Science.gov

Sample records for dichlorodiphenyl dichloroethylene

  1. Polychlorinated biphenyl (PCB) and dichlorodiphenyl dichloroethylene (DDE) concentrations in the breast milk of women in Quebec.

    PubMed Central

    Dewailly, E; Ayotte, P; Laliberté, C; Weber, J P; Gingras, S; Nantel, A J

    1996-01-01

    OBJECTIVES: This study documented the concentration of polychlorinated biphenyls (PCBs) and dichlorodiphenyl dichloroethylene (DDE) in the breast milk of women from Quebec, Canada, and assessed the impact of various sociodemographic and lifestyle factors on these levels. METHODS: From 1988 to 1990, milk samples were obtained from 536 Quebec women and analyzed for seven PCB congeners and p,p'-DDE. Information was obtained on subjects' physical, sociodemographic, and lifestyle characteristics. RESULTS: Mean concentrations were 0.52 mg/kg lipids (95% confidence interval [CI] = 0.50, 0.54) and 0.34 mg/kg lipids (95% CI = 0.32, 0.35) for PCBs (Aroclor 1260) and DDE, respectively. Age and history of breast-feeding showed statistically significant correlations with PCB and DDE concentrations. CONCLUSIONS: Concentrations of PCBs and DDE measured in this study are at the lower end of the concentration range recently reported for women living in industrialized countries. The modulating factors identified here should be considered when conducting studies on organochlorine exposure and disease. PMID:8806375

  2. Polychlorinated biphenyl (PCB) and dichlorodiphenyl dichloroethylene (DDE) exposure among Native American men from contaminated Great Lakes fish and wildlife.

    PubMed

    Fitzgerald, E F; Brix, K A; Deres, D A; Hwang, S A; Bush, B; Lambert, G; Tarbell, A

    1996-01-01

    The New York State Department of Health is performing an investigation of Mohawk men, women, and infants who live at the Akwesasne Reserve along the St. Lawrence River in New York, Ontario, and Quebec Three large industrial facilities bordering the Akwesasne Reserve have seriously contaminated the soil and the sediments and fish of the adjacent St. Lawrence River with polychlorinated biphenyls (PCBs). The main study goals are to investigate the associations among the consumption of locally caught fish, residential exposure, body burdens of PCBs, and liver enzyme induction. Contamination with PCBs, polychlorinated dibenzofurans, polychlorinated dibenzodioxins, polyaromatic hydrocarbons, dichlorodiphenyl dichloroethylene (DDE) and other chemicals has been documented in locally caught fish, ducks, and other wildlife. The contamination of fish and wildlife is a major concern of the Mohawk people, since their tradition and culture emphasize the interdependence of man and his environment and because many residents formerly depended heavily on local fish and waterfowl for food. The focus of this research from 1986-1992 was on nursing women and infants. The major purpose of the current project is to determine if there are associations between dietary, residential, and occupational exposures to PCBs and DDE and individual body burdens in Mohawk men, specifically the husbands, partners, fathers, brothers, or other male relatives of the women in our other studies. In other fish-eating populations, adult men have tended to demonstrate higher PCB and DDE body burdens than women and children. Exposure estimates based on the reported consumption of locally caught fish and wildlife and residential histories will be correlated with the specific pattern of PCB congeners found in serum, thereby establishing a direct relationship between two potential sources of exposure and body burdens. Liver function will be examined through the caffeine breath test (CBT), a sensitive, noninvasive

  3. Maternal exposure to Great Lakes sport-caught fish and dichlorodiphenyl dichloroethylene, but not polychlorinated biphenyls, is associated with reduced birth weight.

    PubMed

    Weisskopf, Marc G; Anderson, Henry A; Hanrahan, Lawrence P; Kanarek, Marty S; Falk, Claire M; Steenport, Dyan M; Draheim, Laurie A

    2005-02-01

    Fish consumption may be beneficial for a developing human fetus, but fish may also contain contaminants that could be detrimental. Great Lakes sport-caught fish (GLSCF) are contaminated with polychlorinated biphenyls (PCBs) and dichlorodiphenyl dichloroethylene (DDE), but the effects of these contaminants on birth outcome are not clear. To distinguish potential contaminant effects, we examined (1) whether the decrease over time in contaminant levels in GLSCF is paralleled by an increase in birth weight of children of GLSCF-consuming mothers and (2) the relation between maternal serum concentrations of these contaminants and birth weight. Mothers (n=511) were interviewed from 1993 to 1995, and maternal serum was collected from 1994 to 1995 (n=143). Potential confounders considered were child gender, maternal age at delivery, maternal prepregnancy body mass index, maternal cigarette and alcohol use during pregnancy, maternal education level, maternal parity, and maternal breastfeeding. Children born during 1970-1977, 1978-1984, and 1985-1993 to mothers who ate more than 116 meals of GLSCF before pregnancy were, on average, 164 g lighter, 46 g heavier, and 134 g heavier, respectively, than children of mothers who ate no GLSCF before pregnancy (P trend=0.05). GLSCF-consuming mothers had higher serum PCB and DDE concentrations, but only increased DDE was associated with lower birth weight. The data suggest that fetal DDE exposure (as indicated by maternal serum DDE concentration) may decrease birth weight and that decreased birth weight effects associated with GLSCF consumption have decreased over time.

  4. p,p\\'-Dichlorodiphenyl dichloroethane (DDD)

    Integrated Risk Information System (IRIS)

    p , p ' - Dichlorodiphenyl dichloroethane ( DDD ) ; CASRN 72 - 54 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard

  5. trans-1,2-Dichloroethylene

    Integrated Risk Information System (IRIS)

    trans - 1,2 - Dichloroethylene ; CASRN 156 - 60 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for No

  6. cis-1,2-Dichloroethylene

    Integrated Risk Information System (IRIS)

    cis - 1,2 - Dichloroethylene ; CASRN 156 - 59 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Nonc

  7. IRIS Toxicological Review of cis- & trans-1,2-Dichloroethylene (2010 Final)

    EPA Science Inventory

    The final Toxicological Review of cis- & trans-1,2-Dichloroethylene provides scientific support and rationale for the hazard and dose-response assessment pertaining to chronic exposure to cis- and trans-1,2-dichloroethylene. 1,2-Dichloroethylene is used as a solvent for wa...

  8. 1,1-Dichloroethylene (1,1-DCE)

    Integrated Risk Information System (IRIS)

    1,1 - Dichloroethylene ( 1,1 - DCE ) ; CASRN 75 - 35 - 4 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments f

  9. IRIS Toxicological Review of cis- & trans-1,2-Dichloroethylene (Interagency Science Discussion Draft)

    EPA Science Inventory

    EPA is releasing the draft report, Toxicological Review of cis-1,2-Dichloroethylene and trans-1,2-Dichloroethylene, that was distributed to Federal agencies and White House Offices for comment during the Science Discussion step of the IRIS Toxicological Review of Cis-& Trans-1,2-Dichloroethylene (External Review Draft)

    EPA Science Inventory

    EPA is conducting a peer review of the scientific basis supporting the human health hazard and dose-response assessment of cis- and trans-1,2-dichloroethylene that will appear in the Integrated Risk Information System (IRIS) database.

  10. Determinants of polychlorinated biphenyls (PCBs), polybrominated biphenyls (PBBs), and dichlorodiphenyl trichloroethane (DDT) levels in the sera of young children

    SciTech Connect

    Jacobson, J.L.; Humphrey, H.E.; Jacobson, S.W.; Schantz, S.L.; Mullin, M.D.; Welch, R. )

    1989-10-01

    Serum samples from 285 4-year-old Michigan children were evaluated for levels of 11 environmental contaminants. Polychlorinated biphenyls (PCBs) were found in half the samples tested; polybrominated biphenyls (PBBs) in 13-21 percent; dichlorodiphenyl trichloroethane (DDT), in more than 70 percent. Nursing (Mothers' milk) was the principal source of these exposures. Congener-specific analysis documented the presence of at least one highly toxic PCB congener, 2,3',4,4',5-pentachlorobiphenyl. The data demonstrate the multigenerational impact of female exposure to persistent organic environmental contaminants.

  11. Determinants of polychlorinated biphenyls (PCBs), polybrominated biphenyls (PBBs), and dichlorodiphenyl trichloroethane (DDT) levels in the sera of young children

    SciTech Connect

    Jacobson, J.L.; Humphrey, H.E.B.; Jacobson, S.W.; Schantz, S.L.; Mullin, M.D.

    1989-01-01

    Serum samples from 285 4-year old Michigan children were evaluated for levels of 11 environmental contaminants. Polychlorinated biphenyls (PCBs) were found in half the samples tested; polybrominated biphenyls (PBBs) in 13-21%; dichlorodiphenyl trichloroethane (DDT), in more than 70%. Nursing (Mothers milk) was the principal source of these exposures. Congener-specific analysis documented the presence of at least one highly toxic PCB congener, 2,3',4,4',5-pentachlorobiphenyl. The data demonstrate the multigenerational impact of female exposure to persistent organic environmental contaminants.

  12. Microwave Spectrum and Molecular Structure of the ARGON-CIS-1,2-DICHLOROETHYLENE Complex

    NASA Astrophysics Data System (ADS)

    Marshall, Mark D.; Leung, Helen O.; Nelson, Craig J.; Yoon, Leonard H.

    2016-06-01

    The non-planar molecular structure of the complex formed between the argon atom and cis-1,2-dichloroethylene is determined via analysis of its microwave spectrum. Spectra of the 35Cl and 37Cl isotopologues are observed in natural abundance and the nuclear quadrupole splitting due to the two chlorine nuclei is fully resolved. In addition, the complete quadrupole coupling tensor for the cis-1,2-dichloroethylene molecule, including the single non-zero off-diagonal element, has been determined. Unlike the argon-cis-1,2-difluoroethylene and the argon-vinyl chloride complexes, tunneling between the two equivalent non-planar configurations of argon-cis-1,2-dichloroethylene is not observed.

  13. Polychlorinated biphenyls (PCBs) and dichlorodiphenyl dichloroethene (DDE) in human milk: effects on growth, morbidity, and duration of lactation.

    PubMed Central

    Rogan, W J; Gladen, B C; McKinney, J D; Carreras, N; Hardy, P; Thullen, J; Tingelstad, J; Tully, M

    1987-01-01

    We followed 858 children from birth to one year of age to determine whether the presence of polychlorinated biphenyls (PCBs) and dichlorodiphenyl dichloroethene (DDE) in breast milk affected their growth or health. Neither chemical showed an adverse effect on weight or frequency of physician visits for various illnesses, although differences were seen between breast-fed and bottle-fed children, with bottle-fed children being heavier and having more frequent gastroenteritis and otitis media. Children of mothers with higher levels of DDE were breast-fed for markedly shorter times, but adjustments for possible confounders and biases did not change the findings. In absence of any apparent effect on the health of the children, we speculate that DDE may be interfering with the mother's ability to lactate, possibly because of its estrogenic properties. PMID:3115123

  14. Polychlorinated biphenyls (PCBs) and dichlorodiphenyl dichloroethene (DDE) in human milk: effects of maternal factors and previous lactation

    SciTech Connect

    Rogan, W.J.; Gladen, B.C.; McKinney, J.D.; Carreras, N.; Hardy, P.; Thullen, J.; Tingelstad, J.; Tully, M.

    1986-03-01

    The authors measured polychlorinated biphenyls (PCBs) and dichlorodiphenyl dichloroethene (DDE) in maternal serum, cord blood, placenta, and serial samples of breast milk from 868 women. Almost all samples of breast milk showed detectable levels of both chemicals. Overall, values for DDE in this study are within the range of those found previously, whereas those for PCBs are somewhat higher. Possible causes of variation in levels were investigated. For DDE, older women, Black women, cigarette smokers, and women who consumed sport fish during pregnancy had higher levels; only age and race showed large effects. For PCBs, older women, women who regularly drink alcohol, and primiparae had higher levels. In addition, both chemicals showed modest variation across occupational groupings. Casual exposure to a PCB spill did not result in chemical levels different from background. In general, women have higher levels in their first lactation and in the earlier samples of a given lactation, and levels decline both with time spend breast-feeding and with number of children nursed. These striking declines are presumably a measured of exposure to the child.

  15. Polychlorinated biphenyls (PCBs) and dichlorodiphenyl dichloroethene (DDE) in human milk: effects of maternal factors and previous lactation.

    PubMed Central

    Rogan, W J; Gladen, B C; McKinney, J D; Carreras, N; Hardy, P; Thullen, J; Tingelstad, J; Tully, M

    1986-01-01

    The authors measured polychlorinated biphenyls (PCBs) and dichlorodiphenyl dichloroethene (DDE) in maternal serum, cord blood, placenta, and serial samples of breast milk from 868 women. Almost all samples of breast milk showed detectable levels of both chemicals. Overall, values for DDE in this study are within the range of those found previously, whereas those for PCBs are somewhat higher. Possible causes of variation in levels were investigated. For DDE, older women, Black women, cigarette smokers, and women who consumed sport fish during pregnancy had higher levels; only age and race showed large effects. For PCBs, older women, women who regularly drink alcohol, and primiparae had higher levels. In addition, both chemicals showed modest variation across occupational groupings. Casual exposure to a PCB spill did not result in chemical levels different from background. In general, women have higher levels in their first lactation and in the earlier samples of a given lactation, and levels decline both with time spent breast-feeding and with number of children nursed. These striking declines are presumably a measure of exposure to the child. PMID:3080910

  16. Isolation and characterization of tetrachloroethylene- and cis-1,2-dichloroethylene-dechlorinating propionibacteria.

    PubMed

    Chang, Young-Cheol; Ikeutsu, Kaori; Toyama, Tadashi; Choi, Dubok; Kikuchi, Shintaro

    2011-10-01

    Two rapidly growing propionibacteria that could reductively dechlorinate tetrachloroethylene (PCE) and cis-1,2-dichloroethylene (cis-DCE) to ethylene were isolated from environmental sediments. Metabolic characterization and partial sequence analysis of their 16S rRNA genes showed that the new isolates, designated as strains Propionibacterium sp. HK-1 and Propionibacterium sp. HK-3, did not match any known PCE- or cis-DCE-degrading bacteria. Both strains dechlorinated relatively high concentrations of PCE (0.3 mM) and cis-DCE (0.52 mM) under anaerobic conditions without accumulating toxic intermediates during incubation. Cell-free extracts of both strains catalyzed PCE and cis-DCE dechlorination; degradation was accelerated by the addition of various electron donors. PCE dehalogenase from strain HK-1 was mediated by a corrinoid protein, since the dehalogenase was inactivated by propyl iodide only after reduction by titanium citrate. The amounts of chloride ions (0.094 and 0.103 mM) released after PCE (0.026 mM) and cis-DCE (0.05 mM) dehalogenation using the cell-free enzyme extracts of both strains, HK-1 and HK-3, were stoichiometrically similar (91 and 100%), indicating that PCE and cis-DCE were fully dechlorinated. Radiotracer studies with [1,2-¹⁴C] PCE and [1,2-¹⁴C] cis-DCE indicated that ethylene was the terminal product; partial conversion to ethylene was observed. Various chlorinated aliphatic compounds (PCE, trichloroethylene, cis-DCE, trans-1,2-dichloroethylene, 1,1-dichloroethylene, 1,1-dichloroethane, 1,2-dichloroethane, 1,2-dichloropropane, 1,1,2-trichloroethane, and vinyl chloride) were degraded by cell-free extracts of strain HK-1.

  17. Applications of Group Theory: Infrared and Raman Spectra of the Isomers of 1,2-Dichloroethylene: A Physical Experiment

    ERIC Educational Resources Information Center

    Craig, Norman C.; Lacuesta, Nanette N.

    2004-01-01

    A study of the vibrational spectroscopy of the cis and trans isomers of 1,2-dichloroethylene provides an excellent opportunity to learn the applications group theory in laboratories. The necessity of using infrared (IR) spectroscopy and Raman spectroscopy in making full vibrational assignments is illustrated.

  18. Synchrotron Based High Resolution Far-Ir Spectroscopy of 1,1-DICHLOROETHYLENE

    NASA Astrophysics Data System (ADS)

    Peebles, Rebecca A.; Elmuti, Lena F.; Peebles, Sean A.; Obenchain, Daniel A.

    2013-06-01

    Six vibrational bands of the ^{35}Cl_2C=CH_2 isotopologue of 1,1-dichloroethylene have been recorded in the 350 - 1150 cm^{-1} range using the 0.00096 cm^{-1} resolution far-infrared beamline of the Canadian Light Source synchrotron facility. Results from the analysis of one a-type (ν_9 = 796.01904(8) cm^{-1}, CCl asymmetric stretch) and one c-type (ν_{11} = 868.488626(26) cm^{-1}, CH_2 flap) band will be presented. Over 6000 transitions have now been fitted for these two bands, with ground state rotational and centrifugal distortion constants fixed to values determined by rotational spectroscopy, while the upper state constants have been varied. Anharmonic frequency calculations at the MP2/6-311++G(2d,2p) level were instrumental in assigning the dense spectra. Assignment of additional bands around 603 cm^{-1} (b-type, CCl symmetric stretch, ν_4) and 456 cm^{-1} (c-type, CCl_2 flap, ν_{12}), as well as attempts at assigning the mixed ^{35}Cl^{37}Cl isotopologue spectra for ν_9 and ν_{11}, are in progress. Z. Kisiel, L. Pszczółkowski, Z. Naturforsch, {{50a}, (1995), 347-351.

  19. LACK OF ANTIANDROGENIC EFFECTS IN ADULT MALE RATS FOLLOWING ACUTE EXPOSURE TO 2, 2-BIS (4-CHLOROPHENYL)-1,1-DICHLOROETHYLENE (P,P'DDE)

    EPA Science Inventory

    Although the insecticide dichlorodiphenyltrichloroethane (DDT) was banned in the US in 1972, DDT and its major metabolite 2,2-bis(4-chlorophenyl)-1,1-dichloroethylene (DDE) are still persistent in the environment. DDE at high doses is antiandrogenic in fetal and adult rats and, t...

  1. Oxidation of trichloroethylene, 1,1-dichloroethylene, and chloroform by toluene/o-xylene monooxygenase from Pseudomonas stutzeri OX1

    SciTech Connect

    Chauhan, S.; Wood, T.K.; Barbieri, P.

    1998-08-01

    Toluene/o-xylene monooxygenase (ToMO) from Pseudomonas stutzeri OX1, which oxidizes toluene and o-xylene, was examined for its ability to degrade the environmental pollutants trichloroethylene (TCE), 1,1-dichloroethylene (1,1-DCE), cis-1,2-DCE, trans-1,2-DCE, chloroform, dichloromethane, phenol, 2,4-dichlorophenol, 2,4,5-trichlorophenol, 2,4,6-trichlorophenol, 2,3,5,6-tetrachlorophenol, and 2,3,4,5,6-pentachlorophenol. Escherichia coli JM109 that expressed ToMO from genes on plasmid pBZ1260 under control of the lac promoter degraded TCE, 1,1-DCE, and chloroform at initial rates of 3.1, 3.6, and 1.6 nmol, respectively. Stoichiometric amounts of chloride release were seen, indicating mineralization. Thus, the substrate range of ToMO is extended to include aliphatic chlorinated compounds.

  2. Stable carbon isotope fractionation of trans-1,2-dichloroethylene during co-metabolic degradation by methanotrophic bacteria

    USGS Publications Warehouse

    Brungard, K.L.; Munakata-Marr, J.; Johnson, C.A.; Mandernack, K.W.

    2003-01-01

    Changes in the carbon isotope ratio (??13C) of trans-1,2-dichloroethylene (t-DCE) were measured during its co-metabolic degradation by Methylomonas methanica, a type I methanotroph, and Methylosinus trichosporium OB3b, a type II methanotroph. In closed-vessel incubation experiments with each bacterium, the residual t-DCE became progressively enriched in 13C, indicating isotopic fractionation. From these experiments, the biological fractionation during t-DCE co-metabolism, expressed as ??, was measured to be -3.5??? for the type I culture and -6.7??? for the type II culture. This fractionation effect and subsequent enrichment in the ??13C of the residual t-DCE can thus be applied to determine the extent of biodegradation of DCE by these organisms. Based on these results, isotopic fractionation clearly warrants further study, as measured changes in the ??13C values of chlorinated solvents could ultimately be used to monitor the extent of biodegradation in laboratory or field settings where co-metabolism by methanotrophs occurs. ?? 2002 Elsevier Science B.V. All rights reserved.

  3. Analysis of High Resolution Infrared Spectra of 1,1-DICHLOROETHYLENE in the 500 - 1000 wn Range

    NASA Astrophysics Data System (ADS)

    Peebles, Rebecca A.; Peebles, Sean A.; Obenchain, Daniel A.

    2012-06-01

    The far infrared beamline of the Canadian Light Source synchrotron facility has been used to record three rotationally resolved vibrational bands of 1,1-dichloroethylene in the 500-1000 cm-1 range, at 0.00096 cm-1 resolution. These correspond, for the H_2C=C35Cl_2 isotopologue, to an a-type band (CCl_2 antisymmetric stretch) at 796.0 cm-1, a b-type band (CCl_2 symmetric stretch) at 603.0 cm-1, and a c-type band (CH_2 wag) at 868.6 cm-1. Anharmonic frequency calculations at the MP2/6-311++G(2d,2p) level, combined with rotational and centrifugal distortion constants from a millimeter wave study of the ground state, were an invaluable aid in facilitating the spectroscopic assignment for this asymmetric top ({κ} = -0.58). Analysis of the 796 cm-1 band is nearly complete, giving well determined excited state rotational and centrifugal distortion constants. Results of this analysis and progress with analysis of the other two bands will be presented. Z. Kisiel, L. Pszczolkowski, Z. Naturforsch, 50a, (1995), 347-351.

  4. Histochemical and immunocytochemical evidence of early, selective bile canaliculi injury after 1,1-dichloroethylene in rats.

    PubMed Central

    Moslen, M. T.; Dunsford, H. A.; Karnasuta, C.; Chieco, P.; Kanz, M. F.

    1989-01-01

    Canalicular and mitochondrial membranes were investigated as early foci of hepatocyte injury in fed and fasted male Sprague-Dawley rats given 50 mg of 1,1-dichloroethylene (DCE)/kg. Staining of the bile canaliculi localized enzymes, leucine aminopeptidase (LAP), and Mg++-dependent ATPase (Mg++-ATPase), was examined by histochemistry in frozen sections. Mitochondrial membrane enzymes, including succinate dehydrogenase, also were examined by histochemistry. Staining of two monoclonal antibodies, C-1 and 9-B1, whose binding is localized in the bile canalicular region, was examined by immunofluorescence in frozen sections. Fasted rats treated with DCE developed moderate liver damage by 4 hours as evidenced by increases in serum transaminase and bilirubin, whereas fed rats developed only slight cell damage. Centrolobular loss of immunocytochemical and histochemical canalicular staining, especially for C-1 and Mg++-ATPase, was evident as early as 1 hour after DCE and was striking by 2 hours in both fed and fasted rats. Decreases in mitochondrial enzymes were not evident histochemically in fed animals at any time after DCE and were found only at the later times in fasted animals given the toxin. Thus, DCE administration to fed rats provides a new model system of selective bile canaliculi injury. Images Figure 5 Figure 6 Figure 7 Figure 8 PMID:2541611

  5. Oxidation of trichloroethylene, 1,1-dichloroethylene, and chloroform by toluene/o-xylene monooxygenase from Pseudomonas stutzeri OX1.

    PubMed

    Chauhan, S; Barbieri, P; Wood, T K

    1998-08-01

    Toluene/o-xylene monooxygenase (ToMO) from Pseudomonas stutzeri OX1, which oxidizes toluene and o-xylene, was examined for its ability to degrade the environmental pollutants trichloroethylene (TCE), 1, 1-dichloroethylene (1,1-DCE), cis-1,2-DCE, trans-1,2-DCE, chloroform, dichloromethane, phenol, 2,4-dichlorophenol, 2,4,5-trichlorophenol, 2,4,6-trichlorophenol, 2,3,5,6-tetrachlorophenol, and 2,3,4,5, 6-pentachlorophenol. Escherichia coli JM109 that expressed ToMO from genes on plasmid pBZ1260 under control of the lac promoter degraded TCE (3.3 microM), 1,1-DCE (1.25 microM), and chloroform (6.3 microM) at initial rates of 3.1, 3.6, and 1.6 nmol/(min x mg of protein), respectively. Stoichiometric amounts of chloride release were seen, indicating mineralization (2.6, 1.5, and 2.3 Cl- atoms per molecule of TCE, 1,1-DCE, and chloroform, respectively). Thus, the substrate range of ToMO is extended to include aliphatic chlorinated compounds. PMID:9687467

  6. In situ bioremediation of a cis-dichloroethylene-contaminated aquifer utilizing methane-rich groundwater from an uncontaminated aquifer.

    PubMed

    Takeuchi, Mio; Nanba, Kenji; Iwamoto, Hiroshi; Nirei, Hisashi; Kusuda, Takashi; Kazaoka, Osamu; Owaki, Masato; Furuya, Ken

    2005-06-01

    At a trichloroethylene (TCE)-contaminated site in Chikura, Chiba, Japan, TCE had spread over to the first and second aquifers over years. After 8 years of pumping and treatment, finally derivative of TCE, cis-dichloroethylene (c-DCE) remained only in the second aquifer. In this study, feasibility of a low cost in situ bioremediation utilizing groundwater of the third aquifer, which contained natural dissolved methane possibly derived from natural gas field nearby, to stimulate methane-oxidizing bacteria was examined. In vitro experiment showed that a mixture of the groundwater from the second and third aquifers stimulated a growth of methane oxidizing bacteria and enhanced c-DCE degradation. The groundwater of the third aquifer was introduced into the second aquifer in situ. The population of methanotrophs with high V(max) and K(m) for methane uptake increased, resulting in successful degradation of c-DCE at a monitoring well 2m downgradient of the injection well. PMID:15955544

  7. pH impact on reductive dechlorination of cis-dichloroethylene by Fe precipitates: an X-ray absorption spectroscopy study.

    PubMed

    Jeong, Hoon Y; Anantharaman, Karthik; Hyun, Sung P; Son, Moon; Hayes, Kim F

    2013-11-01

    The pH impact on reductive dechlorination of cis-dichloroethylene (cis-DCE) was investigated using in situ Fe precipitates formed under iron-rich sulfate-reducing conditions. The dechlorination rate of cis-DCE increased with pH, which was attributed to changes in the solid-phase Fe concentration, the composition of Fe minerals, and the surface speciation of Fe minerals. With increasing pH, larger quantities of Fe minerals, having much greater reactivity than dissolved Fe(II), were produced. Fe-K edge X-ray absorption spectroscopy (XAS) analysis of Fe precipitates revealed the presence of multiple Fe phases with their composition varying with pH. Correlation analyses were performed to examine how the solid-phase Fe concentration, the composition of Fe minerals, and their surface speciation were linked with the cis-DCE dechlorination rate. Such analyses revealed that neither mackinawite (FeS) nor magnetite (Fe3O4) was reactive with cis-DCE dechlorination, but that Fe (oxyhydr)oxides including green rusts and Fe(OH)2 were reactive. Based on a proposed model of the surface acidity of Fe minerals, the increasing deprotonated surface Fe(II) groups with pH correlated well with the enhanced cis-DCE dechlorination. PMID:24074816

  8. [Effects of benzene, toluene on reductive dechlorination of trichloroethylene and its daughter product cis-1,2-dichloroethylene by granular iron].

    PubMed

    Liu, Yu-long; Xia, Fan; Liu, Fei; Chen, Hong-han

    2010-07-01

    Mixed plumes contained chlorinated solvents and petroleum hydrocarbons which mainly refers to BTEX (benzene, toluene, ethylbenzene and xylenes) in groundwater can be remediated by sequential units combined an iron permeable reactive barrier (Fe0-PRB) with an anoxic wall. In design of the Fe0-PRB it should be taken into account the necessity of altering the width of the iron cell in the presence of BTEX. Three column experiments were conducted to evaluate the effects of benzene, toluene on the long-term performance of reductive dechlorination of trichloroethylene (TCE) by granular iron. The results showed that the kinetics of TCE (at the initial concentration of 2 mg x L(-1) more or less) reduction was accorded with pseudo first-order even in the presence of benzene or toluene (at about 1-2 mg x L(-1), respectively). The existence of benzene and toluene inhibited the removal of TCE by 15.1% and 18. 5% , respectively; however, the presence of benzene slightly increased cis-1,2-DCE reduction rate by 4.5%, and the presence of toluene increased cis-1,2-DCE reduction rate by 42.8%. The inhibition of benzene and toluene other than mineral precipitates was not one of the decisive factors in the long-term performance of an Feo-PRB; in addition, the kinds of chlorinated daughter products of TCE in the presence/absence of benzene or toluene were identical and cis-1,2-dichloroethylene (cis-1,2-DCE), the major intermediate, firstly broke through from all the 3 columns at concentrations about 2-75 microg x L(-1), indicating that designing the width of an Fe0-PRB should be based on the hydraulic residence time of cis-1,2-DCE. In conclusion, if only considering the TCE remedial goals and disregarding the effects of cis-1,2-DCE on BTEX biodegradation downgradient the Fe0-PRB, the results suggested that it should be not necessary to increase the width of the iron cell for constructing sequential permeable reactive barriers (SPRBs) to rescue TCE- and BTEX-contaminated aquifers.

  9. Results of Remediation and Verification Sampling for the 600-270 Horseshoe Landfill

    SciTech Connect

    W. S. Thompson

    2005-12-14

    This report presents the results of the 2005 remedial action and verification soil sampling conducted at the 600-270 waste site after removal of soil containing residual concentrations of dichlorodiphenyl trichloroethane and its breakdown products dichlorodiphenyl dichloroethylene and dichlorodiphenyl dichloroethane. The remediation was performed in response to post-closure surface soil sampling performed between 1998 and 2003 that indicated the presence of residual DDT contamination exceeding the Record of Decision for the 1100 Area National Priorities List site cleanup criteria of 1 mg/kg that was established for the original 1994 cleanup activities.

  10. Comparative study of the toxic actions of 2,2-bis(p-chlorophenyl)-1,1,1-trichloroethane and 2,2-bis(p-chlorophenyl)-1,1-dichloroethylene on the growth and respiratory activity of a microorganism used as a model.

    PubMed Central

    Donato, M M; Jurado, A S; Antunes-Madeira, M C; Madeira, V M

    1997-01-01

    A strain of Bacillus stearothermophilus was used as a model for a comparative study of the toxic effect of 2,2-bis(p-chlorophenyl)-1,1,1-trichloroethane and 2,2-bis(p-chlorophenyl)-1,1-dichloroethylene. Bacterial growth, the O2 consumption rate, and respiration-related enzymatic activities provided quantitative data in agreement with results reported for other systems. The use of this bacterium for screening for chemical toxicity is discussed. PMID:9471966

  11. Effect of species differences, pollutant concentration, and residence time in soil on the bioaccumulation of 2,2-bis (p-chlorophenyl)-1,1-dichloroethylene by three earthworm species.

    PubMed

    Kelsey, Jason W; Colino, Allison; White, Jason C

    2005-03-01

    Laboratory experiments were conducted to study the effects of species differences, soil concentration, and contaminant-residence time in soil on the bioaccumulation factor (BAF; dry-weight ratio of contaminant concentration in the tissue to that in the soil) of 2,2-bis (p-chlorophenyl)- 1,1-dichloroethylene (p,p'-DDE) for three species of earthworms. In four field-weathered soils, the BAF for Eisenia foetida, an epigeic species (surface habitat), was approximately 10-fold higher than those for Lumbricus terrestris, an anecic species (deep habitat) and Aporrectodea caliginosa, an endogeic species (habitat within the soil profile). Preliminary analysis indicates that BAF may decline with increasing pollutant concentration in soil. With regard to contaminant-residence time, the BAF for E. foetida was lower in weathered soils relative to that in freshly amended soils, but age of p,p'-DDE did not significantly alter the BAF for A. caliginosa. These data suggest total chemical concentration alone is not a reliable indicator of the toxicological significance of a contaminated soil and that species-specific differences and environmental factors significantly impact overall exposure and risk. PMID:15779772

  12. Active site engineering of the epoxide hydrolase from Agrobacterium radiobacter AD1 to enhance aerobic mineralization of cis-1,2-dichloroethylene in cells expressing an evolved toluene ortho-monooxygenase.

    PubMed

    Rui, Lingyun; Cao, Li; Chen, Wilfred; Reardon, Kenneth F; Wood, Thomas K

    2004-11-01

    Chlorinated ethenes are the most prevalent ground-water pollutants, and the toxic epoxides generated during their aerobic biodegradation limit the extent of transformation. Hydrolysis of the toxic epoxide by epoxide hydrolases represents the major biological detoxification strategy; however, chlorinated epoxyethanes are not accepted by known bacterial epoxide hydrolases. Here, the epoxide hydrolase from Agrobacterium radiobacter AD1 (EchA), which enables growth on epichlorohydrin, was tuned to accept cis-1,2-dichloroepoxyethane as a substrate by accumulating beneficial mutations from three rounds of saturation mutagenesis at three selected active site residues, Phe-108, Ile-219, and Cys-248 (no beneficial mutations were found at position Ile-111). The EchA F108L/I219L/C248I variant coexpressed with a DNA-shuffled toluene ortho-monooxygenase, which initiates attack on the chlorinated ethene, enhanced the degradation of cis-dichloroethylene (cis-DCE) an infinite extent compared with wild-type EchA at low concentrations (6.8 microm) and up to 10-fold at high concentrations (540 microm). EchA variants with single mutations (F108L, I219F, or C248I) enhanced cis-DCE mineralization 2.5-fold (540 microm), and EchA variants with double mutations, I219L/C248I and F108L/C248I, increased cis-DCE mineralization 4- and 7-fold, respectively (540 microm). For complete degradation of cis-DCE to chloride ions, the apparent Vmax/Km for the Escherichia coli strain expressing recombinant the EchA F108L/I219L/C248I variant was increased over 5-fold as a result of the evolution of EchA. The EchA F108L/I219L/C248I variant also had enhanced activity for 1,2-epoxyhexane (2-fold) and the natural substrate epichlorohydrin (6-fold).

  13. Methylsulfone polychlorinated biphenyl and 2,2-bis(chlorophenyl)-1,1-dichloroethylene metabolites in beluga whale (Delphinapterus leucas) from the St. Lawrence River estuary and western Hudson Bay, Canada

    SciTech Connect

    Letcher, R.J.; Norstrom, R.J.; Muir, D.C.G.; Sandau, C.D.; Koczanski, K.; Michaud, R.; De Guise, S.; Beland, P.

    2000-05-01

    Knowledge is limited regarding methylsulfone (MeSO{sub 2})-polychlorinated biphenyl (PCB), and especially MeSo{sub 2}-2,2-bis(chlorophenyl)-1,1-dichloroethylene (DDE), metabolites in cetacean species. The authors hypothesized that the ability of beluga whale (Delphinapterus leucas) to biotransform PCB and DDE compounds, and to form and degrade their MeSO{sub 2}-PCB and -DDE metabolites, is related to the capacity for xenobiotic metabolism. Adipose biopsies were collected from male and female beluga whale from distinct populations in the St. Lawrence River estuary (STL) and western Hudson Bay (WHB), Canada, which are contrasted by the exposure to different levels of cytochrome P450 enzyme-inducing, chlorinated hydrocarbon contaminants. The PCBs, DDTs, DDEs, 28 MeSO{sub 2} metabolites of 14 meta-para chlorine-unsubstituted PCBs, and four MeSO{sub 2} metabolites of 4,4{prime}- and 2,4{prime}-DDE were determined. The mean concentrations of total ({Sigma}-) MeSO{sub 2}-PCB in male STL beluga (230 ng/g), and ratios of {Sigma}-MeSO{sub 2}-PCB to {Sigma}-PCB (0.05) and {Sigma}-precursor-PCB (0.17) were approximately twofold higher, whereas the {Sigma}-precursor-PCB to {Sigma}-PCB ratio was approximately twofold lower, than in male WHB beluga. Both populations had a low formation capacity for MeSO{sub 2}-PCBs with {le} six chlorines (<4% of {Sigma}-MeSO{sub 2}-PCBs). The congener patterns were dominated by trichloro- and tetrachloro-MeSO{sub 2}-PCBs, and tetrachloro- and pentachloro-MeSO{sub 2}-PCBs in WHB and STL animals, respectively. In addition to 2- and 3-MeSO{sub 2}-4,4{prime}-DDE, two unknown MeSO{sub 2}-2,4{prime}-DDEs were detected. The mean 3-MeSO{sub 2}-4,4{prime}-DDE concentration in STL beluga (1.2 ng/g) was much greater than in WHB animals. The concentrations of 4,4{prime}-DDE, and not 3-MeSO{sub 2}-4,4{prime}-DDE, increased with age in male STL animals. The authors demonstrated that sulfone formation and clearance is related to metabolic capacity, and thus

  14. ABIOTIC NATURAL ATTENUATION OF CIS-DICHLOROETHYLENE AND 1,1-DICHLOROETHYLENE IN AQUIFER SEDIMENT

    EPA Science Inventory

    The disposal of TCE and 1,1,1-TCA at the Twin Cities Army Ammunition Plant (TCAAP) in Minnesota produced a plume of contaminated ground water that was over eight kilometers long. Although the size of the plume was consistent with a high ground water velocity in the aquifer and t...

  15. NON-BIOLOGICAL REMOVAL OF CIS-DICHLOROETHYLENE AND 1.1-DICHLOROETHYLENE IN AQUIFER SEDIMENT CONTAINING MAGNETITE

    EPA Science Inventory

    Reductive dechlorination could not explain the removal of cis-DCE, and 1,1-DCE from a plume of contaminated ground water in Minnesota. To identify the processes responsible for removal, laboratory microcosms were constructed with sediment from the aquifer near the source of the ...

  16. ABIOTIC NATURAL ATTENUATION OF CIS-DISHLOROETHYLENE AND 1,1-DICHLOROETHYLENE IN AQUIFER SEDIMENT

    EPA Science Inventory

    The disposal of TCE and 1,1,1-TCA at the Twin Cities Army Ammunition Plant (TCAAP) in Minnesota produced a plume of contaminated ground water that was over eight kilometers long. Although the size of the plume was consistent with a high ground water velocity in the aquifer and t...

  17. DICHLOROETHYLENES AS SUBSTRATES AND INDUCERS OF BUTANE MONOOXYGENASE IN PSEUDOMONAS BUTANOVORA. (R828772)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  18. Evaluation of pesticide residues in human blood samples from Punjab (India)

    PubMed Central

    Bedi, Jasbir Singh; Gill, J. P. S.; Kaur, P.; Sharma, A.; Aulakh, R. S.

    2015-01-01

    Aim: The present study was undertaken to estimate the current status of residues of organochlorine pesticides (OCPs), organophosphates (OPs) and synthetic pyrethroids (SPs) pesticides in human blood. Materials and Methods: Human blood samples were analyzed by gas chromatography and confirmed by gas chromatography-mass spectrometry in selective ion monitoring mode. Results: The gas chromatographic analysis of human blood samples collected from Punjab revealed the presence of p,p’-dichlorodiphenyl dichloroethylene (DDE), p,p’ dichlorodiphenyl dichloroethane (DDD), o,p’ DDE and β-endosulfan at mean levels of 15.26, 2.71, 5.62 and 4.02 ng/ml, respectively. p,p’ DDE residue was observed in 18.0% blood samples, and it contributes 55% of the total pesticide burden in human blood. The difference of total dichlorordiphenyl trichloroethane (DDT) between different age groups of humans was found to be statistically significant (p<0.05). The difference of DDT and endosulfan between dietary habits, gender and spraying of pesticides was found statistically non-significant, however endosulfan residues were observed only in pesticide sprayer’s population. Conclusion: Occurrence of p,p’ DDE, p,p’ DDD, o,p’ DDE in human blood indicated restricted use of DDT. However, presence of endosulfan residues in occupationally exposed population is a matter of public health concern. PMID:27046999

  19. Mechanisms, chemistry, and kinetics of anaerobic biodegradation of cis-dichloroethylene and vinyl chloride. 1998 annual progress report

    SciTech Connect

    McCarty, P.L.; Spormann, A.M.

    1998-06-01

    'The objectives of this study are to: (1) determine the biochemical pathways for reductive dehalogenation of cis-1,2-dichloroethene (cDCE) and vinyl chloride (VC), including identification of the enzymes involved, (2) determine the chemical requirements, especially the type and quantity of electron donors needed by the microorganisms for reductive dehalogenation, and (3) evaluate the kinetics of the process with respect to the concentration of both the electron donors and the electron acceptors (cDCE and VC). Progress has been made under each of the three primary objectives. One manuscript related to the first objective has been published. Manuscripts related to the other two objectives have been submitted for publication. Findings related to the three objectives are summarized.'

  20. Prenatal DDT and DDE exposure and child IQ in the CHAMACOS cohort.

    PubMed

    Gaspar, Fraser W; Harley, Kim G; Kogut, Katherine; Chevrier, Jonathan; Mora, Ana Maria; Sjödin, Andreas; Eskenazi, Brenda

    2015-12-01

    Although banned in most countries, dichlorodiphenyl-trichloroethane (DDT) continues to be used for vector control in some malaria endemic areas. Previous findings from the Center for the Health Assessment of Mothers and Children of Salinas (CHAMACOS) cohort study found increased prenatal levels of DDT and its breakdown product dichlorodiphenyl-dichloroethylene (DDE) to be associated with altered neurodevelopment in children at 1 and 2years of age. In this study, we combined the measured maternal DDT/E concentrations during pregnancy obtained for the prospective birth cohort with predicted prenatal DDT and DDE levels estimated for a retrospective birth cohort. Using generalized estimating equation (GEE) and linear regression models, we evaluated the relationship of prenatal maternal DDT and DDE serum concentrations with children's cognition at ages 7 and 10.5years as assessed using the Full Scale Intelligence Quotient (IQ) and 4 subtest scores (Working Memory, Perceptual Reasoning, Verbal Comprehension, and Processing Speed) of the Wechsler Intelligence Scale for Children (WISC). In GEE analyses incorporating both age 7 and 10.5 scores (n=619), we found prenatal DDT and DDE levels were not associated with Full Scale IQ or any of the WISC subscales (p-value>0.05). In linear regression analyses assessing each time point separately, prenatal DDT levels were inversely associated with Processing Speed at age 7years (n=316), but prenatal DDT and DDE levels were not associated with Full Scale IQ or any of the WISC subscales at age 10.5years (n=595). We found evidence for effect modification by sex. In girls, but not boys, prenatal DDE levels were inversely associated with Full Scale IQ and Processing Speed at age 7years. We conclude that prenatal DDT levels may be associated with delayed Processing Speed in children at age 7years and the relationship between prenatal DDE levels and children's cognitive development may be modified by sex, with girls being more adversely

  1. Prenatal DDT and DDE exposure and child IQ in the CHAMACOS cohort.

    PubMed

    Gaspar, Fraser W; Harley, Kim G; Kogut, Katherine; Chevrier, Jonathan; Mora, Ana Maria; Sjödin, Andreas; Eskenazi, Brenda

    2015-12-01

    Although banned in most countries, dichlorodiphenyl-trichloroethane (DDT) continues to be used for vector control in some malaria endemic areas. Previous findings from the Center for the Health Assessment of Mothers and Children of Salinas (CHAMACOS) cohort study found increased prenatal levels of DDT and its breakdown product dichlorodiphenyl-dichloroethylene (DDE) to be associated with altered neurodevelopment in children at 1 and 2years of age. In this study, we combined the measured maternal DDT/E concentrations during pregnancy obtained for the prospective birth cohort with predicted prenatal DDT and DDE levels estimated for a retrospective birth cohort. Using generalized estimating equation (GEE) and linear regression models, we evaluated the relationship of prenatal maternal DDT and DDE serum concentrations with children's cognition at ages 7 and 10.5years as assessed using the Full Scale Intelligence Quotient (IQ) and 4 subtest scores (Working Memory, Perceptual Reasoning, Verbal Comprehension, and Processing Speed) of the Wechsler Intelligence Scale for Children (WISC). In GEE analyses incorporating both age 7 and 10.5 scores (n=619), we found prenatal DDT and DDE levels were not associated with Full Scale IQ or any of the WISC subscales (p-value>0.05). In linear regression analyses assessing each time point separately, prenatal DDT levels were inversely associated with Processing Speed at age 7years (n=316), but prenatal DDT and DDE levels were not associated with Full Scale IQ or any of the WISC subscales at age 10.5years (n=595). We found evidence for effect modification by sex. In girls, but not boys, prenatal DDE levels were inversely associated with Full Scale IQ and Processing Speed at age 7years. We conclude that prenatal DDT levels may be associated with delayed Processing Speed in children at age 7years and the relationship between prenatal DDE levels and children's cognitive development may be modified by sex, with girls being more adversely

  2. Behavioural sensitivity of a key Southern Ocean species (Antarctic krill, Euphausia superba) to p,p'-DDE exposure.

    PubMed

    Poulsen, Anita H; Kawaguchi, So; King, Catherine K; King, Robert A; Bengtson Nash, Susan M

    2012-01-01

    Persistent organic pollutants (POPs) have been frequently measured throughout the Southern Ocean food web for which little information is available to assess the potential risks of POP exposure. The current study evaluated the toxicological sensitivity of a key Southern Ocean species, Antarctic krill, to aqueous exposure of p,p'-dichlorodiphenyl dichloroethylene (p,p'-DDE). Behavioural endpoints were used as indicators of sublethal toxicity. Immediate behavioural responses (partial immobility and tail flicking) most likely reflect neurotoxicity, while the p,p'-DDE body residue causing a median level of sublethal toxicity in Antarctic krill following 96h exposure (IEC50(sublethal toxicity)=3.9±0.21mmol/kg lipid weight) is comparable to those known to cause sublethal narcosis in temperate aquatic species. Critical body residues (CBRs) were more reproducible across tests than effective seawater concentrations. These findings support the concept of the CBR approach, that effective tissue residues are comparable across species and geographical ranges despite differences in environmental factors.

  3. Aqueous uptake and sublethal toxicity of p,p'-DDE in non-feeding larval stages of Antarctic krill (Euphausia superba).

    PubMed

    Poulsen, Anita H; Kawaguchi, So; Kukkonen, Jussi V K; Leppänen, Matti T; Bengtson Nash, Susan M

    2012-01-01

    This study evaluated the toxicological sensitivity of non-feeding larval stages of a key Antarctic species (Antarctic krill, Euphausia superba) to p,p'-dichlorodiphenyl dichloroethylene (p,p'-DDE) exposure. The aqueous uptake clearance rate of 84 mL g(-1) preserved weight (p.w.) h(-1) determined for p,p'-DDE in Antarctic krill larvae is comparable to previous findings for small cold water crustaceans and five times slower than the rates reported for an amphipod inhabiting warmer waters. Natural variations in larval physiology appear to influence contaminant uptake and larval krill behavioural responses, strongly highlighting the importance of time of measurement for ecotoxicological testing. Sublethal narcosis (immobility) was observed in larval Antarctic krill from p,p'-DDE body residues of 0.2 mmol/kg p.w., which is in agreement with findings for adult krill and temperate aquatic species. The finding of comparable body residue-based toxicity of p,p'-DDE between polar and temperate species supports the tissue residue approach for environmental risk assessment of polar ecosystems.

  4. Dietary exposure of Antarctic krill to p,p'-DDE: uptake kinetics and toxicological sensitivity in a key polar species.

    PubMed

    Poulsen, Anita H; Landrum, Peter F; Kawaguchi, So; Bengtson Nash, Susan M

    2013-04-01

    This study evaluated the dietary uptake kinetics and sublethal toxicity of p,p'-dichlorodiphenyl dichloroethylene (p,p'-DDE) in Antarctic krill. The uptake rate constant (characterised by the seawater volume stripped of contaminant sorbed to algae) of 200 ± 0.32 mL g(-1) wet weight h(-1), average absorption efficiency of 86 ± 13% and very low elimination rate constant of 5 × 10(-6) ± 0.0031 h(-1) demonstrate the importance of feeding for p,p'-DDE bioaccumulation in Antarctic krill. Faecal egestion of unabsorbed p,p'-DDE of 8.1 ± 2.7% indicates that this pathway contributes considerably to p,p'-DDE sinking fluxes. A median internal effective concentration (IEC50) of 15 mmol/kg lipid weight for complete immobility indicates baseline toxicity and that Antarctic krill exhibit comparable toxicological sensitivity as temperate species under similar 10 d exposure conditions. These findings support the critical body residue approach and provide insight to the role of Antarctic krill in the biogeochemical cycling of p,p'-DDE in the Southern Ocean.

  5. Solid phase extraction with silicon dioxide microsphere adsorbents in combination with gas chromatography-electron capture detection for the determination of DDT and its metabolites in water samples.

    PubMed

    Zhou, Qingxiang; Wu, Wei; Xie, Guohong

    2013-01-01

    The goal of the present study was to investigate the feasibility of silicon dioxide (SiO(2)) microspheres without special modification to enrich dichlorodiphenyltrichloroethane (DDT) and its main metabolites, p,p'-dichlorodiphenyl-2,2-dichloroethylene (p,p'-DDD) and p,p'-dichlorodiphenyldichloroethylene (DDE) in combination with gas chromatography-electron-capture detection. The experimental results indicated that an excellent linear relationship between the recoveries and the concentrations of DDT and its main metabolites was obtained in the range of 0.2-30 ng mL(-1) and the correlation coefficients were in the range of 99.96-99.99%. The detection limits based on the ratio of signal to the baseline noise (S/N = 3) were 2.2, 2.9, 3.8 and 4.1 ng L(-1) for p,p'-DDD, p,p'-DDT, o,p'-DDT, and p,p'-DDE, respectively. The precisions of the proposed method were all below 10% (n = 6). Four real water samples were utilized for validation of the proposed method, and satisfactory spiked recoveries in the range of 72.4-112.9% were achieved. These results demonstrated that the developed method was a simple, sensitive, and robust analytical method for the monitoring of pollutants in the environment. PMID:23356340

  6. Solid phase extraction with silicon dioxide microsphere adsorbents in combination with gas chromatography-electron capture detection for the determination of DDT and its metabolites in water samples.

    PubMed

    Zhou, Qingxiang; Wu, Wei; Xie, Guohong

    2013-01-01

    The goal of the present study was to investigate the feasibility of silicon dioxide (SiO(2)) microspheres without special modification to enrich dichlorodiphenyltrichloroethane (DDT) and its main metabolites, p,p'-dichlorodiphenyl-2,2-dichloroethylene (p,p'-DDD) and p,p'-dichlorodiphenyldichloroethylene (DDE) in combination with gas chromatography-electron-capture detection. The experimental results indicated that an excellent linear relationship between the recoveries and the concentrations of DDT and its main metabolites was obtained in the range of 0.2-30 ng mL(-1) and the correlation coefficients were in the range of 99.96-99.99%. The detection limits based on the ratio of signal to the baseline noise (S/N = 3) were 2.2, 2.9, 3.8 and 4.1 ng L(-1) for p,p'-DDD, p,p'-DDT, o,p'-DDT, and p,p'-DDE, respectively. The precisions of the proposed method were all below 10% (n = 6). Four real water samples were utilized for validation of the proposed method, and satisfactory spiked recoveries in the range of 72.4-112.9% were achieved. These results demonstrated that the developed method was a simple, sensitive, and robust analytical method for the monitoring of pollutants in the environment.

  7. Mechanisms, chemistry and kinetics of the anaerobic biodegradation of cis-dichloroethylene and vinyl chloride. First annual progress report, September 15, 1996--September 14, 1997

    SciTech Connect

    McCarty, P.L.; Spormann, A.

    1997-01-01

    'This three-year project is to study the anaerobic biological conversion of cis-1,2- dichloroethene (cDCE) and vinyl Chloride (VC) to ethene. The study is being conducted in three separate phases, the first to better understand the mechanisms involved in cDCE and VC biodegradation, the second to evaluate the chemistry of the processes involved, and the third, to study factors affecting reaction kinetics. Major funding is being provided by the US Department of Energy, but the DuPont Chemical Company has also agreed to directly cost-share on the project at a rate of $75,000 per year for the three year period. Tetrachloroethylene (PCE) and trichloroethylene (TCE) are solvents that are among the most widely occurring organic groundwater contaminants. The biological anaerobic reduction-of chlorinated aliphatic hydrocarbons (CAHs) such as PCE and TCE to cDCE and VC in groundwater was reported in the early 1980s. Further reduction of PCE and its intermediates to ethene was reported in 1989. Several pure cultures of anaerobic bacteria have been found to reductively dehalogenate PCE to cDCE Rates of reduction of PCE and TCE to cDCE are high and the need for electron donor addition for the reactions is small. However, the subsequent reduction of cDCE to VC, and then of VC to the harmless end product, ethene, is much slower and only recently has a pure culture been reported that is capable of reducing cDCE to VC or VC to ethene. There are numerous. reports of such conversions in mixed cultures. The reduction of cDCE and VC to ethene is where basic research is most needed and is the subject of this study.'

  8. Multi-species interactions impact the accumulation of weathered 2,2-bis (p-chlorophenyl)-1,1-dichloroethylene (p,p'-DDE) from soil.

    PubMed

    Kelsey, Jason W; White, Jason C

    2005-09-01

    The impact of interactions between the earthworms Eisenia foetida and Lumbricus terrestris and the plants Cucurbita pepo and Cucurbita maxima on the uptake of weathered p,p'-DDE from soil was determined. Although some combinations of earthworm and plant species caused significant changes in the p,p'-DDE burden in both organisms, the effects were species specific. Contaminant bioconcentration in C. pepo was increased slightly by E. foetida and by 3-fold when the plant was grown with L. terrestris. E. foetida had no effect on the contaminant BCF by C. maxima, but L. terrestris caused a 2-fold reduction in p,p'-DDE uptake by the plant. Contaminant levels in E. foetida and L. terrestris were unaffected by C. pepo. When grown with C. maxima, the concentration of p,p'-DDE decreased by approximately 4-fold and 7-fold in E. foetida and L. terrestris, respectively. The data suggest that the prediction of contaminant bioavailability should consider interactions among species. PMID:15913856

  9. Screening for estrogen and androgen receptor activities in 200 pesticides by in vitro reporter gene assays using Chinese hamster ovary cells.

    PubMed Central

    Kojima, Hiroyuki; Katsura, Eiji; Takeuchi, Shinji; Niiyama, Kazuhito; Kobayashi, Kunihiko

    2004-01-01

    We tested 200 pesticides, including some of their isomers and metabolites, for agonism and antagonism to two human estrogen receptor (hER) subtypes, hERalpha and hERbeta, and a human androgen receptor (hAR) by highly sensitive transactivation assays using Chinese hamster ovary cells. The test compounds were classified into nine groups: organochlorines, diphenyl ethers, organophosphorus pesticides, pyrethroids, carbamates, acid amides, triazines, ureas, and others. These pesticides were tested at concentrations < 10-5 M. Of the 200 pesticides tested, 47 and 33 showed hER- and hERbeta-mediated estrogenic activities, respectively. Among them, 29 pesticides had both hERalpha and hERbeta agonistic activities, and the effects of the organochlorine insecticides beta-benzene hexachloride (BHC) and delta-BHC and the carbamate insecticide methiocarb were predominantly hERbeta rather than hERalpha agonistic. Weak antagonistic effects toward hERalpha and hERbeta were shown in five and two pesticides, respectively. On the other hand, none of tested pesticides showed hAR-mediated androgenic activity, but 66 of 200 pesticides exhibited inhibitory activity against the transcriptional activity induced by 5alpha-dihydrotestosterone. In particular, the antiandrogenic activities of two diphenyl ether herbicides, chlornitrofen and chlomethoxyfen, were higher than those of vinclozolin and p,p -dichlorodiphenyl dichloroethylene, known AR antagonists. The results of our ER and AR assays show that 34 pesticides possessed both estrogenic and antiandrogenic activities, indicating pleiotropic effects on hER and hAR. We also discussed chemical structures related to these activities. Taken together, our findings suggest that a variety of pesticides have estrogenic and/or antiandrogenic potential via ER and/or AR, and that numerous other manmade chemicals may also possess such estrogenic and antiandrogenic activities. PMID:15064155

  10. The association between local fish consumption and DDE, mirex, and HCB concentrations in the breast milk of Mohawk women at Akwesasne.

    PubMed

    Fitzgerald, E F; Hwang, S A; Deres, D A; Bush, B; Cook, K; Worswick, P

    2001-01-01

    A study was conducted to assess the extent to which the consumption of local fish contaminated with p,p'-dichlorodiphenyl dichloroethylene (p,p'-DDE), mirex, and hexachlorobenzene (HCB) has impacted the concentrations of these compounds in the milk of nursing Mohawk women residing along the St. Lawrence River. From 1986 to 1992, 97 Mohawk women were interviewed, and each donated a one-time sample of at least 50 ml of breast milk. The comparison population consisted of 154 Caucasians from other rural areas in New York State. After adjustment for potential confounders, Mohawk mothers who gave birth from 1986 to 1990 had significantly higher geometric mean p,p'-DDE milk concentrations than did the control group, but no significant differences were observed from 1991 to 1992. In contrast, mirex was significantly elevated among the Mohawks throughout the study period, while HCB showed no difference at any point. Mohawk women with the greatest estimated cumulative lifetime exposure to p,p'-DDE from local fish consumption had a significantly higher geometric mean milk level of that compound relative to control women, but no differences in mirex or HCB concentrations in breast milk by local fish consumption were found. The reduction in breast milk p,p'-DDE concentrations among the Mohawk women from 1986 to 1990 parallels a corresponding decrease in local fish consumption, and may be the result of the advisories that have been issued over the past decade recommending against the consumption of local fish by pregnant and nursing Mohawk women. Elevations in the concentrations of mirex in the breast milk of the Mohawks are consistent with the fact that it is a common contaminant in the region and throughout the Lake Ontario-St. Lawrence River Basin.

  11. KINETIC AND INHIBITION STUDIES FOR THE AEROBIC COMETABOLISM OF 1,1,1-TRICHLOROETHANE, 1,1-DICHLOROETHYLENE, AND 1,1-DICHLOROETHANE BY A BUTANE-GROWN MIXED CULTURE. (R828772)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  12. KINETIC AND INHIBITION STUDIES FOR THE AEROBIC COMETABOLISM OF 1,1,1-TRICHLOROETHANE, 1,1-DICHLOROETHYLENE, AND 1,1-DICHLOROETHANE BY A BUTANE-GROWN MIXED CULTURE. (R828772C003)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  13. FIELD EVALUATION OF IN SITU AEROBIC COMETABOLISM OF TRICHLOROETHYLENE AND THREE DICHLOROETHYLENE ISOMERS USING PHENOL AND TOLUENE AS THE PRIMARY SUBSTRATES. (R825689C050,R825689C066)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  14. Altered developmental timing in early life stages of Antarctic krill (Euphausia superba) exposed to p,p'-DDE.

    PubMed

    Poulsen, Anita H; Kawaguchi, So; Leppänen, Matti T; Kukkonen, Jussi V K; Bengtson Nash, Susan M

    2011-11-15

    Persistent organic pollutants (POPs) are persistent, toxic and bioaccumulative anthropogenic organic chemicals, capable of undergoing long range environmental transport to remote areas including the Antarctic. p,p'-dichlorodiphenyl dichloroethylene (p,p'-DDE) has been identified as a dominant POP accumulating in Antarctic krill (Euphausia superba), which is a key Southern Ocean species. This study examined the developmental toxicity of p,p'-DDE via aqueous exposure to Antarctic krill larvae. p,p'-DDE exposure was found to stimulate developmental timing in the first three larval stages of Antarctic krill, while extended monitoring of larvae after a five day exposure period had ended, revealed delayed inhibitory responses during development to the fourth larval stage. Stimulatory responses were observed from the lowest p,p'-DDE body residue tested of 10.1±3.0 μmol/kg (3.2±0.95 mg/kg) preserved wet weight, which is comparable to findings for temperate species and an order of magnitude lower than the exposure level found to cause sublethal behavioural effects in Antarctic krill. The delayed responses included increased mortality, which had doubled in the highest p,p'-DDE treatment (95±8.9% mortality at 20 μg/L p,p'-DDE) compared to the solvent control (44±11% mortality) 2 weeks after end of exposure. Development of surviving metanauplius larvae to calyptopis 1 larvae was delayed by 2 days in p,p'-DDE exposed larvae compared with untreated larvae. Finally, the developmental success of surviving p,p'-DDE exposed larvae was reduced by 50 to 75% compared to the solvent control (100% developmental success). The lowest observed effect concentration for all delayed effects was 1 μg/L, the lowest exposure concentration tested. These findings demonstrate the importance of delayed and indirect effects of toxicant exposure. Further, the findings of this study are important for environmental risk assessment of POPs in the Southern Ocean ecosystem and strongly highlight the

  15. Neuropsychological Measures of Attention and Impulse Control among 8-Year-Old Children Exposed Prenatally to Organochlorines

    PubMed Central

    Thurston, Sally W.; Bellinger, David C.; Altshul, Larisa M.; Korrick, Susan A.

    2012-01-01

    Background: We previously reported associations between organochlorines and behaviors related to attention deficit hyperactivity disorder among boys and girls at 8 years of age using a teacher’s rating scale for a birth cohort in New Bedford, Massachusetts (USA). Objectives: Our goal was to corroborate these findings using neuropsychological measures of inattentive and impulsive behaviors. Methods: We investigated the association between cord serum polychlorinated biphenyls (PCBs) and p,p´-dichlorodiphenyl dichloroethylene (p,p´-DDE) and attention and impulse control using a Continuous Performance Test (CPT) and components of the Wechsler Intelligence Scale for Children, 3rd edition (WISC-III). Participants came from a prospective cohort of children born during 1993–1998 to mothers residing near a PCB-contaminated harbor in New Bedford. Median (range) cord serum levels for the sum of four prevalent PCBs [congeners 118, 138, 153, and 180 (ΣPCB4)] and p,p´-DDE were 0.19 (0.01–2.59) and 0.31 (0–14.93) ng/g serum, respectively. Results: We detected associations between PCBs and neuropsychological deficits for 578 and 584 children with CPT and WISC-III measures, respectively, but only among boys. For example, boys with higher exposure to ΣPCB4 had a higher rate of CPT errors of omission [rate ratio for the exposure interquartile range (IQR) = 1.12; 95% confidence interval (CI): 0.98, 1.27] and slower WISC-III Processing Speed (change in score for the IQR = –2.0; 95% CI: –3.5, –0.4). Weaker associations were found for p,p´-DDE. For girls, associations were in the opposite direction for the CPT and null for the WISC-III. Conclusions: These results support an association between organochlorines (mainly PCBs) and neuropsychological measures of attention among boys only. Sex-specific effects should be considered in studies of organochlorines and neurodevelopment. PMID:22357172

  16. MICROCOSM AND IN-SITU FIELD STUDIES OF ENHANCED BIOTRANSFORMATION OF TRICHLOROETHYLENE BY PHENOL-UTILIZING MICROORGANISMS

    EPA Science Inventory

    The ability of different aerobic groundwater microorganisms to cometabolically degrade trichloroethylene (TCE), 1,2-cis-dichloroethylene (c-DCE), and 1,2-trans-dichloroethylene (t-DCE) was evaluated both in groundwater-fed microcosms and in situ in a shallow aquifer. Microcosms a...

  17. Food safety.

    PubMed

    Borchers, Andrea; Teuber, Suzanne S; Keen, Carl L; Gershwin, M Eric

    2010-10-01

    Food can never be entirely safe. Food safety is threatened by numerous pathogens that cause a variety of foodborne diseases, algal toxins that cause mostly acute disease, and fungal toxins that may be acutely toxic but may also have chronic sequelae, such as teratogenic, immunotoxic, nephrotoxic, and estrogenic effects. Perhaps more worrisome, the industrial activities of the last century and more have resulted in massive increases in our exposure to toxic metals such as lead, cadmium, mercury, and arsenic, which now are present in the entire food chain and exhibit various toxicities. Industrial processes also released chemicals that, although banned a long time ago, persist in the environment and contaminate our food. These include organochlorine compounds, such as 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (dichlorodiphenyl dichloroethene) (DDT), other pesticides, dioxins, and dioxin-like compounds. DDT and its breakdown product dichlorophenyl dichloroethylene affect the developing male and female reproductive organs. In addition, there is increasing evidence that they exhibit neurodevelopmental toxicities in human infants and children. They share this characteristic with the dioxins and dioxin-like compounds. Other food contaminants can arise from the treatment of animals with veterinary drugs or the spraying of food crops, which may leave residues. Among the pesticides applied to food crops, the organophosphates have been the focus of much regulatory attention because there is growing evidence that they, too, affect the developing brain. Numerous chemical contaminants are formed during the processing and cooking of foods. Many of them are known or suspected carcinogens. Other food contaminants leach from the packaging or storage containers. Examples that have garnered increasing attention in recent years are phthalates, which have been shown to induce malformations in the male reproductive system in laboratory animals, and bisphenol A, which negatively

  18. Potential occupational exposures in the Reiss-Engelhorn-Museen Mannheim/Germany.

    PubMed

    Musshoff, Frank; Gottsmann, Sandra; Mitschke, Sylvia; Rosendahl, Wilfried; Madea, Burkhard

    2010-12-01

    The Reiss-Engelhorn-Museen in Mannheim, Germany requested support from a toxicological laboratory in evaluating occupational exposures before a cleanup and renovation period in 2006. Samples of dust and dirt and scrapings of exhibits were collected from several locations. Following toxicologically relevant compounds could be identified by gas chromatography - mass spectrometry (GC/MS) by comparison with a mass spectra library: dichlorodiphenyl trichloroethane (DDT) and its breakdown product dichlorodiphenyl dichloroethane (DDD) as well as dichlorodiphenyl dichlorethylene (DDE), methoxychlor, nicotine, and camphor. In recent times various insecticides have been used to protect museum artefacts against moths, woodborers and other insect pests. Caution has to be made because the presence of hazardous compounds can result in security problems for museum staff as well as for visitors. PMID:20972535

  19. MICROEMULSION OF MIXED CHLORINATED SOLVENTS USING FOOD GRADE (EDIBLE) SURFACTANTS

    EPA Science Inventory

    Ground water contamination frequently consists of mixed chlorinated solvents [e.g., tetrachloroethylene (PCE), trichloroethylene (TCE), and trans-1,2- dichloroethylene (DCE)]. In this research, mixtures of the food grade (edible) surfactants bis(2-ethylhexyl) sodium sulfosuccinat...

  20. 40 CFR Table 2 to Subpart Jj of... - List of Volatile Hazardous Air Pollutants

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Chloroform 67663 Chloromethyl methyl ether 107302 Chloroprene 126998 Cresols (isomers and mixture) 1319773 o...-Dichloroethylene) 75354 Xylenes (isomers and mixture) 1330207 o-Xylene 95476 m-Xylene 108383 p-Xylene 106423...

  1. 40 CFR Table 2 to Subpart Jj of... - List of Volatile Hazardous Air Pollutants

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Chloroform 67663 Chloromethyl methyl ether 107302 Chloroprene 126998 Cresols (isomers and mixture) 1319773 o...-Dichloroethylene) 75354 Xylenes (isomers and mixture) 1330207 o-Xylene 95476 m-Xylene 108383 p-Xylene 106423...

  2. 40 CFR Table 2 to Subpart Jj of... - List of Volatile Hazardous Air Pollutants

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Chloroform 67663 Chloromethyl methyl ether 107302 Chloroprene 126998 Cresols (isomers and mixture) 1319773 o...-Dichloroethylene) 75354 Xylenes (isomers and mixture) 1330207 o-Xylene 95476 m-Xylene 108383 p-Xylene 106423...

  3. Degradation of halogenated aliphatic compounds by the ammonia- oxidizing bacterium Nitrosomonas europaea.

    PubMed Central

    Vannelli, T; Logan, M; Arciero, D M; Hooper, A B

    1990-01-01

    Suspensions of Nitrosomonas europaea catalyzed the ammonia-stimulated aerobic transformation of the halogenated aliphatic compounds dichloromethane, dibromomethane, trichloromethane (chloroform), bromoethane, 1,2-dibromoethane (ethylene dibromide), 1,1,2-trichloroethane, 1,1,1-trichloroethane, monochloroethylene (vinyl chloride), gem-dichloroethylene, cis- and trans-dichloroethylene, cis-dibromoethylene, trichloroethylene, and 1,2,3-trichloropropane, Tetrachloromethane (carbon tetrachloride), tetrachloroethylene (perchloroethylene), and trans-dibromoethylene were not degraded. PMID:2339874

  4. In situ bioremediation of chlorinated solvents.

    PubMed Central

    Semprini, L

    1995-01-01

    Chlorinated solvents and their natural transformation products are the most frequently observed groundwater contaminants in the United States. In situ bioremediation using anaerobic or aerobic co-metabolic processes is a promising means of cleaning up contaminated aquifers. Studies show that under natural conditions trichloroethylene can be anaerobically degraded to dichloroethylene, vinyl chloride, and ethylene. Pilot scale field studies of in situ aerobic co-metabolic transformations have shown that indigenous microbes grown on phenol are more effective at degrading trichloroethylene and cis-1,2-dichloroethylene than microbes grown on methane. Modeling studies support field observations and indicate that the removal of trichloroethylene and cis-dichloroethylene results from the biostimulation of an indigenous microbial population. Field tests and modeling studies indicate that, at high TCE concentration, degradation becomes stoichiometrically limited. PMID:8565895

  5. 40 CFR Table 10 to Subpart Hhhhhhh... - HAP Subject to the Resin and Process Wastewater Provisions at New and Existing Sources

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... chloride VOC Method 107 at 40 CFR part 61, appendix B. 75354 Vinylidene chloride (1,1-Dichloroethylene) VOC SW-846-8260B.a 1330207 Xylenes (isomers and mixtures) VOC SW-846-8260B.a a Incorporated by...

  6. Reductive dechlorination of Tri- and tetrachloroethylenes depends on transition from aerobic to anaerobic conditions.

    PubMed Central

    Kästner, M

    1991-01-01

    Aerobic enrichment cultures from contaminated groundwaters dechlorinated trichloroethylene (TCE) (14.6 mg/liter; 111 mumol/liter) and tetrachloroethylene (PCE) (16.2 mg/liter; 98 mumol/liter) reductively within 4 days after the transition from aerobic to anaerobic conditions. The transformation products were equimolar amounts of cis-1,2-dichloroethylene and traces of 1,1-dichloroethylene. No other chlorinated product and no methane were detected. The change was accompanied by the release of sulfide, which caused a decrease in the redox potential from 0 to -150 mV. In sterile control experiments, sulfide led to the abiotic formation of traces of 1,1-dichloroethylene without cis-1,2-dichloroethylene production. The reductive dechlorination of PCE via TCE depended on these specific transition conditions after consumption of the electron acceptor oxygen or nitrate. Repeated feeding of TCE or PCE to cultures after the change to anaerobic conditions yielded no further dechlorination. Only aerobic subcultures with an air/liquid ratio of 1:4 maintained dechlorination activities; anaerobic subcultures showed no transformation. Bacteria from noncontaminated sites showed no reduction under the same conditions. PMID:1892393

  7. 76 FR 81840 - National Oil and Hazardous Substances Pollution Contingency Plan; National Priorities List...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-29

    ... September 1983 (48 FR 40674) and was finalized to the NPL on September 21, 1984 (49 FR 37070). Remedial....O. 12777, 56 FR 54757, 3 CFR, 1991 Comp., p. 351; E.O. 12580, 52 FR 2923; 3 CFR, 1987 Comp., p. 193..., chromium, 1,4-dichlorobenzene, trans-1,2- dichloroethylene, ethyl benzene, lead, naphthalene, and...

  8. 40 CFR Appendix I to Part 258 - Constituents for Detection Monitoring

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Trichloroethylene; Trichloroethene 79-01-6 (58) Trichlorofluoromethane; CFC-11 75-69-4 (59) 1,2,3-Trichloropropane...) Bromodichloromethane 75-27-4 (21) Bromoform; Tribromomethane 75-25-2 (22) Carbon disulfide 75-15-0 (23) Carbon... 107-06-2 (35) 1,1-Dichloroethylene; 1,1-Dichloroethene; Vinylidene chloride 75-35-4 (36)...

  9. FRACTIONATION OF STABLE CARBON ISOTOPES DURING ABIOTIC TRANSFORMATION OF TCE

    EPA Science Inventory

    At a Superfund Site in Minnesota, ground water is contaminated with trichloroethylene (TCE) with the contaminant plume stretching over five miles long. The ground water is iron and manganese reducing, and the complete absence of dichloroethylene, vinyl chloride, and ethene in th...

  10. Polyaryl ethers and related polysiloxane copolymer molecular coatings preparation and radiation degrdation

    NASA Technical Reports Server (NTRS)

    Mcgrath, J. E.; Hedrick, J. L.; Webster, D. C.; Johnson, B. C.; Mohanty, D. K.; Yilgor, I.

    1983-01-01

    Poly(arylene ether sulfones) comprise a class of materials known as engineering thermoplastics which have a variety of important applications. These polymers are tough, rigid materials with good mechanical properties over a wide temperature range, and they are processed by conventional methods into products typically having excellent hydrolytic, thermal, oxidative and dimensional stability. Wholly aromatic random copolymers of hydroquinone and biphenol with 4.4 prime dichlorodiphenyl sulfone were synthesized via mechanical nucleophilic displacement. Their structures were characterized and mechanical behavior studied. These tough, ductile copolymers show excellent radiation resistance to electron beam treatment and retain much of the mechanical properties up to at least 700 Mrads under argon.

  11. Comparison of organochlorine residues in human adipose tissue autopsy samples from two Ontario municipalities

    SciTech Connect

    Williams, D.T.; LeBel, G.L.; Junkins, E.

    1984-01-01

    Human adipose tissue samples obtained during autopsies in a Canadian Great Lakes community, Kingston, Ontario, and a second community, Ottawa, Ontario, were analyzed for organochlorine pesticides, polychlorobiphenyls, chlorobenzenes, and chlorophenols. Significantly different levels of Dichlorodiphenyl-dichlorethane, mirex, hexachlorobenzene, and 2,3,4,6-tetrachlorophenol were found in Kingston adipose tissues compared to Ottawa tissues. Residue levels of oxychlordane, mirex, and polychlorinated biphenyls were significantly different in Kingston males versus Kingston females. The means and ranges of residue levels were contrasted with those reported in previous Canadian surveys.

  12. Metabolism and mutagenicity of halogenated olefins--a comparison of structure and activity.

    PubMed Central

    Henschler, D

    1977-01-01

    Chlorinated ethylenes are metabolized in mammals, as a first step, to epoxides. The fate of these electrophilic intermediates may be reaction with nucleophiles (alkylation), hydrolysis, or intramolecular rearrangement. The latter reaction has been studied in the whole series of chlorinated epoxiethanes. The rearrangement products found were: acyl chlorides (tetrachloro-, trichloro-, and 1,1-dichloroethylenes), or chlorinated aldehydes (1,2-dichloroethylenes, cis- and trans-, vinyl chloride). The metabolities found in vivo are identical with, or further derivatives of these rearrangment products, with one important exception: trichloroethylene. With this compound, in vivo rearrangement yields chloral exclusively. The mechanism of the different rearrangement has been identified as a Lewis acid catalysis. All chlorinated ethylenes have been investigated in a tissue-mediated mutagenicity testing system. The prominent molecular feature of those with mutagenic effects (trichloro-, 1,1-dichloro-, and monochloroethylene) is unsymmetric chlorine substitution which renders the epoxides unstable, whereas symmetric substitution confers relative stability and nonmutagenic property. PMID:348459

  13. Evaluation of HCFC AK 225 Alternatives for Precision Cleaning and Verification

    NASA Technical Reports Server (NTRS)

    Melton, D. M.

    1998-01-01

    Maintaining qualified cleaning and verification processes are essential in an production environment. Environmental regulations have and are continuing to impact cleaning and verification processing in component and large structures, both at the Michoud Assembly Facility and component suppliers. The goal of the effort was to assure that the cleaning and verification proceeds unimpeded and that qualified, environmentally compliant material and process replacements are implemented and perform to specifications. The approach consisted of (1) selection of a Supersonic Gas-Liquid Cleaning System; (2) selection and evaluation of three cleaning and verification solvents as candidate alternatives to HCFC 225 (Vertrel 423 (HCFC), Vertrel MCA (HFC/1,2-Dichloroethylene), and HFE 7100DE (HFE/1,2 Dichloroethylene)); and evaluation of an analytical instrumental post cleaning verification technique. This document is presented in viewgraph format.

  14. Induction of toluene oxidation activity in pseudomonas mendocina KR1 and pseudomonas sp. strain ENVPC5 by chlorinated solvents and alkanes

    SciTech Connect

    McClay, K.; Streger, S.H.; Steffan, R.J.

    1995-09-01

    Toluene oxidation activity in Pseudomonas mendocina KR1 and Pseudomonas sp. strain ENVPC5 was induced by trichloroethylene (TCE), and induction was followed by the degradation of TCE. Higher levels of toluene oxidation activity were achieved in the presence of a supplemental growth substrate such as glutamate, with levels of activity of up to 86% of that observed with toluene-induced cells. Activity in P. mendocina KR1 was also induced by cis-1,2-dichloroethylene, perchloroethylene, chloroethane, hexane, pentane, and octane, but not by trans-1,2-dichloroethylene. Toluene oxidation was not induced by TCE in Burkholderia (Pseudomonas) cepacia G4, P. putida F1, Pseudomonas sp. strain ENV110, or Pseudomonas sp. strain ENV113. 22 refs., 4 tabs.

  15. Interim sanitary landfill groundwater monitoring report. 1995 annual report

    SciTech Connect

    Bagwell, L.

    1996-04-24

    Eight wells of the LFW series monitor groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Interim Sanitary Landfill at the Savannah River Site (SRS). These wells are sampled biannually to comply with the South Carolina Department of Health and Environmental Control Modified Municipal Solid Waste Permit 025500- 1120 (formerly DWP-087A) and as part of the SRS Groundwater Monitoring Program. Trichlorofluoromethane was elevated in one downgradient and one sidegradient well during 1995. Barium, 1, 1- dichloroethylene, specific conductance, and zinc exceeded standards in one well each. The elevated level of 1, 1-dichloroethylene occurred in a downgradient well. The groundwater flow direction in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill was to the southeast (universal transverse Mercator coordinates). The flow rate in this unit was approximately 190 ft/year during first quarter 1995 and 150 ft/yr during third quarter 1995.

  16. Determination of volatile organic hydrocarbons in water samples by solid-phase dynamic extraction.

    PubMed

    Jochmann, Maik A; Yuan, Xue; Schmidt, Torsten C

    2007-03-01

    In the present study a headspace solid-phase dynamic extraction method coupled to gas chromatography-mass spectrometry (HS-SPDE-GC/MS) for the trace determination of volatile halogenated hydrocarbons and benzene from groundwater samples was developed and evaluated. As target compounds, benzene as well as 11 chlorinated and brominated hydrocarbons (vinyl chloride, dichloromethane, cis-1,2-dichloroethylene, trans-1,2-dichloroethylene, carbon tetrachloride, chloroform, trichloroethylene, tetrachloroethylene, bromoform) of environmental and toxicological concern were included in this study. The analytes were extracted using a SPDE needle device, coated with a poly(dimethylsiloxane) with 10% embedded activated carbon phase (50-microm film thickness and 56-mm film length) and were analyzed by GC/MS in full-scan mode. Parameters that affect the extraction yield such as extraction and desorption temperature, salting-out, extraction and desorption flow rate, extraction volume and desorption volume, the number of extraction cycles, and the pre-desorption time have been evaluated and optimized. The linearity of the HS-SPDE-GC/MS method was established over several orders of magnitude. Method detection limits (MDLs) for the compounds investigated ranged between 12 ng/L for cis-dichloroethylene and trans-dichloroethylene and 870 ng/L for vinyl chloride. The method was thoroughly validated, and the precision at two concentration levels (0.1 mg/L and a concentration 5 times above the MDL) was between 3.1 and 16% for the analytes investigated. SPDE provides high sensitivity, short sample preparation and extraction times and a high sample throughput because of full automation. Finally, the applicability to real environmental samples is shown exemplarily for various groundwater samples from a former waste-oil recycling facility. Groundwater from the site showed a complex contamination with chlorinated volatile organic compounds and aromatic hydrocarbons.

  17. Laboratory Evaluation of Drop-in Solvent Alternatives to n-Propyl Bromide for Vapor Degreasing

    NASA Technical Reports Server (NTRS)

    Mitchell, Mark A.; Lowrey, Nikki M.

    2012-01-01

    Based on this limited laboratory study, solvent blends of trans-1,2 dichloroethylene with HFEs, HFCs, or PFCs appear to be viable alternatives to n-propyl bromide for vapor degreasing. The lower boiling points of these blends may lead to greater solvent loss during use. Additional factors must be considered when selecting a solvent substitute, including stability over time, VOC, GWP, toxicity, and business considerations.

  18. High-harmonic spectroscopy of molecular isomers

    SciTech Connect

    Wong, M. C. H.; Brichta, J.-P.; Bhardwaj, V. R.; Spanner, M.; Patchkovskii, S.

    2011-11-15

    We demonstrate that high-order-harmonic generation (HHG) spectroscopy can be used to probe stereoisomers of randomly oriented 1,2-dichloroethylene (C{sub 2}H{sub 2}Cl{sub 2}) and 2-butene (C{sub 4}H{sub 8}). The high-harmonic spectra of these isomers are distinguishable over a range of laser intensities and wavelengths. Time-dependent numerical calculations of angle-dependent ionization yields for 1,2-dichloroethylene suggest that the harmonic spectra of molecular isomers reflect differences in their strong-field ionization. The subcycle ionization yields for the cis isomer are an order of magnitude higher than those for the trans isomer. The sensitivity in discrimination of the harmonic spectra of cis- and trans- isomers is greater than 8 and 5 for 1,2-dichloroethylene and 2-butene, respectively. We show that HHG spectroscopy cannot differentiate the harmonic spectra of the two enantiomers of the chiral molecule propylene oxide (C{sub 3}H{sub 6}O).

  19. Survey of microbial oxygenases: Trichloroethylene degradation by propane-oxidizing bacteria

    SciTech Connect

    Wackett, L.P.; Brusseau, G.A.; Householder, S.R.; Hanson, R.S. )

    1989-11-01

    Microorganisms that biosynthesize broad-specificity oxygenases to initiate metabolism of linear and branched-chain alkanes, nitroalkanes, cyclic ketones, alkenoic acids, and chromenes were surveyed for the ability to biodegrade trichloroethylene (TCE). The results indicated that TCE oxidation is not a common property of broad-specificity microbial oxygenases. Bacteria that contained nitropropane dioxygenase, cyclohexanone monooxygenase, cytochrome P-450 monooxygenases, 4-methoxybenzoate monooxygenase, and hexane monooxygenase did not degrade TCE. However, one new unique class of microorganisms removed TCE from incubation mixtures. Five Mycobacterium strains that were grown on propane as the sole source of carbon and energy degraded TCE. Mycobacterium vaccae JOB5 degraded TCE more rapidly and to a greater extent than the four other propane-oxidizing bacteria. At a starting concentration of 20 {mu}M, it removed up to 99% of the TCE in 24 h. M. vaccae JOB5 also biodegraded 1,1-dichloroethylene, trans-1,2-dichloroethylene, cis-1,2-dichloroethylene, and vinyl chloride.

  20. Survey of microbial oxygenases: trichloroethylene degradation by propane-oxidizing bacteria.

    PubMed Central

    Wackett, L P; Brusseau, G A; Householder, S R; Hanson, R S

    1989-01-01

    Microorganisms that biosynthesize broad-specificity oxygenases to initiate metabolism of linear and branched-chain alkanes, nitroalkanes, cyclic ketones, alkenoic acids, and chromenes were surveyed for the ability to biodegrade trichloroethylene (TCE). The results indicated that TCE oxidation is not a common property of broad-specificity microbial oxygenases. Bacteria that contained nitropropane dioxygenase, cyclohexanone monooxygenase, cytochrome P-450 monooxygenases, 4-methoxybenzoate monooxygenase, and hexane monooxygenase did not degrade TCE. However, one new unique class of microorganisms removed TCE from incubation mixtures. Five Mycobacterium strains that were grown on propane as the sole source of carbon and energy degraded TCE. Mycobacterium vaccae JOB5 degraded TCE more rapidly and to a greater extent than the four other propane-oxidizing bacteria. At a starting concentration of 20 microM, it removed up to 99% of the TCE in 24 h. M. vaccae JOB5 also biodegraded 1,1-dichloroethylene, trans-1,2-dichloroethylene, cis-1,2-dichloroethylene, and vinyl chloride. PMID:2624467

  1. Halocarbons in the environment: estimates of thermodynamic properties for aqueous chloroethylene species and their stabilities in natural settings

    NASA Astrophysics Data System (ADS)

    Haas, Johnson R.; Shock, Everett L.

    1999-10-01

    Standard partial molal thermodynamic parameters for the aqueous chlorinated-ethylene species, perchloroethylene (PCE), trichloroethylene (TCE), 1,1-dichloroethylene (1,1-DCE), cis-1,2-dichloroethylene (cis-1,2-DCE), trans-1,2-dichloroethylene (trans-1,2,-DCE), and vinyl chloride (VC) have been estimated by using experimental gas-solubility data and correlation algorithms. The provided thermodynamic values may be used to calculate properties of reactions involving the aqueous chloroethylene species at a wide range of temperatures and pressures. Estimated values for the chloroethylenes were used, along with published values for minerals, gases, aqueous ions, and aqueous neutral organic species, to calculate the stability of chloroethylene species in equilibrium with the minerals magnetite, hematite, pyrite, and pyrrhotite in the subsurface. Estimated values for the aqueous chloroethylenes were also used to calculate reduction potentials for microbially-mediated reductive dechlorination half-reactions at elevated temperatures. Calculations indicate that all aqueous chloroethylene species are energetically favored to decompose to ethylene(aq) under a wide range of conditions in the subsurface, by both abiotic and biotic pathways. Anaerobic microbially mediated degradation is especially favored under conditions at least sufficiently reducing to promote sulfate-reduction, but not under conditions sufficient for microbial denitrification, pyrolusite reduction, or ferric-iron reduction.

  2. Persistent Organic Pollutants in albacore tuna (Thunnus alalunga) from Reunion Island (Southwest Indian Ocean) and South Africa in relation to biological and trophic characteristics.

    PubMed

    Munschy, C; Bodin, N; Potier, M; Héas-Moisan, K; Pollono, C; Degroote, M; West, W; Hollanda, S J; Puech, A; Bourjea, J; Nikolic, N

    2016-07-01

    The contamination of albacore tuna (Thunnus alalunga) by Persistent Organic Pollutants (POPs), namely polychlorinated biphenyls (PCBs) and dichlorodiphenyl-trichloroethane (DDT), was investigated in individuals collected from Reunion Island (RI) and South Africa's (SA) southern coastlines in 2013, in relation to biological parameters and feeding ecology. The results showed lower PCB and DDT concentrations than those previously reported in various tuna species worldwide. A predominance of DDTs over PCBs was revealed, reflecting continuing inputs of DDT. Tuna collected from SA exhibited higher contamination levels than those from RI, related to higher dietary inputs and higher total lipid content. Greater variability in contamination levels and profiles was identified in tuna from RI, explained by a higher diversity of prey and more individualistic foraging behaviour. PCB and DDT contamination levels and profiles varied significantly in tuna from the two investigated areas, probably reflecting exposure to different sources of contamination.

  3. Breastmilk contaminants and infant behavior

    SciTech Connect

    Worobey, J.; Thomas, D.A.; Lewis, M. )

    1990-02-26

    Recent work has shown that certain heavy metals, polychlorinated biphenyls (PCBs), and dichlorodiphenyl dichloroethene (p,p{prime}-DDE) can affect newborn behavior via transplacental exposure. In this study, a number of fluids were collected from a sample of mothers and infants, with gas liquid chromatography used to determine the levels of environmental contaminants in breastmilk obtained in the first postpartum week. Analysis of the first 15 cases revealed normal concentrations of metals, no detectable traces of PCBs, and detectable levels of heptachlor epoxide and p,p{prime}-DDE in breastmilk. No significant associations were found between metals and infant development, but p,p{prime}-DDE was inversely related to perceptual performance and motor scores at 2-1/2 years. These results suggest that contaminants in human milk may affect infant behavior beyond the newborn period, although prediction from other sources must also be considered.

  4. Agricultural produce in the dry bed of the River Ganga in Kanpur, India--a new source of pesticide contamination in human diets.

    PubMed

    Hansi, R K; Farooq, M; Babu, G S; Srivastava, S P; Joshi, P C; Viswanathan, P N

    1999-08-01

    Vegetables grown in the dry bed field of the River Ganga in Kanpur, an important industrial city of North India, were analysed for the pesticides hexachlorocyclohexane (HCH), dichlorodiphenyl trichloroethane (DDT), their isomers and metabolites at three different sites. Residues of both the pesticides were found in all the samples. Mean levels of 109.35, 136.76 and 145.93 microg HCH/kg and 6.64, 49.3 and 46.70 microg DDT/kg were found in the rural upstream, city and downstream industrial areas, respectively. The mean total HCH and DDT levels were within safe limits as per the Indian Standard but some samples had HCH levels above the WHO/FAO limit. The pesticide residue level in vegetables was several fold higher than their surrounding sandy soil and could pose health problems since these popular vegetables are consumed regularly by the population.

  5. Persistent Organic Pollutants in albacore tuna (Thunnus alalunga) from Reunion Island (Southwest Indian Ocean) and South Africa in relation to biological and trophic characteristics.

    PubMed

    Munschy, C; Bodin, N; Potier, M; Héas-Moisan, K; Pollono, C; Degroote, M; West, W; Hollanda, S J; Puech, A; Bourjea, J; Nikolic, N

    2016-07-01

    The contamination of albacore tuna (Thunnus alalunga) by Persistent Organic Pollutants (POPs), namely polychlorinated biphenyls (PCBs) and dichlorodiphenyl-trichloroethane (DDT), was investigated in individuals collected from Reunion Island (RI) and South Africa's (SA) southern coastlines in 2013, in relation to biological parameters and feeding ecology. The results showed lower PCB and DDT concentrations than those previously reported in various tuna species worldwide. A predominance of DDTs over PCBs was revealed, reflecting continuing inputs of DDT. Tuna collected from SA exhibited higher contamination levels than those from RI, related to higher dietary inputs and higher total lipid content. Greater variability in contamination levels and profiles was identified in tuna from RI, explained by a higher diversity of prey and more individualistic foraging behaviour. PCB and DDT contamination levels and profiles varied significantly in tuna from the two investigated areas, probably reflecting exposure to different sources of contamination. PMID:27084988

  6. Monitoring of a wide range of organic micropollutants on the Portuguese coast using plastic resin pellets.

    PubMed

    Mizukawa, Kaoruko; Takada, Hideshige; Ito, Maki; Geok, Yeo Bee; Hosoda, Junki; Yamashita, Rei; Saha, Mahua; Suzuki, Satoru; Miguez, Carlos; Frias, João; Antunes, Joana Cepeda; Sobral, Paula; Santos, Isabelina; Micaelo, Cristina; Ferreira, Ana Maria

    2013-05-15

    We analyzed polychlorinated biphenyls (PCBs), dichlorodiphenyl dichloroethane and its metabolites, hexachlorocyclohexanes (HCHs), polycyclic aromatic hydrocarbons (PAHs), and hopanes, in plastic resin pellets collected from nine locations along the Portuguese coast. Concentrations of a sum of 13 PCBs were one order of magnitude higher in two major cities (Porto: 307 ng/g-pellet; Lisboa: 273 ng/g-pellet) than in the seven rural sites. Lower chlorinated congeners were more abundant in the rural sites than in the cities, suggesting atmospheric dispersion. At most of the locations, PAH concentrations (sum of 33 PAH species) were ∼100 to ∼300 ng/g-pellet; however, three orders of magnitude higher concentrations of PAHs, with a petrogenic signature, were detected at a small city (Sines). Hopanes were detected in the pellets at all locations. This study demonstrated that multiple sample locations, including locations in both urban and remote areas, are necessary for country-scale pellet watch. PMID:23499535

  7. Serum PCB and DDE levels of frequent Great Lakes sport fish consumers -- A first look

    SciTech Connect

    Hanrahan, L.P.; Falk, C.; Anderson, H.A.; Draheim, L.; Olson, J.; Kanarek, M.S.

    1999-02-01

    Great Lakes (GL) sport fish consumption is a potential human exposure route for polychlorinated biphenyls (PCBs) and dichlorodiphenyl dichloroethene (DDE). Because of fish tissue contamination, frequent consumers of Great Lakes sport caught fish (GLSCF) may be at risk for PCB and DDE accumulation. To examine this problem, the Health Departments of Wisconsin, Illinois, Indiana, Ohio, and Michigan formed a health assessment consortium. Participants were contacted by telephone to complete a detailed demographic and fish consumption survey. Frequent and infrequent GLSCF consumers were identified, and a participant subset was then asked to donate blood for PCB and DDE analysis. Analysis of variance (ANOVA) was done to study exposure group mean differences, while correlation and regression analyses were performed to examine relationships between demographic characteristics, GLSCF consumption, PCB, and DDE body burdens.

  8. Transformation yields of chlorinated ethenes by a methanotrophic mixed culture expressing particulate methane monooxygenase.

    PubMed Central

    Anderson, J E; McCarty, P L

    1997-01-01

    Transformation yields for the aerobic cometabolic degradation of five chlorinated ethenes were determined by using a methanotrophic mixed culture expressing particulate methane monooxygenase (pMMO). Transformation yields (expressed as moles of chlorinated ethene degraded per mole of methane consumed) were 0.57, 0.25, 0.058, 0.0019, and 0.00022 for trans-1,2-dichloroethylene (t-DCE), vinyl chloride (VC), cis-1,2-dichloroethylene (c-DCE), trichloroethylene (TCE), and 1,1-dichloroethylene (1,1-DCE), respectively. Degradation of t-DCE and VC was observed only in the presence of formate or methane, sources of reducing energy necessary for cometabolism. The t-DCE and VC transformation yields represented 35 and 15%, respectively, of the theoretical maximum yields, based on reducing-energy availability from methane dissimilation to carbon dioxide, exclusive of all other processes that require reducing energy. The yields for t-DCE and VC were 20 times greater than the yields reported by others for cells expressing soluble methane monooxygenase (sMMO). Transformation yields for c-DCE, TCE, and 1,1-DCE were similar to or less than those for cultures expressing sMMO. Although methanotrophic biotreatment systems have typically been designed to incorporate cultures expressing sMMO, these results suggest that pMMO expression may be highly advantageous for degradation of t-DCE or VC. It may also be much easier to maintain pMMO expression in treatment systems, because pMMO is expressed by all methanotrophs whereas sMMO is expressed only by type II methanotrophs under copper-limited conditions. PMID:9023946

  9. Limited site investigation of Landfills 1 and 4, Fort Lewis, Washington

    SciTech Connect

    Last, G.V.; Eddy, P.A.; Airhart, S.P.; Olsen, K.R.; Raymond, J.R.; Dahl, D.R.

    1990-08-01

    The information presented in this report was collected during limited site investigation activities conducted in the vicinity of Landfills 1 and 4 at Fort Lewis. The purpose of this work was to provide a means of detecting and evaluating the impacts of these inactive landfills on ground-water quality and adjacent lands. This effort included the design and construction of ground-water monitoring systems for compliance with applicable federal and state regulations governing Resource Conservation and Recovery Act (RCRA)-type landfills. Ground-water samples were collected from both existing (1981 and 1984) wells and the newly installed (1988) wells. The analytical results from the water samples indicate that the ground water in and around Landfill 1 contains limited contamination. Contaminants may include volatile organic compounds and nitrate. The primary concern in the area around Landfill 1 was the determination that ground water from two wells may contain cis-1,2-dichloroethylene and 1,1,1-trichloroethylene above drinking water standards. Nitrate levels in the downgradient wells were greater than those in upgradient wells and exceeded drinking water standards in some of the less-representative samples. Analyses of ground-water samples from wells in and around Landfill 4 indicate several contaminants may be present. These include volatile organic compounds (principally cis-1,2-dichloroethylene and 1,1,1-trichloroethylene), coliform, oil and grease, and perhaps some metals (iron and magnesium). The primary concern in the area around Landfill 4 was the determination that ground water from five wells contained cis-1,2-dichloroethylene and 1,1,1-trichloroethylene above drinking water standards. The source of contaminants beneath either landfill cannot yet be identified. Insufficient data exist to disprove or confirm either landfill as possible contributors. 19 refs., 32 figs., 17 tabs.

  10. Mineralization of trichloroethylene by heterotrophic enrichment cultures

    SciTech Connect

    Phelps, T.J.; Ringelberg, D.; Mikell, A.T.; White, D.C. |; Fliermans, C.B.

    1988-12-31

    Microbial consortia capable of aerobically degrading greater than 99% of 50 mg/l exogenous trichloroethylene (TCE) have been enriched from TCE contaminated subsurface sediments. Concentrations of TCE greater than 300 mg/l were not degraded nor was TCE used as a sole energy source. Successful electron donors for growth included tryptone-yeast extract, methanol, methane or propane. The optimum temperature for growth was 22--37 C and the ph optimum was 7.0--8.1. Utilization of TCE occurred only after apparent microbial growth had ceased. The major end products recovered were hydrochloric acid and carbon dioxide. Minor products included dichloroethylene, vinylidine chloride and possibly chloroform.

  11. Decomposition of chlorinated ethylenes and ethanes in an electron beam generated plasma reactor

    SciTech Connect

    Vitale, S.A.

    1996-02-01

    An electron beam generated plasma reactor (EBGPR) is used to determine the plasma chemistry kinetics, energetics and decomposition pathways of six chlorinated ethylenes and ethanes: 1,1,1-trichloroethane, 1,1-dichloroethane, ethyl chloride, trichloroethylene, 1,1-dichloroethylene, and vinyl chloride. A traditional chemical kinetic and chemical engineering analysis of the data from the EBGPR is performed, and the following hypothesis was verified: The specific energy required for chlorinated VOC decomposition in the electron beam generated plasma reactor is determined by the electron attachment coefficient of the VOC and the susceptibility of the molecule to radical attack. The technology was demonstrated at the Hanford Reservation to remove VOCs from soils.

  12. 40 CFR Table 1 to Subpart Dd of... - List of Hazardous Air Pollutants (HAP) for Subpart DD

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Benzotrichloride (isomers and mixture) 0.958 100-44-7 Benzyl chloride 1.000 92-52-4 Biphenyl 0.864 542-88-1 Bis... 0.499 110-54-3 Hexane 1.000 78-59-1 Isophorone 0.506 58-89-9 Lindane (all isomers) 1.000 67-56-1...-Dichloroethylene) 1.000 1330-20-7 Xylenes (isomers and mixture) 1.000 95-47-6 o-Xylenes 1.000 108-38-3 m-Xylenes...

  13. 40 CFR Table 1 to Subpart Dd of... - List of Hazardous Air Pollutants (HAP) for Subpart DD

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Benzotrichloride (isomers and mixture) 0.958 100-44-7 Benzyl chloride 1.000 92-52-4 Biphenyl 0.864 542-88-1 Bis... 0.499 110-54-3 Hexane 1.000 78-59-1 Isophorone 0.506 58-89-9 Lindane (all isomers) 1.000 67-56-1...-Dichloroethylene) 1.000 1330-20-7 Xylenes (isomers and mixture) 1.000 95-47-6 o-Xylenes 1.000 108-38-3 m-Xylenes...

  14. 40 CFR Table 1 to Subpart Dd of... - List of Hazardous Air Pollutants (HAP) for Subpart DD

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Benzotrichloride (isomers and mixture) 0.958 100-44-7 Benzyl chloride 1.000 92-52-4 Biphenyl 0.864 542-88-1 Bis... 0.499 110-54-3 Hexane 1.000 78-59-1 Isophorone 0.506 58-89-9 Lindane (all isomers) 1.000 67-56-1...-Dichloroethylene) 1.000 1330-20-7 Xylenes (isomers and mixture) 1.000 95-47-6 o-Xylenes 1.000 108-38-3 m-Xylenes...

  15. 40 CFR Table 1 to Subpart Dd of... - List of Hazardous Air Pollutants (HAP) for Subpart DD

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Benzotrichloride (isomers and mixture) 0.958 100-44-7 Benzyl chloride 1.000 92-52-4 Biphenyl 0.864 542-88-1 Bis... 0.499 110-54-3 Hexane 1.000 78-59-1 Isophorone 0.506 58-89-9 Lindane (all isomers) 1.000 67-56-1...-Dichloroethylene) 1.000 1330-20-7 Xylenes (isomers and mixture) 1.000 95-47-6 o-Xylenes 1.000 108-38-3 m-Xylenes...

  16. 40 CFR Table 1 to Subpart Dd of... - List of Hazardous Air Pollutants (HAP) for Subpart DD

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Benzotrichloride (isomers and mixture) 0.958 100-44-7 Benzyl chloride 1.000 92-52-4 Biphenyl 0.864 542-88-1 Bis... 0.499 110-54-3 Hexane 1.000 78-59-1 Isophorone 0.506 58-89-9 Lindane (all isomers) 1.000 67-56-1...-Dichloroethylene) 1.000 1330-20-7 Xylenes (isomers and mixture) 1.000 95-47-6 o-Xylenes 1.000 108-38-3 m-Xylenes...

  17. Superfund Record of Decision (EPA Region 7): Des Moines TCE Site, Operable Unit 3, Des Moines, IA. (Second remedial action), September 1992. Final report

    SciTech Connect

    Not Available

    1992-09-18

    The Des Moines TCE site is located southwest of downtown Des Moines, Polk County, Iowa. Land use in the area is predominantly industrial and commercial, and part of the site lies within the floodplain of the Raccoon River. Water from the Des Moines Water Works north infiltration gallery was found to be contaminated with trichloroethylene (TCE), dichloroethylene (DCE), and vinyl chloride at levels above accepted drinking water standards. The ROD addresses OU3, which encompasses potential sources of ground water contamination in an area north of the Raccoon River. The selected remedial action for OU3 includes no action with periodic groundwater monitoring.

  18. Health assessment for Savage Municipal Well, Milford, Hillsborough County, New Hampshire, Region 1. CERCLIS No. NHD980671002. Preliminary report

    SciTech Connect

    Not Available

    1989-04-10

    The Savage Municipal Well Site is on the National Priorities List (NPL). Groundwater, surface water, and soil have been analyzed for VOCs and acid and base/neutral extrable compounds (ABNs). Specific contaminants included tetrachloroethylene, trans-1,2-dichloroethylene, trichloroethylene, vinyl chloride, and bis(2-ethylhexyl)phthalate. Lead, chromium, and mercury were detected in groundwater samples from wells below the surface discharge stream. Further environmental characterization and sampling of the site and impacted off-site areas during the Remedial Investigation and Feasibility Study (RI/FS) should be designed to address the environmental and human exposure pathways.

  19. Health assessment for Amnicola Dump, Chattanooga, Tennessee, Region 4. CERCLIS No. TND980729172. Preliminary report

    SciTech Connect

    Not Available

    1989-04-10

    The Amnicola Dump Site is a former municipal landfill located in Chattanooga (Hamilton County), Tennessee. The site is presently a scrap metal and salvage operation for railroad ties. Preliminary on-site sampling results have identified various volatile organic compounds. They include trichloroethylene, vinyl chloride, and trans-1,2-dichloroethylene. More recent on-site sampling results identified bis(2-ethylhexyl)phthalate, phenol, and 4-methyl phenol. Based on available information, the site is considered to be of potential public health concern because of the risk to human health caused by the possibility of human exposure to hazardous substances.

  20. Resonant inelastic x-ray scattering on iso-C{sub 2}H{sub 2}Cl{sub 2} around the chlorine K-edge: Structural and dynamical aspects

    SciTech Connect

    Kawerk, Elie E-mail: ekawerk@units.it; Carniato, Stéphane; Journel, Loïc; Marchenko, Tatiana; Simon, Marc; Piancastelli, Maria Novella; Žitnik, Matjaž; Bučar, Klemen; Bohnic, Rok; and others

    2014-10-14

    We report a theoretical and experimental study of the high resolution resonant K{sub α} X-ray emission lines around the chlorine K-edge in gas phase 1,1-dichloroethylene. With the help of ab initio electronic structure calculations and cross section evaluation, we interpret the lowest lying peak in the X-ray absorption and emission spectra. The behavior of the K{sub α} emission lines with respect to frequency detuning highlights the existence of femtosecond nuclear dynamics on the dissociative Potential Energy Surface of the first K-shell core-excited state.

  1. 40 CFR 261.24 - Toxicity characteristic.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 4 200.0 D016 2,4-D 94-75-7 10.0 D027 1,4-Dichlorobenzene 106-46-7 7.5 D028 1,2-Dichloroethane 107-06-2 0.5 D029 1,1-Dichloroethylene 75-35-4 0.7 D030 2,4-Dinitrotoluene 121-14-2 3 0.13 D012 Endrin 72...-49-2 1.0 D011 Silver 7440-22-4 5.0 D039 Tetrachloroethyl-ene 127-18-4 0.7 D015 Toxaphene......

  2. 40 CFR 261.24 - Toxicity characteristic.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 4 200.0 D016 2,4-D 94-75-7 10.0 D027 1,4-Dichlorobenzene 106-46-7 7.5 D028 1,2-Dichloroethane 107-06-2 0.5 D029 1,1-Dichloroethylene 75-35-4 0.7 D030 2,4-Dinitrotoluene 121-14-2 3 0.13 D012 Endrin 72...-49-2 1.0 D011 Silver 7440-22-4 5.0 D039 Tetrachloroethyl-ene 127-18-4 0.7 D015 Toxaphene......

  3. 40 CFR 261.24 - Toxicity characteristic.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 4 200.0 D016 2,4-D 94-75-7 10.0 D027 1,4-Dichlorobenzene 106-46-7 7.5 D028 1,2-Dichloroethane 107-06-2 0.5 D029 1,1-Dichloroethylene 75-35-4 0.7 D030 2,4-Dinitrotoluene 121-14-2 3 0.13 D012 Endrin 72...-49-2 1.0 D011 Silver 7440-22-4 5.0 D039 Tetrachloroethyl-ene 127-18-4 0.7 D015 Toxaphene......

  4. 40 CFR 261.24 - Toxicity characteristic.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 4 200.0 D016 2,4-D 94-75-7 10.0 D027 1,4-Dichlorobenzene 106-46-7 7.5 D028 1,2-Dichloroethane 107-06-2 0.5 D029 1,1-Dichloroethylene 75-35-4 0.7 D030 2,4-Dinitrotoluene 121-14-2 3 0.13 D012 Endrin 72...-49-2 1.0 D011 Silver 7440-22-4 5.0 D039 Tetrachloroethyl-ene 127-18-4 0.7 D015 Toxaphene......

  5. 40 CFR 261.24 - Toxicity characteristic.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 4 200.0 D016 2,4-D 94-75-7 10.0 D027 1,4-Dichlorobenzene 106-46-7 7.5 D028 1,2-Dichloroethane 107-06-2 0.5 D029 1,1-Dichloroethylene 75-35-4 0.7 D030 2,4-Dinitrotoluene 121-14-2 3 0.13 D012 Endrin 72...-49-2 1.0 D011 Silver 7440-22-4 5.0 D039 Tetrachloroethyl-ene 127-18-4 0.7 D015 Toxaphene......

  6. Enhancing bull sexual behavior using estrus-specific molecules identified in cow urine.

    PubMed

    Le Danvic, Chrystelle; Gérard, Olivier; Sellem, Eli; Ponsart, Claire; Chemineau, Philippe; Humblot, Patrice; Nagnan-Le Meillour, Patricia

    2015-06-01

    Deficiencies in bull mating behavior have implications for bovine artificial insemination activities. The aim of this study was to identify the compounds present in fluids emitted by cows during estrus, which could enhance bull libido. Chemical analysis of urine samples from cows led to the characterization of molecules varying specifically at the preestrous and estrous stages. The synthetic counterpart molecules (1,2-dichloroethylene, squalene, coumarin, 2-butanone, oleic acid) were used to investigate the biological effects on male sexual behavior and sperm production. When presented to males, 2-butanone and oleic acid synthetic molecules significantly lowered mounting reaction time and ejaculation time (-33% and 21% after 2-butanone inhalation, respectively, P < 0.05). The "squalene +1,2-dichloroethylene" combination induced a 9% increase of sperm quantity (P < 0.05). This study suggests that the identified estrous-specific molecules could be part of the chemical signals involved in male and female mating behavior and may be used for a wide range of applications. The identification of these molecules may have implications for the cattle breeding industry.

  7. Mixed Waste Management Facility (MWMF) groundwater monitoring report. Fourth quarter 1992 and 1992 summary

    SciTech Connect

    Not Available

    1993-03-01

    During fourth quarter 1992, nine constituents exceeded final Primary Drinking Water Standards (PDWS) in one or more groundwater samples from monitoring wells at the Mixed Waste Management Facility (MWMF) and adjacent facilities. As in previous quarters, tritium and trichloroethylene were the most widespread constituents. Fifty-seven (48%) of the 120 monitoring wells, contained elevated tritium activities, and 23 (19%) contained elevated trichloroethylene concentrations. Total alpha-emitting radium, tetrachloroethylene, chloroethene, cadmium, 1,1-dichloroethylene, lead, or nonvolatile beta levels exceeded standards in one or more wells. During 1992, elevated levels of 13 constituents were found in one or more of 80 of the 120 groundwater monitoring wells (67%) at the MWMF and adjacent facilities. Tritium and trichloroethylene exceeded their final PDWS more frequently and more consistently than did other constituents. Tritium activity exceeded its final PDWS m 67 wells and trichloroethylene was. elevated in 28 wells. Lead, tetrachloroethylene, total alpha-emitting radium, gross alpha, cadmium, chloroethene, 1,1-dichloroethylene 1,2-dichloroethane, mercury, or nitrate exceeded standards in one or more wells during the year. Nonvolatile beta exceeded its drinking water screening level in 3 wells during the year.

  8. Biodegradation of trichloroethylene and its anaerobic daughter products in freshwater wetland sediments

    USGS Publications Warehouse

    Lorah, M.M.; Olsen, L.D.

    2001-01-01

    Laboratory microcosms were prepared under methanogenic, sulfate-reducing, and aerobic conditions using sediment and groundwater from a freshwater wetland that is a discharge area for a trichloroethylene (TCE) to evaluate potential biodegradation rates of TCE and its anaerobic daughter products (cis-1,2-dichloroethylene, trans-1,2-dichloroethylene, and vinyl chloride (VC)). Anaerobic degradation of TCE was about an order of magnitude faster under methanogenic conditions than under sulfate-reducing conditions. Both 12DCE and VC were found under sulfate-reducing conditions in the microcosms containing the wetland sediment, but their production, especially for VC, was substantially slower than under methanogenic conditions. Methane concentrations remained approximately constant (when losses in the formalin-amended controls are considered) in the microcosms amended with TCE and increased in the microcosms amended with the 12DCE isomers and VC during the first 18-25 days of incubation. The most rapid decrease in concentrations of TCE, cis-12DCE, trans-12DCE, and VC was found after aerobic methane-oxidizing conditions were definitely established.

  9. Anaerobic biodegradation and hydrogeochemical controls on natural attenuation of trichloroethene in an inland forested wetland

    USGS Publications Warehouse

    Lorah, M.M.; Dyer, L.J.; Burris, D.R.

    2007-01-01

    Anaerobic biodegradation was conducted in a forested wetland where a plume of trichloroethylene discharges from a sand aquifer through organic-rich wetland and stream-bottom sediments. The rapid response of the wetland hydrology to precipitation events altered groundwater flow and geochemistry during wet conditions in the spring compared to the drier conditions in the summer and fall. During dry conditions, partial reductive dechlorination of trichloroethylene to cis-1,2-dichloroethylene occurred in methanogenic wetland porewater. Influx of oxygenated recharge during wet conditions led to a change from methanogenic to iron-reducing conditions and a lack of 1,2-dichloroethylene production in the wet spring conditions. During these wet conditions, dilution was the primary attenuation mechanism evident for trichloroethylene in the wetland porewater. Trichloroethylene degradation was insignificant in anaerobic microcosms constructed with the shallow wetland sediment. Natural attenuation of chlorinated solvents by anaerobic biodegradation may not be efficient at all wetland sites, despite organic-rich characteristics of the sediment.

  10. Health assessment for Mottolo Hazardous Waste Site, Raymond, New Hampshire, Region 1. CERCLIS No. NHD980503361. Preliminary report

    SciTech Connect

    Not Available

    1989-04-12

    The Mottolo Hazardous Waste Site is listed on the U.S. Environmental Protection Agency's (EPA) National Priorities List (NPL). The site consists of a 10 acre portion of a 50 acre parcel of land formerly used for a piggery. Volatile organic chemicals (VOCs) are the only hazardous chemicals identified at the Mottolo Site. Groundwater and surface water have been the only media sampled. Groundwater analysis for inorganic compounds detected onsite concentrations of iron and manganese exceeding Secondary Maximum Contaminant Levels. Groundwater on-site has contained up to 8 ppm of total VOCs. Both the overburden and bedrock aquifers have been contaminated. Specific contaminants detected in groundwater were benzene, 1,1-dichloroethane, 1,2-dichloroethane, 1,1-dichloroethylene, 1,2-dichloroethylene, tetrahydrofuran, 1,1,1-trichloroethane, trichloroethylene, toluene, and xylenes. The site is considered to be of potential public health concern due to the risk to human health caused by the possibility of exposure to hazardous substances via contaminated groundwater, surface water, and soil. There appear to be no sources of acute health risks at the Mottolo Site. However, potential chronic health risks may be associated with contaminated groundwater, surface water, and potentially contaminated soils. A continual monitoring program of residential wells in the area is recommended until the source of contamination is mitigated or an alternate water source is provided.

  11. Health assessment for HOD Landfill, Antioch, Lake County, Illinois, Region 5. CERCLIS No. ILD980605836. Preliminary report

    SciTech Connect

    Not Available

    1989-01-19

    The HOD Landfill site is listed on the National Priorities List. The 80-acre site, of which 50 acres have been landfilled, operated as an industrial waste landfill from 1963-1983. The site presently is closed pending site expansion litigation. The environmental contamination on-site consists of cadmium (8 ppb), lead (6 ppb), zinc (1,860 ppb), manganese (230 ppb), 1,2-dichloroethylene (71 ppb), 1,1-dichloroethylene (7 ppb), bis(2-ethylhexyl)phthalate (4,100 ppb), and benzene (8 ppb) in groundwater. The environmental contamination off-site consists of chromium (12 ppb), thallium, manganese (25 ppb), and arsenic in ground water from residential and drinking water wells. The site is considered to be of potential public health concern because of the risk to human health caused by the possibility of exposure to hazardous substances via contaminated ground water. Until more is known about the potential and possible extent of contamination in surface soil, sediment, surface water, and air, these pathways should be considered to be of public health concern also.

  12. [The mutagenicity of organic microcontamination in the environment. II. The mutagenicity of volatile organic halogens in the Salmonella microsome test (Ames Test) with regard to the contamination of groundwater and drinking water].

    PubMed

    Mersch-Sundermann, V

    1989-02-01

    To determine the sensitivity and specificity of microbial shortterm-tests for the registration of the mutagenic potency of halogenated hydrocarbons (OHV) 18 pure substances out of the groups of halomethanes, -ethanes and -ethylenes were examined with different laboratory methods (classical Ames-Test, Spot-Testing, Preincubation-Procedure) of the Salmonella-Microsome-Test (Ames-Test). The Salmonella typhimurium- strains TA97, TA98, TA100 und TA102 were used with and without metabolic activation of Arochlor 1254 induced rat-liver microsomes. Mutagenicity with one or several procedures shows 1,1,2,2-tetrachloroethane, hexachloroethane, trichloroethylene, bromdichloromethane and bromoform without metabolic activation and dichloromethane, tetrachloromethane, 1,1,2,2-tetrachloroethane, hexachloroethane, 1,1-dichloroethylene, trans-1,2-dichloroethylene, tetrachloroethylene and bromdichloromethane with metabolic activation. The range of sensitivity amounted from microgram to nanogram values of OHV's per plate, so that the Ames-test can be a sensitive screening method sufficient for detection of mutagenic effects by several OHV's in high contaminated environmental samples even without extraction procedures.

  13. Sanitary Landfill Groundwater Monitoring Report, Fourth Quarter 1999 and 1999 Summary

    SciTech Connect

    Chase, J.

    2000-03-13

    A maximum of thirty eight-wells of the LFW series monitor groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill Area at the Savannah River Site (SRS). These wells are sampled quarterly to comply with the South Carolina Department of Health and Environmental Control Domestic Water Permit DWP-087A and as part of the SRS Groundwater Monitoring Program. Iron (Total Recoverable), Chloroethene (Vinyl Chloride) and 1,1-Dichloroethane were the most widespread constituents exceeding the Final Primary Drinking Water Standards during 1999. Trichloroethylene, 1,1-Dichloroethylene, 1,2-Dichloroethane, 1,4-Dichlorobenzene, Aluminum (Total Recoverable), Benzene, cis-1,2-Dichloroethylene, Dichlorodifluoromethane, Dichloromethane (Methylene Chloride), Gross Alpha, Mercury (Total Recoverable), Nonvolatile Beta, Tetrachloroethylene, Total Organic Halogens, Trichlorofluoromethane, Tritium also exceeded standards in one or more wells. The groundwater flow direction in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill is to the southeast (universal transverse Mercator coordinates). The flow rate in this unit was approximately 144.175 ft/year during first quarter 1999 and 145.27 ft/year during fourth quarter 1999.

  14. Mixed Waste Management Facility (MWMF) groundwater monitoring report, second quarter 1992

    SciTech Connect

    Not Available

    1992-09-01

    During second quarter 1992, tritium, trichloroethylene, tetrachloroethylene, chloroethene, antimony, 1,1-dichloroethylene, lead, nonvolatile beta, radium-228, thorium-228, or total alpha-emitting radium (radium-226 and radium-228) exceeded the US Environmental Protection Agency Primary Drinking Water Standards (PDWS) in groundwater samples from monitoring wells at the Mixed Waste Management Facility (MWMF) and adjacent facilities. Tritium and trichloroethylene were the most widespread constituents; 55 (48%) of the 115 monitored wells contained elevated tritium activities, and 23 (20%) wells exhibited elevated trichloroethylene concentrations. Sixty-three downgradient wells screened in Aquifer Zone IIB2 (Water Table), Aquifer Zone IIB[sub 2] (Barnwell/McBean), and Aquifer Unit IIA (Congaree) contained concentrations of tritium, trichloroethylene, tetrachloroethylene, chloroethene, antimony, 1,1-dichloroethylene, lead, nonvolatile beta, radium-228, thorium-228, or total alpha-emitting radium that exceeded the PDWS during second quarter 1992. Upgradient wells BGO 1D and 2D and HSB 85A, 85B, and 85C did not contain any constituents that exceeded the PDWS.

  15. Mixed Waste Management Facility (MWMF) groundwater monitoring report, second quarter 1992

    SciTech Connect

    Not Available

    1992-09-01

    During second quarter 1992, tritium, trichloroethylene, tetrachloroethylene, chloroethene, antimony, 1,1-dichloroethylene, lead, nonvolatile beta, radium-228, thorium-228, or total alpha-emitting radium (radium-226 and radium-228) exceeded the US Environmental Protection Agency Primary Drinking Water Standards (PDWS) in groundwater samples from monitoring wells at the Mixed Waste Management Facility (MWMF) and adjacent facilities. Tritium and trichloroethylene were the most widespread constituents; 55 (48%) of the 115 monitored wells contained elevated tritium activities, and 23 (20%) wells exhibited elevated trichloroethylene concentrations. Sixty-three downgradient wells screened in Aquifer Zone IIB2 (Water Table), Aquifer Zone IIB{sub 2} (Barnwell/McBean), and Aquifer Unit IIA (Congaree) contained concentrations of tritium, trichloroethylene, tetrachloroethylene, chloroethene, antimony, 1,1-dichloroethylene, lead, nonvolatile beta, radium-228, thorium-228, or total alpha-emitting radium that exceeded the PDWS during second quarter 1992. Upgradient wells BGO 1D and 2D and HSB 85A, 85B, and 85C did not contain any constituents that exceeded the PDWS.

  16. Enhancing bull sexual behavior using estrus-specific molecules identified in cow urine.

    PubMed

    Le Danvic, Chrystelle; Gérard, Olivier; Sellem, Eli; Ponsart, Claire; Chemineau, Philippe; Humblot, Patrice; Nagnan-Le Meillour, Patricia

    2015-06-01

    Deficiencies in bull mating behavior have implications for bovine artificial insemination activities. The aim of this study was to identify the compounds present in fluids emitted by cows during estrus, which could enhance bull libido. Chemical analysis of urine samples from cows led to the characterization of molecules varying specifically at the preestrous and estrous stages. The synthetic counterpart molecules (1,2-dichloroethylene, squalene, coumarin, 2-butanone, oleic acid) were used to investigate the biological effects on male sexual behavior and sperm production. When presented to males, 2-butanone and oleic acid synthetic molecules significantly lowered mounting reaction time and ejaculation time (-33% and 21% after 2-butanone inhalation, respectively, P < 0.05). The "squalene +1,2-dichloroethylene" combination induced a 9% increase of sperm quantity (P < 0.05). This study suggests that the identified estrous-specific molecules could be part of the chemical signals involved in male and female mating behavior and may be used for a wide range of applications. The identification of these molecules may have implications for the cattle breeding industry. PMID:25817331

  17. Reductive dechlorination of trichloroethylene in anoxic aquifer material from Picatinny Arsenal, New Jersey. Water Resources Investigation

    SciTech Connect

    Wilson, B.H.; Ehlke, T.A.; Imbrigiotta, T.E.; Wilson, J.T.

    1991-01-01

    Ground water at Picatinny Arsenal, New Jersey, has been contaminated with chlorinated solvents released from the waste water-treatment system of a metal-plating shop and from overflow from a degreasing vat. Trichloroethylene is the major contaminant, but 1,1,1-trichloroethane and tetrachloroethylene are also present. Cis-1,2-dichloroethylene and vinyl chloride were not original contaminants, but their accumulation in the ground water indicates reductive dechlorination of the trichloroethylene and tetrachloroethylene released to the aquifer. Laboratory microcosms were used to estimate the kinetics of reductive dechlorination at field scale. The microcosms were constructed with aquifer material collected from locations along the longitudinal extent of the plume and from outside the area of contamination. To determine whether supplementary electron donors would enhance reductive dechlorination, three suites of electron donors were added to aquifer material: (1) butyrate, propionate, toluene, and p-cresol; (2) butyrate, propionate, formate, methanol, toluene, and p-cresol; or (3) formate and methanol.

  18. Public health assessment for wells G and H, Woburn, Middlesex County, Massachusetts, Region 1. Cerclis No. MAD980732168. addendum. Final report

    SciTech Connect

    1995-12-20

    This public health assessment addendum focuses on the indoor air monitoring studies conducted at the Wells G and H ste since the completion of the Health Assessment in 1989. The primary contaminants detected in indoor air were carbon tetrachloride, benzene, 1,2-dichloroethane, trichloroethylene, 1, 1-dichloroethylene, methylene chloride, and chloroform. Based on the available information, the indoor air in the site vicinity represents no apparent public health hazard. However, the conclusions of this public health addendum do not change the original conclusions of the 1989 Public Health Assesment, which said that the Wells G and H site represents a public health hazard because of the risk to human health resulting from current and past exposure to hazardous substances, in the soil and municipal drinking water respectively, at concentrations that may result in adverse health effects.

  19. Application of solar photocatalytic oxidation to VOC-containing airstreams

    SciTech Connect

    Magrini, K.A.; Watt, A.S.; Boyd, L.C.; Wolfrum, E.J.; Larson, S.A.; Roth, C.; Glatzmaier, G.C.

    1999-07-01

    Researchers from the National Renewable Energy Laboratory (NREL) recently conducted two pilot-scale field tests located at McClellan Air Force Base (AFB) in Sacramento, California and at the Fort Carson US Army Installation in Colorado Springs, Colorado. The objective of the tests was to determine the effectiveness of solar-powered photocatalytic oxidation (PCO) treatment units for destroying emissions of chlorinated organic compounds (trichloroethylene and dichloroethylenes) from an air stripper at ambient temperature and destroying paint solvent emissions (toluene and MEK) from a painting facility at higher temperatures. Their goals for field testing these solar-driven systems was to gather real-world treatability data and establish that the systems maintained performance during the duration of the testing. This paper reports the results of these field tests.

  20. Mineralization of Trichloroethylene by Heterotrophic Enrichment Cultures

    PubMed Central

    Fliermans, C. B.; Phelps, T. J.; Ringelberg, D.; Mikell, A. T.; White, D. C.

    1988-01-01

    Microbial consortia capable of aerobically degrading more than 99% of exogenous trichloroethylene (TCE) (50 mg/liter) were collected from TCE-contaminated subsurface sediments and grown in enrichment cultures. TCE at concentrations greater than 300 mg/liter was not degraded, nor was TCE used by the consortia as a sole energy source. Energy sources which permitted growth included tryptone-yeast extract, methanol, methane, and propane. The optimum temperature range for growth and subsequent TCE consumption was 22 to 37°C, and the pH optimum was 7.0 to 8.1. Utilization of TCE occurred only after apparent microbial growth had ceased. The major end products recovered were hydrochloric acid and carbon dioxide. Minor products included dichloroethylene, vinylidine chloride, and, possibly, chloroform. PMID:16347682

  1. Removal of volatile organics from humidified air streams by absorption. Final report, July 1985-March 1987

    SciTech Connect

    Coutant, R.W.; Zwick, T.; Kim, B.C.

    1987-12-01

    The Air Force frequently relies on air-stripping technologies to remove organic chemicals from ground waters contaminated from fuel and solvent spills. Although air stripping is extremely efficient at removing contaminants from the groundwater, these contaminants are only transferred into the air and in several states, air pollution controls are also required. Activated-carbon beds are one potential emissions control under study. The objective of this study was to determine the effects of contaminant concentration, humidity, and chemical competition on the sorption performance of activated carbons. Based on laboratory results, a preliminary cost comparison was made for heated and unheated carbon beds. Volatile organics of interest included benzene, ethyl benzene, toluene, xylenes. trichloroethylene, and 1,1-dichloroethylene.

  2. An Evaluation of Microbial and Chemical Contamination Sources Related to the Deterioration of Tap Water Quality in the Household Water Supply System

    PubMed Central

    Lee, Yoonjin

    2013-01-01

    The predominant microorganisms in samples taken from shower heads in residences in the Korean city “N” were Stenotrophomonas maltophilia, Sphingomonas paucimobilis, Acidovorax temperans, and Microbacterium lacticum. Legionella was not detected in this case. The volatile organic compounds (VOCs) vinylacetate, NN-DMA, cis-1,2-dichloroethylene, epichlorohydrin, and styrene were measured in five types of plastic pipes: PVC, PB, PP, PE, and cPVC. The rate of multiplication of the heterotrophic plate count (HPC) attached on the copper pipe in contact with hot tap water was higher than the rate for the copper pipe in contact with cold tap water. Biofilm accumulation on stainless steel pipes with added acetate (3 mg/L) was 2.56 times higher than the non-supplemented condition. Therefore, the growth of HPC in the pipe system was affected by the type and availability of nutrients and depended on variables such as heating during the hot water supply. PMID:24018837

  3. Formalin preservation of avian blood for organochlorine analysis

    USGS Publications Warehouse

    Stafford, C.J.; Stickel, W.H.; Lamb, D.W.; Kenaga, E.E.

    1981-01-01

    Blood biopsy for chemical analysis is a valuable technique for evaluating chemical exposure of birds in the wild without harming the birds. Field conditions, however, often make sample storage difficult. Better methods than freezing are needed to improve the interpretive value of chemical analysis of the sample. The use of formalin was explored for this purpose. A pooled sample of blood containing naturally incorporated 1,1-bis-(p-chlorophenyl)-2,2,2-trichloroethane (DDT), 2,2-bis-(p-chlorophenyl)1,1 dichloroethylene (DDE), and dieldrin was subdivided into 30 samples, of which 10 were frozen, 10 more were kept at room temperature, and 10 were formalinized by adding I part of chemically pure formalin to 20 parts of blood. The formalinized samples yielded the highest and least variable concentrations of chemicals. The field procedures are outlined.

  4. Application of fluorescent antibody and enzyme-linked immunosorbent assays for TCE and PAH degrading bacteria

    SciTech Connect

    Brigmon, R.L.; Franck, M.; Brey, J.; Scott, D.; Lanclos, K.; Fliermans, C.

    1996-07-01

    Historically, methods used to identify methanotrophic and polyaromatic hydrocarbon-degrading (PAH) bacteria in environmental samples have been inadequate because isolation and identification procedures are time-consuming and often fail to separate specific bacteria from other environmental microorganisms. Methanotrophic bacteria have been isolated and characterized from TCE-contaminated soils (Bowman et al. 1993; Fliermans et al., 1988). Fliermans et al., (1988) and others demonstrated that cultures enriched with methane and propane could cometabolically degrade a wide variety of chlorinated aliphatic hydrocarbons including ethylene; 1,2-cisdichloroethylene (c-DCE); 1,2-trans-dichloroethylene (t-DCE); vinyl chloride (VC); toluene; phenol and cresol. Characterization of select microorganisms in the natural setting is important for the evaluation of bioremediation potential and its effectiveness. This realization has necessitated techniques that are selective, sensitive and easily applicable to soils, sediments, and groundwater (Fliermans, et al., 1994). Additionally these techniques can identify and quantify microbial types in situ in real time

  5. Characterization of a microbial consortium capable of rapid and simultaneous dechlorination of 1,1,2,2-tetrachloroethane and chlorinated ethane and ethene intermediates

    USGS Publications Warehouse

    Jones, E.J.P.; Voytek, M.A.; Lorah, M.M.; Kirshtein, J.D.

    2006-01-01

    A study was carried out to develop a culture of microorganisms for bioaugmentation treatment of chlorinated-ethane contaminated groundwater at sites where dechlorination is incomplete or rates are too slow for effective remedation. Mixed cultures capable of dechlorinating chlorinated ethanes and ethenes were enriched from contaminated wetland sediment at Aberdeen Proving Ground (APG) Maryland. The West Branch Consortium (WBC-2) was capable of degrading 1,1,2,2-tetrachloroethane (TeCA), trichloroethylene (TCE), cis and trans 1,2-dichloroethylene (DCE), 1,1,2-trichloroethane (TCA), 1,2-dichloroethane, and vinyl chloride to nonchlorinated end products ethylene and ethane. WBC-2 dechlorinated TeCA, TCA, and cisDCE rapidly and simultaneously. Methanogens in the consortium were members of the class Methanomicrobia, which includes acetoclastic methanogens. The WBC-2 consortium provides opportunities for the in situ bioremediation of sites contaminated with mixtures of chlorinated ethylenes and ethanes.

  6. Electronic structure and biological activity of chosen DDT-type insecticides studied by 35Cl-NQR.

    PubMed

    Jadzyn, Maciej; Nogaj, Bolesław

    2009-02-01

    A correlation between the electronic structure and biological activity of chosen dichlorodiphenyltrichloroethane (DDT)-type insecticides: 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane, 1,1-dichloro-2,2-bis(4-chlorophenyl)ethane, 2,2-bis(p-chlorophenyl)-1,1-dichloroethylene, 2,2-bis(4-chlorophenyl)ethanoic acid and 4,4'-dichlorobenzophenone (used in agriculture) has been analysed on the basis of the (35)Cl-nuclear quadrupole resonance (NQR) spectroscopy. The (35)Cl-NQR resonance frequencies measured at 77 K have been correlated with the lethal dose (LD(50)) parameter that characterises the biological activity of these insecticides.

  7. Interlaboratory evaluation of volatile organic compound determinations in soils prepared by vapor fortification

    SciTech Connect

    Hewitt, A.D.; Grant, C.L.

    1995-12-31

    The feasibility of using vapor fortification to prepare secondary soil standards containing volatile organic compounds (VOCs) was evaluated by an interlaboratory study. Twelve laboratories used EPA Method 8240 (SW846) to analyze two independently prepared subsamples of three different soil matrices fortified with trans-1,2-dichloroethylene (TDCE), trichloroethylene (TCE), benzene (Ben), and toluene (Tol). A quality assurance (QA) standard with certified concentrations of TCE, Ben, and Tol (no TDCE) was also analyzed. The pooled relative standard deviation (RSD) for the QA standard was 7.8%, while the same analytes in the soils produced a pooled RSD of 10.4%. Agreement of these precision estimates is excellent, considering that soil analysis required an extraction step while the QA Standard was solvent (methanol) based. TDCE in the soils yielded less precise results (pooled RSD of 20.3%), presumably because of its high volatility.

  8. Health assessment for Laurel Park Landfill, Naugatuck, Connecticut, Region 1. CERCLIS No. CTD980521165. Final report

    SciTech Connect

    Not Available

    1986-12-04

    The Environmental Protection Agency, Region I, submitted the Endangerment Assessment Report and Remedial Investigation Report for the Laurel Park Landfill, a National Priority List site, to the Agency for Toxic Substances and Disease Registry for review. Based on the information provided, additional monitoring data is needed to determine the extent and degree of contamination in order to properly assess endangerment of public health. However, the current maximum contaminant levels found in on-site soil and leachate (i.e., arsenic, chromium, 1,2-dichloroethane, benzene, 1,2-dichloroethylene, n-nitrosodiphenylamine, 2,4-dichlorophenol) pose a potential public health threat. Therefore, public access to the contaminated areas should be restricted.

  9. Health assessment for Mobay Chemical Corporation, New Martinsville, West Virginia, Region 3. CERCLIS No. WVD056866312. Preliminary report

    SciTech Connect

    Not Available

    1989-01-20

    The Mobay Chemical Corporation Site (MCC) manufactures various organic compounds including polycarbonates and toluene diisocyanate and ferrous oxide pigments. Hazardous wastes have been disposed of on-site in landfills and lagoons. On-site sampling results have identified volatile organic compounds (VOCs in groundwater.) They include: vinyl chloride (trace to 10 ppb), trans-1,2-dichloroethylene (trace amounts), chlorinated benzenes (130 to 7,700 ppb), ethylbenzene (120 ppb), acetone (trace to 10,000 ppb), phthalates (trace to 130 ppb), and toluene (trace to 1,300 ppb). The site is considered to be of potential public health concern because of the risk to human health caused by the possibility of human exposure to hazardous substances via contaminated groundwater.

  10. Health assessment for Rohm and Haas Landfill, Bristol Township, Pennsylvania, Region 3. CERCLIS No. PAD077883346. Preliminary report

    SciTech Connect

    Not Available

    1989-01-17

    The Rohm and Haas Landfill (RHL) Site is located in the Croydon area of Bristol Township, (Bucks County), Pennsylvania. RHL operated from 1952 to 1975 as a repository for wastes generated from manufacturing operations. On-site groundwater sampling results have identified benzene, xylene, bis, ether, toluene, trichloroethylene (TCE), butylbenzylphthalate, sodium, and chromium. In addition, DDT was detected in soil. Off-site groundwater sampling results reported TCE, perchloroethylene, and trans-1,2-dichloroethylene. TCE and methylene chloride were identified in off-site surface water and soil respectively. The site is considered to be of public health concern because of the risk to human health caused by the likelihood of human exposure to hazardous substances. Direct contact with, ingestion, and inhalation of contaminated groundwater are the exposure pathways of concern.

  11. Health assessment for Smith's Farm, Shepherdsville, Bullitt County, Kentucky, Region 4. CERCLIS No. KYD097267413. Preliminary report

    SciTech Connect

    Not Available

    1988-11-15

    The Smith's Farm site is on the National Priorities List. The environmental contamination on-site consists of ethylbenzene, bis-(2-ethylhexyl)phthalate, toluene, xylene, polychlorinated biphenyls, arsenic, chromium, lead, and nickel in soil; ethylbenzene, arsenic, mercury, nickel, cadmium, and zinc in surface water; ethylbenzene, toluene, bis-(2-ethylhexyl)phthalate, polychlorinated biphenyls, arsenic, chromium, lead, and nickel in sediment; and 1,1,1-trichlorethane, vinyl chloride, isophorone, benzene, trans-1,2-dichloroethylene, trichloroethylene, xylenes, arsenic, nickel, and lead in leachate. Based on the available information, the site is considered to be of potential public health concern because of the risk to human health caused by the possibility of exposure to hazardous substances.

  12. Mixed Waste Management Facility (MWMF) groundwater monitoring report. First quarter 1993

    SciTech Connect

    Not Available

    1993-06-01

    During first quarter 1993, eight constituents exceeded final Primary Drinking Water Standards in groundwater samples from downgradient monitoring wells at the Mixed Waste anagement Facility, the Old Burial Ground, the E-Area Vaults, and the proposed Hazardous Waste/Mixed Waste Disposal Vaults (HWMWDV). As in previous quarters, tritium and trichloroethylene were the most widespread constituents. Tetrachloroethylene, chloroethene, 1,1-dichloroethylene, gross alpha, lead, or nonvolatile beta levels also exceeded standards in one or more wells. The elevated constituents were found primarily in Aquifer Zone IIB{sub 2} (Water Table) and Aquifer Zone IIB{sub 1}, (Barnwell/McBean) wells. However, several Aquifer Unit IIA (Congaree) wells also contained elevated constituent levels. The groundwater flow directions and rates in the three hydrostratigraphic units were similar to previous quarters.

  13. Mixed Waste Management Facility (MWMF) groundwater monitoring report. Third quarter 1992

    SciTech Connect

    Thompson, C.Y.

    1992-12-01

    During third quarter 1992, 12 constituents exceeded the US Environmental Protection Agency Primary Drinking Water Standards (PDWS) in one or more groundwater samples from monitoring wells at the Mixed Waste Management Facility and adjacent facilities. Tritium and trichloroethylene were the most widespread constituents: 57 (48%) and 23 (19%) of the 119 monitoring wells contained elevated tritium and trichloroethylene levels, respectively. Elevated constituents were found primarily in Aquifer Zone IIB{sub 2} (Water Table) and Aquifer Zone IIB{sub 1} (Barnwell/McBean). Elevated constituents also occurred in five Aquifer Unit IIA (Congaree) wells. Upgradient wells BGO 1D and 2D and HSB 85A, 85B, and 85C did not contain any constituents that exceeded the PDWS. Downgradient wells in the three hydrostratigraphic units contained elevated levels of tritium, trichloroethylene, tetrachloroethylene, chloroethene, antimony, 1,1-dichloroethylene, gross alpha, lead, nonvolatile beta, thallium, total alpha-emitting radium (radium-224 and radium-226), or cadmium.

  14. Mixed Waste Management Facility (MWMF) groundwater monitoring report

    SciTech Connect

    Thompson, C.Y.

    1992-12-01

    During third quarter 1992, 12 constituents exceeded the US Environmental Protection Agency Primary Drinking Water Standards (PDWS) in one or more groundwater samples from monitoring wells at the Mixed Waste Management Facility and adjacent facilities. Tritium and trichloroethylene were the most widespread constituents: 57 (48%) and 23 (19%) of the 119 monitoring wells contained elevated tritium and trichloroethylene levels, respectively. Elevated constituents were found primarily in Aquifer Zone IIB[sub 2] (Water Table) and Aquifer Zone IIB[sub 1] (Barnwell/McBean). Elevated constituents also occurred in five Aquifer Unit IIA (Congaree) wells. Upgradient wells BGO 1D and 2D and HSB 85A, 85B, and 85C did not contain any constituents that exceeded the PDWS. Downgradient wells in the three hydrostratigraphic units contained elevated levels of tritium, trichloroethylene, tetrachloroethylene, chloroethene, antimony, 1,1-dichloroethylene, gross alpha, lead, nonvolatile beta, thallium, total alpha-emitting radium (radium-224 and radium-226), or cadmium.

  15. Sanitary landfill groundwater monitoring report. Fourth quarter 1994 and 1994 summary

    SciTech Connect

    1995-02-01

    Eighty-nine wells of the LFW series monitor groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill at the Savannah River Site (SRS). These wells are sampled quarterly to comply with the South Carolina Department of Health and Environmental Control Domestic Waste Permit DWP-087A and as part of the SRS Groundwater Monitoring Program. Dichloromethane, a common laboratory contaminant, and trichloroethylene were the most widespread constituents exceeding standards during 1994. Benzene, chloroethene (vinyl chloride), 1,2-dichloroethane, 1,1-dichloroethylene, 1,2-dichloropropane, gross alpha, mercury, nonvolatile beta, tetrachloroethylene, and tritium also exceeded standards in one or more wells. The groundwater flow direction in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill was to the southeast (universal transverse Mercator coordinates). The flow rate in this unit was approximately 140 ft/year during first and fourth quarters 1994.

  16. Sanitary Landfill groundwater monitoring report. Fourth quarterly report and summary 1993

    SciTech Connect

    Not Available

    1994-02-01

    Fifty-seven wells of the LFW series monitor groundwater quality in Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill at the Savannah River Site (SRS). These wells are sampled quarterly to comply with the South Carolina Department of Health and Environmental Control Domestic Waste Permit DWP-087A and as part of the SRS Groundwater Monitoring Program. Dichloromethane a common laboratory contaminant, and trichloroethylene were the most widespread constituents exceeding standards during 1993. Benzene, chlorobenzene, chloroethene 1,2 dichloroethane, 1,1-dichloroethylene, 1,2-dichloropropane, gross alpha, lindane, mercury, tetrachloroethylene, and tritium also exceeded standards in one or more wells. No groundwater contaminants were observed in wells screened in the lower section of Steed Pond Aquifer.

  17. Mixed Waste Management Facility (MWMF) groundwater monitoring report. First quarter 1992

    SciTech Connect

    Thompson, C.Y.

    1992-06-01

    During first quarter 1992, tritium, trichloroethylene, tetrachloroethylene, lead, antimony, I,I-dichloroethylene, 1,2-dichloroethane, gross alpha, mercury, nickel, nitrate, nonvolatile beta, and total alpha-emitting radium (radium-224 and radium-226) exceeded the US Environmental Protection Agency Primary Drinking Water Standards (PDWS) in groundwater samples from monitoring wells at the Mixed Waste Management Facility (MWMF) and adjacent facilities. Tritium and trichloroethylene were the most widespread constituents; 57 (49%) of the 116 monitored wells contained elevated tritium activities, and 21 (18%) wells exhibited elevated trichloroethylene concentrations Sixty-one downgradient wells screened in Aquifer Zone IIB2 (Water Table), Aquifer Zone IIB{sub 2} (Barnwell/McBean), and Aquifer Unit IIA (Congaree) contained constituents that exceeded the PDWS during first quarter 1992. Upgradient wells BGO 1D and HSB 85A, BC, and 85C did not contain any constituents that exceeded the PDWS. Upgradient well BGO 2D contained elevated tritium.

  18. Mixed Waste Management Facility (MWMF) groundwater monitoring report

    SciTech Connect

    Thompson, C.Y.

    1992-06-01

    During first quarter 1992, tritium, trichloroethylene, tetrachloroethylene, lead, antimony, I,I-dichloroethylene, 1,2-dichloroethane, gross alpha, mercury, nickel, nitrate, nonvolatile beta, and total alpha-emitting radium (radium-224 and radium-226) exceeded the US Environmental Protection Agency Primary Drinking Water Standards (PDWS) in groundwater samples from monitoring wells at the Mixed Waste Management Facility (MWMF) and adjacent facilities. Tritium and trichloroethylene were the most widespread constituents; 57 (49%) of the 116 monitored wells contained elevated tritium activities, and 21 (18%) wells exhibited elevated trichloroethylene concentrations Sixty-one downgradient wells screened in Aquifer Zone IIB2 (Water Table), Aquifer Zone IIB[sub 2] (Barnwell/McBean), and Aquifer Unit IIA (Congaree) contained constituents that exceeded the PDWS during first quarter 1992. Upgradient wells BGO 1D and HSB 85A, BC, and 85C did not contain any constituents that exceeded the PDWS. Upgradient well BGO 2D contained elevated tritium.

  19. {gamma} Irradiation-induced degradation of organochlorinated pollutants in fatty esters and in Cod

    SciTech Connect

    Lepine, F.L.; Brochu, F.; Milot, S.

    1995-02-01

    The {gamma} irradiation-induced degradation of 2,2-bis(4-chlorophenyl)-1,1,1-trichloroethane (DDT), 2,2-bis(4-chlorophenyl)-1,1-dichloroethane (DDD), and 2,2-bis(4-chlorophenyl)-1,1-dichloroethylene (DDE) dissolved in methyl myristate and methyl oleate was studied. DDT and DDE produced DDD and 2,2-bis(4-chlorophenyl)chloroethylene (DDMU) respectively, in agreement with a previous study performed with aliphatic solvents. The degradation of these two former compounds was larger in methyl myristate than in methyl oleate and addition products between methyl myristate and the organochlorines were found. While DDD, DDE, and many PCB congeners in a cod sample were not measurably degraded at 15 KGy, DDT underwent 30% degradation. 9 refs., 1 fig., 2 tabs.

  20. 20 kHz sonoelectrochemical degradation of perchloroethylene in sodium sulfate aqueous media: influence of the operational variables in batch mode.

    PubMed

    Sáez, Verónica; Esclapez, María Deseada; Tudela, Ignacio; Bonete, Pedro; Louisnard, Olivier; González-García, José

    2010-11-15

    A preliminary study of the 20 kHz sonoelectrochemical degradation of perchloroethylene in aqueous sodium sulfate has been carried out using controlled current density degradation sonoelectrolyses in batch mode. An important improvement in the viability of the sonochemical process is achieved when the electrochemistry is implemented, but the improvement of the electrochemical treatment is lower when the 20 kHz ultrasound field is simultaneously used. A fractional conversion of 100% and degradation efficiency around 55% are obtained independently of the ultrasound power used. The current efficiency is also enhanced compared to the electrochemical treatment and a higher speciation is also detected; the main volatile compounds produced in the electrochemical and sonochemical treatment, trichloroethylene and dichloroethylene, are not only totally degraded, but also at shorter times than in the sonochemical or electrochemical treatments. PMID:20705391

  1. Mixed Waste Management Facility (MWMF) groundwater monitoring report. Fourth quarter 1993 and 1993 summary

    SciTech Connect

    Butler, C.T.

    1994-03-01

    During fourth quarter 1993, 10 constituents exceeded final Primary Drinking Water Standards in groundwater samples from downgradient monitoring wells at the Mixed Waste Management Facility, the Old Burial Ground, the E-Area Vaults, and the proposed Hazardous Waste/Mixed Waste Disposal Vaults. As in previous quarters, tritium and trichloroethylene were the most widespread elevated constituents. Carbon tetrachloride, chloroform, chloroethane (vinyl chloride), 1,1-dichloroethylene, dichloromethane (methylene chloride), lead, mercury, or tetrachloroethylene also exceeded standards in one or more wells. Elevated constituents were found in numerous Aquifer Zone 2B{sub 2} (Water Table) and Aquifer Zone 2B{sub 1}, (Barnwell/McBean) wells and in two Aquifer Unit 2A (Congaree) wells. The groundwater flow direction and rates in the three hydrostratigraphic units were similar to those of previous quarters.

  2. Health assessment for American Lake Gardens, Tacoma, Pierce County, Washington, Region 10. CERCLIS No. WAD980833065. Preliminary report

    SciTech Connect

    Not Available

    1989-01-19

    The American Lake Gardens site is on the National Priorities List. Two areas within the site are the areas of primary contamination; the northeast section's contamination is believed to have come from the closed landfill (now a golf course) on McChord AFB, and the southwest section's contamination from Fort Lewis. Both Fort Lewis and McChord AFB are NPL sites. The environmental contamination on-site consists of trans-1,2-dichloroethylene (530 ppb), trichloroethylene (260 ppb), methylene chloride (38 ppb), tetrachloroethylene (52 ppb), benzene (6 ppb), and 1,1,1-trichloroethane (18 ppb) in ground water. The site is considered to be of potential public health concern because of the risk to human health caused by the possibility of exposure to hazardous substances via ground water (from private wells still in use) and surface water.

  3. Alternative Green Solvents Project

    NASA Technical Reports Server (NTRS)

    Maloney, Phillip R.

    2012-01-01

    Necessary for safe and proper functioning of equipment. Mainly halogenated solvents. Tetrachloride, Trichloroethylene (TCE), CFC-113. No longer used due to regulatory/safety concerns. Precision Cleaning at KSC: Small % of total parts. Used for liquid oxygen (LOX) systems. Dual solvent process. Vertrel MCA (decafluoropentane (DFP) and trons-dichloroethylene) HFE-7100. DFP has long term environmental concerns. Project Goals: a) Identify potential replacements. b) 22 wet chemical processes. c) 3 alternative processes. d) Develop test procedures. e) Contamination and cleaning. f) Analysis. g) Use results to recommend alternative processes. Conclusions: a) No alternative matched Vertrel in this study. b) No clear second place solvent. c) Hydrocarbons- easy; Fluorinated greases- difficult. d) Fluorinated component may be needed in replacement solvent. e) Process may need to make up for shortcoming of the solvent. f) Plasma and SCC02 warrant further testing.

  4. DDE and shortened duration of lactation in a northern Mexican town.

    PubMed Central

    Gladen, B C; Rogan, W J

    1995-01-01

    OBJECTIVES. Worldwide declines in the duration of lactation are cause for public health concern. Higher levels of dichlorodiphenyl dichloroethene (DDE) have been associated with shorter durations of lactation in the United States. This study examined whether this relationship would hold in an agricultural town in northern Mexico. METHODS. Two hundred twenty-nine women were followed every 2 months from childbirth until weaning or until the child reached 18 months of age. DDE was measured in breast milk samples taken at birth, and women were followed to see how long they lactated. RESULTS. Median duration was 7.5 months in the lowest DDE group and 3 months in the highest. The effect was confined to those who had lactated previously, and it persisted after statistical adjustment for other factors. These results are not due to overtly sick children being weaned earlier. Previous lactation lowers DDE levels, which produces an artifactual association, but simulations using best estimates show that an effect as large as that found here would arise through this mechanism only 6% of the time. CONCLUSIONS. DDE may affect women's ability to lactate. This exposure may be contributing to lactation failure throughout the world. PMID:7702113

  5. A comparison of the concentrations of certain chlorinated hydrocarbons and polychlorinated biphenyls in bone marrow and fat tissue of children and their concentrations in breast milk

    SciTech Connect

    Scheele, J.; Teufel, M.; Niessen, K.H.

    1995-12-31

    Chlorinated hydrocarbon (CHC) and polychlorinated biphenyl (PCB) concentrations in the bone marrow of 57 children were compared with the concentrations in adipose tissue of 50 children and the concentrations in breast milk in the Federal Republic of Germany from 1984 to 1991. The concentrations of hexachlorobenzene (HCB), the dichlorodiphenyl-trichlorethane (DDT)-metabolites, and polychlorinated biphenyl (PCB) congeners no. 138 and no. 153 were increased threefold, while the concentrations of several hexachloro-cyclohexane (HCH)-isomers and PCB congener no. 180 were only increased two fold. Because breast feeding is the primary source of CHC and PCB in toddlers and infants we also compared the concentrations in bone marrow of children with the concentrations in breast milk and found approximately fourfold higher concentrations for the most highly chlorinated PCB congener no. 180, but only threefold higher concentrations for PCB 138 and 153 and the DDT-metabolites. The concentrations of {beta}-HCH and HCB were only slightly higher in bone marrow. 15 refs., 2 figs.

  6. Acute oral toxicity and liver oxidant/antioxidant stress of halogenated benzene, phenol, and diphenyl ether in mice: a comparative and mechanism exploration.

    PubMed

    Shi, Jiaqi; Feng, Mingbao; Zhang, Xuesheng; Wei, Zhongbo; Wang, Zunyao

    2013-09-01

    The lethal doses (LD50s) of fluorinated, chlorinated, brominated, and iodinated benzene, phenol, and diphenyl ether in mice were ascertained respectively under the consistent condition. The acute toxicity of four benzenes orders in fluorobenzene (FB) < iodobenzene < chlorobenzene≈bromobenzene, that of four phenols orders in 4-iodophenol≈4-bromophenol < 4-chlorophenol (4-MCP) < 4-fluorophenol (4-MFP), and that of four diphenyl ethers orders in 4,4'-iododiphenyl ether < 4,4'-difluorodiphenyl ether < 4,4'-dichlorodiphenyl ether≈4,4'-dibromodiphenyl ether. General behavior adverse effects were observed, and poisoned mouse were dissected to observe visceral lesions. FB, 4-MCP, and 4-MFP produced toxic faster than other halogenated benzenes and phenols, as they had lower octanol-water partition coefficients. Pathological changes in liver and liver/kidney weight changes were also observed. Hepatic superoxide dismutase, catalase activities, and malondialdehyde level were tested after a 28-day exposure, which reflects a toxicity order basically consistent with that reflected by the LD50s. By theoretical calculation and building models, the toxicity of benzene, phenol, and diphenyl ether were influenced by different structural properties.

  7. Chemical contamination of free-range eggs from Belgium.

    PubMed

    Van Overmeire, I; Pussemier, L; Hanot, V; De Temmerman, L; Hoenig, M; Goeyens, L

    2006-11-01

    The elements manganese, cobalt, nickel, copper, zinc, arsenic, selenium, molybdenum, cadmium, antimony, thallium, lead and mercury, and selected persistent organochlorine compounds (dioxins, marker and dioxin-like polychlorinated biphenyls, dichlorodiphenyltricholroethane (DDT) and metabolites as well as other chlorinated pesticides) were analysed in Belgian free-range eggs obtained from hens of private owners and of commercial farms. It was found that eggs from private owners were more contaminated than eggs from commercial farms. The ratios of levels in eggs from private owners to the levels in eggs from commercial farms ranged from 2 to 8 for the toxic contaminants lead, mercury, thallium, dioxins, polychlorinated biphenyls and the group of DDT. DDT contamination was marked by the substantial presence of p,p'-DDT in eggs from private owners in addition to dichlorodiphenyldichloroethylene (p,p-DDE) and dichlorodiphenyl-dichloroethane (p,p'-DDD). It is postulated that environmental pollution is at the origin of the higher contamination of eggs from private owners. Extensive consumption of eggs from private owners is likely to result in toxic equivalent quantity intake levels exceeding the tolerable weekly intake.

  8. POST-REMEDIATION BIOMONITORING OF PESTICIDES AND OTHER CONTAMINANTS IN MARINE WATERS AND SEDIMENT NEAR THE UNITED HECKATHORN SUPERFUND SITE, RICHMOND, CALIFORNIA

    SciTech Connect

    Antrim, Liam D.; Kohn, Nancy P.

    2000-09-06

    Marine sediment remediation at the United Heckathorn Superfund Site was completed in April 1997. Water and mussel tissues were sampled in February 1999 from four stations near Lauritzen Canal in Richmond, California, for Year 2 of post-remediation monitoring of marine areas near the United Heckathorn Site. Dieldrin and dichlorodiphenyl trichloroethane (DDT) were analyzed in water samples, tissue samples from resident mussels, and tissue samples from transplanted mussels deployed for 4 months. Mussel tissues were also analyzed for polychlorinated biphenyls (PCB), which were detected in sediment samples. Chlorinated pesticide concentrations in water samples were similar to preremediation levels and did not meet remediation goals. Biomonitoring results indicated that the bioavailability of chlorinated pesticides has been reduced from preremediation levels both in the dredged area and throughout Richmond Harbor. Total DDT and dieldrin concentrations in mussel tissues were lower than measured levels from preremediation surveys and also lower than Year 1 levels from post-remediation biomonitoring. Sediment analyses showed the presence of elevated DDT, dieldrin, PCB aroclor 1254, and very high levels of polynuclear aromatic hydrocarbons (PAH) in Lauritzen Channel.

  9. Xenoendocrine pollutants may reduce size of sexual organs in East Greenland polar bears (Ursus maritimus).

    PubMed

    Sonne, Christian; Leifsson, Pall S; Dietz, Rune; Born, Erik W; Letcher, Robert J; Hyldstrup, Lars; Riget, Frank F; Kirkegaard, Maja; Muir, Derek C G

    2006-09-15

    Reproductive organs from 55 male and 44 female East Greenland polar bears were examined to investigate the potential negative impact from organohalogen pollutants (OHCs). Multiple regressions normalizing for age showed a significant inverse relationship between OHCs and testis length and baculum length and weight, respectively, and was found in both subadults (dichlorodiphenyl trichloroethanes, dieldrin, chlordanes, hexacyclohexanes, polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs)) and adults (hexachlorobenzene [HCB]) (all p < 0.05). Baculum bone mineral densities decreased with increasing chlordanes, DDTs, and HCB in subadults and adults, respectively (all p < 0.05). In females, a significant inverse relationship was found between ovary length and sigma PCB (p = 0.03) and sigma CHL (p < 0.01), respectively, and between ovary weight and sigma PBDE (p < 0.01) and uterine horn length and HCB (p = 0.02). The study suggests thatthere is an impact from xenoendocrine pollutants on the size of East Greenland polar bear genitalia. This may pose a riskto this polar bear subpopulation in the future because of reduced sperm and egg quality/quantity and uterus and penis size/robustness.

  10. Persistent organic pollutants in meat, liver, tallow and bone marrow from semi-domesticated reindeer (Rangifer tarandus tarandus L.) in Northern Norway

    PubMed Central

    2013-01-01

    Background The aim of this project was to study 14 polychlorinated biphenyls (PCBs), 5 dichlorodiphenyl trichloroethans (DDTs), 12 organochlorine pesticides (OCPs) and 6 polybrominated diphenylethers (PBDEs) in meat, liver, tallow and bone marrow from semi-domesticated reindeer. Methods Meat, liver, tallow, and bone marrow samples (n= 30) were collected from semi-domesticated reindeer in Northern Norway. Determination of the persistent organic pollutants (POPs) concentrations was done by using gas chromatography–mass spectrometry (GC-MS). Dependent sample t-test and Pearson’s correlation test were used in statistical analysis. Results Concentrations of the persistent organic pollutants in the samples from semi-domesticated reindeer were generally low and slightly above the limit of detection (LOD). For PCBs and OCPs, ≥ 50% of the samples had concentrations above LOD. For the DDTs and PBDEs, the proportion of samples with concentrations above LOD varied between 3.7 and 45.5% depending on the sample type. Concentrations of PCB 99, 105, 138/163, 153 and 187 differed significantly between meat and liver, whereas concentrations of PCB 183 were significantly different between tallow and bone marrow. Furthermore, concentrations of hexachlorobenzene (HCB) were significantly different between meat and liver. Significant correlations were revealed in concentrations of 5 PCB congeners between the studied tissue types. Conclusion Concentrations of the POPs revealed in this study were generally low. PMID:23938064

  11. Persistent organochlorine compounds in peregrine falcon (Falco peregrinus) eggs from South Greenland: levels and temporal changes between 1986 and 2003.

    PubMed

    Vorkamp, Katrin; Thomsen, Marianne; Møller, Søren; Falk, Knud; Sørensen, Peter B

    2009-02-01

    Thirty-seven addled peregrine falcon eggs collected in South Greenland between 1986 and 2003 were analysed for their content of the organochlorine compounds polychlorinated biphenyls (PCBs), dichlorodiphenyl tricloroethane (DDT) and its degradation products, hexachlorocyclohexane (HCH) isomers and hexachlorobenzene (HCB). PCBs and DDT (including metabolites) were by far the most abundant OC groups, with median concentrations of 55 and 40 microg/g lw, respectively. The concentrations were high in an Arctic context, but similar to previously reported levels from Alaska and Norway and slightly lower than concentrations measured in eggs from industrialised regions. Geographical differences may be of importance, considering the migration of peregrine falcons and their prey. SigmaHCH and HCB had median concentrations of 0.39 and 0.17 microg/g lw, respectively. On average, DDE accounted for 97% of SigmaDDT, but was below critical levels for eggshell thinning. All compound groups showed a weak decreasing trend over the study period, which was statistically significant for HCB and close to being significant for SigmaHCH. The weak decrease of SigmaPCB and SigmaDDT is different from other time trend studies from Greenland, usually showing a more pronounced decrease in the beginning of the study period, followed by a certain stabilisation in recent years. PMID:18823663

  12. Chemical contamination of free-range eggs from Belgium.

    PubMed

    Van Overmeire, I; Pussemier, L; Hanot, V; De Temmerman, L; Hoenig, M; Goeyens, L

    2006-11-01

    The elements manganese, cobalt, nickel, copper, zinc, arsenic, selenium, molybdenum, cadmium, antimony, thallium, lead and mercury, and selected persistent organochlorine compounds (dioxins, marker and dioxin-like polychlorinated biphenyls, dichlorodiphenyltricholroethane (DDT) and metabolites as well as other chlorinated pesticides) were analysed in Belgian free-range eggs obtained from hens of private owners and of commercial farms. It was found that eggs from private owners were more contaminated than eggs from commercial farms. The ratios of levels in eggs from private owners to the levels in eggs from commercial farms ranged from 2 to 8 for the toxic contaminants lead, mercury, thallium, dioxins, polychlorinated biphenyls and the group of DDT. DDT contamination was marked by the substantial presence of p,p'-DDT in eggs from private owners in addition to dichlorodiphenyldichloroethylene (p,p-DDE) and dichlorodiphenyl-dichloroethane (p,p'-DDD). It is postulated that environmental pollution is at the origin of the higher contamination of eggs from private owners. Extensive consumption of eggs from private owners is likely to result in toxic equivalent quantity intake levels exceeding the tolerable weekly intake. PMID:17071513

  13. Glyoxal-Urea-Formaldehyde Molecularly Imprinted Resin as Pipette Tip Solid-Phase Extraction Adsorbent for Selective Screening of Organochlorine Pesticides in Spinach.

    PubMed

    Yang, Chen; Lv, Tianwei; Yan, Hongyuan; Wu, Gaochan; Li, Haonan

    2015-11-01

    A new kind of glyoxal-urea-formaldehyde molecularly imprinted resin (GUF-MIR) was synthesized by a glyoxal-urea-formaldehyde (GUF) gel imprinting method with 4,4'-dichlorobenzhydrol as a dummy template. The obtained GUF-MIR was characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR) and applied as a selective adsorbent of miniaturized pipet tip solid-phase extraction (PT-SPE) for the separation and extraction of three organochlorine pesticides (dicofol (DCF), dichlorodiphenyl dichloroethane (DDD), and tetradifon) in spinach samples. The proposed pretreatment procedures of spinach samples involved only 5.0 mg of GUF-MIR, 0.7 mL of MeOH-H2O (1:1, v/v) (washing solvent), and 0.6 mL of cyclohexane-ethyl acetate (9:1, v/v) (elution solvent). In comparison with other adsorbents (such as silica gel, C18, NH2-silica gel, and neutral alumina (Al2O3-N)), GUF-MIR showed higher adsorption and purification capacity for DCF, DDD, and tetradifon in aqueous solution. The average recoveries at three spiked levels ranged from 89.1% to 101.9% with relative standard deviations (RSDs) ≤ 7.1% (n = 3). The presented GUF-MIR-PT-SPE method combines the advantages of molecularly imprinted polymers (MIPs), GUF, and PT-SPE and can be used in polar solutions with high affinity and selectivity to the analytes in complex samples.

  14. An exploration of the estrogen receptor transcription activity of capsaicin analogues via an integrated approach based on in silico prediction and in vitro assays.

    PubMed

    Li, Juan; Ma, Duo; Lin, Yuan; Fu, Jianjie; Zhang, Aiqian

    2014-06-16

    Capsaicin has been considered as an alternative template of dichlorodiphenyl trichloroethane (DDT) in antifouling paint. However, information regarding the estrogenic activity of capsaicin analogues is rather limited in comparison to that of DDT analogues and their metabolites. We here explore the ER transcription activity of selected capsaicin analogues via an integrated approach based on in silico prediction and in vitro assays. Molecular simulation and the agonist/antagonist differential-docking screening identified 6-iodonordihydrocapsaicin (6-I-CPS) as a weak ERα agonist, while anti-estrogenicity was expected for N-arachidonoyldopamine, capsazepine, dihydrocapsaicin, trichostatin A, and capsaicin. On the contrary, the large volume of analogues, such as phorbol 12-phenylacetate 13-acetate 20-homovanillate and phorbol 12,13-dinonanoate 20-homovanillate, cannot fit well with the ER cavity. The result of MVLN assay was in accord with the in silico prediction. 6-I-CPS was demonstrated to induce luciferase gene expression, while the other analogues of relatively small molecular volume reduced luciferase gene expression in MVLN cells, both in the absence and presence of estradiol. This finding suggested that the ER transcription activity of capsaicin analogues is generated at least partly through the ERα-mediated pathway. Moreover, receptor polymorphism analysis indicated that capsaicin analogues may exhibit diverse species selectivity for human beings and marine species.

  15. The missing piece: sediment records in remote Mountain lakes confirm glaciers being secondary sources of persistent organic pollutants.

    PubMed

    Schmid, Peter; Bogdal, Christian; Blüthgen, Nancy; Anselmetti, Flavio S; Zwyssig, Alois; Hungerbühler, Konrad

    2011-01-01

    After atmospheric deposition and storage in the ice, glaciers are temporary reservoirs of persistent organic pollutants (POPs). Recently, the hypothesis that melting glaciers represent secondary sources of these pollutants has been introduced by investigations of the historical trend of POPs in a dated sediment core from the proglacial Alpine Lake Oberaar. Here, the hypothesis is further confirmed by the comparison of sediment data gathered from two Alpine lakes with a glaciated and a nonglaciated hydrological catchment. The two lakes (Lake Engstlen and Lake Stein in the Bernese Alps in Switzerland) are situated only 8 km apart at similar altitude and in the same meteorological catchment. In the nonglacial lake sediment of Lake Engstlen, PCBs and DDT (polychlorinated biphenyls and dichlorodiphenyl trichloroethane) levels culminated with the historic usage of these chemicals some 30-50 years ago. In the glacial Lake Stein, this peak was followed by a reincrease in the 1990s, which goes along with the accelerated melting of the adjacent glacier. This study confirms the hypothesis of glaciers being a secondary source of these pollutants and is in accordance with the earlier findings in Lake Oberaar.

  16. Comparative ecotoxicology of halogenated hydrocarbon residues.

    PubMed

    Winteringham, F P

    1977-12-01

    The term ecotoxicology is adopted in the sense of a comparative and integrated study of the undesirable effects of trace contaminants on the range of fauna and flora of an "ecosystem" or of a defined part or unit thereof. The importance of population changes over long periods of time is stressed. Sources, usage, and global trends of representative halogenated hydrocarbon (HHC) residues which appear as trace contaminants of environment, food, and living organisms are briefly compared: industrial solvents and intermediates, chlorofluoromethanes as an atmospheric pollutant, methyl bromide as a food and soil residue, HCH (hexachlorobenzene) as a fungicide residue, DDT, lindane (gamma-hexachlorocyclohexane), and dieldrin as insecticide residues, and polychlorinated biphenyls (PCBs) as industrial contaminants. A simple mathematical approach to the problem of relating inputs, persistence, and steady-state residue levels is explained. Persistence and biodegradation of representative compounds are compared. Attention is drawn to the persistence of hexachlorobenzene, the p,p'-dichlorodiphenyl- and hexachlorocyclopentadiene-derived moities of HHC residues. Ecotoxicological effects and their implications are discussed comparatively under the indirect effects of atmospheric pollutants and direct and indirect effects of trace contaminants of soil and aquatic ecosystems. Some conclusions related to research and "impact monitoring" are drawn.

  17. Occurrence and biomagnification of organohalogen pollutants in two terrestrial predatory food chains.

    PubMed

    Yu, Lehuan; Luo, Xiaojun; Zheng, Xiaobo; Zeng, Yanhong; Chen, Da; Wu, Jiangping; Mai, Bixian

    2013-09-01

    Organohalogen pollutants (OHPs), including dichlorodiphenyl trichloroethane and its metabolites (DDTs), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), hexabromocyclododecanes (HBCDs), and dechlorane plus (DP), were determined in three raptor species, namely, the common kestrel (Falco tinnunculus), eagle owl (Bubo bubo), and little owl (Athene noctua), as well as in their primary prey items: Eurasian tree sparrow (Passer montanus) and brown rat (Rattus norvegicus). DDTs were the predominant pollutants in avian species followed by PBDEs and PCBs, then minimally contribution of HBCDs and DP. Inter-species differences in the PBDE congener profiles were observed between the owls and the common kestrels, with relatively high contributions of lower brominated congeners in the owls but highly brominated congeners in the kestrels. This result may partly be attributed to a possible greater in vivo biotransformation of highly brominated BDE congeners in owls than in kestrels. α-HBCD was the predominant diastereoisomer with a preferential enrichment of (-)-enantiomer in all the samples. No stereoselective bioaccumulation was found for DP isomers in the investigated species. Biomagnification factor (BMF) values were generally higher in the rat-owl food chain than in the sparrow-kestrel food chain. Despite this food chain-specific biomagnification, the relationships between the log BMF and log KOW of PCBs and PBDEs followed a similar function in the two food chains, except for BDE-47, -99, and -100 in the sparrow-kestrel feeding relationship. PMID:23830888

  18. Characterization of anaerobic chloroethene-dehalogenating activity in several subsurface sediments

    SciTech Connect

    Skeen, R.S.; Gao, J.; Hooker, B.S.; Quesenberry, R.D.

    1996-11-01

    Anaerobic microcosms of subsurface soils from four locations were used to investigate the separate effects of several electron donors on tetrachloroethylene (PCE) dechlorination activity. The substrates tested were methanol, formate, lactate, acetate, and sucrose. Various levels of sulfate-reducing, acetogenic, fermentative, and methanogenic activity were observed in all sediments. PCE dechlorination was detected in all microcosms, but the amount of dehalogenation varied by several orders of magnitude. Trichloroethylene was the primary dehalogenation product; however, small amounts of cis-1,2-dichloroethylene, 1,1-dichloroethylene, and vinyl chloride were also detected in several microcosms. Lactate-amended microcosms showed large amounts of dehalogenation. in three of the four sediments. One of the two sediments which showed positive activity with lactate also had large amounts of delialogenation with methanol. Sucrose, formate, and acetate also stimulated large amounts of delialogenation in one sediment that showed activity with lactate. These results suggest that lactate may be an appropriate substrate for screening sediments for PCE or TCE delialogenation activity, but that the microbial response is not sufficient for complete in situ bioremediation. A detailed study of the Victoria activity revealed that delialogenation rates were more similar to the Cornell culture than to rates measured for methanogens, or a methanol-enriched sediment culture. This may suggest that these sediments contain a highly efficient delialogenation activity similar to the Cornell culture. This assertion is supported further by the fact that an average of 3% of added reducing equivalents could be diverted to dehalogenation in tests which were conducted using PCE-saturated hexadecane as a constant source of PCE during incubation. Further evidence is needed to confirm this premise. The application of these results to in situ bioremediation of highly contaminated areas are discussed.

  19. Preliminary technology report for Southern Sector bioremediation

    SciTech Connect

    Brigmon, R.L.; White, R.; Hazen, T.C.; Jones, D.; Berry, C.

    1997-06-01

    This project was designed to demonstrate the potential of intrinsic bioremediation and phytoremediation in the Southern Sector of the A/M-Area at the Savannah River Site. A subsurface plume of trichloroethylene (TCE) and perchloroethylene (PCE) is present in the Lost Lake aquifer upgradient of the study site and is predicted to impact the area at some point in the future. The surface area along the Lost lake aquifer seep line where the plume is estimated to emerge was identified. Ten sites along the seep line were selected for biological, chemical, and contaminant treatability analyses. A survey was undertaken in this area to to quantify the microbial and plant population known to be capable of remediating TCE and PCE. The current groundwater quality upgradient and downgradient of the zone of influence was determined. No TCE or PCE was found in the soils or surface water from the area tested at this time. A TCE biodegradation treatability test was done on soil from the 10 selected locations. From an initial exposure of 25 ppm of TCE, eight of the samples biodegraded up to 99.9 percent of all the compound within 6 weeks. This biodegradation of TCE appears to be combination of aerobic and anaerobic microbial activity as intermediates that were detected in the treatability test include vinyl chloride (VC) and the dichloroethenes (DCE) 1,2-cis-dichloroethylene and 1,1-dichloroethylene. The TCE biological treatability studies were combines with microbiological and chemical analyses. The soils were found through immunological analysis with direct fluorescent antibodies (DFA) and microbiological analysis with direct fluorescent antibodies (DFA) and microbiological analysis to have a microbial population of methanotrophic bacteria that utilize the enzyme methane monooxygenase (MMO) and cometabolize TCE.

  20. Biodegradation of individual and multiple chlorinated aliphatic hydrocarbons by methane-oxidizing cultures.

    PubMed Central

    Chang, H L; Alvarez-Cohen, L

    1996-01-01

    The microbial degradation of chlorinated and nonchlorinated methanes, ethanes, and ethanes by a mixed methane-oxidizing culture grown under chemostat and batch conditions is evaluated and compared with that by two pure methanotrophic strains: CAC1 (isolated from the mixed culture) and Methylosinus trichosporium OB3b. With the exception of 1,1-dichloroethylene, the transformation capacity (Tc) for each chlorinated aliphatic hydrocarbon was generally found to be in inverse proportion to its chlorine content within each aliphatic group (i.e., methanes, ethanes, and ethenes), whereas similar trends were not observed for degradation rate constants. Tc trends were similar for all methane-oxidizing cultures tested. None of the cultures were able to degrade the fully chlorinated aliphatics such as perchloroethylene and carbon tetrachloride. Of the four cultures tested, the chemostat-grown mixed culture exhibited the highest Tc for trichloroethylene, cis-1,2-dichloroethylene, tetrachloroethane, 1,1,1-trichloroethane, and 1,2-dichloroethane, whereas the pure batch-grown OB3b culture exhibited the highest Tc for all other compounds tested. The product toxicity of chlorinated aliphatic hydrocarbons in a mixture containing multiple compounds was cumulative and predictable when using parameters measured from the degradation of individual compounds. The Tc for each chlorinated aliphatic hydrocarbon in a mixture (Tcmix) and the total Tc for the mixture (sigma Tcmix) are functions of the individual Tc, the initial substrate concentration (S0), and the first-order rate constant (k/Ks) of each compound in the mixture, indicating the importance of identifying the properties and compositions of all potentially degradable compounds in a contaminant mixture. PMID:8795228

  1. Directed evolution of toluene ortho-monooxygenase for enhanced 1-naphthol synthesis and chlorinated ethene degradation.

    PubMed

    Canada, Keith A; Iwashita, Sachiyo; Shim, Hojae; Wood, Thomas K

    2002-01-01

    Trichloroethylene (TCE) is the most frequently detected groundwater contaminant, and 1-naphthol is an important chemical manufacturing intermediate. Directed evolution was used to increase the activity of toluene ortho-monooxygenase (TOM) of Burkholderia cepacia G4 for both chlorinated ethenes and naphthalene oxidation. When expressed in Escherichia coli, the variant TOM-Green degraded TCE (2.5 +/- 0.3 versus 1.39 +/- 0.05 nmol/min/mg of protein), 1,1-dichloroethylene, and trans-dichloroethylene more rapidly. Whole cells expressing TOM-Green synthesized 1-naphthol at a rate that was six times faster than that mediated by the wild-type enzyme at a concentration of 0.1 mM (0.19 +/- 0.03 versus 0.029 +/- 0.004 nmol/min/mg of protein), whereas at 5 mM, the mutant enzyme was active (0.07 +/- 0.03 nmol/min/mg of protein) in contrast to the wild-type enzyme, which had no detectable activity. The regiospecificity of TOM-Green was unchanged, with greater than 97% 1-naphthol formed. The beneficial mutation of TOM-Green is the substitution of valine to alanine in position 106 of the alpha-subunit of the hydroxylase, which appears to act as a smaller "gate" to the diiron active center. This hypothesis was supported by the ability of E. coli expressing TOM-Green to oxidize the three-ring compounds, phenanthrene, fluorene, and anthracene faster than the wild-type enzyme. These results show clearly that random, in vitro protein engineering can be used to improve a large multisubunit protein for multiple functions, including environmental restoration and green chemistry.

  2. Persistent organic pollutants (POPs) in populations of the clam Chione californiensis in coastal lagoons of the Gulf of California.

    PubMed

    Vargas-González, Héctor H; Méndez-Rodríguez, Lía C; García-Hernández, Jaqueline; Mendoza-Salgado, Renato A; Zenteno-Savín, Tania; Arreola-Lizárraga, José A

    2016-07-01

    This study examines the potential public health risk due to the massive use of organochlorine pesticides (OCs) in agriculture in the Gulf of California. Specimens of the clam Chione californiensis were collected from three coastal lagoons (Yavaros, Altata and Reforma). Sites were classified as polluted/nonpolluted based on the presence/absence of OCs as an indicator of the persistence of these pollutants; in polluted sites, the time elapsed since pesticide application (past or recent) was estimated. Screening values (SV) for protecting human health as per the U.S. Environmental Protection Agency (EPA) were used for risk assessment. OCs detected were ranked according to frequency of occurrence as follows: γ-chlordane (75%) > endrin (54%) > aldrin (48%) > heptachlor, and dichlorodiphenyl-trichloroethane (DDE) (37%) > β-heptachlor epoxide (30%) > lindane (α-BHC, δ-BHC) and endosulphan I (≤ 6%). Specifically, OCs detected at the highest concentration were heptachlor in Yavaros (0.0168 µgg(-1)) and Altata (0.0046 µgg(-1)), and aldrin in Reforma (0.0019 µgg(-1)). β-Heptachlor epoxide in Altata and Reforma was the only OC with a concentration exceeding the EPA Screening Value. From our results and based on the monthly consumption limit set forth by EPA, the maximum safe consumption of clams to avoid a carcinogenic risk derived from β-heptachlor epoxide in the fishing villages of Yavaros and Altata is 4 servings per month (1 serving = 0.227 kg) by a 70-kg person. These findings suggest that concentrations of OCs and their isomers in C. californiensis populations reflect environmental persistence as well as recent inputs of OCs into coastal lagoons in the Gulf of California. PMID:27050678

  3. Temporal trends of contaminants in cod from Icelandic waters.

    PubMed

    Sturludottir, Erla; Gunnlaugsdottir, Helga; Jorundsdottir, Hronn O; Magnusdottir, Elin V; Olafsdottir, Kristin; Stefansson, Gunnar

    2014-04-01

    Contaminants have been analyzed in cod (Gadus morhua) since 1990 as part of the national monitoring program for the environmental conditions in the sea around Iceland. The aim of this study was to determine the temporal trends of persistent organic pollutants (POPs: polychlorinated biphenyls (PCBs), p,p'-dichlorodiphenyl dichloroethene (p,p'-DDE), hexachlorobenzene (HCB), hexachlorocyclohexanes (HCHs), chlordanes (CHLs) and toxaphenes (Tox)) and trace elements (As, Cd, Cu, Hg, Pb, Se and Zn) in cod over the last two decades at two different locations in the Arctic Ocean north of Iceland. The relationship between the contaminant concentrations and biological covariates was also determined. All of the POPs showed decreasing trends but the trace elements showed no clear signs of trend except arsenic which showed an increasing trend and zinc which showed a decreasing trend. The concentration of the POPs were lower or similar in the Icelandic cod compared to cod sampled in Norway, the Barents Sea and in the Baltic Sea, except for HCB which was higher in the Icelandic cod compared to the Norwegian cod. The concentration of the trace elements As, Cu, Hg and Zn were similar in the Icelandic cod compared to cod sampled in Norway and Greenland but the concentration of Cd was higher in the Icelandic cod. The inclusion of the biological covariates was found to be important for the statistical analysis. The POPs had a positive relationship with liver fat content but negative relationship with liver weight. The trace elements had a negative relationship with liver fat and liver weight except As which had positive relationship with liver weight. Only positive relationships were observed between the contaminant concentrations and length. PMID:24463254

  4. Human health risk assessment of pesticide residues in market-sold vegetables and fish in a northern metropolis of China.

    PubMed

    Fang, Yanyan; Nie, Zhiqiang; Yang, Yanmei; Die, Qingqi; Liu, Feng; He, Jie; Huang, Qifei

    2015-04-01

    With growing concerns about food safety and stricter national standards in China, attention has focused on vegetables and fish as they are an important part of the Chinese daily diet, and pesticide residues can accumulate in these foodstuffs. The local consumption habits of vegetables and fish were determined using questionnaires distributed in the major regions of the northern metropolis. Then, the samples of fruit-like vegetables, leafy and root vegetables, and five species of fish (freshwater and marine) were collected from supermarkets and traditional farmers' markets in the city. The concentrations and profiles of pesticide residues (hexachlorocyclohexane (HCH), dichlorodiphenyl trichloroethane (DDT), and endosulfan) in the samples were determined and compared. For the vegetables, the concentration ranges of ΣDDT, ΣHCH, and Σendosulfan were not detectable (ND) to 10.4 ng/g fresh weight (f.w.), ND to 58.8 ng/g f.w., and ND to 63.9 ng/g f.w., respectively. For the fish samples, the corresponding values were 0.77-25.0 ng/g f.w., 0.02-1.42 ng/g f.w., and 1.22-22.1 ng/g f.w., respectively. Only one celery sample exceeded the maximum residue limits (MRLs) of HCH residues set by Chinese regulations (GB2763-2014). The estimated daily intakes (EDIs) and hazard ratios (HRs) were calculated using data from the recently published Exposure Factors Handbook for the Chinese Population. The EDIs and HRs showed that the levels of organochlorine pesticide (OCP) residues in vegetables and fish in this area are safe.

  5. Post-Remediation Biomonitoring of Pesticides and Other Contaminants in Marine Waters and Sediment Near the United Heckathorn Superfund Site, Richmond, California

    SciTech Connect

    LD Antrim; NP Kohn

    2000-09-06

    This report, PNNL-1 3059 Rev. 1, was published in July 2000 and replaces PNNL-1 3059 which is dated October 1999. The revision corrects tissue concentration units that were reported as dry weight but were actually wet weight, and updates conclusions based on the correct reporting units. Marine sediment remediation at the United Heckathorn Superfund Site was completed in April 1997. Water and mussel tissues were sampled in February 1999 from four stations near Lauritzen Canal in Richmond, California, for Year 2 of post-remediation monitoring of marine areas near the United Heckathom Site. Dieldrin and dichlorodiphenyl trichloroethane (DDT) were analyzed in water samples, tissue samples from resident mussels, and tissue samples from transplanted mussels deployed for 4 months. Concentrations of dieldrin and total DDT in water and total DDT in tissue were compared with Year 1 of post-remediation monitoring, and with preremediation data from the California State Mussel Watch program (tissue s) and the Ecological Risk Assessment for the United Heckathorn Superfund Site (tissues and water). Mussel tissues were also analyzed for polychlorinated biphenyls (PCB), which were detected in sediment samples. Chlorinated pesticide concentrations in water samples were similar to preremediation levels and did not meet remediation goals. Mean dieldrin concentrations in water ranged from 0.62 ng/L to 12.5 ng/L and were higher than the remediation goal (0.14 ng/L) at all stations. Mean total DDT concentrations in water ranged from 14.4 ng/L to 62.3 ng/L and exceeded the remediation goal (0.59 ng/L) at all stations. The highest concentrations of both DDT and dieldrin were found at the Lauritzen Canal/End station. Despite exceedence of the remediation goals, chlorinated pesticide concentrations in Lauritzen Canal water samples were notably lower in 1999 than in 1998. PCBS were not detected in water samples in 1999.

  6. Human health risk assessment of pesticide residues in market-sold vegetables and fish in a northern metropolis of China.

    PubMed

    Fang, Yanyan; Nie, Zhiqiang; Yang, Yanmei; Die, Qingqi; Liu, Feng; He, Jie; Huang, Qifei

    2015-04-01

    With growing concerns about food safety and stricter national standards in China, attention has focused on vegetables and fish as they are an important part of the Chinese daily diet, and pesticide residues can accumulate in these foodstuffs. The local consumption habits of vegetables and fish were determined using questionnaires distributed in the major regions of the northern metropolis. Then, the samples of fruit-like vegetables, leafy and root vegetables, and five species of fish (freshwater and marine) were collected from supermarkets and traditional farmers' markets in the city. The concentrations and profiles of pesticide residues (hexachlorocyclohexane (HCH), dichlorodiphenyl trichloroethane (DDT), and endosulfan) in the samples were determined and compared. For the vegetables, the concentration ranges of ΣDDT, ΣHCH, and Σendosulfan were not detectable (ND) to 10.4 ng/g fresh weight (f.w.), ND to 58.8 ng/g f.w., and ND to 63.9 ng/g f.w., respectively. For the fish samples, the corresponding values were 0.77-25.0 ng/g f.w., 0.02-1.42 ng/g f.w., and 1.22-22.1 ng/g f.w., respectively. Only one celery sample exceeded the maximum residue limits (MRLs) of HCH residues set by Chinese regulations (GB2763-2014). The estimated daily intakes (EDIs) and hazard ratios (HRs) were calculated using data from the recently published Exposure Factors Handbook for the Chinese Population. The EDIs and HRs showed that the levels of organochlorine pesticide (OCP) residues in vegetables and fish in this area are safe. PMID:25395327

  7. Associations of Plasma Concentrations of Dichlorodiphenyldichloroethylene and Polychlorinated Biphenyls with Prostate Cancer: A Case–Control Study in Guadeloupe (French West Indies)

    PubMed Central

    Emeville, Elise; Giusti, Arnaud; Coumoul, Xavier; Thomé, Jean-Pierre; Blanchet, Pascal

    2014-01-01

    Background: Long-term exposure to persistent pollutants with hormonal properties (endocrine-disrupting chemicals; EDCs) may contribute to the risk of prostate cancer (PCa). However, epidemiological evidence remains limited. Objectives: We investigated the relationship between PCa and plasma concentrations of universally widespread pollutants, in particular p,p´-dichlorodiphenyl dichloroethene (DDE) and the non-dioxin-like polychlorinated biphenyl congener 153 (PCB-153). Methods: We evaluated 576 men with newly diagnosed PCa (before treatment) and 655 controls in Guadeloupe (French West Indies). Exposure was analyzed according to case–control status. Associations were assessed by unconditional logistic regression analysis, controlling for confounding factors. Missing data were handled by multiple imputation. Results: We estimated a significant positive association between DDE and PCa [adjusted odds ratio (OR) = 1.53; 95% CI: 1.02, 2.30 for the highest vs. lowest quintile of exposure; ptrend = 0.01]. PCB-153 was inversely associated with PCa (OR = 0.30; 95% CI: 0.19, 0.47 for the highest vs. lowest quintile of exposure values; ptrend < 0.001). Also, PCB-153 was more strongly associated with low-grade than with high-grade PCa. Conclusions: Associations of PCa with DDE and PCB-153 were in opposite directions. This may reflect differences in the mechanisms of action of these EDCs; and although our findings need to be replicated in other populations, they are consistent with complex effects of EDCs on human health. Citation: Emeville E, Giusti A, Coumoul X, Thomé JP, Blanchet P, Multigner L. 2015. Associations of plasma concentrations of dichlorodiphenyldichloroethylene and polychlorinated biphenyls with prostate cancer: a case–control study in Guadeloupe (French West Indies). Environ Health Perspect 123:317–323; http://dx.doi.org/10.1289/ehp.1408407 PMID:25493337

  8. Spatial and temporal variation of PCBs and organochlorine pesticides in the Antarctic minke whales, Balaenoptera bonaerensis, in the period 1987-2005.

    PubMed

    Yasunaga, Genta; Fujise, Yoshihiro; Zenitani, Ryoko; Tanabe, Shinsuke; Kato, Hidehiro

    2015-05-01

    Concentrations of polychlorinated biphenyls (PCBs), dichlorodiphenyl trichloroethane and its metabolites (DDTs), hexachlorocyclohexane isomers (HCHs), hexachlorobenzene (HCB) and chlordane compounds (CHLs) were determined in the blubber of males (20-25 years old) of Antarctic minke whales, Balaenoptera bonaerensis, from the International Whaling Commission (IWC) management Areas IV (70°-130°E) and V (130°E-170°W), south 60°S. The ranges of concentrations (ng g(-1) lipid wt.) for each compound were, PCBs: 7.7-89; DDTs: 29-340; HCHs: 0.20-4.3; HCB: 75-430; CHLs: 10-120, which were much lower than those in common minke whales, Balaenoptera acutorostrata, from the northern hemisphere. The levels of PCBs, HCHs, HCB and CHLs in Area IV were significantly higher than those in Area V, while the levels of DDTs in both areas were similar. For comparing the fate among four pesticides in the Antarctic Ocean avoiding the effect of variance due to food intake, the ratios of the pesticides to PCBs, which has an extremely high chemical stability and environmental persistence, were examined. The HCHs/PCBs ratio decreased by a factor of about 20 in a span of 16 years in both Areas IV and V, while temporal trends of DDTs/PCBs, HCB/PCBs and CHLs/PCBs ratios were not observed. These results indicate that PCBs, DDTs, HCB and CHLs levels did not vary or slightly decreased in Areas IV and V during the study period. However HCHs levels clearly decreased. Spatial differences seems to be related to differences in food intake among whales, and temporal differences seems to be related to the length stay of OCs in the Antarctic Ocean.

  9. p-Chloro-diphenyl diselenide reverses memory impairment-related to stress caused by corticosterone and modulates hippocampal [(3)H]glutamate uptake in mice.

    PubMed

    Zborowski, Vanessa A; Sari, Marcel H M; Heck, Suélen O; Stangherlin, Eluza C; Neto, José S S; Nogueira, Cristina W; Zeni, Gilson

    2016-10-01

    Chronic stress or chronically high levels of glucocorticoids can result in memory impairment. This study aimed to investigate if 4,4'-dichloro-diphenyl diselenide (p-ClPhSe)2 reverses memory impairment-related to stress caused by corticosterone administration in mice and its possible mechanism of action. Swiss mice received corticosterone (20μg/ml) in their drinking water during four weeks. In the last week, the animals were treated with (p-ClPhSe)2 (1 or 5mg/kg) by the intragastric route (i.g.) once a day for 7days. The cognitive performance of mice was assessed through the object recognition test (ORT), the object location test (OLT) and the step-down passive avoidance test (SDPA), some of predictive tests of memory. Biochemical parameters were determined and locomotor activity of mouse was performed to gain insight in (p-ClPhSe)2 toxicity. The findings demonstrated that treatment with (p-ClPhSe)2 in both doses was effective in reversing memory deficits in the ORT, the OLT and the SDPA caused by corticosterone exposure in mice. Treatment with (p-ClPhSe)2 at both doses reversed the increase in the [(3)H] glutamate uptake by hippocampal slices of mice treated with corticosterone. By contrast, [(3)H] glutamate uptake by brain cortical slices was not altered in mice exposed to corticosterone. The Na(+)K(+)ATPase activity was not altered in hippocampus and cerebral cortices of mice treated with corticosterone. There was no sign of toxicity in mice treated with (p-ClPhSe)2. This organoselenium compound reversed memory impairment-related to stress caused by corticosterone and modulated hippocampal [(3)H]glutamate uptake in mice.

  10. Determinants of polychlorinated biphenyls (PCBs) in the sera of mothers and children from Michigan farms with PCB-contaminated silos

    SciTech Connect

    Schantz, S.L.; Jacobson, J.L.; Jacobson, S.W.; Humphrey, H.E.B.; Welch, R.; Gasior, D.

    1994-11-01

    Blood samples were collected from 28 mothers and from 38 school-aged children from Michigan farms on which there were polychlorinated biphenyl (PCB)-contaminated silos. The samples were analyzed for PCBs and other contaminants, including polybrominated biphenyls (PBBs) and dichlorodiphenyl trichloroethane (p,p{prime}-DDT + p,p{prime}-DDE) via packed column gas chromatography. The PCBs were quantified, using the Webb-McCall method, with Aroclors 1016 and 1260 used as reference standards. Approximately 42% of the children had serum PCB levels above the detection limit of 3.0 ng/ml. The values ranged from 3.1 to 23.3 ng/ml, with a mean of 6.8 ng/ml. In contrast, PCBs were detected in 86% of the mothers. The mean serum concentration was somewhat higher for the mothers (9.6 ng/ml), but the range was similar to that found for the children. PBBs were not detected in any of the children, but were present in trace amounts in 25% of the mothers. Conversely, DDT was present in 66% of the children and 93% of the mothers. As with PCBs, DDT concentrations were somewhat higher in the mothers. DDE accounted for 89% of the total DDT in serum. Various potential sources of exposure were evaluated as possible determinants of serum PCB levels, using hierarchical multiple regression. Years of residence on a silo farm and consumption of PCB-contaminated Great Lakes fish both accounted for significant portions of the variance in maternal serum PCB levels. Exposure via breast-feeding explained a large and highly significant proportion of the variance in the children`s serum PCB concentrations, suggesting that breast milk was the primary source of PCB exposure for these children. Years of residence on a silo farm also explained a significant proportion of the variance in children`s serum PCBs. 29 refs., 1 fig., 5 tabs.

  11. Year 5 Post-Remediation Biomonitoring of Pesticides and other Contaminants in Marine Waters near the United Heckathorn Superfund Site, Richmond, California

    SciTech Connect

    Kohn, Nancy P.; Kropp, Roy K.

    2002-08-01

    Marine sediment remediation at the United Heckathorn Superfund Site in Richmond, California, was completed in April 1997. The Record of Decision included a requirement for five years of post-remediation monitoring be conducted in the waterways near the site. The present monitoring year, 2001? 2002, is the fifth and possibly final year of post-remediation monitoring. In March 2002, water and mussel tissues were collected from the four stations in and near Lauritzen Channel that have been routinely monitored since 1997-98. A fifth station in Parr Canal was sampled in Year 5 to document post-remediation water and tissue concentrations there. Dieldrin and dichlorodiphenyl trichloroethane (DDT) were analyzed in water samples and in tissue samples from resident (i.e., naturally occurring) mussels. As in Years 3 and 4, mussels were not transplanted to the study area in Year 5. Year 5 concentrations of dieldrin and total DDT in water and total DDT in tissue were compared with those from Years 1 through 4 of post-remediation monitoring, and with preremediation data from the California State Mussel Watch Program and the Ecological Risk Assessment for the United Heckathorn Superfund Site. Year 5 water samples and mussel tissues were also analyzed for polychlorinated biphenyls (PCB), which were detected in sediment samples during Year 2 monitoring and were added to the water and mussel tissue analyses in 1999. Contaminants of concern in Year 5 water samples were analyzed in both bulk (total) phase and dissolved phase, as were total suspended solids, to evaluate the contribution of particulates to the total contaminant concentration.

  12. Persistent organic pollutants (POPs) in populations of the clam Chione californiensis in coastal lagoons of the Gulf of California.

    PubMed

    Vargas-González, Héctor H; Méndez-Rodríguez, Lía C; García-Hernández, Jaqueline; Mendoza-Salgado, Renato A; Zenteno-Savín, Tania; Arreola-Lizárraga, José A

    2016-07-01

    This study examines the potential public health risk due to the massive use of organochlorine pesticides (OCs) in agriculture in the Gulf of California. Specimens of the clam Chione californiensis were collected from three coastal lagoons (Yavaros, Altata and Reforma). Sites were classified as polluted/nonpolluted based on the presence/absence of OCs as an indicator of the persistence of these pollutants; in polluted sites, the time elapsed since pesticide application (past or recent) was estimated. Screening values (SV) for protecting human health as per the U.S. Environmental Protection Agency (EPA) were used for risk assessment. OCs detected were ranked according to frequency of occurrence as follows: γ-chlordane (75%) > endrin (54%) > aldrin (48%) > heptachlor, and dichlorodiphenyl-trichloroethane (DDE) (37%) > β-heptachlor epoxide (30%) > lindane (α-BHC, δ-BHC) and endosulphan I (≤ 6%). Specifically, OCs detected at the highest concentration were heptachlor in Yavaros (0.0168 µgg(-1)) and Altata (0.0046 µgg(-1)), and aldrin in Reforma (0.0019 µgg(-1)). β-Heptachlor epoxide in Altata and Reforma was the only OC with a concentration exceeding the EPA Screening Value. From our results and based on the monthly consumption limit set forth by EPA, the maximum safe consumption of clams to avoid a carcinogenic risk derived from β-heptachlor epoxide in the fishing villages of Yavaros and Altata is 4 servings per month (1 serving = 0.227 kg) by a 70-kg person. These findings suggest that concentrations of OCs and their isomers in C. californiensis populations reflect environmental persistence as well as recent inputs of OCs into coastal lagoons in the Gulf of California.

  13. Assessment of ground-water contamination at Wurtsmith Air Force Base, Michigan, 1982-85

    USGS Publications Warehouse

    Cummings, T.R.; Twenter, F.R.

    1986-01-01

    Continued study of ground-water contamination at Wurtsmith Air Force Base, Michigan, defined the movement and distribution of volatile organic compounds in the glacial sand and gravel aquifer at known sites of contamination, and has defined new plumes at two other sites. The Arrow Street purge system, installed in 1982 to remove contaminants from the Building 43 plume, has lowered concentrations of trichloroethylene in ground water in the central part of the most contaminated area from a range of 1,000 to 2,000 micrograms per liter to about 200 micrograms per liter. Trichloroethylene is not escaping off-Base from this area. In the southern part of the Base a plume containing principally trichloroethylene and dichloroethylene has been delineated along Mission Drive. Maximum concentrations observed were 5,290 micrograms per liter of trichloroethylene and 1,480 micrograms per liter of dichloroethylene. Hydrologically suitable sites for purge wells are identified in the southern part of the plume using a new ground-water flow model of the Base. A benzene plume near the bulk-fuel storage area, delineated in earlier work, lias shifted to a more northerly direction under influence of the Arrow Street purge system. Sites initially identified for purging the benzene plume have been repositioned because of the change in contaminant movement. JP-4 fuel was found to be accumulating in wells near the bulk-fuel storage area, largely in response to seasonal fluctuations in the water table. It is thought to originate from a spill that occurred several years ago. A more thorough definition of contaminants in the northern landfill area has permitted a determination of the most hydrologically suitable sites for purge wells. In general, Concentrations found in water do not differ greatly from those observed in 1981. Since 1981, concentrations of trichloroethylene have decreased significantly in the Alert Apron plume. Near the origin of the plume, the concentration of trichloroethylene

  14. Online analysis of chlorine stable isotopes in chlorinated ethylenes: an inter-laboratory study

    NASA Astrophysics Data System (ADS)

    Bernstein, Anat; Shouakar-Stash, Orfan; Hunkeler, Daniel; Sakaguchi-Söder, Kaori; Laskov, Christine; Aravena, Ramon; Elsner, Martin

    2010-05-01

    In the last decade, compound-specific stable isotopes analysis of groundwater pollutants became an important tool to identify different sources of the same pollutant and for tracking natural attenuating processes in the sub-surface. It has been shown that trends in the isotopic composition of the target compounds can shed light on in-situ processes that are otherwise difficult to track. Analytical methods of carbon, nitrogen and hydrogen were established and are by now frequently used for a variety of organic pollutants. Yet, the motivation of introducing analytical methods for new isotopes is emerging. This motivation is further enhanced, as advantages of using two or more stable isotopes for gaining better insight on degradation pathways are well accepted. One important element which demands the development of appropriate analytical methods is chlorine, which is found in various groups of organic pollutants, among them the chlorinated ethylenes. Chlorinated ethylenes are considered as high priority environmental pollutants, and the development of suitable chlorine isotope methods for this group of pollutants is highly desired. Ideally, stable isotope techniques should have the capability to determine the isotopic composition of and individual target compound in a non-pure mixture, without the requirement of a laborious off-line treatment. Indeed, in the last years two different concepts for on-line chlorine isotope analysis methods were introduced, by using either a standard quadrapole GC/MS (Sakaguchi-Söder et al., 2007) or by using a GC/IRMS (Shouakar-Stash et al., 2006). We present a comparison of the performances of two concepts, carried out in five different laboratories: Waterloo (GC/IRMS), Neuchâtel (GC/MS), Darmstadt (GC/MS), Tübingen (GC/MS) and Munich (GC/IRMS). This comparison was performed on pure trichloroethylene and dichloroethylene products of different manufactures, as well as trichloroethylene and dichloroethylene samples that were exposed to

  15. Inorganic and organic ground-water chemistry in the Canal Creek area of Aberdeen Proving Ground, Maryland

    USGS Publications Warehouse

    Lorah, M.M.; Vroblesky, D.A.

    1989-01-01

    Groundwater chemical data were collected from November 1986 through April 1987 in the first phase of a 5-year study to assess the possibility of groundwater contamination in the Canal Creek area of Aberdeen Proving Ground, Maryland. Water samples were collected from 87 observation wells screened in Coastal Plain sediments; 59 samples were collected from the Canal Creek aquifer, 18 from the overlying surficial aquifer, and 10 from the lower confined aquifer. Dissolved solids, chloride, iron, manganese, fluoride, mercury, and chromium are present in concentrations that exceed the Federal maximum contaminant levels for drinking water. Elevated chloride and dissolved-solids concentrations appear to be related from contaminant plumes but also could result from brackish-water intrusion. Excessive concentrations of iron and manganese were the most extensive water quality problems found among the inorganic constituents and are derived from natural dissolution of minerals and oxide coatings in the aquifer sediments. Volatile organic compounds are present in the Canal Creek and surficial aquifers, but samples from the lower confined aquifer do not show any evidence of contamination by inorganic or organic chemicals. The volatile organic contaminants detected in the groundwater and their maximum concentrations (in micrograms/L) include 1,1,2,2- tetrachloroethane (9,000); carbon tetrachloride (480); chloroform (460); 1,1,2-trichloroethane (80); 1,2-dichloroethane (990); 1,1-dichloroethane (3.1); tetrachloroethylene (100); trichloroethylene (1,800); 1,2-trans- dichloroethylene (1,200); 1,1-dichloroethylene (4.4); vinyl chloride (140); benzene (70); and chlorobenzene (39). On the basis of information on past activities in the study area, some sources of the volatile organic compounds include: (1) decontaminants and degreasers; (2) clothing-impregnating operations; (3) the manufacture of impregnite material; (4) the manufacture of tear gas; and (5) fuels used in garages and at

  16. Health risk assessment on residents exposed to chlorinated hydrocarbons contaminated in groundwater of a hazardous waste site.

    PubMed

    Lee, Lukas Jyuhn-hsiarn; Chan, Chang-Chuan; Chung, Chih-Wen; Ma, Yee-Chung; Wang, Gan-Shuh; Wang, Jung-Der

    2002-02-01

    We conducted this study to estimate residents' chronic hazard and carcinogenic risk in a groundwater-contaminated community after on-site remediation in Taiwan during 1999-2000. We followed guidelines for assessing hazardous waste sites of the U.S. Environmental Protection Agency (EPA) and used empirically measured contaminant levels and exposure parameters to perform health risk assessment on seven chlorinated hydrocarbons. We measured groundwater concentrations of vinyl chloride, tetrachloroethylene, trichloroethylene, 1,1-dichloroethylene, 1,1,1-trichloroethane, cis-1,2-dichloroethylene, and 1,1-dichloroethane in 49 off-site residential wells by gas chromatography/mass spectrometry. Exposure parameters were mainly derived from our field survey of 382 residents, and partially from U.S. EPA default values. Total exposure dose estimation included routes of inhalation during showering and dermal absorption of showers and other activities involved with hand-water contacts. The ingestion route of water was not included because most residents drank boiled water with negligible contaminants. We calculated a hazard index (HI) for all seven chlorinated hydrocarbons and carcinogenic risks for known human carcinogen of vinyl chloride and probable human carcinogens of tetrachloroethylene and trichloroethylene, which had the same target organ, the liver. The HI values for reasonable maximal exposure (RME) and average exposure were 14.3 and 0.2, respectively. The cancer risks based on RME and average exposure (in parentheses) for vinyl chloride, tetrachloroethylene, and trichloroethylene were 8.4 x 10(-6) (7.3 x 10(-9)), 1.9 x 10(-4) (1.3 x 10(-7)), and 1.4 x 10(-4) (1.2 x 10(-6)), respectively. We applied Monte Carlo simulations to the sensitivity analysis, which showed that the contaminant levels, exposure duration, and time for showers were major determinants of health risks. We concluded that the contaminated groundwater was still unsafe for use even after the contaminated

  17. Exposure of Cucurbita pepo to DDE-contamination alters the endophytic community: A cultivation dependent vs a cultivation independent approach.

    PubMed

    Eevers, N; Hawthorne, J R; White, J C; Vangronsveld, J; Weyens, N

    2016-02-01

    2,2-bis(p-chlorophenyl)-1,1-dichloro-ethylene (DDE) is the most abundant and persistent degradation product of the pesticide 2,2-bis(p-chlorophenyl)-1,1,1-trichloroethane (DDT) and is encountered in contaminated soils worldwide. Both DDE and DDT are classified as Persistent Organic Pollutants (POPs) due to their high hydrophobicity and potential for bioaccumulation and biomagnification in the food chain. Zucchini (Cucurbita pepo ssp. pepo) has been shown to accumulate high concentrations of DDE and other POPs and has been proposed as a phytoremediation tool for contaminated soils. The endophytic bacteria associated with this plant may play an important role in the remedial process. Therefore, this research focuses on changes in endophytic bacterial communities caused by the exposure of C. pepo to DDE. The total bacterial community was investigated using cultivation-independent 454 pyrosequencing, while the cultivable community was identified using cultivation-dependent isolation procedures. For both procedures, increasing numbers of endophytic bacteria, as well as higher diversities of genera were observed when plants were exposed to DDE. Several bacterial genera such as Stenotrophomonas sp. and Sphingomonas sp. showed higher abundance when DDE was present, while, for example Pseudomonas sp. showed a significantly lower abundance in the presence of DDE. These findings suggest tolerance of different bacterial strains to DDE, which might be incorporated in further investigations to optimize phytoremediation with the possible use of DDE-degrading endophytes. PMID:26683261

  18. Integrated Geophysical Investigation of Preferential Flow Paths at the Former Tyson Valley Powder Farm near Eureka, Missouri, May 2006

    USGS Publications Warehouse

    Burton, Bethany L.; Ball, Lyndsay B.; Stanton, Gregory P.; Hobza, Christopher M.

    2009-01-01

    In May 2006, the U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, conducted surface and borehole geophysical surveys at the former Tyson Valley Powder Farm near Eureka, Mo., to identify preferential pathways for potential contaminant transport along the bedrock surface and into dissolution-enhanced fractures. The Tyson Valley Powder Farm was formerly used as a munitions storage and disposal facility in the 1940s and 1950s, and the site at which the surveys were performed was a disposal area for munitions and waste solvents such as trichloroethylene and dichloroethylene. Direct-current resistivity and seismic refraction data were acquired on the surface; gamma, electromagnetic induction, and full waveform sonic logs were acquired in accessible boreholes. Through the combined interpretation of the seismic refraction tomographic and resistivity inversion results and borehole logs, inconsistencies in the bedrock surface were identified that may provide horizontal preferential flow paths for dense nonaqueous phase liquid contaminants. These results, interpreted and displayed in georeferenced three-dimensional space, should help to establish more effective monitoring and remediation strategies.

  19. Effects of chlorinated solvents on four species of North American amphibians.

    PubMed

    McDaniel, T V; Martin, P A; Ross, N; Brown, S; Lesage, S; Pauli, B D

    2004-07-01

    Tetrachloroethylene (PCE), a dry cleaning and degreasing solvent, can enter groundwater through accidental leaks or spills, and concentrations as high as 75 mg/L have been reported in Canadian aquifers. Amphibians in wetlands receiving contaminated groundwater may be exposed to PCE and its degradation products, but little information is available on the impacts of these compounds on indigenous amphibian species. Acute (96-h static renewal) exposures to PCE and its major degradation products, trichloroethylene (TCE) and cisand trans-dichloroethylene, were conducted on embryos of four North American amphibian species: wood frogs (Rana sylvatica), green frogs (R. clamitans), American toads (Bufo americanus), and spotted salamanders (Ambystoma maculatum). Subsequently, chronic exposures to PCE and TCE were conducted with the larvae of American toads. Both PCE and TCE were teratogenic to amphibian embryos; median effective concentrations (EC50s) for developmental deformities produced by PCE and TCE exposure for wood frogs and green frogs were 12 and 40 mg/L, respectively. Embryonic survivorship, however, was not compromised at these concentrations. American toads were less sensitive; the EC50 for developmental abnormalities was not attained at the highest test concentrations, 45 and 85 mg/L PCE and TCE, respectively. These results are pertinent in assessing the impact of groundwater pollution on an aquifer-fed wetland.

  20. Inorganic photocatalytic membranes for the remediation of VOCs in groundwater at the Portsmouth Site

    SciTech Connect

    Bischoff, B.L.; Fain, D.E.; James, D.L. II

    1997-10-06

    A small-scale demonstration of a new photocatalytic membrane reactor was undertaken at the X-623 Groundwater Treatment Facility at the Portsmouth Gaseous Diffusion Plant. The photocatalytic membrane reactor initially removed between 60 and 65% of the TCE in a single pass. It also removed significant amounts of three additional compounds (including completely removing one of the compounds). It is believed that these compounds were vinyl chloride, and two isomers of dichloroethylene. Within three days from startup, high suspended solids (mainly bacteria) contained in the feedwater tank caused plugging of the system`s prefilter. The high concentration of bacteria was the result of a previously unknown large amount of activated carbon present in the feed tank prior to addition of the groundwater. It was also later discovered that fine colloidal silt particles had fouled the photocatalytic membranes and reduced their activity yielding only about a 20% reduction of TCE. The silt particles were determined to be between 50 and 100 nm and were able to pass through the 500 nm (0.5 {mu}m) diameter pores of the prefilter. The results of this field test demonstrated the potential for success of the deployment of this technology, the simplicity, flexibility, and operability of the process and that improvements to the system design are needed prior to any future demonstrations. 9 figs.

  1. Health assessment for Commodore Semiconductor Site, Norristown, Pennsylvania, Region 3. CERCLIS No. PAD093730174. Preliminary report

    SciTech Connect

    Not Available

    1988-09-29

    The Commodore Semiconductor Site, located in a residential and light-industrial area in Norristown, Pennsylvania, is an active computer chip manufacturing facility with a history of leaking underground solvent storage tanks. On-site groundwater is contaminated with high levels of trichloroethylene (TCE) and other volatile organic compounds (VOCs) including trans-dichloroethylene, benzene, chloroform, methylene chloride, carbon tetrachloride, and tetrachloroethylene. On-site soils have been sampled on at least one occasion in 1979, and TCE was found at a concentration of 8,840 ppm. An air stripper has been in operation since 1984, but no ambient air data were supplied. The site is considered to be of potential public health concern because of the risk to human health caused by the possibility of exposure to hazardous substances if the aquifer were to be used as a primary water supply by nearby residents. On-site soils should be better characterized and access limited for those areas found to be highly contaminated at this active facility.

  2. Water quality in the Withers Swash Basin, with emphasis on enteric bacteria, Myrtle Beach, South Carolina, 1991-93

    USGS Publications Warehouse

    Guimaraes, W.B.

    1995-01-01

    Water samples were collected in 1991-93 from Withers Swash and its two tributaries (the Mainstem and KOA Branches) in Myrtle Beach, S.C., and analyzed for physical properties, organic and inorganic constituents, and fecal coliform and streptococcus bacteria. Samples were collected during wet- and dry-weather conditions to assess the water quality of the streams before and after storm runoff. Water samples were analyzed for over 200 separate physical, chemical, and biological constituents. Concentrations of 11 constituents violated State criteria for shellfish harvesting waters, and State Human Health Criteria. The 11 constituents included concentrations of dissolved oxygen, arsenic, lead, cadmium, mercury, chlordane, dieldrin, 1,1,1-trichloroethane, 1,1-dichloroethylene, trichloroethylene, and fecal coliform bacteria. Water samples were examined for the presence of enteric bacteria (fecal coliform and fecal streptococcus) at 46 sites throughout the Withers Swash Basin and 5 sites on the beach and in the Atlantic Ocean. Water samples were collected just upstream from all confluences in order to determine sources of bacterial contamination. Temporally and spatially high concentrations of enteric bacteria were detected throughout the Withers Swash Basin; however, these sporadic bacteria concentrations made it difficult to determine a single source of the contamination. These enteric bacteria concentrations are probably derived from a number of sources in the basin including septic tanks, garbage containers, and the feces of waterfowl and domestic animals.

  3. Development of a biobarrier for the remediation of PCE-contaminated aquifer.

    PubMed

    Kao, C M; Chen, S C; Liu, J K

    2001-06-01

    The industrial solvent tetrachloroethylene (PCE) is among the most ubiquitous chlorinated compounds found in groundwater contamination. The objective of this study was to develop a biobarrier system, which includes a peat layer to enhance the anaerobic reductive dechlorination of PCE in situ. Peat was used to supply primary substrate (electron donor) continuously. A laboratory-scale column experiment was conducted to evaluate the feasibility of this proposed system or PCE removal. This experiment was performed using a series of continuous-flow glass columns including a soil column, a peat column, followed by two consecutive soil columns. Anaerobic acclimated sludges were inoculated in all three soil columns to provide microbial consortia for PCE biodegradation. Simulated PCE-contaminated groundwater with a flow rate of 0.25 l/day was pumped into this system. Effluent samples from each column were analyzed for PCE and its degradation byproducts (trichloroethylene (TCE), cis-dichloroethylene (cis-DCE), vinyl chloride (VC), ethylene (ETH), and ethane). Results show that the decrease in PCE concentrations and production of PCE byproducts were observed over a 65-day operating period. Up to 98%, of PCE removal efficiency was obtained in this passive system. Results indicate that the continuously released organics from peat column enhanced PCE biotransformation. Thus, the developed biobarrier treatment scheme has the potential to be developed into a cost-effective in situ PCE-remediation technology, and can be utilized as an interim step to aid in system scale-up.

  4. Preliminary evaluation of the control of microbial fouling by laboratory and pilot-scale air-stripping columns. Final report, March-December 1984

    SciTech Connect

    Seekins, D.; Rogers, M.R.

    1985-03-01

    The U.S. Army Natick Research, Development and Engineering Center (Natick) undertook a study to investigate the buildup of microbial slimes primarily pseudomonas, bacillus and azotobacter in Air Stripping Columns that are used by the military to remove volatile compounds from contaminated groundwater. The air-stripping and carbon-adsorption columns were previously used at the Anniston Army Depot (ANAD) to treat groundwater that had been contaminated with chemical solvents and metal-plating wastes. The major groundwater contaminants were: trichloroethylene (TCE), dichloroethylene (DCE), methylene chloride (MeCl), phenol, and chromium. The results of the study will provide the basis for recommendations on preventative or control measures to be taken in future applications of these water-treatment methods. Measures to prevent buildup of microbial slimes will allow for longer column life and reduction in costs. Treatment of the laboratory-scale column with 3% and 15% hydrogen peroxide reduced total microbial counts but was not successful at disinfecting the column. It was concluded that to prevent microbial fouling of air-stripping columns, the packing material should be disinfected prior to use and should be shock-chlorinated during use if microbial fouling should start to occur. The column should be run continuously if possible to keep the inside temperature as low as possible to retard the growth of microorganisms. If iron fouling should occur, the column should be treated with dilute HCl to clear the packing material of the hydroxide buildup.

  5. Production of Ethane, Ethylene, and Acetylene from Halogenated Hydrocarbons by Methanogenic Bacteria

    PubMed Central

    Belay, Negash; Daniels, Lacy

    1987-01-01

    Several methanogenic bacteria were shown to produce ethane, ethylene, and acetylene when exposed to the halogenated hydrocarbons bromoethane, dibromo- or dichloroethane, and 1,2-dibromoethylene, respectively. They also produced ethylene when exposed to the coenzyme M analog and specific methanogenic inhibitor bromoethanesulfonic acid. The production of these gases from halogenated hydrocarbons has a variety of implications concerning microbial ecology, agriculture, and toxic waste treatment. All halogenated aliphatic compounds tested were inhibitory to methanogens. Methanococcus thermolithotrophicus, Methanococcus deltae, and Methanobacterium thermoautotrophicum ΔH and Marburg were completely inhibited by 7 μM 1,2-dibromoethane and, to various degrees, by 51 to 1,084 μM 1,2-dichloroethane, 1,2-dibromoethylene, 1,2-dichloroethylene, and trichloroethylene. In general, the brominated compounds were more inhibitory. The two Methanococcus species were fully inhibited by 1 μM bromoethanesulfonic acid, whereas both Methanobacterium strains were only partly inhibited by 2,124 μM. Coenzyme M protected cells from bromoethanesulfonic acid but not from any of the other inhibitors. PMID:16347389

  6. Demonstration of aquifer remediation technology at a Superfund site in Florida

    SciTech Connect

    Knapp, J.D.; New, G.H.; Zimmerman, J.

    1994-12-31

    Ground water extraction or aquifer pump and treat technology, is being used to remediate ground water contaminated with Volatile Organic Compounds (VOCS) at a United States Environmental Protection Agency (USEPA) Superfund site in Fort Lauderdale, Florida. Operation of a former electronic parts manufacturing facility resulted in the release of trichloroethylene, cis(1,2)-dichloroethylene, and vinyl chloride. These VOCs are present in ground water at depths between 10 and 80 feet below land surface. Ground water extraction with conventional air stripping followed by reinjection of treated ground water into a lower aquifer zone was selected by the EPA in 1986 as the preferred remediation technology for the site. The treatment system consists of three extraction (or recovery) wells, each producing up to 150 gallons per minute (gpm). Extracted ground water is pumped into two air stripping towers for the removal of VOCS. Treated ground water is then reinjected to a lower portion of the aquifer through two injection wells. The system began operation in July 1992 and has treated over 190 million gallons of ground water.

  7. Surface acoustic wave sensors/gas chromatography; and Low quality natural gas sulfur removal and recovery CNG Claus sulfur recovery process

    SciTech Connect

    Klint, B.W.; Dale, P.R.; Stephenson, C.

    1997-12-01

    This topical report consists of the two titled projects. Surface Acoustic Wave/Gas Chromatography (SAW/GC) provides a cost-effective system for collecting real-time field screening data for characterization of vapor streams contaminated with volatile organic compounds (VOCs). The Model 4100 can be used in a field screening mode to produce chromatograms in 10 seconds. This capability will allow a project manager to make immediate decisions and to avoid the long delays and high costs associated with analysis by off-site analytical laboratories. The Model 4100 is currently under evaluation by the California Environmental Protection Agency Technology Certification Program. Initial certification focuses upon the following organics: cis-dichloroethylene, chloroform, carbon tetrachloride, trichlorethylene, tetrachloroethylene, tetrachloroethane, benzene, ethylbenzene, toluene, and o-xylene. In the second study the CNG Claus process is being evaluated for conversion and recovery of elemental sulfur from hydrogen sulfide, especially found in low quality natural gas. This report describes the design, construction and operation of a pilot scale plant built to demonstrate the technical feasibility of the integrated CNG Claus process.

  8. [Real-time analysis of polyvinyl chloride thermal decomposition/combustion products with single photon ionization/photoelectron ionization online mass spectrometer].

    PubMed

    Chen, Wen-Dong; Hou, Ke-Yong; Chen, Ping; Li, Fang-Long; Zhao, Wu-Duo; Cui, Hua-Peng; Hua, Lei; Xie, Yuan-Yuan; Li, Hai-Yang

    2013-01-01

    With the features of a broad range of ionizable compounds, reduced fragments and simple mass spectrum, a homemade magnetic field enhanced photoelectron ionization (MEPEI) source combined with single photon ionization (SPI) for time-of-flight mass spectrometer was built and applied to analyze thermal decomposition/combustion products of polyvinyl chloride (PVC). The combined ion source can be switched very fast between SPI mode and SPI-MEPEI mode for detecting different targeted compounds, and only adjusting the voltage of the electrode in the ionization region to trigger the switch. Among the PVC thermal decomposition/combustion products, HCl and CO2, which ionization energies (12.74 eV, 13.77 eV respectively) were higher than the energy of photon (10.60 eV), were ionized by MEPEI, while alkenes, dichloroethylene, benzene and its homologs, monochlorobenzene, styrene, indane, naphthalene and its homologs were ionized by SPI and MEPEI simultaneously. Spectra of interested products as a function of temperatures indicated that products are formed via two main mechanisms: (1) dechlorination and intramolecular cyclization can lead to the formation of HCl, benzene and naphthalene at 250-370 degrees C; (2) intermolecular crosslinking leads to the formation of alkyl aromatics such as toluene and xylene/ethylbenzene at 380-510 degrees C. The experimental results show that the combined ion source of SPI/ SPI-MEPEI for TOF-MS has broad application prospects in the online analysis field.

  9. Anaerobic and aerobic/anaerobic treatment for tetrachloroethylene (PCE)

    SciTech Connect

    Guiot, S.R.; Kuang, X.; Beaulieu, C.; Corriveau, A.; Hawari, J.

    1995-12-31

    The reductive dechlorination of tetrachloroethylene (PCE) was studied in a laboratory-scale upflow anaerobic sludge bed (UASB) reactor using sucrose, lactic acid, propionic acid, and methanol as cosubstrates. Parallel experiments were performed to compare the novel coupled anaerobic/aerobic reactor with the conventional UASB. More than 95% of PCE was transformed in both reactors. Complete dechlorination in the UASB reactor decreased with increased PCE loading, declining from 45 to 19%. Minor concentrations of trichloroethylene and of undegraded PCE were detected in the liquid effluent throughout the experiment. Dichloroethylene was the dominant metabolite of all PCE loads, while vinyl chloride was not detected in the liquid effluent. For both reactor types, increased PCE loading led to lower chemical oxygen demand (COD) removal rates caused by a decrease in the specific acetate utilization rate. This, combined with a decline of the specific total PCE dechlorination activity, may cause long-term stability problems in the UASB reactor. The coupled reactor demonstrated higher specific PCE degradation rates at all PCE loading levels and a higher specific total dechlorination rate at the highest PCE loading. These characteristics may promote long-term stability of the coupled reactor system.

  10. Degradation of TCE using sequential anaerobic biofilm and aerobic immobilized bed reactor

    NASA Technical Reports Server (NTRS)

    Chapatwala, Kirit D.; Babu, G. R. V.; Baresi, Larry; Trunzo, Richard M.

    1995-01-01

    Bacteria capable of degrading trichloroethylene (TCE) were isolated from contaminated wastewaters and soil sites. The aerobic cultures were identified as Pseudomonas aeruginosa (four species) and Pseudomonas fluorescens. The optimal conditions for the growth of aerobic cultures were determined. The minimal inhibitory concentration values of TCE for Pseudomonas sps. were also determined. The aerobic cells were immobilized in calcium alginate in the form of beads. Degradation of TCE by the anaerobic and dichloroethylene (DCE) by aerobic cultures was studied using dual reactors - anaerobic biofilm and aerobic immobilized bed reactor. The minimal mineral salt (MMS) medium saturated with TCE was pumped at the rate of 1 ml per hour into the anaerobic reactor. The MMS medium saturated with DCE and supplemented with xylenes and toluene (3 ppm each) was pumped at the rate of 1 ml per hour into the fluidized air-uplift-type reactor containing the immobilized aerobic cells. The concentrations of TCE and DCE and the metabolites formed during their degradation by the anaerobic and aerobic cultures were monitored by GC. The preliminary study suggests that the anaerobic and aerobic cultures of our isolates can degrade TCE and DCE.

  11. Degradation of 1,1,2,2-tetrachloroethane in a freshwater tidal wetland: Field and laboratory evidence

    USGS Publications Warehouse

    Lorah, M.M.; Olsen, L.D.

    1999-01-01

    Degradation reactions controlling the fate of 1,1,2,2-tetrachloroethane (PCA) in a freshwater tidal wetland that is a discharge area for a contaminated aquifer were investigated by a combined field and laboratory study. Samples from nested piezometers and porous-membrane sampling devices (peepers) showed that PCA concentrations decreased and that less chlorinated daughter products formed as the groundwater became increasingly reducing along upward flow paths through the wetland sediments. The cis and trans isomers of 1,2-dichloroethylene (12DCE) and vinyl chloride (VC) were the predominant daughter products detected from degradation of PCA in the field and in microcosms constructed under methanogenic conditions. Significantly lower ratios of cis-12DCE to trans-12DCE were produced by PCA degradation than by degradation of trichloroethylene, a common co-contaminant with PCA. 1,1,2-Trichloroethane (112TCA) and 1,2-dichloroethane (12DCA) occurred simultaneously with 12DCE, indicating simultaneous hydrogenolysis and dichloroelimination of PCA. From an initial PCA concentration of about 1.5 ??mol/L, concentrations of PCA and its daughter products decreased to below detection within a 1.0-m vertical distance in the wetland sediments and within 34 days in the microcosms. The results indicate that natural attenuation of PCA through complete anaerobic biodegradation can occur in wetlands before sensitive surface water receptors are reached.

  12. Environmental contaminants in bald eagles in the Columbia River estuary

    SciTech Connect

    Anthony, R.G.; Garrett, M.G. ); Schuler, C.A. )

    1993-01-01

    Eggs, blood, and carcasses of bald eagles (Haliaeetus leucocephalus) and fish were collected and breeding success of eagles was monitored in the Columbia River estuary, 1980-87, to determine if contaminants were having an effect on productivity. High levels of dichloro diphenyl dichloroethylene (DDE), polychlorinated biphenyls (PCB's), and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) were found in eggs, blood from adults, and 2 eagle carcasses. Detectable levels of DDE and PCB's were found in blood of nestlings indicating they were exposed to these contaminants early in life. Increasing concentrations of DDE and PCB's with age also indicated accumulation of these contaminants. Adult eagles also had higher levels of mercury (Hg) in blood than subadults or young indicating accumulation with age. The high levels of DDE and PCB's were associated with eggshell thinning ([bar x] = 10%) and with productivity ([bar x] = 0.56 young/occupied site) that was lower than that of healthy populations (i.e., [ge]1.00 young/occupied site). DDE and PCB's had a deleterious effect on reproduction of bald eagles in the estuary. The role dioxins play in eagle reproduction remains unclear, but concentrations in eagle eggs were similar to those in laboratory studies on other species where dioxins adversely affected hatchability of eggs. Probable source of these contaminants include dredged river sediments and hydroelectric dams, and the proper management of each may reduce the amount of contaminants released into the Columbia River estuary. 46 refs., 1 fig., 4 tabs.

  13. Biodegradation of chlorinated ethenes by a methane-utilizing mixed culture.

    PubMed Central

    Fogel, M M; Taddeo, A R; Fogel, S

    1986-01-01

    Chlorinated ethenes are toxic substances which are widely distributed groundwater contaminants and are persistent in the subsurface environment. Reports on the biodegradation of these compounds under anaerobic conditions which might occur naturally in groundwater show that these substances degrade very slowly, if at all. Previous attempts to degrade chlorinated ethenes aerobically have produced conflicting results. A mixed culture containing methane-utilizing bacteria was obtained by methane enrichment of a sediment sample. Biodegradation experiments carried out in sealed culture bottles with radioactively labeled trichloroethylene (TCE) showed that approximately half of the radioactive carbon had been converted to 14CO2 and bacterial biomass. In addition to TCE, vinyl chloride and vinylidene chloride could be degraded to products which are not volatile chlorinated substances and are therefore likely to be further degraded to CO2. Two other chlorinated ethenes, cis and trans-1,2-dichloroethylene, were shown to degrade to chlorinated products, which appeared to degrade further. A sixth chlorinated ethene, tetrachloroethylene, was not degraded by the methane-utilizing culture under these conditions. The biodegradation of TCE was inhibited by acetylene, a specific inhibitor of methane oxidation by methanotrophs. This observation supported the hypothesis that a methanotroph is responsible for the observed biodegradations. PMID:3085587

  14. Chemically-induced alteration of UDP-glucuronic acid concentration in rat liver.

    PubMed

    Watkins, J B; Klaassen, C D

    1983-01-01

    Since many xenobiotics alter hepatic UDP-glucuronosyltransferase activity, their effect on UDPGA concentration was determined. Rats were pretreated with: 1) microsomal enzyme inducers (7,8-benzoflavone, benzo(a)pyrene, butylated hydroxyanisole, isosafrole, 3-methylcholanthrene, phenobarbital, pregnenolone-16 alpha-carbonitrile (PCN), 2,3,7,8-tetrachlorodibenzo-p-dioxin, trans-stilbene oxide); 2) inhibitors of microsomal enzymes (cobaltous chloride, piperonyl butoxide, SKF 525-A, borneol, galactosamine); 3) hepatotoxins (allyl alcohol, aflatoxin B1, alpha-naphthylisothiocyanate, bromobenzene, cadmium chloride, carbon tetrachloride, 1,1-dichloroethylene), and 4) commonly used anesthetics (pentobarbital, urethane, diethyl ether, halothane, enflurane, methoxyflurane). Rats were decapitated before removal of the liver. All inducers except PCN and isosafrole increased UDPGA 36-85% above control. Mixed-function oxidase inhibitors had no effect whereas borneol and galactosamine reduced UDPGA 85-90%. Aflatoxin B1 and cadmium produced decreases of 59 and 25%, respectively. Hepatic UDPGA content was diminished 70-95% after exposure to the inhalation anesthetics, whereas the other anesthetics reduced UDPGA about 25%. Thus, numerous xenobiotics alter the concentration of UDPGA in rat liver, which may influence the rate of glucoronidation.

  15. Effect of Fe(III) on 1,1,2,2-tetrachloroethane degradation and vinyl chloride accumulation in wetland sediments of the Aberdeen proving ground

    USGS Publications Warehouse

    Jones, E.J.P.; Voytek, M.A.; Lorah, M.M.

    2004-01-01

    1,1,2,2-Tetrachloroethane (TeCA) contaminated groundwater at the Aberdeen Proving Ground discharges through an anaerobic wetland in West Branch Canal Creek, MD, where dechlorination occurred. Two microbially mediated pathways, dichloroelimination and hydrogenolysis, account for most of the TeCA degradation at this site. The dichloroelimination pathways led to the formation of vinyl chloride (VC), a recalcitrant carcinogen of great concern. The effect of adding Fe(III) to TeCA-amended microcosms of wetland sediment was studied. Differences were identified in the TeCA degradation pathway between microcosms treated with amorphous ferric oxyhydroxide (AFO-treated) and untreated (no AFO) microcosms. TeCA degradation was accompanied by a lower accumulation of VC in AFO-treated microcosms than no AFO microcosms. The microcosm incubations and subsequent experiments with the microcosm materials showed that AFO treatment resulted in lower production of VC by shifting TeCA degradation from dichloroelimination pathways to production of a greater proportion of chlorinated ethane products, and decreasing the microbial capability to produce VC from 1,2-dichloroethylene. VC degradation was not stimulated in the presence of Fe(III). Rather, VC degradation occurred readily under methanogenic conditions and was inhibited under Fe(III)-reducing conditions.

  16. Development and composition of a mixed culture for bioremediation of chlorinated ethenes and ethanes

    USGS Publications Warehouse

    Jones, E.J.P.; Voytek, M.A.; Lorah, M.M.

    2005-01-01

    Microbial organisms capable of dechlorinating 1,1,2,2 tetrachloroethane (TeCA) and its chlorinated ethane and ethylene daughter products were enriched in surface sediments collected from the West Branch Canal Creek wetland area, leading to the formation of two mixed cultures using slightly different enrichment methods. Both WBC-1 and WBC-2 were capable of rapid and complete reductive dechlorination of TeCA and its daughter products (1,1,2-trichloroethane, 1,2-dichloroethane, trichloroethylene, 1,2-dichloroethylene, and vinyl chloride) to ethylene, and addition of either culture to wetland sediment and to engineered peat/compost mixtures resulted in significant enhancement of dechlorination. However, the WBC-2 culture supported better sustained activity and was more readily scaled up for application in bioaugmentation treatments, whereas dechlorination activity was gradually lost in WBC-1. The microbial composition of WBC-1 and WBC-2 were determined by cloning and sequencing 500 base pairs of the 16S rDNA gene and the methyl co-reductase. Methanogens identified in the consortia were members of the Order Methanomicrobiales, which includes acetoclastic methanogens. This is an abstract of a paper presented at the Proceedings of the 8th International In Situ and On-Site Bioremediation Symposium (Baltimore, MD 6/6-9/2005).

  17. Developments toward a Low-Cost Approach for Long-Term, Unattended Vapor Intrusion Monitoring

    PubMed Central

    Tolley, William K.

    2014-01-01

    There are over 450,000 sites contaminated by chemicals in the US. This large number of contaminated sites and the speed of subsurface migration of chemicals pose considerable risk to nearby residences and commercial buildings. The high costs for monitoring around these site stem from the labor involved in placing and replacing the passive sorbent vapor samplers and the resultant laboratory analysis. This monitoring produces sparse data sets that do not track temporal changes well. To substantially reduce costs and better track exposures, less costly, unattended systems for monitoring soil gases and vapor intrusion into homes and businesses are desirable to aid in the remediation of contaminated sites. This paper describes progress toward the development of an inexpensive system specifically for monitoring vapor intrusion; the system can operate repeatedly without user intervention with low detection limits (1 × 10−9, or 1 part-per-billion). Targeted analytes include chlorinated hydrocarbons (dichloroethylene, trichloroethane, trichloroethylene, and perchloroethylene) and benzene. The system consists of a trap-and-purge preconcentrator for vapor collection in conjunction with a compact gas chromatography instrument to separate individual compounds. Chemical detection is accomplished with an array of chemicapacitors and a metal-oxide semiconductor combustibles sensor. Both the preconcentrator and the chromatography column are resistively heated. All components are compatible with ambient air, which serves as the carrier gas for the gas chromatography and detectors. PMID:24903107

  18. PBDEs and other POPs in urban birds of prey partly explained by trophic level and carbon source.

    PubMed

    Elliott, John E; Brogan, Jason; Lee, Sandi L; Drouillard, Ken G; Elliott, Kyle H

    2015-08-15

    As urban sprawl and agricultural intensification continue to invade prime wildlife habitat, some animals, even apex predators, are managing to adapt to this new environment. Chemical pollution is one of many stressors that wildlife encounter in urban environments. Predators are particularly sensitive to persistent chemical pollutants because they feed at a high trophic level where such pollution is biomagnified. To examine levels of pollution in urban birds of prey in the Lower Mainland region of British Columbia, Canada, we analyzed persistent organic contaminants in adult birds found dead of trauma injury. The hepatic geometric mean concentration of sum polybrominated diphenyl ethers (∑PBDEs) in 13 Cooper's hawks (Accipiter cooperii) from Greater Vancouver was 1873 ng/g (lipid weight) with one bird reaching 197,000n g/g lipid weight, the highest exposure reported to date for a wild bird. Concentrations of ∑PBDEs, ∑PCBs (polychlorinated biphenyls) and, surprisingly, cyclodiene insecticides were greatest in the urban environment while those of DDE (1,1-dichloroethylene bis[p-chlorophenyl) were highest in a region of intensive agriculture. The level of most chlorinated and brominated contaminants increased with trophic level (δ(15)N). The concentrations of some contaminants, PBDEs in particular, in these birds of prey may have some toxicological consequences. Apex predators in urban environments continue to be exposed to elevated concentrations of legacy pollutants as well as more recent brominated pollutants.

  19. Exposure of Cucurbita pepo to DDE-contamination alters the endophytic community: A cultivation dependent vs a cultivation independent approach.

    PubMed

    Eevers, N; Hawthorne, J R; White, J C; Vangronsveld, J; Weyens, N

    2016-02-01

    2,2-bis(p-chlorophenyl)-1,1-dichloro-ethylene (DDE) is the most abundant and persistent degradation product of the pesticide 2,2-bis(p-chlorophenyl)-1,1,1-trichloroethane (DDT) and is encountered in contaminated soils worldwide. Both DDE and DDT are classified as Persistent Organic Pollutants (POPs) due to their high hydrophobicity and potential for bioaccumulation and biomagnification in the food chain. Zucchini (Cucurbita pepo ssp. pepo) has been shown to accumulate high concentrations of DDE and other POPs and has been proposed as a phytoremediation tool for contaminated soils. The endophytic bacteria associated with this plant may play an important role in the remedial process. Therefore, this research focuses on changes in endophytic bacterial communities caused by the exposure of C. pepo to DDE. The total bacterial community was investigated using cultivation-independent 454 pyrosequencing, while the cultivable community was identified using cultivation-dependent isolation procedures. For both procedures, increasing numbers of endophytic bacteria, as well as higher diversities of genera were observed when plants were exposed to DDE. Several bacterial genera such as Stenotrophomonas sp. and Sphingomonas sp. showed higher abundance when DDE was present, while, for example Pseudomonas sp. showed a significantly lower abundance in the presence of DDE. These findings suggest tolerance of different bacterial strains to DDE, which might be incorporated in further investigations to optimize phytoremediation with the possible use of DDE-degrading endophytes.

  20. Degradation of 1,1,2,2-tetrachloroethane in a freshwater tidal wetland: Field and laboratory evidence

    SciTech Connect

    Lorah, M.M.; Olsen, L.D.

    1999-01-15

    Degradation reactions controlling the fate of 1,1,2,2-tetrachloroethane (PCA) in a freshwater tidal wetland that is a discharge area for a contaminated aquifer were investigated by a combined field and laboratory study. Samples from nested piezometers and porous-membrane sampling devices (peepers) showed that PCA concentrations decreased and that less chlorinated daughter products formed as the groundwater became increasingly reducing along upward flow paths through the wetland sediments. The is and trans isomers of 1,2-dichloroethylene (12DCE) and vinyl chloride (VC) were the predominant daughter products detected from degradation of PCA in the field and in microcosms constructed under methanogenic conditions. Significantly lower ratios of cis-12DCE to trans-12DCE were produced by PCA degradation than by degradation of trichloroethylene, a common co-contaminant with PCA. 1,1,2-Trichloroethane (112TCA) and 1,2-dichloroethane (12DCA) occurred simultaneously with 12DCE, indicating simultaneous hydrogenolysis and dichloroelimination of PCA. From an initial PCA concentration of about 1.5 {micro}mol/L, concentrations of PCA and its daughter products decreased to below detection within a 1.0-m vertical distance in the wetland sediments and within 34 days in the microcosms. The results indicate that natural attenuation of PCA through complete anaerobic biodegradation can occur in wetlands before sensitive surface water receptors are reached.

  1. Natural attenuation of chlorinated volatile organic compounds in a freshwater tidal wetland: Field evidence of anaerobic biodegradation

    USGS Publications Warehouse

    Lorah, M.M.; Olsen, L.D.

    1999-01-01

    Field evidence collected along two groundwater flow paths shows that anaerobic biodegradation naturally attenuates a plume of chlorinated volatile organic compounds as it discharges from an aerobic sand aquifer through wetland sediments. A decrease in concentrations of two parent contaminants, trichloroethylene (TCE) and 1,1,2,2-tetrachloroethane (PCA), and a concomitant increase in concentrations of anaerobic daughter products occurs along upward flow paths through the Wetland sediments. The daughter products 1,2-dichloroethylene, vinyl chloride, 1,1,2-trichloroethane, and 1,2-dichloroethane are produced from hydrogenolysis of TCE and from PCA degradation through hydrogenolysis and dichloroelimination (reductive dechlorination) pathways. Total concentrations of TCE, PCA, and their degradation products, however, decrease to below detection levels within 0.15-0.30 m of land surface. The enhanced reductive dechlorination of TCE and PCA in the wetland sediments is associated with the naturally higher concentrations of dissolved organic carbon and the lower redox state of the groundwater compared to the aquifer. This field study indicates that wetlands and similar organic-rich environments at groundwater/surface-water interfaces may be important in intercepting groundwater contaminated with chlorinated organics and in naturally reducing concentrations and toxicity before sensitive surface-water receptors are reached.

  2. Electron donor preference of a reductive dechlorinating consortium

    USGS Publications Warehouse

    Lorah, M.M.; Majcher, E.; Jones, E.; Driedger, G.; Dworatzek, S.; Graves, D.

    2005-01-01

    A wetland sediment-derived microbial consortium was developed by the USGS and propagated in vitro to large quantities by SiREM Laboratory for use in bioaugmentation applications. The consortium had the capacity to completely dechlorinate 1,1,2,2-tetrachloroethene, tetrachloroethylene, trichloroethylene, 1,1,2-trichloroethane, cis- and trans-1,2-dichoroethylene, 1.1-dichloroethylene, 1,2-dichloroethane, vinyl chloride, carbon tetrachloride and chloroform. A suite of electron donors with characteristics useful for bioaugmentation applications was tested. The electron donors included lactate (the donor used during WBC-2 development), ethanol, chitin (Chitorem???), hydrogen releasing compound (HRC???), emulsified vegetable oil (Newman Zone???), and hydrogen gas. Ethanol, lactate, and chitin were particularly effective with respect to stimulating, supporting, and sustaining reductive dechlorination of the broad suite of chemicals that WBC-2 biodegraded. Chitorem??? was the most effective "slow release" electron donor tested. This is an abstract of a paper presented at the Proceedings of the 8th International In Situ and On-Site Bioremediation Symposium (Baltimore, MD 6/6-9/2005).

  3. Health assessment for Revere Chemical Company National Priorities List (NPL) Site, Revere, Bucks County, Pennsylvania, Region 3. CERCLIS No. PAD051395499. Preliminary report

    SciTech Connect

    Not Available

    1989-04-20

    The Revere Chemical Company site was operated from the late 1960s until 1972 as an acid, metal, and plating waste processing facility. It is suspected of also accepting organic solvent waste. The environmental contamination on-site consists of chromium, mercury, lead, arsenic, and cadmium in the surface water of tributaries on the site boundaries; benzoic acid in the sediment; diethylhexylphthalate in the fire pond; trans-1,2-dichloroethylene and 2-butanone in a production well; chromium, nickel, diethylhexylphthalate, and arsenic in soil. Off-site environmental contamination consists of chromium, lead, arsenic, and nickel in the surface water of the tributaries; chromium, lead, hexachlorobenzene, benzoic acid, di-n-octylphthalate, diethylhexylphthalate, and total polynuclear aromatic hydrocarbons in sediment; and diethylhexylphthalate, nickel, lead, and arsenic in residential well water. Even though removal operations were carried out in 1984, subsequent data collections have shown significant contamination present in surface water, soil, and sediment both on- and off-site. Arsenic and nickel levels exceed water quality criteria. Soil and sediment off-site are contaminated with lead and chromium and would be considered a public health concern should they be in areas where children come in contact with them. In addition, the levels of contamination in surface water and sediment may adversely impact edible aquatic organisms making them unfit for human consumption.

  4. Concentration-dependent behavioral changes in mice following short-term inhalation exposure to various industrial solvents

    SciTech Connect

    De Ceaurriz, J.; Desiles, J.P.; Bonnet, P.; Marignac, B.; Muller, J.; Guenier, J.P.

    1983-03-15

    Mice were exposed during a 4-hr period to various concentrations of 13 aliphatic or aromatic solvents which affect primarily the central nervous system (CNS). The test compounds were benzyl chloride, butyl alcohol, chlorobenzene, cyclohexanone, 1,2-dichloroethylene, diisobutyl ketone, isopropyl acetate, methyl ethyl ketone, styrene, tetrachloroethylene, 1,1,1-trichloroethane, toluene, and ortho-xylene. After exposure, measurements were made to see whether these neurotoxicants would decrease the immobility developed in a ''behavioral despair'' swimming test. Each chemical was shown to reduce the total duration of immobility measured over a 3-min period in a concentration-related manner. The systematic determination of the atmospheric concentrations responsible for a 50% decrease in immobility (ID50) permitted classification of the solvents in terms of their relative potencies. The possibility of using such experimental data as tentative guidelines for setting safe levels of work exposure to the neurotoxicants was suggested, considering the existence of quantitative relationships between the ID50 values and the current occupational standards.

  5. PBDEs and other POPs in urban birds of prey partly explained by trophic level and carbon source.

    PubMed

    Elliott, John E; Brogan, Jason; Lee, Sandi L; Drouillard, Ken G; Elliott, Kyle H

    2015-08-15

    As urban sprawl and agricultural intensification continue to invade prime wildlife habitat, some animals, even apex predators, are managing to adapt to this new environment. Chemical pollution is one of many stressors that wildlife encounter in urban environments. Predators are particularly sensitive to persistent chemical pollutants because they feed at a high trophic level where such pollution is biomagnified. To examine levels of pollution in urban birds of prey in the Lower Mainland region of British Columbia, Canada, we analyzed persistent organic contaminants in adult birds found dead of trauma injury. The hepatic geometric mean concentration of sum polybrominated diphenyl ethers (∑PBDEs) in 13 Cooper's hawks (Accipiter cooperii) from Greater Vancouver was 1873 ng/g (lipid weight) with one bird reaching 197,000n g/g lipid weight, the highest exposure reported to date for a wild bird. Concentrations of ∑PBDEs, ∑PCBs (polychlorinated biphenyls) and, surprisingly, cyclodiene insecticides were greatest in the urban environment while those of DDE (1,1-dichloroethylene bis[p-chlorophenyl) were highest in a region of intensive agriculture. The level of most chlorinated and brominated contaminants increased with trophic level (δ(15)N). The concentrations of some contaminants, PBDEs in particular, in these birds of prey may have some toxicological consequences. Apex predators in urban environments continue to be exposed to elevated concentrations of legacy pollutants as well as more recent brominated pollutants. PMID:25897724

  6. Bioremediation of Trichloroethylene-Contaminated Sediments Augmented with a Dehalococcoides Consortia

    SciTech Connect

    McKinsey, P.C.

    2003-02-20

    At the Department of Energy's (DOE) Savannah River Site (SRS) in Aiken, SC there are a number of sites contaminated with Chlorinated Ethenes (CE) due to past disposal practices. Sediments from two CE contaminated SRS locations were evaluated for trichloroethylene (TCE) biodegradation through anaerobic laboratory microcosms. The testing included addition of amendments and bioaugmentation of sediments. The anaerobic microcosms were first amended with substrates including acetate, lactate, molasses, soybean oil, methanol, sulfate, yeast extract, Regenesis HRC(R), and MEAL (methanol, ethanol, acetate, lactate mixture). Microcosms were analyzed after biostimulation for 9 months and no significant TCE biodegradation was observed. At 10 months, additional TCE, fresh amendments, and a mixed culture containing Dehalococcoides ethenogenes were added to active microcosms. A significant decrease in TCE concentrations and an increase in biodegradation products cis-dichloroethylene (cDCE) and vinyl chloride (VC) were noted within 2 weeks of bioaugmentation. Microcosms amended with lactate and sulfate showed complete transformation of TCE (3 ppm) to ethene within 40 days after bioaugmentation. Microcosms amended with other substrates - soybean oil, acetate, yeast extract, and methanol - also show enhanced biodegradation of TCE to ethene. Microcosms amended with molasses and Regenesis HRC showed limited TCE transformation. No TCE transformation was seen in killed control microcosms. On the basis of these successful results, plans are underway for field-scale in-situ deployment of biostimulation/bioaugmentation at SRS.

  7. [VC and DCE in groundwater and drainage channel water].

    PubMed

    Ackermann, A

    2004-12-01

    In an area used merely for gardening in a downland moor, which is partly transformed to an industrial estate, accidentally a contamination of a drainage channel with VOC's - predominantly chloroethylene (vinyl chloride [VC]) and 1.2-cis-dichloroethylene (DCE) - was found. The ascending ground water leaks into the drainage channels. The dissolved harmful substances (water solubility of VC is 1.6 g/l) can reach the radix range of plants and fruit bosks and can theoretically be incorporated with the water influx. Additionally the water from the drainage channels can be used to water the crops. Six gardens and a housing were involved. In the groundwater of the mainly concerned region max. 5,000 microg/l VOC's (quite predominantly VC and DCE) was measured from 147 samples. In the drainage channel water max. 2,500 microg/l was measured from 52 samples (limit value according to the drinking water ordinance is 10 microg/l). In the sediment of the channel with approximately 60,000 microg/kg VOC was found in dry matter (6 samples). We describe, how the consumer protection dept. dealt with this unexpected situation and what measures were taken. The impact on human health by the contaminated ground and channel water or by means of contaminated plants are determined for tree fruits, potatoes, bulbs and carrots. The soil air was contaminated, but in buildings no harmful compounds were detectioned.

  8. Intrinsic bioremediation of trichloroethylene and chlorobenzene: field and laboratory studies.

    PubMed

    Kao, C M; Prosser, J

    1999-10-01

    Activities at a former fire training area at Robins Air Force Base in Georgia, USA resulted in contamination of groundwater with a mixture of trichloroethylene (TCE) and chlorobenzene (CB). Results from the field investigation suggest that intrinsic bioremediation process is occurring, which caused the decrease in TCE and CB concentrations, and increase in TCE degradation byproducts [e.g., dichloroethylene isomers (DCEs), vinyl chloride (VC)] concentrations. Contaminated groundwater samples collected from this site were used to conduct microbial enumeration tests, and used as the inocula for microcosm establishment. Results from the microbial enumeration study indicate that methanogenesis was the dominant biodegradation pattern within the source and mid-plume areas, and the aerobic biodegradation process dominated the downgradient area. Laboratory microcosm experiments were conducted to evaluate the feasibility of using CB as the primary substrate to enhance the intrinsic biodegradation of TCE. Microcosm results suggest that CB can serve as the primary substrate (electron donor), and enhance TCE biodegradation to less-chlorinated compounds under both aerobic cometabolism and reductive dechlorination conditions.

  9. Sanitary landfill groundwater monitoring report. Fourth quarter 1996 and 1996 summary

    SciTech Connect

    1997-02-01

    A maximum of eighty-nine wells of the LFW series monitor groundwater quality in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill at the Savannah River Site (SRS). These wells are sampled quarterly to comply with the South Carolina Department of Health and Environmental Control Domestic Waste Permit DWP-087A and as part of the SRS Groundwater Monitoring Program. Dichloromethane, a common laboratory contaminant, and chloroethene (vinyl chloride) were the most widespread constituents exceeding standards during 1996. Benzene, trichloroethylene, 1,4-dichlorobenzene, 1,1-dichloroethylene, lead (total recoverable), gross alpha, mercury (total recoverable), tetrachloroethylene, fluoride, thallium, radium-226, radium-228, and tritium also exceeded standards in one or more wells. The groundwater flow direction in the Steed Pond Aquifer (Water Table) beneath the Sanitary Landfill was to the southeast (universal transverse Mercator coordinates). The flow rate in this unit was approximately 141 ft/year during first quarter 1996 and 132 ft/year during fourth quarter 1996

  10. Treatability of TCE-contaminated clay soils at the Rinsewater Impoundment, Michoud Assembly Facility

    SciTech Connect

    Lucero, A.J.; Gilbert, V.P.; Hewitt, J.D.; Koran, L.J. Jr.; Jennings, H.L.; Donaldson, T.L.; West, O.R.; Cline, S.R.; Marshall, D.S.

    1995-02-01

    The Oak Ridge National Laboratory has conducted treatability studies on clay soils taken from the Rinsewater Impoundment at the National Aeronautics and Space Administration Michoud Assembly Facility. The soils are contaminated with up to 3000 mg/kg of trichloroethylene and cis-1,2-dichloroethylene, less than 10 mg/kg of trans-1,2-DCE, and less than 10 mg/kg of vinyl chloride. The goal of the study described in this report was to identify and test in situ technologies and/or develop a modified treatment regime to remove or destroy volatile organic compounds from the contaminated clay soils. Much of the work was based upon previous experience with mixed-region vapor stepping and mixed-region peroxidation. Laboratory treatments were performed on intact soil cores that were taken from contaminated areas at the Rinsewater Impoundment at MAF. Treatability studies were conducted on soil that was close to in situ conditions in terms of soil structure and contaminant concentrations.

  11. Abiotic reductive dechlorination of cis-DCE by ferrous monosulfide mackinawite.

    PubMed

    Hyun, Sung Pil; Hayes, Kim F

    2015-11-01

    Cis-1,2,-dichloroethylene (cis-DCE) is a toxic, persistent contaminant occurring mainly as a daughter product of incomplete degradation of perchloroethylene (PCE) and trichloroethylene (TCE). This paper reports on abiotic reductive dechlorination of cis-DCE by mackinawite (FeS1-x), a ferrous monosulfide, under variable geochemical conditions. To assess in situ abiotic cis-DCE dechlorination by mackinawite in the field, mackinawite suspensions prepared in a field groundwater sample collected from a cis-DCE contaminated field site were used for dechlorination experiments. The effects of geochemical variables on the dechlorination rates were monitored. A set of dechlorination experiments were also carried out in the presence of aquifer sediment from the site over a range of pH conditions to better simulate the actual field situations. The results showed that the suspensions of freshly prepared mackinawite reductively transformed cis-DCE to acetylene, whereas the conventionally prepared powder form of mackinawite had practically no reactivity with cis-DCE under the same experimental conditions. Significant cis-DCE degradation by mackinawite has not been reported prior to this study, although mackinawite has been shown to reductively transform PCE and TCE. This study suggests feasibility of using mackinawite for in situ remediation of cis-DCE-contaminated sites with high S levels such as estuaries under naturally achieved or stimulated sulfate-reducing conditions.

  12. Chlorinated organic compounds in ground water at Roosevelt Field, Nassau County, Long Island, New York

    USGS Publications Warehouse

    Eckhardt, D.A.; Pearsall, K.A.

    1989-01-01

    Trichloroethylene (TCE), 1,2-dichloroethylene (DCE), and tetrachloroethylene (PCE) have been detected in water from five public-supply wells and six cooling-water wells that tap the Magothy aquifer at Roosevelt Field, a 200-acre area that is now a large shopping mall and office-building complex. The cooling water is discharged after use to the water table (upper glacial) aquifer through a nearby recharge basin and a subsurface drain field. Three plumes of TCE in groundwater have been delineated--the source plume, which has penetrated both aquifers , and two more recent plumes emanating from the two discharge sites in the water-table aquifer. Concentrations of inorganic constituents in the three plumes are the same as those in ambient water in the area. The two secondary plumes discharged cooling water extended at least 1,000 ft south-southeastward in the direction of regional groundwater flow. Pumping at wells screened in the middle and basal sections of the Magothy aquifers, where clay layers are absent and sandy zones provide good vertical hydraulic connection within the aquifer system, has increased the rate of downward contaminant advection. The transient increases in downward movement are cumulative over time and have brought TCE to the bottom of the Magothy aquifer, 500 ft below land surface. (USGS)

  13. Water-quality data for the Potomac-Raritan-Magothy aquifer system, Trenton to Pennsville, New Jersey, 1980

    USGS Publications Warehouse

    Fusillo, Thomas V.; Voronin, Lois M.

    1981-01-01

    Samples for chemical analysis were collected from June to December 1980 from 262 wells tapping the Potomac-Raritan-Magothy aquifer system. The samples were analyzed for common ions, dissolved metals, nutrients, dissolved organic carbon, volatile organic compounds, pH, temperature, and specific conductance. This report contains the results of the analyses, well construction data for the wells sampled, and simple statistical summaries for each parameter. Most parameters showed wide variations in concentration. Concentrations of dissolved organic carbon ranged from 0 to 108 mg/L (milligrams per liter), with a median of 1.7 mg/L. Chloride concentration ranged from 0.8 to 810 mg/L, with a median of 15 mg/L. Iron concentration ranged from 3 micrograms per liter to 79,000 micrograms per liter, with a median of 1,400 micrograms per liter. Detectable concentrations of volatile organic compounds were found in 46 wells, approximately 19 percent of the 246 wells sampled for such compounds. Trichloroethylene and benzene, the most common compounds, were detected in 24 and 18 wells, respectively. The maximum concentrations of several compounds detected include: benzene, 1,960 micrograms per liter; 1,1-dichloroethylene, 670 micrograms per liter; trichloroethylene, 472 micrograms per liter; and tetrachloroethylene, 335 micrograms per liter. (USGS)

  14. Sonochemical degradation of perchloroethylene: the influence of ultrasonic variables, and the identification of products.

    PubMed

    Sáez, V; Esclapez, M D; Bonete, P; Walton, D J; Rehorek, A; Louisnard, O; González-García, J

    2011-01-01

    Sonochemistry is a technique that offers promise for pollutant degradation, but earlier studies on various chlorinated substrates do not give a definitive view of the effectiveness of this methodology. We now report a thorough study of ultrasonic operational variables upon perchloroethylene (PCE) degradation in water (variables include ultrasonic frequency, power and system geometry as well as substrate concentration) and we attempt to close the mass balance where feasible. We obtained fractional conversions of >97% showing very effective loss of pollutant starting material, and give mechanistic proposals for the reaction pathway based on cavitational phenomena inducing pyrolytic and free radical processes. We note major products of Cl(-) and CO(2)/CO, and also trichloroethylene (TCE) and dichloroethylene (DCE) at ppm concentrations as reported earlier. The formation at very low (ppb) concentration of small halocompounds (CHCl(3), CCl(4)) and also of higher-mass species, such as pentachloropropene, hexachloroethane, is noteworthy. But of particular importance in our work is the discovery of significant quantities of chloroacetate derivatives at ppm concentrations. Although these compounds have been described as by-products with other techniques such as radiolysis or photochemistry, this is the first time that these products have been identified in the sonochemical treatment of PCE; this allows a much more effective account of the mass balance and may explain earlier inconsistencies. This reaction system is now better identified, but a corollary is that, because these haloacetates are themselves species of some toxicity, the use of ultrasound here may not sufficiently diminish wastewater toxicity. PMID:20403718

  15. Relation between land use and ground-water quality in the upper glacial aquifer in Nassau and Suffolk Counties, Long Island, New York

    USGS Publications Warehouse

    Eckhardt, D.A.; Flipse, W.J.; Oaksford, E.T.

    1989-01-01

    The chemical quality of groundwater in the upper glacial (water-table) aquifer beneath the 10 types of land-use areas of Nassau and Suffolk Counties, NY was examined to evaluate the effect of human activities on groundwater. The highest median chloride and total dissolved-solids concentrations were found in wells in high-density residential areas (more than five dwellings/acre), and the highest median nitrate, sulfate, and calcium concentrations were found in wells in agricultural and high density residential areas. Relatively low median concentrations of inorganic chemical constituents were found in wells in undeveloped and low-density residential areas (1 or fewer/acre): volatile organic compounds were rarely detected in these same areas. The highest concentrations and most frequent detection of volatile organic compounds were in industrial and commercial areas. The most commonly detected volatile organic compounds were 1,1,1-trichloroethane (24% of wells), tetrachloroethylene (20%), trichloroethylene (18%), chloroform (9%), and 1,2-dichloroethylene (5%). The spatial distributions of trichloroethylene, chloroform and other volatile organic compounds in the upper glacial aquifer are directly correlated with population density in the two-county area. (USGS)

  16. Organochlorine pesticides, PCBs, dioxins, and metals in postterm peregrine falcon (Falco peregrinus) eggs from the Mid-Atlantic states, 1993-1999.

    PubMed

    Clark, Kathleen E; Zhao, Yuan; Kane, Cynthia M

    2009-07-01

    Peregrine falcons were extirpated from the eastern United States by 1964 due to the effects of dichloro-diphenyl-trichlorethane (DDT) (Peakall and Kiff 1988). As a result of restoration efforts, peregrines have largely recovered in the region but remain a barometer of environmental contamination. In the course of monitoring nests, biologists in the mid-Atlantic states collected peregrine falcon eggs that failed to hatch. In the period 1993-1999, 93 eggs were collected from 66 nests in 31 locations in New Jersey, Pennsylvania, Delaware, Maryland, and Virginia. We analyzed eggs for organochlorine pesticides, PCBs, and metals, and calculated toxic equivalencies (TEQs) for dioxins and furans. Organochlorine contaminants were detected in eggs from all parts of the region. Although nest success in all parts of the region was good, the PCB TEQ in the Atlantic-New Jersey region was significantly related to nest success, and the regionwide PCB TEQ was nearly significant for nest success across the five-state area. dichloro-diphenyl-dichloroethylene (DDE), DDT, and total PCBs were negatively correlated with eggshell thickness, although eggshell thinning (10.4%) was not at a level associated with deleterious population effects. The five states represented in this study are productive for peregrine falcons and have contributed to the recovery of this species. However, the results suggest that Atlantic coastal peregrines might be subject to contaminant burdens that have the potential to decrease nest success and productivity. PMID:18853082

  17. Development of a biobarrier for the remediation of PCE-contaminated aquifer.

    PubMed

    Kao, C M; Chen, S C; Liu, J K

    2001-06-01

    The industrial solvent tetrachloroethylene (PCE) is among the most ubiquitous chlorinated compounds found in groundwater contamination. The objective of this study was to develop a biobarrier system, which includes a peat layer to enhance the anaerobic reductive dechlorination of PCE in situ. Peat was used to supply primary substrate (electron donor) continuously. A laboratory-scale column experiment was conducted to evaluate the feasibility of this proposed system or PCE removal. This experiment was performed using a series of continuous-flow glass columns including a soil column, a peat column, followed by two consecutive soil columns. Anaerobic acclimated sludges were inoculated in all three soil columns to provide microbial consortia for PCE biodegradation. Simulated PCE-contaminated groundwater with a flow rate of 0.25 l/day was pumped into this system. Effluent samples from each column were analyzed for PCE and its degradation byproducts (trichloroethylene (TCE), cis-dichloroethylene (cis-DCE), vinyl chloride (VC), ethylene (ETH), and ethane). Results show that the decrease in PCE concentrations and production of PCE byproducts were observed over a 65-day operating period. Up to 98%, of PCE removal efficiency was obtained in this passive system. Results indicate that the continuously released organics from peat column enhanced PCE biotransformation. Thus, the developed biobarrier treatment scheme has the potential to be developed into a cost-effective in situ PCE-remediation technology, and can be utilized as an interim step to aid in system scale-up. PMID:11368222

  18. Combined removal of a BTEX, TCE, and cis-DCE mixture using Pseudomonas sp. immobilized on scrap tyres.

    PubMed

    Lu, Qihong; de Toledo, Renata Alves; Xie, Fei; Li, Junhui; Shim, Hojae

    2015-09-01

    The simultaneous aerobic removal of a mixture of benzene, toluene, ethylbenzene, and o,m,p-xylene (BTEX); cis-dichloroethylene (cis-DCE); and trichloroethylene (TCE) from the artificially contaminated water using an indigenous bacterial isolate identified as Pseudomonas plecoglossicida immobilized on waste scrap tyres was investigated. Suspended and immobilized conditions were compared for the removal of these volatile organic compounds. For the immobilized system, toluene, benzene, and ethylbenzene were completely removed, while the highest removal efficiencies of 99.0 ± 0.1, 96.8 ± 0.3, 73.6 ± 2.5, and 61.6 ± 0.9% were obtained for o-xylene, m,p-xylene, TCE, and cis-DCE, respectively. The sorption kinetics of contaminants towards tyre surface was also evaluated, and the sorption capacity generally followed the order of toluene > benzene > m,p-xylene > o-xylene > ethylbenzene > TCE > cis-DCE. Scrap tyres showed a good capability for the simultaneous sorption and bioremoval of BTEX/cis-DCE/TCE mixture, implying a promising waste material for the removal of contaminant mixture from industrial wastewater or contaminated groundwater.

  19. Natural attenuation of chlorinated hydrocarbons in a freshwater wetland

    USGS Publications Warehouse

    Lora, Michelle M.; Olsen, Lisa D.; Smith, Barrett L.; Alleman, Bruce C.; Leeson, Andrea

    1997-01-01

    Natural attenuation of chlorinated volatile organic compounds (VOC's) occurs as ground water discharges from a sand aquifer to a freshwater wetland at Aberdeen Proving Ground, Md. Field and laboratory results indicate that biotransformation in the anaerobic wetland sediments is an important attenuation process. Relatively high concentrations of the parent compounds trichloroethylene (TCE) and 1,1,2,2-tetrachloroethane (PCA) and low or undetectable concentrations of daughter products were measured in the aquifer. In contrast, relatively high concentrations of the daughter products cis- and trans-1,2-dichloroethylene (12DCE); vinyl chloride (VC); 1,1,2-trichloroethane (112TCA); and 1,2-dichloroethane (12DCA) were measured in ground water in the wetland sediments, although total VOC concentrations decreased upward from about 1 mu mol/L (micromoles per liter) at the base of the wetland sediments to less than 0.2 near the surface. Microcosm experiments showed that 12DCE and VC are produced from anaerobic degradation of both TCE and PCA; PCA degradation also produced 112TCA and 12DCA.

  20. Cometabolic degradation of TCE and DCE without intermediate toxicity

    SciTech Connect

    Bielefeldt, A.R.; Stensel, H.D.; Strand, S.E.

    1995-11-01

    Trichloroethylene (TCE) and cis-1,2-dichloroethylene (DCE) cometabolic degradation by a filamentous, phenol-oxidizing enrichment from a surface-water source were investigated in batch tests. No intermediate toxicity effects were evident during TCE or DCE degradation for loadings up to 0.5 mg TCE/mg VSS or 0.26 mg DCE/mg VSS. Phenol addition up to 40 mg/L did not inhibit TCE or DCE degradation. TCE specific degradation rates ranged from 0.28 to 0.51 g TCE/g VSS-d with phenol present, versus an average endogenous rate of 0.18 g TCE/g VSS-d. DCE specific degradation rates ranged from 0.79 to 2.92 g DCE/g VSS-d with phenol present, versus 0.27 to 1.5 g DCE/g VSS-d for endogenous conditions. There was no inhibition of DCE degradation rates at concentrations as high as 83 mg/L. TCE degradation rates declined between 40 and 130 mg/L TCE. Perchloroethylene, 1,1,1-trichloroethane, and chloroform were not degraded.

  1. Effect of toluene concentration and hydrogen peroxide on Pseudomonas plecoglossicida cometabolizing mixture of cis-DCE and TCE in soil slurry.

    PubMed

    Li, Junhui; Lu, Qihong; de Toledo, Renata Alves; Lu, Ying; Shim, Hojae

    2015-12-01

    An indigenous Pseudomonas sp., isolated from the regional contaminated soil and identified as P. plecoglossicida, was evaluated for its aerobic cometabolic removal of cis-1,2-dichloroethylene (cis-DCE) and trichloroethylene (TCE) using toluene as growth substrate in a laboratory-scale soil slurry. The aerobic simultaneous bioremoval of the cis-DCE/TCE/toluene mixture was studied under different conditions. Results showed that an increase in toluene concentration level from 300 to 900 mg/kg prolonged the lag phase for the bacterial growth, while the bioremoval extent for cis-DCE, TCE, and toluene declined as the initial toluene concentration increased. In addition, the cometabolic bioremoval of cis-DCE and TCE was inhibited by the presence of hydrogen peroxide as the additional oxygen source, while the bioremoval of toluene (900 mg/kg) was enhanced after 9 days of incubation. The subsequent addition of toluene did not improve the cometabolic bioremoval of cis-DCE and TCE. The obtained results would help to enhance the applicability of bioremediation technology to the mixed waste contaminated sites.

  2. Sport fish consumption and body burden levels of chlorinated hydrocarbons: a study of Wisconsin anglers

    SciTech Connect

    Fiore, B.J.; Anderson, H.A.; Hanrahan, L.P.; Olson, L.J.; Sonzogni, W.C.

    1989-03-01

    Sport-caught fish consumption is the major source of polychlorinated biphenyls (PCBs) exposure for the general population. To assess this and 2,2'-bis-(p-chlorophenyl)-1,1-dichloroethylene (DDE) exposure, we surveyed 801 Wisconsin anglers for fishing and consumption habits and comprehension of and compliance with the Wisconsin fish consumption health advisory. The mean annual number of sport-caught fish meals was 18. Seventy-two percent of anglers were familiar with the health advisory and 57% had changed their fishing or fish consumption habits as a result of the advisory. The mean PCB serum congener sum level for 192 anglers was 2.2 micrograms/l (range = nondetectable to 27.1 micrograms/l); mean DDE was 6.3 micrograms/l (range = nondetectable to 40.0 micrograms/l). Statistically significant positive Spearman correlations were observed between sport-caught fish meals and PCB and DDE sera levels (R = .21 and .14, respectively) and between kilograms of fish caught and PCB sera levels (R = .25). These results demonstrate that anglers may provide a population for assessment of PCBs and DDE associated morbidity and mortality.

  3. Mixed Waste Management Facility groundwater monitoring report: Third quarter 1994

    SciTech Connect

    Not Available

    1994-12-01

    Currently, 125 wells monitor groundwater quality in the uppermost aquifer beneath the Mixed Waste Management Facility (MWMF) at the Savannah River Site. Samples from the wells are analyzed for selected heavy metals, herbicides/pesticides, indicator parameters, radionuclides, volatile organic compounds, and other constituents. As in previous quarters, tritium and trichloroethylene were the most widespread elevated constituents during third quarter 1994. Sixty-four (51%) of the 125 monitoring wells contained elevated tritium activities. Trichloroethylene concentrations exceeded the final PDWS in 22 (18%) wells. Chloroethene, 1,1-dichloroethylene, and tetrachloroethylene, elevated in one or more wells during third quarter 1994, also occurred in elevated levels during second quarter 1994. These constituents generally were elevated in the same wells during both quarters. Gross alpha, which was elevated in only one well during second quarter 1994, was elevated again during third quarter. Mercury, which was elevated during first quarter 1994, was elevated again in one well. Dichloromethane was elevated in two wells for the first time in several quarters.

  4. Combined removal of a BTEX, TCE, and cis-DCE mixture using Pseudomonas sp. immobilized on scrap tyres.

    PubMed

    Lu, Qihong; de Toledo, Renata Alves; Xie, Fei; Li, Junhui; Shim, Hojae

    2015-09-01

    The simultaneous aerobic removal of a mixture of benzene, toluene, ethylbenzene, and o,m,p-xylene (BTEX); cis-dichloroethylene (cis-DCE); and trichloroethylene (TCE) from the artificially contaminated water using an indigenous bacterial isolate identified as Pseudomonas plecoglossicida immobilized on waste scrap tyres was investigated. Suspended and immobilized conditions were compared for the removal of these volatile organic compounds. For the immobilized system, toluene, benzene, and ethylbenzene were completely removed, while the highest removal efficiencies of 99.0 ± 0.1, 96.8 ± 0.3, 73.6 ± 2.5, and 61.6 ± 0.9% were obtained for o-xylene, m,p-xylene, TCE, and cis-DCE, respectively. The sorption kinetics of contaminants towards tyre surface was also evaluated, and the sorption capacity generally followed the order of toluene > benzene > m,p-xylene > o-xylene > ethylbenzene > TCE > cis-DCE. Scrap tyres showed a good capability for the simultaneous sorption and bioremoval of BTEX/cis-DCE/TCE mixture, implying a promising waste material for the removal of contaminant mixture from industrial wastewater or contaminated groundwater. PMID:25956516

  5. Degradation of TCE using sequential anaerobic biofilm and aerobic immobilized bed reactor

    NASA Astrophysics Data System (ADS)

    Chapatwala, Kirit D.; Babu, G. R. V.; Baresi, Larry; Trunzo, Richard M.

    1995-03-01

    Bacteria capable of degrading trichloroethylene (TCE) were isolated from contaminated wastewaters and soil sites. The aerobic cultures were identified as Pseudomonas aeruginosa (four species) and Pseudomonas fluorescens. The optimal conditions for the growth of aerobic cultures were determined. The minimal inhibitory concentration values of TCE for Pseudomonas sps. were also determined. The aerobic cells were immobilized in calcium alginate in the form of beads. Degradation of TCE by the anaerobic and dichloroethylene (DCE) by aerobic cultures was studied using dual reactors - anaerobic biofilm and aerobic immobilized bed reactor. The minimal mineral salt (MMS) medium saturated with TCE was pumped at the rate of 1 ml per hour into the anaerobic reactor. The MMS medium saturated with DCE and supplemented with xylenes and toluene (3 ppm each) was pumped at the rate of 1 ml per hour into the fluidized air-uplift-type reactor containing the immobilized aerobic cells. The concentrations of TCE and DCE and the metabolites formed during their degradation by the anaerobic and aerobic cultures were monitored by GC. The preliminary study suggests that the anaerobic and aerobic cultures of our isolates can degrade TCE and DCE.

  6. Coupling of zero valent iron and biobarriers for remediation of trichloroethylene in groundwater.

    PubMed

    Teerakun, Mullika; Reungsang, Alissara; Lin, Chien-Jung; Liao, Chih-Hsiang

    2011-01-01

    This study attempted to construct a three series barrier system to treat high concentrations of trichloroethylene (TCE; 500 mg/L) in synthetic groundwater. The system consisted of three reactive barriers using iron fillings as an iron-based barrier in the first column, sugarcane bagasse mixed with anaerobic sludge as an anaerobic barrier in the second column, and a biofilm coated on oxygen carbon inducer releasing material as an aerobic barrier in the third column. In order to evaluate the extent of removal of TCE and its metabolites in the aquifer down gradient of the barrier system, a fourth column filled with sand was applied. Residence time of the system was investigated by a bromide tracer test. The results showed that residence time in the column system of the control set and experimental set were 23.62 and 29.99 days, respectively. The efficiency of the three series barrier system in removing TCE was approximately 84% in which the removal efficiency of TCE by the iron filling barrier, anaerobic barrier and aerobic barrier were 42%, 16% and 25%, respectively, cis-Dichloroethylene (cis-DCE), vinyl chloride (VC), ethylene and chloride ions were observed as metabolites following TCE degradation. The presence of chloride ions in the effluent from the column system indicated the degradation of TCE. However, cis-DCE and VC were not fully degraded by the proposed barrier system which suggested that another remediation technology after the barrier treatment such as air sparging and adsorption by activated carbon should be conducted.

  7. Fifteen-year assessment of a permeable reactive barrier for treatment of chromate and trichloroethylene in groundwater.

    PubMed

    Wilkin, Richard T; Acree, Steven D; Ross, Randall R; Puls, Robert W; Lee, Tony R; Woods, Leilani L

    2014-01-15

    The fifteen-year performance of a granular iron, permeable reactive barrier (PRB; Elizabeth City, North Carolina) is reviewed with respect to contaminant treatment (hexavalent chromium and trichloroethylene) and hydraulic performance. Due to in-situ treatment of the chromium source zone, reactive and hydraulic longevity of the PRB has outlived the mobile chromate plume. Chromium concentrations exceeding 3 μg/L have not been detected in regions located hydraulically down-gradient of the PRB. Trichloroethylene treatment has also been effective, although non-constant influent concentrations of trichloroethylene have at times resulted in incomplete dechlorination. Daughter products: cis-1,2-dichloroethylene, vinyl chloride, ethene, and ethane have been observed within and down-gradient of the PRB at levels <10% of the influent trichloroethylene. Analysis of potentiometric surfaces up-gradient and across the PRB suggests that the PRB may currently represent a zone of reduced hydraulic conductivity; however, measurements of the in-situ hydraulic conductivity provide values in excess of 200 m/d in some intervals and indicate no discernible loss of bulk hydraulic conductivity within the PRB. The results presented here are particularly significant because they provide the longest available record of performance of a PRB. The longevity of the Elizabeth City PRB is principally the result of favorable groundwater geochemistry and hydrologic properties of the site.

  8. Carbon isotope fractionation during permanganate oxidation of chlorinated ethylenes (cDCE, TCE, PCE).

    PubMed

    Poulson, Simon R; Naraoka, Hiroshi

    2002-08-01

    Permanganate oxidation of chlorinated ethylenes is an attractive technique to effect remediation of these important groundwater contaminants. Stable carbon isotope fractionation associated with permanganate oxidation of trichloroethylene (TCE), tetrachloroethylene (PCE), and cis-1,2-dichloroethylene (cDCE) has been measured, to study the possibility of applying stable carbon isotope analysis as a technique to assess the efficacy of remediation implemented by permanganate oxidation. Average carbon isotope fractionation factors of alphaTCE = 0.9786, alphaPCE = 0.9830, and alphacDCE = 0.9789 were obtained, although the fractionation factor for PCE may be interpreted to change from a value of 0.9779-0.9871 during the course of the reaction. The fractionation factors for all three compounds are quite similar, in contrast to the variation of fractionation factors vs degree of chlorination observed for other degradative processes, such as microbial dechlorination. This may be due to a common rate-determining step for permanganate oxidation of all three compounds studied. The large fractionation factors and the relative lack of dependence of the fractionation factors upon other environmental factors (e.g. oxidation rate, presence of multiple contaminants, incomplete oxidation, presence of chloride in solution) indicate that monitoring delta13C values of chlorinated ethylenes during oxidation with permanganate may be a sensitive, and potentially quantitative, technique to investigate the extent of degradation.

  9. Isotopic and geochemical assessment of in situ biodegradation of chlorinated hydrocarbons.

    PubMed

    Kirtland, Brian C; Aelion, C Marjorie; Stone, Peter A; Hunkeler, Daniel

    2003-09-15

    Currently there is no in situ method to detect and quantify complete mineralization of chlorinated hydrocarbons (CHCs) to CO2. Combined isotopic measurements in conjunction with traditional chemical techniques were used to assess in situ biodegradation of trichloroethylene (TCE) and carbon tetrachloride (CT). Vadose zone CHC, ethene, ethane, methane, O2, and CO2 concentrations were analyzed using gas chromatography over 114 days at the Savannah River Site. delta13C of CHC and delta13C and 14C of vadose zone CO2, sediment organic matter, and groundwater dissolved inorganic carbon (DIC)were measured. Intermediate metabolites of TCE and CT accounted for < or = 10% of total CHCs. Delta13C of cis-1,2-dichloroethylene (DCE) was always heavier than TCE indicating substantial DCE biodegradation. 14C-CO2 values ranged from 84 to 128 percent modern carbon (pMC), suggesting that plant root-respired CO2 was dominant. 14C-CO2 values decreased over time (up to 12 pMC), and contaminated groundwater 14C-DIC (76 pMC) was substantially depleted relative to the control (121 pMC). 14C provided a direct measure of complete CHC mineralization in vadose zone and groundwater in situ and may improve remediation strategies.

  10. Preconcentration and detection of chlorinated organic compounds and benzene.

    PubMed

    Hobson, Stephen T; Cemalovic, Sabina; Patel, Sanjay V

    2012-03-01

    Remote and automated detection of organic compounds in subsurface aquifers is crucial to superfund monitoring and environmental remediation. Current monitoring techniques use expensive laboratory instruments and trained personnel. The use of a filled tubular preconcentrator combined with a chemicapacitive detector array presents an attractive option for the unattended monitoring of these compounds. Five preconcentrator materials were exposed to common target compounds of subsurface remediation projects (1,1,2-trichloroethane, trichloroethylene, t-1,2-dichloroethylene, benzene, and perchloroethylene). Rapid heating of the tube caused the collected, concentrated effluent to pass over the surface of a chemicapacitive detector array coated with four different sorbent polymers. A system containing a porous ladder polymer and the sensor array was subsequently used to sample the analytes injected onto sand in a laboratory test, simulating a subsurface environment. With extended collection times, effective detection limits of 5 ± 3 ppbV for 1,1,2-trichloroethane and 145 ± 60 ppbV for benzene were achieved. Effects of the preconcentrator material structure, the collection time, and sensor material on the system performance were observed. The resultant system presents a solution for remote, periodic monitoring of chlorinated organic compounds and other volatile organic compounds in a soil matrix.

  11. Pre-Pregnancy Maternal Exposure to Persistent Organic Pollutants and Gestational Weight Gain: A Prospective Cohort Study.

    PubMed

    Jaacks, Lindsay M; Boyd Barr, Dana; Sundaram, Rajeshwari; Grewal, Jagteshwar; Zhang, Cuilin; Buck Louis, Germaine M

    2016-01-01

    Persistent organic pollutants (POPs) have been implicated in the development of obesity in non-pregnant adults. However, few studies have explored the association of POPs with gestational weight gain (GWG), an important predictor of future risk of obesity in both the mother and offspring. We estimated the association of maternal pre-pregnancy levels of 63 POPs with GWG. Data are from women (18-40 years; n = 218) participating in a prospective cohort study. POPs were assessed using established protocols in pre-pregnancy, non-fasting blood samples. GWG was assessed using three techniques: (1) total GWG (difference between measured pre-pregnancy weight and final self-reported pre-delivery weight); (2) category based on pre-pregnancy body mass index (BMI)-specific Institute of Medicine (IOM) recommendations; and (3) area under the GWG curve (AUC). In an exploratory analysis, effects were estimated separately for women with BMI < 25 kg/m² versus BMI ≥ 25 kg/m². Multivariable polytomous logistic regression and linear regression were used to estimate the association between each chemical or congener and the three GWG outcomes. p,p'-dichlorodiphenyl trichloroethane (p,p'-DDT) was significantly inversely associated with AUC after adjustment for lipids and pre-pregnancy BMI: beta {95% confidence interval (CI)}, -378.03 (-724.02, -32.05). Perfluorooctane sulfonate (PFOS) was significantly positively associated with AUC after adjustment for lipids among women with a BMI < 25 kg/m² {beta (95% CI), 280.29 (13.71, 546.86)}, but not among women with a BMI ≥ 25 kg/m² {beta (95% CI), 56.99 (-328.36, 442.34)}. In summary, pre-pregnancy levels of select POPs, namely, p,p'-DDT and PFOS, were moderately associated with GWG. The association between POPs and weight gain during pregnancy may be more complex than previously thought, and adiposity prior to pregnancy may be an important effect modifier. PMID:27626435

  12. Pre-Pregnancy Maternal Exposure to Persistent Organic Pollutants and Gestational Weight Gain: A Prospective Cohort Study

    PubMed Central

    Jaacks, Lindsay M.; Boyd Barr, Dana; Sundaram, Rajeshwari; Grewal, Jagteshwar; Zhang, Cuilin; Buck Louis, Germaine M.

    2016-01-01

    Persistent organic pollutants (POPs) have been implicated in the development of obesity in non-pregnant adults. However, few studies have explored the association of POPs with gestational weight gain (GWG), an important predictor of future risk of obesity in both the mother and offspring. We estimated the association of maternal pre-pregnancy levels of 63 POPs with GWG. Data are from women (18–40 years; n = 218) participating in a prospective cohort study. POPs were assessed using established protocols in pre-pregnancy, non-fasting blood samples. GWG was assessed using three techniques: (1) total GWG (difference between measured pre-pregnancy weight and final self-reported pre-delivery weight); (2) category based on pre-pregnancy body mass index (BMI)-specific Institute of Medicine (IOM) recommendations; and (3) area under the GWG curve (AUC). In an exploratory analysis, effects were estimated separately for women with BMI < 25 kg/m2 versus BMI ≥ 25 kg/m2. Multivariable polytomous logistic regression and linear regression were used to estimate the association between each chemical or congener and the three GWG outcomes. p,p’-dichlorodiphenyl trichloroethane (p,p’-DDT) was significantly inversely associated with AUC after adjustment for lipids and pre-pregnancy BMI: beta {95% confidence interval (CI)}, −378.03 (−724.02, −32.05). Perfluorooctane sulfonate (PFOS) was significantly positively associated with AUC after adjustment for lipids among women with a BMI < 25 kg/m2 {beta (95% CI), 280.29 (13.71, 546.86)}, but not among women with a BMI ≥ 25 kg/m2 {beta (95% CI), 56.99 (−328.36, 442.34)}. In summary, pre-pregnancy levels of select POPs, namely, p,p’-DDT and PFOS, were moderately associated with GWG. The association between POPs and weight gain during pregnancy may be more complex than previously thought, and adiposity prior to pregnancy may be an important effect modifier. PMID:27626435

  13. Global pollution monitoring of PCBs and organochlorine pesticides using skipjack tuna as a bioindicator.

    PubMed

    Ueno, D; Takahashi, S; Tanaka, H; Subramanian, A N; Fillmann, G; Nakata, H; Lam, P K S; Zheng, J; Muchtar, M; Prudente, M; Chung, K H; Tanabe, S

    2003-10-01

    Concentrations of organochlorines (OCs) representing persistent organic pollutants (POPs), such as polychlorinated biphenyls (PCBs), dichlorodiphenyl trichloroethane and its metabolites (DDTs), chlordane compounds (CHLs), hexachlorocyclohexane isomers (HCHs), and hexachlorobenzene (HCB), were determined in the liver of skipjack tuna (Katsuwonus pelamis) collected from the offshore waters of various regions in the world (offshore waters around Japan, Taiwan, Philippines, Indonesia, Seychelles, and Brazil, and the Japan Sea, the East China Sea, the South China Sea, the Bay of Bengal, and the North Pacific Ocean). OCs were detected in livers of all of the skipjack tuna collected from the locations surveyed, supporting the thesis that there is widespread contamination of persistent OCs in the marine environment. Within a location, no significant relationship between growth-stage (body length and weight) and OC concentrations (lipid weight basis) was observed, and the OC residue levels were rather uniform among the individuals. Interestingly, the distribution of OC concentrations in skipjack tuna was similar to those in surface seawaters from which they were taken. These results suggest that OC concentrations in skipjack tuna could reflect the pollution levels in seawater from which they are collected and that this species is a suitable bioindicator for monitoring the global distribution of OCs in offshore waters and the open ocean. Concentrations of PCBs and CHLs in skipjack tuna were higher in offshore waters around Japan (up to 1100 and 250 ng/g lipid wt, respectively), suggesting the presence of sources of PCBs and CHLs in Japan. High concentrations of DDTs and HCHs were observed in samples from the Japan Sea, the East China Sea, the South China Sea, and the Bay of Bengal (up to 1300 and 22 ng/g lipid wt, respectively). This result suggests recent use of technical DDT and HCH for agricultural and/or public health purposes in Russia, China, India, and some other

  14. Biomonitoring of Environmental Status and Trends (BEST) Program: Environmental Contaminants, Health Indicators, and Reproductive Biomarkers in Fish from the Mobile, Apalachicola-Chattahoochee-Flint, Savannah, and Pee Dee River Basins

    USGS Publications Warehouse

    Hinck, Jo Ellen; Blazer, Vicki; Denslow, Nancy D.; Echols, Kathy R.; Gale, Robert W.; May, Tom W.; Claunch, Rachael; Wieser, Carla; Anderson, Patrick J.; Coyle, James J.; Gross, Timothy S.; Tillitt, Donald E.

    2007-01-01

    Largemouth bass (Micropterus salmoides) and common carp (Cyprinus carpio) were collected from 13 sites in 4 river basins in the southeastern United States to document spatial trends in accumulative contaminants, health indicators, and reproductive biomarkers. Organochlorine residues, 2,3,7,8- tetrachlorodibenzo-p-dioxin-like activity (TCDD-EQ), and elemental contaminants were measured in composite samples of whole fish, grouped by species and gender, from each site. Fish were field-examined for external and internal anomalies, selected organs were weighed to compute somatic indices, and tissue and fluid samples were preserved for fish health and reproductive biomarker analyses. Mercury concentrations in bass samples from all sites exceeded toxicity thresholds for mammals [>0.1 micrograms per gram wet weight (ug/g ww)], fish (>0.2 ug/g ww), and birds (>0.3 ug/g ww) and were greatest (>0.5 ug/g ww) in samples from the Alabama River at Eureka Landing, Alabama; the Mobile River at Bucks, Alabama; the Apalachicola River at Blountstown, Florida; the Savannah River at Sylvania, Georgia; and the Pee Dee River at Bucksport, South Carolina. Selenium concentrations were relatively high (>0.75 ug/g ww) in fish from the Tombigbee River at Lavaca, Alabama; the Mobile River at Bucks; and the Chattahoochee River at Omaha, Georgia compared to those from other sites. Concentrations of 2,2-bis (p-chlorophenyl)- 1,1-dichloroethylene (p,p'-DDE) were high in fish from the Chattahoochee River at Omaha and the Mobile River near Bucks, which was near a 2,2-bis (p-chlorophenyl)-1,1- dichloroethylene (DDT) formulating facility that historically discharged into the lower Mobile River. Toxaphene concentrations in fish from the Flint River near Albany, Georgia (60-100 nanograms per gram (ng/g) ww) may pose a risk to fish. Concentrations of other formerly used (total chlordanes, dieldrin, endrin, aldrin, mirex, and hexachlorobenzene) and currently used (pentachlorobenzene, pentachloroanisole

  15. Alcohol oxidizing enzymes and ethanol-induced cytotoxicity in rat pancreatic acinar AR42J cells

    PubMed Central

    Bhopale, Kamlesh K.; Falzon, Miriam; Ansari, G. A. S.

    2016-01-01

    Alcoholic chronic pancreatitis (ACP) is a serious inflammatory disease causing significant morbidity and mortality. Due to lack of a suitable animal model, the underlying mechanism of ACP is poorly understood. Chronic alcohol abuse inhibits alcohol dehydrogenase (ADH) and facilitates nonoxidative metabolism of ethanol to fatty acid ethyl esters (FAEEs) in the pancreas frequently damaged during chronic ethanol abuse. Earlier, we reported a concentration-dependent formation of FAEEs and cytotoxicity in ethanol-treated rat pancreatic tumor (AR42J) cells, which express high FAEE synthase activity as compared to ADH and cytochrome P450 2E1. Therefore, the present study was undertaken to investigate the role of various ethanol oxidizing enzymes in ethanol-induced pancreatic acinar cell injury. Confluent AR42J cells were pre-treated with inhibitors of ADH class I and II [4-methylpyrazole (MP)] or class I, II, and III [1,10-phenanthroline (PT)], cytochrome P450 2E1 (trans-1,2-dichloroethylene) or catalase (sodium azide) followed by incubation with 800 mg% ethanol at 37°C for 6 h. Ethanol metabolism, cell viability, cytotoxicity (apoptosis and necrosis), cell proliferation status, and formation of FAEEs in AR42J cells were measured. The cell viability and cell proliferation rate were significantly reduced in cells pretreated with 1,10-PT + ethanol followed by those with 4-MP + ethanol. In situ formation of FAEEs was twofold greater in cells incubated with l,10-PT + ethanol and ~1.5-fold in those treated with 4-MP + ethanol vs. respective controls. However, cells treated with inhibitors of cytochrome P450 2E1 or catalase in combination of ethanol showed no significant changes either for FAEE formation, cell death or proliferation rate. Therefore, an impaired ADH class I—III catalyzed oxidation of ethanol appears to be a key contributing factor in ethanol-induced pancreatic injury via formation of nonoxidative metabolites of ethanol. PMID:24281792

  16. Spatial distribution of organochlorine contaminants in soil, sediment, and fish in Bikini and Enewetak Atolls of the Marshall Islands, Pacific Ocean.

    PubMed

    Wang, Jun; Caccamise, Sarah A L; Wu, Liejun; Woodward, Lee Ann; Li, Qing X

    2011-08-01

    Several nuclear tests were performed at Enewetak and Bikini Atolls in the Marshall Islands between 1946 and 1958. The events at Bikini Atoll involved several ships that were tested for durability during nuclear explosions, and 24 vessels now rest on the bottom of the Bikini lagoon. Nine soil samples were collected from different areas on the two islands of the atoll, and eighteen sediment, nine fish, and one lobster were collected in the vicinity of the sunken ships. Organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), and polychlorinated terphenyls (PCTs) in these samples were analyzed using gas chromatography/ion trap mass spectrometry (GC/ITMS). The average recoveries ranged from 78% to 104% for the different PCB congeners. The limits of detection (LOD) for PCBs, PCTs, DDE, DDT, and dieldrin ranged 10-50 pg g(-1). Some fish from Enewetak contained PCBs at a concentration range of 37-137 ng g(-1), dry weight (dw), and most of the soils from Enewetak showed evidence of PCBs (22-392 ng g(-1)dw). Most of the Bikini lagoon sediment samples contained PCBs, and the highest was the one collected from around the Saratoga, an aircraft carrier (1555 ng g(-1)dw). Some of the fish samples, most of the soil samples, and only one of the sediment samples contained 2,2-bis(4-chlorophenyl)-1,1-dichloroethylene (DDE) and PCBs. In addition to PCBs, the soils from Enewetak Atoll contained PCTs. PCTs were not detected in the sediment samples from Bikini Atoll. The results suggest local pollution sources of PCBs, PCTs, and OCPs. PMID:21616519

  17. Potential of isotope analysis (C, Cl) to identify dechlorination mechanisms

    NASA Astrophysics Data System (ADS)

    Cretnik, Stefan; Thoreson, Kristen; Bernstein, Anat; Ebert, Karin; Buchner, Daniel; Laskov, Christine; Haderlein, Stefan; Shouakar-Stash, Orfan; Kliegman, Sarah; McNeill, Kristopher; Elsner, Martin

    2013-04-01

    Chloroethenes are commonly used in industrial applications, and detected as carcinogenic contaminants in the environment. Their dehalogenation is of environmental importance in remediation processes. However, a detailed understanding frequently accounted problem is the accumulation of toxic degradation products such as cis-dichloroethylene (cis-DCE) at contaminated sites. Several studies have addressed the reductive dehalogenation reactions using biotic and abiotic model systems, but a crucial question in this context has remained open: Do environmental transformations occur by the same mechanism as in their corresponding in vitro model systems? The presented study shows the potential to close this research gap using the latest developments in compound specific chlorine isotope analysis, which make it possible to routinely measure chlorine isotope fractionation of chloroethenes in environmental samples and complex reaction mixtures.1,2 In particular, such chlorine isotope analysis enables the measurement of isotope fractionation for two elements (i.e., C and Cl) in chloroethenes. When isotope values of both elements are plotted against each other, different slopes reflect different underlying mechanisms and are remarkably insensitive towards masking. Our results suggest that different microbial strains (G. lovleyi strain SZ, D. hafniense Y51) and the isolated cofactor cobalamin employ similar mechanisms of reductive dechlorination of TCE. In contrast, evidence for a different mechanism was obtained with cobaloxime cautioning its use as a model for biodegradation. The study shows the potential of the dual isotope approach as a tool to directly compare transformation mechanisms of environmental scenarios, biotic transformations, and their putative chemical lab scale systems. Furthermore, it serves as an essential reference when using the dual isotope approach to assess the fate of chlorinated compounds in the environment.

  18. Site remediation using photocatalytic VOC destruction of chlorinated hydrocarbons

    SciTech Connect

    Brunet, R.A.H.; Pearcey, R.; Kittrell, J.R.; Mackin, G.; Wise, C.A.

    1999-07-01

    An innovative environmental technology has been developed and demonstrated for cost-effective control of toxic air emissions, such as trichloroethylene (TCE) and perchloroethylene (PCE), found in soil and groundwater at hazardous waste sites and in industrial effluents. The technology uses UV light and a proprietary photocatalyst to adsorb and destroy pollutants at ambient conditions, even with high humidity. Air stripping and soil vapor extraction efficiently transfer the pollutants to the gas phase, where they can be economically treated by photocatalysis without the risk of hazardous by-product formation. The AIR2000 photocatalytic technology was successfully installed at the Stamina Mills Superfund site in Rhode Island, where a commercial scale unit is treating 700 cfm of up to 1,000 ppm TCE, mixed with PCE, dichloroethylene (DCE), trichloroethane (TCA), and vinyl chloride (VC) produced through a combination of soil vapor extraction (SVE) and air stripping. As part of the EPA SITE program, the system was monitored for overall destruction removal efficiency (DRE) and hazardous by-product formation. A DRE in excess of 99% was reported over the first four months of operation, with greater than 99.99% DRE achieved, without production of hazardous by-products. The operating cost of the system is approximately 20% of activated carbon adsorption, which provides approximately $1,500,000 in cost savings over the life of the Stamina Mills project. The Adsorption Integrated Reaction (AIR) process is the recipient of the 1997 SBIR Technology of the Year award, the 1998 EPA Environmental Technology Innovator Award, and the 1998 R and D 100 Award.

  19. Spatial distribution of organochlorine contaminants in soil, sediment, and fish in Bikini and Enewetak Atolls of the Marshall Islands, Pacific Ocean.

    PubMed

    Wang, Jun; Caccamise, Sarah A L; Wu, Liejun; Woodward, Lee Ann; Li, Qing X

    2011-08-01

    Several nuclear tests were performed at Enewetak and Bikini Atolls in the Marshall Islands between 1946 and 1958. The events at Bikini Atoll involved several ships that were tested for durability during nuclear explosions, and 24 vessels now rest on the bottom of the Bikini lagoon. Nine soil samples were collected from different areas on the two islands of the atoll, and eighteen sediment, nine fish, and one lobster were collected in the vicinity of the sunken ships. Organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), and polychlorinated terphenyls (PCTs) in these samples were analyzed using gas chromatography/ion trap mass spectrometry (GC/ITMS). The average recoveries ranged from 78% to 104% for the different PCB congeners. The limits of detection (LOD) for PCBs, PCTs, DDE, DDT, and dieldrin ranged 10-50 pg g(-1). Some fish from Enewetak contained PCBs at a concentration range of 37-137 ng g(-1), dry weight (dw), and most of the soils from Enewetak showed evidence of PCBs (22-392 ng g(-1)dw). Most of the Bikini lagoon sediment samples contained PCBs, and the highest was the one collected from around the Saratoga, an aircraft carrier (1555 ng g(-1)dw). Some of the fish samples, most of the soil samples, and only one of the sediment samples contained 2,2-bis(4-chlorophenyl)-1,1-dichloroethylene (DDE) and PCBs. In addition to PCBs, the soils from Enewetak Atoll contained PCTs. PCTs were not detected in the sediment samples from Bikini Atoll. The results suggest local pollution sources of PCBs, PCTs, and OCPs.

  20. Natural attenuation of trichloroethylene in fractured shale bedrock

    NASA Astrophysics Data System (ADS)

    Lenczewski, M.; Jardine, P.; McKay, L.; Layton, A.

    2003-07-01

    This paper describes one of the first well-documented field examples of natural attenuation of trichloroethylene (TCE) in groundwater in a fractured shale bedrock. The study was carried out adjacent to a former waste burial site in Waste Area Grouping 5 (WAG5) on the Oak Ridge Reservation, Oak Ridge, TN. A contaminant plume containing TCE and its daughter products were detected downgradient from the buried waste pits, with most of the contamination occurring in the upper 6 m of the bedrock. The monitoring well array consists of a 35-m-long transect of multilevel sampling wells, situated along a line between the waste pits and a seep which discharges into a small stream. Concentrations of volatile organic carbons (VOCs) were highest in the waste trenches and decreased with distance downgradient towards the seep. Sampling wells indicated the presence of overlapping plumes of TCE, cis-dichloroethylene (cDCE), vinyl chloride (VC), ethylene, ethane, and methane, with the daughter products extending further downgradient than the parent (TCE). This type of distribution suggests anaerobic biodegradation. Measurements of redox potential at the site indicated that iron-reduction, sulfate reduction, and potentially methanogensis were occurring and are conducive to dechlorination of TCE. Bacteria enrichment of groundwater samples revealed the presence of methanotrophs, methanogens, iron-reducing bacteria and sulfate-reducing bacteria, all of which have previously been implicated in anaerobic biodegradation of TCE. 16S rDNA sequence from DNA extracted from two wells were similar to sequences of organisms previously implicated in the anaerobic biodegradation of chlorinated solvents. The combined data strongly suggest that anaerobic biodegradation of the highly chlorinated compounds is occurring. Aerobic biodegradation may also be occurring in oxygenated zones, including near a seep where groundwater exits the site, or in the upper bedrock during seasonal fluctuations in water

  1. Results of a long-term study of vapor intrusion at four large buildings at the NASA Ames Research Center.

    PubMed

    Brenner, David

    2010-06-01

    Most of the published empirical data on indoor air concentrations resulting from vapor intrusion of contaminants from underlying groundwater are for residential structures. The National Aeronautics and Space Administration (NASA) Research Park site, located in Moffett Field, CA, and comprised of 213 acres, is being planned for redevelopment as a collaborative research and educational campus with associated facilities. Groundwater contaminated with hydrocarbon and halogenated hydrocarbon volatile organic compounds (VOCs) is the primary environmental medium of concern at the site. Over a 15-month period, approximately 1000 indoor, outdoor ambient, and outdoor ambient background samples were collected from four buildings designated as historical landmarks using Summa canisters and analyzed by the U.S. Environmental Protection Agency TO-15 selective ion mode. Both 24-hr and sequential 8-hr samples were collected. Comparison of daily sampling results relative to daily background results indicates that the measured trichloroethylene (TCE) concentrations were primarily due to the subsurface vapor intrusion pathway, although there is likely some contribution due to infiltration of TCE from the outdoor ambient background concentrations. Analysis of the cis-1,2-dichloroethylene concentrations relative to TCE concentrations with respect to indoor air concentrations and the background air support this hypothesis; however, this indicates that relative contributions of the vapor intrusion and infiltration pathways vary with each building. Indoor TCE concentrations were also compared with indoor benzene and background benzene concentrations. These data indicate significant correlation between background benzene concentrations and the concentration of benzene in the indoor air, indicating benzene was present in the indoor air primarily through infiltration of outdoor air into the indoor space. By comparison, measured TCE indoor air concentrations showed a significantly different

  2. Quantitative Property-Property Relationship for Screening-Level Prediction of Intrinsic Clearance of Volatile Organic Chemicals in Rats and Its Integration within PBPK Models to Predict Inhalation Pharmacokinetics in Humans

    PubMed Central

    Peyret, Thomas; Krishnan, Kannan

    2012-01-01

    The objectives of this study were (i) to develop a screening-level Quantitative property-property relationship (QPPR) for intrinsic clearance (CLint) obtained from in vivo animal studies and (ii) to incorporate it with human physiology in a PBPK model for predicting the inhalation pharmacokinetics of VOCs. CLint, calculated as the ratio of the in vivo Vmax (μmol/h/kg bw rat) to the Km (μM), was obtained for 26 VOCs from the literature. The QPPR model resulting from stepwise linear regression analysis passed the validation step (R2 = 0.8; leave-one-out cross-validation Q2 = 0.75) for CLint normalized to the phospholipid (PL) affinity of the VOCs. The QPPR facilitated the calculation of CLint (L PL/h/kg bw rat) from the input data on log Pow, log blood: water PC and ionization potential. The predictions of the QPPR as lower and upper bounds of the 95% mean confidence intervals (LMCI and UMCI, resp.) were then integrated within a human PBPK model. The ratio of the maximum (using LMCI for CLint) to minimum (using UMCI for CLint) AUC predicted by the QPPR-PBPK model was 1.36 ± 0.4 and ranged from 1.06 (1,1-dichloroethylene) to 2.8 (isoprene). Overall, the integrated QPPR-PBPK modeling method developed in this study is a pragmatic way of characterizing the impact of the lack of knowledge of CLint in predicting human pharmacokinetics of VOCs, as well as the impact of prediction uncertainty of CLint on human pharmacokinetics of VOCs. PMID:22685458

  3. Chronic toxicity of a mixture of chlorinated alkanes and alkenes in ICR mice.

    PubMed

    Wang, Fun-In; Kuo, Min-Liang; Shun, Chia-Tung; Ma, Yee-Chung; Wang, Jung-Der; Ueng, Tzuu-Huei

    2002-02-01

    The aim of this study was to determine the chronic toxicity of a mixture of chlorinated alkanes and alkenes (CA) consisting of chloroform, 1,1-dichloroethane, 1,1-dichloroethylene, 1,1,1-trichloroethane, trichloroethylene, and tetrachloroethylene. These chlorinated organic solvents were present in the underground water near an electronic appliances manufactory in Taoyuan, Taiwan. Male and female weanling ICR mice were treated with low-, medium-, and high-dose CA mixtures in drinking water for 16 and 18 mo, respectively. A significant number of male mice treated with the high-dose CA mixture developed tail alopecia and deformation, which was not prominent in CA-treated female mice. Medium- and high-dose CA mixtures induced marginal increases of liver and lung weights, blood urea nitrogen, and serum creatinine levels in male mice. In female mice, the high-dose CA mixture increased liver, kidney, and uterus and ovary total weights, without affecting serum biochemistry parameters. CA mixtures had no effects on the total glutathione content or the level of glutathione S-transferase activity in the livers and kid- neys of male and female mice. Treatments with CA mixtures produced a trend of increasing frequency of hepatocelluar neoplasms in male mice, compared to male and female controls and CA-treated female mice. The high-dose CA mixture induced a significantly higher incidence of mammary adenocarcinoma in female mice. The calculated odds ratios of mammary adenocarcinoma in female mice induced by low-, medium-, and high-dose CA mixtures were 1.14, 1.37, and 3.53 times that of the controls, respectively. The low-dose CA mixture induced a higher incidence of cysts and inflammation in and around the ovaries. This study has demonstrated that the CA mixture is a potential carcinogen to male and female mice. These animal toxicology data may be important in assessing the health effects of individuals exposed to the CA mixture.

  4. Physiological characterization of a broad spectrum reductively dechlorinating consortium

    USGS Publications Warehouse

    Lorah, M.M.; Majcher, E.; Jones, E.; Driedger, G.; Dworatzek, S.; Graves, D.

    2005-01-01

    A wetland sediment-derived microbial consortium (WBC-2) was developed by the US Geological Survey and propagated in vitro to large quantities by SiREM Laboratory for potential use in bioaugmentation applications. On the basis of bench-scale tests, the consortium could completely dechlorinate 1,1,2,2-tetrachloroethylene, tetrachloroethylene, trichloroethylene, 1,1,2-trichloroethane, cis- and trans-1,2-dichoroethylene, 1,1-dichloroethylene, 1,2-dichloroethane, and vinyl chloride in culture medium. Batch microcosms were carried out under anaerobic conditions in culture medium with neutral pH and with pH adjusted from acidic (pH 4, 5, and 6) to alkaline (pH 8 and 9). To evaluate oxygen sensitivity of WBC-2, an aliquot was removed from an anaerobic culture vessel and poured into smaller containers on the bench top where a series of oxygen exposures were applied to the culture by bubbling ambient air through the culture at a rate of ??? 100 mL/min. Chlorinated methanes tended to inhibit activity of a wide range of microorganisms. Although toxicity effects from CT addition were observed with WBC-2 in liquid culture at 3 mg/L concentration, WBC-2 in the columns could maintain degradation of CT and chloroform (CF) and of the chlorinated ethanes and ethylenes at CT and CF concentrations of 10 and 20 mg/L, respectively. This is an abstract of a paper presented at the Proceedings of the 8th International In Situ and On-Site Bioremediation Symposium (Baltimore, MD 6/6-9/2005).

  5. DDE, selenium, mercury, and white-faced IBIS reproduction at Carson Lake, Nevada

    SciTech Connect

    Henny, C.J. ); Herron, G.B. )

    1989-10-01

    We studied organochlorine, mercury (Hg), and selenium (Se) contamination in white-faced ibis (Plegadis chihi) nesting at Carson Lake, Nevada, in 1985 and 1986. Dichloro diphenyl dichloroethylene (DDE) was related to fewer young produced/nesting attempt, fewer young produced/successful nest and eggshell thinning. As DDE in eggs increase to >4ppm (wet wt), and especially >8ppm, productivity decreased significantly and the incidence of cracked eggs increased. Assuming that 4 ppm DDE is the critical residue level, 40% of the nesting population in 1985 and 1986 was adversely impacted by DDE, with a net loss of 20% of the poplation's expected production (to about 10 days old). Most eggs containing exceptionally high DDE levels (8-29 ppm) also had substantial amounts of dichloro diphenyl trichloroethane (DDT), which implies recently-used DDT as the source. No evidence of breeding ground DDE-DDT contamination was found. The white-faced ibis winter in Mexico, and mostly in the interior agricultural region. Concentration of DDE-DDT in ibis eggs, unlike most other wading bird species from the Great Basin, did not decline during the last decade. Other organochlorine contaminants were generally low and detected in {le}33% of the eggs. Selenium and Hg were accumulated by ibis on the Nevada breeding grounds, but concentrations in eggs did not reach levels sufficient to impact the production of 7-10 day old young. Potential Se and especially Hg accumulation during the remainder of the summer was high, but actual effects on growing young and adults remain unknown.

  6. Study on the kinetic characteristics of trace harmful gases for a two-person-30-day integrated CELSS test.

    PubMed

    Guo, Shuangsheng; Ai, Weidang; Fei, Jinxue; Xu, Guoxin; Zeng, Gu; Shen, Yunze

    2015-05-01

    A two-person-30-day controlled ecological life support system (CELSS) integrated test was carried out, and more than 30 kinds of trace harmful gases including formaldehyde, benzene, and ammonia were measured and analyzed dynamically. The results showed that the kinds and quantities of the trace harmful gases presented a continuously fluctuating state during the experimental period, but none of them exceed the spacecraft maximum allowable concentration (SMAC). The results of the Pre-Test (with two persons without plants for 3 days) and the Test (with two persons and four kinds of plants for 30 days) showed that there are some notable differences for the compositions of the trace harmful gases; the volatile organic compounds (VOCs) such as toluene, hexane, and acetamide were searched out in the Pre-Test, but were not found in the Test. Moreover, the concentrations of the trace harmful gases such as acetic benzene, formaldehyde, and ammonia decreased greatly in the Test more than those in the Pre-Test, which means that the plants can purify these gases efficiently. In addition, the VOCs such as carbon monoxide, cyclopentane, and dichloroethylene were checked out in the Test but none in the Pre-Test, which indicates that these materials might be from the crew's metabolites or those devices in the platform. Additionally, the ethylene released specially by plants accumulated in the later period and its concentration reached nearly ten times of 0.05 mg m(-3) (maximum allowed concentration for plant growth, which must have promoted the later withering of plants). We hoped that the work can play a referring function for controlling VOCs effectively so that future more CELSS integrating tests can be implemented smoothly with more crew, longer period, and higher closure. PMID:25483969

  7. Study on the Dynamically Changing Law of Trace Contaminants for the 2-person-30-day Integrated CELSS Test

    NASA Astrophysics Data System (ADS)

    Guo, Shuangsheng

    A 2-person-30-day Integrated CELSS Test was carried out recently, and more than 30 kinds of trace contaminants including formaldehyde, benzene and ammonia were measured and analyzed dynamically. The results showed that the kinds and quantities of trace contaminants presented a continuously fluctuating state during the experimental period, but all of them didn’t exceed the SMAC. The results of the pre-test (with 2 persons without plants for 3 days) and the formal test (with 2 persons and 4 kinds of plants for 30 days) showed that there are some notable differences for the compositions of the trace contaminants; the volatile organic compounds (VOCs) such as toluene, hexane and acetamide were searched out in the pre-test, but couldn’t be found in the formal test. Moreover, the concentrations of the trace gases such as acetic benzene, formaldehyde and ammonia decreased greatly in the formal test more than them in the pre-test, which means that the plants can purified these gases efficiently. In addition, the VOCs such as carbon monoxide, cyclopentane and dichloroethylene were checked out in the formal test but none in the pre-test, which means that these materials might be from cabin facilities or human metabolites. Additionally, the ethylene released specially by plants accumulated in the later period and its concentration reached nearly 10 times of MAC (50ppb), which must have promoted the earlier wane of plants. It’s hoped that the work can play a referring function for future more CELSS integrating test with more persons, longer time and higher material closure.

  8. Study on the kinetic characteristics of trace harmful gases for a two-person-30-day integrated CELSS test.

    PubMed

    Guo, Shuangsheng; Ai, Weidang; Fei, Jinxue; Xu, Guoxin; Zeng, Gu; Shen, Yunze

    2015-05-01

    A two-person-30-day controlled ecological life support system (CELSS) integrated test was carried out, and more than 30 kinds of trace harmful gases including formaldehyde, benzene, and ammonia were measured and analyzed dynamically. The results showed that the kinds and quantities of the trace harmful gases presented a continuously fluctuating state during the experimental period, but none of them exceed the spacecraft maximum allowable concentration (SMAC). The results of the Pre-Test (with two persons without plants for 3 days) and the Test (with two persons and four kinds of plants for 30 days) showed that there are some notable differences for the compositions of the trace harmful gases; the volatile organic compounds (VOCs) such as toluene, hexane, and acetamide were searched out in the Pre-Test, but were not found in the Test. Moreover, the concentrations of the trace harmful gases such as acetic benzene, formaldehyde, and ammonia decreased greatly in the Test more than those in the Pre-Test, which means that the plants can purify these gases efficiently. In addition, the VOCs such as carbon monoxide, cyclopentane, and dichloroethylene were checked out in the Test but none in the Pre-Test, which indicates that these materials might be from the crew's metabolites or those devices in the platform. Additionally, the ethylene released specially by plants accumulated in the later period and its concentration reached nearly ten times of 0.05 mg m(-3) (maximum allowed concentration for plant growth, which must have promoted the later withering of plants). We hoped that the work can play a referring function for controlling VOCs effectively so that future more CELSS integrating tests can be implemented smoothly with more crew, longer period, and higher closure.

  9. Characterization of ambient volatile organic compounds and their sources in Beijing, before, during, and after Asia-Pacific Economic Cooperation China 2014

    NASA Astrophysics Data System (ADS)

    Li, J.; Xie, S. D.; Zeng, L. M.; Li, L. Y.; Li, Y. Q.; Wu, R. R.

    2015-04-01

    Ambient volatile organic compounds (VOCs) were measured using an online system, gas chromatography-mass spectrometry/flame ionization detector (GC-MS/FID), in Beijing, China, before, during and after Asia-Pacific Economic Cooperation (APEC) China 2014, when stringent air quality control measures were implemented. Positive matrix factorization (PMF) was applied to identify the major VOC contributing sources and their temporal variations. The secondary organic aerosols potential (SOAP) approach was used to estimate variations of precursor source contributions to SOA formation. The average VOC mixing ratios during the three periods were 86.17, 48.28, and 72.97 ppbv, respectively. The mixing ratios of total VOC during the control period were reduced by 44%, and the mixing ratios of acetonitrile, halocarbons, oxygenated VOCs (OVOCs), aromatics, acetylene, alkanes, and alkenes decreased by approximately 65, 62, 54, 53, 37, 36, and 23%, respectively. The mixing ratios of all measured VOC species decreased during control, and the most affected species were chlorinated VOCs (chloroethane, 1,1-dichloroethylene, chlorobenzene). PMF analysis indicated eight major sources of ambient VOCs, and emissions from target control sources were clearly reduced during the control period. Contributions of vehicular exhaust were most reduced (19.65 ppbv, the contributions before the control period minus the values after the control period), followed by industrial manufacturing (10.29 ppbv) and solvent utilization (6.20 ppbv). Contributions of evaporated or liquid gasoline and industrial chemical feedstock were slightly reduced, with values of 2.85 and 0.35 ppbv, respectively. Contributions of secondary and long-lived species were relatively stable. Due to central heating, emissions from fuel combustion kept on increasing during the whole campaign; because of weak control of liquid petroleum gas (LPG), the highest emissions of LPG occurred in the control period. Vehicle-related sources were

  10. Characterization of ambient volatile organic compounds and their sources in Beijing, before, during, and after Asia-Pacific Economic Cooperation China 2014

    NASA Astrophysics Data System (ADS)

    Li, J.; Xie, S. D.; Zeng, L. M.; Li, L. Y.; Li, Y. Q.; Wu, R. R.

    2015-07-01

    Ambient volatile organic compounds (VOCs) were measured using an online system, gas chromatography-mass spectrometry/flame ionization detector (GC-MS/FID), in Beijing, China, before, during, and after Asia-Pacific Economic Cooperation (APEC) China 2014, when stringent air quality control measures were implemented. Positive matrix factorization (PMF) was applied to identify the major VOC contributing sources and their temporal variations. The secondary organic aerosols potential (SOAP) approach was used to estimate variations of precursor source contributions to SOA formation. The average VOC mixing ratios during the three periods were 86.17, 48.28, and 72.97 ppbv, respectively. The mixing ratios of total VOC during the control period were reduced by 44 %, and the mixing ratios of acetonitrile, halocarbons, oxygenated VOCs (OVOCs), aromatics, acetylene, alkanes, and alkenes decreased by approximately 65, 62, 54, 53, 37, 36, and 23 %, respectively. The mixing ratios of all measured VOC species decreased during control, and the most affected species were chlorinated VOCs (chloroethane, 1,1-dichloroethylene, chlorobenzene). PMF analysis indicated eight major sources of ambient VOCs, and emissions from target control sources were clearly reduced during the control period. Compared with the values before control, contributions of vehicular exhaust were most reduced, followed by industrial manufacturing and solvent utilization. Reductions of these three sources were responsible for 50, 26, and 16 % of the reductions in ambient VOCs. Contributions of evaporated or liquid gasoline and industrial chemical feedstock were slightly reduced, and contributions of secondary and long-lived species were relatively stable. Due to central heating, emissions from fuel combustion kept on increasing during the whole campaign; because of weak control of liquid petroleum gas (LPG), the highest emissions of LPG occurred in the control period. Vehicle-related sources were the most important

  11. Long-term performance monitoring for a permeable reactive barrier at the U.S. Coast Guard Support Center, Elizabeth City, North Carolina.

    PubMed

    Puls, R W; Blowes, D W; Gillham, R W

    1999-08-12

    A continuous hanging iron wall was installed in June, 1996, at the U. S. Coast Guard (USCG) Support Center near Elizabeth City, NC, United States, to treat overlapping plumes of chromate and chlorinated solvent compounds. The wall was emplaced using a continuous trenching machine whereby native soil and aquifer sediment was removed and the iron simultaneously emplaced in one continuous excavation and fill operation. To date, there have been seven rounds (November 1996, March 1997, June 1997, September 1997, December 1997, March 1998, and June 1998) of performance monitoring of the wall. At this time, this is the only full-scale continuous 'hanging' wall installed as a permeable reactive barrier to remediate both chlorinated solvent compounds and chromate in groundwater. Performance monitoring entails the following: sampling of 10-5 cm PVC compliance wells and 15 multi-level samplers for the following constituents: TCE, cis-dichloroethylene (c-DCE), vinyl chloride, ethane, ethene, acetylene, methane, major anions, metals, Cr(VI), Fe(II), total sulfides, dissolved H(2), Eh, pH, dissolved oxygen, specific conductance, alkalinity, and turbidity. Electrical conductivity profiles have been conducted using a Geoprobe to verify emplacement of the continuous wall as designed and to locate upgradient and downgradient wall interfaces for coring purposes. Coring has been conducted in November, 1996, in June and September, 1997, and March, 1998, to evaluate the rate of corrosion on the iron surfaces, precipitate buildup (particularly at the upgradient interface), and permeability changes due to wall emplacement. In addition to several continuous vertical cores, angled cores through the 0.6-m thick wall have been collected to capture upgradient and downgradient wall interfaces along approximate horizontal flow paths for mineralogic analyses.

  12. How accessible is atomic charge information from infrared intensities? A QTAIM/CCFDF interpretation.

    PubMed

    Silva, Arnaldo F; Richter, Wagner E; Meneses, Helen G C; Faria, Sergio H D M; Bruns, Roy E

    2012-08-01

    Infrared fundamental intensities calculated by the quantum theory of atoms in molecules/charge-charge flux-dipole flux (QTAIM/CCFDF) method have been partitioned into charge, charge flux, and dipole flux contributions as well as their charge-charge flux, charge-dipole flux, and charge flux-dipole flux interaction contributions. The interaction contributions can be positive or negative and do not depend on molecular orientations in coordinate systems or normal coordinate phase definitions, as do CCFDF dipole moment derivative contributions. If interactions are positive, their corresponding dipole moment derivative contributions have the same polarity reinforcing the total intensity estimates whereas negative contributions indicate opposite polarities and lower CCFDF intensities. Intensity partitioning is carried out for the normal coordinates of acetylene, ethylene, ethane, all the chlorofluoromethanes, the X(2)CY (X = F, Cl; Y = O, S) molecules, the difluoro- and dichloroethylenes and BF(3). QTAIM/CCFDF calculated intensities with optimized quantum levels agree within 11.3 km mol(-1) of the experimental values. The CH stretching and in-plane bending vibrations are characterized by significant charge flux, dipole flux, and charge flux-dipole flux interaction contributions with the negative interaction tending to cancel the individual contributions resulting in vary small intensity values. CF stretching and bending vibrations have large charge, charge-charge flux, and charge-dipole flux contributions for which the two interaction contributions tend to cancel one another. The experimental CF stretching intensities can be estimated to within 31.7 km mol(-1) or 16.3% by a sum of these three contributions. However, the charge contribution alone is not successful at quantitatively estimating these CF intensities. Although the CCl stretching vibrations have significant charge-charge flux and charge-dipole flux contributions, like those of the CF stretches, both of these

  13. Organochloride pesticides induced hepatic ABCG5/G8 expression and lipogenesis in Chinese patients with gallstone disease

    PubMed Central

    Ji, Guixiang; Xu, Cheng; Sun, Haidong; Liu, Qian; Hu, Hai; Gu, Aihua; Jiang, Zhao-Yan

    2016-01-01

    Background Organochlorine pesticides (OCPs) are one kind of persistent organic pollutants. Although they are reported to be associated with metabolic disorders, the underlying mechanism is unclear. We explored the association of OCPs with gallstone disease and its influence on hepatic lipid metabolism. Materials and Methods OCPs levels in omentum adipose tissues from patients with and without gallstone disease between 2008 and 2011 were measured by GC-MS. Differences of gene expression involved in hepatic lipid metabolism and hepatic lipids content were compared in liver biopsies between groups with high and low level of OCPs. Using HepG2 cell lines, the influence on hepatic lipid metabolism by individual OCP was evaluated in vitro. Results In all patients who were from non-occupational population, there were high levels of β-hexachlorocyclohexane (β-HCH) and p',p'-dichloroethylene (p',p'-DDE) accumulated in adipose tissues. Both β-HCH and p', p'-DDE levels were significantly higher in adipose tissues from patients with gallstone disease (294.3± 313.5 and 2222± 2279 ng/g of lipid) than gallstone-free controls (282.7± 449.0 and 2025±2664 ng/g of lipid, P< 0.01) and they were strongly related with gallstone disease (P for trend = 0.0004 and 0.0138). Furthermore, higher OCPs in adipose tissue led to increase in the expression of hepatic cholesterol transporters ABCG5 and G8 (+34% and +27%, P< 0.01) and higher cholesterol saturation index in gallbladder bile, and induced hepatic fatty acids synthesis, which was further confirmed in HepG2 cells. Conclusion OCPs might enhance hepatic secretion of cholesterol into bile via ABCG5/G8 which promoting gallstone disease as well as lipogenesis. PMID:27203212

  14. Natural attenuation of trichloroethylene in fractured shale bedrock.

    PubMed

    Lenczewski, M; Jardine, P; McKay, L; Layton, A

    2003-07-01

    This paper describes one of the first well-documented field examples of natural attenuation of trichloroethylene (TCE) in groundwater in a fractured shale bedrock. The study was carried out adjacent to a former waste burial site in Waste Area Grouping 5 (WAG5) on the Oak Ridge Reservation, Oak Ridge, TN. A contaminant plume containing TCE and its daughter products were detected downgradient from the buried waste pits, with most of the contamination occurring in the upper 6 m of the bedrock. The monitoring well array consists of a 35-m-long transect of multilevel sampling wells, situated along a line between the waste pits and a seep which discharges into a small stream. Concentrations of volatile organic carbons (VOCs) were highest in the waste trenches and decreased with distance downgradient towards the seep. Sampling wells indicated the presence of overlapping plumes of TCE, cis-dichloroethylene (cDCE), vinyl chloride (VC), ethylene, ethane, and methane, with the daughter products extending further downgradient than the parent (TCE). This type of distribution suggests anaerobic biodegradation. Measurements of redox potential at the site indicated that iron-reduction, sulfate reduction, and potentially methanogensis were occurring and are conducive to dechlorination of TCE. Bacteria enrichment of groundwater samples revealed the presence of methanotrophs, methanogens, iron-reducing bacteria and sulfate-reducing bacteria, all of which have previously been implicated in anaerobic biodegradation of TCE. 16S rDNA sequence from DNA extracted from two wells were similar to sequences of organisms previously implicated in the anaerobic biodegradation of chlorinated solvents. The combined data strongly suggest that anaerobic biodegradation of the highly chlorinated compounds is occurring. Aerobic biodegradation may also be occurring in oxygenated zones, including near a seep where groundwater exits the site, or in the upper bedrock during seasonal fluctuations in water

  15. Susceptibility of residential wells to VOC and nitrate contamination.

    PubMed

    Aelion, C Marjorie; Conte, Brian C

    2004-03-15

    Water quality of residential wells is vital to public health and a complex issue for regulatory agencies. South Carolina, a typical southeastern rural state, has no required testing of residential well water quality after initial well construction. This study used site-selection criteria to identify susceptible residential wells based on a combination of geologic vulnerability and potential contaminant loading. Geologic vulnerability was defined as increased probability of contaminants being transported from the land surface into the groundwater based on geological properties. As a surrogate for potential general contaminant loading, wells were located within 800 m of an EPA Toxics Release Inventory facility reporting VOC emissions, thus sampling was nonrandom. Seventy private residential wells were sampled for volatile organic compounds (VOCs) and nitrate-nitrogen (NO3-N) and analyzed using gas chromatography/mass spectrometry and the cadmium reduction method, respectively. Geographic Information Systems (GIS) was used to quantify four explanatory variables that affect well susceptibility to nitrate: population density, land cover, local relief (percent slope), and soil texture. VOCs were detected in 11 wells, and two sites exceeded the MCL for 1,1-dichloroethylene (36.1 microg/L) and trichloroethylene (9.0 microg/L). Elevated NO3-N (defined as > or = 1.0 mg/L) was measured in 20 wells. Logistic regression identified grassland/cultivated land cover as a variable that significantly increased the probability of NO3-N contamination (p = 0.003). Using easily accessible databases to identify factors that increase the probability of groundwater pollution could lead to more effective programs for locating residential wells that are susceptible to contamination. Increased monitoring of well water quality, as is being considered in some states, is warranted to reduce potential human exposure to contaminated drinking water.

  16. Alcohol oxidizing enzymes and ethanol-induced cytotoxicity in rat pancreatic acinar AR42J cells.

    PubMed

    Bhopale, Kamlesh K; Falzon, Miriam; Ansari, G A S; Kaphalia, Bhupendra S

    2014-04-01

    Alcoholic chronic pancreatitis (ACP) is a serious inflammatory disease causing significant morbidity and mortality. Due to lack of a suitable animal model, the underlying mechanism of ACP is poorly understood. Chronic alcohol abuse inhibits alcohol dehydrogenase (ADH) and facilitates nonoxidative metabolism of ethanol to fatty acid ethyl esters (FAEEs) in the pancreas frequently damaged during chronic ethanol abuse. Earlier, we reported a concentration-dependent formation of FAEEs and cytotoxicity in ethanol-treated rat pancreatic tumor (AR42J) cells, which express high FAEE synthase activity as compared to ADH and cytochrome P450 2E1. Therefore, the present study was undertaken to investigate the role of various ethanol oxidizing enzymes in ethanol-induced pancreatic acinar cell injury. Confluent AR42J cells were pre-treated with inhibitors of ADH class I and II [4-methylpyrazole (MP)] or class I, II, and III [1,10-phenanthroline (PT)], cytochrome P450 2E1 (trans-1,2-dichloroethylene) or catalase (sodium azide) followed by incubation with 800 mg% ethanol at 37°C for 6 h. Ethanol metabolism, cell viability, cytotoxicity (apoptosis and necrosis), cell proliferation status, and formation of FAEEs in AR42J cells were measured. The cell viability and cell proliferation rate were significantly reduced in cells pretreated with 1,10-PT + ethanol followed by those with 4-MP + ethanol. In situ formation of FAEEs was twofold greater in cells incubated with 1,10-PT + ethanol and ∼1.5-fold in those treated with 4-MP + ethanol vs. respective controls. However, cells treated with inhibitors of cytochrome P450 2E1 or catalase in combination of ethanol showed no significant changes either for FAEE formation, cell death or proliferation rate. Therefore, an impaired ADH class I-III catalyzed oxidation of ethanol appears to be a key contributing factor in ethanol-induced pancreatic injury via formation of nonoxidative metabolites of ethanol.

  17. Evaluation of exposure to contaminated drinking water and specific birth defects and childhood cancers at Marine Corps Base Camp Lejeune, North Carolina: a case–control study

    PubMed Central

    2013-01-01

    Background Drinking water supplies at Marine Corps Base Camp Lejeune were contaminated with trichloroethylene, tetrachloroethylene, benzene, vinyl chloride and trans-1,2-dichloroethylene during 1968 through 1985. Methods We conducted a case control study to determine if children born during 1968–1985 to mothers with residential exposure to contaminated drinking water at Camp Lejeune during pregnancy were more likely to have childhood hematopoietic cancers, neural tube defects (NTDs), or oral clefts. For cancers, exposures during the first year of life were also evaluated. Cases and controls were identified through a survey of parents residing on base during pregnancy and confirmed by medical records. Controls were randomly sampled from surveyed participants who had a live birth without a major birth defect or childhood cancer. Groundwater contaminant fate and transport and distribution system models provided estimates of monthly levels of drinking water contaminants at mothers’ residences. Magnitude of odds ratios (ORs) was used to assess associations. Confidence intervals (CIs) were used to indicate precision of ORs. We evaluated parental characteristics and pregnancy history to assess potential confounding. Results Confounding was negligible so unadjusted results were presented. For NTDs and average 1st trimester exposures, ORs for any benzene exposure and for trichloroethylene above 5 parts per billion were 4.1 (95% CI: 1.4-12.0) and 2.4 (95% CI: 0.6-9.6), respectively. For trichloroethylene, a monotonic exposure response relationship was observed. For childhood cancers and average 1st trimester exposures, ORs for any tetrachloroethylene exposure and any vinyl chloride exposure were 1.6 (95% CI: 0.5-4.8), and 1.6 (95% CI: 0.5-4.7), respectively. The study found no evidence suggesting any other associations between outcomes and exposures. Conclusion Although CIs were wide, ORs suggested associations between drinking water contaminants and NTDs. ORs suggested

  18. Satellite telemetry and prey sampling reveal contaminant sources to Pacific Northwest Ospreys.

    PubMed

    Elliott, John E; Morrissey, Christy A; Henny, Charles J; Inzunza, Ernesto Ruelas; Shaw, Patrick

    2007-06-01

    Migratory behavior can be an important factor in determining contaminant exposure in avian populations. Accumulation of organochlorine (OC) pesticides while birds are wintering in tropical regions has been cited often as the reason for high concentrations in migrant populations. To explore this issue, we satellite tracked 16 Ospreys (Pandion haliaetus) over the period 1996-2003 from breeding sites in British Columbia, Canada, and integrated the results into a database on 15 Ospreys that were satellite tracked over the period 1995-1999, from breeding locations in Washington and Oregon, USA. Data on wintering sites of 31 Ospreys in Mexico and Central America were used for spatially targeted sampling of prey fish. Concentrations of the main organochlorine contaminant, p,p'-dichloro-diphenyl-dichloroethylene (DDE), in fish composites from Mexico ranged from 0.005 to 0.115 nicrog/g wet mass. Significant differences existed among fish families in p,p'-DDE, total dichloro-diphenyl-trichloroethane (sigmaDDT), sigmachlordanes, and total polychlorinated biphenyls (sigmaPCBs). Catfish (family Ariidae) generally had significantly higher levels of DDT metabolites and other organochlorine contaminants compared to other fish families collected. Differences in prey contaminant levels were detected among the collection sites around coastal Mexico, with fish from Veracruz State generally having higher levels of DDT metabolites, sigmachlordanes, sigmaPCBs, and hexachlorobenzene. Eggs collected from 16 nests throughout the Pacific Northwest (nine from British Columbia, seven from Oregon and Washington) where Ospreys had been satellite tagged, showed marked variation in levels of DDT metabolites (p,p'-DDE; range 0.02-10.14 microg/g). Wintering site had no significant effect on contaminant concentrations in sample eggs from those specific Ospreys; rather concentrations of p,p'-DDE, were predicted by breeding sites with highest levels in eggs of Ospreys breeding in the lower Columbia

  19. Satellite telemetry and prey sampling reveal contaminant sources to pacific northwest ospreys

    USGS Publications Warehouse

    Elliott, J.E.; Morrissey, C.A.; Henny, C.J.; Inzunza, E.R.; Shaw, P.

    2007-01-01

    Migratory behavior can be an important factor in determining contaminant exposure in avian populations. Accumulation of organochlorine (OC) pesticides while birds are wintering in tropical regions has been cited often as the reason for high concentrations in migrant populations. To explore this issue, we satellite tracked 16 Ospreys (Pandion haliaetus) over the period 1996-2003 from breeding sites in British Columbia, Canada, and integrated the results into a database on 15 Ospreys that were satellite tracked over the period 1995-1999, from breeding locations in Washington and Oregon, USA. Data on wintering sites of 31 Ospreys in Mexico and Central America were used for spatially targeted sampling of prey fish. Concentrations of the main organochlorine contaminant, p,p???-dichloro-diphenyl-dichloroethylene (DDE), in fish composites from Mexico ranged from 0.005 to 0.115 ??g/g wet mass. Significant differences existed among fish families in p,p???-DDE, total dichloro- diphenyltrichloroethane (??DDT), ??chlordanes, and total polychlorinated biphenyls (??PCBs). Catfish (family Ariidae) generally had significantly higher levels of DDT metabolites and other organochlorine contaminants compared to other fish families collected. Differences in prey contaminant levels were detected among the collection sites around coastal Mexico, with fish from Veracruz State generally having higher levels of DDT metabolites, ??chlordanes, ??PCBs, and hexachlorobenzene. Eggs collected from 16 nests throughout the Pacific Northwest (nine from British Columbia, seven from Oregon and Washington) where Ospreys had been satellite tagged, showed marked variation in levels of DDT metabolites (p,p???-DDE; range 0.02-10.14 ??g/g). Wintering site had no significant effect on contaminant concentrations in sample eggs from those specific Ospreys; rather concentrations of p,p???-DDE, were predicted by breeding sites with highest levels in eggs of Ospreys breeding in the lower Columbia River

  20. An association of human congenital cardiac malformations and drinking water contaminants

    SciTech Connect

    Goldberg, S.J.; Lebowitz, M.D.; Graver, E.J.; Hicks, S. )

    1990-07-01

    During an informal study in 1973 it was noted that approximately one third of patients with congenital heart disease lived in a small area in the Tucson Valley. In 1981 groundwater for a nearly identical area was found to be contaminated with trichloroethylene and to a lesser extent with dichloroethylene and chromium. Contamination probably began during the 1950s. Affected wells were closed after discovery of contamination. This sequence of events allowed investigation of the prevalence of congenital heart disease in children whose parents were exposed to the contaminated water area as compared with children whose parents were never exposed to the contaminated water area. The contaminated water area contained 8.8% of the Tucson Valley population and 4.5% of the labor force. Using their case registry, the authors interviewed parents of 707 children with congenital heart disease who, between 1969 and 1987, (1) conceived their child in the Tucson Valley, and (2) spent the month before the first trimester and the first trimester of the case pregnancy in the Tucson Valley. Two random dialing surveys showed that only 10.5% of the Tucson Valley population had ever had work or residence contact, or both, with the contaminated water area, whereas 35% of parents of children with congenital heart disease had had such contact (p less than 0.005). The prevalence of congenital cardiac disease in the Tucson Valley was 0.7% of live births and with syndromes was calculated to be 0.82%. The odds ratio for congenital heart disease for children of parents with contaminated water area contact during the period of active contamination was three times that for those without contact (p less than 0.005) and decreased to near unity for new arrivals in the contaminated water area after well closure.

  1. Hanford Site groundwater monitoring for Fiscal Year 1997

    SciTech Connect

    Hartman, M.J.; Dresel, P.E.

    1998-02-01

    This report presents the results of groundwater and vadose-zone monitoring for fiscal year (FY) 1997 on the Hanford Site, Washington. Soil-vapor extraction continued in the 200-West Area to remove carbon tetrachloride from the vadose zone. Characterization and monitoring of the vadose zone comprised primarily spectral gamma logging, soil-vapor monitoring, and analysis and characterization of sediments sampled below a vadose-zone monitoring well. Source-term analyses for strontium-90 in 100-N Area vadose-zone sediments were performed using recent groundwater-monitoring data and knowledge of strontium`s ion-exchange properties. Water-level monitoring was performed to evaluate groundwater-flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Water levels over most of the Hanford Site continued to decline between June 1996 and June 1997. Water levels near the Columbia River increased during this period because the river stage was unusually high. Groundwater chemistry was monitored to track the extent of contamination, to note trends, and to identify emerging groundwater-quality problems. The most widespread radiological contaminant plumes were tritium and iodine-129. Concentrations of technetium-99, uranium, strontium-90, and carbon-14 also exceeded drinking water standards in smaller plumes. Plutonium and cesium-137 exceeded standards only near the 216-B-5 injection well. Derived concentration guide levels specified in U.S. Department of Energy Order 5400.5 were exceeded for tritium, uranium, strontium-90, and plutonium in small plumes or single wells. Nitrate is the most extensive chemical contaminant. Carbon tetrachloride, chloroform, chromium, cis-1,2-dichloroethylene, fluoride, and trichloroethylene also were present in smaller areas at levels above their maximum contaminant levels. Cyanide concentrations were elevated in one area but were below the maximum contaminant level.

  2. Microcontaminant accumulation, physiological condition and bilateral asymmetry in zebra mussels (Dreissena polymorpha) from clean and contaminated surface waters.

    PubMed

    Voets, Judith; Talloen, Willem; de Tender, Tineke; van Dongen, Stefan; Covaci, Adrian; Blust, Ronny; Bervoets, Lieven

    2006-09-12

    Chemical and biological monitoring of pollution in the aquatic environment is essential to assess the quality of surface waters. Zebra mussels (Dreissena polymorpha) have been used extensively to monitor pollution in freshwater environments, especially in bioaccumulation studies, whereby pollutant levels in tissues have been used as a measure of exposure. However, there is a need for good biomarkers that reflect the impact of exposure to pollutants. Bilateral asymmetry, commonly used as a measure of developmental instability, has a high potential as a biomarker to monitor stress caused by pollution. Nevertheless, until recently, no studies have evaluated bilateral asymmetry as a biomarker in zebra mussels. Biomarkers related to the energy metabolism may give a good indication of the physiological cost of exposure to pollution. In this study, we investigated whether the physiological condition (energy reserves and condition indices) and bilateral asymmetry of shells of zebra mussels are potentially useful biomarkers to monitor the impact of micropollution, such as trace metals, polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and di(p-chlorophenyl) dichloroethylene (p,p'-DDE) in the freshwater environment. Bilateral asymmetry of the zebra mussel shells was examined with respect to levels of pollutants accumulated in the mussels and compared to the physiological condition of the mussels. Levels of PCBs and several trace metals (especially Cd, Cu and Zn) were very high in four of the six sampling locations and in some locations the physiological condition of the mussels was significantly depressed. Nevertheless we did not find any relation (on individual or population level) with bilateral asymmetry of zebra mussel shells. Therefore our results suggest that bilateral asymmetry of zebra mussel shells is not a good measure for the impact of pollution in freshwater ecosystems. The energy reserves and condition indices, on the other hand, gave a

  3. Comparison of Reductive Dechlorination of Chlorinated Ethylene in Batch and Continuous-Flow Reactor

    NASA Astrophysics Data System (ADS)

    Park, S.; Jonghwan, L.; Hong, U.; Kim, N.; Ahn, H.; Lee, S.; Kim, Y.

    2010-12-01

    A 1.28 L-Batch reactor and continuous-flow stirred tank reactor (CFSTR) fed with formate and trichloriethene (TCE) were operated for 120 days and 72 days, respectively, to study the effect of formate as electron donor on reductive dechlorination of TCE to cis-1,2-dichloroethylene (c-DCE), vinyl chloride (VC), and ethylene (ETH). In batch reactor, injected 60 μmol TCE was completely degraded in presence of 20% hydrogen gas (H2) in less than 8 days by Evanite culture (300 mg-soluble protein) with ability to completely degrade tetrachloroethene (PCE) and TCE to ETH under anaerobic conditions. To determine the effect of formate as electron donor instead of H2, about 3 or 11 mmol of formate injected into batch-reactor every 15 days was enough to support H2 for dechlorination of c-DCE to VC and ETH. Soluble protein concentration of Evanite culture during the batch test increased from 300 mg to 688 mg for 120 days. In CFSTR test, TCE was fed continuously at 9.9 ppm (75.38 μmol/L) and the influent formate feed concentration increased stepwise from 1.3 mmol/L to 14.3 mmol/L. Injected TCE was accumulated at HRT 18 days for 13 days, but TCE was completed degraded at HRT 36 days without accumulation during left of experiment period, getting H2 from fermentative hydrogen production of injected formate. Although c-DCE was also accumulated for 23 days after CFSTR operation, it reached steady-state without accumulation in presence of excessive formate. However, since c-DCE in CFSTR was not completely dechlorinated, we will determine the transcriptional level of enzyme involved in reductive dechlorination of TCE, c-DCE, and VC in our future work.

  4. Geohydrology and ground-water quality at the Pueblo Depot activity landfill near Pueblo, Colorado

    USGS Publications Warehouse

    Watts, Kenneth R.; Ortiz, Roderick F.

    1990-01-01

    Groundwater samples were collected from the shallow unconfined aquifer at the Pueblo Depot Activity (Colorado) landfill and downstream from the landfill. The Pueblo Depot Activity is a U.S. Department of the Army facility in southeastern Colorado about 15 miles east of Pueblo, Colorado. The land-fill is underlain by upland alluvial terrace deposits that overlie a thick and almost impermeable shale. Saturated thickness of the aquifer generally is from 5 to 10 feet. Groundwater flow at the landfill is to the south-southeast toward the Arkansas River valley. Though not hydraulically connected to the upland terrace deposits, the alluvium underlying the Arkansas River valley may be recharged by groundwater that is discharged from seeps at the contact of the upland terrace deposits and the Pierre Shale. The water is classified as a mixed-cation mixed-anion type water that has concentrations of dissolved solids of 710 to 1,810 mg/L. Dissolved-solids concentrations increase downgradient. Chemical analysis, done to determine possible contamination of the groundwater, indicated that concentrations of trichloroethylene ranged from 5.2 to 2,900 microg/L and of trans-1,2-dichloroethylene ranged from 5 to 720 microg/L. The areal distribution of these volatile organic compounds indicate that there possibly are two sources of contamination of groundwater at the landfill, one upgradient from the landfill and the other within the landfill. Analysis of water samples from wells and seeps offsite and downgradient from the landfill did not indicate either contaminant in groundwater from the alluvial aquifer underlying the Arkansas River valley. (USGS)

  5. Microextraction in packed sorbent for the determination of pesticides in honey samples by gas chromatography coupled to mass spectrometry.

    PubMed

    Salami, Fernanda H; Queiroz, Maria Eugênia C

    2013-01-01

    The present work describes the development and analytical validation of a method involving microextraction packed sorbent and gas chromatography coupled to mass spectrometry (MEPS-GC-MS) for the multi-residue analysis of 22 pesticides (permethrin, fenpropathrin, aldrin, α-hexachlorocyclohexane, β-hexachlorocyclohexane, lindane, vinclozolin, endosulfan, heptaclor, dodecaclor, tetradifon, 1,1-dichloro-2,2-bis (p-chlorophenyl)ethane, 1,1-bis(p-chlorophenyl)-2,2-dichloroethylen, carbofuran, carbaryl, pirimiphos methyl, chlorpyriphos, dimethoate, disulfoton, fenamiphos, terbufos and profenofos) in honey samples. The MEPS variables of sample pH, draw-eject cycles, ionic strength and desorption procedure were optimized to improve the sensitivity of the proposed method. The method was shown to be linear at concentrations ranging from 2, 5 and 10 ng/g (limit of quantification) to 75-100 ng/g. These values are lower than those established as the maximum residue limits for honey samples. The accuracy values (82-114%) were adequate for all the analytes, as were the inter-day precision data, with coefficient of variation lower than 14%. On the basis of analytical validation, the MEPS-GC methodology has been shown to be a promising alternative for the analysis of pesticides in honey samples. The MEPS packed syringe can be reused 40 times for honey samples, whereas the conventional solid-phase extraction (SPE) column can only be used once. Compared with liquid-liquid extraction and SPE, MEPS is able to reduce sample preparation time and organic solvent consumption. PMID:23192738

  6. Changes in contaminant mass discharge from DNAPL source mass depletion: evaluation at two field sites.

    PubMed

    Brooks, Michael C; Wood, A Lynn; Annable, Michael D; Hatfield, Kirk; Cho, Jaehyun; Holbert, Charles; Rao, P Suresh C; Enfield, Carl G; Lynch, Kira; Smith, Richard E

    2008-11-14

    Changes in contaminant fluxes resulting from aggressive remediation of dense nonaqueous phase liquid (DNAPL) source zone were investigated at two sites, one at Hill Air Force Base (AFB), Utah, and the other at Ft. Lewis Military Reservation, Washington. Passive Flux Meters (PFM) and a variation of the Integral Pumping Test (IPT) were used to measure fluxes in ten wells installed along a transect down-gradient of the trichloroethylene (TCE) source zone, and perpendicular to the mean groundwater flow direction. At both sites, groundwater and contaminant fluxes were measured before and after the source-zone treatment. The measured contaminant fluxes (J; ML(-2)T(-1)) were integrated across the well transect to estimate contaminant mass discharge (M(D); MT(-1)) from the source zone. Estimated M(D) before source treatment, based on both PFM and IPT methods, were approximately 76 g/day for TCE at the Hill AFB site; and approximately 640 g/day for TCE, and approximately 206 g/day for cis-dichloroethylene (DCE) at the Ft. Lewis site. TCE flux measurements made 1 year after source treatment at the Hill AFB site decreased to approximately 5 g/day. On the other hand, increased fluxes of DCE, a degradation byproduct of TCE, in tests subsequent to remediation at the Hill AFB site suggest enhanced microbial degradation after surfactant flooding. At the Ft. Lewis site, TCE mass discharge rates subsequent to remediation decreased to approximately 3 g/day for TCE and approximately 3 g/day for DCE approximately 1.8 years after remediation. At both field sites, PFM and IPT approaches provided comparable results for contaminant mass discharge rates, and show significant reductions (>90%) in TCE mass discharge as a result of DNAPL mass depletion from the source zone.

  7. Influence of nitrate and sulfate reduction in the bioelectrochemically assisted dechlorination of cis-DCE.

    PubMed

    Lai, Agnese; Verdini, Roberta; Aulenta, Federico; Majone, Mauro

    2015-04-01

    This paper investigated the reductive dechlorination (RD) of cis-dichloroethylene (cis-DCE) (average influent 14.2±0.7 μM) by a bioelectrochemical system (BES), in the presence of real contaminated groundwater containing high levels of nitrate and sulfate. The BES enhanced both the RD and competing reactions, such as nitrate and sulfate reductions, which occurred with neither an external organic carbon source nor any inoculum other than the indigenous microbial consortia in the real groundwater. In preliminary batch tests, RD and full nitrate removal occurred after a short lag phase, whereas sulfate reduction occurred slowly and alongside the RD. Under continuous flow conditions (hydraulic retention time, HRT, 1.4 d), the competition of different electron acceptors was strongly affected by the cathodic potential in the range -550 to -750 mV vs. standard hydrogen electrode (SHE). Nitrate reduction was driven to completion at all tested cathodic potentials, whereas sulfate reduction and the RD rate increased as the cathodic potential became more negative. At -750 mV vs. SHE, strong methanogenesis was also observed and became the most important sink of electrons. The overall coulombic efficiency decreased while the potential became more negative. The RD contribution was always less than 1%. Hence, greater energy consumption was required to obtain higher RD rate and better conversion. Anodic oxidation was only observed at -750 mV vs. SHE where almost 39% of residual vinyl chloride (VC) was oxidized and the sulfate was formed back from sulfide (further contributing to electric waste).

  8. Risk assessment of exposure to volatile organic compounds in groundwater in Taiwan.

    PubMed

    Fan, Chihhao; Wang, Gen-Shuh; Chen, Yen-Chuan; Ko, Chun-Han

    2009-03-15

    The purpose of this study is to assess the risks from exposure to 14 volatile organic compounds (VOCs) in selected groundwater sites in Taiwan. The study employs the multimedia environment pollutant assessment system (MEPAS) model to calculate the specific non-cancer and cancer risks at an exposure level of 1 microg/L of each VOC for a variety of exposure pathways. The results show that the highest specific non-cancer risk is associated with water ingestion of vinyl chloride (VC) and that the highest specific cancer risk is associated with indoor breathing of VC. The three most important exposure pathways for risk assessment for both non-cancer and cancer risks are identified as water ingestion, dermal absorption when showering, and indoor breathing. Excess tetrachloroethylene (PCE), trichloroethylene (TCE), dichloroethylene (DCE), and VC are detected in the groundwater aquifers of one dump site and one factory. However, the study suggests that the pollutants in the contaminated groundwater aquifers do not travel extensively with groundwater flow and that the resulting VOC concentrations are below detectable levels for most of the sampled drinking-water treatment plants. Nevertheless, the non-cancer and cancer risks resulting from use of the contaminated groundwater are found to be hundred times higher than the general risk guidance values. To ensure safe groundwater utilisation, remediation initiatives for soil and groundwater are required. Finally, the study suggests that the current criteria for VOCs in drinking water might not be capable of ensuring public safety when groundwater is used as the primary water supply; more stringent quality criteria for drinking water are proposed for selected VOCs.

  9. The application of physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) modeling for exploring risk assessment approaches of chemical mixtures.

    PubMed

    Yang, R S; el-Masri, H A; Thomas, R S; Constan, A A; Tessari, J D

    1995-09-01

    When dealing with health impacts of environmental or occupational exposure such as groundwater contamination from or remediation effort associated with hazardous waste sites, we are obviously not facing individual, single chemicals. Thus, we are immediately confronted with the following questions: (1) Is single chemical risk assessment approach applicable to the multiple chemicals in hazardous waste sites? (2) How do we handle risk assessment of chemical mixtures? Although there were pioneering and commendable efforts from the USEPA to formulate guidelines for risk assessment of chemical mixtures, these guidelines were principally based on additivity concept. As new scientific advances are made, improvement and refinement of risk assessment methodology will be anticipated. At Colorado State University (CSU), our research effort is devoted to the challenges and potential applications of physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) modeling in the risk assessment of chemical mixtures. With the ultimate goal of Predictive Toxicology, 3 specific research projects are described: (1) PBPK/PD modeling of toxicologic interactions between trichloroethylene (TCE) and 1,1-dichloroethylene (1,1-DCE) and the investigation and defining of an 'Interaction Threshold'; (2) PBPK/PD modeling of toxicologic interactions between Kepone and carbon tetrachloride (CCl4) and the coupling of Monte Carlo simulation for the prediction of acute toxicity; (3) PBPK modeling of the inhibition of pharmacokinetics and enzyme kinetics of TCE caused by low-level, repeated dosing of a chemical mixture of 7 groundwater contaminants. Since this paper is meant to be a commentary and the emphasis is on approaches for dealing with chemical mixtures, detailed presentation of data is avoided. These examples illustrate partially our ongoing research activities and the related ideas with respect to possible novel risk assessment applications to chemical mixtures.

  10. Effects of several surfactants and high-molecular-weight organic compounds on decomposition of trichloroethylene with zerovalent iron powder.

    PubMed

    Ayoub, S R A; Uchiyama, H; Iwasaki, K; Doi, T; Inaba, K

    2008-04-01

    We investigated the effects of coexisting surfactants and high-molecular-weight organic compounds on the reductive dechlorination of trichloroethylene by zerovalent iron powder to determine whether these additives had utility as washing reagents for remediation of soil and groundwater pollution. During the dechlorination reaction, the amount of trichloroethylene decreased, and the formation of cis-1,2-dichloroethylene was observed. The decomposition of trichloroethylene was found to be first-order with respect to the trichloroethylene and zerovalent iron concentrations when the solution contained no additives. The rates of decomposition of trichloroethylene in the presence of the additives were lower than the rate in the absence of the additives: the rate constant was reduced by a factor of 0.7 for the cationic surfactant cetyltrimethylammonium bromide; by a factor of 0.5 for the anionic surfactants sodium n-dodecylbenzenesulfonate, sodium n-dodecylsulfate, and sodium n-dodecanesulfonate and for the high-molecular-weight organic compounds soluble starch, beta-cyclodextrin, and polyethyleneglycol 6000; and by a factor of 0.2 for sodium laurate and the nonionic surfactants Triton X-100, Tween 20, Tween 60, Brij 35, and Brij 58. Comparison of the concentrations of the nonionic surfactants with their critical micellar concentrations indicated that the rate-reducing effect of these additives was due to solubilization of trichloroethylene into the micellar phase. The adsorption of trichloroethylene onto the zerovalent iron surface was also affected by the presence of the additives. Thus, our results indicated that the changes in the decomposition rate of trichloroethylene were determined by several factors.

  11. Annually-layered lake sediments reveal strongly increased release of persistent chemicals due to accelerated glacier melting

    NASA Astrophysics Data System (ADS)

    Anselmetti, Flavio S.; Blüthgen, Nancy; Bogdal, Christian; Schmid, Peter

    2010-05-01

    Melting glaciers may represent a secondary source of chemical pollutants that have previously been incorporated and stored in the ice. Of particular concern are persistent organic pollutants (POPs), such as the insecticide dichlorodiphenyl trichloroethane (DDT) and industrial chemicals like polychlorinated biphenyls (PCBs), which are hazardous environmental contaminants due to their persistent, bioaccumulative and toxic properties. They were introduced in the 1930s and eventually banned in the 1970s. After release into the environment these chemicals were atmospherically transported to even remote areas such as the Alps and were deposited and stored in glaciers. Ongoing drastic glacier melting due to global warming, which is expected to further accelerate, implies the significance of studying the fate of these 'legacy pollutants'. Proglacial lake sediments provide well-dated and high-resolution archives to reconstruct timing and quantities of such a potentially hazardous remobilization. The goal of this study is to reconstruct the historical inputs of POPs into remote alpine lakes and to investigate the accelerated release of POPs from melting glaciers. Due to their lipophilic character, these chemicals exhibit a high tendency to adsorb to particles whereas concentrations in water are expected to be low. Therefore, quantitative determination in annually-layered lake sediment provides an excellent way to investigate the temporal trend of inputs into lakes that act as particle sinks. For this purpose, sediment cores were sampled from proglacial lakes in the Bernese Alps (Switzerland), which are exclusively fed by glacial melt waters. For comparison, cores were also taken from nearby high-alpine lakes located in non-glaciated catchments, which only should record the initial atmospheric fall-out. Sediment layers were dated by annual varve counting and radionuclide measurements; they cover the time period from the mid 20th century to today. The measured time series of

  12. Post-remediation biomonitoring of pesticides and other contaminants in marine waters and sediment near the United Heckathorn Superfund Site, Richmond, California

    SciTech Connect

    LD Antrim; NP Kohn

    2000-05-26

    Marine sediment remediation at the United Heckathorn Superfund Site was completed in April 1997. Water and mussel tissues were sampled in February 1999 from four stations near Lauritzen Canal in Richmond, California, for Year 2 of post-remediation monitoring of marine areas near the United Heckathorn Site. Dieldrin and dichlorodiphenyl trichloroethane (DDT) were analyzed in water samples, tissue samples from resident mussels, and tissue samples from transplanted mussels deployed for 4 months. Concentrations of dieldrin and total DDT in water and total DDT in tissue were compared with Year 1 of post-remediation monitoring, and with preremediation data from the California State Mussel Watch program (tissues) and the Ecological Risk Assessment for the United Heckathorn Superfund Site (tissues and water). Mussel tissues were also analyzed for polychlorinated biphenyls (PCB), which were detected in sediment samples. Chlorinated pesticide concentrations in water samples were similar to preremediation levels and did not meet remediation goals. Mean dieidrin concentrations in water ranged from 0.62 rig/L to 12.5 ng/L and were higher than the remediation goal (0.14 ng/L) at all stations. Mean total DDT concentrations in water ranged from 14.4 ng/L to 62.3 ng/L and exceeded the remediation goal (0.59 ng/L) at all stations. The highest concentrations of both pesticides were found at the Lauritzen Canal/End station. Despite exceedence of the remediation goals, chlorinated pesticide concentrations in Lauritzen Canal water samples were notably lower in 1999 than in 1998. Tissue samples from biomonitoring organisms (mussels) provide an indication of the longer-term integrated exposure to contaminants in the water column, which overcomes the limitations of grab samples of water. Biomonitoring results indicated that the bioavailability of chlorinated pesticides has been reduced from preremediation levels both in the dredged area and throughout Richmond Harbor. Total DDT and

  13. Ground-water quality in the West Salt River Valley, Arizona, 1996-98: relations to hydrogeology, water use, and land use

    USGS Publications Warehouse

    Edmonds, Robert J.; Gellenbeck, Dorinda J.

    2002-01-01

    February 1998. Analyses of all samples collected from the monitoring wells indicated low concentrations of pesticides and volatile organic compounds. The most frequently detected pesticides were deethylatrazine and atrazine. Trichloromethane (chloroform) and tetrachloroethene (PCE) were the most frequently detected volatile organic compounds in the monitoring wells. Two compounds [dieldrin and 1,1-dichloro-2,2-bis(p-dichlorodiphenyl)ethylene (DDE)], decomposition products of two banned pesticides, aldrin and dichlorodiphenylethylene (DDT), were detected at low concentrations in samples analyzed for the agricultural land-use study. In the West Salt River Valley, a high concentration of the heavier oxygen isotope?oxygen-18?in ground water generally indicates effects of evaporation on recharge water from irrigation. Wells in undeveloped areas and wells that have openings beneath a confining bed generally yield ground water that is free of the effects of irrigation seepage. Samples from these wells did not contain detectable concentrations of pesticides. The median concentrations of nitrate (as nitrogen) and dissolved solids in samples from wells in undeveloped areas were 1.7 milligrams per liter and 257 milligrams per liter, respectively. The median concentrations of nitrate (as nitrogen) and dissolved solids in samples from wells that yield water from below confining beds were 2.0 and 747 milligrams per liter, respectively.

  14. Field evaluation of the solvent extraction residual biotreatment technology.

    PubMed

    Mravik, Susan C; Sillan, Randall K; Wood, A Lynn; Sewell, Guy W

    2003-11-01

    The Solvent Extraction Residual Biotreatment (SERB) technology was evaluated at a former dry cleaner site in Jacksonville, FL, where an area of tetrachloroethylene (PCE) contamination was identified. The SERB technology is a treatmenttrain approach for complete site restoration, which combines an active in situ dense nonaqueous-phase liquid (DNAPL) removal technology, cosolvent extraction, with a passive enhanced in situ bioremediation technology, reductive dechlorination. During the in situ cosolvent extraction test, approximately 34 kL of 95% ethanol/5% water (v:v) was flushed through the contaminated zone, which removed approximately 60% of the estimated PCE mass. Approximately 2.72 kL of ethanol was left in the subsurface, which provided electron donorfor enhancement of biological processes in the source zone and downgradient areas. Quarterly groundwater monitoring for over 3 yr showed decreasing concentrations of PCE in the source zone from initial values of 4-350 microM to less than 150 microM during the last sampling event. Initially there was little to no daughter product formation in the source zone, but after 3 yr, measured concentrations were 242 microM for cis-dichloroethylene (cis-DCE), 13 microM for vinyl chloride, and 0.43 microM for ethene. In conjunction with the production of dissolved methane and hydrogen and the removal of sulfate, these measurements indicate that in situ biotransformations were enhanced in areas exposed to the residual ethanol. First-order rate constants calculated from concentration data for individual wells ranged from -0.63 to -2.14 yr(-1) for PCE removal and from 0.88 to 2.39 yr(-1) for cis-DCE formation. First-order rate constants based on the change in total mass estimated from contour plots of the groundwater concentration data were 0.75 yr(-1) for cis-DCE, -0.50 yr(-1) for PCE, and -0.33 yr(-1) for ethanol. Although these attenuation rate constants include additional processes, such as sorption, dispersion, and

  15. Probabilistic Human Health Risk Assessment of Chemical Mixtures: Hydro-Toxicological Interactions and Controlling Factors

    NASA Astrophysics Data System (ADS)

    Henri, C.; Fernandez-Garcia, D.; de Barros, F.

    2014-12-01

    Improper disposals of hazardous wastes in most industrial countries give rise to severe groundwater contamination problems that can lead to adverse health effects in humans. Therefore risk assessment methods play an important role in population protection by (1) quantifying the impact on human health of an aquifer contamination and (2) aiding the decision making process of to better manage our groundwater resources. Many reactive components such as chlorinated solvent or nitrate potentially experience attenuation processes under common geochemical conditions. Based on this, monitored natural attenuation has become nowadays an attractive remediation solution. However, in some cases, intermediate degradation products can constitute noxious chemical compounds before reaching a harmless chemical form. In these cases, the joint effect of advection-dispersion transport and the species-dependent kinetic reactions and toxicity will dictate the relative importance of the degradation byproducts to the total risk. This renders the interpretation of risk a non-trivial task. In this presentation, we quantify, through a probabilistic framework, the human health risk posed by a chemical mixture in a heterogeneous aquifer. This work focuses on a Perchloroethylene contamination problem followed by the first-order production/biodegradation of its daughter species Trichloroethylene, Dichloroethylene and Vinyl Chlorine that is known to be highly toxic. Uncertainty on the hydraulic conductivity field is considered through a Monte Carlo scheme. A comparative description of human health risk metrics as a function of aquifer heterogeneity and contaminant injection mode is provided by means of a spatial characterization of the lower-order statistical moments and empirical probability density functions of both individual and total risks. Interestingly, we show that the human health risk of a chemical mixture is mainly controlled by a modified Damköhler number that express the joint effect

  16. Hepatic microsomal cytochrome p450s and chlorinated hydrocarbons in largha and ribbon seals from Hokkaido, Japan: differential response of seal species to Ah receptor agonist exposure.

    PubMed

    Chiba, Issei; Sakakibara, Akihito; Iwata, T Hisato; Ishizuka, Mayumi; Tanabe, Shinsuke; Akahori, Fumiaki; Kazusaka, Akio; Fujita, Shoichi

    2002-04-01

    From 16 largha seals (Phoca largha) and 15 ribbon seals (Phoca fasciata) in the coastal waters of Hokkaido, Japan, blubber chlorinated hydrocarbon (CHC) levels and hepatic cytochrome P450 (CYP) catalytic activities and their immunochemically detected protein content levels were measured. Concentrations of DDTs (2,2-bis(4-chlorophenyl)-1,1-dichloroethylene,p,p'-DDE; 2,2-bis(4-chlorophenyl)-1,1-dichloroethane, p,p'-DDD; dichlorodiphenyltrichloroethane, p,p'-DDT), polychlorinated biphenyl congeners (PCBs), and chlordane compounds (oxychlordane, chlordanes, and nonachlors) in both species were in the range of 290 to 5,300, 420 to 4,000, and 130 to 1,500 ng/g lipid weight, respectively. Aryl hydrocarbon receptor (AhR) agonists, non-ortho (IUPAC 77 and 126) and mono-ortho (IUPAC 105, 118, and 156) coplanar PCB congeners, were also detected, and the 2,3,7,8-tetrachlordibenzo-p-dioxin (TCDD) toxic equivalents (TEQs) were 4.9 to 120 pg TEQ/g lipid weight. Cross-reactive proteins with polyclonal antibodies against rat CYP1A1 and CYP3A2 were notably detected in seal liver microsomes. Interestingly, a polyclonal antibody against rat CYP2B1 recognized proteins only at trace levels. In largha seals, both levels of alkoxyresorufin- (methoxy-, ethoxy-, pentoxy-, and benzyloxyresorufin) O-dealkylase (AROD) activities and proteins detected by polyclonal antibodies against rat CYP1A1 were significantly correlated with the concentrations of individual coplanar PCB congeners, total TEQs, and total PCBs. Threshold concentrations for TEQs in blubber of the largha seal to induce hepatic CYP1A protein and EROD activity were estimated to be 8.5 and 19 pg TEQ/g fat weight, respectively. In ribbon seals, similar correlations were not detected, although the TEQ levels were not significantly lower than those in largha seals. These results suggest that AROD activity and CYP1A1 protein in the liver of the largha seal could be a biomarker for the exposure to AhR agonists such as coplanar PCB

  17. Persistence, variance and toxic levels of organochlorine pesticides in fluvial sediments and the role of black carbon in their retention.

    PubMed

    Parween, Musarrat; Ramanathan, Al; Khillare, P S; Raju, N J

    2014-05-01

    The present study assesses the persistence and variation of organochlorine pesticides (OCPs) and their regulation by total organic carbon (TOC) and black carbon (BC) in freshwater sediment. Sediment samples from the Yamuna River, a major tributary of the Ganges (one of the most populated and intensively used rivers in Asia), had high levels of Σ20OCPs (21.41 to 139.95 ng g(-1)). β-Hexachlorocyclohexane (β-HCH) was the most predominant component. ΣHCH and Σdichloro-diphenyl-trichloroethane (DDT) constituted ~86% of Σ20OCPs. Isomer ratios indicated fresh usage of lindane, DDT and technical-grade HCH. Toxicological comparison with freshwater sediment quality guidelines showed γ-HCH and DDT at high levels of concern. β-HCH, α-HCH, endrin, heptachlor epoxide, dichloro-diphenyl-dichloroethane (DDD), dichloro-diphenyl-dichloroethylene and chlordane were above some of the guideline levels. TOC and BC had mean concentrations of 1.37 ± 0.51% and 0.46 ± 0.23 mg g(-1), respectively. BC constituted 1.25 to 10.56% of TOC. We observed low to moderate correlations of BC with isomers of HCH, p,p'-DDT and methoxychlor while of TOC with Σ20OCPs, γ-HCH, endosulfan sulfate and methoxychlor. Principal component analysis enabled correlating and clustering of various OCPs, BC and TOC. OCP distribution was related with pH, electrical conductivity, soil moisture and finer fractions of sediment. OCPs with similarity in properties that determine their interactions with carbonaceous components of sediment clustered together. A number of factors may, thus, be involved in the regulation of interactive forces between BC and OCPs. BC in this study may be more important than TOC in the retention of some OCPs into fluvial sediments, thereby reducing their bioavailability. The finding is probably the first of its kind to report and emphasises the role of BC in the persistence of OCPs in fluvial sediments. PMID:24488553

  18. An association of human congenital cardiac malformations and drinking water contaminants.

    PubMed

    Goldberg, S J; Lebowitz, M D; Graver, E J; Hicks, S

    1990-07-01

    During an informal study in 1973 it was noted that approximately one third of patients with congenital heart disease lived in a small area in the Tucson Valley. In 1981 groundwater for a nearly identical area was found to be contaminated with trichloroethylene and to a lesser extent with dichloroethylene and chromium. Contamination probably began during the 1950s. Affected wells were closed after discovery of contamination. This sequence of events allowed investigation of the prevalence of congenital heart disease in children whose parents were exposed to the contaminated water area as compared with children whose parents were never exposed to the contaminated water area. The contaminated water area contained 8.8% of the Tucson Valley population and 4.5% of the labor force. Using their case registry, the authors interviewed parents of 707 children with congenital heart disease who, between 1969 and 1987, 1) conceived their child in the Tucson Valley, and 2) spent the month before the first trimester and the first trimester of the case pregnancy in the Tucson Valley. Two random dialing surveys showed that only 10.5% of the Tucson Valley population had ever had work or residence contact, or both, with the contaminated water area, whereas 35% of parents of children with congenital heart disease had had such contact (p less than 0.005). The prevalence of congenital cardiac disease (excluding syndromes, children with atrial tachycardia or premature infants with patent ductus arteriosus) in the Tucson Valley was 0.7% of live births and with syndromes was calculated to be 0.82%. The odds ratio for congenital heart disease for children of parents with contaminated water area contact during the period of active contamination was three times that for those without contact (p less than 0.005) and decreased to near unity for new arrivals in the contaminated water area after well closure. The proportion of infants with congenital heart disease as compared with the number of

  19. Ground-water-quality assessment of shallow aquifers in the Front Range Urban Corridor, Colorado, 1954-98

    USGS Publications Warehouse

    Flynn, Jennifer L.

    2003-01-01

    .0 milligrams per liter). Nitrate median concentrations are several times greater where the land is cultivated or used for agricultural business, which may reflect use of nitrogen fertilizers and the presence of animal feeding operations. Most inorganic and organic constituents exceeded drinking-water standards in only a small percentage of samples. Exceptions to this include sulfate; nitrate; trace elements aluminum, cadmium, iron, and manganese; and organic compounds 1,1-dichloroethylene, tetrachloroethylene, trichloroethylene, benzene, and dichloromethane.

  20. Reconnaissance investigation of volatile and semivolatile organic compounds in the Memphis Aquifer at Alamo, Crockett County, Tennessee

    USGS Publications Warehouse

    Hutson, Susan S.; Haugh, Connor J.

    1992-01-01

    Samples of ground water and soil gas were analyzed to study the occurrence of volatile and semivolatile organic compounds in the Memphis aquifer at Alamo in western Tennessee in 1989. At Alamo, the aquifer is locally unconfined. Four wells screened in the Memphis aquifer provided Alamo with 0.3 million gallons of water per day. Trichloroethylene (TCE), dichloroethylene, trichloroethane, and tetrachloroethylene were detected in water samples from two of the wells. In September 1989, the TCE concentration in a sample from well 1 was 45 micrograms per liter (mg/L); Tennessee?s maximum contaminant level for TCE in drinking water is 5 mg/L Concentrations of TCE in water from this well ranged from 40 to 113 mg/L during I988 and 1989. TCE concentration in water collected from well 2 in September 1989 was 0.7 mg/L During I988 and 1989, TCE concentrations in this well ranged from less than 0.5 to 5.1 mg/L None of the semivolatile organic compounds on the U.S. Environmental Protection Agency?s priority-pollutant list were detected in water from well 1. Soil gas was sampled at a depth of 3.5 feet below land surface in areas of suspected ground-water contamination. Analyses by gas chromatography indicated the presence of TCE in soils about 230 feet east of well 1 in the area of a former industrial site where solvents were handled. TCE concentrations in the soil gas of this area ranged from 0.2 to 30 mg/L TCE was not detected in soil gas near any of the wells. Depth to water at the wells ranged from 39 to 49 feet. The regional direction of ground-water flow is to the west-southwest, which would cause contaminants dissolved in ground water below the former industrial-site area to be transported toward the public-supply wells. Probable reasons contributing to the lack of TCE detection in soil gas at wells 1 and 2 are the relatively low concentrations of TCE in ground water at the wells and the vertical distance between sampling points and the water table.

  1. Streambed-material characteristics and surface-water quality, Green Pond Brook and tributaries, Picatinny Arsenal, New Jersey, 1983-90

    USGS Publications Warehouse

    Storck, D.A.; Lacombe, Pierre

    1996-01-01

    This report presents the results of a study designed to determine whether Green Pond Brook and its tributaries contain contaminated streambed sediments and to characterize the quaity of water in the brook. Results of previous investigations at Picatinny Arsenal, Morris County, New Jersey, indicate that significant contamination of ground water, surface water, and soil is present at the arsenal. Forty-five streambed-material samples were collected for analysis to determine whether contaminants have migrated to the brook from the surrounding area. Samples were analyzed for trace elements, base/neutral- and acid-etractable compounds, insecticides, and other constituents. Results of an electromagnetic-conductivity and natural-gamma-ray survey were used to describe the distribution of particle sizes in streambed and substreambed sediments. Historical results of analyses of streambed-material and surface-water samples also are presented. Samples of streambed material from three areas in Green Pond Brook and its tributaries contained organic and (or) inorganic constituents in concentrations greater than those typically found at the arsenal. These areas are Green Pond Brook, from the area near the outflow of Picatinny Lake downstream to Farley Avenue; Bear Swamp Brook, from the area near building 241 downstream to the confluence with Green Pond Brook; and Green Pond Brook, from the open burning area downstream to the dam near building 1178. Contaminants identified include trace elements, polynuclear aromatic hydrocarbons, polychlorinated biphenyls, and organochlorine insecticides. Surface water in Green Pond Brook contained several volatile organic compounds, including trichloroethylene, tetrachloroethylene, and 1,2-dichloroethylene, at maximum concen- trations of 3.8, 4.6, and 11 micrograms per liter, respectively. Volatilization is expected to remove volatile organic compounds in the steep, fast- flowing reaches of the brook. No organic or inorganic constituents were

  2. Yield and quality of ground water from stratified-drift aquifers, Taunton River basin, Massachusetts : executive summary

    USGS Publications Warehouse

    Lapham, Wayne W.; Olimpio, Julio C.

    1989-01-01

    locations revealed that 13 of the sample contained one or more of the following compounds: chloroform; carbon tetrachloride; dichloroethane; dichloroethylene; tetrachloroethylene; and, toluene. (Lantz-PTT)

  3. Trichloroethylene effects on gene expression during cardiac development

    SciTech Connect

    Collier, John Michael; Selmin, Ornella; Johnson, Paula D.; Runyan, Raymond B.

    2003-05-09

    Background: Halogenated hydrocarbon exposure is associated with changes in gene expression in adult and embryonic tissue. The present study was undertaken to identify differentially expressed mRNA transcripts in embryonic hearts from Sprague-Dawley rats exposed to trichloroethylene (TCE) or potential bio-transformation products of TCE, Dichloroethylene (DCE) and Trichloroacetic acid (TCAA). Methods: cDNA subtractive hybridization was used to selectively amplify expressed mRNA in either control or day 11 embryonic rat hearts exposed to one of these halogenated hydrocarbons from day 0 to 11. The doses used were 1100 and 110 ppm (8300 and 830 mu M) TCE, 110 and 11 ppm (1100 and 110 mu M) DCE, 27.3 and 2.75 mg/ml (100 and 10 mM) TCAA. Control animals were given distilled drinking water throughout the period of experiments. Results: Sequencing of over 100 clones derived from halogenated hydrocarbon exposed groups=resulted in identification of numerous differentially regulate gene sequences. Up-regulated transcripts identified include genes associated with stress response (Hsp 70) and homeostasis (several ribosomal proteins). Down-regulated transcripts include extracellular matrix components (GPI-p137 and vimentin) and Ca2 + responsive proteins (Serca-2 Ca2+-ATPase and beta-catenin). Two possible markers for fetal TCE exposure were identified: Serca-2 and GPI-p137, a GPI-linked protein of unknown function. Both markers show a dose-related decrease in mRNA transcript levels associated with fetal exposure to TCE. Differential regulation of expression of both markers by TCE was confirmed by dot blot analysis and semi-quantitative RT-PCR. Levels of exposure between 100 and 250 ppb (0.76 and 1.9 mu M) TCE are sufficient to decrease expression of both the Ca2+-AT Pase and GPI-p137. Conclusion: Sequences down-regulated with TCE exposure appear to be those associated with cellular=housekeeping, cell adhesion and developmental processes, while TCE=exposure up-regulates expression

  4. Mass of chlorinated volatile organic compounds removed by Pump-and-Treat, Naval Air Warfare Center, West Trenton, New Jersey, 1996-2010

    USGS Publications Warehouse

    Lacombe, Pierre J.

    2011-01-01

    Pump and Treat (P&T) remediation is the primary technique used to contain and remove trichloroethylene (TCE) and its degradation products cis 1-2,dichloroethylene (cDCE) and vinyl chloride (VC) from groundwater at the Naval Air Warfare Center (NAWC), West Trenton, NJ. Three methods were used to determine the masses of TCE, cDCE, and VC removed from groundwater by the P&T system since it became fully operational in 1996. Method 1, is based on the flow volume and concentrations of TCE, cDCE, and VC in groundwater that entered the P&T building as influent. Method 2 is based on withdrawal volume from each active recovery well and the concentrations of TCE, cDCE, and VC in the water samples from each well. Method 3 compares the maximum monthly amount of TCE, cDCE, and VC from Method 1 and Method 2. The greater of the two values is selected to represent the masses of TCE, cDCE and VC removed from groundwater each month. Previously published P&T monthly reports used Method 1 to determine the mass of TCE, cDCE, and VC removed. The reports state that 8,666 pounds (lbs) of TCE, 13,689 lbs of cDCE, and 2,455 lbs of VC were removed by the P&T system during 1996-2010. By using Method 2, the mass removed was determined to be 8,985 lbs of TCE, 17,801 lbs of cDCE, and 3,056 lbs of VC removed, and Method 3, resulted in 10,602 lbs of TCE, 21,029 lbs of cDCE, and 3,496 lbs of VC removed. To determine the mass of original TCE removed from groundwater, the individual masses of TCE, cDCE, and VC (determined using Methods 1, 2, and 3) were converted to numbers of moles, summed, and converted to pounds of original TCE. By using the molar conversion the mass of original TCE removed from groundwater by Methods 1, 2, and 3 was 32,381 lbs, 39,535 lbs, and 46,452 lbs, respectively, during 1996-2010. P&T monthly reports state that 24,805 lbs of summed TCE, cDCE, and VC were removed from groundwater. The simple summing method underestimates the mass of original TCE removed by the P&T system.

  5. Interplay between subsurface structural heterogeneity and multi-species reactive transport in human health risk predictions

    NASA Astrophysics Data System (ADS)

    Henri, C.; Fernandez-Garcia, D.; de Barros, F.

    2013-12-01

    The increasing presence of toxic chemicals released in the subsurface has led to a rapid growth of social concerns and to the need to develop and employ models that can predict the impact of groundwater contamination in human health under uncertainty. Monitored natural attenuation is a common remediation action in many contamination cases and represents an attractive decontamination method. However, natural attenuation can lead to the production of subspecies of distinct toxicity that may pose challenges in pollution management strategies. The actual threat that these contaminants pose to human health and ecosystems greatly depends on the interplay between the complexity of the geological system and the toxicity of the pollutants and their byproducts. In this work, we examine the interplay between multispecies reactive transport and the heterogeneous structure of the contaminated aquifer on human health risk predictions. The structure and organization of hydraulic properties of the aquifer can lead to preferential flow channels and fast contamination pathways. Early travel times, associated to channeling effects, are intuitively perceived as an indicator for high risk. However, in the case of multi-species systems, early travel times may also lead a limited production of daughter species that may contain higher toxicity as in the case of chlorinated compounds. In this work, we model a Perchloroethylene (PCE) contamination problem followed by the sequential first-order production/biodegradation of its daughter species Trichloroethylene (TCE), Dichloroethylene (DCE) and Vinyl Chlorine (VC). For this specific case, VC is known to be a highly toxic contaminant. By performing numerical experiments, we evaluate transport for two distinct three-dimensional aquifer structures. First, a multi-Gaussian hydraulic conductivity field and secondly, a geostatistically equivalent connected field. These two heterogeneity structures will provide two distinct ranges of mean travel

  6. Assessment of ground-water contamination at Wurtsmith Air Force Base, Michigan, 1982-85

    USGS Publications Warehouse

    Cummings, T.R.; Twenter, F.R.

    1986-01-01

    Study of ground-water contamination at Wurtsmith Air Force Base, Michigan, defined the movement and distribution of volatile organic compounds in the glacial sand and gravel aquifer at known sites of contamination, and has defined new plumes at two other sites. The Arrow Street purge system, installed in 1982 to remove contaminants from the Building 43 plume, has lowered concentrations of trichloroethylene (TCE) in groundwater in the central part of the most contaminated area from a range of 1,000 to 2,000 microg/L to about 200 microg/L. TCE is not escaping off-Base from this area. In the southern part of the Base a plume containing principally TCE and dichloroethylene (DCE) has been delineated along Mission Drive. Maximum concentrations observed were 3,290 microg/L of TCE and 1,480 microg/L of DCE. Hydrologically suitable sites for purge wells were identified in the southern part of the plume using a new ground-water flow model of the Base. A benzene plume near the bulk-fuel storage area has shifted to a more northerly direction under influence of the Arrow Street purge system. Sites initially identified for purging the benzene plume have been repositioned because of the change in contaminant movement. JP-4 fuel was found to be accumulating in wells near the bulk-fuel storage area, largely in response to seasonal fluctuations in the water-table. It is thought to originate from a spill that occurred several years ago. In general, concentrations found in water do not differ greatly from those observed in 1981. Since 1981, concentrations of TCE have decreased significantly in the Alert Apron plume. Near the origin of the plume, the concentration of TCE has decreased from 1,000 microg/L in 1980 to 50 microg/L in 1984. Water from Van Etten Lake near the termination of the plume had only a trace of TCE at one site. Benzene detected in water from well AF2 seems to originate near the former site of buried fuel tanks west of the operational apron. During periods of normal

  7. Baseline risk assessment for groundwater operable units at the Chemical Plant Area and the Ordnance Works Area, Weldon Spring, Missouri

    SciTech Connect

    1999-07-14

    .g., radium and thorium) were measured at back-ground levels and were eliminated from further consideration. Chemical contaminants identified in wells at the chemical plant area and ordnance works area include nitroaromatic compounds, metals, and inorganic anions. Trichloroethylene (TCE) and 1,2-dichloroethylene (1,2 -DCE) have been detected recently in a few wells near the raffinate pits at the chemical plant.

  8. Persistence, variance and toxic levels of organochlorine pesticides in fluvial sediments and the role of black carbon in their retention.

    PubMed

    Parween, Musarrat; Ramanathan, Al; Khillare, P S; Raju, N J

    2014-05-01

    The present study assesses the persistence and variation of organochlorine pesticides (OCPs) and their regulation by total organic carbon (TOC) and black carbon (BC) in freshwater sediment. Sediment samples from the Yamuna River, a major tributary of the Ganges (one of the most populated and intensively used rivers in Asia), had high levels of Σ20OCPs (21.41 to 139.95 ng g(-1)). β-Hexachlorocyclohexane (β-HCH) was the most predominant component. ΣHCH and Σdichloro-diphenyl-trichloroethane (DDT) constituted ~86% of Σ20OCPs. Isomer ratios indicated fresh usage of lindane, DDT and technical-grade HCH. Toxicological comparison with freshwater sediment quality guidelines showed γ-HCH and DDT at high levels of concern. β-HCH, α-HCH, endrin, heptachlor epoxide, dichloro-diphenyl-dichloroethane (DDD), dichloro-diphenyl-dichloroethylene and chlordane were above some of the guideline levels. TOC and BC had mean concentrations of 1.37 ± 0.51% and 0.46 ± 0.23 mg g(-1), respectively. BC constituted 1.25 to 10.56% of TOC. We observed low to moderate correlations of BC with isomers of HCH, p,p'-DDT and methoxychlor while of TOC with Σ20OCPs, γ-HCH, endosulfan sulfate and methoxychlor. Principal component analysis enabled correlating and clustering of various OCPs, BC and TOC. OCP distribution was related with pH, electrical conductivity, soil moisture and finer fractions of sediment. OCPs with similarity in properties that determine their interactions with carbonaceous components of sediment clustered together. A number of factors may, thus, be involved in the regulation of interactive forces between BC and OCPs. BC in this study may be more important than TOC in the retention of some OCPs into fluvial sediments, thereby reducing their bioavailability. The finding is probably the first of its kind to report and emphasises the role of BC in the persistence of OCPs in fluvial sediments.

  9. Biomonitoring of Environmental Status and Trends (BEST) Program: Environmental contaminants, health indicators, and reproductive biomarkers in fish from the Mobile, Apalachicola-Chattahoochee-Flint, Savannah, and Pee Dee River Basins

    USGS Publications Warehouse

    Hinck, Jo Ellen; Blazer, Vicki; Denslow, Nancy D.; Echols, Kathy R.; Gale, Robert W.; May, Tom W.; Claunch, Rachael; Wieser, Carla; Anderson, Patrick J.; Coyle, James J.; Gross, Timothy S.; Tillitt, Donald E.

    2007-01-01

    Largemouth bass (Micropterus salmoides) and common carp (Cyprinus carpio) were collected from 13 sites in 4 river basins in the southeastern United States to document spatial trends in accumulative contaminants, health indicators, and reproductive biomarkers. Organochlorine residues, 2,3,7,8- tetrachlorodibenzo-p-dioxin-like activity (TCDD-EQ), and elemental contaminants were measured in composite samples of whole fish, grouped by species and gender, from each site. Fish were field-examined for external and internal anomalies, selected organs were weighed to compute somatic indices, and tissue and fluid samples were preserved for fish health and reproductive biomarker analyses. Mercury concentrations in bass samples from all sites exceeded toxicity thresholds for mammals [>0.1 micrograms per gram wet weight (ug/g ww)], fish (>0.2 ug/g ww), and birds (>0.3 ug/g ww) and were greatest (>0.5 ug/g ww) in samples from the Alabama River at Eureka Landing, Alabama; the Mobile River at Bucks, Alabama; the Apalachicola River at Blountstown, Florida; the Savannah River at Sylvania, Georgia; and the Pee Dee River at Bucksport, South Carolina. Selenium concentrations were relatively high (>0.75 ug/g ww) in fish from the Tombigbee River at Lavaca, Alabama; the Mobile River at Bucks; and the Chattahoochee River at Omaha, Georgia compared to those from other sites. Concentrations of 2,2-bis (p-chlorophenyl)- 1,1-dichloroethylene (p,p'-DDE) were high in fish from the Chattahoochee River at Omaha and the Mobile River near Bucks, which was near a 2,2-bis (p-chlorophenyl)-1,1- dichloroethylene (DDT) formulating facility that historically discharged into the lower Mobile River. Toxaphene concentrations in fish from the Flint River near Albany, Georgia (60-100 nanograms per gram (ng/g) ww) may pose a risk to fish. Concentrations of other formerly used (total chlordanes, dieldrin, endrin, aldrin, mirex, and hexachlorobenzene) and currently used (pentachlorobenzene, pentachloroanisole

  10. Hanford Site Groundwater Monitoring for Fiscal Year 1999

    SciTech Connect

    MJ Hartman; LF Morasch; WD Webber

    2000-05-10

    This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 1999 on the US. Department of Energy's Hanford Site, Washington. Water-level monitoring was performed to evaluate groundwater flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Measurements for site-wide maps were conducted in June in past years and are now measured in March to reflect conditions that are closer to average. Water levels over most of the Hanford Site continued to decline between June 1998 and March 1999. The most widespread radiological contaminant plumes in groundwater were tritium and iodine-129. Concentrations of carbon-14, strontium-90, technetium-99, and uranium also exceeded drinking water standards in smaller plumes. Cesium-137 and plutonium exceeded standards only near the 216-B-5 injection well. Derived concentration guide levels specified in US Department of Energy Order 5400.5 were exceeded for plutonium, strontium-90, tritium, and uranium in small plumes or single wells. Nitrate and carbon tetrachloride are the most extensive chemical contaminants. Chloroform, chromium, cis-1,2dichloroethylene, cyanide, fluoride, and trichloroethylene also were present in smaller areas at levels above their maximum contaminant levels. Metals such as aluminum, cadmium, iron, manganese, and nickel exceeded their maximum contaminant levels in filtered samples from numerous wells; however, in most cases, they are believed to represent natural components of groundwater. ''Resource Conservation and Recovery Act of 1976'' groundwater monitoring continued at 25 waste management areas during fiscal year 1999: 16 under detection programs and data indicate that they are not adversely affecting groundwater; 6 under interim status groundwater quality assessment programs to assess contamination; and 2 under final status corrective-action programs. Another site, the 120-D-1 ponds, was clean closed in

  11. Occurrence of Selected Organic Compounds in Groundwater Used for Public Supply in the Plio-Pleistocene Deposits in East-Central Nebraska and the Dawson and Denver Aquifers near Denver, Colorado, 2002-2004

    USGS Publications Warehouse

    Bails, Jeffrey B.; Dietsch, Benjamin J.; Landon, Matthew K.; Paschke, Suzanne S.

    2009-01-01

    ), which were detected in 9 of the 15 wells (60 percent of the samples). The second most frequently detected organic compound was tetrachloroethylene, detected in 4 of the 15 wells (27 percent of the samples), followed by chloroform, trichloroethylene, and 2-hydroxyatrazine (2-hydroxy-4-isopropylamino-6-ethylamino-s-triazine, or OIET), present in 3 of the 15 wells (20 percent of the samples). The pesticide compounds deisopropylatrazine (2-chloro-6-ethylamino-4-amino-s-triazine, or CEAT), metolachlor, and simazine and the volatile organic compound cis-1,2-dichloroethylene were detected in 2 of the 15 wells, and the compounds diuron and 1,2-dichloroethane were detected in only 1 of the 15 wells during the first-year sampling. Most detections of these compounds were at or near the minimum reporting levels, and none were greater than their regulatory maximum contaminant level. There were few detections of organic compounds during the first year of sampling groundwater wells in the South Platte study area. The compounds atrazine, deethylatrazine, picloram, tetrachloroethylene, methyl-tert-butyl-ether (MTBE), tris(2-butoxyethyl)phosphate, and bromoform were detected only once in all the samples from the 12 wells. Most detections of these compounds were at or near the minimum reporting levels, and none were greater than their regulatory maximum contaminant level. Second-year sampling, which included the addition of paired source- and finished-water samples, was completed at two sites in the High Plains study area. Source-water samples from the second-year sampling had detections of atrazine and deethylatrazine; at one site deisopropylatrazine and chloroform also were detected. The finished-water samples, which represent the source water after blending with water from other wells and treatment, indicated a decrease in the concentrations of the pesticides at one site, whereas concentrations remained nearly constant at a second site. The trihalomethanes (THMs or disinfec

  12. Analysis of nitrate and volatile organic compound data for ground water in the Great Salt Lake Basins, Utah, Idaho, and Wyoming, 1980-98, National Water-Quality Assessment Program

    USGS Publications Warehouse

    Thiros, Susan A.

    2000-01-01

    sampled ground water. Overall, water sampled from wells in rangeland areas had a lowermedianmeasured nitrate concentration (0.76 milligrams per liter) than water from areas with an agricultural or urban/residential land use (1.41 and 1.20 milligrams per liter, respectively). In the NationalWater Information System data set, the median measured nitrate concentration in water from urban/residential areas varied from 1.00 milligrams per liter for wells greater than 150 feet deep to 1.84 milligrams per liter for wells less than or equal to 150 feet deep. The Public DrinkingWater Systems and the National Water Information System data sets contained analyses for most of the State and Federally regulated volatile organic compounds in water from about 368 and 74 wells, respectively. Fifteen different volatile organic compounds were detected at least once in ground water sampled from the Great Salt Lake Basins study unit. Water from 21 wells contained at least 1 volatile organiccompound at detectable concentrations. About 68 percent of the volatile organic compounds detected were in water sampled from wells in Salt Lake County, Utah. Tetrachloroethylene was the most commonly detected volatile organic compound in ground water sampled from the study unit, present in 8 out of 442 samples. Maximum contaminant levels for tetrachloroethylene and 1,1-dichloroethylene as established by the U.S. Environmental Protection Agency were exceeded in water from one well each.

  13. Ground-water-quality assessment of the Central Oklahoma aquifer, Oklahoma; hydrologic, water-quality, and quality-assurance data 1987-90

    USGS Publications Warehouse

    Ferree, D.M.; Christenson, S.C.; Rea, A.H.; Mesander, B.A.

    1992-01-01

    , ranging from below the reporting level to concentrations over the Maximum Contaminant Levels for several constituents (arsenic, barium, cadmium, chromium, lead, and selenium). Radionuclide activities also were highly variable. Gross alpha radioactivity ranged from 0.1 to 210 picocuries per liter as 230thorium. Of the wells sampled, 20 percent exceeded the proposed Maximum Contaminant Level of 15 picocuries per liter for gross alpha radioactivity. Organic constituents were detected in 39 percent of the 170 wells sampled for organic constituents; in most cases concentrations were at or near the laboratory minimum reporting levels. Ten of the wells sampled for organic constituents had one or more constituents (chlordane, dieldrin, heptachlor epoxide, trichloroethylene, 1,1-dichloroethylene, 1,1,1-trichloroethane) at concentrations equal to or greater than the Maximum Contaminant Level or acceptable concentrations as suggested in the Environmental Protection Agency's Health Advisory Summaries. Quality-assurance sampling included duplicate samples, repeated samples, blanks, spikes, and blind samples. These samples proved to be essential in evaluating the accuracy of the data, particularly in the case of volatile organic constituents.

  14. Hydrogeology and water quality of a surficial aquifer underlying an urban area, Manchester, Connecticut

    USGS Publications Warehouse

    Mullaney, John R.; Grady, Stephen J.

    1997-01-01

    The quality of water along flowpaths in a surficial aquifer system in Manchester, Connecticut, was studied during 1993-95 as part of the National Water Quality Assessment program. The flowpath study examined the relations among hydrogeology, land-use patterns, and the presence of contaminants in a surficial aquifer in an urban area, and evaluated ground water as a source of contamination to surface water. A two-dimensional, finite-difference groundwater- flow model was used to estimate travel distance, which ranged from about 50 to 11,000 feet, from the source areas to the sampled observation wells. Land use, land cover, and population density were determined in the source areas delineated by the ground-water-flow simulation. Source areas to the wells contained either high- or medium-density residential areas, and population density ranged from 629 to 8,895 people per square mile. Concentrations of selected inorganic constituents, including sodium, chloride, and nitrite plus nitrate nitrogen, were higher in the flowpath study wells than in wells in undeveloped areas with similar aquifer materials. One or more of 9 volatile organic compounds were detected at 12 of 14 wells. The three most commonly detected volatile organic compounds were chloroform, methyl-tert-butyl ether, and trichloroethene. Trichloroethene was detected at concentrations greater than the maximum contaminant level for drinking water (5 micrograms per liter) in samples from one well. Four pesticides, including dichloro diphenyl dichloroethylene, dieldrin, dichloroprop, and simazine were detected at low concentrations. Concentrations of sodium and chloride were higher in samples collected from wells screened in the top of the saturated zone than in samples collected from deeper zones. Volatile organic compounds and elevated concentrations of nitrite plus nitrate as nitrogen were detected at depths of as much as 60 feet below the water table, indicating that the effects of human activities on the

  15. Interpretation of geophysical logs, aquifer tests, and water levels in wells in and near the North Penn Area 7 Superfund site, Upper Gwynedd Township, Montgomery County, Pennsylvania, 2000-02

    USGS Publications Warehouse

    Senior, Lisa A.; Cinotto, Peter J.; Conger, Randall W.; Bird, Philip H.; Pracht, Karl A.

    2005-01-01

    high-angle fractures and bedding-plane openings throughout the depth of the boreholes. Heatpulse-flowmeter measurements under nonpumping, ambient conditions indicated that borehole flow, where detected, was in the upward direction in three of the eight wells and in the downward direction in three wells. In two wells, both upward and downward flow were measured. Heatpulse-flowmeter measurements under pumping conditions were used to identify the most productive intervals in wells. Correlation of natural-gamma-ray and single-point-resistance logs indicated that bedding in the area probably strikes about 40 degrees northeast and dips from 6 to 7 degrees northwest. Aquifer intervals isolated by inflatable packers in wells were pumped to test productivity and to collect samples to determine chemical quality of water produced from the interval. Interval-isolation testing confirmed the presence of vertical hydraulic gradients indicated by heatpulse-flowmeter measurements. The specific capacities of isolated intervals ranged over two orders of magnitude, from 0.02 to more than 3.6 gallons per minute per foot. Intervals adjacent to isolated pumped intervals showed little response to pumping the isolated zone. The presence of vertical hydraulic gradients and lack of adjacent-interval response to pumping in isolated intervals indicate a limited degree of vertical hydraulic connection between the aquifer intervals tested. Concentrations of most VOC contaminants generally were highest in well-water samples from the shallowest isolated intervals, with some exceptions. Trichloroethylene, cis-1,2-dichloroethylene, and toluene were the most frequently detected VOCs, with maximum concentrations of greater than 340, 680, and greater than 590 micrograms per liter, respectively. Results of the aquifer test with multiple observation wells showed that water levels in 4 of the 14 wells declined in response to pumping. The four wells that responded to pumping are either along str

  16. Probabilistic Health Risk Assessment of Chemical Mixtures: Importance of Travel Times and Connectivity

    NASA Astrophysics Data System (ADS)

    Henri, Christopher V.; Fernàndez-Garcia, Daniel; de Barros, Felipe P. J.

    2014-05-01

    Subsurface contamination cases giving rise to groundwater pollutions are extensively found in all industrialized countries. Under this pressure, risk assessment methods play an important role in population protection by (1) quantifying the potential impact on human health of an aquifer contamination and (2) helping and driving decisions of groundwater-resource managers. Many reactive components such as chlorinated solvents or nitrates potentially experience attenuation processes under common geochemical conditions. This represents an attractive and extensively used remediation solution but leads often to the production of by-products before to reach a harmless chemical form. This renders mixtures of contaminants a common issue for groundwater resources managers. In this case, the threat posed by these contaminants to human health at a given sensitive location greatly depends on the competition between reactive and advective-dispersive characteristic times. However, hydraulic properties of the aquifer are known to be spatially variable, which can lead to the formation of preferential flow channels and fast contamination pathways. Therefore, the uncertainty on the spatial distribution of the aquifer properties controlling the plume travel time may then play a particular role in the human health risk assessment of chemical mixtures. We investigate here the risk related to a multispecies system in response to different degrees of heterogeneity of the hydraulic conductivity (K or Y =ln(K)). This work focuses on a Perchloroethylene (PCE) contamination problem followed by the sequential first-order production/biodegradation of its daughter species Trichloroethylene (TCE), Dichloroethylene (DCE) and Vinyl Chlorine (VC). For this specific case, VC is known to be a highly toxic contaminant. By performing numerical experiments, we evaluate transport through three-dimensional mildly (σY 2=1.0) and highly (σY 2=4.0) heterogeneous aquifers. Uncertainty on the hydraulic

  17. Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones.

    PubMed

    He, Feng; Zhao, Dongye; Paul, Chris

    2010-04-01

    reduction after two weeks. After 596 days from the first injection, the total chlorinated ethenes concentration decreased by about 40% and 61% in MW-1 and MW-2, respectively. No significant long-term reduction of PCB 1242 was observed in MW-1, but a reduction of 87% was evident in MW-2. During the 596 days of testing, the total concentrations of cis-DCE (dichloroethylene) and VC (vinyl chloride) decreased by 20% and 38% in MW-1 and MW-2, respectively. However, the combined fraction of cis-DCE and VC in the total chlorinated ethenes (PCE, TCE, cis-DCE and VC) increased from 73% to 98% and from 62% to 98%, respectively, which supports the notion that biological dechlorination of PCE and TCE was active. It is proposed that CMC-stabilized ZVI-Pd nanoparticles facilitated the early stage rapid abiotic degradation. Over the long run, the existing biological degradation process was boosted with CMC as the carbon source and hydrogen from the abiotic/biotic processes as the electron donor, resulting in the sustained enhanced destruction of the chlorinated organic chlorinated ethenes in the subsurface. PMID:20106501

  18. Assessment of Hyporheic Zone, Flood-Plain, Soil-Gas, Soil, and Surface-Water Contamination at the McCoys Creek Chemical Training Area, Fort Gordon, Georgia, 2009-2010

    USGS Publications Warehouse

    Guimaraes, Wladmir B.; Falls, W. Fred; Caldwell, Andral W.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.

    2011-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of the Army Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon, Georgia, assessed the hyporheic zone, flood plain, soil gas, soil, and surface water for contaminants at the McCoys Creek Chemical Training Area (MCTA) at Fort Gordon, from October 2009 to September 2010. The assessment included the detection of organic contaminants in the hyporheic zone, flood plain, soil gas, and surface water. In addition, the organic contaminant assessment included the analysis of organic compounds classified as explosives and chemical agents in selected areas. Inorganic contaminants were assessed in soil and surface-water samples. The assessment was conducted to provide environmental contamination data to the U.S. Army at Fort Gordon pursuant to requirements of the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. Ten passive samplers were deployed in the hyporheic zone and flood plain, and total petroleum hydrocarbons (TPH) and octane were detected above the method detection level in every sampler. Other organic compounds detected above the method detection level in the hyporheic zone and flood-plain samplers were trichloroethylene, and cis- and trans- 1, 2-dichloroethylene. One trip blank detected TPH below the method detection level but above the nondetection level. The concentrations of TPH in the samplers were many times greater than the concentrations detected in the blank; therefore, all other TPH concentrations detected are considered to represent environmental conditions. Seventy-one soil-gas samplers were deployed in a grid pattern across the MCTA. Three trip blanks and three method blanks were used and not deployed, and TPH was detected above the method detection level in two trip blanks and one method blank. Detection of TPH was observed at all 71 samplers, but because TPH was detected in the trip and method blanks, TPH was

  19. Water quality of selected rivers in the New England Coastal Basins in Maine, Massachusetts, New Hampshire, and Rhode Island, 1998-2000

    USGS Publications Warehouse

    Campo, Kimberly W.; Flanagan, Sarah M.; Robinson, Keith W.

    2003-01-01

    freshwater aquatic life. The volatile organic compounds trichloroethylene, tetrachloroethylene, and cis-1,2- dichloroethylene--all solvents and de-greasers--were detected in all water samples from both rivers. The gasoline oxygenate methyl tert-butyl ether (MTBE) and the disinfection by-product chloroform were detected in all but one water sample from the two rivers. Two water samples from the Charles River had trichloroethylene concentrations that exceeded the U.S. Environmental Protection Agency Maximum Contaminant Level of 5 micrograms per liter for drinking water. Selected water-quality data from two NCEB rivers in the Boston metropolitan area were compared to two similarly sized intensely urban rivers in another NAWQA study area in the New York City metropolitan area and to other urban rivers sampled as part of the NAWQA Program nationally. Nutrient total nitrogen and total phosphorus concentrations and yields were less in the NECB study area than in the other study areas. In addition, the pesticides atrazine, carbaryl, diazinon, and prometon were detected less frequently and at lower concentrations in the two NECB rivers than in the New York City area streams or in the other urban NAWQA streams. Concentrations of the insecticides diazinon and carbaryl were detected more frequently and at higher concentrations in the NECB study area than in the other urban rivers sampled by NAWQA nationally. Detection frequency and concentrations of volatile organic compounds generally were higher in the two NECB streams than in the New York City area streams or in other urban NAWQA streams.

  20. Hanford Site Groundwater Monitoring for Fiscal Year 1998

    SciTech Connect

    Hartman, M.J.

    1999-03-24

    This report presents the results of groundwater and vadose-zone monitoring and remediation for fiscal year (FY) 1998 on the Word Site, Washington. Soil-vapor extraction in the 200-West Area removed 777 kg of carbon tetrachloride in FY 1998, for a total of 75,490 kg removed since remediation began in 1992. Spectral gamma logging and evaluation of historical gross gamma logs near tank farms and liquid-disposal sites in the 200 Areas provided information on movement of contaminants in the vadose zone. Water-level monitoring was performed to evaluate groundwater-flow directions, to track changes in water levels, and to relate such changes to evolving disposal practices. Water levels over most of the Hanford Site continued to decline between June 1997 and June 1998. The most widespread radiological contaminant plumes in groundwater were tritium and iodine-129. Concentrations of technetium-99, uranium, strontium-90, and carbon-14 also exceeded drinking water standards in smaller plumes. Plutonium and cesium-137 exceeded standards only near the 216-B-5 injection well. Derived concentration guide levels specified in U.S. Department of Energy Order 5400.5 were exceeded for tritium, uranium, strontium-90, and plutonium in small plumes or single wells. One well completed in the basalt-confined aquifer beneath the 200-East Area exceeded the drinking water standard for technetium-99. Nitrate is the most extensive chemical contaminant. Carbon tetrachloride, chloroform, chromium, cis-l, Z-dichloroethylene, fluoride, and trichloroethylene also were present in smaller areas at levels above their maximum contaminant levels. Cyanide concentrations were elevated in one area but were below the maximum contaminant level. Tetrachloroethylene exceeded its maximum contaminant level in several wells in the 300 Area for the first time since the 1980s. Metals such as aluminum, cadmium, iron, manganese, and nickel exceeded their maximum contaminant levels in filtered samples from numerous

  1. NTP technical report on the toxicity studies of a Chemical Mixture of 25 Groundwater Contaminants Administered in Drinking Water to F344/N Rats and B6C3F(1) Mice.

    PubMed

    Yang, R.

    1993-08-01

    females. Hematologic assessments indicated that rats receiving 378 ppm developed a microcytic anemia consistent with that accompanying iron depletion. Multiple foci of inflammation occurred in the liver of exposed rats. In high-dose females, these liver lesions were especially prominent and included bile duct and oval cell hyperplasia. Inflammation also occurred in the mesenteric lymph nodes, the adrenal gland, and the spleen. The amount of hemosiderin in the spleens of rats receiving the higher concentrations of the chemical mixture was less than normal. Components of a chemical mixture of 25 groundwater contaminants include acetone, aroclor 1260, arsenic, benzene, cadmium, carbon tetrachloride, chlorobenzene, chloroform, chromium, 1,1-dichloroethane, 1,2-dichloroethane, 1,1-dichloroethylene, 1,2-trans-dichloroethylene, di(2-ethylhexyl) phthalate, ethylbenzene, lead, mercury, methylene chloride, nickel, phenol, tetrachloroethylene, toluene, 1,1,1-trichloroethane, trichloroethylene, xylenes. In a 26-week study in which mice were exposed to the chemical mixture at concentrations of 0, 11, 38, 113, and 378 ppm in drinking water, there were no clear adverse effects noted in survival, weight gain, clinical pathology parameters, or histopathologic evaluations. Water consumption decreased with increasing dose, and water consumption by high-dose mice was approximately 40% less than that by the controls. In neurobehavioral assessments, no clear treatment-related effects were observed in measures of forelimb and hindlimb grip strength, hindlimb footsplay, motor activity, response to a thermal stimulus, or startle response in rats or mice evaluated at 6-week intervals throughout the 26- week drinking water studies. There were no effects on sperm morphology or motility or on estrous cycle length in rats or mice receiving the chemical mixture during the 26-week studies. Sperm concentration was decreased in F(1) CD-1(R) Swiss mice during continuous breeding studies, although there

  2. Assessment of ethylene dibromide, dibromochloropropane, other volatile organic compounds, radium isotopes, radon, and inorganic compounds in groundwater and spring water from the Crouch Branch and McQueen Branch aquifers near McBee, South Carolina, 2010-2012

    USGS Publications Warehouse

    Landmeyer, James E.; Campbell, Bruce G.

    2014-01-01

    The water-quality data collected between 2010 and 2012, in conjunction with groundwater flow pathways and historical aerial photographs of land uses near McBee, indicate an area where EDB-, DBCP-, 1,2-dichloropropane-, 1,3-dichloropropane-, and carbon disulfide-contaminated groundwater exists in the Crouch Branch aquifer in the Cedar Creek Basin and north of McBee and is most likely related to the past use of these compounds between the early 1900s and the 1980s as soil fumigants in predominately agricultural areas north of McBee. The highest EDB concentration detected (18.6 micrograms per liter) during the 3-year study was in a groundwater sample from an agricultural-supply well located north of McBee. Other VOCs, such as dichloromethane and 1,1,2-trichloroethane, also were detected in groundwater samples from this EDB-contaminated agricultural-supply well but are from unknown source(s). The fact that the agricultural area north of McBee is located in a recharge area for the Crouch Branch aquifer most likely facilitated the groundwater contamination in this area. DBCP-contaminated groundwater detected in three public-supply wells south of McBee in the deeper McQueen Branch aquifer appears to be related to past soil fumigation practices that used DBCP in agricultural areas located south of McBee. One of the three DBCP-contaminated public-supply wells also contained EDB, most likely present in groundwater due to the release of leaded gasolines that contained EDB as a fuel additive between the 1940s and 1970s. A gasoline-source of EDB, rather than a soil-fumigation source, is supported by the co-detection in groundwater from the well of 1,2-dichloroethane, a lead scavenger compound also added to leaded gasoline. Groundwater pumped from two public-supply wells located within and to the east of the McBee town limits and one domestic-supply well east of McBee was characterized by the detection of 1,1-dichloroethane, trichloroethylene, 1,1-dichloroethylene, and

  3. Hydrogeology of the area near the J4 test cell, Arnold Air Force Base, Tennessee

    USGS Publications Warehouse

    Haugh, C.J.

    1996-01-01

    . The occurrence, distribution, and orientation of these features has a great effect on ground-water flow to the J4 test cell. The depression caused by dewatering extends out horizontally through the aquifers along the most permeable pathways. Since the aquifers above the Chattanooga Shale are not separated by distinct confining units, areas in adjacent aquifers above and below these zones of high permeability in the Manchester aquifer are also dewatered. Conditions in all Highland Rim aquifers approximate steady-state equilibrium because ground-water withdrawal at the test cell has been continuous since the late 1960's. The average ground-water discharge from the dewatering system at the J4 test cell was 105 gallons per minute, for 1992-95. The ground-water capture areas in each aquifer extend into all or parts of landfill #2 and leaching pit #2 (IRP site 1), the main testing area (IRP site 7), and the old fire training area (IRP site 10). IRP sites 8 and 12 are outside the ground-water capture areas. Of the 35 sampled wells in the J4 area, 10 produced water samples containing chlorinated organic compounds such as 1,2-dichloroethane (1,2-DCA), 1,1-dichloroethylene (1,1-DCE), and trichloroethylene (TCE) in concentrations which exceeded the Tennessee Department of Environment and Conservation Maximum Contaminant Levels (MCL's) for public water-supply systems. The highest concentrations were detected in samples from well AEDC-274 with 45 micrograms per liter (mg/L) 1,2-DCA, 320 mg/L 1,1-DCE, and 1,200 mg/L TCE. These compounds are synthetic and do not occur naturally in the environment. A sample of the ground-water discharge from the J4 test cell also contained concentrations of these compounds that exceed MCL's. Chlorinated organic compounds, including 1,2-DCA; 1,1-DCE; and TCE also have been detected at IRP sites 1, 7, 8, nd 10. The six dewatering wells surrounding the J4 test cell penetrate the Chattanooga Shale and are open to the Highland Rim aquifer system, there

  4. Assessment of Hyporheic Zone, Flood-Plain, Soil-Gas, Soil, and Surface-Water Contamination at the McCoys Creek Chemical Training Area, Fort Gordon, Georgia, 2009-2010

    USGS Publications Warehouse

    Guimaraes, Wladmir B.; Falls, W. Fred; Caldwell, Andral W.; Ratliff, W. Hagan; Wellborn, John B.; Landmeyer, James E.

    2011-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of the Army Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon, Georgia, assessed the hyporheic zone, flood plain, soil gas, soil, and surface water for contaminants at the McCoys Creek Chemical Training Area (MCTA) at Fort Gordon, from October 2009 to September 2010. The assessment included the detection of organic contaminants in the hyporheic zone, flood plain, soil gas, and surface water. In addition, the organic contaminant assessment included the analysis of organic compounds classified as explosives and chemical agents in selected areas. Inorganic contaminants were assessed in soil and surface-water samples. The assessment was conducted to provide environmental contamination data to the U.S. Army at Fort Gordon pursuant to requirements of the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. Ten passive samplers were deployed in the hyporheic zone and flood plain, and total petroleum hydrocarbons (TPH) and octane were detected above the method detection level in every sampler. Other organic compounds detected above the method detection level in the hyporheic zone and flood-plain samplers were trichloroethylene, and cis- and trans- 1, 2-dichloroethylene. One trip blank detected TPH below the method detection level but above the nondetection level. The concentrations of TPH in the samplers were many times greater than the concentrations detected in the blank; therefore, all other TPH concentrations detected are considered to represent environmental conditions. Seventy-one soil-gas samplers were deployed in a grid pattern across the MCTA. Three trip blanks and three method blanks were used and not deployed, and TPH was detected above the method detection level in two trip blanks and one method blank. Detection of TPH was observed at all 71 samplers, but because TPH was detected in the trip and method blanks, TPH was

  5. Hydrogeology, water chemistry, and transport processes in the zone of contribution of a public-supply well in Albuquerque, New Mexico, 2007-9

    USGS Publications Warehouse

    Bexfield, Laura M.; Jurgens, Bryant C.; Crilley, Dianna M.; Christenson, Scott C.

    2012-01-01

    (TCE) and cis-1,2-dichloroethylene had been detected in the SSW, and several of these wells m

  6. Hydrogeology, water chemistry, and transport processes in the zone of contribution of a public-supply well in Albuquerque, New Mexico, 2007-9

    USGS Publications Warehouse

    Bexfield, Laura M.; Jurgens, Bryant C.; Crilley, Dianna M.; Christenson, Scott C.

    2012-01-01

    (TCE) and cis-1,2-dichloroethylene had been detected in the SSW, and several of these wells may have become contaminated at least partly because of enhanced vertical migration associated with the pumping of and (or) direct migration down deep well bores. Except for TCE in the sample from a shallow monitoring well, all detections of VOCs were at concentrations below Maximum Contaminant Levels (MCLs) set by the U.S. Environmental Protection Agency. Concentrations of all VOCs detected in the supply wells were less than one-tenth of the corresponding MCLs. However, the presence of VOCs in all but deep groundwater, including the detection of chloroform (a chlorination byproduct) in several shallow wells, indicates that groundwater in the study area commonly is affected by human activities, even to substantial depths. The only natural contaminant detected at concentrations near or above its MCL was arsenic, which has been detected at elevated concentrations across broad areas of the MRGB. Concentrations of arsenic, present primarily as arsenate, exceeded the MCL of 10 micrograms per liter (μg/L) in water from the two deep wells (one of which had the highest concentration, 35 μg/L), from one intermediate well, and from two supply wells, including the SSW. Water-quality and solid-phase data from this study are consistent with elevated arsenic concentrations in groundwater being related to pH-dependent desorption of arsenic from ferric oxyhydroxides in sediments in deep parts of the aquifer. Concentrations of nitrate ranged between 1.3 and 5.4 milligrams per liter (mg/L) in water from shallow wells screened across the water table, but were less than 0.9 mg/L in water from all but one deeper well. Nitrogen isotopes and chloride/bromide ratios for shallow wells were consistent with natural soil nitrogen. Nitrate concentrations and nitrogen isotopes indicated that denitrification is occurring at intermediate aquifer depths, and that the progress of the denitrification reaction

  7. NTP Toxicology and Carcinogenesis Studies of Trichloroethylene (CAS No. 79-01-6) in Four Strains of Rats (ACI, August, Marshall, Osborne-Mendel) (Gavage Studies).

    PubMed

    1988-04-01

    in Marshall rats exposed to trichloroethylene. Synonyms: acetylene trichloride; 1-chloro-2,2-dichloroethylene; 1,1-dichloro-2-chloroethylene; ethinyl trichloride; ethylene trichloride; 1,1,2-trichloroethylene; trichloroethene Trade names of formulations: Algylen; Anamenth; Benzinol; Blacosolv; Blancosolv; Cecolene; Chlorilen; Chlorylea; Chorylen; Circosolv; Crawhaspol; Densinfluat; Dow-Tri; Dukeron; Fleck-Flip; Flock Flip; Fluate; Gemalgene; Germalgene; Lanadin; Lethurin; Narcogen; Narkogen; Narkosoid; Nialk; Perma-A-Chlor; Perm-A-Clor; Petzinol; Philex; Threthylen; Threthylene; Trethylene; Tri; Triad; Trial; Triasol; Trichloran; Trichloren; Triclene; Tri-Clene; Trielene; Trielin; Triklone; Trilen; Trilene; Triline; Trimar; Triol; TRI-plus; TRI-plus M; Vestrol; Vitran; Westrosol Target Organs & Incidences from 2-year Studies