Sample records for die casting applications

  1. The Effect of Alloying Elements on Thermal Conductivity and Casting Characteristic in High Pressure Die Casting of Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Kim, Cheol-Woo; Cho, Jae-Ik; Choi, Se-Weon; Kim, Young-Chan; Kang, Chang-Seog

    Recently, demand of aluminum alloys for use in high thermal conductivity application is increases but the most aluminum die casting alloys exhibit very lower thermal properties because of their high concentrations of alloying elements. However, those alloying elements are essential to obtain sufficient fluidity and mechanical strength. Therefore, the purpose of this study is to analyze the effect of alloying elements in die casting alloys, Si, Cu, Mg, Fe and Mn, in thermal conductivity, die casting characteristics and mechanical properties and find out the appropriate amount of each alloying element for development of heat sink component. The results showed that Mn had the most deleterious effect in thermal conductivity and Si and Fe contents were important to improve strength and limit casting defects, such as hot tearing and die soldering. The alloy with 0.2 1.0wt%Cu, 0.3 0.6wt%Fe and 1.0 2.0wt%Si showed very good combination of high thermal conductivity and good casting characteristics.

  2. Ageless Aluminum-Cerium-Based Alloys in High-Volume Die Casting for Improved Energy Efficiency

    DOE PAGES

    Stromme, Eric T.; Henderson, Hunter B.; Sims, Zachary C.; ...

    2018-04-25

    Strong chemical reactions between Al and Ce lead to the formation of intermetallics with exceptional thermal stability. The rapid formation of intermetallics directly from the liquid phase during solidification of Al-Ce alloys leads to an ultrafine microconstituent structure that effectively strengthens as-cast alloys without further microstructural optimization via thermal processing. Die casting is a high-volume manufacturing technology that accounts for greater than 40% of all cast Al products, whereas Ce is highly overproduced as a waste product of other rare earth element (REE) mining. Reducing heat treatments would stimulate significant improvements in manufacturing energy efficiency, exceeding (megatonnes/year) per large-scale heat-treatmentmore » line. In this study, multiple compositions were evaluated with wedge mold castings to test the sensitivity of alloys to the variable solidification rate inherent in high-pressure die casting. Once a suitable composition was determined, it was successfully demonstrated at 800 lbs/h in a 600-ton die caster, after which the as-die cast parts performed similarly to ubiquitous A380 in the same geometry without requiring heat treatment. Furthermore, this work demonstrates the compatibility of Al REE alloys with high-volume die-casting applications with minimal heat treatments.« less

  3. Ageless Aluminum-Cerium-Based Alloys in High-Volume Die Casting for Improved Energy Efficiency

    NASA Astrophysics Data System (ADS)

    Stromme, Eric T.; Henderson, Hunter B.; Sims, Zachary C.; Kesler, Michael S.; Weiss, David; Ott, Ryan T.; Meng, Fanqiang; Kassoumeh, Sam; Evangelista, James; Begley, Gerald; Rios, Orlando

    2018-06-01

    Strong chemical reactions between Al and Ce lead to the formation of intermetallics with exceptional thermal stability. The rapid formation of intermetallics directly from the liquid phase during solidification of Al-Ce alloys leads to an ultrafine microconstituent structure that effectively strengthens as-cast alloys without further microstructural optimization via thermal processing. Die casting is a high-volume manufacturing technology that accounts for greater than 40% of all cast Al products, whereas Ce is highly overproduced as a waste product of other rare earth element (REE) mining. Reducing heat treatments would stimulate significant improvements in manufacturing energy efficiency, exceeding (megatonnes/year) per large-scale heat-treatment line. In this study, multiple compositions were evaluated with wedge mold castings to test the sensitivity of alloys to the variable solidification rate inherent in high-pressure die casting. Once a suitable composition was determined, it was successfully demonstrated at 800 lbs/h in a 600-ton die caster, after which the as-die cast parts performed similarly to ubiquitous A380 in the same geometry without requiring heat treatment. This work demonstrates the compatibility of Al REE alloys with high-volume die-casting applications with minimal heat treatments.

  4. Ageless Aluminum-Cerium-Based Alloys in High-Volume Die Casting for Improved Energy Efficiency

    NASA Astrophysics Data System (ADS)

    Stromme, Eric T.; Henderson, Hunter B.; Sims, Zachary C.; Kesler, Michael S.; Weiss, David; Ott, Ryan T.; Meng, Fanqiang; Kassoumeh, Sam; Evangelista, James; Begley, Gerald; Rios, Orlando

    2018-04-01

    Strong chemical reactions between Al and Ce lead to the formation of intermetallics with exceptional thermal stability. The rapid formation of intermetallics directly from the liquid phase during solidification of Al-Ce alloys leads to an ultrafine microconstituent structure that effectively strengthens as-cast alloys without further microstructural optimization via thermal processing. Die casting is a high-volume manufacturing technology that accounts for greater than 40% of all cast Al products, whereas Ce is highly overproduced as a waste product of other rare earth element (REE) mining. Reducing heat treatments would stimulate significant improvements in manufacturing energy efficiency, exceeding (megatonnes/year) per large-scale heat-treatment line. In this study, multiple compositions were evaluated with wedge mold castings to test the sensitivity of alloys to the variable solidification rate inherent in high-pressure die casting. Once a suitable composition was determined, it was successfully demonstrated at 800 lbs/h in a 600-ton die caster, after which the as-die cast parts performed similarly to ubiquitous A380 in the same geometry without requiring heat treatment. This work demonstrates the compatibility of Al REE alloys with high-volume die-casting applications with minimal heat treatments.

  5. Ageless Aluminum-Cerium-Based Alloys in High-Volume Die Casting for Improved Energy Efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stromme, Eric T.; Henderson, Hunter B.; Sims, Zachary C.

    Strong chemical reactions between Al and Ce lead to the formation of intermetallics with exceptional thermal stability. The rapid formation of intermetallics directly from the liquid phase during solidification of Al-Ce alloys leads to an ultrafine microconstituent structure that effectively strengthens as-cast alloys without further microstructural optimization via thermal processing. Die casting is a high-volume manufacturing technology that accounts for greater than 40% of all cast Al products, whereas Ce is highly overproduced as a waste product of other rare earth element (REE) mining. Reducing heat treatments would stimulate significant improvements in manufacturing energy efficiency, exceeding (megatonnes/year) per large-scale heat-treatmentmore » line. In this study, multiple compositions were evaluated with wedge mold castings to test the sensitivity of alloys to the variable solidification rate inherent in high-pressure die casting. Once a suitable composition was determined, it was successfully demonstrated at 800 lbs/h in a 600-ton die caster, after which the as-die cast parts performed similarly to ubiquitous A380 in the same geometry without requiring heat treatment. Furthermore, this work demonstrates the compatibility of Al REE alloys with high-volume die-casting applications with minimal heat treatments.« less

  6. Fatigue properties of die cast zinc alloys for automotive lock applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schrems, Karol K.; Dogan, Omer N.; Goodwin, F.E.

    2004-06-01

    During the 1970’s many automotive lock systems were converted from zinc die casting alloys to engineering plastics for reasons of weight and cost. Recent increases in requirements for precision and security have caused automotive and other lock designers to reconsider zinc alloy die-castings for these applications. To enable this, there is a need for mechanical property data comparable to that of the plastics materials used in these applications. In this work, rotary bending fatigue tests were performed on Alloys 3, 5, ZA-8 and AcuZinc 5 using an R.R. Moore fatigue machine. Testing was performed at 30 Hz and was stoppedmore » at 1x107 cycles. The fatigue limit results were compared to data reported in the literature for higher number of cycles and faster rotations.« less

  7. Dimensional control of die castings

    NASA Astrophysics Data System (ADS)

    Karve, Aniruddha Ajit

    The demand for net shape die castings, which require little or no machining, is steadily increasing. Stringent customer requirements are forcing die casters to deliver high quality castings in increasingly short lead times. Dimensional conformance to customer specifications is an inherent part of die casting quality. The dimensional attributes of a die casting are essentially dependent upon many factors--the quality of the die and the degree of control over the process variables being the two major sources of dimensional error in die castings. This study focused on investigating the nature and the causes of dimensional error in die castings. The two major components of dimensional error i.e., dimensional variability and die allowance were studied. The major effort of this study was to qualitatively and quantitatively study the effects of casting geometry and process variables on die casting dimensional variability and die allowance. This was accomplished by detailed dimensional data collection at production die casting sites. Robust feature characterization schemes were developed to describe complex casting geometry in quantitative terms. Empirical modeling was utilized to quantify the effects of the casting variables on dimensional variability and die allowance for die casting features. A number of casting geometry and process variables were found to affect dimensional variability in die castings. The dimensional variability was evaluated by comparisons with current published dimensional tolerance standards. The casting geometry was found to play a significant role in influencing the die allowance of the features measured. The predictive models developed for dimensional variability and die allowance were evaluated to test their effectiveness. Finally, the relative impact of all the components of dimensional error in die castings was put into perspective, and general guidelines for effective dimensional control in the die casting plant were laid out. The results of this study will contribute to enhancement of dimensional quality and lead time compression in the die casting industry, thus making it competitive with other net shape manufacturing processes.

  8. Microstructure and Properties of Cobalt-and Zinc-Containing Magnetic Magnesium Alloys Processed by High-Pressure Die Casting

    NASA Astrophysics Data System (ADS)

    Klose, Christian; Demminger, Christian; Maier, Hans Jürgen

    The inherent magnetic properties of lightweight alloys based on magnesium and cobalt offer a novel way in order to measure mechanical loads throughout the entire structural component using the magnetoelastic effect. Because the solubility of cobalt in the magnesium matrix is negligible, the magnetic properties mainly originate from Co-rich precipitates. Thus, the size and distribution of Co-containing phases within the alloy's microstructure wields a major influence on the amplitude of the load-sensitive properties which can be measured by employing the harmonic analysis of eddy-current signals. In this study, Mg-Co-based alloys are produced by several casting methods which allow the application of different cooling rates, e.g. gravity die casting and high-pressure die casting. The differences between the manufactured alloys' micro- and phase structures are compared depending on the applied cooling rate and the superior magnetic and mechanical properties of the high-pressure die cast material are demonstrated.

  9. Metallographic assessment of Al-12Si high-pressure die casting escalator steps.

    PubMed

    Vander Voort, George Frederic; Suárez-Peña, Beatriz; Asensio-Lozano, Juan

    2014-10-01

    A microstructural characterization study was performed on high-pressure die cast specimens extracted from escalator steps manufactured from an Al-12 wt.% Si alloy designed for structural applications. Black and white, color light optical imaging and scanning electron microscopy techniques were used to conduct the microstructural analysis. Most regions in the samples studied contained globular-rosette primary α-Al grains surrounded by an Al-Si eutectic aggregate, while primary dendritic α-Al grains were present in the surface layer. This dendritic microstructure was observed in the regions where the melt did not impinge directly on the die surface during cavity filling. Consequently, microstructures in the surface layer were nonuniform. Utilizing physical metallurgy principles, these results were analyzed in terms of the applied pressure and filling velocity during high-pressure die casting. The effects of these parameters on solidification at different locations of the casting are discussed.

  10. 75 FR 20387 - Contech Castings, LLC, Including Workers Whose Unemployment Insurance (UI) Wages Are Reported...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-19

    ... aluminum and magnesium die casted component parts for automobiles. New information shows that the assets of... casted component parts for automobiles. The amended notice applicable to TA-W-72,649 is hereby issued as...

  11. MACHINING ELIMINATION THROUGH APPLICATION OF THREAD FORMING FASTENERS IN NET SHAPED CAST HOLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cleaver, Ryan J; Cleaver, Todd H; Talbott, Richard

    The ultimate objective of this work was to eliminate approximately 30% of the machining performed in typical automotive engine and transmission plants by using thread forming fasteners in as-cast holes of aluminum and magnesium cast components. The primary issues at the source of engineers reluctance to implementing thread forming fasteners in lightweight castings are: * Little proof of consistency of clamp load vs. input torque in either aluminum or magnesium castings. * No known data to understand the effect on consistency of clamp load as casting dies wear. The clamp load consistency concern is founded in the fact that amore » portion of the input torque used to create clamp load is also used to create threads. The torque used for thread forming may not be consistent due to variations in casting material, hole size and shape due to tooling wear and process variation (thermal and mechanical). There is little data available to understand the magnitude of this concern or to form the basis of potential solutions if the range of clamp load variation is very high (> +/- 30%). The range of variation that can be expected in as-cast hole size and shape over the full life cycle of a high pressure die casting die was established in previous work completed by Pacific Northwest National Laboratory, (PNNL). This established range of variation was captured in a set of 12 cast bosses by designing core pins at the size and draft angles identified in the sited previous work. The cast bosses were cut into nuts that could be used in the Ford Fastener Laboratory test-cell to measure clamp load when a thread forming fastener was driven into a cast nut. There were two sets of experiments run. First, a series of cast aluminum nuts were made reflecting the range of shape and size variations to be expected over the life cycle of a die casting die. Taptite thread forming fasteners, (a widely used thread forming fastener suitable for aluminum applications), were driven into the various cored, as-cast nuts at a constant input torque and resulting clamp loads were recorded continuously. The clamp load data was used to determine the range of clamp loads to be expected. The bolts were driven to failure. The clamp load corresponding to the target input of 18.5 Nm was recorded for each fastener. In a like fashion, a second set of experiments were run with cast magnesium nuts and ALtracs thread forming fasteners, (a widely used thread forming fastener suitable for magnesium applications). Again all clamp loads were recorded and analyzed similarly to the Taptites in aluminum cast nuts. Results from previous work performed on the same test cell for a Battelle project using standard M8 bolts into standard M8 nuts were included as a comparator for a standard bolt and nut application. The results for the thread forming fasteners in aluminum cast holes were well within industry expectations of +/- 30% for out of the box and robustness range testing. The results for the dry and lubed extreme conditions were only slightly higher than industry expectations at +/- 35.6%. However, when compared to the actual Battelle results (+/- 40%) for a standard bolt and nut the tread forming fasteners performed slightly better. The results for the thread forming fasteners in magnesium cast holes were all well within industry expectations of +/- 30% for all three conditions. The robustness range (.05mm larger and smaller holes than the expected wear pattern of a die casting die at full life cycle) results also fell within the industry expectations for standard threaded fasteners. These results were very encouraging. It was concluded that this work showed that clamp load variation with thread forming fasteners is consistent with industry expectations for standard steel bolts and nuts at +/- 30%. There does not appear to be any significant increase in clamp load variation due to the application of thread forming fasteners in as-cast holes of aluminum or magnesium over the effective life of a die casting mold. The fully implemented potential benefit of thread forming fasteners in as-cast holes of aluminum and magnesium is estimated to be 6 trillion Btu per year for North America. Economic benefit is estimated to be nearly $800 million per year. Environmental benefits and quality improvements will also result from full implementation of this technology.« less

  12. Energy Consumption of Die Casting Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jerald Brevick; clark Mount-Campbell; Carroll Mobley

    2004-03-15

    Molten metal processing is inherently energy intensive and roughly 25% of the cost of die-cast products can be traced to some form of energy consumption [1]. The obvious major energy requirements are for melting and holding molten alloy in preparation for casting. The proper selection and maintenance of melting and holding equipment are clearly important factors in minimizing energy consumption in die-casting operations [2]. In addition to energy consumption, furnace selection also influences metal loss due to oxidation, metal quality, and maintenance requirements. Other important factors influencing energy consumption in a die-casting facility include geographic location, alloy(s) cast, starting formmore » of alloy (solid or liquid), overall process flow, casting yield, scrap rate, cycle times, number of shifts per day, days of operation per month, type and size of die-casting form of alloy (solid or liquid), overall process flow, casting yield, scrap rate, cycle times, number of shifts per day, days of operation per month, type and size of die-casting machine, related equipment (robots, trim presses), and downstream processing (machining, plating, assembly, etc.). Each of these factors also may influence the casting quality and productivity of a die-casting enterprise. In a die-casting enterprise, decisions regarding these issues are made frequently and are based on a large number of factors. Therefore, it is not surprising that energy consumption can vary significantly from one die-casting enterprise to the next, and within a single enterprise as function of time.« less

  13. Deburring die-castings by wet vibratory plant

    NASA Astrophysics Data System (ADS)

    Loeschbart, H. M.

    1980-02-01

    A wet vibratory procedure for the removal of burrs from die castings is described. In this process synthetic abrasive chips and detergent solutions are agitated with the work in such a way as to produce a spiral circulatory movement. Details of various forms of vibrator basin and shapes of abrasive are illustrated. The automation of deburring is illustrated through the application of vibrators of spiral design in combination with transport and drying devices.

  14. Deburring die-castings by wet vibratory plant

    NASA Technical Reports Server (NTRS)

    Loeschbart, H. M.

    1980-01-01

    A wet vibratory procedure for the removal of burrs from die castings is described. In this process synthetic abrasive chips and detergent solutions are agitated with the work in such a way as to produce a spiral circulatory movement. Details of various forms of vibrator basin and shapes of abrasive are illustrated. The automation of deburring is illustrated through the application of vibrators of spiral design in combination with transport and drying devices.

  15. Development of Integrated Die Casting Process for Large Thin-Wall Magnesium Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, Jon T.; Wang, Gerry; Luo, Alan

    The purpose of this project was to develop a process and product which would utilize magnesium die casting and result in energy savings when compared to the baseline steel product. The specific product chosen was a side door inner panel for a mid-size car. The scope of the project included: re-design of major structural parts of the door, design and build of the tooling required to make the parts, making of parts, assembly of doors, and testing (both physical and simulation) of doors. Additional work was done on alloy development, vacuum die casting, and overcasting, all in order to improvemore » the performance of the doors and reduce cost. The project achieved the following objectives: 1. Demonstrated ability to design a large thin-wall magnesium die casting. 2. Demonstrated ability to manufacture a large thin-wall magnesium die casting in AM60 alloy. 3. Tested via simulations and/or physical tests the mechanical behavior and corrosion behavior of magnesium die castings and/or lightweight experimental automotive side doors which incorporate a large, thin-wall, powder coated, magnesium die casting. Under some load cases, the results revealed cracking of the casting, which can be addressed with re-design and better material models for CAE analysis. No corrosion of the magnesium panel was observed. 4. Using life cycle analysis models, compared the energy consumption and global warming potential of the lightweight door with those of a conventional steel door, both during manufacture and in service. Compared to a steel door, the lightweight door requires more energy to manufacture but less energy during operation (i.e., fuel consumption when driving vehicle). Similarly, compared to a steel door, the lightweight door has higher global warming potential (GWP) during manufacture, but lower GWP during operation. 5. Compared the conventional magnesium die casting process with the “super-vacuum” die casting process. Results achieved with cast tensile bars suggest some improvement in tensile properties with vacuum casting. Plant trials with large castings revealed cavity fill issues attributed to cooling and partial solidification of metal in the shot sleeve while waiting for vacuum to be established in the die cavity. 6. Developed age-hardenable Mg-based alloys as potential alternatives to the AM60 and AZ91 alloys typically used in automotive applications. Mg-7%Al-based alloys having Sn or Sn+Si additions exhibited significant age hardening, but more work is needed to demonstrate significant improvement in tensile properties. Corrosion behavior of these alloys is between those of AM60 and AZ91 alloys. 7. Evaluated the die casting of magnesium directly onto either steel or aluminum tubes as a potential process to make large lightweight subassemblies. Samples were free of gross defects, but additional work is needed to increase the interfacial shear strength. Overall, the project demonstrated that an automotive door-in-white design incorporating a die cast magnesium inner panel and a stamped aluminum outer panel can achieve approximately 50% mass reduction compared to the stamped steel baseline door-in-white. This leads to reduced energy consumption when driving the vehicle, which should more than offset the increased embedded energy of manufacture associated with the lighter metals. However, additional design work would be needed in order to meet the mechanical performance required of a door. Development of high-strength, high-ductility magnesium alloy castings would help make this technology more attractive for potential use in the side doors on automobiles. Also, increased use of recycled magnesium and aluminum would reduce the embedded energy and greenhouse gas emissions associated with the manufacture of this type of lightweight door. Commercialization planning of the type of lightweight door technology addressed in this project would be contingent upon the doors meeting all technical performance requirements of the car maker. The specific lightweight door developed in this project didn’t meet some of those requirements, but a preliminary business case study was conducted anyhow. This study considered the ratio of cost increase to mass decrease when the lightweight door is compared to a baseline steel door. The ratio was found to be in an acceptable range for some vehicle programs, especially if the number of such vehicles to be produced is equal to or slightly less than the estimated 250,000-shot life of the die set. This would allow for the investment in the dies to be spread across many parts and thereby help minimize the cost increase.« less

  16. Development of an Innovative Laser-Assisted Coating Process for Extending Lifetime of Metal Casting Dies. Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madhav Rao Gonvindaraju

    1999-10-18

    Die casting dies used in the metal casting industry fail due to thermal fatigue cracking accompanied by the presence of residual tensile stresses, corrosion, erosion and wear of die surfaces. This phase 1 SBIR Final Report summarize Karta Technologies research involving the development of an innovative laser coating technology for metal casting dies. The process involves depositing complex protective coatings of nanocrystalline powders of TiC followed by a laser shot peening. The results indicate a significant improvement in corrosion and erosion resistance in molten aluminum for H13 die casting die steels. The laser-coated samples also showed improved surface finish, amore » homogeneous and uniform coating mircrostructure. The technology developed in this research can have a significant impact on the casting industry by saving the material costs involved in replacing dies, reducing downtime and improving the quality.« less

  17. Development of Thin Section Zinc Die Casting Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodwin, Frank

    2013-10-31

    A new high fluidity zinc high pressure die casting alloy, termed the HF alloy, was developed during laboratory trials and proven in industrial production. The HF alloy permits castings to be achieved with section thicknesses of 0.3 mm or less. Technology transfer activities were conducted to develop usage of the HF high fluidity alloy. These included production of a brochure and a one-hour webinar on the HF alloy. The brochure was then sent to 1,184 product designers in the Interzinc database. There was excellent reception to this mailing, and from this initial contact 5 technology transfer seminars were conducted formore » 81 participants from 30 companies across a wide range of business sectors. Many of the successful applications to date involve high quality surface finishes. Design and manufacturing assistance was given for development of selected applications.« less

  18. Low Cost Al-Si Casting Alloy As In-Situ Composite for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2000-01-01

    A new aluminum-silicon (Al-Si) alloy has been successfully developed at NASA- Marshall Space Flight Center (MSFC) that has significant improvement in tensile and fatigue strength at elevated temperatures (500 F-700 F). The alloy offers a number of benefits such as light weight, high hardness, low thermal expansion and high surface wear resistance. In hypereutectic form, this alloy is considered as an in-situ Al-Si composite with tensile strength of about 90% higher than the auto industry 390 alloy at 600 F. This composite is very economically produced by using either conventional permanent steel molds or die casting. The projected material cost is less than $0.90 per pound, and automotive components such as pistons can be cast for high production rate using conventional casting techniques with a low and fully accounted cost. Key Words: Metal matrix composites, In-situ composite, aluminum-silicon alloy, hypereutectic alloy, permanent mold casting, die casting.

  19. The fuzzy algorithm in the die casting mould for the application of multi-channel temperature control

    NASA Astrophysics Data System (ADS)

    Sun, Jin-gen; Chen, Yi; Zhang, Jia-nan

    2017-01-01

    Mould manufacturing is one of the most basic elements in the production chain of China. The mould manufacturing technology has become an important symbol to measure the level of a country's manufacturing industry. The die-casting mould multichannel intelligent temperature control method is studied by cooling water circulation, which uses fuzzy control to realize, aiming at solving the shortcomings of slow speed and big energy consumption during the cooling process of current die-casting mould. At present, the traditional PID control method is used to control the temperature, but it is difficult to ensure the control precision. While , the fuzzy algorithm is used to realize precise control of mould temperature in cooling process. The design is simple, fast response, strong anti-interference ability and good robustness. Simulation results show that the control method is completely feasible, which has higher control precision.

  20. Determining casting defects in near-net shape casting aluminum parts by computed tomography

    NASA Astrophysics Data System (ADS)

    Li, Jiehua; Oberdorfer, Bernd; Habe, Daniel; Schumacher, Peter

    2018-03-01

    Three types of near-net shape casting aluminum parts were investigated by computed tomography to determine casting defects and evaluate quality. The first, second, and third parts were produced by low-pressure die casting (Al-12Si-0.8Cu-0.5Fe-0.9Mg-0.7Ni-0.2Zn alloy), die casting (A356, Al-7Si-0.3Mg), and semi-solid casting (A356, Al-7Si-0.3Mg), respectively. Unlike die casting (second part), low-pressure die casting (first part) significantly reduced the formation of casting defects (i.e., porosity) due to its smooth filling and solidification under pressure. No significant casting defect was observed in the third part, and this absence of defects indicates that semi-solid casting could produce high-quality near-net shape casting aluminum parts. Moreover, casting defects were mostly distributed along the eutectic grain boundaries. This finding reveals that refinement of eutectic grains is necessary to optimize the distribution of casting defects and reduce their size. This investigation demonstrated that computed tomography is an efficient method to determine casting defects in near-net shape casting aluminum parts.

  1. Case study of lean manufacturing application in a die casting manufacturing company

    NASA Astrophysics Data System (ADS)

    Ching, Ng Tan; Hoe, Clarence Chan Kok; Hong, Tang Sai; Ghobakhloo, Morteza; Pin, Chen Kah

    2015-05-01

    The case study of lean manufacturing aims to study the application of lean manufacturing in a die casting manufacturing company located in Pulau Penang, Malaysia. This case study describes mainly about the important concepts and applications of lean manufacturing which could gradually help the company in increasing the profit by studying and analyzing their current manufacturing process and company culture. Many approaches of lean manufacturing are studied in this project which includes: 5S housekeeping, Kaizen, and Takt Time. Besides, the lean tools mentioned, quality tool such as the House of Quality is being used as an analysis tool to continuously improve the product quality. In short, the existing lean culture in the company is studied and analyzed, with recommendations written at the end of this paper.

  2. [Cervical adaptation of complete cast crowns of various metal alloys, with and without die spacers].

    PubMed

    Stephano, C B; Roselino, R F; Roselino, R B; Campos, G M

    1989-01-01

    A metallic replica from a dental preparation for crown was used to make 8 class-IV stone dies. The wax patterns for the casting of the crowns were obtained in two conditions: a) from the stone die with no spacer; and b) from the stone die with an acrylic spacer. Thus, 64 metallic crowns were casted, using 4 different alloys: DURACAST (Cu-Al), NICROCAST (Ni-Cr) and DURABOND (Ni-Cr), and gold. The casted crowns were fitted in the metallic replica and measured as to the cervical discrepance of fitting. The results showed that the use of die spacers decreases the clinical discrepancies of fitting of the casted crowns (in a statistically significant level), no matter the metallic alloy employed.

  3. Low Temperature Consolidation of Micro/Nanosilver Die-Attach Preforms

    NASA Astrophysics Data System (ADS)

    McCoppin, Jared; Reitz, Thomas L.; Miller, Ryan; Vijwani, Hema; Mukhopadhyay, Sharmila; Young, Daniel

    2014-09-01

    Organically passivated silver nanopowder paste-based sintering is considered a promising solution for die-attach in high temperature power and sensing electronic devices. However, oxygen requirements during burnout and inherently high shrinkage rates limit their use to small die sizes. This work reports an alternative fabrication method that resolves decomposition and shrinkage issues of the die-attach by utilizing a prestressed optimized tape cast mixture of micro- and nanosilver particles with a polypropylene carbonate binder. The effects of prestressing, micro/nanosilver bimodal distribution, and polymer content on resulting microstructure and shear strength were investigated. Prior to application as a die-attach, uniaxial compression of the tape was found to significantly decrease shrinkage and improve green strength. This pre-stressing strategy allows for a decoupling of the resulting die-attach materials properties from the pressure applied during assembly. Bimodal mixtures consisting of 1-3 μm spherical powders with nanosilver resulted in shear strengths comparable to those of pure nanosilver. Shear strength decreased as bimodal particle size increased above 5 μm. A polymer content of ˜10 wt.% polypropylene carbonate combined with prestressing was identified as optimal for maximizing die-attach shear strength while still maintaining pliability and formability. Tape casts that were prestressed to 212 MPa by uniaxially compression and formulated with 10 wt.% of polypropylene carbonate resulted in a die-attach material with a shear strength of 54 MPa when sintered. These materials were used to demonstrate void-free 25-mm2 die-attach assemblies, suggesting that tape cast micro/nanosilver materials may be a promising die-attach method for high temperature and large-area electronics devices.

  4. Effects of heat treatment on mechanical properties of h13 steel

    NASA Astrophysics Data System (ADS)

    Guanghua, Yan; Xinmin, Huang; Yanqing, Wang; Xingguo, Qin; Ming, Yang; Zuoming, Chu; Kang, Jin

    2010-12-01

    Heat treatment on the mechanical properties of H13 hot working die steel for die casting is discussed. The H13 steel for die casting was treated by different temperatures of vacuum quenching, tempering, and secondary tempering to investigate its mechanical properties. Strength, plasticity, hardness, and impact toughness of the H13 hot working die steel for die casting were measured. Microstructure, grain size, and carbide particle size after heat treatment have a great impact on the mechanical properties of H13 hot working die steel for die casting. The microstructure of the H13 was analyzed by scanning electron microscopy (SEM) and by a metallographic microscope. It is found that H13 exhibits excellent mechanical properties after vacuum quenching at 1050°C and twice tempering at 600°C.

  5. Energy Saving Melting and Revert Reduction Technology (E-SMARRT): Mechanical Performance of Dies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. Allen Miller, Principal Investigator; Kabiri-Bamoradian, Contributors: Khalil; Delgado-Garza, Abelardo

    2011-09-13

    As a net shape process, die casting is intrinsically efficient and improvements in energy efficiency are strongly dependent on design and process improvements that reduce scrap rates so that more of the total consumed energy goes into acceptable, usable castings. A casting that is distorted and fails to meet specified dimensional requirements is typically remelted but this still results in a decrease in process yield, lost productivity, and increased energy consumption. This work focuses on developing, and expanding the use of, computer modeling methods that can be used to improve the dimensional accuracy of die castings and produce die designsmore » and machine/die setups that reduce rejection rates due to dimensional issues. A major factor contributing to the dimensional inaccuracy of the casting is the elastic deformations of the die cavity caused by the thermo mechanical loads the dies are subjected to during normal operation. Although thermal and die cavity filling simulation are widely used in the industry, structural modeling of the die, particularly for managing part distortion, is not yet widely practiced. This may be due in part to the need to have a thorough understanding of the physical phenomenon involved in die distortion and the mathematical theory employed in the numerical models to efficiently model the die distortion phenomenon. Therefore, two of the goals of this work are to assist in efforts to expand the use of structural modeling and related technologies in the die casting industry by 1) providing a detailed modeling guideline and tutorial for those interested in developing the necessary skills and capability and 2) by developing simple meta-models that capture the results and experience gained from several years of die distortion research and can be used to predict key distortion phenomena of relevance to a die caster with a minimum of background and without the need for simulations. These objectives were met. A detailed modeling tutorial was provided to NADCA for distribution to the industry. Power law based meta-models for predicting machine tie bar loading and for predicting maximum parting surface separation were successfully developed and tested against simulation results for a wide range of machines and experimental data. The models proved to be remarkably accurate, certainly well within the requirements for practical application. In addition to making die structural modeling more accessible, the work advanced the state-of-the-art by developing improved modeling of cavity pressure effects, which is typically modeled as a hydrostatic boundary condition, and performing a systematic analysis of the influence of ejector die design variables on die deflection and parting plane separation. This cavity pressure modeling objective met with less than complete success due to the limits of current finite element based fluid structure interaction analysis methods, but an improved representation of the casting/die interface was accomplished using a combination of solid and shell elements in the finite element model. This approximation enabled good prediction of final part distortion verified with a comprehensive evaluation of the dimensions of test castings produced with a design experiment. An extra deliverable of the experimental work was development of high temperature mechanical properties for the A380 die casting alloy. The ejector side design objective was met and the results were incorporated into the metamodels described above. This new technology was predicted to result in an average energy savings of 2.03 trillion BTU's/year over a 10 year period. Current (2011) annual energy saving estimates over a ten year period, based on commercial introduction in 2009, a market penetration of 70% by 2014 is 4.26 trillion BTU's/year by 2019. Along with these energy savings, reduction of scrap and improvement in casting yield will result in a reduction of the environmental emissions associated with the melting and pouring of the metal which will be saved as a result of this technology. The average annual estimate of CO2 reduction per year through 2020 is 0.085 Million Metric Tons of Carbon Equivalent (MM TCE).« less

  6. Modelling the Cast Component Weight in Hot Chamber Die Casting using Combined Taguchi and Buckingham's π Approach

    NASA Astrophysics Data System (ADS)

    Singh, Rupinder

    2018-02-01

    Hot chamber (HC) die casting process is one of the most widely used commercial processes for the casting of low temperature metals and alloys. This process gives near-net shape product with high dimensional accuracy. However in actual field environment the best settings of input parameters is often conflicting as the shape and size of the casting changes and one have to trade off among various output parameters like hardness, dimensional accuracy, casting defects, microstructure etc. So for online inspection of the cast components properties (without affecting the production line) the weight measurement has been established as one of the cost effective method (as the difference in weight of sound and unsound casting reflects the possible casting defects) in field environment. In the present work at first stage the effect of three input process parameters (namely: pressure at 2nd phase in HC die casting; metal pouring temperature and die opening time) has been studied for optimizing the cast component weight `W' as output parameter in form of macro model based upon Taguchi L9 OA. After this Buckingham's π approach has been applied on Taguchi based macro model for the development of micro model. This study highlights the Taguchi-Buckingham based combined approach as a case study (for conversion of macro model into micro model) by identification of optimum levels of input parameters (based on Taguchi approach) and development of mathematical model (based on Buckingham's π approach). Finally developed mathematical model can be used for predicting W in HC die casting process with more flexibility. The results of study highlights second degree polynomial equation for predicting cast component weight in HC die casting and suggest that pressure at 2nd stage is one of the most contributing factors for controlling the casting defect/weight of casting.

  7. Effect of mold designs on molten metal behaviour in high-pressure die casting

    NASA Astrophysics Data System (ADS)

    Ibrahim, M. D.; Rahman, M. R. A.; Khan, A. A.; Mohamad, M. R.; Suffian, M. S. Z. M.; Yunos, Y. S.; Wong, L. K.; Mohtar, M. Z.

    2017-04-01

    This paper presents a research study conducted in a local automotive component manufacturer that produces aluminium alloy steering housing local and global markets. This study is to investigate the effect of design modification of mold in die casting as to improve the production rate. Design modification is carried out on the casting shot of the mold. Computer flow simulation was carried out to study the flow of molten metal in the mold with respect to the mold design modification. The design parameters of injection speed, die temperature and clamping force has been included in the study. The result of the simulation showed that modifications of casting shot give significant impact towards the molten flow behaviour in casting process. The capabilities and limitations of die casting process simulation to conduct defect analysis had been optimized. This research will enhance the efficiency of the mass production of the industry of die casting with the understanding of defect analysis, which lies on the modification of the mold design, a way early in its stages of production.

  8. Effects of silicon, copper and iron on static and dynamic properties of alloy 206 (aluminum-copper) in semi-solids produced by the SEED process

    NASA Astrophysics Data System (ADS)

    Lemieux, Alain

    The advantages of producing metal parts by rheocasting are generally recognised for common foundry alloys of Al-Si. However, other more performing alloys in terms of mechanical properties could have a great interest in specialized applications in the automotive industry, while remaining competitive in the forming. Indeed, the growing demand for more competitive products requires the development of new alloys better suited to semi-solid processes. Among others, Al-Cu alloys of the 2XX series are known for their superior mechanical strength. However, in the past, 2XX alloys were never candidates for pressure die casting. The main reason is their propensity to hot tearing. Semi-solid processes provide better conditions for molding with the rheological behavior of dough and molding temperatures lower reducing this type of defect. In the initial phase, this research has studied factors that reduce hot tearing susceptibility of castings produced by semi-solid SEED of alloy 206. Subsequently, a comparative study on the tensile properties and fatigue was performed on four variants of the alloy 206. The results of tensile strength and fatigue were compared with the specifications for applications in the automotive industry and also to other competing processes and alloys. During this study, several metallurgical aspects were analyzed. The following main points have been validated: i) the main effects of compositional variations of silicon, iron and copper alloy Al-Cu (206) on the mechanical properties, and ii) certain relationships between the mechanism of hot cracking and the solidification rate in semi-solid. Parts produced from the semi-solid paste coming from the SEED process combined with modified 206 alloys have been successfully molded and achieved superior mechanical properties than the requirements of the automotive industry. The fatigue properties of the two best modified 206 alloys were higher than those of A357 alloy castings and are close to those of the wrought alloy AA6061. At present, there is simply no known application for pressure die-cast alloy with 206 (Liquid Die-casting). This is mainly due to the high propensity to hot cracking and limitations facing the part geometry and the subsequent assembly. This study demonstrated that in addition to pieces produced by semi-solid die-casting using large variations in chemical composition, the SEED process allows obtaining spare sound (sound part) and more complex geometry. Moreover, as the semi-solid parts have less porosity, they can also be machined and welded for some applications. The conclusions of this study demonstrate significant progress in identifying the main issues related to the feasibility of die-casting good parts with high performance using the modified 206 alloy combined with SEED process. This work is therefore a baseline work in the development of new Al-Cu alloys for industries of semi-solid and, at the same time, for the expansion of aluminum for high performance applications in the industry. N.B. This thesis is part of a research project developed by the NSERC / Rio Tinto Akan Industrial Research Chair in Metallurgy of Innovative Aluminum Transformation (CIMTAL).

  9. High pressure die casting of Fe-based metallic glass.

    PubMed

    Ramasamy, Parthiban; Szabo, Attila; Borzel, Stefan; Eckert, Jürgen; Stoica, Mihai; Bárdos, András

    2016-10-11

    Soft ferromagnetic Fe-based bulk metallic glass key-shaped specimens with a maximum and minimum width of 25.4 and 5 mm, respectively, were successfully produced using a high pressure die casting (HPDC) method, The influence of die material, alloy temperature and flow rate on the microstructure, thermal stability and soft ferromagnetic properties has been studied. The results suggest that a steel die in which the molten metal flows at low rate and high temperature can be used to produce completely glassy samples. This can be attributed to the laminar filling of the mold and to a lower heat transfer coefficient, which avoids the skin effect in the steel mold. In addition, magnetic measurements reveal that the amorphous structure of the material is maintained throughout the key-shaped samples. Although it is difficult to control the flow and cooling rate of the molten metal in the corners of the key due to different cross sections, this can be overcome by proper tool geometry. The present results confirm that HPDC is a suitable method for the casting of Fe-based bulk glassy alloys even with complex geometries for a broad range of applications.

  10. High pressure die casting of Fe-based metallic glass

    NASA Astrophysics Data System (ADS)

    Ramasamy, Parthiban; Szabo, Attila; Borzel, Stefan; Eckert, Jürgen; Stoica, Mihai; Bárdos, András

    2016-10-01

    Soft ferromagnetic Fe-based bulk metallic glass key-shaped specimens with a maximum and minimum width of 25.4 and 5 mm, respectively, were successfully produced using a high pressure die casting (HPDC) method, The influence of die material, alloy temperature and flow rate on the microstructure, thermal stability and soft ferromagnetic properties has been studied. The results suggest that a steel die in which the molten metal flows at low rate and high temperature can be used to produce completely glassy samples. This can be attributed to the laminar filling of the mold and to a lower heat transfer coefficient, which avoids the skin effect in the steel mold. In addition, magnetic measurements reveal that the amorphous structure of the material is maintained throughout the key-shaped samples. Although it is difficult to control the flow and cooling rate of the molten metal in the corners of the key due to different cross sections, this can be overcome by proper tool geometry. The present results confirm that HPDC is a suitable method for the casting of Fe-based bulk glassy alloys even with complex geometries for a broad range of applications.

  11. High pressure die casting of Fe-based metallic glass

    PubMed Central

    Ramasamy, Parthiban; Szabo, Attila; Borzel, Stefan; Eckert, Jürgen; Stoica, Mihai; Bárdos, András

    2016-01-01

    Soft ferromagnetic Fe-based bulk metallic glass key-shaped specimens with a maximum and minimum width of 25.4 and 5 mm, respectively, were successfully produced using a high pressure die casting (HPDC) method, The influence of die material, alloy temperature and flow rate on the microstructure, thermal stability and soft ferromagnetic properties has been studied. The results suggest that a steel die in which the molten metal flows at low rate and high temperature can be used to produce completely glassy samples. This can be attributed to the laminar filling of the mold and to a lower heat transfer coefficient, which avoids the skin effect in the steel mold. In addition, magnetic measurements reveal that the amorphous structure of the material is maintained throughout the key-shaped samples. Although it is difficult to control the flow and cooling rate of the molten metal in the corners of the key due to different cross sections, this can be overcome by proper tool geometry. The present results confirm that HPDC is a suitable method for the casting of Fe-based bulk glassy alloys even with complex geometries for a broad range of applications. PMID:27725780

  12. Optimization of Squeeze Casting for Aluminum Alloy Parts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Schwam; John F. Wallace; Qingming Chang

    2002-07-30

    This study was initiated with the installation of a new production size UBE 350 Ton VSC Squeeze Casting system in the Metal Casting Laboratory at Case Western University. A Lindberg 75k W electrical melting furnace was installed alongside. The challenge of installation and operation of such industrial-size equipment in an academic environment was met successfully. Subsequently, a Sterling oil die heater and a Visi-Track shot monitoring system were added. A significant number of inserts were designed and fabricated over the span of the project, primarily for squeeze casting different configurations of test bars and plates. A spiral ''ribbon insert'' formore » evaluation of molten metal fluidity was also fabricated. These inserts were used to generate a broad range of processing conditions and determine their effect on the quality of the squeeze cast parts. This investigation has studied the influence of the various casting variables on the quality of indirect squeeze castings primarily of aluminum alloys. The variables studied include gating design, fill time and fill patter, metal pressure and die temperature variations. The quality of the die casting was assessed by an analysis of both their surface condition and internal soundness. The primary metal tested was an aluminum 356 alloy. In addition to determining the effect of these casting variables on casting quality as measured by a flat plate die of various thickness, a number of test bar inserts with different gating designs have been inserted in the squeeze casting machine. The mechanical properties of these test bars produced under different squeeze casting conditions were measured and reported. The investigation of the resulting properties also included an analysis of the microstructure of the squeeze castings and the effect of the various structural constituents on the resulting properties. The main conclusions from this investigation are as follows: The ingate size and shape are very important since it must remain open until the casting is solidified and pressure is maintained on the solidifying casting. Fanned gates, particularly on the smaller section castings avoid jetting effects at the ingate end. The fan type ingate helps accomplish a rapid fill without high velocities. The molten metal has to fill the cavity before localized solidification occurs. This is best accomplished with a larger ingate to attain rapid filling without excessive velocity or jetting that occurs at high metal velocities. Straight gates are prone to case jetting of the metal stream even a low velocities. Fanned gates allow use of higher fill velocity without excessive jetting. A higher metal pressure provides a more complete fill of the die including improved compensation for solidification shrinkage. With the proper filling pattern, ingates, overflows and die temperature for a given die, very good tensile properties can be attained in squeeze casting. In general, the smaller squeeze castings require higher die temperatures. Computer models using the UES Procast and MagmaSoft finite element software can, after suitable adjustments, predict the flow pattern in the die cavity.« less

  13. Microstructures and properties of aluminum die casting alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. M. Makhlouf; D. Apelian; L. Wang

    1998-10-01

    This document provides descriptions of the microstructure of different aluminum die casting alloys and to relate the various microstructures to the alloy chemistry. It relates the microstructures of the alloys to their main engineering properties such as ultimate tensile strength, yield strength, elongation, fatigue life, impact resistance, wear resistance, hardness, thermal conductivity and electrical conductivity. Finally, it serves as a reference source for aluminum die casting alloys.

  14. Evaluating the Tensile Properties of Aluminum Foundry Alloys through Reference Castings-A Review.

    PubMed

    Anilchandra, A R; Arnberg, Lars; Bonollo, Franco; Fiorese, Elena; Timelli, Giulio

    2017-08-30

    The tensile properties of an alloy can be exploited if detrimental defects and imperfections of the casting are minimized and the microstructural characteristics are optimized through several strategies that involve die design, process management and metal treatments. This paper presents an analysis and comparison of the salient characteristics of the reference dies proposed in the literature, both in the field of pressure and gravity die-casting. The specimens produced with these reference dies, called separately poured specimens, are effective tools for the evaluation and comparison of the tensile and physical behaviors of Al-Si casting alloys. Some of the findings of the present paper have been recently developed in the frame of the European StaCast project whose results are complemented here with some more recent outcomes and a comprehensive analysis and discussion.

  15. Energy Saving Melting and Revert Reduction Technology: Improved Die Casting Process to Preserve the Life of the Inserts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Schwam, PI; Xuejun Zhu, Sr. Research Associate

    2012-09-30

    The goal of this project was to study the combined effects of die design, proper internal cooling and efficient die lubricants on die life. The project targeted improvements in die casting insert life by: Optomized Die Design for Reduced Surface Temperature: The life of die casting dies is significantly shorter when the die is exposed to elevated temperature for significant periods of time. Any die operated under conditions leading to surface temperature in excess of 1050oF undergoes structural changes that reduce its strength. Optimized die design can improve die life significantly. This improvement can be accomplished by means of coolingmore » lines, baffles and bubblers in the die. A key objective of the project was to establish criteria for the minimal distance of the cooling lines from the surface. This effort was supported with alloys and machining by BohlerUddeholm, Dunn Steel, HH Stark and Rex Buckeye. In plant testing and evaluation was conducted as in-kind cost share at St. Clair Die Casting. The Uddeholm Dievar steel evaluated in this program showed superior resistance to thermal fatigue resistance. Based on the experimental evidence, cooling lines could be placed as close as 0.5" from the surface. Die Life Extension by Optimized Die Lubrication: The life of die casting dies is affected by additions made to its surface with the proper lubricants. These lubricants will protect the surface from the considerable temperature peaks that occur when the molten melt enters the die. Dies will reach a significantly higher temperature without this lubricant being applied. The amount and type of the lubricant are critical variables in the die casting process. However, these lubricants must not corrode the die surface. This effort was supported with alloys and machining by BohlerUddeholm, Dunn Steel, HH Stark and Rex Buckeye. In plant testing and evaluation was conducted as in-kind cost share at St. Clair Die Casting. Chem- Trend participated in the program with die lubricants and technical support. Experiments conducted with these lubricants demonstrated good protection of the substrate steel. Graphite and boron nitride used as benchmarks are capable of completely eliminating soldering and washout. However, because of cost and environmental considerations these materials are not widely used in industry. The best water-based die lubricants evaluated in this program were capable of providing similar protection from soldering and washout. In addition to improved part quality and higher production rates, improving die casting processes to preserve the life of the inserts will result in energy savings and a reduction in environmental wastes. Improving die life by means of optimized cooling line placement, baffles and bubblers in the die will allow for reduced die temperatures during processing, saving energy associated with production. The utilization of optimized die lubricants will also reduce heat requirements in addition to reducing waste associated with soldering and washout. This new technology was predicted to result in an average energy savings of 1.1 trillion BTU's/year over a 10 year period. Current (2012) annual energy saving estimates, based on commercial introduction in 2010, a market penetration of 70% by 2020 is 1.26 trillion BTU's/year. Along with these energy savings, reduction of scrap and improvement in casting yield will result in a reduction of the environmental emissions associated with the melting and pouring of the metal which will be saved as a result of this technology. The average annual estimate of CO2 reduction per year through 2020 is 0.025 Million Metric Tons of Carbon Equivalent (MM TCE).« less

  16. Energy-Saving Melting and Revert Reduction Technology (E-SMARRT): Use of Laser Engineered Net Shaping for Rapid Manufacturing of Dies with Protective Coatings and Improved Thermal Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brevick, Jerald R.

    2014-06-13

    In the high pressure die casting process, molten metal is introduced into a die cavity at high pressure and velocity, enabling castings of thin wall section and complex geometry to be obtained. Traditional die materials have been hot work die steels, commonly H13. Manufacture of the dies involves machining the desired geometry from monolithic blocks of annealed tool steel, heat treating to desired hardness and toughness, and final machining, grinding and polishing. The die is fabricated with internal water cooling passages created by drilling. These materials and fabrication methods have been used for many years, however, there are limitations. Toolmore » steels have relatively low thermal conductivity, and as a result, it takes time to remove the heat from the tool steel via the drilled internal water cooling passages. Furthermore, the low thermal conductivity generates large thermal gradients at the die cavity surfaces, which ultimately leads to thermal fatigue cracking on the surfaces of the die steel. The high die surface temperatures also promote the metallurgical bonding of the aluminum casting alloy to the surface of the die steel (soldering). In terms of process efficiency, these tooling limitations reduce the number of die castings that can be made per unit time by increasing cycle time required for cooling, and increasing downtime and cost to replace tooling which has failed either by soldering or by thermal fatigue cracking (heat checking). The objective of this research was to evaluate the feasibility of designing, fabricating, and testing high pressure die casting tooling having properties equivalent to H13 on the surface in contact with molten casting alloy - for high temperature and high velocity molten metal erosion resistance – but with the ability to conduct heat rapidly to interior water cooling passages. A layered bimetallic tool design was selected, and the design evaluated for thermal and mechanical performance via finite element analysis. H13 was retained as the exterior layer of the tooling, while commercially pure copper was chosen for the interior structure of the tooling. The tooling was fabricated by traditional machining of the copper substrate, and H13 powder was deposited on the copper via the Laser Engineered Net Shape (LENSTM) process. The H13 deposition layer was then final machined by traditional methods. Two tooling components were designed and fabricated; a thermal fatigue test specimen, and a core for a commercial aluminum high pressure die casting tool. The bimetallic thermal fatigue specimen demonstrated promising performance during testing, and the test results were used to improve the design and LENS TM deposition methods for subsequent manufacture of the commercial core. Results of the thermal finite element analysis for the thermal fatigue test specimen indicate that it has the ability to lose heat to the internal water cooling passages, and to external spray cooling, significantly faster than a monolithic H13 thermal fatigue sample. The commercial core is currently in the final stages of fabrication, and will be evaluated in an actual production environment at Shiloh Die casting. In this research, the feasibility of designing and fabricating copper/H13 bimetallic die casting tooling via LENS TM processing, for the purpose of improving die casting process efficiency, is demonstrated.« less

  17. Influence of polyurethane resin dies on the fit and adaptation of full veneer crowns.

    PubMed

    Lillywhite, Graeme R R; Vohra, Fahim

    2015-01-01

    Polyurethane resin is a possible alternative to type IV dental stone for fabrication of indirect restorations however its dimensional accuracy is questionable. The aim was to investigate the dimensional accuracy of silica filled polyurethane resin die material by evaluating the marginal fit and adaptation of indirect gold castings. Experimental, in vitro study. Totally 40 copper plated replicas of a nickel chrome master die analogous to a veneer gold crown preparation were made and impressions recorded using polyvinylsiloxane material. Twenty impressions were poured in type IV dental stone (control group (Vel-mix, Kerr, UK) and the remaining (n = 20) in silica filled polyurethane die material (test group) (Alpha Die MF, CA, USA). Gold castings were fabricated for each die using standardized techniques. The castings were seated on their respective copper plated dies, embedded in resin and sectioned. The specimens were analyzed by measuring marginal opening and the area beneath the casting at a ×63 magnification and using image analysis software. Data were analyzed using a Student's t-test. No significant difference was observed between the experimental groups (P > 0.05). The mean marginal opening for type IV, dental stone and polyurethane resin, was 57 ± 22.6 μm and 63.47 ± 27.1 μm, respectively. Stone displayed a smaller area beneath the casting (31581 ± 16297 μm 2 ) as compared to polyurethane resin (35003 ± 23039 μm 2 ). The fit and adaptation of indirect gold castings made on polyurethane and type IV dental stone dies were comparable.

  18. Optimization of Composition and Heat Treating of Die Steels for Extended Lifetime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Schwam; John F. Wallace; Quanyou Zhou

    2002-01-30

    An ''average'' die casting die costs fifty thousand dollars. A die used in making die cast aluminum engine blocks can cost well over one million dollars. These costs provide a strong incentive for extension of die life. While vacuum quenched Premium Grade H13 dies have become the most widely used in the United States, tool makers and die casters are constantly searching for new steels and heat treating procedures to extend die life. This project was undertaken to investigate the effects of composition and heat treating on die life and optimize these parameters.

  19. Secondary Al-Si-Mg High-pressure Die Casting Alloys with Enhanced Ductility

    NASA Astrophysics Data System (ADS)

    Bösch, Dominik; Pogatscher, Stefan; Hummel, Marc; Fragner, Werner; Uggowitzer, Peter J.; Göken, Mathias; Höppel, Heinz Werner

    2015-03-01

    Al-Si-Mg-based secondary cast alloys are attractive candidates for thin-walled high-pressure die castings for applications in the transport industry. The present study investigates the effect of manganese additions at high cooling rates on microstructure, mechanical properties, and on the dominating fracture mechanisms of alloy AlSi10Mg with an elevated iron concentration. Systematic variations of the Mn content from 0.20 to 0.85 wt pct at a constant Fe content of 0.55 wt pct illustrate the key changes in type, phase fraction, and shape of the Fe-containing intermetallic phases, and the corresponding influence on the alloy's ductility. For high-pressure die casting (HPDC), an optimal range of the Mn content between 0.40 and 0.60 wt pct, equivalent to a Mn/Fe ratio of approximately 1, has been identified. At these Mn and Fe contents, the high cooling rates obtained in HPDC result in the formation of fine and homogeneously distributed α-Al15(Fe,Mn)3Si2 phase, and crack initiation is transferred from AlFeSi intermetallics to eutectic silicon. The study interprets the microstructure-property relationship in the light of thermodynamic calculations which reveal a significant increase in undercooling of the α-Al15(Fe,Mn)3Si2 phase with increased Mn content. It concludes that the interdependence of the well-defined Mn/Fe ratio and the high cooling rate in HPDC can generate superior ductility in secondary AlSi10Mg cast alloys.

  20. Precision technique for trimming dies using a magnification device.

    PubMed

    Beck, D B

    1980-05-01

    This article described a technique for trimming a die under magnification. However, the microscope is also useful for checking (1) margins of wax patterns for completeness, (2) the internal surfaces of castings for imperfections, bubbles, or retained investment particles which could prevent proper seating of the castings on the dies, (3) for cracks or contamination in dental porcelain as well as porcelain flash on margins; and (4) precision attachment operation after casting or soldering procedures. Attention to detail in these laboratory procedures greatly improves the final fit of dental castings and saves subsequent chairside adjustments and remakes.

  1. The Simulation of Magnesium Wheel Low Pressure Die Casting Based on PAM-CAST™

    NASA Astrophysics Data System (ADS)

    Peng, Yinghong; Wang, Yingchun; Li, Dayong; Zeng, Xiaoqin

    2004-06-01

    Magnesium is the lightest metal commonly used in engineering, with various excellent characteristics such as high strength and electromagnetic interference shielding capability. Particularly, the usage of magnesium in automotive industry can meet better the need to reduce fuel consumption and CO2 emissions. Nowadays, most current magnesium components in automobiles are made by die casting. In this paper, commercial software for die casting, PAM-CAST™, was utilized to simulate the low pressure die casting process of magnesium wheel. Through calculating temperature field and velocity field during filling and solidification stages, the evolution of temperature distribution and liquid fraction was analyzed. Then, the potential defects including the gas entrapments in the middle of the spokes, shrinkages between the rim and the spokes were forecasted. The analytical results revealed that the mold geometry and die casting parameters should be improved in order to get the sound magnesium wheel. The reasons leading to these defects were also analyzed and the solutions to eliminate them were put forward. Furthermore, through reducing the pouring velocity, the air gas entrapments and partial shrinkages were eliminated effectively.

  2. Energy Saving Melting and Revert Reduction Technology (E-SMARRT): Development of Surface Engineered Coating Systems for Aluminum Pressure Die Casting Dies: Towards a 'Smart' Die Coating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dr. John J. Moore; Dr. Jianliang Lin,

    2012-07-31

    The main objective of this research program was to design and develop an optimal coating system that extends die life by minimizing premature die failure. In high-pressure aluminum die-casting, the die, core pins and inserts must withstand severe processing conditions. Many of the dies and tools in the industry are being coated to improve wear-resistance and decrease down-time for maintenance. However, thermal fatigue in metal itself can still be a major problem, especially since it often leads to catastrophic failure (i.e. die breakage) as opposed to a wear-based failure (parts begin to go out of tolerance). Tooling costs remain themore » largest portion of production costs for many of these parts, so the ability prevent catastrophic failures would be transformative for the manufacturing industry.The technology offers energy savings through reduced energy use in the die casting process from several factors, including increased life of the tools and dies, reuse of the dies and die components, reduction/elimination of lubricants, and reduced machine down time, and reduction of Al solder sticking on the die. The use of the optimized die coating system will also reduce environmental wastes and scrap parts. Current (2012) annual energy saving estimates, based on initial dissemination to the casting industry in 2010 and market penetration of 80% by 2020, is 3.1 trillion BTU's/year. The average annual estimate of CO2 reduction per year through 2020 is 0.63 Million Metric Tons of Carbon Equivalent (MM TCE).« less

  3. Casting Technology.

    ERIC Educational Resources Information Center

    Wright, Michael D.; And Others

    1992-01-01

    Three articles discuss (1) casting technology as it relates to industry, with comparisons of shell casting, shell molding, and die casting; (2) evaporative pattern casting for metals; and (3) high technological casting with silicone rubber. (JOW)

  4. New Lubricant for Pressure Die Casting,

    DTIC Science & Technology

    synthetic acids, finely dispersed graphite preparations, etc. The new lubricants are not inferior in their properties to the well known foreign lubricants antilov, olea , and emtek used in pressure die casting.

  5. Fabrication process analysis and experimental verification for aluminum bipolar plates in fuel cells by vacuum die-casting

    NASA Astrophysics Data System (ADS)

    Jin, Chul Kyu; Kang, Chung Gil

    2011-10-01

    There are various methods for the fabrication of bipolar plates, but these are still limited to machining and stamping processes. High-pressure die casting (HPDC) is an ideal process for the manufacture of bipolar plates This study aims to investigate the formability of bipolar plates for polymer electrolyte membrane fuel cells (PEMFCs) fabricated by vacuum HPDC of an Al-Mg alloy (ALDC6). The cavity of the mold consisted of a thin-walled plate (200 mm × 200 mm × 0.8 mm) with a layer of serpentine channel (50 mm × 50 mm). The location and direction of the channel in the final mold design was determined by computational simulation (MAGMA soft). In addition, simulation results for different conditions of plunger stroke control were compared to those from actual die-casting experiments. Under a vacuum pressure of 35 kPa and for injection speeds of 0.3 and 2.5 m s-1 in the low and high speed regions, respectively, the samples had few casting defects. In addition, the hardness was higher and porosity in microstructure was less than those of the samples made under other injection speed conditions. In case of thin-walled plates, vacuum die casting is beneficial in terms of formability compared to conventional die casting.

  6. Adhesive Bonding and Corrosion Protection of a Die Cast Magnesium Automotive Door

    NASA Astrophysics Data System (ADS)

    Bretz, G. T.; Lazarz, K. A.; Hill, D. J.; Blanchard, P. J.

    It is well known that magnesium alloys, in close proximity to other alloys, are susceptible to galvanic corrosion. Combined with this fact, in automotive applications, it is rare that magnesium will be present in the absence of other alloys such as steel or aluminum. Therefore, in wet applications, where the galvanic cell is completed, it is necessary to isolate the magnesium in order to prevent accelerated corrosion. There are numerous commercial pre-treatments available for magnesium, however this paper focuses on conversion coatings in conjunction with a spray powder coat. By means of example, results for a hem flange joint on an AM50 die cast magnesium door structure will be presented. The outer door skin is an aluminum alloy hemmed around a cast magnesium flange. An adhesive is used between the inner and outer to help with stiffness and NVH (Noise, Vibration and Harshness). Results from bonded lap-shear coupon tests that have been exposed to accelerated corrosion cycles are presented. A second phase of this work considered a surrogate hem flange coupon, which was similarly exposed to the same accelerated corrosion cycle. Results from both of these tests are presented within this paper along with a discussion as to their suitability for use within automotive applications.

  7. Evaluating the Tensile Properties of Aluminum Foundry Alloys through Reference Castings—A Review

    PubMed Central

    Anilchandra, A.R.; Arnberg, Lars; Bonollo, Franco; Fiorese, Elena

    2017-01-01

    The tensile properties of an alloy can be exploited if detrimental defects and imperfections of the casting are minimized and the microstructural characteristics are optimized through several strategies that involve die design, process management and metal treatments. This paper presents an analysis and comparison of the salient characteristics of the reference dies proposed in the literature, both in the field of pressure and gravity die-casting. The specimens produced with these reference dies, called separately poured specimens, are effective tools for the evaluation and comparison of the tensile and physical behaviors of Al-Si casting alloys. Some of the findings of the present paper have been recently developed in the frame of the European StaCast project whose results are complemented here with some more recent outcomes and a comprehensive analysis and discussion. PMID:28867796

  8. A process chain for integrating piezoelectric transducers into aluminum die castings to generate smart lightweight structures

    NASA Astrophysics Data System (ADS)

    Stein, Stefan; Wedler, Jonathan; Rhein, Sebastian; Schmidt, Michael; Körner, Carolin; Michaelis, Alexander; Gebhardt, Sylvia

    The application of piezoelectric transducers to structural body parts of machines or vehicles enables the combination of passive mechanical components with sensor and actuator functions in one single structure. According to Herold et al. [1] and Staeves [2] this approach indicates significant potential regarding smart lightweight construction. To obtain the highest yield, the piezoelectric transducers need to be integrated into the flux of forces (load path) of load bearing structures. Application in a downstream process reduces yield and process efficiency during manufacturing and operation, due to the necessity of a subsequent process step of sensor/actuator application. The die casting process offers the possibility for integration of piezoelectric transducers into metal structures. Aluminum castings are particularly favorable due to their high quality and feasibility for high unit production at low cost (Brunhuber [3], Nogowizin [4]). Such molded aluminum parts with integrated piezoelectric transducers enable functions like active vibration damping, structural health monitoring or energy harvesting resulting in significant possibilities of weight reduction, which is an increasingly important driving force of automotive and aerospace industry (Klein [5], Siebenpfeiffer [6]) due to increasingly stringent environmental protection laws. In the scope of those developments, this paper focuses on the entire process chain enabling the generation of lightweight metal structures with sensor and actuator function, starting from the manufacturing of piezoelectric modules over electrical and mechanical bonding to the integration of such modules into aluminum (Al) matrices by die casting. To achieve this challenging goal, piezoceramic sensors/actuator modules, so-called LTCC/PZT modules (LPM) were developed, since ceramic based piezoelectric modules are more likely to withstand the thermal stress of about 700 °C introduced by the casting process (Flössel et al., [7]). The modules are made of low temperature cofired ceramic (LTCC) tapes with an embedded lead zirconate titanate (PZT) plate and are manufactured in multilayer technique. For joining conducting copper (Cu) wires with the electrode structure of the LPM, a novel laser drop on demand wire bonding method (LDB) is applied, which is based on the melting of a spherical CuSn12 braze preform with a liquidus temperature Tliquid of 989.9 °C (Deutsches Kupfer-Institut Düsseldorf, [8]) providing sufficient thermal stability for a subsequent casting process.

  9. A free gingival impression for achieving optimal interdental papilla height: a case report.

    PubMed

    Nozawa, Takeshi; Kitami, Norikazu; Tsurumaki, Shunzo; Enomoto, Hiroaki; Ito, Koichi

    2011-02-01

    Failure to tend to inadequate crown contours in the crown trial can cause long-term disharmony of the free gingival form. This case report describes a novel technique for free gingival impression from a final provisional restoration to a zirconia crown. Two die casts were manufactured from a silicone impression. The first die cast was for the zirconia crown; the second die cast was for the final provisional restoration and the provisionalized transfer coping. A free gingival impression was taken using a provisionalized transfer coping, and a soft gingival model was manufactured. The proximal contact position was managed using the predicted convex curve of the interdental papillae. One year after zirconia crown placement, no inflammation was observed around the pyramidal interdental papillae, and symmetric interdental papilla heights were evident. A free gingival impression using a two die-cast technique appears to be useful for achieving optimal interdental papilla height.

  10. 2D and 3D characterization of pore defects in die cast AM60

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Zhuofei; CanmetMATERIALS, 183 Longwood Road South, Hamilton L8P 0A5, Ontario Canada; Maurey, Alexandre

    2016-04-15

    The widespread application of die castings can be hampered due to the potential of large scale porosity to act as nucleation sites for fracture and fatigue. It is therefore important to develop robust approaches to the characterization of porosity providing parameters that can be linked to the material's mechanical properties. We have tackled this problem in a study of the AM60 die cast Mg alloy, using samples extracted from a prototype shock tower. A quantitative characterization of porosity has been undertaken, analyzing porosity in both 2D (using classical metallographic methods) and in 3D (using X-ray computed tomography (XCT)). Metallographic characterizationmore » results show that shrinkage pores and small gas pores can be distinguished based on their distinct geometrical features. Shrinkage pores are irregular with multiple arms, resulting in a form factor less than 0.4. In contrast, gas pores are generally more circular in shape yielding form factors larger than 0.6. XCT provides deeper insight into the shape of pores, although this understanding is limited by the resolution obtainable by laboratory based XCT. It also shows how 2D sectioning can produce artefacts as single complex pores are sectioned into multiple small pores. - Highlights: • Mg (e.g. AM60) die castings may contain large scale porosity that act as nucleation sites for fracture and fatigue • Quantitative characterization of porosity metallography (2D) and X-ray tomography (3D) is used • Shrinkage pores and small gas pores can be distinguished based on their distinct geometrical features. • Shrinkage pores are irregular giving a form factor < 0.4; gas pores are rounder with form factors > 0.6 • XCT enables pore visualization, although limited by the resolution obtainable by laboratory based XCT.« less

  11. Process research into metallic pipe wear of hot chamber die casting machines and methods ofincreasing wear resistance

    NASA Astrophysics Data System (ADS)

    Mukhametzyanova, G. F.; Kolesnikov, MS; Mukhametzyanov, I. R.; Astatshenko, V. I.

    2017-09-01

    The kinetics and reasons for metallic pipe wear of hot chamberzinc alloy die casting machines are established.Increasing metallic pipe wear components wear resistance is being achieved by means of die steelДИ - 22 with electroslag remelting modification and electron-beamremelting modification and after the processes of nitriding and boriding besides.

  12. Die Soldering in Aluminium Die Casting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Q.; Kenik, E.A.; Viswanathan, S.

    2000-03-15

    Two types of tests, dipping tests and dip-coating tests were carried out on small steel cylinders using pure aluminum and 380 alloy to investigate the mechanism of die soldering during aluminum die casting. Optical and scanning electron microscopy were used to study the morphology and composition of the phases formed during soldering. A soldering mechanism is postulated based on experimental observations. A soldering critical temperature is postulated at which iron begins to react with aluminum to form an aluminum-rich liquid phase and solid intermetallic compounds. When the temperature at the die surface is higher than this critical temperature, the aluminum-richmore » phase is liquid and joins the die with the casting during the subsequent solidification. The paper discusses the mechanism of soldering for the case of pure aluminum and 380 alloy casting in a steel mold, the factors that promote soldering, and the strength of the bond formed when soldering occurs. conditions, an aluminum-rich soldering layer may also form over the intermetallic layer. Although a significant amount of research has been conducted on the nature of these intermetallics, little is known about the conditions under which soldering occurs.« less

  13. Modeling of microstructure evolution of magnesium alloy during the high pressure die casting process

    NASA Astrophysics Data System (ADS)

    Wu, Mengwu; Xiong, Shoumei

    2012-07-01

    Two important microstructure characteristics of high pressure die cast magnesium alloy are the externally solidified crystals (ESCs) and the fully divorced eutectic which form at the filling stage of the shot sleeve and at the last stage of solidification in the die cavity, respectively. Both of them have a significant influence on the mechanical properties and performance of magnesium alloy die castings. In the present paper, a numerical model based on the cellular automaton (CA) method was developed to simulate the microstructure evolution of magnesium alloy during cold-chamber high pressure die casting (HPDC) process. Modeling of dendritic growth of magnesium alloy with six-fold symmetry was achieved by defining a special neighbourhood configuration and calculating of the growth kinetics from complete solution of the transport equations. Special attention was paid to establish a nucleation model considering both of the nucleation of externally solidified crystals in the shot sleeve and the massive nucleation in the die cavity. Meanwhile, simulation of the formation of fully divorced eutectic was also taken into account in the present CA model. Validation was performed and the capability of the present model was addressed by comparing the simulated results with those obtained by experiments.

  14. The Relationship between Dendrite Arm Spacing and Cooling Rate of Al-Si Casting Alloys in High Pressure Die Casting

    NASA Astrophysics Data System (ADS)

    Cho, Jae-Ik; Kim, Cheol-Woo; Kim, Young-Chan; Choi, Se-Weon; Kang, Chang-Seog

    The effects of cooling rate on the solidification behavior of Al-8.5%Si-3%Cu and Al-11%Si-3%Cu alloys were studied during high pressure die casting (HPDC). The HPDC experiment was conducted by using the dies with 3 steps for 3 different cooling rates. Because of the high in both melt temperature and pressure, it was difficult to obtain the temperature profile directly from HPDC specimen. Therefore, in this study, cylindrical bar castings with different diameter were poured to acquire the cooling curves at the solidification range of 15°C/s up to 100°C/s and then the microstructures were compared to estimate the cooling rate in HPDC. The solidification characteristics including liquidus/solidus temperature and dendrite arm spacing of each alloy and each cooling rate was analyzed and the results showed strong proportional relationship between dendrite arm spacing and cooling rate in HPDC. The results were also compared with the actual die casting specimens and MAGMA simulation.

  15. Microstructure characterization and corrosion resistance properties of Pb-Sb alloys for lead acid battery spine produced by different casting methods.

    PubMed

    Seikh, Asiful H; Sherif, El-Sayed M; Khan Mohammed, Sohail M A; Baig, Muneer; Alam, Mohammad Asif; Alharthi, Nabeel

    2018-01-01

    The aim of this study is to find out the microstructure, hardness, and corrosion resistance of Pb-5%Sb spine alloy. The alloy has been produced by high pressure die casting (HPDC), medium pressure die casting (AS) and low pressure die casting (GS) methods, respectively. The microstructure was characterized by using optical microscopy and scanning electron microscopy (SEM). The hardness was also reported. The corrosion resistance of the spines in 0.5M H2SO4 solution has been analyzed by measuring the weight loss, impedance spectroscopy and the potentiodynamic polarization techniques. It has been found that the spine produced by HPDC has defect-free fine grain structure resulting improvement in hardness and excellent corrosion resistance.

  16. Microstructure characterization and corrosion resistance properties of Pb-Sb alloys for lead acid battery spine produced by different casting methods

    PubMed Central

    Baig, Muneer; Alam, Mohammad Asif; Alharthi, Nabeel

    2018-01-01

    The aim of this study is to find out the microstructure, hardness, and corrosion resistance of Pb-5%Sb spine alloy. The alloy has been produced by high pressure die casting (HPDC), medium pressure die casting (AS) and low pressure die casting (GS) methods, respectively. The microstructure was characterized by using optical microscopy and scanning electron microscopy (SEM). The hardness was also reported. The corrosion resistance of the spines in 0.5M H2SO4 solution has been analyzed by measuring the weight loss, impedance spectroscopy and the potentiodynamic polarization techniques. It has been found that the spine produced by HPDC has defect-free fine grain structure resulting improvement in hardness and excellent corrosion resistance. PMID:29668709

  17. Estimation of Heat Transfer Coefficient in Squeeze Casting of Magnesium Alloy AM60 by Experimental Polynomial Extrapolation Method

    NASA Astrophysics Data System (ADS)

    Sun, Zhizhong; Niu, Xiaoping; Hu, Henry

    In this work, a different wall-thickness 5-step (with thicknesses as 3, 5, 8, 12, 20 mm) casting mold was designed, and squeeze casting of magnesium alloy AM60 was performed in a hydraulic press. The casting-die interfacial heat transfer coefficients (IHTC) in 5-step casting were determined based on experimental thermal histories data throughout the die and inside the casting which were recorded by fine type-K thermocouples. With measured temperatures, heat flux and IHTC were evaluated using the polynomial curve fitting method. The results show that the wall thickness affects IHTC peak values significantly. The IHTC value for the thick step is higher than that for the thin steps.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nick Cannell; Adrian S. Sabau

    The investment casting process allows the production of complex-shape parts and close dimensional tolerances. One of the most important phases in the investment casting process is the design of the pattern die. Pattern dies are used to create wax patterns by injecting wax into dies. The first part of the project involved preparation of reports on the state of the art at that time for all the areas under consideration (die-wax, wax-shell, and shell-alloy). The primary R&D focus during Phase I was on the wax material since the least was known about it. The main R&D accomplishments during this phasemore » were determination of procedures for obtaining the thermal conductivity and viscoelastic properties of an unfilled wax and validating those procedures. Phase II focused on die-wax and shell-alloy systems. A wax material model was developed based on results obtained during the previous R&D phase, and a die-wax model was successfully incorporated into and used in commercial computer programs. Current computer simulation programs have complementary features. A viscoelastic module was available in ABAQUS but unavailable in ProCAST, while the mold-filling module was available in ProCAST but unavailable in ABAQUS. Thus, the numerical simulation results were only in good qualitative agreement with experimental results, the predicted shrinkage factors being approximately 2.5 times larger than those measured. Significant progress was made, and results showed that the testing and modeling of wax material had great potential for industrial applications. Additional R&D focus was placed on one shell-alloy system. The fused-silica shell mold and A356 aluminum alloy were considered. The experimental part of the program was conducted at ORNL and commercial foundries, where wax patterns were injected, molds were invested, and alloys were poured. It was very important to obtain accurate temperature data from actual castings, and significant effort was made to obtain temperature profiles in the shell mold. A model for thermal radiation within the shell mold was developed, and the thermal model was successfully validated using ProCAST. Since the fused silica shells had the lowest thermal expansion properties in the industry, the dewaxing phase, including the coupling between wax-shell systems, was neglected. The prefiring of the empty shell mold was considered in the model, and the shell mold was limited to a pure elastic material. The alloy dimensions were obtained from numerical simulations only with coupled shell-alloy systems. The alloy dimensions were in excellent quantitative agreement with experimental data, validating the deformation module. For actual parts, however, the creep properties of the shell molds must also be obtained, modeled, and validated.« less

  19. Tribological and Wear Performance of Nanocomposite PVD Hard Coatings Deposited on Aluminum Die Casting Tool.

    PubMed

    Paiva, Jose Mario; Fox-Rabinovich, German; Locks Junior, Edinei; Stolf, Pietro; Seid Ahmed, Yassmin; Matos Martins, Marcelo; Bork, Carlos; Veldhuis, Stephen

    2018-02-28

    In the aluminum die casting process, erosion, corrosion, soldering, and die sticking have a significant influence on tool life and product quality. A number of coatings such as TiN, CrN, and (Cr,Al)N deposited by physical vapor deposition (PVD) have been employed to act as protective coatings due to their high hardness and chemical stability. In this study, the wear performance of two nanocomposite AlTiN and AlCrN coatings with different structures were evaluated. These coatings were deposited on aluminum die casting mold tool substrates (AISI H13 hot work steel) by PVD using pulsed cathodic arc evaporation, equipped with three lateral arc-rotating cathodes (LARC) and one central rotating cathode (CERC). The research was performed in two stages: in the first stage, the outlined coatings were characterized regarding their chemical composition, morphology, and structure using glow discharge optical emission spectroscopy (GDOES), scanning electron microscopy (SEM), and X-ray diffraction (XRD), respectively. Surface morphology and mechanical properties were evaluated by atomic force microscopy (AFM) and nanoindentation. The coating adhesion was studied using Mersedes test and scratch testing. During the second stage, industrial tests were carried out for coated die casting molds. In parallel, tribological tests were also performed in order to determine if a correlation between laboratory and industrial tests can be drawn. All of the results were compared with a benchmark monolayer AlCrN coating. The data obtained show that the best performance was achieved for the AlCrN/Si₃N₄ nanocomposite coating that displays an optimum combination of hardness, adhesion, soldering behavior, oxidation resistance, and stress state. These characteristics are essential for improving the die mold service life. Therefore, this coating emerges as a novelty to be used to protect aluminum die casting molds.

  20. Development of an Optimization Methodology for the Aluminum Alloy Wheel Casting Process

    NASA Astrophysics Data System (ADS)

    Duan, Jianglan; Reilly, Carl; Maijer, Daan M.; Cockcroft, Steve L.; Phillion, Andre B.

    2015-08-01

    An optimization methodology has been developed for the aluminum alloy wheel casting process. The methodology is focused on improving the timing of cooling processes in a die to achieve improved casting quality. This methodology utilizes (1) a casting process model, which was developed within the commercial finite element package, ABAQUS™—ABAQUS is a trademark of Dassault Systèms; (2) a Python-based results extraction procedure; and (3) a numerical optimization module from the open-source Python library, Scipy. To achieve optimal casting quality, a set of constraints have been defined to ensure directional solidification, and an objective function, based on the solidification cooling rates, has been defined to either maximize, or target a specific, cooling rate. The methodology has been applied to a series of casting and die geometries with different cooling system configurations, including a 2-D axisymmetric wheel and die assembly generated from a full-scale prototype wheel. The results show that, with properly defined constraint and objective functions, solidification conditions can be improved and optimal cooling conditions can be achieved leading to process productivity and product quality improvements.

  1. Energy Saving Melting and Revert Reduction Technology: Melting Efficiency in Die Casting Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Schwam

    2012-12-15

    This project addressed multiple aspects of the aluminum melting and handling in die casting operations, with the objective of increasing the energy efficiency while improving the quality of the molten metal. The efficiency of melting has always played an important role in the profitability of aluminum die casting operations. Consequently, die casters need to make careful choices in selecting and operating melting equipment and procedures. The capital cost of new melting equipment with higher efficiency can sometimes be recovered relatively fast when it replaces old melting equipment with lower efficiency. Upgrades designed to improve energy efficiency of existing equipment maymore » be well justified. Energy efficiency is however not the only factor in optimizing melting operations. Melt losses and metal quality are also very important. Selection of melting equipment has to take into consideration the specific conditions at the die casting shop such as availability of floor space, average quantity of metal used as well as the ability to supply more metal during peaks in demand. In all these cases, it is essential to make informed decisions based on the best available data.« less

  2. Development of materials for the rapid manufacture of die cast tooling

    NASA Astrophysics Data System (ADS)

    Hardro, Peter Jason

    The focus of this research is to develop a material composition that can be processed by rapid prototyping (RP) in order to produce tooling for the die casting process. Where these rapidly produced tools will be superior to traditional tooling production methods by offering one or more of the following advantages: reduced tooling cost, shortened tooling creation time, reduced man-hours for tool creation, increased tool life, and shortened die casting cycle time. By utilizing RP's additive build process and vast material selection, there was a prospect that die cast tooling may be produced quicker and with superior material properties. To this end, the material properties that influence die life and cycle time were determined, and a list of materials that fulfill these "optimal" properties were highlighted. Physical testing was conducted in order to grade the processability of each of the material systems and to optimize the manufacturing process for the downselected material system. Sample specimens were produced and microscopy techniques were utilized to determine a number of physical properties of the material system. Additionally, a benchmark geometry was selected and die casting dies were produced from traditional tool materials (H13 steel) and techniques (machining) and from the newly developed materials and RP techniques (selective laser sintering (SLS) and laser engineered net shaping (LENS)). Once the tools were created, a die cast alloy was selected and a preset number of parts were shot into each tool. During tool creation, the manufacturing time and cost was closely monitored and an economic model was developed to compare traditional tooling to RP tooling. This model allows one to determine, in the early design stages, when it is advantageous to implement RP tooling and when traditional tooling would be best. The results of the physical testing and economic analysis has shown that RP tooling is able to achieve a number of the research objectives, namely, reduce tooling cost, shorten tooling creation time, and reduce the man-hours needed for tool creation. Though identifying the appropriate time to use RP tooling appears to be the most important aspect in achieving successful implementation.

  3. Interlocking multi-material components made of structured steel sheets and high-pressure die cast aluminium

    NASA Astrophysics Data System (ADS)

    Senge, S.; Brachmann, J.; Hirt, G.; Bührig-Polaczek, A.

    2017-10-01

    Lightweight design is a major driving force of innovation, especially in the automotive industry. Using hybrid components made of two or more different materials is one approach to reduce the vehicles weight and decrease fuel consumption. As a possible way to increase the stiffness of multi-material components, this paper presents a process chain to produce such components made of steel sheets and high-pressure die cast aluminium. Prior to the casting sequence the steel sheets are structured in a modified rolling process which enables continuous interlocking with the aluminium. Two structures manufactured by this rolling process are tested. The first one is a channel like structure and the second one is a channel like structure with undercuts. These undercuts enable the formation of small anchors when the molten aluminium fills them. The correlation between thickness reduction during rolling and the shape of the resulting structure was evaluated for both structures. It can be stated that channels with a depth of up to 0.5 mm and a width of 1 mm could be created. Undercuts with different size depending on the thickness reduction could be realised. Subsequent aluminium high-pressure die casting experiments were performed to determine if the surface structure can be filled gap-free with molten aluminium during the casting sequence and if a gap-free connection can be achieved after contraction of the aluminium. The casting experiments showed that both structures could be filled during the high-pressure die casting. The channel like structure results in a gap between steel and aluminium after contraction of the cast metal whereas the structure with undercuts leads to a good interlocking resulting in a gap-free connection.

  4. Casting Characteristics of High Cerium Content Aluminum Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, D; Rios, O R; Sims, Z C

    This paper compares the castability of the near eutectic aluminum-cerium alloy system to the aluminum-silicon and aluminum-copper systems. The alloys are compared based on die filling capability, feeding characteristics and tendency to hot tear in both sand cast and permanent mold applications. The castability ranking of the binary Al–Ce systems is as good as the aluminum-silicon system with some deterioration as additional alloying elements are added. In alloy systems that use cerium in combination with common aluminum alloying elements such as silicon, magnesium and/or copper, the casting characteristics are generally better than the aluminum-copper system. In general, production systems formore » melting, de-gassing and other processing of aluminum-silicon or aluminum-copper alloys can be used without modification for conventional casting of aluminum-cerium alloys.« less

  5. Thermal Stress and Heat Transfer Coefficient for Ceramics Stalk Having Protuberance Dipping into Molten Metal

    NASA Astrophysics Data System (ADS)

    Noda, Nao-Aki; Hendra; Li, Wenbin; Takase, Yasushi; Ogura, Hiroki; Higashi, Yusuke

    Low pressure die casting is defined as a net shape casting technology in which the molten metal is injected at high speeds and pressure into a metallic die. The low pressure die casting process plays an increasingly important role in the foundry industry as a low-cost and high-efficiency precision forming technique. In the low pressure die casting process is that the permanent die and filling systems are placed over the furnace containing the molten alloy. The filling of the cavity is obtained by forcing the molten metal, by means of a pressurized gas, to rise into a ceramic tube having protuberance, which connects the die to the furnace. The ceramics tube, called stalk, has high temperature resistance and high corrosion resistance. However, attention should be paid to the thermal stress when the stalk having protuberance is dipped into the molten aluminum. It is important to reduce the risk of fracture that may happen due to the thermal stresses. In this paper, thermo-fluid analysis is performed to calculate surface heat transfer coefficient. The finite element method is applied to calculate the thermal stresses when the stalk having protuberance is dipped into the crucible with varying dipping speeds. It is found that the stalk with or without protuberance should be dipped into the crucible slowly to reduce the thermal stress.

  6. Microstructure and Corrosion Characterization of Squeeze Cast AM50 Magnesium Alloys

    NASA Astrophysics Data System (ADS)

    Sachdeva, Deepika; Tiwari, Shashank; Sundarraj, Suresh; Luo, Alan A.

    2010-12-01

    Squeeze casting of magnesium alloys potentially can be used in lightweight chassis components such as control arms and knuckles. This study documents the microstructural analysis and corrosion behavior of AM50 alloys squeeze cast at different pressures between 40 and 120 MPa and compares them with high-pressure die cast (HPDC) AM50 alloy castings and an AM50 squeeze cast prototype control arm. Although the corrosion rates of the squeeze cast samples are slightly higher than those observed for the HPDC AM50 alloy, the former does produce virtually porosity-free castings that are required for structural applications like control arms and wheels. This outcome is extremely encouraging as it provides an opportunity for additional alloy and process development by squeeze casting that has remained relatively unexplored for magnesium alloys compared with aluminum. Among the microstructural parameters analyzed, it seems that the β-phase interfacial area, indicating a greater degree of β network, leads to a lower corrosion rate. Weight loss was the better method for determining corrosion behavior in these alloys that contain a large fraction of second phase, which can cause perturbations to an overall uniform surface corrosion behavior.

  7. Fatigue of die cast zinc alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schrems, K.K.; Dogan, O.N.; Goodwin, F.E.

    2006-04-01

    The rotating bending fatigue limit of die cast zinc alloy 2, alloy 3, alloy 5, AcuZinc 5, and ZA-8 were determined as a part of an on-going program by ILZRO into the mechanical properties of die cast zinc. The stress-life (S-N) curves of alloys 3, 5, AcuZinc 5, and ZA-8 were determined previously. This presentation reports the results of the S-N curve for Alloy 2 and the calculated fatigue limits for all five alloys. During the previous stress-life testing, the samples were stopped at 10 million cycles and the fatigue limit for alloy 3, alloy 5, and AcuZinc 5 appearedmore » to be higher and the fatigue limit for ZA-8 appeared to be lower than the values reported in the literature. This was further investigated in alloy 5 and ZA-8 by testing continuous cast bulk alloy 5 and ZA-8.« less

  8. Experimental study on the use of spacer foils in two-step putty and wash impression procedures using silicone impression materials.

    PubMed

    Mann, Karsten; Davids, Andreas; Range, Ursula; Richter, Gert; Boening, Klaus; Reitemeier, Bernd

    2015-04-01

    The 2-step putty and wash impression technique is commonly used in fixed prosthodontics. However, cutting sluiceways to allow the light-body material to drain is time-consuming. A solution might be the use of a spacer foil. The purpose of this study was to evaluate the influence of spacer foil on the margin reproduction and dimensional accuracy of 2-step putty and wash impressions. Two methods of creating space for the wash material in a 2-step putty and wash impression were compared: the traditional cutout technique and a spacer foil. Eleven commercially available combinations of silicone impression materials were included in the study. The impressions and the cast production were carried out under standardized conditions. All casts were measured with a 3-dimensional (3D) coordinate measuring machine. Preparation margin reproduction and the diameters and spacing of the stone cast dies were measured (α=.05). The 2 methods showed significant differences (P<.05) in the reproduction of the preparation margins (complete reproduction cutout, 90% to 98%; foil, 74% to 91%). The use of a foil resulted in greater dimensional accuracy of the cast dies compared to the cutout technique. Cast dies from the cutout technique were significantly smaller than the metallic original cast (cutout median, 4.55 mm to 4.61 mm; foil median, 4.61 to 4.64). Spacing between the dies revealed only a few additional significant differences between the techniques. When spacer foils were used, dies were obtained that better corresponded to the original tooth. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  9. Aluminum space frame technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birch, S.

    This article examines the increased application of aluminum to the construction of automobile frames. The topics of the article include a joint venture between Audi and Alcoa, forms in which aluminum is used, new alloys and construction methods, meeting rigidity and safety levels, manufacturing techniques, the use of extrusions, die casting, joining techniques, and pollution control during manufacturing.

  10. Casting the Die before the Die Is Cast: The Importance of the Home Numeracy Environment for Preschool Children

    ERIC Educational Resources Information Center

    Niklas, Frank; Schneider, Wolfgang

    2014-01-01

    Mathematical competencies are important not only for academic achievement at school but also for professional success later in life. Although we know a lot about the impact of "Home Literacy Environment" on the development of early linguistic competencies, research on "Home Numeracy Environment" (HNE) and the assessment of its…

  11. 77 FR 6587 - PHB Die Casting a Subsidiary of PHB, Inc., Including On-Site Leased Workers From Career Concepts...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-08

    ... Contract Worker From Burns Industrial Group (BIG INC) Fairview, PA; Amended Certification Regarding... production of die castings. New information shows that a worker from Burns Industrial Group (BIG Inc) was... amending this certification to include a worker from Burns Industrial Group (BIG Inc) who was contracted by...

  12. Microstructure and corrosion behavior of die-cast AM60B magnesium alloys in a complex salt solution. A slow positron beam study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Y. F.; Yang, W.; Qin, Q. L.

    2013-12-15

    The microstructure and corrosion behavior of high pressure die-cast (HPDC) and super vacuum die-cast (SVDC) AM60B magnesium alloys were investigated in a complex salt solution using slow positron beam technique and potentiodynamic polarization tests. The experiments revealed that a CaCO 3 film was formed on the surface of the alloys and that the rate of CaCO 3 formation for the SVDC alloy with immersion time was slower than that of the HPDC alloy. The larger volume fraction of b-phase in the skin layer of the SVDC alloy than that of the HPDC alloy was responsible for the better corrosion resistance.

  13. Tribological and Wear Performance of Nanocomposite PVD Hard Coatings Deposited on Aluminum Die Casting Tool

    PubMed Central

    Fox-Rabinovich, German; Locks Junior, Edinei; Stolf, Pietro; Matos Martins, Marcelo

    2018-01-01

    In the aluminum die casting process, erosion, corrosion, soldering, and die sticking have a significant influence on tool life and product quality. A number of coatings such as TiN, CrN, and (Cr,Al)N deposited by physical vapor deposition (PVD) have been employed to act as protective coatings due to their high hardness and chemical stability. In this study, the wear performance of two nanocomposite AlTiN and AlCrN coatings with different structures were evaluated. These coatings were deposited on aluminum die casting mold tool substrates (AISI H13 hot work steel) by PVD using pulsed cathodic arc evaporation, equipped with three lateral arc-rotating cathodes (LARC) and one central rotating cathode (CERC). The research was performed in two stages: in the first stage, the outlined coatings were characterized regarding their chemical composition, morphology, and structure using glow discharge optical emission spectroscopy (GDOES), scanning electron microscopy (SEM), and X-ray diffraction (XRD), respectively. Surface morphology and mechanical properties were evaluated by atomic force microscopy (AFM) and nanoindentation. The coating adhesion was studied using Mersedes test and scratch testing. During the second stage, industrial tests were carried out for coated die casting molds. In parallel, tribological tests were also performed in order to determine if a correlation between laboratory and industrial tests can be drawn. All of the results were compared with a benchmark monolayer AlCrN coating. The data obtained show that the best performance was achieved for the AlCrN/Si3N4 nanocomposite coating that displays an optimum combination of hardness, adhesion, soldering behavior, oxidation resistance, and stress state. These characteristics are essential for improving the die mold service life. Therefore, this coating emerges as a novelty to be used to protect aluminum die casting molds. PMID:29495620

  14. Marginal adaptation of four inlay casting waxes on stone, titanium, and zirconia dies.

    PubMed

    Michalakis, Konstantinos X; Kapsampeli, Vassiliki; Kitsou, Aikaterini; Kirmanidou, Yvone; Fotiou, Anna; Pissiotis, Argirios L; Calvani, Pasquale Lino; Hirayama, Hiroshi; Kudara, Yukio

    2014-07-01

    Different inlay casting waxes do not produce copings with satisfactory marginal accuracy when used on different die materials. The purpose of this study was to evaluate the marginal accuracy of 4 inlay casting waxes on stone dies and titanium and zirconia abutments and to correlate the findings with the degree of wetting between the die specimens and the inlay casting waxes. The inlay casting waxes tested were Starwax (Dentaurum), Unterziehwachs (Bredent), SU Esthetic wax (Schuler), and Sculpturing wax (Renfert). The marginal opening of the waxes was measured with a stereomicroscope on high-strength stone dies and on titanium and zirconia abutments. Photographic images were obtained, and the mean marginal opening for each specimen was calculated. A total of 1440 measurements were made. Wetting between die materials and waxes was determined after fabricating stone, titanium, and zirconia rectangular specimens. A calibrated pipette was used to place a drop of molten wax onto each specimen. The contact angle was calculated with software after an image of each specimen had been made with a digital camera. Collected data were subjected to a 2-way analysis of variance (α=.05). Any association between marginal accuracy and wetting of different materials was found by using the Pearson correlation. The wax factor had a statistically significant effect both on the marginal discrepancy (F=158.31, P<.001) and contact angle values (F=68.09, P<.001). A statistically significant effect of the die material factor both on the marginal adaptation (F=503.47, P<.001) and contact angle values (F=585.02, P<.001) was detected. A significant correlation between the marginal accuracy and the contact angle values (Pearson=0.881, P=.01) was also found. Stone dies provided wax copings with the best marginal integrity, followed by titanium and zirconia abutments. Unterziehwachs (Bredent), wax produced the best marginal adaptation on different die materials. A significant correlation was found between the marginal accuracy and the contact angle values. As the contact angle value became smaller, the marginal accuracy improved. All combinations of waxes and stone and titanium dies presented a high wettability. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  15. Characterization of Pore Defects and Fatigue Cracks in Die Cast AM60 Using 3D X-ray Computed Tomography

    NASA Astrophysics Data System (ADS)

    Yang, Zhuofei; Kang, Jidong; Wilkinson, David S.

    2015-08-01

    AM60 high pressure die castings have been used in automobile applications to reduce the weight of vehicles. However, the pore defects that are inherent in die casting may negatively affect mechanical properties, especially the fatigue properties. Here we have studied damage ( e.g., pore defects, fatigue cracks) during strained-controlled fatigue using 3-dimensional X-ray computed tomography (XCT). The fatigue test was interrupted every 2000 cycles and the specimen was removed to be scanned using a desktop micro-CT system. XCT reveals pore defects, cracks, and fracture surfaces. The results show that pores can be accurately measured and modeled in 3D. Defect bands are found to be made of pores under 50 µm (based on volume-equivalent sphere diameter). Larger pores are randomly distributed in the region between the defect bands. Observation of fatigue cracks by XCT is performed in three ways such that the 3D model gives the best illustration of crack-porosity interaction while the other two methods, with the cracks being viewed on transverse or longitudinal cross sections, have better detectability on crack initiation and crack tip observation. XCT is also of value in failure analysis on fracture surfaces. By assessing XCT data during fatigue testing and observing fracture surfaces on a 3D model, a better understanding on the crack initiation, crack-porosity interaction, and the morphology of fracture surface is achieved.

  16. Effects of preparation relief and flow channels on seating full coverage castings during cementation.

    PubMed

    Webb, E L; Murray, H V; Holland, G A; Taylor, D F

    1983-06-01

    Machined steel dies were used to study the effects of three die modifications on seating full coverage castings during cementation. The die modifications consisted of occlusal channels, occlusal surface relief, and axial channels. Fourteen specimens having one or more forms of die modification were compared with two control specimens having no die modifications. Statistical analysis of the data revealed that the addition of four axial channels to the simulated preparation on the steel die produced a significant reduction in the mean marginal discrepancy during cementation. Occlusal modifications alone failed to produce significant reductions in marginal discrepancies when compared with the control specimens. Occlusal modifications in conjunction with axial channels failed to produce further significant reductions in marginal discrepancies when compared with those reductions observed in specimens having only axial channels.

  17. Prediction of Thermal Fatigue in Tooling for Die-casting Copper via Finite Element Analysis

    NASA Astrophysics Data System (ADS)

    Sakhuja, Amit; Brevick, Jerald R.

    2004-06-01

    Recent research by the Copper Development Association (CDA) has demonstrated the feasibility of die-casting electric motor rotors using copper. Electric motors using copper rotors are significantly more energy efficient relative to motors using aluminum rotors. However, one of the challenges in copper rotor die-casting is low tool life. Experiments have shown that the higher molten metal temperature of copper (1085 °C), as compared to aluminum (660 °C) accelerates the onset of thermal fatigue or heat checking in traditional H-13 tool steel. This happens primarily because the mechanical properties of H-13 tool steel decrease significantly above 650 °C. Potential approaches to mitigate the heat checking problem include: 1) identification of potential tool materials having better high temperature mechanical properties than H-13, and 2) reduction of the magnitude of cyclic thermal excursions experienced by the tooling by increasing the bulk die temperature. A preliminary assessment of alternative tool materials has led to the selection of nickel-based alloys Haynes 230 and Inconel 617 as potential candidates. These alloys were selected based on their elevated temperature physical and mechanical properties. Therefore, the overall objective of this research work was to predict the number of copper rotor die-casting cycles to the onset of heat checking (tool life) as a function of bulk die temperature (up to 650 °C) for Haynes 230 and Inconel 617 alloys. To achieve these goals, a 2D thermo-mechanical FEA was performed to evaluate strain ranges on selected die surfaces. The method of Universal Slopes (Strain Life Method) was then employed for thermal fatigue life predictions.

  18. Food equipment manufacturer takes a slice out of its scrap rate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernard, D.; Hannahs, J.; Carter, M.

    1996-09-01

    The PMI Food Equipment Group began manufacturing circular slicer knives for its commercial Hobart line of slicers in the early 1930s. The company manufacturers the only cast knife in the food industry. The cast knives offer superior edge retention and overall corrosion resistance. The slicer knives are cast in PMI`s foundry. The casting process sometimes produces shrinkage voids or gas bubbles in the knife blank. Surface discontinuities often do not appear until rough cutting or final machining, i.e., after several hours of value-added manufacturing. Knife blanks with these discontinuities were scrapped and sent back to the foundry for remelting. Tomore » scrap the knives at that point meant the cost for casting plus the value-added machining added up to a considerable amount. Weld repair allows the recovery of casting and machining expenses equal to a significant percentage of the total manufacturing cost of slicer knives. Repair costs include welding, grinding, shipping, surface finishing and material handling. Other good applications for this GMAW-P process include repair of jet engine components, rotating process industry equipment, and hardfacing of cutting tools and dies. In addition, dissimilar metals and any material that is heat treated to develop its properties such as precision investment castings are excellent applications. The low resultant distortion, elimination of postweld heat treatment and non-line-of-site welding capability solves thin wall, limited access and precision machined component repair challenges.« less

  19. Formation Mechanism of Discoloration on Die-Cast AZ91D Components Surface After Chemical Conversion

    NASA Astrophysics Data System (ADS)

    Liu, Bao-sheng; Wei, Ying-hui; Hou, Li-feng

    2013-01-01

    A notebook (NB) computer component was manufactured from AZ91D Mg alloy by a die-casting process. After chemical conversion treatment, a discoloration was noted on the component surface. The source of this discoloration has been studied in detail by scanning electron microscopy, energy dispersive spectroscopy, and spark atomic absorption spectroscopy. The corrosion resistance was also measured by potentiodynamic polarization, hydrogen evolution and salt spray testing. The formation mechanism for the discoloration which was caused by the residue left behind by excess mold release agent sprayed during the die-casting was discussed in detail. After chemical conversion treatment, the residual-baked mold release agent was apparent on the component surface as "white ash." Consequently, it degraded seriously both the appearance and the corrosion resistance of the manufactured component.

  20. An investigation of the properties of Mg-Zn-Al alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Z.; Couture, A.; Luo, A.

    1998-06-05

    During the past ten years, the use of magnesium castings in the automotive and electronics industries has been expanding at an impressive rate. Die casting is one of the most effective fabrication methods and has been extensively used to produce magnesium components, especially in the automotive industry. However, the number of available Mg-based alloys for die casting is very limited. Therefore, it is pressing to develop some new Mg die casting alloys with good creep resistance, acceptable castability and low cost. Mg-Zn-Al (ZA) is a promising alloy system which is able to meet the requirements. But up to now, onlymore » a small amount of research has been carried out on this system. The aim of the present work is to examine and evaluate the microstructural features, tensile properties and creep resistance in order to get a better overall understanding of alloys of this system and to identify the most promising compositions. The influence of small additions of Ca and Sr on the tensile and creep properties of ZA alloys was also investigated.« less

  1. Accuracy of a new ring-opening metathesis elastomeric dental impression material with spray and immersion disinfection.

    PubMed

    Kronström, Mats H; Johnson, Glen H; Hompesch, Richard W

    2010-01-01

    A new elastomeric impression material has been formulated with a ring-opening metathesis chemistry. In addition to other properties of clinical significance, the impression accuracy must be confirmed. The purpose of this study was to compare the accuracy of the new elastomeric impression material with vinyl polysiloxane and polyether following both spray and immersion disinfection. Impressions of a modified dentoform with a stainless steel crown preparation in the lower right quadrant were made, and type IV gypsum working casts and dies were formed. Anteroposterior (AP), cross-arch (CA), buccolingual (BL), mesiodistal (MD), occlusogingivobuccal (OGB), and occlusogingivolingual (OGL) dimensions were measured using a microscope. Working cast and die dimensions were compared to those of the master model. The impression materials were a newly formulated, ring-opening metathesis-polymerization impression material (ROMP Cartridge Tray and ROMP Volume Wash), vinyl polysiloxane (VPS, Aquasil Ultra Monophase/LV), and a polyether (PE, Impregum Penta Soft/Permadyne Garant L). Fifteen impressions with each material were made, of which 5 were disinfected by spray for 10 minutes (CaviCide), 5 were disinfected by immersion for 90 minutes (ProCide D), and 5 were not disinfected. There were significant cross-product interactions with a 2-way ANOVA, so a 1-way ANOVA and Dunnett's T3 multiple comparison test were used to compare the dimensional changes of the 3 impression materials, by disinfection status and for each location (alpha=.05). For ROMP, there were no significant differences from the master, for any dimension, when comparing the control and 2 disinfectant conditions. No significant differences were detected among the 3 impression materials for CA, BL, and MD. The working die dimensions of OGB and OGL for VPS with immersion disinfection were significantly shorter than with PE and ROMP (P<.05). Overall, the AP dimension was more accurate than CA, and the BL of working dies was 0.040 mm greater in diameter than MD. The accuracy of gypsum working casts and working dies from the new and 2 existing types of impression material were similar, for both spray and immersion disinfection. Judicious application of a die spacer can compensate for the small differences observed. VPS may require additional laboratory accommodation to compensate for a shorter working die. Copyright 2010 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  2. A comparative evaluation of the marginal adaptation of a thermoplastic resin, a light cured wax and an inlay casting wax on stone dies: An in vitro study.

    PubMed

    Gopalan, Reji P; Nair, Vivek V; Harshakumar, K; Ravichandran, R; Lylajam, S; Viswambaran, Prasanth

    2018-01-01

    Different pattern materials do not produce copings with satisfactory, marginal accuracy when used on stone dies at varying time intervals. The purpose of this study was to evaluate and compare the vertical marginal accuracy of patterns formed from three materials, namely, thermoplastic resin, light cured wax and inlay casting wax at three-time intervals of 1, 12, and 24 h. A master die (zirconia abutment mimicking a prepared permanent maxillary central incisor) and metal sleeve (direct metal laser sintering crown #11) were fabricated. A total of 30 stone dies were obtained from the master die. Ten patterns were made each from the three materials and stored off the die at room temperature. The vertical marginal gaps were measured using digital microscope at 1, 12, and 24 h after reseating with gentle finger pressure. The results revealed a significant statistical difference in the marginal adaptation of three materials at all the three-time intervals. Light cured wax was found to be most accurate at all time intervals, followed by thermoplastic resin and inlay casting wax. Furthermore, there was a significant difference between all pairs of materials. The change in vertical marginal gap from 1 to 24 h between thermoplastic resin and light cured wax was not statistically significant. The marginal adaptation of all the three materials used, was well within the acceptable range of 25-70 μm. The resin pattern materials studied revealed significantly less dimensional change than inlay casting wax on storage at 1, 12, and 24 h time intervals. They may be employed in situations where high precision and delayed investing is expected.

  3. Chrysler Upset Protrusion Joining Techniques for Joining Dissimilar Metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Logan, Stephen

    The project goal was to develop and demonstrate a robust, cost effective, and versatile joining technique, known as Upset Protrusion Joining (UPJ), for joining challenging dissimilar metal com-binations, especially those where one of the metals is a die cast magnesium (Mg) component. Since two of the key obstacles preventing more widespread use of light metals (especially in high volume automotive applications) are 1) a lack of robust joining techniques and 2) susceptibility to galvanic corrosion, and since the majority of the joint combinations evaluated in this project include die cast Mg (the lightest structural metal) as one of the twomore » materials being joined, and since die casting is the most common and cost effective process for producing Mg components, then successful project completion provides a key enabler to high volume application of lightweight materials, thus potentially leading to reduced costs, and encouraging implementation of lightweight multi-material vehicles for significant reductions in energy consumption and reduced greenhouse gas emissions. Eco-nomic benefits to end-use consumers are achieved primarily via the reduction in fuel consumption. Unlike currently available commercial processes, the UPJ process relies on a very robust mechanical joint rather than intermetallic bonding, so the more cathodic material can be coated prior to joining, thus creating a robust isolation against galvanic attack on the more anodic material. Additionally, since the UPJ protrusion is going through a hole that can be pre-drilled or pre-punched prior to coating, the UPJ process is less likely to damage the coating when the joint is being made. Further-more, since there is no additional cathodic material (such as a steel fastener) used to create the joint, there is no joining induced galvanic activity beyond that of the two parent materials. In accordance with its originally proposed plan, this project has successfully developed process variants of UPJ to enable joining of Mg die castings to aluminum (Al) and steel sheet components of various thicknesses, strengths and coating configurations. While most development focused on the simpler round boss version of the process, an additional phase of the work focused on devel-opment of an oval boss version to support applications with narrow flanges, while yet another vari-ant of the process, known as Upset Cast Riveting (UCR), was developed and evaluated for joining mixed metals that may not necessarily include Mg or Al die cast components. Although each varia-tion posed unique challenges described later in the report, all variations were successfully produced and evaluated, and each could be further developed for specific types of commercial applications. In this project, UPJ performed favorably against the benchmark self-pierce riveting (SPR) process in Mg AM60B to Al 6013 combinations although significant corrosion challenges were observed in both processes, especially for the bare Mg to bare Al configurations. Additional challenges were observed in joining Mg to steel with the UPJ process (SPR was not evaluated for this combination as it was not considered viable). To pass FCA’s specified corrosion tests with Mg/steel combina-tions, new steel treatments were evaluated, as well as adhesives and sealed edges. These showed significant improvement. In general, UPJ performed very well in Mg to Al 6016 combinations, even in corrosion evaluation of the bare Mg to bare Al configuration (again, SPR was not evaluated for this material combination as the 1.1 mm thick Al6016 sheet thickness was considered too thin for the SPR process). The improvement in corrosion performance of the Mg to Al 6016 combina-tion over the Mg to Al 6013 combination was thought to be a result of the lower copper content in the Al 6016 alloy. Oval boss joints showed substantial improvement in all joint strength criteria compared to 8.0-mm diameter round boss joints but were not evaluated for corrosion performance. The improved joint strength is likely a result of larger shear area. Cosmetic corrosion performance of all test assemblies (UPJ, UCR and SPR) was a challenge due to exposed edges and crevices al-lowing undercutting of the coatings. In real world component applications, the exposed edges, so prevalent on the joining test coupons, would be less prevalent and easier to protect.« less

  4. Limitation of Shrinkage Porosity in Aluminum Rotor Die Casting

    NASA Astrophysics Data System (ADS)

    Kim, Young-Chan; Choi, Se-Weon; Kim, Cheol-Woo; Cho, Jae-Ik; Lee, Sung-Ho; Kang, Chang-Seog

    Aluminum rotor prone to have many casting defects especially large amount of air and shrinkage porosity, which caused eccentricity, loss and noise during motor operation. Many attempts have been made to develop methods of shrinkage porosity control, but still there are some problems to solve. In this research, the process of vacuum squeeze die casting is proposed for limitation of defects. The 6 pin point gated dies which were in capable of local squeeze at the end ring were used. Influences of filling patterns on HPDC were evaluated and the important process control parameters were high injection speed, squeeze length, venting and process conditions. By using local squeeze and vacuum during filling and solidification, air and shrinkage porosity were significantly reduced and the feeding efficiency at the upper end ring was improved 10%. As a result of controlling the defects, the dynamometer test showed improved motor efficiency by more than 4%.

  5. Cradle-to-Gate Impact Assessment of a High-Pressure Die-Casting Safety-Relevant Automotive Component

    NASA Astrophysics Data System (ADS)

    Cecchel, Silvia; Cornacchia, Giovanna; Panvini, Andrea

    2016-09-01

    The mass of automotive components has a direct influence on several aspects of vehicle performance, including both fuel consumption and tailpipe emissions, but the real environmental benefit has to be evaluated considering the entire life of the products with a proper life cycle assessment. In this context, the present paper analyzes the environmental burden connected to the production of a safety-relevant aluminum high-pressure die-casting component for commercial vehicles (a suspension cross-beam) considering all the phases connected to its manufacture. The focus on aluminum high-pressure die casting reflects the current trend of the industry and its high energy consumption. This work shows a new method that deeply analyzes every single step of the component's production through the implementation of a wide database of primary data collected thanks to collaborations of some automotive supplier companies. This energy analysis shows significant environmental benefits of aluminum recycling.

  6. Quantitative Experimental Study of Defects Induced by Process Parameters in the High-Pressure Die Cast Process

    NASA Astrophysics Data System (ADS)

    Sharifi, P.; Jamali, J.; Sadayappan, K.; Wood, J. T.

    2018-05-01

    A quantitative experimental study of the effects of process parameters on the formation of defects during solidification of high-pressure die cast magnesium alloy components is presented. The parameters studied are slow-stage velocity, fast-stage velocity, intensification pressure, and die temperature. The amount of various defects are quantitatively characterized. Multiple runs of the commercial casting simulation package, ProCAST™, are used to model the mold-filling and solidification events. Several locations in the component including knit lines, last-to-fill region, and last-to-solidify region are identified as the critical regions that have a high concentration of defects. The area fractions of total porosity, shrinkage porosity, gas porosity, and externally solidified grains are separately measured. This study shows that the process parameters, fluid flow and local solidification conditions, play major roles in the formation of defects during HPDC process.

  7. Marginal Accuracy of Castings Fabricated with Ringless Casting Investment System and Metal Ring Casting Investment System: A Comparative Study.

    PubMed

    Kalavathi, M; Sachin, Bhuvana; Prasanna, B G; Shreeharsha, T V; Praveen, B; Ragher, Mallikarjuna

    2016-02-01

    The thermal expansion of the investment can be restricted by the metal casting ring because the thermal expansion of the ring is less than that of the investment. The ringless casting procedure is in use in clinical dentistry, though there is little scientific data to support its use in fixed partial dentures. In this study, marginal discrepancy of castings produced with the ringless casting technique and the conventional technique using the metal rings were compared. A total of 30 wax patterns were fabricated directly on a metal die. Optical stereomicroscope was used to measure the marginal discrepancy between the metal die and wax patterns. A total of 15 castings were invested using Bellavest T phosphate-bonded investment with the ringless technique and 15 were invested with the same investment with a metal ring; 30 castings were produced using a nickel-chromium ceramo-metal alloy. The internal surface of the castings was not modified and seated with finger pressure. The vertical marginal discrepancy was measured using an optical stereomicroscope at a magnification of 100x. The data obtained were statistically analyzed using students t-test (paired t-test and unpaired t-test). The castings of the ringless technique provided less vertical marginal discrepancy (240.56 ± 45.81 μ) than the castings produced with the conventional metal ring technique (281.98± 53.05 μ). The difference was statistically significant. The ringless casting technique had produced better marginal accuracy compared with conventional casting technique. Ringless casting system can be used routinely for clinical purpose.

  8. Characterization of the interfacial heat transfer coefficient for hot stamping processes

    NASA Astrophysics Data System (ADS)

    Luan, Xi; Liu, Xiaochuan; Fang, Haomiao; Ji, Kang; El Fakir, Omer; Wang, LiLiang

    2016-08-01

    In hot stamping processes, the interfacial heat transfer coefficient (IHTC) between the forming tools and hot blank is an essential parameter which determines the quenching rate of the process and hence the resulting material microstructure. The present work focuses on the characterization of the IHTC between an aluminium alloy 7075-T6 blank and two different die materials, cast iron (G3500) and H13 die steel, at various contact pressures. It was found that the IHTC between AA7075 and cast iron had values 78.6% higher than that obtained between AA7075 and H13 die steel. Die materials and contact pressures had pronounced effects on the IHTC, suggesting that the IHTC can be used to guide the selection of stamping tool materials and the precise control of processing parameters.

  9. Experimental Damage Criterion for Static and Fatigue Life Assessment of Commercial Aluminum Alloy Die Castings

    NASA Astrophysics Data System (ADS)

    Battaglia, Eleonora; Bonollo, Franco; Ferro, Paolo

    2017-05-01

    Defects, particularly porosity and oxides, in high-pressure die casting can seriously compromise the in-service behavior and durability of products subjected to static or cyclic loadings. In this study, the influence of dimension, orientation, and position of casting defects on the mechanical properties of an AlSi12(b) (EN-AC 44100) aluminum alloy commercial component has been studied. A finite element model has been carried out in order to calculate the stress distribution induced by service loads and identify the crack initiation zones. Castings were qualitatively classified on the basis of porosities distribution detected by X-ray technique and oxides observed on fracture surfaces of specimens coming from fatigue and tensile tests. A damage criterion has been formulated which considers the influence of defects position and orientation on the mechanical strength of the components. Using the proposed damage criterion, it was possible to describe the mechanical behavior of the castings with good accuracy.

  10. High-Strength Aluminum Casting Alloy for High-Temperature Applications (MSFC Center Director's Discretionary Fund Final Project No. 97-10)

    NASA Technical Reports Server (NTRS)

    Lee, J. A.

    1998-01-01

    A new aluminum-silicon alloy has been successfully developed at Marshall Space Flight Center that has a significant improvement in tensile strength at elevated temperatures (550 to 700 F). For instance, the new alloy shows in average tensile strength of at least 90 percent higher than the current 390 aluminum piston alloy tested at 500 F. Compared to conventional aluminum alloys, automotive engines using the new piston alloy will have improved gas mileage, and may produce less air pollution in order to meet the future U.S. automotive legislative requirements for low hydrocarbon emissions. The projected cost for this alloy is less than $0.95/lb, and it readily allows the automotive components to be cast at a high production volume with a low, fully accounted cost. It is economically produced by pouring molten metal directly into conventional permanent steel molds or die casting.

  11. Application of superalloy powder metallurgy for aircraft engines

    NASA Technical Reports Server (NTRS)

    Dreshfield, R. L.; Miner, R. V., Jr.

    1980-01-01

    In the last decade, Government/Industry programs have advanced powder metallurgy-near-net-shape technology to permit the use of hot isostatic pressed (HIP) turbine disks in the commercial aircraft fleet. These disks offer a 30% savings of input weight and an 8% savings in cost compared in cast-and-wrought disks. Similar savings were demonstrated for other rotating engine components. A compressor rotor fabricated from hot-die-forged-HIP superalloy billets revealed input weight savings of 54% and cost savings of 35% compared to cast-and-wrought parts. Engine components can be produced from compositions such as Rene 95 and Astroloy by conventional casting and forging, by forging of HIP powder billets, or by direct consolidation of powder by HIP. However, each process produces differences in microstructure or introduces different defects in the parts. As a result, their mechanical properties are not necessarily identical. Acceptance methods should be developed which recognize and account for the differences.

  12. The thermal fatigue resistance of H-13 Die Steel for aluminum die casting dies

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The effects of welding, five selected surface coatings, and stress relieving on the thermal fatigue resistance of H-13 Die Steel for aluminum die casting dies were studied using eleven thermal fatigue specimens. Stress relieving was conducted after each 5,000 cycle interval at 1050 F for three hours. Four thermal fatigue specimens were welded with H-13 or maraging steel welding rods at ambient and elevated temperatures and subsequently, subjected to different post-weld heat treatments. Crack patterns were examined at 5,000, 10,000, and 15,000 cycles. The thermal fatigue resistance is expressed by two crack parameters which are the average maximum crack and the average cracked area. The results indicate that a significant improvement in thermal fatigue resistance over the control was obtained from the stress-relieving treatment. Small improvements were obtained from the H-13 welded specimens and from a salt bath nitrogen and carbon-surface treatment. The other surface treatments and welded specimens either did not affect or had a detrimental influence on the thermal fatigue properties of the H-13 die steel.

  13. Energy Saving Melting and Revert Reduction Technology: Innovative Semi-Solid Metal (SSM) Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diran Apelian

    2012-08-15

    Semi-solid metal (SSM) processing has emerged as an attractive method for near-net-shape manufacturing due to the distinct advantages it holds over conventional near-net-shape forming technologies. These advantages include lower cycle time, increased die life, reduced porosity, reduced solidification shrinkage, improved mechanical properties, etc. SSM processing techniques can not only produce the complex dimensional details (e.g. thin-walled sections) associated with conventional high-pressure die castings, but also can produce high integrity castings currently attainable only with squeeze and low-pressure permanent mold casting processes. There are two primary semi-solid processing routes, (a) thixocasting and (b) rheocasting. In the thixocasting route, one starts frommore » a non-dendritic solid precursor material that is specially prepared by a primary aluminum manufacturer, using continuous casting methods. Upon reheating this material into the mushy (a.k.a. "two-phase") zone, a thixotropic slurry is formed, which becomes the feed for the casting operation. In the rheocasting route (a.k.a. "slurry-on-demand" or "SoD"), one starts from the liquid state, and the thixotropic slurry is formed directly from the melt via careful thermal management of the system; the slurry is subsequently fed into the die cavity. Of these two routes, rheocasting is favored in that there is no premium added to the billet cost, and the scrap recycling issues are alleviated. The CRP (Trade Marked) is a process where the molten metal flows through a reactor prior to casting. The role of the reactor is to ensure that copious nucleation takes place and that the nuclei are well distributed throughout the system prior to entering the casting cavity. The CRP (Trade Marked) has been successfully applied in hyper-eutectic Al-Si alloys (i.e., 390 alloy) where two liquids of equal or different compositions and temperatures are mixed in the reactor and creating a SSM slurry. The process has been mostly used for hypo-eutectic Al-Si alloys (i.e., 356, 357, etc.) where a single melt passes through the reactor. In addition, the CRP (Trade Marked) was designed to be flexible for thixocasting or rheocasting applications as well as batch or continuous casting. Variable heat extraction rates can be obtained by controlling either the superheat of the melt, the temperature of the channel system, or the temperature of the reactor. This program had four main objectives all of which were focused on a mechanistic understanding of the process in order to be able to scale it up, to develop it into a robust process,and for SSM processing to be commercially used.« less

  14. Grain Refinement of Magnesium Alloys: A Review of Recent Research, Theoretical Developments, and Their Application

    NASA Astrophysics Data System (ADS)

    StJohn, D. H.; Easton, M. A.; Qian, M.; Taylor, J. A.

    2013-07-01

    This paper builds on the "Grain Refinement of Mg Alloys" published in 2005 and reviews the grain refinement research on Mg alloys that has been undertaken since then with an emphasis on the theoretical and analytical methods that have been developed. Consideration of recent research results and current theoretical knowledge has highlighted two important factors that affect an alloy's as-cast grain size. The first factor applies to commercial Mg-Al alloys where it is concluded that impurity and minor elements such as Fe and Mn have a substantially negative impact on grain size because, in combination with Al, intermetallic phases can be formed that tend to poison the more potent native or deliberately added nucleant particles present in the melt. This factor appears to explain the contradictory experimental outcomes reported in the literature and suggests that the search for a more potent and reliable grain refining technology may need to take a different approach. The second factor applies to all alloys and is related to the role of constitutional supercooling which, on the one hand, promotes grain nucleation and, on the other hand, forms a nucleation-free zone preventing further nucleation within this zone, consequently limiting the grain refinement achievable, particularly in low solute-containing alloys. Strategies to reduce the negative impact of these two factors are discussed. Further, the Interdependence model has been shown to apply to a broad range of casting methods from slow cooling gravity die casting to fast cooling high pressure die casting and dynamic methods such as ultrasonic treatment.

  15. Effect of Holding Pressure on Microstructure and Mechanical Properties of A356 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoyan; Zhang, Huarui; Ma, Zhen; Jia, Lina; Zhang, Hu

    2018-02-01

    In this study, the effect of holding pressure on microstructure and mechanical properties of low-pressure die cast A356 aluminum alloy was investigated. The results showed that the application of high holding pressure (300 kPa) generated castings with denser structure and superior mechanical properties. By increasing the holding pressure up to 300 kPa, the size of secondary dendrite arm spacing greatly reduced by 22.7% at the cooling rate of 1°C/s and decreased by 12.8% at 10°C/s. The Feret's diameter and aspect ratio of eutectic silicon particles decreased by 8.4 and 5.1% at the cooling rate of 1°C/s and decreased by 9.3 and 6.4% at 10°C/s, respectively. Meanwhile, the density of A356 aluminum alloy increased to 2.678 g/cm3 and the area fraction of porosity decreased to 0.035%. Thus, tensile properties of A356 aluminum alloy obtained at high holding pressure were enhanced, especially the ductility. All these could be associated with the better filling capability and faster cooling rate caused by high holding pressure. In the analytical range of experimental conditions, the correlation of mechanical properties with process parameters was established by statistical models to predict the ultimate tensile strength and elongation of low-pressure die cast A356 aluminum alloy.

  16. Research keeps lead and zinc viable in high-tech markets

    NASA Astrophysics Data System (ADS)

    Cole, Jerome F.

    1989-08-01

    Lead and zinc have long enjoyed widespread use in a variety of applications. To insure growing markets for the future, however, new applications for these durable metals must be developed. Currently, projects are underway to determine the capabilities of lead for such high-technology uses as earthquake damping and nuclear waste containment. Zinc's capabilities are being developed further, too, particularly in the areas of direct injection die casting, composites and the improvement of coating properties. Other ongoing research initiatives are attempting to better determine the health and environmental influences of these metals.

  17. Thermal Stress Analysis for Ceramics Stalk in the Low Pressure Die Casting Machine

    NASA Astrophysics Data System (ADS)

    Noda, Nao-Aki; Hendra, Nao-Aki; Takase, Yasushi; Li, Wenbin

    Low pressure die casting (LPDC) is defined as a net shape casting technology in which the molten metal is injected at high speeds and pressure into a metallic die. The LPDC process is playing an increasingly important role in the foundry industry as a low-cost and high-efficiency precision forming technique. The LPDC process is that the permanent die and filling systems are placed over the furnace containing the molten alloy. The filling of the cavity is obtained by forcing the molten metal by means of a pressurized gas in order to rise into a ceramic tube, which connects the die to the furnace. The ceramics tube called stalk has high temperature resistance and high corrosion resistance. However, attention should be paid to the thermal stress when the stalk is dipped into the molten aluminum. It is important to develop the design of the stalk to reduce the risk of fracture because of low fracture toughness of ceramics. In this paper, therefore, the finite element method is applied to calculate the thermal stresses when the stalk is dipped into the crucible by varying the dipping speeds and dipping directions. It is found that the thermal stress can be reduced by dipping slowly if the stalk is dipped into the crucible vertically, while the thermal stress can be reduced by dipping fast if it is dipped horizontally.

  18. Development of a 3D Filling Model of Low-Pressure Die-Cast Aluminum Alloy Wheels

    NASA Astrophysics Data System (ADS)

    Duan, Jianglan; Maijer, Daan; Cockcroft, Steve; Reilly, Carl

    2013-12-01

    A two-phase computational fluid dynamics model of the low-pressure die-cast process for the production of A356 aluminum alloy wheels has been developed to predict the flow conditions during die filling. The filling model represents a 36-deg section of a production wheel, and was developed within the commercial finite-volume package, ANSYS CFX, assuming isothermal conditions. To fully understand the behavior of the free surface, a novel technique was developed to approximate the vent resistances as they impact on the development of a backpressure within the die cavity. The filling model was first validated against experimental data, and then was used to investigate the effects of venting conditions and pressure curves during die filling. It was found that vent resistance and vent location strongly affected die filling time, free surface topography, and air entrainment for a given pressure fill-curve. With regard to the pressure curve, the model revealed a strong relation between the pressure curve and the flow behavior in the hub, which is an area prone to defect formation.

  19. Clean Metal Casting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makhlouf M. Makhlouf; Diran Apelian

    The objective of this project is to develop a technology for clean metal processing that is capable of consistently providing a metal cleanliness level that is fit for a given application. The program has five tasks: Development of melt cleanliness assessment technology, development of melt contamination avoidance technology, development of high temperature phase separation technology, establishment of a correlation between the level of melt cleanliness and as cast mechanical properties, and transfer of technology to the industrial sector. Within the context of the first task, WPI has developed a standardized Reduced Pressure Test that has been endorsed by AFS asmore » a recommended practice. In addition, within the context of task1, WPI has developed a melt cleanliness sensor based on the principles of electromagnetic separation. An industrial partner is commercializing the sensor. Within the context of the second task, WPI has developed environmentally friendly fluxes that do not contain fluorine. Within the context of the third task, WPI modeled the process of rotary degassing and verified the model predictions with experimental data. This model may be used to optimize the performance of industrial rotary degassers. Within the context of the fourth task, WPI has correlated the level of melt cleanliness at various foundries, including a sand casting foundry, a permanent mold casting foundry, and a die casting foundry, to the casting process and the resultant mechanical properties. This is useful in tailoring the melt cleansing operations at foundries to the particular casting process and the desired properties of cast components.« less

  20. Deducing material quality in cast and hot-forged steels by new bending test

    NASA Astrophysics Data System (ADS)

    Valberg, Henry; Langøy, Morten; Nedreberg, Mette; Helvig, Torgeir

    2017-10-01

    A special bend test has been developed and applied for the purpose of characterization and comparison of the material ductility in crankpin steel discs manufactured by casting, or casting subsequently followed by hot open-die forging (ODF) or closed-die forging (CDF). The bending test specimen consists of a small rectangular plate of material with a round hole cut out in the middle. The "eye-shape" specimens were cut out from various positions either near to the surface of, or from the interior of the discs. The test method revealed differences in ductility for the investigated materials, and for different depth positions inside the discs. The roughening of the specimen surface on the top-side of the specimen bend also varied dependent on the processing method for the material. Current results show that this test method is useful for evaluation of material quality in differently processed material. Experimental bend test results are presented for differently processed variants of the same material, i.e., crankpin discs either made by solely casting or casting subsequently followed by hot working either by ODF or CDF.

  1. Cast Aluminum Alloys for High Temperature Applications Using Nanoparticles Al2O3 and Al3-X Compounds (X = Ti, V, Zr)

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2009-01-01

    In this paper, the effect of nanoparticles Al2O3 and Al3-X compounds (X = Ti, V, Zr) on the improvement of mechanical properties of aluminum alloys for elevated temperature applications is presented. These nanoparticles were selected based on their low cost, chemical stability and low diffusions rates in aluminum at high temperatures. The strengthening mechanism at high temperature for aluminum alloy is based on the mechanical blocking of dislocation movements by these nanoparticles. For Al2O3 nanoparticles, the test samples were prepared from special Al2O3 preforms, which were produced using ceramic injection molding process and then pressure infiltrated by molten aluminum. In another method, Al2O3 nanoparticles can also be homogeneously mixed with fine aluminum powder and consolidated into test samples through hot pressing and sintering. With the Al3-X nanoparticles, the test samples are produced as precipitates from in-situ reactions with molten aluminum using conventional permanent mold or die casting techniques. It is found that cast aluminum alloy using nanoparticles Al3-X is the most cost effective method to produce high strength aluminum alloys for high temperature applications in comparison to nanoparticles Al2O3. Furthermore, significant mechanical properties retention in high temperature environment could be achieved with Al3-X nanoparticles, resulting in tensile strength of nearly 3 times higher than most 300- series conventional cast aluminum alloys tested at 600 F.

  2. Comparison of marginal accuracy of castings fabricated by conventional casting technique and accelerated casting technique: an in vitro study.

    PubMed

    Reddy, S Srikanth; Revathi, Kakkirala; Reddy, S Kranthikumar

    2013-01-01

    Conventional casting technique is time consuming when compared to accelerated casting technique. In this study, marginal accuracy of castings fabricated using accelerated and conventional casting technique was compared. 20 wax patterns were fabricated and the marginal discrepancy between the die and patterns were measured using Optical stereomicroscope. Ten wax patterns were used for Conventional casting and the rest for Accelerated casting. A Nickel-Chromium alloy was used for the casting. The castings were measured for marginal discrepancies and compared. Castings fabricated using Conventional casting technique showed less vertical marginal discrepancy than the castings fabricated by Accelerated casting technique. The values were statistically highly significant. Conventional casting technique produced better marginal accuracy when compared to Accelerated casting. The vertical marginal discrepancy produced by the Accelerated casting technique was well within the maximum clinical tolerance limits. Accelerated casting technique can be used to save lab time to fabricate clinical crowns with acceptable vertical marginal discrepancy.

  3. Evaluation of interlocking bond strength between structured 1.0338 steel sheets and high pressure die cast AlMg5Si2

    NASA Astrophysics Data System (ADS)

    Senge, S.; Brachmann, J.; Hirt, G.; Bührig-Polaczek, A.

    2018-05-01

    Multi-material components open up new possibilities for functional design. Such components combine beneficial physical properties of different materials in a single component as for instance chemical resistance, high strength or low density. The challenge is a reliable bond between both materials to enable a long term usage. This paper deals with a form closure connection to ensure a solid connection between steel strips and high pressure die cast aluminium. Two different sizes of channel structures with width ratios of 1.0 and 1.35 are produced on a steel sheet. An ensuing flat rolling pass is performed to create undercuts with a width of up to 50 µm, enabling an interlocking of the molten aluminium in the concluding casting process. For both rolling processes the resulting geometry is analysed depending on the thickness reduction. In a subsequent high pressure die casting process, aluminium is applied resulting in a complete form filling for the coarser structure. Comparing structures with and without undercuts, only structures suited with undercuts remain gap-free after solidification contraction. The finer structure could not be filled completely; nevertheless these structures result in shear strength of up to 45 MPa transversal to the channel-direction.

  4. The influence of flushing time on the bonding quality of liquid white cast iron on the solid surface of similar material

    NASA Astrophysics Data System (ADS)

    Bandanadjaja, Beny; Purwadi, Wiwik; Idamayanti, Dewi; Lilansa, Noval; Hanaldi, Kus; Nurzaenal, Friya Kurnia

    2018-05-01

    Hard metal castings are widely used in the coal mill pulverizer as construction material for coal crushers. During its operation crushers and mills experience degradation caused by abrasion load. This research dealed with the surface overlaying of similiar material on the surface of white cast iron by mean of gravity casting. The die blank casting was preheated prior to the casting process of outer layer made of Ni-Hard white cast iron to guarantee bonding processes and avoid any crack. The preheating temperature of die blankin ther range of 500C up to 850C was set up to reach the interface temperature in the range of 887°C -1198°C and the flushing time was varied between 10-20 seconds. Studies carried on the microstructure of sample material revealed a formation of metallurgical bonding at the preheating temperature above 625 °C by pouring temperature ranging from 1438 °C to 1468 °C. Metallographical and chemical composition by mean of EDS examination were performed to observed the resut. This research concludes that the casting of Ni-Hard 1 overlay by applying gravity casting method can be done by preheating the surface of casting to 625 °C, interface temperature of 1150 °C, flushing time of 7 seconds and pouring temperature of 1430 °C. Excellent metallurgical bonding at the contact area between dieblank and overlay material has been achieved in which there is no parting line at the interface area to be observed.

  5. Laser Hot Wire Process: A Novel Process for Near-Net Shape Fabrication for High-Throughput Applications

    NASA Astrophysics Data System (ADS)

    Kottman, Michael; Zhang, Shenjia; McGuffin-Cawley, James; Denney, Paul; Narayanan, Badri K.

    2015-03-01

    The laser hot wire process has gained considerable interest for additive manufacturing applications, leveraging its high deposition rate, low dilution, thermal stability, and general metallurgical control including the ability to introduce and preserve desired meta-stable phases. Recent advancements in closed-loop process control and laser technology have increased productivity, process stability, and control of deposit metallurgy. The laser hot wire process has shown success in several applications: repairing and rejuvenating casting dies, depositing a variety of alloys including abrasion wear-resistant overlays with solid and tubular wires, and producing low-dilution (<5%) nickel alloy overlays for corrosion applications. The feasibility of fabricating titanium buildups is being assessed for aerospace applications.

  6. ELF-MF Occupational Exposure in Die-casting and Electroplating Workers in Korea.

    PubMed

    Rajitha Kawshalya, Mailan Arachchige Don; Jung, Joon-Sig; Lee, Yun-Jin; Hong, Seung-Cheol

    2018-04-26

    A 24-h exposure assessment was performed in two groups of blue-collar workers from a die-casting and an electroplating plant to investigate levels of exposure to extremely low-frequency magnetic fields (ELF-MF), using EMDEX Lite. ELF-MF exposure of workers from the die-casting plant AM±SD (AM=arithmetic mean, SD=standard deviation) (0.649±1.343µT)] is higher than in electroplating workers (0.138±0.045µT). Higher ELF-MF exposure was found among workers living in same building as their workplace compared to that among other workers. This study suggests that ELF-MF exposure levels should be taken into consideration when providing dormitories for workers to minimize the levels of residential ELF-MF exposure due to emission from plants. The study recommends that blue-collar workers should be made aware of measures to minimize their exposure to environmental agents such as ELF-MF and electromagnetic field (EMF) during work, such as maintaining a safe distance between machines and avoiding undesirable behavior with equipment.

  7. Processing of sintered alpha SiC

    NASA Technical Reports Server (NTRS)

    Storm, R. S.

    1984-01-01

    Processing methods of sintered alpha SiC for engine applications are developed in a cost effective manner, using a submicron sized powder blended with sintering aids (boron and carbon). The processes for forming a green powder compact, such as dry pressing, cold isostatic pressing and green machining, slip casting, aqueous extrusion, plastic extrusion, and injection molding, are described. Dry pressing is the simplest route to component fabrication, and is carried out at approximately 10,000 psi pressure, while in the cold isostatic method the pressure could go as high as 20,000 psi. Surfactants are added to control settling rates and casting characteristics in the slip casting. The aqueous extrusion process is accomplished by a hydraulic ram forcing the aqueous mixture through a die. The plastic forming processes of extrusion and injection molding offer the potential of greater diversity in shape capacity. The physical properties of sintered alpha SiC (hardness, Young's modulus, shear modulus, and thermal diffusivity) are extensively tested. Corrosion resistance test results of silicon carbide are included.

  8. Energy efficient engine high-pressure turbine single crystal vane and blade fabrication technology report

    NASA Technical Reports Server (NTRS)

    Giamei, A. F.; Salkeld, R. W.; Hayes, C. W.

    1981-01-01

    The objective of the High-Pressure Turbine Fabrication Program was to demonstrate the application and feasibility of Pratt & Whitney Aircraft-developed two-piece, single crystal casting and bonding technology on the turbine blade and vane configurations required for the high-pressure turbine in the Energy Efficient Engine. During the first phase of the program, casting feasibility was demonstrated. Several blade and vane halves were made for the bonding trials, plus solid blades and vanes were successfully cast for materials evaluation tests. Specimens exhibited the required microstructure and chemical composition. Bonding feasibility was demonstrated in the second phase of the effort. Bonding yields of 75 percent for the vane and 30 percent for the blade were achieved, and methods for improving these yield percentages were identified. A bond process was established for PWA 1480 single crystal material which incorporated a transient liquid phase interlayer. Bond properties were substantiated and sensitivities determined. Tooling die materials were identified, and an advanced differential thermal expansion tooling concept was incorporated into the bond process.

  9. Numerical simulation on semi-solid die-casting of magnesium matrix composite based on orthogonal experiment

    NASA Astrophysics Data System (ADS)

    Liu, Huihui; He, Xiongwei; Guo, Peng

    2017-04-01

    Three factors (pouring temperature, injection speed and mold temperature) were selected to do three levels L9 (33)orthogonal experiment, then simulate processing of semi-solid die-casting of magnesium matrix composite by Flow-3D software. The stress distribution, temperature field and defect distribution of filling process were analyzed to find the optimized processing parameter with the help of orthogonal experiment. The results showed that semi-solid has some advantages of well-proportioned stress and temperature field, less defect concentrated in the surface. The results of simulation were the same as the experimental results.

  10. Development of Thixomolded{reg_sign} magnesium products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, D.; Fan, R.; Kang, K.

    1995-10-01

    Thixomolding{reg_sign} is a racial new process which merges the technologies of die-casting and plastic injection molding for the net shape molding of magnesium based alloys. Properties of Thixomolded{reg_sign} magnesium alloys are discussed and compared with those of traditional die casting. Magnesium alloys are of great interest to automobile manufacturers because of the potential weight savings and corresponding energy savings due to increased fuel economy. For this reason, one of the first target markets for Thixomolded{reg_sign} products is the automotive industry. The use of Thixomolding{reg_sign} in the production of an automobile part is examined.

  11. Failure Mechanisms of the Protective Coatings for the Hot Stamping Applications

    NASA Astrophysics Data System (ADS)

    Zhao, Chen

    In the present study, four different nitriding techniques were carried on the ductile irons NAAMS-D6510 and cast steels NAAMS-S0050A, which are widely used stamping die materials; duplex treatments (PVD CrN coating+nitriding) were carried on H13 steels, which are common inserts for the hot stamping dies. Inclined impact-sliding wear tests were performed on the nitriding cases under simulated stamping conditions. Surface profilometer, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) were used to investigate the wear and failure mechanisms of the protective coatings. It was found that the nitrided ductile iron samples performed better than the nitrided cast steel specimens. High temperature inclined impact-sliding wear tests were carried out on the CrN coatings. It was found that the coating performed better at elevated temperature. XPS analysis indicated the top surface layer (about 3-4nm) of the coating was oxidized at 400 °C and formed a Cr2O3 protective film. The in-situ formation of the thin Cr2O3 protective layer likely led to the change of wear mechanisms from severe adhesive failure to mild abrasive wear.

  12. Notched bar Izod impact properties of zinc die castings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schrems, K.K.; Dogan, O.N.; Goodwin, F.E.

    2007-03-01

    Notched bar Izod impact testing of zinc die cast Alloy 3, Alloy 5, ZA-8, and AcuZinc 5 was performed at five temperatures between -40\\mDC and room temperature in accordance with ASTM E23 for impact testing of metallic materials. A direct comparison between ASTM D256 for impact testing of plastics and ASTM E23 was performed using continuously cast zinc specimens of Alloy 5 and ZA-8 at -40\\mDC and room temperature. There are differences in sample sizes, impact velocity, and striker geometry between the two tests. Bulk zinc tested according to ASTM E23 resulted in higher impact energies at -40\\mDC and lowermore » impact energies at room temperature then did the same alloys when tested according to ASTM D256.« less

  13. 40 CFR Table 8 to Subpart Wwww of... - Initial Compliance With Organic HAP Emissions Limits

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... organic HAP emissions limit . . . You have demonstrated initial complianceif . . . 1. open molding and... contents. 2. open molding centrifugal casting, continuous lamination/casting, SMC and BMC manufacturing... die injection, and/or wet-area enclosures that meet the criteria of § 63.5830. 6. pultrusion...

  14. Low-Cycle Fatigue Behavior of Die-Cast Mg Alloy AZ91

    NASA Astrophysics Data System (ADS)

    Rettberg, Luke; Anderson, Warwick; Jones, J. Wayne

    An investigation has been conducted on the influence of microstructure and artificial aging response (T6) on the low-cycle fatigue behavior of super vacuum die-cast (SVDC) AZ91. Fatigue lifetimes were determined from total strain-controlled fatigue tests for strain amplitudes of 0.2%, 0.4% and 0.6%, under fully reversed loading at a frequency of 5 Hz. Cyclic stress-strain behavior was determined using incremental step test (IST) methods. Two locations in a prototype casting with different thicknesses and, therefore, solidification rates, microstructure and porosity, were examined. In general., at all total strain amplitudes fatigue life was unaffected by microstructure refinement and was attributed to significant levels of porosity. Cyclic softening and a subsequent increased cyclic hardening rate, compared to monotonic tests, were observed, independent of microstructure. These results, fractography and damage accumulation processes, determined from metallographic sectioning, are discussed.

  15. 40 CFR Table 8 to Subpart Wwww of... - Initial Compliance With Organic HAP Emissions Limits

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... open molding and centrifugal casting operations a. an organic HAP emissions limit shown in Tables 3 or... method meet the appropriate organic HAP contents. 2. open molding centrifugal casting, continuous... reduction is being claimed, are using direct die injection, and/or wet-area enclosures that meet the...

  16. 40 CFR Table 8 to Subpart Wwww of... - Initial Compliance With Organic HAP Emissions Limits

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... open molding and centrifugal casting operations a. an organic HAP emissions limit shown in Tables 3 or... method meet the appropriate organic HAP contents. 2. open molding centrifugal casting, continuous... reduction is being claimed, are using direct die injection, and/or wet-area enclosures that meet the...

  17. 40 CFR Table 8 to Subpart Wwww of... - Initial Compliance With Organic HAP Emissions Limits

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... open molding and centrifugal casting operations a. an organic HAP emissions limit shown in Tables 3 or... method meet the appropriate organic HAP contents. 2. open molding centrifugal casting, continuous... reduction is being claimed, are using direct die injection, and/or wet-area enclosures that meet the...

  18. Casting the Spirit: A Handmade Legacy

    ERIC Educational Resources Information Center

    Rutenberg, Mona

    2008-01-01

    This article discusses how an art therapist working in a hospital palliative care unit has incorporated a ritual of hand casting to help bring closure to dying patients and family members who are grieving as death approaches. The finished hand sculptures depict the hands of the patients and, sometimes, of their loved ones. They are faithful and…

  19. A comparison of the accuracy of patterns processed from an inlay casting wax, an auto-polymerized resin and a light-cured resin pattern material.

    PubMed

    Rajagopal, Praveen; Chitre, Vidya; Aras, Meena A

    2012-01-01

    Traditionally, inlay casting waxes have been used to fabricate patterns for castings. Newer resin pattern materials offer greater rigidity and strength, allowing easier laboratory and intraoral adjustment without the fear of pattern damage. They also claim to possess a greater dimensional stability when compared to inlay wax. This study attempted to determine and compare the marginal accuracy of patterns fabricated from an inlay casting wax, an autopolymerized pattern resin and a light polymerized pattern resin on storage off the die for varying time intervals. Ten patterns each were fabricated from an inlay casting wax (GC Corp., Tokyo, Japan), an autopolymerized resin pattern material (Pattern resin, GC Corp, Tokyo, Japan) and a light-cured resin pattern material (Palavit GLC, Hereaus Kulzer GmbH, Germany). The completed patterns were stored off the die at room temperature. Marginal gaps were evaluated by reseating the patterns on their respective dies and observing it under a stereomicroscope at 1, 12, and 24 h intervals after pattern fabrication. The results revealed that the inlay wax showed a significantly greater marginal discrepancy at the 12 and 24 h intervals. The autopolymerized resin showed an initial (at 1 h) marginal discrepancy slightly greater than inlay wax, but showed a significantly less marginal gap (as compared to inlay wax) at the other two time intervals. The light-cured resin proved to be significantly more dimensionally stable, and showed minimal change during the storage period. The resin pattern materials studied, undergo a significantly less dimensional change than the inlay waxes on prolonged storage. They would possibly be a better alternative to inlay wax in situations requiring high precision or when delayed investment (more than 1 h) of patterns can be expected.

  20. 40 CFR 467.02 - General definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... subcategory, but when present is an integral part of the aluminum forming process. (c) Contact cooling water.... (d) Continuous casting is the production of sheet, rod, or other long shapes by solidifying the metal... pulling metal through a die or succession of dies to reduce the metal's diameter or alter its shape. There...

  1. 40 CFR 467.02 - General definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... subcategory, but when present is an integral part of the aluminum forming process. (c) Contact cooling water.... (d) Continuous casting is the production of sheet, rod, or other long shapes by solidifying the metal... pulling metal through a die or succession of dies to reduce the metal's diameter or alter its shape. There...

  2. Cheatgrass Dead Zones in Northern Nevada

    USDA-ARS?s Scientific Manuscript database

    Reports of areas of cheatgrass die-off are becoming more frequent. In 2009, we investigated cheatgrass die-off in north-central Nevada. Dead zones ranged from several to hundreds of acres in size and were largely unvegetated and covered by cheatgrass litter with a distinct gray cast. We collected re...

  3. Shrinkage Prediction for the Investment Casting of Stainless Steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabau, Adrian S

    2007-01-01

    In this study, the alloy shrinkage factors were obtained for the investment casting of 17-4PH stainless steel parts. For the investment casting process, unfilled wax and fused silica with a zircon prime coat were used for patterns and shell molds, respectively. Dimensions of the die tooling, wax pattern, and casting were measured using a Coordinate Measurement Machine in order to obtain the actual tooling allowances. The alloy dimensions were obtained from numerical simulation results of solidification, heat transfer, and deformation phenomena. The numerical simulation results for the shrinkage factors were compared with experimental results.

  4. Evaluation and comparison of dimensional accuracy of newly introduced elastomeric impression material using 3D laser scanners: an in vitro study.

    PubMed

    Pandita, Amrita; Jain, Teerthesh; Yadav, Naveen S; Feroz, S M A; Pradeep; Diwedi, Akankasha

    2013-03-01

    Aim of the present study was to comparatively evaluate dimensional accuracy of newely introduced elastomeric impression material after repeated pours at different time intervals. In the present study a total of 20 (10 + 10) impressions of master model were made from vinyl polyether silicone and vinyl polysiloxane impression material. Each impression was repeatedly poured at 1, 24 hours and 14 days. Therefore, a total of 60 casts were obtained. Casts obtained were scanned with three-dimensional (3D) laser scanner and measurements were done. Vinyl polyether silicone produced overall undersized dies, with greatest change being 0.14% only after 14 days. Vinyl polysiloxane produced smaller dies after 1 and 24 hours and larger dies after 14 days, differing from master model by only 0.07% for the smallest die and to 0.02% for the largest die. All the deviations measured from the master model with both the impression materials were within a clinically acceptable range. In a typical fixed prosthodontic treatment accuracy of prosthesis is critical as it determines the success, failure and the prognosis of treatment including abutments. This is mainly dependent upon fit of prosthesis which in turn is dependent on dimensional accuracy of dies, poured from elastomeric impressions.

  5. Magnesium Front End Research and Development: A Canada-China-USA Collaboration

    NASA Astrophysics Data System (ADS)

    Luo, Alan A.; Nyberg, Eric A.; Sadayappan, Kumar; Shi, Wenfang

    The Magnesium Front End Research & Development (MFERD) project is an effort jointly sponsored by the United States Department of Energy, the United States Automotive Materials Partnership (USAMP), the Chinese Ministry of Science and Technology and Natural Resources Canada (NRCan) to demonstrate the technical and economic feasibility of a magnesium-intensive automotive front end body structure which offers improved fuel economy and performance benefits in a multi-material automotive structure. The project examines novel magnesium automotive body applications and processes, beyond conventional die castings, including wrought components (sheet or extrusions) and high-integrity body castings. This paper outlines the scope of work and organization for the collaborative (tri-country) task teams. The project has the goals of developing key enabling technologies and knowledge base for increased magnesium automotive body applications. The MFERD project began in early 2007 by initiating R&D in the following areas: crashworthiness, NVH, fatigue and durability, corrosion and surface finishing, extrusion and forming, sheet and forming, high-integrity body casting, as well as joining and assembly. Additionally, the MFERD project is also linked to the Integrated Computational Materials Engineering (ICME) project that will investigate the processing/structure/properties relations for various magnesium alloys and manufacturing processes utilizing advanced computer-aided engineering and modeling tools.

  6. Rapid Tooling for Functional Prototype of Metal Mold Processes Final Report CRADA No. TC-1032-98

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heestand, G.; Jaskolski, T.

    Production inserts for die-casting were generally fabricated from materials with sufficient strength and· good wear properties at casting temperatures for long life. Frequently tool steels were used and machining was done with a combination of. conventional and Electric Discharge Machining (EDM) with some handwork, an expensive and time consuming process, partilly for prototype work. We proposed electron beam physical vapor deposition (EBPVD) as a process for rapid fabrication of dies. Metals, ranging from low melting point to refractory metals (Ta, Mo, etc.), would be evaporated and deposited at high rates (-2mm/hr.). Alloys could be easily evaporated and deposited if theirmore » constituent vapor pressures were similar and with more difficulty if they were not. Of course, layering of different materials was possible if required for a specific application. For example, a hard surface layer followed by a tough steel and backed by a high thermal conductivity (possibly cooled) copper layer could be fabricated. Electron-beam deposits exhibited 100% density and lull strength when deposited at a substrate (mandrel) temperature that was a substantial fraction of the deposited material's melting point. There were several materials that could have the required high temperature properties and ease of fabrication required for such a mandrel. We had successfully used graphite, machined from free formed objects with a replicator, to produce aluminum-bronze test molds. There were several parting layer materials of interest, but the ideal material depended upon the specific application.« less

  7. Accuracy of Multiple Pour Cast from Various Elastomer Impression Methods

    PubMed Central

    Saad Toman, Majed; Ali Al-Shahrani, Abdullah; Ali Al-Qarni, Abdullah

    2016-01-01

    The accurate duplicate cast obtained from a single impression reduces the profession clinical time, patient inconvenience, and extra material cost. The stainless steel working cast model assembly consisting of two abutments and one pontic area was fabricated. Two sets of six each custom aluminum trays were fabricated, with five mm spacer and two mm spacer. The impression methods evaluated during the study were additional silicone putty reline (two steps), heavy-light body (one step), monophase (one step), and polyether (one step). Type IV gypsum casts were poured at the interval of one hour, 12 hours, 24 hours, and 48 hours. The resultant cast was measured with traveling microscope for the comparative dimensional accuracy. The data obtained were subjected to Analysis of Variance test at significance level <0.05. The die obtained from two-step putty reline impression techniques had the percentage of variation for the height −0.36 to −0.97%, while diameter was increased by 0.40–0.90%. The values for one-step heavy-light body impression dies, additional silicone monophase impressions, and polyether were −0.73 to −1.21%, −1.34%, and −1.46% for the height and 0.50–0.80%, 1.20%, and −1.30% for the width, respectively. PMID:28096815

  8. Mechanical and physical properties of AlSi10Mg processed through selective laser melting

    NASA Astrophysics Data System (ADS)

    Raus, A. A.; Wahab, M. S.; Ibrahim, M.; Kamarudin, K.; Ahmed, Aqeel; Shamsudin, S.

    2017-04-01

    In the past few decade, Additive Manufacturing (AM) has become popular and substantial to manufacture direct functional parts in varieties industrial applications even in very challenging like aerospace, medical and manufacturing sectors. Selective Laser Melting (SLM) is one of the most efficient technique in the additive Manufacturing (AM) which able to manufacture metal component directly from Computer Aided Design (CAD) file data. Accuracy, mechanical and physical properties are essentials requirement in order to meet the demand of those engineering components. In this paper, the mechanical properties of SLM manufactured AlSi10Mg samples such as hardness, tensile strength, and impact toughness are investigated and compared to conventionally high pressure die cast A360 alloy. The results exposed that the hardness and the yield strength of AlSi10Mg samples by SLM were increased by 42% and 31% respectively to those of conventionally high pressure die cast A360 alloy even though without comprehensive post processing methods. It is also discovered that AlSi10Mg parts fabricated by SLM achieved the highest density of 99.13% at the best setting parameters from a previous study of 350 watts laser power, 1650 mm/s scanning speed and hatching distance 0.13 mm.

  9. Treatment of Aluminum Die Casting Operations for the Purposes of NSR Applicability

    EPA Pesticide Factsheets

    This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.

  10. Predicting Stress vs. Strain Behaviors of Thin-Walled High Pressure Die Cast Magnesium Alloy with Actual Pore Distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Kyoo Sil; Barker, Erin; Cheng, Guang

    2016-01-06

    In this paper, a three-dimensional (3D) microstructure-based finite element modeling method (i.e., extrinsic modeling method) is developed, which can be used in examining the effects of porosity on the ductility/fracture of Mg castings. For this purpose, AM60 Mg tensile samples were generated under high-pressure die-casting in a specially-designed mold. Before the tensile test, the samples were CT-scanned to obtain the pore distributions within the samples. 3D microstructure-based finite element models were then developed based on the obtained actual pore distributions of the gauge area. The input properties for the matrix material were determined by fitting the simulation result to themore » experimental result of a selected sample, and then used for all the other samples’ simulation. The results show that the ductility and fracture locations predicted from simulations agree well with the experimental results. This indicates that the developed 3D extrinsic modeling method may be used to examine the influence of various aspects of pore sizes/distributions as well as intrinsic properties (i.e., matrix properties) on the ductility/fracture of Mg castings.« less

  11. Functionally graded alumina-based thin film systems

    DOEpatents

    Moore, John J.; Zhong, Dalong

    2006-08-29

    The present invention provides coating systems that minimize thermal and residual stresses to create a fatigue- and soldering-resistant coating for aluminum die casting dies. The coating systems include at least three layers. The outer layer is an alumina- or boro-carbide-based outer layer that has superior non-wettability characteristics with molten aluminum coupled with oxidation and wear resistance. A functionally-graded intermediate layer or "interlayer" enhances the erosive wear, toughness, and corrosion resistance of the die. A thin adhesion layer of reactive metal is used between the die substrate and the interlayer to increase adhesion of the coating system to the die surface.

  12. Elastomeric impression materials: a comparison of accuracy of multiple pours.

    PubMed

    Kumar, Dheeraj; Madihalli, Anand U; Reddy, K Rajeev Kumar; Rastogi, Namrataa; Pradeep, N T

    2011-07-01

    The aim of the present study is to compare the various elastomeric impression materials in terms of accuracy and dimensional stability, with respect to obtaining multiple casts from a single elastomeric impression at various times of pours. Three master dies were prepared for the impression making, two of these were made of brass containing a central hole with undercuts. The third die simulated a conventionally prepared typodont maxillary central incisor. Three elastomeric impression materials were chosen for the study. Each impression was poured at various time periods. Casts thus obtained were evaluated under a traveling microscope to evaluate various dimensional changes. Addition silicones provided dies which were shorter in height and bigger in diameter. Polyethers provided dies which were shorter in both height and diameter. Condensation silicones showed insignificant changes from the master die at the immediate pour but deteriorated rapidly after that in subsequent pours. None of the impression material showed a consistent behavior up to the fourth pour. They occasionally showed deviation from the pattern, but all these values were statistically insignificant. Polyethers showed lesser ability than both the addition silicones as well as the condensation silicones to recover from induced deformation. Addition silicones as well as the condensation silicones have better ability to recover from induced deformation when compared to polyether.

  13. [Variables effecting casting accuracy of quick heating casting investments].

    PubMed

    Takahashi, H; Nakamura, H; Iwasaki, N; Morita, N; Habu, N; Nishimura, F

    1994-06-01

    Recently, several new products of investments for "quick heating" have been put on the Japanese market. The total casting procedure time for this quick heating method involves only one hour; 30-minutes waiting after the start of mixing before placing the mold directly into the 700 degrees C furnace and 30-minutes heating in the furnace. The purpose of this study was to evaluate two variables effecting casting accuracy using these new investments. The effect of thickness of the casting liner inside the casting ring and the effect of waiting time before placing the mold into the 700 degrees C furnace were evaluated. A stainless-steel die with a convergence angle of 8 degrees was employed. Marginal discrepancies of the crown between the wax patterns and castings were measured. The size of the cast crown became larger when the thickness of the ring liner was thick and when the waiting time before placing the mold into the furnace was long. These results suggest that these new investments have the advantage of providing sound castings using short-time casting procedures. However, it is necessary to pay careful attention to the casting conditions for obtaining reproducible castings.

  14. Program Evaluation - Automotive Lightweighting Materials Program Research and Development Projects Assessment of Benefits - Case Studies No. 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, S.

    This report is the second of a series of studies to evaluate research and development (R&D) projects funded by the Automotive Lightweighting Materials (ALM) Program of the Office of Advanced Automotive Technologies (OAAT) of the U.S. Department of Energy (DOE). The objectives of the program evaluation are to assess short-run outputs and long-run outcomes that may be attributable to the ALM R&D projects. The ALM program focuses on the development and validation of advanced technologies that significantly reduce automotive vehicle body and chassis weight without compromising other attributes such as safety, performance, recyclability, and cost. Funded projects range from fundamentalmore » materials science research to applied research in production environments. Collaborators on these projects include national laboratories, universities, and private sector firms, such as leading automobile manufacturers and their suppliers. Three ALM R&D projects were chosen for this evaluation: Design and Product Optimization for Cast Light Metals, Durability of Lightweight Composite Structures, and Rapid Tooling for Functional Prototyping of Metal Mold Processes. These projects were chosen because they have already been completed. The first project resulted in development of a comprehensive cast light metal property database, an automotive application design guide, computerized predictive models, process monitoring sensors, and quality assurance methods. The second project, the durability of lightweight composite structures, produced durability-based design criteria documents, predictive models for creep deformation, and minimum test requirements and suggested test methods for establishing durability properties and characteristics of random glass-fiber composites for automotive structural composites. The durability project supported Focal Project II, a validation activity that demonstrates ALM program goals and reduces the lead time for bringing new technology into the marketplace. Focal projects concentrate on specific classes of materials and nonproprietary components and are done jointly by DOE and the Automotive Composites Consortium of U.S. Council for Automotive Research (USCAR). The third project developed a rapid tooling process that reduces tooling time, originally some 48-52 weeks, to less than 12 weeks by means of rapid generation of die-casting die inserts and development of generic holding blocks, suitable for use with large casting applications. This project was conducted by the United States Automotive Materials Partnership, another USCAR consortium.« less

  15. The study of flow pattern and phase-change problem in die casting process

    NASA Technical Reports Server (NTRS)

    Wang, T. S.; Wei, H.; Chen, Y. S.; Shang, H. M.

    1996-01-01

    The flow pattern and solidification phenomena in die casting process have been investigated in the first phase study. The flow pattern in filling process is predicted by using a VOF (volume of fluid) method. A good agreement with experimental observation is obtained for filling the water into a die cavity with different gate geometry and with an obstacle in the cavity. An enthalpy method has been applied to solve the solidification problem. By treating the latent heat implicitly into the enthalpy instead of explicitly into the source term, the CPU time can be reduced at least 20 times. The effect of material properties on solidification fronts is tested. It concludes that the dependence of properties on temperature is significant. The influence of the natural convection over the diffusion has also been studied. The result shows that the liquid metal solidification phenomena is diffusion dominant, and the natural convection can affect the shape of the interface. In the second phase study, the filling and solidification processes will be considered simultaneously.

  16. Microstructural analysis of aluminum high pressure die castings

    NASA Astrophysics Data System (ADS)

    David, Maria Diana

    Microstructural analysis of aluminum high pressure die castings (HPDC) is challenging and time consuming. Automating the stereology method is an efficient way in obtaining quantitative data; however, validating the accuracy of this technique can also pose some challenges. In this research, a semi-automated algorithm to quantify microstructural features in aluminum HPDC was developed. Analysis was done near the casting surface where it exhibited fine microstructure. Optical and Secondary electron (SE) and backscatter electron (BSE) SEM images were taken to characterize the features in the casting. Image processing steps applied on SEM and optical micrographs included median and range filters, dilation, erosion, and a hole-closing function. Measurements were done on different image pixel resolutions that ranged from 3 to 35 pixel/μm. Pixel resolutions below 6 px/μm were too low for the algorithm to distinguish the phases from each other. At resolutions higher than 6 px/μm, the volume fraction of primary α-Al and the line intercept count curves plateaued. Within this range, comparable results were obtained validating the assumption that there is a range of image pixel resolution relative to the size of the casting features at which stereology measurements become independent of the image resolution. Volume fraction within this curve plateau was consistent with the manual measurements while the line intercept count was significantly higher using the computerized technique for all resolutions. This was attributed to the ragged edges of some primary α-Al; hence, the algorithm still needs some improvements. Further validation of the code using other castings or alloys with known phase amount and size may also be beneficial.

  17. Precision forging technology for aluminum alloy

    NASA Astrophysics Data System (ADS)

    Deng, Lei; Wang, Xinyun; Jin, Junsong; Xia, Juchen

    2018-03-01

    Aluminum alloy is a preferred metal material for lightweight part manufacturing in aerospace, automobile, and weapon industries due to its good physical properties, such as low density, high specific strength, and good corrosion resistance. However, during forging processes, underfilling, folding, broken streamline, crack, coarse grain, and other macro- or microdefects are easily generated because of the deformation characteristics of aluminum alloys, including narrow forgeable temperature region, fast heat dissipation to dies, strong adhesion, high strain rate sensitivity, and large flow resistance. Thus, it is seriously restricted for the forged part to obtain precision shape and enhanced property. In this paper, progresses in precision forging technologies of aluminum alloy parts were reviewed. Several advanced precision forging technologies have been developed, including closed die forging, isothermal die forging, local loading forging, metal flow forging with relief cavity, auxiliary force or vibration loading, casting-forging hybrid forming, and stamping-forging hybrid forming. High-precision aluminum alloy parts can be realized by controlling the forging processes and parameters or combining precision forging technologies with other forming technologies. The development of these technologies is beneficial to promote the application of aluminum alloys in manufacturing of lightweight parts.

  18. Heated Hydro-Mechanical Deep Drawing of Magnesium Sheet Metal

    NASA Astrophysics Data System (ADS)

    Kurz, Gerrit

    In order to reduce fuel consumption efforts have been made to decrease the weight of automobile constructions by increasing the use of lightweight materials. In this field of application magnesium alloys are important because of their low density. A promising alternative to large surfaced and thin die casting parts has been found in construction parts that are manufactured by sheet metal forming of magnesium. Magnesium alloys show a limited formability at room temperature. A considerable improvement of formability can be achieved by heating the material. Formability increases above a temperature of approximately T = 225 °C.

  19. Hot forging of roll-cast high aluminum content magnesium alloys

    NASA Astrophysics Data System (ADS)

    Kishi, Tomohiro; Watari, Hisaki; Suzuki, Mayumi; Haga, Toshio

    2017-10-01

    This paper reports on hot forging of high aluminum content magnesium alloy sheets manufactured using horizontal twin-roll casting. AZ111 and AZ131 were applied for twin-roll casting, and a hot-forging test was performed to manufacture high-strength magnesium alloy components economically. For twin-roll casting, the casting conditions of a thick sheet for hot forging were investigated. It was found that twin-roll casting of a 10mm-thick magnesium alloy sheet was possible at a roll speed of 2.5m/min. The grain size of the cast strip was 50 to 70µm. In the hot-forging test, blank material was obtained from as-cast strip. A servo press machine with a servo die cushion was used to investigate appropriate forging conditions (e.g., temperature, forging load, and back pressure) for twin-roll casts (TRCs) AZ111 and AZ131. It was determined that high aluminum content magnesium alloy sheets manufactured using twin-roll casting could be forged with a forging load of 150t and a back pressure of 3t at 420 to 430°C. Applying back pressure during hot forging effectively forged a pin-shaped product.

  20. Oil spill model coupled to an ultra-high-resolution circulation model: implementation for the Adriatic Sea

    NASA Astrophysics Data System (ADS)

    Korotenko, K.

    2003-04-01

    An ultra-high-resolution version of DieCAST was adjusted for the Adriatic Sea and coupled with an oil spill model. Hydrodynamic module was developed on base of th low dissipative, four-order-accuracy version DieCAST with the resolution of ~2km. The oil spill model was developed on base of particle tracking technique The effect of evaporation is modeled with an original method developed on the base of the pseudo-component approach. A special dialog interface of this hybrid system allowing direct coupling to meteorlogical data collection systems or/and meteorological models. Experiments with hypothetic oil spill are analyzed for the Northern Adriatic Sea. Results (animations) of mesoscale circulation and oil slick modeling are presented at wabsite http://thayer.dartmouth.edu/~cushman/adriatic/movies/

  1. Solid Lubricants for Space Structures

    DTIC Science & Technology

    1993-04-17

    will utilize mechanically interlocked hardware (caged bearings or bearings for ultra precision gimbals pointing mechanisms) controlled through precision...structure unless the lubricant were of low vapor pressure and/or suitably sealed to I prevent molecular effusion . While temperatures within spacecraft or...incorporation in the continuous cast system. The die made of graphite, consists of a plurality of openings or holes located in the die and positioned (unlined

  2. Effect of metal selection and porcelain firing on the marginal accuracy of titanium-based metal ceramic restorations.

    PubMed

    Shokry, Tamer E; Attia, Mazen; Mosleh, Ihab; Elhosary, Mohamed; Hamza, Tamer; Shen, Chiayi

    2010-01-01

    Titanium is the most biocompatible metal used for dental casting; however, there is concern about its marginal accuracy after porcelain application since this aspect has direct influence on marginal fit. The purpose of this study was to determine the effect that metal selection and the porcelain firing procedure have on the marginal accuracy of metal ceramic prostheses. Cast CP Ti, milled CP Ti, cast Ti-6Al-7Nb, and cast Ni-Cr copings (n=5) were fired with compatible porcelains (Triceram for titanium-based metals and VITA VMK 95 for Ni-Cr alloy). The Ni-Cr alloy fired with its porcelain served as the control. Photographs of metal copings placed on a master die were made. Marginal discrepancy was determined on the photographs using an image processing program at 8 predetermined locations before airborne-particle abrasion for porcelain application, after firing of the opaque layer, and after firing of the dentin layer. Repeated-measures 2-way ANOVA was used to investigate the effect of metal selection and firing stage, and paired t tests were used to determine the effect of each firing stage within each material group (alpha=.05). ANOVA showed that both metal selection and firing stage significantly influenced the measured marginal discrepancy (P<.001), and there was interaction between the 2 variables (P<.001). Student-Newman-Keuls multiple comparison tests showed that there were significant differences between any 2 metals compared, at each stage of measurement. Paired t tests showed that significant changes in marginal discrepancy occurred with opaque firing on milled CP Ti (P=.017) and cast Ti-6Al-7Nb alloy (P=.003). Titanium copings fabricated by CAD/CAM demonstrated the least marginal discrepancy among all groups, while the base metal (Ni-Cr) groups exhibited the most discrepancy of all groups tested. Copyright 2010 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  3. A System Approach to Navy Medical Education and Training. Appendix 45. Competency Curricula for Dental Prosthetic Assistant and Dental Prosthetic Technician.

    DTIC Science & Technology

    1974-08-31

    Removable Partial Dentures ..................... 34 XI. Fixed Partial Denture Construction .. ........ 35 l. Construct Master Cast with Removable...Dies . . . 36 2. Construct Patterns for Fixed Partial Dentures .. . ..... 37 3. Spruing and Investing oeu . . . 38 4. Wax Elimination and Casting...42 S. Re3in Jacket Crowns . . ............ 43 9. Temporary Crowns and Fixed Partial Dentures . . 44 10. Post and Core Techniques . . o

  4. Improved design and durability of aluminum die casting horizontal shot sleeves

    NASA Astrophysics Data System (ADS)

    Birceanu, Sebastian

    The design and performance of shot sleeves is critical in meeting the engineering requirements of aluminum die cast parts. Improvement in shot sleeve materials have a major impact on dimensional stability, reproducibility and quality of the product. This investigation was undertaken in order to improve the life of aluminum die casting horizontal shot sleeves. Preliminary pin tests were run to evaluate the soldering, wash-out and thermal fatigue behavior of commercially available materials and coatings. An experimental rig was designed and constructed for shot sleeve configuration evaluation. Fabrication and testing of experimental shot sleeves was based upon preliminary results and manufacturing costs. Three shot sleeve designs and materials were compared to a reference nitrided H13 sleeve. Nitrided H13 is the preferred material for aluminum die casting shot sleeves because of wear resistance, strength and relative good soldering and wash-out resistance. The study was directed towards damage evaluation on the area under the pouring hole. This area is the most susceptible to damage because of high temperatures and impingement of molten aluminum. The results of this study showed that tungsten and molybdenum had the least amount of soldering and wash-out damage, and the best thermal fatigue resistance. Low solubility in molten aluminum and stability of intermetallic layers are main factors that determine the soldering and wash-out behavior. Thermal conductivity and thermal expansion coefficient directly influence thermal fatigue behavior. TiAlN nanolayered coating was chosen as the material with the best damage resistance among several commercial PVD coatings, because of relatively large thickness and simple deposition conditions. The results show that molybdenum thermal sprayed coating provided the best protection against damage under the pouring hole. Improved bonding is however required for life extension of the coating. TiAlN PVD coating applied on H13 nitrided substrate performed very well as long as the coating was maintained. Nitrided H13 sleeve showed extensive damage that occurred as early as 200 cycles. The nitrided layer only slowed down the diffusion process and dissolution took place at a higher rate as soon as the layer wore off. Stellite 6 sleeve also showed considerable wear under the action of molten aluminum.

  5. Cast erosion from the cleaning of debris after the use of a cast trimmer.

    PubMed

    Hansen, Paul A; Beatty, Mark W

    2017-02-01

    Whether using tap water to rinse off debris will make a clinical difference to the surface detail of a gypsum cast is unknown. In addition, how best to remove debris from the cast is unknown. The purpose of this in vitro study was to evaluate the efficiency of different methods of cleaning a gypsum cast after trimming and the effect of short-term exposure to tap water on the surface quality of the cast. A die fitting American National Standards Institute/American Dental Association specification 25 (International Standards Organization specification 6873) for dental gypsum products was embedded in a Dentoform with the machined lines positioned at the same level as the occlusal surface of the posterior teeth. A flat plate was used to ensure that the plane of occlusion for the die was at the same position as the posterior teeth. Forty polyvinyl siloxane impressions of the Dentoform were made and poured with vacuum-mixed improved Type IV dental stone. Each cast was inspected for the accurate reproduction of the lines. The base of the 2-stage pour was trimmed with a cast trimmer with water, and surface debris was removed by rinsing by hand under tap water for 10 seconds, by brushing the cast with a soft toothbrush for 10 seconds, or by resoaking the cast and using a soft camel hair brush in slurry water for 10 seconds. The amount of debris was evaluated on a scale of 1 to 4, and the quality of the 20-μm line was evaluated on a scale of 1 to 4 under ×15 magnification. The nonparametric Kruskal-Wallis ranks test was used to identify significant differences among the different cleaning methods (α=.05). Results of the Kruskal-Wallis and Kruskal-Wallis Z-value tests demonstrated that all cleaning methods produced cleaner casts than were observed for uncleansed controls (P<.001), but no differences in debris removal were found among the different cleaning methods (.065≤P≤.901). The ability to see the quality of a 20-μm line (P=.974) was not statistically different among the groups. Rinsing the cast under flowing tap water and brushing, or hand washing under flowing tap water, or using a soft camel hair brush in slurry water for 10 seconds had no noticeable effects on the quality of a 20-μm line, and all 3 methods resulted in a clean cast. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  6. A simplified simulation model for a HPDC die with conformal cooling channels

    NASA Astrophysics Data System (ADS)

    Frings, Markus; Behr, Marek; Elgeti, Stefanie

    2017-10-01

    In general, the cooling phase of the high-pressure die casting process is based on complex physical phenomena: so-lidification of molten material; heat exchange between cast part, die and cooling fluid; turbulent flow inside the cooling channels that needs to be considered when computing the heat flux; interdependency of properties and temperature of the cooling liquid. Intuitively understanding and analyzing all of these effects when designing HPDC dies is not feasible. A remedy that has become available is numerical design, based for example on shape optimization methods. However, current computing power is not sufficient to perform optimization while at the same time fully resolving all physical phenomena. But since in HPDC suitable objective functions very often lead to integral values, e.g., average die temperature, this paper identifies possible simplifications in the modeling of the cooling phase. As a consequence, the computational effort is reduced to an acceptable level. A further aspect that arises in the context of shape optimization is the evaluation of shape gradients. The challenge here is to allow for large shape deformations without remeshing. In our approach, the cooling channels are described by their center lines. The flow profile of the cooling fluid is then estimated based on experimental data found in literature for turbulent pipe flows. In combination, the heat flux throughout cavity, die, and cooling channel can be described by one single advection-diffusion equation on a fixed mesh. The parameters in the equation are adjusted based on the position of cavity and cooling channel. Both results contribute towards a computationally efficient, yet accurate method, which can be employed within the frame of shape optimization of cooling channels in HPDC dies.

  7. Analysis of Porosity Defects in Aluminum as Part Handle Motor Vehicle Lever Processed by High-pressure Die Casting

    NASA Astrophysics Data System (ADS)

    Anggraini, L.; Sugeng

    2018-05-01

    This research discusses the testing and analysis of cracking Aluminum (Al) material. Al as a handle lever was used for a braking device on a motor vehicle. Cracking of handle lever due to the part content of porosity from hydrogen gas. The existence of the H2 can be caused by the casting process and dies design that is less perfect, especially at the gate or brisket and overflow. This research is to optimize the process of making Al part handle lever, and the construction dies by following the standard. The results of these improvements were reevaluated through the chemical and mechanical testing properties stages, such as density test and tensile test on the workpiece as part handle lever. The loads on the tensile test are 25 kg and 35 kg, and the tensile test result has met the standard set by the motor vehicle company. The optimization result has the porosity defect can be reduced by 99 %. Therefore the best part handle lever can be produced.

  8. Implementation of 3D Optical Scanning Technology for Automotive Applications

    PubMed Central

    Kuş, Abdil

    2009-01-01

    Reverse engineering (RE) is a powerful tool for generating a CAD model from the 3D scan data of a physical part that lacks documentation or has changed from the original CAD design of the part. The process of digitizing a part and creating a CAD model from 3D scan data is less time consuming and provides greater accuracy than manually measuring the part and designing the part from scratch in CAD. 3D optical scanning technology is one of the measurement methods which have evolved over the last few years and it is used in a wide range of areas from industrial applications to art and cultural heritage. It is also used extensively in the automotive industry for applications such as part inspections, scanning of tools without CAD definition, scanning the casting for definition of the stock (i.e. the amount of material to be removed from the surface of the castings) model for CAM programs and reverse engineering. In this study two scanning experiments of automotive applications are illustrated. The first one examines the processes from scanning to re-manufacturing the damaged sheet metal cutting die, using a 3D scanning technique and the second study compares the scanned point clouds data to 3D CAD data for inspection purposes. Furthermore, the deviations of the part holes are determined by using different lenses and scanning parameters. PMID:22573995

  9. Fabrication of ZnO Nanowires Arrays by Anodization and High-Vacuum Die Casting Technique, and Their Piezoelectric Properties.

    PubMed

    Kuo, Chin-Guo; Chang, Ho; Wang, Jian-Hao

    2016-03-24

    In this investigation, anodic aluminum oxide (AAO) with arrayed and regularly arranged nanopores is used as a template in the high-vacuum die casting of molten zinc metal (Zn) into the nanopores. The proposed technique yields arrayed Zn nanowires with an aspect ratio of over 600. After annealing, arrayed zinc oxide (ZnO) nanowires are obtained. Varying the anodizing time yields AAO templates with thicknesses of approximately 50 μm, 60 μm, and 70 μm that can be used in the fabrication of nanowires of three lengths with high aspect ratios. Experimental results reveal that a longer nanowire generates a greater measured piezoelectric current. The ZnO nanowires that are fabricated using an alumina template are anodized for 7 h and produce higher piezoelectric current of up to 69 pA.

  10. A summary of special coatings projects conducted in support of the Die Casting Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selle, J.E.

    1988-09-12

    The usefulness of various kinds of coatings to the die casting program has been studied. This work includes heat transfer and fluid flow calculations, as well as experimental work, to examine the feasibility and characteristics of various types of coatings. Calculations include the effect of surface roughness on fluid flow, conductance as a function of coating thickness, conductivity as a function of coating porosity, and solidification and possible remelting of microspheres of metal. In each case, the model is described and the results are presented. Experimental work involved evaluating the relative insulating value of various coatings and an analysis ofmore » commercial flame-sprayed coatings, low-density coatings, and release coatings. In each case, description of the experimental arrangement is given and the results are described. 5 refs., 28 figs., 6 tabs.« less

  11. Corrosion fatigue behaviors of two biomedical Mg alloys - AZ91D and WE43 - In simulated body fluid.

    PubMed

    Gu, X N; Zhou, W R; Zheng, Y F; Cheng, Y; Wei, S C; Zhong, S P; Xi, T F; Chen, L J

    2010-12-01

    Magnesium alloys have been recently developed as biodegradable implant materials, yet there has been no study concerning their corrosion fatigue properties under cyclic loading. In this study the die-cast AZ91D (A for aluminum 9%, Z for zinc 1% and D for a fourth phase) and extruded WE43 (W for yttrium 4%, E for rare earth mischmetal 3%) alloys were chosen to evaluate their fatigue and corrosion fatigue behaviors in simulated body fluid (SBF). The die-cast AZ91D alloy indicated a fatigue limit of 50MPa at 10⁷ cycles in air compared to 20MPa at 10⁶ cycles tested in SBF at 37°C. A fatigue limit of 110MPa at 10⁷ cycles in air was observed for extruded WE43 alloy compared to 40MPa at 10⁷ cycles tested in SBF at 37°C. The fatigue cracks initiated from the micropores when tested in air and from corrosion pits when tested in SBF, respectively. The overload zone of the extruded WE43 alloy exhibited a ductile fracture mode with deep dimples, in comparison to a brittle fracture mode for the die-cast AZ91D. The corrosion rate of the two experimental alloys increased under cyclic loading compared to that in the static immersion test. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. ELID grinding characteristics of large stamping die for Wolter mirror.

    PubMed

    Yin, Shaohui; Ohmori, Hitoshi; Liu, Qing; Morita, Shinnya; Chen, Fengjun; Asami, Muneaki; Fan, Yufeng

    2009-01-01

    An ultra-precision ELID grinding of large stamping dies of Wolter mirror for X-ray telescope was presented in this paper. The large stamping dies (S55C) with confocal paraboloid and hyperboloid was ground by ELID arc-enveloped grinding. In this ELID grinding system, cast iron fiber bonded (CIFB) diamond wheels were controlled by 3-dimentional ways to scan the work-piece and generate required surfaces. Its grinding characteristics such as attainable form accuracy, surface roughness were investigated. Furthermore, some measures to improve form accuracy were discussed and verified such as truing, compensating, and on-machine measuring.

  13. 40 CFR 464.11 - Specialized definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... tetrachloroethylene 87. trichloroethylene (2) Die Casting (§ 464.15(c) and § 464.16(c)): 1. acenaphthene 4. benzene 7... (2-ethylhexyl) phthalate 84. pyrene 85. tetrachloroethylene 87. trichloroethylene (5) Melting Furnace.... pyrene 85. tetrachloroethylene 87. trichloroethylene ...

  14. R-HPDC Process with Forced Convection Mixing Device for Automotive Part of A380 Aluminum Alloy

    PubMed Central

    Zhou, Bing; Kang, Yonglin; Qi, Mingfan; Zhang, Huanhuan; Zhu, Guoming

    2014-01-01

    The continuing quest for cost-effective and complex shaped aluminum castings with fewer defects for applications in the automotive industries has aroused the interest in rheological high pressure die casting (R-HPDC). A new machine, forced convection mixing (FCM) device, based on the mechanical stirring and convection mixing theory for the preparation of semisolid slurry in convenience and functionality was proposed to produce the automotive shock absorber part by R-HPDC process. The effect of barrel temperature and rotational speed of the device on the grain size and morphology of semi-solid slurry were extensively studied. In addition, flow behavior and temperature field of the melt in the FCM process was investigated combining computational fluid dynamics simulation. The results indicate that the microstructure and pore defects at different locations of R-HPDC casting have been greatly improved. The vigorous fluid convection in FCM process has changed the temperature field and composition distribution of conventional solidification. Appropriately increasing the rotational speed can lead to a uniform temperature filed sooner. The lower barrel temperature leads to a larger uniform degree of supercooling of the melt that benefits the promotion of nucleation rate. Both of them contribute to the decrease of the grain size and the roundness of grain morphology. PMID:28788608

  15. Gas turbine bucket wall thickness control

    DOEpatents

    Stathopoulos, Dimitrios; Xu, Liming; Lewis, Doyle C.

    2002-01-01

    A core for use in casting a turbine bucket including serpentine cooling passages is divided into two pieces including a leading edge core section and a trailing edge core section. Wall thicknesses at the leading edge and the trailing edge of the turbine bucket can be controlled independent of each other by separately positioning the leading edge core section and the trailing edge core section in the casting die. The controlled leading and trailing edge thicknesses can thus be optimized for efficient cooling, resulting in more efficient turbine operation.

  16. Development of a Thin-Wall Magnesium side door Inner Panel for Automobiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jekl, J.; Auld, J.; Sweet, C.

    Cast magnesium side door inner panels can provide a good combination of weight, functional, manufacturing and economical requirements. However, several challenges exist including casting technology for thin-wall part design, multi-material incompatibility and relatively low strength vs steel. A project has been initiated, supported by the US Department of Energy, to design and develop a lightweight frame-under-glass door having a thin-wall, full die-cast, magnesium inner panel. This development project is the first of its kind within North America. Phase I of the project is now complete and the 2.0mm magnesium design, through casting process enablers, has met or exceeded all stiffnessmore » requirements, with significant mass reduction and part consolidation. In addition, a corrosion mitigation strategy has been established using industry-accepted galvanic isolation methods and coating technologies.« less

  17. Fabrication of ZnO Nanowires Arrays by Anodization and High-Vacuum Die Casting Technique, and Their Piezoelectric Properties

    PubMed Central

    Kuo, Chin-Guo; Chang, Ho; Wang, Jian-Hao

    2016-01-01

    In this investigation, anodic aluminum oxide (AAO) with arrayed and regularly arranged nanopores is used as a template in the high-vacuum die casting of molten zinc metal (Zn) into the nanopores. The proposed technique yields arrayed Zn nanowires with an aspect ratio of over 600. After annealing, arrayed zinc oxide (ZnO) nanowires are obtained. Varying the anodizing time yields AAO templates with thicknesses of approximately 50 μm, 60 μm, and 70 μm that can be used in the fabrication of nanowires of three lengths with high aspect ratios. Experimental results reveal that a longer nanowire generates a greater measured piezoelectric current. The ZnO nanowires that are fabricated using an alumina template are anodized for 7 h and produce higher piezoelectric current of up to 69 pA. PMID:27023546

  18. Effect of Heat Treatment on Commercial AlSi12Cu1(Fe) and AlSi12(b) Aluminum Alloy Die Castings

    NASA Astrophysics Data System (ADS)

    Battaglia, E.; Bonollo, F.; Ferro, P.; Fabrizi, A.

    2018-03-01

    High-pressure die castings (HPDCs) cannot normally be heat-treated at a high temperature because of the presence of inner air/gas- or shrinkage-porosity that may lead to the formation of undesired surface blisters. In this paper, an unconventional heat treatment is proposed. Two secondary Al-Si alloys, AlSi12(b) and AlSi12Cu1(Fe), were stabilization heat-treated at 624 K (350 °C) with soaking times ranging from 1 to 8 hours. Enhancement of both static and dynamic mechanical properties was found to be related to the fragmentation of interconnected eutectic Si particles and the smoothing of coarser crystals. Increased ductility after heat treatment was correlated with a decrease in hardness and Si particle roundness. The formation of Si precipitates within the α-Al matrix was also observed.

  19. The Effect of Porosity on Fatigue of Die Cast AM60

    NASA Astrophysics Data System (ADS)

    Yang, Zhuofei; Kang, Jidong; Wilkinson, David S.

    2016-07-01

    AM60 high-pressure die castings are known to contain significant porosity which can affect fatigue life. We have studied this using samples drawn from prototype AM60 shock towers by conducting strain-controlled fatigue tests accompanied by X-ray computed tomography analysis. The results show that the machined surface is the preferential location for fatigue crack development, with pores close to these surfaces serving as initiation sites. Fatigue life shows a strong inverse correlation with the size of the fatigue-crack-initiating pore. Pore shape and pore orientation also influence the response. A supplemental study on surface roughness shows that porosity is the dominant factor in fatigue. Tomography enables the link between porosity and fatigue crack initiation to be clearly identified. These data are complemented by SEM observations of the fracture surfaces which are generally flat and full of randomly oriented serration patterns but without long-range fatigue striations.

  20. Quality Assessment of A356 Ingots from Different Suppliers in Wheel Production

    NASA Astrophysics Data System (ADS)

    Koca, Emre; Yuksel, Caglar; Erzi, Eray; Dışpınar, Derya

    In a typical foundry floor, several precautions are taken prior to the casting in order to achieve pore-free, high quality parts. In low pressure die castings, these operations involve runner design, pressure adjustment, die temperature selection, cooling locations etc. For the melt, it is important to determine the degassing duration and gas flow rate. In addition, the period of modification (Ti, Sr) addition also plays a significant role. Even after optimization of all these parameters, reject parts can still be found. What has always been disregarded is the quality assessment of the ingot suppliers. Therefore, in this work, four different A356 ingot provider's quality has been investigated in the wheel producer company. Reduced pressure test was used to quantify melt quality by means of bifilm index measurement. In addition, fluidity, feedability and tensile tests have been carried out. The rejection rates were compared according to provider's quality level.

  1. Comparative Evaluation of Tensile Strength in Die Stone Incorporated with Sodium and Calcium Hypochlorite as Disinfectants: An in vitro Study.

    PubMed

    Pramodh, N R; Kumar, C N Vijay; Pradeep, M R; Naik, Ravi; Mahesh, C S; Kumari, Manju R

    2017-12-01

    The aim of this study was to evaluate the tensile strength of die stone incorporated with sodium and calcium hypochlorite as disinfectants. Two commercially available type IV die stone (Kalrock: Kalabhai Karson Pvt., Ltd and Pearlstone: Asian Chemicals) and two commercially available disinfectant solutions (sodium hypochlorite and calcium hypochlorite: Beachem Laboratory Chemical Private Limited, Chennai and Leo Chem Private Limited, Bengaluru) were used in this study, and the tensile strength was measured using Lloyd's Universal Testing Machine. The results show that incorporating the disinfecting solutions decreases the tensile strength of both products. The effect of decreasing tensile strength on type IV gypsum product is seen more in calcium hypochlorite when compared with sodium hypochlorite disinfecting solution, and the tensile strength of Kalrock specimens is higher than Pearlstone specimens after disinfecting with sodium hypochlorite and calcium hypochlorite solution. The statistical results also show significant results in all the groups when compared with the control group. The incorporation of sodium and calcium hypochlorite disinfecting solutions is not an encouraging method for both die materials as it reduces the tensile strength of type IV gypsum product. Tensile strength of Kalstone® die material is superior than Pearlstone® die material after mixing with sodium hypochlorite and calcium hypochlorite. According to the recommendations of Americans with Disability Act (ADA) and the Centers for Disease Control and Prevention, disinfecting the whole cast without or minimal changes in physical and mechanical properties was the motto of the study. The tensile strength in type IV gypsum product plays a most important role in retrieval of cast from impression, especially in narrow tooth preparation. This study reveals that incorporating method of disinfecting solutions is not recommended as it reduces the tensile strength.

  2. 40 CFR 466.20 - Applicability; description of the cast iron basis material subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Applicability; description of the cast... Cast Iron Basis Material Subcategory § 466.20 Applicability; description of the cast iron basis... of pollutants into publicly owned treatment works from porcelain enameling of cast iron basis...

  3. Sputtered protective coatings for die casting dies

    NASA Technical Reports Server (NTRS)

    Mirtich, M. J.; Nieh, C.-Y.; Wallace, J. F.

    1981-01-01

    Three experimental research designs investigating candidate materials and processes involved in protective die surface coating procedures by sputter deposition, using ion beam technologies, are discussed. Various pre-test results show that none of the coatings remained completely intact for 15,000 test cycles. The longest lifetime was observed for coatings such as tungsten, platinum, and molybdenum which reduced thermal fatigue, but exhibited oxidation and suppressed crack initiation only as long as the coating did not fracture. Final test results confirmed earlier findings and coatings with Pt and W proved to be the candidate materials to be used on a die surface to increase die life. In the W-coated specimens, which remained intact on the surface after thermal fatigue testing, no oxidation was found under the coating, although a few cracks formed on the surface where the coating broke down. Further research is planned.

  4. Development of polymer nano composite patterns using fused deposition modeling for rapid investment casting process

    NASA Astrophysics Data System (ADS)

    Vivek, Tiwary; Arunkumar, P.; Deshpande, A. S.; Vinayak, Malik; Kulkarni, R. M.; Asif, Angadi

    2018-04-01

    Conventional investment casting is one of the oldest and most economical manufacturing techniques to produce intricate and complex part geometries. However, investment casting is considered economical only if the volume of production is large. Design iterations and design optimisations in this technique proves to be very costly due to time and tooling cost for making dies for producing wax patterns. However, with the advent of Additive manufacturing technology, plastic patterns promise a very good potential to replace the wax patterns. This approach can be very useful for low volume production & lab requirements, since the cost and time required to incorporate the changes in the design is very low. This research paper discusses the steps involved for developing polymer nanocomposite filaments and checking its suitability for investment castings. The process parameters of the 3D printer machine are also optimized using the DOE technique to obtain mechanically stronger plastic patterns. The study is done to develop a framework for rapid investment casting for lab as well as industrial requirements.

  5. [Comparative adaptation of crowns of selective laser melting and wax-lost-casting method].

    PubMed

    Li, Guo-qiang; Shen, Qing-yi; Gao, Jian-hua; Wu, Xue-ying; Chen, Li; Dai, Wen-an

    2012-07-01

    To investigate the marginal adaptation of crowns fabricated by selective laser melting (SLM) and wax-lost-casting method, so as to provide an experimental basis for clinic. Co-Cr alloy full crown were fabricated by SLM and wax-lost-casting for 24 samples in each group. All crowns were cemented with zinc phosphate cement and cut along longitudinal axis by line cutting machine. The gap between crown tissue surface and die was measured by 6-point measuring method with scanning electron microscope (SEM). The marginal adaptation of crowns fabricated by SLM and wax-lost-casting were compared statistically. The gap between SLM crowns were (36.51 ± 2.94), (49.36 ± 3.31), (56.48 ± 3.35), (42.20 ± 3.60) µm, and wax-lost-casting crowns were (68.86 ± 5.41), (58.86 ± 6.10), (70.62 ± 5.79), (69.90 ± 6.00) µm. There were significant difference between two groups (P < 0.05). Co-Cr alloy full crown fabricated by wax-lost-casting method and SLM method provide acceptable marginal adaptation in clinic, and the marginal adaptation of SLM is better than that of wax-lost-casting method.

  6. Microstructure, Mechanical and Surface Morphological Properties of Al5Ti5Cr Master Alloy as Friction Material Prepared by Stir Die Casting

    NASA Astrophysics Data System (ADS)

    Ahmed, Syed Faisal; Srivastava, Sanjay; Agarwal, Alka Bani

    2018-04-01

    Metal matrix composite offers outstanding properties for better performance of disc brakes. In the present study, the composite of AlTiCr master alloy was prepared by stir die casting method. The developed material was reinforced with (0-10 wt%) silicon carbide (SiC) and boron carbide (B4C). The effects of SiC reinforcement from 0 to 10 wt% on mechanical, microstructure and surface morphological properties of Al MMC was investigated and compared with B4C reinforcement. Physical properties like density and micro Vickers hardness number show an increasing trend with an increase in the percentage of SiC and B4C reinforcement. Mechanical properties viz. UTS, yield strength and percentage of elongation are improved with increasing the fraction of reinforcement. The surface morphology and phase were identified from scanning electron microscopy (SEM) and X-ray diffraction analysis and the oxidized product formed during the casting was investigated by Fourier transformation infrared spectroscopy. This confirms the presence of crystallization of corundum (α-Al2O3) in small traces as one of the alumina phases, within casting sample. Micro-structural characterization by SEM depicted that the particles tend to be more agglomerated more and more with the percentage of the reinforcement. The AFM results reveal that the surface roughness value shows a decreasing trend with SiC reinforcement while roughness increases with increase the percentage of B4C.

  7. Aluminum-fly ash metal matrix composites for automotive parts. [Reports for April 1 to June 30, 1999, and July 1 to September 30, 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, David; Purgert, Robert; Rhudy, Richard

    1999-10-15

    Some highlights are: (1) During this quarter's field trials, sand mold castings of parts and permanent mold tensile testing bars, K mold bars, and ingots were made from aluminum alloy-fly ash melts. (2) Another objective was met, i.e., to use class ''F'' type precipitator fly ash consisting of particle sizes less than 100 microns. It was possible to pour the composite melt into the sand mold through a filter. (3) Trials were run to determine the required amount of the wetting agent, magnesium, to ensure appropriate mixing of the aluminum alloy and fly ash. The magnesium content required to mixmore » ''F'' fly ash was much lower compared to that required to mix hybrid ''C-F'' fly ash in similar melts. Fly ash particles of less than 100 microns were mixed in aluminum melt. Large scale field trials were undertaken at Eck Industries with the goal of standardizing procedures for producing aluminum-fly ash composite melts and to analyze the structure and properties of the resulting material. Limited testing of tensile properties has been done on pressure die cast parts, and attempts are underway to improve the distribution of fly ash in both sand cast and pressure die cast samples. Eck Industries performed radiographic, heat treatment, and tensile tests on permanent mold cast tensile test bars. After fly ash mixing experiments, the Lanxide high speed-high shear mixer (originally designed for mixing Al-SiC melts) was employed in an attempt to avoid fly ash agglomeration. It led to demixing (instead of deagglomerating) of some fly ash. However, the permanent mold tensile bars poured after high shear mixing displayed good distribution of fly ash in castings. A modified impeller design is being considered for high speed-high shear mixing of aluminum-fly ash melts.« less

  8. 21 CFR 888.5980 - Manual cast application and removal instrument.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Manual cast application and removal instrument... SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.5980 Manual cast application and removal instrument. (a) Identification. A manual cast application and removal instrument is a...

  9. Titanium Aluminide Casting Technology Development

    NASA Astrophysics Data System (ADS)

    Bünck, Matthias; Stoyanov, Todor; Schievenbusch, Jan; Michels, Heiner; Gußfeld, Alexander

    2017-12-01

    Titanium aluminide alloys have been successfully introduced into civil aircraft engine technology in recent years, and a significant order volume increase is expected in the near future. Due to its beneficial buy-to-fly ratio, investment casting bears the highest potential for cost reduction of all competing production technologies for TiAl-LPTB. However, highest mechanical properties can be achieved by TiAl forging. In view of this, Access e.V. has developed technologies for the production of TiAl investment cast parts and TiAl die cast billets for forging purposes. While these parts meet the highest requirements, establishing series production and further optimizing resource and economic efficiency are present challenges. In order to meet these goals, Access has recently been certified according to aircraft standards, aiming at qualifying parts for production on technology readiness level 6. The present work gives an overview of the phases of development and certification.

  10. [Manufacture and clinical application of 215 IPS-Empress casting ceramic restorations].

    PubMed

    Zhao, Na; Zhou, Jian

    2008-08-01

    To explore the manufacture and clinical application of IPS-Empress casting ceramic restorations. The problems in manufacture and clinical operation of 215 casting ceramic restorations were analyzed. In 215 casting ceramic restorations, 12 (5.58%) casting ceramic restorations were affected by clinical design or application, 15 (6.98%) casting ceramic restorations were affected by some manufacture problems, and 14 (6.51%) casting ceramic restorations were affected by clinical try-in. Through 2-3 years' follow-up, the achievement ratio of 215 IPS-Empress casting ceramic restorations was 94.88%, and 11 casting ceramic restorations were affected by some problems. Beauty and simultaneous enamel wear are the characteristics of casting ceramic restorations. But because of its brittle, the indications should be strictly selected.

  11. Evaluation of marginal and internal gap of three-unit metal framework according to subtractive manufacturing and additive manufacturing of CAD/CAM systems.

    PubMed

    Kim, Dong-Yeon; Kim, Eo-Bin; Kim, Hae-Young; Kim, Ji-Hwan; Kim, Woong-Chul

    2017-12-01

    To evaluate the fit of a three-unit metal framework of fixed dental prostheses made by subtractive and additive manufacturing. One master model of metal was fabricated. Twenty silicone impressions were made on the master die, working die of 10 poured with Type 4 stone, and working die of 10 made of scannable stone. Ten three-unit wax frameworks were fabricated by wax-up from Type IV working die. Stereolithography files of 10 three-unit frameworks were obtained using a model scanner and three-dimensional design software on a scannable working die. The three-unit wax framework was fabricated using subtractive manufacturing (SM) by applying the prepared stereolithography file, and the resin framework was fabricated by additive manufacturing (AM); both used metal alloy castings for metal frameworks. Marginal and internal gap were measured using silicone replica technique and digital microscope. Measurement data were analyzed by Kruskal-Wallis H test and Mann-Whitney U-test (α=.05). The lowest and highest gaps between premolar and molar margins were in the SM group and the AM group, respectively. There was a statistically significant difference in the marginal gap among the 3 groups ( P <.001). In the marginal area where pontic was present, the largest gap was 149.39 ± 42.30 µm in the AM group, and the lowest gap was 24.40 ± 11.92 µm in the SM group. Three-unit metal frameworks made by subtractive manufacturing are clinically applicable. However, additive manufacturing requires more research to be applied clinically.

  12. 40 CFR 464.30 - Applicability; description of the ferrous casting subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ferrous casting subcategory. 464.30 Section 464.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS METAL MOLDING AND CASTING POINT SOURCE CATEGORY Ferrous Casting Subcategory § 464.30 Applicability; description of the ferrous casting subcategory. The...

  13. Marginal accuracy of nickel chromium copings fabricated by conventional and accelerated casting procedures, produced with ringless and metal ring investment procedures: A comparative in vitro study.

    PubMed

    Alex, Deepa; Shetty, Y Bharath; Miranda, Glynis Anita; Prabhu, M Bharath; Karkera, Reshma

    2015-01-01

    Conventional investing and casting techniques are time-consuming and usually requires 2-4 h for completion. Accelerated nonstandard, casting techniques have been reported to achieve similar quality results in significantly less time, namely, in 30-40 min. During casting, it is essential to achieve compensation for the shrinkage of solidifying alloy by investment expansion. The metal casting ring restricts the thermal expansion of investment because the thermal expansion of the ring is lesser than that of the investment. The use of casting ring was challenged with the introduction of the ringless technique. A total of 40 test samples of nickel chromium (Ni-Cr) cast copings were obtained from the patterns fabricated using inlay casting wax. The 20 wax patterns were invested using metal ring and 20 wax patterns were invested using the ringless investment system. Of both the groups, 10 samples underwent conventional casting, and the other 10 underwent accelerated casting. The patterns were casted using the induction casting technique. All the test samples of cast copings were evaluated for vertical marginal gaps at four points on the die employing a stereo optical microscope. The vertical marginal discrepancy data obtained were tabulated. Mean and standard deviations were obtained. Vertical discrepancies were analyzed using analysis of variance and Tukey honestly significantly different. The data obtained were found to be very highly significant (P < 0.001). Mean vertical gap was the maximum for Group II (53.64 μm) followed by Group IV (47.62 μm), Group I (44.83 μm) and Group III (35.35 μm). The Ni-Cr cast copings fabricated with the conventional casting using ringless investment system showed significantly better marginal fit than that of cast copings fabricated from conventional and accelerated casting with metal ring investment and accelerated casting using ringless investment since those copings had shown the least vertical marginal discrepancies among the four methods evaluated in this study.

  14. Effects of Pore Distributions on Ductility of Thin-Walled High Pressure Die-Cast Magnesium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Kyoo Sil; Li, Dongsheng; Sun, Xin

    2013-06-01

    In this paper, a microstructure-based three-dimensional (3D) finite element modeling method is adopted to investigate the effects of porosity in thin-walled high pressure die-cast (HPDC) Magnesium alloys on their ductility. For this purpose, the cross-sections of AM60 casting samples are first examined using optical microscope and X-ray tomography to obtain the general information on the pore distribution features. The experimentally observed pore distribution features are then used to generate a series of synthetic microstructure-based 3D finite element models with different pore volume fractions and pore distribution features. Shear and ductile damage models are adopted in the finite element analyses tomore » induce the fracture by element removal, leading to the prediction of ductility. The results in this study show that the ductility monotonically decreases as the pore volume fraction increases and that the effect of ‘skin region’ on the ductility is noticeable under the condition of same local pore volume fraction in the center region of the sample and its existence can be beneficial for the improvement of ductility. The further synthetic microstructure-based 3D finite element analyses are planned to investigate the effects of pore size and pore size distribution.« less

  15. 40 CFR 464.10 - Applicability; description of the aluminum casting subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... aluminum casting subcategory. 464.10 Section 464.10 Protection of Environment ENVIRONMENTAL PROTECTION... Aluminum Casting Subcategory § 464.10 Applicability; description of the aluminum casting subcategory. The... introduction of pollutants into publicly owned treatment works resulting from aluminum casting operations as...

  16. 40 CFR 464.20 - Applicability; description of the copper casting subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... copper casting subcategory. 464.20 Section 464.20 Protection of Environment ENVIRONMENTAL PROTECTION... Copper Casting Subcategory § 464.20 Applicability; description of the copper casting subcategory. The... introduction of pollutants into publicly owned treatment works resulting from copper casting operations as...

  17. 40 CFR 464.20 - Applicability; description of the copper casting subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... copper casting subcategory. 464.20 Section 464.20 Protection of Environment ENVIRONMENTAL PROTECTION... Copper Casting Subcategory § 464.20 Applicability; description of the copper casting subcategory. The... introduction of pollutants into publicly owned treatment works resulting from copper casting operations as...

  18. 40 CFR 464.40 - Applicability; description of the zinc casting subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Applicability; description of the zinc... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS METAL MOLDING AND CASTING POINT SOURCE CATEGORY Zinc Casting Subcategory § 464.40 Applicability; description of the zinc casting subcategory. The provisions of this...

  19. 40 CFR 464.40 - Applicability; description of the zinc casting subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Applicability; description of the zinc... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS METAL MOLDING AND CASTING POINT SOURCE CATEGORY Zinc Casting Subcategory § 464.40 Applicability; description of the zinc casting subcategory. The provisions of this...

  20. Incidence and etiology of unplanned cast changes for fractures in the pediatric population.

    PubMed

    DiPaola, Matthew J; Abzug, Joshua M; Pizzutillo, Peter D; Herman, Martin J

    2014-09-01

    The majority of pediatric fractures are treated in casts due to the child's ability to heal rapidly and remodel. Unplanned cast changes are a time and economic burden with potentially adverse effects on fracture management. The purpose of this study is to document the incidence, etiology, and complications related to unplanned cast changes. A prospective study was conducted over a 6-month period to determine the incidence of unplanned cast changes. All casts applied were nonwaterproof. Data collected include the reason for cast placement, type of cast placed, duration of wear before the unplanned change, reason for the unplanned change, experience level of the original cast applicator, and cast-related complications. A total of 1135 casts were placed with 58% placed by a resident, 38% by a cast technician, 2% by a physician's assistant, and 2% by an attending physician. Sixty casts (5.3%) required an unplanned change including 19 short-arm casts, 18 short-leg casts, 17 long-arm casts, 4 thumb spica casts, and 2 long-leg casts. The average duration from cast application until the unplanned change was 13 days. Twenty-eight (47%) were changed for wetness, 20 (33%) for wear/breakage, 2 (3%) for skin irritation, and 10 (17%) for other reasons including objects in the cast and patient self-removal. Two patients had superficial skin infections requiring oral antibiotics. No fracture reductions were lost secondary to an unplanned cast change. The need for an unplanned cast change did not correlate with the level of experience of the applicator. Most unplanned cast changes were the result of patient nonadherence to instructions and not related to cast application technique. Improved patient and family education regarding cast care may reduce the frequency of unplanned cast changes, thus reducing an economic and time burden on the health care system. Level II--prognostic study.

  1. Evolution of the mandibular mesh implant.

    PubMed

    Salyer, K E; Johns, D F; Holmes, R E; Layton, J G

    1977-07-01

    Between 1960 and 1972, the Dallas Veterans Administration Hospital Maxillofacial Research Laboratory developed and made over 150 cast-mesh implants. Successive designs were ovoid, circular, and double-lumened in cross section to improve implant strength, surface area for bioattachment, and adjustability. Sleeves, collars, and bows were employed in the assembly of these implants, with an acrylic condylar head attached when indicated. In 1972, our laboratory developed a mandibular mesh tray, cast in one piece on a single sprue, with preservation of the vertically adjustable ramus. Stainless steel replaced Vitallium because of its greater malleability. Essentially, a lost-wax technique is used to cast the mesh tray. The model of a mandibular segment is duplicated as a refractory model. Mesh wax, made in our own custom-made die, is adapted to the refractory model. The unit is then sprued and invested. The wax is fired our of the mold in a gas furnace. Casting is done by the transferral of molten stainless steel from the crucible to the mold by centrifugal force in an electro-induction casting machine. Other mesh implants that have been developed are made from wire mesh, Dacron mesh, cast Ticonium, and hydroformed titanium.

  2. 40 CFR 464.11 - Specialized definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... fluoranthene 44. methylene chloride (dichloromethane) 65. phenol 66. bis(2-ethylhexyl) phthalate 67. butyl benzyl phthalate 84. pyrene 85. tetrachloroethylene 87. trichloroethylene (2) Die Casting (§ 464.15(c...) phthalate 67. butyl benzyl phthalate 68. di-n-butyl phthalate 70. diethyl phthalate 72. benzo (a)anthracene...

  3. 40 CFR 464.11 - Specialized definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... fluoranthene 44. methylene chloride (dichloromethane) 65. phenol 66. bis(2-ethylhexyl) phthalate 67. butyl benzyl phthalate 84. pyrene 85. tetrachloroethylene 87. trichloroethylene (2) Die Casting (§ 464.15(c...) phthalate 67. butyl benzyl phthalate 68. di-n-butyl phthalate 70. diethyl phthalate 72. benzo (a)anthracene...

  4. Microstructure, Tensile Properties, and Corrosion Behavior of Die-Cast Mg-7Al-1Ca- xSn Alloys

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Dong, Haikuo; Sun, Shijie; Wang, Zhi; Mao, Pingli; Liu, Zheng

    2018-02-01

    The microstructure, tensile properties, and corrosion behavior of die-cast Mg-7Al-1Ca- xSn ( x = 0, 0.5, 1.0, and 2.0 wt.%) alloys were studied using OM, SEM/EDS, tensile test, weight loss test, and electrochemical test. The experimental results showed that Sn addition effectively refined grains and intermetallic phases and increased the amount of intermetallic phases. Meanwhile, Sn addition to the alloys suppressed the formation of the (Mg,Al)2Ca phase and resulted in the formation of the ternary CaMgSn phase and the binary Mg2Sn phase. The Mg-7Al-1Ca-0.5Sn alloy exhibited best tensile properties at room temperature, while Mg-7Al-1Ca-1.0Sn alloy exhibited best tensile properties at elevated temperature. The corrosion resistance of studied alloys was improved by the Sn addition, and the Mg-7Al-1Ca-0.5Sn alloy presented the best corrosion resistance.

  5. Accuracy of ringless casting and accelerated wax-elimination technique: a comparative in vitro study.

    PubMed

    Prasad, Rahul; Al-Keraif, Abdulaziz Abdullah; Kathuria, Nidhi; Gandhi, P V; Bhide, S V

    2014-02-01

    The purpose of this study was to determine whether the ringless casting and accelerated wax-elimination techniques can be combined to offer a cost-effective, clinically acceptable, and time-saving alternative for fabricating single unit castings in fixed prosthodontics. Sixty standardized wax copings were fabricated on a type IV stone replica of a stainless steel die. The wax patterns were divided into four groups. The first group was cast using the ringless investment technique and conventional wax-elimination method; the second group was cast using the ringless investment technique and accelerated wax-elimination method; the third group was cast using the conventional metal ring investment technique and conventional wax-elimination method; the fourth group was cast using the metal ring investment technique and accelerated wax-elimination method. The vertical marginal gap was measured at four sites per specimen, using a digital optical microscope at 100× magnification. The results were analyzed using two-way ANOVA to determine statistical significance. The vertical marginal gaps of castings fabricated using the ringless technique (76.98 ± 7.59 μm) were significantly less (p < 0.05) than those castings fabricated using the conventional metal ring technique (138.44 ± 28.59 μm); however, the vertical marginal gaps of the conventional (102.63 ± 36.12 μm) and accelerated wax-elimination (112.79 ± 38.34 μm) castings were not statistically significant (p > 0.05). The ringless investment technique can produce castings with higher accuracy and can be favorably combined with the accelerated wax-elimination method as a vital alternative to the time-consuming conventional technique of casting restorations in fixed prosthodontics. © 2013 by the American College of Prosthodontists.

  6. The effect of preparation taper on the retention of cemented cast crowns under lateral fatigue loading.

    PubMed

    Cameron, Stephen M; Morris, W Jack; Keesee, Stephen M; Barsky, Todd B; Parker, M Harry

    2006-06-01

    Clinicians have used resistance form as a basis for determining guidelines for preparation design to ensure clinical success of cemented cast restorations. Disagreement on whether clinical success follows the on-off or linear nature of resistance form continues. The purpose of this study was to evaluate the number of cycles required to dislodge a cemented complete crown casting under a cyclic lateral load as a function of taper and to compare this relationship for the resistive and nonresistive ranges of taper. Three dies were milled from stainless steel at each of the following tapers: 4, 8, 12, 16, 20, 24, 28, and 32 degrees. A gold-palladium metal-ceramic alloy crown was fabricated for each die, cemented, and subjected to lateral cyclic loading until failure or 1,000,000 cycles. The limiting taper for the dies with their given height and base was 26.6 degrees. Dies with taper less than 26.6 degrees had resistance form, whereas dies with taper larger than 26.6 degrees did not. A linear regression (alpha=.05) was used to evaluate the relation of cycles at dislodgement to taper. The average number of cycles to crown dislodgement or completion for each taper (SD), in units of 10,000, was as follows: 4 degrees, 100 (0); 8 degrees, 100 (0); 12 degrees, 93.54 (16.56); 16 degrees, 61.33 (38.47); 20 degrees, 25.73 (34.67); 24 degrees, 4.33 (7.36); 28 degrees, 0.06 (0.08); and 32 degrees, 0.05 (0.09). The crowns in the resistive area less than 26.6 degrees that demonstrated failure showed a linear regression with a correlation coefficient of -0.995 between the average number of cycles to dislodge the crown and the taper. The slope was significantly different from zero (P=.0048), with a value of -7.58 and a standard error of 0.53. The number of cycles required to cause crown dislodgement was linear after 12 degrees in the resistive area and nearly zero for preparations in the nonresistive area. The limiting taper concept closely predicted the transition point where the slope of the graph of cycles to dislodgement as a function of taper abruptly changed.

  7. Distortion of three-unit implant frameworks during casting, soldering, and simulated porcelain firings.

    PubMed

    Zervas, P J; Papazoglou, E; Beck, F M; Carr, A B

    1999-09-01

    The aim of this study was to assess distortion inherent in casting, soldering, and simulated porcelain firings of screw-retained, implant-supported three-unit fixed partial dentures (FPDs). Ten wax patterns were fabricated on a die-stone cast containing two implants, 20 mm apart from center to center. Five specimens were cast in a high-palladium alloy, exposed to simulated porcelain firings, sectioned, and then soldered with low-fusing solder. Five specimens were cast, sectioned, soldered with high-fusing solder, and then exposed to simulated porcelain firings. For each specimen, two horizontal and six vertical distances between appropriately scribed reference points were measured with a traveling microscope. Comparisons were made among the various measurements taken after wax-pattern fabrication, casting, high- and low-fusing soldering, and each porcelain firing. Data were analyzed using a repeated-measures factorial ANOVA (alpha = 0.05). Significant difference was detected in the amount of horizontal distortion during casting (53 +/- 24 microns) and high-fusing soldering (-49 +/- 50 microns), as well as in the amount of horizontal distortion during high-fusing soldering (-49 +/- 50 microns) and low-fusing soldering (17 +/- 26 microns). However, no clinically significant difference was found in the amount of horizontal distortion during casting, low-fusing, and high-fusing soldering. The greatest amount of distortion during the simulated porcelain firings took place during the oxidizing cycle. Soldering did not improve the casting misfit of a three-unit implant-retained FPD model. Metal-ceramic implant frameworks should be oxidized before intraoral fit evaluation.

  8. The erosion resistance of tool alloys in foundry melt the Zamak 4 - 1

    NASA Astrophysics Data System (ADS)

    Muhametzyanova, GF; Kolesnikov, M. S.; Muhametzyanov, I. R.

    2016-06-01

    The paper considers the resistance against erosion dissolution in the melt of foundry Zamak 4 - 1 die steels used for press machine parts manufacturing for injection molding, and hard alloys system WC - Co. It is established that the solubility in the melt Zamak - 4 - 1 steel of 4H5MFS and DI - 22 are promising for the parts fabrication of metal-wire casting machines of CLT and IDRA types. A significant reserve to increase the resistance of metal wires is the use of cast steel, as well as in electroslag and electro-beam remelting options. Metal-ceramic alloy doped with chromium VK25H may be recommended for reinforcement of heavily loaded parts of the press-nodes of hot casting machines under pressure.

  9. The Effects of Die Relief Agent on the Retention of Full Coverage Castings,

    DTIC Science & Technology

    1981-02-19

    autopolymerizing resin. A diamond rotary instrument and a high speed dental handpiece using air- water coolant were employed to prepare the crown of each tooth...777 109 502 ARMY INST OF DENTAL RESEARCH WASHINGTON DC F/6 6/5 THE EFFECTS OF DIE RELIEF AGENT ON THE RETENTION OF FULL COYERA--ETC(U) FES 81 S 6...Kuffler" 4W Eugene F.Huget, COL, (Ret.) .9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK U.S. Army Institute of Dental

  10. Aluminum-fly ash metal matrix composites for automotive parts. [Reports for October 1 to December 1998, and January 31 to March 31, 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, David; Purgert, Robert; Rhudy, Richard

    1999-04-21

    Some highlights are: (1) Material development, process development, and part validation are occurring simultaneously on a fast track schedule. (2) Prior project activity has resulted in a program emphasis on three components--manifolds, mounting brackets, and motor mounts; and three casting techniques--squeeze casting, pressure die casting, and sand casting. (3) With the project focus, it appears possible to offer manifolds and mounting brackets for automotive qualification testing on a schedule in line with the PNGV Year 2004 goal. (4) Through an iterative process of fly ash treatment, MMC ingot preparation, foundry process refinement, and parts production, both foundries (Eck Industries andmore » Thompson Aluminum Casting Company) are addressing the pre-competitive issues of: (a) Optimum castability with fly ash shapes and sizes; (b) Best mechanical properties derived from fly ash shapes and sizes; (c) Effective fly ash classification processes; (d) Mechanical properties resulting from various casting processes and fly ash formulations. Eck and TAC continued experiments with batch ingot provided by both Eck and the University of Wisconsin at Milwaukee. Castings were run that contained varying amounts of fly ash and different size fractions. Components were cast using cenosphere material to ascertain the effects of squeeze casting and to determine whether the pressure would break the cenospheres. Test parts are currently being machined into substandard test bars for mechanical testing. Also, the affect of heat treatments on ashalloy are being studied through comparison to two lots, one heat treated and one in the ''as cast'' condition.« less

  11. Aluminum-fly ash metal matrix composites for automotive parts. [Reports for October 1 to December 31, 1999, and January 1 - to March 31, 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, David; Purgert, Robert; Rhudy, Richard

    2000-04-21

    The highlights of this report are: (1) fly ash classified by less than 100 microns in size was mixed into a 300 lb melt of alloy 535 without the need of a magnesium additive; (2) a vibratory feeder fitted with a sieve was used as the means to minimize particle clustering while introducing fly ash into the aluminum alloy 535 melt; and (3) the industrial-size field test was successful in that sand mold castings and permanent mold castings of tensile bars, K mold bars, and ingots were made from aluminum alloy 535-fly ash mix. Use of aluminum alloy 535 containingmore » 7% magnesium precluded the need to introduce additional magnesium into the melt. The third round of sand mold castings as well as permanent mold castings produced components and ingots of alloy 535 instead of alloy 356. The ingots will be remelted and cast into parts to assess the improvement of flyash distribution which occurs through reheating and the solidification wetting process. Microstructure analysis continues on sand and permanent mold castings to study particle distribution in the components. A prototype sand cast intake manifold casting was found to be pressure tight which is a major performance requirement for this part. Another heat of pressure die cast brackets of A380-classified fly ash will be made to examine their strength and fly ash distribution. Ingots of A356-fly ash have been made at Eck for remelting at Thompson Aluminum for squeeze casting into motor mounts.« less

  12. Faster, Less Expensive Dies Using RSP Tooling

    NASA Astrophysics Data System (ADS)

    Knirsch, James R.

    2007-08-01

    RSP Tooling is an indirect spray form additive process that can produce production tooling for virtually any forming process and from virtually any metal. In the past 24 months a significant amount of research and development has been performed. This resulted in an increase in the basic metallurgical understanding of what transpires during the rapid solidification of the metal, significant improvements in the production machine up time, ceramic developments that have improved finish, process changes that have resulted in a shorter lead time for tool delivery, and the testing of many new alloys. RSP stands for Rapid Solidification Process and is the key to the superior metallurgical properties that result from the technology. Most metals that are sprayed in the process leave the machine with the same physical properties as the same metal normally achieves through heat treatment and in some cases the properties are superior. Many new applications are being pursued including INVAR tools for aerospace composite materials, and bimetallic tools made from tool steel and beryllium copper for die casting and plastic injection molding. Recent feasibility studies have been performed with tremendous success.

  13. Integrated Computational Materials Engineering for Magnesium in Automotive Body Applications

    NASA Astrophysics Data System (ADS)

    Allison, John E.; Liu, Baicheng; Boyle, Kevin P.; Hector, Lou; McCune, Robert

    This paper provides an overview and progress report for an international collaborative project which aims to develop an ICME infrastructure for magnesium for use in automotive body applications. Quantitative processing-micro structure-property relationships are being developed for extruded Mg alloys, sheet-formed Mg alloys and high pressure die cast Mg alloys. These relationships are captured in computational models which are then linked with manufacturing process simulation and used to provide constitutive models for component performance analysis. The long term goal is to capture this information in efficient computational models and in a web-centered knowledge base. The work is being conducted at leading universities, national labs and industrial research facilities in the US, China and Canada. This project is sponsored by the U.S. Department of Energy, the U.S. Automotive Materials Partnership (USAMP), Chinese Ministry of Science and Technology (MOST) and Natural Resources Canada (NRCan).

  14. Evaluation of marginal and internal gap of three-unit metal framework according to subtractive manufacturing and additive manufacturing of CAD/CAM systems

    PubMed Central

    Kim, Dong-Yeon; Kim, Eo-Bin; Kim, Hae-Young; Kim, Ji-Hwan

    2017-01-01

    PURPOSE To evaluate the fit of a three-unit metal framework of fixed dental prostheses made by subtractive and additive manufacturing. MATERIALS AND METHODS One master model of metal was fabricated. Twenty silicone impressions were made on the master die, working die of 10 poured with Type 4 stone, and working die of 10 made of scannable stone. Ten three-unit wax frameworks were fabricated by wax-up from Type IV working die. Stereolithography files of 10 three-unit frameworks were obtained using a model scanner and three-dimensional design software on a scannable working die. The three-unit wax framework was fabricated using subtractive manufacturing (SM) by applying the prepared stereolithography file, and the resin framework was fabricated by additive manufacturing (AM); both used metal alloy castings for metal frameworks. Marginal and internal gap were measured using silicone replica technique and digital microscope. Measurement data were analyzed by Kruskal-Wallis H test and Mann-Whitney U-test (α=.05). RESULTS The lowest and highest gaps between premolar and molar margins were in the SM group and the AM group, respectively. There was a statistically significant difference in the marginal gap among the 3 groups (P<.001). In the marginal area where pontic was present, the largest gap was 149.39 ± 42.30 µm in the AM group, and the lowest gap was 24.40 ± 11.92 µm in the SM group. CONCLUSION Three-unit metal frameworks made by subtractive manufacturing are clinically applicable. However, additive manufacturing requires more research to be applied clinically. PMID:29279766

  15. Voltage Controller

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Power Efficiency Corporation, specifically formed to manufacture and develop products from NASA technology, has a license to a three-phase power factor controller originally developed by Frank Nola, an engineer at Marshall Space Flight Center. Power Efficiency and two major distributors, Performance Control and Edison Power Technologies, use the electronic control boards to assemble three different motor controllers: Power Commander, Performance Controller, and Energy Master. The company Power Factor Controller reduces excessive energy waste in AC induction motors. It is used in industries and applications where motors operate under variable loads, including elevators and escalators, machine tools, intake and exhaust fans, oil wells, conveyors, pumps, die casting, and compressors. Customer lists include companies such as May Department Stores, Caesars Atlantic City, Ford Motors, and American Axle.

  16. A Comparison of Accuracy of Matrix Impression System with Putty Reline Technique and Multiple Mix Technique: An In Vitro Study.

    PubMed

    Kumar, M Praveen; Patil, Suneel G; Dheeraj, Bhandari; Reddy, Keshav; Goel, Dinker; Krishna, Gopi

    2015-06-01

    The difficulty in obtaining an acceptable impression increases exponentially as the number of abutments increases. Accuracy of the impression material and the use of a suitable impression technique are of utmost importance in the fabrication of a fixed partial denture. This study compared the accuracy of the matrix impression system with conventional putty reline and multiple mix technique for individual dies by comparing the inter-abutment distance in the casts obtained from the impressions. Three groups, 10 impressions each with three impression techniques (matrix impression system, putty reline technique and multiple mix technique) were made of a master die. Typodont teeth were embedded in a maxillary frasaco model base. The left first premolar was removed to create a three-unit fixed partial denture situation and the left canine and second premolar were prepared conservatively, and hatch marks were made on the abutment teeth. The final casts obtained from the impressions were examined under a profile projector and the inter-abutment distance was calculated for all the casts and compared. The results from this study showed that in the mesiodistal dimensions the percentage deviation from master model in Group I was 0.1 and 0.2, in Group II was 0.9 and 0.3, and Group III was 1.6 and 1.5, respectively. In the labio-palatal dimensions the percentage deviation from master model in Group I was 0.01 and 0.4, Group II was 1.9 and 1.3, and Group III was 2.2 and 2.0, respectively. In the cervico-incisal dimensions the percentage deviation from the master model in Group I was 1.1 and 0.2, Group II was 3.9 and 1.7, and Group III was 1.9 and 3.0, respectively. In the inter-abutment dimension of dies, percentage deviation from master model in Group I was 0.1, Group II was 0.6, and Group III was 1.0. The matrix impression system showed more accuracy of reproduction for individual dies when compared with putty reline technique and multiple mix technique in all the three directions, as well as the inter-abutment distance.

  17. Marginal accuracy of nickel chromium copings fabricated by conventional and accelerated casting procedures, produced with ringless and metal ring investment procedures: A comparative in vitro study

    PubMed Central

    Alex, Deepa; Shetty, Y. Bharath; Miranda, Glynis Anita; Prabhu, M. Bharath; Karkera, Reshma

    2015-01-01

    Background: Conventional investing and casting techniques are time-consuming and usually requires 2–4 h for completion. Accelerated nonstandard, casting techniques have been reported to achieve similar quality results in significantly less time, namely, in 30–40 min. During casting, it is essential to achieve compensation for the shrinkage of solidifying alloy by investment expansion. The metal casting ring restricts the thermal expansion of investment because the thermal expansion of the ring is lesser than that of the investment. The use of casting ring was challenged with the introduction of the ringless technique. Materials and Methods: A total of 40 test samples of nickel chromium (Ni-Cr) cast copings were obtained from the patterns fabricated using inlay casting wax. The 20 wax patterns were invested using metal ring and 20 wax patterns were invested using the ringless investment system. Of both the groups, 10 samples underwent conventional casting, and the other 10 underwent accelerated casting. The patterns were casted using the induction casting technique. All the test samples of cast copings were evaluated for vertical marginal gaps at four points on the die employing a stereo optical microscope. Results: The vertical marginal discrepancy data obtained were tabulated. Mean and standard deviations were obtained. Vertical discrepancies were analyzed using analysis of variance and Tukey honestly significantly different. The data obtained were found to be very highly significant (P < 0.001). Mean vertical gap was the maximum for Group II (53.64 μm) followed by Group IV (47.62 μm), Group I (44.83 μm) and Group III (35.35 μm). Conclusion: The Ni-Cr cast copings fabricated with the conventional casting using ringless investment system showed significantly better marginal fit than that of cast copings fabricated from conventional and accelerated casting with metal ring investment and accelerated casting using ringless investment since those copings had shown the least vertical marginal discrepancies among the four methods evaluated in this study. PMID:26929488

  18. The die is cast - Arsenic exposure in early life and disease susceptibility

    EPA Science Inventory

    Abstract Early life exposure to arsenic in humans and mice produces similar patterns of disease in later life. Given the long interval between exposure and effect, epigenetic effects of early life exposure to arsenic may account for development and progression of disease in bo...

  19. E3 Success Story - Making an Investment in the Company: C.U.E.

    EPA Pesticide Factsheets

    C.U.E. in Mount Hope, West Virginia, makes molded and cast parts.An array of opportunities were found by WVMEP to implement lean production principles in areas such as mistake proofing, kanban systems, rapid exchange of dies, 5S, and value stream mapping.

  20. Phase Transformation and Creep of Mg-Al-Ca Based Die-Cast Alloys

    NASA Astrophysics Data System (ADS)

    Suzuki, Akane; Saddock, Nicholas D.; Jones, J. Wayne; Pollock, Tresa M.

    The microstructure and microstructural stability of die-cast AC53 (Mg-5Al-3Ca) and AXJ530 (Mg-5Al-3Ca-0.15Sr) have been investigated in detail by transmission electron microscopy (TEM). Both alloys have an as-cast microstructure of α-Mg with (Mg, Al)2Ca (dihexagonal C36) eutectic at grain boundaries. During aging at 573 K, the C36 phase transforms to Al2Ca (cubic Cl5) phase. These two phases have a crystallographic orientation relationship of (0001)C36//{111}C15 and [2110]C36//[011]C15, and the transformation from C36 to C15 occurs by a shear-assisted process. Despite this change in the phase constitution, the network structure of the intermetallic compound(s) surrounding α-Mg grains is fairly stable, morphologically, even after prolonged exposure at elevated temperature. In the α-Mg matrix phase, precipitation of Al2Ca was observed after aging for 360 ks at 573 K. The precipitates are disc-shaped with a habit plane of {111}C15//(0001)α. AXJ530 shows higher creep resistance than AC53. The dislocation substructure that evolved during creep deformation was investigated in both alloys, and the basal and non-basal slip of a-dislocation and other slip modes of a+c- dislocations were observed. The relationship between creep properties and microstructure is discussed.

  1. Corrosion and protection of heterogeneous cast Al-Si (356) and Al-Si-Cu-Fe (380) alloys by chromate adn cerium inhibitors

    NASA Astrophysics Data System (ADS)

    Jain, Syadwad

    In this study, the localized corrosion and conversion coating on cast alloys 356 (Al-7.0Si-0.3Mg) and 380 (Al-8.5Si-3.5Cu-1.6Fe) were characterized. The intermetallic phases presence in the permanent mold cast alloy 356 are primary-Si, Al5FeSi, Al8Si6Mg3Fe and Mg2Si. The die cast alloy 380 is rich in Cu and Fe elements. These alloying elements result in formation of the intermetallic phases Al 5FeSi, Al2Cu and Al(FeCuCr) along with primary-Si. The Cu- and Fe-rich IMPS are cathodic with respect to the matrix phase and strongly govern the corrosion behavior of the two cast alloys in an aggressive environment due to formation of local electrochemical cell in their vicinity. Results have shown that corrosion behavior of permanent mould cast alloy 356 is significantly better than the die cast aluminum alloy 380, primarily due to high content of Cu- and Fe-rich phases such as Al2Cu and Al 5FeSi in the latter. The IMPS also alter the protection mechanism of the cast alloys in the presence of inhibitors in an environment. The presence of chromate in the solution results in reduced cathodic activity on all the phases. Chromate provides some anodic inhibition by increasing pitting potentials and altering corrosion potentials for the phases. Results have shown that performance of CCC was much better on 356 than on 380, primarily due to inhomogeneous and incomplete coating deposition on Cu- and Fe- phases present in alloy 380. XPS and Raman were used to characterize coating deposition on intermetallics. Results show evidence of cyanide complex formation on the intermetallic phases. The presence of this complex is speculated to locally suppress CCC formation. Formation and breakdown of cerium conversion coatings on 356 and 380 was also analyzed. Results showed that deposition of cerium hydroxide started with heavy precipitation on intermetallic particles with the coatings growing outwards onto the matrix. Electrochemical analysis of synthesized intermetallics compounds in the presence of soluble cerium cations showed that of anodic and cathodic activity was not as strongly inhibited as was observed for chromate ions. Overall cerium conversion coating showed good performance on Al-Si (356) ally, but poor performance on Fe- and Cu-rich alloy (380).

  2. Tensile Properties and Fracture Behavior of Aluminum Alloy Foam Fabricated from Die Castings without Using Blowing Agent by Friction Stir Processing Route

    PubMed Central

    Hangai, Yoshihiko; Kamada, Hiroto; Utsunomiya, Takao; Kitahara, Soichiro; Kuwazuru, Osamu; Yoshikawa, Nobuhiro

    2014-01-01

    Al foam has been used in a wide range of applications owing to its light weight, high energy absorption and high sound insulation. One of the promising processes for fabricating Al foam involves the use of a foamable precursor. In this study, ADC12 Al foams with porosities of 67%–78% were fabricated from Al alloy die castings without using a blowing agent by the friction stir processing route. The pore structure and tensile properties of the ADC12 foams were investigated and compared with those of commercially available ALPORAS. From X-ray computed tomography (X-ray CT) observations of the pore structure of ADC12 foams, it was found that they have smaller pores with a narrower distribution than those in ALPORAS. Tensile tests on the ADC12 foams indicated that as their porosity increased, the tensile strength and tensile strain decreased, with strong relation between the porosity, tensile strength, and tensile strain. ADC12 foams exhibited brittle fracture, whereas ALPORAS exhibited ductile fracture, which is due to the nature of the Al alloy used as the base material of the foams. By image-based finite element (FE) analysis using X-ray CT images corresponding to the tensile tests on ADC12 foams, it was shown that the fracture path of ADC12 foams observed in tensile tests and the regions of high stress obtained from FE analysis correspond to each other. Therefore, it is considered that the fracture behavior of ADC12 foams in relation to their pore structure distribution can be investigated by image-based FE analysis. PMID:28788573

  3. Tensile Properties and Fracture Behavior of Aluminum Alloy Foam Fabricated from Die Castings without Using Blowing Agent by Friction Stir Processing Route.

    PubMed

    Hangai, Yoshihiko; Kamada, Hiroto; Utsunomiya, Takao; Kitahara, Soichiro; Kuwazuru, Osamu; Yoshikawa, Nobuhiro

    2014-03-21

    Al foam has been used in a wide range of applications owing to its light weight, high energy absorption and high sound insulation. One of the promising processes for fabricating Al foam involves the use of a foamable precursor. In this study, ADC12 Al foams with porosities of 67%-78% were fabricated from Al alloy die castings without using a blowing agent by the friction stir processing route. The pore structure and tensile properties of the ADC12 foams were investigated and compared with those of commercially available ALPORAS. From X-ray computed tomography (X-ray CT) observations of the pore structure of ADC12 foams, it was found that they have smaller pores with a narrower distribution than those in ALPORAS. Tensile tests on the ADC12 foams indicated that as their porosity increased, the tensile strength and tensile strain decreased, with strong relation between the porosity, tensile strength, and tensile strain. ADC12 foams exhibited brittle fracture, whereas ALPORAS exhibited ductile fracture, which is due to the nature of the Al alloy used as the base material of the foams. By image-based finite element (FE) analysis using X-ray CT images corresponding to the tensile tests on ADC12 foams, it was shown that the fracture path of ADC12 foams observed in tensile tests and the regions of high stress obtained from FE analysis correspond to each other. Therefore, it is considered that the fracture behavior of ADC12 foams in relation to their pore structure distribution can be investigated by image-based FE analysis.

  4. Effect of dental technician disparities on the 3-dimensional accuracy of definitive casts.

    PubMed

    Emir, Faruk; Piskin, Bulent; Sipahi, Cumhur

    2017-03-01

    Studies that evaluated the effect of dental technician disparities on the accuracy of presectioned and postsectioned definitive casts are lacking. The purpose of this in vitro study was to evaluate the accuracy of presectioned and postsectioned definitive casts fabricated by different dental technicians by using a 3-dimensional computer-aided measurement method. An arch-shaped metal master model consisting of 5 abutments resembling prepared mandibular incisors, canines, and first molars and with a 6-degree total angle of convergence was designed and fabricated by computer-aided design and computer-aided manufacturing (CAD-CAM) technology. Complete arch impressions were made (N=110) from the master model, using polyvinyl siloxane (PVS) and delivered to 11 dental technicians. Each technician fabricated 10 definitive casts with dental stone, and the obtained casts were numbered. All casts were sectioned, and removable dies were obtained. The master model and the presectioned and postsectioned definitive casts were digitized with an extraoral scanner, and the virtual master model and virtual presectioned and postsectioned definitive casts were obtained. All definitive casts were compared with the master model by using computer-aided measurements, and the 3-dimensional accuracy of the definitive casts was determined with best fit alignment and represented in color-coded maps. Differences were analyzed using univariate analyses of variance, and the Tukey honest significant differences post hoc tests were used for multiple comparisons (α=.05). The accuracy of presectioned and postsectioned definitive casts was significantly affected by dental technician disparities (P<.001). The largest dimensional changes were detected in the anterior abutments of both of the definitive casts. The changes mostly occurred in the mesiodistal dimension (P<.001). Within the limitations of this in vitro study, the accuracy of presectioned and postsectioned definitive casts is susceptible to dental technician differences. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  5. Materials processing threshold report: 2. Use of low gravity for cast iron process development

    NASA Technical Reports Server (NTRS)

    Frankhouser, W. L.

    1980-01-01

    Potential applications of a low gravity environment of interest to the commercial producers of cast iron were assessed to determine whether low gravity conditions offer potential opportunities to producers for improving cast iron properties and expanding the use of cast irons. The assessment is limited to the gray and nodular types of iron, however, the findings are applicable to all cast irons. The potential advantages accrued through low gravity experiments with cast irons are described.

  6. Vascular Corrosion Casting: Review of Advantages and Limitations in the Application of Some Simple Quantitative Methods.

    PubMed

    Hossler, Fred E.; Douglas, John E.

    2001-05-01

    Vascular corrosion casting has been used for about 40 years to produce replicas of normal and abnormal vasculature and microvasculature of various tissues and organs that could be viewed at the ultrastructural level. In combination with scanning electron microscopy (SEM), the primary application of corrosion casting has been to describe the morphology and anatomical distribution of blood vessels in these tissues. However, such replicas should also contain quantitative information about that vasculature. This report summarizes some simple quantitative applications of vascular corrosion casting. Casts were prepared by infusing Mercox resin or diluted Mercox resin into the vasculature. Surrounding tissues were removed with KOH, hot water, and formic acid, and the resulting dried casts were observed with routine SEM. The orientation, size, and frequency of vascular endothelial cells were determined from endothelial nuclear imprints on various cast surfaces. Vascular volumes of heart, lung, and avian salt gland were calculated using tissue and resin densities, and weights. Changes in vascular volume and functional capillary density in an experimentally induced emphysema model were estimated from confocal images of casts. Clearly, corrosion casts lend themselves to quantitative analysis. However, because blood vessels differ in their compliances, in their responses to the toxicity of casting resins, and in their response to varying conditions of corrosion casting procedures, it is prudent to use care in interpreting this quantitative data. Some of the applications and limitations of quantitative methodology with corrosion casts are reviewed here.

  7. 40 CFR 464.40 - Applicability; description of the zinc casting subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Applicability; description of the zinc casting subcategory. 464.40 Section 464.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) METAL MOLDING AND CASTING POINT SOURCE CATEGORY Zinc Casting Subcategory § 464.40...

  8. 40 CFR 464.40 - Applicability; description of the zinc casting subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Applicability; description of the zinc casting subcategory. 464.40 Section 464.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) METAL MOLDING AND CASTING POINT SOURCE CATEGORY Zinc Casting Subcategory § 464.40...

  9. 40 CFR 464.40 - Applicability; description of the zinc casting subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Applicability; description of the zinc casting subcategory. 464.40 Section 464.40 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) METAL MOLDING AND CASTING POINT SOURCE CATEGORY Zinc Casting Subcategory § 464.40...

  10. Development and Demonstration of Adanced Tooling Alloys for Molds and Dies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kevin M. McHugh; Enrique J. Lavernia

    2006-01-01

    This report summarizes research results in the project Development and Demonstration of Advanced Tooling Alloys for Molds and Dies. Molds, dies and related tooling are used to manufacture most of the plastic and metal products we use every day. Conventional fabrication of molds and dies involves a multiplicity of machining, benching and heat treatment unit operations. This approach is very expensive and time consuming. Rapid Solidifcation Process (RSP) Tooling is a spray-forming technology tailored for producing molds and dies. The appraoch combines rapid solidifcation processing and net-shape materials processing in a single step. An atomized spray of a tool-forming alloy,more » typically a tool steel, is deposited onto an easy-to-form tool pattern to replicate the pattern's shape and surface features. By so doing, the approach eliminates many machining operations in conventional mold making, significantly reducing cost, lead time and energy. Moreover, rapid solidification creates unique microstructural features by suppressing carbide precipitation and growth, and creating metastable phases. This can result in unique material properties following heat treatment. Spray-formed and aged tool steel dies have exhibited extended life compared to conventional dies in many forming operations such as forging, extrusion and die casting. RSP Tooling technolocy was commercialized with the formation of RSP Tooling, LLC in Solon, Oh.« less

  11. Morphology transition of the primary silicon particles in a hypereutectic A390 alloy in high pressure die casting.

    PubMed

    Wang, J; Guo, Z; Song, J L; Hu, W X; Li, J C; Xiong, S M

    2017-11-03

    The microstructure of a high-pressure die-cast hypereutectic A390 alloy, including PSPs, pores, α-Al grains and Cu-rich phases, was characterized using synchrotron X-ray tomography, together with SEM, TEM and EBSD. The Cu-rich phases exhibited a net morphology and distributed at the boundaries of the α-Al grains, which in turn surrounded the PSPs. Statistical analysis of the reconstructed 1000 PSPs showed that both equivalent diameter and shape factor of the PSPs exhibited a unimodal distribution with peaks corresponding to 25 μm and 0.78, respectively.) PSPs morphology with multiple twinning were observed and morphological or growth transition of the PSPs from regular octahedral shape (with a shape factor of 0.85 was mainly caused by the constraint of the Cu-rich phases. In particular, the presence of the Cu-rich phases restricted the growth of the α-Al grains, inducing stress on the internal silicon particles, which caused multiple twinning occurrence with higher growth potential and consequently led to growth transitions of the PSPs.

  12. 21 CFR 888.5980 - Manual cast application and removal instrument.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Manual cast application and removal instrument. 888.5980 Section 888.5980 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.5980 Manual cast application...

  13. 21 CFR 888.5980 - Manual cast application and removal instrument.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Manual cast application and removal instrument. 888.5980 Section 888.5980 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.5980 Manual cast application...

  14. 21 CFR 888.5980 - Manual cast application and removal instrument.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Manual cast application and removal instrument. 888.5980 Section 888.5980 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.5980 Manual cast application...

  15. 21 CFR 888.5980 - Manual cast application and removal instrument.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Manual cast application and removal instrument. 888.5980 Section 888.5980 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.5980 Manual cast application...

  16. Improved Net-Level Filling And Finishing Of Large Castings

    NASA Technical Reports Server (NTRS)

    Johnson, Erik P.; Brown, Richard F.

    1995-01-01

    Improved method of vacuum casting of large, generally cylindrical objects to net sizes and shapes reduces amount of direct manual labor by workers in proximity to cast material. Original application for which method devised is fabrication of solid rocket-motor segments containing solid propellant, wherein need to minimize exposure of workers to propellant material being cast. Improved method adaptable to other applications involving large castings of toxic, flammable, or otherwise hazardous materials.

  17. Cast Metals Coalition Technology Transfer and Program Management Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gwyn, Mike

    2009-03-31

    The Cast Metals Coalition (CMC) partnership program was funded to ensure that the results of the Department of Energy's (DOE) metalcasting research and development (R&D) projects are successfully deployed into industry. Specifically, the CMC program coordinated the transfer and deployment of energy saving technologies and process improvements developed under separately funded DOE programs and projects into industry. The transition of these technologies and process improvements is a critical step in the path to realizing actual energy savings. At full deployment, DOE funded metalcasting R&D results are projected to save 55% of the energy used by the industry in 1998. Thismore » closely aligns with DOE's current goal of driving a 25% reduction in industrial energy intensity by 2017. In addition to benefiting DOE, these energy savings provide metalcasters with a significant economic advantage. Deployment of already completed R&D project results and those still underway is estimated to return over 500% of the original DOE and industry investment. Energy savings estimates through December 2008 from the Energy-Saving Melting and Revert Reduction Technology (E-SMARRT) portfolio of projects alone are 12 x 1012 BTUs, with a projection of over 50 x 1012 BTUs ten years after program completion. These energy savings and process improvements have been made possible through the unique collaborative structure of the CMC partnership. The CMC team consists of DOE's Office of Industrial Technology, the three leading metalcasting technical societies in the U.S: the American Foundry Society; the North American Die Casting Association; and the Steel Founders Society of America; and the Advanced Technology Institute (ATI), a recognized leader in distributed technology management. CMC provides collaborative leadership to a complex industry composed of approximately 2,100 companies, 80% of which employ less than 100 people, and only 4% of which employ more than 250 people. Without collaboration, new technologies enabling energy efficiencies and environment-friendly improvements are slow to develop, and have trouble obtaining a broad application. The CMC team was able to effectively and efficiently transfer the results of DOE's metalcasting R&D projects to industry by utilizing and delivering the numerous communication vehicles identified in the proposal. The three metalcasting technical associations achieved significant technology transition results under this program. In addition to reaching over 23,000 people per year through Modern Casting and 28,000 through Engineered Casting Solutions, AFS had 84 national publications and reached over 1,200 people annually through Cast Metals Institute (CMI) education courses. NADCA's education department reached over 1,000 people each year through their courses, in addition to reaching over 6,000 people annually through Die Casting Engineer, and publishing 58 papers. The SFSA also published 99 research papers and reached over 1,000 people annually through their member newsletters. In addition to these communication vehicles, the CMC team conducted numerous technical committee meetings, project reviews, and onsite visits. All of these efforts to distribute the latest metalcasting technologies contributed to the successful deployment of DOE's R&D projects into industry. The DOE/CMC partnership demonstrated significant success in the identification and review of relevant and easy-to-implement metalcasting energy-saving processes and technologies so that the results are quickly implemented and become general practice. The results achieved in this program demonstrate that sustained technology transfer efforts are a critical step in the deployment of R&D projects to industry.« less

  18. Application of TRIZ Theory in Patternless Casting Manufacturing Technique

    NASA Astrophysics Data System (ADS)

    Yang, Weidong; Gan, Dequan; Jiang, Ping; Tian, Yumei

    The ultimate goal of Patternless Casting Manufacturing (referred to as PCM) is how to obtain the casts by casting the sand mold directly. In the previous PCM, the resin content of sand mold is much higher than that required by traditional resin sand, so the casts obtained are difficult to be sound and qualified products, which limits the application of this technique greatly. In this paper, the TRIZ algorithm is introduced to the innovation process in PCM systematically.

  19. Effect of Cold Forging on Microstructure and MechanicalProperties of Al/SiC Composites

    NASA Astrophysics Data System (ADS)

    Hanamantraygouda, M. B.; Shivakumar, B. P., Dr; Siddappa, P. N.; Sampathkumar, L.; Prashanth, L.

    2018-02-01

    The objective of this work was to investigate the effect of cold forging on mechanical properties and microstructural study of Al MMCs, at different wt% of SiC and forging cycle. The Al-SiC composite material was fabricated by stir casting method at different weight percentage of SiC such as 2.5, 5, 7.5 and 10%. Further, the deformation characteristics during open-die forging of Al-SiC composite at cold conditions was investigated. Cast and forged composite material was subjected to hardness test, tensile test and impact test. The grain size, microstructure behaviour was investigated using optical microscope. The results show that hardness and strength of Al-SiC composite increases and ductility decreases as compared to Al alloy in both as-cast and forged conditions. Optical microscope images showed that the distribution of SiC in Al matrix was more homogeneous in a forged composite as compared to cast one and reduction of porosity was found. Further, it showed that due to forging cycle the grain size was reduced by 30% to 35% from initial size.

  20. High-Throughput Study of Diffusion and Phase Transformation Kinetics of Magnesium-Based Systems for Automotive Cast Magnesium Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Alan A; Zhao, Ji-Cheng; Riggi, Adrienne

    The objective of the proposed study is to establish a scientific foundation on kinetic modeling of diffusion, phase precipitation, and casting/solidification, in order to accelerate the design and optimization of cast magnesium (Mg) alloys for weight reduction of U.S. automotive fleet. The team has performed the following tasks: 1) study diffusion kinetics of various Mg-containing binary systems using high-throughput diffusion multiples to establish reliable diffusivity and mobility databases for the Mg-aluminum (Al)-zinc (Zn)-tin (Sn)-calcium (Ca)-strontium (Sr)-manganese (Mn) systems; 2) study the precipitation kinetics (nucleation, growth and coarsening) using both innovative dual-anneal diffusion multiples and cast model alloys to provide largemore » amounts of kinetic data (including interfacial energy) and microstructure atlases to enable implementation of the Kampmann-Wagner numerical model to simulate phase transformation kinetics of non-spherical/non-cuboidal precipitates in Mg alloys; 3) implement a micromodel to take into account back diffusion in the solid phase in order to predict microstructure and microsegregation in multicomponent Mg alloys during dendritic solidification especially under high pressure die-casting (HPDC) conditions; and, 4) widely disseminate the data, knowledge and information using the Materials Genome Initiative infrastructure (http://www.mgidata.org) as well as publications and digital data sharing to enable researchers to identify new pathways/routes to better cast Mg alloys.« less

  1. Fatigue Analysis of Magnesium Alloys Components for Car Industry

    NASA Astrophysics Data System (ADS)

    Marsavina, Liviu; Rusu, Lucian; Șerban, Dan Andrei; Negru, Radu Marcel; Cernescu, Anghel

    2017-12-01

    The use of magnesium alloys in the automotive industry increased in the last decade because of their low weight and relative good mechanical properties. However, the variable loading conditions require a good fatigue behavior. This paper summaries the fatigue properties of magnesium alloys and presents new fatigue curve results for die cast AM50 magnesium alloy.

  2. Energy Saving Melting and Revert Reduction Technology (Energy-SMARRT): Light Metals Permanent Mold Casting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fasoyinu, Yemi

    2014-03-31

    Current vehicles use mostly ferrous components for structural applications. It is possible to reduce the weight of the vehicle by substituting these parts with those made from light metals such as aluminum and magnesium. Many alloys and manufacturing processes can be used to produce these light metal components and casting is known to be most economical. One of the high integrity casting processes is permanent mold casting which is the focus of this research report. Many aluminum alloy castings used in automotive applications are produced by the sand casting process. Also, aluminum-silicon (Al-Si) alloys are the most widely used alloymore » systems for automotive applications. It is possible that by using high strength aluminum alloys based on an aluminum-copper (Al-Cu) system and permanent mold casting, the performance of these components can be enhanced significantly. This will also help to further reduce the weight. However, many technological obstacles need to be overcome before using these alloys in automotive applications in an economical way. There is very limited information in the open literature on gravity and low-pressure permanent mold casting of high strength aluminum alloys. This report summarizes the results and issues encountered during the casting trials of high strength aluminum alloy 206.0 (Al-Cu alloy) and moderate strength alloy 535.0 (Al-Mg alloy). Five engineering components were cast by gravity tilt-pour or low pressure permanent mold casting processes at CanmetMATERIALS (CMAT) and two production foundries. The results of the casting trials show that high integrity engineering components can be produced successfully from both alloys if specific processing parameters are used. It was shown that a combination of melt processing and mold temperature is necessary for the elimination of hot tears in both alloys.« less

  3. A Comparison of Accuracy of Matrix Impression System with Putty Reline Technique and Multiple Mix Technique: An In Vitro Study

    PubMed Central

    Kumar, M Praveen; Patil, Suneel G; Dheeraj, Bhandari; Reddy, Keshav; Goel, Dinker; Krishna, Gopi

    2015-01-01

    Background: The difficulty in obtaining an acceptable impression increases exponentially as the number of abutments increases. Accuracy of the impression material and the use of a suitable impression technique are of utmost importance in the fabrication of a fixed partial denture. This study compared the accuracy of the matrix impression system with conventional putty reline and multiple mix technique for individual dies by comparing the inter-abutment distance in the casts obtained from the impressions. Materials and Methods: Three groups, 10 impressions each with three impression techniques (matrix impression system, putty reline technique and multiple mix technique) were made of a master die. Typodont teeth were embedded in a maxillary frasaco model base. The left first premolar was removed to create a three-unit fixed partial denture situation and the left canine and second premolar were prepared conservatively, and hatch marks were made on the abutment teeth. The final casts obtained from the impressions were examined under a profile projector and the inter-abutment distance was calculated for all the casts and compared. Results: The results from this study showed that in the mesiodistal dimensions the percentage deviation from master model in Group I was 0.1 and 0.2, in Group II was 0.9 and 0.3, and Group III was 1.6 and 1.5, respectively. In the labio-palatal dimensions the percentage deviation from master model in Group I was 0.01 and 0.4, Group II was 1.9 and 1.3, and Group III was 2.2 and 2.0, respectively. In the cervico-incisal dimensions the percentage deviation from the master model in Group I was 1.1 and 0.2, Group II was 3.9 and 1.7, and Group III was 1.9 and 3.0, respectively. In the inter-abutment dimension of dies, percentage deviation from master model in Group I was 0.1, Group II was 0.6, and Group III was 1.0. Conclusion: The matrix impression system showed more accuracy of reproduction for individual dies when compared with putty reline technique and multiple mix technique in all the three directions, as well as the inter-abutment distance. PMID:26124599

  4. Semi-simultaneous application of neutron and X-ray radiography in revealing the defects in an Al casting.

    PubMed

    Balaskó, M; Korösi, F; Szalay, Zs

    2004-10-01

    A semi-simultaneous application of neutron and X-ray radiography (NR, XR) respectively, was applied to an Al casting. The experiments were performed at the 10MW VVR-SM research reactor in Budapest (Hungary). The aim was to reveal, identify and parameterize the hidden defects in the Al casting. The joint application of NR and XR revealed hidden defects located in the Al casting. Image analysis of the NR and XR images unveiled a cone-like dimensionality of the defects. The spectral density analysis of the images showed a distinctly different character for the hidden defect region of Al casting in comparison with that of the defect-free one.

  5. An Accelerated Method for Testing Soldering Tendency of Core Pins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Qingyou; Xu, Hanbing; Ried, Paul

    2010-01-01

    An accelerated method for testing die soldering has been developed. High intensity ultrasonic vibrations has been used to simulate the die casting conditions such as high pressure and high impingement speed of molten metal on the pin. Soldering tendency of steels and coated pins has been examined. The results indicate that in the low carbon steel/Al system, the onset of soldering is 60 times faster with ultrasonic vibration than that without ultrasonic vibration. In the H13/A380 system, the onset of soldering reaction is accelerated to 30-60 times. Coating significantly reduces the soldering tendency of the core pins.

  6. Fractography of cast gypsum.

    PubMed

    Mori, T; Yamane, M

    1982-02-01

    A fractographical study of dental cast gypsum was made in order to correlate the mechanical properties with the microstructure. Wet specimens fractured under tensile stress showed intercrystalline fracture and the tensile strength depended on the porosity present. Thus, it was assumed that tensile strength was dependent on the contact area between individual gypsum crystals and changes in porosity approximated to changes in contact area. Strength differences among specimens of a given W/P ratio, therefore, can be related to differences in intercrystalline contact areas. These theoretical considerations suggest that the classification of dental die stone and dental stone into high and low strength types based on strength properties only would be more practical and less confusing than at present.

  7. Resistivity Changes Due to Precipitation Effects in Fibre Reinforced Mg-Al-Zn-Mn Alloy

    NASA Astrophysics Data System (ADS)

    Kiehn, J.; Kainer, K. U.; Vostrý, P.; Stulíková, I.

    1997-05-01

    The change of electrical properties of alumina short fibre reinforced Mg-Al-Zn-Mn alloy AZ91D during isochronal annealing up to 300 °C is discussed. The Saffil® fibres were incorporated into the magnesium alloy by direct squeeze casting. The fibre distribution is random planar parallel to the flat faces of the dc four-point resistivity specimens machined from the solution treated castings. A sharp drop of resistivity between 140 and 260 °C is explained by the formation of incoherent -phase particles. Some practical recommendations concerning the use of alumina short fibre reinforced AZ91 alloy are made on the basis of the results obtained. Es werden die Änderungen der elektrischen Eigenschaften der aluminiumoxid-kurzfaserverstärkten Mg-Al-Zn-Mn Legierung AZ91D während isochroner Wärmebehandlungen bis 300 °C diskutiert. Das direkte Preßgießverfahren diente zur Herstellung der Saffil®-Faser Magnesium Verbundwerkstoffe. Die Proben zur Widerstandsmessung nach der Vier-Punkt Methode wurden durch spanende Bearbeitung aus den lösungsgeglühten Preßgußstücken herausgearbeitet, so daß sie regellose Faserverteilung in den Ebenen parallel zu den flachen Probenseiten aufwiesen. Ein starker Abfall des elektrischen Widerstands im Temperaturbereich zwischen 140 und 260 °C wird durch die Bildung inkohärenter β-Phase erklärt. Auf Grundlage der Ergebnisse werden einige Empfehlungen zur Anwendung der kurzfaserverstärkten Legierung AZ91 gegeben.

  8. Pressureless sintering and gas flux properties of porous ceramic membranes for gas applications

    NASA Astrophysics Data System (ADS)

    Obada, David O.; Dodoo-Arhin, David; Dauda, Muhammad; Anafi, Fatai O.; Ahmed, Abdulkarim S.; Ajayi, Olusegun A.

    The preparation and characterization of kaolin based ceramic membranes using styrofoam (STY) and sawdust (SD) as pore formers have been prepared by mechano-chemical synthesis using pressureless sintering technique with porogen content between (0-20) wt% by die pressing. Pellets were fired at 1150 °C and soaking time of 4 h. The membranes cast as circular disks were subjected to characterization studies to evaluate the effect of the sintering temperature and pore former content on porosity, density, water absorption and mechanical strength. Obtained membranes show effective porosity with maximum at about 43 and 47% respectively for membranes formulated with styrofoam and sawdust porogens but with a slightly low mechanical strength that does not exceed 19 MPa. The resultant ceramic bodies show a fine porous structure which is mainly caused by the volatilization of the porogens. The fabricated membrane exhibited high N2 gas flux, hence, these membranes can be considered as efficient for potential application for gas separation by reason of the results shown in the gas flux tests.

  9. Energy-Saving Melting and Revert Reduction Technology (E-SMARRT): Final Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Thornton C

    2014-03-31

    Energy-Saving Melting and Revert Reduction Technology (E-SMARRT) is a balanced portfolio of R&D tasks that address energy-saving opportunities in the metalcasting industry. E-SMARRT was created to: • Improve important capabilities of castings • Reduce carbon footprint of the foundry industry • Develop new job opportunities in manufacturing • Significantly reduce metalcasting process energy consumption and includes R&D in the areas of: • Improvements in Melting Efficiency • Innovative Casting Processes for Yield Improvement/Revert Reduction • Instrumentation and Control Improvement • Material properties for Casting or Tooling Design Improvement The energy savings and process improvements developed under E-SMARRT have been mademore » possible through the unique collaborative structure of the E-SMARRT partnership. The E-SMARRT team consisted of DOE’s Office of Industrial Technology, the three leading metalcasting technical associations in the U.S: the American Foundry Society; the North American Die Casting Association; and the Steel Founders’ Society of America; and SCRA Applied R&D, doing business as the Advanced Technology Institute (ATI), a recognized leader in distributed technology management. This team provided collaborative leadership to a complex industry composed of approximately 2,000 companies, 80% of which employ less than 100 people, and only 4% of which employ more than 250 people. Without collaboration, these new processes and technologies that enable energy efficiencies and environment-friendly improvements would have been slow to develop and had trouble obtaining a broad application. The E-SMARRT R&D tasks featured low-threshold energy efficiency improvements that are attractive to the domestic industry because they do not require major capital investment. The results of this portfolio of projects are significantly reducing metalcasting process energy consumption while improving the important capabilities of metalcastings. Through June 2014, the E-SMARRT program predicts an average annual estimated savings of 59 Trillion BTUs per year over a 10 year period through Advanced Melting Efficiencies and Innovative Casting Processes. Along with these energy savings, an estimated average annual estimate of CO2 reduction per year over a ten year period is 3.56 Million Metric Tons of Carbon Equivalent (MM TCE).« less

  10. Impact properties of zinc die cast alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schrems, Karol K.; Dogan, Omer N.; Manahan, M.P.

    2005-01-01

    Alloys 3, 5, AcuZinc 5, and ZA-8 were tested at five temperatures between -40 C and room temperature to determine impact properties. Izod impact energy data was obtained in accordance with ASTM D256. Unlike ASTM E23, these samples were tested with a milled notch in order to compare with plastic samples. In addition, flexural data was obtained for design use.

  11. High Integrity Castings: Proceedings of the Conference on Advances in High Integrity Castings Held in Conjunction with the 1988 World Materials Congress, Chicago, Illinois, USA, 24-30 September 1988

    DTIC Science & Technology

    1988-01-01

    above design requirements. The The first cast parts used in this higher strength standard chemistry parts application were of the Extra Low...present work was to study the use of beta THE HIGH COST OF TITANIUM alloys can limit their titanium alloys in the cast form. Beta or use to applications ...refractory as was is intended to achieve a pouring stream su- used with the nozzles for steel applications . perior to conventional nozzle designs , and this

  12. Simulation-Driven Design Approach for Design and Optimization of Blankholder

    NASA Astrophysics Data System (ADS)

    Sravan, Tatipala; Suddapalli, Nikshep R.; Johan, Pilthammar; Mats, Sigvant; Christian, Johansson

    2017-09-01

    Reliable design of stamping dies is desired for efficient and safe production. The design of stamping dies are today mostly based on casting feasibility, although it can also be based on criteria for fatigue, stiffness, safety, economy. Current work presents an approach that is built on Simulation Driven Design, enabling Design Optimization to address this issue. A structural finite element model of a stamping die, used to produce doors for Volvo V70/S80 car models, is studied. This die had developed cracks during its usage. To understand the behaviour of stress distribution in the stamping die, structural analysis of the die is conducted and critical regions with high stresses are identified. The results from structural FE-models are compared with analytical calculations pertaining to fatigue properties of the material. To arrive at an optimum design with increased stiffness and lifetime, topology and free-shape optimization are performed. In the optimization routine, identified critical regions of the die are set as design variables. Other optimization variables are set to maintain manufacturability of the resultant stamping die. Thereafter a CAD model is built based on geometrical results from topology and free-shape optimizations. Then the CAD model is subjected to structural analysis to visualize the new stress distribution. This process is iterated until a satisfactory result is obtained. The final results show reduction in stress levels by 70% with a more homogeneous distribution. Even though mass of the die is increased by 17 %, overall, a stiffer die with better lifetime is obtained. Finally, by reflecting on the entire process, a coordinated approach to handle such situations efficiently is presented.

  13. Physical and Clinical Evaluation of Hip Spica Cast applied with Three-slab Technique using Fibreglass Material

    PubMed Central

    Bitar, KM; Ferdhany, ME; Saw, A

    2016-01-01

    Introduction: Hip spica casting is an important component of treatment for developmental dysplasia of the hip (DDH) and popular treatment method for femur fractures in children. Breakage at the hip region is a relatively common problem of this cast. We have developed a three-slab technique of hip spica application using fibreglass as the cast material. The purpose of this review was to evaluate the physical durability of the spica cast and skin complications with its use. Methodology: A retrospective review of children with various conditions requiring hip spica immobilisation which was applied using our method. Study duration was from 1st of January 2014 until 31st December 2015. Our main outcomes were cast breakage and skin complications. For children with hip instability, the first cast would be changed after one month, and the second cast about two months later. Results: Twenty-one children were included, with an average age of 2.2 years. The most common indication for spica immobilisation was developmental dysplasia of the hip. One child had skin irritation after spica application. No spica breakage was noted. Conclusion: This study showed that the three-slab method of hip spica cast application using fibreglass material was durable and safe with low risk of skin complications. PMID:28553442

  14. Thermal fatigue behavior of H-13 die steel for aluminum die casting with various ion sputtered coatings

    NASA Technical Reports Server (NTRS)

    Nieh, C. Y.; Wallace, J. F.

    1981-01-01

    Sputtered coatings of Mo, W, Pt, Ag, Au, Co, Cr, Ni, Ag + Cu, Mo + Pt, Si3N4, A1N, Cr3C2, Ta5Si3, and ZrO2 were applied to a 2-inch-square, 7-inch-long thermal fatigue test specimen which was then internally water cooled and alternately immersed in molten aluminum and cooled in air. After 15,000 cycles the thermal fatigue cracks at the specimen corners were measured. Results indicate that a significant improvement in thermal fatigue resistance was obtained with platinum, molybdenum, and tungsten coatings. Metallographic examination indicates that the improvement in thermal fatigue resistance resulted from protection of the surface of the die steel from oxidation. The high yield strength and ductility of molybdenum and tungsten contributed to the better thermal fatigue resistance.

  15. Complex deformation routes for direct recycling aluminium alloy scrap via industrial hot extrusion

    NASA Astrophysics Data System (ADS)

    Paraskevas, Dimos; Kellens, Karel; Kampen, Carlos; Mohammadi, Amirahmad; Duflou, Joost R.

    2018-05-01

    This paper presents the final results of an industrial project, aiming for direct hot extrusion of wrought aluminium alloy scrap at an industrial scale. Two types of complex deformation/extrusion routes were tested for the production of the same profile, starting from AA6060 scrap in form of machining chips. More specifically scrap-based billets were extruded through: a 2-porthole and a 4-porthole die-set, modified for enhanced scrap consolidation and grain refinement. For comparison reasons, cast billets of the same alloy were extruded through the modified 2-porthole die set. The tensile testing results as well as microstructural investigations show that the 4-porthole extrusion route further improves scrap consolidation compared to the 2-porthole die output. The successful implementation of solid state recycling, directly at industrial level, indicates the technological readiness level of this research.

  16. Alloy with metallic glass and quasi-crystalline properties

    DOEpatents

    Xing, Li-Qian; Hufnagel, Todd C.; Ramesh, Kaliat T.

    2004-02-17

    An alloy is described that is capable of forming a metallic glass at moderate cooling rates and exhibits large plastic flow at ambient temperature. Preferably, the alloy has a composition of (Zr, Hf).sub.a Ta.sub.b Ti.sub.c Cu.sub.d Ni.sub.e Al.sub.f, where the composition ranges (in atomic percent) are 45.ltoreq.a.ltoreq.70, 3.ltoreq.b.ltoreq.7.5, 0.ltoreq.c.ltoreq.4, 3.ltoreq.b+c.ltoreq.10, 10.ltoreq.d.ltoreq.30, 0.ltoreq.e.ltoreq.20, 10.ltoreq.d+e.ltoreq.35, and 5.ltoreq.f.ltoreq.15. The alloy may be cast into a bulk solid with disordered atomic-scale structure, i.e., a metallic glass, by a variety of techniques including copper mold die casting and planar flow casting. The as-cast amorphous solid has good ductility while retaining all of the characteristic features of known metallic glasses, including a distinct glass transition, a supercooled liquid region, and an absence of long-range atomic order. The alloy may be used to form a composite structure including quasi-crystals embedded in an amorphous matrix. Such a composite quasi-crystalline structure has much higher mechanical strength than a crystalline structure.

  17. Self-disinfecting Alginate vs Conventional Alginate: Effect on Surface Hardness of Gypsum Cast-An in vitro Study.

    PubMed

    Madhavan, Ranjith; George, Navia; Thummala, Niharika R; Ravi, S V; Nagpal, Ajay

    2017-11-01

    For the construction of any dental prosthesis, accurate impressions are necessary. Hence, we undertook the present study to evaluate and compare the surface hardness of gypsum casts poured from impressions made using conventional alginate and self-disinfecting alginate. A total of 30 impressions of stainless steel die were made, out of which 15 impressions were made with conventional alginate and 15 were made with self-disinfecting alginate and poured using Type III dental stone. Thirty stone specimens were subjected for hardness testing. Data were analyzed using independent samples t-test to compare the mean surface hardness. Difference in surface hardness was statistically insignificant (p > 0.05). Surface hardness of gypsum casts poured using impressions made from self-disinfecting alginate and conventional alginates were comparable. Self-disinfecting alginates may be employed in clinical practice as safe and effective materials to overcome the infection control issues without compromising on the properties of the material.

  18. Effects of resistance form on attachment strength of resin-retained castings.

    PubMed

    Wilkes, P W; Shillingburg, H T; Johnson, D L

    2000-01-01

    This study evaluated the effects of tooth preparation design on resistance to dislodgment of a resin-bonded fixed partial denture (RBFPD). The variations of tooth preparation tested included axial coverage, retentive grooves, and an occlusal rest. Patterns of the tooth preparation designs were prepared and cast in a base metal alloy. Retainer patterns were waxed to refractory casts of metal dies, cast, finished and then bonded to the dies. The complete assemblies were loaded to failure on an Instron mechanical testing machine, and analysis indicated that retainers with occlusal rests were the most resistant. Grooves provided no statistically significant increase in resistance to failure of the cement. Increased axial coverage did not increase resistance to dislodgment. Successful fixed partial dentures (FPDs) depend on cast retainers to resist displacement of the restoration during function. Introduction of resin-bonded restorations opened the possibility of FPDs with minimal reduction of abutments. Specific questions concerning long term success and tooth preparation designs were prominent concerns. The influence of resistance form on overall stability of a restoration was also of particular interest. Buonocore established the foundation for retention of composite resins to acid-pitted enamel. Rochette used this technology to bond perforated cast metal splints to periodontally compromised teeth. A mechanical interlock was created as composite resin engaged these perforations and sustained the cast splint to acid-etched enamel. Howe adapted this design for replacement of anterior teeth by adding porcelain to a metal ceramic framework and then bonding the framework to abutments without tooth preparations. The advantages of these procedures were their conservative nature, esthetics, and ease of rebonding after dislodgment. Livaditis and Thompson adapted the procedure proposed by Tanaka of corrosion-pitting the bonding surface of a base metal alloy. They increased the surface area to be bonded, eliminated the perforations to improve rigidity of the framework, and described tooth preparation modifications of the abutments. They suggested an occlusal rest, establishment of guide planes through axial reduction, and a proximal extension to the facial surface to resist lingual displacement. Simonson, et al., based their anterior tooth preparation design on the configuration suggested by Livaditis which included a slight chamfer finish line plus reduction of the lingual surface to provide a thicker metal framework. Barrack introduced an inlay type tooth preparation for the occlusal rest plus shallow vertical proximal grooves, and Meiers used grooves as an esthetic alternative to proximal extensions. Clinical studies and surveys have identified specific variables involved with success and failure, while in vitro studies have evaluated framework designs, bonding agents, and methods for pitting the metal surface. This study evaluated resistance of RBFPDs to dislodgment of different tooth preparation designs.

  19. 40 CFR 464.15 - Pretreatment standards for existing sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....0095 Oil and grease (for alternate monitoring) 0.363 0.121 (c) Die Casting Operations. PSES Pollutant... Total phenols 0.0074 0.0026 TTO 0.0308 0.01 Oil and grease (for alternate monitoring) 0.259 0.0864 (d...) 8.48 4.63 Lead (T) 8.7 4.3 Zinc (T) 12.6 4.74 TTO 18.1 5.91 Oil and grease (for alternate monitoring...

  20. Comparison the Marginal and Internal Fit of Metal Copings Cast from Wax Patterns Fabricated by CAD/CAM and Conventional Wax up Techniques.

    PubMed

    Vojdani, M; Torabi, K; Farjood, E; Khaledi, Aar

    2013-09-01

    Metal-ceramic crowns are most commonly used as the complete coverage restorations in clinical daily use. Disadvantages of conventional hand-made wax-patterns introduce some alternative ways by means of CAD/CAM technologies. This study compares the marginal and internal fit of copings cast from CAD/CAM and conventional fabricated wax-patterns. Twenty-four standardized brass dies were prepared and randomly divided into 2 groups according to the wax-patterns fabrication method (CAD/CAM technique and conventional method) (n=12). All the wax-patterns were fabricated in a standard fashion by means of contour, thickness and internal relief (M1-M12: representative of CAD/CAM group, C1-C12: representative of conventional group). CAD/CAM milling machine (Cori TEC 340i; imes-icore GmbH, Eiterfeld, Germany) was used to fabricate the CAD/CAM group wax-patterns. The copings cast from 24 wax-patterns were cemented to the corresponding dies. For all the coping-die assemblies cross-sectional technique was used to evaluate the marginal and internal fit at 15 points. The Student's t- test was used for statistical analysis (α=0.05). The overall mean (SD) for absolute marginal discrepancy (AMD) was 254.46 (25.10) um for CAD/CAM group and 88.08(10.67) um for conventional group (control). The overall mean of internal gap total (IGT) was 110.77(5.92) um for CAD/CAM group and 76.90 (10.17) um for conventional group. The Student's t-test revealed significant differences between 2 groups. Marginal and internal gaps were found to be significantly higher at all measured areas in CAD/CAM group than conventional group (p< 0.001). Within limitations of this study, conventional method of wax-pattern fabrication produced copings with significantly better marginal and internal fit than CAD/CAM (machine-milled) technique. All the factors for 2 groups were standardized except wax pattern fabrication technique, therefore, only the conventional group results in copings with clinically acceptable margins of less than 120um.

  1. Comparison the Marginal and Internal Fit of Metal Copings Cast from Wax Patterns Fabricated by CAD/CAM and Conventional Wax up Techniques

    PubMed Central

    Vojdani, M; Torabi, K; Farjood, E; Khaledi, AAR

    2013-01-01

    Statement of Problem: Metal-ceramic crowns are most commonly used as the complete coverage restorations in clinical daily use. Disadvantages of conventional hand-made wax-patterns introduce some alternative ways by means of CAD/CAM technologies. Purpose: This study compares the marginal and internal fit of copings cast from CAD/CAM and conventional fabricated wax-patterns. Materials and Method: Twenty-four standardized brass dies were prepared and randomly divided into 2 groups according to the wax-patterns fabrication method (CAD/CAM technique and conventional method) (n=12). All the wax-patterns were fabricated in a standard fashion by means of contour, thickness and internal relief (M1-M12: representative of CAD/CAM group, C1-C12: representative of conventional group). CAD/CAM milling machine (Cori TEC 340i; imes-icore GmbH, Eiterfeld, Germany) was used to fabricate the CAD/CAM group wax-patterns. The copings cast from 24 wax-patterns were cemented to the corresponding dies. For all the coping-die assemblies cross-sectional technique was used to evaluate the marginal and internal fit at 15 points. The Student’s t- test was used for statistical analysis (α=0.05). Results: The overall mean (SD) for absolute marginal discrepancy (AMD) was 254.46 (25.10) um for CAD/CAM group and 88.08(10.67) um for conventional group (control). The overall mean of internal gap total (IGT) was 110.77(5.92) um for CAD/CAM group and 76.90 (10.17) um for conventional group. The Student’s t-test revealed significant differences between 2 groups. Marginal and internal gaps were found to be significantly higher at all measured areas in CAD/CAM group than conventional group (p< 0.001). Conclusion: Within limitations of this study, conventional method of wax-pattern fabrication produced copings with significantly better marginal and internal fit than CAD/CAM (machine-milled) technique. All the factors for 2 groups were standardized except wax pattern fabrication technique, therefore, only the conventional group results in copings with clinically acceptable margins of less than 120um. PMID:24724133

  2. Novel method for titanium crown casting using a combination of wax patterns fabricated by a CAD/CAM system and a non-expanded investment.

    PubMed

    Zhang, Zutai; Tamaki, Yukimichi; Hotta, Yasuhiro; Miyazaki, Takashi

    2006-07-01

    For titanium casting, most commercial investments for titanium recommend casting at a low mold temperature to reduce oxidation. However, the thermal expansion values of the molds at low casting temperatures may be insufficient. The purpose of the current study was to investigate the possibility of obtaining accurate titanium crown casts using wax pattern fabricated by a CAD/CAM system with a non-expanded mold. Three types of experimental magnesia-based investments (A, B and C) were made and their properties were evaluated for dental use. Two kinds of wax patterns for full-coverage coping crowns (S-0: cement space of 0 microm; S-20: cement space of 20 microm) were fabricated using a commercial CAD/CAM system. A traditional method (TM) using inlay wax was performed for comparison. The investment for titanium casting was decided from the fundamental data of experimental investments. Titanium crowns were replaced on the stone die and the thickness of the cement layer was evaluated. There were no significant differences for the setting time and setting expansion among the experimental investments, but the aluminous cement content played a role in hardening and contracting the mold. The fit of the titanium crowns differed significantly between the TM and the CAD/CAM system. The ranges of thickness obtained from the TM, S-0 and S-20 were 20.78-357.88 microm, 25.12-107.46 microm and 17.84-58.92 microm, respectively. High quality titanium crown casting was obtained using a combination of wax patterns fabricated by a CAD/CAM system and a non-expanded MgO-based investment.

  3. A Comparative Evaluation of the Linear Dimensional Accuracy of Four Impression Techniques using Polyether Impression Material.

    PubMed

    Manoj, Smita Sara; Cherian, K P; Chitre, Vidya; Aras, Meena

    2013-12-01

    There is much discussion in the dental literature regarding the superiority of one impression technique over the other using addition silicone impression material. However, there is inadequate information available on the accuracy of different impression techniques using polyether. The purpose of this study was to assess the linear dimensional accuracy of four impression techniques using polyether on a laboratory model that simulates clinical practice. The impression material used was Impregum Soft™, 3 M ESPE and the four impression techniques used were (1) Monophase impression technique using medium body impression material. (2) One step double mix impression technique using heavy body and light body impression materials simultaneously. (3) Two step double mix impression technique using a cellophane spacer (heavy body material used as a preliminary impression to create a wash space with a cellophane spacer, followed by the use of light body material). (4) Matrix impression using a matrix of polyether occlusal registration material. The matrix is loaded with heavy body material followed by a pick-up impression in medium body material. For each technique, thirty impressions were made of a stainless steel master model that contained three complete crown abutment preparations, which were used as the positive control. Accuracy was assessed by measuring eight dimensions (mesiodistal, faciolingual and inter-abutment) on stone dies poured from impressions of the master model. A two-tailed t test was carried out to test the significance in difference of the distances between the master model and the stone models. One way analysis of variance (ANOVA) was used for multiple group comparison followed by the Bonferroni's test for pair wise comparison. The accuracy was tested at α = 0.05. In general, polyether impression material produced stone dies that were smaller except for the dies produced from the one step double mix impression technique. The ANOVA revealed a highly significant difference for each dimension measured (except for the inter-abutment distance between the first and the second die) between any two groups of stone models obtained from the four impression techniques. Pair wise comparison for each measurement did not reveal any significant difference (except for the faciolingual distance of the third die) between the casts produced using the two step double mix impression technique and the matrix impression system. The two step double mix impression technique produced stone dies that showed the least dimensional variation. During fabrication of a cast restoration, laboratory procedures should not only compensate for the cement thickness, but also for the increase or decrease in die dimensions.

  4. Experimental investigation on in-situ microwave casting of copper

    NASA Astrophysics Data System (ADS)

    Raman Mishra, Radha; Sharma, Apurbba Kumar

    2018-04-01

    The in-situ microwave casting of metallic materials is a recently developed casting process. The process works on the principles of hybrid microwave heating and is accomplished inside the applicator cavity. The process involves – melting of the charge, in-situ pouring and solidification of the melt. The electromagnetic and thermal properties of the charge affects microwave-material interaction and hence melting of the charge. On the other hand, cooling conditions inside the applicator controls solidification process. The present work reports on in-situ casting of copper developed inside a multimode cavity at 2.45 GHz using 1400 W. The molten metal was allowed to get poured in-situ inside a graphite mold and solidification was carried out in the same mold inside the applicator cavity. The interaction of microwave with the charge during exposure was studied and the role of oxide layer during meltingthe copper blocks has been presented. The developed in-situ cast was characterized to access the cast quality. Microstructural study revealed the homogeneous and dense structure of the cast. The X-ray diffraction pattern indicated presence of copper in different orientations with (1 1 1) as the dominant orientation. The average micro indentation hardness of the casts was found 93±20 HV.

  5. A simple technique to prolong molding time during application of a fiberglass cast: An in vitro study

    PubMed Central

    Ayzenberg, Mark; Narvaez, Michael; Raphael, James

    2018-01-01

    Casting is routinely used for acute and post-operative immobilization and remains a cornerstone in the non-operative management of fractures and deformities. The application of a properly fitted and wellmolded cast, especially for a trainee, can be challenging. We present a simple method of prolonging cure time of fiberglass cast — placing ice in the dip water. Eight-ply, fiveinch fiberglass cast was circumferentially applied to an aluminum-wrapped cardboard cylinder. An electronic, 2-channel temperature sensor (TR-71wf Temp Logger, T&D Corporation, Matsumoto, Japan), accurate to 0.1ºC and accurate to ±0.3ºC, was placed between the fourth and fifth layers of fiberglass. Thirty total casts were tested using 9±1ºC (cold), 22±1ºC (ambient), and 36±1ºC (warm) dip water. Room temperature was maintained at 24±1ºC. Cast temperatures were measured during the exothermic reaction generated by the cast curing. Peak temperatures and cure times were recorded. Cure time was defined as the point of downward deflection on the timetemperature curve immediately after peak. Cure and peak temperatures were compared among groups using analysis of variance. Mean cure time was 3.5±0.1 minutes for warm water, 5.0±0.4 minutes for ambient water and 7.0±0.5 minutes for cold water. Peak temperature, measured between layers 4 and 5 of the cast material, was 36.6±0.8ºC for warm water, 31.1±1.4ºC for ambient water and 25.2±0.5ºC for cold water. Cold afforded, on average, an additional 2 minutes (40% increase) in cure time compared to ambient water and an additional 3.5 minutes (100% increase) compared to warm water. Cure time differences were significant (P<0.001) for all groups, as were peak temperature differences (P<0.001). Temperatures concerning for development of burns were never reached. Utilizing iced dip water when casting is a simple and effective method to prolong the time available for cast application. Orthopedic residents and trainees may find this useful in learning to fabricate a high quality cast. For the experienced orthopedic surgeon, this method eliminates the need to bridge longlimb casts and facilitates the application of complex casts. PMID:29770174

  6. 40 CFR 464.01 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... MOLDING AND CASTING POINT SOURCE CATEGORY General Provisions § 464.01 Applicability. (a) This part applies to metal molding and casting facilities that discharge or may discharge pollutants to waters of the...

  7. Microstructural and Mechanical Aspects of Reinforcement Welds for Lightweight Components Produced by Friction Hydro Pillar Processing

    NASA Astrophysics Data System (ADS)

    Pinheiro, Gustavo; dos Santos, Jorge; Hort, Norbert; Kainer, Karl Ulrich

    The development of new creep resistant and cost effective die casting magnesium alloys such as AE, MRI, MEZ, ACM, AXJ, AJ, WE have emerged as an alternative to fulfil the actual demands in structural relevant applications as engines blocks, gear and converter boxes. However, magnesium components are in most of the cases screwed with aluminium and steel bolts, which lead the screwed joint to lose the preload force due to relaxation. This barrier limits thus the broad use of magnesium within this segment and should somehow find an adequate solution to be implemented and to help overcoming this limitation. In this context Friction Welding (FW) and particularly Friction Hydro Pillar Processing (FHPP), which can be described as a drill and fill process, appears as an alternative to widespread the use of magnesium. In this context, FHPP is intended to be used to locally reinforce mechanical fastened magnesium components.

  8. 40 CFR 421.1 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to alloying or casting of nonferrous metals is limited to alloying or casting of hot metal directly... cooling is included in the aluminum forming, nonferrous metals forming, or metal molding and casting point...

  9. Beryllium-aluminum alloys for investment castings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nachtrab, W.T.; Levoy, N.

    1997-05-01

    Beryllium-aluminum alloys containing greater than 60 wt % beryllium are very favorable materials for applications requiring light weight and high stiffness. However, when produced by traditional powder metallurgical methods, these alloys are expensive and have limited applications. To reduce the cost of making beryllium-aluminum components, Nuclear Metals Inc. (NMI) and Lockheed Martin Electronics and Missiles have recently developed a family of patented beryllium-aluminum alloys that can be investment cast. Designated Beralcast, the alloys can achieve substantial weight savings because of their high specific strength and stiffness. In some cases, weight has been reduced by up to 50% over aluminum investmentmore » casting. Beralcast is now being used to make thin wall precision investment castings for several advanced aerospace applications, such as the RAH-66 Comanche helicopter and F-22 jet fighter. This article discusses alloy compositions, properties, casting method, and the effects of cobalt additions on strength.« less

  10. 40 CFR 464.15 - Pretreatment standards for existing sources.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 0.029 0.0095 Oil and grease (for alternate monitoring) 0.363 0.121 (c) Die Casting Operations. PSES... Total phenols 0.0074 0.0026 TTO 0.0308 0.01 Oil and grease (for alternate monitoring) 0.259 0.0864 (d...) 8.48 4.63 Lead (T) 8.7 4.3 Zinc (T) 12.6 4.74 TTO 18.1 5.91 Oil and grease (for alternate monitoring...

  11. 40 CFR 464.15 - Pretreatment standards for existing sources.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 0.029 0.0095 Oil and grease (for alternate monitoring) 0.363 0.121 (c) Die Casting Operations. PSES... Total phenols 0.0074 0.0026 TTO 0.0308 0.01 Oil and grease (for alternate monitoring) 0.259 0.0864 (d...) 8.48 4.63 Lead (T) 8.7 4.3 Zinc (T) 12.6 4.74 TTO 18.1 5.91 Oil and grease (for alternate monitoring...

  12. 40 CFR 464.15 - Pretreatment standards for existing sources.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 0.029 0.0095 Oil and grease (for alternate monitoring) 0.363 0.121 (c) Die Casting Operations. PSES... Total phenols 0.0074 0.0026 TTO 0.0308 0.01 Oil and grease (for alternate monitoring) 0.259 0.0864 (d...) 8.48 4.63 Lead (T) 8.7 4.3 Zinc (T) 12.6 4.74 TTO 18.1 5.91 Oil and grease (for alternate monitoring...

  13. Euros, Pounds and Albion at Arms: European Monetary Policy and British Defence in the 21st Century

    DTIC Science & Technology

    2004-09-01

    Shakespeare , Hamlet , Prince of Denmark, act 1, scene 2. 2 William Shakespeare , Richard the Second, act 2, scene 1. 3 Hugo Young, This Blessed Plot: Britain...THIS PAGE INTENTIONALLY LEFT BLANK 1 I. INTRODUCTION Queen: Good Hamlet , cast thy nighted colour...tis common. All that lives must die, Passing through nature to eternity. Hamlet : Ay, madam, it is common. Queen: If it

  14. The Impacts of Industrial Robots

    DTIC Science & Technology

    1981-11-01

    plastics, ’and strain gauges are used to measure very small forces at a number of points on the robot’s "end effector. Except for the simplest on-off...devices, tactile sensors are not yet found on commercially available robots. Forces are sensed by using strain gauges or piezoelectric sensors to...tools: deburring, drilling , grinding,milling,routing machines ii. plastic materialsformirg and injection machines iii. metal die casting machines iv

  15. ACES. Accelerated Corrosion Expert Simulator

    DTIC Science & Technology

    2010-02-01

    Composites Coating Systems Organic Inorganic Ceramic Materials 22 Inputs and Dimensions Xi Thickness Hardness Strength Ductility Abrasion Resistance...GPU 25 T-Handle Latch 10-Year ACT Material/ Coating Configuration Die Cast Zinc T-Handle Carbon Steel Pin CS Shank CS T-Washer Carbon Steel Dish E- coat ...CARC Zinc Plating Cadmium Plated BoltE- coat /CARC CS Panel CS Panel O-Ring E- coat /CARC Original (10-year ACT) Design Green Flag Color Qualitative

  16. Management and Case Outcome of Gastric Impaction in Four Raptors: A Case Series.

    PubMed

    Applegate, Jeffrey R; Van Wettere, Arnaud; Christiansen, Emily F; Degernes, Laurel A

    2017-03-01

    Four captive raptors, an American kestrel ( Falco sparverius ), peregrine falcon ( Falco peregrinus ), golden eagle ( Aquila chrysaetos ), and barn owl ( Tyto alba ), were diagnosed with ventricular and/or proventricular foreign material impactions consisting of artificial turf substrate, paper and plastic substrate, grass, and newspaper. Partial or total anorexia was reported in all birds and decreased casting in 2 birds. Survey radiographs confirmed presence of gastric enlargement in all 4 birds. The kestrel and eagle were treated unsuccessfully with gastroscopy and gastric lavage, respectively, followed by surgical intervention to remove the ventricular impactions. Both birds died of undetermined causes after surgery. The peregrine falcon died before medical or surgical intervention was started, and the owl was managed successfully with oral mineral oil and liquid diet to facilitate egestion of the foreign material as a pellet. Lead poisoning was suspected as the predisposing cause for foreign body ingestion in the eagle, but underlying causes for pica in the other birds were not determined. Radiographs can provide useful diagnostic information in sick raptors that exhibit vomiting or changes in appetite or casting frequency, and may help guide treatment decisions of impacted birds. Careful consideration of substrate, enrichment items, and access to potential foreign material that could be ingested may be the best pre-emptive management strategy in captive raptors.

  17. Silicon ribbon growth by a capillary action shaping technique

    NASA Technical Reports Server (NTRS)

    Schwuttke, G. H.; Schwuttke, G. H.; Ciszek, T. F.; Kran, A.

    1977-01-01

    Substantial improvements in ribbon surface quality are achieved with a higher melt meniscus than that attainable with the film-fed (EFG) growth technique. A capillary action shaping method is described in which meniscus shaping for the desired ribbon geometry occurs at the vertex of a wettable die. As ribbon growth depletes the melt meniscus, capillary action supplies replacement material. Topics discussed cover experimental apparatus and growth procedures; die materials investigations, fabrication and evaluation; process development for 25 mm, 38 mm, 50 mm and 100 mm silicon ribbons; and long grain direct solidification of silicon. Methods for the structural and electrical characterization of cast silicon ribbons are assessed as well as silicon ribbon technology for the 1978 to 1986 period.

  18. An Accelerated Method for Soldering Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Qingyou; Xu, Hanbing; Ried, Paul

    2007-01-01

    An accelerated method for testing die soldering has been developed. High intensity ultrasonic vibrations have been applied to simulate the die casting conditions such as high pressure and high molten metal velocity on the pin. The soldering tendency of steels and coated pins has been examined. The results suggest that in the low carbon steel/Al system, the onset of soldering is 60 times faster with ultrasonic vibration than that without ultrasonic vibration. In the H13/A380 system, the onset of soldering reaction is accelerated to between 30-60 times. Coatings significantly reduce the soldering tendency. For purposes of this study, several commercialmore » coatings from Balzers demonstrated the potential for increasing the service life of core pins between 15 and 180 times.« less

  19. Fabricating Superior NiAl Bronze Components through Wire Arc Additive Manufacturing.

    PubMed

    Ding, Donghong; Pan, Zengxi; van Duin, Stephen; Li, Huijun; Shen, Chen

    2016-08-03

    Cast nickel aluminum bronze (NAB) alloy is widely used for large engineering components in marine applications due to its excellent mechanical properties and corrosion resistance. Casting porosity, as well as coarse microstructure, however, are accompanied by a decrease in mechanical properties of cast NAB components. Although heat treatment, friction stir processing, and fusion welding were implemented to eliminate porosity, improve mechanical properties, and refine the microstructure of as-cast metal, their applications are limited to either surface modification or component repair. Instead of traditional casting techniques, this study focuses on developing NAB components using recently expanded wire arc additive manufacturing (WAAM). Consumable welding wire is melted and deposited layer-by-layer on substrates producing near-net shaped NAB components. Additively-manufactured NAB components without post-processing are fully dense, and exhibit fine microstructure, as well as comparable mechanical properties, to as-cast NAB alloy. The effects of heat input from the welding process and post-weld-heat-treatment (PWHT) are shown to give uniform NAB alloys with superior mechanical properties revealing potential marine applications of the WAAM technique in NAB production.

  20. Fabricating Superior NiAl Bronze Components through Wire Arc Additive Manufacturing

    PubMed Central

    Ding, Donghong; Pan, Zengxi; van Duin, Stephen; Li, Huijun; Shen, Chen

    2016-01-01

    Cast nickel aluminum bronze (NAB) alloy is widely used for large engineering components in marine applications due to its excellent mechanical properties and corrosion resistance. Casting porosity, as well as coarse microstructure, however, are accompanied by a decrease in mechanical properties of cast NAB components. Although heat treatment, friction stir processing, and fusion welding were implemented to eliminate porosity, improve mechanical properties, and refine the microstructure of as-cast metal, their applications are limited to either surface modification or component repair. Instead of traditional casting techniques, this study focuses on developing NAB components using recently expanded wire arc additive manufacturing (WAAM). Consumable welding wire is melted and deposited layer-by-layer on substrates producing near-net shaped NAB components. Additively-manufactured NAB components without post-processing are fully dense, and exhibit fine microstructure, as well as comparable mechanical properties, to as-cast NAB alloy. The effects of heat input from the welding process and post-weld-heat-treatment (PWHT) are shown to give uniform NAB alloys with superior mechanical properties revealing potential marine applications of the WAAM technique in NAB production. PMID:28773774

  1. 78 FR 74163 - Johnstown Specialty Castings Inc., a Subsidiary of WHEMCO, Including On-Site Leased Workers From...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-10

    ... Castings Inc., a Subsidiary of WHEMCO, Including On-Site Leased Workers From Berkebile Excavating Company... Assistance on June 25, 2013, applicable to workers of Johnstown Specialty Castings, Inc., a subsidiary of... Castings, Inc., a subsidiary of WHEMCO. The Department has determined that these workers were sufficiently...

  2. Cloud-Based Speech Technology for Assistive Technology Applications (CloudCAST).

    PubMed

    Cunningham, Stuart; Green, Phil; Christensen, Heidi; Atria, José Joaquín; Coy, André; Malavasi, Massimiliano; Desideri, Lorenzo; Rudzicz, Frank

    2017-01-01

    The CloudCAST platform provides a series of speech recognition services that can be integrated into assistive technology applications. The platform and the services provided by the public API are described. Several exemplar applications have been developed to demonstrate the platform to potential developers and users.

  3. Commercialization of NASA's High Strength Cast Aluminum Alloy for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2003-01-01

    In this paper, the commercialization of a new high strength cast aluminum alloy, invented by NASA-Marshall Space Flight Center, for high temperature applications will be presented. Originally developed to meet U.S. automotive legislation requiring low- exhaust emission, the novel NASA aluminum alloy offers dramatic improvement in tensile and fatigue strengths at elevated temperatures (450 F-750 F), which can lead to reducing part weight and cost as well as improving performance for automotive engine applications. It is an ideal low cost material for cast components such as pistons, cylinder heads, cylinder liners, connecting rods, turbo chargers, impellers, actuators, brake calipers and rotors. NASA alloy also offers greater wear resistance, dimensional stability, and lower thermal expansion compared to conventional aluminum alloys, and the new alloy can be produced economically from sand, permanent mold and investment casting. Since 2001, this technology was licensed to several companies for automotive and marine internal combustion engines applications.

  4. Ni{sub 3}Al technology transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sikka, V.K.; Viswanathan, S.; Santella, M.L.

    1997-04-01

    Ductile Ni{sub 3}Al and Ni{sub 3}Al-based alloys have been identified for a range of applications. These applications require the use of material in a variety of product forms such as sheet, plate, bar, wire, tubing, piping, and castings. Although significant progress has been made in the melting, casting, and near-net-shape forming of nickel aluminides, some issues still remain. These include the need for: (1) high-strength castable composition for many applications that have been identified; (2) castability (mold type, fluidity, hot-shortness, porosity, etc.); (3) weld reparability of castings; and (4) workability of cast or powder metallurgy product to sheet, bar, andmore » wire. The four issues listed above can be {open_quotes}show stoppers{close_quotes} for the commercial application of nickel aluminides. This report describes the work completed to address some of these issues during FY 1996.« less

  5. Precision cast vs. wrought superalloys

    NASA Technical Reports Server (NTRS)

    Tien, J. K.; Borofka, J. C.; Casey, M. E.

    1986-01-01

    While cast polycrystalline superalloys recommend themselves in virtue of better 'buy-to-fly' ratios and higher strengthening gamma-prime volume fractions than those of wrought superalloys, the expansion of their use into such critical superalloy applications as gas turbine hot section components has been slowed by insufficient casting process opportunities for microstructural control. Attention is presently drawn, however, to casting process developments facilitating the production of defect-tolerant superalloy castings having improved fracture reliability. Integrally bladed turbine wheel and thin-walled turbine exhaust case near-net-shape castings have been produced by these means.

  6. 25 CFR 301.4 - Application of dies.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 2 2010-04-01 2010-04-01 false Application of dies. 301.4 Section 301.4 Indians INDIAN ARTS AND CRAFTS BOARD, DEPARTMENT OF THE INTERIOR NAVAJO, PUEBLO, AND HOPI SILVER AND TURQUOISE PRODUCTS; STANDARDS § 301.4 Application of dies. Dies are to be applied to the object with the aid of...

  7. Fabrication of silk fibroin film using centrifugal casting technique for corneal tissue engineering.

    PubMed

    Lee, Min Chae; Kim, Dong-Kyu; Lee, Ok Joo; Kim, Jung-Ho; Ju, Hyung Woo; Lee, Jung Min; Moon, Bo Mi; Park, Hyun Jung; Kim, Dong Wook; Kim, Su Hyeon; Park, Chan Hum

    2016-04-01

    Films prepared from silk fibroin have shown potential as biomaterials in tissue engineering applications for the eye. Here, we present a novel process for fabrication of silk fibroin films for corneal application. In this work, fabrication of silk fibroin films was simply achieved by centrifugal force. In contrast to the conventional dry casting method, we carried out the new process in a centrifuge with a rotating speed of 4000 rpm, where centrifugal force was imposed on an aluminum tube containing silk fibroin solution. In the present study, we also compared the surface roughness, mechanical properties, transparency, and cell proliferation between centrifugal and dry casting method. In terms of surface morphology, films fabricated by the centrifugal casting have less surface roughness than those by the dry casting. For elasticity and transparency, silk fibroin films obtained from the centrifugal casting had favorable results compared with those prepared by dry casting. Furthermore, primary human corneal keratocytes grew better in films prepared by the centrifugal casting. Therefore, our results suggest that this new fabrication process for silk fibroin films offers important potential benefits for corneal tissue regeneration. © 2015 Wiley Periodicals, Inc.

  8. Impact of Simulation Technology on Die and Stamping Business

    NASA Astrophysics Data System (ADS)

    Stevens, Mark W.

    2005-08-01

    Over the last ten years, we have seen an explosion in the use of simulation-based techniques to improve the engineering, construction, and operation of GM production tools. The impact has been as profound as the overall switch to CAD/CAM from the old manual design and construction methods. The changeover to N/C machining from duplicating milling machines brought advances in accuracy and speed to our construction activity. It also brought significant reductions in fitting sculptured surfaces. Changing over to CAD design brought similar advances in accuracy, and today's use of solid modeling has enhanced that accuracy gain while finally leading to the reduction in lead time and cost through the development of parametric techniques. Elimination of paper drawings for die design, along with the process of blueprinting and distribution, provided the savings required to install high capacity computer servers, high-speed data transmission lines and integrated networks. These historic changes in the application of CAE technology in manufacturing engineering paved the way for the implementation of simulation to all aspects of our business. The benefits are being realized now, and the future holds even greater promise as the simulation techniques mature and expand. Every new line of dies is verified prior to casting for interference free operation. Sheet metal forming simulation validates the material flow, eliminating the high costs of physical experimentation dependent on trial and error methods of the past. Integrated forming simulation and die structural analysis and optimization has led to a reduction in die size and weight on the order of 30% or more. The latest techniques in factory simulation enable analysis of automated press lines, including all stamping operations with corresponding automation. This leads to manufacturing lines capable of running at higher levels of throughput, with actual results providing the capability of two or more additional strokes per minute. As we spread these simulation techniques to the balance of our business, from blank de-stacking to the racking of parts, we anticipate continued reduction in lead-time and engineering expense while improving quality and start-up execution. The author will provide an overview of technology and business evolution of the math-based process that brought an historical transition and revitalization to the die and stamping industry in the past decade. Finally, the author will give an outlook for future business needs and technology development directions.

  9. A comparison of the accuracy of polyether, polyvinyl siloxane, and plaster impressions for long-span implant-supported prostheses.

    PubMed

    Hoods-Moonsammy, Vyonne J; Owen, Peter; Howes, Dale G

    2014-01-01

    The purpose of this study was to compare the capacity of different impression materials to accurately reproduce the positions of five implant analogs on a master model by comparing the resulting cast with the stainless steel master model. The study was motivated by the knowledge that distortions can occur during impression making and the pouring of casts and that this distortion may produce inaccuracies of subsequent restorations, especially long-span castings for implant superstructures. The master model was a stainless steel model with five implant analogs. The impression materials used were impression plaster (Plastogum, Harry J Bosworth), a polyether (Impregum Penta, 3M ESPE), and two polyvinyl siloxane (PVS) materials (Aquasil Monophase and Aquasil putty with light-body wash, Dentsply). Five impressions were made with each impression material and cast in die stone under strictly controlled laboratory conditions. The positions of the implants on the master model, the impression copings, and the implant analogs in the subsequent casts were measured using a coordinate measuring machine that measures within 4 μm of accuracy. Statistical analyses indicated that distortion occurred in all of the impression materials, but inconsistently. The PVS monophase material reproduced the master model most accurately. Although there was no significant distortion between the impressions and the master model or between the impressions and their casts, there were distortions between the master model and the master casts, which highlighted the cumulative effects of the distortions. The polyether material proved to be the most reliable in terms of predictability. The impression plaster displayed cumulative distortion, and the PVS putty with light body showed the least reliability. Some of the distortions observed are of clinical significance and likely to contribute to a lack of passive fit of any superstructure. The inaccuracy of these analog materials and procedures suggested that greater predictability may lie in digital technology.

  10. The Effect of Various Finish Line Configurations on the Marginal Seal and Occlusal Discrepancy of Cast Full Crowns After Cementation - An In-vitro Study.

    PubMed

    Nemane, Vaishali; Akulwar, Ravikumar Suryakanth; Meshram, Suresh

    2015-08-01

    The marginal fit of crowns is of clinical importance. It is found that marginal and occlusal discrepancies are commonly increased following cementation. The resistance of cementing materials is a factor that prevents cast restorations from being correctly seated. Different finish lines behave differently in facilitating the escape of the cement. When the escape path of the cement decreases, the crown fails to seat further. This study was planned with an aim to evaluate the effect of various finish lines on the marginal seal and occlusal seat of full crown preparations. Six stainless steel metal dies were machined to simulate molar crown preparations. The diameter was 10 mm and height was 6mm. The occlusal surface was kept flat and a small circular dimple was machined for reorientation of the wax pattern and metal copings, margins of various designs were machined accurately. The margins prepared were Group A- 90(0)C shoulder, Group B- Rounded shoulder, Group C- 45 degree sloped shoulder, Group D- Chamfer, Group E- Long chamfer, Group F- Feather edge. Full cast metal crowns of base metal alloy were fabricated over the metal dies. Zinc phosphate luting cement was used for the cementation. After twenty four hours, the cemented crown and die assembly were embedded in clear acrylic resin so as to hold the assembly together while sectioning. Twenty four hours later, all the samples were sectioned sagitally. The sectioned halves were focused under a stereomicroscope and the cement spaces were measured to the nearest micron. The cement thickness was measured at two points on the occlusal surface and one at each margin. Significant differences were observed in the occlusal seat and marginal seal of all the finish line configurations. The rounded shoulder had the best occlusal seat, followed by 90(0)C shoulder. The occlusal seat and marginal seal afforded by the shoulder finish lines were similar whereas there was a vast difference in the seating and sealing of long chamfer and feather edged preparations. They showed the worst occlusal seat. It was found that the finish lines like shoulder preparations which exhibit poor sealing prior to complete cementation allow good seating whereas margins which seal earlier do not allow escape of cement and hence do not seat completely.

  11. The Effect of Various Finish Line Configurations on the Marginal Seal and Occlusal Discrepancy of Cast Full Crowns After Cementation - An In-vitro Study

    PubMed Central

    Nemane, Vaishali; Meshram, Suresh

    2015-01-01

    Background The marginal fit of crowns is of clinical importance. It is found that marginal and occlusal discrepancies are commonly increased following cementation. The resistance of cementing materials is a factor that prevents cast restorations from being correctly seated. Different finish lines behave differently in facilitating the escape of the cement. When the escape path of the cement decreases, the crown fails to seat further. Materials and Methods This study was planned with an aim to evaluate the effect of various finish lines on the marginal seal and occlusal seat of full crown preparations. Six stainless steel metal dies were machined to simulate molar crown preparations. The diameter was 10 mm and height was 6mm. The occlusal surface was kept flat and a small circular dimple was machined for reorientation of the wax pattern and metal copings, margins of various designs were machined accurately. The margins prepared were Group A- 900C shoulder, Group B- Rounded shoulder, Group C- 45 degree sloped shoulder, Group D- Chamfer, Group E- Long chamfer, Group F- Feather edge. Full cast metal crowns of base metal alloy were fabricated over the metal dies. Zinc phosphate luting cement was used for the cementation. After twenty four hours, the cemented crown and die assembly were embedded in clear acrylic resin so as to hold the assembly together while sectioning. Twenty four hours later, all the samples were sectioned sagitally. The sectioned halves were focused under a stereomicroscope and the cement spaces were measured to the nearest micron. The cement thickness was measured at two points on the occlusal surface and one at each margin. Results Significant differences were observed in the occlusal seat and marginal seal of all the finish line configurations. The rounded shoulder had the best occlusal seat, followed by 900C shoulder. The occlusal seat and marginal seal afforded by the shoulder finish lines were similar whereas there was a vast difference in the seating and sealing of long chamfer and feather edged preparations. They showed the worst occlusal seat. Conclusion It was found that the finish lines like shoulder preparations which exhibit poor sealing prior to complete cementation allow good seating whereas margins which seal earlier do not allow escape of cement and hence do not seat completely. PMID:26436039

  12. Methods and apparatuses for manufacturing monocrystalline cast silicon and monocrystalline cast silicon bodies for photovoltaics

    DOEpatents

    Stoddard, Nathan G [Gettysburg, PA

    2011-11-01

    Methods and apparatuses are provided for casting silicon for photovoltaic cells and other applications. With such methods and apparatuses, a cast body of monocrystalline silicon may be formed that is free of, or substantially free of, radially-distributed impurities and defects and having at least two dimensions that are each at least about 35 cm is provided.

  13. Novel Applications of Rapid Prototyping in Gamma-ray and X-ray Imaging

    PubMed Central

    Miller, Brian W.; Moore, Jared W.; Gehm, Michael E.; Furenlid, Lars R.; Barrett, Harrison H.

    2010-01-01

    Advances in 3D rapid-prototyping printers, 3D modeling software, and casting techniques allow for the fabrication of cost-effective, custom components in gamma-ray and x-ray imaging systems. Applications extend to new fabrication methods for custom collimators, pinholes, calibration and resolution phantoms, mounting and shielding components, and imaging apertures. Details of the fabrication process for these components are presented, specifically the 3D printing process, cold casting with a tungsten epoxy, and lost-wax casting in platinum. PMID:22984341

  14. Forging Oxide-Dispersion-Strengthened Superalloys

    NASA Technical Reports Server (NTRS)

    Harf, F. H.; Glasgow, T. K.; Moracz, D. J.; Austin, C. M.

    1986-01-01

    Cladding of mild steel prevents surface cracking when alloy contacts die. Continual need for improvements in properties of alloys capable of withstanding elevated temperatures. Accomplished by using oxide-dispersion-strengthed superalloys such as Inconel Alloy MA 6000. Elevated tensile properties of forged alloy equal those of hot-rolled MA 6000 bar. Stress-rupture properties somewhat lower than those of bar stock but, at 1,100 degrees C, exceed those of strongest commercial single crystal, directionally solidified and conventionally cast superalloys.

  15. Investigation on the cold rolling and structuring of cold sprayed copper-coated steel sheets

    NASA Astrophysics Data System (ADS)

    Bobzin, K.; Öte, M.; Wiesner, S.; Gerdt, L.; Senge, S.; Hirt, G.

    2017-03-01

    A current driving force of research is lightweight design. One of the approaches to reduce the weight of a component without causing an overall stiffness decrease is the use of multi-material components. One of the main challenges of this approach is the low bonding strength between different materials. Focusing on steel-aluminum multi-material components, thermally sprayed copper coatings can come into use as a bonding agent between steel sheets and high pressure die cast aluminum to improve the bonding strength. This paper presents a combination of cold gas spraying of copper coatings and their subsequent structuring by rolling as surface pretreatment method of the steel inserts. Therefore, flat rolling experiments are performed with samples in “as sprayed” and heat treated conditions to determine the influence of the rolling process on the bond strength and the formability of the coating. Furthermore, the influence of the rolling on the roughness and the hardness of the coating was examined. In the next step, the coated surface was structured, to create a surface topology suited for a form closure connection in a subsequent high-pressure die casting process. No cracks were observed after the cold rolling process with a thickness reduction of up to ε = 14 % for heat treated samples. Structuring of heat treated samples could be realized without delamination and cracking.

  16. Finite Element Analysis of Laser Engineered Net Shape (LENS™) Tungsten Clad Squeeze Pins

    NASA Astrophysics Data System (ADS)

    Sakhuja, Amit; Brevick, Jerald R.

    2004-06-01

    In the aluminum high-pressure die-casting and indirect squeeze casting processes, local "squeeze" pins are often used to minimize internal solidification shrinkage in heavy casting sections. Squeeze pins frequently fail in service due to molten aluminum adhering to the H13 tool steel pins ("soldering"). A wide variety of coating materials and methods have been developed to minimize soldering on H13. However, these coatings are typically very thin, and experience has shown their performance on squeeze pins is highly variable. The LENS™ process was employed in this research to deposit a relatively thick tungsten cladding on squeeze pins. An advantage of this process was that the process parameters could be precisely controlled in order to produce a satisfactory cladding. Two fixtures were designed and constructed to enable the end and outer diameter (OD) of the squeeze pins to be clad. Analyses were performed on the clad pins to evaluate the microstructure and chemical composition of the tungsten cladding and the cladding-H13 substrate interface. A thermo-mechanical finite element analysis (FEA) was performed to assess the stress distribution as a function of cladding thickness on the pins during a typical casting thermal cycle. FEA results were validated via a physical test, where the clad squeeze pins were immersed into molten aluminum. Pins subjected to the test were evaluated for thermally induced cracking and resistance to soldering of the tungsten cladding.

  17. Alloy Shrinkage factors for the investment casting of 17-4PH stainless steel parts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabau, Adrian S; Porter, Wallace D

    2008-01-01

    In this study, the alloy shrinkage factors were obtained for the investment casting of 17-4PH stainless steel parts. For the investment casting process, unfilled wax and fused silica with a zircon prime coat were used for patterns and shell molds, respectively. Dimensions of the die tooling, wax pattern, and casting were measured using a Coordinate Measurement Machine. For all the properties, the experimental data available in the literature did not cover the entire temperature range necessary for process simulation. A comparison between the predicted material property data measured property data is made. It was found that most material properties weremore » accurately predicted over the most of the temperature range of the process. Several assumptions were made in order to obtain a complete set of mechanical property data at high temperatures. Thermal expansion measurements for the 17-4PH alloy were conducted at heating and cooling. As a function of temperature, the thermal expansion for both the alloy and shell mold materials showed different evolution at heating and cooling. Thus, one generic simulation were performed with thermal expansion obtained at heating and another one with thermal expansion obtained at cooling. The alloy dimensions were obtained from numerical simulation results of solidification, heat transfer, and deformation phenomena. As compared with experimental results, the numerical simulation results for the shrinkage factors were slightly over-predicted.« less

  18. Alloy Shrinkage Factors for the Investment Casting of 17-4PH Stainless Steel Parts

    NASA Astrophysics Data System (ADS)

    Sabau, Adrian S.; Porter, Wallace D.

    2008-04-01

    In this study, alloy shrinkage factors were obtained for the investment casting of 17-4PH stainless steel parts. For the investment casting process, unfilled wax and fused silica with a zircon prime coat were used for patterns and shell molds, respectively. The dimensions of the die tooling, wax pattern, and casting were measured using a coordinate measurement machine (CMM). For all the properties, the experimental data available in the literature did not cover the entire temperature range necessary for process simulation. A comparison between the predicted material property data and measured property data is made. It was found that most material properties were accurately predicted over most of the temperature range of the process. Several assumptions were made, in order to obtain a complete set of mechanical property data at high temperatures. Thermal expansion measurements for the 17-4PH alloy were conducted during heating and cooling. As a function of temperature, the thermal expansion for both the alloy and shell mold materials showed a different evolution on heating and cooling. Thus, one generic simulation was performed with thermal expansion obtained on heating, and another one was performed with thermal expansion obtained on cooling. The alloy dimensions were obtained from the numerical simulation results of the solidification, heat transfer, and deformation phenomena. As compared with experimental results, the numerical simulation results for the shrinkage factors were slightly overpredicted.

  19. Cast Aluminum Alloy for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2003-01-01

    Originally developed by NASA as high performance piston alloys to meet U.S. automotive legislation requiring low exhaust emission, the novel NASA alloys now offer dramatic increase in tensile strength for many other applications at elevated temperatures from 450 F (232 C) to about 750 F (400 C). It is an ideal low cost material for cast automotive components such as pistons, cylinder heads, cylinder liners, connecting rods, turbo chargers, impellers, actuators, brake calipers and rotors. It can be very economically produced from conventional permanent mold, sand casting or investment casting, with silicon content ranging from 6% to 18%. At high silicon levels, the alloy exhibits excellent dimensional stability, surface hardness and wear resistant properties.

  20. High Cycle Fatigue Crack Initiation Study of Case Blade Alloy Rene 125

    NASA Technical Reports Server (NTRS)

    Kantzos, P.; Gayda, J.; Miner, R. V.; Telesman, J.; Dickerson, P.

    2000-01-01

    This study was conducted in order to investigate and document the high cycle fatigue crack initiation characteristics of blade alloy Rene 125 as cast by three commercially available processes. This alloy is typically used in turbine blade applications. It is currently being considered as a candidate alloy for high T3 compressor airfoil applications. This effort is part of NASA's Advanced Subsonic Technology (AST) program which aims to develop improved capabilities for the next generation subsonic gas turbine engine for commercial carriers. Wrought alloys, which are customarily used for airfoils in the compressor, cannot meet the property goals at the higher compressor exit temperatures that would be required for advanced ultra-high bypass engines. As a result cast alloys are currently being considered for such applications. Traditional blade materials such as Rene 125 have the high temperature capabilities required for such applications. However, the implementation of cast alloys in compressor airfoil applications where airfoils are typically much thinner does raise some issues of concern such as thin wall castability, casting cleaningness, and susceptibility to high-cycle fatigue (HCF) loading.

  1. 75 FR 71456 - Algonac Cast Products, Inc., Algonac, MI; Notice of Affirmative Determination Regarding...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-23

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-74,549] Algonac Cast Products, Inc., Algonac, MI; Notice of Affirmative Determination Regarding Application for Reconsideration By... workers and former workers of Algonac Cast Products, Inc., Algonac, Michigan (subject firm). The...

  2. [Cohort study of the incidence of heel pressure sores in patients with leg casts at the Rizzoli Orthopedic Hospital and of the associated risk factors].

    PubMed

    Forni, Cristiana; Zoli, Marina; Loro, Loretta; Tremosini, Morena; Mini, Sandra; Pirini, Valter; Turrini, Roberta; Durante, Stefano; Nicolini, Annamaria; Riccioni, Francesca; Girolami, Roberto

    2009-01-01

    Pressure sores, especially at the heel, are a side effect of the cast. To assess the incidence of late skin complications (heel pressure sores) of a cast and determine risk factors. All consecutive patients treated with a leg cast over a 16 months observation time were recruited. Risk factors were identified by the nurse that placed the cast and skin lesions classified with the NPUAP scale when the cast was removed. In the 216 enrolled patients 17.6% (38) developed a pressure sore: 16/124 in orthopedic wards; 22/92 in oncology wards. The multivariate analysis identified the following risk factors: administration of cytotoxic drugs (p = 0.033; OR = 2.61; having a cancer did not increase the risk); skin redness before cast application (p = 0.001; OR = 4.44) and having reported symptoms after the application (p = 0.000; OR = 7.86). Pressure sores were mainly stage 1 and only 6/216 (2.4%) > or = stage II. The type of plaster cast, the material, the number of days it was worn and having had a surgery are not significant risk factors. Pressure sores related to leg plaster casts are a frequent complication in at risk sub-groups. The acknowledgement and identification of specific risk factors may allow to identify and evaluate preventive interventions to improve the care of these patients.

  3. Methods and apparatuses for manufacturing geometric multicrystalline cast silicon and geometric multicrystalline cast silicon bodies for photovoltaics

    DOEpatents

    Stoddard, Nathan G

    2015-02-10

    Methods and apparatuses are provided for casting silicon for photovoltaic cells and other applications. With such methods and apparatuses, a cast body of geometrically ordered multi-crystalline silicon may be formed that is free or substantially free of radially-distributed impurities and defects and having at least two dimensions that are each at least about 10 cm is provided.

  4. High Strength and Wear Resistant Aluminum Alloy for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    In this paper, a new high strength and wear resistant aluminum cast alloy invented by NASA-MSFC for high temperature applications will be presented. Developed to meet U.S. automotive legislation requiring low-exhaust emission, the novel NASA 398 aluminum-silicon alloy offers dramatic improvement in tensile and fatigue strengths at elevated temperatures (500 F-800 F), enabling new pistons to utilize less material, which can lead to reducing part weight and cost as well as improving performance. NASA 398 alloy also offers greater wear resistance, surface hardness, dimensional stability, and lower thermal expansion compared to conventional aluminum alloys for several commercial and automotive applications. The new alloy can be produced economically using permanent steel molds from conventional gravity casting or sand casting. The technology was developed to stimulate the development of commercial aluminum casting products from NASA-developed technology by offering companies the opportunity to license this technology.

  5. Casting for infantile scoliosis: the pitfall of increased peak inspiratory pressure.

    PubMed

    Dhawale, Arjun A; Shah, Suken A; Reichard, Samantha; Holmes, Laurens; Brislin, Robert; Rogers, Kenneth; Mackenzie, William G

    2013-01-01

    Serial cast correction is a popular treatment option for progressive infantile scoliosis. Body casting can lead to chest and abdominal expansion restriction and result in decreased chest wall compliance. There are no studies evaluating the effects of casting on ventilation in infantile scoliosis. This study examines changes in peak inspiratory pressure (PIP) during serial casting for infantile scoliosis. We retrospectively reviewed data obtained from 37 serial Cotrel elongation, derotation, and flexion cast corrections in patients with infantile scoliosis. Patient demographics, radiographic measurements, and anesthesia data were recorded. Anesthesia technique was standardized: children were intubated with rigid endotracheal tubes (ETTs); tidal volume was held constant at 8 to 10 cm(3)/kg using volume control ventilation; and PIP was recorded at baseline, after cast application before window cutout, and after window cutout before extubation. Any complications were documented. We assessed the PIP changes with a repeated measures analysis of variance (ANOVA). The mean age at first casting was 21.8 months (range, 12 to 42 mo) and mean follow-up since first casting was 22.4 months (range, 13 to 40 mo) with mean major Cobb angle of 53±15 degrees. The mean PIP was 15.5±4.9 cm H(2)O before casting, 31.9±7.9 cm H(2)O after cast application, and 20.4±5.6 cm H2O after making windows. There was a 106% increase after casting and 32% increase after window cutout from the baseline PIP levels. There was a significant difference in PIP on repeated measures ANOVA (P<0.0001). Intraoperatively, there was difficulty in maintaining ventilation during 2 procedures and 1 hypotensive episode. One patient developed hypoxemia after casting and another had delayed difficulty in breathing. Casting resulted in an increased PIP due to transient restrictive pulmonary process; after windows were cut out, the PIP reduced but not to baseline. In patients with underlying pulmonary disease, the casting process may induce respiratory complications, and a proper period of observation after casting is necessary. Case series, level 4.

  6. Investigation of the interfacial reactions between steel and aluminum coatings for hybrid casting

    NASA Astrophysics Data System (ADS)

    Bobzin, K.; Öte, M.; Wiesner, S.; Gerdt, L.

    2018-06-01

    Coating of AA7075 was applied by means of cold gas spraying on steel substrates of 22MnB5 and DC04 as an interlayer for high pressure die casting of aluminum/steel hybrid components. The morphology and growth kinetics of intermetallic compounds formed at the interface between coating and steel has been investigated. Furthermore, the effect of alloying elements on the formation of the intermetallic phases was analyzed. The coated samples were heat treated by means of induction heating at the temperature T = 550 °C with different dwell times in the range of 10 s < t < 5 min. The reaction layer growth was examined by means of scanning electron microscope (SEM) with energy dispersive spectroscopy (EDS). Additionally, the intermetallic compounds were characterized by means of nanoindentation. Intermetallic compounds of AlFe phases occurred as the major constituent in the reaction zone for different combinations of coating and substrates.

  7. In vitro evaluation of marginal, axial, and occlusal discrepancies in metal ceramic restorations produced with new technologies.

    PubMed

    Kocaağaoğlu, Hasan; Kılınç, Halil İbrahim; Albayrak, Haydar; Kara, Meryem

    2016-09-01

    Marginal and axial discrepancies of metal ceramic restorations are key to their long-term success. Little information is available for metal ceramic restorations fabricated with soft metal milling and laser sintering technologies. The purpose of this in vitro study was to compare the marginal, axial, and occlusal discrepancies in single-unit metal ceramic restorations fabricated with new production techniques with those in a single-unit restoration fabricated using a conventional technique. After the artificial tooth was prepared, impressions were made, and 40 dies were obtained. Dies were randomly divided into 4 groups (n=10). Cobalt-chromium (Co-Cr) cast (C), hard metal milled (HM), laser sintered (LS), and soft metal milled (SM) copings were fabricated. Marginal, axial, and occlusal discrepancies of these copings were measured using the silicone replica technique before and after the application of veneering ceramic. Data were analyzed with repeated measurements 2-way ANOVAs and Bonferroni post hoc tests (α=.05). Significant differences were found in the increase of marginal discrepancy after the application of veneering ceramic in the LS group (P=.016). However, no significant differences in marginal discrepancy were found whether veneering ceramic was applied to copings before or after in the other groups (P>.05). With regard to marginal and occlusal discrepancies, significant differences were found among the production techniques (P<.001 and P<.05, respectively). No significant differences in axial discrepancies were found among the groups (P>.05). This in vitro study showed that metal ceramic restorations produced with HM and newly introduced SM techniques exhibited better marginal adaptations than those produced with the LS or C technique. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  8. Aluminum integral foams with tailored density profile by adapted blowing agents

    NASA Astrophysics Data System (ADS)

    Hartmann, Johannes; Fiegl, Tobias; Körner, Carolin

    2014-05-01

    The goal of the present work is the variation of the structure of aluminum integral foams regarding the thickness of the integral solid skin as well as the density profile. A modified die casting process, namely integral foam molding, is used in which an aluminum melt and blowing agent particles (magnesium hydride MgH2) are injected in a permanent steel mold. The high solidification rates at the cooled walls of the mold lead to the formation of a solid skin. In the inner region, hydrogen is released by thermal decomposition of MgH2 particles. Thus, the pore formation takes place parallel to the continuing solidification of the melt. The thickness of the solid skin and the density profile of the core strongly depend on the interplay between solidification velocity and kinetics of hydrogen release. By varying the melt and blowing agent properties, the structure of integral foams can be systematically changed to meet the requirements of the desired field of application of the produced component.

  9. Analytical ultrasonics for structural materials

    NASA Technical Reports Server (NTRS)

    Kupperman, D. S.

    1986-01-01

    The application of ultrasonic velocity and attenuation measurements to characterize the microstructure of structural materials is discussed. Velocity measurements in cast stainless steel are correlated with microstructural variations ranging from equiaxed (elastically isotropic) to columnar (elastically anisotropic) grain structure. The effect of the anisotropic grain structure on the deviation of ultrasonic waves in cast stainless steel is also reported. Field-implementable techniques for distinguishing equiaxed from columnar grain structures in cast strainless steel structural members are presented. The application of ultrasonic velocity measurements to characterize structural ceramics in the green state is also discussed.

  10. Wide Strip Casting Technology of Magnesium Alloys

    NASA Astrophysics Data System (ADS)

    Park, W.-J.; Kim, J. J.; Kim, I. J.; Choo, D.

    Extensive investigations relating to the production of high performance and low cost magnesium sheet by strip casting have been performed for the application to automotive parts and electronic devices. Research on magnesium sheet production technology started in 2004 by Research Institute of Industrial Science and Technology (RIST) with support of Pohang Iron and Steel Company (POSCO). POSCO has completed the world's first plant to manufacture magnesium coil. Another big project in order to develop wide strip casting technology for the automotive applications of magnesium sheets was started in succession.

  11. The die is cast: arsenic exposure in early life and disease susceptibility.

    PubMed

    Thomas, David J

    2013-12-16

    Early life exposure to arsenic in humans and mice produces similar patterns of disease in later life. Given the long interval between exposure and effect, epigenetic effects of early life exposure to arsenic may account for the development and progression of disease in both species. Mode of action and dosimetric studies in the mouse may help assess the role of age at exposure as a factor in susceptibility to the toxic and carcinogenic effects of arsenic in humans.

  12. Was Sigmund Freud's death hastened?

    PubMed

    Macleod, Alastair D Sandy

    2017-08-01

    The terminal illness of Sigmund Freud has been considered by many authors to be an example of physician-enacted euthanasia. A review and a reconsideration of the published literature by Freud's doctors and biographers cast doubt on this opinion. Over his last 48 h, Freud was administered substantial morphine doses to sedate and relieve his pain. However, from a pharmacological perspective, the timing of his death would not be consistent with that of a fatal dose of opioid. Freud died a natural death. © 2017 Royal Australasian College of Physicians.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eric S. Peterson; Jessica Trudeau; Bill Cleary

    An active-surface membrane technology was used to separate a die lube manufacturing wastewater stream consisting of various oils, hydrocarbons, heavy metals, and silicones. The ultrafiltration membranes reduced organics from initial oil and grease contents by 20–25X, carbon oxygen demand (COD) by 1.5 to 2X, and total organic carbon (TOC) by 0.6, while the biological oxygen demand (BOD) remained constant. The active-surface membranes were not fouled as badly as non-active-surface systems and the active-surface membrane flux levels were consistently higher and more stable than those of the non-active-surface membranes tested. Field testing demonstrated that the rotary microfilter can concentrate the diemore » lube, i.e. remove the glycerin component, and produce a die lube suitable for recycling. The recycling system operated for six weeks with only seven cleaning cycles and no mechanical or electrical failures. Test data and quality records indicate that the die casting scrap was reduced from 8.4 to 7.8%. There is no doubt that this test yielded tremendous results. This separation process presents significant opportunities that can be evaluated further.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, E. S.; Trudeau, J.; Cleary, B.

    An active-surface membrane technology was used to separate a die lube manufacturing wastewater stream consisting of various oils, hydrocarbons, heavy metals, and silicones. The ultrafiltration membranes reduced organics from initial oil and grease contents by 20-25X, carbon oxygen demand (COD) by 1.5 to 2X, and total organic carbon (TOC) by 0.6, while the biological oxygen demand (BOD) remained constant. The active-surface membranes were not fouled as badly as non-active-surface systems and the active-surface membrane flux levels were consistently higher and more stable than those of the non-active-surface membranes tested. Field testing demonstrated that the rotary microfilter can concentrate the diemore » lube, i.e. remove the glycerin component, and produce a die lube suitable for recycling. The recycling system operated for six weeks with only seven cleaning cycles and no mechanical or electrical failures. Test data and quality records indicate that the die casting scrap was reduced from 8.4 to 7.8%. There is no doubt that this test yielded tremendous results. This separation process presents significant opportunities that can be evaluated further.« less

  15. Three-Dimensional Analysis of Voids in AM60B Magnesium Tensile Bars Using Computed Tomography Imagery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waters, A M

    2001-05-01

    In an effort to increase automobile fuel efficiency as well as decrease the output of harmful greenhouse gases, the automotive industry has recently shown increased interest in cast light metals such as magnesium alloys in an effort to increase weight savings. Currently several magnesium alloys such as AZ91 and AM60B are being used in structural applications for automobiles. However, these magnesium alloys are not as well characterized as other commonly used structural metals such as aluminum. This dissertation presents a methodology to nondestructively quantify damage accumulation due to void behavior in three dimensions in die-cast magnesium AM60B tensile bars asmore » a function of mechanical load. Computed tomography data was acquired after tensile bars were loaded up to and including failure, and analyzed to characterize void behavior as it relates to damage accumulation. Signal and image processing techniques were used along with a cluster labeling routine to nondestructively quantify damage parameters in three dimensions. Void analyses were performed including void volume distribution characterization, nearest neighbor distance calculations, shape parameters, and volumetric renderings of voids in the alloy. The processed CT data was used to generate input files for use in finite element simulations, both two- and three-dimensional. The void analyses revealed that the overwhelming source of failure in each tensile bar was a ring of porosity within each bar, possibly due to a solidification front inherent to the casting process. The measured damage parameters related to void nucleation, growth, and coalescence were shown to contribute significantly to total damage accumulation. Void volume distributions were characterized using a Weibull function, and the spatial distributions of voids were shown to be clustered. Two-dimensional finite element analyses of the tensile bars were used to fine-tune material damage models and a three-dimensional mesh of an extracted portion of one tensile bar including voids was generated from CT data and used as input to a finite element analysis.« less

  16. Application of the ToxMiner Database: Network Analysis Linking the ToxCast Chemicals to Known Disease-Gene Associations

    EPA Science Inventory

    The US EPA ToxCast program is using in vitro HTS (High-Throughput Screening) methods to profile and model bioactivity of environmental chemicals. The main goals of the ToxCast program are to generate predictive signatures of toxicity, and ultimately provide rapid and cost-effecti...

  17. Influence of Custom Trays, Dual-Arch Passive, Flexed Trays and Viscosities of Elastomeric Impression Materials on Working Dies.

    PubMed

    Arora, Mansi; Kohli, Shivani; Kalsi, Rupali

    2016-05-01

    Dual arch impression technique signifies an essential improvement in fixed prosthodontics and has numerous benefits over conventional impression techniques. The accuracy of working dies fabricated from dual arch impression technique remains in question because there is little information available in the literature. This study was conducted to compare the accuracy of working dies fabricated from impressions made from two different viscosities of impression materials using metal, plastic dual arch trays and custom made acrylic trays. The study samples were grouped into two groups based on the viscosity of impression material used i.e. Group I (monophase), whereas Group II consisted of Dual Mix technique using a combination of light and heavy body material. These were further divided into three subgroups A, B and C depending on the type of impression tray used (metal dual arch tray, plastic dual arch tray and custom made tray). Measurements of the master cast were made using profile projector. Descriptive statistics like mean, Standard Deviation (SD) were calculated for all the groups. One way analysis of variance (ANOVA) was used for multiple group comparisons. A p-value of 0.05 or less was considered statistically significant. The gypsum dies obtained with the three types of impression trays using two groups of impression materials were smaller than the master models in dimensions. The plastic dual arch trays produced dies which were the least accurate of the three groups. There was no significant difference in the die dimensions obtained using the two viscosities of impression materials.

  18. Influence of Custom Trays, Dual-Arch Passive, Flexed Trays and Viscosities of Elastomeric Impression Materials on Working Dies

    PubMed Central

    Kohli, Shivani; Kalsi, Rupali

    2016-01-01

    Introduction Dual arch impression technique signifies an essential improvement in fixed prosthodontics and has numerous benefits over conventional impression techniques. The accuracy of working dies fabricated from dual arch impression technique remains in question because there is little information available in the literature. Aim This study was conducted to compare the accuracy of working dies fabricated from impressions made from two different viscosities of impression materials using metal, plastic dual arch trays and custom made acrylic trays. Materials and Methods The study samples were grouped into two groups based on the viscosity of impression material used i.e. Group I (monophase), whereas Group II consisted of Dual Mix technique using a combination of light and heavy body material. These were further divided into three subgroups A, B and C depending on the type of impression tray used (metal dual arch tray, plastic dual arch tray and custom made tray). Measurements of the master cast were made using profile projector. Descriptive statistics like mean, Standard Deviation (SD) were calculated for all the groups. One way analysis of variance (ANOVA) was used for multiple group comparisons. A p-value of 0.05 or less was considered statistically significant. Results The gypsum dies obtained with the three types of impression trays using two groups of impression materials were smaller than the master models in dimensions. Conclusion The plastic dual arch trays produced dies which were the least accurate of the three groups. There was no significant difference in the die dimensions obtained using the two viscosities of impression materials. PMID:27437342

  19. Influence of porcelain firing and cementation on the marginal adaptation of metal-ceramic restorations prepared by different methods.

    PubMed

    Kaleli, Necati; Saraç, Duygu

    2017-05-01

    Marginal adaptation plays an important role in the survival of metal-ceramic restorations. Porcelain firings and cementation may affect the adaptation of restorations. Moreover, conventional casting procedures and casting imperfections may cause deteriorations in the marginal adaptation of metal-ceramic restorations. The purpose of this in vitro study was to compare the marginal adaptation after fabrication of the framework, porcelain application, and cementation of metal-ceramic restorations prepared by using the conventional lost-wax technique, milling, direct metal laser sintering (DMLS), and LaserCUSING, a direct process powder-bed system. Alterations in the marginal adaptation of the metal frameworks during the fabrication stages and the precision of fabrication methods were evaluated. Forty-eight metal dies simulating prepared premolar and molar abutment teeth were fabricated to investigate marginal adaptation. They were divided into 4 groups (n=12) according to the fabrication method used (group C serving as the control group: lost-wax method; group M: milling method; group LS: DMLS method; group DP: direct process powder-bed method). Sixty marginal discrepancy measurements were recorded separately on each abutment tooth after fabrication of the framework, porcelain application, and cementation by using a stereomicroscope. Thereafter, each group was divided into 3 subgroups according to the measurements recorded in each fabrication stage: subgroup F (framework), subgroup P (porcelain application), and subgroup C (cementation). Data were statistically analyzed with univariate analysis of variance (followed by 1-way ANOVA and Tamhane T2 test (α=.05). The lowest marginal discrepancy values were observed in restorations prepared by using the direct process powder-bed method, and this was significantly different (P<.001) from the other methods. The highest marginal discrepancy values were recorded after the cementation procedure in all groups. The results showed that the direct process powder-bed method is quite successful in terms of marginal adaptation. The marginal discrepancy increased after porcelain application and cementation. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  20. Obtaining of High Cr Content Cast Iron Materials

    NASA Astrophysics Data System (ADS)

    Florea, C.; Bejinariu, C.; Carcea, I.; Cimpoesu, N.; Chicet, D. L.; Savin, C.

    2017-06-01

    We have obtained, through the classic casting process, 3 highly chromium-based experimental alloys proposed for replacing the FC 250 classical cast iron in braking applications. Casting was carried out in an induction furnace and cast into moulds made of KALHARTZ 8500 resin casting mixture and HARTER hardener at SC RanCon SRL Iasi. It is known that the microstructure of the cast iron is a combination of martensite with a small amount of residual austenite after the heat treatment of the ingot. In the case of high-alloy chromium alloys, the performance of the material is due to the presence of M7C3 carbides distributed in the iron matrix Resistance to machining and deformation is based on alloy composition and microstructure, while abrasion resistance will depend on properties and wear conditions.

  1. Generation and evaluation of 3D digital casts of maxillary defects based on multisource data registration: A pilot clinical study.

    PubMed

    Ye, Hongqiang; Ma, Qijun; Hou, Yuezhong; Li, Man; Zhou, Yongsheng

    2017-12-01

    Digital techniques are not clinically applied for 1-piece maxillary prostheses containing an obturator and removable partial denture retained by the remaining teeth because of the difficulty in obtaining sufficiently accurate 3-dimensional (3D) images. The purpose of this pilot clinical study was to generate 3D digital casts of maxillary defects, including the defective region and the maxillary dentition, based on multisource data registration and to evaluate their effectiveness. Twelve participants with maxillary defects were selected. The maxillofacial region was scanned with spiral computer tomography (CT), and the maxillary arch and palate were scanned using an intraoral optical scanner. The 3D images from the CT and intraoral scanner were registered and merged to form a 3D digital cast of the maxillary defect containing the anatomic structures needed for the maxillary prosthesis. This included the defect cavity, maxillary dentition, and palate. Traditional silicone impressions were also made, and stone casts were poured. The accuracy of the digital cast in comparison with that of the stone cast was evaluated by measuring the distance between 4 anatomic landmarks. Differences and consistencies were assessed using paired Student t tests and the intraclass correlation coefficient (ICC). In 3 participants, physical resin casts were produced by rapid prototyping from digital casts. Based on the resin casts, maxillary prostheses were fabricated by using conventional methods and then evaluated in the participants to assess the clinical applicability of the digital casts. Digital casts of the maxillary defects were generated and contained all the anatomic details needed for the maxillary prosthesis. Comparing the digital and stone casts, a paired Student t test indicated that differences in the linear distances between landmarks were not statistically significant (P>.05). High ICC values (0.977 to 0.998) for the interlandmark distances further indicated the high degree of consistency between the digital and stone casts. The maxillary prostheses showed good clinical effectiveness, indicating that the corresponding digital casts met the requirements for clinical application. Based on multisource data from spiral CT and the intraoral scanner, 3D digital casts of maxillary defects were generated using the registration technique. These casts were consistent with conventional stone casts in terms of accuracy and were suitable for clinical use. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Laboratory evaluation of compressor blades considered for use in CIP/CUP compressors. [GAT2, 214X, X224, and D-15Al alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ritchie, K.L.

    1976-04-30

    Four die-casting alloys, the external-pressure-pin and conventional casting methods, an accelerated aging heat treatment, and an airfoil fillet modification were evaluated for 33F-S1 compressor blades considered for use in axial flow compressors installed during the Cascade Improvement and Uprating Programs at the three gaseous diffusion plants. Based on castability, resonant frequency, resistance to fatigue cracking, and shank breaking load, the ranking of the four alloys from highest to lowest is GAT2, 214X, X224, and D-15. The GAT2 alloy ranked highest in all categories except impact value; the impact values of both X224 and 214X alloys exceeded that of the GAT2more » alloy, thus indicating the latter is relatively more brittle. However, in view of its other excellent properties, including fatigue cracking resistance, GAT2 alloy is worthy of consideration for use in blades for CIP/CUP or Add-on Plant compressors, particularly if castability becomes a problem with the presently used 214X alloy. Use of the external-pressure-pin casting method is not recommended because the resulting casting difficulties cannot be justified by the small increases in shank breaking loads. The airfoil fillet modification, which is a change from the conventional circular fillet to an elliptical fillet, resulted in increases (1.5 to 4.0 percent) in the average resonant frequency and in resistance to fatigue cracking (15 to 100 percent). The results of giving the blades an accelerated aging heat treatment, designed to simulate in excess of 10,000 hours of cascade exposure, showed that overaging had no significant effect on average resonant frequency but that overaging improved blade quality by reducing residual casting stress. (auth)« less

  3. Metallic Fuel Casting Development and Parameter Optimization Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R.S. Fielding; J. Crapps; C. Unal

    One of the advantages of metallic fuel is the abilility to cast the fuel slugs to near net shape with little additional processing. However, the high aspect ratio of the fuel is not ideal for casting. EBR-II fuel was cast using counter gravity injection casting (CGIC) but, concerns have been raised concerning the feasibility of this process for americium bearing alloys. The Fuel Cycle Research and Development program has begun developing gravity casting techniques suitable for fuel production. Compared to CGIC gravity casting does not require a large heel that then is recycled, does not require application of a vacuummore » during melting, and is conducive to re-usable molds. Development has included fabrication of two separate benchscale, approximately 300 grams, systems. To shorten development time computer simulations have been used to ensure mold and crucible designs are feasible and to identify which fluid properties most affect casting behavior and therefore require more characterization.« less

  4. Application of the ToxMiner Database: Network Analysis of Linkage between ToxCast Phase I Chemicals and Thyroid Related Disease Outcomes

    EPA Science Inventory

    The US EPA ToxCast program is using in vitro HTS (High-Throughput Screening) methods to profile and model bioactivity of environmental chemicals. The main goals of the ToxCast program are to generate predictive signatures of toxicity, and ultimately provide rapid and cost-effecti...

  5. Melt Conditioning of Light Metals by Application of High Shear for Improved Microstructure and Defect Control

    NASA Astrophysics Data System (ADS)

    Patel, Jayesh B.; Yang, Xinliang; Mendis, Chamini L.; Fan, Zhongyun

    2017-04-01

    Casting is the first step toward the production of majority of metal products whether the final processing step is casting or other thermomechanical processes such as extrusion or forging. The high shear melt conditioning provides an easily adopted pathway to producing castings with a more uniform fine-grained microstructure along with a more uniform distribution of the chemical composition leading to fewer defects as a result of reduced shrinkage porosities and the presence of large oxide films through the microstructure. The effectiveness of high shear melt conditioning in improving the microstructure of processes used in industry illustrates the versatility of the high shear melt conditioning technology. The application of high shear process to direct chill and twin roll casting process is demonstrated with examples from magnesium melts.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lherbier, Louis, W.; Novotnak, David, J.; Herling, Darrell, R.

    Hot forming processes such as forging, die casting and glass forming require tooling that is subjected to high temperatures during the manufacturing of components. Current tooling is adversely affected by prolonged exposure at high temperatures. Initial studies were conducted to determine the root cause of tool failures in a number of applications. Results show that tool failures vary and depend on the operating environment under which they are used. Major root cause failures include (1) thermal softening, (2) fatigue and (3) tool erosion, all of which are affected by process boundary conditions such as lubrication, cooling, process speed, etc. Whilemore » thermal management is a key to addressing tooling failures, it was clear that new tooling materials with superior high temperature strength could provide improved manufacturing efficiencies. These efficiencies are based on the use of functionally graded materials (FGM), a new subset of hybrid tools with customizable properties that can be fabricated using advanced powder metallurgy manufacturing technologies. Modeling studies of the various hot forming processes helped identify the effect of key variables such as stress, temperature and cooling rate and aid in the selection of tooling materials for specific applications. To address the problem of high temperature strength, several advanced powder metallurgy nickel and cobalt based alloys were selected for evaluation. These materials were manufactured into tooling using two relatively new consolidation processes. One process involved laser powder deposition (LPD) and the second involved a solid state dynamic powder consolidation (SSDPC) process. These processes made possible functionally graded materials (FGM) that resulted in shaped tooling that was monolithic, bi-metallic or substrate coated. Manufacturing of tooling with these processes was determined to be robust and consistent for a variety of materials. Prototype and production testing of FGM tooling showed the benefits of the nickel and cobalt based powder metallurgy alloys in a number of applications evaluated. Improvements in tool life ranged from three (3) to twenty (20) or more times than currently used tooling. Improvements were most dramatic where tool softening and deformation were the major cause of tool failures in hot/warm forging applications. Significant improvement was also noted in erosion of aluminum die casting tooling. Cost and energy savings can be realized as a result of increased tooling life, increased productivity and a reduction in scrap because of improved dimensional controls. Although LPD and SSDPC tooling usually have higher acquisition costs, net tooling costs per component produced drops dramatically with superior tool performance. Less energy is used to manufacture the tooling because fewer tools are required and less recycling of used tools are needed for the hot forming process. Energy is saved during the component manufacturing cycle because more parts can be produced in shorter periods of time. Energy is also saved by minimizing heating furnace idling time because of less downtime for tooling changes.« less

  7. Processing of IN-718 Lattice Block Castings

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan G.

    2002-01-01

    Recently a low cost casting method known as lattice block casting has been developed by JAM Corporation, Wilmington, Massachusetts for engineering materials such as aluminum and stainless steels that has shown to provide very high stiffness and strength with only a fraction of density of the alloy. NASA Glenn Research Center has initiated research to investigate lattice block castings of high temperature Ni-base superalloys such as the model system Inconel-718 (IN-718) for lightweight nozzle applications. Although difficulties were encountered throughout the manufacturing process , a successful investment casting procedure was eventually developed. Wax formulation and pattern assembly, shell mold processing, and counter gravity casting techniques were developed. Ten IN-718 lattice block castings (each measuring 15-cm wide by 30-cm long by 1.2-cm thick) have been successfully produced by Hitchiner Gas Turbine Division, Milford, New Hampshire, using their patented counter gravity casting techniques. Details of the processing and resulting microstructures are discussed in this paper. Post casting processing and evaluation of system specific mechanical properties of these specimens are in progress.

  8. Vacuum casting of thick polymeric films

    NASA Technical Reports Server (NTRS)

    Cuddihy, E. F.; Moacanin, J.

    1979-01-01

    Bubble formation and layering, which often plague vacuum-evaporated films, are prevented by properly regulating process parameters. Vacuum casting may be applicable to forming thick films of other polymer/solvent solutions.

  9. Developing ShakeCast statistical fragility analysis framework for rapid post-earthquake assessment

    USGS Publications Warehouse

    Lin, K.-W.; Wald, D.J.

    2012-01-01

    When an earthquake occurs, the U. S. Geological Survey (USGS) ShakeMap estimates the extent of potentially damaging shaking and provides overall information regarding the affected areas. The USGS ShakeCast system is a freely-available, post-earthquake situational awareness application that automatically retrieves earthquake shaking data from ShakeMap, compares intensity measures against users’ facilities, sends notifications of potential damage to responsible parties, and generates facility damage assessment maps and other web-based products for emergency managers and responders. We describe notable improvements of the ShakeMap and the ShakeCast applications. We present a design for comprehensive fragility implementation, integrating spatially-varying ground-motion uncertainties into fragility curves for ShakeCast operations. For each facility, an overall inspection priority (or damage assessment) is assigned on the basis of combined component-based fragility curves using pre-defined logic. While regular ShakeCast users receive overall inspection priority designations for each facility, engineers can access the full fragility analyses for further evaluation.

  10. Cast CF8C-Plus Stainless Steel for Turbocharger Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maziasz, P.J.; Shyam, A.; Evans, N.D.

    2010-06-30

    The purpose of this Cooperative Research and Development Agreement (CRADA) project is to provide the critical test data needed to qualify CF8C-Plus cast stainless steel for commercial production and use for turbocharger housings with upgraded performance and durability relative to standard commercial cast irons or stainless steels. The turbocharger technologies include, but are not limited to, heavy-duty highway diesel engines, and passenger vehicle diesel and gasoline engines. This CRADA provides additional critical high-temperature mechanical properties testing and data analysis needed to quality the new CF8C-Plus steels for turbocharger housing applications.

  11. Fabrication of thin bulk ceramics for microwave circulator applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ings, J.B.; Simmins, J.J.; May, J.L.

    1995-09-01

    Planer MMIC circulator applications require the production of thin, flat garnet, spinel, and hexagonal ferrite circulator elements. Fabrication of cira 250 {mu}m circulator elements was done by tape casting and roll compaction. For the garnet, tape cast gave equivalent results to roll compaction. For the spinel and hexaferrite materials, which undergo magnetic flocculation, roll compaction was found to be the preferred fabrication method. Roll compacted lithium ferrite resulted in higher densities and lower {triangle}H and tan{delta} than did the tape case material. Roll compacted barium hexaferrite resulted in higher densities and remanent magnetization than did the tape cast material.

  12. Effect of the infrastructure material on the failure behavior of prosthetic crowns.

    PubMed

    Sonza, Queli Nunes; Della Bona, Alvaro; Borba, Márcia

    2014-05-01

    To evaluate the effect of infrastructure (IS) material on the fracture behavior of prosthetic crowns. Restorations were fabricated using a metal die simulating a prepared tooth. Four groups were evaluated: YZ-C, Y-TZP (In-Ceram YZ, Vita) IS produced by CAD-CAM; IZ-C, In-Ceram Zirconia (Vita) IS produced by CAD-CAM; IZ-S, In-Ceram Zirconia (Vita) IS produced by slip-cast; MC, metal IS (control). The IS were veneered with porcelain and resin cemented to fiber-reinforced composite dies. Specimens were loaded in compression to failure using a universal testing machine. The 30° angle load was applied by a spherical piston, in 37°C distilled water. Fractography was performed using stereomicroscope and SEM. Data were statistically analyzed with Anova and Student-Newman-Keuls tests (α=0.05). Significant differences were found between groups (p=0.022). MC showed the highest mean failure load, statistically similar to YZ-C. There was no statistical difference between YZ-C, IZ-C and IZ-S. MC and YZ-C showed no catastrophic failure. IZ-C and IZ-S showed chipping and catastrophic failures. The fracture behavior is similar to reported clinical failures. Considering the ceramic systems evaluated, YZ-C and MC crowns present greater fracture load and a more favorable failure mode than In-Ceram Zirconia crowns, regardless of the fabrication type (CAD-CAM or slip-cast). Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  13. Non-specific effect of measles vaccination on overall child mortality in an area of rural India with high vaccination coverage: a population-based case-control study.

    PubMed

    Kabir, Zubair; Long, Jean; Reddaiah, Vankadara P; Kevany, John; Kapoor, Suresh K

    2003-01-01

    To determine whether vaccination against measles in a population with sustained high vaccination coverage and relatively low child mortality reduces overall child mortality. In April and May 2000, a population-based, case-control study was conducted at Ballabgarh (an area in rural northern India). Eligible cases were 330 children born between 1 January 1991 and 31 December 1998 who died aged 12-59 months. A programme was used to match 320 controls for age, sex, family size, and area of residence from a birth cohort of 15 578 born during the same time period. The analysis used 318 matched pairs and suggested that children aged 12-59 months who did not receive measles vaccination in infancy were three times more likely to die than those vaccinated against measles. Children from lower caste households who were not vaccinated in infancy had the highest risk of mortality (odds ratio, 8.9). A 27% increase in child mortality was attributable to failure to vaccinate against measles in the study population. Measles vaccine seems to have a non-specific reducing effect on overall child mortality in this population. If true, children in lower castes may reap the greatest gains in survival. The findings should be interpreted with caution because the nutritional status of the children was not recorded and may be a residual confounder. "All-cause mortality" is a potentially useful epidemiological endpoint for future vaccine trials.

  14. Effect of imaging powder and CAD/CAM stone types on the marginal gap of zirconia crowns.

    PubMed

    Alghazzawi, Tariq F; Al-Samadani, Khalid H; Lemons, Jack; Liu, Perng-Ru; Essig, Milton E; Bartolucci, Alfred A; Janowski, Gregg M

    2015-02-01

    To compare the marginal gap using different types of die stones and titanium dies with and without powders for imaging. A melamine tooth was prepared and scanned using a laboratory 3-shape scanner to mill a polyurethane die, which was duplicated into different stones (Jade, Lean, CEREC) and titanium. Each die was sprayed with imaging powders (NP, IPS, Optispray, Vita) to form 15 groups. Ten of each combination of stone/titanium and imaging powders were used to mill crowns. A light-bodied impression material was injected into the intaglio surface of each crown and placed on the corresponding die. Each crown was removed, and the monophase material was injected to form a monophase die, which was cut into 8 sections. Digital images were captured using a stereomicroscope to measure marginal gap. Scanning electron microscopy was used to determine the particle size and shape of imaging powders and stones. Marginal gaps ranged from mean (standard deviation) 49.32 to 1.20 micrometers (3.97-42.41 μm). There was no statistical difference (P > .05) in the marginal gap by any combination of stone/titanium and imaging powders. All of the imaging powders had a similar size and rounded shape, whereas the surface of the stones showed different structures. When a laboratory 3-shape scanner is used, all imaging powders performed the same for scanning titanium abutments. However, there was no added value related to the use of imaging powder on die stone. It is recommended that the selection of stone for a master cast be based on the hysical properties. When a laboratory 3-shape scanner is used, the imaging powder is not required for scanning die stone. Whenever scanning titanium implant abutments, select the least expensive imaging powder. Copyright © 2015 American Dental Association. Published by Elsevier Inc. All rights reserved.

  15. Preliminary Report on a National Cross-Validation of the Computerized Adaptive Screening Test (CAST).

    ERIC Educational Resources Information Center

    Knapp, Deirdre J.; Pliske, Rebecca M.

    A study was conducted to validate the Army's Computerized Adaptive Screening Test (CAST), using data from 2,240 applicants from 60 army recruiting stations across the nation. CAST is a computer-assisted adaptive test used to predict performance on the Armed Forces Qualification Test (AFQT). AFQT scores are computed by adding four subtest scores of…

  16. Evaluation of the fit of zirconia copings fabricated by direct and indirect digital impression procedures.

    PubMed

    Lee, Bora; Oh, Kyung Chul; Haam, Daewon; Lee, Joon-Hee; Moon, Hong-Seok

    2018-02-07

    Intraoral scanners are effective for direct digital impression when dental restorations are fabricated using computer-aided design and computer-aided manufacturing (CAD-CAM); however, if the abutment tooth cannot be dried completely or the prepared margin is placed subgingivally, accurate digital images cannot always be guaranteed. The purpose of this in vitro study was to compare the internal and marginal discrepancies of zirconia copings fabricated directly using an intraoral scanner with those fabricated indirectly with impression scanning. Forty-five resin dies fabricated with a 3-dimensional (3D) printer were divided into 3 groups: direct scanning (DS), impression scanning (IMP), and lost-wax casting (LW). For the DS group, a resin die was scanned with an intraoral scanner (Trios; 3Shape), whereas for the IMP group, impressions made with polyether were scanned with a cast scanner (D700; 3Shape). The zirconia copings were fabricated in the same way in the DS and IMP groups. For the LW group, impressions were made in the same way as in the IMP group, and Ni-Cr alloy copings were fabricated using LW. The marginal and internal discrepancies of the copings were measured by cementing them onto resin dies, embedding them in acrylic resin, and sectioning them in a buccolingual direction. The cement layer was measured, and the Kruskal-Wallis test was used to detect significant differences (α=.05). A nonparametric Friedman test was also performed to compare the measurements of each group by location (α=.05). The mean marginal discrepancies in the DS, IMP, and LW groups were 18.1 ±9.8, 23.2 ±17.2, and 32.3 ±18.6 μm (mean ±standard deviation), respectively. The mean internal discrepancies of the DS, IMP, and LW groups in the axial area were 38.0 ±9.1, 47.0 ±16.3, and 36.5 ±15.8 μm, and those in the occlusal area were 36.7 ±16.9, 33.4 ±21.6, and 44.5 ±31.9 μm, respectively. No statistically significant differences were found in marginal or internal discrepancies among groups (P>.05). Within the limitations of this study, the zirconia copings fabricated with CAD-CAM using different digitization methods and Ni-Cr copings fabricated using the lost-wax technique and casting produced clinically acceptable marginal and internal discrepancies. No significant differences were found among the DS, IMP, and LW groups. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  17. Life Expectancy Can Explain the Precocity-Longevity Hypothesis Association of Early Career Success and Early Death.

    PubMed

    McCann, Stewart J H

    2015-01-01

    The precocity-longevity hypothesis that those who reach career milestones earlier in life have shorter life spans was tested with the 430 men elected to serve in the House of Representatives for the 71st U.S. Congress in 1929-1930 who were alive throughout 1930. There was no tendency for those first serving at an earlier age to die sooner or those serving first at a later age to die later than expected based on individual life expectancy in 1930. Although age at first serving was correlated with death age, the correlation was not significant when expected death age was controlled. The results cast serious doubt on the contention of the precocity-longevity hypothesis that the developmental aspects of the prerequisites, concomitants, and consequences of early career achievement peaks actively enhance the conditions for an earlier death.

  18. Microstructure and mechanical properties of zirconium doped NiAl/Cr(Mo) hypoeutectic alloy prepared by injection casting

    NASA Astrophysics Data System (ADS)

    Sheng, L. Y.; Du, B. N.; Guo, J. T.

    2017-01-01

    NiAl based materials has been considered as most potential candidate of turbine blade, due to its excellent high-temperature properties. However the bad room-temperature properties handicap its application. In the present paper, the zirconium doped NiAl/Cr(Mo) hypoeutectic alloy is fabricated by conventional casting and injection casting technology to improve its room-temperature properties. The microstructure and compressive properties at different temperatures of the conventionally-cast and injection-cast were investigated. The results exhibit that the conventionally-cast alloy comprises coarse primary NiAl phase and eutectic cell, which is dotted with irregular Ni2AlZr Heusler phase. Compared with the conventionally-cast alloy, the injection-cast alloy possesses refined the primary NiAl, eutectic cell and eutectic lamella. In addition, the Ni2AlZr Heusler phase become smaller and distribute uniformly. Moreover, the injection casting decrease the area fraction of primary NiAl phase at the cell interior or cell boundaries. The compressive ductility and yield strength of the injection-cast alloy at room temperature increase by about 100% and 35% over those of conventionally-cast alloy, which should be ascribed to the microstructure optimization.

  19. The Effect of Casting Ring Liner Length and Prewetting on the Marginal Adaptation and Dimensional Accuracy of Full Crown Castings.

    PubMed

    Haralur, Satheesh B; Hamdi, Osama A; Al-Shahrani, Abdulaziz A; Alhasaniah, Sultan

    2017-01-01

    To evaluate the effect of varying cellulose casting ring liner length and its prewetting on the marginal adaptation and dimensional accuracy of full veneer metal castings. The master die was milled in stainless steel to fabricate the wax pattern. Sixty wax patterns were fabricated with a uniform thickness of 1.5 mm at an occlusal surface and 1 mm axial surface, cervical width at 13.5 mm, and 10 mm cuspal height. The samples were divided into six groups ( n = 10). Groups I and II samples had the full-length cellulose prewet and dry ring liner, respectively. The groups III and IV had 2 mm short prewet and dry cellulose ring liner, respectively, whereas groups V and VI were invested in 6 mm short ring liner. The wax patterns were immediately invested in phosphate bonded investment, and casting procedure was completed with nickel-chrome alloy. The castings were cleaned and mean score of measurements at four reference points for marginal adaption, casting height, and cervical width was calculated. The marginal adaption was calculated with Imaje J software, whereas the casting height and cervical width was determined using a digital scale. The data was subjected to one-way analysis of varaince and Tukey post hoc statistical analysis with Statistical Package for the Social Sciences version 20 software. The group II had the best marginal adaption with a gap of 63.786 μm followed by group I (65.185 μm), group IV (87.740 μm), and group III (101.455 μm). A large marginal gap was observed in group V at 188.871 μm. Cuspal height was more accurate with group V (10.428 mm), group VI (10.421 mm), and group II (10.488 mm). The cervical width was approximately similar in group I, group III, and group V. Statistically significant difference was observed in Tukey post hoc analysis between group V and group VI with all the other groups with regards to marginal adaptation. The dry cellulose ring liners provided better marginal adaptation in comparison to prewet cellulose ring liners. Accurate cuspal height was obtained with shorter ring liner in comparison to full-length cellulose ring liners.

  20. The Effect of Casting Ring Liner Length and Prewetting on the Marginal Adaptation and Dimensional Accuracy of Full Crown Castings

    PubMed Central

    Haralur, Satheesh B.; Hamdi, Osama A.; Al-Shahrani, Abdulaziz A.; Alhasaniah, Sultan

    2017-01-01

    Aim: To evaluate the effect of varying cellulose casting ring liner length and its prewetting on the marginal adaptation and dimensional accuracy of full veneer metal castings. Materials and Methods: The master die was milled in stainless steel to fabricate the wax pattern. Sixty wax patterns were fabricated with a uniform thickness of 1.5 mm at an occlusal surface and 1 mm axial surface, cervical width at 13.5 mm, and 10 mm cuspal height. The samples were divided into six groups (n = 10). Groups I and II samples had the full-length cellulose prewet and dry ring liner, respectively. The groups III and IV had 2 mm short prewet and dry cellulose ring liner, respectively, whereas groups V and VI were invested in 6 mm short ring liner. The wax patterns were immediately invested in phosphate bonded investment, and casting procedure was completed with nickel-chrome alloy. The castings were cleaned and mean score of measurements at four reference points for marginal adaption, casting height, and cervical width was calculated. The marginal adaption was calculated with Imaje J software, whereas the casting height and cervical width was determined using a digital scale. The data was subjected to one-way analysis of varaince and Tukey post hoc statistical analysis with Statistical Package for the Social Sciences version 20 software. Results: The group II had the best marginal adaption with a gap of 63.786 μm followed by group I (65.185 μm), group IV (87.740 μm), and group III (101.455 μm). A large marginal gap was observed in group V at 188.871 μm. Cuspal height was more accurate with group V (10.428 mm), group VI (10.421 mm), and group II (10.488 mm). The cervical width was approximately similar in group I, group III, and group V. Statistically significant difference was observed in Tukey post hoc analysis between group V and group VI with all the other groups with regards to marginal adaptation. Conclusion: The dry cellulose ring liners provided better marginal adaptation in comparison to prewet cellulose ring liners. Accurate cuspal height was obtained with shorter ring liner in comparison to full-length cellulose ring liners. PMID:28316950

  1. Milling strategies evaluation when simulating the forming dies' functional surfaces production

    NASA Astrophysics Data System (ADS)

    Ižol, Peter; Tomáš, Miroslav; Beňo, Jozef

    2016-05-01

    The paper deals with selection and evaluation of milling strategies, available in CAM systems and applicable when complicated shape parts are produced, such as forming dies. A method to obtain samples is proposed and this stems from real forming die surface machined by proper strategies. The strategy applicability for the whole part - forming die - is reviewed by the particular specimen evaluation. The presented methodology has been verified by machining model die and comparing it to the production procedure proposed in other CAM systems.

  2. Mechanical Properties and Tensile Failure Analysis of Novel Bio-absorbable Mg-Zn-Cu and Mg-Zn-Se Alloys for Endovascular Applications

    PubMed Central

    Persaud-Sharma, Dharam; Budiansky, Noah; McGoron, Anthony J.

    2013-01-01

    In this paper, the mechanical properties and tensile failure mechanism of two novel bio-absorbable as-cast Mg-Zn-Se and Mg-Zn-Cu alloys for endovascular medical applications are characterized. Alloys were manufactured using an ARC melting process and tested as-cast with compositions of Mg-Zn-Se and Mg-Zn-Cu, being 98/1/1 wt.% respectively. Nanoindentation testing conducted at room temperature was used to characterize the elastic modulus (E) and surface hardness (H) for both the bare alloys and the air formed oxide layer. As compared to currently available shape memory alloys and degradable as-cast alloys, these experimental alloys possess superior as-cast mechanical properties that can increase their biocompatibility, degradation kinetics, and the potential for medical device creation. PMID:23543822

  3. ToxCast Chemical Landscape: Paving the Road to 21st Century Toxicology.

    PubMed

    Richard, Ann M; Judson, Richard S; Houck, Keith A; Grulke, Christopher M; Volarath, Patra; Thillainadarajah, Inthirany; Yang, Chihae; Rathman, James; Martin, Matthew T; Wambaugh, John F; Knudsen, Thomas B; Kancherla, Jayaram; Mansouri, Kamel; Patlewicz, Grace; Williams, Antony J; Little, Stephen B; Crofton, Kevin M; Thomas, Russell S

    2016-08-15

    The U.S. Environmental Protection Agency's (EPA) ToxCast program is testing a large library of Agency-relevant chemicals using in vitro high-throughput screening (HTS) approaches to support the development of improved toxicity prediction models. Launched in 2007, Phase I of the program screened 310 chemicals, mostly pesticides, across hundreds of ToxCast assay end points. In Phase II, the ToxCast library was expanded to 1878 chemicals, culminating in the public release of screening data at the end of 2013. Subsequent expansion in Phase III has resulted in more than 3800 chemicals actively undergoing ToxCast screening, 96% of which are also being screened in the multi-Agency Tox21 project. The chemical library unpinning these efforts plays a central role in defining the scope and potential application of ToxCast HTS results. The history of the phased construction of EPA's ToxCast library is reviewed, followed by a survey of the library contents from several different vantage points. CAS Registry Numbers are used to assess ToxCast library coverage of important toxicity, regulatory, and exposure inventories. Structure-based representations of ToxCast chemicals are then used to compute physicochemical properties, substructural features, and structural alerts for toxicity and biotransformation. Cheminformatics approaches using these varied representations are applied to defining the boundaries of HTS testability, evaluating chemical diversity, and comparing the ToxCast library to potential target application inventories, such as used in EPA's Endocrine Disruption Screening Program (EDSP). Through several examples, the ToxCast chemical library is demonstrated to provide comprehensive coverage of the knowledge domains and target inventories of potential interest to EPA. Furthermore, the varied representations and approaches presented here define local chemistry domains potentially worthy of further investigation (e.g., not currently covered in the testing library or defined by toxicity "alerts") to strategically support data mining and predictive toxicology modeling moving forward.

  4. Effect of a new tension system, used in acrylic resin flasking, on the dimensional stability of denture bases.

    PubMed

    Consani, Rafael Leonardo Xediek; Domitti, Saide Sarckis; Consani, Simonides

    2002-09-01

    The pressure of final closure may be released when the flask is removed from the mechanical or pneumatic press and placed in the spring clamp. This release in pressure may result in dimensional changes that distort the denture base. The purpose of this study was to investigate differences between the dimensional stability of standardized simulated denture bases processed by traditional moist heat-polymerization and those processed by use of a new tension system. A metal master die was fabricated to simulate an edentulous maxillary arch without irregularities in the alveolar ridge walls. A silicone mold of this metallic die was prepared, and 40 stone casts were formed from the mold with type III dental stone. The casts were randomly assigned to 4 test groups (A-D) of 10 specimens each. A uniform denture base pattern was made on each stone cast with a 1.5-mm thickness of base-plate wax, measured with a caliper. The patterns were invested for traditional hot water processing. A polymethyl methacrylate dough was prepared and packed for processing. The flasks in groups A and B were closed with the traditional pressure technique and placed in spring clamps after final closure. The flasks in groups C and D were pressed between the metallic plates of the new tension system after the final closure. The group A and C flasks were immediately immersed in the water processing unit at room temperature (25 degrees +/- 2 degrees C). The unit was programmed to raise the temperature to 74 degrees C over 1 hour, and then maintained the temperature at 74 degrees C for 8 hours. The group B and D flasks were bench stored at room temperature (25 degrees +/- 2 degrees C) for 6 hours and were then subjected to the same moist heat polymerization conditions as groups A and C. All processed dentures were bench cooled for 3 hours. After recovery from the flasks, the base-cast sets were transversally sectioned into 3 parts (corresponding to 3 zones): (1) distal of the canines, (2) mesial of the first molars, and (3) mesial of the posterior palate). These areas had been previously established and standardized by use of a pattern denture in the sawing device to determine the sections in each base-cast set. Base-cast gaps were measured at 5 predetermined points on each section with an optical micrometer that had a tolerance of 0.001 mm. Collected data were analyzed with analysis of variance and Tukey's test. Denture bases processed with the new tension system exhibited significantly better base adaptation than those processed with traditional acrylic resin packing. Immediately after polymerization (Groups A and C), mean dimensional change values were 0.213 +/- 0.055 mm for the traditional packing technique and 0.173 +/- 0.050 mm for new tension system. After delayed polymerization (Groups B and D), the values were 0.216 +/- 0.074 mm for the traditional packing technique and 0.164 +/- 0.032 mm for new tension system. With both techniques, dimensional changes in the posterior palatal zone were greater (conventional = 0.286 +/- 0.038 mm; new system = 0.214 +/- 0.024 mm) than those elsewhere on the base-cast set. Within the limitations of this study, the new tension packing system was associated with decreased dimensional changes in the simulated maxillary denture bases processed with heat-polymerization.

  5. The application of cast SiC/Al to rotary engine components

    NASA Technical Reports Server (NTRS)

    Stoller, H. M.; Carluccio, J. R.; Norman, J. P.

    1986-01-01

    A silicon carbide reinforced aluminum (SiC/Al) material fabricated by Dural Aluminum Composites Corporation was tested for various components of rotary engines. Properties investigated included hardness, high temperature strength, wear resistance, fatigue resistance, thermal conductivity, and expansion. SiC/Al appears to be a viable candidate for cast rotors, and may be applicable to other components, primarily housings.

  6. Management of Intolerance to Casting the Upper Extremities in Claustrophobic Patients

    PubMed Central

    Nagura, Issei; Kanatani, Takako; Sumi, Masatoshi; Inui, Atsuyuki; Mifune, Yutaka; Kokubu, Takeshi; Kurosaka, Masahiro

    2014-01-01

    Introduction. Some patients showed unusual responses to the immobilization without any objective findings with casts in upper extremities. We hypothesized their that intolerance with excessive anxiety to casts is due to claustrophobia triggered by cast immobilization. The aim of this study is to analyze the relevance of cast immobilization to the feeling of claustrophobia and discover how to handle them. Methods. There were nine patients who showed the caustrophobic symptoms with their casts. They were assesed whether they were aware of their claustrophobis themselves. Further we investigated the alternative immobilization to casts. Results. Seven out of nine cases that were aware of their claustrophobic tendencies either were given removable splints initially or had the casts converted to removable splints when they exhibited symptoms. The two patients who were unaware of their latent claustrophobic tendencies were identified when they showed similar claustrophobic symptoms to the previous patients soon after short arm cast application. We replaced the casts with removable splints. This resolved the issue in all cases. Conclusions. We should be aware of the claustrophobia if patients showed unusual responses to the immobilization without any objective findings with casts in upper extremities, where removal splint is practical alternative to cast to continue the treatment successfully. PMID:25379544

  7. Optimization to Develop Multiple Response Microstructure and Hardness of Ductile Iron Casting by using GRA

    NASA Astrophysics Data System (ADS)

    Kabnure, Bahubali Bhupal; Shinde, Vasudev Dhondiram; Kolhapure, Rakesh Ramchandra

    2018-05-01

    Ductile irons are important engineering materials because of its high strength to weight ratio and castability. The ductile iron castings are used widely for automobile applications due to their wide spectrum of property range. Weight reduction is important in automobile to improve its fuel efficiency which can be achieved by thinning down the casting sections without altering its functionality. Generally, automobile castings are having varying section thickness. Varying thickness castings offers different cooling rates while solidification of the casting. The solidification cooling rate decides the final microstructure of the cast components. Cooling rate was found to affect directly the amount of pearlite and ultimately the as cast properties in varying thickness ductile iron castings. In view of this, the automobile impeller casting is selected for study in the present work as it consists of varying section thickness in which small sections are connected to central hub. The casting solidification simulations were performed and analyzed. The solidification cooling rates were analyzed further to correlate the experimental processing parameters. The samples from poured castings were analyzed for microstructure and hardness at different section thickness. Multiple response optimization of microstructure and hardness was carried out by combined Taguchi and Grey Relational Analysis (GRA). Contribution of input variables on the output variables is attained using ANOVA.

  8. Spotted black snake (Pseudechis guttatus) envenomation in a maned wolf (Chrysocyon brachyurus).

    PubMed

    Portas, Timothy J; Montali, Richard J

    2007-09-01

    Envenomation by a spotted black snake (Pseudechis guttatus), following multiple bites on the buccal mucosa of a captive maned wolf (Chrysocyon brachyurus), caused the animal's collapse, hemolysis, rhabdomyolysis, local tissue necrosis, hepatic and renal failure, and subsequent death. The wolf died despite intensive supportive care including antivenom administration, fluid support, and a blood transfusion. Gross necropsy findings included myocardial and intestinal hemorrhage, pulmonary congestion, hepatomegaly, and splenomegaly. Microscopic examination of formalin-fixed tissues demonstrated pulmonary and abdominal visceral hemorrhage, acute nephrosis with casts, multifocal hepatic necrosis, and splenic congestion.

  9. Mechanical joining of materials with limited ductility: Analysis of process-induced defects

    NASA Astrophysics Data System (ADS)

    Jäckel, M.; Coppieters, S.; Hofmann, M.; Vandermeiren, N.; Landgrebe, D.; Debruyne, D.; Wallmersberger, T.; Faes, K.

    2017-10-01

    The paper shows experimental and numerical analyses of the clinching process of 6xxx series aluminum sheets in T6 condition and the self-pierce riveting process of an aluminum die casting. In the experimental investigations the damage behavior of the materials when using different tool parameters is analyzed. The focus of the numerical investigations is the damage prediction by a comparison of different damage criteria. Moreover, strength-and fatigue tests were carried out to investigate the influence of the joining process-induced damages on the strength properties of the joints.

  10. Characterization of Ni-Cr alloys using different casting techniques and molds.

    PubMed

    Chen, Wen-Cheng; Teng, Fu-Yuan; Hung, Chun-Cheng

    2014-02-01

    This study differentiated the mechanical properties of nickel-chromium (Ni-Cr) alloys under various casting techniques (different casting molds and casting atmospheres). These techniques were sampled by a sand mold using a centrifugal machine in ambient air (group I) and electromagnetic induction in an automatic argon castimatic casting machine (group II). The specimen casting used a graphite mold by a castimatic casting machine (group III). The characteristics of the Ni-Cr alloys, yield and ultimate tensile strength, bending modulus, microhardness, diffraction phase, grindability, ability to spring back, as well as ground microstructure and pattern under different casting conditions were evaluated. The group III specimens exhibited the highest values in terms of strength, modulus, hardness, and grindability at a grind rate of 500 rpm. Moreover, group III alloys exhibited smaller grain sizes, higher ability to spring back, and greater ductility than those casted by sand investment (groups I and II). The main factor, "casting mold," significantly influenced all mechanical properties. The graphite mold casting of the Ni-Cr dental alloys in a controlled atmosphere argon casting system provided an excellent combination of high mechanical properties and good ability to spring back, and preserved the ductile properties for application in Ni-Cr porcelain-fused system. The results can offer recommendations to assist a prosthetic technician in selecting the appropriate casting techniques to obtain the desired alloy properties. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Effect of second to first normal stress difference ratio at the die exit on neck-in phenomenon in polymeric flat film production

    NASA Astrophysics Data System (ADS)

    Barborik, Tomas; Zatloukal, Martin

    2017-05-01

    In this study, viscoelastic modeling of the extrusion film casting process, based on the lD membrane model and modified Leonov constitutive equation, was conducted and the effect of the viscoelastic stress state at the die exit (captured here via second to first normal stress difference ratio) on the unwanted neck-in phenomenon has been analyzed for wide range of Deborah numbers and materials having different level of uniaxial and planar extensional strain hardening. Relevant experimental data for LDPE and theoretical predictions based on multimode eXtended Pom-Pom model acquired from the open literature were used for the validation purposes. It was found that firstly, the predicting capabilities of both constitutive equations for given material and processing conditions are comparable even if the single mode modified Leonov model was used and secondly, the agreement between theoretical and experimental data on neck-in is fairly good. Results of the theoretical study revealed that the viscoelastic stress state at the die exit (i.e. -N2/N1 ratio) increases the level of neck-in if uniaxial extensional strain hardening, planar to uniaxial extensional viscosity ratio and Deborah number increases. It has also been revealed that there exists threshold value for Deborah number and extensional strain hardening below which the neck-in becomes independent on the die exit stress state.

  12. Casting materials and their application in research and teaching.

    PubMed

    Haenssgen, Kati; Makanya, Andrew N; Djonov, Valentin

    2014-04-01

    From a biological point of view, casting refers to filling of anatomical and/or pathological spaces with extraneous material that reproduces a three-dimensional replica of the space. Casting may be accompanied by additional procedures such as corrosion, in which the soft tissue is digested out, leaving a clean cast, or the material may be mixed with radiopaque substances to allow x-ray photography or micro computed topography (µCT) scanning. Alternatively, clearing of the surrounding soft tissue increases transparency and allows visualization of the casted cavities. Combination of casting with tissue fixation allows anatomical dissection and didactic surgical procedures on the tissue. Casting materials fall into three categories namely, aqueous substances (India ink, Prussian blue ink), pliable materials (gelatins, latex, and silicone rubber), or hard materials (methyl methacrylates, polyurethanes, polyesters, and epoxy resins). Casting has proved invaluable in both teaching and research and many phenomenal biological processes have been discovered through casting. The choice of a particular material depends inter alia on the targeted use and the intended subsequent investigative procedures, such as dissection, microscopy, or µCT. The casting material needs to be pliable where anatomical and surgical manipulations are intended, and capillary-passable for ultrastructural investigations.

  13. A comparison between three different pit and fissure sealants with regard to marginal integrity.

    PubMed

    Fernandes, Kristlee Sabrin; Chalakkal, Paul; de Ataide, Ida de Noronha; Pavaskar, Rajdeep; Fernandes, Precylia Philo; Soni, Harleen

    2012-04-01

    THE AIM OF THIS STUDY IS TO COMPARE THE OCCURRENCE OF ENAMEL FRACTURES, SEALANT FRACTURES AND MARGINAL FISSURES AFTER PLACEMENT OF THREE SEALANTS: Helioseal F, Conseal F and Clinpro. Thirty individuals between 13 and 15 years of age, diagnosed with pit and fissure caries by visual and DIAGNOdent examination, were chosen for sealant placement on their mandibular molars. The sealants were placed at random, after which, impressions were made with polyvinyl siloxane and casts were fabricated. Dies were prepared, each of which were sputter coated with gold in order to be examined under a scanning electron microscope. The following morphologies were analyzed from dies from each of the sealant groups: Continuous margins, sealant fractures, marginal fissures and enamel fractures. After six months, they were recalled for impression making. Dies were prepared and microscopically analyzed as mentioned. Based on the time of evaluation, there were two groups: Initial group (soon after placement) and final group (after six months). Statistical analysis was done using the paired 't' test and One-way analysis of variance (ANOVA). Clinpro had the greatest fracture resistance, followed by Conseal F and Helioseal F. The occurrence of marginal fissure was found to be least with Clinpro.

  14. Demonstration of the Impact of Thermomagnetic Processing on Cast Aluminum Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ludtka, Gerard Michael; Murphy, Bart L.; Rios, Orlando

    2017-10-01

    This project builds on an earlier Manufacturing Demonstration Facility Technical Collaboration phase 1 project to investigate application of high magnetic fields during solution heat treating and aging of three different cast aluminum alloys.

  15. Feasibility Assessment for Pressure Casting of Ceramic-Aluminum Composites for NASA's Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2005-01-01

    Feasibility assessment of pressure casting of ceramic-aluminum composites for NASA% propulsion applications is summarized. A combination of several demonstration projects to produce three unique components for liquid hydrogen-oxygen rocket engine% flanges, valves and turbo-pump housing are conducted. These components are made from boron carbide, silicon carbide and alumina powders fabricated into complex net shaped parts using dry green powder compaction, slip casting or a novel 3D ink-jet printing process, followed by sintering to produce performs that can be pressure cast by infiltration with molten aluminum. I n addition, joining techniques are also explored to insure that these components can be assembled into a structure without degrading their highly tailored properties. The feasibility assessment was made to determine if these new materials could provide a significant weight savings, thereby reducing vehicle launch costs, while being durable materials to increase safety and performance for propulsion system.

  16. Liquid Metal Engineering by Application of Intensive Melt Shearing

    NASA Astrophysics Data System (ADS)

    Patel, Jayesh; Zuo, Yubo; Fan, Zhongyun

    In all casting processes, liquid metal treatment is an essential step in order to produce high quality cast products. A new liquid metal treatment technology has been developed which comprises of a rotor/stator set-up that delivers high shear rate to the liquid melt. It generates macro-flow in a volume of melt for distributive mixing and intensive shearing for dispersive mixing. The high shear device exhibits significantly enhanced kinetics for phase transformations, uniform dispersion, distribution and size reduction of solid particles and gas bubbles, improved homogenisation of chemical composition and temperature fields and also forced wetting of usually difficult-to-wet solid particles in the liquid metal. Hence, it can benefit various casting processes to produce high quality cast products with refined microstructure and enhanced mechanical properties. Here, we report an overview on the application of the new high shear technology to the processing of light metal alloys.

  17. 40 CFR 464.35 - Pretreatment standards for existing sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) 0.0237 0.0116 Zinc (T) 0.0437 0.0165 (2) Applicable to plants that are casting primarily steel, to... Lead (T) 0.0353 0.0174 Zinc (T) 0.0656 0.025 (b) Casting Quench Operations. (1) Applicable to plants... Copper (T) 0.0138 0.0076 Lead (T) 0.0252 0.0124 Zinc (T) 0.0466 0.0176 TTO 0.0257 0.00838 Oil and grease...

  18. 40 CFR 464.35 - Pretreatment standards for existing sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) 0.0237 0.0116 Zinc (T) 0.0437 0.0165 (2) Applicable to plants that are casting primarily steel, to... Lead (T) 0.0353 0.0174 Zinc (T) 0.0656 0.025 (b) Casting Quench Operations. (1) Applicable to plants... Copper (T) 0.0138 0.0076 Lead (T) 0.0252 0.0124 Zinc (T) 0.0466 0.0176 TTO 0.0257 0.00838 Oil and grease...

  19. [Experimental processing of corrosion casts of large animal organs].

    PubMed

    Pálek, R; Liška, V; Eberlová, L; Mírka, H; Svoboda, M; Haviar, S; Emingr, M; Brzoň, O; Mik, P; Třeška, V

    2018-01-01

    Corrosion casts (CCs) are used for the visualization and assessment of hollow structures. CCs with filled capillaries enable (with the help of imaging methods) to obtain data for mathematical organ perfusion modelling. As the processing is more difficult in case of organs with greater volume of the vasculature, mainly organs from small animals have been cast up to now. The aim of this study was to optimize the protocol of corrosion casting of different organs of pig. Porcine organs are relatively easily accessible and frequently used in experimental medicine. Organs from 10 healthy Prestice Black-Pied pigs (6 females, body weight 35-45 kg), were used in this study (liver, spleen, kidneys and small intestine). The organs were dissected, heparin was administered into the systemic circulation and then the vascular bed of the organs was flushed with heparinized saline either in situ (liver) or after their removal (spleen, kidney, small intestine). All handling was done under the water surface to prevent air embolization. The next step was an intraarterial (in case of the liver also intraportal) administration of Biodur E20® (Heidelberg, Germany) resin. After hardening of the resin the organ tissue was dissolved by 15% KOH and the specimen was rinsed with tap water. Voluminous casts were stored in 70% denatured alcohol, the smaller ones were lyophilized. The casts were assessed with a stereomicroscope, computed and microcomputed tomography (CT and microCT), a scanning electron microscope (SEM) and high-resolution digital microscope (HRDM). High-quality CCs of the porcine liver, kidneys, spleen and small intestine were created owing to the sophisticated organ harvesting, the suitable resin and casting procedure. Macroscopic clarity was improved thanks to the possibility of resin dying. Scanning by CT was performed and showed to be a suitable method for the liver cast examination. MicroCT, SEM and HRDM produced images of the most detailed structures of vascular bed. Despite the fact that SEM seems to be an irreplaceable method for CCs quality control, it seems that this modality could be partly replaced by HRDM. MicroCT enabled to obtain data about three-dimensional layout of the vascular bed and data for mathematical modelling of organ perfusion. With regard to the quality of the CCs, they could also be used to teach human anatomy. The protocol of the corrosion casting of the porcine liver, kidneys, spleen and small intestine CCs was optimized. Thanks to different imaging methods, the CCs can be used as a source of data on three-dimensional architecture of the vascular bed. These data can be used for mathematical modeling of organ perfusion which can be helpful for example for optimization of organ resections.Key words: corrosion casts microvasculature Biodur E20® domestic pig animal model.

  20. Heat Treatment Development for a Rapidly Solidified Heat Resistant Cast Al-Si Alloy

    NASA Astrophysics Data System (ADS)

    Kasprzak, W.; Chen, D. L.; Shaha, S. K.

    2013-07-01

    Existing heat treatment standards do not properly define tempers for thin-walled castings that solidified with high solidification rates. Recently emerged casting processes such as vacuum high pressure die casting should not require long solution treatment times due to the fine microstructures arising from rapid solidification rates. The heat treatment studies involving rapidly solidified samples with secondary dendrite arm spacing between 10 and 35 μm were conducted for solution times between 30 min and 9 h and temperatures of 510 and 525 °C and for various aging parameters. The metallurgical analysis revealed that an increase in microstructure refinement could enable a reduction of solution time up to 88%. Solution treatment resulted in the dissolution of Al2Cu and Al5Mg8Si6Cu2, while Fe- and TiZrV-based phases remained partially in the microstructure. The highest strength of approximately 351 ± 9.7 and 309 ± 3.4 MPa for the UTS and YS, respectively, was achieved for a 2-step solution treatment at 510 and 525 °C in the T6 peak aging conditions, i.e., 150 °C for 100 h. The T6 temper did not yield dimensionally stable microstructure since exceeding 250 °C during in-service operation could result in phase transformation corresponding to the over-aging reaction. The microstructure refinement had a statistically stronger effect on the alloy strength than the increase in solutionizing time. Additionally, thermal analysis and dilatometer results were presented to assess the dissolution of phases during solution treatment, aging kinetics as well as dimensional stability.

  1. Vacuum investment cast PH13-8Mo corrosion resistant steel. (SAE standard)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1991-07-01

    An industry-wide interest has arisen with regards to the properties and capabilities of investment cast PH 13-8Mo corrosion resistant steel. Specifically of interest are the structural applications in the aerospace industry for this product heat treated to the H1000 condition. The objective of this AMEC cooperative test program was to generate and compile useful data for aerospace structural evaluation of investment cast PH 13-8Mo heat treated to H1000. The determination was made of overall mechanical properties, fatigue, fracture toughness, and crack growth data along with basic microstructural evaluation of the investment cast material. The evaluation of mechanical property variations betweenmore » cast and machined tensile specimens and evaluation of microstructural constituents. PH 13-8Mo, H1000 investment castings for use in the aerospace industry is included.« less

  2. Novel technologies for the lost foam casting process

    NASA Astrophysics Data System (ADS)

    Jiang, Wenming; Fan, Zitian

    2018-03-01

    Lost foam casting (LFC) is a green precision casting process categorized as a near net forming technology. Yet, despite its popularity, it still suffers from some technological problems, such as poor filling ability of the castings, coarse and non-dense microstructure, low mechanical properties for the Al and Mg LFC processes, and defective carburization for the low carbon steel LFC process. These drawbacks restrict the development and widespread application of the LFC process. To solve these problems, the present study developed several novel LFC technologies, namely, LFC technologies under vacuum and low pressure, vibration solidification, and pressure solidification conditions; expendable shell casting technology; and preparation technology of bimetallic castings based on the LFC process. The results showed that the LFC under vacuum and low pressure evidently improved the filling ability and solved the oxidization problem of the alloys, which is suitable for producing complex and thinwall castings. The vibration and pressure solidifications increased the compactness of the castings and refined the microstructure, significantly improving the mechanical properties of the castings. The expendable shell casting technology could solve the pore, carburization, and inclusion defects of the traditional LFC method, obtaining castings with acceptable surface quality. Moreover, the Al/Mg and Al/Al bimetallic castings with acceptable metallurgical bonding were successfully fabricated using the LFC process. These proposed novel LFC technologies can solve the current technological issues and promote the technological progress of the LFC process.

  3. Energy Saving Melting and Revert Reduction (E-SMARRT): Precision Casting of Steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dr. Von L. Richards

    2011-09-30

    This project addresses improvements in metal casting processes by reducing scrap and reducing the cost of production, due to scrap reduction from investment casting and yield improvement offered by lost foam casting as compared to no-bake or green sand molding. The objectives for the investment casting portion of the subtask are to improve knowledge of fracture toughness of mold shells and the sources of strength limiting flaws and to understand the effects of wax reclamation procedures on wax properties. Applying 'clean steel' approaches to pouring technology and cleanliness in investment casting of steel are anticipated to improve incoming materials inspectionmore » procedures as they affect the microstructure and toughness of the shell. This project focused on two areas of study in the production of steel castings to reduce scrap and save energy: (1) Reducing the amount of shell cracking in investment cast steel production; (2) Investigate the potential of lost foam steel casting The basic findings regarding investment casting shell cracking were: (1) In the case of post pouring cracking, this could be related to phase changes in silica upon cooling and could be delayed by pouring arrangement strategies that maintained the shell surface at temperature for longer time. Employing this delay resulted in less adherent oxidation of castings since the casting was cooler at the time o fair exposure. (2) A model for heat transfer through water saturated shell materials under steam pressure was developed. (3) Initial modeling result of autoclave de-waxing indicated the higher pressure and temperature in the autoclave would impose a steeper temperature gradient on the wax pattern, causing some melt flow prior to bulk expansion and decreasing the stress on the green shell. Basic findings regarding lost foam casting of steel at atmospheric pressure: (1) EPS foam generally decomposes by the collapse mode in steel casting. (2) There is an accumulation of carbon pick-up at the end of the casting opposite the gate. (3) It is recommended that lost foam castings in steel be gated for a quiescent fill in an empty cavity mold to prevent foam occlusion defects from the collapse mode. The energy benefit is primarily in yield savings and lower casting weight per function due to elimination of draft and parting lines for the larger lost foam castings. For the smaller investment casting, scrap losses due to shell cracking will be reduced. Both of these effects will reduce the metal melted per good ton of castings. There will also be less machine stock required per casting which is a yield savings and a small additional energy savings in machining. Downstream savings will come from heavy truck and railroad applications. Application of these processes to heavy truck castings will lighten the heavy truck fleet by about ten pounds per truck. Using ten years to achieve full penetration of the truck fleet at linear rate this will result in a fuel savings of 131 trillion BTU over ten years.« less

  4. 40 CFR 420.60 - Applicability; description of the continuous casting subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS IRON AND STEEL MANUFACTURING POINT SOURCE CATEGORY... owned treatment works resulting from the continous casting of molten steel into intermediate or semi-finished steel products through water cooled molds. ...

  5. Improved Slip Casting Of Ceramic Models

    NASA Technical Reports Server (NTRS)

    Buck, Gregory M.; Vasquez, Peter; Hicks, Lana P.

    1994-01-01

    Improved technique of investment slip casting developed for making precise ceramic wind-tunnel models. Needed in wind-tunnel experiments to verify predictions of aerothermodynamical computer codes. Ceramic materials used because of their low heat conductivities and ability to survive high temperatures. Present improved slip-casting technique enables casting of highly detailed models from aqueous or nonaqueous solutions. Wet shell molds peeled off models to ensure precise and undamaged details. Used at NASA Langley Research Center to form superconducting ceramic components from nonaqueous slip solutions. Technique has many more applications when ceramic materials developed further for such high-strength/ temperature components as engine parts.

  6. AIS/DOE Technology Roadmap Program: Strip Casting: Anticipating New Routes To Steel Sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prof. Alan W. Camb; Prof. Anthony Rollett

    2001-08-31

    To determine the potential for strip casting in the steel industry and to develop the fundamental knowledge necessary to allow the role of strip casting in the modern steel industry to be understood. Based upon a study of carbon steel strip castings that were either produced for the program at British Steel or were received from a pre-commercial production machine, the following conclusions were made. Strip casting of carbon steels is technically feasible for sheet material from slightly less than 1 mm thick to 3 mm thick, and, assuming that it is economically viable, it will be first applied inmore » carbon steel markets that do not require stringent surface quality or extensive forming. The potential of strip casting as a casting process to be developed for steel castings is very high as the cast strip has some very novel characteristics. Direct cast carbon strip has better surface quality, shape and profile than any other casting process currently available. The more rapidly solidified structure of direct cast strip tends to be strong with low ductility; however, with adequate thermal treatment, it is possible to develop a variety of properties from the same grade. The process is more amenable at this time to production tonnages per year of the order of 500,000 tons and as such will first find niche type applications. This technology is an additional technology for steel production and will be in addition to, rather than a replacement for, current casting machines.« less

  7. Application of Al-2La-1B Grain Refiner to Al-10Si-0.3Mg Casting Alloy

    NASA Astrophysics Data System (ADS)

    Jing, Lijun; Pan, Ye; Lu, Tao; Li, Chenlin; Pi, Jinhong; Sheng, Ningyue

    2018-05-01

    This paper reports the application and microstructure refining effect of an Al-2La-1B grain refiner in Al-10Si-0.3Mg casting alloy. Compared with the traditional Al-5Ti-1B refiner, Al-2La-1B refiner shows better performances on the grain refinement of Al-10Si-0.3Mg alloy. Transmission electron microscopy analysis suggests that the crystallite structure features of LaB6 are beneficial to the heterogeneous nucleation of α-Al grains. Regarding the mechanical performances, tensile properties of Al-10Si-0.3Mg casting alloy are prominently improved, due to the refined microstructures.

  8. High Strength and Wear Resistant Aluminum Alloy for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.; Chen, Po Shou

    2003-01-01

    Originally developed by NASA as high performance piston alloys to meet U.S. automotive legislation requiring low exhaust emission, the novel NASA alloys now offer dramatic increase in tensile strength for many other applications at elevated temperatures from 450 F (232 C) to about 750 F (400 C). It is an ideal low cost material for cast automotive components such as pistons, cylinder heads, cylinder liners, connecting rods, turbo chargers, impellers, actuators, brake calipers and rotors. It can be very economically produced from conventional permanent mold, sand casting or investment casting, with silicon content ranging from 6% to 18%. At high silicon levels, the alloy exhibits excellent thermal growth stability, surface hardness and wear resistant properties.

  9. Non-specific effect of measles vaccination on overall child mortality in an area of rural India with high vaccination coverage: a population-based case-control study.

    PubMed Central

    Kabir, Zubair; Long, Jean; Reddaiah, Vankadara P.; Kevany, John; Kapoor, Suresh K.

    2003-01-01

    OBJECTIVE: To determine whether vaccination against measles in a population with sustained high vaccination coverage and relatively low child mortality reduces overall child mortality. METHODS: In April and May 2000, a population-based, case-control study was conducted at Ballabgarh (an area in rural northern India). Eligible cases were 330 children born between 1 January 1991 and 31 December 1998 who died aged 12-59 months. A programme was used to match 320 controls for age, sex, family size, and area of residence from a birth cohort of 15 578 born during the same time period. FINDINGS: The analysis used 318 matched pairs and suggested that children aged 12-59 months who did not receive measles vaccination in infancy were three times more likely to die than those vaccinated against measles. Children from lower caste households who were not vaccinated in infancy had the highest risk of mortality (odds ratio, 8.9). A 27% increase in child mortality was attributable to failure to vaccinate against measles in the study population. CONCLUSION: Measles vaccine seems to have a non-specific reducing effect on overall child mortality in this population. If true, children in lower castes may reap the greatest gains in survival. The findings should be interpreted with caution because the nutritional status of the children was not recorded and may be a residual confounder. "All-cause mortality" is a potentially useful epidemiological endpoint for future vaccine trials. PMID:12764490

  10. Application of Rapid Prototyping to the Investment Casting of Test Hardware (MSFC Center Director's Discretionary Fund Final Report, Project No. 98-08)

    NASA Technical Reports Server (NTRS)

    Cooper, K. G.; Wells, D.

    2000-01-01

    Investment casting masters of a selected propulsion hardware component, a fuel pump housing, were rapid prototyped on the several processes in-house, along with the new Z-Corp process acquired through this project. Also, tensile samples were prototyped and cast using the same significant parameters. The models were then shelled in-house using a commercial grade zircon-based slurry and stucco technique. Next, the shelled models were fired and cast by our in-house foundry contractor (IITRI), with NASA-23, a commonly used test hardware metal. The cast models are compared by their surface finish and overall appearance (i.e., the occurrence of pitting, warping, etc.), as well as dimensional accuracy.

  11. Materials for Advanced Ultrasupercritical Steam Turbines Task 4: Cast Superalloy Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thangirala, Mani

    The Steam Turbine critical stationary structural components are high integrity Large Shell and Valve Casing heavy section Castings, containing high temperature steam under high pressures. Hence to support the development of advanced materials technology for use in an AUSC steam turbine capable of operating with steam conditions of 760°C (1400°F) and 35 Mpa (5000 psia), Casting alloy selection and evaluation of mechanical, metallurgical properties and castability with robust manufacturing methods are mandated. Alloy down select from Phase 1 based on producability criteria and creep rupture properties tested by NETL-Albany and ORNL directed the consortium to investigate cast properties of Haynesmore » 282 and Haynes 263. The goals of Task 4 in Phase 2 are to understand a broader range of mechanical properties, the impact of manufacturing variables on those properties. Scale up the size of heats to production levels to facilitate the understanding of the impact of heat and component weight, on metallurgical and mechanical behavior. GE Power & Water Materials and Processes Engineering for the Phase 2, Task 4.0 Castings work, systematically designed and executed casting material property evaluation, multiple test programs. Starting from 15 lbs. cylinder castings to world’s first 17,000 lbs. poured weight, heavy section large steam turbine partial valve Haynes 282 super alloy casting. This has demonstrated scalability of the material for steam Turbine applications. Activities under Task 4.0, Investigated and characterized various mechanical properties of Cast Haynes 282 and Cast Nimonic 263. The development stages involved were: 1) Small Cast Evaluation: 4 inch diam. Haynes 282 and Nimonic 263 Cylinders. This provided effects of liquidus super heat range and first baseline mechanical data on cast versions of conventional vacuum re-melted and forged Ni based super alloys. 2) Step block castings of 300 lbs. and 600 lbs. Haynes 282 from 2 foundry heats were evaluated which demonstrated the importance of proper heat treat cycles for Homogenization, and Solutionizing parameters selection and implementation. 3) Step blocks casting of Nimonic 263: Carried out casting solidification simulation analysis, NDT inspection methods evaluation, detailed test matrix for Chemical, Tensile, LCF, stress rupture, CVN impact, hardness and J1C Fracture toughness section sensitivity data and were reported. 4) Centrifugal Casting of Haynes 282, weighing 1400 lbs. with hybrid mold (half Graphite and half Chromite sand) mold assembly was cast using compressor casing production tooling. This test provided Mold cooling rates influence on centrifugally cast microstructure and mechanical properties. Graphite mold section out performs sand mold across all temperatures for 0.2% YS; %Elongation, %RA, UTS at 1400°F. Both Stress-LMP and conditional Fracture toughness plots data were in the scatter band of the wrought alloy. 5) Fundamental Studies on Cooling rates and SDAS test program. Evaluated the influence of 6 mold materials Silica, Chromite, Alumina, Silica with Indirect Chills, Zircon and Graphite on casting solidification cooling rates. Actual Casting cooling rates through Liquidus to Solidus phase transition were measured with 3 different locations based thermocouples placed in each mold. Compared with solidification simulation cooling rates and measurement of SDAS, microstructure features were reported. The test results provided engineered casting potential methods, applicable for heavy section Haynes 282 castings for optimal properties, with foundry process methods and tools. 6) Large casting of Haynes 282 Drawings and Engineering FEM models and supplemental requirements with applicable specifications were provided to suppliers for the steam turbine proto type feature valve casing casting. Molding, melting and casting pouring completed per approved Manufacturing Process Plan during 2014 Q4. The partial valve casing was successfully cast after casting methods were validated with solidification simulation analysis and the casting met NDT inspection and acceptance criteria. Heat treated and sectioned to extract trepan samples at different locations comparing with cast on coupons test data. Material properties requisite for design, such as tensile, creep/rupture, LCF, Fracture Toughness, Charpy V-notch chemical analysis testing were carried out. The test results will be presented in the final report. The typical Haynes 282 large size Steam Turbine production casting from Order to Delivery foundry schedule with the activity break up is shown in Figures 107 and 108. • From Purchase Order placement to Casting pouring ~ 26 weeks. 1. Sales and commercial review 3 2. Engineering Drawings/models review 4 3. Pattern and core box manufacturing 6 4. Casting process engineering review 4 5. FEM and solidification simulation analysis 4 6. Gating & Feeder Attachments, Ceramic tiling 2 7. Molding and coremaking production scheduling 6 8. Melting planning and schedule 3 9. Pouring, cooling and shake out 2 • From Pouring to casting Delivery ~ 29 weeks 10. Shot blast and riser cutting, gates removal 3 11. Homogenizing , solutionizing HT furnace prep 4 12. Grinding, Fettling 2 13. Aging HT Cycle, cooling 2 14. VT and LPT NDT inspections 2 15. Radiographic inspection 4 16. Mechanical testing, Chemical analysis test certs 4 17. Casting weld repair upgrades and Aging PWHT 4 18. NDT after weld repairs and casting upgrades 3 19. Casting Final Inspection and test certifications 3 20. Package and delivery 2 Hence the Total Lead time from P.O to Casting delivery is approximately 55 weeks. The Task 4.2 and Task 4.3 activities and reporting completed.« less

  12. Properties of a hybrid plaster-fibreglass cast

    PubMed Central

    Charles, Mark N.; Yen, David

    2000-01-01

    Objective To examine the suitability of a plaster-fibreglass hybrid cast for orthopedic applications, comparing them to plaster of Paris (POP) and fibreglass constructs. Method Groups of 10 standardized hybrid, POP and fibreglass casts were studied. An Instron servo-hydraulic system was used to test the casts in 3-point bending and shear. Outcome measures Strength, stiffness, weight, thickness and cost of the 3 types of cast, and shear strength at the interface between the POP and fibreglass in the hybrid casts. Results The hybrid casts were twice as strong as the POP constructs, were stiffer and weighed 14% less but were thicker and cost 2.5 times more. They were almost as strong as and less than half the cost of the fibreglass constructs but were thicker, not as stiff, and weighed 42% more. The shear strength of the POP–fibreglass interface in the hybrid casts was higher than the 3-point bending strength of this construct by a factor of 3. Conclusions Plaster-fibreglass hybrid casts should be considered for orthopedic use on the basis of their strength, stiffness, weight and cost, combined with their acknowledged advantages of good moulding ability and water resistance. PMID:11045095

  13. ShakeCast Manual

    USGS Publications Warehouse

    Lin, Kuo-Wan; Wald, David J.

    2008-01-01

    ShakeCast is a freely available, post-earthquake situational awareness application that automatically retrieves earthquake shaking data from ShakeMap, compares intensity measures against users? facilities, and generates potential damage assessment notifications, facility damage maps, and other Web-based products for emergency managers and responders.

  14. Producing Hybrid Metal Composites by Combining Additive Manufacturing and Casting

    DOE PAGES

    Pawlowski, Alex E.; Splitter, Derek A.; Muth, Thomas R.; ...

    2017-10-01

    Additive manufacturing by itself provides many benefits, but by combining different materials processing techniques like traditional casting with additive manufacturing to create hybrid processes, custom materials can be tailor-made and mass produced for applications with specific performance needs.

  15. Development of cast alumina-forming austenitic stainless steels

    DOE PAGES

    Muralidharan, G.; Yamamoto, Y.; Brady, M. P.; ...

    2016-09-06

    Cast Fe-Ni-Cr chromia-forming austenitic stainless steels with Ni levels up to 45 wt. % are used at high temperatures in a wide range of industrial applications that demand microstructural stability, corrosion resistance, and creep strength. Although alumina scales offer better corrosion protection at these temperatures, designing cast austenitic alloys that form a stable alumina scale and achieve creep strength comparable to existing cast chromia-forming alloys is challenging. This work outlines the development of cast Fe-Ni-Cr-Al austenitic stainless steels containing about 25 wt. % Ni with good creep strength and the ability to form a protective alumina scale for use atmore » temperatures up to 800 C - 850 C in H 2O-, S-, and C- containing environments. Creep properties of the best alloy were comparable to that of HK-type cast chromia-forming alloy along with improved oxidation resistance typical of alumina-forming alloys. Lastly, challenges in the design of cast alloys and a potential path to increasing the temperature capability are discussed.« less

  16. Development of Cast Alumina-Forming Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Muralidharan, G.; Yamamoto, Y.; Brady, M. P.; Walker, L. R.; Meyer, H. M., III; Leonard, D. N.

    2016-11-01

    Cast Fe-Ni-Cr chromia-forming austenitic stainless steels with Ni levels up to 45 wt.% are used at high temperatures in a wide range of industrial applications that demand microstructural stability, corrosion resistance, and creep strength. Although alumina scales offer better corrosion protection at these temperatures, designing cast austenitic alloys that form a stable alumina scale and achieve creep strength comparable to existing cast chromia-forming alloys is challenging. This work outlines the development of cast Fe-Ni-Cr-Al austenitic stainless steels containing about 25 wt.% Ni with good creep strength and the ability to form a protective alumina scale for use at temperatures up to 800-850°C in H2O-, S-, and C-containing environments. Creep properties of the best alloy were comparable to that of HK-type cast chromia-forming alloys along with improved oxidation resistance typical of alumina-forming alloys. Challenges in the design of cast alloys and a potential path to increasing the temperature capability are discussed.

  17. Morphological characterization of β phase in poly-(vinylidenefluoride) film prepared by spin cast method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehtani, Hitesh Kumar, E-mail: kkraina@gmail.com; Kumar, Rishi, E-mail: kkraina@gmail.com; Raina, K. K., E-mail: kkraina@gmail.com

    2014-04-24

    Poly-(Vinylidene fluoride) PVDF film was prepared by spin casting method to control the pore size of the matrix. The morphological spherulitic structure was confirmed Scanning Electron Microscopy (SEM) after gold sputtering and the presence of β phase was ensured in spin cast PVDF film by the FTIR spectroscopy. The β phase is very important in the application because it improve the properties like piezoelectricity by modifying PVDF crystallinity.

  18. A comprehensive review on cold work of AISI D2 tool steel

    NASA Astrophysics Data System (ADS)

    Abdul Rahim, Mohd Aidil Shah bin; Minhat, Mohamad bin; Hussein, Nur Izan Syahriah Binti; Salleh, Mohd Shukor bin

    2017-11-01

    As a common material in mould and die application, AISI D2 cold work tool steel has proven to be a promising chosen material in the industries. However, challenges remain in using AISI D2 through a modified version with a considerable progress having been made in recent years. This paper provides a critical review of the original as-cast AISI D2 cold work tool steel up to the modified version. The main purpose is to develop an understanding of current modified tool steel trend; the machinability of AISI D2 (drilling, milling, turning, grinding and EDM/WEDM; and the microstructure evolution and mechanical properties of these cold work tool steels due to the presence of alloy materials in the steel matrix. The doping of rare earth alloy element, new steel fabrication processes, significant process parameter in machinability and surface treatment shows that there have been few empirical investigations into these cold work tool steel alloys. This study has discovered that cold work tool steel will remain to be explored in order to survive in the steel industries.

  19. Crystalline gamma-Al2O3 physical vapour deposition-coating for steel thixoforging tools.

    PubMed

    Bobzin, K; Hirt, G; Bagcivan, N; Khizhnyakova, L; Ewering, M

    2011-10-01

    The process of thixoforming, which has been part of many researches during the last decades, combines the advantages of forging and casting for the shaping of metallic components. But due to the high temperatures of semi-solid steel alloys high demands on the tools are requested. To resists the thermal and mechanical loads (wear, friction, thermal and thermomechanical fatigue) protecting thin films are necessary. In this regard crystalline gamma-Al2O3 deposited via Physical Vapour Deposition (PVD) is a promising candidate: It exhibits high thermal stability, high oxidation resistance and high hot hardness. In the present work the application of a (Ti, Al)N/gamma-Al2O3 coating deposited by means of Magnetron Sputter Ion Plating in an industrial coating unit is presented. The coating was analysed by means of Rockwell test, nanoindentation, and Scanning Electron Microscopy (SEM). The coated tool was tested in thixoforging experiments with steel grade X210CrW12 (AlSI D6). The surface of the coated dies was examined with Scanning Electron Microscope (SEM) after 22, 42, 90 and 170 forging cycles.

  20. Fabrication of Ti-0.48Al Alloy by Centrifugal Casting.

    PubMed

    Park, Jong Bum; Lee, Jung-Il; Ryu, Jeong Ho

    2018-09-01

    Many of the unique properties of TiAl alloys that make are attractive for use in high-temperature structural applications also make it challenging to process them into useful products. Cast TiAl is rapidly nearing commercialization, particularly in the vehicle industry, owing to its low production cost. In this study, the centrifugal casting of a TiAl (Ti-48%Al, mole fraction) turbocharger was simulated and an experimental casting was created in vacuum using an induction melting furnace coupled to a ceramic composite mold. Numerical simulation results agreed with the experiment. The crystal structure, microstructure, and chemical composition of the TiAl prepared by centrifugal casting were studied by X-ray diffractometry, optical microscopy, field emission scanning electron microscopy (FE-SEM) and energy dispersive spectroscopy (EDS). FE-SEM and EDS examinations of the TiAl casting revealed that the thickness of the oxide layer (α-case) was typically less than 35 μm.

  1. Evaluation of the Various Drying Methods on Surface Hardness of Type IV Dental Stone

    PubMed Central

    Sudhakar, A; Srivatsa, G; Shetty, Rohit; Rajeswari, C L; Manvi, Supriya

    2015-01-01

    Background: Studies regarding the effect of various methods to increase the surface hardness of Type IV dental stone are not conclusive. Therefore, this study was carried out to evaluate the effect of air drying, micro oven drying and die hardener on surface hardness of Type IV dental stone. Materials and Methods: A standard metal die was fabricated; polyvinyl siloxane impression material was used to make the molds of metal die. A total of 120 specimens were obtained from two different die stones and were grouped as Group A (kalrock) and Group B (pearl stone), and were subjected to air drying for 24 h, micro oven drying and application of die hardener. These models were then subjected to surface hardness testing using the knoop hardness instrument. The obtained data were subjected to statistical analysis. Results: The hardness of Group A specimens was 64 ± 0.54 Knoop hardness number (KHN) after application of die hardener, 60.47 ± 0.41 KHN after 24 h air drying, 58.2 ± 0.88 after microwave oven drying and 24.6 ± 0.4 after 1 h air drying. The hardness of Group B specimens was 45.59 ± 0.63 KHN after application of die hardener, 40.2 ± 0.63 KHN after 24 h air drying, 38.28 ± 0.55 KHN after microwave oven drying and 19.91 ± 0.64 KHN after 1 h air drying. Conclusion: Group A showed better results than Group B at all times. Application of the die hardener showed highest hardness values followed in the order by 24 h air drying, microwave oven drying and 1 h air drying in both groups. The study showed that air drying the dies for 24 h followed by application of a single layer of the die hardener produced the best surface hardness and is recommended to be followed in practice. PMID:26124610

  2. Modeling the surface contamination of dental titanium investment castings.

    PubMed

    Atwood, R C; Lee, P D; Curtis, R V

    2005-02-01

    The objective of this study was to develop a computational tool for assisting the design of titanium dental castings with minimal defects and to compare computational simulations with casting experiments. Modeling. An in-house cellular-automata solidification and finite-difference diffusion program was coupled with a commercial casting program and applied to (a) simple geometric wedge models and (b) a 3D-laser scan of a molar crown casting. Experimental. Wedges and molar crowns were hand-waxed and investment cast in commercial purity grade 1 (CP-1) titanium by a commercial dental laboratory. The castings were sectioned and analyzed using light and scanning electron microscopy, X-ray microanalysis, and microhardness testing. In the wedge sample, contamination with impurities (Al, Si), including intermetallic precipitates, was found to extend to a depth ranging from 30 to 120 microm depending on the section thickness and hence the local cooling rate. Microstructural and mechanical (hardness) effects were found to a depth ranging from 80 to 250 microm. The coupled micro/macro model predictions showed reasonable agreement for the pattern of contamination. Dental and medical applications demand close dimensional tolerance and freedom from surface impurities and structural flaws in castings having unique shapes. The ability to predict the structural, mechanical, and chemical changes resulting from the casting process will help to design the casting and post-casting processes to minimize these problems.

  3. Fit of cast commercially pure titanium and Ti-6Al-4V alloy crowns before and after marginal refinement by electrical discharge machining.

    PubMed

    Contreras, Edwin Fernando Ruiz; Henriques, Guilherme Elias Pessanha; Giolo, Suely Ruiz; Nobilo, Mauro Antonio Arruda

    2002-11-01

    Titanium has been suggested as a replacement for alloys currently used in single-tooth restorations and fixed partial dentures. However, difficulties in casting have resulted in incomplete margins and discrepancies in marginal fit. This study evaluated and compared the marginal fit of crowns fabricated from a commercially pure titanium (CP Ti) and from Ti-6Al-4V alloy with crowns fabricated from a Pd-Ag alloy that served as a control. Evaluations were performed before and after marginal refinement by electrical discharge machining (EDM). Forty-five bovine teeth were prepared to receive complete cast crowns. Stone and copper-plated dies were obtained from impressions. Fifteen crowns were cast with each alloy (CP Ti, Ti-6Al-4V, and Pd-Ag). Marginal fit measurements (in micrometers) were recorded at 4 reference points on each casting with a traveling microscope. Marginal refinement with EDM was conducted on the titanium-based crowns, and measurements were repeated. Data were analyzed with the Kruskal-Wallis test, paired t test, and independent t test at a 1% probability level. The Kruskal-Wallis test showed significant differences among mean values of marginal fit for the as-cast CP Ti crowns (mean [SD], 83.9 [26.1] microm) and the other groups: Ti-6Al-4V (50.8 [17.2] microm) and Pd-Ag (45.2 [10.4] microm). After EDM marginal refinement, significant differences were detected among the Ti-6Al-4V crowns (24.5 [10.9] microm) and the other 2 groups: CP Ti (50.6 [20.0] microm) and Pd-Ag (not modified by EDM). Paired t test results indicated that marginal refinement with EDM effectively improved the fit of CP Ti crowns (from 83.9 to 50.6 microm) and Ti-6Al-4V crowns (from 50.8 to 24.5 microm). However, the difference in improvement between the two groups was not significant by t test. Within the limitations of this study, despite the superior results for Ti-6Al-4V, both groups of titanium-based crowns had clinically acceptable marginal fits. After EDM marginal refinement, the fit of cast CP Ti and Ti-6Al-4V crowns improved significantly.

  4. Bier block regional anesthesia and casting for forearm fractures: safety in the pediatric emergency department setting.

    PubMed

    Aarons, Chad E; Fernandez, Meagan D; Willsey, Matt; Peterson, Bret; Key, Charles; Fabregas, Jorge

    2014-01-01

    Bier block regional anesthesia was first described in 1908; however, it is uncommonly used for fears of cardiac and neurological complications. Although recent studies have documented safe usage in an adult population, no study to date has investigated its use in a pediatric setting. In addition, most emergency departments feel that splint placement is safer than casting after acute forearm fracture reduction in the pediatric population. However, to our knowledge there is no such study that documents the complication rates associated with immediate casting. The goal of this study was to assess the safety and efficacy of Bier block regional anesthesia and immediate cast application after closed reduction of pediatric forearm fractures. A retrospective review was conducted of patients treated for forearm fractures in a 2-year period at a major metropolitan pediatric hospital. Rates of complications and length and costs of the 2 procedures were analyzed. A total of 600 patients were treated with Bier block regional anesthesia and 645 were treated with conscious sedation for displaced fractures of the forearm in the 2-year study period. No complications requiring admission were seen in either group. No patient experienced compartment syndrome or a need for readmission secondary to cast application. 2.2% and 4.3% (P=0.0382) of patients in the Bier block and sedation groups, respectively, needed their cast bivalved secondary to swelling. The average time from initiation of procedural sedation to discharge was 1 hour and 42 minutes, whereas the time to discharge from initiation of Bier block regional anesthesia was 47 minutes (P<0.0001). The average cost for a patient treated with procedural sedation was $6313, whereas the average cost for the Bier block regional anesthesia group was $4956. Bier block regional anesthesia is a safe, efficient, and cost-effective method of reducing pediatric forearm fractures. Immediate cast application can be used without fear of major complications. Level III--retrospective review.

  5. Integrally cored ceramic investment casting mold fabricated by ceramic stereolithography

    NASA Astrophysics Data System (ADS)

    Bae, Chang-Jun

    Superalloy airfoils are produced by investment casting (IC), which uses ceramic cores and wax patterns with ceramic shell molds. Hollow cored superalloy airfoils in a gas turbine engine are an example of complex IC parts. The complex internal hollow cavities of the airfoil are designed to conduct cooling air through one or more passageways. These complex internal passageways have been fabricated by a lost wax process requiring several processing steps; core preparation, injection molding for wax pattern, and dipping process for ceramic shell molds. Several steps generate problems such as high cost and decreased accuracy of the ceramic mold. For example, costly tooling and production delay are required to produce mold dies for complex cores and wax patterns used in injection molding, resulting in a big obstacle for prototypes and smaller production runs. Rather than using separate cores, patterns, and shell molds, it would be advantageous to directly produce a mold that has the casting cavity and the ceramic core by one process. Ceramic stereolithography (CerSLA) can be used to directly fabricate the integrally cored ceramic casting mold (ICCM). CerSLA builds ceramic green objects from CAD files from many thin liquid layers of powder in monomer, which are solidified by polymerization with a UV laser, thereby "writing" the design for each slice. This dissertation addresses the integrally cored casting ceramic mold (ICCM), the ceramic core with a ceramic mold shell in a single patternless construction, fabricated by ceramic stereolithography (CerSLA). CerSLA is considered as an alternative method to replace lost wax processes, for small production runs or designs too complex for conventional cores and patterns. The main topic is the development of methods to successfully fabricate an ICCM by CerSLA from refractory silica, as well as related issues. The related issues are the segregation of coarse fused silica powders in a layer, the degree of segregation parameter to prevent segregation, and sintering and cristobalite transformation in fused silica compacts.

  6. Tribological properties of thermally sprayed TiAl-Al2O3 composite coating

    NASA Astrophysics Data System (ADS)

    Salman, A.; Gabbitas, B.; Li, J.; Zhang, D.

    2009-08-01

    The use of thermal spray coatings provides protection to the surfaces operating in severe environments. The main goal of the current work is to investigate the possibility of using a high velocity oxy fuel (HVOF) thermally sprayed wear resistant TiAl/Al2O3 coating on tool steel (H13) which is used for making dies for aluminium high pressure die casting. A feedstock of TiAl/Al2O3 composite powder was produced from a mixture of Al and TiO2 powders by high energy mechanical milling, followed by a thermal reaction process. The feedstock was then thermally sprayed using a high velocity oxy-fuel (HVOF) technique onto H13 steel substrates to produce a composite coating. The present study describes and compares the tribological properties such as friction and sliding wear rate of the coating both at room and high temperature (700°C). The results showed that the composite coating has lower wear rate at high temperature (700°C) than the uncoated H13 sample. At Room temperature without using lubricant there is no much significant difference between the wear rate of the coated and uncoated samples. The experimental results showed that the composite coating has great potential for high temperature application due to its lower wear rate at high temperature in comparison with the uncoated sample at the same temperature. The composite coating was characterized using scanning electron microscopy (SEM), optical microscopy and X-ray diffractometry (XRD). This paper reports the experimental observations and discusses the wear resistance performance of the coatings at room and high temperatures.

  7. Distal limb cast sores in horses: risk factors and early detection using thermography.

    PubMed

    Levet, T; Martens, A; Devisscher, L; Duchateau, L; Bogaert, L; Vlaminck, L

    2009-01-01

    There is a lack of evidence-based data on the prevalence, outcome and risk factors of distal limb cast sores, and no objective tool has been described for the early detection of cast sores. To investigate the prevalence, location, outcome and risk factors of cast sores after application of a distal limb cast and to determine whether static thermography of the cast is a valuable tool for the assessment of sores. A prospective study was conducted on horses treated with a distal limb cast. At each cast removal, cast sores were graded as superficial sores (SS), deep dermal sores (DS) or full thickness skin ulcerations (FS). In several cases, a thermographic evaluation of the cast was performed immediately prior to removal and differences in temperature (AT) between the coolest point of the cast and 2 cast regions predisposed for sore development (dorsoproximal mc/mtIII and palmar/plantar fetlock) were calculated. Mean +/- s.d. total casting time of 70 horses was 31 +/- 18 days. Overall, 57 legs (81%) developed at least SS. Twenty-four legs (34%) ultimately developed DS and one horse had an FS. Multivariable analysis showed that the severity of sores was positively associated with increasing age (OR: 1.111, P = 0.028), a normal (vs. swollen) limb (OR: 3387, P = 0.023) and an increase in total casting time (OR per week: 1.363, P = 0.002). The thermographic evaluation (35 casts) revealed that the severity of sores was positively associated with increasing deltaT (OR: 2.100, P = 0.0005). The optimal cut-off values for the presence of SS and DS were set at, respectively, deltaT = 23 and 43 degrees C. Distal limb cast is a safe coaptation technique with increasing risk of developing sores with time. Thermography is a valuable and rapid clinical tool to monitor the development of cast sores.

  8. Compaction die for forming a solid annulus on a right circular cylinder. [Patent application

    DOEpatents

    Harlow, J.L.

    1981-09-14

    A compacting die is disclosed wherein the improvement comprises providing a screen in the die cavity, the screen being positioned parallel to the side walls of said die and dividing the die cavity into center and annular compartments. In addition, the use of this die in a method for producing an annular clad ceramic fuel material is disclosed.

  9. Nano Precipitation and Hardening of Die-Quenched 6061 Aluminum Alloy.

    PubMed

    Utsunomiya, Hiroshi; Tada, Koki; Matsumoto, Ryo; Watanabe, Katsumi; Matsuda, Kenji

    2018-03-01

    Die quenching is applied to an age-hardenable aluminium alloys to obtain super-saturated solid solution. The application is advantageous because it can reduce number of manufacturing processes, and may increase strength by strain aging. If die quenching is realized in forging as well as sheet forming, it may widen industrial applicability further. In this study, Al-Mg-Si alloy AA6061 8 mm-thick billets were reduced 50% in height without cracks by die-quench forging. Supersaturated solid solution was successfully obtained. The die-quenched specimen shows higher hardness with nano precipitates at shorter aging time than the conventional water-quenched specimen.

  10. The use of magnesium in lightweight lithium-ion battery packs

    NASA Astrophysics Data System (ADS)

    Neelameggham, Neale R.

    2009-04-01

    The analysis of recently announced battery packs for plug-in hybrid electric vehicles (PHEV) shows that the design of the series-parallel combinations is being over-complicated. The proven energy densities of lithium-ion cells from about 200 Wh/kg are being reduced to 90 Wh/kg. The majority of the weight increase seems to be for thermal management. Simpler battery pack designs based on electro-refining pot rooms using self-contained rectangular lithium-ion cells with air cooling inside of die-cast magnesium cell tanks would help avoid hauling dead weight in PHEV by providing considerable weight reduction.

  11. Resistance against bacterial leakage of four luting agents used for cementation of complete cast crowns.

    PubMed

    Zmener, Osvaldo; Pameijer, Cornelis H; Hernández, Sandra

    2014-02-01

    To assess the sealing properties of four luting materials used for cementation of full cast crowns. 40 human premolars were prepared with a chamfer finish line. Stone dies were fabricated and copings were waxed, invested and cast in gold. Ten samples (n = 10) were randomly assigned to four groups. In two groups, resin modified glass-ionomer cements were used, ACTIVA BioACTIVE-CEMENT/BASE/LINER and FujiCem2; the third group received the self-adhesive resin cement Embrace WetBond, while the fourth group served as control with a zinc phosphate cement. After cementation, excess cement was removed followed by bench-set for 10 minutes. All samples were stored in water at 37 degrees C and subjected to thermal cycling (x2000 between 5 and 55 degrees C). Subsequently the occlusal surface was reduced exposing the dentin. After sterilization the specimens were subjected to bacterial microleakage with E. faecalis in a dual chamber apparatus for a period of 60 days. Bacterial leakage was checked daily. Data were analyzed using the Kaplan-Meyer survival test. Significant pairwise differences were analyzed using the Log Rank test and the Fishers' exact test at P < 0.05. ACTIVA BioACTIVE-CEMENT/BASE/LINER, FujiCem2 and Embrace WetBond showed the lowest microleakage scores and differed statistically significantly (P < 0.05) from zinc phosphate cement.

  12. Effect of various putty-wash impression techniques on marginal fit of cast crowns.

    PubMed

    Nissan, Joseph; Rosner, Ofir; Bukhari, Mohammed Amin; Ghelfan, Oded; Pilo, Raphael

    2013-01-01

    Marginal fit is an important clinical factor that affects restoration longevity. The accuracy of three polyvinyl siloxane putty-wash impression techniques was compared by marginal fit assessment using the nondestructive method. A stainless steel master cast containing three abutments with three metal crowns matching the three preparations was used to make 45 impressions: group A = single-step technique (putty and wash impression materials used simultaneously), group B = two-step technique with a 2-mm relief (putty as a preliminary impression to create a 2-mm wash space followed by the wash stage), and group C = two-step technique with a polyethylene spacer (plastic spacer used with the putty impression followed by the wash stage). Accuracy was assessed using a toolmaker microscope to measure and compare the marginal gaps between each crown and finish line on the duplicated stone casts. Each abutment was further measured at the mesial, buccal, and distal aspects. One-way analysis of variance was used for statistical analysis. P values and Scheffe post hoc contrasts were calculated. Significance was determined at .05. One-way analysis of variance showed significant differences among the three impression techniques in all three abutments and at all three locations (P < .001). Group B yielded dies with minimal gaps compared to groups A and C. The two-step impression technique with 2-mm relief was the most accurate regarding the crucial clinical factor of marginal fit.

  13. Evolution of Primary Fe-Rich Compounds in Secondary Al-Si-Cu Alloys

    NASA Astrophysics Data System (ADS)

    Fabrizi, Alberto; Capuzzi, Stefano; Timelli, Giulio

    Although iron is usually added in die cast Al-Si foundry alloys to prevent die soldering, primary Fe-rich particles are generally considered as "hardspot" inclusions which compromise the mechanical properties of the alloy, namely ductility and toughness. As there is no economical methods to remove the Fe excess in secondary Al-Si alloys at this time, the control of solidification process and chemical composition of the alloy is a common industrial practice to overcome the negative effects connected with the presence of Fe-rich particles. In this work, the size and morphology as well as the nucleation density of primary Fe-rich particles have been studied as function of cooling rate and alloy chemical composition for secondary Al-Si-Cu alloys. The solidification experiments were carried out using differential scanning calorimetry whereas morphology investigations were conducted using optical and scanning electron microscopy. Mcrosegregations and chemical composition of primary Fe-rich particles were examined by energy dispersive spectroscopy.

  14. Prediction of Shrinkage Porosity Defect in Sand Casting Process of LM25

    NASA Astrophysics Data System (ADS)

    Rathod, Hardik; Dhulia, Jay K.; Maniar, Nirav P.

    2017-08-01

    In the present worldwide and aggressive environment, foundry commercial enterprises need to perform productively with least number of rejections and create casting parts in shortest lead time. It has become extremely difficult for foundry industries to meet demands of defects free casting and meet strict delivery schedules. The process of casting solidification is complex in nature. Prediction of shrinkage defect in metal casting is one of the critical concern in foundries and is one of the potential research areas in casting. Due to increasing pressure to improve quality and to reduce cost, it is very essential to upgrade the level of current methodology used in foundries. In the present research work, prediction methodology of shrinkage porosity defect in sand casting process of LM25 using experimentation and ANSYS is proposed. The objectives successfully achieved are prediction of shrinkage porosity distribution in Al-Si casting and determining effectiveness of investigated function for predicting shrinkage porosity by correlating results of simulating studies to those obtained experimentally. The real-time application of the research reflects from the fact that experimentation is performed on 9 different Y junctions at foundry industry and practical data obtained from experimentation are used for simulation.

  15. Ultrasonically assisted single screw extrusion, film blowing and film casting of LLDPE/clay and PA6/clay nanocomposites

    NASA Astrophysics Data System (ADS)

    Niknezhad, Setareh

    The major objective of this study was to investigate the effect of ultrasonic treatment on the dispersion of modified clay particles in LLDPE and PA6 matrices and the final properties of nanocomposites. LLDPE and PA6 are two polymers that are widely used in packaging industry. Blown and cast films were manufactured from the prepared nanocomposites. To achieve one step film processing, an online ultrasonic film casting was developed. Ultrasonic waves caused high-energy mixing and dispersion due to the acoustic cavitation, causing the clay agglomorates to separate into individual platelets in polymer matrix. Ultrasonic waves also broke down the polymer molecular chains reducing viscosity of the melt, facilating dispersion of the clay platelets throughout the matrix. Ultrasound also led to a breakage of the clay platelets reducing the particle size and improving their distribution. Clay particles acted as a heterogenous nucleation agent generating smaller size polymer crystals. In turn, these improved different properties including mechanical properties, oxygen permeability and transparency of films. In LLDPE/clay 20A nanocomposites, the effect of ultrasound was more obvious at higher clay loadings. Exfoliated structure for ultrasonically treated nanocomposites containing 2.5, 5 and 7.5 wt% of clay 20A and highly intercalated structure for ultrasonically treated nanocomposites containing 10 wt% of clay 20A were achieved. However, in blown films, the exfoliated structure transferred to the intercalated structure due to the addition of more shear and thermal degradation of surfactants of the clay particles. While, manufacturing cast films using the new developed online ultrasonic cast film machine revealed the exfoliated structure with ultrasonic treatment till 7.5 wt% of clay loadings. Cast films of nanocomposites containing 5 wt% of clay loadings were also prepared with addition of different compatibilizers. The compatibilizer containing higher amount of grafted maleic anhydride (MA) affected mechanical properties and oxygen permeability with ultrasonic treatment to higher extent. However, use of compatibilizers led to a higher die pressure and resulted in opaque cast films. The mechanical properties were in agreement with crystallinity of samples. The exfoliated structure was achieved for PA6/clay 30B nanocomposites prepared using ultrasonically assisted single screw extrusion except for untreated nanocomposites containing 10 wt% of clay 30B. Untreated 92.5/7.5 and 90/10 PA6/clay 30B blown films showed the intercalated structure, but the exfoliated structure was achieved with ultrasonic treatment. All cast films of PA6/clay 30B showed the exfoliated structure. FTIR spectroscopy along with XRD results confirmed the existence of alpha and gamma-type crystals in the cast films, with clay particles favoring the formation of gamma-type crystals, and ultrasonic treatment favoring the formation of alpha-type crystals. Both parameters increased crystallinity of cast films improving their mechanical properties and oxygen permeability.

  16. Optimizing the use of the thermal integrity system for evaluating auger-cast piles [summary].

    DOT National Transportation Integrated Search

    2016-07-01

    Auger-cast-in-place (ACIP) piles offer an efficient method of constructing and installing piles, : but because the ACIP process is essentially blind and the configuration of the final pile cannot be : assured, applications for ACIP piles have been li...

  17. Overview of the ToxCast Research Program: Applications to Predictive Toxicology and Chemical Prioritization (SETAC)

    EPA Science Inventory

    Understanding the potential health risks posed by environmental chemicals is a significant challenge driven by the large number of diverse chemicals with generally uncharacterized exposures, mechanisms and toxicities. The U.S. EPA’s ToxCast chemical prioritization research projec...

  18. Tape-cast sensors and method of making

    DOEpatents

    Mukundan, Rangachary [Santa Fe, NM; Brosha, Eric L [Los Alamos, NM; Garzon, Fernando H [Santa Fe, NM

    2009-08-18

    A method of making electrochemical sensors in which an electrolyte material is cast into a tape. Prefabricated electrodes are then partially embedded between two wet layers of the electrolyte tape to form a green sensor, and the green sensor is then heated to sinter the electrolyte tape around the electrodes. The resulting sensors can be used in applications such as, but not limited to, combustion control, environmental monitoring, and explosive detection. A electrochemical sensor formed by the tape-casting method is also disclosed.

  19. Tensile and creep rupture properties of (16) uncoated and (2) coated engineering alloys at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Fritz, L. J.; Koster, W. P.

    1977-01-01

    Sixteen test materials were supplied by NASA-Lewis Research Center as wrought bar or cast remelt stock. The cast remelt stock was cast into test blanks with two such materials being also evaluated after Jocoat coating was applied. Mechanical properties evaluated included tensile, modulus of elasticity, Poisson's Ratio, creep properties and creep rupture strength. Tests were conducted at temperatures applicable to the service temperature of the various alloys. This range extended from room temperature to 1000 C.

  20. A new magnesium alloy system: TEXAS

    NASA Astrophysics Data System (ADS)

    Wiese, Björn; Mendis, Chamini; Blawert, Carsten; Nyberg, Eric; Kainer, Karl Ulrich; Hort, Norbert

    A new TEXAS alloy system (Mg-Sn-Nd-Ca-Al-Si) is presented in order to extend the range of applications for magnesium alloys. The alloy has been produced by permanent mould direct chill casting, a process that provides a homogenous distribution of alloying elements throughout the entire casting. This work presents microstructural features and a new Mg-Sn-Ca phase with the morphology of hexagonal platelets. Additionally mechanical properties and the corrosion behaviour of TEXAS alloys are presented in as cast and heat treated conditions.

  1. Development of casting investment preventing blackening of noble metal alloys part 1. Application of developed investment for Ag-Pd-Cu-Au alloy.

    PubMed

    Kakuta, Kiyoshi; Nakai, Akira; Goto, Shin-ichi; Wakamatsu, Yasushi; Yara, Atushi; Miyagawa, Yukio; Ogura, Hideo

    2003-03-01

    The objective of this study is to develop a casting investment that prevents the blackening of the cast surface of noble metal alloys. The experimental investments were prepared using a gypsum-bonded investment in which the metallic powders such as boron (B), silicon (Si), aluminum (Al) and titanium (Ti) were added as oxidizing agents. An Ag-Pd-Cu-Au alloy was cast into the mold made of the prepared investment. The effect of the addition of each metal powder was evaluated from the color difference between the as-cast surface and the polished surface of the cast specimen. The color of the as-cast surface approached that of the polished surface with increasing B and Al content. A lower mean value in the color difference was obtained at 0.25-1.00 mass% B content. B and Al are useful as an additive in a gypsum-bonded investment to prevent the blackening of an Ag-Pd-Cu-Au alloy. The effects of Si and Ti powder addition could not be found.

  2. Morphology and Performance of 5Cr5MoV Casting Die Steel in the Process of Surfacing

    NASA Astrophysics Data System (ADS)

    Song, Yulai; Kong, Xiangrui; Yang, Pengcong; Fu, Hongde; Wang, Xuezhu

    2017-12-01

    To investigate the microstructures and mechanical properties of the deposited metal on surface of die steel, two layer of weld-seam were prepared on the surface of 5Cr5MoV die steel by arc surfacing. The surface microstructures and microhardness were characterized by scanning electron microscopy, energy dispersive spectrometer and Vickers microhardness tester, respectively. The effect of load on the abrasion resistance and wear mechanism of the base metal and surfacing metal was studied by pin-on-disk tribometer. The results showed that martensite and retained austenite exist in weld-seam, both of them grow up in the form of dendrites and equiaxed grains and microhardness reach 774.2HV. The microstructures of the quenching zone mainly consist of martensite and retained austenite, while tempered martensite is the dominant phase in partial quenching zone. The abrasion resistance of the surfacing metal is superior to the base metal based on the results of wear test. The wear rates of surfacing metal and base metal raise with the increase of load. The wear rates of base metal raise extremely when the load reach 210N. Both of two kinds of materials have the similar wear mechanism, namely, abrasive wear at low load, oxidative wear and adhesive wear at high load.

  3. Heat Treatment of Thixo-Formed Hypereutectic X210CrW12 Tool Steel

    NASA Astrophysics Data System (ADS)

    Rogal, Łukasz; Dutkiewicz, Jan

    2012-12-01

    Steel is a particularly challenging material to semisolid process because of the high temperatures involved and the potential for surface oxidation. Hot-rolled X210CrW12 tool steel was applied as a feedstock for thixoforming. The samples were heated up to 1525 K (1250 °C) to obtain 30 pct of the liquid phase. They were pressed in the semisolid state into a die preheated up to 473 K (200 °C) using a device based on a high-pressure die casting machine. As a result, a series of main bucket tooth thixo-casts for a mining combine was obtained. The microstructure of the thixo-cast consisted of austenite globular grains (average grain size 46 μm) surrounded by a eutectic mixture (ferrite, austenite, and M7C3 carbides). The average hardness of primary austenite grains was 470 HV0.02 and that of eutectic 551 HV0.02. The X-ray analysis confirmed the presence of 11.8 pct α-Fe, 82.4 pct γ-Fe, and 5.8 pct M7C3 carbides in the thixo-cast samples. Thermal and dilatometric effects were registered in the solid state, and the analysis of curves enabled the determination of characteristic temperatures of heat treatment: 503 K, 598 K, 693 K, 798 K, 828 K, 903 K, and 953 K (230 °C, 325 °C, 420 °C, 525 °C, 555 °C, 630 °C, 680 °C). The thixo-casts were annealed at these temperatures for 2 hours. During annealing in the temperature range 503 K to 693 K (230 °C to 420 °C), the hardness of primary globular grains continuously decreased down to 385HV0.02. The X-ray diffraction showed a slight shift of peaks responsible for the tension release. Moreover, after the treatment at 693 K (420 °C), an additional peak from precipitated carbides was observed in the X-ray diffraction. Thin plates of perlite (average hardness 820 HV0.02) with carbide precipitates appeared at the boundaries of globular grains at 798 K (525 °C). They occupied 17 pct of the grain area. Plates of martensite were found in the center of grains, while the retained austenite was observed among them (average hardness of center grains was 512 HV0.02). A nearly complete decomposition of metastable austenite was achieved after tempering at 828 K (555 °C) due to prevailing lamellar pearlite structure starting at grain boundaries and the martensite located in the center of the grains. The X-ray analysis confirmed the presence of 3.4 pct γ-Fe, 84.6 pct α-Fe, and 12 pct M7C3 carbides. The dilatometric analysis showed that the transformation of metastable austenite into martensite took place during cooling from 828 K (555 °C). The additional annealing at 523 K (250 °C) for 2 hours after heat treatment at 828 K (555 °C) caused the precipitation of carbides from the martensite. After tempering at 903 K (630 °C), the thixo-cast microstructure showed globular grains consisting mainly of thick lamellar perlite of the average hardness 555 HV0.02.

  4. Strain Rate Dependency of Bronze Metal Matrix Composite Mechanical Properties as a Function of Casting Technique

    NASA Astrophysics Data System (ADS)

    Brown, Lloyd; Joyce, Peter; Radice, Joshua; Gregorian, Dro; Gobble, Michael

    2012-07-01

    Strain rate dependency of mechanical properties of tungsten carbide (WC)-filled bronze castings fabricated by centrifugal and sedimentation-casting techniques are examined, in this study. Both casting techniques are an attempt to produce a functionally graded material with high wear resistance at a chosen surface. Potential applications of such materials include shaft bushings, electrical contact surfaces, and brake rotors. Knowledge of strain rate-dependent mechanical properties is recommended for predicting component response due to dynamic loading or impact events. A brief overview of the casting techniques for the materials considered in this study is followed by an explanation of the test matrix and testing techniques. Hardness testing, density measurement, and determination of the volume fraction of WC particles are performed throughout the castings using both image analysis and optical microscopy. The effects of particle filling on mechanical properties are first evaluated through a microhardness survey of the castings. The volume fraction of WC particles is validated using a thorough density survey and a rule-of-mixtures model. Split Hopkinson Pressure Bar (SHPB) testing of various volume fraction specimens is conducted to determine strain dependence of mechanical properties and to compare the process-property relationships between the two casting techniques. The baseline performances of C95400 bronze are provided for comparison. The results show that the addition of WC particles improves microhardness significantly for the centrifugally cast specimens, and, to a lesser extent, in the sedimentation-cast specimens, largely because the WC particles are more concentrated as a result of the centrifugal-casting process. Both metal matrix composites (MMCs) demonstrate strain rate dependency, with sedimentation casting having a greater, but variable, effects on material response. This difference is attributed to legacy effects from the casting process, namely, porosity and localized WC particle grouping.

  5. Accuracy of a reformulated fast-set vinyl polysiloxane impression material using dual-arch trays.

    PubMed

    Kang, Alex H; Johnson, Glen H; Lepe, Xavier; Wataha, John C

    2009-05-01

    A common technique used for making crown impressions involves use of a vinyl polysiloxane impression material in combination with a dual-arch tray. A leading dental manufacturer has reformulated its vinyl polysiloxane (VPS) impression line, but the accuracy of the new material has not been verified. The purpose of this study was to assess the accuracy of reformulated VPS impression materials using the single-step dual-arch impression technique. Dual-arch impressions were made on a typodont containing a master stainless steel standard crown preparation die, from which gypsum working dies were formed, recovered, and measured. The impression materials evaluated were Imprint 3 Penta Putty with Quick Step Regular Body (IP-0); Imprint 3 Penta Quick Step Heavy Body with Quick Step Light Body (IP-1); Aquasil Ultra Rigid Fast Set with LV Fast Set (AQ-1); and Aquasil Ultra Heavy Fast Set with XLV Fast Set (AQ-2) (n=10). All impressions were disinfected with CaviCide spray for 10 minutes prior to pouring with type IV gypsum. Buccolingual (BL), mesiodistal (MD), and occlusogingival (OG) dimensions were measured and compared to the master die using an optical measuring microscope. Linear dimensional change was also assessed for IP-0 and AQ-1 at 1 and 24 hours based on ANSI/ADA Specification No. 19. Single-factor ANOVA with Dunnett's T3 multiple comparisons was used to compare BL, MD, and OG changes, with hypothesis testing at alpha=.05. A repeated-measures ANOVA was used to compare linear dimensional changes. There were statistical differences among the 4 impression systems for 3 of 4 dimensions of the master die. IP-0 working dies were significantly larger in MD and OG-L dimensions but significantly smaller in the BL dimension. IP-1 working dies were significantly smaller in the BL dimension compared to the master die. With the exception of IP-0, differences detected were small and clinically insignificant. No significant differences were observed for linear dimensional change. The single-step dual-arch impression technique produced working dies that were smaller in 3 of the 4 dimensions measured and may require additional die relief to achieve appropriate fit of cast restorations. Overall accuracy was acceptable for all impression groups with the exception of IP-0.

  6. The Second Phase of ToxCast and Initial Applications to Chemical Prioritization

    EPA Science Inventory

    Tens of thousands of chemicals and other contaminants exist in our environment, but only a fraction of these have been characterized for their potential hazard to humans. ToxCast is focused on closing this data gap and improving the management of chemical risk through a high thro...

  7. 78 FR 15048 - Johnstown Specialty Castings, Inc., a Subsidiary of WHEMCO, Johnstown, Pennsylvania; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-08

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-82,156] Johnstown Specialty Castings, Inc., a Subsidiary of WHEMCO, Johnstown, Pennsylvania; Notice of Affirmative Determination.... Conclusion After careful review of the application, I conclude that the claim is of sufficient weight to...

  8. Overview of the ToxCast Research Program: Applications to Predictive Toxicology and Chemical Prioritization

    EPA Science Inventory

    EPA’s ToxCast program, the NTP’s HTS initiative, and the NCGC’s Molecular Libraries Initiative into a collaborative research program focused on identifying toxicity pathways and developing in vitro assays to characterize the ability of chemicals to perturb those pathways. The go...

  9. Application of ToxCast to evaluate potential biological effects from organic contaminants in Great Lakes tributaries

    EPA Science Inventory

    With the development of “high throughput” in-vitro biological assays, screening-level information on potential adverse biological effects is available for a rapidly increasing number of chemicals. The U.S. EPA ToxCast program has now evaluated several thousand chemica...

  10. 76 FR 5840 - The Basic Aluminum Castings Co., Cleveland, OH; Notice of Revised Determination on Reconsideration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-02

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-73,091] The Basic Aluminum Castings Co., Cleveland, OH; Notice of Revised Determination on Reconsideration By application dated December 3, 2010, The International Union, United Automobile, Aerospace and Agricultural Implement Workers...

  11. Factors contributing to the temperature beneath plaster or fiberglass cast material

    PubMed Central

    Hutchinson, Michael J; Hutchinson, Mark R

    2008-01-01

    Background Most cast materials mature and harden via an exothermic reaction. Although rare, thermal injuries secondary to casting can occur. The purpose of this study was to evaluate factors that contribute to the elevated temperature beneath a cast and, more specifically, evaluate the differences of modern casting materials including fiberglass and prefabricated splints. Methods The temperature beneath various types (plaster, fiberglass, and fiberglass splints), brands, and thickness of cast material were measured after they were applied over thermometer which was on the surface of a single diameter and thickness PVC tube. A single layer of cotton stockinette with variable layers and types of cast padding were placed prior to application of the cast. Serial temperature measurements were made as the cast matured and reached peak temperature. Time to peak, duration of peak, and peak temperature were noted. Additional tests included varying the dip water temperature and assessing external insulating factors. Ambient temperature, ambient humidity and dip water freshness were controlled. Results Outcomes revealed that material type, cast thickness, and dip water temperature played key roles regarding the temperature beneath the cast. Faster setting plasters achieved peak temperature quicker and at a higher level than slower setting plasters. Thicker fiberglass and plaster casts led to greater peak temperature levels. Likewise increasing dip-water temperature led to elevated temperatures. The thickness and type of cast padding had less of an effect for all materials. With a definition of thermal injury risk of skin injury being greater than 49 degrees Celsius, we found that thick casts of extra fast setting plaster consistently approached dangerous levels (greater than 49 degrees for an extended period). Indeed a cast of extra-fast setting plaster, 20 layers thick, placed on a pillow during maturation maintained temperatures over 50 degrees of Celsius for over 20 minutes. Conclusion Clinicians should be cautious when applying thick casts with warm dip water. Fast setting plasters have increased risk of thermal injury while brand does not appear to play a significant role. Prefabricated fiberglass splints appear to be safer than circumferential casts. The greatest risk of thermal injury occurs when thick casts are allowed to mature while resting on pillow. PMID:18298851

  12. Composites for Advanced Space Transportation Systems (CASTS)

    NASA Technical Reports Server (NTRS)

    Davis, J. G., Jr. (Compiler)

    1979-01-01

    A summary is given of the in-house and contract work accomplished under the CASTS Project. In July 1975 the CASTS Project was initiated to develop graphite fiber/polyimide matrix (GR/PI) composite structures with 589K (600 F) operational capability for application to aerospace vehicles. Major tasks include: (1) screening composites and adhesives, (2) developing fabrication procedures and specifications, (3) developing design allowables test methods and data, and (4) design and test of structural elements and construction of an aft body flap for the Space Shuttle Orbiter Vehicle which will be ground tested. Portions of the information are from ongoing research and must be considered preliminary. The CASTS Project is scheduled to be completed in September 1983.

  13. Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique.

    PubMed

    Yang, Tae Young; Lee, Jung Min; Yoon, Seog Young; Park, Hong Chae

    2010-05-01

    A novel freeze-gel casting/polymer sponge technique has been introduced to fabricate porous hydroxyapatite scaffolds with controlled "designer" pore structures and improved compressive strength for bone tissue engineering applications. Tertiary-butyl alcohol (TBA) was used as a solvent in this work. The merits of each production process, freeze casting, gel casting, and polymer sponge route were characterized by the sintered microstructure and mechanical strength. A reticulated structure with large pore size of 180-360 microm, which formed on burn-out of polyurethane foam, consisted of the strut with highly interconnected, unidirectional, long pore channels (approximately 4.5 microm in dia.) by evaporation of frozen TBA produced in freeze casting together with the dense inner walls with a few, isolated fine pores (<2 microm) by gel casting. The sintered porosity and pore size generally behaved in an opposite manner to the solid loading, i.e., a high solid loading gave low porosity and small pore size, and a thickening of the strut cross section, thus leading to higher compressive strengths.

  14. Development of casting investment preventing blackening of noble metal alloys Part 2. Application of developed investment for type 4 gold alloy.

    PubMed

    Nakai, Akira; Kakuta, Kiyoshi; Goto, Shin-ichi; Kato, Katuma; Yara, Atushi; Ogura, Hideo

    2003-09-01

    The objective of this study was to evaluate the efficacy of the developed investment for the prevention of blackening of a cast Type 4 gold and to analyze the oxides on its surface in relation to the blackening of the alloy. The experimental investments were prepared using a gypsum-bonded investment in which boron (B) or aluminum (Al) was added as a reducing agent. A Type 4 gold alloy was cast into the mold made of the prepared investment. The effect of the additives was evaluated from the color difference (deltaE*) between the as-cast surface and the polished surface of the cast specimen. B and Al were effective to prevent the blackening of a Type 4 gold alloy and the color of the as-cast surface approached that of the polished surface with increasing B and Al content. The prevention of the blackening of the gold alloy can be achieved by restraining the formation of CuO.

  15. Fabrication of hierarchically structured superhydrophobic PDMS surfaces by Cu and CuO casting

    NASA Astrophysics Data System (ADS)

    Migliaccio, Christopher P.; Lazarus, Nathan

    2015-10-01

    Poly(dimethylsiloxane) (PDMS) films decorated with hierarchically structured pillars are cast from large area copper and copper oxide negative molds. The molds are fabricated using a single patterning step and electroplating. The process of casting structured PDMS films is simpler and cheaper than alternatives based on deep reactive ion etching or laser roughening of bulk silicone. Texture imparted to the pillars from the mold walls renders the PDMS films superhydrophobic, with the contact angle/hysteresis of the most non-wetting surfaces measuring 164°/9° and 158°/10° for surfaces with and without application of a low surface energy coating. The usefulness of patterned PDMS films as a "self-cleaning" solar cell module covering is demonstrated and other applications are discussed.

  16. Numerical Simulation of The Mediterranean Sea Using Diecast: Interaction Between Basin, Sub-basin and Local Scale Features and Natural Variability.

    NASA Astrophysics Data System (ADS)

    Fernández, V.; Dietrich, D. E.; Haney, R. L.; Tintoré, J.

    In situ and satellite data obtained during the last ten years have shown that the circula- tion in the Mediterranean Sea is extremely complex in space, with significant features ranging from mesoscale to sub-basin and basin scale, and highly variable in time, with mesoscale to seasonal and interannual signals. Also, the steep bottom topography and the variable atmospheric conditions from one sub-basin to another, make the circula- tion to be composed of numerous energetic and narrow coastal currents, density fronts and mesoscale structures that interact at sub-basin scale with the large scale circula- tion. To simulate numerically and better understand these features, besides high grid resolution, a low numerical dispersion and low physical dissipation ocean model is required. We present the results from a 1/8z horizontal resolution numerical simula- tion of the Mediterranean Sea using DieCAST ocean model, which meets the above requirements since it is stable with low general dissipation and uses accurate fourth- order-accurate approximations with low numerical dispersion. The simulations are carried out with climatological surface forcing using monthly mean winds and relax- ation towards climatological values of temperature and salinity. The model reproduces the main features of the large basin scale circulation, as well as the seasonal variabil- ity of sub-basin scale currents that are well documented by observations in straits and channels. In addition, DieCAST brings out natural fronts and eddies that usually do not appear in numerical simulations of the Mediterranean and that lead to a natural interannual variability. The role of this intrinsic variability in the general circulation will be discussed.

  17. Estimation of surface area concentration of workplace incidental nanoparticles based on number and mass concentrations

    NASA Astrophysics Data System (ADS)

    Park, J. Y.; Ramachandran, G.; Raynor, P. C.; Kim, S. W.

    2011-10-01

    Surface area was estimated by three different methods using number and/or mass concentrations obtained from either two or three instruments that are commonly used in the field. The estimated surface area concentrations were compared with reference surface area concentrations (SAREF) calculated from the particle size distributions obtained from a scanning mobility particle sizer and an optical particle counter (OPC). The first estimation method (SAPSD) used particle size distribution measured by a condensation particle counter (CPC) and an OPC. The second method (SAINV1) used an inversion routine based on PM1.0, PM2.5, and number concentrations to reconstruct assumed lognormal size distributions by minimizing the difference between measurements and calculated values. The third method (SAINV2) utilized a simpler inversion method that used PM1.0 and number concentrations to construct a lognormal size distribution with an assumed value of geometric standard deviation. All estimated surface area concentrations were calculated from the reconstructed size distributions. These methods were evaluated using particle measurements obtained in a restaurant, an aluminum die-casting factory, and a diesel engine laboratory. SAPSD was 0.7-1.8 times higher and SAINV1 and SAINV2 were 2.2-8 times higher than SAREF in the restaurant and diesel engine laboratory. In the die casting facility, all estimated surface area concentrations were lower than SAREF. However, the estimated surface area concentration using all three methods had qualitatively similar exposure trends and rankings to those using SAREF within a workplace. This study suggests that surface area concentration estimation based on particle size distribution (SAPSD) is a more accurate and convenient method to estimate surface area concentrations than estimation methods using inversion routines and may be feasible to use for classifying exposure groups and identifying exposure trends.

  18. Space Processing Applications Rocket project, SPAR 2

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Experiment objectives, design/operational concepts, and final results are summarized for six materials science experiments conducted during the second space processing applications rocket mission flown by NASA. The individual experiments discussed are: (1) solidification of Pb-Sb eutectic; (2) feasibility of producing closed-cell metal foams; (3) direct observation of dendrite remelting and macrosegregation in castings; (4) agglomeration in immiscible liquids; (5) casting dispersion - strengthened composites at zero gravity; and (6) solidification behavior of Al-In alloys under zero gravity conditions.

  19. Novel twin-roll-cast Ti/Al clad sheets with excellent tensile properties.

    PubMed

    Kim, Dae Woong; Lee, Dong Ho; Kim, Jung-Su; Sohn, Seok Su; Kim, Hyoung Seop; Lee, Sunghak

    2017-08-14

    Pure Ti or Ti alloys are recently spot-lighted in construction industries because they have excellent resistance to corrosions, chemicals, and climates as well as various coloring characteristics, but their wide applications are postponed by their expensiveness and poor formability. We present a new fabrication process of Ti/Al clad sheets by bonding a thin Ti sheet on to a 5052 Al alloy melt during vertical-twin-roll casting. This process has merits of reduced production costs as well as improved tensile properties. In the as-twin-roll-cast clad sheet, the homogeneously cast microstructure existed in the Al alloy substrate side, while the Ti/Al interface did not contain any reaction products, pores, cracks, or lateral delamination, which indicated the successful twin-roll casting. When this sheet was annealed at 350 °C~600 °C, the metallurgical bonding was expanded by interfacial diffusion, thereby leading to improvement in tensile properties over those calculated by a rule of mixtures. The ductility was also improved over that of 5052-O Al alloy (25%) or pure Ti (25%) by synergic effect of homogeneous deformation due to excellent Ti/Al bonding. This work provides new applications of Ti/Al clad sheets to lightweight-alloy clad sheets requiring excellent formability and corrosion resistance as well as alloy cost saving.

  20. Comparison of optimization algorithms for the slow shot phase in HPDC

    NASA Astrophysics Data System (ADS)

    Frings, Markus; Berkels, Benjamin; Behr, Marek; Elgeti, Stefanie

    2018-05-01

    High-pressure die casting (HPDC) is a popular manufacturing process for aluminum processing. The slow shot phase in HPDC is the first phase of this process. During this phase, the molten metal is pushed towards the cavity under moderate plunger movement. The so-called shot curve describes this plunger movement. A good design of the shot curve is important to produce high-quality cast parts. Three partially competing process goals characterize the slow shot phase: (1) reducing air entrapment, (2) avoiding temperature loss, and (3) minimizing oxide caused by the air-aluminum contact. Due to the rough process conditions with high pressure and temperature, it is hard to design the shot curve experimentally. There exist a few design rules that are based on theoretical considerations. Nevertheless, the quality of the shot curve design still depends on the experience of the machine operator. To improve the shot curve it seems to be natural to use numerical optimization. This work compares different optimization strategies for the slow shot phase optimization. The aim is to find the best optimization approach on a simple test problem.

  1. Development of a New Membrane Casting Apparatus for Studying Macrovoid Defects in Low-G

    NASA Technical Reports Server (NTRS)

    Lee, Hanyong; Hwang, Sun-Tak; Krantz, William B.; Greenberg, Alan R.; Khare, Vivek; Zartman, Jeremiah; Todd, Paul W.

    2002-01-01

    A new membrane-casting apparatus is developed for studying macrovoid defects in polymeric membranes made by the wet- and dry-casting process in low-gravity. Macrovoids are large (10-50 micron), open cavities interspersed among the smaller pores in the substructure under the gelled skin surface layer of the cast membrane. Although their occurrence is considered endemic to the wet- and dry-casting process since they can lead to compaction or skin rupture in the membrane process, recent studies suggest several useful applications such as transdermal and osmotic drug delivery systems, miniature bioreactors, etc. However, lack of knowledge about the macrovoid formation mechanism is an obstacle to further development of applications using them. An on-going debate is the role of the surface-tension-driven solutocapillary convection during macrovoid formation. The rapid growth of macrovoids within 1-5 seconds and the high polymer concentration in and near macrovoids make it difficult to explain the mechanism of macrovoid growth by diffusion alone, which is the widely accepted hypothesis proposed by Reuvers et al. The hypothesis advanced by our research group can explain this rapid growth via a mechanism that involves diffusion from the casting solution in the meta-stable region to the macrovoid enhanced by solutocapillary convection induced by the steep nonsolvent concentration gradient in the vicinity of the macrovoid. Since macrovoid growth is hypothesized to be the interplay of a solutocapillary-induced driving force counteracted by viscous drag and buoyancy, eliminate the latter provides a means for testing this hypothesis. Moreover, free convection mass transfer in the nonsolvent immersion bath used to cause phase-separation in membrane casting complicates developing a model for both the wet-casting process and macrovoid growth. The low-g environment minimizes gravitationally induced free convection thereby permitting a tractable solution to the ternary diffusion equations that characterize membrane formation. NASA's Parabolic Flight Research Aircraft provides a small window of low-g (approximately 25 s) that can be used to study macrovoid development in both wet- and dry-cast membranes if an appropriate casting apparatus is used. This casting apparatus should be able to cast the membrane in both low- and high-g in a manner so that essential one-dimensional mass transfer conditions are achieved to insure lateral uniformity in the membrane. The apparatus used in previous research on membrane casting in low-gravity was operated with the plunger driven mechanism. The spring-loaded plunger pushes the bottom block containing the polymer casting solution well directly under the absorbent chamber located in the upper stationary block. However, membranes made via this casting apparatus often displayed lateral nonuniformities that precluded obtaining quantitative information on the macrovoid growth process. Thus, it was necessary to determine the reason for these structural irregularities observed in the low-g casting apparatus. Both experimental as well as computer simulation studies of the low-g casting apparatus established that the impulsive action of the plunger caused the undesired structural nonuniformities. The simulation results showed that the width-to-depth aspect ratio of the shallow well that contains the casting solution in this apparatus was not an important factor in minimizing this problem. Even for a 40:1 (width : depth) aspect ratio, any convection induced by the horizontal motion of the interface of the casting solution will be damped out within 6.25x10(exp 4) seconds. However, the experimental studies revealed that the impulsive motion of the plunger caused a 'sloshing' of the casting solution that had to be eliminated. Therefore, the plungerdriven mechanism was changed to a cam-driven mechanism that did not cause any impulsive motion of the casting solution. Other refinements to this new membrane-casting apparatus include provision for removing the membranes from the casting wells in a less destructive manner. This was accomplished by using a slit geometry for the casting well that permitted disassembly for removal of the cast membrane. The materials used in the construction of this casting apparatus were chosen to insure wetting at the side walls and to maintain precise control of the thickness of the polymer solution in the casting well. An additional provision in this new casting apparatus is the ability to carry out both wet- as well as dry-casting. As such, this apparatus permitted the first studies of the wet-casting of polymeric membranes in low-g. Both wet- and dry-casting experiments on NASA's KC-135 research aircraft employing this new membrane-casting apparatus are scheduled in July 2002. The morphology of the resulting membranes will be characterized using an environmental scanning electron microscope (ESEM). The results of these low-g studies will be reported later.

  2. Evaluation of cast creep occurring during simulated clubfoot correction

    PubMed Central

    Cohen, Tamara L; Altiok, Haluk; Wang, Mei; McGrady, Linda M; Krzak, Joseph; Graf, Adam; Tarima, Sergey; Smith, Peter A; Harris, Gerald, F

    2016-01-01

    The Ponseti method is a widely accepted and highly successful conservative treatment of pediatric clubfoot involving weekly manipulations and cast applications. Qualitative assessments have indicated the potential success of the technique with cast materials other than standard plaster of Paris. However, guidelines for clubfoot correction based on the mechanical response of these materials have yet to be investigated. The current study sought to characterize and compare the ability of three standard cast materials to maintain the Ponseti corrected foot position by evaluating cast creep response. A dynamic cast testing device, built to model clubfoot correction, was wrapped in plaster-of-Paris, semi-rigid fiberglass, and rigid fiberglass. Three-dimensional motion responses to two joint stiffnesses were recorded. Rotational creep displacement and linearity of the limb-cast composite were analyzed. Minimal change in position over time was found for all materials. Among cast materials, the rotational creep displacement was significantly different (p < 0.0001). The most creep displacement occurred in the plaster-of-Paris (2.0 degrees), then the semi-rigid fiberglass (1.0 degrees), and then the rigid fiberglass (0.4 degrees). Torque magnitude did not affect creep displacement response. Analysis of normalized rotation showed quasi—linear viscoelastic behavior. This study provided a mechanical evaluation of cast material performance as used for clubfoot correction. Creep displacement dependence on cast material and insensitivity to torque were discovered. This information may provide a quantitative and mechanical basis for future innovations for clubfoot care. PMID:23636764

  3. Directional migration in the Hindu castes: inferences from mitochondrial, autosomal and Y-chromosomal data.

    PubMed

    Wooding, Stephen; Ostler, Christopher; Prasad, B V Ravi; Watkins, W Scott; Sung, Sandy; Bamshad, Mike; Jorde, Lynn B

    2004-08-01

    Genetic, ethnographic, and historical evidence suggests that the Hindu castes have been highly endogamous for several thousand years and that, when movement between castes does occur, it typically consists of females joining castes of higher social status. However, little is known about migration rates in these populations or the extent to which migration occurs between caste groups of low, middle, and high social status. To investigate these aspects of migration, we analyzed the largest collection of genetic markers collected to date in Hindu caste populations. These data included 45 newly typed autosomal short tandem repeat polymorphisms (STRPs), 411 bp of mitochondrial DNA sequence, and 43 Y-chromosomal single-nucleotide polymorphisms that were assayed in more than 200 individuals of known caste status sampled in Andrah Pradesh, in South India. Application of recently developed likelihood-based analyses to this dataset enabled us to obtain genetically derived estimates of intercaste migration rates. STRPs indicated migration rates of 1-2% per generation between high-, middle-, and low-status caste groups. We also found support for the hypothesis that rates of gene flow differ between maternally and paternally inherited genes. Migration rates were substantially higher in maternally than in paternally inherited markers. In addition, while prevailing patterns of migration involved movement between castes of similar rank, paternally inherited markers in the low-status castes were most likely to move into high-status castes. Our findings support earlier evidence that the caste system has been a significant, long-term source of population structuring in South Indian Hindu populations, and that patterns of migration differ between males and females. Copyright 2004 Springer-Verlag

  4. Setting and stiffening of cementitious components in Cast Stone waste form for disposal of secondary wastes from the Hanford waste treatment and immobilization plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Chul-Woo; Chun, Jaehun, E-mail: jaehun.chun@pnnl.gov; Um, Wooyong

    2013-04-01

    Cast Stone is a cementitious waste form, a viable option to immobilize secondary nuclear liquid wastes generated from the Hanford Waste Treatment and Immobilization Plant. However, no study has been performed to understand the flow and stiffening behavior, which is essential to ensure proper workability and is important to safety in a nuclear waste field-scale application. X-ray diffraction, rheology, and ultrasonic wave reflection methods were used to understand the specific phase formation and stiffening of Cast Stone. Our results showed a good correlation between rheological properties of the fresh mixture and phase formation in Cast Stone. Secondary gypsum formation wasmore » observed with low concentration simulants, and the formation of gypsum was suppressed in high concentration simulants. A threshold concentration for the drastic change in stiffening was found at 1.56 M Na concentration. It was found that the stiffening of Cast Stone was strongly dependent on the concentration of simulant. Highlights: • A combination of XRD, UWR, and rheology gives a better understanding of Cast Stone. • Stiffening of Cast Stone was strongly dependent on the concentration of simulant. • A drastic change in stiffening of Cast Stone was found at 1.56 M Na concentration.« less

  5. Setting and Stiffening of Cementitious Components in Cast Stone Waste Form for Disposal of Secondary Wastes from the Hanford waste treatment and immobilization plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Chul-Woo; Chun, Jaehun; Um, Wooyong

    2013-04-01

    Cast stone is a cementitious waste form, a viable option to immobilize secondary nuclear liquid wastes generated from Hanford vitrification plant. While the strength and radioactive technetium leaching of different waste form candidates have been reported, no study has been performed to understand the flow and stiffening behavior of Cast Stone, which is essential to ensure the proper workability, especially considering necessary safety as a nuclear waste form in a field scale application. The rheological and ultrasonic wave reflection (UWR) measurements were used to understand the setting and stiffening Cast Stone batches. X-ray diffraction (XRD) was used to find themore » correlation between specific phase formation and the stiffening of the paste. Our results showed good correlation between rheological properties of the fresh Cast Stone mixture and phase formation during hydration of Cast Stone. Secondary gypsum formation originating from blast furnace slag was observed in Cast Stone made with low concentration simulants. The formation of gypsum was suppressed in high concentration simulants. It was found that the stiffening of Cast Stone was strongly dependent on the concentration of simulant. A threshold concentration for the drastic change in stiffening was found at 1.56 M Na concentration.« less

  6. Casting evaluation of U-Zr alloy system fuel slug for SFR prepared by injection casting method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Hoon; Kim, Jong-Hwan; Kim, Ki-Hwan

    2013-07-01

    Metal fuel slugs of U-Pu-Zr alloys for Sodium-cooled Fast Reactor (SFR) have conventionally been fabricated by a vacuum injection casting method. Recently, management of minor actinides (MA) became an important issue because direct disposal of the long-lived MA can be a long-term burden for a tentative repository up to several hundreds of thousand years. In order to recycle transuranic elements (TRU) retained in spent nuclear fuel, remote fabrication capability in a shielded hot cell should be prepared. Moreover, generation of long-lived radioactive wastes and loss of volatile species should be minimized during the recycled fuel fabrication step. In order tomore » prevent the evaporation of volatile elements such as Am, alternative fabrication methods of metal fuel slugs have been studied applying gravity casting, and improved injection casting in KAERI, including melting under inert atmosphere. And then, metal fuel slugs were examined with casting soundness, density, chemical analysis, particle size distribution and microstructural characteristics. Based on these results there is a high level of confidence that Am losses will also be effectively controlled by application of a modest amount of overpressure. A surrogate fuel slug was generally soundly cast by improved injection casting method, melted fuel material under inert atmosphere.« less

  7. Integrated System of Thermal/Dimensional Analysis for Quality Control of Metallic Melt and Ductile Iron Casting Solidification

    NASA Astrophysics Data System (ADS)

    Stan, Stelian; Chisamera, Mihai; Riposan, Iulian; Neacsu, Loredana; Cojocaru, Ana Maria; Stan, Iuliana

    2018-03-01

    The main objective of the present work is to introduce a specific experimental instrument and technique for simultaneously evaluating cooling curves and expansion or contraction of cast metals during solidification. Contraction/expansion analysis illustrates the solidification parameters progression, according to the molten cast iron characteristics, which are dependent on the melting procedure and applied metallurgical treatments, mold media rigidity and thermal behavior [heat transfer parameters]. The first part of the paper summarizes the performance of this two-mold device. Its function is illustrated by representative shrinkage tendency results in ductile cast iron as affected by mold rigidity (green sand and furan resin sand molds) and inoculant type (FeSi-based alloys), published in part previously. The second part of the paper illustrates an application of this equipment adapted for commercial foundry use. It conducts thermal analysis and volume change measurements in a single ceramic cup so that mold media as well as solidification conditions are constants, with cast iron quality as the variable. Experiments compared gray and ductile cast iron solidification patterns. Gray iron castings are characterized by higher undercooling at the beginning and at the end of solidification and lower graphitic expansion. Typically, ductile cast iron exhibits higher graphitic, initial expansion, conducive for shrinkage formation in soft molds.

  8. Advances in multi-scale modeling of solidification and casting processes

    NASA Astrophysics Data System (ADS)

    Liu, Baicheng; Xu, Qingyan; Jing, Tao; Shen, Houfa; Han, Zhiqiang

    2011-04-01

    The development of the aviation, energy and automobile industries requires an advanced integrated product/process R&D systems which could optimize the product and the process design as well. Integrated computational materials engineering (ICME) is a promising approach to fulfill this requirement and make the product and process development efficient, economic, and environmentally friendly. Advances in multi-scale modeling of solidification and casting processes, including mathematical models as well as engineering applications are presented in the paper. Dendrite morphology of magnesium and aluminum alloy of solidification process by using phase field and cellular automaton methods, mathematical models of segregation of large steel ingot, and microstructure models of unidirectionally solidified turbine blade casting are studied and discussed. In addition, some engineering case studies, including microstructure simulation of aluminum casting for automobile industry, segregation of large steel ingot for energy industry, and microstructure simulation of unidirectionally solidified turbine blade castings for aviation industry are discussed.

  9. Application of Targeted Functional Assays to Assess a Putative Vascular Disruption Developmental Toxicity Pathway Informed By ToxCast High-Throughput Screening Data

    EPA Science Inventory

    Chemical perturbation of vascular development is a putative toxicity pathway which may result in developmental toxicity. EPA’s high-throughput screening (HTS) ToxCast program contains assays which measure cellular signals and biological processes critical for blood vessel develop...

  10. The U.S. EPA ToxCast Program: Moving from Data Generation to Application (SOT Tox21 update symposium presentation)

    EPA Science Inventory

    The U.S. EPA ToxCast program is entering its tenth year. Significant learning and progress have occurred towards collection, analysis, and interpretation of the data. The library of ~1,800 chemicals has been subject to ongoing characterization (e.g., identity, purity, stability...

  11. Preparation and thermal insulation performance of cast-in-situ phosphogypsum wall.

    PubMed

    Li, Yubo; Dai, Shaobin; Zhang, Yichao; Huang, Jun; Su, Ying; Ma, Baoguo

    2018-01-01

    The mass accumulation of phosphogypsum has caused serious environmental pollution, which has become a worldwide problem. Gypsum is a kind of green building material, which is lighter, has better heat and sound insulation performance, and is easier to recycle compared to cement. The application of cast-in-situ phosphogypsum wall could consume a large amount of pollutant, and improve the efficiency of building construction. The preparation and thermal insulation performance of cast-in-situ phosphogypsum wall were investigated. The property of phosphogypsum-fly ash-lime (PFL) triad cementing materials, the adaptability of retarders and superplasticizers, and the influences of vitrified microsphere as aggregates were explored. Thus, the optimum mix was proposed. Thermal insulation performance tests and ANSYS simulation of this material was carried out. Optimal structures based on heat channels and the method of calculation determining related parameters were proposed, which achieved a 12.3% reduction in the heat transfer coefficient of the wall. With good performance, phosphogypsum could be used in cast-in-situ walls. This paper provides the theoretical basis for the preparation and energy-saving application of phosphogypsum in the walls of buildings.

  12. X-ray tomography investigation of intensive sheared Al–SiC metal matrix composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Giovanni, Mario; Warnett, Jason M.; Williams, Mark A.

    2015-12-15

    X-ray computed tomography (XCT) was used to characterise three dimensional internal structure of Al–SiC metal matrix composites. The alloy composite was prepared by casting method with the application of intensive shearing to uniformly disperse SiC particles in the matrix. Visualisation of SiC clusters as well as porosity distribution were evaluated and compared with non-shearing samples. Results showed that the average particle size as well as agglomerate size is smaller in sheared sample compared to conventional cast samples. Further, it was observed that the volume fraction of porosity was reduced by 50% compared to conventional casting, confirming that the intensive shearingmore » helps in deagglomeration of particle clusters and decrease in porosity of Al–SiC metal matrix composites. - Highlights: • XCT was used to visualise 3D internal structure of Al-SiC MMC. • Al-SiC MMC was prepared by casting with the application of intensive shearing. • SiC particles and porosity distribution were evaluated. • Results show shearing deagglomerates particle clusters and reduces porosity in MMC.« less

  13. 3D printing in X-ray and Gamma-Ray Imaging: A novel method for fabricating high-density imaging apertures☆

    PubMed Central

    Miller, Brian W.; Moore, Jared W.; Barrett, Harrison H.; Fryé, Teresa; Adler, Steven; Sery, Joe; Furenlid, Lars R.

    2011-01-01

    Advances in 3D rapid-prototyping printers, 3D modeling software, and casting techniques allow for cost-effective fabrication of custom components in gamma-ray and X-ray imaging systems. Applications extend to new fabrication methods for custom collimators, pinholes, calibration and resolution phantoms, mounting and shielding components, and imaging apertures. Details of the fabrication process for these components, specifically the 3D printing process, cold casting with a tungsten epoxy, and lost-wax casting in platinum are presented. PMID:22199414

  14. U.S. Geological Survey's ShakeCast: A cloud-based future

    USGS Publications Warehouse

    Wald, David J.; Lin, Kuo-Wan; Turner, Loren; Bekiri, Nebi

    2014-01-01

    When an earthquake occurs, the U. S. Geological Survey (USGS) ShakeMap portrays the extent of potentially damaging shaking. In turn, the ShakeCast system, a freely-available, post-earthquake situational awareness application, automatically retrieves earthquake shaking data from ShakeMap, compares intensity measures against users’ facilities, sends notifications of potential damage to responsible parties, and generates facility damage assessment maps and other web-based products for emergency managers and responders. ShakeCast is particularly suitable for earthquake planning and response purposes by Departments of Transportation (DOTs), critical facility and lifeline utilities, large businesses, engineering and financial services, and loss and risk modelers. Recent important developments to the ShakeCast system and its user base are described. The newly-released Version 3 of the ShakeCast system encompasses advancements in seismology, earthquake engineering, and information technology applicable to the legacy ShakeCast installation (Version 2). In particular, this upgrade includes a full statistical fragility analysis framework for general assessment of structures as part of the near real-time system, direct access to additional earthquake-specific USGS products besides ShakeMap (PAGER, DYFI?, tectonic summary, etc.), significant improvements in the graphical user interface, including a console view for operations centers, and custom, user-defined hazard and loss modules. The release also introduces a new adaption option to port ShakeCast to the "cloud". Employing Amazon Web Services (AWS), users now have a low-cost alternative to local hosting, by fully offloading hardware, software, and communication obligations to the cloud. Other advantages of the "ShakeCast Cloud" strategy include (1) Reliability and robustness of offsite operations, (2) Scalability naturally accommodated, (3), Serviceability, problems reduced due to software and hardware uniformity, (4) Testability, freely available for new users, (5) Remotely supported, allowing expert-facilitated maintenance, (6) Adoptability, simplified with disk images, and (7) Security, built in at the very high level associated with AWS. The ShakeCast user base continues to expand and broaden. For example, Caltrans, the prototypical ShakeCast user and development supporter, has been providing guidance to other DOTs on the use of the National Bridge Inventory (NBI) database to implement fully-functional ShakeCast systems in their states. A long-term goal underway is to further "connect the DOTs" via a Transportation Pooled Fund (TPF) with participating state DOTs. We also review some of the many other users and uses of ShakeCast. Lastly, on the hazard input front, we detail related ShakeMap improvements and ongoing advancements in estimating the likelihood of shaking-induced secondary hazards at structures, facilities, bridges, and along roadways due to landslides and liquefaction, and implemented within the ShakeCast framework.

  15. 38 CFR 11.128 - Veteran dies without having filed application for final settlement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Application for Payment of Adjusted Service Certificate Under the World War Adjusted Compensation Act, As... 38 Pensions, Bonuses, and Veterans' Relief 1 2013-07-01 2013-07-01 false Veteran dies without having filed application for final settlement. 11.128 Section 11.128 Pensions, Bonuses, and Veterans...

  16. 38 CFR 11.128 - Veteran dies without having filed application for final settlement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Application for Payment of Adjusted Service Certificate Under the World War Adjusted Compensation Act, As... 38 Pensions, Bonuses, and Veterans' Relief 1 2011-07-01 2011-07-01 false Veteran dies without having filed application for final settlement. 11.128 Section 11.128 Pensions, Bonuses, and Veterans...

  17. 38 CFR 11.128 - Veteran dies without having filed application for final settlement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Application for Payment of Adjusted Service Certificate Under the World War Adjusted Compensation Act, As... 38 Pensions, Bonuses, and Veterans' Relief 1 2014-07-01 2014-07-01 false Veteran dies without having filed application for final settlement. 11.128 Section 11.128 Pensions, Bonuses, and Veterans...

  18. 38 CFR 11.128 - Veteran dies without having filed application for final settlement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Application for Payment of Adjusted Service Certificate Under the World War Adjusted Compensation Act, As... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Veteran dies without having filed application for final settlement. 11.128 Section 11.128 Pensions, Bonuses, and Veterans...

  19. 38 CFR 11.128 - Veteran dies without having filed application for final settlement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Application for Payment of Adjusted Service Certificate Under the World War Adjusted Compensation Act, As... 38 Pensions, Bonuses, and Veterans' Relief 1 2012-07-01 2012-07-01 false Veteran dies without having filed application for final settlement. 11.128 Section 11.128 Pensions, Bonuses, and Veterans...

  20. High Bismuth Alloys as Lead-Free Alternatives for Interconnects in High-Temperature Electronics

    NASA Astrophysics Data System (ADS)

    Mallampati, Sandeep

    Predominant high melting point solders for high-temperature electronics (operating temperatures from 200 to 250°C) are Pb-based which are being banned from usage due to their toxic nature. In this study, high bismuth alloy compositions (Bi-14Cu-8Sn, Bi-20Sb-10Cu, Bi-15Sb-10Cu and Bi-10Sb-10Cu) were designed, cast, and characterized to understand their potential as replacements. The desirable aspect of Bi is its high melting temperature, which is 271°C. Alloying elements Sn, Sb and Cu were added to improve some of its properties such as thermal conductivity, plasticity, and reactivity with Cu and Ni surface. Metallographic sectioning and microstructure analysis were performed on the bulk alloys to compare the evolution of phases predicted from equilibrium phase diagrams. Reflow processes were developed to make die-attach samples out of the proposed alloys and die-shear testing was carried out to characterize mechanical integrity of the joint. Thermal shock between -55°C to 200°C and high temperature storage at 200°C were performed on the assembled die-attach samples to study microstructure evolution and mechanical behavior of the reflowed alloys under accelerated testing conditions. In addition, heat dissipation capabilities, using flash diffusivity, were measured on the bulk alloys and also on the die-attach assembly. Finally, tensile testing was performed on the dogbone specimens to identify the potential for plastic deformation and electron backscatter diffraction (EBSD) analysis was used to study the grain orientations on the fracture surfaces and their influence on the crack propagation. Bi-14Cu-8Sn has formed BiNi by on the die backside metallization and the reaction with Cu was poor. This has resulted in weaker substrate side interface. It was observed that Bi-Sb alloys have strong reactivity with Ni (forming Bi3Ni, BiNi and NiSb intermetallic phases), and with Cu (forming Cu2Sb, Cu4Sb). Spallation was observed in NiSb interfacial intermetallic layer and the reflow process was optimized to minimize spallation. Die-attach joints made out of Bi-15Sb-10Cu alloy, with the improved reflow process, have shown an average shear strength of 24 MPa with low standard deviation, which is comparable to that of commercially available high Pb solders. Bi-15Sb-10Cu alloy has shown limited plastic deformation in room temperature testing. The fracture propagated through the (111) cleavage planes of rhombohedral crystal structure of the Bi(Sb) matrix. The same alloy has shown up to 7% plastic strain under tension when tested at 175°C. The cleavage planes, which were oriented at higher angles to the tensile axis, contributed to plasticity in the high temperature test. The thermal conductivity of all the alloys was higher than that of pure Bi. Cu2Sb precipitates form high conductive paths in a matrix that has relatively lower conductivity, thereby enhancing thermal conductivity of the Bi alloys. By creating high volume fraction of precipitates in a die-attach joint microstructure, it was feasible to further increase the thermal conductivity of this joint to 24 W/m˙K, which is three times higher than that of pure Bi (8 W/m˙K). Delamination along the die side interfacial NiSb layer was the most commonly observed failure mode in thermal shock tests. The die-attach samples made with Bi-15Sb-10Cu, however, retained the original shear strength even after thermal shock and high temperature storage. The microstructures of these samples revealed formation of Bi3Ni on the die side interface that prevented it from being delaminated. Bi-15Sb-10Cu alloy has so far shown the most promising performance as a die-attach material for high temperature applications (operated over 200°C).

  1. Stress-strain relationship and seismic performance of cast-in-situ phosphogypsum.

    PubMed

    Zhang, Yichao; Dai, Shaobin; Weng, Wanlin; Huang, Jun; Su, Ying; Cai, Yue

    2017-06-16

    Phosphogypsum is a waste by-product during the production of phosphoric acid. It not only occupies landfill, but also pollutes the environment, which becomes an important factor restricting the sustainable development of the phosphate fertilizer industry. Research into cast-in-situ phosphogypsum will greatly promote the comprehensive utilization of stored phosphogypsum. The aim of this study was to clarify the mechanical properties of phosphogypsum. Stress-strain relationships of cast-in-situ phosphogypsum were investigated through axial compressive experiments, and seismic performance of cast-in-situ phosphogypsum walls and aerated-concrete masonry walls were simulated based on the experimental results and using finite element analysis. The results showed that the stress-strain relationship fitted into a polynomial equation. Moreover, the displacement ductility index and the energy dissipation index of cast-in-situ phosphogypsum wall were 6.587 and 3.425, respectively. The stress-strain relationship for earthquake-resistant performance of cast-in-situ phosphogypsum walls is better than that of aerated-concrete masonry walls. The curve of stress-strain relationship and the evaluation of earthquake-resistant performance provide theoretical support for the application of cast-in-situ phosphogypsum in building walls.

  2. Superalloy Lattice Block Structures

    NASA Technical Reports Server (NTRS)

    Nathal, M. V.; Whittenberger, J. D.; Hebsur, M. G.; Kantzos, P. T.; Krause, D. L.

    2004-01-01

    Initial investigations of investment cast superalloy lattice block suggest that this technology will yield a low cost approach to utilize the high temperature strength and environmental resistance of superalloys in lightweight, damage tolerant structural configurations. Work to date has demonstrated that relatively large superalloy lattice block panels can be successfully investment cast from both IN-718 and Mar-M247. These castings exhibited mechanical properties consistent with the strength of the same superalloys measured from more conventional castings. The lattice block structure also accommodates significant deformation without failure, and is defect tolerant in fatigue. The potential of lattice block structures opens new opportunities for the use of superalloys in future generations of aircraft applications that demand strength and environmental resistance at elevated temperatures along with low weight.

  3. BIRTH ORDER, STAGE OF INFANCY AND INFANT MORTALITY IN INDIA.

    PubMed

    Mishra, S K; Ram, Bali; Singh, Abhishek; Yadav, Awdhesh

    2017-10-02

    Using data from India's National Family Health Survey, 2005-06 (NFHS-3), this article examines the patterns of relationship between birth order and infant mortality. The analysis controls for a number of variables, including mother's characteristics such as age at the time of survey, current place of residence (urban/rural), years of schooling, religion, caste, and child's sex and birth weight. A modest J-shaped relationship between birth order of children and their risk of dying in the neonatal period is found, suggesting that although both first- and last-born children are at a significantly greater risk of dying compared with those in the middle, last-borns (i.e. fourth and higher order births) are at the worst risk. However, in the post-neonatal period first-borns are not as vulnerable, but the risk increases steadily with the addition of successive births and last-borns are at much greater risk, even worse than those in the neonatal period. Although the strength of relationship between birth order and mortality is attenuated after the potential confounders are taken into account, the relationship between the two variables remains curvilinear in the neonatal period and direct in the post-neonatal period. There are marked differences in these patterns by the child's sex. While female children are less prone to the risk of dying in the neonatal period in comparison with male children, the converse is true in the post-neonatal period. Female children not only run higher risks of dying in the post-neonatal period, but also become progressively more vulnerable with an increase in birth order.

  4. Aerophagia induced by the nasal obstruction on experimental animals.

    PubMed

    Nakajima, K; Ohi, G

    1977-04-01

    The excessive accumulation of gas in the gastrointestinal tracts was invariably induced on experimental animals (mice, rats, guinea pigs, hamsters and rabbits) by simply obstructing nasal passages. The analysis of the gas showed the almost identical composition to the ambient air or flutus which was largely due to swallowed air. Also the numerous small foams were found on and underneath the epithelial lining of small intestine. The pathological evaluation was done both macroscopically and microscopically. Dying animals after nasal obstruction showed hemorrhagic and necrotic changes in the jejunum and ileum. This observation may cast some light to the pathogenesis of necrotizing enterocolitis in human neonatal.

  5. Combined effects of cerium and cooling rate on microstructure and mechanical properties of AZ91 magnesium alloy

    NASA Astrophysics Data System (ADS)

    Cai, Huisheng; Guo, Feng; Su, Juan

    2018-01-01

    The specimens of AZ91-xCe(x = 0, 0.3, 0.6, 0.9, 1.2, mass fraction wt%) with different thicknesses were prepared by die casting process, their as-cast microstructure and room temperature mechanical properties were investigated to analyze the change rule of microstructure and mechanical properties of AZ91 magnesium alloy under combined effects of cooling rate and cerium content. The results show that, the microstructure and mechanical properties of AZ91 magnesium alloy were twofold influenced by cooling rate and cerium content. With the increase of cooling rate and Ce content, the average as-cast grain size is evidently refined; the amount of β-Mg17Al12 decreases and distribution becomes discrete. While decreasing cooling rate or increasing Ce content, Al4Ce phase is more and the morphology tends to strip and needle from granular and short rod-like. The tensile strength and elongation of AZ91-xCe magnesium alloy are improved with increasing cooling rate. With the increase of Ce content, the tensile strength and elongation of AZ91-xCe magnesium alloy increased first and decreased afterwards, besides the action of Ce to improve tensile strength and elongation is more evident under faster cooling rate. Mechanical properties of samples are optimal in this work, when Ce content is 0.96% and cooling rate is 39.6 K s-1, tensile strength (259.7 MPa) and elongation (5.5%) are reached maximum, respectively.

  6. Joseph Carpue's file drawer experiment - A murder mystery from 1801.

    PubMed

    Freshwater, M Felix

    2015-12-01

    Today unpublished or "file drawer" experiments are the impetus for trial registration and reporting of all results. In 1801, Joseph Carpue, the father of modern plastic surgery, did a file drawer experiment for Benjamin West, who was President of the Royal Academy of Arts. George III had commissioned West to create the largest stained glass window ever created whose theme, the Crucifixion, was based upon Michelangelo's drawing. Subsequently, West suffered a series of political, professional and economic setbacks. In the summer of 1801, West's project was delayed. By the fall, West hoped that independent scientific confirmation of his design could salvage the project. West approached Carpue who obtained a murderer's fresh corpse that he crucified and documented the results with plaster casts created by sculptor Thomas Banks. Carpue's experiment showed that West's window design wrongly depicted the Crucifixion because West had posed the hands and shoulders incorrectly. West died in 1820 without ever being associated with Carpue's experiment. Carpue's obituary in The Lancet in 1846 contained Carpue's handwritten note that described the experiment but not West's Royal commission. As no records or publications associate the cast with West project, this can be considered to be a file drawer experiment. After 1801, West made further drawings of the Crucifixion that showed the figures in the same position as the cast. Nineteenth century auction catalogues suggest that West made a corrected Crucifixion painting, but its current location remains a mystery.

  7. A novel use of QR code stickers after orthopaedic cast application.

    PubMed

    Gough, A T; Fieraru, G; Gaffney, Pav; Butler, M; Kincaid, R J; Middleton, R G

    2017-07-01

    INTRODUCTION We present a novel solution to ensure that information and contact details are always available to patients while in cast. An information sticker containing both telephone numbers and a Quick Response (QR) code is applied to the cast. When scanned with a smartphone, the QR code loads the plaster team's webpage. This contains information and videos about cast care, complications and enhancing recovery. METHODS A sticker was designed and applied to all synthetic casts fitted in our fracture clinic. On cast removal, patients completed a questionnaire about the sticker. A total of 101 patients were surveyed between November 2015 and February 2016. The questionnaire comprised ten binary choice questions. RESULTS The vast majority (97%) of patients had the sticker still on their cast when they returned to clinic for cast removal. Eighty-four per cent of all patients felt reassured by the presence of the QR code sticker. Nine per cent used the contact details on the cast to seek advice. Over half (56%) had a smartphone and a third (33%) of these scanned the QR code. Of those who scanned the code, 95% found the information useful. CONCLUSIONS This study indicates that use of a QR code reassures patients and is an effective tool in the proactive management of potential cast problems. The QR code sticker is now applied to all casts across our trust. In line with NHS England's Five Year Forward View calling for enhanced use of smartphone technology, our trust is continuing to expand its portfolio of patient information accessible via QR codes. Other branches of medicine may benefit from incorporating QR codes as portals to access such information.

  8. Cardiovascular cast model fabrication and casting effectiveness evaluation in fetus with severe congenital heart disease or normal heart.

    PubMed

    Wang, Yu; Cao, Hai-yan; Xie, Ming-xing; He, Lin; Han, Wei; Hong, Liu; Peng, Yuan; Hu, Yun-fei; Song, Ben-cai; Wang, Jing; Wang, Bin; Deng, Cheng

    2016-04-01

    To investigate the application and effectiveness of vascular corrosion technique in preparing fetal cardiovascular cast models, 10 normal fetal heart specimens with other congenital disease (control group) and 18 specimens with severe congenital heart disease (case group) from induced abortions were enrolled in this study from March 2013 to June 2015 in our hospital. Cast models were prepared by injecting casting material into vascular lumen to demonstrate real geometries of fetal cardiovascular system. Casting effectiveness was analyzed in terms of local anatomic structures and different anatomical levels (including overall level, atrioventricular and great vascular system, left-sided and right-sided heart), as well as different trimesters of pregnancy. In our study, all specimens were successfully casted. Casting effectiveness analysis of local anatomic structures showed a mean score from 1.90±1.45 to 3.60±0.52, without significant differences between case and control groups in most local anatomic structures except left ventricle, which had a higher score in control group (P=0.027). Inter-group comparison of casting effectiveness in different anatomical levels showed no significant differences between the two groups. Intra-group comparison also revealed undifferentiated casting effectiveness between atrioventricular and great vascular system, or left-sided and right-sided heart in corresponding group. Third-trimester group had a significantly higher perfusion score in great vascular system than second-trimester group (P=0.046), while the other anatomical levels displayed no such difference. Vascular corrosion technique can be successfully used in fabrication of fetal cardiovascular cast model. It is also a reliable method to demonstrate three-dimensional anatomy of severe congenital heart disease and normal heart in fetus.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nick Cannell; Dr. Mark Samonds; Adi Sholapurwalla

    The investment casting process is an expendable mold process where wax patterns of the part and rigging are molded, assembled, shelled and melted to produce a ceramic mold matching the shape of the component to be cast. Investment casting is an important manufacturing method for critical parts because of the ability to maintain dimensional shape and tolerances. However, these tolerances can be easily exceeded if the molding components do not maintain their individual shapes well. In the investment casting process there are several opportunities for the final casting shape to not maintain the intended size and shape, such as shrinkagemore » of the wax in the injection tool, the modification of the shape during shell heating, and with the thermal shrink and distortion in the casting process. Studies have been completed to look at the casting and shell distortions through the process in earlier phases of this project. Dr. Adrian Sabau at Oak Ridge National Labs performed characterizations and validations of 17-4 PH stainless steel in primarily fused silica shell systems with good agreement between analysis results and experimental data. Further tasks provided material property measurements of wax and methodology for employing a viscoelastic definition of wax materials into software. The final set of tasks involved the implementation of the findings into the commercial casting analysis software ProCAST, owned and maintained by ESI Group. This included: o the transfer of the wax material property data from its raw form into separate temperature-dependent thermophysical and mechanical property datasets o adding this wax material property data into an easily viewable and modifiable user interface within the pre-processing application of the ProCAST suite, namely PreCAST o and validating the data and viscoelastic wax model with respect to experimental results« less

  10. Effect of degree of sulfonation and casting solvent on sulfonated poly(ether ether ketone) membrane for vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Xi, Jingyu; Li, Zhaohua; Yu, Lihong; Yin, Bibo; Wang, Lei; Liu, Le; Qiu, Xinping; Chen, Liquan

    2015-07-01

    The properties of sulfonated poly(ether ether ketone) (SPEEK) membranes with various degree of sulfonation (DS) and casting solvent are investigated for vanadium redox flow battery (VRFB). The optimum DS of SPEEK membrane is firstly confirmed by various characterizations such as physicochemical properties, ion selectivity, and VRFB single-cell performance. Subsequently the optimum casting solvent is selected for the optimum DS SPEEK membrane within N,N‧-dimethylformamide (DMF), N,N‧-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP), and dimethylsulfoxide (DMSO). The different performance of SPEEK membranes prepared with various casting solvents can be attributed to the different interaction between solvent and -SO3H group of SPEEK. In the VRFB single-cell test, the optimum SPEEK membrane with DS of 67% and casting solvent of DMF (S67-DMF membrane) exhibits higher VRFB efficiencies and better cycle-life performance at 80 mA cm-2. The investigation of various DS and casting solvent will be effective guidance on the selection and modification of SPEEK membrane towards VRFB application.

  11. Investigation of optimal chemical composition of cast aluminum alloys for vibrational mechanical-chemical polishing and deposition of protective and decorative coatings

    NASA Astrophysics Data System (ADS)

    Ivanov, V. V.; Popov, S. I.; Kirichek, A. V.

    2018-03-01

    The article suggests the technology of vibration finishing processing of aluminum alloys with simultaneous coating. On the basis of experimental studies, cast alloys, working media, operating modes of equipment, activating solutions were chosen. The practical application of the developed technology on real parts is shown.

  12. Tox21 and ToxCast Chemical Landscapes: Laying the Foundation for 21st Century Toxicology - Application of the Strategy to Chemical Testing

    EPA Science Inventory

    The U.S. Environmental Protection Agency’s ToxCast project and the related, multi-Agency Tox21 project are employing high-throughput technologies to screen hundreds to thousands of chemicals in hundreds of assays, probing a wide diversity of biological targets, pathways and mecha...

  13. The application of multi-baseline digital close-range photogrammetry in three-dimensional imaging and measurement of dental casts.

    PubMed

    Fu, Xiaoming; Peng, Chun; Li, Zan; Liu, Shan; Tan, Minmin; Song, Jinlin

    2017-01-01

    To explore a new technique for reconstructing and measuring three-dimensional (3D) models of orthodontic plaster casts using multi-baseline digital close-range photogrammetry (MBDCRP) with a single-lens reflex camera. Thirty sets of orthodontic plaster casts that do not exhibit severe horizontal overlap (>2 mm) between any two teeth were recorded by a single-lens reflex camera with 72 pictures taken in different directions. The 3D models of these casts were reconstructed and measured using the open source software MeshLab. These parameters, including mesio-distal crown diameter, arch width, and arch perimeter, were recorded six times on both the 3D digital models and on plaster casts by two examiners. Statistical analysis was carried out using the Bland-Altman method to measure agreement between the novel method and the traditional calliper method by calculating the differences between mean values. The average differences between the measurements of the photogrammetric 3D models and the plaster casts were 0.011-0.402mm. The mean differences between measurements obtained by the photogrammetric 3D models and the dental casts were not significant except for the lower arch perimeter (P>0.05), and all the differences were regarded as clinically acceptable (<0.5 mm). Measurements obtained by MBDCRP are compared well with those obtained from plaster casts, indicating that MBDCRP is an alternate way to store and measure dental plaster casts without severe horizontal overlap between any two teeth.

  14. Dimensional accuracy of resultant casts made by a monophase, one-step and two-step, and a novel two-step putty/light-body impression technique: an in vitro study.

    PubMed

    Caputi, Sergio; Varvara, Giuseppe

    2008-04-01

    Dimensional accuracy when making impressions is crucial to the quality of fixed prosthodontic treatment, and the impression technique is a critical factor affecting this accuracy. The purpose of this in vitro study was to compare the dimensional accuracy of a monophase, 1- and 2-step putty/light-body, and a novel 2-step injection impression technique. A stainless steel model with 2 abutment preparations was fabricated, and impressions were made 15 times with each technique. All impressions were made with an addition-reaction silicone impression material (Aquasil) and a stock perforated metal tray. The monophase impressions were made with regular body material. The 1-step putty/light-body impressions were made with simultaneous use of putty and light-body materials. The 2-step putty/light-body impressions were made with 2-mm-thick resin-prefabricated copings. The 2-step injection impressions were made with simultaneous use of putty and light-body materials. In this injection technique, after removing the preliminary impression, a hole was made through the polymerized material at each abutment edge, to coincide with holes present in the stock trays. Extra-light-body material was then added to the preliminary impression and further injected through the hole after reinsertion of the preliminary impression on the stainless steel model. The accuracy of the 4 different impression techniques was assessed by measuring 3 dimensions (intra- and interabutment) (5-mum accuracy) on stone casts poured from the impressions of the stainless steel model. The data were analyzed by 1-way ANOVA and Student-Newman-Keuls test (alpha=.05). The stone dies obtained with all the techniques had significantly larger dimensions as compared to those of the stainless steel model (P<.01). The order for highest to lowest deviation from the stainless steel model was: monophase, 1-step putty/light body, 2-step putty/light body, and 2-step injection. Significant differences among all of the groups for both absolute dimensions of the stone dies, and their percent deviations from the stainless steel model (P<.01), were noted. The 2-step putty/light-body and 2-step injection techniques were the most dimensionally accurate impression methods in terms of resultant casts.

  15. Final Report, Volume 2, The Development of Qualification Standards for Cast Duplex Stainless Steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, Steven, W.; Lundin, Carl, W.

    2005-09-30

    The scope of testing cast Duplex Stainless Steel (DSS) required testing to several ASTM specifications, while formulating and conducting industry round robin tests to verify and study the reproducibility of the results. ASTM E562 (Standard Test Method for Determining Volume Fraction by Systematic manual Point Count) and ASTM A923 (Standard Test Methods for Detecting Detrimental Intermetallic Phase in Wrought Duplex Austenitic/Ferritic Stainless Steels) were the specifications utilized in conducting this work. An ASTM E562 industry round robin, ASTM A923 applicability study, ASTM A923 industry round robin, and an ASTM A923 study of the effectiveness of existing foundry solution annealing proceduresmore » for producing cast DSS without intermetallic phases were implemented. In the ASTM E562 study, 5 samples were extracted from various cast austenitic and DSS in order to have varying amounts of ferrite. Each sample was metallographically prepared by UT and sent to each of 8 participants for volume fraction of ferrite measurements. Volume fraction of ferrite was measured using manual point count per ASTM E562. FN was measured from the Feritescope® and converted to volume fraction of ferrite. Results indicate that ASTM E562 is applicable to DSS and the results have excellent lab-to-lab reproducibility. Also, volume fraction of ferrite conversions from the FN measured by the Feritescope® were similar to volume fraction of ferrite measured per ASTM E562. In the ASTM A923 applicability to cast DSS study, 8 different heat treatments were performed on 3 lots of ASTM A890-4A (CD3MN) castings and 1 lot of 2205 wrought DSS. The heat treatments were selected to produce a wide range of cooling rates and hold times in order to study the suitability of ASTM A923 to the response of varying amounts on intermetallic phases [117]. The test parameters were identical to those used to develop ASTM A923 for wrought DSS. Charpy V-notch impact samples were extracted from the castings and wrought DSS and tested per ASTM A923 method B (Charpy impact test). Method A (sodium hydroxide etch test) was performed on one half of a fractured Charpy V-notch impact sample and Method C (ferric chloride corrosion weight loss test) was performed on another half. Test results for the three cast lots and one wrought lot indicate that ASTM A923 is relevant for detecting intermetallic phases in cast DSS. In the ASTM A923 round robin study, five laboratories conducted ASTM A923 Methods A & C on cast DSS material and the lab-to-lab reproducibility of the data was determined. Two groups of samples were sent to the participants. Group 1 samples were tested per ASTM A923 Method A, group 2 samples were tested by ASTM A923 Method C. Testing procedures for this round robin study were identical to those used in the ASTM A923 applicability study. Results from this round robin indicate that there is excellent lab-to-lab reproducibility of ASTM A923 with respect to cast DSS and that ASTM A923 could be expanded to cover both wrought and cast DSS. In the ASTM A923 study of the effectiveness of existing foundry solution annealing procedures for producing cast DSS without intermetallic phases, Ten heats of ASTM A890-4A (CD3MN) in the foundry solution annealed condition were tested per ASTM A923 Methods A, B, & C. Testing of these materials per ASTM A923 was used to determine if the foundry solution anneal procedures were adequate to completely eliminate any intermetallic phases, which may have precipitated during the casting and subsequent heat treatment processes. All heats showed no sign of intermetallic phase per Method A, passed minimum Charpy impact energy requirements per Method B (> 40 ft-lbs @ -40°C (-40°F)), and showed negligible weight loss per Method C (< 10 mdd). These results indicate that the solution annealing procedure used by foundries is adequate to produce a product free from intermetallic phases.« less

  16. Final Report, Volume 2, The Development of Qualification Standards for Cast Duplex Stainless Steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, Steven, W.; Lundin, Carl, D.

    2005-09-30

    The scope of testing cast Duplex Stainless Steel (DSS) required testing to several ASTM specifications, while formulating and conducting industry round robin tests to verify and study the reproducibility of the results. ASTM E562 (Standard Test Method for Determining Volume Fraction by Systematic manual Point Count) and ASTM A923 (Standard Test Methods for Detecting Detrimental Intermetallic Phase in Wrought Duplex Austenitic/Ferritic Stainless Steels) were the specifications utilized in conducting this work. An ASTM E562 industry round robin, ASTM A923 applicability study, ASTM A923 industry round robin, and an ASTM A923 study of the effectiveness of existing foundry solution annealing proceduresmore » for producing cast DSS without intermetallic phases were implemented. In the ASTM E562 study, 5 samples were extracted from various cast austenitic and DSS in order to have varying amounts of ferrite. Each sample was metallographically prepared by UT and sent to each of 8 participants for volume fraction of ferrite measurements. Volume fraction of ferrite was measured using manual point count per ASTM E562. FN was measured from the Feritescope{reg_sign} and converted to volume fraction of ferrite. Results indicate that ASTM E562 is applicable to DSS and the results have excellent lab-to-lab reproducibility. Also, volume fraction of ferrite conversions from the FN measured by the Feritescope{reg_sign} were similar to volume fraction of ferrite measured per ASTM E562. In the ASTM A923 applicability to cast DSS study, 8 different heat treatments were performed on 3 lots of ASTM A890-4A (CD3MN) castings and 1 lot of 2205 wrought DSS. The heat treatments were selected to produce a wide range of cooling rates and hold times in order to study the suitability of ASTM A923 to the response of varying amounts on intermetallic phases [117]. The test parameters were identical to those used to develop ASTM A923 for wrought DSS. Charpy V-notch impact samples were extracted from the castings and wrought DSS and tested per ASTM A923 method B (Charpy impact test). Method A (sodium hydroxide etch test) was performed on one half of a fractured Charpy V-notch impact sample and Method C (ferric chloride corrosion weight loss test) was performed on another half. Test results for the three cast lots and one wrought lot indicate that ASTM A923 is relevant for detecting intermetallic phases in cast DSS. In the ASTM A923 round robin study, five laboratories conducted ASTM A923 Methods A & C on cast DSS material and the lab-to-lab reproducibility of the data was determined. Two groups of samples were sent to the participants. Group 1 samples were tested per ASTM A923 Method A, group 2 samples were tested by ASTM A923 Method C. Testing procedures for this round robin study were identical to those used in the ASTM A923 applicability study. Results from this round robin indicate that there is excellent lab-to-lab reproducibility of ASTM A923 with respect to cast DSS and that ASTM A923 could be expanded to cover both wrought and cast DSS. In the ASTM A923 study of the effectiveness of existing foundry solution annealing procedures for producing cast DSS without intermetallic phases, Ten heats of ASTM A890-4A (CD3MN) in the foundry solution annealed condition were tested per ASTM A923 Methods A, B, & C. Testing of these materials per ASTM A923 was used to determine if the foundry solution anneal procedures were adequate to completely eliminate any intermetallic phases, which may have precipitated during the casting and subsequent heat treatment processes. All heats showed no sign of intermetallic phase per Method A, passed minimum Charpy impact energy requirements per Method B (> 40 ft-lbs {at} -40 C (-40 F)), and showed negligible weight loss per Method C (< 10 mdd). These results indicate that the solution annealing procedure used by foundries is adequate to produce a product free from intermetallic phases.« less

  17. Detection and reconstruction of solidification cracks - Laser ultrasonic measurements during the continuous casting process of aluminum

    NASA Astrophysics Data System (ADS)

    Mitter, Thomas; Grün, Hubert; Roither, Jürgen; Betz, Andreas; Bozorgi, Salar; Reitinger, Bernhard; Burgholzer, Peter

    2014-05-01

    In the continuous casting process the avoidance and rapid detection of occurring solidification cracks in the slab is a crucial issue, in particular for the maintenance of a high quality level in further production processes. Due to the elevated temperatures of the slab surface a remote sensing non-destructive tool for quality inspection is required, which is also applicable for the harsh industrial environment. In this work the application of laser ultrasound (LUS) technique during the continuous casting process in industrial environment is shown. The proof of principle of the detection of the centered solidification cracks is shown by pulse-echo measurements with laser ultrasonic equipment for inline quality inspection. Preliminary examinations in the lab of different casted samples have shown the distinguishability of slabs with and without any solidification cracks. Furthermore the damping of the bulk wave has been used for the prediction of the dimension of the crack. With an adapted "synthetic aperture focusing technique" (SAFT) algorithm the image reconstruction of multiple measurements at different positions around the circumference has provided enough information for the estimation of the localization and extension of the centered solidification cracks. Subsequent first measurements using this laser ultrasonic setup during the continuous casting of aluminum were carried out and showed the proof of principle in an industrial environment with elevated temperatures, dust, cooling water and vibrations.

  18. Non-graphite crucible for high temperature applications

    DOEpatents

    Holcombe, Cressie E.; Pfeiler, William A.

    1996-01-01

    A multi-piece crucible for high temperature applications comprises a tubular side wall member having a lip on the inside surface and a bottom member or members forming a container for containing a melt of a material during a high temperature melt-casting operations. The multi-piece design prevents cracking of the crucible or leakage of the melt from the crucible during the melt-casting operation. The lip of the tubular member supports the bottom member. The contacting surfaces where the lip of the tubular side wall member contacts the bottom member of the multi-piece crucible contains a ceramic sealing material. The ceramic sealing material forms a seal sufficient to prevent the melt of the material from leaking out of the multi-piece crucible during the melt-casting process. The multi-piece crucible is made of a material which is chemically inert to the melt and has structural integrity at the melting point temperature of the melt, or of a material coated with such a material. The multi-piece crucible is contained in a thermal can assembly of a high temperature induction furnace during a high temperature melt-casting operation. One embodiment of the multi-piece crucible comprises a tubular member having a vertical slot filled with a ceramic sealing material to provide expansion of the tubular member without cracking during the high temperature melt-casting operation.

  19. Non-graphite crucible for high temperature applications

    DOEpatents

    Holcombe, C.E.; Pfeiler, W.A.

    1996-01-09

    A multi-piece crucible for high temperature applications comprises a tubular side wall member having a lip on the inside surface and a bottom member or members forming a container for containing a melt of a material during a high temperature melt-casting operations. The multi-piece design prevents cracking of the crucible or leakage of the melt from the crucible during the melt-casting operation. The lip of the tubular member supports the bottom member. The contacting surfaces where the lip of the tubular side wall member contacts the bottom member of the multi-piece crucible contains a ceramic sealing material. The ceramic sealing material forms a seal sufficient to prevent the melt of the material from leaking out of the multi-piece crucible during the melt-casting process. The multi-piece crucible is made of a material which is chemically inert to the melt and has structural integrity at the melting point temperature of the melt, or of a material coated with such a material. The multi-piece crucible is contained in a thermal can assembly of a high temperature induction furnace during a high temperature melt-casting operation. One embodiment of the multi-piece crucible comprises a tubular member having a vertical slot filled with a ceramic sealing material to provide expansion of the tubular member without cracking during the high temperature melt-casting operation. 9 figs.

  20. Grain refinement and texture development of cast bismuth-antimony alloy via severe plastic deformation

    NASA Astrophysics Data System (ADS)

    Im, Jae-Taek

    The purpose of this work was to study learn about grain refinement mechanisms and texture development in cast n-type Bi90Sb10 alloy caused by severe plastic deformation. The practical objective is to produce a fine grained and textured microstructure in Bi90Sb10 alloy with enhanced thermoelectric performance and mechanical strength. In the study, twelve millimeter diameter cast bars of Bi90Sb 10 alloy were encapsulated in square cross section aluminum 6061 alloy containers. The composite bars were equal channel angular (ECAE) extruded through a 90 degree angle die at high homologous temperature. Various extrusion conditions were studied including punch speed (0.1, 0.3 and 0.6 in/min), extrusion temperature (220, 235 and 250°C), number of extrusion passes (1, 2 and 4), route (A, BC and C), and exit channel area reduction ratio (half and quarter area of inlet channel). The affect of an intermediate long term heat treatment (for 100 hours at 250°C under 10-3 torr vacuum) was explored. Processed materials were characterized by optical microscopy, x-ray diffraction, energy dispersive spectroscopy, wavelength dispersive spectroscopy and scanning electron microscopy. Texture was analyzed using the {006} reflection plane to identify the orientation of the basal poles in processed materials. The cast grains were irregularly shaped, had a grain size of hundreds-of-microns to millimeters, and showed inhomogeneous chemical composition. Severe plastic deformation refines the cast grains through dynamic recrystallization and causes the development of a bimodal microstructure consisting of fine grains (5-30 micron) and coarse grains (50-300 micron). ECAE processing of homogenizied Bi-Sb alloy causes grain refinement and produces a more uniform microstructure. Texture results show that ECAE route C processing gives a similar or slightly stronger texture than ECAE route A processing. In both cases, the basal-plane poles become aligned with the shear direction. Reduction area exit channel extrusion is more effective for both grain refinement and texture enhancement than simple ECAE processing.

  1. Nonaqueous slip casting of YBa2Cu3O(7-x) superconductive ceramics. Ph.D. Thesis - 1993

    NASA Technical Reports Server (NTRS)

    Hooker, Matthew W.; Taylor, Theodore D.

    1994-01-01

    This study investigates the slip casting of YBa2Cu3O(7-x) powders using nonaqueous carrier liquids and fired ceramic molds. The parameters of the process examined here include the rheological properties of YBa2Cu3O(7-x) powder dispersed in various solvent/dispersant systems, the combination of nonaqueous slips with fired ceramic molds to form the superconductive ceramics, the process-property relationships using a four-factor factorial experiment, and the applicability of magnetic fields to align the YBa2Cu3O(7-x) grains during the casting process.

  2. Case and Administrative Support Tools

    EPA Pesticide Factsheets

    Case and Administrative Support Tools (CAST) is the secure portion of the Office of General Counsel (OGC) Dashboard business process automation tool used to help reduce office administrative labor costs while increasing employee effectiveness. CAST supports business functions which rely on and store Privacy Act sensitive data (PII). Specific business processes included in CAST (and respective PII) are: -Civil Rights Cast Tracking (name, partial medical history, summary of case, and case correspondance). -Employment Law Case Tracking (name, summary of case). -Federal Tort Claims Act Incident Tracking (name, summary of incidents). -Ethics Program Support Tools and Tracking (name, partial financial history). -Summer Honors Application Tracking (name, home address, telephone number, employment history). -Workforce Flexibility Initiative Support Tools (name, alternative workplace phone number). -Resource and Personnel Management Support Tools (name, partial employment and financial history).

  3. For Whom the Bell Tolls: A Special Journal Issue on Smoking Control and an Interview With Dr Harry Lando.

    PubMed

    Terry, Paul E

    2018-06-01

    Opioid addiction has been cast as a "disease of despair."1 I agree, but I wonder still: If tobacco and opioids were on a spectrum relative to the relief they provide from social, emotional, financial, and other sources of pain in the lives of the disenfranchised, could it be that they are indeed 2 sides of the same coin? For individuals in despair, pain relief is a complicit actor in what will become pleasure seeking and, for smokers, vice versa. Every year, almost as many people are dying by incidentally being near smokers as are dying by accidentally overdosing. Our opioid epidemic has been declared a national public health emergency, though the annual death toll from tobacco is 10 times greater. How should we reconcile this? As is extraordinarily represented in my interview with Dr Harry Lando and as is evident from the range of articles on tobacco control in this special issue, tobacco addiction research draws from every corner of psychology, sociology, philosophy, and other disciplines intent on understanding the human condition.

  4. Review of Research Work on Ti-BASED Composite Coatings

    NASA Astrophysics Data System (ADS)

    Gabbitas, Brian; Salman, Asma; Zhang, Deliang; Cao, Peng

    The service life of industrial components is limited predominantly by Chemical corrosion/mechanical wear. The project is concerned with the investigation of the capability of Ti(Al,O)/Al2O3 coatings to improve the service life of tool steel (H13) used for dies in aluminium high pressure die casting. This paper gives a general review on the research work conducted at the University of Waikato on producing and evaluating the titanium/alumina based composite coatings. The powder feedstocks for making the composite coatings were produced by high energy mechanical milling of a mixture of Al and TiO2 powders in two different molar ratios followed by a thermal reaction process. The feedstocks were then thermally sprayed using a high velocity air-fuel (HVAF) technique on H13 steel substrates to produce a Ti(Al,O)/Al2O3 composite coatings. The performance of the coating was assessed in terms of thermal shock resistance and reaction kinetics with molten aluminium. The composite powders and coatings were characterized using scanning electron microscopy (SEM), optical microscopy and X-ray diffractometry (XRD).

  5. Evaluation of the new TAMZ titanium alloy for dental cast application.

    PubMed

    Zhang, Y M; Guo, T W; Li, Z C

    2000-12-01

    To reveal the potential of the new titanium alloy as dental prosthodontic materials. Dental castings of TAMZ alloy were investigated in the casting machine specially designed for titanium. A mesh pattern was used to count the castability value. The mechanical properties were measured by means of a universal testing machine. Optical micrography was done on the exposed cross-section of TAMZ alloy casting. From the surface to the inner part the Knoop hardness in reacted layer of TAMZ alloy casting was measured. The structure and elemental analyses of the reacted layer were made by SEM and element line scanning observation. The castability value (Cv = 98%) and the tensile test (sigma b = 850 Mpa, sigma 0.2 = 575 Mpa, delta = 7.33%) data were collected. The castings microstructure showed main alpha phase and small beta phase. Knoop hardness in the surface reacted layer was greater than that in the inner part. From the SEM and element line scanning observation, there are three different layers in the surface reacted layer of the TAMZ alloy castings, and higher level of element of O, Al, Si and Zr were found in the reacted layer while the Si permeated deeper than others. TAMZ alloy can be accepted as a material for dental alloy in prosthodontics.

  6. Cheminformatics Analysis of EPA ToxCast Chemical Libraries to Identify Domains of Applicability for Predictive Toxicity Models and Prioritize Compounds for Toxicity Testing

    EPA Science Inventory

    An important goal of toxicology research is the development of robust methods that use in vitro and chemical structure information to predict in vivo toxicity endpoints. The US EPA ToxCast program is addressing this goal using ~600 in vitro assays to create bioactivity profiles o...

  7. Extending the Derek-Meteor Workflow to Predict Chemical-Toxicity Space Impacted by Metabolism: Application to ToxCast and Tox21 Chemical Inventories

    EPA Science Inventory

    A central aim of EPA’s ToxCast project is to use in vitro high-throughput screening (HTS) profiles to build predictive models of in vivo toxicity. Where assays lack metabolic capability, such efforts may need to anticipate the role of metabolic activation (or deactivation). A wo...

  8. A transparent model of the human scala tympani cavity.

    PubMed

    Rebscher, S J; Talbot, N; Bruszewski, W; Heilmann, M; Brasell, J; Merzenich, M M

    1996-01-01

    A dimensionally accurate clear model of the human scala tympani has been produced to evaluate the insertion and position of clinically applied intracochlear electrodes for electrical stimulation. Replicates of the human scala tympani were made from low melting point metal alloy (LMA) and from polymethylmeth-acrylate (PMMA) resin. The LMA metal casts were embedded in blocks of epoxy and in clear silicone rubber. After removal of the metal alloy, a cavity was produced that accurately models the human scala tympani. Investment casting molds were made from the PMMA scala tympani casts to enable production of multiple LMA casts from which identical models were fabricated. Total dimensional distortion of the LMA casting process was less than 1% in length and 2% in diameter. The models have been successfully integrated into the design process for the iterative development of advanced intracochlear electrode arrays at UCSF. These fabrication techniques are applicable to a wide range of biomedical design problems that require modelling of visually obscured cavities.

  9. Cryogenic Fracture Toughness Evaluation of an Investment Cast Al-Be Alloy for Structural Applications

    NASA Technical Reports Server (NTRS)

    Gamwell, W. R.; McGill, P. B.

    2006-01-01

    Aluminum-Beryllium metal matrix composite materials are useful due to their desirable performance characteristics for aerospace applications. Desirable characteristics of this material includes light-weight, dimensional stability, stiffness, good vibration damping characteristics, low coefficient of thermal expansion, and workability, This material is 3.5 times stiffer and 22% lighter than conventional aluminum alloys. electro-optical systems, advanced sensor and guidance components for flight and satellite systems, components for light-weight high-performance aircraft engines, and structural components for helicopters. Aluminum-beryllium materials are now available in the form of near net shape investment castings. In this materials properties characterization study, the cryogenic tensile and fracture properties of an investment casting alloy, Beralcast 363, were determined. Tensile testing was performed at 21 C (70 F), -73.3 C (-100 F), -195.5 C (-320 F) and -252.8 C (-423 F), and fracture (K(sub lc) and da/dN) testing was performed at -73.3 C (-100 F), -195.5 C (-320 F) and -252.8 C (-423 F). Their use is attractive for weight critical structural applications such as advanced

  10. Adaptive changes in the motor cortex during and after longterm forelimb immobilization in adult rats.

    PubMed

    Viaro, Riccardo; Budri, Mirco; Parmiani, Pierantonio; Franchi, Gianfranco

    2014-05-15

    Experimental and clinical studies have attempted to evaluate the changes in cortical activity seen after immobilization-induced longterm sensorimotor restriction, although results remain controversial. We used intracortical microstimulation (ICMS), which provides topographic movement representations of the motor areas in both hemispheres with optimal spatial characterization, combined with behavioural testing to unravel the effects of limb immobilization on movement representations in the rat primary motor cortex (M1). Unilateral forelimb immobilization in rats was achieved by casting the entire limb and leaving the cast in place for 15 or 30 days. Changes in M1 were bilateral and specific for the forelimb area, but were stronger in the contralateral-to-cast hemisphere. The threshold current required to evoke forelimb movement increased progressively over the period in cast, whereas the forelimb area size decreased and the non-excitable area size increased. Casting resulted in a redistribution of proximal/distal movement representations: proximal forelimb representation increased, whereas distal representation decreased in size. ICMS after cast removal showed a reversal of changes, which remained partial at 15 days. Local application of the GABAA-antagonist bicuculline revealed the impairment of cortical synaptic connectivity in the forelimb area during the period of cast and for up to 15 days after cast removal. Six days of rehabilitation using a rotarod performance protocol after cast removal did not advance map size normalization in the contralateral-to-cast M1 and enabled the cortical output towards the distal forelimb only in sites that had maintained their excitability. These results are relevant to our understanding of adult M1 plasticity during and after sensorimotor deprivation, and to new approaches to conditions that require longterm limb immobilization. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.

  11. The application of multi-baseline digital close-range photogrammetry in three-dimensional imaging and measurement of dental casts

    PubMed Central

    Li, Zan; Liu, Shan; Tan, Minmin; Song, Jinlin

    2017-01-01

    Objective To explore a new technique for reconstructing and measuring three-dimensional (3D) models of orthodontic plaster casts using multi-baseline digital close-range photogrammetry (MBDCRP) with a single-lens reflex camera. Study design Thirty sets of orthodontic plaster casts that do not exhibit severe horizontal overlap (>2 mm) between any two teeth were recorded by a single-lens reflex camera with 72 pictures taken in different directions. The 3D models of these casts were reconstructed and measured using the open source software MeshLab. These parameters, including mesio-distal crown diameter, arch width, and arch perimeter, were recorded six times on both the 3D digital models and on plaster casts by two examiners. Statistical analysis was carried out using the Bland–Altman method to measure agreement between the novel method and the traditional calliper method by calculating the differences between mean values. Results The average differences between the measurements of the photogrammetric 3D models and the plaster casts were 0.011–0.402mm. The mean differences between measurements obtained by the photogrammetric 3D models and the dental casts were not significant except for the lower arch perimeter (P>0.05), and all the differences were regarded as clinically acceptable (<0.5 mm). Conclusions Measurements obtained by MBDCRP are compared well with those obtained from plaster casts, indicating that MBDCRP is an alternate way to store and measure dental plaster casts without severe horizontal overlap between any two teeth. PMID:28640827

  12. An innovative approach to sampling complex industrial emissions for use in animal toxicity tests: application to iron casting operations.

    PubMed

    Palmer, W G; Scholz, R C; Moorman, W J

    1983-03-01

    Sampling of complex mixtures of airborne contaminants for chronic animal toxicity tests often involves numerous sampling devices, requires extensive sampling time, and yields forms of collected materials unsuitable for administration to animals. A method is described which used a high volume, wet venturi scrubber for collection of respirable fractions of emissions from iron foundry casting operations. The construction and operation of the sampler are presented along with collection efficiency data and its application to the preparation of large quantities of samples to be administered to animals by intratracheal instillation.

  13. Investigation of Weibull statistics in fracture analysis of cast aluminum

    NASA Technical Reports Server (NTRS)

    Holland, Frederic A., Jr.; Zaretsky, Erwin V.

    1989-01-01

    The fracture strengths of two large batches of A357-T6 cast aluminum coupon specimens were compared by using two-parameter Weibull analysis. The minimum number of these specimens necessary to find the fracture strength of the material was determined. The applicability of three-parameter Weibull analysis was also investigated. A design methodology based on the combination of elementary stress analysis and Weibull statistical analysis is advanced and applied to the design of a spherical pressure vessel shell. The results from this design methodology are compared with results from the applicable ASME pressure vessel code.

  14. Sealing properties of three luting agents used for complete cast crowns: a bacterial leakage study.

    PubMed

    Zmener, O; Pameijer, C H; Rincon, S M H; Serrano, S A; Chaves, C

    2013-01-01

    To assess the sealing properties of three different luting materials used for cementation of full cast crowns on extracted human premolars. Thirty noncarious human premolars were prepared in a standardized fashion for full cast crown restorations. All margins were placed in dentin. After impressions of the preparations, stone dies were fabricated on which copings were waxed, which were cast in type III alloy using standardized laboratory methods. Teeth were randomly assigned to three groups of 10 samples each (n=10), for which the following cements were used: 1) a resin-modified glass ionomer cement, Rely X Luting Plus (3M ESPE, St Paul, MN, USA); 2) a self-adhesive resin cement, Maxcem Elite (Kerr Corporation, Orange, CA, USA); and 3) a glass ionomer cement, Ketac Cem (3M ESPE), the latter used as control. After cementation the samples were allowed to bench-set for 10 minutes, stored in water at 37°C, subjected to thermal cycling (2000×, between 5°C and 55°C, dwell time 35 seconds), and then stored in sterile phosphate buffer for seven days at 37°C. Subsequently, the occlusal surface was carefully reduced until the dentin was exposed. Finishing on wet sand paper removed the gold flash caused by grinding. After sterilization, the specimens were subjected to bacterial microleakage in a dual chamber apparatus for 60 days. Bacterial leakage was checked daily. Data were analyzed using the Kaplan-Meier survival test. Significant pairwise differences were analyzed using the log-rank test followed by Fisher exact test at a p<0.05 level of significance. Rely X Luting Plus showed the lowest microleakage scores, which statistically differed significantly from Maxcem Elite and Ketac Cem (p<0.05). Rely X Luting Plus cement displayed significantly lower microleakage scores than a self-adhesive resin-based and conventional glass ionomer cement.

  15. Evaluation of outgassing, tear strength, and detail reproduction in alginate substitute materials.

    PubMed

    Baxter, R T; Lawson, N C; Cakir, D; Beck, P; Ramp, L C; Burgess, J O

    2012-01-01

    To compare three alginate substitute materials to an alginate impression material for cast surface porosity (outgassing), tear strength, and detail reproduction. Detail reproduction tests were performed following American National Standards Institute/American Dental Association (ANSI/ADA) Specification No. 19. To measure tear strength, 12 samples of each material were made using a split mold, placed in a water bath until testing, and loaded in tension until failure at a rate of 500 mm/min using a universal testing machine. For cast surface porosity testing, five impressions of a Teflon mold with each material were placed in a water bath (37.8°C) for the in-mouth setting time and poured with vacuum-mixed Silky Rock die stone at 5, 10, 30, and 60 minutes from the start of mixing. The gypsum samples were analyzed with a digital microscope for surface porosity indicative of hydrogen gas release by comparing the surface obtained at each interval with four casts representing no, little, some, and significant porosity. Data analysis was performed using parametric and Kruskal-Wallis analysis of variance (ANOVA), Tukey/Kramer post-hoc tests (α=0.05), and individual Mann-Whitney U tests (α=0.0167). All alginate substitute materials passed the detail reproduction test. Tear strength of the alginate substitute materials was significantly better than alginate and formed three statistically different groups: AlgiNot had the lowest tear strength, Algin-X Ultra had the highest tear strength, and Position Penta Quick had intermediate tear strength. Significant variation in outgassing existed between materials and pouring times (p<0.05). All alginate substitute materials exhibited the least outgassing and cast porosity 60 minutes after mixing. Detail reproduction and tear strength of alginate substitute materials were superior to traditional alginate. The outgassing effect was minimal for most materials tested. Alginate substitute materials are superior replacements for irreversible hydrocolloid.

  16. [Evaluating the accuracy of three-dimensional reconstruction of the intercuspal position for dentition casts aided by a mechanical appliance].

    PubMed

    Hu, Z W; Li, W W; Zhang, X Y; Fan, B L; Wang, Y; Sun, Y C

    2016-08-01

    To develop a aided mechanical appliance for rapid reconstruction of three-dimensional(3D)relationship of dentition model after scanning and evaluation of its accuracy. The appliance was designed by forward engineering software and fabricated by a high precision computer numerical control(CNC)system. It contained upper and lower body, magnetic pedestal and three pillars. Nine 3 mm diameter hemispheres were distributed equally on the axial surface of each pedestal. Faro Edge 1.8m was used to directly obtain center of each hemisphere(contact method), defined as known center. A pair of die-stone standard dentition model were fixed in intercuspal position and then fixed on the magnetic pedestals with low expansion ratio plaster. Activity 880 dental scanner was used to scan casts after the plaster was completely set. In Geomagic 2012, the centers of each hemisphere were fitted and defined as scanning centers. Scanning centers were aligned to known centers by reference point system to finish the 3D reconstruction of the intercuspal occlusion for the dentition casts. An observation coordinate system was interactively established. The straight-line distances in the X(coronal), Y(saggital), and Z(vertical)between the remaining 6 pairs of center points derived from contact method and fitting method were measured respectively and analyzed using a paired t-test. The differences of the straight-line distances of the remaining 6 pairs of center points between the two methods were X:(-0.05±0.10)mm, Y:(0.02±0.06)mm, and Z:(0.01 ± 0.05)mm. The results of paired t-test showed no significant differences(P>0.05). The mechanical appliance can help to reconstruct 3D jaw relation by scanning single upper and lower dentition model with usual commercial available dental cast scanning system.

  17. Development of an expert system for the simulation model for casting metal substructure of a metal-ceramic crown design.

    PubMed

    Matin, Ivan; Hadzistevic, Miodrag; Vukelic, Djordje; Potran, Michal; Brajlih, Tomaz

    2017-07-01

    Nowadays, the integrated CAD/CAE systems are favored solutions for the design of simulation models for casting metal substructures of metal-ceramic crowns. The worldwide authors have used different approaches to solve the problems using an expert system. Despite substantial research progress in the design of experts systems for the simulation model design and manufacturing have insufficiently considered the specifics of casting in dentistry, especially the need for further CAD, RE, CAE for the estimation of casting parameters and the control of the casting machine. The novel expert system performs the following: CAD modeling of the simulation model for casting, fast modeling of gate design, CAD eligibility and cast ability check of the model, estimation and running of the program code for the casting machine, as well as manufacturing time reduction of the metal substructure. The authors propose an integration method using common data model approach, blackboard architecture, rule-based reasoning and iterative redesign method. Arithmetic mean roughness values was determinated with constant Gauss low-pass filter (cut-off length of 2.5mm) according to ISO 4287 using Mahr MARSURF PS1. Dimensional deviation between the designed model and manufactured cast was determined using the coordinate measuring machine Zeiss Contura G2 and GOM Inspect software. The ES allows for obtaining the castings derived roughness grade number N7. The dimensional deviation between the simulation model of the metal substructure and the manufactured cast is 0.018mm. The arithmetic mean roughness values measured on the casting substructure are from 1.935µm to 2.778µm. The realized developed expert system with the integrated database is fully applicable for the observed hardware and software. Values of the arithmetic mean roughness and dimensional deviation indicate that casting substructures are surface quality, which is more than enough and useful for direct porcelain veneering. The manufacture of the substructure shows that the proposed ES allows the improvement of the design process while reducing the manufacturing time. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Stress ratio effects in fatigue of lost foam cast aluminum alloy 356

    NASA Astrophysics Data System (ADS)

    Palmer, David E.

    Lost foam casting is a highly versatile metalcasting process that offers significant benefits in terms of design flexibility, energy consumption, and environmental impact. In the present work, the fatigue behavior of lost foam cast aluminum alloy 356, in conditions T6 and T7, was investigated, under both zero and non-zero mean stress conditions, with either as-cast or machined surface finish. Scanning electron microscopy was used to identify and measure the defect from which fatigue fracture initiated. Based on the results, the applicability of nine different fatigue mean stress equations was compared. The widely-used Goodman equation was found to be highly non-conservative, while the Stulen, Topper-Sandor, and Walker equations performed reasonably well. Each of these three equations includes a material-dependent term for stress ratio sensitivity. The stress ratio sensitivity was found to be affected by heat treatment, with the T6 condition having greater sensitivity than the T7 condition. The surface condition (as-cast vs. machined) did not significantly affect the stress ratio sensitivity. The fatigue life of as-cast specimens was found to be approximately 60--70% lower than that of machined specimens at the same equivalent stress. This reduction could not be attributed to pore size alone, and is suspected to be due to the greater concentration of pyrolysis products at the as-cast surface. Directions for future work, including improved testing methods and some possible methods of improving the properties of lost foam castings, are discussed.

  19. Low force cementation.

    PubMed

    Wilson, P R

    1996-07-01

    The marginal adaptation of full coverage restorations is adversely affected by the introduction of luting agents of various minimum film thicknesses during the cementation process. The increase in the marginal opening may have long-term detrimental effects on the health of both pulpal and periodontal tissues. The purpose of this study was to determine the effects of varying seating forces (2.5, 12.5, 25 N), venting, and cement types on post-cementation marginal elevation in cast crowns. A standardized cement space of 40 microns was provided between a machined gold crown and a stainless steel die. An occlusal vent was placed that could be opened or closed. The post-cementation crown elevation was measured, following the use of two commercially available capsulated dental cements (Phosphacap, and Ketac-cem Applicap). The results indicate that only the combination of Ketac-Cem Applicap and crown venting produced post-cementation crown elevation of less than 20 microns when 12.5 N seating force was used. Higher forces (25 N) and venting were required for comparable seating when using Phosphacap (19 microns). The amount of force required to allow maximum seating of cast crowns appears to be cement specific, and is reduced by effective venting procedures.

  20. Unique case of fatal carbon monoxide poisoning in the absence of a combustible fossil fuel.

    PubMed

    Morgan, D R; Poon, P; Titley, J; Jagger, S F; Rutty, G N

    2001-09-01

    A 37-year-old man died as a result of exposure to carbon monoxide within an apartment. An investigation of the apartment showed no gas appliances or gas supply to the apartment and no evidence of any combustion event to any part of the apartment or roof space. Inhalation of dichloromethane was excluded. Heating to the apartment was found to be via an electrical storage heater, the examination of which revealed that the cast-iron core and insulating material showed evidence of heat damage with significant areas devoid of carbon. This electric storage heater is hypothesized to be the source of carbon for the fatal production of carbon monoxide within the apartment.

  1. Legal bans on pro-suicide web sites: an early retrospective from Australia.

    PubMed

    Pirkis, Jane; Neal, Luke; Dare, Andrew; Blood, R Warwick; Studdert, David

    2009-04-01

    There are worldwide concerns that pro-suicide web sites may trigger suicidal behaviors among vulnerable individuals. In 2006, Australia became the first country to criminalize such sites, sparking heated debate. Concerns were expressed that the law casts the criminal net too widely; inappropriately interferes with the autonomy of those who wish to die; and has jurisdictional limitations, with off-shore web sites remaining largely immune. Conversely, proponents point out that the law may limit access to domestic pro-suicide web sites, raise awareness of Internet-related suicide, mobilize community efforts to combat it, and serve as a powerful expression of societal norms about the promotion of suicidal behavior.

  2. A High Resolution Study of Black Sea Circulation and Hypothetical Oil Spills

    NASA Astrophysics Data System (ADS)

    Dietrich, D. E.; Bowman, M. J.; Korotenko, K. A.

    2008-12-01

    A 1/24 deg resolution adaptation of the DieCAST ocean model simulates a realistically intense Rim Current and ubiquitous mesoscale coastal anticyclonic eddies that result from anticyclonic vorticity generation by laterally differential bottom drag forces that are amplified near Black Sea coastal headlands. Climatological and synoptic surface forcings are compared. The effects of vertical momentum transfer by known (by Synop region fishermen, as reported by Ballard National Geographic article) big amplitude internal waves are parameterized by big vertical viscosity. Sensitivity to vertical viscosity is shown. Results of simulated hypothetical oil spills are shown. A simple method to nowcast/forecast the Black Sea currents is described and early results are shown.

  3. Fabrication of titanium removable dental prosthesis frameworks with a 2-step investment coating method.

    PubMed

    Koike, Mari; Hummel, Susan K; Ball, John D; Okabe, Toru

    2012-06-01

    Although pure titanium is known to have good biocompatibility, a titanium alloy with better strength is needed for fabricating clinically acceptable, partial removable dental prosthesis (RDP) frameworks. The mechanical properties of an experimental Ti-5Al-5Cu alloy cast with a 2-step investment technique were examined for RDP framework applications. Patterns for tests for various properties and denture frameworks for a preliminary trial casting were invested with a 2-step coating method using 2 types of mold materials: a less reactive spinel compound (Al(2)O(3)·MgO) and a less expensive SiO(2)-based material. The yield and tensile strength (n=5), modulus of elasticity (n=5), elongation (n=5), and hardness (n=8) of the cast Ti-5Al-5Cu alloy were determined. The external appearance and internal porosities of the preliminary trial castings of denture frameworks (n=2) were examined with a conventional dental radiographic unit. Cast Ti-6Al-4V alloy and commercially pure titanium (CP Ti) were used as controls. The data for the mechanical properties were statistically analyzed with 1-way ANOVA (α=.05). The yield strength of the cast Ti-5Al-5Cu alloy was 851 MPa and the hardness was 356 HV. These properties were comparable to those of the cast Ti-6Al-4V and were higher than those of CP Ti (P<.05). One of the acrylic resin-retention areas of the Ti-5Al-5Cu frameworks was found to have been incompletely cast. The cast biocompatible experimental Ti-5Al-5Cu alloy exhibited high strength when cast with a 2-step coating method. With a dedicated study to determine the effect of sprue design on the quality of castings, biocompatible Ti-5Al-5Cu RDP frameworks for a clinical trial can be produced. Copyright © 2012 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  4. 40 CFR 63.5799 - How do I calculate my facility's organic HAP emissions on a tpy basis for purposes of determining...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Calculating Organic Hap Emissions Factors for Open Molding and Centrifugal Casting § 63.5799 How do I.../casting operations, or a new facility that does not have any of the following operations: Open molding... coat is applied to an open centrifugal mold using open molding application techniques. Table 1 and the...

  5. 40 CFR 63.5799 - How do I calculate my facility's organic HAP emissions on a tpy basis for purposes of determining...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Calculating Organic Hap Emissions Factors for Open Molding and Centrifugal Casting § 63.5799 How do I.../casting operations, or a new facility that does not have any of the following operations: Open molding... coat is applied to an open centrifugal mold using open molding application techniques. Table 1 and the...

  6. Noise control of waste water pipes

    NASA Astrophysics Data System (ADS)

    Lilly, Jerry

    2005-09-01

    Noise radiated by waste water pipes is a major concern in multifamily housing projects. While the most common solution to this problem is to use cast-iron pipes in lieu of plastic pipes, this may not be sufficient in high-end applications. It should also be noted that many (if not most) multifamily housing projects in the U.S.A. are constructed with plastic waste piping. This paper discusses some of the measures that developers are currently using to control noise from both plastic and cast-iron waste pipes. In addition, results of limited noise measurements of transient water flow in plastic and cast-iron waste pipes will be presented.

  7. Detection of a Pool in Semi-Continuous Castings Made of Heat-Treatable Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Krushenko, G. G.; Nazarov, V. P.

    2017-12-01

    Various products (sheets, sections, etc.) manufactured by metal forming (rolled products, forged pieces, etc.) from semi-continuous castings are widely used in the aerospace industry. The so-called pool, which is the conical volume of a liquid metal, exists at the top of the liquid metal. Experience demonstrates that the geometry, the depth, and the shape of the pool substantially affect the structure formation in a casting and its quality. The application of a titanium nitride nanopowder, which is introduced in a melt in the volume of a rod, as a modifier allowed us to find the exact geometry of the pool.

  8. Scale-up of water-based spider silk film casting using a film applicator.

    PubMed

    Agostini, Elisa; Winter, Gerhard; Engert, Julia

    2017-10-30

    Spider silk proteins for applications in drug delivery have attracted an increased interest during the past years. Some possible future medical applications for this biocompatible and biodegradable material are scaffolds for tissue engineering, implantable drug delivery systems and coatings for implants. Recently, we reported on the preparation of water-based spider silk films for drug delivery applications. In the current study, we describe the development of a manufacturing technique for casting larger spider silk films from aqueous solution employing a film applicator. Films were characterized in terms of morphology, water solubility, protein secondary structure, thermal stability, and mechanical properties. Different post-treatments were evaluated (phosphate ions, ethanol, steam sterilization and water vapor) to increase the content of β-sheets thereby achieving water insolubility of the films. Finally, the mechanical properties of the spider silk films were improved by incorporating 2-pyrrolidone as plasticizer. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Hydrophobic asymmetric ultrafiltration PVDF membranes: an alternative separator for VFB with excellent stability.

    PubMed

    Wei, Wenping; Zhang, Huamin; Li, Xianfeng; Zhang, Hongzhang; Li, Yun; Vankelecom, Ivo

    2013-02-14

    Polyvinylidene fluoride (PVDF) ultrafiltration membranes were investigated for the first time in vanadium redox flow battery (VFB) applications. Surprisingly, PVDF ultrafiltration membranes with hydrophobic pore walls and relatively large pore sizes of several tens of nanometers proved able to separate vanadium ions and protons efficiently, thus being suitable as a VFB separator. The ion selectivity of this new type of VFB membrane could be tuned readily by controlling the membrane morphology via changes in the composition of the membrane casting solution, and the casting thickness. The results showed that the PVDF membranes offered good performances and excellent stability in VFB applications, where it could, performance-wise, truly substitute Nafion in VFB applications, but at a much lower cost.

  10. [Studies on high temperature oxidation of noble metal alloys for dental use. (III) On high temperature oxidation resistance of noble metal alloys by adding small amounts of alloying elements. (author's transl)].

    PubMed

    Ohno, H

    1976-11-01

    The previous report pointed out the undesirable effects of high temperature oxidation on the casting. The influence of small separate additions of Zn, Mg, Si, Be and Al on the high temperature oxidation of the noble metal alloys was examined. These alloying elements were chosen because their oxide have a high electrical resistivity and they have much higher affinity for oxygen than Cu. The casting were oxidized at 700 degrees C for 1 hour in air. The results obtained were as follows: 1. The Cu oxides are not observed on the as-cast surface of noble metal alloys containing small amounts of Zn, Mg, Si, Be, and Al. The castings have gold- or silver-colored surface. 2. After heating of the unpolished and polished castings, the additions of Si, Be and Al are effective in preventing oxidation of Cu in the 18 carats gold alloys. Especially the golden surface is obtained by adding Be and Al. But there is no oxidation-resistance on the polished castings in the alloys containing Zn and Mg. 3. The zinc oxide film formed on the as-cast specimen is effective in preventing of oxidation Cu in 18 carats gold alloys. 4. It seems that the addition of Al is most available in dental application.

  11. Aluminum-Silicon Alloy Having Improved Properties At Elevated Temperatures and Process for Producing Cast Articles Therefrom

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A. (Inventor); Chen, Po-Shou (Inventor)

    2002-01-01

    A process for making a cast article from an aluminum alloy includes first casting an article from an alloy having the following composition, in weight percent: Silicon 11.0-14.0, Copper 5.6-8.0, Iron 0-0.8, Magnesium 0.5-1.5, Nickel 0.05-0.9, Manganese 0-1.0, Titanium 0.05-1.2, Zirconium 0.12-1.2, Vanadium 0.05-1.2, Zinc 0.05-0.9, Strontium 0.001-0.1, Aluminum balance . In this alloy the ratio of silicon to magnesium is 10 to 25, and the ratio of copper to magnesium is 4 to 15. After an article is cast from the alloy, the cast article is aged at a temperature within the range of 400F to 500F for a time period within the range of four to 16 hours. It has been found especially advantageous if the cast article is first exposed to a solutionizing step prior to the aging step. This solutionizing step is carried out by exposing the cast article to a temperature within the range of 900F to 1000F for a time period of fifteen minutes to four hours. It has also been found to be especially advantageous if the solutionizing step is followed directly with a quenching step, wherein the cast article is quenched in a quenching medium such as water at a temperature within the range of 120F to 300F. The resulting cast article is suitable in a number of high temperature applications, such as heavy-duty pistons for internal combustion engines.

  12. Process for Producing a Cast Article from a Hypereutectic Aluminum-Silicon Alloy

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A. (Inventor); Chen, Po-Shou (Inventor)

    2003-01-01

    A process for making a cast article from an aluminum alloy includes first casting an article from an alloy having the following composition, in weight percent: Silicon (Si) 14.0-25.0, Copper (CU) 5.5-8.0, Iron (Fe) 0-0.8, Magnesium (Mg) 0.5-1.5, Nickel (Ni) 0.05-1.2, Manganese (Mn) 0-1.0, Titanium (Ti) 0.05-1.2, Zirconium (Zr) 0.12-1.2, Vanadium (V) 0.05-1.2, Zinc (Zn) 0-0.9, Phosphorus (P) 0.001-0.1, Aluminum, balance. In this alloy the ration of Si:Mg is 15-35, and the ratio of Cu:Mg is 4-15. After an article is cast from the alloy, the cast article is aged at a temperature within the range of 400 F to 500 F for a time period within the range of four to 16 hours. It has been found especially advantageous if the cast article is first exposed to a solutionizing step prior to the aging step. This solutionizing step is carried out by exposing the cast article to a temperature within the range of 875 F to 1025 F for a time period of fifteen minutes to four hours. It has also been found to be especially advantageous if the solutionizing step is followed directly with a quenching step, wherein the cast article is quenched in a quenching medium such as water at a temperature within the range of 120 F to 300 F. The resulting cast article is highly suitable in a number of high temperature applications, such as heavy-duty pistons for internal combustion engines.

  13. The Effects of Casting Porosity on the Tensile Behavior of Investment Cast 17-4PH Stainless Steel

    NASA Astrophysics Data System (ADS)

    Susan, D. F.; Crenshaw, T. B.; Gearhart, J. S.

    2015-08-01

    The effect of casting porosity on the mechanical behavior of investment cast 17-4PH stainless steel was studied as well as the effect of heat treatment on the alloy's sensitivity to casting defects. Interdendritic porosity, formed during solidification and shrinkage of the alloy, reduces the yield strength and ultimate tensile strength roughly in proportion to the reduction in load bearing cross-section. The effects of casting porosity on ductility (% strain, % reduction in area) are more severe, in agreement with research on other alloy systems. In this study, 10% porosity reduced the ductility of 17-4PH stainless steel by almost 80% for the high-strength H925 condition. Tensile testing at -10°C (263 K) further reduces the alloy ductility with and without pores present. In the lower strength H1100 condition, the ductility is higher than the H925 condition, as expected, and somewhat less sensitive to porosity. By measuring the area % porosity on the fracture surface of tensile specimens, the trend in failure strain versus area % porosity was obtained and analyzed using two methods: an empirical approach to determine an index of defect susceptibility with a logarithmic fit and an analytical approach based on the constitutive stress-strain behavior and critical strain concentration in the vicinity of the casting voids. The applicability of the second method depends on the amount of non-uniform strain (necking) and, as such, the softer H1100 material did not correlate well to the model. The behavior of 17-4PH was compared to previous work on cast Al alloys, Mg alloys, and other cast materials.

  14. Springback compensation for a vehicle's steel body panel

    NASA Astrophysics Data System (ADS)

    Bałon, Paweł; Świątoniowski, Andrzej; Szostak, Janusz; Kiełbasa, Bartłomiej

    2017-10-01

    This paper presents a structural element of a vehicle, that is made from High Strength Steels. Application of this kind of materials considerably reduces construction mass due to high durability. Nevertheless, it results in appearance of springback that depends mainly on used material as well as part. Springback reduction helps to reach the reference geometry of the element by using the Finite Element Method software. Authors compared two methods of optimization of die shape. The first method defines the compensation of the die shape only for OP-20 and the second multi-operation method defines the compensation of the die shape for the OP-20 and OP-50 operations. Prediction of springback by the trial-and-error method is difficult and labor-intensive. Designing of dies requires using of appropriate FEM software to make them more economic and less time-consuming. Virtual compensation methods make it possible to receive precise result in a short time. Die compensation with software application was experimentally verified by the prototype die. Therefore, springback deformation becomes a critical problem especially for the HSS steel when the geometry is complex.

  15. Predictive Capabilities of Multiphysics and Multiscale Models in Modeling Solidification of Steel Ingots and DC Casting of Aluminum

    NASA Astrophysics Data System (ADS)

    Combeau, Hervé; Založnik, Miha; Bedel, Marie

    2016-08-01

    Prediction of solidification defects, such as macrosegregation and inhomogeneous microstructures, constitutes a key issue for industry. The development of models of casting processes needs to account for several imbricated length scales and different physical phenomena. For example, the kinetics of the growth of microstructures needs to be coupled with the multiphase flow at the process scale. We introduce such a state-of-the-art model and outline its principles. We present the most recent applications of the model to casting of a heavy steel ingot and to direct chill casting of a large Al alloy sheet ingot. Their ability to help in the understanding of complex phenomena, such as the competition between nucleation and growth of grains in the presence of convection of the liquid and of grain motion is shown, and its predictive capabilities are discussed. Key issues for future developments and research are addressed.

  16. Feasibility Study for Casting of High Temperature Refractory Superalloy Composites

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    1998-01-01

    Abstract This study investigated the feasibility of using conventional casting technique to fabricate refractory wires reinforced superalloy composites. These composites were being developed for advanced rocket engine turbine blades and other high temperature applications operating up to 2000 F. Several types of refractory metal wires such as W- Th, W-Re, Mo-Hf-C and W-HF-C reinforced waspaloy were experimentally cast and heat treated at 2000 F up to 48 hrs. Scanning electron microscope analysis was conducted in regions adjacent to the wire-matrix interface to determine the reaction zone and chemical compatibility resulting from material interdiffusion. It was concluded that fabrication using conventional casting may be feasible because the wire-matrix reaction zone thickness was comparable to similar composites produced by arc-sprayed monotape with hot isostatic pressing technique, Moreover, it was also found that the chemical compatibility could be improved significantly through a slight modification of the superalloy matrix compositions.

  17. Further studies on gold alloys used in fabrication of porcelain-fused-to-metal restorations.

    PubMed

    Civjan, S; Huget, E F; Dvivedi, N; Cosner, H J

    1975-03-01

    Composition, microstructure, castability, mechanical properties, and heat treatment characteristics of two gold-palladium-silver-based alloys were studied. The materials exhibited compositional as well as microstructural differences. Clinically acceptable castings could not be obtained when manufacturers' recommended casting temperatures were used. Ultimate tensile strength, yield strength, modulus of elasticity, and Brinell hardness values for the alloys were comparable. The elastic limit of Cameo, however, was significantly higher than that of vivo-star. Maximum rehardening of annealed castings occurred on reheat treatment at temperatures between 1,200 and 1,300 F. As-cast specimens, however, were not heat hardenable. The sequence of heat treatments used in the application of porcelain reduced slightly the hardness of both alloys. Hardness of the metal substructures was not increased by return of porcelain-coated specimens to a 1,250 F oven for final heat treatment.

  18. How inverse solver technologies can support die face development and process planning in the automotive industry

    NASA Astrophysics Data System (ADS)

    Huhn, Stefan; Peeling, Derek; Burkart, Maximilian

    2017-10-01

    With the availability of die face design tools and incremental solver technologies to provide detailed forming feasibility results in a timely fashion, the use of inverse solver technologies and resulting process improvements during the product development process of stamped parts often is underestimated. This paper presents some applications of inverse technologies that are currently used in the automotive industry to streamline the product development process and greatly increase the quality of a developed process and the resulting product. The first focus is on the so-called target strain technology. Application examples will show how inverse forming analysis can be applied to support the process engineer during the development of a die face geometry for Class `A' panels. The drawing process is greatly affected by the die face design and the process designer has to ensure that the resulting drawn panel will meet specific requirements regarding surface quality and a minimum strain distribution to ensure dent resistance. The target strain technology provides almost immediate feedback to the process engineer during the die face design process if a specific change of the die face design will help to achieve these specific requirements or will be counterproductive. The paper will further show how an optimization of the material flow can be achieved through the use of a newly developed technology called Sculptured Die Face (SDF). The die face generation in SDF is more suited to be used in optimization loops than any other conventional die face design technology based on cross section design. A second focus in this paper is on the use of inverse solver technologies for secondary forming operations. The paper will show how the application of inverse technology can be used to accurately and quickly develop trim lines on simple as well as on complex support geometries.

  19. Influence of Bravo fungicide applications on wood density and moisture content of Swiss needle cast affected Douglas-fir trees.

    Treesearch

    G.R. Johnson; Barbara L. Gartner; Doug Maguire; Alan Kanaskie

    2003-01-01

    Wood density, moisture content, tracheld width and cell wall size were examined in trees from plots that were sprayed for 5 years with chlorothalonil (Bravo ®) fungicide to reduce the impact of Swiss needle-cast (SNC) and from trees in adjacent unsprayed plots. The unsprayed (more heavily diseased) trees had significantly narrower sapwood, narrower growth tings, lower...

  20. Survey of Nickel-Aluminium-Bronze Casting Alloys on Marine Applications,

    DTIC Science & Technology

    1981-04-01

    and corrosion performance of nickel-aluminium bronze (NAB)/covered by naval specification DGS-8520 and DGS-348 have been investigated. No evidence was...found to suggest that there would be any significant difference in corrosion performance between alloys meeting the two specifications. Early... corrosion problems associated with the weld repair areas of castings have been overcome largely by using improved foundry and welding techniques followed by a

  1. Cast-in-place, ambiently-dried, silica-based, high-temperature insulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Eric Jianfeng; Thompson, Travis; Salvador, James R.

    A novel sol-gel chemistry approach was developed to enable the simple integration of a cast-in-place, ambiently-dried insulation into high temperature applications. The insulation was silica based, synthesized using methyltrimethoxysilane (MTMS) as the precursor. MTMS created a unique silica microstructure that was mechanically robust, macroporous, and superhydrophobic. To allow for casting into and around small, orthogonal features, zirconia fibers were added to increase stiffness and minimize contraction that could otherwise cause cracking during drying. Radiative heat transport was reduced by adding titania powder as an opacifier. To assess relevance to high temperature thermoelectric generator technology, a comprehensive set of materials characterizationsmore » were conducted. The silica gel was thermally stable, retained superhydrophobicity with a water contact angle > 150° , and showed a high electrical resistance > 1 GΩ, regardless of heating temperature (up to 600 °C in Ar for 4 h). In addition, it exhibited a Young's modulus ~3.7 MPa in room temperature and a low thermal conductivity < 0.08 W/m.K before and after heat treatment. Thus, based on the simplicity of the manufacturing process and optimized material properties, we believe this technology can act as an effective cast-in-place thermal insulation (CTI) for thermoelectric generators and myriad other applications requiring improved thermal efficiency.« less

  2. Cast-in-place, ambiently-dried, silica-based, high-temperature insulation

    DOE PAGES

    Cheng, Eric Jianfeng; Thompson, Travis; Salvador, James R.; ...

    2017-02-03

    A novel sol-gel chemistry approach was developed to enable the simple integration of a cast-in-place, ambiently-dried insulation into high temperature applications. The insulation was silica based, synthesized using methyltrimethoxysilane (MTMS) as the precursor. MTMS created a unique silica microstructure that was mechanically robust, macroporous, and superhydrophobic. To allow for casting into and around small, orthogonal features, zirconia fibers were added to increase stiffness and minimize contraction that could otherwise cause cracking during drying. Radiative heat transport was reduced by adding titania powder as an opacifier. To assess relevance to high temperature thermoelectric generator technology, a comprehensive set of materials characterizationsmore » were conducted. The silica gel was thermally stable, retained superhydrophobicity with a water contact angle > 150° , and showed a high electrical resistance > 1 GΩ, regardless of heating temperature (up to 600 °C in Ar for 4 h). In addition, it exhibited a Young's modulus ~3.7 MPa in room temperature and a low thermal conductivity < 0.08 W/m.K before and after heat treatment. Thus, based on the simplicity of the manufacturing process and optimized material properties, we believe this technology can act as an effective cast-in-place thermal insulation (CTI) for thermoelectric generators and myriad other applications requiring improved thermal efficiency.« less

  3. Orthodontics: computer-aided diagnosis and treatment planning

    NASA Astrophysics Data System (ADS)

    Yi, Yaxing; Li, Zhongke; Wei, Suyuan; Deng, Fanglin; Yao, Sen

    2000-10-01

    The purpose of this article is to introduce the outline of our newly developed computer-aided 3D dental cast analyzing system with laser scanning, and its preliminary clinical applications. The system is composed of a scanning device and a personal computer as a scanning controller and post processor. The scanning device is composed of a laser beam emitter, two sets of linear CCD cameras and a table which is rotatable by two-degree-of-freedom. The rotating is controlled precisely by a personal computer. The dental cast is projected and scanned with a laser beam. Triangulation is applied to determine the location of each point. Generation of 3D graphics of the dental cast takes approximately 40 minutes. About 170,000 sets of X,Y,Z coordinates are store for one dental cast. Besides the conventional linear and angular measurements of the dental cast, we are also able to demonstrate the size of the top surface area of each molar. The advantage of this system is that it facilitates the otherwise complicated and time- consuming mock surgery necessary for treatment planning in orthognathic surgery.

  4. Technique Incorporating Cooling & Contraction / Expansion Analysis to Illustrate Shrinkage Tendency in Cast Irons

    NASA Astrophysics Data System (ADS)

    Stan, S.; Chisamera, M.; Riposan, I.; Neacsu, L.; Cojocaru, A. M.; Stan, I.

    2017-06-01

    With the more widespread adoption of thermal analysis testing, thermal analysis data have become an indicator of cast iron quality. The cooling curve and its first derivative display patterns that can be used to predict the characteristics of a cast iron. An experimental device was developed with a technique to simultaneously evaluate cooling curves and expansion or contraction of cast metals during solidification. Its application is illustrated with results on shrinkage tendency of ductile iron treated with FeSiMgRECa master alloy and inoculated with FeSi based alloys, as affected by mould rigidity (green sand and resin sand moulds). Undercooling at the end of solidification relative to the metastable (carbidic) equilibrium temperature and the expansion within the solidification sequence appear to have a strong influence on the susceptibility to macro - and micro - shrinkage in ductile iron castings. Green sand moulds, as less rigid moulds, encourage the formation of contraction defects, not only because of high initial expansion values, but also because of a higher cooling rate during solidification, and consequently, increased undercooling below the metastable equilibrium temperature up to the end of solidification.

  5. Modal Vibration Analysis of Large Castings

    NASA Technical Reports Server (NTRS)

    Werlink, Rudolph J.; Margasahayam, Ravi N.

    2009-01-01

    The art of experimental modal vibration analysis (MVA) has been extended to apply to large castings. This extension was made to enable the use of experimental MVA as a relatively inexpensive, simple means of assessing the internal structural integrity of tread shoes of crawler transporters used to move spacecraft to the launch pad at Kennedy Space Center. Each tread shoe is made from cast iron and weighs about a ton (has a mass .907 kg). The present extended version of experimental MVA could also be applied to other large castings. It could be especially useful to manufacturers as a means of rapidly discriminating against large castings that contain unacceptably large concentrations of internal defects. The use of experimental MVA to assess structural integrity is not new. What are new here are those aspects of the extension of experimental MVA that pertain to the application of MVA to objects so massive that it may not be practical or cost effective to mount them in special test fixtures that impose special test boundary conditions to test them in place under normal conditions of use.

  6. Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications.

    PubMed

    Castles, F; Day, F V; Morris, S M; Ko, D-H; Gardiner, D J; Qasim, M M; Nosheen, S; Hands, P J W; Choi, S S; Friend, R H; Coles, H J

    2012-05-13

    A promising approach to the fabrication of materials with nanoscale features is the transfer of liquid-crystalline structure to polymers. However, this has not been achieved in systems with full three-dimensional periodicity. Here we demonstrate the fabrication of self-assembled three-dimensional nanostructures by polymer templating blue phase I, a chiral liquid crystal with cubic symmetry. Blue phase I was photopolymerized and the remaining liquid crystal removed to create a porous free-standing cast, which retains the chiral three-dimensional structure of the blue phase, yet contains no chiral additive molecules. The cast may in turn be used as a hard template for the fabrication of new materials. By refilling the cast with an achiral nematic liquid crystal, we created templated blue phases that have unprecedented thermal stability in the range -125 to 125 °C, and that act as both mirrorless lasers and switchable electro-optic devices. Blue-phase templated materials will facilitate advances in device architectures for photonics applications in particular.

  7. Non-graphite crucible for high temperature applications

    DOEpatents

    Holcombe, C.E.; Pfeiler, W.A.

    1994-08-02

    A multi-piece crucible for high temperature applications comprises a tubular side wall member having a lip on the inside surface and a bottom member or members forming a container for containing a melt of a material during a high temperature melt-casting operations. The multi-piece design prevents cracking of the crucible or leakage of the melt from the crucible during the melt-casting operation. The lip of the tubular member supports the bottom member. The contacting surfaces where the lip of the tubular side wall member contacts the bottom member of the multi-piece crucible contains a ceramic sealing material. The ceramic sealing material forms a seal sufficient to prevent the melt of the material from leaking out of the multi-piece crucible during the melt-casting process. The multi-piece crucible is made of a material which is chemically inert to the melt and has structural integrity at the melting point temperature of the melt, or of a material coated with such a material. 6 figs.

  8. Non-graphite crucible for high temperature applications

    DOEpatents

    Holcombe, Cressie E.; Pfeiler, William A.

    1994-01-01

    A multi-piece crucible for high temperature applications comprises a tubular side wall member having a lip on the inside surface and a bottom member or members forming a container for containing a melt of a material during a high temperature melt-casting operations. The multi-piece design prevents cracking of the crucible or leakage of the melt from the crucible during the melt-casting operation. The lip of the tubular member supports the bottom member. The contacting surfaces where the lip of the tubular side wall member contacts the bottom member of the multi-piece crucible contains a ceramic sealing material. The ceramic sealing material forms a seal sufficient to prevent the melt of the material from leaking out of the multi-piece crucible during the melt-casting process. The multi-piece crucible is made of a material which is chemically inert to the melt and has structural integrity at the melting point temperature of the melt, or of a material coated with such a material.

  9. Ni3Al-based alloys for die and tool application

    DOEpatents

    Liu, Chain T.; Bloom, Everett E.

    2001-01-01

    A novel Ni.sub.3 Al-based alloy exhibits strengths and hardness in excess of the standard base alloy IC-221M at temperatures of up to about 1000.degree. C. The alloy is useful in tool and die applications requiring such temperatures, and for structural elements in engineering systems exposed to such temperatures.

  10. Friction stir welded AM50 and AZ31 Mg alloys: Microstructural evolution and improved corrosion resistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Templeman, Yael

    One of the major drawbacks of Mg alloys is poor weldability, caused by porosity formation during conventional fusion welding processes. Friction Stir Welding (FSW) is promising technique in this context since it is a solid state technique. Contradicting results were published in the literature regarding the FSWed Mg alloys joint's properties. Current research was performed in order to investigate the microstructure and corrosion properties of FSWed Mg alloys, studying representatives of two commercial families: wrought AZ31-H24 and die cast AM50. It was found that in both alloys recrystallization occurred during the FSW. In AM50 the mechanism of the recrystallization wasmore » continuous, manifested by dislocation rearrangement into sub grain boundaries. In AZ31 discontinuous recrystallization had occurred through grain boundaries migration - twins rotated with respect to the matrix, turning into low angle grain boundaries. Corrosion resistance has improved during the FSW in both alloys to different extents. In the AM50 alloy, the nugget exhibited significantly higher surface potential than the base metal mainly due to the higher Al concentration in the matrix of the nugget, resulting from the dissolution of Al-enrichment and β-Mg{sub 17}Al{sub 12} phase. In the AZ31 alloy, no change in Al concentration had occurred, and the surface potential measured in the nugget was only slightly higher than in the base metal. These results underline the appropriateness of the FSW for Mg alloys since during the conventional welding deterioration of the corrosion resistance occurs. - Highlights: • Following FSW, AZ31-H24 experienced discontinuous recrystallization. • In AZ31 grain boundaries migration occurred, thus twins rotated. • In die cast AM50 continuous recrystallization occurred during the FSW. • In AM50 - dislocations rearranged into sub grain boundaries. • Corrosion resistance has improved during the FSW in both alloys to different extent.« less

  11. Evolution of A-Type Macrosegregation in Large Size Steel Ingot After Multistep Forging and Heat Treatment

    NASA Astrophysics Data System (ADS)

    Loucif, Abdelhalim; Ben Fredj, Emna; Harris, Nathan; Shahriari, Davood; Jahazi, Mohammad; Lapierre-Boire, Louis-Philippe

    2018-03-01

    A-type macrosegregation refers to the channel chemical heterogeneities that can be formed during solidification in large size steel ingots. In this research, a combination of experiment and simulation was used to study the influence of open die forging parameters on the evolution of A-type macrosegregation patterns during a multistep forging of a 40 metric ton (MT) cast, high-strength steel ingot. Macrosegregation patterns were determined experimentally by macroetch along the longitudinal axis of the forged and heat-treated ingot. Mass spectroscopy, on more than 900 samples, was used to determine the chemical composition map of the entire longitudinal sectioned surface. FORGE NxT 1.1 finite element modeling code was used to predict the effect of forging sequences on the morphology evolution of A-type macrosegregation patterns. For this purpose, grain flow variables were defined and implemented in a large scale finite element modeling code to describe oriented grains and A-type segregation patterns. Examination of the A-type macrosegregation showed four to five parallel continuous channels located nearly symmetrical to the axis of the forged ingot. In some regions, the A-type patterns became curved or obtained a wavy form in contrast to their straight shape in the as-cast state. Mass spectrometry analysis of the main alloying elements (C, Mn, Ni, Cr, Mo, Cu, P, and S) revealed that carbon, manganese, and chromium were the most segregated alloying elements in A-type macrosegregation patterns. The observed differences were analyzed using thermodynamic calculations, which indicated that changes in the chemical composition of the liquid metal can affect the primary solidification mode and the segregation intensity of the alloying elements. Finite element modeling simulation results showed very good agreement with the experimental observations, thereby allowing for the quantification of the influence of temperature and deformation on the evolution of the shape of the macrosegregation channels during the open die forging process.

  12. Evolution of A-Type Macrosegregation in Large Size Steel Ingot After Multistep Forging and Heat Treatment

    NASA Astrophysics Data System (ADS)

    Loucif, Abdelhalim; Ben Fredj, Emna; Harris, Nathan; Shahriari, Davood; Jahazi, Mohammad; Lapierre-Boire, Louis-Philippe

    2018-06-01

    A-type macrosegregation refers to the channel chemical heterogeneities that can be formed during solidification in large size steel ingots. In this research, a combination of experiment and simulation was used to study the influence of open die forging parameters on the evolution of A-type macrosegregation patterns during a multistep forging of a 40 metric ton (MT) cast, high-strength steel ingot. Macrosegregation patterns were determined experimentally by macroetch along the longitudinal axis of the forged and heat-treated ingot. Mass spectroscopy, on more than 900 samples, was used to determine the chemical composition map of the entire longitudinal sectioned surface. FORGE NxT 1.1 finite element modeling code was used to predict the effect of forging sequences on the morphology evolution of A-type macrosegregation patterns. For this purpose, grain flow variables were defined and implemented in a large scale finite element modeling code to describe oriented grains and A-type segregation patterns. Examination of the A-type macrosegregation showed four to five parallel continuous channels located nearly symmetrical to the axis of the forged ingot. In some regions, the A-type patterns became curved or obtained a wavy form in contrast to their straight shape in the as-cast state. Mass spectrometry analysis of the main alloying elements (C, Mn, Ni, Cr, Mo, Cu, P, and S) revealed that carbon, manganese, and chromium were the most segregated alloying elements in A-type macrosegregation patterns. The observed differences were analyzed using thermodynamic calculations, which indicated that changes in the chemical composition of the liquid metal can affect the primary solidification mode and the segregation intensity of the alloying elements. Finite element modeling simulation results showed very good agreement with the experimental observations, thereby allowing for the quantification of the influence of temperature and deformation on the evolution of the shape of the macrosegregation channels during the open die forging process.

  13. Wear Behavior and Mechanism of a Cr-Mo-V Cast Hot-Working Die Steel

    NASA Astrophysics Data System (ADS)

    Wei, M. X.; Wang, S. Q.; Zhao, Y. T.; Chen, K. M.; Cui, X. H.

    2011-06-01

    The wear behavior and mechanisms of a Cr-Mo-V cast hot-working die steel with three microstructures (tempered martensite, troostite, and sorbite) were studied systematically through the dry-sliding wear tests within a normal load range of 50 to 300 N and an ambient temperature range of 298 K to 673 K (25 °C to 400 °C) by a pin-on-disk high-temperature wear machine. Five different mechanisms were observed in the experiments, namely adhesive, abrasive, mild oxidative, oxidative, and extrusive wear; one or more of those mechanisms would be dominant within particular ranges of load and temperature. The transition of wear mechanisms depended on the formation of tribo-oxides, which was related closely to load and temperature, and their delamination, which was mainly influenced by the matrix. By increasing the load and ambient temperature, the protective effect of tribo-oxides first strengthened, then decreased, and in some cases disappeared. Under a load ranging 50 to 300 N at 298 K (25 °C) and a load of 50 N at 473 K (200 °C), adhesive wear was the dominant wear mechanism, and abrasive wear appeared simultaneously. The wear was of mild oxidative type under a load ranging 100 to 300 N at 473 K (200 °C) and a load ranging 50 to 150 N at 673 K (400 °C) for tempered martensite and tempered troostite as well as under a load of 100 N at 473 K (200 °C) and a load ranging 50 to 100 N at 673 K (400 °C) for tempered sorbite. At the load of 200 N or greater, or the temperatures above 673 K (400 °C), oxidative wear (beyond mild oxidative wear) prevailed. When the highest load of 300 N at 673 K (400 °C) was applied, extrusive wear started to dominate for the tempered sorbite.

  14. Aerial image based die-to-model inspections of advanced technology masks

    NASA Astrophysics Data System (ADS)

    Kim, Jun; Lei, Wei-Guo; McCall, Joan; Zaatri, Suheil; Penn, Michael; Nagpal, Rajesh; Faivishevsky, Lev; Ben-Yishai, Michael; Danino, Udy; Tam, Aviram; Dassa, Oded; Balasubramanian, Vivek; Shah, Tejas H.; Wagner, Mark; Mangan, Shmoolik

    2009-10-01

    Die-to-Model (D2M) inspection is an innovative approach to running inspection based on a mask design layout data. The D2M concept takes inspection from the traditional domain of mask pattern to the preferred domain of the wafer aerial image. To achieve this, D2M transforms the mask layout database into a resist plane aerial image, which in turn is compared to the aerial image of the mask, captured by the inspection optics. D2M detection algorithms work similarly to an Aerial D2D (die-to-die) inspection, but instead of comparing a die to another die it is compared to the aerial image model. D2M is used whenever D2D inspection is not practical (e.g., single die) or when a validation of mask conformity to design is needed, i.e., for printed pattern fidelity. D2M is of particular importance for inspection of logic single die masks, where no simplifying assumption of pattern periodicity may be done. The application can tailor the sensitivity to meet the needs at different locations, such as device area, scribe lines and periphery. In this paper we present first test results of the D2M mask inspection application at a mask shop. We describe the methodology of using D2M, and review the practical aspects of the D2M mask inspection.

  15. Energy Saving Melting and Revert Reduction Technology (Energy SMARRT): Manufacturing Advanced Engineered Components Using Lost Foam Casting Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Littleton, Harry; Griffin, John

    2011-07-31

    This project was a subtask of Energy Saving Melting and Revert Reduction Technology (Energy SMARRT) Program. Through this project, technologies, such as computer modeling, pattern quality control, casting quality control and marketing tools, were developed to advance the Lost Foam Casting process application and provide greater energy savings. These technologies have improved (1) production efficiency, (2) mechanical properties, and (3) marketability of lost foam castings. All three reduce energy consumption in the metals casting industry. This report summarizes the work done on all tasks in the period of January 1, 2004 through June 30, 2011. Current (2011) annual energy savingmore » estimates based on commercial introduction in 2011 and a market penetration of 97% by 2020 is 5.02 trillion BTU's/year and 6.46 trillion BTU's/year with 100% market penetration by 2023. Along with these energy savings, reduction of scrap and improvement in casting yield will result in a reduction of the environmental emissions associated with the melting and pouring of the metal which will be saved as a result of this technology. The average annual estimate of CO2 reduction per year through 2020 is 0.03 Million Metric Tons of Carbon Equivalent (MM TCE).« less

  16. Development of Aerogel Molds for Metal Casting Using Lunar and Martian Regolith

    NASA Technical Reports Server (NTRS)

    2003-01-01

    In the last few years NASA has set new priorities for research and development of technologies necessary to enable long-term presence on the Moon and Mars. Among these key technologies is what is known as in situ resource utilization, which defines all conceivable usage of mineral, liquid, gaseous, or biological resources on a visited planet. In response to this challenge, we have been focusing on developing and demonstrating the manufacturing of a specific product using Lunar and Martian soil simulants (i.e., a mold for the casting of metal and alloy parts) which will be an indispensable tool for the survival of outposts on the Moon and Mars. In addition, our purpose is to demonstrate the feasibility of using mesoporous materials such as aerogels to serve as efficient casting molds for high quality components in propulsion and other aerospace applications. The first part of the project consists of producing aerogels from the in situ resources available in Martian and Lunar soil. The approach we are investigating is to use chemical processes to solubilize silicates using organic reagents at low temperatures and then use these as precursors in the formation of aerogels for the fabrication of metal casting molds. One set of experiments consists of dissolving silica sources in basic ethylene glycol solution to form silicon glycolates. When ground silica aerogel was used as source material, a clear solution of silicon glycolate was obtained and reacted to form a gel thus proving the feasibility of this approach. The application of this process to Lunar and Martian simulants did not result in the formation of a gel; further study is in progress. In the second method acidified alcohol is reacted with the simulants to form silicate esters. Preliminary results indicate the presence of silicon alkoxide in the product distillation. However, no gel has been obtained so further characterization is ongoing. In the second part of the project, the focus has been on developing a series of aerogel plates suitable for thin plate metal casting and ingot metal castings. The influence of aerogels on thin wall metal castings was studied by placing aerogel plates into the cavities of thin sections of resin bonded sand molds. An 1 based commercial alloy ( 356) containing 7 percent Si was poured into these molds. Post-solidification studies provide evidence that aerogel inserts significantly reduce the cooling rate during solidification. The advantage of a lower rate using aerogel inserts was reflected in the reduction of casting defects such as shrinkage porosity. Quantitative results support the hypothesis that using aerogels as a mold material can offer definite advantages when used as casting thin sections. As a separate effort, silica aerogel with cylindrical cavities have been prepared and will be evaluated for casting commercial alloys.

  17. [Exploring a new method for superimposition of pre-treatment and post-treatment mandibular digital dental casts in adults].

    PubMed

    Dai, F F; Liu, Y; Xu, T M; Chen, G

    2018-04-18

    To explore a cone beam computed tomography (CBCT)-independent method for mandibular digital dental cast superimposition to evaluate three-dimensional (3D) mandibular tooth movement after orthodontic treatment in adults, and to evaluate the accuracy of this method. Fifteen post-extraction orthodontic treatment adults from the Department of Orthodontics, Peking University School and Hospital of Stomatology were included. All the patients had four first premolars extracted, and were treated with straight wire appliance. The pre- and post-treatment plaster dental casts and craniofacial CBCT scans were obtained. The plaster dental casts were transferred to digital dental casts by 3D laser scanning, and lateral cephalograms were created from the craniofacial CBCT scans by orthogonal projection. The lateral cephalogram-based mandibular digital dental cast superimposition was achieved by sequential maxillary dental cast superimposition registered on the palatal stable region, occlusal transfer, and adjustment of mandibular rotation and translation obtained from lateral cephalogram superimposition. The accuracy of the lateral cephalogram-based mandibular digital dental cast superimposition method was evaluated with the CBCT-based mandibular digital dental cast superimposition method as the standard reference. After mandibular digital dental cast superimposition using both methods, 3D coordinate system was established, and 3D displacements of the lower bilateral first molars, canines and central incisors were measured. Differences between the two superimposition methods in tooth displacement measurements were assessed using the paired t-test with the level of statistical significance set at P<0.05. No significant differences were found between the lateral cephalogram-based and CBCT-based mandibular digital dental cast superimposition methods in 3D displacements of the lower first molars, and sagittal and vertical displacements of the canines and central incisors; transverse displacements of the canines and central incisors differed by (0.3±0.5) mm with statistical significance. The lateral cephalogram-based mandibular digital dental cast superimposition method has the similar accuracy as the CBCT-based mandibular digital dental cast superimposition method in 3D evaluation of mandibular orthodontic tooth displacement, except for minor differences for the transverse displacements of anterior teeth. This method is applicable to adult patients with conventional orthodontic treatment records, especially the previous precious orthodontic data in the absence of CBCT scans.

  18. Europium containing red light-emitting fibers made by electrohydrodynamic casting

    NASA Astrophysics Data System (ADS)

    Gan, Yong X.; Panahi, Niousha; Yu, Christina; Gan, Jeremy B.; Cheng, Wanli

    2018-05-01

    Red light-emitting polymeric micro- and nanofibers were made by electrohydrodynamic co-casting of two fluids. One fluid contains a 10 wt% concentration europium (III) complex dissolved in a dimethylformamide (DMF) solvent. The europium complex, an Eu3+ compound with the nominal formula of Eu(BA)3phen/PAN, consists of polyacrylonitrile (PAN), 1,10-phenanthroline (phen), and benzoic acid (BA). The other fluid consists of iron metal oxide nanoparticles dispersed in a solution containing 10 wt% polyacrylonitrile polymer in DMF solvent. The two fluids were electrohydrodynamically co-cast onto a soft tissue paper using a stainless steel coaxial nozzle. The intensity of the electric field used for the co-casting was 1.5 kV/cm. Scanning electron microscopic observation on the fibers obtained from the co-casting was made. The size of the fibers ranges from several hundreds of nanometers to several microns. Energy dispersive X-ray spectroscopic analysis of the fibers confirmed that the major elements included C, O, Fe, and Eu. The fluorescence of the two types of fibers was tested under the excitation of a UV light source. It was found that when the europium complex-containing solution was the sheath fluid and the iron-containing solution was the core, the prepared fibers showed red light-emitting behavior under ultraviolet light. Time-dependent fluorescence shows the two-stage decaying behavior. The first stage lasts about 2000 s and the intensity of fluorescence decreases linearly. The second stage reveals the slow decaying behavior and it lasts longer than 3 h. Based on the bi-exponential data fitting using a processing MATLAB code, the fluorescence-related constants were extracted. A bi-exponential formula was proposed to describe the time-dependent fluorescence behavior of the fiber made by the europium complex-containing solution as the sheath fluid. The decaying in the fluorescence shows two different stages. The first stage lasts about 2000 s and it is characterized by a fast decaying model. The intensity of fluorescence decreases linearly. The second stage has a slow decaying feature. It takes over 3 h for the fluorescence to die out completely. Bi-exponential data fitting shows that the time constant for the decay of fluorescence is about 10,000 s.

  19. Polymeric bionanocomposite cast thin films with in situ laccase-catalyzed polymerization of dopamine for biosensing and biofuel cell applications.

    PubMed

    Tan, Yueming; Deng, Wenfang; Li, Yunyong; Huang, Zhao; Meng, Yue; Xie, Qingji; Ma, Ming; Yao, Shouzhuo

    2010-04-22

    We report here on the facile preparation of polymer-enzyme-multiwalled carbon nanotubes (MWCNTs) cast films accompanying in situ laccase (Lac)-catalyzed polymerization for electrochemical biosensing and biofuel cell applications. Lac-catalyzed polymerization of dopamine (DA) as a new substrate was examined in detail by UV-vis spectroscopy, cyclic voltammetry, quartz crystal microbalance, and scanning electron microscopy. Casting the aqueous mixture of DA, Lac and MWCNTs on a glassy carbon electrode (GCE) yielded a robust polydopamine (PDA)-Lac-MWCNTs/GCE that can sense hydroquinone with 643 microA mM(-1) cm(-2) sensitivity and 20-nM detection limit (S/N = 3). The DA substrate yielded the best biosensing performance, as compared with aniline, o-phenylenediamine, or o-aminophenol as the substrate for similar Lac-catalyzed polymerization. Casting the aqueous mixture of DA, glucose oxidase (GOx), Lac, and MWCNTs on a Pt electrode yielded a robust PDA-GOx-Lac-MWCNTs/Pt electrode that exhibits glucose-detection sensitivity of 68.6 microA mM(-1) cm(-2). In addition, 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonate) diammonium salt (ABTS) was also coimmobilized to yield a PDA-Lac-MWCNTs-ABTS/GCE that can effectively catalyze the reduction of O(2), and it was successfully used as the biocathode of a membraneless glucose/O(2) biofuel cell (BFC) in pH 5.0 Britton-Robinson buffer. The proposed biomacromolecule-immobilization platform based on enzyme-catalyzed polymerization may be useful for preparing many other multifunctional polymeric bionanocomposites for wide applications.

  20. Fabrication and Optimization of Carbon Nanomaterial-Based Lithium-Ion Battery Anodes

    DTIC Science & Technology

    2012-03-01

    preparation setup under the fume hood with NMP solvent, glass pipette with dispenser, and the ball milled powder mixture containing LiFePO4 , acetylene...minutes. ............................................................................. 18 Figure 12. (a) LiFePO4 slurry applied on foil current collector...and (b) LiFePO4 slurry casted with applicator and (c) LiFePO4 casted (From [15])....... 18 Figure 13. MTI disc cutter used to cut individual

Top