectures. The placement of phosphates within such structures must be influenced not only by the strong electrostatic repulsion between phosphates, but also by networks of interactions between phosphates, water, and mobile ions. This review first explores what has been learned of the basic thermodynamic constraints on these arrangements from studies of hydration and ions in simple DNA molecules, and then gives an overview of what is known about ion and water interactions with RNA structures. A brief survey of RNA crystal structures identifies several interesting architectures in which closely spaced phosphates share hydration shells or phosphates are buried in environments that provide intramolecular hydrogen bonds or site-bound cations. Formation of these structures must require strong coupling between the uptake of ions and release of water.

  13. Inositol phosphates in the environment.

    PubMed Central

    Turner, Benjamin L; Papházy, Michael J; Haygarth, Philip M; McKelvie, Ian D

    2002-01-01

    The inositol phosphates are a group of organic phosphorus compounds found widely in the natural environment, but that represent the greatest gap in our understanding of the global phosphorus cycle. They exist as inositols in various states of phosphorylation (bound to between one and six phosphate groups) and isomeric forms (e.g. myo, D-chiro, scyllo, neo), although myo-inositol hexakisphosphate is by far the most prevalent form in nature. In terrestrial environments, inositol phosphates are principally derived from plants and accumulate in soils to become the dominant class of organic phosphorus compounds. Inositol phosphates are also present in large amounts in aquatic environments, where they may contribute to eutrophication. Despite the prevalence of inositol phosphates in the environment, their cycling, mobility and bioavailability are poorly understood. This is largely related to analytical difficulties associated with the extraction, separation and detection of inositol phosphates in environmental samples. This review summarizes the current knowledge of inositol phosphates in the environment and the analytical techniques currently available for their detection in environmental samples. Recent advances in technology, such as the development of suitable chromatographic and capillary electrophoresis separation techniques, should help to elucidate some of the more pertinent questions regarding inositol phosphates in the natural environment. PMID:12028785

  14. Production of complex rubidium and cesium hydrogen sulfate‒phosphates

    NASA Astrophysics Data System (ADS)

    Komornikov, V. A.; Grebenev, V. V.; Makarova, I. P.; Selezneva, E. V.; Andreev, P. V.

    2016-07-01

    The solubility in the CsH2PO4‒CsHSO4‒H2O system at different temperatures (25, 50, and 75°C) is studied and the phase equilibria in the Rb3H(SO4)2‒RbH2PO4‒H2O system under isothermal conditions (at 25°C) are analyzed. The temperature and concentration conditions for forming Rb2(HSO4)(H2PO4), Rb4(HSO4)3(H2PO4), Cs4(HSO4)3(H2PO4), Cs3(HSO4)2(H2PO4), Cs2(HSO4)(H2PO4), and Cs6H(HSO4)3(H2PO4)4 compounds (the latter has been obtained for the first time) are determined. The conditions for growing large single crystals of complex acid rubidium and cesium salts are found.

  15. Thermodynamics of the reactions of carbamoyl phosphate.

    PubMed

    Alberty, Robert A

    2006-07-01

    Two measurements of equilibrium constants by Marshall and Cohen make it possible to calculate standard Gibbs energies of formation of the species of carbamate and carbamoyl phosphate. Carbamate formation from carbon dioxide and ammonia does not require an enzyme, and the equilibrium concentrations of carbamate in ammonium bicarbonate are calculated. Knowing the values of standard Gibbs energies of formation of species of carbamate and carbamoyl phosphate make it possible to calculate the dependencies of the standard transformed Gibbs energies of formation of these reactants on pH and ionic strength and to calculate apparent equilibrium constants for several enzyme-catalyzed reactions and several chemical reactions. These calculations are sufficiently complicated that computer programs in Mathematica are used to make tables and plots. The dependences of apparent equilibrium constants on pH are consequences of the production or consumption of hydrogen ions, which are shown in plots. As usual the increase in the number of enzyme-catalyzed reactions for which apparent equilibrium constants can be calculated is larger than the number of reactions required to obtain the thermodynamic properties of the species involved.

  16. Light weight phosphate cements

    DOEpatents

    Wagh, Arun S.; Natarajan, Ramkumar,; Kahn, David

    2010-03-09

    A sealant having a specific gravity in the range of from about 0.7 to about 1.6 for heavy oil and/or coal bed methane fields is disclosed. The sealant has a binder including an oxide or hydroxide of Al or of Fe and a phosphoric acid solution. The binder may have MgO or an oxide of Fe and/or an acid phosphate. The binder is present from about 20 to about 50% by weight of the sealant with a lightweight additive present in the range of from about 1 to about 10% by weight of said sealant, a filler, and water sufficient to provide chemically bound water present in the range of from about 9 to about 36% by weight of the sealant when set. A porous ceramic is also disclosed.

  17. Activation and fluoride-assisted phosphating of aluminum-silicon-coated steel.

    PubMed

    Schneider, Paul; Sigel, Reinhard; Lange, Miriam M; Beier, Frank; Renner, Frank U; Erbe, Andreas

    2013-05-22

    Phosphating is a crucial process in the corrosion protection of metals. Here, activation and fluoride-assisted tricationic phosphating is investigated on aluminum-silicon (AS) coated steel surfaces. Dynamic light scattering results from the activation bath show a bimodal size distribution, with hydrodynamic radii of ~400 nm and ~10 μm. For the smaller particle fraction, static light scattering results are consistent with the interpretation of disklike particles as scattering objects. Particles of the larger fraction sediment with time. In the presence of electrolyte, the scattering intensity from the larger particle fraction increases. Coagulation with time is suggested to be related to the decrease in activity of the activation bath. Scanning Auger microscopy (SAM) shows a higher phosphorus concentration after titanium phosphate activation in the Al-rich areas compared to the Si-rich areas of the AS coatings. There is no correlation between the size of the species in the activation bath, and the size of the phosphate-containing regions on the activated surface. Phosphating was performed in the presence of hexafluorosilicic acid, H2SiF6, ammonium hydrogen difluoride, NH4HF2, and both, at an initial pH of 2.5. The absence of crystals after phosphating with H2SiF6 is an indication that SiF6(2-) is the final product of the oxide dissolution in the presence of fluoride. In the presence of NH4HF2, the Si-rich regions of the surface are phosphated before the Si-poor (Al-rich) regions. Hence, the phosphate distribution after activation and after phosphating are opposite. These results show that a high surface concentration of phosphate after activation is not sufficient for a high coverage with phosphate crystals after phosphating.

  18. Crystallization of calcium phosphate in polyacrylamide hydrogels containing phosphate ions

    NASA Astrophysics Data System (ADS)

    Yokoi, Taishi; Kawashita, Masakazu; Kikuta, Koichi; Ohtsuki, Chikara

    2010-08-01

    Calcium phosphate crystals were formed in polyacrylamide (PAAm) hydrogels containing phosphate ions by diffusion of calcium ions from calcium nitrate (Ca(NO 3) 2) solutions covering the gels. Changes in crystalline phases and crystal morphology of calcium phosphate, and in ion concentrations of the Ca(NO 3) 2 solutions were investigated as a function of reaction time. Single or two coexisting crystalline phases of calcium phosphate, hydroxyapatite (HAp), HAp/dicalcium phosphate dihydrate (DCPD) or octacalcium phosphate (OCP)/DCPD were formed in the gels. HAp crystals are formed near the surface of the gels. The dense HAp layer and HAp/DCPD layer prevented diffusion of calcium ions from the Ca(NO 3) 2 solution, thus formation of calcium phosphate in the gel phase was inhibited. Formation of DCPD was observed to follow the formation of OCP or HAp. The size of the OCP crystals gradually increased with reaction time, while changes in size of HAp crystals were not observed. The reaction time required for DCPD formation depended on the degree of supersaturation with respect to DCPD in the systems. DCPD formed within 1 day under high supersaturation conditions, whereas it formed at 10 days in low supersaturation conditions.

  19. Phosphate nutrition: improving low-phosphate tolerance in crops.

    PubMed

    López-Arredondo, Damar Lizbeth; Leyva-González, Marco Antonio; González-Morales, Sandra Isabel; López-Bucio, José; Herrera-Estrella, Luis

    2014-01-01

    Phosphorus is an essential nutrient that is required for all major developmental processes and reproduction in plants. It is also a major constituent of the fertilizers required to sustain high-yield agriculture. Levels of phosphate--the only form of phosphorus that can be assimilated by plants--are suboptimal in most natural and agricultural ecosystems, and when phosphate is applied as fertilizer in soils, it is rapidly immobilized owing to fixation and microbial activity. Thus, cultivated plants use only approximately 20-30% of the applied phosphate, and the rest is lost, eventually causing water eutrophication. Recent advances in the understanding of mechanisms by which wild and cultivated species adapt to low-phosphate stress and the implementation of alternative bacterial pathways for phosphorus metabolism have started to allow the design of more effective breeding and genetic engineering strategies to produce highly phosphate-efficient crops, optimize fertilizer use, and reach agricultural sustainability with a lower environmental cost. In this review, we outline the current advances in research on the complex network of plant responses to low-phosphorus stress and discuss some strategies used to manipulate genes involved in phosphate uptake, remobilization, and metabolism to develop low-phosphate-tolerant crops, which could help in designing more efficient crops.

  20. Storing Hydrogen

    SciTech Connect

    Kim, Hyun Jeong; Karkamkar, Abhijeet J.; Autrey, Thomas; Chupas, Peter; Proffen, Thomas E.

    2010-05-31

    Researchers have been studying mesoporous materials for almost two decades with a view to using them as hosts for small molecules and scaffolds for molding organic compounds into new hybrid materials and nanoparticles. Their use as potential storage systems for large quantities of hydrogen has also been mooted. Such systems that might hold large quantities of hydrogen safely and in a very compact volume would have enormous potential for powering fuel cell vehicles, for instance. A sponge-like form of silicon dioxide, the stuff of sand particles and computer chips, can soak up and store other compounds including hydrogen. Studies carried out at the XOR/BESSRC 11-ID-B beamline at the APS have revealed that the nanoscopic properties of the hydrogenrich compound ammonia borane help it store hydrogen more efficiently than usual. The material may have potential for addressing the storage issues associated with a future hydrogen economy. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  1. 21 CFR 520.823 - Erythromycin phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    .... (a) Specifications. Erythromycin phosphate is the phosphate salt of the antibiotic substance produced by the growth of Streptomyces erythreus or the same antibiotic substance produced by any other...

  2. 21 CFR 520.823 - Erythromycin phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .... (a) Specifications. Erythromycin phosphate is the phosphate salt of the antibiotic substance produced by the growth of Streptomyces erythreus or the same antibiotic substance produced by any other...

  3. 21 CFR 520.823 - Erythromycin phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    .... (a) Specifications. Erythromycin phosphate is the phosphate salt of the antibiotic substance produced by the growth of Streptomyces erythreus or the same antibiotic substance produced by any other...

  4. 21 CFR 520.823 - Erythromycin phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    .... (a) Specifications. Erythromycin phosphate is the phosphate salt of the antibiotic substance produced by the growth of Streptomyces erythreus or the same antibiotic substance produced by any other...

  5. 21 CFR 520.823 - Erythromycin phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .... (a) Specifications. Erythromycin phosphate is the phosphate salt of the antibiotic substance produced by the growth of Streptomyces erythreus or the same antibiotic substance produced by any other...

  6. Hydrogen program overview

    SciTech Connect

    Gronich, S.

    1997-12-31

    This paper consists of viewgraphs which summarize the following: Hydrogen program structure; Goals for hydrogen production research; Goals for hydrogen storage and utilization research; Technology validation; DOE technology validation activities supporting hydrogen pathways; Near-term opportunities for hydrogen; Market for hydrogen; and List of solicitation awards. It is concluded that a full transition toward a hydrogen economy can begin in the next decade.

  7. Hydrogen gas purification apparatus

    SciTech Connect

    Yanagihara, N.; Gamo, T.; Iwaki, T.; Moriwaki, Y.

    1984-04-24

    A hydrogen gas purification apparatus which includes at least one set of two hydrogen purification containers coupled to each other for heat exchanging therebetween, each of the hydrogen purification containers containing a hydrogen absorbing alloy. The hydrogen gas purification apparatus is so arranged as to cause hydrogen gas to be selectively desorbed from and absorbed into the hydrogen absorbing alloy by the amount of heat produced when the hydrogen gas is selectively absorbed into and desorbed from the hydrogen absorbing alloy.

  8. A water setting tetracalcium phosphate-dicalcium phosphate dihydrate cement.

    PubMed

    Burguera, E F; Guitián, F; Chow, L C

    2004-11-01

    The development of a calcium phosphate cement, comprising tetracalcium phosphate (TTCP) and dicalcium phosphate dihydrate (DCPD), that hardens in 14 min with water as the liquid or 6 min with a 0.25 mol/L sodium phosphate solution as the liquid, without using hydroxyapatite (HA) seeds as setting accelerator, is reported. It was postulated that reduction in porosity would increase cement strength. Thus, the effects of applied pressure during the initial stages of the cement setting reaction on cement strength and porosity were studied. The cement powder comprised an equimolar mixture of TTCP and DCPD (median particle sizes 17 and 1.7 microm, respectively). Compressive strengths (CS) of samples prepared with distilled water were 47.6 +/- 2.4 MPa, 50.7 +/- 4.2 MPa, and 52.9 +/- 4.7 MPa at applied pressures of 5 MPa, 15 MPa, and 25 MPa, respectively. When phosphate solution was used, the CS values obtained were 41.5 +/- 2.3 MPa, 37.9 +/- 1.7 MPa, and 38.1 +/- 2.3 MPa at the same pressure levels. Statistical analysis of the results showed that pressure produced an improvement in CS when water was used as liquid but not when the phosphate solution was used. Compared to previously reported TTCP-DCPD cements, the greater CS values and shorter setting times together with a simplified formulation should make the present TTCP-DCPD cement a useful material as a bone substitute for clinical applications.

  9. Hydrogen chloride

    Integrated Risk Information System (IRIS)

    Hydrogen chloride ; CASRN 7647 - 01 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogeni

  10. Hydrogen sulfide

    Integrated Risk Information System (IRIS)

    EPA / 635 / R - 03 / 005 www.epa.gov / iris TOXICOLOGICAL REVIEW OF HYDROGEN SULFIDE ( CAS No . 7783 - 06 - 4 ) In Support of Summary Information on the Integrated Risk Information System ( IRIS ) June 2003 U.S . Environmental Protection Agency Washington , DC DISCLAIMER This document has been revie

  11. Hydrogen technologies

    SciTech Connect

    Not Available

    1992-05-01

    To the non-nonsense engineer, any talk of a hydrogen economy may seem like so much hot air. This paper reports that as legislative, safety and environmental issues continue to tighten, they're promoting hydrogen's chances as an energy source and, more immediately, its prospects as a chemical feedstock. Paradoxically, the environmental demands that are stimulating hydrogen demand are also inhibiting the gas's production. Previously, gasoline was made with benzene, which means that H{sub 2} was rejected. But now that the laws mandate lower aromatic and higher oxygenate levels in gasolines, there's less H{sub 2} available as byproduct. At the same time, H{sub 2} demand is rising in hydrodesulfurization units, since the same laws require refiners to cut sulfur levels in fuels. Supplementary sources for the gas are also shrinking. In the chlor-alkali industry, H{sub 2} output is dropping, as demand for its coproduct chlorine weakens. At the same time, H{sub 2} demand for the making of hydrogen peroxide is growing, as that environmentally safer bleach gains chlorine's market share.

  12. Recent advances in phosphate biosensors.

    PubMed

    Upadhyay, Lata Sheo Bachan; Verma, Nishant

    2015-07-01

    A number of biosensors have been developed for phosphate analysis particularly, concerning its negative impact within the environmental and biological systems. Enzymatic biosensors comprising either a single or multiple enzymatic system have been extensively used for the direct and indirect analysis of phosphate ions. Furthermore, some non-enzymatic biosensors, such as affinity-based biosensors, provide an alternative analytical approach with a higher selectivity. This article reviews the recent advances in the field of biosensor developed for phosphate estimation in clinical and environmental samples, concerning the techniques involved, and the sensitivity toward phosphate ions. The biosensors have been classified and discussed on the basis of the number of enzymes used to develop the analytical system, and a comparative analysis has been performed.

  13. Metallic Hydrogen

    NASA Astrophysics Data System (ADS)

    Silvera, Isaac; Zaghoo, Mohamed; Salamat, Ashkan

    2015-03-01

    Hydrogen is the simplest and most abundant element in the Universe. At high pressure it is predicted to transform to a metal with remarkable properties: room temperature superconductivity, a metastable metal at ambient conditions, and a revolutionary rocket propellant. Both theory and experiment have been challenged for almost 80 years to determine its condensed matter phase diagram, in particular the insulator-metal transition. Hydrogen is predicted to dissociate to a liquid atomic metal at multi-megabar pressures and T =0 K, or at megabar pressures and very high temperatures. Thus, its predicted phase diagram has a broad field of liquid metallic hydrogen at high pressure, with temperatures ranging from thousands of degrees to zero Kelvin. In a bench top experiment using static compression in a diamond anvil cell and pulsed laser heating, we have conducted measurements on dense hydrogen in the region of 1.1-1.7 Mbar and up to 2200 K. We observe a first-order phase transition in the liquid phase, as well as sharp changes in optical transmission and reflectivity when this phase is entered. The optical signature is that of a metal. The mapping of the phase line of this transition is in excellent agreement with recent theoretical predictions for the long-sought plasma phase transition to metallic hydrogen. Research supported by the NSF, Grant DMR-1308641, the DOE Stockpile Stewardship Academic Alliance Program, Grant DE-FG52-10NA29656, and NASA Earth and Space Science Fellowship Program, Award NNX14AP17H.

  14. 21 CFR 137.175 - Phosphated flour.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Phosphated flour. 137.175 Section 137.175 Food and... CONSUMPTION CEREAL FLOURS AND RELATED PRODUCTS Requirements for Specific Standardized Cereal Flours and Related Products § 137.175 Phosphated flour. Phosphated flour, phosphated white flour, and...

  15. 21 CFR 137.175 - Phosphated flour.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Phosphated flour. 137.175 Section 137.175 Food and... CONSUMPTION CEREAL FLOURS AND RELATED PRODUCTS Requirements for Specific Standardized Cereal Flours and Related Products § 137.175 Phosphated flour. Phosphated flour, phosphated white flour, and...

  16. 21 CFR 137.175 - Phosphated flour.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Phosphated flour. 137.175 Section 137.175 Food and... CONSUMPTION CEREAL FLOURS AND RELATED PRODUCTS Requirements for Specific Standardized Cereal Flours and Related Products § 137.175 Phosphated flour. Phosphated flour, phosphated white flour, and...

  17. Hydrogen peroxide poisoning

    MedlinePlus

    Hydrogen peroxide is used in these products: Hydrogen peroxide Hair bleach Some contact lens cleaners Note: Household hydrogen peroxide has a 3% concentration. That means it contains 97% water and 3% hydrogen peroxide. Hair ...

  18. Hydrogen forming reaction process

    SciTech Connect

    Marianowski, L.G.; Fleming, D.K.

    1989-03-07

    A hydrogen forming process is described, comprising: conducting in a hydrogen production zone a chemical reaction forming mixed gases comprising molecular hydrogen; contacting one side of a hydrogen ion porous and molecular gas nonporous metallic foil with the mixed gases in the hydrogen production zone; dissociating the molecular hydrogen to ionic hydrogen on the one side of the metallic foil; passing the ionic hydrogen through the metallic foil to its other side; and withdrawing hydrogen from the other side of the metallic foil, thereby removing hydrogen from the hydrogen production zone.

  19. Atomic basis of the exquisite specificity of phosphate and sulfate transport receptors.

    PubMed

    Quiocho, F A

    1996-04-01

    We have determined, by the method of x-ray crystallography, the 1.7 A resolution three-dimensional structures of the ligand-bound form of the phosphate receptor as well as the sulfate receptor. These protein structures provide an unprecedented atomic-level understanding of the mechanism governing the exquisite specificity of each receptor. Although they lack amino acid sequence homology, both receptors have very similar three-dimensional structure. The structure consists of two globular domains separated by a deep cleft which contains the ligand-binding site. The bound phosphate and sulfate are totally devoid of water of hydration. The bound phosphate is tightly held in place by 12 hydrogen bonds, 11 with donor and 1 with acceptor groups. The acceptor group (an Asp carboxylate side chain) plays three key roles. It confers specificity by directly recognizing one proton of either the monobasic or dibasic phosphate. It also assists in the recognition of another proton of the monobasic phosphate. Finally, because of charge repulsion, it disallows binding of fully ionized sulfate. The sulfate bound to the sulfate receptor makes seven hydrogen bonds with uncharged polar groups exclusively. The absence of an acceptor group in the binding site of the sulfate receptor is not conducive to phosphate binding.

  20. SEPARATION OF URANYL AND RUTHENIUM VALUES BY THE TRIBUTYL PHOSPHATE EXTRACTION PROCESS

    DOEpatents

    Wilson, A.S.

    1961-05-01

    A process is given for separating uranyl values from ruthenium values contained in an aqueous 3 to 4 M nitric acid solution. After the addition of hydrogen peroxide to obtain a concentration of 0.3 M, the uranium is selectively extracted with kerosene-diluted tributyl phosphate.

  1. Hydrogen scavengers

    DOEpatents

    Carroll, David W.; Salazar, Kenneth V.; Trkula, Mitchell; Sandoval, Cynthia W.

    2002-01-01

    There has been invented a codeposition process for fabricating hydrogen scavengers. First, a .pi.-bonded allylic organometallic complex is prepared by reacting an allylic transition metal halide with an organic ligand complexed with an alkali metal; and then, in a second step, a vapor of the .pi.-bonded allylic organometallic complex is combined with the vapor of an acetylenic compound, irradiated with UV light, and codeposited on a substrate.

  2. Novel Hydrogen Bioreactor and Detection Apparatus.

    PubMed

    Rollin, Joseph A; Ye, Xinhao; Del Campo, Julia Martin; Adams, Michael W W; Zhang, Y-H Percival

    2016-01-01

    In vitro hydrogen generation represents a clear opportunity for novel bioreactor and system design. Hydrogen, already a globally important commodity chemical, has the potential to become the dominant transportation fuel of the future. Technologies such as in vitro synthetic pathway biotransformation (SyPaB)-the use of more than 10 purified enzymes to catalyze unnatural catabolic pathways-enable the storage of hydrogen in the form of carbohydrates. Biohydrogen production from local carbohydrate resources offers a solution to the most pressing challenges to vehicular and bioenergy uses: small-size distributed production, minimization of CO2 emissions, and potential low cost, driven by high yield and volumetric productivity. In this study, we introduce a novel bioreactor that provides the oxygen-free gas phase necessary for enzymatic hydrogen generation while regulating temperature and reactor volume. A variety of techniques are currently used for laboratory detection of biohydrogen, but the most information is provided by a continuous low-cost hydrogen sensor. Most such systems currently use electrolysis for calibration; here an alternative method, flow calibration, is introduced. This system is further demonstrated here with the conversion of glucose to hydrogen at a high rate, and the production of hydrogen from glucose 6-phosphate at a greatly increased reaction rate, 157 mmol/L/h at 60 °C.

  3. Recognizing the Effects of Terrestrial Contamination on D/H Ratios in Shergottite Phosphates

    NASA Technical Reports Server (NTRS)

    Ross, D. K.; Ito, M.; Hervig, R.; Rao, M. N.; Nyquist, L. E.

    2011-01-01

    Hydrogen isotope ratios in shergottite phosphate minerals have been investigated by SIMS in the meteorites Queen Alexandra Range (QUE) 94201 and Los Angeles. We have also collected electron probe data on these phosphates in order to characterize the phosphate minerals and attempt to document any potential hydrogen isotopic differences between chlor-apatite and whitlockite. In the section of Los Angeles we studied (748), we found both chlor-apatite and whitlockite, but in the section of QUE 94201,38 studied, we found only whitlockite. In both meteorites, D/H ratios (expressed in units of delta D (sub SMOW) vary, from terrestrial values up to approximately 5400%o in QUE 94201, and to approximately 3800%o in Los Angeles. We have carefully examined the ion probed pits with high-resolution FE-SEM. In most cases where the D/H ratios are low, we have iden-tified cracks that instersect the ion probe pit. These cracks are not visible in the optical microscope attached to the SIMS instument, making them impossible to avoid during SIMS data collection. We contend that the low ratios are a function of substantial terrestrial contamination, and that similar contamination is a likely factor in previously published studies on D/H ratios in martian phosphates. Here we highlight the difficulty of attempts to constrain the martian mantle D/H ratio using phosphate data, given that both terrestrial contamination and martian mantle hydrogen will move phosphate D/H ratios in the same direction, toward lower values. We note that our data include some of the most deuterium-rich values ever reported for martian phosphates. It is clear that some of our measurements are only minimally or totally uncontaminated, but the question arises, are intermediate values diminished because of true martian variability, or do they reflect contamination?

  4. Bioactive calcium phosphate coating formed on micro-arc oxidized magnesium by chemical deposition

    NASA Astrophysics Data System (ADS)

    Liu, G. Y.; Hu, J.; Ding, Z. K.; Wang, C.

    2011-01-01

    In order to improve the bioactivity of the micro-arc oxidized magnesium, a calcium phosphate coating was formed on the surface of micro-arc oxidized magnesium using a chemical method. The microstructures of the substrate and the calcium phosphate coating before and after the simulated body fluids (SBF) incubation were characterized by X-ray diffraction, Fourier-transformed infrared spectroscopy and scanning electron microscopy. The results showed that the calcified coating was composed of calcium deficient hydroxyapatite (HA) and dicalcium phosphate dihydrate (DCPD). After SBF incubation, some new apatite formation on the calcified coating surface from SBF could be found. The corrosion behaviours of the samples in SBF were also investigated by potentiodynamic polarization curves and immersion tests. The results showed that calcium phosphate coating increased the corrosion potential, and decreased the hydrogen gas release.

  5. Hydrogen environment embrittlement

    NASA Technical Reports Server (NTRS)

    Gray, H. R.

    1972-01-01

    Hydrogen embrittlement is classified into three types: internal reversible hydrogen embrittlement, hydrogen reaction embrittlement, and hydrogen environment embrittlement. Characteristics of and materials embrittled by these types of hydrogen embrittlement are discussed. Hydrogen environment embrittlement is reviewed in detail. Factors involved in standardizing test methods for detecting the occurrence of and evaluating the severity of hydrogen environment embrittlement are considered. The effect of test technique, hydrogen pressure, purity, strain rate, stress concentration factor, and test temperature are discussed. Additional research is required to determine whether hydrogen environment embrittlement and internal reversible hydrogen embrittlement are similar or distinct types of embrittlement.

  6. Calcium phosphate scaffold from biogenic calcium carbonate by fast ambient condition reactions

    NASA Astrophysics Data System (ADS)

    Dutta, Abhishek; Fermani, Simona; Arjun Tekalur, Srinivasan; Vanderberg, Abigail; Falini, Giuseppe

    2011-12-01

    Calcium phosphate biogenic materials are biocompatible and promote bioactivity and osteoconductivity, which implies their natural affinity and tendency to bond directly to bones subsequently replacing the host bone after implantation owing to its biodegradability. Calcium hydrogen phosphate dihydrate, CaHPO 4·2H 2O, is known to be a nucleation precursor, in aqueous solutions, for apatitic calcium phosphates and, hence, a potential starting material for bone substitutes. Numerous approaches, via hydrothermal and ambient synthetic routes, have been used to produce calcium phosphate from biogenic calcium carbonate, taking advantage of the peculiar architecture and composition of the latter. In this article, the lamellar region of the cuttlefish bone ( Sepia officinalis) was used as a framework for the organized deposition of calcium phosphate crystals, at ambient conditions via a fast procedure involving an amorphous calcium carbonate intermediate, and ending with a conversion to calcium phosphate and a fixation procedure, thereby resulting in direct conversion of biogenic calcium carbonate into calcium phosphates at ambient conditions from the scale of months to hours.

  7. Detergent phosphate bans and eutrophication

    SciTech Connect

    Lee, G.F.; Jones, R.A.

    1986-04-01

    The Vollenweider-OECD eutrophication model has been expanded to approximately 400 lakes. It is possible to make a quantitative prediction of the effects of a detergent phosphate ban and thereby to ascertain the potential benefits of such a ban. In order to assess the effect of a detergent phosphate ban on water quality it is necessary to know the percentage of phosphorus in the domestic waste water that enters the water body, either directly or indirectly, and the percentage of the total phosphorus load that is derived from domestic wastewater. Although detergent phosphate bans generally will not result in an overall improvement to water quality, there may be some situations in which eutrophication-related water quality would be improved by a ban. 8 references, 1 figure, 1 table.

  8. Hydrogen detector

    DOEpatents

    Kanegae, Naomichi; Ikemoto, Ichiro

    1980-01-01

    A hydrogen detector of the type in which the interior of the detector is partitioned by a metal membrane into a fluid section and a vacuum section. Two units of the metal membrane are provided and vacuum pipes are provided independently in connection to the respective units of the metal membrane. One of the vacuum pipes is connected to a vacuum gauge for static equilibrium operation while the other vacuum pipe is connected to an ion pump or a set of an ion pump and a vacuum gauge both designed for dynamic equilibrium operation.

  9. Phosphate-Bonded Fly Ash.

    DTIC Science & Technology

    1994-12-09

    FCODE OC ______________ ARLINGTON VA 22217-5660 - dis~bu~i.19~ 3 B Navy Case No. 75,787 PATENTS PHOSPHATE -BONDED FLY ASH IN’NA G. TALMY DEBORAH A. HAUGHT...2 3 , CaO. MgO, etc. with which the H.PO4 reacts to form the polymer-like phosphate bonds which hold the fly ash particles together. In the second...conventional means. The moisture (water) content of the aqueous HP0 4 /fly ash mixture is preferably from about 3 to about 5 weight percent for semidry

  10. Enzymatic Hydrogen Production from Starch and Water

    SciTech Connect

    Zhang, Y.-H. Percival; Evans, Barbara R; Mielenz, Jonathan R; Hopkins, Robert C.; Adams, Michael W. W.

    2007-01-01

    A novel enzymatic reaction was conducted for producing hydrogen from starch and water at 30oC. The overall reaction comprised of 13 enzymes, 1 cofactor (NADP+), and phosphate was driven by energy stored in carbohydrate starch according to the overall stoichiometry stoichiometric reaction of C6H10O5 (l) + 7 H2O (l) --> 12 H2 (g) + 6 CO2 (g). It is spontaneous and unidirectional because of negative Gibbs free energy and the removal of gaseous products from the aqueous reaction solution. With technology improvement and integration with fuel cells, this technology would be suitable for mobile applications and also solve the challenges associated with hydrogen storage, distribution, and infrastructure in a hydrogen economy.

  11. Photorelease of phosphates: Mild methods for protecting phosphate derivatives

    PubMed Central

    Senadheera, Sanjeewa N; Yousef, Abraham L

    2014-01-01

    Summary We have developed a new photoremovable protecting group for caging phosphates in the near UV. Diethyl 2-(4-hydroxy-1-naphthyl)-2-oxoethyl phosphate (14a) quantitatively releases diethyl phosphate upon irradiation in aq MeOH or aq MeCN at 350 nm, with quantum efficiencies ranging from 0.021 to 0.067 depending on the solvent composition. The deprotection reactions originate from the triplet excited state, are robust under ambient conditions and can be carried on to 100% conversion. Similar results were found with diethyl 2-(4-methoxy-1-naphthyl)-2-oxoethyl phosphate (14b), although it was significantly less efficient compared with 14a. A key step in the deprotection reaction in aq MeOH is considered to be a Favorskii rearrangement of the naphthyl ketone motif of 14a,b to naphthylacetate esters 25 and 26. Disruption of the ketone-naphthyl ring conjugation significantly shifts the photoproduct absorption away from the effective incident wavelength for decaging of 14, driving the reaction to completion. The Favorskii rearrangement does not occur in aqueous acetonitrile although diethyl phosphate is released. Other substitution patterns on the naphthyl or quinolin-5-yl core, such as the 2,6-naphthyl 10 or 8-benzyloxyquinolin-5-yl 24 platforms, also do not rearrange by aryl migration upon photolysis and, therefore, do not proceed to completion. The 2,6-naphthyl ketone platform instead remains intact whereas the quinolin-5-yl ketone fragments to a much more complex, highly absorbing reaction mixture that competes for the incident light. PMID:25246963

  12. Mechanochemical hydrogenation of coal

    DOEpatents

    Yang, Ralph T.; Smol, Robert; Farber, Gerald; Naphtali, Leonard M.

    1981-01-01

    Hydrogenation of coal is improved through the use of a mechanical force to reduce the size of the particulate coal simultaneously with the introduction of gaseous hydrogen, or other hydrogen donor composition. Such hydrogen in the presence of elemental tin during this one-step size reduction-hydrogenation further improves the yield of the liquid hydrocarbon product.

  13. Characterization of hydroxyphenol-terminated alkanethiol self-assembled monolayers: interactions with phosphates by chemical force spectrometry.

    PubMed

    Azmi, Alyza A; Ebralidze, Iraklii I; Dickson, Steven E; Horton, J Hugh

    2013-03-01

    Tannins and humic substances, commonly referred to as natural organic matter (NOM), constitute an important component of natural water and soil systems. These species contain numerous hydroxyl and carboxyl functional groups whose reactivity is strongly dependent on both the quantity and location of these moieties on the aromatic ring. In the present study, self-assembled monolayers (SAMs) of 4-(12-mercaptododecyl)benzene-1,2-diol (o-hydroxyphenol-terminated); 5-(12-mercaptododecyl)benzene-1,3-diol (m-hydroxyphenol-terminated); bis(11-thioundecyl) hydrogen phosphate (monoprotic phosphate); and 11-thioundecyl dihydrogen phosphate (diprotic phosphate) were prepared and characterized using X-ray photoelectron spectroscopy (XPS), attenuated total reflectance infrared spectroscopy (ATR-IR), and water contact angle measurements. The interactions between phenolic groups with phosphates were examined as a function of pH using the chemical force spectrometry (CFS) technique. The observations are discussed in the context of hydrogen bonding and electrostatic repulsion interaction between corresponding species. Adhesion force profiles of hydroxyphenol isomers interacting with monoprotic phosphate are dominated by ionic H-bonding; however the strength of o-hydroxyphenol interactions is significantly higher. The difference in location of hydroxyl groups on the interface also results in significantly different force-distance profiles for the isomeric hydroxyphenols when interacting with diprotic phosphate.

  14. SCALEUP OF ALUMINUM PHOSPHATE CATALYST FOR PILOT PLANT LPDMEtm RUN

    SciTech Connect

    Andrew W. Wang

    2002-05-15

    The Liquid Phase Dimethyl Ether (LPDME{trademark}) process converts synthesis gas to dimethyl ether in a single slurry bubble column reactor. A mixed slurry of methanol synthesis catalyst and methanol dehydration catalyst in a neutral mineral oil simultaneously synthesizes methanol from syngas and converts some of it to dimethyl ether and water. The reaction scheme is: 2H{sub 2} + CO = CH{sub 3}OH 2CH{sub 3}OH = CH{sub 3}OCH{sub 3} + H{sub 2}O H{sub 2}O + CO = CO{sub 2} + H{sub 2}. Most of the water produced in this reaction is converted to hydrogen by reduction with carbon monoxide (water gas shift reaction). This synergy permits higher per pass conversion than methanol synthesis alone. The enhancement in conversion occurs because dehydration of the methanol circumvents the equilibrium constraint of the syngas-to-methanol step. The slurry bubble column reactor provides the necessary heat transfer capacity to handle the greater heat duty associated with high conversion. In order to improve the stability of the catalyst system, non-stoichiometric aluminum phosphate was proposed as the dehydration catalyst for the LPDME{trademark} process. This aluminum phosphate material is a proprietary catalyst. This catalyst system of a standard methanol catalyst and the aluminum phosphate provided stable process performance that met the program targets under our standard test process conditions in the laboratory. These targets are (1) an initial methanol equivalent productivity of 28 gmol/kg/hr, (2) a CO{sub 2}-free, carbon selectivity of 80% to dimethyl ether and (3) stability of both catalysts equivalent to that of the methanol catalyst in the absence of the aluminum phosphate. A pilot plant trial of the LPDME{trademark} process using the aluminum phosphate catalyst was originally planned for March 1998 at the DOE-owned, Air Products (APCI)-operated facility at LaPorte, Texas. Because the aluminum phosphate catalyst is not commercially available, we initiated a scaleup project

  15. SCALEUP OF ALUMINUM PHOSPHATE CATALYST FOR PILOT PLANT LPDMEtm RUN

    SciTech Connect

    Andrew W. Wang

    2002-01-01

    The Liquid Phase Dimethyl Ether (LPDME{trademark}) process converts synthesis gas to dimethyl ether in a single slurry bubble column reactor. A mixed slurry of methanol synthesis catalyst and methanol dehydration catalyst in a neutral mineral oil simultaneously synthesizes methanol from syngas and converts some of it to dimethyl ether and water. The reaction scheme is shown below: 2H{sub 2} + CO = CH{sub 3}OH; 2CH{sub 3}OH = CH{sub 3}OCH{sub 3} + H{sub 2}O; H{sub 2}O + CO = CO{sub 2} + H{sub 2}. Most of the water produced in this reaction is converted to hydrogen by reduction with carbon monoxide (water gas shift reaction). This synergy permits higher per pass conversion than methanol synthesis alone. The enhancement in conversion occurs because dehydration of the methanol circumvents the equilibrium constraint of the syngas-to-methanol step. The slurry bubble column reactor provides the necessary heat transfer capacity to handle the greater heat duty associated with high conversion. In order to improve the stability of the catalyst system, non-stoichiometric aluminum phosphate was proposed as the dehydration catalyst for the LPDME{trademark} process. This aluminum phosphate material is a proprietary catalyst. This catalyst system of a standard methanol catalyst and the aluminum phosphate provided stable process performance that met the program targets under our standard test process conditions in the laboratory. These targets are (1) an initial methanol equivalent productivity of 28 gmol/kg/hr, (2) a CO{sub 2}-free, carbon selectivity of 80% to dimethyl ether and (3) stability of both catalysts equivalent to that of the methanol catalyst in the absence of the aluminum phosphate. A pilot plant trial of the LPDME{trademark} process using the aluminum phosphate catalyst was originally planned for March 1998 at the DOE-owned, Air Products (APCI)-operated facility at LaPorte, Texas. Because the aluminum phosphate catalyst is not commercially available, we initiated a

  16. Method for the enzymatic production of hydrogen

    DOEpatents

    Woodward, J.; Mattingly, S.M.

    1999-08-24

    The present invention is an enzymatic method for producing hydrogen comprising the steps of: (a) forming a reaction mixture within a reaction vessel comprising a substrate capable of undergoing oxidation within a catabolic reaction, such as glucose, galactose, xylose, mannose, sucrose, lactose, cellulose, xylan and starch; the reaction mixture also comprising an amount of glucose dehydrogenase in an amount sufficient to catalyze the oxidation of the substrate, an amount of hydrogenase sufficient to catalyze an electron-requiring reaction wherein a stoichiometric yield of hydrogen is produced, an amount of pH buffer in an amount sufficient to provide an environment that allows the hydrogenase and the glucose dehydrogenase to retain sufficient activity for the production of hydrogen to occur and also comprising an amount of nicotinamide adenine dinucleotide phosphate sufficient to transfer electrons from the catabolic reaction to the electron-requiring reaction; (b) heating the reaction mixture at a temperature sufficient for glucose dehydrogenase and the hydrogenase to retain sufficient activity and sufficient for the production of hydrogen to occur, and heating for a period of time that continues until the hydrogen is no longer produced by the reaction mixture, wherein the catabolic reaction and the electron-requiring reactions have rates of reaction dependent upon the temperature; and (c) detecting the hydrogen produced from the reaction mixture. 8 figs.

  17. Method for the enzymatic production of hydrogen

    DOEpatents

    Woodward, Jonathan; Mattingly, Susan M.

    1999-01-01

    The present invention is an enzymatic method for producing hydrogen comprising the steps of: a) forming a reaction mixture within a reaction vessel comprising a substrate capable of undergoing oxidation within a catabolic reaction, such as glucose, galactose, xylose, mannose, sucrose, lactose, cellulose, xylan and starch. The reaction mixture further comprises an amount of glucose dehydrogenase in an amount sufficient to catalyze the oxidation of the substrate, an amount of hydrogenase sufficient to catalyze an electron-requiring reaction wherein a stoichiometric yield of hydrogen is produced, an amount of pH buffer in an amount sufficient to provide an environment that allows the hydrogenase and the glucose dehydrogenase to retain sufficient activity for the production of hydrogen to occur and also comprising an amount of nicotinamide adenine dinucleotide phosphate sufficient to transfer electrons from the catabolic reaction to the electron-requiring reaction; b) heating the reaction mixture at a temperature sufficient for glucose dehydrogenase and the hydrogenase to retain sufficient activity and sufficient for the production of hydrogen to occur, and heating for a period of time that continues until the hydrogen is no longer produced by the reaction mixture, wherein the catabolic reaction and the electron-requiring reactions have rates of reaction dependent upon the temperature; and c) detecting the hydrogen produced from the reaction mixture.

  18. Glucose-6-Phosphate Dehydrogenase Revisited

    PubMed Central

    O'Connell, Jerome T.; Henderson, Alfred R.

    1984-01-01

    Hemolytic diseases associated with drugs have been recognized since antiquity. Many of these anemias have been associated with oxidizing agents and deficiencies in the intraerythrocytic enzyme glucose-6-phosphate dehydrogenase. This paper outlines the discovery, prevalence, and variants of this enzyme. Methods of diagnosis of associated anemias are offered. PMID:6502728

  19. Formation of phosphate-containing calcium fluoride at the expense of enamel, hydroxyapatite and fluorapatite.

    PubMed

    Christoffersen, J; Christoffersen, M R; Arends, J; Leonardsen, E S

    1995-01-01

    During the caries process complex reactions involving calcium, phosphate, hydrogen and fluoride ions as main species take place. In this study the precipitation and dissolution reactions occurring in suspensions of enamel, hydroxyapatite (HAP) and fluorapatite (FAP) on addition of fluoride were investigated under well-defined conditions. pH and pF were monitored; calcium and phosphate concentrations were measured at selected times; the solid phases were examined by infra-red, X-ray diffraction and transmission electron microscopy. Precipitation of phosphate-containing calcium fluoride crystals, CaF2(P), can cause severe reduction in the calcium ion concentration and release of hydrogen ions from the precipitated phosphate. These reactions result in considerable dissolution of enamel, HAP and even of FAP. More of the added mineral dissolves with 50 mmol/l fluoride than with 10 mmol/l fluoride, mainly due to the greater reduction in calcium ion concentration. This work shows that phosphate-containing calcium fluoride is most likely an important compound to be considered in the caries process.

  20. Polymeric enzyme mimics: catalytic activity of ribose-containing polymers for a phosphate substrate.

    PubMed

    Han, Man Jung; Yoo, Kyung Soo; Kim, Young Heui; Chang, Ji Young

    2003-07-07

    The polymers containing ribose rings: poly(5'-acrylamido-5'-deoxy-1',2'-O-isopropylidene-alpha-D-ribose) (11), poly(5'-acrylamido-5'-deoxy-alpha-D-ribose) (12) and poly(5'-acrylamido-5'-deoxy-1'-O-methyl-D-ribose) (13) were prepared as enzyme mimics. Polymers 12 and 13 with free vic-cis-diol groups catalyzed the hydrolysis of phosphodiester (ethyl p-nitrophenyl phosphate and N-methylpyridinium 4-tert-butylcatechol cyclic phosphate) and phosphomonoester substrates with a rate acceleration of 10 approximately equal to 10(3) compared with the uncatalyzed reaction. They also catalyzed the reverse reactions, i.e., the esterification of phosphomonoester to phosphodiester and the phosphorylation of alcohols with phosphate ions. The catalytic activity was attributable to the vic-cis-diols of riboses on polymer chains, which formed hydrogen bonds with two phosphoryl oxygen atoms of phosphates so as to activate the phosphorus atoms to be attacked by nucleophiles. The catalytic activity was negligible for polymer 11 where vic-cis-diol groups were blocked with isopropylidene groups. The catalytic activity was attributable to the vic-cis-diols of riboses on polymer chains, which formed hydrogen bonds with two phosphoryl oxygen atoms of phosphates so as to activate the phosphorus atoms to be attacked by nucleophiles.

  1. Enzymatic kinetic parameters for polyfluorinated alkyl phosphate hydrolysis by alkaline phosphatase.

    PubMed

    Jackson, Derek A; Mabury, Scott A

    2012-09-01

    The hydrolysis kinetics of three polyfluorinated alkyl phosphate monoesters (monoPAPs), differing in fluorinated chain length, were measured using bovine intestinal alkaline phosphatase to catalyze the reaction. Kinetic values were also measured for analogous hydrogenated phosphate monoesters to elucidate the effects of the fluorinated chain on the rate of enzymatic hydrolysis. Michaelis constants (K(m)) were obtained by a competition kinetics technique in the presence of p-nitrophenyl phosphate (PNPP) using UV-vis spectroscopy. Compared with K(m) (PNPP), Michaelis constants for monoPAPs ranged from 0.9 to 2.1 compared with hydrogenated phosphates, which ranged from 4.0 to 13.0. Apparent bimolecular rate constants (k(cat)/K(m)) were determined by monitoring rates of product alcohol formation at low substrate concentrations using gas chromatography-mass spectrometry. The experimental values for k(cat)/K(m) averaged as 1.1 × 10(7) M(-1) s(-1) for monoPAPs compared with 3.8 × 10(5) M(-1) s(-1) for hexyl phosphate. This suggests that the electron-withdrawing nature of the fluorinated chain enhanced the alcohol leaving group ability. The results were used in a simple model to suggest that monoPAPs in a typical mammalian digestive tract would hydrolyze in approximately 100 s, supporting a previous study that showed its absence after a dosing study in rats.

  2. Genetics Home Reference: glucose phosphate isomerase deficiency

    MedlinePlus

    ... Understand Genetics Home Health Conditions GPI deficiency glucose phosphate isomerase deficiency Enable Javascript to view the expand/ ... Download PDF Open All Close All Description Glucose phosphate isomerase (GPI) deficiency is an inherited disorder that ...

  3. Why nature really chose phosphate.

    PubMed

    Kamerlin, Shina C L; Sharma, Pankaz K; Prasad, Ram B; Warshel, Arieh

    2013-02-01

    Phosphoryl transfer plays key roles in signaling, energy transduction, protein synthesis, and maintaining the integrity of the genetic material. On the surface, it would appear to be a simple nucleophile displacement reaction. However, this simplicity is deceptive, as, even in aqueous solution, the low-lying d-orbitals on the phosphorus atom allow for eight distinct mechanistic possibilities, before even introducing the complexities of the enzyme catalyzed reactions. To further complicate matters, while powerful, traditional experimental techniques such as the use of linear free-energy relationships (LFER) or measuring isotope effects cannot make unique distinctions between different potential mechanisms. A quarter of a century has passed since Westheimer wrote his seminal review, 'Why Nature Chose Phosphate' (Science 235 (1987), 1173), and a lot has changed in the field since then. The present review revisits this biologically crucial issue, exploring both relevant enzymatic systems as well as the corresponding chemistry in aqueous solution, and demonstrating that the only way key questions in this field are likely to be resolved is through careful theoretical studies (which of course should be able to reproduce all relevant experimental data). Finally, we demonstrate that the reason that nature really chose phosphate is due to interplay between two counteracting effects: on the one hand, phosphates are negatively charged and the resulting charge-charge repulsion with the attacking nucleophile contributes to the very high barrier for hydrolysis, making phosphate esters among the most inert compounds known. However, biology is not only about reducing the barrier to unfavorable chemical reactions. That is, the same charge-charge repulsion that makes phosphate ester hydrolysis so unfavorable also makes it possible to regulate, by exploiting the electrostatics. This means that phosphate ester hydrolysis can not only be turned on, but also be turned off, by fine tuning

  4. Phosphate based oil well cements

    NASA Astrophysics Data System (ADS)

    Natarajan, Ramkumar

    The main application of the cement in an oil well is to stabilize the steel casing in the borehole and protect it from corrosion. The cement is pumped through the borehole and is pushed upwards through the annulus between the casing and the formation. The cement will be exposed to temperature and pressure gradients of the borehole. Modified Portland cement that is being used presently has several shortcomings for borehole sealant. The setting of the Portland cement in permafrost regions is poor because the water in it will freeze even before the cement sets and because of high porosity and calcium oxide, a major ingredient it gets easily affected by the down hole gases such as carbon dioxide. The concept of phosphate bonded cements was born out of considerable work at Argonne National Laboratory (ANL) on their use in stabilization of radioactive and hazardous wastes. Novel cements were synthesized by an acid base reaction between a metal oxide and acid phosphate solution. The major objective of this research is to develop phosphate based oil well cements. We have used thermodynamics along with solution chemistry principles to select calcined magnesium oxide as candidate metal oxide for temperatures up to 200°F (93.3°C) and alumina for temperatures greater than 200°F (93.3°C). Solution chemistry helped us in selecting mono potassium phosphate as the acid component for temperatures less than 200°F (93.3°C) and phosphoric acid solution greater than 200°F (93.3°C). These phosphate cements have performance superior to common Portland well cements in providing suitable thickening time, better mechanical and physical properties.

  5. Sintering of calcium phosphate bioceramics.

    PubMed

    Champion, E

    2013-04-01

    Calcium phosphate ceramics have become of prime importance for biological applications in the field of bone tissue engineering. This paper reviews the sintering behaviour of these bioceramics. Conventional pressureless sintering of hydroxyapatite, Ca10(PO4)6(OH)2, a reference compound, has been extensively studied. Its physico-chemistry is detailed. It can be seen as a competition between two thermally activated phenomena that proceed by solid-state diffusion of matter: densification and grain growth. Usually, the objective is to promote the first and prevent the second. Literature data are analysed from sintering maps (i.e. grain growth vs. densification). Sintering trajectories of hydroxyapatite produced by conventional pressureless sintering and non-conventional techniques, including two-step sintering, liquid phase sintering, hot pressing, hot isostatic pressing, ultrahigh pressure, microwave and spark plasma sintering, are presented. Whatever the sintering technique may be, grain growth occurs mainly during the last step of sintering, when the relative bulk density reaches 95% of the maximum value. Though often considered very advantageous, most assisted sintering techniques do not appear very superior to conventional pressureless sintering. Sintering of tricalcium phosphate or biphasic calcium phosphates is also discussed. The chemical composition of calcium phosphate influences the behaviour. Similarly, ionic substitutions in hydroxyapatite or in tricalcium phosphate create lattice defects that modify the sintering rate. Depending on their nature, they can either accelerate or slow down the sintering rate. The thermal stability of compounds at the sintering temperature must also be taken into account. Controlled atmospheres may be required to prevent thermal decomposition, and flash sintering techniques, which allow consolidation at low temperature, can be helpful.

  6. Magnetite seeded precipitation of phosphate.

    PubMed

    Karapinar, Nuray; Hoffmann, Erhard; Hahn, Hermann H

    2004-07-01

    Seeded precipitation of Ca phosphate on magnetite mineral (Fe3O4) surfaces was investigated using a Jar Test system in supersaturated solutions at 20 degrees C and ionic strength 0.01 mol l(-1) with relative super saturation, 12.0-20.0 for HAP. pH of the solution, initial phosphorus concentration and molar Ca/P ratio were investigated as the main parameters, which effect the seeded precipitation of Ca phosphate. Results showed that there is no pronounced effect of magnetite seed, neither positive nor negative on the amount of calcium phosphate precipitation. pH was found to be the main parameter that determines the phosphate precipitated onto the seed surface. Increasing of the pH of precipitation reaction was resulted in the decrease in percentage amount of phosphate precipitated onto seed surfaces to total precipitation (magnetite seeded precipitation efficiency). It was concluded that the pH dependence of magnetite-seeded precipitation should be considered in the light of its effect on the supersaturated conditions of solution. Saturation index (SI) of solution with respect to the precipitate phase was considered the driving force for the precipitation. A simulation programme PHREEQC (Version 2) was employed to calculate the Saturation-index with respect to hydroxyapatite (HAP) of the chemically defined precipitation system. It was found a good relationship between SI of solution with respect to HAP and the magnetite seeded precipitation efficiency, a second order polynomial function. Results showed that more favorable solution conditions for precipitation (higher SI values of solution) causes homogenous nucleation whereas heterogeneous nucleation led to a higher magnetite seeded precipitation efficiency.

  7. 21 CFR 184.1301 - Ferric phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ferric phosphate. 184.1301 Section 184.1301 Food... Specific Substances Affirmed as GRAS § 184.1301 Ferric phosphate. (a) Ferric phosphate (ferric orthophosphate, iron (III) phosphate, FePO4·xH2O, CAS Reg. No. 10045-86-0) is an odorless, yellowish-white...

  8. 21 CFR 184.1301 - Ferric phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ferric phosphate. 184.1301 Section 184.1301 Food... Specific Substances Affirmed as GRAS § 184.1301 Ferric phosphate. (a) Ferric phosphate (ferric orthophosphate, iron (III) phosphate, FePO4·xH2O, CAS Reg. No. 10045-86-0) is an odorless, yellowish-white...

  9. 21 CFR 184.1301 - Ferric phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ferric phosphate. 184.1301 Section 184.1301 Food... Specific Substances Affirmed as GRAS § 184.1301 Ferric phosphate. (a) Ferric phosphate (ferric orthophosphate, iron (III) phosphate, FePO4·xH2O, CAS Reg. No. 10045-86-0) is an odorless, yellowish-white...

  10. 21 CFR 184.1301 - Ferric phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ferric phosphate. 184.1301 Section 184.1301 Food... Specific Substances Affirmed as GRAS § 184.1301 Ferric phosphate. (a) Ferric phosphate (ferric orthophosphate, iron (III) phosphate, FePO4·xH2O, CAS Reg. No. 10045-86-0) is an odorless, yellowish-white...

  11. 21 CFR 182.8217 - Calcium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium phosphate. 182.8217 Section 182.8217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8217 Calcium phosphate. (a) Product. Calcium phosphate...

  12. 21 CFR 182.6290 - Disodium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Disodium phosphate. 182.6290 Section 182.6290 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... phosphate. (a) Product. Disodium phosphate. (b) Conditions of use. This substance is generally recognized...

  13. 21 CFR 582.6290 - Disodium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Disodium phosphate. 582.6290 Section 582.6290 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Disodium phosphate. (a) Product. Disodium phosphate. (b) Conditions of use. This substance is...

  14. 21 CFR 582.1217 - Calcium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium phosphate. 582.1217 Section 582.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic)....

  15. 40 CFR 721.5995 - Polyalkyl phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polyalkyl phosphate. 721.5995 Section... Substances § 721.5995 Polyalkyl phosphate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a polyalkyl phosphate (PMN P-95-1772)...

  16. 21 CFR 582.1141 - Ammonium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ammonium phosphate. 582.1141 Section 582.1141 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1141 Ammonium phosphate. (a) Product. Ammonium phosphate (mono- and dibasic). (b)...

  17. 21 CFR 582.6285 - Dipotassium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Dipotassium phosphate. 582.6285 Section 582.6285 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Dipotassium phosphate. (a) Product. Dipotassium phosphate. (b) Conditions of use. This substance is...

  18. 21 CFR 182.1217 - Calcium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium phosphate. 182.1217 Section 182.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic)....

  19. 21 CFR 182.6285 - Dipotassium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Dipotassium phosphate. 182.6285 Section 182.6285 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Dipotassium phosphate. (a) Product. Dipotassium phosphate. (b) Conditions of use. This substance is...

  20. 21 CFR 582.1141 - Ammonium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Ammonium phosphate. 582.1141 Section 582.1141 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1141 Ammonium phosphate. (a) Product. Ammonium phosphate (mono- and dibasic). (b)...

  1. 21 CFR 582.1217 - Calcium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium phosphate. 582.1217 Section 582.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic)....

  2. 21 CFR 582.1141 - Ammonium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Ammonium phosphate. 582.1141 Section 582.1141 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1141 Ammonium phosphate. (a) Product. Ammonium phosphate (mono- and dibasic). (b)...

  3. 21 CFR 182.6290 - Disodium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Disodium phosphate. 182.6290 Section 182.6290 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... phosphate. (a) Product. Disodium phosphate. (b) Conditions of use. This substance is generally recognized...

  4. 21 CFR 582.6290 - Disodium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Disodium phosphate. 582.6290 Section 582.6290 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Disodium phosphate. (a) Product. Disodium phosphate. (b) Conditions of use. This substance is...

  5. 21 CFR 582.6285 - Dipotassium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Dipotassium phosphate. 582.6285 Section 582.6285 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Dipotassium phosphate. (a) Product. Dipotassium phosphate. (b) Conditions of use. This substance is...

  6. 21 CFR 582.1217 - Calcium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Calcium phosphate. 582.1217 Section 582.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic)....

  7. 21 CFR 182.6290 - Disodium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Disodium phosphate. 182.6290 Section 182.6290 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... phosphate. (a) Product. Disodium phosphate. (b) Conditions of use. This substance is generally recognized...

  8. 21 CFR 582.1217 - Calcium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Calcium phosphate. 582.1217 Section 582.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic)....

  9. 21 CFR 582.6290 - Disodium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Disodium phosphate. 582.6290 Section 582.6290 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Disodium phosphate. (a) Product. Disodium phosphate. (b) Conditions of use. This substance is...

  10. 21 CFR 182.1217 - Calcium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium phosphate. 182.1217 Section 182.1217 Food... GENERALLY RECOGNIZED AS SAFE Multiple Purpose GRAS Food Substances § 182.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This substance is...

  11. 21 CFR 182.1217 - Calcium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Calcium phosphate. 182.1217 Section 182.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic)....

  12. 21 CFR 182.6285 - Dipotassium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Dipotassium phosphate. 182.6285 Section 182.6285 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Dipotassium phosphate. (a) Product. Dipotassium phosphate. (b) Conditions of use. This substance is...

  13. 21 CFR 582.6285 - Dipotassium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Dipotassium phosphate. 582.6285 Section 582.6285 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Dipotassium phosphate. (a) Product. Dipotassium phosphate. (b) Conditions of use. This substance is...

  14. 21 CFR 582.6290 - Disodium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Disodium phosphate. 582.6290 Section 582.6290 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Disodium phosphate. (a) Product. Disodium phosphate. (b) Conditions of use. This substance is...

  15. 21 CFR 582.6290 - Disodium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Disodium phosphate. 582.6290 Section 582.6290 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Disodium phosphate. (a) Product. Disodium phosphate. (b) Conditions of use. This substance is...

  16. 21 CFR 582.6285 - Dipotassium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Dipotassium phosphate. 582.6285 Section 582.6285 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Dipotassium phosphate. (a) Product. Dipotassium phosphate. (b) Conditions of use. This substance is...

  17. 21 CFR 182.6285 - Dipotassium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Dipotassium phosphate. 182.6285 Section 182.6285...) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 1 § 182.6285 Dipotassium phosphate. (a) Product. Dipotassium phosphate. (b) Conditions of use. This substance is generally recognized as safe when used...

  18. 21 CFR 182.6285 - Dipotassium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Dipotassium phosphate. 182.6285 Section 182.6285 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Dipotassium phosphate. (a) Product. Dipotassium phosphate. (b) Conditions of use. This substance is...

  19. 21 CFR 182.1217 - Calcium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium phosphate. 182.1217 Section 182.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic)....

  20. 21 CFR 182.6290 - Disodium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Disodium phosphate. 182.6290 Section 182.6290 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... phosphate. (a) Product. Disodium phosphate. (b) Conditions of use. This substance is generally recognized...

  1. 21 CFR 582.1141 - Ammonium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Ammonium phosphate. 582.1141 Section 582.1141 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1141 Ammonium phosphate. (a) Product. Ammonium phosphate (mono- and dibasic). (b)...

  2. 21 CFR 582.6285 - Dipotassium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Dipotassium phosphate. 582.6285 Section 582.6285 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Dipotassium phosphate. (a) Product. Dipotassium phosphate. (b) Conditions of use. This substance is...

  3. 21 CFR 182.1217 - Calcium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Calcium phosphate. 182.1217 Section 182.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic)....

  4. 21 CFR 582.1217 - Calcium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Calcium phosphate. 582.1217 Section 582.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic)....

  5. 21 CFR 182.6285 - Dipotassium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Dipotassium phosphate. 182.6285 Section 182.6285 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Dipotassium phosphate. (a) Product. Dipotassium phosphate. (b) Conditions of use. This substance is...

  6. 21 CFR 582.1141 - Ammonium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Ammonium phosphate. 582.1141 Section 582.1141 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1141 Ammonium phosphate. (a) Product. Ammonium phosphate (mono- and dibasic). (b)...

  7. 21 CFR 182.6778 - Sodium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium phosphate. 182.6778 Section 182.6778 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 1 § 182.6778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This...

  8. 21 CFR 182.8778 - Sodium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium phosphate. 182.8778 Section 182.8778 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This...

  9. 21 CFR 582.6778 - Sodium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium phosphate. 582.6778 Section 582.6778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use....

  10. 21 CFR 582.1778 - Sodium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium phosphate. 582.1778 Section 582.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic)....

  11. 21 CFR 582.5778 - Sodium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium phosphate. 582.5778 Section 582.5778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic)....

  12. 21 CFR 182.1778 - Sodium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium phosphate. 182.1778 Section 182.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic)....

  13. 21 CFR 582.5778 - Sodium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium phosphate. 582.5778 Section 582.5778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic)....

  14. 21 CFR 182.6778 - Sodium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium phosphate. 182.6778 Section 182.6778 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 1 § 182.6778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This...

  15. 21 CFR 182.1778 - Sodium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium phosphate. 182.1778 Section 182.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic)....

  16. 21 CFR 582.6778 - Sodium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium phosphate. 582.6778 Section 582.6778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use....

  17. 21 CFR 182.1778 - Sodium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium phosphate. 182.1778 Section 182.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic)....

  18. 21 CFR 182.8778 - Sodium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium phosphate. 182.8778 Section 182.8778 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This...

  19. 21 CFR 182.1778 - Sodium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium phosphate. 182.1778 Section 182.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic)....

  20. 21 CFR 582.1778 - Sodium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium phosphate. 582.1778 Section 582.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic)....

  1. 21 CFR 582.5778 - Sodium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium phosphate. 582.5778 Section 582.5778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic)....

  2. 21 CFR 582.6778 - Sodium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium phosphate. 582.6778 Section 582.6778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use....

  3. 21 CFR 182.6778 - Sodium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium phosphate. 182.6778 Section 182.6778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 1 § 182.6778 Sodium phosphate. (a) Product. Sodium phosphate...

  4. 21 CFR 182.6778 - Sodium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium phosphate. 182.6778 Section 182.6778 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 1 § 182.6778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This...

  5. 21 CFR 582.5778 - Sodium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium phosphate. 582.5778 Section 582.5778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic)....

  6. 21 CFR 182.8778 - Sodium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium phosphate. 182.8778 Section 182.8778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8778 Sodium phosphate. (a) Product. Sodium phosphate (mono-,...

  7. 21 CFR 582.6778 - Sodium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium phosphate. 582.6778 Section 582.6778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use....

  8. 21 CFR 582.6778 - Sodium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium phosphate. 582.6778 Section 582.6778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use....

  9. 21 CFR 182.8778 - Sodium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium phosphate. 182.8778 Section 182.8778 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This...

  10. 21 CFR 582.1778 - Sodium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium phosphate. 582.1778 Section 582.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic)....

  11. 21 CFR 582.1778 - Sodium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium phosphate. 582.1778 Section 582.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic)....

  12. 21 CFR 582.1778 - Sodium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium phosphate. 582.1778 Section 582.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic)....

  13. 21 CFR 182.8778 - Sodium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium phosphate. 182.8778 Section 182.8778 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This...

  14. 21 CFR 182.6778 - Sodium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium phosphate. 182.6778 Section 182.6778 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 1 § 182.6778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This...

  15. 21 CFR 582.5778 - Sodium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium phosphate. 582.5778 Section 582.5778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic)....

  16. 21 CFR 182.1778 - Sodium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium phosphate. 182.1778 Section 182.1778 Food... GENERALLY RECOGNIZED AS SAFE Multiple Purpose GRAS Food Substances § 182.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This substance is...

  17. Mineral resource of the month: Phosphate rock

    USGS Publications Warehouse

    Jasinski, Stephen M.

    2013-01-01

    As a mineral resource, “phosphate rock” is defined as unprocessed ore and processed concentrates that contain some form of apatite, a group of calcium phosphate minerals that is the primary source for phosphorus in phosphate fertilizers, which are vital to agriculture.

  18. Molecular mechanisms of crystallization impacting calcium phosphate cements

    PubMed Central

    Giocondi, Jennifer L.; El-Dasher, Bassem S.; Nancollas, George H.; Orme, Christine A.

    2010-01-01

    The biomineral calcium hydrogen phosphate dihydrate (CaHPO4·2H2O), known as brushite, is a malleable material that both grows and dissolves faster than most other calcium minerals, including other calcium phosphate phases, calcium carbonates and calcium oxalates. Within the body, this ready formation and dissolution can play a role in certain diseases, such as kidney stone and plaque formation. However, these same properties, along with brushite’s excellent biocompatibility, can be used to great benefit in making resorbable biomedical cements. To optimize cements, additives are commonly used to control crystallization kinetics and phase transformation. This paper describes the use of in situ scanning probe microscopy to investigate the role of several solution parameters and additives in brushite atomic step motion. Surprisingly, this work demonstrates that the activation barrier for phosphate (rather than calcium) incorporation limits growth kinetics and that additives such as magnesium, citrate and bisphosphonates each influence step motion in distinctly different ways. Our findings provide details of how, and where, molecules inhibit or accelerate kinetics. These insights have the potential to aid in designing molecules to target specific steps and to guide synergistic combinations of additives. PMID:20308110

  19. Structural and spectroscopic investigations on deuteron glasses belonging to the potassium dihydrogen phosphate family

    SciTech Connect

    Choudhury, Rajul Ranjan Chitra, R.; Abraham, Geogy J.

    2015-06-24

    X-ray powder diffraction and Raman measurements were performed on the mixed crystals of deuterated potassium dihydrogen phosphate (DKDP) and deuterated ammonium dihydrogen phosphate (DADP) grown at our lab. These crystals are known to behave like deuteron glasses due to frustration between ferroelectric and antiferroelectric ordering. Both spectral as well as structural studies indicate that crystals belonging to the glassy regions of the crystal composition have stronger O-D-O hydrogen bonds as compared to those belong to the ferroelectric or antiferroelectric regions of the crystal composition.

  20. Hydrogen embrittlement in nickel-hydrogen cells

    NASA Technical Reports Server (NTRS)

    Gross, Sidney

    1989-01-01

    It was long known that many strong metals can become weakened and brittle as the result of the accumulation of hydrogen within the metal. When the metal is stretched, it does not show normal ductile properties, but fractures prematurely. This problem can occur as the result of a hydrogen evolution reaction such as corrosion or electroplating, or due to hydrogen in the environment at the metal surface. High strength alloys such as steels are especially susceptible to hydrogen embrittlement. Nickel-hydrogen cells commonly use Inconel 718 alloy for the pressure container, and this also is susceptible to hydrogen embrittlement. Metals differ in their susceptibility to embrittlement. Hydrogen embrittlement in nickel-hydrogen cells is analyzed and the reasons why it may or may not occur are discussed. Although Inconel 718 can display hydrogen embrittlement, experience has not identified any problem with nickel-hydrogen cells. No hydrogen embrittlement problem is expected with the 718 alloy pressure container used in nickel-hydrogen cells.

  1. Hydrogen supply system

    SciTech Connect

    Teitel, R.J.

    1981-11-24

    A system for supplying hydrogen to an apparatus which utilizes hydrogen contains a metal hydride hydrogen supply component and a microcavity hydrogen storage hydrogen supply component which in tandem supply hydrogen for the apparatus. The metal hydride hydrogen supply component includes a first storage tank filled with a composition which is capable of forming a metal hydride of such a nature that the hydride will release hydrogen when heated but will absorb hydrogen when cooled. This first storage tank is equipped with a heat exchanger for both adding heat to and extracting heat from the composition to regulate the absorption/deabsorption of hydrogen from the composition. The microcavity hydrogen storage hydrogen supply component includes a second tank containing the microcavity hydrogen supply. The microcavity hydrogen storage contains hydrogen held under high pressure within individual microcavities. The hydrogen is released from the microcavities by heating the cavities. This heating is accomplished by including within the tank for the microcavity hydrogen storage a heating element.

  2. Glucose-6-Phosphate Dehydrogenase Deficiency.

    PubMed

    Luzzatto, Lucio; Nannelli, Caterina; Notaro, Rosario

    2016-04-01

    G6PD is a housekeeping gene expressed in all cells. Glucose-6-phosphate dehydrogenase (G6PD) is part of the pentose phosphate pathway, and its main physiologic role is to provide NADPH. G6PD deficiency, one of the commonest inherited enzyme abnormalities in humans, arises through one of many possible mutations, most of which reduce the stability of the enzyme and its level as red cells age. G6PD-deficient persons are mostly asymptomatic, but they can develop severe jaundice during the neonatal period and acute hemolytic anemia when they ingest fava beans or when they are exposed to certain infections or drugs. G6PD deficiency is a global health issue.

  3. Hydrogen sulphide.

    PubMed

    Guidotti, T L

    1996-10-01

    Hydrogen sulphide (H2S) is the primary chemical hazard in natural gas production in 'sour' gas fields. It is also a hazard in sewage treatment and manure-containment operations, construction in wetlands, pelt processing, certain types of pulp and paper production, and any situation in which organic material decays or inorganic sulphides exist under reducing conditions. H2S dissociates into free sulphide in the circulation. Sulphide binds to many macromolecules, among them cytochrome oxidase. Although this is undoubtedly an important mechanism of toxicity due to H2S, there may be others H2S provides little opportunity for escape at high concentrations because of the olfactory paralysis it causes, the steep exposure-response relationships, and the characteristically sudden loss of consciousness it can cause which is colloquially termed 'knockdown.' Other effects may include mucosal irritation, which is associated at lower concentrations with a keratoconjunctivitis called 'gas eye' and at higher concentrations with risk of pulmonary oedema. Chronic central nervous system sequelae may possibly follow repeated knockdowns: this is controversial and the primary effects of H2S may be confounded by anoxia or head trauma. Treatment is currently empirical, with a combination of nitrite and hyperbaric oxygen preferred. The treatment regimen is not ideal and carries some risk.

  4. Remnants of an Ancient Metabolism without Phosphate.

    PubMed

    Goldford, Joshua E; Hartman, Hyman; Smith, Temple F; Segrè, Daniel

    2017-03-09

    Phosphate is essential for all living systems, serving as a building block of genetic and metabolic machinery. However, it is unclear how phosphate could have assumed these central roles on primordial Earth, given its poor geochemical accessibility. We used systems biology approaches to explore the alternative hypothesis that a protometabolism could have emerged prior to the incorporation of phosphate. Surprisingly, we identified a cryptic phosphate-independent core metabolism producible from simple prebiotic compounds. This network is predicted to support the biosynthesis of a broad category of key biomolecules. Its enrichment for enzymes utilizing iron-sulfur clusters, and the fact that thermodynamic bottlenecks are more readily overcome by thioester rather than phosphate couplings, suggest that this network may constitute a "metabolic fossil" of an early phosphate-free nonenzymatic biochemistry. Our results corroborate and expand previous proposals that a putative thioester-based metabolism could have predated the incorporation of phosphate and an RNA-based genetic system. PAPERCLIP.

  5. Effects of phosphates on microstructure and bioactivity of micro-arc oxidized calcium phosphate coatings on Mg-Zn-Zr magnesium alloy.

    PubMed

    Pan, Y K; Chen, C Z; Wang, D G; Zhao, T G

    2013-09-01

    Calcium phosphate (CaP) coatings were prepared on Mg-Zn-Zr magnesium alloy by micro-arc oxidation (MAO) in electrolyte containing calcium acetate monohydrate (CH3COO)2Ca·H2O) and different phosphates (i.e. disodium hydrogen phosphate dodecahydrate (Na2HPO4·12H2O), sodium phosphate (Na3PO4·H2O) and sodium hexametaphosphate((NaPO3)6)). Scanning electron microscope (SEM), energy-dispersive X-ray spectrometry (EDS) and X-ray diffractometer (XRD) were employed to characterize the microstructure, elemental distribution and phase composition of the CaP coatings. Simulated body fluid (SBF) immersion test was used to evaluate the coating bioactivity and degradability. Systemic toxicity test was used to evaluate the coating biocompatibility. Fluoride ion selective electrode (ISE) was used to measure F(-) ions concentration during 30 days SBF immersion. The CaP coatings effectively reduced the corrosion rate and the surfaces of CaP coatings were covered by a new layer formed of numerous needle-like and scale-like apatites. The formation of these calcium phosphate apatites indicates that the coatings have excellent bioactivity. The coatings formed in (NaPO3)6-containging electrolyte exhibit thicker thickness, higher adhesive strength, slower degradation rate, better apatite-inducing ability and biocompatibility.

  6. Resorbable calcium phosphate bone substitute.

    PubMed

    Knaack, D; Goad, M E; Aiolova, M; Rey, C; Tofighi, A; Chakravarthy, P; Lee, D D

    1998-01-01

    The in vitro and in vivo properties of a novel, fully resorbable, apatitic calcium phosphate bone substitute (ABS) are described. The ABS was prepared from calcium phosphate precursors that were hydrated to form an injectable paste that hardens endothermically at 37 degrees C to form a poorly crystalline apatitic calcium phosphate (PCA). The PCA reaction product is stable in vivo as determined by FTIR and XRD analysis of rabbit intramuscular implants of ABS retrieved 4, 7, and 14 days postimplantation. Bone formation and resorption characteristics of the ABS material were characterized in a canine femoral slot defect model. Femoral slot defects in dogs were filled with either autologous bone implants or the ABS material. Sections of femoral bone defect site from animals sacrificed at 3, 4, 12, 26, and 52 weeks demonstrated that new bone formation proceeded similarly in both autograft and ABS filled slots. Defects receiving either material were filled with trabecular bone in the first 3 to 4 weeks after implantation; lamellar or cortical bone formation was well established by week 12. New bone formation in ABS filled defects followed a time course comparable to autologous bone graft filled defects. Histomorphometric evaluation of ABS resorption and new bone formation indicated that the ABS material was greater than 99% resorbed within 26 weeks; residual ABS occupied 0.36+/-0.36% (SEM, n = 4) of the original defect area at 26 weeks. Quantitatively and qualitatively, the autograft and ABS were associated with similar new bone growth and defect filling characteristics.

  7. Determination of dialkyl phosphate metabolites of organophosphorus pesticides in human urine by automated solid-phase extraction, derivatization, and gas chromatography-mass spectrometry.

    PubMed

    Hemakanthi De Alwis, G K; Needham, Larry L; Barr, Dana B

    2008-01-01

    Organophosphorus (OP) pesticides are highly toxic but used commonly worldwide, nevertheless. Their urinary dialkylphosphate (DAP) metabolites are widely used for exposure assessment of OP pesticides in humans. We previously developed an analytical method to measure urinary DAPs utilizing solid-phase extraction (SPE)-derivatization-gas chromatography-tandem mass spectrometry (GC-MS-MS) with quantification using isotope-dilution technique. We now present a more cost-effective yet highly accurate method that can be easily adaptable to many laboratories for routine OP exposure assessment. This method is simple and fast and involves automated SPE of the metabolites followed by derivatization with pentafluorobenzyl bromide and quantification by GC-MS. Dibutyl phosphate (DBP) serves as the internal standard. The detection limits for the six metabolites ranged from 0.1 to 0.15 ng/mL. Depending on the metabolite the relative standard deviation of the analytical procedure was 2-15% for the metabolites. We compared performance of DBP as an internal standard with that of isotope-labeled compounds and found that DBP gives reliable results for the analytical procedure. We also optimized reaction parameters of pentafluorobenzylation.

  8. Extraction and identification of bioactive compounds (eicosane and dibutyl phthalate) produced by Streptomyces strain KX852460 for the biological control of Rhizoctonia solani AG-3 strain KX852461 to control target spot disease in tobacco leaf.

    PubMed

    Ahsan, Taswar; Chen, Jianguang; Zhao, Xiuxiang; Irfan, Muhammad; Wu, Yuanhua

    2017-12-01

    Streptomyces strain KX852460 having antifungal activity against Rhizoctonia solani AG-3 KX852461 that is the causal agent of target spot disease in tobacco leaf. The aim of the study was to determine the antifungal activity of Streptomyces strain KX852460 extract against R. solani AG-3 and to identify bioactive antifungal compounds produced by strain KX852460. Crude substance was produced by submerged fermentation process from Streptomyces strain KX852460. Various solvent was used to extract the culture filtrate. Among all, ethyl acetate extracted supernatant showed great potency against R. solani AG-3 KX852461. The active fractions were purified by silica gel column chromatography having 52 mm zone of inhibition against R. solani AG-3 KX852461. The purified fractions were identified by gas chromatography-mass spectrometry technique. Twenty-seven compounds were identified and most of the compounds were the derivatives of aromatic compounds. Eicosane (C20H42) and dibutyl phthalate (C16H22O4) were found antifungal compounds in this study. While morphinan, 7,8-didehydro-4,5-epoxy-17-methyl-3,6-bis[(trimethylsilyl)oxy]-, (5.Alpha. 6.Alpha)-(C23H35NO3Si2), cyclononasiloxane, octadecamethyl-(C18H54O9Si9) and benzoic acid, 2,5-bis(trimethylsiloxy) (C16H30O4Si3) were the major compounds with highest peak number. These results suggested that Streptomyces strain KX852460 had good general antifungal activity and might have potential biocontrol antagonist against R. solani AG-3 KX852461 to cure the target spot in tobacco leaf.

  9. Apyrase Functions in Plant Phosphate Nutrition and Mobilizes Phosphate from Extracellular ATP1

    PubMed Central

    Thomas, Collin; Sun, Yu; Naus, Katie; Lloyd, Alan; Roux, Stanley

    1999-01-01

    ATP, which is present in the extracellular matrix of multicellular organisms and in the extracellular fluid of unicellular organisms, has been shown to function as a signaling molecule in animals. The concentration of extracellular ATP (xATP) is known to be functionally modulated in part by ectoapyrases, membrane-associated proteins that cleave the γ- and β-phosphates on xATP. We present data showing a previously unreported (to our knowledge) linkage between apyrase and phosphate transport. An apyrase from pea (Pisum sativum) complements a yeast (Saccharomyces cerevisiae) phosphate-transport mutant and significantly increases the amount of phosphate taken up by transgenic plants overexpressing the gene. The transgenic plants show enhanced growth and augmented phosphate transport when the additional phosphate is supplied as inorganic phosphate or as ATP. When scavenging phosphate from xATP, apyrase mobilizes the γ-phosphate without promoting the transport of the purine or the ribose. PMID:9952450

  10. Composition for absorbing hydrogen

    DOEpatents

    Heung, Leung K.; Wicks, George G.; Enz, Glenn L.

    1995-01-01

    A hydrogen absorbing composition. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

  11. Composition for absorbing hydrogen

    DOEpatents

    Heung, L.K.; Wicks, G.G.; Enz, G.L.

    1995-05-02

    A hydrogen absorbing composition is described. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

  12. A vacuolar phosphate transporter essential for phosphate homeostasis in Arabidopsis

    PubMed Central

    Liu, Jinlong; Yang, Lei; Luan, Mingda; Wang, Yuan; Zhang, Chi; Zhang, Bin; Shi, Jisen; Zhao, Fu-Geng; Lan, Wenzhi; Luan, Sheng

    2015-01-01

    Inorganic phosphate (Pi) is stored in the vacuole, allowing plants to adapt to variable Pi availability in the soil. The transporters that mediate Pi sequestration into vacuole remain unknown, however. Here we report the functional characterization of Vacuolar Phosphate Transporter 1 (VPT1), an SPX domain protein that transports Pi into the vacuole in Arabidopsis. The vpt1 mutant plants were stunted and consistently retained less Pi than wild type plants, especially when grown in medium containing high levels of Pi. In seedlings, VPT1 was expressed primarily in younger tissues under normal conditions, but was strongly induced by high-Pi conditions in older tissues, suggesting that VPT1 functions in Pi storage in young tissues and in detoxification of high Pi in older tissues. As a result, disruption of VPT1 rendered plants hypersensitive to both low-Pi and high-Pi conditions, reducing the adaptability of plants to changing Pi availability. Patch-clamp analysis of isolated vacuoles showed that the Pi influx current was severely reduced in vpt1 compared with wild type plants. When ectopically expressed in Nicotiana benthamiana mesophyll cells, VPT1 mediates vacuolar influx of anions, including Pi, SO42−, NO3−, Cl−, and malate with Pi as that preferred anion. The VPT1-mediated Pi current amplitude was dependent on cytosolic phosphate concentration. Single-channel analysis showed that the open probability of VPT1 was increased with the increase in transtonoplast potential. We conclude that VPT1 is a transporter responsible for vacuolar Pi storage and is essential for Pi adaptation in Arabidopsis. PMID:26554016

  13. A vacuolar phosphate transporter essential for phosphate homeostasis in Arabidopsis.

    PubMed

    Liu, Jinlong; Yang, Lei; Luan, Mingda; Wang, Yuan; Zhang, Chi; Zhang, Bin; Shi, Jisen; Zhao, Fu-Geng; Lan, Wenzhi; Luan, Sheng

    2015-11-24

    Inorganic phosphate (Pi) is stored in the vacuole, allowing plants to adapt to variable Pi availability in the soil. The transporters that mediate Pi sequestration into vacuole remain unknown, however. Here we report the functional characterization of Vacuolar Phosphate Transporter 1 (VPT1), an SPX domain protein that transports Pi into the vacuole in Arabidopsis. The vpt1 mutant plants were stunted and consistently retained less Pi than wild type plants, especially when grown in medium containing high levels of Pi. In seedlings, VPT1 was expressed primarily in younger tissues under normal conditions, but was strongly induced by high-Pi conditions in older tissues, suggesting that VPT1 functions in Pi storage in young tissues and in detoxification of high Pi in older tissues. As a result, disruption of VPT1 rendered plants hypersensitive to both low-Pi and high-Pi conditions, reducing the adaptability of plants to changing Pi availability. Patch-clamp analysis of isolated vacuoles showed that the Pi influx current was severely reduced in vpt1 compared with wild type plants. When ectopically expressed in Nicotiana benthamiana mesophyll cells, VPT1 mediates vacuolar influx of anions, including Pi, SO4(2-), NO3(-), Cl(-), and malate with Pi as that preferred anion. The VPT1-mediated Pi current amplitude was dependent on cytosolic phosphate concentration. Single-channel analysis showed that the open probability of VPT1 was increased with the increase in transtonoplast potential. We conclude that VPT1 is a transporter responsible for vacuolar Pi storage and is essential for Pi adaptation in Arabidopsis.

  14. Properties of Calcium Phosphate Cements With Different Tetracalcium Phosphate and Dicalcium Phosphate Anhydrous Molar Ratios.

    PubMed

    Hirayama, Satoshi; Takagi, Shozo; Markovic, Milenko; Chow, Laurence C

    2008-01-01

    Calcium phosphate cements (CPCs) were prepared using mixtures of tetracalcium phosphate (TTCP) and dicalcium phosphate anhydrous (DCPA), with TTCP/DCPA molar ratios of 1/1, 1/2, or 1/3, with the powder and water as the liquid. Diametral tensile strength (DTS), porosity, and phase composition (powder x-ray diffraction) were determined after the set specimens have been immersed in a physiological-like solution (PLS) for 1 d, 5 d, and 10 d. Cement dissolution rates in an acidified PLS were measured using a dual constant composition method. Setting times ((30 ± 1) min) were the same for all cements. DTS decreased with decreasing TTCP/DCPA ratio and, in some cases, also decreased with PLS immersion time. Porosity and hydroxyapatite (HA) formation increased with PLS immersion time. Cements with TTCP/DCPA ratios of 1/2 and 1/3, which formed calcium-deficient HA, dissolved more rapidly than the cement with a ratio of 1/1. In conclusion, cements may be prepared with a range of TTCP/DCPA ratios, and those with lower ratio had lower strengths but dissolved more rapidly in acidified PLS.

  15. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+.

    PubMed

    Kanan, Matthew W; Nocera, Daniel G

    2008-08-22

    The utilization of solar energy on a large scale requires its storage. In natural photosynthesis, energy from sunlight is used to rearrange the bonds of water to oxygen and hydrogen equivalents. The realization of artificial systems that perform "water splitting" requires catalysts that produce oxygen from water without the need for excessive driving potentials. Here we report such a catalyst that forms upon the oxidative polarization of an inert indium tin oxide electrode in phosphate-buffered water containing cobalt (II) ions. A variety of analytical techniques indicates the presence of phosphate in an approximate 1:2 ratio with cobalt in this material. The pH dependence of the catalytic activity also implicates the hydrogen phosphate ion as the proton acceptor in the oxygen-producing reaction. This catalyst not only forms in situ from earth-abundant materials but also operates in neutral water under ambient conditions.

  16. The role of phosphate in kidney disease.

    PubMed

    Vervloet, Marc G; Sezer, Siren; Massy, Ziad A; Johansson, Lina; Cozzolino, Mario; Fouque, Denis

    2017-01-01

    The importance of phosphate homeostasis in chronic kidney disease (CKD) has been recognized for decades, but novel insights - which are frequently relevant to everyday clinical practice - continue to emerge. Epidemiological data consistently indicate an association between hyperphosphataemia and poor clinical outcomes. Moreover, compelling evidence suggests direct toxicity of increased phosphate concentrations. Importantly, serum phosphate concentration has a circadian rhythm that must be considered when interpreting patient phosphate levels. Detailed understanding of dietary sources of phosphate, including food additives, can enable phosphate restriction without risking protein malnutrition. Dietary counselling provides an often underestimated opportunity to target the increasing exposure to dietary phosphate of both the general population and patients with CKD. In patients with secondary hyperparathyroidism, bone can be an important source of serum phosphate, and adequate appreciation of this fact should impact treatment. Dietary and pharmotherapeutic interventions are efficacious strategies to lower phosphate intake and serum concentration. However, strong evidence that targeting serum phosphate improves patient outcomes is currently lacking. Future studies are, therefore, required to investigate the effects of modern dietary and pharmacological interventions on clinically meaningful end points.

  17. Phosphate: are we squandering a scarce commodity?

    PubMed

    Ferro, Charles J; Ritz, Eberhard; Townend, Jonathan N

    2015-02-01

    Phosphorus is an essential element for life but is a rare element in the universe. On Earth, it occurs mostly in the form of phosphates that are widespread but predominantly at very low concentration. This relative rarity has resulted in a survival advantage, in evolutionary terms, to organisms that conserve phosphate. When phosphate is made available in excess it becomes a cause for disease, perhaps best recognized as a potential cardiovascular and renal risk factor. As a reaction to the emerging public health issue caused by phosphate additives to food items, there have been calls for a public education programme and regulation to bring about a reduction of phosphate additives to food. During the Paleoproterzoic era, an increase in the bioavailability of phosphate is thought to have contributed significantly to the oxygenation of our atmosphere and a dramatic increase in the evolution of new species. Currently, phosphate is used poorly and often wasted with phosphate fertilizers washing this scarce commodity into water bodies causing eutrophication and algal blooms. Ironically, this is leading to the extinction of hundreds of species. The unchecked exploitation of phosphate rock, which is an increasingly rare natural resource, and our dependence on it for agriculture may lead to a strange situation in which phosphate might become a commodity to be fought over whilst at the same time, health and environmental experts are likely to recommend reductions in its use.

  18. Strengths of hydrogen bonds involving phosphorylated amino acid side chains.

    PubMed

    Mandell, Daniel J; Chorny, Ilya; Groban, Eli S; Wong, Sergio E; Levine, Elisheva; Rapp, Chaya S; Jacobson, Matthew P

    2007-01-31

    Post-translational phosphorylation plays a key role in regulating protein function. Here, we provide a quantitative assessment of the relative strengths of hydrogen bonds involving phosphorylated amino acid side chains (pSer, pAsp) with several common donors (Arg, Lys, and backbone amide groups). We utilize multiple levels of theory, consisting of explicit solvent molecular dynamics, implicit solvent molecular mechanics, and quantum mechanics with a self-consistent reaction field treatment of solvent. Because the approximately 6 pKa of phosphate suggests that -1 and -2 charged species may coexist at physiological pH, hydrogen bonds involving both protonated and deprotonated phosphates for all donor-acceptor pairs are considered. Multiple bonding geometries for the charged-charged interactions are also considered. Arg is shown to be capable of substantially stronger salt bridges with phosphorylated side chains than Lys. A pSer hydrogen-bond acceptor tends to form more stable interactions than a pAsp acceptor. The effect of phosphate protonation state on the strengths of the hydrogen bonds is remarkably subtle, with a more pronounced effect on pAsp than on pSer.

  19. Preliminary results on the immobilisation of radionuclides from waters with specific adsorbers based on phosphate salts.

    PubMed

    Valentini Ganzerli, Maria Teresa; Maggi, Luigino; Crespi Caramella, Vera; Berzero, Antonella

    2004-11-01

    The present paper is focused on the ability of aluminium phosphate (ALPC), magnesium ammonium phosphate (MGPC), magnesium hydrogen phosphate (MGHPC), and calcium hydrogenphosphate (CAHPC), adsorbed onto charcoal, to immobilise actinides by adsorption from natural waters. The objective of this process is to evaluate the environmental pollution due to the actinides. Europium, thorium, protactinium, neptunyl, and uranyl ions were chosen to simulate actinides in the +3, +4, +5 and +6 oxidation state. The adsorbers were tested using natural waters samples. The adsorption trends and capacities were analysed. ALPC and MGPC exhibited a similar behaviour and adsorbed demonstrating that the +5, +4 and +3 actinide ions can be easily immobilised from natural waters and may be successfully used at pH 7-8. MGHPC may be used at a higher pH, whereas CAHPC is effective in the whole pH range. In all cases, thorium, protactinium and europium were strongly

  20. Hexa-kis-(3-chloro-2-methyl-anilinium) cyclo-hexa-phosphate dihydrate.

    PubMed

    Bel Haj Salah, Raoudha; Khederi, Lamia; Rzaigui, Mohamed

    2014-01-01

    In the organic/inorganic salt hydrate, 6C7H9ClN(+)·P6O18 (6-)·2H2O, the cyclo-hexa-phosphate anion resides on an inversion centre. The asymmetric unit consists of three cations, one half-anion and a water mol-ecule. In the crystal, the water mol-ecules and the [P6O18](6-) anions are linked by O-H⋯O hydrogen bonds, generating infinite layers parallel to the ab plane. These layers are inter-connected by the organic cations through N-H⋯O hydrogen bonds.

  1. Water structure and dynamics in phosphate fluorosurfactant based reverse micelle: A computer simulation study

    NASA Astrophysics Data System (ADS)

    Senapati, Sanjib; Berkowitz, Max L.

    2003-01-01

    We performed a molecular dynamics simulation on a system containing a water pool inside the reverse micelle made up of an assembly of phosphate fluorosurfactant molecules dissolved in supercritical carbon dioxide. The water molecules in the first solvation shell of the headgroup lose the water to water tetrahedral hydrogen bonded network but are strongly bonded to the surfactant headgroups. This change in inter-water hydrogen bonding in connection with the confined geometry of the reverse micelle slows down the translational and especially the rotational dynamics of water.

  2. A Few Facts about Hydrogen [and] Hydrogen Bibliography.

    ERIC Educational Resources Information Center

    Hinds, H. Roger

    Divided into two sections, this publication presents facts about and the characteristics of hydrogen and a bibliography on hydrogen. The first section lists nine facts on what hydrogen is, four on where hydrogen is found, nine on how hydrogen is used, nine on how hydrogen can be used, and 14 on how hydrogen is made. Also included are nine…

  3. Tetracalcium phosphate: Synthesis, properties and biomedical applications.

    PubMed

    Moseke, C; Gbureck, U

    2010-10-01

    Monoclinic tetracalcium phosphate (TTCP, Ca(4)(PO(4))(2)O), also known by the mineral name hilgenstockite, is formed in the (CaO-P(2)O(5)) system at temperatures>1300 degrees C. TTCP is the only calcium phosphate with a Ca/P ratio greater than hydroxyapatite (HA). It appears as a by-product in plasma-sprayed HA coatings and shows moderate reactivity and concurrent solubility when combined with acidic calcium phosphates such as dicalcium phosphate anhydrous (DCPA, monetite) or dicalcium phosphate dihydrate (DCPD, brushite). Therefore it is widely used in self-setting calcium phosphate bone cements, which form HA under physiological conditions. This paper aims to review the synthesis and properties of TTCP in biomaterials applications such as cements, sintered ceramics and coatings on implant metals.

  4. Application of Calcium Phosphate Materials in Dentistry

    PubMed Central

    Al-Sanabani, Jabr S.; Al-Sanabani, Fadhel A.

    2013-01-01

    Calcium phosphate materials are similar to bone in composition and in having bioactive and osteoconductive properties. Calcium phosphate materials in different forms, as cements, composites, and coatings, are used in many medical and dental applications. This paper reviews the applications of these materials in dentistry. It presents a brief history, dental applications, and methods for improving their mechanical properties. Notable research is highlighted regarding (1) application of calcium phosphate into various fields in dentistry; (2) improving mechanical properties of calcium phosphate; (3) biomimetic process and functionally graded materials. This paper deals with most common types of the calcium phosphate materials such as hydroxyapatite and tricalcium phosphate which are currently used in dental and medical fields. PMID:23878541

  5. Insight into biological phosphate recovery from sewage.

    PubMed

    Ye, Yuanyao; Ngo, Huu Hao; Guo, Wenshan; Liu, Yiwen; Zhang, Xinbo; Guo, Jianbo; Ni, Bing-Jie; Chang, Soon Woong; Nguyen, Dinh Duc

    2016-10-01

    The world's increasing population means that more food production is required. A more sustainable supply of fertilizers mainly consisting of phosphate is needed. Due to the rising consumption of scarce resources and limited natural supply of phosphate, the recovery of phosphate and their re-use has potentially high market value. Sewage has high potential to recover a large amount of phosphate in a circular economy approach. This paper focuses on utilization of biological process integrated with various subsequent processes to concentrate and recycle phosphate which are derived from liquid and sludge phases. The phosphate accumulation and recovery are discussed in terms of mechanism and governing parameters, recovery efficiency, application at plant-scale and economy.

  6. Inherited Disorders of Calcium and Phosphate Metabolism

    PubMed Central

    Gattineni, Jyothsna

    2014-01-01

    Purpose of Review Inherited disorders of calcium and phosphate homeostasis have variable presentation and can cause significant morbidity. Understanding the mode of inheritance and pathophysiology of these conditions will help in the diagnosis and early institution of therapy. Recent Findings Identification of genetic mutations in human subjects and animal models has advanced our understanding of many inherited disorders of calcium and phosphate regulation. Identification of mutations of CaSR also has improved our understanding of hypocalcemic and hypercalcemic conditions. Mutations of Fgf23, Klotho and phosphate transporter genes have been identified as causes for disorders of phosphate metabolism. Summary Calcium and phosphate homeostasis is tightly regulated in a narrow range due to their vital role in many biological processes. Inherited disorders of calcium and phosphate metabolism though uncommon can have severe morbidity. Genetic counseling of the affected families is an important part of the follow up of these patients. PMID:24553630

  7. Effects of Organic Additives on the Morphology of Various Calcium Phosphates Prepared via Solution and Emulsion Methods

    NASA Astrophysics Data System (ADS)

    Kimura, I.; Wei, T.; Kikushima, Y.; Riman, R.; Akazawa, T.

    2011-10-01

    Dicalcium phosphate anhydrous (DCPA) and dicalcium phosphate dihydrate (DCPD) particles were prepared through the reaction between calcium nitrate and dipotassium hydrogen phosphate in a solution and a multiple emulsion. Organic compounds were added into the phosphate solution with the aim of modifying the morphology. Large parallelogrammic particles of DCPD were obtained with no additive. By adding 2-aminoethanol, the product was changed to rhombic in shape and reduced to one-twentieth in size, and the phase was DCPA. In the multiple emulsion, microspheres composed of DCPA were prepared. They were constructed by flaky, primary particles. The crystalline phase and morphology were affected by the concentrations of surfactants in the oil and outer aqueous phases.

  8. Crystal Structure and Substrate Specificity of D-Galactose-6-Phosphate Isomerase Complexed with Substrates

    PubMed Central

    Lee, Jung-Kul; Pan, Cheol-Ho

    2013-01-01

    D-Galactose-6-phosphate isomerase from Lactobacillus rhamnosus (LacAB; EC 5.3.1.26), which is encoded by the tagatose-6-phosphate pathway gene cluster (lacABCD), catalyzes the isomerization of D-galactose-6-phosphate to D-tagatose-6-phosphate during lactose catabolism and is used to produce rare sugars as low-calorie natural sweeteners. The crystal structures of LacAB and its complex with D-tagatose-6-phosphate revealed that LacAB is a homotetramer of LacA and LacB subunits, with a structure similar to that of ribose-5-phosphate isomerase (Rpi). Structurally, LacAB belongs to the RpiB/LacAB superfamily, having a Rossmann-like αβα sandwich fold as has been identified in pentose phosphate isomerase and hexose phosphate isomerase. In contrast to other family members, the LacB subunit also has a unique α7 helix in its C-terminus. One active site is distinctly located at the interface between LacA and LacB, whereas two active sites are present in RpiB. In the structure of the product complex, the phosphate group of D-tagatose-6-phosphate is bound to three arginine residues, including Arg-39, producing a different substrate orientation than that in RpiB, where the substrate binds at Asp-43. Due to the proximity of the Arg-134 residue and backbone Cα of the α6 helix in LacA to the last Asp-172 residue of LacB with a hydrogen bond, a six-carbon sugar-phosphate can bind in the larger pocket of LacAB, compared with RpiB. His-96 in the active site is important for ring opening and substrate orientation, and Cys-65 is essential for the isomerization activity of the enzyme. Two rare sugar substrates, D-psicose and D-ribulose, show optimal binding in the LacAB-substrate complex. These findings were supported by the results of LacA activity assays. PMID:24015281

  9. Electron transfer across multiple hydrogen bonds: the case of ureapyrimidinedione-substituted vinyl ruthenium and osmium complexes.

    PubMed

    Pichlmaier, Markus; Winter, Rainer F; Zabel, Manfred; Zális, Stanislav

    2009-04-08

    Ruthenium and osmium complexes 2a,b and 3a,b featuring the N-4,6-dioxo-5,5-dibutyl- or the N-4,6-dioxo-5,5-di-(2-propenyl)-1,4,5,6-tetrahydropyrimidin-2-yl-N'(4-ethenylphenyl)-urea ligand dimerize by a self-complementary quadruply hydrogen-bonding donor/donor/acceptor/acceptor (DDAA) motif. We provide evidence that the dimeric structures are maintained in nonpolar solvents and in 0.1 M NBu(4)PF(6)/CH(2)Cl(2) supporting electrolyte solution. All complexes are reversibly oxidized in two consecutive two-electron oxidations (DeltaE(1/2) approximately = 500 mV) without any discernible potential splitting for the oxidation of the individual hydrogen-bridged redox active moieties. IR and UV/vis/NIR spectroelectrochemistry show a one-step conversion of the neutral to the dication without any discernible features of an intermediate monooxidized radical cation. Oxidation-induced IR changes of the NH and CO groups that are involved in hydrogen bonding are restricted to the styryl-bonded urea NH function. IR band assignments are aided by quantum chemical calculations. Our experimental findings clearly show that, at least in the present systems, the ureapyrimidinedione (Upy) DDAA hydrogen-bonding motif does not support electron transfer. The apparent reason is that neither of the hydrogen-bonding functionalities contributes to the occupied frontier levels. This results in nearly degenerate pairs of MOs representing the in-phase and out-of-phase combinations of the individual monomeric building blocks.

  10. Hydrogen energy systems studies

    SciTech Connect

    Ogden, J.M.; Kreutz, T.G.; Steinbugler, M.

    1996-10-01

    In this report the authors describe results from technical and economic assessments carried out during the past year with support from the USDOE Hydrogen R&D Program. (1) Assessment of technologies for small scale production of hydrogen from natural gas. Because of the cost and logistics of transporting and storing hydrogen, it may be preferable to produce hydrogen at the point of use from more readily available energy carriers such as natural gas or electricity. In this task the authors assess near term technologies for producing hydrogen from natural gas at small scale including steam reforming, partial oxidation and autothermal reforming. (2) Case study of developing a hydrogen vehicle refueling infrastructure in Southern California. Many analysts suggest that the first widespread use of hydrogen energy is likely to be in zero emission vehicles in Southern California. Several hundred thousand zero emission automobiles are projected for the Los Angeles Basin alone by 2010, if mandated levels are implemented. Assuming that hydrogen vehicles capture a significant fraction of this market, a large demand for hydrogen fuel could evolve over the next few decades. Refueling a large number of hydrogen vehicles poses significant challenges. In this task the authors assess near term options for producing and delivering gaseous hydrogen transportation fuel to users in Southern California including: (1) hydrogen produced from natural gas in a large, centralized steam reforming plant, and delivered to refueling stations via liquid hydrogen truck or small scale hydrogen gas pipeline, (2) hydrogen produced at the refueling station via small scale steam reforming of natural gas, (3) hydrogen produced via small scale electrolysis at the refueling station, and (4) hydrogen from low cost chemical industry sources (e.g. excess capacity in refineries which have recently upgraded their hydrogen production capacity, etc.).

  11. Preparation of porous lanthanum phosphate with templates

    SciTech Connect

    Onoda, Hiroaki; Ishima, Yuya; Takenaka, Atsushi; Tanaka, Isao

    2009-08-05

    Malonic acid, propionic acid, glycine, n-butylamine, and urea were added to the preparation of lanthanum phosphate from lanthanum nitrate and phosphoric acid solutions. All additives were taken into lanthanum phosphate particles. The additives that have a basic site were easy to contain in precipitates. The addition of templates improved the specific surface area of lanthanum phosphate. The amount of pore, with radius smaller than 4 nm, increased with the addition of templates. The remained additives had influence on the acidic properties of lanthanum phosphate.

  12. Mineral induced formation of sugar phosphates

    NASA Technical Reports Server (NTRS)

    Pitsch, S.; Eschenmoser, A.; Gedulin, B.; Hui, S.; Arrhenius, G.

    1995-01-01

    Glycolaldehyde phosphate, sorbed from highly dilute, weakly alkaline solution into the interlayer of common expanding sheet structure metal hydroxide minerals, condenses extensively to racemic aldotetrose-2, 4-diphophates, and aldohexose-2, 4, 6-triphosphates. The reaction proceeds mainly through racemic erythrose-2, 4-phosphate, and terminates with a large fraction of racemic altrose-2, 4, 6-phosphate. In the absence of an inductive mineral phase, no detectable homogeneous reaction takes place in the concentration- and pH range used. The reactant glycolaldehyde phosphate is practically completely sorbed within an hour from solutions with concentrations as low as 50 micron; the half-time for conversion to hexose phosphates is of the order of two days at room temperature and pH 9.5. Total production of sugar phosphates in the mineral interlayer is largely independent of the glycolaldehyde phosphate concentration in the external solution, but is determined by the total amount of GAP offered for sorption up to the capacity of the mineral. In the presence of equimolar amounts of rac-glyceraldehyde-2-phosphate, but under otherwise similar conditions, aldopentose-2, 4, -diphosphates also form, but only as a small fraction of the hexose-2, 4, 6-phosphates.

  13. Calcium phosphates: what is the evidence?

    PubMed

    Larsson, Sune

    2010-03-01

    A number of different calcium phosphate compounds such as calcium phosphate cements and solid beta-tricalcium phosphate products have been introduced during the last decade. The chemical composition mimics the mineral phase of bone and as a result of this likeness, the materials seem to be remodeled as for normal bone through a cell-mediated process that involves osteoclastic activity. This is a major difference when compared with, for instance, calcium sulphate compounds that after implantation dissolve irrespective of the new bone formation rate. Calcium phosphates are highly biocompatible and in addition, they act as synthetic osteoconductive scaffolds after implantation in bone. When placed adjacent to bone, osteoid is formed directly on the surface of the calcium phosphate with no soft tissue interposed. Remodeling is slow and incomplete, but by adding more and larger pores, like in ultraporous beta-tricalcium phosphate, complete or nearly complete resorption can be achieved. The indications explored so far include filling of metaphyseal fracture voids or bone cysts, a volume expander in conjunction with inductive products, and as a carrier for various growth factors and antibiotics. Calcium phosphate compounds such as calcium phosphate cement and beta-tricalcium phosphate will most certainly be part of the future armamentarium when dealing with fracture treatment. It is reasonable to believe that we have so far only seen the beginning when it comes to clinical applications.

  14. Crystal structure of hydrazine iron(III) phosphate, the first transition metal phosphate containing hydrazine

    PubMed Central

    David, Renald

    2015-01-01

    The title compound, poly[(μ2-hydrazine)(μ4-phosphato)iron(III)], [Fe(PO4)(N2H4)]n, was prepared under hydro­thermal conditions. Its asymmetric unit contains one FeIII atom located on an inversion centre, one P atom located on a twofold rotation axis, and two O, one N and two H atoms located on general positions. The FeIII atom is bound to four O atoms of symmetry-related PO4 tetra­hedra and to two N atoms of two symmetry-related hydrazine ligands, resulting in a slightly distorted FeO4N2 octa­hedron. The crystal structure consists of a three-dimensional hydrazine/iron phoshate framework whereby each PO4 tetra­hedron bridges four FeIII atoms and each hydrazine ligand bridges two FeIII atoms. The H atoms of the hydrazine ligands are also involved in moderate N—H⋯O hydrogen bonding with phosphate O atoms. The crystal structure is isotypic with the sulfates [Co(SO4)(N2H4)] and [Mn(SO4)(N2H4)]. PMID:26870399

  15. Crystal structure of hydrazine iron(III) phosphate, the first transition metal phosphate containing hydrazine.

    PubMed

    David, Renald

    2015-12-01

    The title compound, poly[(μ2-hydrazine)(μ4-phosphato)iron(III)], [Fe(PO4)(N2H4)] n , was prepared under hydro-thermal conditions. Its asymmetric unit contains one Fe(III) atom located on an inversion centre, one P atom located on a twofold rotation axis, and two O, one N and two H atoms located on general positions. The Fe(III) atom is bound to four O atoms of symmetry-related PO4 tetra-hedra and to two N atoms of two symmetry-related hydrazine ligands, resulting in a slightly distorted FeO4N2 octa-hedron. The crystal structure consists of a three-dimensional hydrazine/iron phoshate framework whereby each PO4 tetra-hedron bridges four Fe(III) atoms and each hydrazine ligand bridges two Fe(III) atoms. The H atoms of the hydrazine ligands are also involved in moderate N-H⋯O hydrogen bonding with phosphate O atoms. The crystal structure is isotypic with the sulfates [Co(SO4)(N2H4)] and [Mn(SO4)(N2H4)].

  16. Concentration of Hydrogen Peroxide

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor)

    2006-01-01

    Methods for concentrating hydrogen peroxide solutions have been described. The methods utilize a polymeric membrane separating a hydrogen peroxide solution from a sweep gas or permeate. The membrane is selective to the permeability of water over the permeability of hydrogen peroxide, thereby facilitating the concentration of the hydrogen peroxide solution through the transport of water through the membrane to the permeate. By utilizing methods in accordance with the invention, hydrogen peroxide solutions of up to 85% by volume or higher may be generated at a point of use without storing substantial quantities of the highly concentrated solutions and without requiring temperatures that would produce explosive mixtures of hydrogen peroxide vapors.

  17. Hydrogen conference: Workshop proceedings

    SciTech Connect

    Serfass, J.; Bugel, L. )

    1989-10-01

    This meeting was designed to encourage discussion of today's US industrial, utility, space and environmental interests in hydrogen and tommorrow's use of hydrogen as an energy system. The meeting began with a general session during which speakers gave presentations on a variety of hydrogen topics. Discussion following each presentation was lively. Some of the major points of discussion were: interpretation of global warming evidence; relevance of global warming to the interest in hydrogen; cost of hydrogen derived from fossil fuels vs. nuclear vs. solar; likely future importance of hydrogen -- major energy system vs. niche player. A number of interesting points were raised and data presented by speakers and participants. Highlights are presented.

  18. Chemical/hydrogen energy systems analysis

    NASA Astrophysics Data System (ADS)

    Beller, M.

    1982-12-01

    Four hydrogen energy technologies are addressed including: hydrogen recovery from hydrogen separation using hydride technology, photochemical hydrogen production, anode depolarization in electrolytic hydrogen production.

  19. Carbonated ferric green rust as a new material for efficient phosphate removal.

    PubMed

    Barthélémy, K; Naille, S; Despas, C; Ruby, C; Mallet, M

    2012-10-15

    Phosphate uptake from aqueous solutions by a recently discovered ferric oxyhydroxide is investigated. Carbonated ferric green rust {GR(CO(3)(2-))*} is prepared by varying two synthesis parameters, which are (1) the aging period after the ferrous-ferric green rust {GR(CO(3)(2-))} synthesis step and (2) the rate of the hydrogen peroxide addition to oxidize GR(CO(3)(2-)) into GR(CO(3)(2-))*. These two parameters permit the control of the size, morphology and cristallinity of the synthesized particles. As prepared GR* samples are then evaluated, in batch experiments, as possible low-cost efficient phosphate removal materials. Firstly, kinetic experiments reveal that a fast sorption step initially occurs and equilibrium is reached at ~500 min. The adsorption kinetics data at pH=7 can be adequately fitted to a pseudo-second order model. Secondly, the Freundlich model provides the best correlation and effectively describes phosphate sorption isotherms for all GR(CO(3)(2-))* samples synthesized. Finally, the phosphate adsorption capacity decreases when pH increases. The highest adsorption capacity is 64.8 mg g(-1) at pH=4 and corresponds to the GR(CO(3)(2-))* sample displaying the smallest and least crystallized particles thus reflecting the importance of the synthesis conditions. Overall, all sorption capacities are higher than the main iron oxide minerals, making GR(CO(3)(2-))* a potentially attractive phosphate adsorbent.

  20. Con: Phosphate binders in chronic kidney disease

    PubMed Central

    Kestenbaum, Bryan

    2016-01-01

    Phosphate binders are prescribed to chronic kidney disease (CKD) patients based on associations of serum phosphate concentrations with mortality and calcification, experimental evidence for direct calcifying effects of phosphate on vascular smooth muscle tissue and the central importance of phosphate retention in CKD-mineral and bone disorder (CKD-MBD). Current knowledge regarding phosphate metabolism in CKD provides important insight into disease mechanisms and supports future clinical trials of phosphate binders in CKD patients to determine the impact of these medications on clinically relevant outcomes. The risks and benefits of phosphate binders cannot be inferred from association studies of serum phosphate concentrations, which are inconsistent and subject to confounding, animal-experimental data, which are based on conditions that differ from human disease, or physiological arguments, which are limited to known regulatory factors. Many interventions that targeted biochemical pathways suggested by association studies and suspected biological importance have yielded null or harmful results. Clinical trials of phosphate binders are of high clinical and scientific importance to nephrology. Demonstration of reduced rates of clinical disease in such trials could lead to important health benefits for CKD patients, whereas negative results would refocus efforts to understand and treat CKD-MBD. Clinical trials that employ highly practical or ‘pragmatic’ designs represent an optimal approach for determining the safety and effectiveness of phosphate binders in real-world settings. Absent clinical trial data, observational studies of phosphate binders in large CKD populations could provide important information regarding the benefits, risks and/or unintended side effects of these medications. PMID:26681747

  1. Con: Phosphate binders in chronic kidney disease.

    PubMed

    Kestenbaum, Bryan

    2016-02-01

    Phosphate binders are prescribed to chronic kidney disease (CKD) patients based on associations of serum phosphate concentrations with mortality and calcification, experimental evidence for direct calcifying effects of phosphate on vascular smooth muscle tissue and the central importance of phosphate retention in CKD-mineral and bone disorder (CKD-MBD). Current knowledge regarding phosphate metabolism in CKD provides important insight into disease mechanisms and supports future clinical trials of phosphate binders in CKD patients to determine the impact of these medications on clinically relevant outcomes. The risks and benefits of phosphate binders cannot be inferred from association studies of serum phosphate concentrations, which are inconsistent and subject to confounding, animal-experimental data, which are based on conditions that differ from human disease, or physiological arguments, which are limited to known regulatory factors. Many interventions that targeted biochemical pathways suggested by association studies and suspected biological importance have yielded null or harmful results. Clinical trials of phosphate binders are of high clinical and scientific importance to nephrology. Demonstration of reduced rates of clinical disease in such trials could lead to important health benefits for CKD patients, whereas negative results would refocus efforts to understand and treat CKD-MBD. Clinical trials that employ highly practical or 'pragmatic' designs represent an optimal approach for determining the safety and effectiveness of phosphate binders in real-world settings. Absent clinical trial data, observational studies of phosphate binders in large CKD populations could provide important information regarding the benefits, risks and/or unintended side effects of these medications.

  2. Hydrogen transport membranes

    DOEpatents

    Mundschau, Michael V.

    2005-05-31

    Composite hydrogen transport membranes, which are used for extraction of hydrogen from gas mixtures are provided. Methods are described for supporting metals and metal alloys which have high hydrogen permeability, but which are either too thin to be self supporting, too weak to resist differential pressures across the membrane, or which become embrittled by hydrogen. Support materials are chosen to be lattice matched to the metals and metal alloys. Preferred metals with high permeability for hydrogen include vanadium, niobium, tantalum, zirconium, palladium, and alloys thereof. Hydrogen-permeable membranes include those in which the pores of a porous support matrix are blocked by hydrogen-permeable metals and metal alloys, those in which the pores of a porous metal matrix are blocked with materials which make the membrane impervious to gases other than hydrogen, and cermets fabricated by sintering powders of metals with powders of lattice-matched ceramic.

  3. Hydrogen production by Cyanobacteria

    PubMed Central

    Dutta, Debajyoti; De, Debojyoti; Chaudhuri, Surabhi; Bhattacharya, Sanjoy K

    2005-01-01

    The limited fossil fuel prompts the prospecting of various unconventional energy sources to take over the traditional fossil fuel energy source. In this respect the use of hydrogen gas is an attractive alternate source. Attributed by its numerous advantages including those of environmentally clean, efficiency and renew ability, hydrogen gas is considered to be one of the most desired alternate. Cyanobacteria are highly promising microorganism for hydrogen production. In comparison to the traditional ways of hydrogen production (chemical, photoelectrical), Cyanobacterial hydrogen production is commercially viable. This review highlights the basic biology of cynobacterial hydrogen production, strains involved, large-scale hydrogen production and its future prospects. While integrating the existing knowledge and technology, much future improvement and progress is to be done before hydrogen is accepted as a commercial primary energy source. PMID:16371161

  4. Hydrogen production by Cyanobacteria.

    PubMed

    Dutta, Debajyoti; De, Debojyoti; Chaudhuri, Surabhi; Bhattacharya, Sanjoy K

    2005-12-21

    The limited fossil fuel prompts the prospecting of various unconventional energy sources to take over the traditional fossil fuel energy source. In this respect the use of hydrogen gas is an attractive alternate source. Attributed by its numerous advantages including those of environmentally clean, efficiency and renew ability, hydrogen gas is considered to be one of the most desired alternate. Cyanobacteria are highly promising microorganism for hydrogen production. In comparison to the traditional ways of hydrogen production (chemical, photoelectrical), Cyanobacterial hydrogen production is commercially viable. This review highlights the basic biology of cynobacterial hydrogen production, strains involved, large-scale hydrogen production and its future prospects. While integrating the existing knowledge and technology, much future improvement and progress is to be done before hydrogen is accepted as a commercial primary energy source.

  5. Hydrogen Technologies Safety Guide

    SciTech Connect

    Rivkin, C.; Burgess, R.; Buttner, W.

    2015-01-01

    The purpose of this guide is to provide basic background information on hydrogen technologies. It is intended to provide project developers, code officials, and other interested parties the background information to be able to put hydrogen safety in context. For example, code officials reviewing permit applications for hydrogen projects will get an understanding of the industrial history of hydrogen, basic safety concerns, and safety requirements.

  6. 21 CFR 182.6290 - Disodium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Disodium phosphate. 182.6290 Section 182.6290 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 1 § 182.6290 Disodium phosphate. (a) Product. Disodium...

  7. Phosphate functionalized graphene with tunable mechanical properties.

    PubMed

    Goods, John B; Sydlik, Stefanie A; Walish, Joseph J; Swager, Timothy M

    2014-02-01

    The synthesis of a covalently modified graphene oxide derivative with exceptional and tunable compressive strength is reported. Treatment of graphene oxide with triethyl phosphite in the presence of LiBr produces monolithic structures comprised of lithium phosphate oligomers tethered to graphene through covalent phosphonate linkages. Variation of the both phosphate content and associated cation produces materials of various compressive strengths and elasticity.

  8. Calcium Phosphate Transfection of Primary Hippocampal Neurons

    PubMed Central

    DiBona, Victoria L.; Wu, Qian; Zhang, Huaye

    2013-01-01

    Calcium phosphate precipitation is a convenient and economical method for transfection of cultured cells. With optimization, it is possible to use this method on hard-to-transfect cells like primary neurons. Here we describe our detailed protocol for calcium phosphate transfection of hippocampal neurons cocultured with astroglial cells. PMID:24300106

  9. Mineral resource of the month: phosphate rock

    USGS Publications Warehouse

    Jasinski, Stephen M.

    2007-01-01

    Phosphate rock minerals provide the only significant global resources of phosphorus, which is an essential element for plant and animal nutrition. Phosphate rock is used primarily as a principal component of nitrogen-phosphorus-potassium fertilizers, but also to produce elemental phosphorus and animal feed.

  10. Sensitive hydrogen leak detector

    DOEpatents

    Myneni, Ganapati Rao

    1999-01-01

    A sensitive hydrogen leak detector system using passivation of a stainless steel vacuum chamber for low hydrogen outgassing, a high compression ratio vacuum system, a getter operating at 77.5 K and a residual gas analyzer as a quantitative hydrogen sensor.

  11. Biological hydrogen photoproduction

    SciTech Connect

    Nemoto, Y.

    1995-09-01

    Following are the major accomplishments of the 6th year`s study of biological hydrogen photoproduction which were supported by DOE/NREL. (1) We have been characterizing a biological hydrogen production system using synchronously growing aerobically nitrogen-fixing unicellular cyanobacterium, Synechococcus sp. Miami BG 043511. So far it was necessary to irradiate the cells to produce hydrogen. Under darkness they did not produce hydrogen. However, we found that, if the cells are incubated with oxygen, they produce hydrogen under the dark. Under 80% argon + 20% oxygen condition, the hydrogen production activity under the dark was about one third of that under the light + argon condition. (2) Also it was necessary so far to incubate the cells under argon atmosphere to produce hydrogen in this system. Argon treatment is very expensive and should be avoided in an actual hydrogen production system. We found that, if the cells are incubated at a high cell density and in a container with minimum headspace, it is not necessary to use argon for the hydrogen production. (3) Calcium ion was found to play an important role in the mechanisms of protection of nitrogenase from external oxygen. This will be a clue to understand the reason why the hydrogen production is so resistant to oxygen in this strain. (4) In this strain, sulfide can be used as electron donor for the hydrogen production. This result shows that waste water can be used for the hydrogen production system using this strain.

  12. Purification of Hydrogen

    DOEpatents

    Newton, A S

    1950-12-05

    Disclosed is a process for purifying hydrogen containing various gaseous impurities by passing the hydrogen over a large surface of uranium metal at a temperature above the decomposition temperature of uranium hydride, and below the decomposition temperature of the compounds formed by the combination of the uranium with the impurities in the hydrogen.

  13. N Reactor hydrogen control

    SciTech Connect

    Shuford, D.H.; Kripps, L.J.

    1988-08-01

    Following the accident at the Chernobyl nuclear power reactor in the Soviet Union, a number of reviews were conducted of the N Reactor. Hydrogen generation during postulates severe accidents and the possibility of resulting hydrogen deflagrations/detonations that could affect confinement integrity were issues raised in several reviews, along with recommendations for adding hydrogen mitigation features. To respond to these reviews, an N Reactor Safety Enhancement Program and a subsequent Accelerated Safety Enhancement Program were initiated to address all post-Chernobyl N Reactor review findings. The Safety Enhancement Program and Accelerated Safety Enhancement Program efforts involving hydrogen control included the following: Calculate the potential hydrogen source for a range of severe accidents at the N Reactor to establish an acceptable design basis for the hydrogen mitigation system; Analyze the N Reactor confinement hydrogen mixing capability to identify areas of concern and to the verify effectiveness of the hydrogen mitigation system; Select, design, and construct a hydrogen mitigation system to enhance the N Reactor capability to accommodate possible hydrogen generation from postulated severe accidents; Provide post-accident hydrogen monitoring as an operator aid in assessing confinement conditions. In additions, it was necessary to verify that incorporation of the hydrogen mitigation system had no adverse impact N Reactor safety (e.g., radiological consequence analyses). 77 refs., 25 figs., 10 tabs.

  14. Liquid metal hydrogen barriers

    DOEpatents

    Grover, George M.; Frank, Thurman G.; Keddy, Edward S.

    1976-01-01

    Hydrogen barriers which comprise liquid metals in which the solubility of hydrogen is low and which have good thermal conductivities at operating temperatures of interest. Such barriers are useful in nuclear fuel elements containing a metal hydride moderator which has a substantial hydrogen dissociation pressure at reactor operating temperatures.

  15. Sensitive hydrogen leak detector

    DOEpatents

    Myneni, G.R.

    1999-08-03

    A sensitive hydrogen leak detector system is described which uses passivation of a stainless steel vacuum chamber for low hydrogen outgassing, a high compression ratio vacuum system, a getter operating at 77.5 K and a residual gas analyzer as a quantitative hydrogen sensor. 1 fig.

  16. Flash hydrogenation of coal

    DOEpatents

    Manowitz, Bernard; Steinberg, Meyer; Sheehan, Thomas V.; Winsche, Warren E.; Raseman, Chad J.

    1976-01-01

    A process for the hydrogenation of coal comprising the contacting of powdered coal with hydrogen in a rotating fluidized bed reactor. A rotating fluidized bed reactor suitable for use in this process is also disclosed. The coal residence time in the reactor is limited to less than 5 seconds while the hydrogen contact time is not in excess of 0.2 seconds.

  17. Characterization of Titanium Phosphate as Electrolytes in Fuel Cells

    NASA Astrophysics Data System (ADS)

    Tran, A. T. T.; Duke, M. C.; Gray, P. G.; Diniz da Costa, J. C.

    Titanium phosphate is currently a promising material for proton exchange membrane fuel cells applications (PEMFC) allowing for operation at high temperature conditions. In this work, titanium phosphate was synthesized from tetra iso-propoxide (TTIP) and orthophosphoric acid (H3PO4) in different ratios by a sol gel method. High BET surface areas of 271 m2.g-1 were obtained for equimolar Ti:P samples whilst reduced surface areas were observed by varying the molar ratio either way. Highest proton conductivity of 5.4×10-2 S.cm-1 was measured at 20°C and 93% relative humidity (RH). However, no correlation was observed between surface area and proton conductivity. High proton conductivity was directly attributed to hydrogen bonding in P-OH groups and the water molecules retained in the sample structure. The proton conductivity increased with relative humidity, indicating that the Grotthuss mechanism governed proton transport. Further, sample Ti/P with 1:9 molar ratio showed proton conductivity in the order of 10-1 S.cm-1 (5% RH) and ~1.6×10-2 S.cm-1 (anhydrous condition) at 200°C. These proton conductivities were mainly attributed to excess acid locked into the functionalized TiP structure, thus forming ionisable protons.

  18. Nucleation, growth and evolution of calcium phosphate films on calcite.

    PubMed

    Naidu, Sonia; Scherer, George W

    2014-12-01

    Marble, a stone composed of the mineral calcite, is subject to chemically induced weathering in nature due to its relatively high dissolution rate in acid rain. To protect monuments and sculpture from corrosion, we are investigating the application of thin layers of hydroxyapatite (HAP) onto marble. The motivation for using HAP is its low dissolution rate and crystal and lattice compatibility with calcite. A mild, wet chemical synthesis route, in which diammonium hydrogen phosphate salt was reacted with marble, alone and with cationic and anionic precursors under different reaction conditions, was used to produce inorganic HAP layers on marble. Nucleation and growth on the calcite substrate was studied, as well as metastable phase evolution, using scanning electron microscopy, grazing incidence X-ray diffraction, and atomic force microscopy. Film nucleation was enhanced by surface roughness. The rate of nucleation and the growth rate of the film increased with cationic (calcium) and anionic (carbonate) precursor additions. Calcium additions also influenced phase formation, introducing a metastable phase (octacalcium phosphate) and a different phase evolution sequence.

  19. Phosphate rock resources of the United States

    USGS Publications Warehouse

    Cathcart, James Bachelder; Sheldon, Richard Porter; Gulbrandsen, Robert A.

    1984-01-01

    In 1980, the United States produced about 54 million tons of phosphate rock, or about 40 percent of the world's production, of which a substantial amount was exported, both as phosphate rock and as chemical fertilizer. During the last decade, predictions have been made that easily ruinable, low-cost reserves of phosphate rock would be exhausted, and that by the end of this century, instead of being a major exporter of phosphate rock, the United States might become a net importer. Most analysts today, however, think that exports will indeed decline in the next one or two decades, but that resources of phosphate are sufficient to supply domestic needs for a long time into the future. What will happen in the future depends on the actual availability of low-cost phosphate rock reserves in the United States and in the world. A realistic understanding of future phosphate rock reserves is dependent on an accurate assessment, now, of national phosphate rock resources. Many different estimates of resources exist; none of them alike. The detailed analysis of past resource estimates presented in this report indicates that the estimates differ more in what is being estimated than in how much is thought to exist. The phosphate rock resource classification used herein is based on the two fundamental aspects of a mineral resource(l) the degree of certainty of existence and (2) the feasibility of economic recovery. The comparison of past estimates (including all available company data), combined with the writers' personal knowledge, indicates that 17 billion metric tons of identified, recoverable phosphate rock exist in the United States, of which about 7 billion metric tons are thought to be economic or marginally economic. The remaining 10 billion metric tons, mostly in the Northwestern phosphate district of Idaho, are considered to be subeconomic, ruinable when some increase in the price of phosphate occurs. More than 16 billion metric tons probably exist in the southeastern

  20. Phosphate Biomineralization of Cambrian Microorganisms

    NASA Technical Reports Server (NTRS)

    McKay, David S.; Rozanov, Alexei Yu.; Hoover, Richard B.; Westall, Frances

    1998-01-01

    As part of a long term study of biological markers (biomarkers), we are documenting a variety of features which reflect the previous presence of living organisms. As we study meteorites and samples returned from Mars, our main clue to recognizing possible microbial material may be the presence of biomarkers rather than the organisms themselves. One class of biomarkers consists of biominerals which have either been precipitated directly by microorganisms, or whose precipitation has been influenced by the organisms. Such microbe-mediated mineral formation may include important clues to the size, shape, and environment of the microorganisms. The process of fossilization or mineralization can cause major changes in morphologies and textures of the original organisms. The study of fossilized terrestrial organisms can help provide insight into the interpretation of mineral biomarkers. This paper describes the results of investigations of microfossils in Cambrian phosphate-rich rocks (phosphorites) that were found in Khubsugul, Northern Mongolia.

  1. Nanoporous sorbent material as an oral phosphate binder and for aqueous phosphate, chromate, and arsenate removal

    PubMed Central

    Sangvanich, Thanapon; Ngamcherdtrakul, Worapol; Lee, Richard; Morry, Jingga; Castro, David; Fryxell, Glen E.; Yantasee, Wassana

    2014-01-01

    Phosphate removal is both biologically and environmentally important. Biologically, hyperphosphatemia is a critical condition in end-stage chronic kidney disease patients. Patients with hyperphosphatemia are treated long-term with oral phosphate binders to prevent phosphate absorption to the body by capturing phosphate in the gastrointestinal (GI) tract followed by fecal excretion. Environmentally, phosphate levels in natural water resources must be regulated according to limits set forth by the US Environmental Protection Agency. By utilizing nanotechnology and ligand design, we developed a new material to overcome limitations of traditional sorbent materials such as low phosphate binding capacity, slow binding kinetics, and negative interference by other anions. A phosphate binder based on iron-ethylenediamine on nanoporous silica (Fe-EDA-SAMMS) has been optimized for substrates and Fe(III) deposition methods. The Fe-EDA-SAMMS material had a 4-fold increase in phosphate binding capacity and a broader operating pH window compared to other reports. The material had a faster phosphate binding rate and was significantly less affected by other anions than Sevelamer HCl, the gold standard oral phosphate binder, and AG® 1-X8, a commercially available anion exchanger. It had less cytotoxicity to Caco-2 cells than lanthanum carbonate, another prescribed oral phosphate binder. The Fe-EDA-SAMMS also had high capacity for arsenate and chromate, two of the most toxic anions in natural water. PMID:25554735

  2. Genetics Home Reference: pyridoxal 5'-phosphate-dependent epilepsy

    MedlinePlus

    ... 5'-phosphate-dependent epilepsy pyridoxal 5'-phosphate-dependent epilepsy Enable Javascript to view the expand/collapse boxes. ... All Close All Description Pyridoxal 5'-phosphate-dependent epilepsy is a condition that involves seizures beginning soon ...

  3. Hydrogen separation process

    DOEpatents

    Mundschau, Michael; Xie, Xiaobing; Evenson, IV, Carl; Grimmer, Paul; Wright, Harold

    2011-05-24

    A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to a hydrogen separation membrane system comprising a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to an integrated water gas shift/hydrogen separation membrane system wherein the hydrogen separation membrane system comprises a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for pretreating a membrane, comprising: heating the membrane to a desired operating temperature and desired feed pressure in a flow of inert gas for a sufficient time to cause the membrane to mechanically deform; decreasing the feed pressure to approximately ambient pressure; and optionally, flowing an oxidizing agent across the membrane before, during, or after deformation of the membrane. A method of supporting a hydrogen separation membrane system comprising selecting a hydrogen separation membrane system comprising one or more catalyst outer layers deposited on a hydrogen transport membrane layer and sealing the hydrogen separation membrane system to a porous support.

  4. Potential Application of Biohydrogen Production Liquid Waste as Phosphate Solubilizing Agent-A Study Using Soybean Plants.

    PubMed

    Sarma, Saurabh Jyoti; Brar, Satinder Kaur; LeBihan, Yann; Buelna, Gerardo

    2016-03-01

    With CO2 free emission and a gravimetric energy density higher than gasoline, diesel, biodiesel, and bioethanol, biohydrogen is a promising green renewable energy carrier. During fermentative hydrogen production, 60-70 % of the feedstock is converted to different by-products, dominated by organic acids. In the present investigation, a simple approach for value addition of hydrogen production liquid waste (HPLW) containing these compounds has been demonstrated. In soil, organic acids produced by phosphate solubilizing bacteria chelate the cations of insoluble inorganic phosphates (e.g., Ca3 (PO4)2) and make the phosphorus available to the plants. Organic acid-rich HPLW, therefore, has been evaluated as soil phosphate solubilizer. Application of HPLW as soil phosphate solubilizer was found to improve the phosphorus uptake of soybean plants by 2.18- to 2.74-folds. Additionally, 33-100 % increase in seed germination rate was also observed. Therefore, HPLW has the potential to be an alternative for phosphate solubilizing biofertilizers available in the market. Moreover, the strategy can be useful for phytoremediation of phosphorus-rich soil.

  5. The phosphates of IIIAB iron meteorites

    NASA Astrophysics Data System (ADS)

    Olsen, Edward J.; Kracher, Alfred; Davis, Andrew M.; Steele, Ian M.; Hutcheon, Ian D.; Bunch, T. E.

    1999-03-01

    Thirteen phosphate minerals are found in IIIAB iron meteorites. Four of these, sarcopside-graftonite, johnsomervilleite, galileiite comprise the majority of occurrences. IIIB irons are confined to occurrences of only these four phosphates. IIIA irons may contain one or more of these four phases, and may also contain other rarer phosphates, and, in two instances, silica, and in one instance, a silicate rock. Thus, the IIIA lithophile chemistry is more varied than that of the IIIBs. Based on petrographic relations, sarcopside appears to be the first phosphate to form. Graftonite is probably formed by recrystallization of sarcopside. Johnsomervilleite and galileiite exsolved as enclaves in sarcopside or graftonite at lower temperatures, although some of these also nucleate as separate crystals. IIIAB phosphates are carriers of a group of incompatible lithophile elements: Fe, Mn, Na, Ca and K, and (rarely) Mg, as well as Pb. These elements, and oxygen, were concentrated in a residual, sulfur-rich liquid during igneous fractional crystallization of the IIIAB core mass. The phosphates formed by oxidation of phosphorus as the core solidified and excluded oxygen, which increased its partial pressure in the residual liquid. The trace siderophile trends in bulk IIIAB metal are paralleled by a mineralogical trend of the phosphate minerals that formed. For IIIABs with low Ir contents in the metal, the phosphates are mainly Fe-Mn phases; at intermediate Ir values more Na-bearing phosphates appear; at the highest Ir values the rarer Na, K, Mg, Cr, Pb bearing phosphates appear. The absence of significant amounts of Mg, Si, Al and Ti suggest depletion of these elements in the core by the overlying mantle.

  6. Novel oral phosphate binder with nanocrystalline maghemite-phosphate binding capacity and pH effect.

    PubMed

    Nguyen, T M-H; Müller, R H; Taupitz, M; Schnorr, J; Hamm, B; Wagner, S

    2015-03-30

    Hyperphosphatemia is one of the main risk factors contributing to morbidity and mortality in patients with end stage renal disease. The demand for a new phosphate binder is continuously increasing since the number of patients suffering under hyperphosphatemia is growing. However, side effects and high pill burden of currently available phosphate binders are the main reasons for low compliance and uncontrolled serum phosphate levels. Therefore, the aim of this study was to develop a novel phosphate binder with a high phosphate binding capacity over the entire gastrointestinal (GI) pH range. This novel phosphate binder C-PAM-10 is based on d-mannose coated nanocrystalline maghemite and belongs to the new class of phosphate binders, called the "iron based agents". It was possible to obtain a phosphate binding product that showed very high phosphate binding capacities with the characteristic of being pH independent at relevant pH ranges. The simulation of a GI passage ranging from pH 1.2 to pH 7.5 showed a 2.5 times higher phosphate binding capacity compared to the commonly used phosphate binder sevelamer carbonate. The simulation of a pH sensitive coating that releases the iron based phosphate binder at pH values ≥4.5 still showed a very high phosphate binding capacity combined with very low iron release which might decrease iron related side effects in vivo. Therefore, C-PAM-10 and its variations may be very promising candidates as a superior phosphate binder.

  7. Safe venting of hydrogen

    SciTech Connect

    Stewart, W.F.; Dewart, J.M.; Edeskuty, F.J.

    1990-01-01

    The disposal of hydrogen is often required in the operation of an experimental facility that contains hydrogen. Whether the vented hydrogen can be discharged to the atmosphere safely depends upon a number of factors such as the flow rate and atmospheric conditions. Calculations have been made that predict the distance a combustible mixture can extend from the point of release under some specified atmospheric conditions. Also the quantity of hydrogen in the combustible cloud is estimated. These results can be helpful in deciding of the hydrogen can be released directly to the atmosphere, or if it must be intentionally ignited. 15 refs., 5 figs., 2 tabs.

  8. Nanoplasmonic hydrogen sensing

    NASA Astrophysics Data System (ADS)

    Wadell, Carl; Syrenova, Svetlana; Langhammer, Christoph

    2014-09-01

    In this review we discuss the evolution of surface plasmon resonance and localized surface plasmon resonance based hydrogen sensors. We put particular focus on how they are used to study metal-hydrogen interactions at the nanoscale, both at the ensemble and the single nanoparticle level. Such efforts are motivated by a fundamental interest in understanding the role of nanosizing on metal hydride formation processes. However, nanoplasmonic hydrogen sensors are not only of academic interest but may also find more practical use as all-optical gas detectors in industrial and medical applications, as well in a future hydrogen economy, where hydrogen is used as a carbon free energy carrier.

  9. Digestibility, fermentability, and energy value of highly cross-linked phosphate tapioca starch in men.

    PubMed

    Tachibe, M; Ohga, Hiroshi; Nishibata, T; Ebihara, K

    2011-08-01

    The objective of this study was to determine glycemic and breath hydrogen responses in 10 healthy men in response to highly cross-linked starch phosphate (HXLS), made of tapioca starch (TS). Plasma glucose concentration was analyzed at baseline and at 30, 60, 90, 120, 150, and 180 min postprandially. In addition, breath hydrogen excretion was measured at baseline and at hourly intervals, over 10 h, after test substance challenge. When compared with unmodified TS easily digested, the area under the curve of plasma glucose of HXLS was 64% smaller, and was almost the same as that of microcrystalline cellulose. When compared with fructo-oligosaccharide rapidly fermented by the microbial bacteria, the area under the excretion curve of breath hydrogen gas of HXLS was 93% smaller, and was almost the same as that of water only. These results show that HXLS is harder to digest and ferment than unmodified TS in men.

  10. Ultrafast phosphate hydration dynamics in bulk H{sub 2}O

    SciTech Connect

    Costard, Rene Tyborski, Tobias; Fingerhut, Benjamin P. Elsaesser, Thomas

    2015-06-07

    Phosphate vibrations serve as local probes of hydrogen bonding and structural fluctuations of hydration shells around ions. Interactions of H{sub 2}PO{sub 4}{sup −} ions and their aqueous environment are studied combining femtosecond 2D infrared spectroscopy, ab-initio calculations, and hybrid quantum-classical molecular dynamics (MD) simulations. Two-dimensional infrared spectra of the symmetric (ν{sub S}(PO{sub 2}{sup −})) and asymmetric (ν{sub AS}(PO{sub 2}{sup −})) PO{sub 2}{sup −} stretching vibrations display nearly homogeneous lineshapes and pronounced anharmonic couplings between the two modes and with the δ(P-(OH){sub 2}) bending modes. The frequency-time correlation function derived from the 2D spectra consists of a predominant 50 fs decay and a weak constant component accounting for a residual inhomogeneous broadening. MD simulations show that the fluctuating electric field of the aqueous environment induces strong fluctuations of the ν{sub S}(PO{sub 2}{sup −}) and ν{sub AS}(PO{sub 2}{sup −}) transition frequencies with larger frequency excursions for ν{sub AS}(PO{sub 2}{sup −}). The calculated frequency-time correlation function is in good agreement with the experiment. The ν(PO{sub 2}{sup −}) frequencies are mainly determined by polarization contributions induced by electrostatic phosphate-water interactions. H{sub 2}PO{sub 4}{sup −}/H{sub 2}O cluster calculations reveal substantial frequency shifts and mode mixing with increasing hydration. Predicted phosphate-water hydrogen bond (HB) lifetimes have values on the order of 10 ps, substantially longer than water-water HB lifetimes. The ultrafast phosphate-water interactions observed here are in marked contrast to hydration dynamics of phospholipids where a quasi-static inhomogeneous broadening of phosphate vibrations suggests minor structural fluctuations of interfacial water.

  11. Uptake of glycerol 3-phosphate and some of its analogs by the hexose phosphate transport system of Escherichia coli.

    PubMed Central

    Guth, A; Engel, R; Tropp, B E

    1980-01-01

    The hexose phosphate transport system transported glycerol 3-phosphate and its analogs 3,4-dihydroxybutyl-1-phosphonate, glyceraldehyde 3-phosphate, and 3-hydroxy-4-oxobutyl-1-phosphonate. PMID:6995450

  12. Hydrogen storage methods.

    PubMed

    Züttel, Andreas

    2004-04-01

    Hydrogen exhibits the highest heating value per mass of all chemical fuels. Furthermore, hydrogen is regenerative and environmentally friendly. There are two reasons why hydrogen is not the major fuel of today's energy consumption. First of all, hydrogen is just an energy carrier. And, although it is the most abundant element in the universe, it has to be produced, since on earth it only occurs in the form of water and hydrocarbons. This implies that we have to pay for the energy, which results in a difficult economic dilemma because ever since the industrial revolution we have become used to consuming energy for free. The second difficulty with hydrogen as an energy carrier is its low critical temperature of 33 K (i.e. hydrogen is a gas at ambient temperature). For mobile and in many cases also for stationary applications the volumetric and gravimetric density of hydrogen in a storage material is crucial. Hydrogen can be stored using six different methods and phenomena: (1) high-pressure gas cylinders (up to 800 bar), (2) liquid hydrogen in cryogenic tanks (at 21 K), (3) adsorbed hydrogen on materials with a large specific surface area (at T<100 K), (4) absorbed on interstitial sites in a host metal (at ambient pressure and temperature), (5) chemically bonded in covalent and ionic compounds (at ambient pressure), or (6) through oxidation of reactive metals, e.g. Li, Na, Mg, Al, Zn with water. The most common storage systems are high-pressure gas cylinders with a maximum pressure of 20 MPa (200 bar). New lightweight composite cylinders have been developed which are able to withstand pressures up to 80 MPa (800 bar) and therefore the hydrogen gas can reach a volumetric density of 36 kg.m(-3), approximately half as much as in its liquid state. Liquid hydrogen is stored in cryogenic tanks at 21.2 K and ambient pressure. Due to the low critical temperature of hydrogen (33 K), liquid hydrogen can only be stored in open systems. The volumetric density of liquid hydrogen

  13. Hydrogen storage methods

    NASA Astrophysics Data System (ADS)

    Züttel, Andreas

    Hydrogen exhibits the highest heating value per mass of all chemical fuels. Furthermore, hydrogen is regenerative and environmentally friendly. There are two reasons why hydrogen is not the major fuel of today's energy consumption. First of all, hydrogen is just an energy carrier. And, although it is the most abundant element in the universe, it has to be produced, since on earth it only occurs in the form of water and hydrocarbons. This implies that we have to pay for the energy, which results in a difficult economic dilemma because ever since the industrial revolution we have become used to consuming energy for free. The second difficulty with hydrogen as an energy carrier is its low critical temperature of 33 K (i.e. hydrogen is a gas at ambient temperature). For mobile and in many cases also for stationary applications the volumetric and gravimetric density of hydrogen in a storage material is crucial. Hydrogen can be stored using six different methods and phenomena: (1) high-pressure gas cylinders (up to 800 bar), (2) liquid hydrogen in cryogenic tanks (at 21 K), (3) adsorbed hydrogen on materials with a large specific surface area (at T<100 K), (4) absorbed on interstitial sites in a host metal (at ambient pressure and temperature), (5) chemically bonded in covalent and ionic compounds (at ambient pressure), or (6) through oxidation of reactive metals, e.g. Li, Na, Mg, Al, Zn with water. The most common storage systems are high-pressure gas cylinders with a maximum pressure of 20 MPa (200 bar). New lightweight composite cylinders have been developed which are able to withstand pressures up to 80 MPa (800 bar) and therefore the hydrogen gas can reach a volumetric density of 36 kg.m-3, approximately half as much as in its liquid state. Liquid hydrogen is stored in cryogenic tanks at 21.2 K and ambient pressure. Due to the low critical temperature of hydrogen (33 K), liquid hydrogen can only be stored in open systems. The volumetric density of liquid hydrogen is

  14. Pharmacology of the phosphate binder, lanthanum carbonate.

    PubMed

    Damment, Stephen J P

    2011-01-01

    Studies were conducted to compare the phosphate-binding efficacy of lanthanum carbonate directly with other clinically used phosphate binders and to evaluate any potential adverse pharmacology. To examine the phosphate-binding efficacy, rats with normal renal function and chronic renal failure received lanthanum carbonate, aluminum hydroxide, calcium carbonate, or sevelamer hydrochloride in several experimental models. Lanthanum carbonate and aluminum hydroxide markedly increased excretion of [(32)P]-phosphate in feces and reduced excretion in urine in rats with normal renal function (p < 0.05), indicating good dietary phosphate-binding efficacy. In rats with chronic renal failure, lanthanum carbonate and aluminum hydroxide reduced urinary phosphate excretion to a greater degree and more rapidly than calcium carbonate, which in turn was more effective than sevelamer hydrochloride. The potential to induce adverse pharmacological effects was assessed systematically in mice, rats, and dogs with normal renal function using standard in vivo models. There was no evidence of any adverse secondary pharmacological effects of lanthanum carbonate on the central nervous, cardiovascular, respiratory, or gastrointestinal systems. These studies indicate that lanthanum carbonate is the more potent of the currently available dietary phosphate binders. No adverse secondary pharmacological actions were observed in vivo in a systematic evaluation at high doses.

  15. Pharmacology of the Phosphate Binder, Lanthanum Carbonate

    PubMed Central

    Damment, Stephen JP

    2011-01-01

    Studies were conducted to compare the phosphate-binding efficacy of lanthanum carbonate directly with other clinically used phosphate binders and to evaluate any potential adverse pharmacology. To examine the phosphate-binding efficacy, rats with normal renal function and chronic renal failure received lanthanum carbonate, aluminum hydroxide, calcium carbonate, or sevelamer hydrochloride in several experimental models. Lanthanum carbonate and aluminum hydroxide markedly increased excretion of [32P]-phosphate in feces and reduced excretion in urine in rats with normal renal function (p < 0.05), indicating good dietary phosphate-binding efficacy. In rats with chronic renal failure, lanthanum carbonate and aluminum hydroxide reduced urinary phosphate excretion to a greater degree and more rapidly than calcium carbonate, which in turn was more effective than sevelamer hydrochloride. The potential to induce adverse pharmacological effects was assessed systematically in mice, rats, and dogs with normal renal function using standard in vivo models. There was no evidence of any adverse secondary pharmacological effects of lanthanum carbonate on the central nervous, cardiovascular, respiratory, or gastrointestinal systems. These studies indicate that lanthanum carbonate is the more potent of the currently available dietary phosphate binders. No adverse secondary pharmacological actions were observed in vivo in a systematic evaluation at high doses. PMID:21332344

  16. Regulation of the pentose phosphate cycle

    PubMed Central

    Eggleston, Leonard V.; Krebs, Hans A.

    1974-01-01

    1. A search was made for mechanisms which may exert a `fine' control of the glucose 6-phosphate dehydrogenase reaction in rat liver, the rate-limiting step of the oxidative pentose phosphate cycle. 2. The glucose 6-phosphate dehydrogenase reaction is expected to go virtually to completion because the primary product (6-phosphogluconate lactone) is rapidly hydrolysed and the equilibrium of the joint dehydrogenase and lactonase reactions is in favour of virtually complete formation of phosphogluconate. However, the reaction does not go to completion, because glucose 6-phosphate dehydrogenase is inhibited by NADPH (Neglein & Haas, 1935). 3. Measurements of the inhibition (which is competitive with NADP+) show that at physiological concentrations of free NADP+ and free NADPH the enzyme is almost completely inhibited. This indicates that the regulation of the enzyme activity is a matter of de-inhibition. 4. Among over 100 cell constituents tested only GSSG and AMP counteracted the inhibition by NADPH; only GSSG was highly effective at concentrations that may be taken to occur physiologically. 5. The effect of GSSG was not due to the GSSG reductase activity of liver extracts, because under the test conditions the activity of this enzyme was very weak, and complete inhibition of the reductase by Zn2+ did not abolish the GSSG effect. 6. Preincubation of the enzyme preparation with GSSG in the presence of Mg2+ and NADP+ before the addition of glucose 6-phosphate and NADPH much increased the GSSG effect. 7. Dialysis of liver extracts and purification of glucose 6-phosphate dehydrogenase abolished the GSSG effect, indicating the participation of a cofactor in the action of GSSG. 8. The cofactor removed by dialysis or purification is very unstable. The cofactor could be separated from glucose 6-phosphate dehydrogenase by ultrafiltration of liver homogenates. Some properties of the cofactor are described. 9. The hypothesis that GSSG exerts a fine control of the pentose

  17. Hydrogen Filling Station

    SciTech Connect

    Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

    2010-02-24

    Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. The Freedom CAR and Freedom FUEL initiatives emphasize the importance of hydrogen as a future transportation fuel. Presently, Las Vegas has one hydrogen fueling station powered by natural gas. However, the use of traditional sources of energy to produce hydrogen does not maximize the benefit. The hydrogen fueling station developed under this grant used electrolysis units and solar energy to produce hydrogen fuel. Water and electricity are furnished to the unit and the output is hydrogen and oxygen. Three vehicles were converted to utilize the hydrogen produced at the station. The vehicles were all equipped with different types of technologies. The vehicles were used in the day-to-day operation of the Las Vegas Valley Water District and monitoring was performed on efficiency, reliability and maintenance requirements. The research and demonstration utilized for the reconfiguration of these vehicles could lead to new technologies in vehicle development that could make hydrogen-fueled vehicles more cost effective, economical, efficient and more widely used. In order to advance the development of a hydrogen future in Southern Nevada, project partners recognized a need to bring various entities involved in hydrogen development and deployment together as a means of sharing knowledge and eliminating duplication of efforts. A road-mapping session was held in Las Vegas in June 2006. The Nevada State Energy Office, representatives from DOE, DOE contractors and LANL, NETL, NREL were present. Leadership from the National hydrogen Association Board of Directors also attended. As a result of this session, a roadmap for hydrogen development was created. This roadmap has the ability to become a tool for use by other road-mapping efforts in the hydrogen community. It could also become a standard template for other states or even countries to approach planning for a hydrogen

  18. BISMUTH PHOSPHATE CARRIER PROCESS FOR Pu RECOVERY

    DOEpatents

    Finzel, T.G.

    1959-02-01

    An improvement in the bismuth phosphate carrier precipitation process for recovering plutonium is described. It has been found that a more granular and more easily filterable carrier precipitiite is formed if the addition of the bismuth and phosphate ions is effected by first adding 9/10 of the bismuth ions necessary, then slowly adding all of the source of the phosphate ions to be incorporated in the precipitate, while digesting at 75 C and afterwards incorporating the remainder of the total bismuth ions necessary

  19. Phosphate-bonded calcium aluminate cements

    DOEpatents

    Sugama, T.

    1993-09-21

    A method is described for making a rapid-setting phosphate-bonded cementitious material. A powdered aluminous cement is mixed with an aqueous solution of ammonium phosphate. The mixture is allowed to set to form an amorphous cementitious material which also may be hydrothermally treated at a temperature of from about 120 C to about 300 C to form a crystal-containing phosphate-bonded material. Also described are the cementitious products of this method and the cement composition which includes aluminous cement and ammonium polyphosphate. 10 figures.

  20. Phosphate-bonded calcium aluminate cements

    DOEpatents

    Sugama, Toshifumi

    1993-01-01

    A method is described for making a rapid-setting phosphate-bonded cementitious material. A powdered aluminous cement is mixed with an aqueous solution of ammonium phosphate. The mixture is allowed to set to form an amorphous cementitious material which also may be hydrothermally treated at a temperature of from about 120.degree. C. to about 300.degree. C. to form a crystal-containing phosphate-bonded material. Also described are the cementitious products of this method and the cement composition which includes aluminous cement and ammonium polyphosphate.

  1. Hydrogen energy systems studies

    SciTech Connect

    Ogden, J.M.; Steinbugler, M.; Kreutz, T.

    1998-08-01

    In this progress report (covering the period May 1997--May 1998), the authors summarize results from ongoing technical and economic assessments of hydrogen energy systems. Generally, the goal of their research is to illuminate possible pathways leading from present hydrogen markets and technologies toward wide scale use of hydrogen as an energy carrier, highlighting important technologies for RD and D. Over the past year they worked on three projects. From May 1997--November 1997, the authors completed an assessment of hydrogen as a fuel for fuel cell vehicles, as compared to methanol and gasoline. Two other studies were begun in November 1997 and are scheduled for completion in September 1998. The authors are carrying out an assessment of potential supplies and demands for hydrogen energy in the New York City/New Jersey area. The goal of this study is to provide useful data and suggest possible implementation strategies for the New York City/ New Jersey area, as the Hydrogen Program plans demonstrations of hydrogen vehicles and refueling infrastructure. The authors are assessing the implications of CO{sub 2} sequestration for hydrogen energy systems. The goals of this work are (a) to understand the implications of CO{sub 2} sequestration for hydrogen energy system design; (b) to understand the conditions under which CO{sub 2} sequestration might become economically viable; and (c) to understand design issues for future low-CO{sub 2} emitting hydrogen energy systems based on fossil fuels.

  2. Ultrafine hydrogen storage powders

    DOEpatents

    Anderson, Iver E.; Ellis, Timothy W.; Pecharsky, Vitalij K.; Ting, Jason; Terpstra, Robert; Bowman, Robert C.; Witham, Charles K.; Fultz, Brent T.; Bugga, Ratnakumar V.

    2000-06-13

    A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.

  3. Hydrogen interactions with metals

    NASA Technical Reports Server (NTRS)

    Mclellan, R. B.; Harkins, C. G.

    1975-01-01

    Review of the literature on the nature and extent of hydrogen interactions with metals and the role of hydrogen in metal failure. The classification of hydrogen-containing systems is discussed, including such categories as covalent hydrides, volatile hydrides, polymeric hydrides, and transition metal hydride complexes. The use of electronegativity as a correlating parameter in determining hydride type is evaluated. A detailed study is made of the thermodynamics of metal-hydrogen systems, touching upon such aspects as hydrogen solubility, the positions occupied by hydrogen atoms within the solvent metal lattice, the derivation of thermodynamic functions of solid solutions from solubility data, and the construction of statistical models for hydrogen-metal solutions. A number of theories of hydrogen-metal bonding are reviewed, including the rigid-band model, the screened-proton model, and an approach employing the augmented plane wave method to solve the one-electron energy band problem. Finally, the mechanism of hydrogen embrittlement is investigated on the basis of literature data concerning stress effects and the kinetics of hydrogen transport to critical sites.

  4. The glucose-6-phosphate transport is not mediated by a glucose-6-phosphate/phosphate exchange in liver microsomes.

    PubMed

    Marcolongo, Paola; Fulceri, Rosella; Giunti, Roberta; Margittai, Eva; Banhegyi, Gabor; Benedetti, Angelo

    2012-09-21

    A phosphate-linked antiporter activity of the glucose-6-phosphate transporter (G6PT) has been recently described in liposomes including the reconstituded transporter protein. We directly investigated the mechanism of glucose-6-phosphate (G6P) transport in rat liver microsomal vesicles. Pre-loading with inorganic phosphate (Pi) did not stimulate G6P or Pi microsomal inward transport. Pi efflux from pre-loaded microsomes could not be enhanced by G6P or Pi addition. Rapid G6P or Pi influx was registered by light-scattering in microsomes not containing G6P or Pi. The G6PT inhibitor, S3483, blocked G6P transport irrespectively of experimental conditions. We conclude that hepatic G6PT functions as an uniporter.

  5. [Adsorption of Phosphate by Lanthanum Hydroxide/Natural Zeolite Composites from Low Concentration Phosphate Solution].

    PubMed

    Lin, Jian-wei; Wang, Hong; Zhan, Yan-hui; Chen, Dong-mei

    2016-01-15

    A series of composites of lanthanum hydroxide/natural zeolite ( La( OH) 3/NZ composites) were prepared by co-precipitation method, and these composites were used as adsorbents to remove phosphate from aqueous solution. The phosphate adsorption capacities of different composites prepared with different precipitated pH values were compared in batch mode. The adsorption characteristics of phosphate from aqueous solution on the La(OH)3/NZ composite prepared with the precipitated pH value of 11 was investigated using batch experiments. The results showed that the La(OH)3/NZ composite prepared with the precipitated pH values of 5-7 and 13 had a low adsorption capacity for phosphate in aqueous solution, while the La( OH) 3/NZ composites prepared with the precipitated pH values of 9-12 exhibited much higher phosphate adsorption capacity. The phosphate adsorption capacity of the La (OH)3/NZ composite increased with the increase of the precipitated pH value from 9 to 11, but remained basically unchanged with the increase of the precipitated pH value from 11 to 12. The equilibrium adsorption data of phosphate from aqueous solution on the La ( OH ) 3/NZ composite prepared with the precipitated pH value of 11 could be described by the Langmuir isotherm model with the predicted maximum phosphate adsorption of 44 mg x g(-1) (phosphate solution pH 7 and 30 degrees C). The kinetic data of phosphate adsorption from low concentration phosphate solution on the La(OH)3/NZ composite prepared with the precipitated pH value of 11 well followed a pseudo-second-order model. The presence of Cl- and SO4(2-) in low concentration phosphate solution had no negative effect on phosphate adsorption onto the La(OH)3/NZ composite prepared with the precipitated pH value of 11, while the presence of HCO3- slightly inhibited the adsorption of phosphate. Coexisting humic acid had a negative effect on the adsorption of phosphate at low concentration on the La(OH)3/NZ composite prepared with the

  6. Analysis of hydrogen isotope mixtures

    DOEpatents

    Villa-Aleman, Eliel

    1994-01-01

    An apparatus and method for determining the concentrations of hydrogen isotopes in a sample. Hydrogen in the sample is separated from other elements using a filter selectively permeable to hydrogen. Then the hydrogen is condensed onto a cold finger or cryopump. The cold finger is rotated as pulsed laser energy vaporizes a portion of the condensed hydrogen, forming a packet of molecular hydrogen. The desorbed hydrogen is ionized and admitted into a mass spectrometer for analysis.

  7. Effect of microstructure on the zinc phosphate conversion coatings on magnesium alloy AZ91

    NASA Astrophysics Data System (ADS)

    Van Phuong, Nguyen; Moon, Sungmo; Chang, Doyon; Lee, Kyu Hwan

    2013-01-01

    The effect of the microstructure, particularly of β-Mg17Al12 phase, on the formation and growth of zinc phosphate conversion coatings on magnesium alloy AZ91 (AZ91) was studied. The zinc phosphate coatings were formed on AZ91 with different microstructures produced by heat treatment. The effect of the microstructure on the zinc phosphate coatings were examined using optical microscope (OM), X-ray diffraction (XRD), coatings weight and etching weight balances, scanning electron microscopy (SEM) and salt immersion test. Results showed that as-cast AZ91 contained a high volume fraction of the β-Mg17Al12 phase and it was dissolved into α-Mg phase during heat treatment at 400 °C. The β-phase became center for hydrogen evolution during phosphating reaction (cathodic sites). The decreased volume fraction of the β-phase caused decreasing both coatings weight and etching weight of the phosphating process. However, it increased the crystal size of the coatings and improved corrosion resistance of AZ91 by immersing in 0.5 M NaCl solution. Results also showed that the structure of the zinc phosphate conversion on AZ91 consisted of two layers: an outer crystal Zn3(PO4)2·4H2O (hopeite) and an inner which was mainly composed of MgZn2(PO4)2 and Mg3(PO4)2. A mechanism for the formation of two layers of the coatings was also proposed in this study.

  8. CONCENTRATION AND DECONTAMINATION OF SOLUTIONS CONTAINING PLUTONIUM VALUES BY BISMUTH PHOSPHATE CARRIER PRECIPITATION METHODS

    DOEpatents

    Seaborg, G.T.; Thompson, S.G.

    1960-08-23

    A process is given for isolating plutonium present in the tetravalent state in an aqueous solution together with fission products. First, the plutonium and fission products are coprecipitated on a bismuth phosphate carrier. The precipitate obtained is dissolved, and the plutonium in the solution is oxidized to the hexavalent state (with ceric nitrate, potassium dichromate, Pb/ sub 3/O/sub 4/, sodium bismuthate and/or potassium dichromate). Thereafter a carrier for fission products is added (bismuth phosphate, lanthanum fluoride, ceric phosphate, bismuth oxalate, thorium iodate, or thorium oxalate), and the fission-product precipitation can be repeated with one other of these carriers. After removal of the fission-product-containing precipitate or precipitates. the plutonium in the supernatant is reduced to the tetravalent state (with sulfur dioxide, hydrogen peroxide. or sodium nitrate), and a carrier for tetravalent plutonium is added (lanthanum fluoride, lanthanum hydroxide, lanthanum phosphate, ceric phosphate, thorium iodate, thorium oxalate, bismuth oxalate, or niobium pentoxide). The plutonium-containing precipitate is then dissolved in a relatively small volume of liquid so as to obtain a concentrated solution. Prior to dissolution, the bismuth phosphate precipitates first formed can be metathesized with a mixture of sodium hydroxide and potassium carbonate and plutonium-containing lanthanum fluorides with alkali-metal hydroxide. In the solutions formed from a plutonium-containing lanthanum fluoride carrier the plutonium can be selectively precipitated with a peroxide after the pH was adjusted preferably to a value of between 1 and 2. Various combinations of second, third, and fourth carriers are discussed.

  9. Hydrogen Permeation Resistant Coatings

    SciTech Connect

    KORINKO, PAUL; ADAMS, THAD; CREECH, GREGGORY

    2005-06-15

    As the National Hydrogen Economy continues to develop and evolve the need for structural materials that can resist hydrogen assisted degradation will become critical. To date austenitic stainless steel materials have been shown to be mildly susceptible to hydrogen attack which results in lower mechanical and fracture strengths. As a result, hydrogen permeation barrier coatings may be applied to these ferrous alloys to retard hydrogen ingress. Hydrogen is known to be very mobile in materials of construction. In this study, the permeation resistance of bare stainless steel samples and coated stainless steel samples was tested. The permeation resistance was measured using a modular permeation rig using a pressure rise technique. The coating microstructure and permeation results will be discussed in this document as will some additional testing.

  10. Hydrogenation of carbonaceous materials

    DOEpatents

    Friedman, Joseph; Oberg, Carl L.; Russell, Larry H.

    1980-01-01

    A method for reacting pulverized coal with heated hydrogen-rich gas to form hydrocarbon liquids suitable for conversion to fuels wherein the reaction involves injection of pulverized coal entrained in a minimum amount of gas and mixing the entrained coal at ambient temperature with a separate source of heated hydrogen. In accordance with the present invention, the hydrogen is heated by reacting a small portion of the hydrogen-rich gas with oxygen in a first reaction zone to form a gas stream having a temperature in excess of about 1000.degree. C. and comprising a major amount of hydrogen and a minor amount of water vapor. The coal particles then are reacted with the hydrogen in a second reaction zone downstream of the first reaction zone. The products of reaction may be rapidly quenched as they exit the second reaction zone and are subsequently collected.

  11. The oxygen isotopic composition of phosphate in Elkhorn Slough, California: A tracer for phosphate sources

    NASA Astrophysics Data System (ADS)

    McLaughlin, Karen; Cade-Menun, Barbara J.; Paytan, Adina

    2006-11-01

    Elkhorn Slough, a small seasonal estuary in central California, has been subjected to increased nutrient loading from agricultural and other non-point sources. However, because nutrients do not behave conservatively, tracing nutrient sources and cycling in ecosystems like Elkhorn Slough has been difficult to assess. This is particularly true of phosphorus (P), which has only one stable isotope and cannot be used as an isotopic tracer. However, isotopic fractionation of oxygen in phosphate at surface water temperatures only occurs as a result of enzyme-mediated, biochemical reactions. Thus, if phosphate demand is low relative to input and is not heavily cycled within the ecosystem, the δ18O of phosphate will reflect the isotopic composition of phosphate sources to the system. We utilized the δ18O of dissolved inorganic phosphate (DIP) within the main channel of the slough and nearby Moss Landing Harbor and the δ18O of reactive phosphate from sediment and soil samples collected within the watershed to understand phosphate sources and cycling within Elkhorn Slough. Trends in the δ18O of DIP were seasonally consistent with high values near the mouth reflecting oceanic phosphate (19.1‰-20.3‰), dropping to a minimum value near Hummingbird Island in the central slough (point source, 14.1‰-14.4‰), and increasing again near the head of the slough, reflecting fertilizer input (18.9‰-19.3‰). Reactive phosphate δ18O values extracted from sediments and soils in the watershed range from 10.6‰ in a drainage ditch to 22.3‰ in creek sediments near agriculture fields. The wide range in phosphate δ18O values reflects the variations in land use and application of different fertilizers in this agriculturally dominated landscape. These data suggest that phosphate δ18O can be an effective tool for identifying P sources and understanding phosphate dynamics in estuarine ecosystems.

  12. FRUCTOSE-6-PHOSPHATE REDUCTASE FROM SALMONELLA GALLINARUM

    PubMed Central

    Zancan, Glaci T.; Bacila, Metry

    1964-01-01

    Zancan, Glaci T. (Universidade do Paraná, Curitiba, Paraná, Brazil), and Metry Bacila. Fructose-6-phosphate reductase from Salmonella gallinarum. J. Bacteriol. 87:614–618. 1964.—A fructose-6-phosphate reductase present in cell-free extracts of Salmonella gallinarum was purified approximately 42 times. The optimal pH for this enzyme is 8.0. The enzyme is specific for fructose-6-phosphate and reduced nicotinamide adenine dinucleotide (NADH). The dissociation constants are 1.78 × 10−4m for fructose-6-phosphate and 8.3 × 10−5m for NADH. The Q10, reaction order, and equilibrium constant were determined. The enzyme is sensitive to p-chloromercuribenzoic acid, but not to o-iodosobenzoic acid nor to N-ethylmaleimide. PMID:14127579

  13. Optimization of Porous Pellets for Phosphate Recovery

    EPA Science Inventory

    The poster presents the preliminary adsorption experiment showing that phosphate concentration is decreasing over time as well as presenting the kinetics models that best fit the data collected over 25 days.

  14. Enzyme activity in dialkyl phosphate ionic liquids

    SciTech Connect

    Thomas, M.F.; Dunn, J.; Li, L.-L.; Handley-Pendleton, J. M.; van der lelie, D.; Wishart, J. F.

    2011-12-01

    The activity of four metagenomic enzymes and an enzyme cloned from the straw mushroom, Volvariellavolvacea were studied in the following ionic liquids, 1,3-dimethylimidazolium dimethyl phosphate, [mmim][dmp], 1-ethyl-3-methylimidazolium dimethyl phosphate, [emim][dmp], 1-ethyl-3-methylimidazolium diethyl phosphate, [emim][dep] and 1-ethyl-3-methylimidazolium acetate, [emim][OAc]. Activity was determined by analyzing the hydrolysis of para-nitrobenzene carbohydrate derivatives. In general, the enzymes were most active in the dimethyl phosphate ionic liquids, followed by acetate. Generally speaking, activity decreased sharply for concentrations of [emim][dep] above 10% v/v, while the other ionic liquids showed less impact on activity up to 20% v/v.

  15. 21 CFR 184.1434 - Magnesium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... specifications of the Food Chemicals Codex, 3d Ed. (1981), p. 179, which is incorporated by reference. Magnesium phosphate, tribasic, meets the specifications of the Food Chemicals Codex, 3d Ed. (1981), p. 180, which...

  16. 21 CFR 184.1434 - Magnesium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... the Food Chemicals Codex, 3d Ed. (1981), p. 179, which is incorporated by reference. Magnesium phosphate, tribasic, meets the specifications of the Food Chemicals Codex, 3d Ed. (1981), p. 180, which...

  17. Issues of natural radioactivity in phosphates

    SciTech Connect

    Schnug, E.; Haneklaus, S.; Schnier, C.; Scholten, L.C.

    1996-12-31

    The fertilization of phosphorus (P) fertilizers is essential in agricultural production, but phosphates contain in dependence on their origin different amounts of trace elements. The problem of cadmium (Cd) loads and other heavy metals is well known. However, only a limited number of investigations examined the contamination of phosphates with the two heaviest metals, uranium (U) and thorium (Th), which are radioactive. Also potassium (K) is lightly radioactive. Measurements are done n the radioactivity content of phosphates, P fertilizers and soils. The radiation doses to workers and public as well as possible contamination of soils from phosphate rock or fertilizer caused by these elements or their daughter products is of interest with regard to radiation protection. The use of P fertilizers is necessary for a sustainable agriculture, but it involves radioactive contamination of soils. The consequences of the use of P fertilizers is discussed, also with regard to existing and proposed legislation. 11 refs., 2 figs., 7 tabs.

  18. HYDROGEN ATOM THERMAL PARAMETERS.

    PubMed

    JENSEN, L H; SUNDARALINGAM, M

    1964-09-11

    Isotropic hydrogen atom thermal parameters for N,N'- hexamethylenebispropionamide have been determined. They show a definite trend and vary from approximately the same as the mean thermal parameters for atoms other than hydrogen near the center of the molecule to appreciably greater for atoms near the end. The indicated trend for this compound, along with other results, provides the basis for a possible explanation of the anomolous values that have been obtained for hydrogen atom thermal parameters.

  19. National hydrogen energy roadmap

    SciTech Connect

    None, None

    2002-11-01

    This report was unveiled by Energy Secretary Spencer Abraham in November 2002 and provides a blueprint for the coordinated, long-term, public and private efforts required for hydrogen energy development. Based on the results of the government-industry National Hydrogen Energy Roadmap Workshop, held in Washington, DC on April 2-3, 2002, it displays the development of a roadmap for America's clean energy future and outlines the key barriers and needs to achieve the hydrogen vision goals defined in

  20. Hydrogen storage container

    DOEpatents

    Wang, Jy-An John; Feng, Zhili; Zhang, Wei

    2017-02-07

    An apparatus and system is described for storing high-pressure fluids such as hydrogen. An inner tank and pre-stressed concrete pressure vessel share the structural and/or pressure load on the inner tank. The system and apparatus provide a high performance and low cost container while mitigating hydrogen embrittlement of the metal tank. System is useful for distributing hydrogen to a power grid or to a vehicle refueling station.

  1. Hydrogen rich gas generator

    NASA Technical Reports Server (NTRS)

    Houseman, J. (Inventor)

    1976-01-01

    A process and apparatus is described for producing a hydrogen rich gas by introducing a liquid hydrocarbon fuel in the form of a spray into a partial oxidation region and mixing with a mixture of steam and air that is preheated by indirect heat exchange with the formed hydrogen rich gas, igniting the hydrocarbon fuel spray mixed with the preheated mixture of steam and air within the partial oxidation region to form a hydrogen rich gas.

  2. Hydrogen energy systems studies

    SciTech Connect

    Ogden, J.M.; Steinbugler, M.; Dennis, E.

    1995-09-01

    For several years, researchers at Princeton University`s Center for Energy and Environmental Studies have carried out technical and economic assessments of hydrogen energy systems. Initially, we focussed on the long term potential of renewable hydrogen. More recently we have explored how a transition to renewable hydrogen might begin. The goal of our current work is to identify promising strategies leading from near term hydrogen markets and technologies toward eventual large scale use of renewable hydrogen as an energy carrier. Our approach has been to assess the entire hydrogen energy system from production through end-use considering technical performance, economics, infrastructure and environmental issues. This work is part of the systems analysis activity of the DOE Hydrogen Program. In this paper we first summarize the results of three tasks which were completed during the past year under NREL Contract No. XR-11265-2: in Task 1, we carried out assessments of near term options for supplying hydrogen transportation fuel from natural gas; in Task 2, we assessed the feasibility of using the existing natural gas system with hydrogen and hydrogen blends; and in Task 3, we carried out a study of PEM fuel cells for residential cogeneration applications, a market which might have less stringent cost requirements than transportation. We then give preliminary results for two other tasks which are ongoing under DOE Contract No. DE-FG04-94AL85803: In Task 1 we are assessing the technical options for low cost small scale production of hydrogen from natural gas, considering (a) steam reforming, (b) partial oxidation and (c) autothermal reforming, and in Task 2 we are assessing potential markets for hydrogen in Southern California.

  3. Hydrogen powered bus

    SciTech Connect

    2011-04-07

    Take a ride on a new type of bus, fueled by hydrogen. These hydrogen taxis are part of a Department of Energy-funded deployment of hydrogen powered vehicles and fueling infrastructure at nine federal facilities across the country to demonstrate this market-ready advanced technology. Produced and leased by Ford Motor Company , they consist of one 12- passenger bus and one nine-passenger bus. More information at: http://go.usa.gov/Tgr

  4. HYDROGEN ISOTOPE TARGETS

    DOEpatents

    Ashley, R.W.

    1958-08-12

    The design of targets for use in the investigation of nuclear reactions of hydrogen isotopes by bombardment with accelerated particles is described. The target con struction eomprises a backing disc of a metal selected from the group consisting of molybdenunn and tungsten, a eoating of condensed titaniunn on the dise, and a hydrogen isotope selected from the group consisting of deuterium and tritium absorbed in the coatiag. The proeess for preparing these hydrogen isotope targets is described.

  5. Hydrogen powered bus

    ScienceCinema

    None

    2016-07-12

    Take a ride on a new type of bus, fueled by hydrogen. These hydrogen taxis are part of a Department of Energy-funded deployment of hydrogen powered vehicles and fueling infrastructure at nine federal facilities across the country to demonstrate this market-ready advanced technology. Produced and leased by Ford Motor Company , they consist of one 12- passenger bus and one nine-passenger bus. More information at: http://go.usa.gov/Tgr

  6. Optimization of Porous Pellets for Phosphate Recovery ...

    EPA Pesticide Factsheets

    The poster presents the preliminary adsorption experiment showing that phosphate concentration is decreasing over time as well as presenting the kinetics models that best fit the data collected over 25 days. The purpose of this project is to find a better material for adsorption of phosphate from water treatment facilities. The material is made into pellets which allow for adsorption and are easier to remove from the system when capacity is reached.

  7. Advanced Polyelectrolyte-Modified Zinc Phosphate Coatings

    DTIC Science & Technology

    1995-09-01

    September 1995 4 . TITLE AND SUBTITLE Advanced Polyelectrolyte-Modified Zinc Phosphate Coatings 6. AUTHOR(S) T. Sugama, N. Carciello and C.I...ADVANCED POLYELECTROLYTE-MODIFIED ZINC PHOSPHATE COATINGS ft PAL - ?y- 3 $> Phase I. Annual Report (October 1994 - September 1995) ^ by T. Sugama, N...and Cr-nitrates, 3 ) the substitution of environmentally safe polyelectrolyte for the conventional chrome-based compounds in the rinsing process, 4

  8. Conductive dense hydrogen.

    PubMed

    Eremets, M I; Troyan, I A

    2011-11-13

    Molecular hydrogen is expected to exhibit metallic properties under megabar pressures. This metal is predicted to be superconducting with a very high critical temperature, T(c), of 200-400 K, and it may acquire a new quantum state as a metallic superfluid and a superconducting superfluid. It may potentially be recovered metastably at ambient pressures. However, experiments carried out at low temperatures, T<100 K, showed that at record pressures of 300 GPa, hydrogen remains in the molecular insulating state. Here we report on the transformation of normal molecular hydrogen at room temperature (295 K) to a conductive and metallic state. At 200 GPa the Raman frequency of the molecular vibron strongly decreased and the spectral width increased, evidencing a strong interaction between molecules. Deuterium behaved similarly. Above 220 GPa, hydrogen became opaque and electrically conductive. At 260-270 GPa, hydrogen transformed into a metal as the conductance of hydrogen sharply increased and changed little on further pressurizing up to 300 GPa or cooling to at least 30 K; and the sample reflected light well. The metallic phase transformed back at 295 K into molecular hydrogen at 200 GPa. This significant hysteresis indicates that the transformation of molecular hydrogen into a metal is accompanied by a first-order structural transition presumably into a monatomic liquid state. Our findings open an avenue for detailed and comprehensive studies of metallic hydrogen.

  9. Thin film hydrogen sensor

    DOEpatents

    Lauf, Robert J.; Hoffheins, Barbara S.; Fleming, Pamela H.

    1994-01-01

    A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed.

  10. Hydrogen ion microlithography

    DOEpatents

    Tsuo, Y. Simon; Deb, Satyen K.

    1990-01-01

    Disclosed is a hydrogen ion microlithography process for use in microelectronic fabrication and semiconductor device processing. The process comprises the steps of providing a single layer of either an amorphous silicon or hydrogenated amorphous silicon material. A pattern is recorded in a selected layer of amorphous silicon or hydrogenated amorphous silicon materials by preferentially implanting hydrogen ions therein so as to permit the selected layer to serve as a mask-resist wafer suitable for subsequent development and device fabrication. The layer is developed to provide a surface pattern therein adaptable for subsequent use in microelectronic fabrication and semiconductor device processing.

  11. Hydrogen ion microlithography

    DOEpatents

    Tsuo, Y.S.; Deb, S.K.

    1990-10-02

    Disclosed is a hydrogen ion microlithography process for use in microelectronic fabrication and semiconductor device processing. The process comprises the steps of providing a single layer of either an amorphous silicon or hydrogenated amorphous silicon material. A pattern is recorded in a selected layer of amorphous silicon or hydrogenated amorphous silicon materials by preferentially implanting hydrogen ions therein so as to permit the selected layer to serve as a mask-resist wafer suitable for subsequent development and device fabrication. The layer is developed to provide a surface pattern therein adaptable for subsequent use in microelectronic fabrication and semiconductor device processing. 6 figs.

  12. Hydrogen energy creeps forward

    NASA Astrophysics Data System (ADS)

    Graff, G.

    1983-05-01

    There have been hopeful forecasts of a 21st centry 'hydrogen economy' in which cheap hydrogen fuel would finally end mankind's dependence on petroleum fuels. The present investigation is concerned with developments related to the possible realization of such forecasts. One vital factor involves the feasibility to provide hydrogen at competitive prices for use as a fuel. Industrial hydrogen is too expensive for applications involving a competition with currently used common fuels. A number of investigations are being conducted in the U.S. and in other countries with the aim to develop an economical process by which hydrogen can be obtained from water. There exist already a great number of feasible different approaches for obtaining hydrogen on the basis of the decomposition of the water molecule. However, problems still to be solved are related to the development of any of these approaches to the point of economic viability. Another crucial factor concerns the strorage of hydrogen. Automakers are testing hydrogen-powered cars in which hydrogen is stored in liquid form or with the aid of metal hydrides.

  13. Conductive dense hydrogen

    NASA Astrophysics Data System (ADS)

    Eremets, M. I.; Troyan, I. A.

    2011-12-01

    Molecular hydrogen is expected to exhibit metallic properties under megabar pressures. This metal is predicted to be superconducting with a very high critical temperature, Tc, of 200-400 K (ref. ), and it may acquire a new quantum state as a metallic superfluid and a superconducting superfluid. It may potentially be recovered metastably at ambient pressures. However, experiments carried out at low temperatures, T<100 K (refs , ), showed that at record pressures of 300 GPa, hydrogen remains in the molecular insulating state. Here we report on the transformation of normal molecular hydrogen at room temperature (295 K) to a conductive and metallic state. At 200 GPa the Raman frequency of the molecular vibron strongly decreased and the spectral width increased, evidencing a strong interaction between molecules. Deuterium behaved similarly. Above 220 GPa, hydrogen became opaque and electrically conductive. At 260-270 GPa, hydrogen transformed into a metal as the conductance of hydrogen sharply increased and changed little on further pressurizing up to 300 GPa or cooling to at least 30 K and the sample reflected light well. The metallic phase transformed back at 295 K into molecular hydrogen at 200 GPa. This significant hysteresis indicates that the transformation of molecular hydrogen into a metal is accompanied by a first-order structural transition presumably into a monatomic liquid state. Our findings open an avenue for detailed and comprehensive studies of metallic hydrogen.

  14. Sustainable hydrogen production

    SciTech Connect

    Block, D.L.; Linkous, C.; Muradov, N.

    1996-01-01

    This report describes the Sustainable Hydrogen Production research conducted at the Florida Solar Energy Center (FSEC) for the past year. The report presents the work done on the following four tasks: Task 1--production of hydrogen by photovoltaic-powered electrolysis; Task 2--solar photocatalytic hydrogen production from water using a dual-bed photosystem; Task 3--development of solid electrolytes for water electrolysis at intermediate temperatures; and Task 4--production of hydrogen by thermocatalytic cracking of natural gas. For each task, this report presents a summary, introduction/description of project, and results.

  15. Hydrogen diffusion fuel cell

    SciTech Connect

    Struthers, R.C.

    1987-08-04

    This patent describes a fuel cell comprising; an elongate case; a thin, flat separator part of non-porous, di-electric, hydrogen-permeable material between the ends of and extending transverse the case and defining anode and cathode chambers; a thin, flat anode part of non-porous, electric conductive, hydrogen-permeable metallic material in the anode chamber in flat contacting engagement with and co-extensive with the separator part; a flat, porous, catalytic cathode part in the cathode chamber in contacting engagement with the separator part; hydrogen supply means supplying hydrogen to the anode part within the anode chamber; oxidant gas supply means supplying oxidant gas to the cathode part within the cathode chamber; and, an external electric circuit connected with and between the anode and cathode parts. The anode part absorbs and is permeated by hydrogen supplied to it and diffuses the hydrogen to hydrogen ions and free electrons; the free electrons in the anode part are conducted from the anode part into the electric circuit to perform useful work. The hydrogen ions in the anode part move from the anode part through the separator part and into the cathode part. Free electrons are conducted by the electric circuit into the cathode part. The hydrogen ions, oxidant gas and free electrons in the cathode part react and generate waste, heat and water.

  16. Isolation of phosphate-solubilizing fungus and its application in solubilization of rock phosphates.

    PubMed

    Wu, Yingben; He, Yuelin; Yin, Hongmei; Chen, Wei; Wang, Zhen; Xu, Lijuan; Zhang, Aiqun

    2012-12-01

    Microorganisms have been obtained to improve the agronomic value of rock phosphates (RPs), but the phosphorus solubilizing rate by these approaches is very slow. It is important to explore a high-efficient phosphate-solubilizing approach with a kind of microorganisms. This study aimed to isolate a high-efficient level of phosphate-solubilizing fungus from rhizosphere soil samples phosphate mines (Liuyang County, Hunan province, China) and apply it in solubilization of RPs. The experiments were carried out by the conventional methodology for morphological and biochemical fungus characterization and the analysis of 18s rRNA sequence. Then the effects of time, temperature, initial pH, phosphorus (P) sources, RPs concentration, shaking speed and silver ion on the content of soluble P released by this isolate were investigated. The results showed this isolate was identified as Galactomyces geotrichum P14 (P14) in GeneBank and the maximum amount of soluble P was 1252.13 mg L(-1) within 40 h in a modified phosphate growth agar's medium (without agar) where contained tricalcium phosphate (TCP) as sole phosphate source. At the same time, it could release phosphate and solubilize various rock phosphates. The isolated fungus can convert RPs from insoluble form into plant available form and therefore it hold great potential for biofertilizers to enhance soil fertility and promote plant growth.

  17. Using phosphate supplementation to reverse hypophosphatemia and phosphate depletion in neurological disease and disturbance.

    PubMed

    Håglin, Lena

    2016-06-01

    Hypophosphatemia (HP) with or without intracellular depletion of inorganic phosphate (Pi) and adenosine triphosphate has been associated with central and peripheral nervous system complications and can be observed in various diseases and conditions related to respiratory alkalosis, alcoholism (alcohol withdrawal), diabetic ketoacidosis, malnutrition, obesity, and parenteral and enteral nutrition. In addition, HP may explain serious muscular, neurological, and haematological disorders and may cause peripheral neuropathy with paresthesias and metabolic encephalopathy, resulting in confusion and seizures. The neuropathy may be improved quickly after proper phosphate replacement. Phosphate depletion has been corrected using potassium-phosphate infusion, a treatment that can restore consciousness. In severe ataxia and tetra paresis, complete recovery can occur after adequate replacement of phosphate. Patients with multiple risk factors, often with a chronic disease and severe HP that contribute to phosphate depletion, are at risk for neurologic alterations. To predict both risk and optimal phosphate replenishment requires assessing the nutritional status and risk for re-feeding hypophosphatemia. The strategy for correcting HP depends on the severity of the underlying disease and the goal for re-establishing a phosphate balance to limit the consequences of phosphate depletion.

  18. Anesthesia cutoff phenomenon: Interfacial hydrogen bonding

    SciTech Connect

    Chiou, J.S.; Ma, S.M.; Kamaya, H.; Ueda, I. )

    1990-05-04

    Anesthesia cutoff refers to the phenomenon of loss of anesthetic potency in a homologous series of alkanes and their derivatives when their sizes become too large. In this study, hydrogen bonding of 1-alkanol series (ethanol to eicosanol) to dipalmitoyl-L-alpha-phosphatidylcholine (DPPC) was studied by Fourier transform infrared spectroscopy (FTIR) in DPPC-D2O-in-CCl4 reversed micelles. The alkanols formed hydrogen bonds with the phosphate moiety of DPPC and released the DPPC-bound deuterated water, evidenced by increases in the bound O-H stretching signal of the alkanol-DPPC complex and also in the free O-D stretching band of unbound D2O. These effects increased according to the elongation of the carbon chain of 1-alkanols from ethanol (C2) to 1-decanol (C10), but suddenly almost disappeared at 1-tetradecanol (C14). Anesthetic potencies of these alkanols, estimated by the activity of brine shrimps, were linearly related to hydrogen bond-breaking activities below C10 and agreed with the FTIR data in the cutoff at C10.

  19. Hydrogen exchange in nucleosides and nucleotides. Measurement of hydrogen exchange by stopped-flow and ultraviolet difference spectroscopy.

    PubMed

    Cross, D G

    1975-01-28

    Time-dependent changes in the ultraviolet absorbance of the adenine chromophore are observed in the stopped-flow spectrophotometer when adenosine and its analogs are rapidly transferred from protium oxide to deuterium oxide. These absorbance changes are shown to result from hydrogen exchange in the exocyclic amino groups of the purine ribonucleosides by using derivatives of adenosine in which methyl groups replace exchangeable hydrogens and by showing that the general characteristics of hydrogen exchange in adenosine analogs agree with those found here. A study of the dependence of hydrogen-exchange rate constants on adenosine, AMP, and phosphate concentration showed there is a second-order dependence on AMP concentration which is primarily due to intermolecular catalysis by the phosphate group of the nucleotide. The deuterium oxide perturbation difference spectrum, obtained at equilibrium, was found to contain two components that result from blue shifts of the adenine chromophore absorbance: (1) a shift cause by the substitution of deuterium for protium in the ring (N1) nitrogen and exocyclic nitrogens, and (2) a shift associated with a change in the polarizability of the medium. Since the theory of solvent perturbation, which is used to measure the relative "exposure" of chromophores in macromolecules, assumes that the spectral shifts observed are solely due to (2) above, the use of deuterium oxide as a measure of chromophore exposure to perturbants the size of water must be reexamined.

  20. 75 FR 16509 - Certain Potassium Phosphate Salts From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-01

    ... COMMISSION Certain Potassium Phosphate Salts From China AGENCY: United States International Trade Commission... phosphate salts, provided for in subheadings 2835.24.00 and 2835.39.10 of the Harmonized Tariff Schedule of... ``phosphate salts''). Certain Potassium Phosphate Salts from the People's Republic of China:...

  1. 75 FR 42783 - Certain Potassium Phosphate Salts From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-22

    ... COMMISSION Certain Potassium Phosphate Salts From China Determinations On the basis of the record \\1... of certain potassium phosphate salts, specifically anhydrous dipotassium phosphate (``DKP'') and... publishing the notice in the Federal Register of April 1, 2010 (Certain Potassium Phosphate Salts from...

  2. The evolution of the marine phosphate reservoir.

    PubMed

    Planavsky, Noah J; Rouxel, Olivier J; Bekker, Andrey; Lalonde, Stefan V; Konhauser, Kurt O; Reinhard, Christopher T; Lyons, Timothy W

    2010-10-28

    Phosphorus is a biolimiting nutrient that has an important role in regulating the burial of organic matter and the redox state of the ocean-atmosphere system. The ratio of phosphorus to iron in iron-oxide-rich sedimentary rocks can be used to track dissolved phosphate concentrations if the dissolved silica concentration of sea water is estimated. Here we present iron and phosphorus concentration ratios from distal hydrothermal sediments and iron formations through time to study the evolution of the marine phosphate reservoir. The data suggest that phosphate concentrations have been relatively constant over the Phanerozoic eon, the past 542 million years (Myr) of Earth's history. In contrast, phosphate concentrations seem to have been elevated in Precambrian oceans. Specifically, there is a peak in phosphorus-to-iron ratios in Neoproterozoic iron formations dating from ∼750 to ∼635 Myr ago, indicating unusually high dissolved phosphate concentrations in the aftermath of widespread, low-latitude 'snowball Earth' glaciations. An enhanced postglacial phosphate flux would have caused high rates of primary productivity and organic carbon burial and a transition to more oxidizing conditions in the ocean and atmosphere. The snowball Earth glaciations and Neoproterozoic oxidation are both suggested as triggers for the evolution and radiation of metazoans. We propose that these two factors are intimately linked; a glacially induced nutrient surplus could have led to an increase in atmospheric oxygen, paving the way for the rise of metazoan life.

  3. AMENDING SOILS WITH PHOSPHATE AS MEANS TO ...

    EPA Pesticide Factsheets

    Ingested soil and surface dust may be important contributors to elevated blood lead (Pb) levels in children exposed to Pb contaminated environments. Mitigation strategies have typically focused on excavation and removal of the contaminated soil. However, this is not always feasible for addressing widely disseminated contamination in populated areas often encountered in urban environments. The rationale for amending soils with phosphate is that phosphate will promote formation of highly insoluble Pb species (e.g., pyromorphite minerals) in soil, which will remain insoluble after ingestion and, therefore, inaccessible to absorption mechanisms in the gastrointestinal tract (GIT). Amending soil with phosphate might potentially be used in combination with other methods that reduce contact with or migration of contaminated soils, such as covering the soil with a green cap such as sod, clean soil with mulch, raised garden beds, or gravel. These remediation strategies may be less expensive and far less disruptive than excavation and removal of soil. This review evaluates evidence for efficacy of phosphate amendments for decreasing soil Pb bioavailability. Evidence is reviewed for (1) physical and chemical interactions of Pb and phosphate that would be expected to influence bioavailability, (2) effects of phosphate amendments on soil Pb bioaccessibility (i.e., predicted solubility of Pb in the GIT), and (3) results of bioavailability bioassays of amended soils con

  4. Phosphate rock costs, prices and resources interaction.

    PubMed

    Mew, M C

    2016-01-15

    This article gives the author's views and opinions as someone who has spent his working life analyzing the international phosphate sector as an independent consultant. His career spanned two price hike events in the mid-1970's and in 2008, both of which sparked considerable popular and academic interest concerning adequacy of phosphate rock resources, the impact of rising mining costs and the ability of mankind to feed future populations. An analysis of phosphate rock production costs derived from two major industry studies performed in 1983 and 2013 shows that in nominal terms, global average cash production costs increased by 27% to $38 per tonne fob mine in the 30 year period. In real terms, the global average cost of production has fallen. Despite the lack of upward pressure from increasing costs, phosphate rock market prices have shown two major spikes in the 30 years to 2013, with periods of less volatility in between. These price spike events can be seen to be related to the escalating investment cost required by new mine capacity, and as such can be expected to be repeated in future. As such, phosphate rock price volatility is likely to have more impact on food prices than rising phosphate rock production costs. However, as mining costs rise, recycling of P will also become increasingly driven by economics rather than legislation.

  5. Capturing phosphates with iron enhanced sand filtration.

    PubMed

    Erickson, Andrew J; Gulliver, John S; Weiss, Peter T

    2012-06-01

    Most treatment practices for urban runoff capture pollutants such as phosphorus by either settling or filtration while dissolved phosphorus, typically as phosphates, is untreated. Dissolved phosphorus, however, represents an average 45% of total phosphorus in stormwater runoff and can be more than 95%. In this study, a new stormwater treatment technology to capture phosphate, called the Minnesota Filter, is introduced. The filter comprises iron filings mixed with sand and is tested for phosphate removal from synthetic stormwater. Results indicate that sand mixed with 5% iron filings captures an average of 88% phosphate for at least 200 m of treated depth, which is significantly greater than a sand filter without iron filings. Neither incorporation of iron filings into a sand filter nor capture of phosphates onto iron filings in column experiments had a significant effect on the hydraulic conductivity of the filter at mixtures of 5% or less iron by weight. Field applications with up to 10.7% iron were operated over 1 year without detrimental effects upon hydraulic conductivity. A model is applied and fit to column studies to predict the field performance of iron-enhanced sand filters. The model predictions are verified through the predicted performance of the filters in removing phosphates in field applications. Practical applications of the technology, both existing and proposed, are presented so stormwater managers can begin implementation.

  6. Maize endophytic bacteria as mineral phosphate solubilizers.

    PubMed

    de Abreu, C S; Figueiredo, J E F; Oliveira, C A; Dos Santos, V L; Gomes, E A; Ribeiro, V P; Barros, B A; Lana, U G P; Marriel, I E

    2017-02-16

    In the present study, we demonstrated the in vitro activity of endophytic phosphate-solubilizing bacteria (PSB). Fifty-five endophytic PSB that were isolated from sap, leaves, and roots of maize were tested for their ability to solubilize tricalcium phosphate and produce organic acid. Partial sequencing of the 16S rRNA-encoding gene showed that the isolates were from the genus Bacillus and different species of Enterobacteriaceae. The phosphate solubilization index on solid medium and phosphate solubilization in liquid medium varied significantly among the isolates. There was a statistically significant difference (P ≤ 0.05) for both, the values of phosphate-solubilizing activity and pH of the growth medium, among the isolates. Pearson correlation was statistically significant (P ≤ 0.05) between P-solubilization and pH (R = -0.38), and between the gluconic acid production and the lowering of the pH of the liquid medium at 6 (R = 0.28) and 9 days (R = 0.39). Gluconic acid production was prevalent in all the PSB studied, and Bacillus species were most efficient in solubilizing phosphate. This is the first report on the characterization of bacterial endophytes from maize and their use as potential biofertilizers. In addition, this may provide an alternative strategy for improving the phosphorus acquisition efficiency of crop plants in tropical soils.

  7. Hydrogen as an energy carrier

    SciTech Connect

    Winter, C.J.; Nitsch, J

    1988-01-01

    The book deals with the possibilities of an energetic utilization of hydrogen. This energy carrier can be produced from the unlimited energy sources solar energy, wind energy and hydropower, and from nuclear energy. It is also in a position to one day supplement or supersede the fossil energy carriers oil, coal and gas. Contents: Significance and Use of Hydrogen: Energy Supply Structures and the Importance of Gaseous Energy Carriers. Technologies for the Energetic Use of Hydrogen. Hydrogen as Raw Material. Safety Aspects of Hydrogen Energy. Production of Hydrogen from Nonfossil Primary Energy: Photovoltaic Electricity Generation. Thermo-mechanical Electricity Generation. Water Splitting Methods. Selected Hydrogen Production Systems. Storage, Transport and Distribution of Hydrogen. Design of a Future Hydrogen Energy Economy: Potential and Chances of Hydrogen. Hydrogen in a Future Energy Economy. Concepts for the Introduction of Nonfossil Hydrogen. Energy-economic Conditions and the Cooperation with Hydrogen Producing Countries. Index.

  8. Structure and Evolution of the Archaeal Lipid Synthesis Enzyme sn-Glycerol-1-phosphate Dehydrogenase*

    PubMed Central

    Carbone, Vincenzo; Schofield, Linley R.; Zhang, Yanli; Sang, Carrie; Dey, Debjit; Hannus, Ingegerd M.; Martin, William F.; Sutherland-Smith, Andrew J.; Ronimus, Ron S.

    2015-01-01

    One of the most critical events in the origins of cellular life was the development of lipid membranes. Archaea use isoprenoid chains linked via ether bonds to sn-glycerol 1-phosphate (G1P), whereas bacteria and eukaryotes use fatty acids attached via ester bonds to enantiomeric sn-glycerol 3-phosphate. NAD(P)H-dependent G1P dehydrogenase (G1PDH) forms G1P and has been proposed to have played a crucial role in the speciation of the Archaea. We present here, to our knowledge, the first structures of archaeal G1PDH from the hyperthermophilic methanogen Methanocaldococcus jannaschii with bound substrate dihydroxyacetone phosphate, product G1P, NADPH, and Zn2+ cofactor. We also biochemically characterized the enzyme with respect to pH optimum, cation specificity, and kinetic parameters for dihydroxyacetone phosphate and NAD(P)H. The structures provide key evidence for the reaction mechanism in the stereospecific addition for the NAD(P)H-based pro-R hydrogen transfer and the coordination of the Zn2+ cofactor during catalysis. Structure-based phylogenetic analyses also provide insight into the origins of G1PDH. PMID:26175150

  9. Structure of octaheme cytochrome c nitrite reductase from Thioalkalivibrio nitratireducens in a complex with phosphate

    SciTech Connect

    Trofimov, A. A.; Polyakov, K. M.; Boiko, K. M.; Filimonenkov, A. A.; Dorovatovskii, P. V.; Tikhonova, T. V.; Popov, V. O.; Koval'chuk, M. V.

    2010-01-15

    Octaheme cytochrome c nitrite reductase from Thioalkalivibrio nitratireducens (TvNiR) catalyzes the reduction of nitrite and hydroxylamine to ammonia. The structures of the free enzyme and of the enzyme in complexes with the substrate (nitrite ion) and the inhibitor (azide ion) have been solved previously. In this study we report the structures of the oxidized complex of TvNiR with phosphate and of this complex reduced by europium(II) chloride (1.8- and 2.0-A resolution, the R factors are 15.9 and 16.7%, respectively) and the structure of the enzyme in the complex with cyanide (1.76-A resolution, the R factor is 16.5%), which was prepared by soaking a crystal of the oxidized phosphate complex of TvNiR. In the active site of the enzyme, the phosphate ion binds to the iron ion of the catalytic heme and to the side chains of the catalytic residues Arg131, Tyr303, and His361. The cyanide ion is coordinated to the heme-iron ion and is hydrogen bonded to the residue His361. In the structure of reduced TvNiR, the phosphate ion is bound in the same manner as in the structure of oxidized TvNiR, and the nine{sub c}oordinated europium ion is located on the surface of one of the crystallographically independent monomers of the enzyme.

  10. FT-Raman and high-pressure infrared spectroscopic studies of dicalcium phosphate dihydrate (CaHPO 4·2H 2O) and anhydrous dicalcium phosphate (CaHPO 4)

    NASA Astrophysics Data System (ADS)

    Xu, Jingwei; Butler, Ian S.; Gilson, Denis F. R.

    1999-12-01

    The FT-Raman spectra and the pressure dependence of the infrared spectra of the hydrated and anhydrous forms of dicalcium phosphate, CaHPO 4 · 2H 2O and CaHPO 4, have been studied. The hydrated salt exhibits a phase transition at 21 kbar (1.0 kbar=0.1 Gpa) but no high pressure transition was observed for anhydrous dicalcium phosphate. The O-H stretching frequencies of the water molecules in CaHPO 4·2H 2O all showed negative pressure dependences and correlate with the O ⋯O distances. The PO-H stretch increased with increasing pressure, indicating a strong hydrogen bond. The frequencies associated with the phosphate ion showed a normal pressure dependence.

  11. A general entry to linear, dendritic and branched thiourea-linked glycooligomers as new motifs for phosphate ester recognition in water.

    PubMed

    Jiménez Blanco, José L; Bootello, Purificación; Ortiz Mellet, Carmen; Gutiérrez Gallego, Ricardo; García Fernández, José M

    2004-01-07

    A blockwise iterative synthetic strategy for the preparation of linear, dendritic and branched full-carbohydrate architectures has been developed by using sugar azido(carbamate) isothiocyanates as key templates; the presence of intersaccharide thiourea bridges provides anchoring points for hydrogen bond-directed molecular recognition of phosphate esters in water.

  12. Combination moisture and hydrogen getter

    DOEpatents

    Harrah, L.A.; Mead, K.E.; Smith, H.M.

    1983-09-20

    A combination moisture and hydrogen getter comprises (a) a moisture getter comprising a readily oxidizable metal; and (b) a hydrogen getter comprising (1) a solid acetylenic compound and (2) a hydrogenation catalyst. A method of scavenging moisture from a closed container uses the combination moisture and hydrogen getter to irreversibly chemically reduce the moisture and chemically bind the resultant hydrogen.

  13. Combination moisture and hydrogen getter

    DOEpatents

    Harrah, Larry A.; Mead, Keith E.; Smith, Henry M.

    1983-01-01

    A combination moisture and hydrogen getter comprises (a) a moisture getter comprising a readily oxidizable metal; and (b) a hydrogen getter comprising (i) a solid acetylenic compound and (ii) a hydrogenation catalyst. A method of scavenging moisture from a closed container uses the combination moisture and hydrogen getter to irreversibly chemically reduce the moisture and chemically bind the resultant hydrogen.

  14. Combination moisture and hydrogen getter

    DOEpatents

    Not Available

    1982-04-29

    A combination moisture and hydrogen getter comprises (a) a moisture getter comprising a readily oxidizable metal; and (b) a hydrogen getter comprising (i) a solid acetylenic compound and (ii) a hydrogenation catalyst. A method of scavenging moisture from a closed container uses the combination moisture and hydrogen getter to irreversibly chemically reduce the moisture and chemically bind the reusltant hydrogen.

  15. Enhancing hydrogen spillover and storage

    DOEpatents

    Yang, Ralph T.; Li, Yingwel; Lachawiec, Jr., Anthony J.

    2011-05-31

    Methods for enhancing hydrogen spillover and storage are disclosed. One embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the hydrogen receptor to ultrasonification as doping occurs. Another embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the doped hydrogen receptor to a plasma treatment.

  16. Enhancing hydrogen spillover and storage

    DOEpatents

    Yang, Ralph T; Li, Yingwei; Lachawiec, Jr., Anthony J

    2013-02-12

    Methods for enhancing hydrogen spillover and storage are disclosed. One embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the hydrogen receptor to ultrasonication as doping occurs. Another embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the doped hydrogen receptor to a plasma treatment.

  17. Effect of the calcium to phosphate ratio of tetracalcium phosphate on the properties of calcium phosphate bone cement.

    PubMed

    Burguera, Elena F; Guitian, Francisco; Chow, Laurence C

    2008-06-01

    Six different tetracalcium phosphate (TTCP) products were synthesized by solid state reaction at high temperature by varying the overall calcium to phosphate ratio of the synthesis mixture. The objective was to evaluate the effect of the calcium to phosphate ratio on a TTCP-dicalcium phosphate dihydrate (DCPD) cement. The resulting six TTCP-DCPD cement mixtures were characterized using X-ray diffraction analysis, scanning electron microscopy, and pH measurements. Setting times and compressive strength (CS) were also measured. Using the TTCP product with a Ca/P ratio of 2.0 resulted in low strength values (25.61 MPa) when distilled water was used as the setting liquid, even though conversion to hydroxyapatite was not prevented, as confirmed by X-ray diffraction. The suspected CaO presence in this TTCP may have affected the cohesiveness of the cement mixture but not the cement setting reaction, however no direct evidence of CaO presence was found. Lower Ca/P ratio products yielded cements with CS values ranging from 46.7 MPa for Ca/P ratio of 1.90 to 38.32 MPa for Ca/P ratio of 1.85. When a dilute sodium phosphate solution was used as the setting liquid, CS values were 15.3% lower than those obtained with water as the setting liquid. Setting times ranged from 18 to 22 min when water was the cement liquid and from 7 to 8 min when sodium phosphate solution was used, and the calcium to phosphate ratio did not have a marked effect on this property.

  18. Process for exchanging hydrogen isotopes between gaseous hydrogen and water

    SciTech Connect

    Hindin, Saul G.; Roberts, George W.

    1980-08-12

    A process for exchanging isotopes of hydrogen, particularly tritium, between gaseous hydrogen and water is provided whereby gaseous hydrogen depeleted in tritium and liquid or gaseous water containing tritium are reacted in the presence of a metallic catalyst.

  19. Anaerobic energy-yielding reaction associated with transhydrogenation from glycerol 3-phosphate to fumarate by an Escherichia coli system.

    PubMed

    Miki, K; Lin, E C

    1975-12-01

    A particulate subcellular fraction from Escherichia coli K-12 induced in anaerobic sn-glycerol 3-phosphate (G3P) dehydrogenase and fumarate reductase can catalyze under anaerobic conditions the transfer of hydrogens from G3P to fumarate, with attendant generation of high-energy phosphate. The phsophorylation process is more sensitive than the transhydrogenation process to inhibition by the detergent Triton X-100. The same is true with respect to sensitivity to sodium azide, carbonyl cyanide m-chlorophenylhydrazone and N,N'-dicyclohexylcarbodiimide. Such a preparation derived from cells with beta-galactoside permease can accumulate thiomethyl beta-D-galactoside anaerobically, and the accumulation can be stimulated twofold by adding G3P and fumarate. Mutants lacking the membrane-associated Mg2+-dependent adenosine triphosphatase cannot grow anaerobically on glycerol with fumarate as the hydrogen acceptor, although they can grow aerobically on glycerol alone.

  20. Anaerobic energy-yielding reaction associated with transhydrogenation from glycerol 3-phosphate to fumarate by an Escherichia coli system.

    PubMed Central

    Miki, K; Lin, E C

    1975-01-01

    A particulate subcellular fraction from Escherichia coli K-12 induced in anaerobic sn-glycerol 3-phosphate (G3P) dehydrogenase and fumarate reductase can catalyze under anaerobic conditions the transfer of hydrogens from G3P to fumarate, with attendant generation of high-energy phosphate. The phsophorylation process is more sensitive than the transhydrogenation process to inhibition by the detergent Triton X-100. The same is true with respect to sensitivity to sodium azide, carbonyl cyanide m-chlorophenylhydrazone and N,N'-dicyclohexylcarbodiimide. Such a preparation derived from cells with beta-galactoside permease can accumulate thiomethyl beta-D-galactoside anaerobically, and the accumulation can be stimulated twofold by adding G3P and fumarate. Mutants lacking the membrane-associated Mg2+-dependent adenosine triphosphatase cannot grow anaerobically on glycerol with fumarate as the hydrogen acceptor, although they can grow aerobically on glycerol alone. PMID:127785

  1. Crystal and molecular structure of the antimalarial agent 4-(tert-butyl)-2-(tert-butylaminomethyl)-6-(4-chlorophenyl)phenol dihydrogen phosphate (WR 194,965 phosphate).

    PubMed Central

    Karle, J M; Karle, I L

    1988-01-01

    WR 194,965 phosphate, a new antimalarial agent containing a biphenyl ring structure active against chloroquine-resistant Plasmodium falciparum, crystallized in ionic form with a positive charge on the quaternary nitrogen atom. The oxygen and nitrogen atoms of WR 194,965 were hydrogen bonded to the same phosphate group. The nitrogen atom was also hydrogen bonded to a second phosphate group. The phosphate ions formed discrete clusters of four phosphate moieties. The phosphate clusters contained fourfold inversion symmetry. The intramolecular N-O distance in WR 194,965 of 3.073 A (1 A = 0.1 nm) was close to the reported values for N-O distances in the active cinchona alkaloids and may be important for activity. A comparison of the crystalline structure of WR 194,965 with those of mefloquine and quinidine sulfate demonstrated that the regions of the three molecules in the vicinity of the aliphatic nitrogen atom and the oxygen atom superimpose. Much of the remainder of the WR 194,965 molecule spatially overlapped with the combined three-dimensional space defined by quinidine and mefloquine. The crystallographic parameters were: C21H29ClNO+.H2PO4-; Mr = 443.9; symmetry of unit cell, tetragonal; space group, I41/a; parameters of unit cell, a = b = 24.305 +/- 0.002 A, c = 17.556 +/- 0.003 A; V (volume of unit cell) = 10370.9 A3; Z (number of molecules per unit cell) = 16; Dx (calculated density) = 1.137 g cm-3; source of radiation, CuK alpha (lambda = 1.54178 A); mu (absorption coefficient) = 21.3 cm-1; F(000) (sum of atomic scattering factors at zero scattering angle) = 3,440; room temperature; final R = 8.2% for 2,508 reflections with [F0] greater than 3 sigma. PMID:3288114

  2. Membrane for hydrogen recovery from streams containing hydrogen sulfide

    SciTech Connect

    Agarwal, Pradeep K.

    2007-01-16

    A membrane for hydrogen recovery from streams containing hydrogen sulfide is provided. The membrane comprises a substrate, a hydrogen permeable first membrane layer deposited on the substrate, and a second membrane layer deposited on the first layer. The second layer contains sulfides of transition metals and positioned on the on a feed side of the hydrogen sulfide stream. The present invention also includes a method for the direct decomposition of hydrogen sulfide to hydrogen and sulfur.

  3. Ion chromatographic separation and determination of phosphate and arsenate in water and hair.

    PubMed

    Antony, P J; Karthikeyan, S; Iyer, C S P

    2002-02-15

    A simple and sensitive method for the sequential determination of phosphate and arsenate was developed based on initial ion chromatographic separation followed by detection as the ion-association complex formed by heteropolymolybdophosphate and arsenate with bismuth. With 200 microl sample injection and separation on a AS4A-SC column using an eluent of 3.5 mM sodium hydrogen carbonate-10.0 mM sodium hydroxide, the detection limits which are calculated as the concentration equivalent to twice the baseline noise, were found to be 0.8 microg/l and 4.2 microg/l for P and As, respectively. Spiked samples were analyzed and recoveries were found to be satisfactory in the range of 95-105% for phosphate and 90-105% for arsenate. Samples of water and hair were analyzed by the proposed method.

  4. Synthetic molecular receptors for phosphates and phosphonates in sol-gel materials

    SciTech Connect

    Sasaki, D.Y.; Alam, T.M.; Assink, R.A.

    1997-12-01

    Synthetic receptors for phosphates and phosphonates have been generated in SiO{sub 2} xerogels via a surface molecular imprinting method. The monomer 3-trimethoxy silylpropyl-1-guanidinium chloride (1) was developed to prepare receptor sites capable of binding with substrates through a combination of ionic and hydrogen bond interactions. HPLC studies and adsorption isotherms performed in water have found that molecular imprinting affords a significant improvement in K{sub a} for phosphate and phosphonate affinity over a randomly functionalized xerogel. Affinities for these materials offer about an order of magnitude improvement in affinity compared to analogous small molecule receptors reported in the literature. The xerogel matrix appears to participate in host-guest interactions through anionic charge buildup with increasing pH.

  5. Injectable Hydrogel Composite Based Gelatin-PEG and Biphasic Calcium Phosphate Nanoparticles for Bone Regeneration

    NASA Astrophysics Data System (ADS)

    Van, Thuy Duong; Tran, Ngoc Quyen; Nguyen, Dai Hai; Nguyen, Cuu Khoa; Tran, Dai Lam; Nguyen, Phuong Thi

    2016-05-01

    Gelatin hydrogels have recently attracted much attention for tissue regeneration because of their biocompatibility. In this study, we introduce poly-ethylene glycol (PEG)—grafted gelatin containing tyramine moieties which have been utilized for in situ enzyme-mediated hydrogel preparation. The hydrogel can be used to load nanoparticles of biphasic calcium phosphate, a mixture of hydroxyapatite and β-tricalcium phosphate, and forming injectable bio-composites. Proton nuclear magnetic resonance (1H NMR) spectra indicated that tyramine-functionalized polyethylene glycol-nitrophenyl carbonate ester was conjugated to the gelatin. The hydrogel composite was rapidly formed in situ (within a few seconds) in the presence of horseradish peroxidase and hydrogen peroxide. In vitro experiments with bio-mineralization on the hydrogel composite surfaces was well-observed after 2 weeks soaking in simulated body fluid solution. The obtained results indicated that the hydrogel composite could be a potential injectable material for bone regeneration.

  6. Effects of amylose and phosphate monoester on aggregation structures of heat-moisture treated potato starches.

    PubMed

    Zhang, Binjia; Zhao, Yue; Li, Xiaoxi; Zhang, Panfeng; Li, Lin; Xie, Fengwei; Chen, Ling

    2014-03-15

    For three cultivars of potato starch, heat-moisture treatment (HMT) displayed an influence on the aggregation structures at different scale levels. With HMT, the granular morphology of potato starch granules remained similarly, and an increase in the average repeat distance of semi-crystalline lamellae was observed. The crystalline structure and birefringence were also affected. Moreover, the polymorphic transformation (B → A+B) could be related to dehydration, whereas the decrease in the degree of crystallinity might be resulted from the rupture of hydrogen bonds. Interestingly, amylose could act as the backbone of the aggregation structures of potato starch to provide resistance to HMT, but phosphate monoester could promote the destruction during HMT. In addition, compared with amylose, phosphate monoester played a more significant role in changing the average repeat distance of semi-crystalline lamellae (long period) during HMT.

  7. Hydrogen production by photoprocesses

    SciTech Connect

    Bull, S.R.

    1988-10-01

    The concept of producing hydrogen fuel from sunlight is inherently appealing and has captured the imagination of many scientists, innovators, and decision makers. In fact, there are numerous routes to produce hydrogen from solar energy through photoprocesses. Generally, they can be grouped into four processes: electric conversion, thermal conversion, indirect conversion, and direct photon conversion. 12 refs., 11 figs.

  8. Hydrogen from solar energy

    SciTech Connect

    Nix, R.G.

    1984-07-01

    This paper describes those portions of the Photo/Thermochemical Research Program that possibly apply to the production of hydrogen from sources such as water or hydrogen sulfide. That research centers around understanding high flux solids decomposition reactions and how to best exploit photoreactions so the energy contained in the entire solar spectrum is used. 2 references, 4 figures.

  9. Hydrogen Conference: Workshop Proceedings

    SciTech Connect

    1989-10-01

    Hydrogen is currently a major chemical/fuel with long-term energy system benefits that may impact the industry's physical and economic well-being. EPRI's recent hydrogen conference concluded that to be competitive, the production cost must take into account environmental and end-use efficiency benefits.

  10. Hydrogen evolution reaction catalyst

    DOEpatents

    Subbaraman, Ram; Stamenkovic, Vojislav; Markovic, Nenad; Tripkovic, Dusan

    2016-02-09

    Systems and methods for a hydrogen evolution reaction catalyst are provided. Electrode material includes a plurality of clusters. The electrode exhibits bifunctionality with respect to the hydrogen evolution reaction. The electrode with clusters exhibits improved performance with respect to the intrinsic material of the electrode absent the clusters.

  11. Thick film hydrogen sensor

    DOEpatents

    Hoffheins, Barbara S.; Lauf, Robert J.

    1995-01-01

    A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors.

  12. Thick film hydrogen sensor

    DOEpatents

    Hoffheins, B.S.; Lauf, R.J.

    1995-09-19

    A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors. 8 figs.

  13. Hydrogen in amorphous silicon

    SciTech Connect

    Peercy, P. S.

    1980-01-01

    The structural aspects of amorphous silicon and the role of hydrogen in this structure are reviewed with emphasis on ion implantation studies. In amorphous silicon produced by Si ion implantation of crystalline silicon, the material reconstructs into a metastable amorphous structure which has optical and electrical properties qualitatively similar to the corresponding properties in high-purity evaporated amorphous silicon. Hydrogen studies further indicate that these structures will accomodate less than or equal to 5 at.% hydrogen and this hydrogen is bonded predominantly in a monohydride (SiH/sub 1/) site. Larger hydrogen concentrations than this can be achieved under certain conditions, but the excess hydrogen may be attributed to defects and voids in the material. Similarly, glow discharge or sputter deposited amorphous silicon has more desirable electrical and optical properties when the material is prepared with low hydrogen concentration and monohydride bonding. Results of structural studies and hydrogen incorporation in amorphous silicon were discussed relative to the different models proposed for amorphous silicon.

  14. Travel with hydrogen

    NASA Astrophysics Data System (ADS)

    Hermans, L. J. F. Jo

    2017-03-01

    In the field of transportation, hydrogen does not have a particularly glorious history. Just think of the dozens of hydrogen airships destroyed by fire over the years, with the Hindenburg disaster in 1937 as the most famous example. Now H2 is trying a comeback on the road, often in combination with a fuel cell and an electric motor to power the car.

  15. Transmission electron microscopic study on setting mechanism of tetracalcium phosphate/dicalcium phosphate anhydrous-based calcium phosphate cement.

    PubMed

    Chen, Wen-Cheng; Lin, Jiin-Huey Chern; Ju, Chien-Ping

    2003-03-15

    This work studied transmission electron microscopy on the setting mechanism of tetracalcium phosphate/dicalcium phosphate anhydrous (TTCP/DCPA)-based calcium phosphate cement. The results suggest the process for early-stage apatite formation as the follows: when TTCP and DCPA powders are mixed in the phosphate-containing solution, the TTCP powder is quickly dissolved because of its higher solubility in the acidic solution. The dissolved calcium and phosphate ions, along with those ions readily in the solution, are then precipitated predominantly on the surface of DCPA particles. Few apatite crystals were observed on the surface of TTCP powder. During the later stages of reaction, the extensive growth of apatite crystals/whiskers, with a calcium/phosphorous ratio very close to that of hydroxyapatite, effectively linked DCPA particles together and also bridged the larger TTCP particles. It is suggested that, when the large TTCP particles are locked in place by the bridging apatite crystals/whiskers, the CPC is set and would not dissolve when immersed in Hanks' solution after 20-40 min of reaction.

  16. Inhibition of hydrogen embrittlement of Ni-Ti superelastic alloy in acid fluoride solution by hydrogen peroxide addition.

    PubMed

    Yokoyama, Ken'ichi; Yazaki, Yushin; Sakai, Jun'ichi

    2011-09-01

    Inhibition of the hydrogen embrittlement of Ni-Ti superelastic alloy in an acidulated phosphate fluoride (APF) solution has been attempted by adding various amounts of H(2)O(2). In a 0.2% APF solution, hydrogen absorption is markedly inhibited by adding H(2)O(2), although corrosion is slightly enhanced by increasing the amount of added H(2)O(2). By adding a small amount of H(2)O(2) (0.001 M), in the early stage of immersion, hydrogen embrittlement is inhibited and corrosion is only slightly enhanced. Upon adding H(2)O(2), it appears that the dominant cathodic reactions change from hydrogen evolution to H(2)O(2) reduction reactions, or the surface conditions of the alloy are changed by H(2)O(2) with a high oxidation capability, thereby inhibiting hydrogen absorption. The present study clearly indicates that infinitesimal addition of H(2)O(2) into acid fluoride solutions is effective for the inhibition of the hydrogen embrittlement of the alloy.

  17. Hydrogen utilization and alternatives

    NASA Technical Reports Server (NTRS)

    Manvi, R.; Caputo, R.; Fujita, T.

    1975-01-01

    The historical uses of hydrogen are described along with potential new uses which could develop as a result of the diminishing supply of conventional fossil fuels such as natural gas. A perspective view of hydrogen, both as a chemical feedstock and as a fuel, is necessary to understand its relationship to the overall national energy projections. These projections, which show energy usage in terms of use sectors, forms of energy, and sources of energy, do not specifically identify hydrogen as a component of the energy system. By superimposing the traditional roles upon the new opportunities for hydrogen on the energy projections, the role of hydrogen and future projections is developed within the context of the national energy projections. Use, supply, and other factors affecting application are interrelated and are discussed.

  18. Atomic hydrogen rocket engine

    NASA Technical Reports Server (NTRS)

    Etters, R. D.; Flurchick, K.

    1981-01-01

    A rocket using atomic hydrogen propellant is discussed. An essential feature of the proposed engine is that the atomic hydrogen fuel is used as it is produced, thus eliminating the necessity of storage. The atomic hydrogen flows into a combustion chamber and recombines, producing high velocity molecular hydrogen which flows out an exhaust port. Standard thermodynamics, kinetic theory and wall recombination cross-sections are used to predict a thrust of approximately 1.4 N for a RF hydrogen flow rate of 4 x 10 to the 22nd/sec. Specific impulses are nominally from 1000 to 2000 sec. It is predicted that thrusts on the order of one Newton and specific impulses of up to 2200 sec are attainable with nominal RF discharge fluxes on the order of 10 to the 22nd atoms/sec; further refinements will probably not alter these predictions by more than a factor of two.

  19. Hydrogen Fuel Quality

    SciTech Connect

    Rockward, Tommy

    2012-07-16

    For the past 6 years, open discussions and/or meetings have been held and are still on-going with OEM, Hydrogen Suppliers, other test facilities from the North America Team and International collaborators regarding experimental results, fuel clean-up cost, modeling, and analytical techniques to help determine levels of constituents for the development of an international standard for hydrogen fuel quality (ISO TC197 WG-12). Significant progress has been made. The process for the fuel standard is entering final stages as a result of the technical accomplishments. The objectives are to: (1) Determine the allowable levels of hydrogen fuel contaminants in support of the development of science-based international standards for hydrogen fuel quality (ISO TC197 WG-12); and (2) Validate the ASTM test method for determining low levels of non-hydrogen constituents.

  20. Challenges in hydrogen storage

    NASA Astrophysics Data System (ADS)

    Schüth, F.

    2009-09-01

    Hydrogen is one possible medium for energy storage and transportation in an era beyond oil. Hydrogen appears to be especially promising in connection with electricity generation in polymer electrolyte membrane (PEM) fuel cells in cars. However, before such technologies can be implemented on a larger scale, satisfactory solutions for on-board storage of hydrogen are required. This is a difficult task due to the low volumetric and gravimetric storage density on a systems level which can be achieved so far. Possibilities include cryogenic storage as liquid hydrogen, high pressure storage at 70 MPa, (cryo)adsorptive storage, or various chemical methods of binding and releasing hydrogen. This survey discusses the different options and the associated advantages and disadvantages.

  1. Hydrogen Peroxide Concentrator

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F.

    2007-01-01

    A relatively simple and economical process and apparatus for concentrating hydrogen peroxide from aqueous solution at the point of use have been invented. The heart of the apparatus is a vessel comprising an outer shell containing tubular membranes made of a polymer that is significantly more permeable by water than by hydrogen peroxide. The aqueous solution of hydrogen peroxide to be concentrated is fed through the interstitial spaces between the tubular membranes. An initially dry sweep gas is pumped through the interiors of the tubular membranes. Water diffuses through the membranes and is carried away as water vapor mixed into the sweep gas. Because of the removal of water, the hydrogen peroxide solution flowing from the vessel at the outlet end is more concentrated than that fed into the vessel at the inlet end. The sweep gas can be air, nitrogen, or any other gas that can be conveniently supplied in dry form and does not react chemically with hydrogen peroxide.

  2. Electrochemical Hydrogen Compressor

    SciTech Connect

    Lipp, Ludwig

    2016-01-21

    Conventional compressors have not been able to meet DOE targets for hydrogen refueling stations. They suffer from high capital cost, poor reliability and pose a risk of fuel contamination from lubricant oils. This project has significantly advanced the development of solid state hydrogen compressor technology for multiple applications. The project has achieved all of its major objectives. It has demonstrated capability of Electrochemical Hydrogen Compression (EHC) technology to potentially meet the DOE targets for small compressors for refueling sites. It has quantified EHC cell performance and durability, including single stage hydrogen compression from near-atmospheric pressure to 12,800 psi and operation of EHC for more than 22,000 hours. Capital cost of EHC was reduced by 60%, enabling a path to meeting the DOE cost targets for hydrogen compression, storage and delivery ($2.00-2.15/gge by 2020).

  3. Phosphate closes the solution structure of the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) from Mycobacterium tuberculosis.

    PubMed

    Borges, Júlio C; Pereira, José H; Vasconcelos, Igor B; dos Santos, Giovanni C; Olivieri, Johnny R; Ramos, Carlos H I; Palma, Mário S; Basso, Luiz A; Santos, Diógenes S; de Azevedo, Walter F

    2006-08-15

    The 5-enolpyruvylshikimate-3-phosphate synthase catalyses the sixth step of the shikimate pathway that is responsible for synthesizing aromatic compounds and is absent in mammals, which makes it a potential target for drugs development against microbial diseases. Here, we report the phosphate binding effects at the structure of the 5-enolpyruvylshikimate-3-phosphate synthase from Mycobacterium tuberculosis. This enzyme is formed by two similar domains that close on each other induced by ligand binding, showing the occurrence of a large conformation change. We have monitored the phosphate binding effects using analytical ultracentrifugation, small angle X-ray scattering and, circular dichroism techniques. The low resolution results showed that the enzyme in the presence of phosphate clearly presented a more compact structure. Thermal-induced unfolding experiments followed by circular dichroism suggested that phosphate rigidified the enzyme. Summarizing, these data suggested that the phosphate itself is able to induce conformational change resulting in the closure movement in the M. tuberculosis 5-enolpyruvylshikimate-3-phosphate synthase.

  4. Synthesis, structure, and spectroscopic characterization of three uranyl phosphates with unique structural units

    SciTech Connect

    Wylie, Ernest M.; Dawes, Colleen M.; Burns, Peter C.

    2012-12-15

    Single crystals of Zn{sub 4}(OH){sub 2}[(UO{sub 2})(PO{sub 4}){sub 2}(OH){sub 2}(H{sub 2}O)] (UZnP), Cs[(UO{sub 2})(HPO{sub 4})NO{sub 3}] (UCsP), and In{sub 3}[(UO{sub 2}){sub 2}(PO{sub 4}){sub 4}OH(H{sub 2}O){sub 6}].2H{sub 2}O (UInP) were obtained from hydrothermal reactions and have been structurally and chemically characterized. UZnP crystallizes in space group Pbcn, a=8.8817(7), b=6.6109(5), c=19.569(1) A; UCsP crystallizes in P-1, a=7.015(2), b=7.441(1), c=9.393(2) A, {alpha}=72.974(2), {beta}=74.261(2), {gamma}=79.498(2); and UInP crystallizes in P-1, a=7.9856(5), b=9.159(1), c=9.2398(6) A {alpha}=101.289(1), {beta}=114.642(1), {gamma}=99.203(2). The U{sup 6+} cations are present as (UO{sub 2}){sup 2+} uranyl ions coordinated by five O atoms to give pentagonal bipyramids. The structural unit in UZnP is a finite cluster containing a uranyl pentagonal bipyramid that shares corners with two phosphate tetrahedra. The structural unit in UCsP is composed of uranyl pentagonal bipyramids with one chelating nitrate group that are linked into chains by three bridging hydrogen phosphate tetrahedra. In UInP, the structural unit contains pairs of edge-sharing uranyl pentagonal bipyramids with two chelating phosphate tetrahedra that are linked into chains through two bridging phosphate tetrahedra. Indium octahedra link these uranyl phosphate chains into a 3-dimensional framework. All three compounds exhibit unique structural units that deviate from the typical layered structures observed in uranyl phosphate solid-state chemistry. - Graphical abstract: Three new uranyl phosphates with unique structural units are reported. Black-Small-Square Highlights: Black-Right-Pointing-Pointer Three new uranyl phosphates have been synthesized hydrothermally. Black-Right-Pointing-Pointer Single crystal analyses reveal unique structural units. Black-Right-Pointing-Pointer The dimensionality of these compounds deviate from typical U{sup 6+} layered structures.

  5. An introduction to hydrogen energy

    NASA Astrophysics Data System (ADS)

    Shpilrain, E. E.; Malyshenko, S. P.; Kuleshov, G. G.

    Problems related to the use of hydrogen as a source of energy are reviewed. In particular, attention is given to the physicochemical properties of hydrogen; methods of hydrogen production, including traditional and newly developed processes; and storage, transportation and distribution of hydrogen gas. Results of technical and cost-effectiveness analyses are presented for various hydrogen power systems; the principal applications of hydrogen power are discussed.

  6. Hydrogen Data Book from the Hydrogen Analysis Resource Center

    DOE Data Explorer

    The Hydrogen Data Book contains a wide range of factual information on hydrogen and fuel cells (e.g., hydrogen properties, hydrogen production and delivery data, and information on fuel cells and fuel cell vehicles), and it also provides other data that might be useful in analyses of hydrogen infrastructure in the United States (e.g., demographic data and data on energy supply and/or infrastructure). ItÆs made available from the Hydrogen Analysis Resource Center along with a wealth of related information. The related information includes guidelines for DOE Hydrogen Program Analysis, various calculator tools, a hydrogen glossary, related websites, and analysis tools relevant to hydrogen and fuel cells. [From http://hydrogen.pnl.gov/cocoon/morf/hydrogen

  7. Measuring Hydrogen Concentrations in Metals

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1985-01-01

    Commercial corrosion-measurement system adapted to electrochemical determination of hydrogen concentrations in metals. New technique based on diffusion of hydrogen through foil specimen of metal. In sample holder, hydrogen produced on one side of foil, either by corrosion reaction or by cathodic current. Hydrogen diffused through foil removed on other side by constant anode potential, which leads to oxidation of hydrogen to water. Anode current is measure of concentration of hydrogen diffusing through foil. System used to study hydrogen uptake, hydrogen elimination by baking, effect of heat treatment, and effect of electroplating on high-strength steels.

  8. Iron-based phosphate binders: do they offer advantages over currently available phosphate binders?

    PubMed Central

    Negri, Armando Luis; Ureña Torres, Pablo Antonio

    2015-01-01

    Increased cardiovascular morbidity and mortality has been associated with the hyperphosphatemia seen in patients with end-stage chronic kidney disease (CKD). Oral phosphate binders are prescribed in these patients to prevent intestinal absorption of dietary phosphate and reduce serum phosphate. In prospective observational cohorts they have shown to decrease all-cause and cardiovascular mortality risk. Different problems have been associated with currently available phosphate binders as positive calcium balance and impaired outcomes with calcium-based phosphate binders or increased costs with non-calcium-based phosphate binders. Iron-based phosphate binders represent a new class of phosphate binders. Several iron-based phosphate binders have undergone testing in clinical trials. Ferric citrate (JTT-751) and sucroferric oxyhydroxide (PA21) are the two iron-based binders that have passed to the clinical field after being found safe and effective in decreasing serum phosphate. Iron from ferric citrate is partially absorbed compared to sucroferric oxyhydroxide. Ferric citrate usage could result in an important reduction in erythropoiesis-stimulating agent (ESA) and IV iron usage, resulting in significant cost savings. Sucroferric oxyhydroxide was effective in lowering serum phosphorus in dialysis patients with similar efficacy to sevelamer carbonate, but with lower pill burden, and better adherence. Ferric citrate may be more suited for the treatment of chronic hyperphosphatemia in CKD patients requiring iron supplements but its use may have been hampered by potential aluminum overload, as citrate facilitates its absorption; sucroferric oxyhydroxide may be more suited for hyperphosphatemic CKD patients not requiring iron supplementation, with low pill burden. PMID:25815172

  9. Phosphate fertilizer from sewage sludge ash (SSA).

    PubMed

    Franz, M

    2008-01-01

    Ashes from sewage sludge incineration are rich in phosphorus content, ranging between 4% and 9%. Due to the current methods of disposal used for these ashes, phosphorus, which is a valuable plant nutrient, is removed from biological cycling. This article proposes the possible three-stage processing of SSA, whereby more than 90% of phosphorus can be extracted to make an adequate phosphate fertilizer. SSA from two Swiss sewage sludge incinerators was used for laboratory investigations. In an initial step, SSA was leached with sulfuric acid using a liquid-to-solid ratio of 2. The leaching time and pH required for high phosphorus dissolution were determined. Inevitably, dissolution of heavy metals takes place that would contaminate the fertilizer. Thus in a second step, leach solution has to be purified by having the heavy metals removed. Both ion exchange using chelating resins and sulfide precipitation turned out to be suitable for removing critical Cu, Ni and Cd. Thirdly, phosphates were precipitated as calcium phosphates with lime water. The resulting phosphate sludge was dewatered, dried and ground to get a powdery fertilizer whose efficacy was demonstrated by plant tests in a greenhouse. By measuring the weight of plants after 6 weeks of growth, fertilized in part with conventional phosphate fertilizer, fertilizer made from SSA was proven to be equal in its plant uptake efficiency.

  10. Biochemical effects of oral sodium phosphate.

    PubMed

    DiPalma, J A; Buckley, S E; Warner, B A; Culpepper, R M

    1996-04-01

    Our objective was to monitor serum and urine biochemical changes after oral sodium phosphate cleansing in a prospectively designed study. The study subjects were seven healthy, asymptomatic adults. Sodium phosphate 45 ml diluted in 45 ml water was given orally at baseline and 12 hr later. Calcium, ionized calcium, phosphorus, sodium, potassium, creatinine, and PTH were analyzed at 2, 4, 6, 9, 12, 14, 16, 18, 21 and 24 hr after the first challenge. Urinary calcium, phosphorus, sodium, potassium, and cyclic AMP were analyzed at baseline and every 2 hr after oral sodium phosphate. Blood pressure, pulse, and respiratory rate were recorded every 2 hr and symptom questionnaires using visual analog scales were completed. A marked rise in phosphorus (peak range 3.6-12.4 mg/dl, P < 0.001) and falls in calcium (P < 0.001) and ionized calcium (P < 0.001) were seen. Rises seen in PTH and urinary cAMP confirmed the physiologic significance of the biochemical effect. There were no significant changes in other serum and urine laboratory or clinical assessments. Reported significant symptoms included bloating, cramps, abdominal pain, and nausea. Significant hypocalcemia and hyperphosphatemia after oral sodium phosphate raises concern about its use in normal individuals. Oral sodium phosphate should not be administered in patients with cardiopulmonary, renal, or hepatic disease.

  11. Photoelectrochemical hydrogen production

    SciTech Connect

    Rocheleau, R.; Misra, A.; Miller, E.

    1998-08-01

    A significant component of the US DOE Hydrogen Program is the development of a practical technology for the direct production of hydrogen using a renewable source of energy. High efficiency photoelectrochemical systems to produce hydrogen directly from water using sunlight as the energy source represent one of the technologies identified by DOE to meet this mission. Reactor modeling and experiments conducted at UH provide strong evidence that direct solar-to-hydrogen conversion efficiency greater than 10% can be expected using photoelectrodes fabricated from low-cost, multijunction (MJ) amorphous silicon solar cells. Solar-to-hydrogen conversion efficiencies as high as 7.8% have been achieved using a 10.3% efficient MJ amorphous silicon solar cell. Higher efficiency can be expected with the use of higher efficiency solar cells, further improvement of the thin film oxidation and reduction catalysts, and optimization of the solar cell for hydrogen production rather than electricity production. Hydrogen and oxygen catalysts developed under this project are very stable, exhibiting no measurable degradation in KOH after over 13,000 hours of operation. Additional research is needed to fully optimize the transparent, conducting coatings which will be needed for large area integrated arrays. To date, the best protection has been afforded by wide bandgap amorphous silicon carbide films.

  12. PRODUCTION OF PLUTONIUM FLUORIDE FROM BISMUTH PHOSPHATE PRECIPITATE CONTAINING PLUTONIUM VALUES

    DOEpatents

    Brown, H.S.; Bohlmann, E.G.

    1961-05-01

    A process is given for separating plutonium from fission products present on a bismuth phosphate carrier. The dried carrier is first treated with hydrogen fluoride at between 500 and 600 deg C whereby some fission product fluorides volatilize away from plutonium tetrafluoride, and nonvolatile fission product fluorides are formed then with anhydrous fluorine at between 400 and 500 deg C. Bismuth and plutonium distill in the form of volatile fluorides away from the nonvolatile fission product fluorides. The bismuth and plutonium fluorides are condensed at below 290 deg C.

  13. [Phosphate solubilization of Aureobasidium pullulan F4 and its mechanism].

    PubMed

    Wang, Dan; Zhan, Jing; Sun, Qing-Ye

    2014-07-01

    The Aureobasidium pullulans F4 was isolated from the rhizosphere of Hippochaete ramosissimum in Tongguanshan mine wasteland in Tongling City, Anhui Province. Liquid culture was conducted with four kinds of phosphorus sources, calcium phosphate, aluminum phosphate, ferric phosphate and rock phosphate to determine the pH, dissolved phosphorus, phosphorus in the bacteria and organic acid in the solution. The results showed that the phosphate solubilization by A. pullulans F4 varied with phosphorus sources, which decreased in order of aluminum phosphate > ferric phosphate, calcium phosphate > rock phosphate. The amounts of dissolved phosphorus in the different treatments were all higher than 200 mg x L(-1). The pH of the medium dropped immediately in 48 h, and the aluminum phosphate and ferric phosphate treatments showed a greater decrease in pH than the calcium phosphate and rock phosphate treatments. The organic acid synthesized by A. pullulans F4 included oxalic acid, citric acid and tartaric acid, and oxalic acid, among which oxalic acid was the dominated component. The phosphate dissolving capacity of A. pullulans F4 showed no significant correlation with organic acid, but significantly correlated with the pH. The available phosphorus was significantly improved with the combined application of A. pullulans F4 and glucose, suggesting A. pullulans F4 was a potent candidate for remediation of copper mine wastelands.

  14. Color Changing Hydrogen Sensors

    NASA Technical Reports Server (NTRS)

    Roberson, Luke B.; Williams, Martha; Captain, Janine E.; Mohajeri, Nahid; Raissi, Ali

    2015-01-01

    During the Space Shuttle Program, one of the most hazardous operation that occurred was the loading of liquid hydrogen (LH2) during fueling operations of the spacecraft. Due to hydrogen's low explosive limit, any amount leaked could lead to catastrophic event. Hydrogen's chemical properties make it ideal as a rocket fuel; however, the fuel is deemed unsafe for most commercial use because of the inability to easily detect the gas leaking. The increased use of hydrogen over traditional fossil fuels would reduce greenhouse gases and America's dependency on foreign oil. Therefore a technology that would improve safety at NASA and in the commercial sector while creating a new economic sector would have a huge impact to NASA's mission. The Chemochromic Detector for sensing hydrogen gas leakage is a color-changing detector that is useful in any application where it is important to know not only the presence but also the location of the hydrogen gas leak. This technology utilizes a chemochromicpigment and polymer matrix that can be molded or spun into rigid or pliable shapes useable in variable temperature environments including atmospheres of inert gas, hydrogen gas, or mixtures of gases. A change in color of the detector material indicates where gaseous hydrogen leaks are occurring. The irreversible sensor has a dramatic color change from beige to dark grey and remains dark grey after exposure. A reversible pigment changes from white to blue in the presence of hydrogen and reverts back to white in the presence of oxygen. Both versions of the sensor's pigments were comprised of a mixture of a metal oxide substrate and a hydro-chromic compound (i.e., the compound that changed color in the presence of hydrogen) and immediately notified the operator of the presence of low levels of hydrogen. The detector can be used in a variety of formats including paint, tape, caulking, injection molded parts, textiles and fabrics, composites, and films. This technology brings numerous

  15. Chemochromic Hydrogen Leak Detectors

    NASA Technical Reports Server (NTRS)

    Roberson, Luke; Captain, Janine; Williams, Martha; Smith, Trent; Tate, LaNetra; Raissi, Ali; Mohajeri, Nahid; Muradov, Nazim; Bokerman, Gary

    2009-01-01

    At NASA, hydrogen safety is a key concern for space shuttle processing. Leaks of any level must be quickly recognized and addressed due to hydrogen s lower explosion limit. Chemo - chromic devices have been developed to detect hydrogen gas in several embodiments. Because hydrogen is odorless and colorless and poses an explosion hazard, there is an emerging need for sensors to quickly and accurately detect low levels of leaking hydrogen in fuel cells and other advanced energy- generating systems in which hydrogen is used as fuel. The device incorporates a chemo - chromic pigment into a base polymer. The article can reversibly or irreversibly change color upon exposure to hydrogen. The irreversible pigment changes color from a light beige to a dark gray. The sensitivity of the pigment can be tailored to its application by altering its exposure to gas through the incorporation of one or more additives or polymer matrix. Furthermore, through the incorporation of insulating additives, the chemochromic sensor can operate at cryogenic temperatures as low as 78 K. A chemochromic detector of this type can be manufactured into any feasible polymer part including injection molded plastic parts, fiber-spun textiles, or extruded tapes. The detectors are simple, inexpensive, portable, and do not require an external power source. The chemochromic detectors were installed and removed easily at the KSC launch pad without need for special expertise. These detectors may require an external monitor such as the human eye, camera, or electronic detector; however, they could be left in place, unmonitored, and examined later for color change to determine whether there had been exposure to hydrogen. In one type of envisioned application, chemochromic detectors would be fabricated as outer layers (e.g., casings or coatings) on high-pressure hydrogen storage tanks and other components of hydrogen-handling systems to provide visible indications of hydrogen leaks caused by fatigue failures or

  16. A Hydrogen Utopia?

    SciTech Connect

    Cherry, Robert Stephen; Reynolds, Bruce Allen

    2004-01-01

    The use of hydrogen as a fuel for transportation and stationary applications is receiving much favorable attention as a technical and policy issue. However, the widespread introduction of this technology is likely also to have negative consequences that are not being actively discussed in broad public forums. Such possibilities include, among others, delayed development of other energy alternatives, hazards of catalyst or hydride metals, disruptive employment shifts, land usage conflicts, and increased vehicle usage. Even though hydrogen is likely to be beneficial in its overall societal and environmental effects, hydrogen technology advocates must understand the range of problematic issues and prepare to address them.

  17. Biological hydrogen production

    SciTech Connect

    Benemann, J.R.

    1995-11-01

    Biological hydrogen production can be accomplished by either thermochemical (gasification) conversion of woody biomass and agricultural residues or by microbiological processes that yield hydrogen gas from organic wastes or water. Biomass gasification is a well established technology; however, the synthesis gas produced, a mixture of CO and H{sub 2}, requires a shift reaction to convert the CO to H{sub 2}. Microbiological processes can carry out this reaction more efficiently than conventional catalysts, and may be more appropriate for the relatively small-scale of biomass gasification processes. Development of a microbial shift reaction may be a near-term practical application of microbial hydrogen production.

  18. Chromatographic hydrogen isotope separation

    DOEpatents

    Aldridge, Frederick T.

    1981-01-01

    Intermetallic compounds with the CaCu.sub.5 type of crystal structure, particularly LaNiCo.sub.4 and CaNi.sub.5, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation colum. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale mutli-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen can produce large quantities of heavy water at an effective cost for use in heavy water reactors.

  19. Chromatographic hydrogen isotope separation

    DOEpatents

    Aldridge, F.T.

    Intermetallic compounds with the CaCu/sub 5/ type of crystal structure, particularly LaNiCo/sub 4/ and CaNi/sub 5/, exhibit high separation factors and fast equilibrium times and therefore are useful for packing a chromatographic hydrogen isotope separation column. The addition of an inert metal to dilute the hydride improves performance of the column. A large scale multi-stage chromatographic separation process run as a secondary process off a hydrogen feedstream from an industrial plant which uses large volumes of hydrogen cn produce large quantities of heavy water at an effective cost for use in heavy water reactors.

  20. Dicalcium phosphate cements: brushite and monetite.

    PubMed

    Tamimi, Faleh; Sheikh, Zeeshan; Barralet, Jake

    2012-02-01

    Dicalcium phosphate cements were developed two decades ago and ever since there has been a substantial growth in research into improving their properties in order to satisfy the requirements needed for several clinical applications. The present paper presents an overview of the rapidly expanding research field of the two main dicalcium phosphate bioceramics: brushite and monetite. This review begins with a summary of all the different formulae developed to prepare dicalcium phosphate cements, and their setting reaction, in order to set the scene for the key cement physical and chemical properties, such as compressive and tensile strength, cohesion, injectability and shelf-life. We address the issue of brushite conversion into either monetite or apatite. Moreover, we discuss the in vivo behavior of the cements, including their ability to promote bone formation, biodegradation and potential clinical applications in drug delivery, orthopedics, craniofacial surgery, cancer therapy and biosensors.