Predictive methods of some optoelectronic properties for blends based on quaternized polysulfones
NASA Astrophysics Data System (ADS)
Dobos, Adina Maria; Filimon, Anca
2017-11-01
Blends based on quaternized polysulfones were investigated in terms of optical and electronic properties. By applying the Bicerano formalism the refractive index and dielectric constant were evaluated. Also, the dielectric constant of these blends was studied as a function of temperature and frequency. As the result of the main chain structure and charged groups, an increase in theoretical values of the refractive index and dielectric constant with increasing of the ionic quaternized units content in the polymer blend occurs. Additionally, decrease in the dielectric constant with the increase of frequency and decrease of temperature was observed. Refractive index and dielectric constant values indicate that the analyzed samples are transparent and can be used in obtaining of materials with applications involving a small polarizability. Thus, the results are important in prediction of the special optoelectronic features of new polymers blends to obtain high-performance materials with applications in electronic and biomedical fields.
Electronic polarizability of light crude oil from optical and dielectric studies
NASA Astrophysics Data System (ADS)
George, A. K.; Singh, R. N.
2017-07-01
In the present paper we report the temperature dependence of density, refractive indices and dielectric constant of three samples of crude oils. The API gravity number estimated from the temperature dependent density studies revealed that the three samples fall in the category of light oil. The measured data of refractive index and the density are used to evaluate the polarizability of these fluids. Molar refractive index and the molar volume are evaluated through Lorentz-Lorenz equation. The function of the refractive index, FRI , divided by the mass density ρ, is a constant approximately equal to one-third and is invariant with temperature for all the samples. The measured values of the dielectric constant decrease linearly with increasing temperature for all the samples. The dielectric constant estimated from the refractive index measurements using Lorentz-Lorentz equation agrees well with the measured values. The results are promising since all the three measured properties complement each other and offer a simple and reliable method for estimating crude oil properties, in the absence of sufficient data.
Wave propagation in and around negative-dielectric-constant discharge plasma
NASA Astrophysics Data System (ADS)
Sakai, Osamu; Iwai, Akinori; Omura, Yoshiharu; Iio, Satoshi; Naito, Teruki
2018-03-01
The modes of wave propagation in media with a negative dielectric constant are not simple, unlike those for electromagnetic waves in media with a positive dielectric constant (where modes propagate inside the media with positive phase velocity since the refractive index is usually positive). Instead, they depend on the permeability sign, either positive or negative, and exhibit completely different features. In this report, we investigated a wave confined on the surface of a negative-dielectric-constant and a positive-permeability plasma medium for which the refractive index is imaginary. The propagation mode is similar to surface plasmon polaritons on the metal containing free electrons, but its frequency band is different due to the significant spatial gradient of the dielectric constant and a different pressure term. We also studied a wave with a negative dielectric constant and negative permeability, where the refractive index is negative. This wave can propagate inside the media, but its phase velocity is negative. It also shares similar qualities with waves in plasmonic devices with negative permeability in the photon range.
Negative refraction in one- and two-dimensional lossless plasma dielectric photonic crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, B.
2013-07-15
Negative refraction in one- and two-dimensional lossless plasma dielectric photonic crystals consisting of plasma and background materials is theoretically investigated and the necessary conditions for negative refraction in these two structures are obtained. The critical frequency ω{sub 0} and the bandwidth Δω for negative refraction are explored, and the parameter dependence of effects such as plasma filling factor and the dielectric constant of background materials is also examined and discussed.
Pressure dependence of the refractive index and dielectric constant in a fluoroperovskite, KMgF3
NASA Astrophysics Data System (ADS)
Uchino, Kenji; Nomura, Shoichiro; Vedam, K.; Newnham, Robert E.; Cross, Leslie E.
1984-06-01
The hydrostatic-pressure dependence of the refractive index and the low-frequency dielectric constant of a perovskite-type single crystal, KMgF3, have been determined at room temperature. The refractive index n for λ=589.3 nm increases monotonously in proportion to pressure p with a slope of ∂n∂p=2.46×10-4kbar-1. On the other hand, the dielectric constant at 10 kHz decreases with increasing pressure, from which the electric-displacement-related electrostrictive coefficient Qh (=Q11+2Q12) is calculated as 0.24 m4 C-2. These data are compared with the ∂n∂p values and the Qh coefficients of various alkali fluorides and perovskite oxides.
Reflection and Refraction of Light in Absorbing Media
NASA Astrophysics Data System (ADS)
Katsumata, Koichi; Sasaki, Shosuke
2018-05-01
The results of a rigorous calculation of optical phenomena in absorbing media based on Maxwell's equations are reported. In the case of an absorbing dielectric, we assume a complex dielectric constant. We find an expression for the angle of refraction as a function of the incident angle and the real and imaginary parts of the complex dielectric constant, all of which are real. The amplitudes of the reflected and transmitted waves are calculated on the same footing. These amplitudes are shown to be complex, from which we deduce the magnitude and phase change of the reflection and transmission coefficients. The same argument applies to an absorbing magnetic material if we replace the complex dielectric constant by a complex magnetic permeability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maulina, Hervin; Santoso, Iman, E-mail: iman.santoso@ugm.ac.id; Subama, Emmistasega
2016-04-19
The extraction of the dielectric constant of nanostructured graphene on SiC substrates from spectroscopy ellipsometry measurement using the Gauss-Newton inversion (GNI) method has been done. This study aims to calculate the dielectric constant and refractive index of graphene by extracting the value of ψ and Δ from the spectroscopy ellipsometry measurement using GNI method and comparing them with previous result which was extracted using Drude-Lorentz (DL) model. The results show that GNI method can be used to calculate the dielectric constant and refractive index of nanostructured graphene on SiC substratesmore faster as compared to DL model. Moreover, the imaginary partmore » of the dielectric constant values and coefficient of extinction drastically increases at 4.5 eV similar to that of extracted using known DL fitting. The increase is known due to the process of interband transition and the interaction between the electrons and electron-hole at M-points in the Brillouin zone of graphene.« less
Dielectric and physiochemical study of binary mixture of nitrobenzene with toluene
NASA Astrophysics Data System (ADS)
Mohod, Ajay G.; Deshmukh, S. D.; Pattebahadur, K. L.; Undre, P. B.; Patil, S. S.; Khirade, P. W.
2018-05-01
This paper presents the study of binary mixture of Nitrobenzene (NB) with Toluene (TOL) for eleven different concentrations at room temperature. The determined Dielectric Constant (ɛ0) Density (ρ) and Refractive index (nD) values of binary mixture are used to calculate the excess properties i.e. Excess Dielectric Constant (ɛ0E), Excess Molar Volume (VmE), Excess Refractive Index (nDE) and Excess Molar Refraction (RmE) of mixture over the entire composition range and fitted to the Redlich-Kister equation. The Kirkwood Correlation Factor (geff) and other parameters were used to discuss the information about the orientation of dipoles and the solute-solvent interaction of binary mixture at molecular level over the entire range of concentration.
Microwave dielectric study of polar liquids at 298 K
NASA Astrophysics Data System (ADS)
Maharolkar, Aruna P.; Murugkar, A.; Khirade, P. W.
2018-05-01
Present paper deals with study of microwave dielectric properties like dielectric constant, viscosity, density and refractive index for the binary mixtures of Dimethylsulphoxide (DMSO) and Methanol over the entire concentration range were measured at 298K. The experimental data further used to determine the excess properties viz. excess static dielectric constant, excess molar volume, excess viscosity& derived properties viz. molar refraction&Bruggman factor. The values of excess properties further fitted with Redlich-Kister (R-K Fit) equation to calculate the binary coefficients and standard deviation. The resulting excess parameters are used to indicate the presence of intermolecular interactions and strength of intermolecular interactions between the molecules in the binary mixtures. Excess parameters indicate structure breaking factor in the mixture predominates in the system.
Optical properties of γ-irradiated Bombyx mori silk fibroin films
NASA Astrophysics Data System (ADS)
Madhukumar, R.; Asha, S.; Lakshmeesha Rao, B.; Sarojini, B. K.; Byrappa, K.; Wang, Youjiang; Sangappa, Y.
2015-11-01
In the present work the Bombyx mori silk fibroin (SF) films were prepared by the solution casting method and effects of γ-irradiation on the optical properties and optical constants of the films have been studied by using Ultra Violet-Visible (UV-Vis) spectrophotometer. The recorded UV-Vis absorption and transmission spectra have been used to determine the optical band gap (Eg), refractive index (n), extinction coefficient (k), optical conductivity (σopt) and dielectric constants (ε*) of virgin and γ-irradiated films. Reduction in optical band gap and increase in refractive index with increasing radiation dosage were observed. It is also found that there is an increase in dielectric constants with increasing photon energy. The obtained results reveal that the refractive index of the SF films may be efficiently changed by γ-irradiation.
Porous Materials with Ultralow Optical Constants for Integrated Optical Device Applications
NASA Astrophysics Data System (ADS)
Chen, Hsuen-Li; Hsieh, Chung-I; Cheng, Chao-Chia; Chang, Chia-Pin; Hsu, Wen-Hau; Wang, Way-Seen; Liu, Po-Tsun
2005-07-01
Ultralow dielectric constant (<2.0) porous materials have received much attention as next-generation dielectric materials. In this study, optical properties of porous-methyl-silsesquioxane(MSQ)-like films (porous polysilazane, PPSZ) were characterized for optical waveguide devices applications. Measured results indicate that the refractive index is decreased to approximately 1.320 as the hydration time exceeds 24 h. The measured refractive index is about 1.163 at a wavelength of 1550 nm. PPSZ films have low absorption in the 500 to 2000 nm wavelength regime. Because of their relatively low refractive index and low absorption over a large spectral regime, PPSZ films can be good cladding materials for use in optically integrated devices with many high-refractive-index materials such as silicon oxide, silicon nitride, silicon, and polymers. We demonstrate two structures, ridge waveguides and large-angle Y-branch power splitters, composed of PPSZ and SU8 films to illustrate the use of low dielectric constant (K) cladding materials. The simulation results indicate that the PPSZ films provide better confinement of light. Experimentally, a large-angle Y-branch power splitter with PPSZ cladding can be used to guide waves with the large branching angle of 33.58°.
Free-Space Time-Domain Method for Measuring Thin Film Dielectric Properties
Li, Ming; Zhang, Xi-Cheng; Cho, Gyu Cheon
2000-05-02
A non-contact method for determining the index of refraction or dielectric constant of a thin film on a substrate at a desired frequency in the GHz to THz range having a corresponding wavelength larger than the thickness of the thin film (which may be only a few microns). The method comprises impinging the desired-frequency beam in free space upon the thin film on the substrate and measuring the measured phase change and the measured field reflectance from the reflected beam for a plurality of incident angles over a range of angles that includes the Brewster's angle for the thin film. The index of refraction for the thin film is determined by applying Fresnel equations to iteratively calculate a calculated phase change and a calculated field reflectance at each of the plurality of incident angles, and selecting the index of refraction that provides the best mathematical curve fit with both the dataset of measured phase changes and the dataset of measured field reflectances for each incident angle. The dielectric constant for the thin film can be calculated as the index of refraction squared.
Rocquefelte, Xavier; Jobic, Stéphane; Whangbo, Myung-Hwan
2006-02-16
How indices of refraction n(omega) of insulating solids are affected by the volume dilution of an optical entity and the mixing of different, noninteracting simple solid components was examined on the basis of the dielectric function epsilon(1)(omega) + iepsilon(2)(omega). For closely related insulating solids with an identical composition and the formula unit volume V, the relation [epsilon(1)(omega) - 1]V = constant was found by combining the relation epsilon(2)(omega)V = constant with the Kramers-Kronig relation. This relation becomes [n(2)(omega) - 1]V = constant for the index of refraction n(omega) determined for the incident light with energy less than the band gap (i.e., h omega < E(g)). For a narrow range of change in the formula unit volume, the latter relation is well approximated by a linear relation between n and 1/V.
Determination of dispersive optical constants of nanocrystalline CdSe (nc-CdSe) thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Kriti; Al-Kabbi, Alaa S.; Saini, G.S.S.
2012-06-15
Highlights: ► nc-CdSe thin films are prepared by thermal vacuum evaporation technique. ► TEM analysis shows NCs are spherical in shape. ► XRD reveals the hexagonal (wurtzite) crystal structure of nc-CdSe thin films. ► The direct optical bandgap of nc-CdSe is 2.25 eV in contrast to bulk (1.7 eV). ► Dispersion of refractive index is discussed in terms of Wemple–DiDomenico single oscillator model. -- Abstract: The nanocrystalline thin films of CdSe are prepared by thermal evaporation technique at room temperature. These thin films are characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), X-raymore » diffraction (XRD) and photoluminescence spectroscopy (PL). The transmission spectra are recorded in the transmission range 400–3300 nm for nc-CdSe thin films. Transmittance measurements are used to calculate the refractive index (n) and absorption coefficient (α) using Swanepoel's method. The optical band gap (E{sub g}{sup opt}) has been determined from the absorption coefficient values using Tauc's procedure. The optical constants such as extinction coefficient (k), real (ε{sub 1}) and imaginary (ε{sub 2}) dielectric constants, dielectric loss (tan δ), optical conductivity (σ{sub opt}), Urbach energy (E{sub u}) and steepness parameter (σ) are also calculated for nc-CdSe thin films. The normal dispersion of refractive index is described using Wemple–DiDomenico single-oscillator model. Refractive index dispersion is further analysed to calculate lattice dielectric constant (ε{sub L}).« less
Huang, Xueqin; Lai, Yun; Hang, Zhi Hong; Zheng, Huihuo; Chan, C T
2011-05-29
A zero-refractive-index metamaterial is one in which waves do not experience any spatial phase change, and such a peculiar material has many interesting wave-manipulating properties. These materials can in principle be realized using man-made composites comprising metallic resonators or chiral inclusions, but metallic components have losses that compromise functionality at high frequencies. It would be highly desirable if we could achieve a zero refractive index using dielectrics alone. Here, we show that by employing accidental degeneracy, dielectric photonic crystals can be designed and fabricated that exhibit Dirac cone dispersion at the centre of the Brillouin zone at a finite frequency. In addition to many interesting properties intrinsic to a Dirac cone dispersion, we can use effective medium theory to relate the photonic crystal to a material with effectively zero permittivity and permeability. We then numerically and experimentally demonstrate in the microwave regime that such dielectric photonic crystals with reasonable dielectric constants manipulate waves as if they had near-zero refractive indices at and near the Dirac point frequency.
Optical properties of Sulfur doped InP single crystals
NASA Astrophysics Data System (ADS)
El-Nahass, M. M.; Youssef, S. B.; Ali, H. A. M.
2014-05-01
Optical properties of InP:S single crystals were investigated using spectrophotometric measurements in the spectral range of 200-2500 nm. The absorption coefficient and refractive index were calculated. It was found that InP:S crystals exhibit allowed and forbidden direct transitions with energy gaps of 1.578 and 1.528 eV, respectively. Analysis of the refractive index in the normal dispersion region was discussed in terms of the single oscillator model. Some optical dispersion parameters namely: the dispersion energy (Ed), single oscillator energy (Eo), high frequency dielectric constant (ɛ∞), and lattice dielectric constant (ɛL) were determined. The volume and the surface energy loss functions (VELF & SELF) were estimated. Also, the real and imaginary parts of the complex conductivity were calculated.
Analysis of structural and optical properties of annealed fullerene thin films
NASA Astrophysics Data System (ADS)
El-Nahass, M. M.; Ali, H. A. M.; Gadallah, A.-S.; Atta Khedr, M.; Afify, H. A.
2015-08-01
Fullerene thin films were thermally deposited onto different substrates. The films annealed at 523 K for 10 h. X-ray diffraction technique was used to examine the structure of the films. The morphology of films was examined by field emission scanning electron microscopy. Fourier transform infrared spectra were recorded in wavenumber range 400-2000 cm-1. The optical characteristics were analyzed using UV- Vis-NIR spectrophotometric measurements in the spectral range 200-2500 nm. The refractive index and extinction coefficient were determined. Some dispersion parameters were calculated such as single oscillator energy, dispersion energy, dielectric constant at high frequency and lattice dielectric constant. As well as, the nonlinear optical susceptibility χ(3) and nonlinear refractive index n2 were determined.
Thermophysical properties of N, N-dimethylacetamide mixtures with n-butanol
NASA Astrophysics Data System (ADS)
Maharolkar, Aruna P.; Murugkar, A. G.; Khirade, P. W.; Mehrotra, S. C.
2017-09-01
The refraction, dielectric, viscosity, density, data of the binary mixtures of N, N-dimethylacetamide (DMA) with n-butanol at 308.15 and 313.15 K. The measured parameters used to obtain derived properties like Bruggeman factor, molar refraction and excess static dielectric constant, excess inverse relaxation time, excess molar volume and excess viscosity, excess molar refraction. The variation in magnitude with composition and temperature of these quantities has been used to discuss the type, strength and nature of binary interactions. Results confirm that there are strong hydrogen-bond interactions between unlike molecules of DMA+ n-butanol mixtures and that 1: 1 complexes are formed and strength of intermolecular interaction increases with temperature.
Effect of heat treatment on morphological, structural and optical properties of CoMTPP thin films
NASA Astrophysics Data System (ADS)
El-Nahass, M. M.; Ammar, A. H.; Farag, A. A. M.; Atta, A. A.; El-Zaidia, E. F. M.
2011-03-01
The morphologies and crystal structures of 5,10,15,20-tetrakis(4-methoxyphenyl)-21 H,23 H-porphine cobalt(II), CoMTPP, thin films were investigated by scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. Optical constants namely the refractive index, n, and the absorption index, k, of CoMTPP were estimated by using spectrophotometric measurements of transmittance and reflectance in the spectral range from 200 to 2500 nm. The dispersion of the refractive index in terms of the single oscillator in the transparent region is discussed. The single oscillator energy ( E0), the dispersion energy ( E d), the high frequency dielectric constant ( ɛ∞) and the lattice dielectric constant ( ɛ L) were calculated. The analysis of the spectral behavior of the absorption coefficient in the intrinsic absorption region reveals two indirect allowed transitions for as-deposited and annealed films.
Enhanced Microfluidic Electromagnetic Measurements
NASA Technical Reports Server (NTRS)
Ricco, Antonio J. (Inventor); Kovacs, Gregory (Inventor); Giovangrandi, Laurent (Inventor)
2015-01-01
Techniques for enhanced microfluidic impedance spectroscopy include causing a core fluid to flow into a channel between two sheath flows of one or more sheath fluids different from the core fluid. Flow in the channel is laminar. A dielectric constant of a fluid constituting either sheath flow is much less than a dielectric constant of the core fluid. Electrical impedance is measured in the channel between at least a first pair of electrodes. In some embodiments, enhanced optical measurements include causing a core fluid to flow into a channel between two sheath flows of one or more sheath fluids different from the core fluid. An optical index of refraction of a fluid constituting either sheath flow is much less than an optical index of refraction of the core fluid. An optical property is measured in the channel.
Negative refraction angular characterization in one-dimensional photonic crystals.
Lugo, Jesus Eduardo; Doti, Rafael; Faubert, Jocelyn
2011-04-06
Photonic crystals are artificial structures that have periodic dielectric components with different refractive indices. Under certain conditions, they abnormally refract the light, a phenomenon called negative refraction. Here we experimentally characterize negative refraction in a one dimensional photonic crystal structure; near the low frequency edge of the fourth photonic bandgap. We compare the experimental results with current theory and a theory based on the group velocity developed here. We also analytically derived the negative refraction correctness condition that gives the angular region where negative refraction occurs. By using standard photonic techniques we experimentally determined the relationship between incidence and negative refraction angles and found the negative refraction range by applying the correctness condition. In order to compare both theories with experimental results an output refraction correction was utilized. The correction uses Snell's law and an effective refractive index based on two effective dielectric constants. We found good agreement between experiment and both theories in the negative refraction zone. Since both theories and the experimental observations agreed well in the negative refraction region, we can use both negative refraction theories plus the output correction to predict negative refraction angles. This can be very useful from a practical point of view for space filtering applications such as a photonic demultiplexer or for sensing applications.
Negative Refraction Angular Characterization in One-Dimensional Photonic Crystals
Lugo, Jesus Eduardo; Doti, Rafael; Faubert, Jocelyn
2011-01-01
Background Photonic crystals are artificial structures that have periodic dielectric components with different refractive indices. Under certain conditions, they abnormally refract the light, a phenomenon called negative refraction. Here we experimentally characterize negative refraction in a one dimensional photonic crystal structure; near the low frequency edge of the fourth photonic bandgap. We compare the experimental results with current theory and a theory based on the group velocity developed here. We also analytically derived the negative refraction correctness condition that gives the angular region where negative refraction occurs. Methodology/Principal Findings By using standard photonic techniques we experimentally determined the relationship between incidence and negative refraction angles and found the negative refraction range by applying the correctness condition. In order to compare both theories with experimental results an output refraction correction was utilized. The correction uses Snell's law and an effective refractive index based on two effective dielectric constants. We found good agreement between experiment and both theories in the negative refraction zone. Conclusions/Significance Since both theories and the experimental observations agreed well in the negative refraction region, we can use both negative refraction theories plus the output correction to predict negative refraction angles. This can be very useful from a practical point of view for space filtering applications such as a photonic demultiplexer or for sensing applications. PMID:21494332
Lee, Sanghun; Park, Sung Soo
2011-11-03
Dielectric constants of electrolytic organic solvents are calculated employing nonpolarizable Molecular Dynamics simulation with Electronic Continuum (MDEC) model and Density Functional Theory. The molecular polarizabilities are obtained by the B3LYP/6-311++G(d,p) level of theory to estimate high-frequency refractive indices while the densities and dipole moment fluctuations are computed using nonpolarizable MD simulations. The dielectric constants reproduced from these procedures are evaluated to provide a reliable approach for estimating the experimental data. An additional feature, two representative solvents which have similar molecular weights but are different dielectric properties, i.e., ethyl methyl carbonate and propylene carbonate, are compared using MD simulations and the distinctly different dielectric behaviors are observed at short times as well as at long times.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bissa, Shivangi; Naruka, Preeti; Bishnoi, Nidhi
In the present study the dielectric optical response of various nanostructures of ZnO deposited on silica substrate has been studied using Maxwell-Garnett Effective Medium Theory. Using the volume filling factors for different nanostructures of ZnO the effective dielectric constant has been evaluated. The variation of this effective dielectric constant with the frequency of applied signal has been investigated. Moreover, the reflectance of the film, power absorption and variation of refractive index with frequency has been studied. The results obtained show that the quantum confinement effects in ZnO nano-structural films deposited on silica substrate give rise to distinct optical properties makingmore » it an ideal choice for high power THz generation.« less
Petousis, Ioannis; Mrdjenovich, David; Ballouz, Eric; ...
2017-01-31
Dielectrics are an important class of materials that are ubiquitous in modern electronic applications. Even though their properties are important for the performance of devices, the number of compounds with known dielectric constant is on the order of a few hundred. Here, we use Density Functional Perturbation Theory as a way to screen for the dielectric constant and refractive index of materials in a fast and computationally efficient way. Our results constitute the largest dielectric tensors database to date, containing 1,056 compounds. Details regarding the computational methodology and technical validation are presented along with the format of our publicly availablemore » data. In addition, we integrate our dataset with the Materials Project allowing users easy access to material properties. Finally, we explain how our dataset and calculation methodology can be used in the search for novel dielectric compounds.« less
Petousis, Ioannis; Mrdjenovich, David; Ballouz, Eric; Liu, Miao; Winston, Donald; Chen, Wei; Graf, Tanja; Schladt, Thomas D.; Persson, Kristin A.; Prinz, Fritz B.
2017-01-01
Dielectrics are an important class of materials that are ubiquitous in modern electronic applications. Even though their properties are important for the performance of devices, the number of compounds with known dielectric constant is on the order of a few hundred. Here, we use Density Functional Perturbation Theory as a way to screen for the dielectric constant and refractive index of materials in a fast and computationally efficient way. Our results constitute the largest dielectric tensors database to date, containing 1,056 compounds. Details regarding the computational methodology and technical validation are presented along with the format of our publicly available data. In addition, we integrate our dataset with the Materials Project allowing users easy access to material properties. Finally, we explain how our dataset and calculation methodology can be used in the search for novel dielectric compounds. PMID:28140408
Petousis, Ioannis; Mrdjenovich, David; Ballouz, Eric; Liu, Miao; Winston, Donald; Chen, Wei; Graf, Tanja; Schladt, Thomas D; Persson, Kristin A; Prinz, Fritz B
2017-01-31
Dielectrics are an important class of materials that are ubiquitous in modern electronic applications. Even though their properties are important for the performance of devices, the number of compounds with known dielectric constant is on the order of a few hundred. Here, we use Density Functional Perturbation Theory as a way to screen for the dielectric constant and refractive index of materials in a fast and computationally efficient way. Our results constitute the largest dielectric tensors database to date, containing 1,056 compounds. Details regarding the computational methodology and technical validation are presented along with the format of our publicly available data. In addition, we integrate our dataset with the Materials Project allowing users easy access to material properties. Finally, we explain how our dataset and calculation methodology can be used in the search for novel dielectric compounds.
Manufacturing method of photonic crystal
Park, In Sung; Lee, Tae Ho; Ahn, Jin Ho; Biswas, Rana; Constant, Kristen P.; Ho, Kai-Ming; Lee, Jae-Hwang
2013-01-29
A manufacturing method of a photonic crystal is provided. In the method, a high-refractive-index material is conformally deposited on an exposed portion of a periodic template composed of a low-refractive-index material by an atomic layer deposition process so that a difference in refractive indices or dielectric constants between the template and adjacent air becomes greater, which makes it possible to form a three-dimensional photonic crystal having a superior photonic bandgap. Herein, the three-dimensional structure may be prepared by a layer-by-layer method.
NASA Astrophysics Data System (ADS)
Pattebahadur, Kanchan. L.; Deshmukh, S. D.; Mohod, A. G.; Undre, P. B.; Patil, S. S.; Khirade, P. W.
2018-05-01
The Dielectric constant, density and refractive index of binary mixture of 2-ethoxy ethanol (2-EE) with ethyl methyl ketone (EMK) including those of the pure liquids were measured for 11 concentrations at 25°C temperature. The experimental data is used to calculate the Excess molar volume, Excess dielectric constant, Kirkwood correlation factor and Bruggemann factor. The excess parameters results were fitted to the Redlich-Kister type polynomial equation to derive its fitting coefficient. The Kirkwood correlation factor of the mixture has been discussed to yield information about solute solvent interaction. The Bruggeman plot shows a deviation from linearity. The FT-IR spectra of pure and their binary mixtures are also studied.
Optical characteristics of Tl0.995Cu0.005InS2 single crystals
NASA Astrophysics Data System (ADS)
El-Nahass, M. M.; Ali, H. A. M.; Abu-Samaha, F. S. H.
2013-04-01
Optical properties of Tl0.995Cu0.005InS2 single crystals were studied using transmittance and reflectance measurements in the spectral wavelength range of 300-2500 nm. The optical constants (n and k) were calculated at room temperature. The analysis of the spectral behavior of the absorption coefficient in the absorption region revealed indirect transition. The refractive index dispersion data were analyzed in terms of the single oscillator model. Dispersion parameters such as the single oscillator energy (Eo), the dispersion energy (Ed), the high frequency dielectric constant (ε∞), the lattice dielectric constant (εL) and the ratio of free charge carrier concentration to the effective mass (N/m*) were estimated. The third order nonlinear susceptibility (χ(3)) was calculated according to the generalized Miller's rule. Also, the real and imaginary parts of the complex dielectric constant were determined.
Schwenninger, David; Priebe, Hans-Joachim; Schneider, Matthias; Runck, Hanna; Guttmann, Josef
2017-07-01
Optical clearing allows tissue visualization under preservation of organ integrity. Optical clearing of organs with a physiological change in three-dimensional geometry (such as the lung) would additionally allow visualization of macroscopic and microscopic tissue geometry. A prerequisite, however, is the preservation of the native tissue mechanics of the optically cleared lung tissue. We investigated the impact of optical and dielectric properties of clearing solutions on biomechanics and clearing potency in porcine tissue strips of healthy lungs. After fixation, bleaching, and rehydration, four methods of optical clearing were investigated using eight different protocols. The mechanical and optical properties of the cleared lung tissue strips were investigated by uniaxial tensile testing and by analyzing optical transparency and translucency for red, green, and blue light before, during, and after the biochemical optical clearing process. Fresh tissue strips were used as controls. Best balance between efficient clearing and preserved mechanics was found for clearing with a 1:1 mixture of dimethyl sulfoxide (DMSO) and aniline. Our findings show that 1 ) the degree of tissue transparency and translucency correlated with the refractive index of the clearing solution index ( r = 0.976, P = 0.0004; and r = 0.91, P = 0.0046, respectively), 2 ) tissue mechanics were affected by dehydration and the type of clearing solution, and 3 ) tissue biomechanics and geometry correlated with the dielectric constant of the clearing solution ( r = -0.98, P < 0.00001; and r = 0.69, P = 0.013, respectively). We show that the lower the dielectric constant of the clearing solutions, the larger the effect on tissue stiffness. This suggests that the dielectric constant is an important measure in determining the effect of a clearing solution on lung tissue biomechanics. Optimal tissue transparency requires complete tissue dehydration and a refractive index of 1.55 of the clearing solution. NEW & NOTEWORTHY Investigating optical clearing in porcine lung tissue strips, we found that refractive index and dielectric constant of the clearing solution affected tissue clearing and biomechanics. By documenting the impact of the composition of the clearing solution on clearing potency and preservation of tissue mechanics, our results help to compose optimal clearing solutions. In addition, the results allow conclusions on the molecular interaction of solvents with collagen fibers in tissue, thereby consolidating existing theories about the functionality of collagen. Copyright © 2017 the American Physiological Society.
NASA Astrophysics Data System (ADS)
Saba, H.; Yumei, Z.; Huaping, W.
2015-12-01
Densities, refractive indices, conductivities and viscosities of binary mixtures of 1-ethyl-3-methylimidazolium-based ionic liquids (ILs) with dimethyl sulfoxide at 298.15 K are reported. Excess molar volumes have been calculated from experimental data and were fitted with Redlich-Kister equation. The density and refractive index were found to increase with increasing concentration in all cases except [EMIM]COOH. The free mobility of ions has found to enhance conductivity and decrease viscosity to varying extent in all mixtures being studied. It has been observed that solubility parameters, dielectric constants and nature of anions of ILs being used play a vital role in determining the subsequent characteristics. As DMSO has high dielectric constant therefore, it was able to form interactions with most of ILs except with [EMIM]COOH due to anomalous nature of anion.
NASA Astrophysics Data System (ADS)
Anis, Mohd; Hakeem, D. A.; Muley, G. G.
In the present study pure, citric acid (CA) and L-valine (LV) doped potassium dihydrogen phosphate (KDP) crystals have been grown with the aim to investigate the nonlinear optical applications facilitated by UV-visible, third order nonlinear optical (TONLO) and dielectric properties. The structural parameters of grown crystals have been confirmed by single crystal X-ray diffraction analysis. The enhancement in optical transparency of KDP crystal due to addition of CA and LV has been examined within 200-900 nm by means of UV-visible spectral analysis. In addition, the transmittance data have been used to evaluate the effect of dopants on reflectance, refractive index and extinction coefficient of grown crystals in the visible region. The Z-scan analysis has been performed at 632.8 nm to identify the nature of photoinduced nonlinear refraction and nonlinear absorption in doped KDP crystals. The influence of π-bonded ligand of dopant CA and LV on TONLO susceptibility (χ3), refractive index (n2) and absorption coefficient (β) of KDP crystals has been evaluated to discuss laser assisted device applications. The decrease in dielectric constant and dielectric loss of KDP crystal due to addition of CA and LV has been explored using the temperature dependent dielectric studies.
NASA Technical Reports Server (NTRS)
Kahen, K. B.
1986-01-01
The optical properties of III to V binary and ternary compounds and GaAs-Al(x)Ga(1-x)As superlattices are determined by calculating the real and imaginary parts of the transverse dielectric constant. Emphasis is given to determining the influence of different material and superlattice parameters on the values of the index of refraction and absorption coefficient. In order to calculate the optical properties of a material, it is necessary to compute its electronic band structure. This was accomplished by introducing a partition band structure approach based on a combination of the vector k x vector p and nonlocal pseudopotential techniques. The advantages of this approach are that it is accurate, computationally fast, analytical, and flexible. These last two properties enable incorporation of additional effects into the model, such as disorder scattering, which occurs for alloy materials and excitons. Furthermore, the model is easily extended to more complex structures, for example multiple quantum wells and superlattices. The results for the transverse dielectric constant and absorption coefficient of bulk III to V compounds compare well with other one-electron band structure models and the calculations show that for small frequencies, the index of refraction is determined mainly by the contibution of the outer regions of the Brillouin zone.
Broadband giant-refractive-index material based on mesoscopic space-filling curves
NASA Astrophysics Data System (ADS)
Chang, Taeyong; Kim, Jong Uk; Kang, Seung Kyu; Kim, Hyowook; Kim, Do Kyung; Lee, Yong-Hee; Shin, Jonghwa
2016-08-01
The refractive index is the fundamental property of all optical materials and dictates Snell's law, propagation speed, wavelength, diffraction, energy density, absorption and emission of light in materials. Experimentally realized broadband refractive indices remain <40, even with intricately designed artificial media. Herein, we demonstrate a measured index >1,800 resulting from a mesoscopic crystal with a dielectric constant greater than three million. This gigantic enhancement effect originates from the space-filling curve concept from mathematics. The principle is inherently very broad band, the enhancement being nearly constant from zero up to the frequency of interest. This broadband giant-refractive-index medium promises not only enhanced resolution in imaging and raised fundamental absorption limits in solar energy devices, but also compact, power-efficient components for optical communication and increased performance in many other applications.
Sensor and Methodology for Dielectric Analysis of Vegetal Oils Submitted to Thermal Stress
Stevan, Sergio Luiz; Paiter, Leandro; Ricardo Galvão, José; Vieira Roque, Daniely; Sidinei Chaves, Eduardo
2015-01-01
Vegetable oils used in frying food represent a social problem as its destination. The residual oil can be recycled and returned to the production line, as biodiesel, as soap, or as putty. The state of the residual oil is determined according to their physicochemical characteristics whose values define its economically viable destination. However, the physicochemical analysis requires high costs, time and general cost of transporting. This study presents the use of a capacitive sensor and a quick and inexpensive method to correlate the physicochemical variables to the dielectric constant of the material undergoing oil samples to thermal cycling. The proposed method allows reducing costs in the characterization of residual oil and the reduction in analysis time. In addition, the method allows an assessment of the quality of the vegetable oil during use. The experimental results show the increasing of the dielectric constant with the temperature, which facilitates measurement and classification of the dielectric constant at considerably higher temperatures. The results also confirm a definitive degradation in used oil and a correlation between the dielectric constant of the sample with the results of the physicochemical analysis (iodine value, acid value, viscosity and refractive index). PMID:26501293
Sensor and methodology for dielectric analysis of vegetal oils submitted to thermal stress.
Stevan, Sergio Luiz; Paiter, Leandro; Galvão, José Ricardo; Roque, Daniely Vieira; Chaves, Eduardo Sidinei
2015-10-16
Vegetable oils used in frying food represent a social problem as its destination. The residual oil can be recycled and returned to the production line, as biodiesel, as soap, or as putty. The state of the residual oil is determined according to their physicochemical characteristics whose values define its economically viable destination. However, the physicochemical analysis requires high costs, time and general cost of transporting. This study presents the use of a capacitive sensor and a quick and inexpensive method to correlate the physicochemical variables to the dielectric constant of the material undergoing oil samples to thermal cycling. The proposed method allows reducing costs in the characterization of residual oil and the reduction in analysis time. In addition, the method allows an assessment of the quality of the vegetable oil during use. The experimental results show the increasing of the dielectric constant with the temperature, which facilitates measurement and classification of the dielectric constant at considerably higher temperatures. The results also confirm a definitive degradation in used oil and a correlation between the dielectric constant of the sample with the results of the physicochemical analysis (iodine value, acid value, viscosity and refractive index).
Dielectric behavior of CaCu3Ti4O12 ceramics in the terahertz range.
Wu, Liang; Ling, Furi; Liu, Ting; Liu, Jinsong; Xu, Yebin; Yao, Jianquan
2011-03-14
The dielectric properties of 1050 °C/12h sintered CaCu3Ti4O12 (CCTO) ceramics have been investigated by using terahertz time domain spectroscopy in the frequency range of 0.2-1.6 THz at room temperature. When applying an external optical field, an obvious variation of dielectric constant was observed and reached up to 7%. However, the dielectric loss does not change appreciably. From the results, we found the change of refractive index has a linear relationship on scale with the applied light intensity. These findings were attributed to the change of spontaneous polarization in the ceramic caused by the excited free carriers.
NASA Astrophysics Data System (ADS)
Soltani, Osswa; Zaghdoudi, Jihene; Kanzari, Mounir
2018-06-01
By means of two fluid model and transfer matrix method (TMM), we investigate theoretically the transmittance properties of a defective hybrid dielectric-dielectric photonic crystal that contains a superconducting material as a defect layer. The considered hybrid photonic structure is: H(LH) 7(HLSLH) P H(LH) 7 , where H is the high refractive index dielectric, L is the low refractive index dielectric, S is the superconducting material and P is the repetitive number. The results show that the variation of the number and the positions of the transmissions modes depend strongly on the repetitive number P, the temperature T and the thickness of the layer S. An improvement of the spectral response is obtained with the exponential gradation of layer thicknesses dj =d0 + βejα , where d0 is the initial thickness of the layer j, α and β are two particular constants for each material. In addition, the effect of the incident angle for both transverse electric (TE) and transverse magnetic (TM) polarizations on the transmittance spectrum is discussed. As a result, we propose a tunable narrow stop-band polychromatic filter that covers the visible wavelength.
NASA Astrophysics Data System (ADS)
Shen, Kesheng; Lu, Hai; Zhang, Xianzhou; Jiao, Zhaoyong
2018-06-01
The electronic structure, elastic and optical properties of the defect quaternary semiconductor CuGaSnSe4 in I 4 bar structure are systematically investigated using first-principles calculations. We summarize and discuss some of the studies on CuGaSnSe4 in partially ordered chalcopyrite structure and find that there are three atomic arrangements so far, but it is still uncertain which is the most stable. Through detailed simulation and comparison with the corresponding literature, we get three models and predict that M1 model should be the most stable. The band structure and optical properties of compound CuGaSnSe4, including dielectric constant, refractive index and absorption spectrum, are drawn for a more intuitive understanding. The elastic constants are also calculated, which not only prove that CuGaSnSe4 in I 4 bar structure is stable naturally but also help solve the problem of no data to accurately predict axial thermal expansion coefficients. The calculated values of the zero frequency dielectric constant and refractive index are comparable to those of the corresponding chalcopyrite structure but slightly larger.
Permittivity of ice and water at millimeter wavelengths
NASA Technical Reports Server (NTRS)
Blue, M. D.
1980-01-01
Measurements of reflectivity of water and ice at 100 GHz, 140 GHz, and 180 GHz are reported. Measurements on water covered the temperature range 0 C to 50 C. No anomalies in the dielectric properties of water due to the presence of either salts or organic matter were found. The reflectivity of water and its temperature dependence are consistent with recent dielectric property models derived from data at other wavelengths. The index of refraction of fresh ice is constant at 1.78 throughout this regions.
NASA Astrophysics Data System (ADS)
Fathollahi Khalkhali, T.; Bananej, A.
2017-10-01
In this paper, we investigate the transmission of a 10-femtosecond pulse through an ordinary and graded index coupled-cavity waveguide, using finite-difference time-domain and transfer matrix method. The ordinary structure is composed of dielectric/liquid crystal layers in which four defect layers are placed symmetrically. Next, we introduce a graded structure based on the ordinary system in which dielectric refractive index slightly increases with a constant step value from the beginning to the end of the structure while liquid crystal layers are maintained unchanged. Simulation results reveal that by applying an external static electric field and controlling liquid crystal refractive index in graded structure, it is possible to transmit an ultrashort pulse with negligible distortion and attenuation.
Real-time observations of interface formation for barium strontium titanate films on silicon
NASA Astrophysics Data System (ADS)
Mueller, A. H.; Suvorova, N. A.; Irene, E. A.; Auciello, O.; Schultz, J. A.
2002-05-01
Ba.5Sr.5TiO3 (BST) film growth by ion sputtering on bare and thermally oxidized silicon was observed in real time using in-situ spectroscopic ellipsometry and time of flight ion scattering and recoil spectrometry techniques. At the outset of BST film deposition on silicon, an approximately 30 Å film with intermediate static dielectric constant (K˜12) and refractive index (n˜2.6 at photon energies of 1.5-3.25 eV) interface layer formed on bare silicon. The interface layer growth rate was greatly reduced on an oxidized silicon substrate. The results have profound implications on the static dielectric constant of BST.
A broadband high-transmission gradient phase discontinuity metasurface
NASA Astrophysics Data System (ADS)
Liu, Yahong; Liu, Congcong; Song, Kun; Li, Meize; Zhao, Xiaopeng
2018-03-01
Metasurfaces have attracted significant attention due to the control of the electromagnetic waves that they enable. In this paper, we demonstrate a high-transmission gradient phase discontinuity metasurface composed of metallic rods and cylindrical dielectric resonators operating at a broadband microwave frequency from 8 GHz to 9.8 GHz, with a fractional bandwidth of 20.2%. The proposed gradient phase discontinuity metasurface can achieve complete 2π transmission phase coverage with π/4 phase intervals by varying the geometric parameters of the dielectric resonators and metallic rods. It is shown that the proposed metasurface can refract a normally incident plane wave to an angle of 30°. The broadband metasurface is flexible, and the refracted angle can be adjusted easily by varying the lattice constant. Besides the broadband anomalous refraction, we also demonstrate the metasurface can produce an interesting vortex and wave-focusing in the wide frequency range from 8 GHz to 9.8 GHz. Finally, we demonstrate that the present metasurface can tailor interference wavefronts to plane wavefronts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goodwin, A.R.H.; Morrison, G.
1992-06-25
For 4 gaseous haloethanes the dielectric constants, molecular polarizabilities, electronic polarizations, equilibrium dipole movements, and liquid densities are determined in this paper by capacitance measurements and liquid-phase index of refraction measurements. 32 refs., 4 figs., 3 tabs.
Structural and optical characterization of PVA:KMnO4 based solid polymer electrolyte
NASA Astrophysics Data System (ADS)
Abdullah, Omed Gh.; Aziz, Shujahadeen B.; Rasheed, Mariwan A.
Solid polymer electrolyte films of polyvinyl alcohol (PVA) doped with a different weight percent of potassium permanganate (KMnO4) were prepared by standard solution cast method. XRD and FTIR techniques were performed for structural study. Complex formation between the PVA polymer and KMnO4 salt was confirmed by Fourier transform infrared (FTIR) spectroscopy. The description of crystalline nature of the solid polymer electrolyte films has been confirmed by XRD analysis. The UV-Visible absorption spectra were analyzed in terms of absorption formula for non-crystalline materials. The fundamental optical parameters such as optical band gap energy, refractive index, optical conductivity, and dielectric constants have been investigated and showed a clear dependence on the KMnO4 concentration. The observed value of optical band gap energy for pure PVA is about 6.27 eV and decreases to a value 3.12 eV for the film sample formed with 4 wt% KMnO4 salt. The calculated values of refractive index and the dielectric constants of the polymer electrolyte films increase with increasing KMnO4 content.
Thermally stable, low dielectric polyquinolines for aerospace and electronics applications
NASA Technical Reports Server (NTRS)
Hendricks, Neil H.; Marrocco, Matthew L.; Stoakley, Diane M.; St. Clair, Anne K.
1990-01-01
Four new high molecular weight, linear chain polyquinolines have been synthesized and fabricated into high quality free standing films. These polymers are characterized by moderate to high glass transition temperatures, excellent thermal and thermooxidative stability, extremely low dielectric constants and good planarizing characteristics. The polymers absorb very low quantities of moisture. As a consequence, the dielectric constant of one new polyquinoline has been shown to be quite insensitive to exposure to warm/wet conditions. Isothermal aging of one new derivative in air has been carried out at elevated temperatures (250 C to 345 C). The results demonstrate truly outstanding thermooxidative stability. Additional characterizations include molecular weight determinations, solubilities and film-forming characteristics, density measurements, and UV-Vis spectroscopy. The data acquired to date suggest that the polymers may find use as refractive films and coatings and as interlevel planarizers in microelectronics applications.
NASA Astrophysics Data System (ADS)
Chen, Jiangwei; Liu, Jun; Xu, Weidong
2017-09-01
In this paper, refraction behaviors of light in both metal single-layered film and metal-dielectric-metal multilayered films are investigated based on the generalized formulas of reflection and refraction. The obtained results, especially, dependence of power refractive index on incident angles for a light beam traveling through a metal-dielectric-metal multilayered structure, are well consistent with the experimental observations. Our work may offer a new angle of view to understand the all-angle negative refraction of light in metal-dielectric-metal multilayered structures, and provide a convenient approach to optimize the devised design and address the issue on making the perfect lens.
Negative Refraction in a Uniaxial Absorbent Dielectric Material
ERIC Educational Resources Information Center
Jen, Yi-Jun; Lakhtakia, Akhlesh; Yu, Ching-Wei; Lin, Chin-Te
2009-01-01
Refraction of light from an isotropic dielectric medium to an anisotropic dielectric material is a complicated phenomenon that can have several different characteristics not usually discussed in electromagnetics textbooks for undergraduate students. With a simple problem wherein the refracting material is uniaxial with its optic axis normal to the…
Effect of Pressure on Some Optical Properties of GaxIn1-xP Semiconductors
NASA Astrophysics Data System (ADS)
Vyas, P.; Gajjar, P.; Jani, A.
2013-06-01
A theoretical procedure is presented for the study of optical properties of ternary alloy GaxIn1-xP. The calculations are based on the pseudopotential formalism in which local potential coupled with the virtual crystal approximation (VCA) is applied to evaluate the effect of pressure on the optical properties like refractive index, electronic polarizability, plasmon energy, dielectric constant and equation of state for gallium concentration x = 0, 0.25, 0.50, 0.75 and 1 of the ternary alloy GaxIn1-xP. To incorporate the screening effect, local field correction functions due to Hartree, Taylor, Ichimaru et al. and Nagy are employed. The refractive index, electronic polarizability and dielectric constant computed for the parent binary compounds GaP and InP are found to be satisfactorily agreeing with the experimental report. It is seen that the refractive index of GaxIn1-xP decreases nonlinearly with the increase in pressure. The results obtained using Hartree's screening functions are not very close to the experimental data as it does not include any exchange and correlation effects. Overall good agreement with the experimental and other theoretical findings confirms the application. The author P. S. Vyas is thankful to UGC, New Delhi, India for providing financial support under minor research project No. F.: 47-651/08(WRO).
Optical properties of armchair (7, 7) single walled carbon nanotubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gharbavi, K.; Badehian, H., E-mail: hojatbadehian@gmail.com
2015-07-15
Full potential linearized augmented plane waves method with the generalized gradient approximation for the exchange-correlation potential was applied to calculate the optical properties of (7, 7) single walled carbon nanotubes. The both x and z directions of the incident photons were applied to estimate optical gaps, dielectric function, electron energy loss spectroscopies, optical conductivity, optical extinction, optical refractive index and optical absorption coefficient. The results predict that dielectric function, ε (ω), is anisotropic since it has higher peaks along z-direction than x-direction. The static optical refractive constant were calculated about 1.4 (z-direction) and 1.1 (x- direction). Moreover, the electron energymore » loss spectroscopy showed a sharp π electron plasmon peaks at about 6 eV and 5 eV for z and x-directions respectively. The calculated reflection spectra show that directions perpendicular to the tube axis have further optical reflection. Moreover, z-direction indicates higher peaks at absorption spectra in low range energies. Totally, increasing the diameter of armchair carbon nanotubes cause the optical band gap, static optical refractive constant and optical reflectivity to decrease. On the other hand, increasing the diameter cause the optical absorption and the optical conductivity to increase. Moreover, the sharp peaks being illustrated at optical spectrum are related to the 1D structure of CNTs which confirm the accuracy of the calculations.« less
Investigation of structural, electronic, elastic and optical properties of Cd1-x-yZnxHgyTe alloys
NASA Astrophysics Data System (ADS)
Tamer, M.
2016-06-01
Structural, optical and electronic properties and elastic constants of Cd1-x-yZnx HgyTe alloys have been studied by employing the commercial code Castep based on density functional theory. The generalized gradient approximation and local density approximation were utilized as exchange correlation. Using elastic constants for compounds, bulk modulus, band gap, Fermi energy and Kramers-Kronig relations, dielectric constants and the refractive index have been found through calculations. Apart from these, X-ray measurements revealed elastic constants and Vegard's law. It is seen that results obtained from theory and experiments are all in agreement.
Study of physical properties of strontium based alumino-borosilicate glasses
NASA Astrophysics Data System (ADS)
Kaur, Mandeep; Kaur, Gurbinder; Kumar, V.
2018-05-01
In the present study, an attempt has been made to study the influence of CaO/Mgo ratio (R) on different physical properties of (10+x)CaO-(10-x)-MgO-10SrO-10B2O3-20Al2O3-40SiO2 glasses. The novel glass series has been synthesized by melt quenching technique. The parameters like reflection loss and dielectric constant have been determined. Also, molar refraction, molar electronic polarizability and oxygen packing density have been calculated on the basis of measured values of density, molar volume and refractive index of the glasses.
Dielectric and spectroscopic study of binary mixture of Acrylonitrile with Chlorobenzene
NASA Astrophysics Data System (ADS)
Deshmukh, Snehal D.; Pattebahadur, K. L.; Mohod, A. G.; Undre, P. B.; Patil, S. S.; Khirade, P. W.
2018-05-01
In this paper, study of binary mixture of Acrylonitrile (ACN) with Chlorobenzene (CBZ) has been carried out at eleven concentrations at room temperature. The determined Dielectric Constant (ɛ0) Density (ρ) and Refractive index (nD) values of binary mixture are used to calculate the excess properties of mixture over the entire composition range and fitted to the Redlich-Kister equation. From the above parameters, intermolecular interaction and dynamics of molecules of binary mixture at molecular level are discussed. The Conformational analysis of the intermolecular interaction between Acrylonitrile and Chlorobenzene is supported by the FTIR spectra.
On the scattering directionality of a dielectric particle dimer of High Refractive Index.
Barreda, Ángela I; Saleh, Hassan; Litman, Amélie; González, Francisco; Geffrin, Jean-Michel; Moreno, Fernando
2018-05-22
Low-losses and directionality effects exhibited by High Refractive Index Dielectric particles make them attractive for applications where radiation direction control is relevant. For instance, isolated metallo-dielectric core-shell particles or aggregates (dimers) of High Refractive Index Dielectric particles have been proposed for building operational switching devices. Also, the possibility of using isolated High Refractive Index Dielectric particles for optimizing solar cells performance has been explored. Here, we present experimental evidence in the microwave range, that a High Refractive Index Dielectric dimer of spherical particles is more efficient for redirecting the incident radiation in the forward direction than the isolated case. In fact, we report two spectral regions in the dipolar spectral range where the incident intensity is mostly scattered in the forward direction. They correspond to the Zero-Backward condition (also observed for isolated particles) and to a new condition, denoted as "near Zero-Backward" condition, which comes from the interaction effects between the particles. The proposed configuration has implications in solar energy harvesting devices and in radiation guiding.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tamer, M., E-mail: mehmet.tamer@zirve.edu.tr
2016-06-15
Structural, optical and electronic properties and elastic constants of Cd1{sub -x-y}Zn{sub x} Hg{sub y}Te alloys have been studied by employing the commercial code Castep based on density functional theory. The generalized gradient approximation and local density approximation were utilized as exchange correlation. Using elastic constants for compounds, bulk modulus, band gap, Fermi energy and Kramers–Kronig relations, dielectric constants and the refractive index have been found through calculations. Apart from these, X-ray measurements revealed elastic constants and Vegard’s law. It is seen that results obtained from theory and experiments are all in agreement.
Structural characterization and optical constants of CuIn3Se5 vacuum and air annealed thin films
NASA Astrophysics Data System (ADS)
Segmane, N. E. H.; Abdelkader, D.; Amara, A.; Drici, A.; Akkari, F. Chaffar; Khemiri, N.; Bououdina, M.; Kanzari, M.; Bernède, J. C.
2018-01-01
Milled powder of ordered defect compound (ODC) CuIn3Se5 phase was successfully synthesized via milling process. Thin films of CuIn3Se5 were deposited onto glass substrates at room temperature by thermal evaporation technique. The obtained layers were annealed in vacuum and air atmosphere. The structural and compositional properties of the powder were analyzed using X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Powder XRD characterization, Rietveld analysis and chemical bounding confirm the tetragonal ordered defect compound phase formation with lattice constants a = 5.732 Å and c = 11.575 Å. Thin films were characterized by XRD, atomic force microscopy (AFM) and UV/Vis spectroscopy. Transmittance (T) and reflectance (R) spectra were measured in the spectral range of 300-1800 nm. The absorption coefficient α exhibits high values in the visible range and reaches a value of 105 cm-1. The band gap energy Eg of the annealed thin films is estimated to be approximately 1.75 eV. The refractive index n was estimated from transmittance data using Swanepoel's method. The refractive indices of the films as a function of wavelengths can be fitted with Cauchy dispersion equation. The oscillator energy E0, dispersion energy Ed, zero frequency refractive index n0, high frequency dielectric constant ε∞ and the carrier concentration per effective mass N/m∗ values were determined from the analysis of the experimental data using Wemple-DiDomenico and Spitzer-Fan models. We exploited the refractive index dispersion for the determination of the magneto-optical constant V, which characterizes the Faraday rotation. The nonlinear optical parameters namely nonlinear susceptibility χ(3), nonlinear refractive index and nonlinear absorption coefficient β are investigated for the first time for CuIn3Se5 material.
An optical model for the microwave properties of sea ice
NASA Technical Reports Server (NTRS)
Gloersen, P.; Larabee, J. K.
1981-01-01
The complex refractive index of sea ice is modeled and used to predict the microwave signatures of various sea ice types. Results are shown to correspond well with the observed values of the complex index inferred from dielectic constant and dielectric loss measurements performed in the field, and with observed microwave signatures of sea ice. The success of this modeling procedure vis a vis modeling of the dielectric properties of sea ice constituents used earlier by several others is explained. Multiple layer radiative transfer calculations are used to predict the microwave properties of first-year sea ice with and without snow, and multiyear sea ice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hidayat, Arif, E-mail: arif.hidayat.fmipa@um.ac.id; Latifah, Eny; Kurniati, Diana
This study investigated the influence of refraction index strength on the light propagation in refraction index-varied dielectric material. This dielectric material served as photonic lattice. The behavior of light propagation influenced by variation of refraction index in photonic lattice was investigated. Modes of the guiding light were determined numerically using squared-operator iteration method. It was found that the greater the strength of refraction index, the smaller the guiding modes.
Reflectance properties of one-dimensional metal-dielectric ternary photonic crystal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pandey, G. N., E-mail: gnpandey2009@gmail.com; Kumar, Narendra; Thapa, Khem B.
2016-05-06
Metallic photonic crystal has a very important application in absorption enhancement in solar cells. It has been found that an ultra-thin metallic layer becomes transparent due to internal scattering of light through the each interface of the dielectric and metal surfaces. The metal has absorption due to their surface plasmon and the plasmon has important parameters for changing optical properties of the metal. We consider ternary metallic-dielectric photonic crystal (MDPC) for having large probabilities to change the optical properties of the MDPC and the photonic crystals may be changed by changing dimensionality, symmetry, lattice parameters, Filling fraction and effective refractivemore » index refractive index contrast. In this present communication, we try to show that the photonic band gap in ternary metal-dielectric photonic crystal can be significantly enlarged when air dielectric constant is considered. All the theoretical analyses are made based on the transfer matrix method together with the Drude model of metal.« less
Optical and electronic properties of SO2 molecule adsorbed on Si-doped (8, 0) boron nitride nanotube
NASA Astrophysics Data System (ADS)
Guo, Shuang-Shuang; Wei, Xiu-Mei; Zhang, Jian-Min; Zhu, Gang-Qiang; Guo, Wan-Jin
2016-09-01
The study of the optical properties of pristine BNNT, Si-doped BNNTs and SO2 molecule adsorption on Si-doped BNNTs is that, to our knowledge, few relevant research have ever been found. In this paper, the adsorption behaviors of Sulfur dioxide (SO2) molecule on Si-doped Boron nitride nanotubes (BNNTs) are investigated applying the first-principles calculations. The main contribution of this paper is that the foremost investigation for the optical properties of the pristine BNNT, Si-doped BNNTs and SO2 adsorption on Si-doped BNNTs. Additionally, the electronic properties and the structural properties are also presented. In our calculations of optical properties, the dielectric constant, the refractive index and the absorption coefficient are obtained. Comparing the pristine BNNT, our results indicate that, the blue-shifts (in the main peaks of the dielectric constant of SiB -BNNT and SO2-SiB -BNNT), and the red-shifts (in the main peaks of the refractive index of SiN -BNNT and SO2-SiN -BNNT) are appeared. Under these conditions, Si-doped BNNT and Si-doped BNNT with SO2 adsorption, the gaps are reduced both for the speculated optical band gaps and the electronic structure band gaps.
NASA Astrophysics Data System (ADS)
Zeyada, H. M.; Makhlouf, M. M.
2016-04-01
The powder of as synthesized lead dioxide (PbO2) has polycrystalline structure β-PbO2 phase of tetragonal crystal system. It becomes nanocrystallites α-PbO2 phase with orthorhombic crystal system upon thermal deposition to form thin films. Annealing temperatures increase nanocrystallites size from 28 to 46 nm. The optical properties of α-PbO2 phase were calculated from absolute values of transmittance and reflectance at nearly normal incidence of light by spectrophotometer measurements. The refractive and extinction indices were determined and showed a response to annealing temperatures. The absorption coefficient of α-PbO2 films is >106 cm-1 in UV region of spectra. Analysis of the absorption coefficient spectra near optical edge showed indirect allowed transition. Annealing temperature decreases the value of indirect energy gap for α-PbO2 films. The dispersion parameters such as single oscillator energy, dispersion energy, dielectric constant at high frequency and lattice dielectric constant were calculated and its variations with annealing temperatures are reported. The nonlinear refractive index (n2), third-order nonlinear susceptibility (χ(3)) and nonlinear absorption coefficient (βc) were determined. It was found that χ(3), n2 and β increase with increasing photon energy and decrease with increasing annealing temperature. The pristine film of α-PbO2 has higher values of nonlinear optical constants than for annealed films; therefore it is suitable for applications in manufacturing nonlinear optical devices.
Optical constants of liquid and solid methane
NASA Technical Reports Server (NTRS)
Martonchik, John V.; Orton, Glenn S.
1994-01-01
The optical constants n(sub r) + in(sub i) of liquid methane and phase 1 solid methane were determined over the entire spectral range by the use of various data sources published in the literature. Kramers-Kronig analyses were performed on the absorption spectra of liquid methane at the boiling point (111 K) and the melting point (90 K) and on the absorption spectra of phase 1 solid methane at the melting point and at 30 K. Measurements of the static dielectric constant at these temperatures and refractive indices determined over limited spectral ranges were used as constraints in the analyses. Applications of methane optical properties to studies of outer solar system bodies are described.
Theoretical Calculations of Refractive Properties for Hg3Te2Cl2 Crystals
NASA Astrophysics Data System (ADS)
Bokotey, O. V.
2016-05-01
This paper reviews the optical properties, such as refractive index, optical dielectric constant, and reflection coefficient of the Hg3Te2Cl2 crystals. The applications of the Hg3X2Y2 crystals as electronic, optical, and optoelectronic devices are very much determined by the nature and magnitude of these fundamental material properties. The origin of chemical bonding in the crystals is very important for definition of the physical and chemical properties. The main structural feature of the Hg3X2Y2 crystals is the presence of covalent pyramids [XHg3] and linear X-Hg-X groups. Optical properties are calculated according to the model proposed by Harrison. The refractive index in the spectral region far from the absorption edge is determined within the generalized single-oscillator model. The calculated results are found to be in good agreement with experimental data.
Pressure dependence of the refractive index in wurtzite and rocksalt indium nitride
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oliva, R.; MALTA-Consolider Team, Departament de Física Aplicada, ICMUV, Universitat de València, c/Dr. Moliner 50, 46100 Burjassot, València; Segura, A.
2014-12-08
We have performed high-pressure Fourier transform infrared reflectance measurements on a freestanding InN thin film to determine the refractive index of wurtzite InN and its high-pressure rocksalt phase as a function of hydrostatic pressure. From a fit to the experimental refractive-index curves including the effect of the high-energy optical gaps, phonons, free carriers, and the direct (fundamental) band-gap in the case of wurtzite InN, we obtain pressure coefficients for the low-frequency (electronic) dielectric constant ε{sub ∞}. Negative pressure coefficients of −8.8 × 10{sup −2 }GPa{sup −1} and −14.8 × 10{sup −2 }GPa{sup −1} are obtained for the wurtzite and rocksalt phases, respectively. The results are discussedmore » in terms of the electronic band structure and the compressibility of both phases.« less
Andersen, Torben B
2016-05-01
In a recent paper, conditions for achieving equal and opposite angular deflections of a light beam by reflection and refraction at an interface between air and a dielectric were determined [J. Opt. Soc. Am. A32, 2436 (2015)JOAOD60740-323210.1364/JOSAA.32.002436]. The paper gives plots of angles of incidence and refraction as a function of the prism refractive index as well as plots of reflectances and incident linear-polarization azimuth angles as functions of the refractive index. We show here that it is possible to express these quantities as simple algebraic functions of the refractive index.
Wideband Low-Reflection Inhomogeneous Dielectric Structures
NASA Astrophysics Data System (ADS)
Denisova, N. A.; Rezvov, A. V.
2017-08-01
We consider reflection of electromagnetic waves from two-layer dielectric films with finite thickness, whose refractive indices vary in the direction of wave propagation, which is perpendicular to the substrate boundary. The profiles of the refractive indices of the structures having low reflection coefficients in a wide frequency range are found. The obtained results are based on exact analytical solutions of the Helmholtz equation for one type of the layered inhomogeneous dielectric medium. The possibility of creating new low-reflection wideband inhomogeneous dielectric structures is demonstrated.
NASA Astrophysics Data System (ADS)
El-Gendy, Y. A.
2017-12-01
Tin monoxide (SnO) films of different thickness have been deposited onto glass substrates at vacuum pressure of ∼ 8 × 10-6 mbar using an e-beam evaporation system. A hot probe test revealed that the deposited films showed p-type conduction. The structure characterization and phase purity of the deposited films was confirmed using X-ray diffraction (XRD) and Raman spectroscopy. The optical transmission and reflection spectra of the deposited films recorded in the wavelength range 190-2500 nm were used to calculate the optical constants employing the Murmann's exact equations. The refractive index dispersion was adequately described by the well-known effective-single-oscillator model proposed by Wemple-DiDomenico, whereby the dispersion parameters were calculated. The nonlinear refractive index and nonlinear optical susceptibility of the deposited films were successfully evaluated using the Miller empirical relations. The lattice dielectric constant and the carrier concentration to the effective mass ratio were also calculated as a function of film thickness using the Spitzer and Fan model. The variation of the optical band gap of the deposited films as a function of film thickness was also presented.
Fluorescence and Nonlinear Optical Properties of Alizarin Red S in Solvents and Droplet.
Sangsefedi, Seyed Ahmad; Sharifi, Soheil; Rezaion, Hadi Rastegar Moghaddam; Azarpour, Afshin
2018-05-28
The enhancement of the nonlinear properties of materials is an interesting topic since it has many applications in optical devices and medicines. The Z-scan technique was used to study the values of the two-photon absorption (β), second-order molecular hyperpolarizability (γ R ), third-order susceptibility (χ R ), and nonlinear refractive index (n 2 ) of Alizarin Red S in different media using a continuous-wave diode-pump laser radiation at 532 nm. For Alizarin Red S in a droplet, the β, n 2 , χ R, and γ R were estimated at the order of 10 -7 cm 2 /W and 10 -12 cm/W, 10 -3 m 3 W -1 s -1 and 10 -24 m 6 W -1 s -1 , respectively. The results indicated that the values of β and n 2 reduced, whereas the values of χ R and γ R were enhanced when the solvent was changed from droplet to water, DMF, and dimethyl sulfoxide due to the change in the solvent's dielectric constant (ε). Moreover, the values of β were enhanced by an increase in the concentration of the surfactant in the aqueous solution. The absorption spectra of Alizarin Red S in the aqueous solution was observed at 428 nm, and a few red shifts in the absorption spectra were observed with a reduction in the dielectric constant of the medium. The same effect was observed in the absorption spectra of Alizarin Red S in the droplet when the bulk dielectric constant reduced. The dielectric constant can affect the fluorescence spectra of Alizarin Red S when the solution is changed from water to dimethyl sulfoxide. The dipole moments of Alizarin Red S in the different media were studied using the quantum perturbation theory.
NASA Astrophysics Data System (ADS)
Paliwal, Ayushi; Sharma, Anjali; Tomar, Monika; Gupta, Vinay
2016-04-01
Long range surface plasmon resonance (LRSPR) when exploited for sensing purpose exhibit less losses in comparison to the sensors based on conventional SPR technique leading to the development of highly sensitive refractive index sensor. In order to excite long range surface plasmon (LRSP) mode, a high refractive index prism is used as coupler and a thin metal layer is sandwiched between a dielectric having similar refractive index with that of another semi-infinite dielectric. LRSP mode has been excited in symmetric configuration where metal (Au) layer is sandwiched between the two similar refractive index dielectrics (LiF thin film and a fixed concentration of sugar solution) for realization of a refractive index sensor. When the concentration of sugar solution is slightly increased from 30% to 40%, the LRSPR angle increases from 64.6° to 67.9° and the sensor is found to be highly sensitive with sensitivity of 0.0911 °/(mg/dl).
Synthesis and Study of Optical Properties of Graphene/TiO2 Composites Using UV-VIS Spectroscopy
NASA Astrophysics Data System (ADS)
Rathod, P. B.; Waghuley, S. A.
2016-09-01
Graphene and TiO2 were synthesized using electrochemical exfoliation and co-precipitation methods, respectively. An ex situ approach was adopted for the graphene/TiO2 composites. The conformation of graphene in the TiO2 samples was examined through X-ray diffraction. Optical properties of the as-synthesised composites such as optical absorption, extinction coefficient, refractive index, real dielectric constant, imaginary dielectric constant, dissipation factor, and optical conductivity were measured using UV-Vis spectroscopy. The varying concentration of graphene in TiO2 affects the optical properties which appear different for 10 wt.% as compared to 5 wt.% graphene/ TiO2 composite. The composites exhibit an absorption peak at 300 nm with a decrease in band gap for 10 wt.% as compared to 5 wt.% graphene/TiO2 composite. The maximum optical conductivity for the graphene/TiO2 composite of 10 wt.% was found to be 1.86·10-2 Ω-1·m-1 at 300 nm.
NASA Astrophysics Data System (ADS)
Santhosh Kumar, T.; Bhuyan, R. K.; Pamu, D.
2013-01-01
MgTiO3 (MTO) thin films have been deposited on to quartz and platinized silicon (Pt/TiO2/SiO2/Si) substrates by RF magnetron sputtering. The metal-MTO-metal (Ag-MTO-Pt/TiO2/SiO2/Si) thin film capacitors have been fabricated at different oxygen mixing percentage (OMP). The effects of OMP and post annealing on the structural, microstructural, optical and dielectric properties of MTO films were studied. The MTO target has been synthesized by mechanochemical synthesis method. The phase purity of the sputtering target was confirmed from X-ray diffraction pattern and refined to R3bar space group with lattice parameters a = b = 5.0557(12) Å, c = 13.9003(9) Å. The chemical composition of the deposited films was confirmed from EDS spectra and all the films exhibited the composition of the sputtering target. The XRD patterns of the as-deposited films are amorphous and annealing at 700 °C for 1 h induced nanocrystallinity with the improved optical and dielectric properties. The annealed films exhibit refractive index in the range of 2.12-2.19 at 600 nm with an optical bandgap value in between 4.11 and 4.19 eV. The increase in the refractive index and bandgap upon annealing can be attributed to the improvement in packing density, crystallinity, and decrease in porosity ratio. Both the dielectric constant and tan δ decrease with the increase in frequency and were in the range of 13.7-31.11 and 0.006-0.124, respectively. The improvement in dielectric properties with the increase in OMP has been correlated to the reduction in oxygen vacancies, increase in crystallinity and grain size of the films.
Tunable positive and negative refraction of infrared radiation in graphene-dielectric multilayers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, R. Z.; Zhang, Z. M., E-mail: zhuomin.zhang@me.gatech.edu
2015-11-09
Graphene-dielectric multilayers consisting of alternating layers of atom-thick graphene and nanometer-scale dielectric films exhibit characteristics of hyperbolic metamaterials, in which one positive and one negative permittivity are defined for orthogonal directions. Negative permittivity for electric field polarized in the direction parallel to the conductive graphene sheets gives rise to a negative angle of refraction and low-loss transmission for the side-incidence perspective proposed in this work. The Poynting vector tracing demonstrates the switching between positive and negative refraction in the mid-infrared region by tuning the chemical potential of graphene. This adjustable dual-mode metamaterial holds promise for infrared imaging applications.
Bazaka, Kateryna; Destefani, Ryan; Jacob, Mohan V
2016-12-09
This article presents low-temperature, one-step dry synthesis of optically transparent thermally-stable, biocompatible cis-β-ocimene-based thin films for applications as interlayer dielectric and encapsulating layer for flexible electronic devices, e.g. OLEDs. Morphological analysis of thin films shows uniform, very smooth (R q < 1 nm) and defect-free moderately hydrophilic surfaces. The films are optically transparent, with a refractive index of ~1.58 at 600 nm, an optical band gap of ~2.85 eV, and dielectric constant of 3.5-3.6 at 1 kHz. Upon heating, thin films are chemically and optically stable up to at least 200 °C, where thermal stability increases for films manufactured at higher RF power as well as for films deposited away from the plasma glow. Heating of the sample increases the dielectric constant, from 3.7 (25 °C) to 4.7 (120 °C) at 1 kHz for polymer fabricated at 25 W. Polymers are biocompatible with non-adherent THP-1 cells and adherent mouse macrophage cells, including LPS-stimulated macrophages, and maintain their material properties after 48 h of immersion into simulated body fluid. The versatile nature of the films fabricated in this study may be exploited in next-generation consumer electronics and energy technologies.
Bazaka, Kateryna; Destefani, Ryan; Jacob, Mohan V.
2016-01-01
This article presents low-temperature, one-step dry synthesis of optically transparent thermally-stable, biocompatible cis−β−ocimene-based thin films for applications as interlayer dielectric and encapsulating layer for flexible electronic devices, e.g. OLEDs. Morphological analysis of thin films shows uniform, very smooth (Rq < 1 nm) and defect-free moderately hydrophilic surfaces. The films are optically transparent, with a refractive index of ~1.58 at 600 nm, an optical band gap of ~2.85 eV, and dielectric constant of 3.5−3.6 at 1 kHz. Upon heating, thin films are chemically and optically stable up to at least 200 °C, where thermal stability increases for films manufactured at higher RF power as well as for films deposited away from the plasma glow. Heating of the sample increases the dielectric constant, from 3.7 (25 °C) to 4.7 (120 °C) at 1 kHz for polymer fabricated at 25 W. Polymers are biocompatible with non-adherent THP–1 cells and adherent mouse macrophage cells, including LPS-stimulated macrophages, and maintain their material properties after 48 h of immersion into simulated body fluid. The versatile nature of the films fabricated in this study may be exploited in next-generation consumer electronics and energy technologies. PMID:27934916
NASA Astrophysics Data System (ADS)
Bazaka, Kateryna; Destefani, Ryan; Jacob, Mohan V.
2016-12-01
This article presents low-temperature, one-step dry synthesis of optically transparent thermally-stable, biocompatible cis-β-ocimene-based thin films for applications as interlayer dielectric and encapsulating layer for flexible electronic devices, e.g. OLEDs. Morphological analysis of thin films shows uniform, very smooth (Rq < 1 nm) and defect-free moderately hydrophilic surfaces. The films are optically transparent, with a refractive index of ~1.58 at 600 nm, an optical band gap of ~2.85 eV, and dielectric constant of 3.5-3.6 at 1 kHz. Upon heating, thin films are chemically and optically stable up to at least 200 °C, where thermal stability increases for films manufactured at higher RF power as well as for films deposited away from the plasma glow. Heating of the sample increases the dielectric constant, from 3.7 (25 °C) to 4.7 (120 °C) at 1 kHz for polymer fabricated at 25 W. Polymers are biocompatible with non-adherent THP-1 cells and adherent mouse macrophage cells, including LPS-stimulated macrophages, and maintain their material properties after 48 h of immersion into simulated body fluid. The versatile nature of the films fabricated in this study may be exploited in next-generation consumer electronics and energy technologies.
Preparation of magnetron sputtered ZrO2 films on Si for gate dielectric application
NASA Astrophysics Data System (ADS)
Kondaiah, P.; Mohan Rao, G.; Uthanna, S.
2012-11-01
Zirconium oxide (ZrO2) thin films were deposited on to p - Si and quartz substrates by sputtering of zirconium target at an oxygen partial pressure of 4x10-2 Pa and sputter pressure of 0.4 Pa by using DC reactive magnetron sputtering technique. The effect of annealing temperature on structural, optical, electrical and dielectric properties of the ZrO2 films was systematically studied. The as-deposited films were mixed phases of monoclinic and orthorhombic ZrO2. As the annealing temperature increased to 1073 K, the films were transformed in to single phase orthorhombic ZrO2. Fourier transform infrared studies conform the presence of interfacial layer between Si and ZrO2. The optical band gap and refractive index of the as-deposited films were 5.82 eV and 1.81. As the annealing temperature increased to 1073 K the optical band gap and refractive index increased to 5.92 eV and 2.10 respectively. The structural changes were influenced the capacitance-voltage and current-voltage characteristics of Al/ZrO2/p-Si capacitors. The dielectric constant was increased from 11.6 to 24.5 and the leakage current was decreased from 1.65×10-7 to 3.30×10-9 A/ cm2 for the as-deposited and annealed at 1073 K respectively.
Stambaugh, Corey; Durand, Mathieu; Kemiktarak, Utku; Lawall, John
2014-08-01
The material properties of silicon nitride (SiN) play an important role in the performance of SiN membranes used in optomechanical applications. An optimum design of a subwavelength high-contrast grating requires accurate knowledge of the membrane thickness and index of refraction, and its performance is ultimately limited by material absorption. Here we describe a cavity-enhanced method to measure the thickness and complex index of refraction of dielectric membranes with small, but nonzero, absorption coefficients. By determining Brewster's angle and an angle at which reflection is minimized by means of destructive interference, both the real part of the index of refraction and the sample thickness can be measured. A comparison of the losses in the empty cavity and the cavity containing the dielectric sample provides a measurement of the absorption.
NASA Astrophysics Data System (ADS)
Sundaram, Nandini Ganapathy
Lowering the capacitance of Back-end-of-line (BEOL) structures by decreasing the dielectric permittivity of the interlayer dielectric material in integrated circuits (ICs) lowers device delay times, power consumption and parasitic capacitance. a:C-F films that are thermally stable at 400°C were deposited using tetrafluorocarbon and disilane (5% by volume in Helium) as precursors. The bulk dielectric constant (k) of the film was optimized from 2.0 / 2.2 to 1.8 / 1.91 as-deposited and after heat treatment. Films, with highly promising k-values but discarded for failing to meet shrinkage rate requirements were salvaged by utilizing a novel extended heat treatment scheme. Film properties including chemical bond structure, F/C ratio, refractive index, surface planarity, contact angle, dielectric constant, flatband voltage shift, breakdown field potential and optical energy gap were evaluated by varying process pressure, power, substrate temperature and flow rate ratio (FRR) of processing gases. Both XPS and FTIR results confirmed that the stoichiometry of the ultra-low k (ULK) film is close to that of CF2 with no oxygen. C-V characteristics indicated the presence of negative charges that are either interface trapped charges or bulk charges. Average breakdown field strength was in the range of 2-8 MV/cm while optical energy gap varied between 2.2 eV and 3.4 eV. Irradiation or plasma damage significantly impacts the ability to integrate the film in VSLI circuits. The film was evaluated after exposure to oxygen plasma and HMDS vapors and no change in the FTIR spectra or refractive index was observed. Film is resistant to attack by developers CD 26 and KOH. While the film dissolves in UVN-30 negative resist, it is impermeable to PGDMA. A 12% increase in dielectric constant and a decrease in contact angle from 65° to 47° was observed post e-beam exposure. The modified Gaseous Electronics Conference (mGEC) reference cell was used to deposit DLC films using CH4 and Argon as precursors. Pre and post-anneal structural properties of the deposited thin film were studied using laser excitation of 633 nm in a Jobin Yvon Labram high-resolution micro-Raman spectrometer. The film was further characterized using AFM, FTIR, XRD, goniometry and electrical testing. Average film roughness as measured by AFM was less than 1 nm, the k-value was 2.5, and the contact angle with water was 42°. Lastly, layered dielectric films comprising of Diamond like Carbon (DLC) and Amorphous Fluorocarbon (a:C-F) were generated using three different stack configurations and subsequently evaluated. Seven unique process conditions generated promising stacks with k-values between 1.69 and 1.95. Of these, only one film exhibited very low shrinkage rates acceptable for semiconductor device processing. Annealed a:C-F films with DLC top coat are similar in bonding structure to as deposited FC films proving that DLC deposition significantly modified the bonding structure of the underlying annealed a:C-F film. Stacks comprised of a:C-F films with higher oxygen content, deposited using high FRRs exhibited both macro and microbuckling to a larger degree and extent. Film integrity was preserved by annealing the Fluorocarbon component or by providing a DLC base coat.
Linear, non-linear and thermal properties of single crystal of LHMHCl
NASA Astrophysics Data System (ADS)
Kulshrestha, Shobha; Shrivastava, A. K.
2018-05-01
The single crystal of amino acid of L-histidine monohydrochloride was grown by slow evaporation technique at room temperature. High optical quality and appropriate size of crystals were grown under optimized growth conditions. The grown crystals were transparent. Crystals are characterized with different characterizations such as Solubility test, UV-Visible, optical band gap (Eg). With the help of optical data to be calculate absorption coefficient (α), extinction coefficient (k), refractive index (n), dielectric constant (ɛ). These optical constants are shows favorable conditions for photonics devices. Second harmonic generation (NLO) test show the green light emission which is confirm that crystal have properties for laser application. Thermal stability of grown crystal is confirmed by TG/DTA.
Weak-guidance-theory review of dispersion and birefringence management by laser inscription
NASA Astrophysics Data System (ADS)
Zheltikov, A. M.; Reid, D. T.
2008-01-01
A brief review of laser inscription of micro- and nanophotonic structures in transparent materials is provided in terms of a compact and convenient formalism based on the theory of weak optical waveguides. We derive physically instructive approximate expressions allowing propagation constants of laser-inscribed micro- and nanowaveguides to be calculated as functions of the transverse waveguide size, refractive index step, and dielectric properties of the host material. Based on this analysis, we demonstrate that dispersion engineering capabilities of laser micromachining techniques are limited by the smallness of the refractive index step typical of laser-inscribed structures. However, a laser inscription of waveguides in pre-formed micro- and nanostructures suggests a variety of interesting options for a fine dispersion and birefringence tuning of small-size waveguides and photonic wires.
Degradation diagnosis of transformer insulating oils with terahertz time-domain spectroscopy
NASA Astrophysics Data System (ADS)
Kang, Seung Beom; Kim, Won-Seok; Chung, Dong Chul; Joung, Jong Man; Kwak, Min Hwan
2017-12-01
We report the frequency-dependent complex optical constants, refractive index and absorption, and complex dielectric properties over the frequency range from 0.2 to 3.0 THz for aged power transformer mineral insulating oils. These results have been obtained using terahertz time-domain spectroscopy (THz-TDS) and demonstrate the double-Debye relaxation behavior of the mineral insulating oil. The measured complex optical and dielectric characteristics can be important benchmarks for liquid molecular dynamics and theoretical studies of insulating oils. Due to clear differences in THz responses of aged mineral insulating oils, THz-TDS can be used as a novel on-site diagnostic technique to monitor the insulation condition in aged power transformers and may be valuable alternative to characterize other developing eco-friendly insulating oils and industrial liquids.
Numerical study on characteristic of two-dimensional metal/dielectric photonic crystals
NASA Astrophysics Data System (ADS)
Zong, Yi-Xin; Xia, Jian-Bai; Wu, Hai-Bin
2017-04-01
An improved plan-wave expansion method is adopted to theoretically study the photonic band diagrams of two-dimensional (2D) metal/dielectric photonic crystals. Based on the photonic band structures, the dependence of flat bands and photonic bandgaps on two parameters (dielectric constant and filling factor) are investigated for two types of 2D metal/dielectric (M/D) photonic crystals, hole and cylinder photonic crystals. The simulation results show that band structures are affected greatly by these two parameters. Flat bands and bandgaps can be easily obtained by tuning these parameters and the bandgap width may reach to the maximum at certain parameters. It is worth noting that the hole-type photonic crystals show more bandgaps than the corresponding cylinder ones, and the frequency ranges of bandgaps also depend strongly on these parameters. Besides, the photonic crystals containing metallic medium can obtain more modulation of photonic bands, band gaps, and large effective refractive index, etc. than the dielectric/dielectric ones. According to the numerical results, the needs of optical devices for flat bands and bandgaps can be met by selecting the suitable geometry and material parameters. Project supported by the National Basic Research Program of China (Grant No. 2011CB922200) and the National Natural Science Foundation of China (Grant No. 605210010).
CMOS image sensor-based immunodetection by refractive-index change.
Devadhasan, Jasmine P; Kim, Sanghyo
2012-01-01
A complementary metal oxide semiconductor (CMOS) image sensor is an intriguing technology for the development of a novel biosensor. Indeed, the CMOS image sensor mechanism concerning the detection of the antigen-antibody (Ag-Ab) interaction at the nanoscale has been ambiguous so far. To understand the mechanism, more extensive research has been necessary to achieve point-of-care diagnostic devices. This research has demonstrated a CMOS image sensor-based analysis of cardiovascular disease markers, such as C-reactive protein (CRP) and troponin I, Ag-Ab interactions on indium nanoparticle (InNP) substrates by simple photon count variation. The developed sensor is feasible to detect proteins even at a fg/mL concentration under ordinary room light. Possible mechanisms, such as dielectric constant and refractive-index changes, have been studied and proposed. A dramatic change in the refractive index after protein adsorption on an InNP substrate was observed to be a predominant factor involved in CMOS image sensor-based immunoassay.
Tunable Dielectric Metasurfaces Based on the Variation of the Refractive Index of the Environment
NASA Astrophysics Data System (ADS)
Komar, A. A.; Neshev, D. N.; Miroshnichenko, A. E.
2017-12-01
A dielectric metasurface at the variation of the refractive index of the environment has been numerically simulated. The optical response of the metasurface contacting both a homogeneous medium with different refractive indices and a liquid crystal controlled by the temperature and applied electric field has been considered. The results can be used to produce optical devices for various aims. Numerical simulations have been performed for the parameters of the liquid crystal E7 widely used in industry.
Plasmonic nano-sensor based on metal-dielectric-metal waveguide with the octagonal cavity ring
NASA Astrophysics Data System (ADS)
Ghorbani, Saeed; Dashti, Mohammad Ali; Jabbari, Masoud
2018-06-01
In this paper, a refractive index plasmonic sensor including a waveguide of metal–insulator–metal with side coupled octagonal cavity ring has been suggested. The sensory and transmission feature of the structure has been analyzed numerically using Finite Element Method numerical solution. The effect of coupling distance and changing the width of metal–insulator–metal waveguide and refractive index of the dielectric located inside octagonal cavity—which are the effective factors in determining the sensory feature—have been examined so completely that the results of the numerical simulation show a linear relation between the resonance wavelength and refractive index of the liquid/gas dielectric material inside the octagonal cavity ring. High sensitivity of the sensor in the resonance wavelength, simplicity and a compact geometry are the advantages of the refractive plasmonic sensor advised which make that possible to use it for designing high performance nano-sensor and bio-sensing devices.
Electronic, Optical and Thermoelectric Properties of 2H-CuAlO2: A First Principles Study
NASA Astrophysics Data System (ADS)
Bhamu, K. C.; Khenata, R.; Khan, Saleem Ayaz; Singh, Mangej; Priolkar, K. R.
2016-01-01
The electronic and optical properties of 2H-CuAlO2, including energy bands, density of states (DOS), optical dielectric behaviour, refractive index, absorption coefficient and optical conductivity, have been investigated within the framework of a full-potential linearized augmented plane wave scheme using different potentials. The direct and indirect band gaps for CuAlO2, computed using the Becke-Johnson potential, are estimated at 3.53 eV and 2.48 eV, respectively, which are in better agreement with the experimentally reported band gaps than those previously computed. The origin of energy bands is elucidated in terms of DOS, while the behaviour of the imaginary part of the dielectric constant is explained in terms of electronic transitions from valence bands to conduction bands. The computed value of the refractive index is 2.25 (1.94) for light perpendicular (parallel) to the c axis, in concordance with the available values. The overall shape of the spectral distribution for absorption coefficient and optical conductivity is also in accord with the reported data. The investigated thermoelectric properties indicate that CuAlO2 is a p-type semiconductor showing high effectiveness at low temperatures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sokolov, V I; Glebov, V N; Malyutin, A M
2015-09-30
A method based on resonant excitation of waveguide modes with a prism coupler is proposed for measuring the thickness and refractive index of thin-film layers in multilayer dielectric structures. The peculiarities of reflection of TE- and TM-polarised light beams from a structure comprising eleven alternating layers of zinc sulfide (ZnS) and magnesium barium fluoride (MgBaF{sub 4}), whose thicknesses are much less than the wavelength of light, are investigated. Using the mathematical model developed, we have calculated the coefficients of reflection of collimated TE and TM light beams from a multilayer structure and determined the optical constants and thicknesses of themore » structure layers. The refractive indices of the layers, obtained for TE and TM polarisation of incident light, are in good agreement. The thicknesses of ZnS and MgBaF{sub 4} layers, found for different polarisations, coincide with an accuracy of ±1%. Thus, we have demonstrated for the first time that the prism-coupling technique allows one to determine the optical properties of thin-film structures when the number of layers in the structure exceeds ten layers. (integrated optics)« less
Antireflection coating on metallic substrates for solar energy and display applications
NASA Astrophysics Data System (ADS)
Hsiao, Wei-Yuan; Tang, Chien-Jen; Lee, Kun-Hsien; Jaing, Cheng-Chung; Kuo, Chien-Cheng; Chen, Hsi-Chao; Chang, Hsing-Hua; Lee, Cheng-Chung
2010-08-01
Normally metallic films are required for solar energy and display related coatings. To increase the absorbing efficiency or contrast, it is necessary to apply an antireflection coating (ARC) on the metal substrate. However, the design of a metal substrate is very different from the design of a dielectric substrate, since the optical constant of metallic thin film is very dependent on its thickness and microstructure. In this study, we design and fabricate ARCs on Al substrates using SiO2 and Nb2O5 as the dielectric materials and Nb for the metal films. The ARC successfully deposited on the Al substrate had the following structure: air/SiO2/Nb2O5/Metal/Nb2O5/Al. The measured average reflectance of the ARC is less than 1% in the visible region. We found that it is better to use a highly refractive material than a low refractive material. The thickness of the metallic film can be thicker with the result that it is easier to control and has a lesser total thickness. The total thickness of the ARC is less than 200 nm. We successfully fabricated a solar absorber and OLED device with the ARC structure were successfully fabricated.
Theoretical Study of the Transverse Dielectric Constant of Superlattices and Their Alloys
NASA Astrophysics Data System (ADS)
Kahen, Keith Brian
The optical properties of III-V binary and ternary compounds and GaAs-Al(,x)Ga(,1-x)As superlattices are determined by calculating the real and imaginary parts of the transverse dielectric constant, (epsilon)((omega)) = (epsilon)(,1)((omega)) + i(epsilon)(,2)((omega)). Emphasis is given to determining the influence of different material and superlattice (layer thickness and Al composi- tion) parameters on the values of the index of refraction. (eta)((omega)) and absorption coefficient, (alpha)((omega)). In order to calculate the optical properties of a material, it is necessary to compute its electronic band structure. We accomplish this by introducing a partition band structure approach based on a combination of the (')k(.)(')p and nonlocal pseudopotential techniques. In this approach the bulk Brillouin zone is partitioned into the (GAMMA), X, and L regions by performing (')k(.)(')p expansions about these three symmetry points. The results for (eta)((omega)) and (alpha)((omega)) of bulk III-V compounds com- pare well with other one-electron band structure models, and our calculations show that for small frequencies, the index of refraction is determined mainly by the contributions of the outer regions of the Brillouin zone. The effects of alloy scattering are incorporated into the model using a perturbative CPA approach which only includes the influence of compositional disorder. The results for the disorder-induced, (GAMMA) point, energy -gap bowings are shown to be nearly comparable to those calculated using more sophisticated CPA approaches. Further - more, the calculated absorption coefficient of Al(,x)Ga(,1 -x)As is found to be in good agreement with the experimental data. The model is extended to heterostructures by using the envelope-function approximation. Valence-band mixing and (GAMMA)-region exciton effects are also included in the model. Our results show that the anisotropy and structure dependence of the refractive index of superlattices result mainly from the contribution of the (GAMMA) region, while the contributions of the outer regions of the zone are rather insensitive to the superlattice structure. The superlattice index of refraction values is determined to attain maxima at the various (GAMMA)-region, quantized, transition energies, where for certain structures the difference between the refractive indices of the superlattice and its corresponding Al(,x)Ga(,1-x)As alloy can be as large as 2%. (Abstract shortened with permission of author.).
NASA Technical Reports Server (NTRS)
Poggio, A. J.; Burke, G. L.; Pennock, S. T.
1995-01-01
This report describes the experimental and analytical efforts performed to determine the constitutive parameters of a reinforced concrete pad on which an aircraft (the NASA Boeing 757) was parked while its internal electromagnetic environment was measured. This concrete pad is part of the Large Electromagnetic System-Level Illuminator (LESLI) test facility at the Phillips Laboratory, Kirtland Air Force Base, New Mexico. The relative dielectric constant, conductivity, index of refraction, and reflection coefficient have been determined over the frequency range of 0 to 300 MHz and are presented.
NASA Astrophysics Data System (ADS)
Mayengbam, Rishikanta; Tripathy, S. K.; Pandey, B. P.
2018-03-01
In this paper, we have investigated the structural, electronic and optical properties of ZnAl2Te4 defect chalcopyrite semiconductor using generalized gradient approximation (GGA) within density functional theory (DFT). We have calculated the optimized lattice constants (a and c) and compared with the available experimental values. The optimized lattice constants have been used to calculate the energy band gap and found to be 1.57 eV. The partial density of states and total density of states have been discussed in detail. The frequency dependent dielectric constant and refractive index have been calculated and plotted in the energy range 0-13 eV. All the above parameters have been compared with the available experimental and theoretical values and found good agreement between them.
First principles study of optical properties of molybdenum disulfide: From bulk to monolayer
NASA Astrophysics Data System (ADS)
Hieu, Nguyen N.; Ilyasov, Victor V.; Vu, Tuan V.; Poklonski, Nikolai A.; Phuc, Huynh V.; Phuong, Le T. T.; Hoi, Bui D.; Nguyen, Chuong V.
2018-03-01
In this paper, we theoretically study the optical properties of both bulk and monolayer MoS2 using first-principles calculations. The optical characters such as: dielectric function, optical reflectivity, and electron energy-loss spectrum of MoS2 are observed in the energy region from 0 to 15 eV. At equilibrium state the dielectric constant in the parallel E∥ x and perpendicular E∥ z directions are of 15.01 and 8.92 for bulk while they are 4.95 and 2.92 for monolayer MoS2, respectively. In the case of bulk MoS2, the obtained computational results for both real and imaginary parts of the dielectric constant are in good agreement with the previous experimental data. In the energy range from 0 to 6 eV, the dielectric functions have highly anisotropic, whereas they become isotropic when the energy is larger than 7 eV. For the adsorption spectra and optical reflectivity, both the collective plasmon resonance and (π + σ) electron plasmon peaks are observed, in which the transition in E∥ x direction is accordant with the experiment data more than the transition in E∥ z direction is. The refractive index, extinction index, and electron energy-loss spectrum are also investigated. The observed prominent peak at 23.1 eV in the energy-loss spectra is in good agreement with experiment value. Our results may provide a useful potential application for the MoS2 structures in electronic and optoelectronic devices.
Optical investigation of vacuum evaporated Se80-xTe20Sbx (x = 0, 6, 12) amorphous thin films
NASA Astrophysics Data System (ADS)
Deepika; Singh, Hukum
2017-09-01
Amorphous thin films of Se80-xTe20Sbx (x = 0, 6, 12) chalcogenide glasses has been deposited onto pre-cleaned glass substrate using thermal evaporation technique under a vacuum of 10-5 Torr. The absorption and transmission spectra of these thin films have been recorded using UV spectrophotometer in the spectral range 400-2500 nm at room temperature. Swanepoel envelope method has been employed to obtain film thickness and optical constants such as refractive index, extinction coefficient and dielectric constant. The optical band gap of the samples has been calculated using Tauc relation. The study reveals that optical band gap decreases on increase in Sb content. This is due to decrease in average single bond energy calculated using chemical bond approach. The values of urbach energy has also been computed to support the above observation. Variation of refractive index has also been studies in terms of wavelength and energy using WDD model and values of single oscillator energy and dispersion energy has been obtained.
Marichy, Catherine; Muller, Nicolas; Froufe-Pérez, Luis S; Scheffold, Frank
2016-02-25
Photonic crystal materials are based on a periodic modulation of the dielectric constant on length scales comparable to the wavelength of light. These materials can exhibit photonic band gaps; frequency regions for which the propagation of electromagnetic radiation is forbidden due to the depletion of the density of states. In order to exhibit a full band gap, 3D PCs must present a threshold refractive index contrast that depends on the crystal structure. In the case of the so-called woodpile photonic crystals this threshold is comparably low, approximately 1.9 for the direct structure. Therefore direct or inverted woodpiles made of high refractive index materials like silicon, germanium or titanium dioxide are sought after. Here we show that, by combining multiphoton lithography and atomic layer deposition, we can achieve a direct inversion of polymer templates into TiO2 based photonic crystals. The obtained structures show remarkable optical properties in the near-infrared region with almost perfect specular reflectance, a transmission dip close to the detection limit and a Bragg length comparable to the lattice constant.
Artificial dielectric stepped-refractive-index lens for the terahertz region.
Hernandez-Serrano, A I; Mendis, Rajind; Reichel, Kimberly S; Zhang, Wei; Castro-Camus, E; Mittleman, Daniel M
2018-02-05
In this paper we theoretically and experimentally demonstrate a stepped-refractive-index convergent lens made of a parallel stack of metallic plates for terahertz frequencies based on artificial dielectrics. The lens consist of a non-uniformly spaced stack of metallic plates, forming a mirror-symmetric array of parallel-plate waveguides (PPWGs). The operation of the device is based on the TE 1 mode of the PPWG. The effective refractive index of the TE 1 mode is a function of the frequency of operation and the spacing between the plates of the PPWG. By varying the spacing between the plates, we can modify the local refractive index of the structure in every individual PPWG that constitutes the lens producing a stepped refractive index profile across the multi stack structure. The theoretical and experimental results show that this structure is capable of focusing a 1 cm diameter beam to a line focus of less than 4 mm for the design frequency of 0.18 THz. This structure shows that this artificial-dielectric concept is an important technology for the fabrication of next generation terahertz devices.
Measuring opto-thermal parameters of basalt fibers using digital holographic microscopy.
Yassien, Khaled M; Agour, Mostafa
2017-02-01
A method for studying the effect of temperature on the optical properties of basalt fiber is presented. It is based on recording a set of phase-shifted digital holograms for the sample under the test. The holograms are obtained utilizing a system based on Mach-Zehnder interferometer, where the fiber sample inserted in an immersion liquid is placed within a temperature controlled chamber. From the recorded digital holograms the optical path differences which are used to calculate the refractive indices are determined. The accuracy in the measurement of refractive indices is in the range of 4 × 10 -4 . The influence of temperature on the dispersion parameters, polarizability per unit volume and dielectric susceptibility are also obtained. Moreover, the values of dispersion and oscillation energies and Cauchy's constants are provided at different temperatures. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Usowicz, Boguslaw; Marczewski, Wojciech; Usowicz, Jerzy B.; Łukowski, Mateusz; Lipiec, Jerzy; Stankiewicz, Krystyna
2013-04-01
Radiometric observations with SMOS rely on the Radiation Transfer Equations (RTE) determining the Brightness Temperature (BT) in two linear polarization components (H, V) satisfying Fresnel principle of propagation in horizontally layered target media on the ground. RTE involve variables which bound the equations expressed in Electro-Magnetic (EM) terms of the intensity BT to the physical reality expressed by non-EM variables (Soil Moisture (SM), vegetation indexes, fractional coverage with many different properties, and the boundary conditions like optical thickness, layer definitions, roughness, etc.) bridging the EM domain to other physical aspects by means of the so called tau-omega methods. This method enables joining variety of different valuable models, including specific empirical estimation of physical properties in relation to the volumetric water content. The equations of RTE are in fact expressed by propagation, reflection and losses or attenuation existing on a considered propagation path. The electromagnetic propagation is expressed in the propagation constant. For target media on the ground the dielectric constant is a decisive part for effects of propagation. Therefore, despite of many various physical parameters involved, one must effectively and dominantly rely on the dielectric constant meant as a complex variable. The real part of the dielectric constant represents effect of apparent shortening the propagation path and the refraction, while the imaginary part is responsible for the attenuation or losses. This work engages statistical-physical modeling of soil properties considering the media as a mixture of solid grains, and gas or liquid filling of pores and contact bridges between compounds treated statistically. The method of this modeling provides an opportunity of characterizing the porosity by general statistical means, and is applicable to various physical properties (thermal, electrical conductivity and dielectric properties) which depend on composition of compounds. The method was developed beyond the SMOS method, but they meet just in RTE, at the dielectric constant. The dielectric constant is observed or measured (retrieved) by SMOS, regardless other properties like the soil porosity and without a direct relation to thermal properties of soils. Relations between thermal properties of soil to the water content are very consistent. Therefore, we took a concept of introducing effects of the soil porosity, and thermal properties of soils into the representation of the dielectric constant in complex measures, and thus gaining new abilities for capturing effects of the porosity by the method of SMOS observations. Currently we are able presenting few effects of relations between thermal properties and the soil moisture content, on examples from wetlands Biebrza and Polesie in Poland, and only search for correlations between SM from SMOS to the moisture content known from the ground. The correlations are poor for SMOS L2 data processed with the version of retrievals using the model of Dobson (501), but we expect more correlation for the version using the model of Mironov (551). If the supposition is confirmed, then we may gain encouragement to employing the statistical-physical modeling of the dielectric constant and thermal properties for the purposes of using this model in RTE and tau-omega method. Treating the soil porosity for a target of research directly is not enough strongly motivated like the use of effects on SM observable in SMOS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chhipa, Mayur Kumar, E-mail: mayurchhipa1@gmail.com
2014-10-15
In this paper, we have proposed a new design of tunable two dimensional (2D) photonic crystal (PhC) channel drop filter (CDF) using ring resonators. The increasing interest in photonic integrated circuits (PIC's) and the increasing use of all-optical fiber networks as backbones for global communication systems have been based in large part on the extremely wide optical transmission bandwidth provided by dielectric materials. Based on the analysis we present novel photonic crystal channel drop filters. Simulations demonstrate that these filters exhibit ideal transfer characteristics. Channel dropping filters (CDF's) that access one channel of a wavelength division multiplexed (WDM) signal whilemore » leaving other channels undisturbed are essential components of PIC's and optical communication systems. In this paper we have investigated such parameters which have an effect on resonant wavelength in this Channel Drop Filter, such as dielectric constant of inner, coupling, adjacent and whole rods of the structure. The dimensions of these structures are taken as 20a×19a and the area of the proposed structure is about 125.6μm{sup 2}; therefore this structure can be used in the future photonic integrated circuits. While using this design the dropping efficiency at the resonance of single ring are 100%. The spectrum of the power transmission is obtained with finite difference time domain (FDTD) method. FDTD method is the most famous method for PhC analysis. In this paper the dielectric rods have a dielectric constant of 10.65, so the refractive index is 3.26 and radius r=0.213a is located in air, where a is a lattice constant. In this we have used five scatter rods for obtaining more coupling efficiency; radius of scatter rods is set to 0.215a. The proposed structure is simulated with OptiFDTD.v.8.0 software, the different dielectric constant of rods equal to ε{sub r}−0.4, ε{sub r} and ε{sub r}+0.4 at wavelength of 1570 nm.« less
NASA Astrophysics Data System (ADS)
Mohanbabu, B.; Bharathikannan, R.; Siva, G.
2017-10-01
The single crystals of 3-aminopyridinium 2,4-dinitrophenolate (APDP) have been synthesized and grown by slow evaporation technique at room temperature. The crystal system was identified and lattice dimensions were measured from the single-crystal X-ray diffraction (SXRD) analysis. UV-visible absorption and transmittance spectra have been recorded in the region between 250 and 1100 nm. The different vibrational modes of the molecule were studied by Fourier transform infrared (FTIR) spectroscopic analysis. The decreasing tendency of dielectric constant with increasing frequency was analysed in dielectric study. The polarizability value calculated using Penn analysis well agrees with the value calculated using Clausius-Mossotti equation. The photoconductivity and photoluminescence behaviour were also studied on grown APDP crystal. The mechanical strength of the crystal has been studied using a Vickers' microhardness test. The stiffness constant and yield strength of the crystal were also calculated from the microhardness test. The third-order nonlinear optical parameters such as refractive index, absorption coefficient and third-order susceptibility were estimated by Z-scan studies.
NASA Astrophysics Data System (ADS)
Subhashini, R.; Arjunan, S.
2018-05-01
An exceedingly apparent nonlinear semiorganic optical crystals of bis(L-asparaginato)zinc(II) [BLAZ], was synthesized by a traditional slow evaporation solution growth technique. The cell parameters were estimated from single crystal X-ray diffraction analysis. Spectroscopic study substantiates the presence of functional groups. The UV spectrum shows the sustenance of wide transparency window and several optical constants, such as extinction coefficient (K), refractive index, optical conductivity and electric susceptibility with real and imaginary parts of dielectric constant were calculated using the transmittance data. The fluorescence emission spectrum of the crystal pronounces red emission. The laser induced surface damage threshold of the crystal was measured using Nd:YAG laser. The output intensity of second harmonic generation was estimated using the Kurtz and Perry powder method. The hardness stability was investigated by Vickers microhardness test. The decomposition and thermal stability of the compound were scrutinized by TGA-DSC studies. Dielectric studies were carried out to anatomize the electrical properties of the crystal. SEM analysis reveals the existence of minute crystallites on the growth surface.
NASA Astrophysics Data System (ADS)
El-Nahass, M. M.; Attia, A. A.; Salem, G. F.; Ali, H. A. M.; Ismail, M. I.
2013-09-01
Zinc indium selenide (ZnIn2Se4) thin films were prepared by the thermal evaporation technique with high deposition rate. The effect of thermal annealing in vacuum on the crystallinity of the as-deposited films was studied at different temperatures (523, 573 and 623 K). The effect of substrate temperature (623 K) for different thickness values (173, 250, 335 and 346 nm) on the optical parameters of ZnIn2Se4 was also studied. The structural studies showed nanocrystalline nature of the room temperature (300 K) deposited films with crystallite size of about a few nanometers. The crystallite size increased up to 31 nm with increasing the annealing temperature in vacuum. From the reflection and transmission data, the refractive index n and the extinction coefficient k were estimated for ZnIn2Se4 thin films and they were found to be independent of film thickness. Analysis of the absorption coefficient data of the as-deposited films revealed the existence of allowed direct and indirect transitions with optical energy gaps of 2.21 eV and 1.71 eV, respectively. These values decreased with increasing annealing temperature. At substrate temperature of 623 K, the direct band gap increased to 2.41 eV whereas the value of indirect band gap remained nearly unchanged. The dispersion analysis showed that the values of the oscillator energy Eo, dispersion energy Ed, dielectric constant at infinite frequency ε∞, and lattice dielectric constant εL were changed appreciably under the effect of annealing and substrate temperature. The covalent nature of structure was studied as a function of the annealing and substrate temperature using an empirical relation for the dispersion energy Ed. Generalized Miller's rule and linear refractive index were used to estimate the nonlinear susceptibility and nonlinear refractive index of the thin films.
Numerical study of the defect adamantine compound CuGaGeSe4
NASA Astrophysics Data System (ADS)
Shen, Kesheng; Zhang, Xianzhou; Lu, Hai; Jiao, Zhaoyong
2018-06-01
The electronic structure, elastic and optical properties of the defect adamantine compound CuGaGeSe4 in ? structure are systematically investigated using first-principles calculations. Through detailed calculation and comparison, we obtain three independent atomic arrangements and predict the most stable atomic arrangement according to the lattice constants and enthalpy formation energies. The elastic constants are calculated, which can be used to predict the axial thermal expansion coefficients accurately. The optical properties of compound CuGaGeSe4, including the dielectric function, refractive index and absorption spectrum, are depicted for a more intuitive understanding. Our calculated zero-frequency limits ɛ1(0) and n(0) are very close to the other theoretical values, which proves that our calculations are reliable.
Optical properties of micro and nano LiNbO3 thin film prepared by spin coating
NASA Astrophysics Data System (ADS)
Fakhri, Makram A.; Salim, Evan T.; Abdulwahhab, Ahmed W.; Hashim, U.; Salim, Zaid T.
2018-07-01
This paper deals with preparing of Lithium-Niobate thin films based on Sol-Gel technique on a substrate made of quartz, samples have been deposited under three different stirrer times. At 3000 round per minute of spin coating strategy, the deposition processes have been accomplished. The results showed an enhancement in the crystalline structure of the prepared samples with increasing the duration of stirrer time. The AFM measurement has assured that the structure of the prepared samples is more regular distributed, homogeneous and crack-free in their structures. Further, measurements and calculations of lattice constant, energy band gap, refractive index, and optical dielectric constant are also considered and agreed with experimental data collected by the characterized samples.
Ibanescu, Mihai; Joannopoious, John D.; Fink, Yoel; Johnson, Steven G.; Fan, Shanhui
2005-06-21
Optical components including a laser based on a dielectric waveguide extending along a waveguide axis and having a refractive index cross-section perpendicular to the waveguide axis, the refractive index cross-section supporting an electromagnetic mode having a zero group velocity for a non-zero wavevector along the waveguide axis.
NASA Astrophysics Data System (ADS)
Dudorov, Vadim V.; Kolosov, Valerii V.
2003-04-01
The propagation problem for partially coherent wave fields in inhomogeneous media is considered in this work. The influence of refraction, inhomogeneity of gain medium properties and refraction parameter fluctuations on target characteristics of radiation are taken into consideration. Such problems arise in the study of laser propagation on atmosphere paths, under investigation of directional radiation pattern forming for lasers which gain media is characterized by strong fluctuation of dielectric constant and for lasers which resonator have an atmosphere area. The ray-tracing technique allows us to make effective algorithms for modeling of a partially coherent wave field propagation through inhomogeneous random media is presented for case when the influecne of an optical wave refraction, the influence of the inhomogeiety of radiaitn amplification or absorption, and also the influence of fluctuations of a refraction parameter on target radiation parameters are basic. Novelty of the technique consists in the account of the additional refraction caused by inhomogeneity of gain, and also in the method of an account of turbulent distortions of a beam with any initial coherence allowing to execute construction of effective numerical algorithms. The technique based on the solution of the equation for coherence function of the second order.
Electronic and optical properties of antiferromagnetic iron doped NiO - A first principles study
NASA Astrophysics Data System (ADS)
Petersen, John E.; Twagirayezu, Fidele; Scolfaro, Luisa M.; Borges, Pablo D.; Geerts, Wilhelmus J.
2017-05-01
Antiferromagnetic NiO is a candidate for next generation high-speed and scaled RRAM devices. Here, electronic and optical properties of antiferromagnetic NiO: Fe 25% in the rock salt structure are studied and compared to intrinsic NiO. From density of states and complex dielectric function analysis, the first optical transition is found to be at lower frequency than intrinsic NiO due to an Fe impurity level being the valence band maximum. The resulting effects on refractive index, reflectivity, absorption, optical conductivity and loss function for Fe-doped NiO are compared to those of intrinsic NiO, and notable differences are analyzed. The electronic component of the static dielectric constant of NiO: Fe 25% is calculated to be about 2% less than that of intrinsic NiO.
A naked eye refractive index sensor with a visible multiple peak metamaterial absorber.
Ma, Heli; Song, Kun; Zhou, Liang; Zhao, Xiaopeng
2015-03-26
We report a naked eye refractive index sensor with a visible metamaterial absorber. The visible metamaterial absorber consisting of a silver dendritic/dielectric/metal structure shows multiple absorption peaks. By incorporating a gain material (rhodamine B) into the dielectric layer, the maximal magnitude of the absorption peak can be improved by about 30%. As the metamaterial absorber is sensitive to the refractive index of glucose solutions, it can function as a sensor that quickly responds to variations of the refractive index of the liquid. Meanwhile, since the response is presented via color changes, it can be clearly observed by the naked eyes. Further experiments have confirmed that the sensor can be used repeatedly.
ERIC Educational Resources Information Center
Hsu, Wei-Tai; Bahrim, Cristian
2009-01-01
Based on our novel method recently published in the "Am. J. Phys." 77 337-43 (2009) for finding precise values of the indices of refraction for dielectrics from measurements of the polarized light reflected by the surface, in this paper we propose an improved technique for finding Brewster angles with a better precision, of 0.001 degrees, using…
Single-mode plasmonic waveguiding properties of metal nanowires with dielectric substrates.
Wang, Yipei; Ma, Yaoguang; Guo, Xin; Tong, Limin
2012-08-13
Single-mode plasmonic waveguiding properties of metal nanowires with dielectric substrates are investigated using a finite-element method. Au and Ag are selected as plasmonic materials for nanowire waveguides with diameters down to 5-nm-level. Typical dielectric materials with relatively low to high refractive indices, including magnesium fluoride (MgF2), silica (SiO2), indium tin oxide (ITO) and titanium dioxide (TiO2), are used as supporting substrates. Basic waveguiding properties, including propagation constants, power distributions, effective mode areas, propagation distances and losses are obtained at the typical plasmonic resonance wavelength of 660 nm. Compared to that of a freestanding nanowire, the mode area of a substrate-supported nanowire could be much smaller while maintaining an acceptable propagation length. For example, the mode area and propagation length of a 100-nm-diameter Ag nanowire with a MgF2 substrate are about 0.004 μm2 and 3.4 μm, respectively. The dependences of waveguiding properties on geometric and material parameters of the nanowire-substrate system are also provided. Our results may provide valuable references for waveguiding dielectric-supported metal nanowires for practical applications.
Optical and structural properties of amorphous Se x Te100- x aligned nanorods
NASA Astrophysics Data System (ADS)
Al-Agel, Faisal A.
2013-12-01
In the present work, we report studies on optical and structural phenomenon in as-deposited thin films composed of aligned nanorods of amorphous Se x Te100- x ( x = 3, 6, 9, and 12). In structural studies, field emission scanning electron microscopic (FESEM) images suggest that these thin films contain high yield of aligned nanorods. These nanorods show a completely amorphous nature, which is verified by X-ray diffraction patterns of these thin films. Optical studies include the measurement of spectral dependence of absorption, reflection, and transmission of these thin films, respectively. On the basis of optical absorption data, a direct optical band gap is observed. This observation of a direct optical band gap in these nanorods is interesting as chalcogenides normally show an indirect band gap, and due to this reason, these materials could not become very popular for semiconducting devices. Therefore, this is an important report and will open up new directions for the application of these materials in semiconducting devices. The value of this optical band gap is found to decrease with the increase in selenium (Se) concentration. The reflection and absorption data are employed to estimate the values of optical constants (extinction coefficient ( k) and refractive index ( n)). From the spectral dependence of these optical constants, it is found that the values of refractive index ( n) increase, whereas the values of extinction coefficient ( k) decrease with the increase in photon energy. The real and imaginary parts of dielectric constants calculated with the values of extinction coefficient ( k) and refractive index ( n), are found to vary with photon energy and dopant concentration.
NASA Astrophysics Data System (ADS)
Zhu, Jian; Li, Jian-Jun; Zhao, Jun-Wu
2013-06-01
The separate layer refractive index sensitivity of a coaxial-cable type three-layered gold nanotube has been studied. Theoretical calculation results based on quasi-static model show that the coaxial-cable type gold nanostructure has higher refractive index sensitivity than that of single-layered gold nanotube. This sensitivity could be improved by increasing the inner wire radius or decreasing the total radius of the tube, and the maximum sensitivity may exceed 1,000 nm per refractive index unit. The physical origin was also investigated based on the coupling of the dielectric media induced polarizations and the local electric fields in separate layer and outer surrounding. These separate layer refractive index sensing properties of coaxial-cable type gold nanostructure present well potential for plasmonic biosensing applications.
Effect of reflection losses on stationary dielectric-filled nonimaging concentrators
NASA Astrophysics Data System (ADS)
Madala, Srikanth; Boehm, Robert F.
2016-10-01
The effect of Fresnel reflection and total internal reflection (TIR) losses on the performance parameters in refractive solar concentrators has often been downplayed because most refractive solar concentrators are traditionally the imaging type, yielding a line or point image on the absorber surface when solely interacted with paraxial etendue ensured by solar tracking. Whereas, with refractive-type nonimaging solar concentrators that achieve two-dimensional (rectangular strip) focus or three-dimensional (circular or elliptical) focus through interaction with both paraxial and nonparaxial etendue within the acceptance angle, the Fresnel reflection and TIR losses are significant as they will affect the performance parameters and, thereby, energy collection. A raytracing analysis has been carried out to illustrate the effects of Fresnel reflection and TIR losses on four different types of stationary dielectric-filled nonimaging concentrators, namely V-trough, compound parabolic concentrator, compound elliptical concentrator, and compound hyperbolic concentrator. The refractive index (RI) of a dielectric fill material determines the acceptance angle of a solid nonimaging collector. Larger refractive indices yield larger acceptance angles and, thereby, larger energy collection. However, they also increase the Fresnel reflection losses. This paper also assesses the relative benefit of increasing RI from an energy collection standpoint.
Azzam, R M A
2015-12-01
Conditions for achieving equal and opposite angular deflections of a light beam by reflection and refraction at an air-dielectric boundary are determined. Such angularly symmetric beam splitting (ASBS) is possible only if the angle of incidence is >60° by exactly one third of the angle of refraction. This simple law, plus Snell's law, leads to several analytical results that clarify all aspects of this phenomenon. In particular, it is shown that the intensities of the two symmetrically deflected beams can be equalized by proper choice of the prism refractive index and the azimuth of incident linearly polarized light. ASBS enables a geometrically attractive layout of optical systems that employ multiple prism beam splitters.
Optical properties of zinc lead tellurite glasses
NASA Astrophysics Data System (ADS)
Alazoumi, Salah Hassan; Aziz, Sidek Abdul; El-Mallawany, R.; Aliyu, Umar Sa'ad; Kamari, Halimah Mohamed; Zaid, Mohd Hafiz Mohd Mohd; Matori, Khamirul Amin; Ushah, Abdulbaset
2018-06-01
Tellurite glass systems in the form of [ZnO]x [(TeO2)0.7-(PbO)0.3]1-x with x = 0.15, 0.17, 0.20, 0.22 and 0.25 mol% were prepared using the melt quenching technique. XRD of the prepared samples have been measured for all samples. Both FTIR (280-4000 cm-1) and UV-Vis (200-800 nm) spectra have been measured. Optical band gap and refractive index were calculated for every glass sample. Density of glass, molar volume and oxygen packing density (OPD) were obtained. Values of the direct, indirect band gap ranged were found in the range 3.41-3.94 eV and 2.40-2.63 eV with increasing of ZnO concentration. Refractive index 2.58 and dielectric constant 6.66 were heigh at 17 ZnO mol% concentration. Molar polarizability, metallization criterion, polaron radius have been calculated for every glass composition.
Graphene plasmonic nanogratings for biomolecular sensing in liquid
NASA Astrophysics Data System (ADS)
Chorsi, Meysam T.; Chorsi, Hamid T.
2017-12-01
We design a surface plasmon resonance (SPR) molecular sensor based on graphene and biomolecule adsorption at graphene-liquid interfaces. The sensor configuration consists of two opposing arrays of graphene nanograting mounted on a substrate, with a liquid-phase sensing medium confined between them. We characterize the design in simulation on a variety of substrates by altering the refractive index of the sensing medium and varying the absorbance-transmittance characteristics. The influence of various parameters on the biosensor's performance, including the Fermi level of graphene, the dielectric constant of the substrate, and the incident angle for plasmon excitation, is investigated. Numerical simulations demonstrate the sensitivity higher than 3000 nm/RIU (refractive index unit). The device supports a wide range of substrates in which graphene can be epitaxially grown. The proposed biosensor works independent of the incident angle and can be tuned to cover a broadband wavelength range.
NASA Technical Reports Server (NTRS)
Afsar, Mohammed Nurul; Chi, Hua; Li, Xiaohui
1990-01-01
Complex refractive index and dielectric permittivity studies of presently used Space Shuttle tile materials at millimeter wavelengths reveal these tiles to exhibit similar absorption characteristics to those of fused silica materials. This absorption is mainly related to the water content in the specimen. A strong birefringence is observed at least in one of these fibrous refractory composite materials.
Graded-Index "Whispering-Gallery" Optical Microresonators
NASA Technical Reports Server (NTRS)
Savchenkov, Anatoliy; Maleki, Lute; Iltchenko, Vladimir; Matsko, Andrey
2006-01-01
Graded-index-of-refraction dielectric optical microresonators have been proposed as a superior alternative to prior dielectric optical microresonators, which include microspheres and microtori wherein electromagnetic waves propagate along circumferential paths in "whispering-gallery" modes. The design and method of fabrication of the proposed microresonators would afford improved performance by exploiting a combination of the propagation characteristics of the whisperinggallery modes and the effect of a graded index of refraction on the modes.
Optically Defined Multifunctional Patterning of Photosensitive Thin-Film Silica Mesophases
NASA Astrophysics Data System (ADS)
Doshi, Dhaval A.; Huesing, Nicola K.; Lu, Mengcheng; Fan, Hongyou; Lu, Yunfeng; Simmons-Potter, Kelly; Potter, B. G.; Hurd, Alan J.; Brinker, C. Jeffrey
2000-10-01
Photosensitive films incorporating molecular photoacid generators compartmentalized within a silica-surfactant mesophase were prepared by an evaporation-induced self-assembly process. Ultraviolet exposure promoted localized acid-catalyzed siloxane condensation, which can be used for selective etching of unexposed regions; for ``gray-scale'' patterning of refractive index, pore size, surface area, and wetting behavior; and for optically defining a mesophase transformation (from hexagonal to tetragonal) within the film. The ability to optically define and continuously control both structure and function on the macro- and mesoscales is of interest for sensor arrays, nanoreactors, photonic and fluidic devices, and low-dielectric-constant films.
NASA Technical Reports Server (NTRS)
Mccarty, R. D.; Weber, L. A.
1972-01-01
The tables include entropy, enthalpy, internal energy, density, volume, speed of sound, specific heat, thermal conductivity, viscosity, thermal diffusivity, Prandtl number, and the dielectric constant for 65 isobars. Quantities of special utility in heat transfer and thermodynamic calculations are also included in the isobaric tables. In addition to the isobaric tables, tables for the saturated vapor and liquid are given, which include all of the above properties, plus the surface tension. Tables for the P-T of the freezing liquid, index of refraction, and the derived Joule-Thomson inversion curve are also presented.
NASA Astrophysics Data System (ADS)
Jahani, Saman; Jacob, Zubin
2016-01-01
The ideal material for nanophotonic applications will have a large refractive index at optical frequencies, respond to both the electric and magnetic fields of light, support large optical chirality and anisotropy, confine and guide light at the nanoscale, and be able to modify the phase and amplitude of incoming radiation in a fraction of a wavelength. Artificial electromagnetic media, or metamaterials, based on metallic or polar dielectric nanostructures can provide many of these properties by coupling light to free electrons (plasmons) or phonons (phonon polaritons), respectively, but at the inevitable cost of significant energy dissipation and reduced device efficiency. Recently, however, there has been a shift in the approach to nanophotonics. Low-loss electromagnetic responses covering all four quadrants of possible permittivities and permeabilities have been achieved using completely transparent and high-refractive-index dielectric building blocks. Moreover, an emerging class of all-dielectric metamaterials consisting of anisotropic crystals has been shown to support large refractive index contrast between orthogonal polarizations of light. These advances have revived the exciting prospect of integrating exotic electromagnetic effects in practical photonic devices, to achieve, for example, ultrathin and efficient optical elements, and realize the long-standing goal of subdiffraction confinement and guiding of light without metals. In this Review, we present a broad outline of the whole range of electromagnetic effects observed using all-dielectric metamaterials: high-refractive-index nanoresonators, metasurfaces, zero-index metamaterials and anisotropic metamaterials. Finally, we discuss current challenges and future goals for the field at the intersection with quantum, thermal and silicon photonics, as well as biomimetic metasurfaces.
Zirconium doped TiO{sub 2} thin films: A promising dielectric layer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Arvind; Mondal, Sandip, E-mail: sandipmondal@physics.iisc.ernet.in; Rao, K. S. R. Koteswara
2016-05-06
In the present work, we have fabricated the zirconium doped TiO{sub 2} thin (ZTO) films from a facile spin – coating method. The addition of Zirconium in TiO{sub 2} offers conduction band offset to Si and consequently decreased the leakage current density by approximately two orders as compared to pure TiO{sub 2} thin (TO) films. The ZTO thin film shows a high dielectric constant 27 with a very low leakage current density ∼10{sup −8} A/cm{sup 2}. The oxide capacitate, flat band voltage and change in flat band voltage are 172 pF, -1.19 V and 54 mV. The AFM analysis confirmed the compactmore » and pore free flat surface. The RMS surface roughness is found to be 1.5 Å. The ellipsometry analysis also verified the fact with a high refractive index 2.21.« less
Growth, structural, thermal, dielectric and optical studies on HBST crystal: A potential THz emitter
NASA Astrophysics Data System (ADS)
Ma, Yuzhe; Teng, Bing; Cao, Lifeng; Zhong, Degao; Ji, Shaohua; Teng, Fei; Liu, Jiaojiao; Yao, Yuan; Tang, Jie; Tong, Jiaming
2018-02-01
The efficient organic nonlinear optical material 4-hydroxy benzaldehyde-N-methyl 4-stilbazolium tosylate (HBST) was grown from methanol by slope nucleation method combined with slow cooling (SNM-SC) for the first time. The optimum growth conditions based on the cooling rate was further investigated. The single crystal X-ray diffraction (XRD) revealed that the chromophores of HBST crystal make an angle of about 33° with respect to the a-axis, which is close to the optimum of Terahertz (THz)-wave generation and electro-optics applications. NMR and FT-IR spectral studies have been performed to ascertain various functional groups present in the sample. Futhermore, the thermal stability and decomposition stages were analyzed through TG-DTA and DSC techniques. The dielectric constant and dielectric loss of HBST crystal have been studied. Critical optical properties like the absorption coefficient, refractive index, cut-off wavelength and band gap energy were calculated. Photoluminescence (PL) exication studies indicated green emission occured at 507 nm. All the results of HBST crystal make it a promising candidate in the fields of optoelectronic and the generation of THz.
NASA Astrophysics Data System (ADS)
Todoran, D.; Todoran, R.; Anitas, E. M.; Szakacs, Zs.
2017-12-01
This paper presents results concerning optical and electrical properties of galena natural mineral and of the interface layer formed between it and the potassium ethyl xanthate solution. The applied experimental method was differential optical reflectance spectroscopy over the UV-Vis/NIR spectral domain. Computations were made using the Kramers-Kronig formalism. Spectral dependencies of the electron loss functions, determined from the reflectance data obtained from the polished mineral surface, display van Hove singularities, leading to the determination of its valence band gap and electron plasma energy. Time dependent measurement of the spectral dispersion of the relative reflectance of the film formed at the interface, using the same computational formalism, leads to the dynamical determination of the spectral variation of its optical and electrical properties. We computed behaviors of the dielectric constant (dielectric permittivity), the dielectric loss function, refractive index and extinction coefficient, effective valence number and of the electron loss functions. The measurements tend to stabilize when the dynamic adsorption-desorption equilibrium is reached at the interface level.
Actuated polymer based dielectric mirror for visual spectral range applications
NASA Astrophysics Data System (ADS)
Vergara, Pedro P.; Lunardi, Leda
2017-08-01
Miniature dielectric mirrors are useful components for lasers, thin film beam splitters and high quality mirrors in optics. These mirrors usually made from rigid inorganic materials can achieve a reflectance of almost one hundred percent. Being structural components, as soon as fabricated their reflectance and/or bandwidth remains constant. Here it is presented a novel fabrication process of a dielectric mirror based on free standing polymer layers. By applying an electrostatic force between the top and the bottom layers the reflectance can be changed. The large difference between the polymers refractive index and the air allows to achieve a reflectance of more than 85% using only six pairs of nanolayers. Preliminary simulations indicate an actuation speed of less than 1ms. Experimental optical characterization of fabricated structures agrees well with simulation results. Furthermore, structures can be designed to reflect a particular set of colors and/or isolated by using color filters, so a color pixel is fabricated, where the reflectance for each isolated color can be voltage controlled. Potential applications include an active component in a reflective screen display.
Optimization of SPR signals: Monitoring the physical structures and refractive indices of prisms
NASA Astrophysics Data System (ADS)
Maisarah Mukhtar, Wan; Halim, Razman Mohd; Hassan, Hazirah
2017-11-01
Surface plasmon resonance (SPR) can only be achieved if sufficient energy is provided at the boundary between metal and dielectric. An employment of prism as a light coupler by using Kretschmann configuration is one of the alternative for the production of adequate energy to be generated as surface plasmon polaritons (SPP). This work is carried out to investigate the effect of physical structure of the prism and its refractive index to the excitation of SPPs. A 50nm gold thin metal film with dielectric constant of ɛ=-12.45i+1.3 was deposited on the hypotenuse surface of the prisms. The physical structures of the prisms were varied such as triangular, conical, hemispherical and half cylindrical. These prisms were classified into two types of refractive indices (RI), namely n=1.51(type BK7) and n=1.77(type SF11). Based on SPR curve analyses, we discovered that strong SPR signals which consist of 82.98% photons were excited as SPPs can be obtained by using type-BK7 prism with physical structures of hemispherical or half cylindrical. From the view of selectivity ability as sensors, the usage of type-SF11 prisms (half cylindrical and hemispherical) able to enhance this impressive feature in which sharp SPR curves with small FWHM values were obtained. In conclusion, apart from properties of thin film materials, the physical structure of prisms and their RI values play crucial roles to obtain optimum SPR signal. High sensitivity SPR sensor can be established with the appointment of type-BK7 prisms (hemispherical or half cylindrical shape) as light couplers.
Appalakondaiah, S; Vaitheeswaran, G; Lebègue, S
2013-05-14
We report a detailed theoretical study of the structural and vibrational properties of solid nitromethane using first principles density functional calculations. The ground state properties were calculated using a plane wave pseudopotential code with either the local density approximation, the generalized gradient approximation, or with a correction to include van der Waals interactions. Our calculated equilibrium lattice parameters and volume using a dispersion correction are found to be in reasonable agreement with the experimental results. Also, our calculations reproduce the experimental trends in the structural properties at high pressure. We found a discontinuity in the bond length, bond angles, and also a weakening of hydrogen bond strength in the pressure range from 10 to 12 GPa, picturing the structural transition from phase I to phase II. Moreover, we predict the elastic constants of solid nitromethane and find that the corresponding bulk modulus is in good agreement with experiments. The calculated elastic constants show an order of C11> C22 > C33, indicating that the material is more compressible along the c-axis. We also calculated the zone center vibrational frequencies and discuss the internal and external modes of this material under pressure. From this, we found the softening of lattice modes around 8-11 GPa. We have also attempted the quasiparticle band structure of solid nitromethane with the G0W0 approximation and found that nitromethane is an indirect band gap insulator with a value of the band gap of about 7.8 eV with G0W0 approximation. Finally, the optical properties of this material, namely the absorptive and dispersive part of the dielectric function, and the refractive index and absorption spectra are calculated and the contribution of different transition peaks of the absorption spectra are analyzed. The static dielectric constant and refractive indices along the three inequivalent crystallographic directions indicate that this material has a considerable optical anisotropy.
Dielectric Optical-Controllable Magnifying Lens by Nonlinear Negative Refraction
Cao, Jianjun; Shang, Ce; Zheng, Yuanlin; Feng, Yaming; Chen, Xianfeng; Liang, Xiaogan; Wan, Wenjie
2015-01-01
A simple optical lens plays an important role for exploring the microscopic world in science and technology by refracting light with tailored spatially varying refractive indices. Recent advancements in nanotechnology enable novel lenses, such as, superlens and hyperlens, with sub-wavelength resolution capabilities by specially designed materials’ refractive indices with meta-materials and transformation optics. However, these artificially nano- or micro-engineered lenses usually suffer high losses from metals and are highly demanding in fabrication. Here, we experimentally demonstrate, for the first time, a nonlinear dielectric magnifying lens using negative refraction by degenerate four-wave mixing in a plano-concave glass slide, obtaining magnified images. Moreover, we transform a nonlinear flat lens into a magnifying lens by introducing transformation optics into the nonlinear regime, achieving an all-optical controllable lensing effect through nonlinear wave mixing, which may have many potential applications in microscopy and imaging science. PMID:26149952
Refractive Index Sensing Using Visible Electromagnetic Resonances of Supported Cu2O Particles.
Susman, Mariano D; Vaskevich, Alexander; Rubinstein, Israel
2017-03-08
Plasmonic metal nanostructures, in colloidal or surface-supported forms, have been extensively studied in the context of metamaterials design and applications, in particular as refractometric sensing platforms. Recently, high refractive index (high-n) dielectric subwavelength structures have been experimentally shown to support strong Mie scattering resonances, predicted to exhibit analogous refractive index sensing capabilities. Here we present the first experimental demonstration of the use of supported high-n dielectric nano/microparticle ensembles as refractive index sensing platforms, using cuprous oxide as a model high-n material. Single-crystalline Cu 2 O particles were deposited on transparent substrates using a chemical deposition scheme, showing well-defined electric and magnetic dipolar resonances (EDR and MDR, respectively) in the visible range, which change in intensity and wavelength upon changing the medium refractive index (n m ). The significant modulation of the MDR intensity when n m is modified appears to be the most valuable empirical sensing parameter. The Mie scattering properties of Cu 2 O particles, particularly the spectral dependence of the MDR on n m , are theoretically modeled to support the experimental observations. MDR extinction changes (i.e., refractive index sensitivity) per particle are >100 times higher compared to localized surface plasmon resonance (LSPR) changes in supported Au nanoislands, encouraging the evaluation of Cu 2 O and other high-n dielectric particles and sensing modes in order to improve the sensitivity in optical (bio)sensing applications.
Negative refraction, gain and nonlinear effects in hyperbolic metamaterials.
Argyropoulos, Christos; Estakhri, Nasim Mohammadi; Monticone, Francesco; Alù, Andrea
2013-06-17
The negative refraction and evanescent-wave canalization effects supported by a layered metamaterial structure obtained by alternating dielectric and plasmonic layers is theoretically analyzed. By using a transmission-line analysis, we formulate a way to rapidly analyze the negative refraction operation for given available materials over a broad range of frequencies and design parameters, and we apply it to broaden the bandwidth of negative refraction. Our analytical model is also applied to explore the possibility of employing active layers for loss compensation. Nonlinear dielectrics can also be considered within this approach, and they are explored in order to add tunability to the optical response, realizing positive-to-zero-to-negative refraction at the same frequency, as a function of the input intensity. Our findings may lead to a better physical understanding and improvement of the performance of negative refraction and subwavelength imaging in layered metamaterials, paving the way towards the design of gain-assisted hyperlenses and tunable nonlinear imaging devices.
Dielectric studies on PEG-LTMS based polymer composites
NASA Astrophysics Data System (ADS)
Patil, Ravikumar V.; Praveen, D.; Damle, R.
2018-02-01
PEG LTMS based polymer composites were prepared and studied for dielectric constant variation with frequency and temperature as a potential candidate with better dielectric properties. Solution cast technique is used for the preparation of polymer composite with five different compositions. Samples show variation in dielectric constant with frequency and temperature. Dielectric constant is large at low frequencies and higher temperatures. Samples with larger space charges have shown larger dielectric constant. The highest dielectric constant observed was about 29244 for PEG25LTMS sample at 100Hz and 312 K.
Electromagnetic response of dielectric nanostructures in liquid crystals
NASA Astrophysics Data System (ADS)
Amanaganti, S.; Chowdhury, D. R.; Ravnik, M.; Dontabhaktuni, J.
2018-02-01
Sub-wavelength periodic metallic nanostructures give rise to very interesting optical phenomena like effective refractive index, perfect absorption, cloaking, etc. However, such metallic structures result in high dissipative losses and hence dielectric nanostructures are being considered increasingly to be an efficient alternative to plasmonic materials. High refractive index (RI) dielectric nanostructures exhibit magnetic and electric resonances simultaneously giving rise to interesting properties like perfect magnetic mirrors, etc. In the present work, we study light-matter interaction of cubic dielectric structures made of very high refractive index material Te in air. We observe a distinct band-like structure in both transmission and reflection spectra resulting from the interaction between magnetic and electric dipolar modes. FDTD simulations using CST software are performed to analyse the different modes excited at the band frequencies. The medium when replaced with liquid crystal gives rise to asymmetry in the band structure emphasizing one of the dominant magnetic modes at resonance frequencies. This will help in achieving a greater control on the excitation of the predominant magnetic dipolar modes at resonance frequencies with applications as perfect magnetic mirrors.
Equivalent refractive-index structure constant of non-Kolmogorov turbulence.
Li, Yujie; Zhu, Wenyue; Wu, Xiaoqing; Rao, Ruizhong
2015-09-07
The relationship between the non-Kolmogorov refractive-index structure constant and the Kolmogorov refractive-index structure constant is derived by using the refractive-index structure function and the variance of refractive-index fluctuations. It shows that the non-Kolmogorov structure constant is proportional to the Kolmogorov structure constant and the scaling factor depends on the outer scale and the spectral power law. For a fixed Kolmogorov structure constant, the non-Kolmogorov structure constant increases with a increasing outer scale for the power law less than 11/3, the trend is opposite for the power law greater than 11/3. This equivalent relation provides a way of obtaining the non-Kolmogorov structure constant by using the Kolmogorov structure constant.
NASA Astrophysics Data System (ADS)
Tiryaki, Erhan; Coşkun, Emre; Kocahan, Özlem; Özder, Serhat
2017-02-01
In this work, the Continuous Wavelet Transform (CWT) with Paul wavelet was improved as a tool for determination of refractive index dispersion of dielectric film by using the reflectance spectrum of the film. The reflectance spectrum was generated theoretically in the range of 0.8333 - 3.3333 μm wavenumber and it was analyzed with presented method. Obtained refractive index determined from various resolution of Paul wavelet were compared with the input values, and the importance of the tunable resolution with Paul wavelet was discussed briefly. The noise immunity and uncertainty of the method was also studied.
Structural, morphological and optical properties of ZnSe quantum dot thin films.
Zedan, I T; Azab, A A; El-Menyawy, E M
2016-02-05
ZnSe powder was prepared via hydrothermal technique using zinc acetate and sodium selenite as source materials. The prepared ZnSe powder was used for preparing film with different thickness values (95, 135 and 230 nm) via thermal evaporation technique. X-ray diffraction showed that the prepared powder has cubic zinc-blende structure with a space group, F43m. The high resolution transmittance electron microscope results show that the films are composed of spherical-shaped nanoparticles with a diameter in the range of 2-8 nm. The optical properties of ZnSe films with differing thicknesses are investigated by means of spectrophotometric measurements of the photoluminescence, transmittance and reflectance. The absorption coefficient of the films is calculated and the optical band gap is estimated. The refractive index of the films is determined and its normal dispersion behavior is analyzed on the basis of a single oscillator model, in which oscillator energy, dispersion energy and dielectric constant at high frequency are evaluated. Drude model is also applied to determine the lattice dielectric constant and the ratio of the carriers' concentration to their effective mass. Copyright © 2015 Elsevier B.V. All rights reserved.
Optical properties of InN thin films
NASA Astrophysics Data System (ADS)
Malakhov, Vladislav Y.
2000-04-01
The basic optical properties of low temperature plasma enhanced chemical reactionary sputtered (PECRS) InN thin films are presented. Optical absorption and reflectance spectra of InN polycrystalline films at room temperature in visible and near infrared (NIR) regions were taken to determine direct band gap energy (2.03 eV), electron plasma resonances energy (0.6 eV), damping constant (0.18 eV), and optical effective mass of electrons (0.11). In addition the UV and visible reflectance spectra have been used to reproduce accurately dielectric function of wurtzite InN for assignments of the peak structures to interband transitions (1.5 - 12.0 eV) as well as to determine dielectric constant (9.3) and refractive index (>3.0). The revealed reflectance peaks at 485 and 590 cm-1 respectively in IR spectra are connected with TO and LO optical vibration modes of InN films. Some TO (485 cm-1) and LO (585 cm-1) phonon features of indium nitride polycrystalline films on ceramics were observed in Raman spectra and also discussed. The excellent possibilities of InN polycrystalline layers for potential application in optoelectronic devices such as LEDs based InGaAlN and high efficiency solar cells are confirmed.
NASA Astrophysics Data System (ADS)
Gogoi, Pallavi; Mohan, Uttam; Borpuzari, Manash Protim; Boruah, Abhijit; Baruah, Surjya Kumar
2017-03-01
UV-Vis spectroscopy has established that Pyridine substitutes form n→σ* charge transfer (CT) complexes with molecular Iodine. This study is a combined approach of purely experimental UV-Vis spectroscopy, Multiple linear regression theory and Computational chemistry to analyze the effect of solvent upon the charge transfer band of 2-Methylpyridine-I2 and 2-Chloropyridine-I2 complexes. Regression analysis verifies the dependence of the CT band upon different solvent parameters. Dielectric constant and refractive index are considered among the bulk solvent parameters and Hansen, Kamlet and Catalan parameters are taken into consideration at the molecular level. Density Functional Theory results explain well the blue shift of the CT bands in polar medium as an outcome of stronger donor acceptor interaction. A logarithmic relation between the bond length of the bridging atoms of the donor and the acceptor with the dielectric constant of the medium is established. Tauc plot and TDDFT study indicates a non-vertical electronic transition in the complexes. Buckingham and Lippert Mataga equations are applied to check the Polarizability effect on the CT band.
NASA Astrophysics Data System (ADS)
Nakano, Kousuke; Sakai, Tomohiro
2018-01-01
We report on the performance of density functional theory (DFT) with the Tran-Blaha modified Becke-Johnson exchange potential and the random phase approximation dielectric function for optical constants of semiconductors in the ultraviolet-visible (UV-Vis) light region. We calculate optical bandgaps Eg, refractive indices n, and extinction coefficients k of 70 semiconductors listed in the Handbook of Optical Constants of Solids [(Academic Press, 1985), Vol. 1; (Academic Press, 1991), Vol. 2; and (Academic Press, 1998), Vol. 3] and compare the results with experimental values. The results show that the calculated bandgaps and optical constants agree well with the experimental values to within 0.440 eV for Eg, 0.246-0.299 for n, and 0.207-0.598 for k in root mean squared error (RMSE). The small values of the RMSEs indicate that the optical constants of semiconductors in the UV-Vis region can be quantitatively predicted even by a low-cost DFT calculation of this type.
Improved Dielectric Films For Capacitors
NASA Technical Reports Server (NTRS)
Yen, Shiao-Ping S.; Lewis, Carol R.; Cygan, Peter J.; Jow, T. Richard
1994-01-01
Dielectric films made from blends of some commercially available high-dielectric-constant cyanoresins with each other and with cellulose triacetate (CTA) have both high dielectric constants and high breakdown strengths. Dielectric constants as high as 16.2. Films used to produce high-energy-density capacitors.
NASA Astrophysics Data System (ADS)
Hammud, Hassan H.; Ghannoum, Amer; Masoud, Mamdouh S.
2006-02-01
Sixteen Schiff bases obtained from the condensation of benzaldehyde or salicylaldehyde with various amines (aniline, 4-carboxyaniline, phenylhydrazine, 2,4-dinitrophenylhydrazine, ethylenediamine, hydrazine, o-phenylenediamine and 2,6-pyridinediamine) are studied with UV-vis spectroscopy to observe the effect of solvents, substituents and other structural factors on the spectra. The bands involving different electronic transitions are interpreted. Computerized analysis and multiple regression techniques were applied to calculate the regression and correlation coefficients based on the equation that relates peak position λmax to the solvent parameters that depend on the H-bonding ability, refractive index and dielectric constant of solvents.
THz wave sensing for petroleum industrial applications
NASA Astrophysics Data System (ADS)
Al-Douseri, Fatemah M.; Chen, Yunqing; Zhang, X.-C.
2006-04-01
We present the results of terahertz (THz) sensing of gasoline products. The frequency-dependent absorption coefficients, refractive indices, and complex dielectric constants of gasoline and xylene isomers were extracted in the spectral range from 0.5 3.0 THz. The THz spectra of gasoline (#87, #89, #93) and related BTEX (benzene, toluene, ethylbenzene, and xylene) compounds were studied by using Fourier transform infrared spectroscopy (FTIR) in the 1.5 20 THz (50 660 cm-1). The xylene isomers, which are used as antiknock agent in gasoline were determined quantitatively in gasoline in the THz range. Our investigations show the potential of THz technology for the petroleum industrial applications.
Azzam, R M A
2016-05-01
The simplified explicit expressions derived by Andersen [J. Opt. Soc. Am. A33, 984 (2016)JOAOD60740-323210.1364/JOSAA.32.000984], that relate to angularly symmetric beam splitting by reflection and refraction at an air-dielectric interface recently described by Azzam [J. Opt. Soc. Am. A32, 2436 (2015)JOAOD60740-323210.1364/JOSAA.32.002436], are welcome. A few additional remarks are also included in my reply to Andersen's comment.
A numerical procedure for solving the inverse scattering problem for stratified dielectric media
NASA Astrophysics Data System (ADS)
Vogelzang, E.; Yevick, D.; Ferwerda, H. A.
1983-05-01
In this paper the refractive index profile of a dielectric stratified medium, terminated by a perfect conductor, is calculated from the complex reflection coefficient for monochromatic plane waves, incident from different directions. The advantage of this approach is that the dispersion of the refractive index does not enter the calculations. The calculation is based on the Marchenko and Gelfand-Levitan equations taking into account the bound modes of the layer. Some illustrative numerical examples are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joshi, Pooran C.; Compton, Brett G.; Li, Jianlin
2015-04-01
The purpose of this Cooperative Research and Development Agreement (CRADA) was to develop and evaluate ZrO 2/acrylic nanocomposite coatings for integrated optoelectronic applications. The formulations engineered to be compatible with roll-to-roll process were evaluated in terms of optical and dielectric properties. The uniform distribution of the ZrO 2 nanocrystals in the polymer matrix resulted in highly tunable refractive index and dielectric response suitable for advanced photonic and electronic device applications.
NASA Astrophysics Data System (ADS)
Gyanan; Mondal, Sandip; Kumar, Arvind
2016-12-01
Post-deposition annealing (PDA) is an inherent part of a sol-gel fabrication process to achieve the optimum device performance, especially in CMOS applications. Annealing removes the oxygen vacancies and improves the structural order of the dielectric films. The process also reduces the interface related defects and improves the interfacial properties. Here, we applied a sol-gel spin-coating technique to prepare high-k TiO2 films on the p-Si substrate. These films were fired at 400 °C for the duration of 20, 40, 60 and 80 min to know the effects of annealing time on the device characteristics. The current-voltage (I-V) and capacitance-voltage (C-V) characteristics of annealed TiO2 films were examined in Al/TiO2/p-Si device configuration at room temperature. The 60 min annealed film gives the optimum performance and contained 69.5% anatase and 39.5% rutile phase with refractive index 2.40 at 550 nm. The C-V and I-V characteristic showed a significant dependence on annealing time such as variation in dielectric constant and leakage current. This allows us to tune the various electrical properties of MOS systems. The accumulation capacitance (Cox), dielectric constant (κ) and the equivalent oxide thickness (EOT) of the film fired for 60 min were found to be 458 pF, 33, and 4.25 nm, respectively with a low leakage current density (3.13 × 10-7 A/cm2) fired for 80 min at -1 V. The current conduction mechanisms at high bias voltage were dominated by trap-charge limited current (TCLC), while at small voltages, space charge limited current (SCLC) was more prominent.
Processing of Al2O3/SrTiO3/PDMS Composites With Low Dielectric Loss
NASA Astrophysics Data System (ADS)
Yao, J. L.; Guo, M. J.; Qi, Y. B.; Zhu, H. X.; Yi, R. Y.; Gao, L.
2018-05-01
Polydimethylsiloxane (PDMS) is widely used in the electrical and electronic industries due to its excellent electrical insulation and biocompatible characteristics. However, the dielectric constant of pure PDMS is very low which restricts its applications. Herein, we report a series of PDMS/Al2O3/strontium titanate (ST) composites with high dielectric constant and low loss prepared by a simple experimental method. The composites exhibit high dielectric constant (relative dielectric constant is 4) after the composites are coated with insulated Al2O3 particles, and the dielectric constant gets further improved for composites with ST particles (dielectric constant reaches 15.5); a lower dielectric loss (tanδ= 0.05) is also found at the same time which makes co-filler composites suitable for electrical insulation products, and makes the experimental method more interesting in modern teaching.
47 CFR 73.184 - Groundwave field strength graphs.
Code of Federal Regulations, 2011 CFR
2011-10-01
... a dielectric constant of the ground (referred to air as unity) equal to 15 for land and 80 for sea..., Washington, DC 20554, (202) 632-7000. (c) Provided the value of the dielectric constant is near 15, the... dielectric constant, the following procedure may be used to determine the dielectric constant of the ground...
Scalora, Michael; D'Aguanno, Giuseppe; Mattiucci, Nadia; Bloemer, Mark J; de Ceglia, Domenico; Centini, Marco; Mandatori, Antonio; Sibilia, Concita; Akozbek, Neset; Cappeddu, Mirko G; Fowler, Mark; Haus, Joseph W
2007-01-22
We numerically demonstrate negative refraction of the Poynting vector and sub-wavelength focusing in the visible part of the spectrum using a transparent multilayer, metallo-dielectric photonic band gap structure. Our results reveal that in the wavelength regime of interest evanescent waves are not transmitted by the structure, and that the main underlying physical mechanisms for sub-wavelength focusing are resonance tunneling, field localization, and propagation effects. These structures offer several advantages: tunability and high transmittance (50% or better) across the visible and near IR ranges; large object-image distances, with image planes located beyond the range where the evanescent waves have decayed. From a practical point of view, our findings point to a simpler way to fabricate a material that exhibits negative refraction and maintains high transparency across a broad wavelength range. Transparent metallo-dielectric stacks also provide an opportunity to expand the exploration of wave propagation phenomena in metals, both in the linear and nonlinear regimes.
Petrowsky, Matt; Glatzhofer, Daniel T; Frech, Roger
2013-11-21
The dependence of the reaction rate on solvent dielectric constant is examined for the reaction of trihexylamine with 1-bromohexane in a series of 2-ketones over the temperature range 25-80 °C. The rate constant data are analyzed using the compensated Arrhenius formalism (CAF), where the rate constant assumes an Arrhenius-like equation that also contains a dielectric constant dependence in the exponential prefactor. The CAF activation energies are substantially higher than those obtained using the simple Arrhenius equation. A master curve of the data is observed by plotting the prefactors against the solvent dielectric constant. The master curve shows that the reaction rate has a weak dependence on dielectric constant for values approximately less than 10 and increases more rapidly for dielectric constant values greater than 10.
Strip dielectric wave guide antenna-for the measurement of dielectric constant of low-loss materials
NASA Astrophysics Data System (ADS)
Rastogi, Alok Kumar; Tiwari, A. K.; Shrivastava, R. P.
1993-07-01
The value of dielectric constant are the most important parameters in material science technology. In micro-wave and millimeter wave circuits using dielectric materials the values of this parameters should be known accurately. It is observed that the number of methods are reported in litrature, however these methods impose difficulties in experimentation and are not very accurate. In this paper a novel approach to the measurement of the dielectric constant of low loss materials at micro-wave and millimeter wave frequencies has been discussed. In this method by using antenna theory, a metallic strip dielectric guide is taken in to constideration and band reject phenomenon of dielectric antenna is used. Frequency response of an antenna in band reject mode is a function of the dimensional parameters, such as the metallic strip period, the profile of the metallic strip and the dielectric constant of the material used. Hence if one measure the frequency responce of the antenna in band reject mode, the dielectric constant of the material is determined provided all other parameters are known. This method gives a direct measure of dielectric constant and is quite accurate as computer techniques are used for evaluating the dielectric constant. This method verified experimentally also.
NASA Astrophysics Data System (ADS)
Bounab, S.; Bentabet, A.; Bouhadda, Y.; Belgoumri, Gh.; Fenineche, N.
2017-08-01
We have investigated the structural and electronic properties of the BAs x Sb 1- x , AlAs x Sb 1- x , GaAs x Sb 1- x and InAs x Sb 1- x semiconductor alloys using first-principles calculations under the virtual crystal approximation within both the density functional perturbation theory and the pseudopotential approach. In addition the optical properties have been calculated by using empirical methods. The ground state properties such as lattice constants, both bulk modulus and derivative of bulk modulus, energy gap, refractive index and optical dielectric constant have been calculated and discussed. The obtained results are in reasonable agreement with numerous experimental and theoretical data. The compositional dependence of the lattice constant, bulk modulus, energy gap and effective mass of electrons for ternary alloys show deviations from Vegard's law where our results are in agreement with the available data in the literature.
Fusco, Zelio; Rahmani, Mohsen; Bo, Renheng; Verre, Ruggero; Motta, Nunzio; Käll, Mikael; Neshev, Dragomir; Tricoli, Antonio
2018-06-04
Advances in the understanding and fabrication of plasmonic nanostructures have led to a plethora of unprecedented optoelectronic and optochemical applications. Plasmon resonance has found widespread use in efficient optical transducers of refractive index changes in liquids. However, it has proven challenging to translate these achievements to the selective detection of gases, which typically adsorb non-specifically and induce refractive index changes below the detection limit. Here, it's shown that integration of tailored fractals of dielectric TiO 2 nanoparticles on a plasmonic metasurface strongly enhances the interaction between the plasmonic field and volatile organic molecules and provides a means for their selective detection. Notably, this superior optical response is due to the enhancement of the interaction between the dielectric fractals and the plasmonic metasurface for thickness of up to 1.8 μm, much higher than the evanescent plasmonic near-field (≈30 nm) . Optimal dielectric-plasmonic structures allow measurements of changes in the refractive index of the gas mixture down to <8 × 10 -6 at room temperature and selective identification of three exemplary volatile organic compounds. These findings provide a basis for the development of a novel family of dielectric-plasmonic materials with application extending from light harvesting and photocatalysts to contactless sensors for noninvasive medical diagnostics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tunable surface plasmon devices
Shaner, Eric A [Rio Rancho, NM; Wasserman, Daniel [Lowell, MA
2011-08-30
A tunable extraordinary optical transmission (EOT) device wherein the tunability derives from controlled variation of the dielectric constant of a semiconducting material (semiconductor) in evanescent-field contact with a metallic array of sub-wavelength apertures. The surface plasmon resonance wavelength can be changed by changing the dielectric constant of the dielectric material. In embodiments of this invention, the dielectric material is a semiconducting material. The dielectric constant of the semiconducting material in the metal/semiconductor interfacial region is controllably adjusted by adjusting one or more of the semiconductor plasma frequency, the concentration and effective mass of free carriers, and the background high-frequency dielectric constant in the interfacial region. Thermal heating and/or voltage-gated carrier-concentration changes may be used to variably adjust the value of the semiconductor dielectric constant.
Ma, Yuzhe; Teng, Bing; Cao, Lifeng; Zhong, Degao; Ji, Shaohua; Teng, Fei; Liu, Jiaojiao; Yao, Yuan; Tang, Jie; Tong, Jiaming
2018-02-05
The efficient organic nonlinear optical material 4-hydroxy benzaldehyde-N-methyl 4-stilbazolium tosylate (HBST) was grown from methanol by slope nucleation method combined with slow cooling (SNM-SC) for the first time. The optimum growth conditions based on the cooling rate was further investigated. The single crystal X-ray diffraction (XRD) revealed that the chromophores of HBST crystal make an angle of about 33° with respect to the a-axis, which is close to the optimum of Terahertz (THz)-wave generation and electro-optics applications. NMR and FT-IR spectral studies have been performed to ascertain various functional groups present in the sample. Futhermore, the thermal stability and decomposition stages were analyzed through TG-DTA and DSC techniques. The dielectric constant and dielectric loss of HBST crystal have been studied. Critical optical properties like the absorption coefficient, refractive index, cut-off wavelength and band gap energy were calculated. Photoluminescence (PL) exication studies indicated green emission occured at 507nm. All the results of HBST crystal make it a promising candidate in the fields of optoelectronic and the generation of THz. Copyright © 2017 Elsevier B.V. All rights reserved.
Synthesis, characterization and optical properties of gelatin doped with silver nanoparticles.
Mahmoud, K H; Abbo, M
2013-12-01
In this study, silver nanoparticles were synthesized by chemical reduction of silver salt (AgNO3) solution. Formation of nanoparticles was confirmed by UV-visible spectrometry. The surface plasmon resonance peak is located at 430 nm. Doping of silver nanoparticles (Ag NPs) with gelatin biopolymer was studied. The silver content in the polymer matrix was in the range of 0.4-1 wt%. The formation of nanoparticles disappeared for silver content higher than 1 wt%. The morphology and interaction of gelatin doped with Ag NPs was examined by transmission electron microscopy and FTIR spectroscopy. The content of Ag NPs has a pronounced effect on optical and structural properties of gelatin. Optical parameters such as refractive index, complex dielectric constant were calculated. The dispersion of the refractive index was discussed in terms of the single--oscillator Wemple-DiDomenico model. Color properties of the prepared samples were discussed in the framework of CIE L(*)u(*)v(*) color space. Copyright © 2013 Elsevier B.V. All rights reserved.
Synthesis, characterization and optical properties of gelatin doped with silver nanoparticles
NASA Astrophysics Data System (ADS)
Mahmoud, K. H.; Abbo, M.
2013-12-01
In this study, silver nanoparticles were synthesized by chemical reduction of silver salt (AgNO3) solution. Formation of nanoparticles was confirmed by UV-visible spectrometry. The surface plasmon resonance peak is located at 430 nm. Doping of silver nanoparticles (Ag NPs) with gelatin biopolymer was studied. The silver content in the polymer matrix was in the range of 0.4-1 wt%. The formation of nanoparticles disappeared for silver content higher than 1 wt%. The morphology and interaction of gelatin doped with Ag NPs was examined by transmission electron microscopy and FTIR spectroscopy. The content of Ag NPs has a pronounced effect on optical and structural properties of gelatin. Optical parameters such as refractive index, complex dielectric constant were calculated. The dispersion of the refractive index was discussed in terms of the single - oscillator Wemple-DiDomenico model. Color properties of the prepared samples were discussed in the framework of CIE L*u*v* color space.
Synthesis and different optical properties of Gd2O3 doped sodium zinc tellurite glasses
NASA Astrophysics Data System (ADS)
Samanta, Buddhadev; Dutta, Dibakar; Ghosh, Subhankar
2017-06-01
A series of Gd2O3 doped sodium zinc tellurite [xGd2O3-(0.8-x) TeO2-0.1Na2O-0.1ZnO] glasses are prepared by the conventional melt quenching method and their optical properties have been studied. UV-vis spectrophotometric studies within the wavelength range from 230 nm-800 nm are carried out in the integrating sphere mode to study the effect of Gd2O3 doping on the optical band gap (Eg), refractive index (n), dielectric constant (εr) and susceptibility (χ). Other physical properties like molar volume, molar refraction, polarizability, metallization criterion, number density of rare-earth ions (N), polaron radius (rp), inter ionic distance (ri), molar cation polarizability (∑αi), number of oxide ions in chemical composition (NO2-), optical band gap based electronic oxide ion polarizability (αO2-) and optical basicity (Λ) of glass samples have been studied on the basis of UV-vis spectra and density profile of the different glasses.
NASA Technical Reports Server (NTRS)
Owen, R. B.
1972-01-01
A transmission electron microscopy study involving direct and replicating techniques is directed to a definition of the microstructure of radio frequency-sputtered, thin lead-dielectric cermet films. Once defined, this microstructure is used to obtain theoretical film refractive indices. The Maxwell Garnett theory provides a basis for the theoretical results. Measurements of film transmission and reflectivity are used to obtain rough experimental values for film refractive indices by the Tekucheva method. More exact values are obtained via ellipsometry. The rough Tekucheva values are used to determine the range over which computer calculations interpreting the ellipsometric results must be made. This technique yields accurate values for the film refractive indices.
Construction of Lines of Constant Density and Constant Refractive Index for Ternary Liquid Mixtures.
ERIC Educational Resources Information Center
Tasic, Aleksandar Z.; Djordjevic, Bojan D.
1983-01-01
Demonstrates construction of density constant and refractive index constant lines in triangular coordinate system on basis of systematic experimental determinations of density and refractive index for both homogeneous (single-phase) ternary liquid mixtures (of known composition) and the corresponding binary compositions. Background information,…
Vishwas, M; Rao, K Narasimha; Gowda, K V Arjuna; Chakradhar, R P S
2011-12-01
Titanium dioxide (TiO(2)) and silicon dioxide (SiO(2)) thin films and their mixed films were synthesized by the sol-gel spin coating method using titanium tetra isopropoxide (TTIP) and tetra ethyl ortho silicate (TEOS) as the precursor materials for TiO(2) and SiO(2) respectively. The pure and composite films of TiO(2) and SiO(2) were deposited on glass and silicon substrates. The optical properties were studied for different compositions of TiO(2) and SiO(2) sols and the refractive index and optical band gap energies were estimated. MOS capacitors were fabricated using TiO(2) films on p-silicon (100) substrates. The current-voltage (I-V) and capacitance-voltage (C-V) characteristics were studied and the electrical resistivity and dielectric constant were estimated for the films annealed at 200°C for their possible use in optoelectronic applications. Copyright © 2011 Elsevier B.V. All rights reserved.
Investigation of Fumed Silica/Aqueous NaCl Superdielectric Material.
Jenkins, Natalie; Petty, Clayton; Phillips, Jonathan
2016-02-20
A constant current charge/discharge protocol which showed fumed silica filled to the point of incipient wetness with aqueous NaCl solution to have dielectric constants >10⁸ over the full range of dielectric thicknesses of 0.38-3.9 mm and discharge times of 0.25->100 s was studied, making this material another example of a superdielectric. The dielectric constant was impacted by both frequency and thickness. For time to discharge greater than 10 s the dielectric constant for all thicknesses needed to be fairly constant, always >10⁸, although trending higher with increasing thickness. At shorter discharge times the dielectric constant consistently decreased, with decreasing time to discharge. Hence, it is reasonable to suggest that for time to discharge >10 s the dielectric constant at all thicknesses will be greater than 10⁸. This in turn implies an energy density for a 5 micron thick dielectric layer in the order of 350 J/cm³ for discharge times greater than 10 s.
Investigation of Fumed Silica/Aqueous NaCl Superdielectric Material
Jenkins, Natalie; Petty, Clayton; Phillips, Jonathan
2016-01-01
A constant current charge/discharge protocol which showed fumed silica filled to the point of incipient wetness with aqueous NaCl solution to have dielectric constants >108 over the full range of dielectric thicknesses of 0.38–3.9 mm and discharge times of 0.25–>100 s was studied, making this material another example of a superdielectric. The dielectric constant was impacted by both frequency and thickness. For time to discharge greater than 10 s the dielectric constant for all thicknesses needed to be fairly constant, always >109, although trending higher with increasing thickness. At shorter discharge times the dielectric constant consistently decreased, with decreasing time to discharge. Hence, it is reasonable to suggest that for time to discharge >10 s the dielectric constant at all thicknesses will be greater than 109. This in turn implies an energy density for a 5 micron thick dielectric layer in the order of 350 J/cm3 for discharge times greater than 10 s. PMID:28787918
Effect of glycerol and dimethyl sulfoxide on the phase behavior of lysozyme: Theory and experiments
NASA Astrophysics Data System (ADS)
Gögelein, Christoph; Wagner, Dana; Cardinaux, Frédéric; Nägele, Gerhard; Egelhaaf, Stefan U.
2012-01-01
Salt, glycerol, and dimethyl sulfoxide (DMSO) are used to modify the properties of protein solutions. We experimentally determined the effect of these additives on the phase behavior of lysozyme solutions. Upon the addition of glycerol and DMSO, the fluid-solid transition and the gas-liquid coexistence curve (binodal) shift to lower temperatures and the gap between them increases. The experimentally observed trends are consistent with our theoretical predictions based on the thermodynamic perturbation theory and the Derjaguin-Landau-Verwey-Overbeek model for the lysozyme-lysozyme pair interactions. The values of the parameters describing the interactions, namely the refractive indices, dielectric constants, Hamaker constant and cut-off length, are extracted from literature or are experimentally determined by independent experiments, including static light scattering, to determine the second virial coefficient. We observe that both, glycerol and DMSO, render the potential more repulsive, while sodium chloride reduces the repulsion.
NASA Astrophysics Data System (ADS)
Subhashini, R.; Sathya, D.; Sivashankar, V.; Latha Mageshwari, P. S.; Arjunan, S.
2016-12-01
Highly transparent solitary nonlinear semiorganic optical material Bis(L-threonine) copper (II) monohydrate [BLTCM], was synthesized by a conventional slow evaporation solution growth technique. The grown crystals were subjected to structural, optical, electrical, thermal, mechanical, SHG and Laser damage threshold studies. Single crystal XRD shows that the material crystallizes in monoclinic system with noncentrosymmetric space group P21. FT-IR and FT-RAMAN analyses confirm the various functional groups present in the grown crystal. The transparency range of BLTCM was determined by UV-vis-NIR studies and various optical constants such as extinction coefficient (K), refractive index, optical conductivity and electric susceptibility with real and imaginary parts of dielectric constant were calculated using the transmittance data which have applications in optoelectronic devices. Dielectric studies of the crystal were carried out at different frequencies and temperatures to analyze the electrical properties. TGA and DSC analyses were performed to study the thermal behaviour of the sample. The hardness stability of the grown specimen was investigated by Vickers microhardness test. The output intensity of second harmonic generation was confirmed using the Kurtz and Perry powder method. The laser induced surface damage threshold of the crystal was measured using Nd:YAG laser.
Role of dielectric constant in electrohydrodynamics of conducting fluids
NASA Technical Reports Server (NTRS)
Rhodes, Percy H.; Snyder, Robert S.; Roberts, Glyn O.
1992-01-01
Electrohydrodynamic (EHD) flows are driven by the interaction of an electric field with variations in electric conductivity or dielectric constant. In reported EHD experiments on the deformation of drops of immiscible dielectric fluids, the role of conductivity has tended to overshadow the role of dielectric constant. Often, large conductivity contrasts were convenient because the conductivities of the dielectric fluid were relatively uncertain. As a result, the observed effects were always qualitatively the same as if there had been no contrast in dielectric constant. Our early experiments studying the EHC deformations of cylindrical streams readily showed the conductivity effect but the dielectric constant effect was not discernible. We have modified our flow chamber and improved our method of observation and can now see an unequivocal dielectric constant effect which is in agreement with the prior theory. In this paper we first give a brief description of the physics of charge buildup at the interface of an immersed spherical drop or flowing cylindrical sample stream and then show how these charge distributions lead to interface distortions and accompanying viscous flows which constitute EHD. We next review theory and experiment describing the deformation of spherical drops. We show that in the reported drop deformation experiments, the contrast in dielectric constant was never sufficient to reverse the deformation due to the conductivity contrast. We review our work describing the deformation of a cylindrical stream of one fluid flowing in a parallel flow of another, and we compare the deformation equations with those for spherical drops. Finally, we show a definite experimental dielectric constant effect for cylindrical stream of aqueous polystyrene latex suspension. The dielectric constant varies with the frequency of the imposed electric field, and the associated EHD flow change is very apparent.
Surface Plasmon Waves on Thin Metal Films.
NASA Astrophysics Data System (ADS)
Craig, Alan Ellsworth
Surface-plasmon polaritons propagating on thin metal films bounded by dielectrics of nearly equal refractive indexes comprise two bound modes. Calculations indicate that, while the modes are degenerate on thick films, both the real and the imaginary components of the propagation constants for the modes split into two branches on successively thinner films. Considering these non-degenerate modes, the mode exhibiting a symmetric (antisymmetric) transverse profile of the longitudinally polarized electric field component, has propagation constant components both of which increase (decrease) with decreasing film thickness. Theoretical propagation constant eigenvalue (PCE) curves have been plotted which delineate this dependence of both propagation constant components on film thickness. By means of a retroreflecting, hemispherical glass coupler in an attenuated total reflection (ATR) configuration, light of wavelength 632.8 nm coupled to the modes of thin silver films deposited on polished glass substrates. Lorentzian lineshape dips in the plots of reflectance vs. angle of incidence indicate the presence of the plasmon modes. The real and imaginary components of the propagation constraints (i.e., the propagation constant and loss coefficient) were calculated from the angular positions and widths of the ATR resonances recorded. Films of several thicknesses were probed. Results which support the theoretically predicted curves were reported.
Myers, Tanya L; Tonkyn, Russell G; Danby, Tyler O; Taubman, Matthew S; Bernacki, Bruce E; Birnbaum, Jerome C; Sharpe, Steven W; Johnson, Timothy J
2018-04-01
For optical modeling and other purposes, we have created a library of 57 liquids for which we have measured the complex optical constants n and k. These liquids vary in their nature, ranging in properties that include chemical structure, optical band strength, volatility, and viscosity. By obtaining the optical constants, one can model most optical phenomena in media and at interfaces including reflection, refraction, and dispersion. Based on the works of others, we have developed improved protocols using multiple path lengths to determine the optical constants n/k for dozens of liquids, including inorganic, organic, and organophosphorus compounds. Detailed descriptions of the measurement and data reduction protocols are discussed; agreement of the derived optical constant n and k values with literature values are presented. We also present results using the n/k values as applied to an optical modeling scenario whereby the derived data are presented and tested for models of 1 µm and 100 µm layers for dimethyl methylphosphonate (DMMP) on both metal (aluminum) and dielectric (soda lime glass) substrates to show substantial differences between the reflected signal from highly reflective substrates and less-reflective substrates.
Yttrium oxide based three dimensional metamaterials for visible light cloaking
NASA Astrophysics Data System (ADS)
Rai, Pratyush; Kumar, Prashanth S.; Varadan, Vijay K.; Ruffin, Paul; Brantley, Christina; Edwards, Eugene
2014-04-01
Metamaterial with negative refractive index is the key phenomenon behind the concept of a cloaking device to hide an object from light in visible spectrum. Metamaterials made of two and three dimensional lattices of periodically placed electromagnetic resonant cells can achieve absorption and propagation of incident electromagnetic radiation as confined electromagnetic fields confined to a waveguide as surface plasmon polaritons, which can be used for shielding an object from in-tune electromagnetic radiation. The periodicity and dimensions of resonant cavity determine the frequency, which are very small as compared to the wavelength of incident light. Till now the phenomena have been demonstrated only for lights in near infrared spectrum. Recent advancements in fabrication techniques have made it possible to fabricate array of three dimensional nanostructures with cross-sections as small as 25 nm that are required for negative refractive index for wavelengths in visible light spectrum of 400-700 nm and for wider view angle. Two types of metamaterial designs, three dimensional concentric split ring and fishnet, are considered. Three dimensional structures consisted of metal-dielectric-metal stacks. The metal is silver and dielectric is yttrium oxide, other than conventional materials such as FR4 and Duroid. High κ dielectric and high refractive index as well as large crystal symmetry of Yttrium oxide has been investigated as encapsulating medium. Dependence of refractive index on wavelength and bandwidth of negative refractive index region are analyzed for application towards cloaking from light in visible spectrum.
Capacitive Cells for Dielectric Constant Measurement
ERIC Educational Resources Information Center
Aguilar, Horacio Munguía; Maldonado, Rigoberto Franco
2015-01-01
A simple capacitive cell for dielectric constant measurement in liquids is presented. As an illustrative application, the cell is used for measuring the degradation of overheated edible oil through the evaluation of their dielectric constant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koppal, V. V., E-mail: varshakoppal@gmail.com; Muddapur, G. V., E-mail: muddapur.gangadhar@gmail.com; Patil, N. R., E-mail: patilnr23@gmail.com
In this paper we attempted to record absorption and emission spectra of 2-acetyl-3H-benzo[f]chromen-3-one [2AHBC] laser dye in different solvents of varying polarities to investigate its solvatochromic behavior. The two electronic states dipole moments of 2AHBC are calculated using solvatochromic spectral shifts which are correlated with dielectric constant (ε) refractive index (n) of various solvents. A systematic approach is made to estimate ground and excited state dipole moments on the basis of different solvent correlation methods like Bilot-Kawski equations, Lippert-Mataga, Bakhsheiv, Kawaski-Chamma-Viallet and Reichardt methods. Dipole moments in the excited state was found to be higher than the ground state bymore » confirming π→π* transition.« less
Gabriel, Nicholas T; Kim, Sangho S; Talghader, Joseph J
2009-07-01
A mechanical design technique for optical coatings that simultaneously controls thermal deformation and optical reflectivity is reported. The method requires measurement of the refractive index and thermal stress of single films prior to the design. Atomic layer deposition was used for deposition because of the high repeatability of the film constants. An Al2O3/HfO2 distributed Bragg reflector was deposited with a predicted peak reflectivity of 87.9% at 542.4 nm and predicted edge deformation of -360 nm/K on a 10 cm silicon substrate. The measured peak reflectivity was 85.7% at 541.7 nm with an edge deformation of -346 nm/K.
The Effects of ph on Structural and Optical Characterization of Iron Oxide Thin Films
NASA Astrophysics Data System (ADS)
Tezel, Fatma Meydaneri; Özdemir, Osman; Kariper, I. Afşin
In this study, the iron oxide thin films have been produced by chemical bath deposition (CBD) method as a function of pH onto amorphous glass substrates. The surface images of the films were investigated with scanning electron microscope (SEM). The crystal structures, orientation of crystallization, crystallite sizes, and dislocation density i.e. structural properties of the thin films were analyzed with X-ray diffraction (XRD). The optical band gap (Eg), optical transmission (T%), reflectivity (R%), absorption coefficient (α), refraction index (n), extinction coefficient (k) and dielectric constant (ɛ) of the thin films were investigated depending on pH, deposition time, solution temperature, substrate temperature, thickness of the films by UV-VIS spectrometer.
Synthesis of carbon-based quantum dots from starch extracts: Optical investigations.
Al-Douri, Y; Badi, N; Voon, C H
2018-03-01
Carbon-based quantum dots (C-QDs) were synthesized through microwave-assisted carbonization of an aqueous starch suspension mediated by sulphuric and phosphoric acids. The as-prepared C-QDs showed blue, green and yellow luminescence without the addition of any surface-passivating agent. The C-QDs were further analyzed by UV-vis spectroscopy to measure the optical response of the organic compound. The energy gaps revealed narrow sizing of C-QDs in the semiconductor range. The optical refractive index and dielectric constant were investigated. The C-QDs size distribution was characterized. The results suggested an easy route to the large scale production of C-QDs materials. Copyright © 2017 John Wiley & Sons, Ltd.
Size and shape dependent optical properties of InAs quantum dots
NASA Astrophysics Data System (ADS)
Imran, Ali; Jiang, Jianliang; Eric, Deborah; Yousaf, Muhammad
2018-01-01
In this study Electronic states and optical properties of self assembled InAs quantum dots embedded in GaAs matrix have been investigated. Their carrier confinement energies for single quantum dot are calculated by time-independent Schrödinger equation in which hamiltonianian of the system is based on effective mass approximation and position dependent electron momentum. Transition energy, absorption coefficient, refractive index and high frequency dielectric constant for spherical, cylindrical and conical quantum dots with different sizes in different dimensions are calculated. Comparative studies have revealed that size and shape greatly affect the electronic transition energies and absorption coefficient. Peaks of absorption coefficients have been found to be highly shape dependent.
Sami, Selim; Haase, Pi A B; Alessandri, Riccardo; Broer, Ria; Havenith, Remco W A
2018-04-19
The low efficiency of organic photovoltaic (OPV) devices has often been attributed to the strong Coulombic interactions between the electron and hole, impeding the charge separation process. Recently, it has been argued that by increasing the dielectric constant of materials used in OPVs, this strong interaction could be screened. In this work, we report the application of periodic density functional theory together with the coupled perturbed Kohn-Sham method to calculate the electronic contribution to the dielectric constant for fullerene C 60 derivatives, a ubiquitous class of molecules in the field of OPVs. The results show good agreement with experimental data when available and also reveal an important undesirable outcome when manipulating the side chain to maximize the static dielectric constant: in all cases, the electronic contribution to the dielectric constant decreases as the side chain increases in size. This information should encourage both theoreticians and experimentalists to further investigate the relevance of contributions to the dielectric constant from slower processes like vibrations and dipolar reorientations for facilitating the charge separation, because electronically, enlarging the side chain of conventional fullerene derivatives only lowers the dielectric constant, and consequently, their electronic dielectric constant is upper bound by the one of C 60 .
2018-01-01
The low efficiency of organic photovoltaic (OPV) devices has often been attributed to the strong Coulombic interactions between the electron and hole, impeding the charge separation process. Recently, it has been argued that by increasing the dielectric constant of materials used in OPVs, this strong interaction could be screened. In this work, we report the application of periodic density functional theory together with the coupled perturbed Kohn–Sham method to calculate the electronic contribution to the dielectric constant for fullerene C60 derivatives, a ubiquitous class of molecules in the field of OPVs. The results show good agreement with experimental data when available and also reveal an important undesirable outcome when manipulating the side chain to maximize the static dielectric constant: in all cases, the electronic contribution to the dielectric constant decreases as the side chain increases in size. This information should encourage both theoreticians and experimentalists to further investigate the relevance of contributions to the dielectric constant from slower processes like vibrations and dipolar reorientations for facilitating the charge separation, because electronically, enlarging the side chain of conventional fullerene derivatives only lowers the dielectric constant, and consequently, their electronic dielectric constant is upper bound by the one of C60. PMID:29561616
Negative Dielectric Constant Material Based on Ion Conducting Materials
NASA Technical Reports Server (NTRS)
Gordon, Keith L. (Inventor); Kang, Jin Ho (Inventor); Park, Cheol (Inventor); Lillehei, Peter T. (Inventor); Harrison, Joycelyn S. (Inventor)
2017-01-01
Metamaterials or artificial negative index materials (NIMs) have generated great attention due to their unique and exotic electromagnetic properties. One exemplary negative dielectric constant material, which is an essential key for creating the NIMs, was developed by doping ions into a polymer, a protonated poly (benzimidazole) (PBI). The doped PBI showed a negative dielectric constant at megahertz (MHz) frequencies due to its reduced plasma frequency and an induction effect. The magnitude of the negative dielectric constant and the resonance frequency were tunable by doping concentration. The highly doped PBI showed larger absolute magnitude of negative dielectric constant at just above its resonance frequency than the less doped PBI.
Negative Dielectric Constant Material Based on Ion Conducting Materials
NASA Technical Reports Server (NTRS)
Gordon, Keith L. (Inventor); Kang, Jin Ho (Inventor); Harrison, Joycelyn S. (Inventor); Park, Cheol (Inventor); Lillehei, Peter T. (Inventor)
2014-01-01
Metamaterials or artificial negative index materials (NIMs) have generated great attention due to their unique and exotic electromagnetic properties. One exemplary negative dielectric constant material, which is an essential key for creating the NIMs, was developed by doping ions into a polymer, a protonated poly(benzimidazole) (PBI). The doped PBI showed a negative dielectric constant at megahertz (MHz) frequencies due to its reduced plasma frequency and an induction effect. The magnitude of the negative dielectric constant and the resonance frequency were tunable by doping concentration. The highly doped PBI showed larger absolute magnitude of negative dielectric constant at just above its resonance frequency than the less doped PBI.
NASA Astrophysics Data System (ADS)
Motaharifar, E.; Pierce, R. G.; Islam, R.; Henderson, R.; Hsu, J. W. P.; Lee, Mark
2018-01-01
In the effort to push the high-frequency performance of electronic circuits and signal interconnects from millimeter waves to beyond 1 THz, a quantitative knowledge of complex refraction index values and dispersion in potential dielectric substrate, encapsulation, waveguide, and packaging materials becomes critical. Here we present very broadband measurements of the real and imaginary index spectra of four polymeric dielectric materials considered for use in high-frequency electronics: benzocyclobutene (BCB), polyethylene naphthalate (PEN), the photoresist SU-8, and polydimethylsiloxane (PDMS). Reflectance and transmittance spectra from 3 to 75 THz were made using a Fourier transform spectrometer on freestanding material samples. These data were quantitatively analyzed, taking into account multiple partial reflections from front and back surfaces and molecular bond resonances, where applicable, to generate real and imaginary parts of the refraction index as a function of frequency. All materials showed signatures of infrared active organic molecular bond resonances between 10 and 50 THz. Low-loss transmission windows as well as anti-window bands of high dispersion and loss can be readily identified and incorporated into high-frequency design models.
Microscopic theoretical study of frequency dependent dielectric constant of heavy fermion systems
NASA Astrophysics Data System (ADS)
Shadangi, Keshab Chandra; Rout, G. C.
2017-05-01
The dielectric polarization and the dielectric constant plays a vital role in the deciding the properties of the Heavy Fermion Systems. In the present communication we consider the periodic Anderson's Model which consists of conduction electron kinetic energy, localized f-electron kinetic energy and the hybridization between the conduction and localized electrons, besides the Coulomb correlation energy. We calculate dielectric polarization which involves two particle Green's functions which are calculated by using Zubarev's Green's function technique. Using the equations of motion of the fermion electron operators. Finally, the temperature and frequency dependent dielectric constant is calculated from the dielectric polarization function. The charge susceptibility and dielectric constant are computed numerically for different physical parameters like the position (Ef) of the f-electron level with respect to fermi level, the strength of the hybridization (V) between the conduction and localized f-electrons, Coulomb correlation potential temperature and optical phonon wave vector (q). The results will be discussed in a reference to the experimental observations of the dielectric constants.
NASA Astrophysics Data System (ADS)
Huang, Cheng
High performance soft electronic materials are key elements in advanced electronic devices for broad range applications including capacitors, actuators, artificial muscles and organs, smart materials and structures, microelectromechanical (MEMS) and microfluidic devices, acoustic devices and sensors. This thesis exploits new approaches to improve the electromechanical response and dielectric response of these materials. By making use of novel material phenomena such as large anisotropy in dipolar response in liquid crystals (LCs) and all-organic composites in which high dielectric constant organic solids and conductive polymers are either physically blended into or chemically grafted to a polymer matrix, we demonstrate that high dielectric constant and high electromechanical conversion efficiency comparable to that in ceramic materials can be achieved. Nano-composite approach can also be utilized to improve the performance of the electronic electroactive polymers (EAPs) and composites, for example, exchange coupling between the fillers and matrix with very large dielectric contrast can lead to significantly enhance the dielectric response as well as electromechanical response when the heterogeneity size of the composite is comparable to the exchange length. In addition to the dielectric composites, in which high dielectric constant fillers raise the dielectric constant of composites, conductive percolation can also lead to high dielectric constant in polymeric materials. An all-polymer percolative composite is introduced which exhibits very high dielectric constant (>7,000). The flexible all-polymer composites with a high dielectric constant make it possible to induce a high electromechanical response under a much reduced electric field in the field effect electroactive polymer (EAP) actuators (a strain of 2.65% with an elastic energy density of 0.18 J/cm3 can be achieved under a field of 16 V/mum). Agglomeration of the particles can also be effectively prevented by in situ preparation. High dielectric constant copper phthalocyanine oligomer and conductive polyaniline oligomer were successfully bonded to polyurethane backbone to form fully functionalized nano-phase polymers. Improvement of dispersibility of oligomers in polymer matrix makes the system self-organize the nanocomposites possessing oligomer nanophase (below 30nm) within the fully functionalized polymers. The resulting nanophase polymers significantly enhance the interface effect, which through the exchange coupling raises the dielectric response markedly above that expected from simple mixing rules for dielectric composites. Consequently, these nano-phase polymers offer a high dielectric constant (a dielectric constant near 1,000 at 20 Hz), improve the breakdown field and mechanical properties, and exhibit high electromechanical response. A longitudinal strain of more than -14% can be induced under a much reduced field, 23 V/mum, with an elastic energy density of higher than 1 J/cm3. The elastic modulus is as high as 100MPa, and a transverse strain is 7% under the same field. (Abstract shortened by UMI.)
Rigorous theoretical framework for particle sizing in turbid colloids using light refraction.
García-Valenzuela, Augusto; Barrera, Rubén G; Gutierrez-Reyes, Edahí
2008-11-24
Using a non-local effective-medium approach, we analyze the refraction of light in a colloidal medium. We discuss the theoretical grounds and all the necessary precautions to design and perform experiments to measure the effective refractive index in dilute colloids. As an application, we show that it is possible to retrieve the size of small dielectric particles in a colloid by measuring the complex effective refractive index and the volume fraction occupied by the particles.
NASA Astrophysics Data System (ADS)
Kumar, P.; Kaur, J.; Tripathi, S. K.; Sharma, I.
2017-12-01
Non-crystalline thin films of Ge20Te80-xSbx (x = 0, 2, 4, 6, 10) systems were deposited on glass substrate using thermal evaporation technique. The optical coefficients were accurately determined by transmission spectra using Swanepoel envelope method in the spectral region of 400-1600 nm. The refractive index was found to increase from 2.38 to 2.62 with the corresponding increase in Sb content over the entire spectral range. The dispersion of refractive index was discussed in terms of the single oscillator Wemple-DiDomenico model. Tauc relation for the allowed indirect transition showed decrease in optical band gap. To explore non-linearity, the spectral dependence of third order susceptibility of a-Ge-Te-Sb thin films was evaluated from change of index of refraction using Miller's rule. Susceptibility values were found to enhance rapidly from 10-13 to 10-12 (esu), with the red shift in the absorption edge. Non-linear refractive index was calculated by Fourier and Snitzer formula. The values were of the order of 10-12 esu. At telecommunication wavelength, these non-linear refractive index values showed three orders higher than that of silica glass. Dielectric constant and optical conductivity were also reported. The prepared Sb doped thin films on glass substrate with observed improved functional properties have a noble prospect in the application of nonlinear optical devices and might be used for a high speed communication fiber. Non-linear parameters showed good agreement with the values given in the literature.
Kovács, Petra Veszelovszki; Lemmer, Balázs; Keszthelyi-Szabó, Gábor; Hodúr, Cecilia; Beszédes, Sándor
2018-05-01
It has been numerously verified that microwave radiation could be advantageous as a pre-treatment for enhanced disintegration of sludge. Very few data related to the dielectric parameters of wastewater of different origins are available; therefore, the objective of our work was to measure the dielectric constant of municipal and meat industrial wastewater during a continuous flow operating microwave process. Determination of the dielectric constant and its change during wastewater and sludge processing make it possible to decide on the applicability of dielectric measurements for detecting the organic matter removal efficiency of wastewater purification process or disintegration degree of sludge. With the measurement of dielectric constant as a function of temperature, total solids (TS) content and microwave specific process parameters regression models were developed. Our results verified that in the case of municipal wastewater sludge, the TS content has a significant effect on the dielectric constant and disintegration degree (DD), as does the temperature. The dielectric constant has a decreasing tendency with increasing temperature for wastewater sludge of low TS content, but an adverse effect was found for samples with high TS and organic matter contents. DD of meat processing wastewater sludge was influenced significantly by the volumetric flow rate and power level, as process parameters of continuously flow microwave pre-treatments. It can be concluded that the disintegration process of food industry sludge can be detected by dielectric constant measurements. From technical purposes the applicability of dielectric measurements was tested in the purification process of municipal wastewater, as well. Determination of dielectric behaviour was a sensitive method to detect the purification degree of municipal wastewater.
NASA Astrophysics Data System (ADS)
Su, Jinlong; Tian, Yan; Hu, Fei; Gui, Liangqi; Cheng, Yayun; Peng, Xiaohui
2017-10-01
Dielectric constant is an important role to describe the properties of matter. This paper proposes This paper proposes the concept of mixed dielectric constant(MDC) in passive microwave radiometric measurement. In addition, a MDC inversion method is come up, Ratio of Angle-Polarization Difference(RAPD) is utilized in this method. The MDC of several materials are investigated using RAPD. Brightness temperatures(TBs) which calculated by MDC and original dielectric constant are compared. Random errors are added to the simulation to test the robustness of the algorithm. Keywords: Passive detection, microwave/millimeter, radiometric measurement, ratio of angle-polarization difference (RAPD), mixed dielectric constant (MDC), brightness temperatures, remote sensing, target recognition.
NASA Astrophysics Data System (ADS)
Shen, Jian; Liu, Shouhua; Shen, Zicai; Shao, Jianda; Fan, Zhengxiu
2006-03-01
A model for refractive index of stratified dielectric substrate was put forward according to theories of inhomogeneous coatings. The substrate was divided into surface layer, subsurface layer and bulk layer along the normal direction of its surface. Both the surface layer (separated into N1 sublayers of uniform thickness) and subsurface layer (separated into N2 sublayers of uniform thickness), whose refractive indices have different statistical distributions, are equivalent to inhomogeneous coatings, respectively. And theoretical deduction was carried out by employing characteristic matrix method of optical coatings. An example of mathematical calculation for optical properties of dielectric coatings had been presented. The computing results indicate that substrate subsurface defects can bring about additional bulk scattering and change propagation characteristic in thin film and substrate. Therefore, reflectance, reflective phase shift and phase difference of an assembly of coatings and substrate deviate from ideal conditions. The model will provide some beneficial theory directions for improving optical properties of dielectric coatings via substrate surface modification.
NASA Astrophysics Data System (ADS)
Sajid-ur-Rehman; Butt, Faheem K.; Li, Chuanbo; Ul Haq, Bakhtiar; Tariq, Zeeshan; Aleem, F.
2018-06-01
This study is focused on calculation of the electronic structure and optical properties of non-metal doped Sb2Se3 using the first-principles method. One and two N atoms are introduced to Sb and Se sites in a Sb2Se3 crystal. When one and two N atoms are introduced into the Sb2Se3 lattice at Sb sites, the electronic structure shows that the doping significantly modifies the bandgap of Sb2Se3 from 1.11 eV to 0.787 and 0.685 eV, respectively. When N atoms are introduced to Se sites, the material shows a metallic behavior. The static dielectric constants ɛ1(0) for Sb16Se24, Sb15N1Se24, Sb14N2Se24, Sb16Se23N1, and Sb16Se22N2 are 14.84, 15.54, 15.02, 18.9, and 39.29, respectively. The calculated values of the refractive index n(0) for Sb16Se24, Sb15N1Se24, Sb14N2Se24, Sb16Se23N1, and Sb16Se22N2 are 3.83, 3.92, 3.86, 4.33, and 6.21, respectively. The optical absorbance and optical conductivity curves of the crystal for N-doping at Sb sites show a significant redshift towards the short-wave infrared spectral region as compared to N-doping at Se sites. The modulation of the static refractive index and static dielectric constant is mainly dependent on the doping level. The optical properties and bandgap narrowing effect suggest that the N-doped Sb2Se3is a promising new semiconductor and can be a replacement for GaSb due to its very similar bandgap and low cost.
NASA Astrophysics Data System (ADS)
Biskri, Z. E.; Rached, H.; Bouchear, M.; Rached, D.; Aida, M. S.
2016-10-01
The aim of this paper is a comparative study of structural stability and mechanical and optical properties of fluorapatite (FA) (Ca5(PO4)3F) and lithium disilicate (LD) (Li2Si2O5), using the first principles pseudopotential method based on density functional theory (DFT) within the generalized gradient approximation (GGA). The stability of fluorapatite and lithium disilicate compounds has been evaluated on the basis of their formation enthalpies. The results show that fluorapatite is more energetically stable than lithium disilicate. The independent elastic constants and related mechanical properties, including bulk modulus ( B), shear modulus ( G), Young's modulus ( E) and Poisson's ratio ( ν) as well as the Vickers hardness ( H v), have been calculated for fluorapatite compound and compared with other theoretical and experimental results. The obtained values of the shear modulus, Young's modulus and Vickers hardness are smaller in comparison with those of lithium disilicate compound, implying that lithium disilicate is more rigid than fluorapatite. The brittle and ductile properties were also discussed using B/ G ratio and Poisson's ratio. Optical properties such as refractive index n( ω), extinction coefficient k( ω), absorption coefficient α( ω) and optical reflectivity R( ω) have been determined from the calculations of the complex dielectric function ɛ( ω), and interpreted on the basis of the electronic structures of both compounds. The calculated values of static dielectric constant ɛ 1(0) and static refractive index n(0) show that the Li2Si2O5 compound has larger values compared to those of the Ca5(PO4)3F compound. The results of the extinction coefficient show that Li2Si2O5 compound exhibits a much stronger ultraviolet absorption. According to the absorption and reflectivity spectra, we inferred that both compounds are theoretically the best visible and infrared transparent materials.
Fundamental Insight on Developing Low Dielectric Constant Polyimides
NASA Technical Reports Server (NTRS)
Simpson, J. O.; SaintClair, A. K.
1997-01-01
Thermally stable, durable, insulative polyimides are in great demand for the fabrication of microelectronic devices. In this investigation dielectric and optical properties have been studied for several series of aromatic polyimides. The effect of polarizability, fluorine content, and free volume on dielectric constant was examined. In general, minimizing polarizability, maximizing free volume and fluorination all lowered dielectric constants in the polyimides studied.
Tarvin, Jeffrey A.
1987-01-01
An optical dielectric humidity sensor which includes a dielectric mirror having multiple alternating layers of two porous water-adsorbent dielectric materials with differing indices of refraction carried by a translucent substrate. A narrow-band polarized light source is positioned to direct light energy onto the mirror, and detectors are positioned to receive light energy transmitted through and reflected by the mirror. A ratiometer indicates humidity in the atmosphere which surrounds the dielectric mirror as a function of a ratio of light energies incident on the detectors.
Tarvin, J.A.
1987-02-10
An optical dielectric humidity sensor is disclosed which includes a dielectric mirror having multiple alternating layers of two porous water-adsorbent dielectric materials with differing indices of refraction carried by a translucent substrate. A narrow-band polarized light source is positioned to direct light energy onto the mirror, and detectors are positioned to receive light energy transmitted through and reflected by the mirror. A ratiometer indicates humidity in the atmosphere which surrounds the dielectric mirror as a function of a ratio of light energies incident on the detectors. 2 figs.
Interference phenomena in the refraction of a surface polariton by vertical dielectric barriers
NASA Technical Reports Server (NTRS)
Shen, T. P.; Wallis, R. F.; Maradudin, A. A.; Stegeman, G. I.
1984-01-01
A normal mode analysis is used to calculate the transmission and reflection coefficients for a surface polariton propagating along the interface between a surface active medium and a dielectric and incident normally on a vertical dielectric barrier of finite thickness or a thin dielectric film of finite length. The efficiencies of conversion of the surface polariton into transmitted and reflected bulk waves are also determined. The radiation patterns associated with the latter waves are presented.
Realization of a complementary medium using dielectric photonic crystals.
Xu, Tao; Fang, Anan; Jia, Ziyuan; Ji, Liyu; Hang, Zhi Hong
2017-12-01
By exploiting the scaling invariance of photonic band diagrams, a complementary photonic crystal slab structure is realized by stacking two uniformly scaled double-zero-index dielectric photonic crystal slabs together. The space cancellation effect in complementary photonic crystals is demonstrated in both numerical simulations and microwave experiments. The refractive index dispersion of double-zero-index dielectric photonic crystal is experimentally measured. Using pure dielectrics, our photonic crystal structure will be an ideal platform to explore various intriguing properties related to a complementary medium.
Organic solar cells based on high dielectric constant materials: An approach to increase efficiency
NASA Astrophysics Data System (ADS)
Hamam, Khalil Jumah Tawfiq
The efficiency of organic solar cells still lags behind inorganic solar cells due to their low dielectric constant which results in a weakly screened columbic attraction between the photogenerated electron-hole system, therefore the probability of charge separating is low. Having an organic material with a high dielectric constant could be the solution to get separated charges or at least weakly bounded electron-hole pairs. Therefore, high dielectric constant materials have been investigated and studied by measuring modified metal-phthalocyanine (MePc) and polyaniline in pellets and thin films. The dielectric constant was investigated as a function of temperature and frequency in the range of 20Hz to1MHz. For MePc we found that the high dielectric constant was an extrinsic property due to water absorption and the formation of hydronuim ion allowed by the ionization of the functional groups such as sulphonated and carboxylic groups. The dielectric constant was high at low frequencies and decreasing as the frequency increase. Investigated materials were applied in fabricated bilayer heterojunction organic solar cells. The application of these materials in an organic solar cells show a significant stability under room conditions rather than improvement in their efficiency.
Determination of mass density, dielectric, elastic, and piezoelectric constants of bulk GaN crystal.
Soluch, Waldemar; Brzozowski, Ernest; Lysakowska, Magdalena; Sadura, Jolanta
2011-11-01
Mass density, dielectric, elastic, and piezoelectric constants of bulk GaN crystal were determined. Mass density was obtained from the measured ratio of mass to volume of a cuboid. The dielectric constants were determined from the measured capacitances of an interdigital transducer (IDT) deposited on a Z-cut plate and from a parallel plate capacitor fabricated from this plate. The elastic and piezoelectric constants were determined by comparing the measured and calculated SAW velocities and electromechanical coupling coefficients on the Z- and X-cut plates. The following new constants were obtained: mass density p = 5986 kg/m(3); relative dielectric constants (at constant strain S) ε(S)(11)/ε(0) = 8.6 and ε(S)(11)/ε(0) = 10.5, where ε(0) is a dielectric constant of free space; elastic constants (at constant electric field E) C(E)(11) = 349.7, C(E)(12) = 128.1, C(E)(13) = 129.4, C(E)(33) = 430.3, and C(E)(44) = 96.5 GPa; and piezoelectric constants e(33) = 0.84, e(31) = -0.47, and e(15) = -0.41 C/m(2).
Topics in electromagnetic, acoustic, and potential scattering theory
NASA Astrophysics Data System (ADS)
Nuntaplook, Umaporn
With recent renewed interest in the classical topics of both acoustic and electromagnetic aspects for nano-technology, transformation optics, fiber optics, metamaterials with negative refractive indices, cloaking and invisibility, the topic of time-independent scattering theory in quantum mechanics is becoming a useful field to re-examine in the above contexts. One of the key areas of electromagnetic theory scattering of plane electromagnetic waves --- is based on the properties of the refractive indices in the various media. It transpires that the refractive index of a medium and the potential in quantum scattering theory are intimately related. In many cases, understanding such scattering in radially symmetric media is sufficient to gain insight into scattering in more complex media. Meeting the challenge of variable refractive indices and possibly complicated boundary conditions therefore requires accurate and efficient numerical methods, and where possible, analytic solutions to the radial equations from the governing scalar and vector wave equations (in acoustics and electromagnetic theory, respectively). Until relatively recently, researchers assumed a constant refractive index throughout the medium of interest. However, the most interesting and increasingly useful cases are those with non-constant refractive index profiles. In the majority of this dissertation the focus is on media with piecewise constant refractive indices in radially symmetric media. The method discussed is based on the solution of Maxwell's equations for scattering of plane electromagnetic waves from a dielectric (or "transparent") sphere in terms of the related Helmholtz equation. The main body of the dissertation (Chapters 2 and 3) is concerned with scattering from (i) a uniform spherical inhomogeneity embedded in an external medium with different properties, and (ii) a piecewise-uniform central inhomogeneity in the external medium. The latter results contain a natural generalization of the former (previously known) results. The link with time-independent quantum mechanical scattering, via morphology-dependent resonances (MDRs), is discussed in Chapter 2. This requires a generalization of the classical problem for scattering of a plane wave from a uniform spherically-symmetric inhomogeneity (in which the velocity of propagation is a function only of the radial coordinate r. i.e.. c = c(r)) to a piecewise-uniform inhomogeneity. In Chapter 3 the Jost-function formulation of potential scattering theory is used to solve the radial differential equation for scattering which can be converted into an integral equation corresponding via the Jost boundary conditions. The first two iterations for the zero angular momentum case l = 0 are provided for both two-layer and three-layer models. It is found that the iterative technique is most useful for long wavelengths and sufficiently small ratios of interior and exterior wavenumbers. Exact solutions are also provided for these cases. In Chapter 4 the time-independent quantum mechanical 'connection' is exploited further by generalizing previous work on a spherical well potential to the case where a delta 'function' potential is appended to the exterior of the well (for l ≠ 0). This corresponds to an idealization of the former approach to the case of a 'coated sphere'. The poles of the associated 'S-matrix' are important in this regard, since they correspond directly with the morphology-dependent resonances discussed in Chapter 2. These poles (for the l = 0 case, to compare with Nussenzveig's analysis) are tracked in the complex wavenumber plane as the strength of the delta function potential changes. Finally, a set of 4 Appendices is provided to clarify some of the connections between (i) the scattering of acoustic/electromagnetic waves from a penetrable/dielectric sphere and (ii) time-independent potential scattering theory in quantum mechanics. This, it is hoped, will be the subject of future work.
Surface plasmon optical sensor with enhanced sensitivity using top ZnO thin film
NASA Astrophysics Data System (ADS)
Bao, Ming; Li, Ge; Jiang, Dongmei; Cheng, Wenjuan; Ma, Xueming
2012-05-01
Surface plasmon resonance (SPR) is one of the most sensitive label-free detection methods and has been used in a wide range of chemical and biochemical sensing. Upon using a 200 nm top layer of dielectric film with a high value of the real part ɛ' of the dielectric function, on top of an SPR sensor in the Kretschmann configuration, the sensitivity is improved. The refractive index effect of dielectric film on sensitivity is usually ignored. Dielectric films with different refractive indices were prepared by radio frequency magnetron (RF) sputtering and measured with spectroscopic ellipsometry (SE). The imaginary part ɛ'' of the top nanolayer permittivity needs to be small enough in order to reduce the losses and get sharper dips. The stability of the sensor is also improved because the nanolayer is protecting the Ag film from interacting with the environment. The response curves of the Ag/ZnO chips were obtained by using SPR sensor. Theoretical analysis of the sensitivity of the SPR sensors with different ZnO film refractive indices is presented and studied. Both experimental and simulation results show that the Ag/ZnO films exhibit an enhanced SPR over the pure Ag film with a narrower full width at half maximum (FWHM). It shows that the top ZnO layer is effective in enhancing the surface plasmon resonance and thus its sensitivity.
NASA Astrophysics Data System (ADS)
Mukherjee, Rupam; Garcia, Lucia; Lawes, Gavin; Nadgorny, Boris
2014-03-01
We have investigated the large dielectric enhancement at the percolation threshold by introducing metallic RuO2 grains into a matrix of CaCu3Ti4O12 (CCTO). The intrinsic response of the pure CCTO samples prepared by solid state and sol-gel processes results in a dielectric constant on the order of 104 and 103 respectively with low loss. Scanning electron microscopy and energy dispersive x-ray spectroscopy indicate that a difference in the thickness of the copper oxide enriched grain boundary is the main reason for the different dielectric properties between these two samples. Introducing RuO2 metallic fillers in these CCTO samples yields a sharp increase of the dielectric constant at percolation threshold fc, by a factor of 6 and 3 respectively. The temperature dependence of the dielectric constant shows that the dipolar relaxation plays an important role in enhancing dielectric constant in composite systems.
Dielectric properties of CaCu3Ti4O12-silicone resin composites
NASA Astrophysics Data System (ADS)
Babu, Sanjesh; Singh, Kirti; Govindan, Anil
2012-06-01
CaCu3Ti4O12 (CCTO)-silicone resin composites with various CCTO volume fractions were prepared. Relatively high dielectric constant ( ɛ=119) and low loss (tan δ=0.35) of the composites with CCTO volume fraction of 0.9 were observed. Two theoretical models were employed to predict the dielectric constant of these composites; the dielectric constant obtained via the Maxwell-Garnett model was in close agreement with the experimental data. The dielectric constant of CCTO-silicone resin composites showed a weak frequency dependence at the measuring frequency range and the loss tangent apparently decreases with increase in frequency.
Optical Refraction in Silver: Counterposition, Negative Phase Velocity and Orthogonal Phase Velocity
ERIC Educational Resources Information Center
Naqvi, Qaisar A.; Mackay, Tom G.; Lakhtakia, Akhlesh
2011-01-01
Complex behaviour associated with metamaterials can arise even in commonplace isotropic dielectric materials. We demonstrate how silver, for example, can support negative phase velocity and counterposition, but not negative refraction, at optical frequencies. The transition from positive to negative phase velocity is not accompanied by remarkable…
Application of the compensated arrhenius formalism to dielectric relaxation.
Petrowsky, Matt; Frech, Roger
2009-12-17
The temperature dependence of the dielectric rate constant, defined as the reciprocal of the dielectric relaxation time, is examined for several groups of organic solvents. Early studies of linear alcohols using a simple Arrhenius equation found that the activation energy was dependent on the chain length of the alcohol. This paper re-examines the earlier data using a compensated Arrhenius formalism that assumes the presence of a temperature-dependent static dielectric constant in the exponential prefactor. Scaling temperature-dependent rate constants to isothermal rate constants so that the dielectric constant dependence is removed results in calculated energies of activation E(a) in which there is a small increase with chain length. These energies of activation are very similar to those calculated from ionic conductivity data using compensated Arrhenius formalism. This treatment is then extended to dielectic relaxation data for n-alkyl bromides, n-nitriles, and n-acetates. The exponential prefactor is determined by dividing the temperature-dependent rate constants by the Boltzmann term exp(-E(a)/RT). Plotting the prefactors versus the static dielectric constant places the data on a single master curve for each group of solvents.
Radiative transfer in a plane stratified dielectric
NASA Technical Reports Server (NTRS)
Wilheit, T. T., Jr.
1975-01-01
A model is developed for calculating radiative transfer in a stratified dielectric. This model is used to show that the reflectivity of a stratified dielectric is primarily determined by gradients in the real part of the refractive index over distances on the order of 1/10 wavelength in the medium. The effective temperature of the medium is determined by the thermodynamic temperature profile over distances of the order delta T.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myers, Tanya L.; Tonkyn, Russell G.; Danby, Tyler O.
For optical modeling and other purposes, we have created a library of 57 liquids for which we have measured the complex optical constants n and k. These liquids vary in their nature, ranging in properties including chemical structure, optical band strength, volatility and viscosity. By obtaining the optical constants one can in principle model most optical phenomena in media and at interfaces including reflection, refraction and dispersion. Based on the original methods of J.E. Bertie et al.1 [1Bert1], we have developed improved protocols using multiple path lengths to determine the optical constants n/k for dozens of liquids, including inorganic, organicmore » and organophosphorus compounds. Detailed descriptions of the measurement and data reduction protocols are discussed; agreement of the derived optical constant n and k values with literature values are presented. We also present results using the n/k values as applied to an optical modeling scenario whereby the derived data are presented and tested for models of 1 µm and 100 µm layers for DMMP (dimethyl methyl phosphonate) on both metal (aluminum) and dielectric (soda lime glass) substrates to show substantial differences between the reflected signal from highly reflective substrates and less-reflective substrates.« less
Simultaneous measurement of refractive index and temperature based on all-dielectric metasurface.
Hu, Jie; Lang, Tingting; Shi, Guo-Hua
2017-06-26
In this paper, a novel kind of sensors for simultaneous measurement of refractive index and temperature based on all-dielectric metasurfaces is proposed. The metasurfaces are constructed by an array of silicon nanoblocks on top of the bulk fused silica substrate. We used three-dimensional full wave electromagnetic field simulation by finite integral method to accurately calculate the transmission spectrum of the metasurfaces. Two transmission dips corresponding to the electric and magnetic resonances are observed. Both dips shift as the ambient refractive index or the temperature changes. Simulation results show that the sensing sensitivities of two dips to the refractive index are 243.44 nm/RIU and 159.43 nm/RIU, respectively, while the sensitivities to the temperature are 50.47 pm/°C and 75.20 pm/°C, respectively. After introducing four holes into each silicon nanoblock, the electromagnetic field overlap in the surrounding medium can be further promoted, and the sensitivities to the refractive index increase to 306.71 nm/RIU and 204.27 nm/RIU, respectively. Our proposed sensors have advantages of polarization insensitive, small size, and low loss, which offer them high potential applications in physical, biological and chemical sensing fields.
Submillimeter and far-infrared dielectric properties of thin films
NASA Astrophysics Data System (ADS)
Cataldo, Giuseppe; Wollack, Edward J.
2016-07-01
The complex dielectric function enables the study of a material's refractive and absorptive properties and provides information on a material's potential for practical application. Commonly employed line shape profile functions from the literature are briefly surveyed and their suitability for representation of dielectric material properties are discussed. An analysis approach to derive a material's complex dielectric function from observed transmittance spectra in the far-infrared and submillimeter regimes is presented. The underlying model employed satisfies the requirements set by the Kramers-Kronig relations. The dielectric function parameters derived from this approachtypically reproduce the observed transmittance spectra with an accuracy of < 4%.
Rahman, Rezwanur; Taylor, P C; Scales, John A
2013-08-01
Quasi-optical (QO) methods of dielectric spectroscopy are well established in the millimeter and submillimeter frequency bands. These methods exploit standing wave structure in the sample produced by a transmitted Gaussian beam to achieve accurate, low-noise measurement of the complex permittivity of the sample [e.g., J. A. Scales and M. Batzle, Appl. Phys. Lett. 88, 062906 (2006); R. N. Clarke and C. B. Rosenberg, J. Phys. E 15, 9 (1982); T. M. Hirovnen, P. Vainikainen, A. Lozowski, and A. V. Raisanen, IEEE Trans. Instrum. Meas. 45, 780 (1996)]. In effect the sample itself becomes a low-Q cavity. On the other hand, for optically thin samples (films of thickness much less than a wavelength) or extremely low loss samples (loss tangents below 10(-5)) the QO approach tends to break down due to loss of signal. In such a case it is useful to put the sample in a high-Q cavity and measure the perturbation of the cavity modes. Provided that the average mode frequency divided by the shift in mode frequency is less than the Q (quality factor) of the mode, then the perturbation should be resolvable. Cavity perturbation techniques are not new, but there are technological difficulties in working in the millimeter/submillimeter wave region. In this paper we will show applications of cavity perturbation to the dielectric characterization of semi-conductor thin films of the type used in the manufacture of photovoltaics in the 100 and 350 GHz range. We measured the complex optical constants of hot-wire chemical deposition grown 1-μm thick amorphous silicon (a-Si:H) film on borosilicate glass substrate. The real part of the refractive index and dielectric constant of the glass-substrate varies from frequency-independent to linearly frequency-dependent. We also see power-law behavior of the frequency-dependent optical conductivity from 316 GHz (9.48 cm(-1)) down to 104 GHz (3.12 cm(-1)).
Chaliha, Reenamoni Saikia; Annapurna, K; Tarafder, Anal; Tiwari, V S; Gupta, P K; Karmakar, Basudeb
2010-01-01
Precursor glass of composition 25K(2)O-25Nb(2)O(5)-50SiO(2) (mol%) doped with Er(2)O(3) (0.5 wt% in excess) was isothermally crystallized at 800 degrees C for 0-100 h to obtain transparent KNbO(3) nanostructured glass-ceramics. XRD, FESEM, TEM, FTIRRS, dielectric constant, refractive index, absorption and fluorescence measurements were carried out to analyze the morphology, dielectric, structure and optical properties of the glass-ceramics. The crystallite size of KNbO(3) estimated from XRD and TEM is found to vary in the range 7-23 nm. A steep rise in the dielectric constant of glass-ceramics with heat-treatment time reveals the formation of ferroelectric nanocrystalline KNbO(3) phase. The measured visible photoluminescence spectra have exhibited green emission transitions of (2)H(11/2), (4)S(3/2)-->(4)I(15/2) upon excitation at 377 nm ((4)I(15/2)-->(4)G(11/2)) absorption band of Er(3+) ions. The near infrared (NIR) emission transition (4)I(13/2)-->(4)I(15/2) is detected around 1550 nm on excitation at 980 nm ((4)I(15/2)-->(4)I(11/2)) of absorption bands of Er(3+) ions. It is observed that photoluminescent intensity at 526 nm ((2)H(11/2)-->(4)I(15/2)), 550 nm ((4)S(3/2)-->(4)I(15/2)) and 1550 nm ((4)I(13/2)-->(4)I(15/2)) initially decrease and then gradually increase with increase in heat-treatment time. The measured lifetime (tau(f)) of the (4)I(13/2)-->(4)I(15/2) transition also possesses a similar trend. The measured absorption and fluorescence spectra reveal that the Er(3+) ions gradually enter into the KNbO(3) nanocrystals. Copyright 2009 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, H.; Shohet, J. L.; Ryan, E. T.
2014-11-17
Vacuum ultraviolet (VUV) irradiation is generated during plasma processing in semiconductor fabrications, while the effect of VUV irradiation on the dielectric constant (k value) of low-k materials is still an open question. To clarify this problem, VUV photons with a range of energies were exposed on low-k organosilicate dielectrics (SiCOH) samples at room temperature. Photon energies equal to or larger than 6.0 eV were found to decrease the k value of SiCOH films. VUV photons with lower energies do not have this effect. This shows the need for thermal heating in traditional ultraviolet (UV) curing since UV light sources do notmore » have sufficient energy to change the dielectric constant of SiCOH and additional energy is required from thermal heating. In addition, 6.2 eV photon irradiation was found to be the most effective in decreasing the dielectric constant of low-k organosilicate films. Fourier Transform Infra-red Spectroscopy shows that these 6.2 eV VUV exposures removed organic porogens. This contributes to the decrease of the dielectric constant. This information provides the range of VUV photon energies that could decrease the dielectric constant of low-k materials most effectively.« less
Chemically synthesis and characterization of MnS thin films by SILAR method
NASA Astrophysics Data System (ADS)
Yıldırım, M. Ali; Yıldırım, Sümeyra Tuna; Cavanmirza, İlke; Ateş, Aytunç
2016-03-01
MnS thin films were synthesized on glass substrates using SILAR method. The film thickness effect on structural, morphological, optical and electrical properties of the films was investigated. The X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) studies showed that all the films exhibited polycrystalline nature with β-MnS structure and were covered well on glass substrates. The bandgap and resistivity values of the films decreased from 3.39 eV to 2.92 eV and from 11.84 × 106 to 2.21 × 105 Ω-cm as the film thickness increased from 180 to 350 nm, respectively. The refractive index (n) and dielectric constants (ɛo, ɛ∞) values were calculated.
Magnetism, optical, and thermoelectric response of CdFe2O4 by using DFT scheme
NASA Astrophysics Data System (ADS)
Mahmood, Q.; Yaseen, M.; Bhamu, K. C.; Mahmood, Asif; Javed, Y.; Ramay, Shahid M.
2018-03-01
Comparative analysis of electronic, magnetic, optical, and thermoelectric properties of CdFe2O4, calculated by employing PBEsol + mBJ has been done. The PBEsol reveals metallic nature, while TB-mBJ illustrates ferromagnetic semiconducting behavior. The reasons behind the origin of ferromagnetism are explored by observing the exchange, crystal field, and John–Teller energies. The optical nature is investigated by analyzing dielectric constants, refraction, absorption coefficient, reflectivity, and optical conductivity. Finally, thermoelectric properties are elaborated by describing the electrical and thermal conductivities, Seebeck coefficient, and power factor. The strong absorption for the visible energy and high power factor suggest CdFe2O4 as the potential candidate for renewable energy applications.
NASA Astrophysics Data System (ADS)
Watkins, James
2013-03-01
Roll-to-roll (R2R) technologies provide routes for continuous production of flexible, nanostructured materials and devices with high throughput and low cost. We employ additive-driven self-assembly to produce well-ordered polymer/nanoparticle hybrid materials that can serve as active device layers, we use highly filled nanoparticle/polymer hybrids for applications that require tailored dielectric constant or refractive index, and we employ R2R nanoimprint lithography for device scale patterning. Specific examples include the fabrication of flexible floating gate memory and large area films for optical/EM management. Our newly constructed R2R processing facility includes a custom designed, precision R2R UV-assisted nanoimprint lithography (NIL) system and hybrid nanostructured materials coaters.
NASA Astrophysics Data System (ADS)
Saha, Shibu; Mehan, Navina; Sreenivas, K.; Gupta, Vinay
2009-08-01
Temperature dependent optical properties of c-axis oriented ZnO thin film were investigated using surface plasmon resonance (SPR) technique. SPR data for double layer (prism-Au-ZnO-air) and single layer (prism-Au-air) systems were taken over a temperature range (300-525 K). Dielectric constant at optical frequency and real part of refractive index of the ZnO film shows an increase with temperature. The bandgap of the oriented ZnO film was found to decrease with rise in temperature. The work indicates a promising application of the system as a temperature sensor and highlights an efficient scientific tool to study optical properties of thin film under varying ambient conditions.
Optical characterization of Mg-doped ZnO thin films deposited by RF magnetron sputtering technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Satyendra Kumar; Tripathi, Shweta; Hazra, Purnima
2016-05-06
This paper reports the in-depth analysis on optical characteristics of magnesium (Mg) doped zinc oxide (ZnO) thin films grown on p-silicon (Si) substrates by RF magnetron sputtering technique. The variable angle ellipsometer is used for the optical characterization of as-deposited thin films. The optical reflectance, transmission spectra and thickness of as-deposited thin films are measured in the spectral range of 300-800 nm with the help of the spectroscopic ellipsometer. The effect of Mg-doping on optical parameters such as optical bandgap, absorption coefficient, absorbance, extinction coefficient, refractive Index and dielectric constant for as-deposited thin films are extracted to show its application inmore » optoelectronic and photonic devices.« less
NASA Astrophysics Data System (ADS)
Liu, H. L.; Wang, S. S.; Zhou, Yan; Lam, Yee Loy; Chan, Yuen Chuen; Kam, Chan Hin
1997-08-01
In this paper, we report the preparation of crack-free relatively thick SiO2-TiO2 thin films on silicon substrates using the sol-gel spin-coating method. The influence of the process parameters on the quality of the film, such as the solution condition, the spin-coating speed, the heat treatment temperature and time, have been studied. We found that the cracking of the film could be avoided by selecting the right sol composition ratios, adding PVA to the sold and properly controlling the heat treatment. Most importantly, we discovered that by polishing the edges of the film after the deposition of each single layer, the number of such layers that deposited without crack formation could be substantially increased. The refractive index profile and thickness of the film have been determined using prism coupling technique and the inverse WKB method. The refractive index was found to depend on the content of TiO2 as well as the heat treatment condition. Using an AFM, the surface morphology of the film was found to be good.
The critical behavior of the refractive index near liquid-liquid critical points.
Losada-Pérez, Patricia; Glorieux, Christ; Thoen, Jan
2012-04-14
The nature of the critical behavior in the refractive index n is revisited in the framework of the complete scaling formulation. A comparison is made with the critical behavior of n as derived from the Lorentz-Lorenz equation. Analogue anomalies to those predicted for the dielectric constant ε, namely, a leading |t|(2β) singularity in the coexistence-curve diameter in the two-phase region and a |t|(1-α) along the critical isopleth in the one phase region, are expected in both cases. However, significant differences as regards the amplitudes of both singularities are obtained from the two approaches. Analysis of some literature data along coexistence in the two-phase region and along the critical isopleth in the one-phase region provide evidence of an intrinsic effect, independent of the density, in the critical anomalies of n. This effect is governed by the shift of the critical temperature with an electric field, which is supposed to take smaller values at optical frequencies than at low frequencies in the Hz to MHz range.
NASA Astrophysics Data System (ADS)
Chen, Chao; Sheng, Yuping; Jun, Wang
2018-01-01
A high performed multiple band metamaterial absorber is designed and computed through the software Ansofts HFSS 10.0, which is constituted with two kinds of separated metal particles sub-structures. The multiple band absorption property of the metamaterial absorber is based on the resonance of localized surface plasmon (LSP) modes excited near edges of metal particles. The damping constant of gold layer is optimized to obtain a near-perfect absorption rate. Four kinds of dielectric layers is computed to achieve the perfect absorption perform. The perfect absorption perform of the metamaterial absorber is enhanced through optimizing the structural parameters (R = 75 nm, w = 80 nm). Moreover, a perfect absorption band is achieved because of the plasmonic hybridization phenomenon between LSP modes. The designed metamaterial absorber shows high sensitive in the changed of the refractive index of the liquid. A liquid refractive index sensor strategy is proposed based on the computed figure of merit (FOM) value of the metamaterial absorber. High FOM values (116, 111, and 108) are achieved with three liquid (Methanol, Carbon tetrachloride, and Carbon disulfide).
Design and characterization of dielectric subwavelength focusing lens with polarization dependence
NASA Astrophysics Data System (ADS)
Kim, Sung W.; Pang, Lin; Fainman, Yeshaiahu
2016-03-01
We introduce and develop design, fabrication and characterization methodology for engineering the effective refractive index of a composite dielectric planar surface created by controlling the density of deeply subwavelength low index nanoholes (e.g., air) in a high index dielectric layer (e.g., Si). The nanoscale properties of a composite dielectric layer allows for full control of the optical wavefront phase by designing arbitrary space-variant refractive index profiles. We present the composite dielectric metasurface microlens exploiting symmetric design to achieve polarization invariant impulse response, and use asymmetric design to demonstrate polarization sensitive impulse response of the lens. This composite dielectric layers lenses were fabricated by patterning nanohole distributions on a dielectric surface and etching to submicron depths. Our dielectric microlens with asymmetric distribution of neff (neff x ≠ neff y) demonstrates a graded index lens with polarization dependent focusing with of 32um and 22 um for linearly x- and y-polarized light, respectively operating at a wavelength of λ = 1550nm. We also show numerically and demonstrate experimentally achromatic performance of the devices operating in the wavelength range of 1500nm - 1900nm with FWHM of the focal spots of about 4um. Namely, we have constructed a graded index lens that can overcome diffraction effects even when aperture/wavelength (D/λ) is smaller than 40. The demonstrated novel approach to engineer dielectric composite nanosurfaces has the potential to realize arbitrary phase functions with minimal insertion loss, submicron thickness and miniaturization to reduce element size and weight, and may have a significant impact on numerous miniature imaging systems applications.
Synthesis and Characterization of High-Dielectric-Constant Nanographite-Polyurethane Composite
NASA Astrophysics Data System (ADS)
Mishra, Praveen; Bhat, Badekai Ramachandra; Bhattacharya, B.; Mehra, R. M.
2018-05-01
In the face of ever-growing demand for capacitors and energy storage devices, development of high-dielectric-constant materials is of paramount importance. Among various dielectric materials available, polymer dielectrics are preferred for their good processability. We report herein synthesis and characterization of nanographite-polyurethane composite with high dielectric constant. Nanographite showed good dispersibility in the polyurethane matrix. The thermosetting nature of polyurethane gives the composite the ability to withstand higher temperature without melting. The resultant composite was studied for its dielectric constant (ɛ) as a function of frequency. The composite exhibited logarithmic variation of ɛ from 3000 at 100 Hz to 225 at 60 kHz. The material also exhibited stable dissipation factor (tan δ) across the applied frequencies, suggesting its ability to resist current leakage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sokolov, Viktor I; Panchenko, Vladislav Ya; Seminogov, V N
2012-08-31
A method is proposed for measuring the refractive index gradient n(z) in nonuniformly thick dielectric films. The method is based on the excitation of waveguide modes in a film using the prism coupling technique and on the calculation of n(z) and film thickness H{sub f} with the help of the angular positions of the TE or TM modes. The method can be used for an arbitrary shape of the index modulation over the film thickness in the limit of a small gradient [{Delta} n(z)/n(z) || 1]. (laser applications and other topics in quantum electronics)
Flat dielectric metasurface lens array for three dimensional integral imaging
NASA Astrophysics Data System (ADS)
Zhang, Jianlei; Wang, Xiaorui; Yang, Yi; Yuan, Ying; Wu, Xiongxiong
2018-05-01
In conventional integral imaging, the singlet refractive lens array limits the imaging performance due to its prominent aberrations. Different from the refractive lens array relying on phase modulation via phase change accumulated along the optical paths, metasurfaces composed of nano-scatters can produce phase abrupt over the scale of wavelength. In this letter, we propose a novel lens array consisting of two neighboring flat dielectric metasurfaces for integral imaging system. The aspherical phase profiles of the metasurfaces are optimized to improve imaging performance. The simulation results show that our designed 5 × 5 metasurface-based lens array exhibits high image quality at designed wavelength 865 nm.
Phase Modulator with Terahertz Optical Bandwidth Formed by Multi-Layered Dielectric Stack
NASA Technical Reports Server (NTRS)
Keys, Andrew S. (Inventor); Fork, Richard L. (Inventor)
2005-01-01
An optical phase modulator includes a bandpass multilayer stack, formed by a plurality of dielectric layers, preferably of GaAs and AlAs, and having a transmission function related to the refractive index of the layers of the stack, for receiving an optical input signal to be phase modulated. A phase modulator device produces a nonmechanical change in the refractive index of each layer of the stack by, e.g., the injection of free carrier, to provide shifting of the transmission function so as to produce phase modulation of the optical input signal and to thereby produce a phase modulated output signal.
Chorel, Marine; Lanternier, Thomas; Lavastre, Éric; Bonod, Nicolas; Bousquet, Bruno; Néauport, Jérôme
2018-04-30
We report on a numerical optimization of the laser induced damage threshold of multi-dielectric high reflection mirrors in the sub-picosecond regime. We highlight the interplay between the electric field distribution, refractive index and intrinsic laser induced damage threshold of the materials on the overall laser induced damage threshold (LIDT) of the multilayer. We describe an optimization method of the multilayer that minimizes the field enhancement in high refractive index materials while preserving a near perfect reflectivity. This method yields a significant improvement of the damage resistance since a maximum increase of 40% can be achieved on the overall LIDT of the multilayer.
The effect of diamic acid additives on the dielectric constant of polyimides
NASA Technical Reports Server (NTRS)
Stoakley, Diane M.; St. Clair, Anne K.
1988-01-01
The effect of six selected diamic acids additives (including 2,2-prime bis(3,4-dicarboxyphenyl) hexafluoropropane dianhydride-aniline (An); 4,4-prime-oxydiphthalic anhydride-An, 3,3-prime diaminodiphenyl sulfone-phthalic anhydride (PA); 4,4-prime-oxydianiline-PA; 2,2-bis 4(4-aminophenoxy)phenyl hexafluoropropane-PA; and 2,2-bis 4(3-aminophenoxy)phenyl hexafluoropropane-PA) on the dielectric constants of low-dielectric-constant polyimide resins was evaluated. It was found that the effect of the incorporation of the diamic acids on reducing the dielectric constant of polyimides may be limited as the dielectric constant of the base resin itself becomes very low. The additives were found to lower the resin's values of glass transition temperature, with no effect on thermooxidative stability.
Dielectric constant of liquid alkanes and hydrocarbon mixtures
NASA Technical Reports Server (NTRS)
Sen, A. D.; Anicich, V. G.; Arakelian, T.
1992-01-01
The complex dielectric constants of n-alkanes with two to seven carbon atoms have been measured. The measurements were conducted using a slotted-line technique at 1.2 GHz and at atmospheric pressure. The temperature was varied from the melting point to the boiling point of the respective alkanes. The real part of the dielectric constant was found to decrease with increasing temperature and correlate with the change in the molar volume. An upper limit to all the loss tangents was established at 0.001. The complex dielectric constants of a few mixtures of liquid alkanes were also measured at room temperature. For a pentane-octane mixture the real part of the dielectric constant could be explained by the Clausius-Mosotti theory. For the mixtures of n-hexane-ethylacetate and n-hexane-acetone the real part of the dielectric constants could be explained by the Onsager theory extended to mixtures. The dielectric constant of the n-hexane-acetone mixture displayed deviations from the Onsager theory at the highest fractions of acetone. The dipole moments of ethylacetate and acetone were determined for dilute mixtures using the Onsager theory and were found to be in agreement with their accepted gas-phase values. The loss tangents of the mixtures exhibited a linear relationship with the volume fraction for low concentrations of the polar liquids.
Sakiyan, Ozge; Sumnu, Gulum; Sahin, Serpil; Meda, Venkatesh
2007-05-01
Dielectric properties can be used to understand the behavior of food materials during microwave processing. Dielectric properties influence the level of interaction between food and high frequency electromagnetic energy. Dielectric properties are, therefore, important in the design of foods intended for microwave preparation. In this study, it was aimed to determine the variation of dielectric properties of different cake formulations during baking in microwave and infrared-microwave combination oven. In addition, the effects of formulation and temperature on dielectric properties of cake batter were examined. Dielectric constant and loss factor of cake samples were shown to be dependent on formulation, baking time, and temperature. The increase in baking time and temperature decreased dielectric constant and loss factor of all formulations. Fat content was shown to increase dielectric constant and loss factor of cakes.
Dielectric Properties of PANI/CuO Nanocomposites
NASA Astrophysics Data System (ADS)
Ambalagi, Sharanabasamma M.; Devendrappa, Mahalesh; Nagaraja, Sannakki; Sannakki, Basavaraja
2018-02-01
The combustion method is used to prepare the Copper Oxide (CuO) nanoparticles. The nanocomposites of Polyaniline (PANI) by doping with copper oxide nanoparticles have synthesized at 10, 20, 30, 40 and 50 different weight percentages during the in-situ polymerization. The samples of nanocomposite of PANI-CuO were characterized by using X-Ray diffraction (XRD) technique. The physical properties such as dielectric constant, dielectric loss and A C conductivity of the nanocomposites are studied as a function of frequency in the range 5Hz-35MHz at room temperature. It is found that the dielectric constant decreases as the frequency increases. The dielectric constant it remains constant at higher frequencies and it is also observed that in particular frequency both the dielectric constant and dielectric loss are decreased as a weight percentage of CuO increased. In case of AC conductivity it is found that as the frequency increases the AC conductivity remains constant up to 3.56MHz and afterwards it increases as frequency increases. This is due to the increase in charge carriers through the hopping mechanism in the polymer nanocomposites. It is also observed that as a weight percentage of CuO increased the AC conductivity is also increasing at a particular frequency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myers, Tanya L.; Tonkyn, Russell G.; Danby, Tyler O.
For optical modeling and other purposes, we have created a library of 57 liquids for which we have measured the complex optical constants n and k. These liquids vary in their nature, ranging in properties including chemical structure, optical band strength, volatility and viscosity. By obtaining the optical constants one can in principle model most optical phenomena in media and at interfaces including reflection, refraction and dispersion. Based on the original methods of J.E. Bertie et al.1 [1Bert1], we have developed improved protocols using multiple path lengths to determine the optical constants n/k for dozens of liquids, including inorganic, organicmore » and organophosphorus compounds. Detailed descriptions of the measurement and data reduction protocols are discussed; agreement of the derived optical constant n and k values with literature values are presented. We also present results using the n/k values as applied to an optical modeling scenario whereby the derived data are presented and tested for models of 1 µm and 100 µm layers for DMMP (dimethyl methyl phosphonate) on both metal (aluminum) and dielectric (soda lime glass) substrates to show substantial differences between the reflected signal from highly reflective substrates and less-reflective substrates.« less
Electronic and optical properties of hydrogenated silicon carbide nanosheets: A DFT study
NASA Astrophysics Data System (ADS)
Delavari, Najmeh; Jafari, Mahmoud
2018-07-01
Density-functional theory has been applied to investigate the effect of hydrogen adsorption on silicon carbide (SiC) nanosheets, considering six, different configurations for adsorption process. The chair-like configuration is found to be the most stable because of the adsorption of hydrogen atoms by silicon and carbon atoms on the opposite sides. The pure and hydrogenated SiC monolayers are also found to be sp2- and sp3-hybridized, respectively. The binding energy of the hydrogen atoms in the chair-like structure is calculated about -3.845 eV, implying the system to be much more stable than the same study based on graphene, though with nearly the same electronic properties, strongly proposing the SiC monolayer to be a promising material for next generation hydrogen storage. Optical properties presented in terms of the real and the imaginary parts of the dielectric function also demonstrate a decrease in the dielectric constant and the static refractive index due to hydrogen adsorption with the Plasmon frequency of the chair-like, hydrogenated monolayer, occurring at higher energies compared to that of the pure one.
Dielectric, optical and mechanical studies of phenolic polyene OH1 organic electrooptic crystal
NASA Astrophysics Data System (ADS)
Bharath, D.; Kalainathan, S.
2014-11-01
2-{3-[2-(4-Hydroxyphenyl) vinyl]-5, 5-dimethylcyclo-hex-2-en-1-ylidene}malononitrile (OH1) phenolic locked polyene organic material has been synthesized by the Knoevenagel condensation method. OH1 single crystals were grown in methanol by a slow evaporation method. In order to avoid the multinucleation and reduce the metastable zone width, phosphoric acid is added in different concentrations. The linear optical property of OH1 crystal has been studied using UV-vis-NIR spectroscopy in the wavelength range 190-1100 nm and optical constants are calculated theoretically. The magnitude of nonlinear refractive index (10-12 m2/W), nonlinear absorption (10-6 m/W) and third order nonlinear susceptibility (10-6 esu) has been studied using a Z-scan technique. Dielectric property of OH1 crystal has been studied in frequency range 50 Hz-5 MHz. Photoluminescence spectrum was recorded using a xenon lamp in the range of 450-700 nm. Laser optical damage threshold of OH1 crystal was obtained (0.62 GW/cm2) using a pulsed Nd-YAG laser (1064 nm) of repetition rate 10 ns.
Three-phase Fe3O4/MWNT/PVDF nanocomposites with high dielectric constant for embedded capacitor
NASA Astrophysics Data System (ADS)
Wang, Haiyun; Fu, Qiong; Luo, Jiangqi; Zhao, Dongmei; Luo, Laihui; Li, Weiping
2017-06-01
To get the dielectric material with a high dielectric constant and low dielectric loss, the modified multiwalled carbon nanotube (MWNT-S) and ferroferric oxide (Fe3O4) particles were embedded into polyvinylidene fluoride (PVDF) to fabricate the Fe3O4/MWNT-S/PVDF ternary composites. The maximum dielectric constant of these composites can be up to 3490 at a very low filler fraction, and dielectric loss can be suppressed below 0.5. The small amount of the second filler (Fe3O4) can accelerate the formation of a percolation conductive network and improve the interfacial polarization. Therefore, the excellent dielectric properties can be achieved at low loading of fillers.
Dielectric spectroscopy of Ag-starch nanocomposite films
NASA Astrophysics Data System (ADS)
Meena; Sharma, Annu
2018-04-01
In the present work Ag-starch nanocomposite films were fabricated via chemical reduction route. The formation of Ag nanoparticles was confirmed using transmission electron microscopy (TEM). Further the effect of varying concentration of Ag nanoparticles on the dielectric properties of starch has been studied. The frequency response of dielectric constant (ε‧), dielectric loss (ε″) and dissipation factor tan(δ) has been studied in the frequency range of 100 Hz to 1 MHz. Dielectric data was further analysed using Cole-Cole plots. The dielectric constant of starch was found to be 4.4 which decreased to 2.35 in Ag-starch nanocomposite film containing 0.50 wt% of Ag nanoparticles. Such nanocomposites with low dielectric constant have potential applications in microelectronic technologies.
On the Dielectric Constant for Acetanilide: Experimental Measurements and Effect on Energy Transport
NASA Astrophysics Data System (ADS)
Careri, G.; Compatangelo, E.; Christiansen, P. L.; Halding, J.; Skovgaard, O.
1987-01-01
Experimental measurements of the dielectric constant for crystalline acetanilide powder for temperatures ranging from - 140°C to 20°C and for different hydration levels are presented. A Davydov-soliton computer model predicts dramatic changes in the energy transport and storage for typically increased values of the dielectric constant.
The transmembrane gradient of the dielectric constant influences the DPH lifetime distribution.
Konopásek, I; Kvasnicka, P; Amler, E; Kotyk, A; Curatola, G
1995-11-06
The fluorescence lifetime distribution of 1,6-diphenyl-1,3,5-hexatriene (DPH) and 1-[4-(trimethylamino)phenyl]-6-phenyl-1,3,5-hexatriene (TMA-DPH) in egg-phosphatidylcholine liposomes was measured in normal and heavy water. The lower dielectric constant (by approximately 12%) of heavy water compared with normal water was employed to provide direct evidence that the drop of the dielectric constant along the membrane normal shifts the centers of the distribution of both DPH and TMA-DPH to higher values and sharpens the widths of the distribution. The profile of the dielectric constant along the membrane normal was not found to be a linear gradient (in contrast to [1]) but a more complex function. Presence of cholesterol in liposomes further shifted the center of the distributions to higher value and sharpened them. In addition, it resulted in a more gradient-like profile of the dielectric constant (i.e. linearization) along the normal of the membrane. The effect of the change of dielectric constant on the membrane proteins is discussed.
Spectral characterization of dielectric materials using terahertz measurement systems
NASA Astrophysics Data System (ADS)
Seligman, Jeffrey M.
The performance of modern high frequency components and electronic systems are often limited by the properties of the materials from which they are made. Over the past decade, there has been an increased emphasis on the development of new, high performance dielectrics for use in high frequency systems. The development of these materials requires novel broadband characterization, instrumentation, and extraction techniques, from which models can be formulated. For this project several types of dielectric sheets were characterized at terahertz (THz) frequencies using quasi-optical (free-space) techniques. These measurement systems included a Fourier Transform Spectrometer (FTS, scalar), a Time Domain Spectrometer (TDS, vector), a Scalar Network Analyzer (SNA), and a THz Vector Network Analyzer (VNA). Using these instruments the THz spectral characteristics of dielectric samples were obtained. Polarization based anisotropy was observed in many of the materials measured using vector systems. The TDS was the most informative and flexible instrument for dielectric characterization at THz frequencies. To our knowledge, this is the first such comprehensive study to be performed. Anisotropy effects within materials that do not come into play at microwave frequencies (e.g. ~10 GHz) were found, in many cases, to increase measured losses at THz frequencies by up to an order of magnitude. The frequency dependent properties obtained during the course of this study included loss tangent, permittivity (index of refraction), and dielectric constant. The results were largely consistent between all the different systems and correlated closely to manufacturer specifications over a wide frequency range (325 GHz-1.5 THz). Anisotropic behavior was observed for some of the materials. Non-destructive evaluation and testing (NDE/NDT) techniques were used throughout. A precision test fixture was developed to accomplish these measurements. Time delay, insertion loss, and S-parameters were measured directly, from which loss tangent, index of refraction, and permittivity was extracted. The test materials were low-loss dielectric slabs ranging in thickness from 1-60 mils. The substrate sheets were PTFE, fiberglass, and epoxy-ceramic composite substrates. The other group was polyethylene plastic sheets (LDPE/HDPE/UMHW) and 3D printer Photopolymers. The results were verified by using several online THz spectral databases and compared to manufacturer data sheets. Permittivity and loss of some of the test samples varied as a function of polarization angle. 0 - 90 degrees of rotation were tested (i.e., H-V, and 45 degrees polarization). Inter-molecular scattering in the composite materials raised the loss considerably. This effect was verified. Standard, well documented, material types were selected for the project for best comparison. These techniques can also be applied to analyze newer substances such as nanodielectrics.
Dielectric Properties of PMMA and its Composites with ZrO2
NASA Astrophysics Data System (ADS)
Sannakki, Basavaraja; Anita
The polymer films of PMMA with different thickness and its composites with ZrO2 at various weight percentages but of same thickness have been studied. The determination of its dielectric properties, dielectric loss, a.conductivity and dielectric modulus were carried out using capacitance measurements of the above samples as a function of frequency, over the range 50 Hz - 5 MHz at room temperature. The films of PMMA and its composites have been characterized using X-Ray Diffractometer. The dielectric permittivity of films of PMMA behaves nonlinearly as frequency increases over the range 50-300 Hz, where as above 300 Hz the values of dielectric constant remains constant. But it is observed that the dielectric constant of PMMA increases as thickness of the film increases. In case of composite films of PMMA with ZrO2 the values of dielectric permittivity decreases gradually up to frequency of around 1 KHz and at higher frequencies it remains constant for all the weight percentages of ZrO2. The complex form of dielectric modulus of PMMA is obtained from the experimentally measured data of dielectric constant and dielectric loss values. The relaxation time of the orientation of dipoles is obtained from the peak value of angular frequency through the plots of imaginary part of electrical modulus as function of frequency. The impedance of PMMA polymer increases as thickness of the films increases. The a c conductivity of PMMA film remains constant up to frequency of 1 MHz and above. It shows a nonlinear phenomenon with peak values at frequency 4 MHz. Shape and size of the nanoparticles of composite film of PMMA with ZrO2 was analyzed by Field Emission Scanning Electron Microscope (FESEM).
Benniston, Andrew C; Harriman, Anthony; Whittle, Victoria L; Zelzer, Mischa; Harrington, Ross W; Clegg, William
2010-07-30
A molecular dyad, , has been prepared that incorporates a boron dipyrromethene (Bodipy) group functionalized at the meso position with an anthracenyl unit. Emission from the dyad contains contributions from both localized fluorescence from the Bodipy unit and exciplex-like emission associated with an intramolecular charge-transfer state. The peak position, intensity and lifetime of this exciplex emission are solvent dependent and the shift in the emission maximum shows a linear relationship to the solvent polarity function (Deltaf). The calculated dipole moment for the exciplex is 22.5 +/- 2.2 D. The radiative rate constant (k(RAD)) for exciplex emission decreases progressively with increasing solvent polarity. In this latter case, k(RAD) shows an obvious dependence on the energy gap between the exciplex state and the first-excited singlet state resident on the Bodipy unit. The emission characteristics for dissolved in perfluorooctane are used to characterize the refractive index and dielectric constant of the solvent.
Electrochemical and physical properties of electroplated CuO thin films.
Dhanasekaran, V; Mahalingam, T
2013-01-01
Cupric oxide thin films have been prepared on ITO glass substrates from an aqueous electrolytic bath containing CuSO4 and tartaric acid. Growth mechanism has been analyzed using cyclic voltammetry. The role of pH on the structural, morphological, compositional, electrical and optical properties of CuO films is investigated. The structural studies revealed that the deposited films are polycrystalline in nature with a cubic structure. The preferential orientation of CuO thin films is found to be along (111) plane. X-ray line profile analysis has been carried out to determine the microstructural parameters of CuO thin films. The pyramid shaped grains are observed from SEM and AFM images. The optical band gap energy and electrical activation energy is found to be 1.45 and 0.37 eV, respectively. Also, the optical constants of CuO thin films such as refractive index (n), complex dielectric constant (epsilon) extinction coefficient (k) and optical conductivity (sigma) are evaluated.
NASA Astrophysics Data System (ADS)
Bakri, Badis; Driss, Zied; Berri, Saadi; Khenata, Rabah
2017-12-01
In this work, the structural, electronic and optical properties of fluoroperovskite ABF3 (A = K, Na; B = Mg, Zn) were studied using two different approaches: the full-potential linearized augmented plane wave method and the pseudo-potential plane wave scheme in the frame of generalized gradient approximation features such as the lattice constant, bulk modulus and its pressure derivative are reported. The ground state properties of these compounds such as the equilibrium lattice constant and the bulk modulus are in good agreement with the experimental results. The first principles calculations were performed to study the electronic structures of ABF3(A = K, Na; B = Mg, Zn) compounds and the results indicated that these four compounds are indirect band gap insulators. The optical properties are analysed and the source of some peaks in the spectra is discussed. Besides, the dielectric function, refractive index and extinction coefficient for radiation up to 25 eV have also been reported and discussed.
Study of the optical properties of CuAlS2 thin films prepared by two methods
NASA Astrophysics Data System (ADS)
Ahmad, S. M.
2017-04-01
CuAlS2 thin films were successfully deposited on glass substrates using two methods: chemical spray pyrolysis (CSP) and chemical bath deposition (CBD). It was confirmed from the X-ray diffraction (XRD) analysis that CSP films exhibited a polycrystalline nature while amorphous nature was diagnosed for CBD films. Also XRD analysis was utilized to compute grain size, strain and dislocation density. Surface morphology was characterized using scanning electron microscope and photomicroscope images. The optical absorption measurement revealed that the direct allowed electronic transition with band gaps 2.8 eV and 3.0 eV for CBD and CSP methods, respectively. The optical constants, such as extinction coefficient ( k), refractive index ( n), real and imaginary dielectric constants ( ɛ 1, ɛ 2) were discussed. The photoluminescence (PL) spectra of CuAlS2 thin films appeared as a single peak for each of them, and this is attributed to band-to-band transition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kocak, Belgin, E-mail: koakbelgin@gmail.com; Ciftci, Yasemin Oztekin, E-mail: yasemin@gazi.edu.tr
2016-03-25
The structural, electronic band structure and optic properties of the Ni doped MgSiP{sub 2} chalcopyrite compound have been performed by using first-principles method in the density functional theory (DFT) as implemented in Vienna Ab-initio Simulation Package (VASP). The generalized gradient approximation (GGA) in the scheme of Perdew, Burke and Ernzerhof (PBE) is used for the exchange and correlation functional. The present lattice constant (a) follows generally the Vegard’s law. The electronic band structure, total and partial density of states (DOS and PDOS) are calculated. We present data for the frequency dependence of imaginary and real parts of dielectric functions ofmore » Ni doped MgSiP{sub 2}. For further investigation of the optical properties the reflectivity, refractive index, extinction coefficient and electron energy loss function are also predicted. Our obtained results indicate that the lattice constants, electronic band structure and optical properties of this compound are dependent on the substitution concentration of Ni.« less
Zn1-xAlxO:Cu2O transparent metal oxide composite thin films by sol gel method
NASA Astrophysics Data System (ADS)
AlHammad, M. S.
2017-05-01
We have synthesized undoped zinc oxide (ZnO) and Cu2O doped Zn1-XAlXO (AZO; Al/Zn = 1.5 at.%) metal oxide films by sol-gel spin coating method. Atomic force microscopy results indicate that the Zn1-xAlxO:Cu2O is are formed form the fibers. The surface morphology of the films is found to depend on the concentration of Cu2O. The optical constants such as band gap, Urbach energy, refractive index, extinction coefficient and dielectric constants of the films were determined. The transmittance spectra shows that all the films are highly transparent. The study revealed that undoped ZnO film has direct bang gap of 3.29 eV and the optical band gap of films is increased with doping content. The hot probe measurements indicate that Zn1-xAlxO:Cu2O transparent metal oxide composite thin films exhibited p-type electrical conductivity.
NASA Astrophysics Data System (ADS)
Guenneau, Sébastien; Ramakrishna, S. Anantha
2009-06-01
Newly discovered metamaterials have opened new vistas for better control of light via negative refraction, whereby light refracts in the "wrong" manner. These are dielectric and metallic composite materials structured at subwavelength lengthscales. Their building blocks consist of local resonators such as conducting thin bars and split rings driving the material parameters such as the dielectric permittivity and magnetic permeability to negative (complex) values. Combined together, these structural elements can bring about a (complex valued) negative effective refractive index for the Snell-Descartes law and result in negative refraction of radiation. Negative refractive index materials can support a host of surface plasmon states for both polarizations of light. This makes possible unique effects such as imaging with subwavelength image resolution through the Pendry-Veselago slab lens. Other geometries have also been investigated, such as cylindrical or spherical lenses that enable a magnification of images with subwavelength resolution. Superlenses of three-fold (equilateral triangle), four-fold (square) and six-fold (hexagonal) geometry allow for multiple images, respectively two, three, and five. Generalization to rectangular and triangular checkerboards consisting of alternating cells of positive and negative refractive index represents a very singular situation in which the density of modes diverges at the corners, with an infinity of images. Sine-cosecant anisotropic heterogeneous square and triangular checkerboards can be respectively mapped onto three-dimensional cubic and icosahedral corner lenses consisting of alternating positive and negative refractive regions. All such systems with corners between negative and positive refractive media display very singular behavior with the local density of states becoming infinitely large at the corner, in the limit of no dissipation. We investigate all of these, using the unifying viewpoint of transformation optics. To cite this article: S. Guenneau, S.A. Ramakrishna, C. R. Physique 10 (2009).
Giant dielectric constant in titania nanoparticles embedded in conducting polymer matrix.
Dey, Ashis; De, Sukanta; De, Amitabha; De, S K
2006-05-01
Complex impedance and dielectric permittivity of titania-polypyrrole nanocomposites have been investigated as a function of frequency and temperature at different compositions. A very large dielectric constant of about 13,000 at room temperature has been observed. The colossal dielectric constant is mainly dominated by interfacial polarization due to Maxwell-Wagner relaxation effect. Two completely separate groups of dielectric relaxation have been observed. The low frequency dielectric relaxation arises from surface defect states of titania nanoparticles. The broad peak at high frequency region is attributed to Maxwell-Wagner type polarization originating from the inhomogeneous property of nanocomposite. An abrupt change in grain boundary conductivity and dielectric relaxation associated with titania was observed at around 150 K. Anomalous behavior in conductivity and dielectric relaxation is qualitatively explained by band tail structure of titania nanoparticle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lehtikangas, O., E-mail: Ossi.Lehtikangas@uef.fi; Tarvainen, T.; Department of Computer Science, University College London, Gower Street, London WC1E 6BT
2015-02-01
The radiative transport equation can be used as a light transport model in a medium with scattering particles, such as biological tissues. In the radiative transport equation, the refractive index is assumed to be constant within the medium. However, in biomedical media, changes in the refractive index can occur between different tissue types. In this work, light propagation in a medium with piece-wise constant refractive index is considered. Light propagation in each sub-domain with a constant refractive index is modeled using the radiative transport equation and the equations are coupled using boundary conditions describing Fresnel reflection and refraction phenomena onmore » the interfaces between the sub-domains. The resulting coupled system of radiative transport equations is numerically solved using a finite element method. The approach is tested with simulations. The results show that this coupled system describes light propagation accurately through comparison with the Monte Carlo method. It is also shown that neglecting the internal changes of the refractive index can lead to erroneous boundary measurements of scattered light.« less
Colossal dielectric constant in PrFeO 3 semiconductor ceramics
NASA Astrophysics Data System (ADS)
Prasad, Bandi Vittal; Rao, G. Narsinga; Chen, J. W.; Babu, D. Suresh
2012-02-01
The perovskite PrFeO 3 ceramics were synthesized via sol-gel method. The dielectric properties and impedance spectroscopy (IS) of these ceramics were studied in the frequency range from 100 Hz to 1000 kHz in the temperature range from 80 K to 300 K. These materials exhibited colossal dielectric constant value of ˜10 4 at room temperature. The response is similar to that observed for relaxorferroelectrics. IS data analysis indicates the ceramics to be electrically heterogeneous semiconductor consisting of semiconducting grains with dielectric constant 30 and more resistive grain boundaries with effective dielectric constant ˜10 4. We conclude, therefore that grain boundary effect is the primary source for the high effective permittivity in PrFeO 3 ceramics.
Submillimeter and Far-Infrared Dielectric Properties of Thin Films
NASA Technical Reports Server (NTRS)
Cataldo, Giuseppe; Wollack, Edward J.
2016-01-01
The complex dielectric function enables the study of a material's refractive and absorptive properties and provides information on a material's potential for practical application. Commonly employed line shape profile functions from the literature are briefly surveyed and their suitability for representation of dielectric material properties are discussed. An analysis approach to derive a material's complex dielectric function from observed transmittance spectra in the far-infrared and submillimeter regimes is presented. The underlying model employed satisfies the requirements set by the Kramers-Kronig relations. The dielectric function parameters derived from this approach typically reproduce the observed transmittance spectra with an accuracy of less than 4%.
Lightning arrestor connector lead magnesium niobate qualification pellet test procedures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tuohig, W.; Mahoney, Patrick A.; Tuttle, Bruce Andrew
2009-02-01
Enhanced knowledge preservation for DOE DP technical component activities has recently received much attention. As part of this recent knowledge preservation effort, improved documentation of the sample preparation and electrical testing procedures for lead magnesium niobate--lead titanate (PMN/PT) qualification pellets was completed. The qualification pellets are fabricated from the same parent powders used to produce PMN/PT lightning arrestor connector (LAC) granules at HWF&T. In our report, the procedures for fired pellet surface preparation, electrode deposition, electrical testing and data recording are described. The dielectric measurements described in our report are an information only test. Technical reasons for selecting the electrodemore » material, electrode size and geometry are presented. The electrical testing is based on measuring the dielectric constant and dissipation factor of the pellet during cooling from 280 C to 220 C. The most important data are the temperature for which the peak dielectric constant occurs (Curie Point temperature) and the peak dielectric constant magnitude. We determined that the peak dielectric constant for our procedure would be that measured at 1 kHz at the Curie Point. Both the peak dielectric constant and the Curie point parameters provide semi-quantitative information concerning the chemical and microstructural homogeneity of the parent material used for the production of PMN/PT granules for LACs. Finally, we have proposed flag limits for the dielectric data for the pellets. Specifically, if the temperature of the peak dielectric constant falls outside the range of 250 C {+-} 30 C we propose that a flag limit be imposed that will initiate communication between production agency and design agency personnel. If the peak dielectric constant measured falls outside the range 25,000 {+-} 10,000 we also propose that a flag limit be imposed.« less
High dielectric hyperbranched polyaniline materials.
Yan, X Z; Goodson, T
2006-08-03
New organic materials for the purpose of high speed capacitor applications are discussed. The effect of the microcrystalline size dependence of different polyaniline polymeric systems on the dielectric constant is investigated. Two different methods are described for the preparation of the polyaniline dielectric materials. By sonication polymerization, the prepared polyaniline with a suggested hyperbranched structure showed much larger microcrystalline domains in comparison to the conventional linear polyaniline. Investigations of the dielectric constant and capacitance at a relatively high frequency (>100 kHz) suggested that the system with the larger microcrystalline domains (hyperbranched) gives rise to a larger dielectric constant. The mechanism of the increased dielectric response at higher frequencies is investigated by EPR spectroscopy, and these results suggest that delocalized polarons may provide a way to enhance the dielectric response at high frequency.
Colossal dielectric constant up to gigahertz at room temperature
NASA Astrophysics Data System (ADS)
Krohns, S.; Lunkenheimer, P.; Kant, Ch.; Pronin, A. V.; Brom, H. B.; Nugroho, A. A.; Diantoro, M.; Loidl, A.
2009-03-01
The applicability of recently discovered materials with extremely high ("colossal") dielectric constants, required for future electronics, suffers from the fact that their dielectric constant ɛ' only is huge in a limited frequency range below about 1 MHz. In the present report, we show that the dielectric properties of a charge-ordered nickelate, La15/8Sr1/8NiO4, surpass those of other materials. Especially, ɛ' retains its colossal magnitude of >10 000 well into the gigahertz range.
Facile synthesis of Ni/NiO@GO nanocomposites and its enhanced dielectric constant
NASA Astrophysics Data System (ADS)
Sarkar, S.; Giri, N.; Mondal, A.; Ray, R.
2018-05-01
Ni/NiO embedded Graphene Oxide (GO): Ni/NiO@GO is synthesized by citric acid assisted Pechini-type method. Structural and morphological characterizations are performed by X-ray powdered diffraction (XRD), field emission scanning electron microscopy (FESEM) and tunneling electron microscopy (TEM). Defects in GO sheets are probed by RAMAN spectroscopy. The temperature variation of dielectric constant (ɛR) and dielectric loss (tan δ) are investigated in the temperature range 300 - 400 K. Decoration of GO with Ni/NiO nanoparticles enhances its ɛR by˜55 times. Moreover, its dielectric constant measured at 5 MHz is found to be˜430 times to that of Ni/NiO along with the reduction of dielectric loss by a factor˜0.5. The enhanced dielectric constant makes the composite Ni/NiO@GO a potential candidate for using in ecologically friendly energy storage devices.
Cole-cole analysis and electrical conduction mechanism of N{sup +} implanted polycarbonate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chawla, Mahak; Shekhawat, Nidhi; Aggarwal, Sanjeev, E-mail: write2sa@gmail.com
2014-05-14
In this paper, we present the analysis of the dielectric (dielectric constant, dielectric loss, a.c. conductivity) and electrical properties (I–V characteristics) of pristine and nitrogen ion implanted polycarbonate. The samples of polycarbonate were implanted with 100 keV N{sup +} ions with fluence ranging from 1 × 10{sup 15} to 1 × 10{sup 17} ions cm{sup −2}. The dielectric measurements of these samples were performed in the frequency range of 100 kHz to 100 MHz. It has been observed that dielectric constant decreases whereas dielectric loss and a.c. conductivity increases with increasing ion fluence. An analysis of real and imaginary parts of dielectric permittivity has beenmore » elucidated using Cole-Cole plot of the complex permittivity. With the help of Cole-Cole plot, we determined the values of static dielectric constant (ε{sub s}), optical dielectric constant (ε{sub ∞}), spreading factor (α), average relaxation time (τ{sub 0}), and molecular relaxation time (τ). The I–V characteristics were studied using Keithley (6517) electrometer. The electrical conduction behaviour of pristine and implanted polycarbonate specimens has been explained using various models of conduction.« less
A Variational Statistical-Field Theory for Polar Liquid Mixtures
NASA Astrophysics Data System (ADS)
Zhuang, Bilin; Wang, Zhen-Gang
Using a variational field-theoretic approach, we derive a molecularly-based theory for polar liquid mixtures. The resulting theory consists of simple algebraic expressions for the free energy of mixing and the dielectric constant as functions of mixture composition. Using only the dielectric constants and the molar volumes of the pure liquid constituents, the theory evaluates the mixture dielectric constants in good agreement with the experimental values for a wide range of liquid mixtures, without using adjustable parameters. In addition, the theory predicts that liquids with similar dielectric constants and molar volumes dissolve well in each other, while sufficient disparity in these parameters result in phase separation. The calculated miscibility map on the dielectric constant-molar volume axes agrees well with known experimental observations for a large number of liquid pairs. Thus the theory provides a quantification for the well-known empirical ``like-dissolves-like'' rule. Bz acknowledges the A-STAR fellowship for the financial support.
Analysis of capacitive force acting on a cantilever tip at solid/liquid interfaces
NASA Astrophysics Data System (ADS)
Umeda, Ken-ichi; Kobayashi, Kei; Oyabu, Noriaki; Hirata, Yoshiki; Matsushige, Kazumi; Yamada, Hirofumi
2013-04-01
Dielectric properties of biomolecules or biomembranes are directly related to their structures and biological activities. Capacitance force microscopy based on the cantilever deflection detection is a useful scanning probe technique that can map local dielectric constant. Here we report measurements and analysis of the capacitive force acting on a cantilever tip at solid/liquid interfaces induced by application of an alternating voltage to explore the feasibility of the measurements of local dielectric constant by the voltage modulation technique in aqueous solutions. The results presented here suggest that the local dielectric constant measurements by the conventional voltage modulation technique are basically possible even in polar liquid media. However, the cantilever deflection is not only induced by the electrostatic force, but also by the surface stress, which does not include the local dielectric information. Moreover, since the voltage applied between the tip and sample are divided by the electric double layer and the bulk polar liquid, the capacitive force acting on the apex of the tip are strongly attenuated. For these reasons, the lateral resolution in the local dielectric constant measurements is expected to be deteriorated in polar liquid media depending on the magnitude of dielectric response. Finally, we present the criteria for local dielectric constant measurements with a high lateral resolution in polar liquid media.
Terahertz multistatic reflection imaging.
Dorney, Timothy D; Symes, William W; Baraniuk, Richard G; Mittleman, Daniel M
2002-07-01
We describe a new imaging method using single-cycle pulses of terahertz (THz) radiation. This technique emulates the data collection and image processing procedures developed for geophysical prospecting and is made possible by the availability of fiber-coupled THz receiver antennas. We use a migration procedure to solve the inverse problem; this permits us to reconstruct the location, the shape, and the refractive index of targets. We show examples for both metallic and dielectric model targets, and we perform velocity analysis on dielectric targets to estimate the refractive indices of imaged components. These results broaden the capabilities of THz imaging systems and also demonstrate the viability of the THz system as a test bed for the exploration of new seismic processing methods.
Dielectric black holes induced by a refractive index perturbation and the Hawking effect
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belgiorno, F.; Cacciatori, S. L.; Gorini, V.
2011-01-15
We consider a 4D model for photon production induced by a refractive index perturbation in a dielectric medium. We show that, in this model, we can infer the presence of a Hawking type effect. This prediction shows up both in the analogue Hawking framework, which is implemented in the pulse frame and relies on the peculiar properties of the effective geometry in which quantum fields propagate, as well as in the laboratory frame, through standard quantum field theory calculations. Effects of optical dispersion are also taken into account, and are shown to provide a limited energy bandwidth for the emissionmore » of Hawking radiation.« less
The generalized Morse wavelet method to determine refractive index dispersion of dielectric films
NASA Astrophysics Data System (ADS)
Kocahan, Özlem; Özcan, Seçkin; Coşkun, Emre; Özder, Serhat
2017-04-01
The continuous wavelet transform (CWT) method is a useful tool for the determination of refractive index dispersion of dielectric films. Mother wavelet selection is an important factor for the accuracy of the results when using CWT. In this study, generalized Morse wavelet (GMW) was proposed as the mother wavelet because of having two degrees of freedom. The simulation studies, based on error calculations and Cauchy Coefficient comparisons, were presented and also the noisy signal was tested by CWT method with GMW. The experimental validity of this method was checked by D263 T schott glass having 100 μm thickness and the results were compared to those from the catalog value.
NASA Astrophysics Data System (ADS)
Moharana, Srikanta; Mahaling, Ram Naresh
2017-07-01
The Silver (Ag)-Graphene oxide (GO)-Poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) composites were prepared by solution casting techniques and their dielectric properties were measured. Field emission scanning electron microscopy (FESEM) and X-ray analysis (XRD) confirmed that Ag layers were formed on the surface of the Graphene oxide sheets and homogeneously dispersed into the PVDF-HFP matrix. The result showed that the incorporation of Ag-GO nanoparticles greatly improved the dielectric constant value nearly about 65 at 100 Hz, which is comparatively much higher than that of pure PVDF-HFP. Furthermore, the dielectric loss of the composite remained at a low level (<0.1 at 100 Hz). A percolation threshold of 1.5 vol% of Ag-GO was calculated and explained accordingly. The composite having high dielectric constant and low dielectric loss might be used as dielectric materials for electronic capacitors.
Off Axis Growth of Strontium Titanate Films with High Dielectric Constant Tuning and Low Loss
NASA Astrophysics Data System (ADS)
Kampangkeaw, Satreerat
2002-03-01
Using off-axis pulsed laser deposition, we have grown strontium titanate (STO) films on neodymium gallate (NGO) and lanthanum aluminate (LAO) substrates. We measured the film dielectric constant and loss tangent as a function of temperature in the 10kHz to 1 MHz frequency range. We found that the loss is less than 0.01 We also obtained a figure of merit from the relative variation of the dielectric constant divided by the loss tangent. The obtained figured of merit at 35K and 1MHz is about 1000 comparable to bulk values. The dielectric constant of these films can be changed by a factor of 4-8 in the presence of a DC electric field up to 5V/μm. The films show significant variations of dielectric properties grown on different substrates at different locations respect to the axis of the plume. The STO films on LAO having high dielectric constant and dielectric tuning were grown in region near the center of the plume. On the other hand, STO on NGO shows this effect only on the films grown far from the plume axis.
NASA Astrophysics Data System (ADS)
Zhang, Xianhong; Zhao, Sidi; Wang, Fang; Ma, Yuhong; Wang, Li; Chen, Dong; Zhao, Changwen; Yang, Wantai
2017-05-01
Polymer based dielectric composites were fabricated through incorporation of core-shell structured BaTiO3 (BT) nanoparticles into PVDF matrix by means of solution blending. Core-shell structured BT nanoparticles with different shell composition and shell thickness were prepared by grafting methacrylate monomer (MMA or TFEMA) onto the surface of BT nanoparticles via surface initiated atom transfer radical polymerization (SI-ATRP). The content of the grafted polymer and the micro-morphology of the core-shell structured BT nanoparticles were investigated by thermo gravimetric analyses (TGA) and transmission electron microscopy (TEM), respectively. The dielectric properties were measured by broadband dielectric spectroscopy. The results showed that high dielectric constant and low dielectric loss are successfully realized in the polymer based composites. Moreover, the type of the grafted polymer and its content had different effect on the dielectric constant. In detail, the attenuation of dielectric constant was 16.6% for BT@PMMA1/PVDF and 10.7% for BT@PMMA2/PVDF composite in the range of 10 Hz to 100 kHz, in which the grafted content of PMMA was 5.5% and 8.0%, respectively. However, the attenuation of dielectric constant was 5.5% for BT@PTFEMA1/PVDF and 4.0% for BT@PTFEMA2/PVDF composite, in which the grafted content of PTFEMA was 1.5% and 2.0%, respectively. These attractive features of BT@PTFEMA/PVDF composites suggested that dielectric ceramic fillers modified with fluorinated polymer can be used to prepare high performance composites, especially those with low dielectric loss and high dielectric constant.
A non-imaging polarized terahertz passive system for detecting and identifying concealed explosives
NASA Astrophysics Data System (ADS)
Karam, Mostafa A.; Meyer, Doug
2011-06-01
Existing terahertz THz systems for detecting concealed explosives are not capable of identifying explosive type which leads to higher false alarm rates. Moreover, some of those systems are imaging systems that invade personal privacy, and require more processing and computational resources. Other systems have no polarization preference which makes them incapable of capturing the geometric features of an explosive. In this study a non-imaging polarized THz passive system for detecting and identifying concealed explosives overcoming the forgoing shortcomings is developed. The system employs a polarized passive THz sensor in acquiring emitted data from a scene that may have concealed explosives. The acquired data are decomposed into their natural resonance frequencies, and the number of those frequencies is used as criteria in detecting the explosive presence. If the presence of an explosive is confirmed, a set of physically based retrieval algorithms is used in extracting the explosive dielectric constant/refractive index value from natural resonance frequencies and amplitudes of associated signals. Comparing the refractive index value against a database of refractive indexes of known explosives identifies the explosive type. As an application, a system having a dual polarized radiometer operating within the frequency band of 0.62- 0.82 THz is presented and used in detecting and identifying person borne C-4 explosive concealed under a cotton garment. The system showed higher efficiencies in detecting and identifying the explosive.
The permittivity and refractive index measurements of doped barium titanate (BT-BCN)
NASA Astrophysics Data System (ADS)
Meeker, Michael A.; Kundu, Souvik; Maurya, Deepam; Kang, Min-Gyu; Sosa, Alejandro; Mudiyanselage, Rathsara R. H. H.; Clavel, Michael; Gollapudi, Sreenivasulu; Hudait, Mantu K.; Priya, Shashank; Khodaparast, Giti A.
2017-11-01
While piezoelectric- ferroelectric materials offer great potential for nonvolatile random access memory, most commonly implemented ferroelectrics contain lead which imposes a challenge in meeting environmental regulations. One promising candidate for lead-free, ferroelectric material based memory is (1 - x) BaTiO3 - xBa(Cu1 / 3 Nb2 / 3) O3 (BT-BCN), x = 0.025 . The samples studied here were grown on a Si substrate with an HfO2 buffer layer, thereby preventing the interdiffusion of BT-BTCN into Si. This study provides further insight into the physical behavior of BT-BCN that will strengthen the foundation for developing switching devices. The sample thicknesses ranged from 1.5 to 120 nm, and piezoelectric force microscopy was employed in order to understand the local ferroelectric behaviors. Dielectric constant as a function of frequency demonstrated enhanced frequency dispersion indicating the polar nature of the composition. The relative permittivity was found to change significantly with varying bias voltage and exhibited a tunability of 82%. The difference in the peak position during up and down sweeps is due to the presence of the spontaneous polarization. Furthermore, reflectometry was performed to determine the refractive index of samples with differing thicknesses. Our results demonstrate that refractive indices are similar to that of barium titanate. This is a promising result indicating that improved ferroelectric properties are obtained without compromising the optical properties.
Guenot, J.; Kollman, P. A.
1992-01-01
Although aqueous simulations with periodic boundary conditions more accurately describe protein dynamics than in vacuo simulations, these are computationally intensive for most proteins. Trp repressor dynamic simulations with a small water shell surrounding the starting model yield protein trajectories that are markedly improved over gas phase, yet computationally efficient. Explicit water in molecular dynamics simulations maintains surface exposure of protein hydrophilic atoms and burial of hydrophobic atoms by opposing the otherwise asymmetric protein-protein forces. This properly orients protein surface side chains, reduces protein fluctuations, and lowers the overall root mean square deviation from the crystal structure. For simulations with crystallographic waters only, a linear or sigmoidal distance-dependent dielectric yields a much better trajectory than does a constant dielectric model. As more water is added to the starting model, the differences between using distance-dependent and constant dielectric models becomes smaller, although the linear distance-dependent dielectric yields an average structure closer to the crystal structure than does a constant dielectric model. Multiplicative constants greater than one, for the linear distance-dependent dielectric simulations, produced trajectories that are progressively worse in describing trp repressor dynamics. Simulations of bovine pancreatic trypsin were used to ensure that the trp repressor results were not protein dependent and to explore the effect of the nonbonded cutoff on the distance-dependent and constant dielectric simulation models. The nonbonded cutoff markedly affected the constant but not distance-dependent dielectric bovine pancreatic trypsin inhibitor simulations. As with trp repressor, the distance-dependent dielectric model with a shell of water surrounding the protein produced a trajectory in better agreement with the crystal structure than a constant dielectric model, and the physical properties of the trajectory average structure, both with and without a nonbonded cutoff, were comparable. PMID:1304396
Nonintrinsic origin of the colossal dielectric constants in Ca Cu3 Ti4 O12
NASA Astrophysics Data System (ADS)
Lunkenheimer, P.; Fichtl, R.; Ebbinghaus, S. G.; Loidl, A.
2004-11-01
The dielectric properties of CaCu3Ti4O12 , a material showing colossal values of the dielectric constant, were investigated over a broad temperature and frequency range extending up to 1.3GHz . A detailed equivalent-circuit analysis of the results and two crucial experiments, employing different types of contacts and varying the sample thickness were performed. The results provide clear evidence that the apparently high values of the dielectric constant in CaCu3Ti4O12 are nonintrinsic and due to electrode polarization effects. The intrinsic properties of CaCu3Ti4O12 are characterized by charge transport via hopping of localized charge carriers and a relatively high dielectric constant of the order of 100.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, W.; Auciello, O.; Premnath, R. N.
2010-01-01
Nanolaminates consisting of Al{sub 2}O{sub 3} and TiO{sub 2} oxide sublayers were synthesized by using atomic layer deposition to produce individual layers with atomic scale thickness control. The sublayer thicknesses were kept constant for each multilayer structure, and were changed from 50 to 0.2 nm for a series of different samples. Giant dielectric constant ({approx}1000) was observed when the sublayer thickness is less than 0.5 nm, which is significantly larger than that of Al{sub 2}O{sub 3} and TiO{sub 2} dielectrics. Detailed investigation revealed that the observed giant dielectric constant is originated from the Maxwell-Wagner type dielectric relaxation.
Very low-refractive-index optical thin films consisting of an array of SiO2 nanorods
NASA Astrophysics Data System (ADS)
Xi, J.-Q.; Kim, Jong Kyu; Schubert, E. F.; Ye, Dexian; Lu, T.-M.; Lin, Shawn-Yu; Juneja, Jasbir S.
2006-03-01
The refractive-index contrast in dielectric multilayer structures, optical resonators, and photonic crystals is an important figure of merit that creates a strong demand for high-quality thin films with a low refractive index. A SiO2 nanorod layer with low refractive index of n=1.08, to our knowledge the lowest ever reported in thin-film materials, is grown by oblique-angle electron-beam deposition of SiO2. A single-pair distributed Bragg reflector employing a SiO2 nanorod layer is demonstrated to have enhanced reflectivity, showing the great potential of low-refractive-index films for applications in photonic structures and devices.
Microstructures and dielectric properties of CaCu3Ti4O12 ceramics via combustion method
NASA Astrophysics Data System (ADS)
Yuan, W. X.; Li, Z. J.
2012-01-01
CaCu3Ti4O12 (CCTO) powder was synthesized by the combustion method. The effect of sintering temperature was studied on dielectric properties of the prepared ceramic samples. They have the dielectric constant of ~31 000 and 80 000 for the grain size of 0.3 and 30-100 μm. It is unusual for CCTO with a grain size of 0.3 μm to have a dielectric constant of ~31 000. Their giant dielectric constant could be explained by a two-step internal-barrier-layer-capacitor model, associated with grain boundaries and domain boundaries. The existence of domain boundaries helped to explain the contradiction of the dielectric mechanisms between polycrystalline and single-crystal CCTO.
Dielectric and Excess Properties of Glycols with Formamide Binary Mixtures at Different Temperatures
NASA Astrophysics Data System (ADS)
Navarkhele, V. V.
2018-07-01
Dielectric constant measurements of glycol-formamide binary solutions with various concentrations have been carried out at different temperatures. The dielectric measurement has been achieved at 100 MHz frequency using a sensor which is based on frequency domain reflectomery technique. The excess dielectric constant, Kirkwood correlation factor and Bruggeman factor has also been reported for the binary mixtures. The results show that the dielectric constant of the mixtures increases with increase in the volume fraction of formamide and decreases with increase in temperature. The study also confirms the presence of intermolecular interaction, hydrogen bonding and orientation of the dipoles in the binary mixtures.
Functionalised graphene sheets as effective high dielectric constant fillers
2011-01-01
A new functionalised graphene sheet (FGS) filled poly(dimethyl)siloxane insulator nanocomposite has been developed with high dielectric constant, making it well suited for applications in flexible electronics. The dielectric permittivity increased tenfold at 10 Hz and 2 wt.% FGS, while preserving low dielectric losses and good mechanical properties. The presence of functional groups on the graphene sheet surface improved the compatibility nanofiller/polymer at the interface, reducing the polarisation process. This study demonstrates that functionalised graphene sheets are ideal nanofillers for the development of new polymer composites with high dielectric constant values. PACS: 78.20.Ci, 72.80.Tm, 62.23.Kn PMID:21867505
Functionalised graphene sheets as effective high dielectric constant fillers
NASA Astrophysics Data System (ADS)
Romasanta, Laura J.; Hernández, Marianella; López-Manchado, Miguel A.; Verdejo, Raquel
2011-08-01
A new functionalised graphene sheet (FGS) filled poly(dimethyl)siloxane insulator nanocomposite has been developed with high dielectric constant, making it well suited for applications in flexible electronics. The dielectric permittivity increased tenfold at 10 Hz and 2 wt.% FGS, while preserving low dielectric losses and good mechanical properties. The presence of functional groups on the graphene sheet surface improved the compatibility nanofiller/polymer at the interface, reducing the polarisation process. This study demonstrates that functionalised graphene sheets are ideal nanofillers for the development of new polymer composites with high dielectric constant values. PACS: 78.20.Ci, 72.80.Tm, 62.23.Kn
Dielectric and Raman spectroscopy of TlSe thin films
NASA Astrophysics Data System (ADS)
Ozel, Aysen E.; Deger, Deniz; Celik, Sefa; Yakut, Sahin; Karabak, Binnur; Akyüz, Sevim; Ulutas, Kemal
2017-12-01
In this report, the results of Dielectric and Raman spectroscopy of TlSe thin films are presented. The films were deposited in different thicknesses ranging from 290 Å to 3200 Å by thermal evaporation method. The relative permittivity (dielectric constant εr‧) and dielectric loss (εr″) of TlSe thin films were calculated by measuring capacitance (C) and dielectric loss factor (tan δ) in the frequencies ranging between 10-2 Hz-107 Hz and in the temperature ranging between 173 K and 433 K. In the given intervals, both the dielectric constant and the dielectric loss of TlSe thin films decrease with increasing frequency, but increase with increasing temperature. This behavior can be explained as multicomponent polarization in the structure. The ac conductivity obeys the ωs law when s (s < 1). The dielectric constant of TlSe thin films is determined from Dielectric and Raman spectroscopy measurements. The results obtained by two different methods are in agreement with each other.
Active tuning of high-Q dielectric metasurfaces
Parry, Matthew; Komar, Andrei; Hopkins, Ben; ...
2017-08-02
Here, we demonstrate the active tuning of all-dielectric metasurfaces exhibiting high-quality factor (high-Q) resonances. The active control is provided by embedding the asymmetric silicon meta-atoms with liquid crystals, which allows the relative index of refraction to be controlled through heating. It is found that high quality factor resonances (Q = 270 ± 30) can be tuned over more than three resonance widths. Our results demonstrate the feasibility of using all-dielectric metasurfaces to construct tunable narrow-band filters.
Ideal flux field dielectric concentrators.
García-Botella, Angel
2011-10-01
The concept of the vector flux field was first introduced as a photometrical theory and later developed in the field of nonimaging optics; it has provided new perspectives in the design of concentrators, overcoming standard ray tracing techniques. The flux field method has shown that reflective concentrators with the geometry of the field lines achieve the theoretical limit of concentration. In this paper we study the role of surfaces orthogonal to the field vector J. For rotationally symmetric systems J is orthogonal to its curl, and then a family of surfaces orthogonal to the lines of J exists, which can be called the family of surfaces of constant pseudopotential. Using the concept of the flux tube, it is possible to demonstrate that refractive concentrators with the shape of these pseudopotential surfaces achieve the theoretical limit of concentration.
Electronic and optical properties of Fe2SiO4 under pressure effect: ab initio study
NASA Astrophysics Data System (ADS)
Xiao, Lingping; Li, Xiaobin; Yang, Xue
2018-05-01
We report first-principles studies the structural, electronic, and optical properties of the Fe2SiO4 fayalite in orthorhombic structure, including pressure dependence of structural parameters, band structures, density of states, and optical constants up to 30 GPa. The calculated results indicate that the linear compressibility along b axis is significantly higher than a and c axes, which is in agreement with earlier work. Meanwhile, the pressure dependence of the electronic band structure, density of states and partial density of states of Fe2SiO4 fayalite up to 30 GPa were presented. Moreover, the evolution of the dielectric function, absorption coefficient (α(ω)), reflectivity (R(ω)), and the real part of the refractive index (n(ω)) at high pressure are also presented.
Engineer-able optical properties of trilayer graphene nanoribbon
NASA Astrophysics Data System (ADS)
Meshginqalam, Bahar; T, Hamid Toloue A.; Taghi Ahmadi, Mohammad; Sabatyan, Arash
2016-03-01
Graphene with a single atomic layer of carbon indicates two-dimensional behavior which plays an important role in sensor application, because of its high surface-to-volume ratio. Its interesting optical properties lead to low-cost and accurate optical devices as well. In the presented work trilayer graphene nanoribbon (TGN) with focus on its optical property for different incident wave lengths in the presence of applied voltage is explored. In low bias condition the optical conductance is modeled and dielectric constant and refractive index based on the estimated conductance are calculated theoretically; finally the obtained results are investigated numerically. Controllable optical properties supported by applied voltage on TGN are proved. Consequently, the proposed model indicates TGN as a possible candidate on surface plasmon based sensors, which needs to be explored.
Optical constants of wurtzite ZnS thin films determined by spectroscopic ellipsometry
NASA Astrophysics Data System (ADS)
Ong, H. C.; Chang, R. P. H.
2001-11-01
The complex dielectric functions of wurtzite ZnS thin films grown on (0001) Al2O3 have been determined by using spectroscopic ellipsometry over the spectral range of 1.33-4.7 eV. Below the band gap, the refractive index n is found to follow the first-order Sellmeir dispersion relationship n2(λ)=1+2.22λ2/(λ2-0.0382). Strong and well-defined free excitonic features located above the band edge are clearly observed at room temperature. The intrinsic optical parameters of wurtzite ZnS such as band gaps and excitonic binding energies have been determined by fitting the absorption spectrum using a modified Elliott expression together with Lorentizan broadening. Both parameters are found to be larger than their zinc blende counterparts.
Grinolds, Darcy D W; Brown, Patrick R; Harris, Daniel K; Bulovic, Vladimir; Bawendi, Moungi G
2015-01-14
We study the dielectric constant of lead sulfide quantum dot (QD) films as a function of the volume fraction of QDs by varying the QD size and keeping the ligand constant. We create a reliable QD sizing curve using small-angle X-ray scattering (SAXS), thin-film SAXS to extract a pair-distribution function for QD spacing, and a stacked-capacitor geometry to measure the capacitance of the thin film. Our data support a reduced dielectric constant in nanoparticles.
Effect of Cold Temperature on the Dielectric Constant of Soil
2012-04-01
explosive device (IED) threats is ground-penetrating radar ( GPR ). Proper development of GPR technology for this application requires a unique...success or failure of GPR as a detection technique. One soil property of interest to radar engineers is the dielectric constant. Previous...results to temperatures, moisture levels, and frequencies relevant to GPR systems. 2. Dielectric Constant and the Ring-resonator Concept The two
In-situ GPR test for three-dimensional mapping of the dielectric constant in a rock mass
NASA Astrophysics Data System (ADS)
Elkarmoty, Mohamed; Colla, Camilla; Gabrielli, Elena; Papeschi, Paolo; Bonduà, Stefano; Bruno, Roberto
2017-11-01
The Ground Penetrating Radar (GPR) is used to detect subsurface anomalies in several applications. The more the velocity of propagation or the dielectric constant is estimated accurately, the more the detection of anomalies at true subsurface depth can be accurately obtained. Since many GPR applications are performed in rock mass with non-homogeneous discontinuous nature, errors in estimating a bulk velocity of propagation or dielectric constant are possible. This paper presents a new in-situ GPR test for mapping the dielectric constant variability in a rock mass. The main aim is to investigate to what extent the dielectric constant is variable in the micro and macro scale of a typical rock mass and to give attention to GPR users in rock mass mediums. The methodology of this research is based on the insertion of steel rods in a rock mass, thus acting as reflectors. The velocity of propagation can be then modeled, from hyperbolic reflections, in the form of velocity pathways from antenna positions to a buried rod. Each pathway is characterized by discrete points which are assumed in three dimensions as centers of micro cubic rock mass. This allows converting the velocity of propagation into a dielectric constant for mapping and modeling the dielectric constant in a volumetric rock mass using a volumetric data visualization software program (Voxler). In a case study, 6 steel drilling rods were diagonally inserted in a vertical face of a bench in a sandstone quarry. Five equally spaced parallel lines, almost perpendicular to the orientations of the rods, were surveyed by a dual frequency GPR antenna of 200 and 600 MHz. The results show that the dielectric constant is randomly varied within the micro and macro scale either in single radargrams or in the volumetric rock mass. The proposed method can be useful if considered in signal processing software programs, particularly in presence of subsurface utilities with known geometry and dimension, allowing converting double travel time, through portions of a radargram, into more reliable depths using discrete dielectric constant values instead of one value for a whole radargram.
NASA Astrophysics Data System (ADS)
Bronnbauer, Carina; Forberich, Karen K.; Guo, Fei; Gasparini, Nicola; Brabec, Christoph J.
2015-09-01
Building integrated thin film solar cells are a strategy for future eco-friendly power generation. Such solar cells have to be semi-transparent, long-term stable and show the potential to be fabricated by a low-cost production process. Organic photovoltaics are a potential candidate because an absorber material with its main absorption in the infrared spectral region where the human eye is not sensitive can be chosen. We can increase the number of absorbed photons, at the same time, keep the transparency almost constant by using a dielectric, wavelength-selective mirror. The mirror reflects only in the absorption regime of the active layer material and shows high transparencies in the spectral region around 550 nm where the human eye is most sensitive. We doctor bladed a fully solution processed dielectric mirror at low temperatures below 80 °C. Both inks, which are printed alternatingly are based on nanoparticles and have a refractive index of 1.29 or 1.98, respectively, at 500 nm. The position and the intensity of the main reflection peak can be easily shifted and thus adjusted to the solar cell absorption spectrum. Eventually, the dielectric mirror was combined with different organic solar cells. For instance, the current increases by 20.6 % while the transparency decreases by 23.7 % for the low band gap absorber DPP and silver nanowires as top electrode. Moreover we proved via experiment and optical simulations, that a variation of the active layer thickness and the position of the main reflection peak affect the transparency and the increase in current.
High-gradient compact linear accelerator
Carder, B.M.
1998-05-26
A high-gradient linear accelerator comprises a solid-state stack in a vacuum of five sets of disc-shaped Blumlein modules each having a center hole through which particles are sequentially accelerated. Each Blumlein module is a sandwich of two outer conductive plates that bracket an inner conductive plate positioned between two dielectric plates with different thicknesses and dielectric constants. A third dielectric core in the shape of a hollow cylinder forms a casing down the series of center holes, and it has a dielectric constant different that the two dielectric plates that sandwich the inner conductive plate. In operation, all the inner conductive plates are charged to the same DC potential relative to the outer conductive plates. Next, all the inner conductive plates are simultaneously shorted to the outer conductive plates at the outer diameters. The signal short will propagate to the inner diameters at two different rates in each Blumlein module. A faster wave propagates quicker to the third dielectric core across the dielectric plates with the closer spacing and lower dielectric constant. When the faster wave reaches the inner extents of the outer and inner conductive plates, it reflects back outward and reverses the field in that segment of the dielectric core. All the field segments in the dielectric core are then in unipolar agreement until the slower wave finally propagates to the third dielectric core across the dielectric plates with the wider spacing and higher dielectric constant. During such unipolar agreement, particles in the core are accelerated with gradients that exceed twenty megavolts per meter. 10 figs.
High-gradient compact linear accelerator
Carder, Bruce M.
1998-01-01
A high-gradient linear accelerator comprises a solid-state stack in a vacuum of five sets of disc-shaped Blumlein modules each having a center hole through which particles are sequentially accelerated. Each Blumlein module is a sandwich of two outer conductive plates that bracket an inner conductive plate positioned between two dielectric plates with different thicknesses and dielectric constants. A third dielectric core in the shape of a hollow cylinder forms a casing down the series of center holes, and it has a dielectric constant different that the two dielectric plates that sandwich the inner conductive plate. In operation, all the inner conductive plates are charged to the same DC potential relative to the outer conductive plates. Next, all the inner conductive plates are simultaneously shorted to the outer conductive plates at the outer diameters. The signal short will propagate to the inner diameters at two different rates in each Blumlein module. A faster wave propagates quicker to the third dielectric core across the dielectric plates with the closer spacing and lower dielectric constant. When the faster wave reaches the inner extents of the outer and inner conductive plates, it reflects back outward and reverses the field in that segment of the dielectric core. All the field segments in the dielectric core are then in unipolar agreement until the slower wave finally propagates to the third dielectric core across the dielectric plates with the wider spacing and higher dielectric constant. During such unipolar agreement, particles in the core are accelerated with gradients that exceed twenty megavolts per meter.
Dielectric characteristics of CaCu3Ti4O12/P(VDF-TrFE) nanocomposites
NASA Astrophysics Data System (ADS)
Zhang, Lin; Shan, Xiaobing; Wu, Peixuan; Cheng, Z.-Y.
2012-06-01
Composite thin film is highly desirable for the dielectric applications. In order to develop composite thin film, a nanocomposite, in which nanosized CaCu3Ti4O12 (CCTO) particles are used as filler and P(VDF-TrFE) 55/45 mol% copolymer is used as polymer matrix, is investigated. The contents of CCTO in the nanocomposites range from 0% to 50 vol%. The dielectric property of these nanocomposites was characterized at frequencies ranging from 100 Hz to 1 MHz and at temperatures ranging from 200 K to 370 K. A dielectric constant of 62 with a loss of 0.05 was obtained in nanocomposite with 50 vol% CCTO at room temperature at 1 kHz. At the phase transition temperature (˜340 K) of the copolymer, a dielectric constant of 150 with a loss less than 0.1 was obtained in this nanocomposite. It is found that the dielectric loss of the nanocomposites is dominated by the polymer which has a relaxation process. Comparing to composites made using microsized CCTO, the nanocomposites exhibit a much lower dielectric loss and a lower dielectric constant. This indicates that the nanosized CCTO particles have a lower dielectric constant than the microsized CCTO particles.
Davulis, Peter M; da Cunha, Mauricio Pereira
2013-04-01
A full set of langatate (LGT) elastic, dielectric, and piezoelectric constants with their respective temperature coefficients up to 900°C is presented, and the relevance of the dielectric and piezoelectric constants and temperature coefficients are discussed with respect to predicted and measured high-temperature SAW propagation properties. The set of constants allows for high-temperature acoustic wave (AW) propagation studies and device design. The dielectric constants and polarization and conductive losses were extracted by impedance spectroscopy of parallel-plate capacitors. The measured dielectric constants at high temperatures were combined with previously measured LGT expansion coefficients and used to determine the elastic and piezoelectric constants using resonant ultrasound spectroscopy (RUS) measurements at temperatures up to 900°C. The extracted LGT piezoelectric constants and temperature coefficients show that e11 and e14 change by up to 62% and 77%, respectively, for the entire 25°C to 900°C range when compared with room-temperature values. The LGT high-temperature constants and temperature coefficients were verified by comparing measured and predicted phase velocities (vp) and temperature coefficients of delay (TCD) of SAW delay lines fabricated along 6 orientations in the LGT plane (90°, 23°, Ψ) up to 900°C. For the 6 tested orientations, the predicted SAW vp agree within 0.2% of the measured vp on average and the calculated TCD is within 9.6 ppm/°C of the measured value on average over the temperature range of 25°C to 900°C. By including the temperature dependence of both dielectric and piezoelectric constants, the average discrepancies between predicted and measured SAW properties were reduced, on average: 77% for vp, 13% for TCD, and 63% for the turn-over temperatures analyzed.
Molecular dynamics simulations to study the solvent influence on protein structure
NASA Astrophysics Data System (ADS)
Dominguez, Hector
2016-05-01
Molecular simulations were carried out to study the influence of different water models in two protein systems. Most of the solvents used in protein simulations, e.g., SPC/E or TIP3P, fail to reproduce the bulk water static dielectric constant. Recently a new water model, TIP4P/ɛ, which reproduces the experimental dielectric constant was reported. Therefore, simulations for two different proteins, Lysozyme and Ubiquitin with SPC/E, TIP3P and TIP4P/ɛ solvents were carried out. Dielectric constants and structural properties were calculated and comparisons were conducted. The structural properties between the three models are very similar, however, the dielectric constants are different in each case.
PLZT capacitor and method to increase the dielectric constant
Taylor, Ralph S.; Fairchild, Manuel Ray; Balachjandran, Uthamalingam; Lee, Tae H.
2017-12-12
A ceramic-capacitor includes a first electrically-conductive-layer, a second electrically-conductive-layer arranged proximate to the first electrically-conductive-layer, and a dielectric-layer interposed between the first electrically-conductive-layer and the second electrically-conductive-layer. The dielectric-layer is formed of a lead-lanthanum-zirconium-titanate material (PLZT), wherein the PLZT is characterized by a dielectric-constant greater than 125, when measured at 25 degrees Celsius and zero Volts bias, and an excitation frequency of ten-thousand Hertz (10 kHz). A method for increasing a dielectric constant of the lead-lanthanum-zirconium-titanate material (PLZT) includes the steps of depositing PLZT to form a dielectric-layer of a ceramic-capacitor, and heating the ceramic-capacitor to a temperature not greater than 300.degree. C.
Let's Measure the Dielectric Constant of a Piece of Paper!
ERIC Educational Resources Information Center
Karlow, Edwin A.
1991-01-01
Described is a simple circuit with which students can observe the effect of common dielectric materials in a capacitor and measure the dielectric constant of a piece of paper. Discussed are the theory, apparatus construction, and experimental procedures for this activity. (CW)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Rajnish, E-mail: rajnish@iitp.ac.in; Goswami, Ashwin M., E-mail: ashwin.nanoplast@gmail.com; Kar, Manoranjan, E-mail: mano-iitg@yahoo.com
2016-05-06
To obtain the material with high dielectric constant and high dielectric strength for the technological applications, nanocomposite of Lanthanum Strontium Nickelete (La{sub 1.8}Sr{sub 0.2}NiO{sub 4}) as nanofiller and polyvinylidene fluoride (PVDF) as polymer matrix has been prepared. The different nanofiler weight concentration varies from 2-8 weight percent. X-ray diffraction technique confirms the phase formation of nanocomposite. Differential scanning calorimeter (DSC) has been employed to study the percentage of crystallinity and Impedance measurement has been carried out to study the dielectric constant. DSC analysis shows decreasing trend of crystallinity whereas impedance analysis gives increasing dielectric constant with increasing La{sub 1.8}Sr{sub 0.2}NiO{submore » 4} concentration in the nanocomposite. Also, these materials can be used as insulator in the transformer as the strength and dielectric behavior of present composite meets the technological requirements.« less
Gomila, G; Esteban-Ferrer, D; Fumagalli, L
2013-12-20
We analyze by means of finite-element numerical calculations the polarization force between a sharp conducting tip and a non-spherical uncharged dielectric nanoparticle with the objective of quantifying its dielectric constant from electrostatic force microscopy (EFM) measurements. We show that for an oblate spheroid nanoparticle of given height the strength of the polarization force acting on the tip depends linearly on the eccentricity, e, of the nanoparticle in the small eccentricity and low dielectric constant regimes (1 < e < 2 and 1 < ε(r) < 10), while for higher eccentricities (e > 2) the dependence is sub-linear and finally becomes independent of e for very large eccentricities (e > 30). These results imply that a precise account of the nanoparticle shape is required to quantify EFM data and obtain the dielectric constants of non-spherical dielectric nanoparticles. Experimental results obtained on polystyrene, silicon dioxide and aluminum oxide nanoparticles and on single viruses are used to illustrate the main findings.
Molecular Dynamics Evaluation of Dielectric-Constant Mixing Rules for H2O-CO2 at Geologic Conditions
Mountain, Raymond D.; Harvey, Allan H.
2015-01-01
Modeling of mineral reaction equilibria and aqueous-phase speciation of C-O-H fluids requires the dielectric constant of the fluid mixture, which is not known from experiment and is typically estimated by some rule for mixing pure-component values. In order to evaluate different proposed mixing rules, we use molecular dynamics simulation to calculate the dielectric constant of a model H2O–CO2 mixture at temperatures of 700 K and 1000 K at pressures up to 3 GPa. We find that theoretically based mixing rules that depend on combining the molar polarizations of the pure fluids systematically overestimate the dielectric constant of the mixture, as would be expected for mixtures of nonpolar and strongly polar components. The commonly used semiempirical mixing rule due to Looyenga works well for this system at the lower pressures studied, but somewhat underestimates the dielectric constant at higher pressures and densities, especially at the water-rich end of the composition range. PMID:26664009
Mountain, Raymond D; Harvey, Allan H
2015-10-01
Modeling of mineral reaction equilibria and aqueous-phase speciation of C-O-H fluids requires the dielectric constant of the fluid mixture, which is not known from experiment and is typically estimated by some rule for mixing pure-component values. In order to evaluate different proposed mixing rules, we use molecular dynamics simulation to calculate the dielectric constant of a model H 2 O-CO 2 mixture at temperatures of 700 K and 1000 K at pressures up to 3 GPa. We find that theoretically based mixing rules that depend on combining the molar polarizations of the pure fluids systematically overestimate the dielectric constant of the mixture, as would be expected for mixtures of nonpolar and strongly polar components. The commonly used semiempirical mixing rule due to Looyenga works well for this system at the lower pressures studied, but somewhat underestimates the dielectric constant at higher pressures and densities, especially at the water-rich end of the composition range.
Ultra-broadband THz time-domain spectroscopy of common polymers using THz air photonics.
D'Angelo, Francesco; Mics, Zoltán; Bonn, Mischa; Turchinovich, Dmitry
2014-05-19
Terahertz-range dielectric properties of the common polymers low-density polyethylene (LDPE), cyclic olefin/ethylene copolymer (TOPAS®), polyamide-6 (PA6), and polytetrafluoroethylene (PTFE or Teflon®) are characterized in the ultra-broadband frequency window 2-15 THz, using a THz time-domain spectrometer employing air-photonics for the generation and detection of single-cycle sub-50 fs THz transients. The time domain measurements provide direct access to both the absorption and refractive index spectra. The polymers LDPE and TOPAS® demonstrate negligible absorption and spectrally-flat refractive index across the entire spectroscopy window, revealing the high potential of these polymers for applications in THz photonics such as ultra-broadband polymer-based dielectric mirrors, waveguides, and fibers. Resonant high-frequency polar vibrational modes are observed and assigned in polymers PA6 and PTFE, and their dielectric functions in the complete frequency window 2-15 THz are theoretically reproduced. Our results demonstrate the potential of ultra-broadband air-photonics-based THz time domain spectroscopy as a valuable analytic tool for materials science.
Examination of Effective Dielectric Constants Derived from Non-Spherical Melting Hydrometeor
NASA Astrophysics Data System (ADS)
Liao, L.; Meneghini, R.
2009-04-01
The bright band, a layer of enhanced radar echo associated with melting hydrometeors, is often observed in stratiform rain. Understanding the microphysical properties of melting hydrometeors and their scattering and propagation effects is of great importance in accurately estimating parameters of the precipitation from spaceborne radar and radiometers. However, one of the impediments in the study of the radar signature of the melting layer is the determination of effective dielectric constants of melting hydrometeors. Although a number of mixing formulas are available to compute the effective dielectric constants, their results vary to a great extent when water is a component of the mixture, such as in the case of melting snow. It is also physically unclear as to how to select among these various formulas. Furthermore, the question remains as to whether these mixing formulas can be applied to computations of radar polarimetric parameters from non-spherical melting particles. Recently, several approaches using numerical methods have been developed to derive the effective dielectric constants of melting hydrometeors, i.e., mixtures consisting of air, ice and water, based on more realistic melting models of particles, in which the composition of the melting hydrometeor is divided into a number of identical cells. Each of these cells is then assigned in a probabilistic way to be water, ice or air according to the distribution of fractional water contents for a particular particle. While the derived effective dielectric constants have been extensively tested at various wavelengths over a range of particle sizes, these numerical experiments have been restricted to the co-polarized scattering parameters from spherical particles. As polarimetric radar has been increasingly used in the study of microphysical properties of hydrometeors, an extension of the theory to polarimetric variables should provide additional information on melting processes. To account for polarimetric radar measurements from melting hydrometeors, it is necessary to move away from the restriction that the melting particles are spherical. In this study, our primary focus is on the derivation of the effective dielectric constants of non-spherical particles that are mixtures of ice and water. The computational model for the ice-water particle is described by a collection of 128x128x128 cubic cells of identical size. Because of the use of such a high-resolution model, the particles can be described accurately not only with regard to shape but with respect to structure as well. The Cartesian components of the mean internal electric field of particles, which are used to infer the effective dielectric constants, are calculated at each cell by the use of the Conjugate Gradient-Fast Fourier Transform (CG-FFT) numerical method. In this work we first check the validity of derived effective dielectric constant from a non-spherical mixed phase particle by comparing the polarimetric scattering parameters of an ice-water spheroid obtained from the CGFFT to those computed from the T-matrix for a homogeneous particle with the same geometry as that of the mixed phase particle (such as size, shape and orientation) and with an effective dielectric constant derived from the internal field of the mixed-phase particle. The accuracy of the effective dielectric constant can be judged by whether the scattering parameters of interest can accurately reproduce those of the exact solution, i.e., the T-matrix results. The purpose of defining an effective dielectric constant is to reduce the complexity of the scattering calculations in the sense that the effective dielectric constant, once obtained, may be applicable to a range of particle sizes, shapes and orientations. Conversely, if a different effective dielectric constant is needed for each particle size or shape, then its utility would be marginal. Having verified that the effective dielectric constant defined for a particular particle with a fixed shape, size, and orientation is valid, a check is performed to see if this effective dielectric constant can be used to characterize a class of particle types (with arbitrary sizes, shapes and orientations) if the fractional ice-water contents of melting particles remain the same. Among the scattering and polarimatric parameters used for examination of effective dielectric constant in this study, are the radar backscattering, extinction and scattering coefficients, asymmetry factor, differential reflectivity factor (ZDR), phase shift and linear polarization ratio (LDR). The goal is to determine whether the effective dielectric constant approach provides a means to compute accurately the radar polarimetric scattering parameters and radiometer brightness temperature quantities from the melting layer in a relatively simple and efficient way.
Low-Thermal-Expansion Filled Polytetrafluoroethylene
NASA Technical Reports Server (NTRS)
Shapiro, Sanford S.
1989-01-01
PTFE made thermally compatible with aluminum without changing dielectric constant. Manufactured with fillers and pores to reduce coefficient of thermal expansion by factor of 6 to match aluminum. Material retains 2.1 dielectric constant of pure PTFE. Combines filler and micropore concepts. Particles and voids embedded in PTFE matrix function cooperatively. Particles take up compressive stress imposed by contracting PTFE, and voids take up expanding material. Increases dielectric constant, while voids reduce it.
Temporal waveguides for optical pulses
Plansinis, Brent W.; Donaldson, William R.; Agrawal, Govind P.
2016-05-12
Here we discuss, temporal total internal reflection (TIR), in analogy to the conventional TIR of an optical beam at a dielectric interface, is the total reflection of an optical pulse inside a dispersive medium at a temporal boundary across which the refractive index changes. A pair of such boundaries separated in time acts as the temporal analog of planar dielectric waveguides. We study the propagation of optical pulses inside such temporal waveguides, both analytically and numerically, and show that the waveguide supports a finite number of temporal modes. We also discuss how a single-mode temporal waveguide can be created inmore » practice. In contrast with the spatial case, the confinement can occur even when the central region has a lower refractive index.« less
Metamaterial-inspired silicon nanophotonics
NASA Astrophysics Data System (ADS)
Staude, Isabelle; Schilling, Jörg
2017-04-01
The prospect of creating metamaterials with optical properties greatly exceeding the parameter space accessible with natural materials has been inspiring intense research efforts in nanophotonics for more than a decade. Following an era of plasmonic metamaterials, low-loss dielectric nanostructures have recently moved into the focus of metamaterial-related research. This development was mainly triggered by the experimental observation of electric and magnetic multipolar Mie-type resonances in high-refractive-index dielectric nanoparticles. Silicon in particular has emerged as a popular material choice, due to not only its high refractive index and very low absorption losses in the telecom spectral range, but also its paramount technological relevance. This Review overviews recent progress on metamaterial-inspired silicon nanostructures, including Mie-resonant and off-resonant regimes.
NRC Microwave Refractive Index Gas Thermometry Implementation Between 24.5 K and 84 K
NASA Astrophysics Data System (ADS)
Rourke, P. M. C.
2017-07-01
The implementation of microwave refractive index gas thermometry at the National Research Council between 24.5 K and 84 K is reported. A new gas-handling system for accurate control and measurement of experimental gas pressure has been constructed, and primary thermometry measurements have been taken using a quasi-spherical copper resonator and helium gas at temperatures corresponding to three defining fixed points of the International Temperature Scale of 1990 (ITS-90). These measurements indicate differences between the thermodynamic temperature T and ITS-90 temperature T_{90} of ( T - T_{90} ) = -0.60 ± 0.56 mK at T_{90} = 24.5561 K, ( T - T_{90} ) = -2.0 ± 1.3 mK at T_{90} = 54.3584 K, and ( T - T_{90} ) = -4.0 ± 2.9 mK at T_{90} = 83.8058 K. The present results at T_{90} = 24.5561 K and T_{90} = 83.8058 K agree with previously reported measurements from other primary thermometry techniques of acoustic gas thermometry and dielectric constant gas thermometry, and the result at T_{90} = 54.3584 K provides new information in a temperature region where there is a gap in other recent data sets.
Correlations of structural, magnetic, and dielectric properties of undoped and doped CaCu3Ti4O12
NASA Astrophysics Data System (ADS)
Krohns, S.; Lu, J.; Lunkenheimer, P.; Brizé, V.; Autret-Lambert, C.; Gervais, M.; Gervais, F.; Bourée, F.; Porcher, É. F.; Loidl, A.
2009-11-01
The present work reports synthesis, as well as a detailed and careful characterization of structural, magnetic, and dielectric properties of differently tempered undoped and doped CaCu3Ti4O12 (CCTO) ceramics. For this purpose, neutron and X-ray powder diffraction, SQUID measurements, and dielectric spectroscopy have been performed. Mn-, Fe-, and Ni-doped CCTO ceramics were investigated in great detail to document the influence of low-level doping with 3d metals on the antiferromagnetic structure and dielectric properties. In the light of possible magnetoelectric coupling in these doped ceramics, the dielectric measurements were also carried out in external magnetic fields up to 7 T. At low temperatures the dielectric constant shows a minor but significant dependence on the applied magnetic field. Undoped CCTO is well-known for its colossal dielectric constant in a broad frequency and temperature range. With the present extended characterization of doped as well as undoped CCTO, we want to address the question why doping with only 1% Mn or 0.5% Fe decreases the room-temperature dielectric constant of CCTO by a factor of ~100 with a concomitant reduction of the conductivity, whereas 0.5% Ni doping changes the dielectric properties only slightly. In addition, diffraction experiments and magnetic investigations were undertaken to check for possible correlations of the magnitude of the colossal dielectric constants with structural details or with magnetic properties like the magnetic ordering, the Curie-Weiss temperatures, or the paramagnetic moment. It is revealed, that while the magnetic ordering temperature and the effective moment of all investigated CCTO ceramics are rather similar, there is a dramatic influence of doping and tempering time on the Curie-Weiss constant.
THE STUDY OF HIGH DIELECTRIC CONSTANT MECHANISM OF La-DOPED Ba0.67Sr0.33TiO3 CERAMICS
NASA Astrophysics Data System (ADS)
Xu, Jing; He, Bo; Liu, Han Xing
It is a common and effective method to enhance the dielectric properties of BST ceramics by adding rare-earth elements. In this paper, it is important to analyze the cause of the high dielectric constant behavior of La-doped BST ceramics. The results show that proper rare earth La dopant (0.2≤x≤0.7) may greatly increase the dielectric constant of BST ceramics, and also improve the temperature stability, evidently. According to the current-voltage (J-V) characteristics, the proper La-doped BST ceramics may reach the better semiconductivity, with the decrease and increase in La doping, the ceramics are insulators. By using the Schottky barrier model and electric microstructure model to find the surface or grain boundary potential barrier height, the width of the depletion layer and grain size do play an important role in impacting the dielectric constant.
Moore, H.J.; Jakosky, B.M.
1989-01-01
Important problems that confront future scientific exploration of Mars include the physical properties of Martian surface materials and the geologic processes that formed the materials. The design of landing spacecraft, roving vehicles, and sampling devices and the selection of landing sites, vehicle traverses, and sample sites will be, in part, guided by the physical properties of the materials. Four materials occur in the sample fields of the Viking landers: (1) drift, (2) crusty to cloddy, (3) blocky, and (4) rock. The first three are soillike. Drift materials is weak, loose, and porous. We estimate that it has a dielectric constant near 2.4 and a thermal inertia near 1 ?? 10-3 to 3 ?? 10-3 (cal cm-2 sec 1 2 K-1) because of its low bulk density, fine grain size, and small cohesion. Crusty to cloddy material is expected to have a dielectric constant near 2.8 and a thermal inertia near 4 ?? 10-3 to 7 ?? 10-3 because of its moderate bulk density and cementation of grains. Blocky material should have a dielectric constant near 3.3 and a thermal inertia near 7 ?? 10-3 to 9 ?? 10-3 because of its moderate bulk density and cementation. Common basaltic rocks have dielectric constans near 8 and thermal inertias near 30 ?? 10-3 to 60 ?? 10-3. Comparisons of estimated dielectric constants and thermal inertias of the materials at the landing sites with those obtained remotely by Earth-based radars and Viking Orbiter thermal sensors suggest that the materials at the landing sites are good analogs for materials elsewhere on Mars. Correlation of remotely estimated dielectric constant and thermal inertias indicates two modal values for paired values of dielectric constants and thermal inertias near (A) 2 and 2 ?? 10-3 and (B) 3 and 6 ?? 10-3, respectively. These two modes are comparable to the dielectric constants and thermal inertias for drift and crusty to cloddy material, respectively. Dielectric constants and thermal inertias for blocky material are larger but conistent with values in the northern plains. Our interprertations are compatible with an aeolian origin for drift and similar materials elsewhere on Mars. The postulate that moderate dielectric constants and thermal inertias larger than 3 or 4 ?? 10-3 are produced by cementation of soillike materials is partly consistent with the data. The average dielectric constant and thermal inertia and their correlation with one another suggest that most of the surface of Mars should present few difficulties to future surface exploration, but some surfaces may present difficulties for spacecraft that are not suitably designed. ?? 1989.
Light induced dielectric constant of Alumina doped lead silicate glass based on silica sands
NASA Astrophysics Data System (ADS)
Diantoro, Markus; Natalia, Desi Ayu; Mufti, Nandang; Hidayat, Arif
2016-04-01
Numerous studies on glass ceramic compounds have been conducted intensively. Two major problems to be solved are to simplify the fabrication process by reducing melting temperature as well as improving various properties for various fields of technological application. To control the dielectric constant, the researchers generally use a specific dopant. So far there is no comprehensive study to control the dielectric constant driven by both of dopant and light intensity. In this study it is used Al2O3 dopant to increase the light induced dielectric constant of the glass. The source of silica was taken from local silica sands of Bancar Tuban. The sands were firstly leached using hydrochloric acid to improve the purity of silica which was investigated by means of XRF. Fabricating the glass samples were performed by using melting-glass method. Silica powder was mixed with various ratio of SiO2:Na2CO3:PbO:Al2O3. Subsequently, a mixture of various Al2O3 doped lead silicate glasses were melted at 970°C and directy continued by annealed at 300°C. The samples were investigated by XRD, FTIR, SEM-EDX and measuring dielectric constant was done using dc-capacitance meter with various light intensities. The investigation result of XRD patterns showed that the crystal structures of the samples are amorphous state. The introduction of Al2O3 does not alter the crystal structure, but significantly change the structure of the functional glass bonding PbO-SiO2 which was shown by the FTIR spectra. It was noted that some new peak peaks were exist in the doped samples. Measuring result of dielectricity shows that the dielectric constant of glass increases with the addition of Al2O3. Increasing the light intensity gives rise to increase their dielectric constant in general. A detail observation of the dielectric seen that there are discontinuous step-like of dielectric. Most likely a specific quantization mechanism occurs when glass exposed under light.
Reis, H; Papadopoulos, M G; Grzybowski, A
2006-09-21
This is the second part of a study to elucidate the local field effects on the nonlinear optical properties of p-nitroaniline (pNA) in three solvents of different multipolar character, that is, cyclohexane (CH), 1,4-dioxane (DI), and tetrahydrofuran (THF), employing a discrete description of the solutions. By the use of liquid structure information from molecular dynamics simulations and molecular properties computed by high-level ab initio methods, the local field and local field gradients on p-nitroaniline and the solvent molecules are computed in quadrupolar approximation. To validate the simulations and the induction model, static and dynamic (non)linear properties of the pure solvents are also computed. With the exception of the static dielectric constant of pure THF, a good agreement between computed and experimental refractive indices, dielectric constants, and third harmonic generation signals is obtained for the solvents. For the solutions, it is found that multipole moments up to two orders higher than quadrupole have a negligible influence on the local fields on pNA, if a simple distribution model is employed for the electric properties of pNA. Quadrupole effects are found to be nonnegligible in all three solvents but are especially pronounced in the 1,4-dioxane solvent, in which the local fields are similar to those in THF, although the dielectric constant of DI is 2.2 and that of the simulated THF is 5.4. The electric-field-induced second harmonic generation (EFISH) signal and the hyper-Rayleigh scattering signal of pNA in the solutions computed with the local field are in good to fair agreement with available experimental results. This confirms the effect of the "dioxane anomaly" also on nonlinear optical properties. Predictions based on an ellipsoidal Onsager model as applied by experimentalists are in very good agreement with the discrete model predictions. This is in contrast to a recent discrete reaction field calculation of pNA in 1,4-dioxane, which found that the predicted first hyperpolarizability of pNA deviated strongly from the predictions obtained using Onsager-Lorentz local field factors.
NASA Astrophysics Data System (ADS)
Blumenfeld, Raphael; Bergman, David J.
1991-10-01
A class of strongly nonlinear composite dielectrics is studied. We develop a general method to reduce the scalar-potential-field problem to the solution of a set of linear Poisson-type equations in rescaled coordinates. The method is applicable for a large variety of nonlinear materials. For a power-law relation between the displacement and the electric fields, it is used to solve explicitly for the value of the bulk effective dielectric constant ɛe to second order in the fluctuations of its local value. A simlar procedure for the vector potential, whose curl is the displacement field, yields a quantity analogous to the inverse dielectric constant in linear dielectrics. The bulk effective dielectric constant is given by a set of linear integral expressions in the rescaled coordinates and exact bounds for it are derived.
Microwave dielectric properties of boreal forest trees
NASA Technical Reports Server (NTRS)
Xu, G.; Ahern, F.; Brown, J.
1993-01-01
The knowledge of vegetation dielectric behavior is important in studying the scattering properties of the vegetation canopy and radar backscatter modelling. Until now, a limited number of studies have been published on the dielectric properties in the boreal forest context. This paper presents the results of the dielectric constant as a function of depth in the trunks of two common boreal forest species: black spruce and trembling aspen, obtained from field measurements. The microwave penetration depth for the two species is estimated at C, L, and P bands and used to derive the equivalent dielectric constant for the trunk as a whole. The backscatter modelling is carried out in the case of black spruce and the results are compared with the JPL AIRSAR data. The sensitivity of the backscatter coefficient to the dielectric constant is also examined.
Imaging performance of an isotropic negative dielectric constant slab.
Shivanand; Liu, Huikan; Webb, Kevin J
2008-11-01
The influence of material and thickness on the subwavelength imaging performance of a negative dielectric constant slab is studied. Resonance in the plane-wave transfer function produces a high spatial frequency ripple that could be useful in fabricating periodic structures. A cost function based on the plane-wave transfer function provides a useful metric to evaluate the planar slab lens performance, and using this, the optimal slab dielectric constant can be determined.
An improved model for the dielectric constant of sea water at microwave frequencies
NASA Technical Reports Server (NTRS)
Klein, L. A.; Swift, C. T.
1977-01-01
The advent of precision microwave radiometry has placed a stringent requirement on the accuracy with which the dielectric constant of sea water must be known. To this end, measurements of the dielectric constant have been conducted at S-band and L-band with a quoted uncertainty of tenths of a percent. These and earlier results are critically examined, and expressions are developed which will yield computations of brightness temperature having an error of no more than 0.3 K for an undisturbed sea at frequencies lower than X-band. At the higher microwave and millimeter wave frequencies, the accuracy is in question because of uncertainties in the relaxation time and the dielectric constant at infinite frequency.
NASA Astrophysics Data System (ADS)
Jayaprakash, P.; Sangeetha, P.; Kumari, C. Rathika Thaya; Caroline, M. Lydia
2017-08-01
A nonlinear optical bulk single crystal of L-methionine admixtured D-mandelic acid (LMDMA) has been grown by slow solvent evaporation technique using water as solvent at ambient temperature. The crystallized LMDMA single crystal subjected to single crystal X-ray diffraction study confirmed monoclinic system with the acentric space group P21. The FTIR analysis gives information about the modes of vibration in the various functional groups present in LMDMA. The UV-visible spectral analysis assessed the optical quality and linear optical properties such as extinction coefficient, reflectance, refractive index and from which optical conductivity and electric susceptibility were also evaluated. The frequency doubling efficiency was observed using Kurtz Perry powder technique. A multiple shot laser was utilized to evaluate the laser damage threshold energy of the crystal. Discrete thermodynamic properties were carried out by TG-DTA studies. The hardness, Meyer's index, yield strength, elastic stiffness constant, Knoop hardness, fracture toughness and brittleness index were analyzed using Vickers microhardness tester. Layer growth pattern and the surface defect were examined by chemical etching studies using optical microscope. Fluorescence emission spectrum was recorded and lifetime was also studied. The electric field response of crystal was investigated from the dielectric studies at various temperatures at different frequencies. The third-order nonlinear optical response in LMDMA has been investigated using Z-scan technique with He-Ne laser at 632.8 nm and nonlinear parameters such as refractive index (n2), absorption coefficient (β) and susceptibility (χ3) investigated extensively for they are in optical phase conjucation, high-speed optical switches and optical dielectric devices.
Guo, Shuai; Niu, Chunhui; Liang, Liang; Chai, Ke; Jia, Yaqing; Zhao, Fangyin; Li, Ya; Zou, Bingsuo; Liu, Ruibin
2016-01-01
Based on a silica sol-gel technique, highly-structurally ordered silica photonic structures were fabricated by UV lithography and hot manual nanoimprint efforts, which makes large-scale fabrication of silica photonic crystals easy and results in low-cost. These photonic structures show perfect periodicity, smooth and flat surfaces and consistent aspect ratios, which are checked by scanning electron microscopy (SEM) and atomic force microscopy (AFM). In addition, glass substrates with imprinted photonic nanostructures show good diffraction performance in both transmission and reflection mode. Furthermore, the reflection efficiency can be enhanced by 5 nm Au nanoparticle coating, which does not affect the original imprint structure. Also the refractive index and dielectric constant of the imprinted silica is close to that of the dielectric layer in nanodevices. In addition, the polarization characteristics of the reflected light can be modulated by stripe nanostructures through changing the incident light angle. The experimental findings match with theoretical results, making silica photonic nanostructures functional integration layers in many optical or optoelectronic devices, such as LED and microlasers to enhance the optical performance and modulate polarization properties in an economical and large-scale way. PMID:27698465
Guo, Shuai; Niu, Chunhui; Liang, Liang; Chai, Ke; Jia, Yaqing; Zhao, Fangyin; Li, Ya; Zou, Bingsuo; Liu, Ruibin
2016-10-04
Based on a silica sol-gel technique, highly-structurally ordered silica photonic structures were fabricated by UV lithography and hot manual nanoimprint efforts, which makes large-scale fabrication of silica photonic crystals easy and results in low-cost. These photonic structures show perfect periodicity, smooth and flat surfaces and consistent aspect ratios, which are checked by scanning electron microscopy (SEM) and atomic force microscopy (AFM). In addition, glass substrates with imprinted photonic nanostructures show good diffraction performance in both transmission and reflection mode. Furthermore, the reflection efficiency can be enhanced by 5 nm Au nanoparticle coating, which does not affect the original imprint structure. Also the refractive index and dielectric constant of the imprinted silica is close to that of the dielectric layer in nanodevices. In addition, the polarization characteristics of the reflected light can be modulated by stripe nanostructures through changing the incident light angle. The experimental findings match with theoretical results, making silica photonic nanostructures functional integration layers in many optical or optoelectronic devices, such as LED and microlasers to enhance the optical performance and modulate polarization properties in an economical and large-scale way.
NASA Astrophysics Data System (ADS)
Jen, Yi-Jun; Jhang, Yi-Ciang; Liu, Wei-Chih
2017-08-01
A multilayer that comprises ultra-thin metal and dielectric films has been investigated and applied as a layered metamaterial. By arranging metal and dielectric films alternatively and symmetrically, the equivalent admittance and refractive index can be tailored separately. The tailored admittance and refractive index enable us to design optical filters with more flexibility. The admittance matching is achieved via the admittance tracing in the normalized admittance diagram. In this work, an ultra-thin light absorber is designed as a multilayer composed of one or several cells. Each cell is a seven-layered film stack here. The design concept is to have the extinction as large as possible under the condition of admittance matching. For a seven-layered symmetrical film stack arranged as Ta2O5 (45 nm)/ a-Si (17 nm)/ Cr (30 nm)/ Al (30 nm)/ Cr (30 nm)/ a-Si (17 nm)/ Ta2O5 (45 nm), its mean equivalent admittance and extinction coefficient over the visible regime is 1.4+0.2i and 2.15, respectively. The unit cell on a transparent BK7 glass substrate absorbs 99% of normally incident light energy for the incident medium is glass. On the other hand, a transmission-induced metal-dielectric film stack is investigated by using the admittance matching method. The equivalent anisotropic property of the metal-dielectric multilayer varied with wavelength and nanostructure are investigated here.
Study of Some Dielectric Properties of Suspensions of Magnesium Particles in Mineral Oil
NASA Technical Reports Server (NTRS)
Altshuller, Aubrey P
1954-01-01
The variation of dielectric constant has been measured as a function of the concentration of magnesium particles; the shape, size, and degree of oxidation of the particles; the temperature; and the frequency of oscillation. The variation of dielectric constant and settling rate was investigated as a function of time. Also investigated were the effects of particle concentration, shape and time on dielectric losses.
Lan, Siang-Wen; Weng, Min-Hang; Yang, Ru-Yuan; Chang, Shoou-Jinn; Chung, Yaoh-Sien; Yu, Tsung-Chih; Wu, Chun-Sen
2016-01-01
In this paper, the oil-in-gelatin based tissue-mimicking materials (TMMs) doped with carbon based materials including carbon nanotube, graphene ink or lignin were prepared. The volume percent for gelatin based mixtures and oil based mixtures were both around 50%, and the doping amounts were 2 wt %, 4 wt %, and 6 wt %. The effect of doping material and amount on the microwave dielectric properties including dielectric constant and conductivity were investigated over an ultra-wide frequency range from 2 GHz to 20 GHz. The coaxial open-ended reflection technology was used to evaluate the microwave dielectric properties. Six measured values in different locations of each sample were averaged and the standard deviations of all the measured dielectric properties, including dielectric constant and conductivity, were less than one, indicating a good uniformity of the prepared samples. Without doping, the dielectric constant was equal to 23 ± 2 approximately. Results showed with doping of carbon based materials that the dielectric constant and conductivity both increased about 5% to 20%, and the increment was dependent on the doping amount. By proper selection of doping amount of the carbon based materials, the prepared material could map the required dielectric properties of special tissues. The proposed materials were suitable for the phantom used in the microwave medical imaging system. PMID:28773678
Effect of Bi doping on morphotropic phase boundary and dielectric properties of PZT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joshi, Shraddha; Acharya, Smita, E-mail: saha275@yahoo.com
2016-05-23
In our present attempt, Pb{sub (1-x)}Bi{sub x}Zr{sub 0.52}Ti{sub 0.48}O{sub 3} [PBZT] {where x = 0, 0.05, 0.1} is synthesized by sol-gel route. Effect of Bi addition on structure, sinterability and dielectric properties are observed. The presence of morphotropic phase boundary (coexistence of tetragonal and rhombohedral symmetry) is confirmed by X-ray diffraction. Enhancement of sinterability after Bi doping is observed through a systematic sintering program. Frequency and temperature dependent dielectric constant are studied. Bi doping in PZT is found to enhance room temperature dielectric constant. However, at high temperature the dielectric constant of pure PZT is more than that of dopedmore » PZT.« less
NASA Astrophysics Data System (ADS)
Rahman, Rezwanur; Taylor, P. C.; Scales, John A.
2013-08-01
Quasi-optical (QO) methods of dielectric spectroscopy are well established in the millimeter and submillimeter frequency bands. These methods exploit standing wave structure in the sample produced by a transmitted Gaussian beam to achieve accurate, low-noise measurement of the complex permittivity of the sample [e.g., J. A. Scales and M. Batzle, Appl. Phys. Lett. 88, 062906 (2006);, 10.1063/1.2172403 R. N. Clarke and C. B. Rosenberg, J. Phys. E 15, 9 (1982);, 10.1088/0022-3735/15/1/002 T. M. Hirovnen, P. Vainikainen, A. Lozowski, and A. V. Raisanen, IEEE Trans. Instrum. Meas. 45, 780 (1996)], 10.1109/19.516996. In effect the sample itself becomes a low-Q cavity. On the other hand, for optically thin samples (films of thickness much less than a wavelength) or extremely low loss samples (loss tangents below 10-5) the QO approach tends to break down due to loss of signal. In such a case it is useful to put the sample in a high-Q cavity and measure the perturbation of the cavity modes. Provided that the average mode frequency divided by the shift in mode frequency is less than the Q (quality factor) of the mode, then the perturbation should be resolvable. Cavity perturbation techniques are not new, but there are technological difficulties in working in the millimeter/submillimeter wave region. In this paper we will show applications of cavity perturbation to the dielectric characterization of semi-conductor thin films of the type used in the manufacture of photovoltaics in the 100 and 350 GHz range. We measured the complex optical constants of hot-wire chemical deposition grown 1-μm thick amorphous silicon (a-Si:H) film on borosilicate glass substrate. The real part of the refractive index and dielectric constant of the glass-substrate varies from frequency-independent to linearly frequency-dependent. We also see power-law behavior of the frequency-dependent optical conductivity from 316 GHz (9.48 cm-1) down to 104 GHz (3.12 cm-1).
Dielectric properties of single wall carbon nanotubes-based gelatin phantoms
NASA Astrophysics Data System (ADS)
Altarawneh, M. M.; Alharazneh, G. A.; Al-Madanat, O. Y.
In this work, we report the dielectric properties of Single wall Carbon Nanotubes (SWCNTs)-based phantom that is mainly composed of gelatin and water. The fabricated gelatin-based phantom with desired dielectric properties was fabricated and doped with different concentrations of SWCNTs (e.g., 0%, 0.05%, 0.10%, 0.15%, 0.2%, 0.4% and 0.6%). The dielectric constants (real ɛ‧ and imaginary ɛ‧‧) were measured at different positions for each sample as a function of frequency (0.5-20GHz) and concentrations of SWCNTs and their averages were found. The Cole-Cole plot (ɛ‧ versus ɛ‧‧) was obtained for each concentration of SWCNTs and was used to obtain the static dielectric constant ɛs, the dielectric constant at the high limit of frequency ɛ∞ and the average relaxation time τ. The measurements showed that the fabricated samples are in good homogeneity and the SWCNTs are dispersed well in the samples as an acceptable standard deviation is achieved. The study showed a linear increase in the static dielectric constant ɛs and invariance of the average relaxation time τ and the value of ɛ∞ at room temperature for the investigated concentrations of SWCNTs.
Process and Microstructure to Achieve Ultra-high Dielectric Constant in Ceramic-Polymer Composites.
Zhang, Lin; Shan, Xiaobing; Bass, Patrick; Tong, Yang; Rolin, Terry D; Hill, Curtis W; Brewer, Jeffrey C; Tucker, Dennis S; Cheng, Z-Y
2016-10-21
Influences of process conditions on microstructure and dielectric properties of ceramic-polymer composites are systematically studied using CaCu 3 Ti 4 O 12 (CCTO) as filler and P(VDF-TrFE) 55/45 mol.% copolymer as the matrix by combining solution-cast and hot-pressing processes. It is found that the dielectric constant of the composites can be significantly enhanced-up to about 10 times - by using proper processing conditions. The dielectric constant of the composites can reach more than 1,000 over a wide temperature range with a low loss (tan δ ~ 10 -1 ). It is concluded that besides the dense structure of composites, the uniform distribution of the CCTO particles in the matrix plays a key role on the dielectric enhancement. Due to the influence of the CCTO on the microstructure of the polymer matrix, the composites exhibit a weaker temperature dependence of the dielectric constant than the polymer matrix. Based on the results, it is also found that the loss of the composites at low temperatures, including room temperature, is determined by the real dielectric relaxation processes including the relaxation process induced by the mixing.
Process and Microstructure to Achieve Ultra-high Dielectric Constant in Ceramic-Polymer Composites
NASA Astrophysics Data System (ADS)
Zhang, Lin; Shan, Xiaobing; Bass, Patrick; Tong, Yang; Rolin, Terry D.; Hill, Curtis W.; Brewer, Jeffrey C.; Tucker, Dennis S.; Cheng, Z.-Y.
2016-10-01
Influences of process conditions on microstructure and dielectric properties of ceramic-polymer composites are systematically studied using CaCu3Ti4O12 (CCTO) as filler and P(VDF-TrFE) 55/45 mol.% copolymer as the matrix by combining solution-cast and hot-pressing processes. It is found that the dielectric constant of the composites can be significantly enhanced-up to about 10 times - by using proper processing conditions. The dielectric constant of the composites can reach more than 1,000 over a wide temperature range with a low loss (tan δ ~ 10-1). It is concluded that besides the dense structure of composites, the uniform distribution of the CCTO particles in the matrix plays a key role on the dielectric enhancement. Due to the influence of the CCTO on the microstructure of the polymer matrix, the composites exhibit a weaker temperature dependence of the dielectric constant than the polymer matrix. Based on the results, it is also found that the loss of the composites at low temperatures, including room temperature, is determined by the real dielectric relaxation processes including the relaxation process induced by the mixing.
Xu, Nuoxin; Zhang, Qilong; Yang, Hui; Xia, Yuting; Jiang, Yongchang
2017-01-01
Novel three-dimensional hierarchical flower-like TiO2/carbon (TiO2/C) nanostructures were in-situ synthesized via a solvothermal method involving calcination of organic precursor under inert atmosphere. The composite films comprised of P (VDF-HFP) and as-prepared hierarchical flower-like TiO2/C were fabricated by a solution casting and hot-pressing approach. The results reveal that loading the fillers with a small amount of carbon is an effective way to improve the dielectric constant and suppress the dielectric loss. In addition, TiO2/C particles with higher carbon contents exhibit superiority in promoting the dielectric constants of composites when compared with their noncarbon counterparts. For instance, the highest dielectric constant (330.6) of the TiO2/C composites is 10 times over that of noncarbon-TiO2-filled ones at the same filler volume fraction, and 32 times over that of pristine P (VDF-HFP). The enhancement in the dielectric constant can be attributed to the formation of a large network, which is composed of local micro-capacitors with carbon particles as electrodes and TiO2 as the dielectric in between. PMID:28262766
Process and Microstructure to Achieve Ultra-high Dielectric Constant in Ceramic-Polymer Composites
Zhang, Lin; Shan, Xiaobing; Bass, Patrick; Tong, Yang; Rolin, Terry D.; Hill, Curtis W.; Brewer, Jeffrey C.; Tucker, Dennis S.; Cheng, Z.-Y.
2016-01-01
Influences of process conditions on microstructure and dielectric properties of ceramic-polymer composites are systematically studied using CaCu3Ti4O12 (CCTO) as filler and P(VDF-TrFE) 55/45 mol.% copolymer as the matrix by combining solution-cast and hot-pressing processes. It is found that the dielectric constant of the composites can be significantly enhanced–up to about 10 times – by using proper processing conditions. The dielectric constant of the composites can reach more than 1,000 over a wide temperature range with a low loss (tan δ ~ 10−1). It is concluded that besides the dense structure of composites, the uniform distribution of the CCTO particles in the matrix plays a key role on the dielectric enhancement. Due to the influence of the CCTO on the microstructure of the polymer matrix, the composites exhibit a weaker temperature dependence of the dielectric constant than the polymer matrix. Based on the results, it is also found that the loss of the composites at low temperatures, including room temperature, is determined by the real dielectric relaxation processes including the relaxation process induced by the mixing. PMID:27767184
Constant fields and constant gradients in open ionic channels.
Chen, D P; Barcilon, V; Eisenberg, R S
1992-01-01
Ions enter cells through pores in proteins that are holes in dielectrics. The energy of interaction between ion and charge induced on the dielectric is many kT, and so the dielectric properties of channel and pore are important. We describe ionic movement by (three-dimensional) Nemst-Planck equations (including flux and net charge). Potential is described by Poisson's equation in the pore and Laplace's equation in the channel wall, allowing induced but not permanent charge. Asymptotic expansions are constructed exploiting the long narrow shape of the pore and the relatively high dielectric constant of the pore's contents. The resulting one-dimensional equations can be integrated numerically; they can be analyzed when channels are short or long (compared with the Debye length). Traditional constant field equations are derived if the induced charge is small, e.g., if the channel is short or if the total concentration gradient is zero. A constant gradient of concentration is derived if the channel is long. Plots directly comparable to experiments are given of current vs voltage, reversal potential vs. concentration, and slope conductance vs. concentration. This dielectric theory can easily be tested: its parameters can be determined by traditional constant field measurements. The dielectric theory then predicts current-voltage relations quite different from constant field, usually more linear, when gradients of total concentration are imposed. Numerical analysis shows that the interaction of ion and channel can be described by a mean potential if, but only if, the induced charge is negligible, that is to say, the electric field is spatially constant. Images FIGURE 1 PMID:1376159
A Preliminary Attempt at Sintering an Ultrafine Alumina Powder Using Microwaves
1994-09-01
and unusual properties [Ref. B4]. Dielectric properties of individual ceramic phases differ depending on parameters such as compositicn...useful parameter is an estimate of the amount of power dissipated into a dielectric with a known effective loss factor. For a high frequency electric...cavities, and their influence in ceramic samples must be considered. Therefore scattering, diffraction, interference, and reflection and refraction
L-band Dielectric Constant Measurements of Seawater (Oral presentation and SMOS Poster)
NASA Technical Reports Server (NTRS)
Lang, Roger H.; Utku, Cuneyt; LeVine, David M.
2003-01-01
This paper describes a resonant cavity technique for the measurement of the dielectric constant of seawater as a function of its salinity. Accurate relationships between salinity and dielectric constant (which determines emissivity) are needed for sensor systems such as SMOS and Aquarius that will monitor salinity from space in the near future. The purpose of the new measurements is to establish the dependence of the dielectric constant of seawater on salinity in contemporary units (e.g. psu) and to take advantage of modern instrumentation to increase the accuracy of these measurements. The measurement device is a brass cylindrical cavity 16cm in diameter and 7cm in height. The seawater is introduced into the cavity through a slender glass tube having an inner diameter of 0.1 mm. By assuming that this small amount of seawater slightly perturbs the internal fields in the cavity, perturbation theory can be employed. A simple formula results relating the real part of the dielectric constant to the change in resonant frequency of the cavity. In a similar manner, the imaginary part of the dielectric constant is related to the change in the cavity s Q. The expected accuracy of the cavity technique is better than 1% for the real part and 1 to 2% for the imaginary part. Presently, measurements of methanol have been made and agree with precision measurements in the literature to within 1% in both real and imaginary parts. Measurements have been made of the dielectric constant of seawater samples from Ocean Scientific in the United Kingdom with salinities of 10, 30, 35 and 38 psu. All measurements were made at room temperature. Plans to make measurements at a range of temperatures and salinities will be discussed.
Li, Yang-yang; Zhao, Kai; Ren, Jian-hua; Ding, Yan-ling; Wu, Li-li
2014-01-01
Soil salinity is a global problem, especially in developing countries, which affects the environment and productivity of agriculture areas. Salt has a significant effect on the complex dielectric constant of wet soil. However, there is no suitable model to describe the variation in the backscattering coefficient due to changes in soil salinity content. The purpose of this paper is to use backscattering models to understand behaviors of the backscattering coefficient in saline soils based on the analysis of its dielectric constant. The effects of moisture and salinity on the dielectric constant by combined Dobson mixing model and seawater dielectric constant model are analyzed, and the backscattering coefficient is then simulated using the AIEM. Simultaneously, laboratory measurements were performed on ground samples. The frequency effect of the laboratory results was not the same as the simulated results. The frequency dependence of the ionic conductivity of an electrolyte solution is influenced by the ion's components. Finally, the simulated backscattering coefficients measured from the dielectric constant with the AIEM were analyzed using the extracted backscattering coefficient from the RADARSAT-2 image. The results show that RADARSAT-2 is potentially able to measure soil salinity; however, the mixed pixel problem needs to be more thoroughly considered.
Smirnov, Serguei; Anoshkin, Ilya V; Demchenko, Petr; Gomon, Daniel; Lioubtchenko, Dmitri V; Khodzitsky, Mikhail; Oberhammer, Joachim
2018-06-21
Materials with tunable dielectric properties are valuable for a wide range of electronic devices, but are often lossy at terahertz frequencies. Here we experimentally report the tuning of the dielectric properties of single-walled carbon nanotubes under light illumination. The effect is demonstrated by measurements of impedance variations at low frequency as well as complex dielectric constant variations in the wide frequency range of 0.1-1 THz by time domain spectroscopy. We show that the dielectric constant is significantly modified for varying light intensities. The effect is also practically applied to phase shifters based on dielectric rod waveguides, loaded with carbon nanotube layers. The carbon nanotubes are used as tunable impedance surface controlled by light illumination, in the frequency range of 75-500 GHz. These results suggest that the effect of dielectric constant tuning with light, accompanied by low transmission losses of the carbon nanotube layer in such an ultra-wide band, may open up new directions for the design and fabrication of novel Terahertz and optoelectronic devices.
Large dielectric constant in zirconia polypyrrole hybrid nanocomposites.
Dey, Ashis; De, S K
2007-06-01
Zirconia nanoparticles have been synthesized by a novel two-reverse emulsion technique and combined with polypyrrole (PPY) to form ZrO2-PPY nanocomposites. Complex impedance and dielectric permittivity of ZrO2-PPY nanocomposite have been investigated as a function of frequency and temperature for different compositions. The composite samples are characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning and transmission electron microscopy. The composites reveal ordered semiconducting behaviour. Polypyrrole is the major component in electrical transport process of the samples. A very large dielectric constant of about 12,000 at room temperature has been observed. The colossal dielectric constant is mainly dominated by interfacial polarization due to Maxwell-Wagner relaxation effect. Two completely separate groups of dielectric relaxation have been observed. The low frequency dielectric relaxation arises from surface defect states of zirconia nanoparticles. The broad peak at high frequency is due to Maxwell-Wagner type polarization.
NASA Astrophysics Data System (ADS)
Singh, Harjinder; Slathia, Goldy; Gupta, Rashmi; Bamzai, K. K.
2018-04-01
Samarium coordinated with salicylic acid was successfully grown as a single crystal by low temperature solution technique using mixed solvent of methanol and water in equal ratio. Structural characterization was carried out by single crystal X-ray diffraction analysis and it crystallizes in centrosymmetric space group P121/c1. FTIR and UV-Vis-NIR spectroscopy confirmed the compound formation and help to determine the mode of binding of the ligand to the rare earth-metal ion. Dielectric constant and dielectric loss have been measured over the frequency range 100 Hz - 30MHz. The decrease in dielectric constant with increases in frequency is due to the transition from interfacial polarization to dipolar polarization. The small value of dielectric constant at higher frequency ensures that the crystal is good candidate for NLO devices. Dielectric loss represents the resistive nature of the material.
Yang, Ke; Huang, Xingyi; Xie, Liyuan; Wu, Chao; Jiang, Pingkai; Tanaka, Toshikatsu
2012-11-23
A novel route to prepare core-shell structured nanocomposites with excellent dielectric performance is reported. This approach involves the grafting of polystyrene (PS) from the surface of BaTiO(3) by an in situ RAFT polymerization. The core-shell structured PS/BaTiO(3) nanocomposites not only show significantly increased dielectric constant and very low dielectric loss, but also have a weak frequency dependence of dielectric properties over a wide range of frequencies. In addition, the dielectric constant of the nanocomposites can also be easily tuned by varying the thickness of the PS shell. Our method is very promising for preparing high-performance nanocomposites used in energy-storage devices. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Yuan, Ruihao; Xue, Deqing; Zhou, Yumei; Ding, Xiangdong; Sun, Jun; Xue, Dezhen
2017-07-01
We designed and synthesized a pseudo-binary Pb-free system, Ba(Ti0.7Zr0.3)O3-x(Ba0.82Ca0.18)TiO3, by combining a rhombohedral end (with only cubic to rhombohedral ferroelectric phase transition) and a tetragonal end (with only cubic to tetragonal ferroelectric phase transition). The established composition-temperature phase diagram is characterized by a tricritical point type morphotropic phase boundary (MPB), and the MPB composition has better ferroelectric, piezoelectric, and dielectric properties than the compositions deviating from MPB. Moreover, a full set of material constants (including elastic stiffness constants, elastic compliance constants, piezoelectric constants, dielectric constants, and electromechanical coupling factors) of the MPB composition are determined using a resonance method. The good piezoelectric performance of the MPB composition can be ascribed to the high dielectric constants, elastic softening, and large electromechanical coupling factor.
Laser-driven interactions and resultant instabilities in materials with high dielectric constant
NASA Astrophysics Data System (ADS)
Rajpoot, Moolchandra; Dixit, Sanjay
2015-07-01
An analytical investigation of nonlinear interactions resulting in parametric amplification of acoustic wave is made by obtaining the dispersion relation using hydrodynamic model of inhomogeneous plasma by applying large static field at an arbitrary angle with the pump wave. The investigation shows that many early studies have neglected dependence of dielectric constant on deformation of materials but deformation of materials does infect depends on the dielectric constant of medium. Thus we have assumed to high dielectric material like BaTiO3 which resulted in substantially high growth rate of threshold electric field which opens a new dimension to study nonlinear interactions and instabilities.
Dielectric constants of soils at microwave frequencies
NASA Technical Reports Server (NTRS)
Geiger, F. E.; Williams, D.
1972-01-01
A knowledge of the complex dielectric constant of soils is essential in the interpretation of microwave airborne radiometer data of the earth's surface. Measurements were made at 37 GHz on various soils from the Phoenix, Ariz., area. Extensive data have been obtained for dry soil and soil with water content in the range from 0.6 to 35 percent by dry weight. Measurements were made in a two arm microwave bridge and results were corrected for reflections at the sample interfaces by solution of the parallel dielectric plate problem. The maximum dielectric constants are about a factor of 3 lower than those reported for similar soils at X-band frequencies.
NASA Astrophysics Data System (ADS)
Srinivas, G.; Ramesh, B.; Kumar, J. Siva; Shareefuddin, Md.; Chary, M. N.; Sayanna, R.
2016-05-01
Spectroscopic and physical properties of V2O5 doped mixed alkali borate glasses are investigated. Borate glasses containing fixed concentrations of alkaline earth oxides (MgO and BaO) and alkali oxides (K2O and Na2O) were changes and are prepared by melt quenching technique. The values of ri, rp, Rm, αm molar volume and Λth increase and oxygen packing density, density and dopant ion concentration decrease with increasing of K2O content. As a result there shall be an increase in the disorder of the glass network. The optical band gap energies, Urbach energy, boron-boron separation,refractive index, dielectric constant, electronic polarizability and reflection loss values are varies nonlinearly with the K2O content which manifests the mixed alkali effect.
Ellipsometry study of optical parameters of AgIn5S8 crystals
NASA Astrophysics Data System (ADS)
Isik, Mehmet; Gasanly, Nizami
2015-12-01
AgIn5S8 crystals grown by Bridgman method were characterized for optical properties by ellipsometry measurements. Spectral dependence of optical parameters; real and imaginary parts of the pseudodielectric function, pseudorefractive index, pseudoextinction coefficient, reflectivity and absorption coefficient were obtained from ellipsometry experiments carried out in the 1.2-6.2 eV range. Direct band gap energy of 1.84 eV was found from the analysis of absorption coefficient vs. photon energy. The oscillator energy, dispersion energy and zero-frequency refractive index, high-frequency dielectric constant values were found from the analysis of the experimental data using Wemple-DiDomenico and Spitzer-Fan models. Crystal structure and atomic composition ratio of the constituent elements in the AgIn5S8 crystal were revealed from structural characterization techniques of X-ray diffraction and energy dispersive spectroscopy.
An anion substitution route to low loss colossal dielectric CaCu{sub 3}Ti{sub 4}O{sub 12}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Andrew E.; Calvarese, T.G.; Sleight, A.W.
2009-02-15
An anion substitution route was utilized for lowering the dielectric loss in CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) by partial replacement of oxygen by fluorine. This substitution reduced the dielectric loss, and retained a high dielectric constant that was essentially temperature independent from 25 to 200 deg. C. In particular, CaCu{sub 3}Ti{sub 4}O{sub 11.7}F{sub 0.3} exhibited a giant dielectric constant over 6000 and low dielectric loss below 0.075 at 100 kHz within a temperature range of 25-200 deg. C. Fluorine analysis confirmed the presence of fluorine in all samples measured. - Grapical Abstract: An anion substitution route was utilized for loweringmore » the dielectric loss in CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) by partial replacement of oxygen by fluorine. This substitution, confirmed by fluorine analysis, reduced tan {delta}, and retained a high dielectric constant that was essentially temperature independent from 25 to 200 deg. C at 100 kHz.« less
Microwave dielectric behavior of vegetation material
NASA Technical Reports Server (NTRS)
Elrayes, Mohamed A.; Ulaby, Fawwaz T.
1987-01-01
The microwave dielectric behavior of vegetation was examined through the development of theoretical models involving dielectric dispersion by both bound and free water and supported by extensive dielectric measurements conducted over a wide range of conditions. The experimental data were acquired using an open-ended coaxial probe that was developed for sensing the dielectric constant of thin layers of materials, such as leaves, from measurements of the complex reflection coefficient using a network analyzer. The probe system was successfully used to record the spectral variation of the dielectric constant over a wide frequency range extending from 0.5 to 20.4 GHz at numerous temperatures between -40 to +40 C. The vegetation samples were measured over a wide range of moisture conditions. To model the dielectric spectrum of the bound water component of the water included in vegetation, dielectric measurements were made for several sucrose-water solutions as analogs for the situation in vegetation. The results were used in conjunction with the experimental data for leaves to determine some of the constant coefficients in the theoretical models. Two models, both of which provide good fit to the data, are proposed.
Sulfurization effect on optical properties of Cu2SNS3 thin films grown by two-stage process
NASA Astrophysics Data System (ADS)
Reddy, G. Phaneendra; Reddy, K. T. Ramakrishna
2017-05-01
A good phase controlled and impurity free two stage process was used to prepare Cu2SnS3 layers on glass substrates. The layers were prepared by sulfurization of sputtered Cu-Sn metallic precursors by varying the sulfurization temperature (Ts) in the range, 150-450°C, keeping the other deposition parameters constant. A complete investigation of the optical properties of the layers with sulfurization temperature was made by using the optical transmittance and reflectance measurements versus wavelength. The absorption coefficient α, was evaluated using the optical data that showed a α > 104 cm-1 for all the as-grown films. The optical bandgap of the as grown layers was determined from the second derivative diffused reflectance spectra that varied from 1.96 eV to 0.99 eV. Consequently, refractive index and extinction coefficient were calculated from Pankov's relations. In addition, the other optical parameters such as the dielectric constants, dissipation factor and also optical conductivity calculated. A detailed analysis of the dependence of all the above parameters on Ts is reported and discussed.
NASA Astrophysics Data System (ADS)
Ahmed, I. S.; Kassem, M. A.
2010-10-01
New four Schiff bases are prepared by condensation of 2-amino-pyridin-3-ol with 3, 4-dihydroxy-benzaldehyde (I), 2-hydroxybenzaldehyde (II), 5-bromo-2-hydroxybenzaldehyde (III), and 4-dimethylaminobenzaldehyde (IV). The structures of these compounds are characterized based on elemental analyses (C. H. N), IR and 1H NMR. Also, the electronic absorption spectra are recorded in organic solvents of different polarity. The solvents are selected to be covered a wide range of parameters (refractive index, dielectric constant and hydrogen bonding capacity). The UV-vis absorption spectra of Schiff base compounds are investigated in aqueous buffer solutions of varying pH and utilized for the determination of ionization constant, p Ka and activation free energy, Δ G* of the ionization process. The biological activity against bacterial species and fungi as microorganisms representing different microbial categories such as (two Gram-negative bacteria, Eschericha coli and Agrobacterium sp.),three Gram-positive bacteria ( Staphylococcus aureus, Bacillus subtlus and Bacillus megatherium), yeast ( Candida albicans), and fungi ( Aspergillus niger) were studied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xue, Renzhong; Department of Technology and Physics, Zhengzhou University of Light Industry, Zhengzhou 450002; Zhao, Gaoyang, E-mail: zhaogy@xaut.edu.cn
Graphical abstract: The dielectric constant decreases with Ta doping, increases with Y doping and keeps almost constant with Zr doping compared with that of pure CCTO. - Highlights: • Y and Ta doping cause different defect types and concentration. • Defect influences the grain boundary mobility and results in different grain size. • Y doping increases the dielectric constant and decreases the nonlinear property. • Ta doping decreases the dielectric constant and enhances the nonlinear property. • Zr doped sample has nearly the defect type and dielectric properties as CaCu{sub 3}Ti{sub 4}O{sub 12}. - Abstract: The microstructure, dielectric and electricalmore » properties of CaCu{sub 3}Ti{sub 4−x}R{sub x}O{sub 12} (R = Y, Zr, Ta; x = 0 and 0.005) ceramics were investigated by XRD, Raman spectra, SEM and dielectric spectrum measurements. Positron annihilation measurements have been performed to investigate the influence of doping on the defects. The results show that all samples form a single crystalline phase. Y and Ta doping cause different defect types and increase the defect size and concentration, which influence the mobility of grain boundary and result in the different grain size. Y doping increases the dielectric constant and decreases the nonlinear property while Ta doping lead to an inverse result. Zr-doped sample has nearly the defect type, grain morphology and dielectric properties as pure CaCu{sub 3}Ti{sub 4}O{sub 12}. The effects of microstructure including the grain morphology and the vacancy defects on the mechanism of the dielectric and electric properties by doping are discussed.« less
Dielectric nanoresonators for light manipulation
NASA Astrophysics Data System (ADS)
Yang, Zhong-Jian; Jiang, Ruibin; Zhuo, Xiaolu; Xie, Ya-Ming; Wang, Jianfang; Lin, Hai-Qing
2017-07-01
Nanostructures made of dielectric materials with high or moderate refractive indexes can support strong electric and magnetic resonances in the optical region. They can therefore function as nanoresonators. In addition to plasmonic metal nanostructures that have been widely investigated, dielectric nanoresonators provide a new type of building blocks for realizing powerful and versatile nanoscale light manipulation. In contrast to plasmonic metal nanostructures, nanoresonators made of appropriate dielectric materials are low-cost, earth-abundant and have very small or even negligible light energy losses. As a result, they will find potential applications in a number of photonic devices, especially those that require low energy losses. In this review, we describe the recent progress on the experimental and theoretical studies of dielectric nanoresonators. We start from the basic theory of the electromagnetic responses of dielectric nanoresonators and their fabrication methods. The optical properties of individual dielectric nanoresonators are then elaborated, followed by the coupling behaviors between dielectric nanoresonators, between dielectric nanoresonators and substrates, and between dielectric nanoresonators and plasmonic metal nanostructures. The applications of dielectric nanoresonators are further described. Finally, the challenges and opportunities in this field are discussed.
NASA Astrophysics Data System (ADS)
Yasui, Kyuichi; Mimura, Ken-ichi; Izu, Noriya; Kato, Kazumi
2018-03-01
The dielectric constant of an ordered assembly of BaTiO3 nanocubes is numerically calculated as a function of temperature assuming a distribution of tilt angles of attached nanocubes. As the phase transition temperature from the tetragonal crystal structure to the cubic crystal structure of a BaTiO3 nanocube decreases as the tilt angle increases, the temperature at the peak of the dielectric constant of an ordered assembly is considerably lower than the Curie temperature of a free-standing BaTiO3 crystal. The peak of the dielectric constant as a function of temperature for an ordered assembly becomes considerably broader than that for a single crystal owing to the contribution of nanocubes with various tilt angles.
On the room temperature multiferroic BiFeO3: magnetic, dielectric and thermal properties
NASA Astrophysics Data System (ADS)
Lu, J.; Günther, A.; Schrettle, F.; Mayr, F.; Krohns, S.; Lunkenheimer, P.; Pimenov, A.; Travkin, V. D.; Mukhin, A. A.; Loidl, A.
2010-06-01
Magnetic dc susceptibility between 1.5 and 800 K, ac susceptibility and magnetization, thermodynamic properties, temperature dependence of radio and audio-wave dielectric constants and conductivity, contact-free dielectric constants at mm-wavelengths, as well as ferroelectric polarization are reported for single crystalline BiFeO3. A well developed anomaly in the magnetic susceptibility signals the onset of antiferromagnetic order close to 635 K. Beside this anomaly no further indications of phase or glass transitions are indicated in the magnetic dc and ac susceptibilities down to the lowest temperatures. The heat capacity has been measured from 2 K up to room temperature and significant contributions from magnon excitations have been detected. From the low-temperature heat capacity an anisotropy gap of the magnon modes of the order of 6 meV has been determined. The dielectric constants measured in standard two-point configuration are dominated by Maxwell-Wagner like effects for temperatures T > 300 K and frequencies below 1 MHz. At lower temperatures the temperature dependence of the dielectric constant and loss reveals no anomalies outside the experimental errors, indicating neither phase transitions nor strong spin phonon coupling. The temperature dependence of the dielectric constant was measured contact free at microwave frequencies. At room temperature the dielectric constant has an intrinsic value of 53. The loss is substantial and strongly frequency dependent indicating the predominance of hopping conductivity. Finally, in small thin samples we were able to measure the ferroelectric polarization between 10 and 200 K. The saturation polarization is of the order of 40 μC/cm2, comparable to reports in literature.
NASA Astrophysics Data System (ADS)
Feddi, E.; Talbi, A.; Mora-Ramos, M. E.; El Haouari, M.; Dujardin, F.; Duque, C. A.
2017-11-01
Using the effective mass approximation and a variational procedure, we have investigated the nonlinear optical absorption coefficient and the relative refractive index changes associated to a single dopant confined in core/shell quantum dots considering the influences of the core/shell dimensions, externally applied magnetic field, and dielectric mismatch. The results show that the optical absorption coefficient and the coefficients of relative refractive index change depend strongly on the core/shell sizes and they are blue shifted when the spatial confinement increases so this effect is magnified by higher structural dimensions. Additionally, it is obtained that both studied optical properties are sensitive to the dielectric environment in such a way that their amplitudes are very affected by the local field corrections.
Dielectric study of aqueous solutions of sodium dodecyl sulfate in the frequency span 20 Hz to 2 MHz
NASA Astrophysics Data System (ADS)
Kadve, A. M.; Vankar, H. P.; Rana, V. A.
2017-05-01
Dielectric measurements were carried out for aqueous solutions of Sodium Dodecyl Sulfate (SDS) in the frequency span of 20 Hz to 2 MHz at 300.15 K temperature using precision LCR meter. Also the refractive indices were measured for the solutions at 300.15 K temperature using Abbe's refractometer. The measurements were done for ten different concentrations of SDS in distilled water. Determined values of complex permittivity as a function of frequency were used to evaluate other parameters like loss tangent and electric modulus for the liquid samples. The permittivity at optical frequency were also calculated from the measured refractive indices for the aqueous solutions. The effect of concentration variation of SDS in the aqueous solutions on the determined parameters is discussed.
Dielectric properties of soils as a function of moisture content
NASA Technical Reports Server (NTRS)
Cihlar, J.; Ulaby, F. T.
1974-01-01
Soil dielectric constant measurements are reviewed and the dependence of the dielectric constant on various soil parameters is determined. Moisture content is given special attention because of its practical significance in remote sensing and because it represents the single most influential parameter as far as soil dielectric properties are concerned. Relative complex dielectric constant curves are derived as a function of volumetric soil water content at three frequencies (1.3 GHz, 4.0 GHz, and 10.0 GHz) for each of three soil textures (sand, loam, and clay). These curves, presented in both tabular and graphical form, were chosen as representative of the reported experimental data. Calculations based on these curves showed that the power reflection coefficient and emissivity, unlike skin depth, vary only slightly as a function of frequency and soil texture.
NASA Astrophysics Data System (ADS)
Ma, Yongchang; Hou, Yanhui; Lu, Cuimin; Li, Lijun; Petrovic, Cedomir
2018-05-01
The electric field dependence of the dielectric properties and the nonlinear conductance of 1 T -TaS2 below 50 K has been investigated. A large dielectric constant of about 104 is obtained up to 107 Hz, which cannot be attributed to hopping of the localized carriers alone, the collective excitations of the commensurate charge-density-wave must be another contributor. The dielectric spectra disperse slightly in our measured temperature and frequency range. At a moderate dc bias field, the real part of the dielectric constant ɛ1(ω ) decreases. We propose that the separation of bound soliton-antisoliton pairs may be a contributor to the reduction of ɛ1(ω ) and the accompanying nonlinear conductivity with increasing dc bias.
A hollow coaxial cable Fabry-Pérot resonator for liquid dielectric constant measurement
NASA Astrophysics Data System (ADS)
Zhu, Chen; Zhuang, Yiyang; Chen, Yizheng; Huang, Jie
2018-04-01
We report, for the first time, a low-cost and robust homemade hollow coaxial cable Fabry-Pérot resonator (HCC-FPR) for measuring liquid dielectric constant. In the HCC design, the traditional dielectric insulating layer is replaced by air. A metal disk is welded onto the end of the HCC serving as a highly reflective reflector, and an open cavity is engineered on the HCC. After the open cavity is filled with the liquid analyte (e.g., water), the air-liquid interface acts as a highly reflective reflector due to large impedance mismatch. As a result, an HCC-FPR is formed by the two highly reflective reflectors, i.e., the air-liquid interface and the metal disk. We measured the room temperature dielectric constant for ethanol/water mixtures with different concentrations using this homemade HCC-FPR. Monitoring the evaporation of ethanol in ethanol/water mixtures was also conducted to demonstrate the ability of the sensor for continuously monitoring the change in dielectric constant. The results revealed that the HCC-FPR could be a promising evaporation rate detection platform with high performance. Due to its great advantages, such as high robustness, simple configuration, and ease of fabrication, the novel HCC-FPR based liquid dielectric constant sensor is believed to be of high interest in various fields.
A hollow coaxial cable Fabry-Pérot resonator for liquid dielectric constant measurement.
Zhu, Chen; Zhuang, Yiyang; Chen, Yizheng; Huang, Jie
2018-04-01
We report, for the first time, a low-cost and robust homemade hollow coaxial cable Fabry-Pérot resonator (HCC-FPR) for measuring liquid dielectric constant. In the HCC design, the traditional dielectric insulating layer is replaced by air. A metal disk is welded onto the end of the HCC serving as a highly reflective reflector, and an open cavity is engineered on the HCC. After the open cavity is filled with the liquid analyte (e.g., water), the air-liquid interface acts as a highly reflective reflector due to large impedance mismatch. As a result, an HCC-FPR is formed by the two highly reflective reflectors, i.e., the air-liquid interface and the metal disk. We measured the room temperature dielectric constant for ethanol/water mixtures with different concentrations using this homemade HCC-FPR. Monitoring the evaporation of ethanol in ethanol/water mixtures was also conducted to demonstrate the ability of the sensor for continuously monitoring the change in dielectric constant. The results revealed that the HCC-FPR could be a promising evaporation rate detection platform with high performance. Due to its great advantages, such as high robustness, simple configuration, and ease of fabrication, the novel HCC-FPR based liquid dielectric constant sensor is believed to be of high interest in various fields.
Wave attenuation and mode dispersion in a waveguide coated with lossy dielectric material
NASA Technical Reports Server (NTRS)
Lee, C. S.; Chuang, S. L.; Lee, S. W.; Lo, Y. T.
1984-01-01
The modal attenuation constants in a cylindrical waveguide coated with a lossy dielectric material are studied as functions of frequency, dielectric constant, and thickness of the dielectric layer. A dielectric material best suited for a large attenuation is suggested. Using Kirchhoff's approximation, the field attenuation in a coated waveguide which is illuminated by a normally incident plane wave is also studied. For a circular guide which has a diameter of two wavelengths and is coated with a thin lossy dielectric layer (omega sub r = 9.1 - j2.3, thickness = 3% of the radius), a 3 dB attenuation is achieved within 16 diameters.
Dielectric relaxation of near-percolated carbon nanofiber polypropylene composites
NASA Astrophysics Data System (ADS)
Paleo, A. J.; Zille, A.; Van Hattum, F. W.; Ares-Pernas, A.; Agostinho Moreira, J.
2017-07-01
In this work, the morphological, structural and dielectric analysis of near-percolated polypropylene (PP) composites containing carbon nanofibers (CNF) processing by melt-mixing are investigated. Whereas the morphological analysis shows that CNF exhibit some tendency to agglomerate within the PP matrix, the structural analysis showed first a general decrease in the intensity of the IR bands as a consequence of the interaction between carbon nanofibers and PP matrix and second an increase of the crystallinity degree of the PP/CNF composites when compared to the pure PP. The dielectric analysis demonstrates enhanced dielectric constants (from 2.97 for neat polymer to 9.7 for 1.9 vol% loaded composites at 200 Hz) and low dielectric losses. Furthermore, the dielectric relaxation for composites with concentrations in the vicinity of percolation is evidenced and well described by the generalized polydispersive Cole-Cole model from which the values of static dielectric constant (εs) , high frequency dielectric constant (ε∞) , distribution of relaxation time (α) and mean relaxation time (τo), are determined, suggesting that this latter analysis constitutes a strong tool for understanding the relationships between microstructure and dielectric properties in this type of polymer composites.
Effects of oxygen deficiency on the transport and dielectric properties of NdSrNbO
NASA Astrophysics Data System (ADS)
Hzez, W.; Benali, A.; Rahmouni, H.; Dhahri, E.; Khirouni, K.; Costa, B. F. O.
2018-06-01
In the present study, Nd0.7Sr0.3NbO3-y (y = 0.1, 0.15, 0.2) compounds were prepared via a solid-solid reaction route. The prepared samples were characterized by electrochemical impedance spectroscopy in order to establish the effects of temperature, frequency, and oxygen vacancies on both the transport and dielectric properties of NdSrNbO. We found that both the electrical and dielectric properties were highly sensitive to the concentration of oxygen vacancies. The conduction mechanism data were explained well according to the Mott model and adiabatic small polaronic hopping model. Electrochemical impedance spectroscopy analysis showed that one relaxation process was present in the Nd0.7Sr0.3NbO2.9 system whereas two relaxation processes were observed in the Nd0.7Sr0.3NbO2.85 and Nd0.7Sr0.3NbO2.8 systems, where the latter behavior indicated the presence of many active regions (due to the contributions of different microstructures). The temperature and frequency dependences of the dielectric constant confirmed the contributions of different polarization mechanisms. In particular, the high dielectric constant values at low frequencies and high temperatures were mainly related to the presence of different Schottky barriers, whereas the low dielectric constant values at high frequencies were essentially related to the intrinsic effect. The constant dielectric values obtained for the samples are greater than those in the NdSrFeO system, which makes them interesting materials for use in applications that require high dielectric constants.
Dielectric Properties of BST/(Y 2O 3) x(ZrO 2) 1-x/BST Trilayer Films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sahoo, Santosh K.; Misra, D.
2011-01-31
Thin films of Ba1-xSrxTiO3 (BST) are being actively investigated for applications in dynamic random access memories (DRAM) because of their properties such as high dielectric constant, low leakage current, and high dielectric breakdown strength. Various approaches have been used to improve the dielectric properties of BST thin films such as doping, graded compositions, and multilayer structures. We have found that inserting a ZrO2 layer in between two BST layers results in a significant reduction in dielectric constant as well as dielectric loss. In this work the effect of Y2O3 doped ZrO2 on the dielectric properties of BST/ZrO2/BST trilayer structure ismore » studied. The structure Ba0.8Sr0.2TiO3/(Y2O3)x(ZrO2)1-x/Ba0.8Sr0.2TiO3 is deposited by a sol-gel process on platinized Si substrate. The composition (x) of the middle layer is varied while keeping the total thickness of the trilayer film constant. The dielectric constant of the multilayer film decreases with the increase of Y2O3 amount in the film whereas there is a slight variation in dielectric loss. In Y2O3 doped multilayer thin films, the dielectric loss is lower in comparison to other films and also there is good frequency stability in the loss in the measured frequency range and hence very suitable for microwave device applications.« less
Voltage sensor and dielectric material
Yakymyshyn, Christopher Paul; Yakymyshyn, Pamela Jane; Brubaker, Michael Allen
2006-10-17
A voltage sensor is described that consists of an arrangement of impedance elements. The sensor is optimized to provide an output ratio that is substantially immune to changes in voltage, temperature variations or aging. Also disclosed is a material with a large and stable dielectric constant. The dielectric constant can be tailored to vary with position or direction in the material.
Power-controlled transition from standard to negative refraction in reorientational soft matter.
Piccardi, Armando; Alberucci, Alessandro; Kravets, Nina; Buchnev, Oleksandr; Assanto, Gaetano
2014-11-25
Refraction at a dielectric interface can take an anomalous character in anisotropic crystals, when light is negatively refracted with incident and refracted beams emerging on the same side of the interface normal. In soft matter subject to reorientation, such as nematic liquid crystals, the nonlinear interaction with light allows tuning of the optical properties. We demonstrate that in such material a beam of light can experience either positive or negative refraction depending on input power, as it can alter the spatial distribution of the optic axis and, in turn, the direction of the energy flow when traveling across an interface. Moreover, the nonlinear optical response yields beam self-focusing and spatial localization into a self-confined solitary wave through the formation of a graded-index waveguide, linking the refractive transition to power-driven readdressing of copolarized guided-wave signals, with a number of output ports not limited by diffraction.
A flexible insulator of a hollow SiO2 sphere and polyimide hybrid for flexible OLEDs.
Kim, Min Kyu; Kim, Dong Won; Shin, Dong Wook; Seo, Sang Joon; Chung, Ho Kyoon; Yoo, Ji Beom
2015-01-28
The fabrication of interlayer dielectrics (ILDs) in flexible organic light-emitting diodes (OLEDs) not only requires flexible materials with a low dielectric constant, but also ones that possess the electrical, thermal, chemical, and mechanical properties required for optimal device performance. Porous polymer-silica hybrid materials were prepared to satisfy these requirements. Hollow SiO2 spheres were synthesized using atomic layer deposition (ALD) and a thermal calcination process. The hybrid film, which consists of hollow SiO2 spheres and polyimide, shows a low dielectric constant of 1.98 and excellent thermal stability up to 500 °C. After the bending test for 50 000 cycles, the porous hybrid film exhibits no degradation in its dielectric constant or leakage current. These results indicate that the hybrid film made up of hollow SiO2 spheres and polyimide (PI) is useful as a flexible insulator with a low dielectric constant and high thermal stability for flexible OLEDs.
Dielectric Studies on Binary Mixtures of Diethyl Ether (DEE) in Polar Solvents
NASA Astrophysics Data System (ADS)
Pradhan, S. K.; Dash, S. K.; Swain, M. D.; Swain, B. B.
2011-11-01
Dielectric constant (ɛ) of diethylether (DEE) in binary mixtures with four polar solvents such as n-butanl, i-butanol, t-butanol and tolune has been measured at 455 kHz and at a temperature 303.15 K. The refractive indices were measured at a regulated temperature by Pulfrich refractometer at sodium D-line. The data is used to evaluate mutual correlation factor gab, excess molar polarization and excess free energy of mixing ΔGab by using Winkelmann-Quitzsch equation for binary mixtures to asses the suitability of the polar solvents as modifiers. The trend of variation for these parameters exhibit marked dependence on the nature of alcohols. Diethylether is one of the solvent extractant used for the extraction and separation of zirconium and hafnium in reactor technology. The extractant is blended with appropriate polar modifiers for greater dispersal and more rapid phase disengagement. This facilitates in the elimination of the third organo-aqueous phase containing some of the metal ions. As such the study of molecular interaction among the component molecules has been undertaken in these binary mixtures using the dielectric route. The interaction parameters such as mutual correlation factor gab is found to be less than one in all alcohols, while it is negative in toluene upto 0.7 DEE molefraction and thereafter becoming positive. The nature of variation of the excess miolar polarization ΔP and excess free energy of mixing Gab tends to support the assessment of gab to choose a suitable polar modifier.
Choi, Junhwan; Joo, Munkyu; Seong, Hyejeong; Pak, Kwanyong; Park, Hongkeun; Park, Chan Woo; Im, Sung Gap
2017-06-21
A series of high-k, ultrathin copolymer gate dielectrics were synthesized from 2-cyanoethyl acrylate (CEA) and di(ethylene glycol) divinyl ether (DEGDVE) monomers by a free radical polymerization via a one-step, vapor-phase, initiated chemical vapor deposition (iCVD) method. The chemical composition of the copolymers was systematically optimized by tuning the input ratio of the vaporized CEA and DEGDVE monomers to achieve a high dielectric constant (k) as well as excellent dielectric strength. Interestingly, DEGDVE was nonhomopolymerizable but it was able to form a copolymer with other kinds of monomers. Utilizing this interesting property of the DEGDVE cross-linker, the dielectric constant of the copolymer film could be maximized with minimum incorporation of the cross-linker moiety. To our knowledge, this is the first report on the synthesis of a cyanide-containing polymer in the vapor phase, where a high-purity polymer film with a maximized dielectric constant was achieved. The dielectric film with the optimized composition showed a dielectric constant greater than 6 and extremely low leakage current densities (<3 × 10 -8 A/cm 2 in the range of ±2 MV/cm), with a thickness of only 20 nm, which is an outstanding thickness for down-scalable cyanide polymer dielectrics. With this high-k dielectric layer, organic thin-film transistors (OTFTs) and oxide TFTs were fabricated, which showed hysteresis-free transfer characteristics with an operating voltage of less than 3 V. Furthermore, the flexible OTFTs retained their low gate leakage current and ideal TFT characteristics even under 2% applied tensile strain, which makes them some of the most flexible OTFTs reported to date. We believe that these ultrathin, high-k organic dielectric films with excellent mechanical flexibility will play a crucial role in future soft electronics.
Microwave Semiconductor Research - Materials, Devices, Circuits.
1982-04-30
34, C.L. Tang and J-M. Halbout, invited talk, SPIE Technical Symposium, Los Angeles, CA (January, 1982). 3. "Observation of light induced refractive index ... index slab its desirable dispersive properties. The relatively poor dispersion characteristics of the uniform dielectric slab can be attributed to the...34, January 1982. 2. H. Zmuda completed his M.S. program. Thesis: "Simplified Dispersion Analysis of the Multistep and Graded Index Dielectric Slab Waveguide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tonkyn, Russell G.; Danby, Tyler O.; Birnbaum, Jerome C.
The complex optical refractive index contains the optical constants, n(more » $$\\tilde{u}$$)and k($$\\tilde{u}$$), which correspond to the dispersion and absorption of light within a medium, respectively. By obtaining the optical constants one can in principle model most optical phenomena in media and at interfaces including reflection, refraction and dispersion. We have developed improved protocols based on the use of multiple path lengths to determine the optical constants for dozens of liquids, including organic and organophosphorous compounds. Detailed description of the protocols to determine the infrared indices will be presented, along with preliminary results using the constants with their applications to optical modeling.« less
Verhagen, Ewold; de Waele, René; Kuipers, L; Polman, Albert
2010-11-26
We identify a route towards achieving a negative index of refraction at optical frequencies based on coupling between plasmonic waveguides that support backwards waves. We show how modal symmetry can be exploited in metal-dielectric waveguide pairs to achieve negative refraction of both phase and energy. Control of waveguide coupling yields a metamaterial consisting of a one-dimensional multilayer stack that exhibits an isotropic index of -1 at a free-space wavelength of 400 nm. The concepts developed here may inspire new low-loss metamaterial designs operating close to the metal plasma frequency.
Dielectric properties of carbon nanotubes/epoxy composites.
Peng, Jin-Ping; Zhang, Hui; Tang, Long-Cheng; Jia, Yu; Zhang, Zhong
2013-02-01
Material with high dielectric properties possesses the effect of energy storage and electric field homogenization, which plays an important role in the electrical and electronics domain, especially in the capacitor, electrical machinery and cable realm. In this paper, epoxy-based nanocomposites with high dielectric constant were fabricated by adding pristine and ozone functionalized multi-wall carbon nanotubes (MWCNTs). In the process-related aspect, the favorable technological parameter was obtained via reasonable arrangement and consideration of the dispersing methods including high-speed stirring and three-roller mill. As a result, a uniform dispersion status of MWCNTs in matrix has been guaranteed, which was observed by scanning and transmission electron microscopy. Meanwhile, the influence of different MWCNTs contents and diverse frequencies on the dielectric properties was compared. It was found that the dielectric constant of nano-composites decreased gradually with the increasing of frequency (10(3)-10(6) Hz). Moreover, as the content of MWCNTs increasing, the dielectric constant reached to a maximum of about 1,328 at 10(3) Hz when the pristine MWCNTs content was 0.5 wt.%. Accordingly, the DC conductivity results could interpret the peak value phenomenon by percolation threshold of MWCNTs. In addition, at the fixed content, the dielectric constant of epoxy-based nano-composites with ozone functionalized MWCNTs was lower than that of pristine ones.
Enhanced middle-infrared light transmission through Au/SiO(x)N(y)/Au aperture arrays.
Xiao, Gongli; Yao, Xiang; Ji, Xinming; Zhou, Jia; Bao, Zongming; Huang, Yiping
2011-12-01
The enhanced middle-infrared light transmission through Au/SiO(x)N(y)/Au aperture arrays by changing the refractive index and the thickness of a dielectric layer was studied experimentally. The results indicated that the transmission spectra was highly dependent on the refractive index and the thickness of SiO(x)N(y). We found that the transmission peaks redshifted regularly along with the refractive index from 1.6 to 1.8, owing to the role of surface plasmon polaritons (SPP) coupling in the Au/SiO(x)N(y)/Au cascaded metallic structure. Simultaneously, a higher transmission efficiency and narrower transmission peak was obtained in Au/SiO2.1N0.3/Au cascaded metallic structure with small refractive index (1.6) than in Au/SiO0.6N1/Au cascaded metallic structure with large refractive index (1.8). When the thickness of SiO(x)N(y) changes from 0.2 to 0.4 microm, the shape of transmission spectra exhibits a large change. It was found that a higher transmission efficiency and narrower transmission peak was obtained in Au/SiO(x)N(y)/Au cascaded metallic structure with a thin dielectric film (0.2 microm), with the increase of SiO(x)N(y) film's thickness, the transmission peak gradually widened and disappeared finally. This effect is useful in applications of biochemical sensing and tunable integrated plasmonic devices in the middle-infrared region.
Quasicrystals: Making invisible materials
NASA Astrophysics Data System (ADS)
Boriskina, Svetlana V.
2015-07-01
All-dielectric photonic quasicrystals may act as zero-refractive-index homogeneous materials despite their lack of translational symmetry and periodicity, stretching wavelengths to infinity and offering applications in light wavefront sculpting and optical cloaking.
NASA Astrophysics Data System (ADS)
Janicek, Petr; Niang, Kham M.; Mistrik, Jan; Palka, Karel; Flewitt, Andrew J.
2017-11-01
ZnO:Sn thin films were deposited onto thermally oxidized silicon substrates using a remote plasma reactive sputtering. Their optical constants (refractive index n and extinction coefficient k) were determined from ellipsometric data recorded over a wide spectral range (0.05-6 eV). Parametrization of ZnO:Sn complex dielectric permittivity consists of a parameterized semiconductor oscillator function describing the short wavelength absorption edge, a Drude oscillator describing free carrier absorption in near-infrared part of spectra and a Lorentz oscillator describing the long wavelength absorption edge and intra-band absorption in the ultra-violet part of the spectra. Using a Mott-Davis model, the increase in local disorder with increasing Sn doping is quantified from the short wavelength absorption edge onset. Using the Wemple-DiDomenico single oscillator model for the transparent part of the optical constants spectra, an increase in the centroid distance of the valence and conduction bands with increasing Sn doping is shown and only slight increase in intensity of the inter-band optical transition due to Sn doping occurs. The Drude model applied in the near-infrared part of the spectra revealed the free carrier concentration and mobility of ZnO:Sn. Results show that the range of transparency of prepared ZnO:Sn layers is not dramatically affected by Sn doping whereas electrical conductivity could be controlled by Sn doping. Refractive index in the transparent part is comparable with amorphous Indium Gallium Zinc Oxide allowing utilization of prepared ZnO:Sn layers as an indium-free alternative.
Colossal dielectric and electromechanical responses in self-assembled polymeric nanocomposites
NASA Astrophysics Data System (ADS)
Huang, Cheng; Zhang, Q. M.; Li, Jiang Yu; Rabeony, Manese
2005-10-01
An electroactive polymer nanocomposite, in which high dielectric constant copper phthalocyanine oligomer (o-CuPc) nanoparticles are incorporated into the block polyurethane (PU) matrix by the combination of "top down" and "bottom up" approaches, was realized. Such an approach enables the nanocomposite to exhibit colossal dielectric and electromechanical responses with very low volume fraction of the high dielectric constant o-CuPc nanofillers (˜3.5%) in the composite. In contrast, a simple blend of o-CuPc and PU composite with much higher o-CuPc content (˜16% of o-CuPc) shows much lower dielectric and electromechanical responses.
The Effect of Multi Wall Carbon Nanotubes on Some Physical Properties of Epoxy Matrix
NASA Astrophysics Data System (ADS)
Al-Saadi, Tagreed M.; hammed Aleabi, Suad; Al-Obodi, Entisar E.; Abdul-Jabbar Abbas, Hadeel
2018-05-01
This research involves using epoxy resin as a matrix for making a composite material, while the multi wall carbon nanotubes (MWNCTs) is used as a reinforcing material with different fractions (0.0,0.02, 0.04, 0.06) of the matrix weight. The mechanical ( hardness ), electrical ( dielectric constant, dielectric loss factor, dielectric strength, electrical conductivity ), and thermal properties (thermal conductivity ) were studied. The results showed the increase of hardness, thermal conductivity, electrical conductivity and break down strength with the increase of MWCNT concentration, but the behavior of dielectric loss factor and dielectric constant is opposite that.
Main regularities of SERS on semiconductors and dielectrics
NASA Astrophysics Data System (ADS)
Chelibanov, V. P.; Polubotko, A. M.
2018-04-01
The paper demonstrates that the reason of SERS on dielectrics and semiconductors is the enhancement of the electric field in the regions of the tops of the surface roughness with a very large positive curvature. The enhancement in many ways depends on the dielectric constant of the substrate and is stronger for a larger dielectric constant. The theoretical result points out that on dielectrics and semiconductors it is weaker than on metals. Experimentally it is demonstrated that there are forbidden lines on hydroquinone, adsorbed on TiO2 , which indicate on the existence of strong quadrupole light-molecule interaction in such systems.
NASA Astrophysics Data System (ADS)
Schaaf, Christian; Gekle, Stephan
2016-08-01
We use molecular dynamics simulations to compute the spatially resolved static dielectric constant of water in cylindrical and spherical nanopores as occurring, e.g., in protein water pockets or carbon nanotubes. For this, we derive a linear-response formalism which correctly takes into account the dielectric boundary conditions in the considered geometries. We find that in cylindrical confinement, the axial component behaves similar as the local density akin to what is known near planar interfaces. The radial dielectric constant shows some oscillatory features when approaching the surface if their radius is larger than about 2 nm. Most importantly, however, the radial component exhibits pronounced oscillations at the center of the cavity. These surprising features are traced back quantitatively to the non-local dielectric nature of bulk water.
Broadband dielectric spectroscopy on single-crystalline and ceramic CaCu3Ti4O12
NASA Astrophysics Data System (ADS)
Krohns, S.; Lunkenheimer, P.; Ebbinghaus, S. G.; Loidl, A.
2007-07-01
The authors present dielectric measurements of the colossal dielectric constant material CaCu3Ti4O12 extending up to 1.3GHz also covering so far only rarely investigated single-crystalline samples. Special emphasis is put on the second relaxation reported in several works on polycrystals, which the authors detect also in single crystals. For polycrystalline samples, the authors provide a recipe to achieve values of the dielectric constant as high as in single crystals.
Polymer Nanocomposite Materials with High Dielectric Permittivity and Low Dielectric Loss Properties
NASA Astrophysics Data System (ADS)
Toor, Anju
Materials with high dielectric permittivity have drawn increasing interests in recent years for their important applications in capacitors, actuators, and high energy density pulsed power. Particularly, polymer-based dielectrics are excellent candidates, owing to their properties such as high breakdown strength, low dielectric loss, flexibility and easy processing. To enhance the dielectric permittivity of polymer materials, typically, high dielectric constant filler materials are added to the polymer. Previously, ferroelectric and conductive fillers have been mainly used. However, such systems suffered from various limitations. For example, composites based on ferroelectric materials like barium titanate, exhibited high dielectric loss, and poor saturation voltages. Conductive fillers are used in the form of powder aggregates, and they may show 10-100 times enhancement in dielectric constant, however these nanoparticle aggregates cause the dielectric loss to be significant. Also, agglomerates limit the volume fraction of fillers in polymer and hence, the ability to achieve superior dielectric constants. Thus, the aggregation of nanoparticles is a significant challenge to their use to improve the dielectric permittivity. We propose the use of ligand-coated metal nanoparticle fillers to enhance the dielectric properties of the host polymer while minimizing dielectric loss by preventing nanoparticle agglomeration. The focus is on obtaining uniform dispersion of nanoparticles with no agglomeration by utilizing appropriate ligands/surface functionalizations on the gold nanoparticle surface. Use of ligand coated metal nanoparticles will enhance the dielectric constant while minimizing dielectric loss, even with the particles closely packed in the polymer matrix. Novel combinations of materials, which use 5 nm diameter metal nanoparticles embedded inside high breakdown strength polymer materials are evaluated. High breakdown strength polymer materials are chosen to allow further exploration of these materials for energy storage applications. In summary, two novel nanocomposite materials are designed and synthesized, one involving polyvinylidene fluoride (PVDF) as the host polymer for potential applications in energy storage and the other with SU-8 for microelectronic applications. Scanning elec- tron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy and ultramicrotoming techniques were used for the material characterization of the nanocomposite materials. A homogeneous dispersion of gold nanoparticles with low particle agglomeration has been achieved. Fabricated nanoparticle polymer composite films showed the absence of voids and cracks. Also, no evidence of macro-phase separation of nanoparticles from the polymer phase was observed. This is important because nanoparticle agglomeration and phase separation from the polymer usually results in poor processability of films and a high defect density. Dielectric characterization of the nanocomposite materials showed enhancement in the dielectric constant over the base polymer values and low dielectric loss values were observed.
The fluid mechanics of continuous flow electrophoresis
NASA Technical Reports Server (NTRS)
Saville, D. A.
1990-01-01
The overall objective is to establish theoretically and confirm experimentally the ultimate capabilities of continuous flow electrophoresis chambers operating in an environment essentially free of particle sedimentation and buoyancy. The efforts are devoted to: (1) studying the effects of particle concentration on sample conductivity and dielectric constant. The dielectric constant and conductivity were identified as playing crucial roles in the behavior of the sample and on the resolving power and throughput of continuous flow devices; and (2) improving the extant mathematical models to predict flow fields and particle trajectories in continuous flow electrophoresis. A dielectric spectrometer was designed and built to measure the complex dielectric constant of a colloidal dispersion as a function of frequency between 500 Hz and 200 kHz. The real part of the signal can be related to the sample's conductivity and the imaginary part to its dielectric constant. Measurements of the dielectric constants of several different dispersions disclosed that the dielectric constants of dilute systems of the sort encountered in particle electrophoresis are much larger than would be expected based on the extant theory. Experiments were carried out to show that, in many cases, this behavior is due to the presence of a filamentary structure of small hairs on the particle surface. A technique for producing electrokinetically ideal synthetic latex particles by heat treating was developed. Given the ubiquitous nature of hairy surfaces with both cells and synthetic particles, it was deemed necessary to develop a theory to explain their behavior. A theory for electrophoretic mobility of hairy particles was developed. Finally, the extant computer programs for predicting the structure of electro-osmotically driven flows were extended to encompass flow channels with variable wall mobilities.
Temperature and pressure effects on capacitance probe cryogenic liquid level measurement accuracy
NASA Technical Reports Server (NTRS)
Edwards, Lawrence G.; Haberbusch, Mark
1993-01-01
The inaccuracies of liquid nitrogen and liquid hydrogen level measurements by use of a coaxial capacitance probe were investigated as a function of fluid temperatures and pressures. Significant liquid level measurement errors were found to occur due to the changes in the fluids dielectric constants which develop over the operating temperature and pressure ranges of the cryogenic storage tanks. The level measurement inaccuracies can be reduced by using fluid dielectric correction factors based on measured fluid temperatures and pressures. The errors in the corrected liquid level measurements were estimated based on the reported calibration errors of the temperature and pressure measurement systems. Experimental liquid nitrogen (LN2) and liquid hydrogen (LH2) level measurements were obtained using the calibrated capacitance probe equations and also by the dielectric constant correction factor method. The liquid levels obtained by the capacitance probe for the two methods were compared with the liquid level estimated from the fluid temperature profiles. Results show that the dielectric constant corrected liquid levels agreed within 0.5 percent of the temperature profile estimated liquid level. The uncorrected dielectric constant capacitance liquid level measurements deviated from the temperature profile level by more than 5 percent. This paper identifies the magnitude of liquid level measurement error that can occur for LN2 and LH2 fluids due to temperature and pressure effects on the dielectric constants over the tank storage conditions from 5 to 40 psia. A method of reducing the level measurement errors by using dielectric constant correction factors based on fluid temperature and pressure measurements is derived. The improved accuracy by use of the correction factors is experimentally verified by comparing liquid levels derived from fluid temperature profiles.
NASA Astrophysics Data System (ADS)
Diantoro, M.; Muniroh, Z.; Zaini, B.; Mustikasari, A. A.; Nasikhudin; Hidayat, A.; Taufiq, A.; Sunaryono; Mufti, N.
2017-05-01
The use of silica in various fields is significantly increasing. One common application is silica based functional glass which has naturally show specific dielectric, optical, and magnetic properties. Many studies have been performing to explore the influence of dopant, composition, and other processing parameters as well as employing various characterization. In the previous work, we report the use of silica from silica sands. To reduce the melting temperature, we used silica sol-gel beside the utilization of some oxides such as B2O3, Na2CO3, and Bi3O3. We also used NiO as dopant explore the glass properties. We have prepared a series of sample with the composition of 50SiO2-25B2O3-(6.5-x) Bi3O3-18.5 Na2CO3-xNiO (x = 0, 1, 2, 3 and 4 wt%). After weighting process, the composition was blended, then heated to 450 °C for 120 minutes and then raised at 950 °C for 60 minutes in the crucible. Then samples of glass separated from the crucible and in the characterization of the structure using the DTA, XRD, SEM-EDAX and FTIR and measuring dielectric constant using a capacitance meter. The increase of NiO dopant resulted in increasing the dielectric constant of glass. On the other hand, the dielectric constant gradually decreases with the increase of light intensity. One can be noted that the applied intensity give rise to the step-like decrease of the dielectric constant. Whereas, the increasing magnetic field indicate the increase of dielectric constant.
An All-Dielectric Coaxial Waveguide.
Ibanescu; Fink; Fan; Thomas; Joannopoulos
2000-07-21
An all-dielectric coaxial waveguide that can overcome problems of polarization rotation and pulse broadening in the transmission of optical light is presented here. It consists of a coaxial waveguiding region with a low index of refraction, bounded by two cylindrical, dielectric, multilayer, omnidirectional reflecting mirrors. The waveguide can be designed to support a single mode whose properties are very similar to the unique transverse electromagnetic mode of a traditional metallic coaxial cable. The new mode has radial symmetry and a point of zero dispersion. Moreover, because the light is not confined by total internal reflection, the waveguide can guide light around very sharp corners.
Refraction index sensor based on phase resonances in a subwavelength structure with double period.
Skigin, Diana C; Lester, Marcelo
2016-10-01
In this paper, we numerically demonstrate a refraction index sensor based on phase resonance excitation in a subwavelength-slit structure with a double period. The sensor consists of a metal layer with subwavelength slots arranged in a bi-periodic form, separated from a high refraction index medium. Between the metallic structure and the incident medium, a dielectric waveguide is formed whose refraction index is going to be determined. Variations in the refraction index of the waveguide are detected as shifts in the peaks of transmitted intensity originated by resonant modes supported by the compound metallic structure. At normal incidence, the spectral position of these resonant peaks exhibits a linear or a quadratic dependence with the refraction index, which permits us to obtain the unknown refraction index value with a high precision for a wide range of wavelengths. Since the operating principle of the sensor is due to the morphological resonances of the slits' structure, this device can be scaled to operate in different wavelength ranges while keeping similar characteristics.
Negative refraction in molybdenum disulfide.
Wang, Wenhui; Cui, Xudong; Yang, Erchan; Fan, Quanping; Xiang, Bin
2015-08-24
Recently, negative refractions have been demonstrated in uniaxial crystals with no necessary of negative permittivity and permeability. However, the small anisotropy parameterγin the uniaxial crystals limits the negative refraction occurrence only in a small range of the incident light angle, retarding its practical applications. In this paper, we report negative refraction induced by a pronounced anisotropic behavior in the bulk MoS(2). Using the first-principles, the dielectric function and refractive index calculations confirm a uniaxial trait of MoS(2) with a calculated anisotropy parameterγlarger than 2.5 in the entire range of visible wavelength. The critical incident angle to trigger a negative refraction in the bulk MoS(2) is calculated up to 90°. The finite-difference time-domain simulations prove that the incident light with a density of 59.5% can be negatively refracted in a MoS(2) slab with a thickness of 0.1 µm. Our results open up a new pathway for MoS(2)-like materials to a novel field of optical integration.
Giant optical field enhancement in multi-dielectric stacks by photon scanning tunneling microscopy
NASA Astrophysics Data System (ADS)
Ndiaye, C.; Zerrad, M.; Lereu, A. L.; Roche, R.; Dumas, Ph.; Lemarchand, F.; Amra, C.
2013-09-01
Dielectric optical thin films, as opposed to metallic, have been very sparsely explored as good candidates for absorption-based optical field enhancement. In such materials, the low imaginary part of the refractive index implies that absorption processes are usually not predominant. This leads to dielectric-based optical resonances mainly via waveguiding modes. We show here that when properly designed, a multi-layered dielectric thin films stack can give rise to optical resonances linked to total absorption. We report here, on such dielectric stack designed to possess a theoretical optical field enhancement above 1000. Using photon scanning tunneling microscopy, we experimentally evaluate the resulting field enhancement of the stack as well as the associated penetration depth. We thus demonstrate the capability of multi-dielectric stacks in generating giant optical field with tunable penetration depth (down to few dozens of nm).
Broadband high-efficiency dielectric metasurfaces for the visible spectrum
Devlin, Robert C.; Khorasaninejad, Mohammadreza; Chen, Wei Ting; Oh, Jaewon; Capasso, Federico
2016-01-01
Metasurfaces are planar optical elements that hold promise for overcoming the limitations of refractive and conventional diffractive optics. Original dielectric metasurfaces are limited to transparency windows at infrared wavelengths because of significant optical absorption and loss at visible wavelengths. Thus, it is critical that new materials and nanofabrication techniques be developed to extend dielectric metasurfaces across the visible spectrum and to enable applications such as high numerical aperture lenses, color holograms, and wearable optics. Here, we demonstrate high performance dielectric metasurfaces in the form of holograms for red, green, and blue wavelengths with record absolute efficiency (>78%). We use atomic layer deposition of amorphous titanium dioxide with surface roughness less than 1 nm and negligible optical loss. We use a process for fabricating dielectric metasurfaces that allows us to produce anisotropic, subwavelength-spaced dielectric nanostructures with shape birefringence. This process is capable of realizing any high-efficiency metasurface optical element, e.g., metalenses and axicons. PMID:27601634
Poly(methyl methacrylate) as a self-assembled gate dielectric for graphene field-effect transistors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanne, A.; Movva, H. C. P.; Kang, S.
We investigate poly(methyl methacrylate) (PMMA) as a low thermal budget organic gate dielectric for graphene field effect-transistors (GFETs) based on a simple process flow. We show that high temperature baking steps above the glass transition temperature (∼130 °C) can leave a self-assembled, thin PMMA film on graphene, where we get a gate dielectric almost for “free” without additional atomic layer deposition type steps. Electrical characterization of GFETs with PMMA as a gate dielectric yields a dielectric constant of k = 3.0. GFETs with thinner PMMA dielectrics have a lower dielectric constant due to decreased polarization arising from neutralization of dipoles and charged carriersmore » as baking temperatures increase. The leakage through PMMA gate dielectric increases with decreasing dielectric thickness and increasing electric field. Unlike conventional high-k gate dielectrics, such low-k organic gate dielectrics are potentially attractive for devices such as the proposed Bilayer pseudoSpin Field-Effect Transistor or flexible high speed graphene electronics.« less
NASA Astrophysics Data System (ADS)
Taverne, S.; Caron, B.; Gétin, S.; Lartigue, O.; Lopez, C.; Meunier-Della-Gatta, S.; Gorge, V.; Reymermier, M.; Racine, B.; Maindron, T.; Quesnel, E.
2018-01-01
While dielectric/metal/dielectric (DMD) multilayer thin films have raised considerable interest as transparent and conductive electrodes in various optoelectronic devices, the knowledge of optical characteristics of thin metallic layers integrated in such structures is still rather approximate. The multispectral surface plasmon resonance characterization approach described in this work precisely aims at providing a rigorous methodology able to accurately determine the optical constants of ultra-thin metallic films. As a practical example, the refractive index and extinction dispersion curves of 8 to 25 nm-thick silver layers have been investigated. As a result, their extreme dependence on the layer thickness is highlighted, in particular in a thickness range close to the critical threshold value (˜10 nm) where the silver film becomes continuous and its electrical conductance/optical transmittance ratio particularly interesting. To check the validity of the revisited Ag layers constant dispersion curves deduced from this study, they were introduced into a commercial optical model software to simulate the behavior of various optoelectronic building blocks from the simplest ones (DMD electrodes) to much more complex structures [full organic light emitting device (OLED) stacks]. As a result, a much better prediction of the emission spectrum profile as well as the angular emission pattern of top-emitting OLEDs is obtained. On this basis, it is also shown how a redesign of the top encapsulation thin film of OLEDs is necessary to better take benefit from the advanced DMD electrode. These results should particularly interest the micro-OLED display field where bright and directive single color pixel emission is required.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joseph, Andrews; Goud, J. Pundareekam; Raju, K. C. James
2016-05-23
Optical properties of pulsed laser deposited (PLD) sodium bismuth titanate thin films (NBT), are investigated at wavelengths of 190-2500 nm. Microwave dielectric properties were investigated using the Split Post Dielectric Resonator (SPDR) technique. At 10 GHz, the NBT films have a dielectric constant of 205 and loss tangent of 0.0373 at room temperature. The optical spectra analysis reveals that NBT thin films have an optical band gap E{sub g}=3.55 eV and it has a dielectric constant of 3.37 at 1000 nm with dielectric loss of 0.299. Hence, NBT is a promising candidate for photonic device applications.
Accurate Measurements of the Dielectric Constant of Seawater at L Band
NASA Technical Reports Server (NTRS)
Lang, Roger; Zhou, Yiwen; Utku, Cuneyt; Le Vine, David
2016-01-01
This paper describes measurements of the dielectric constant of seawater at a frequency of 1.413 GHz, the center of the protected band (i.e., passive use only) used in the measurement of sea surface salinity from space. The objective of the measurements is to accurately determine the complex dielectric constant of seawater as a function of salinity and temperature. A resonant cylindrical microwave cavity in transmission mode has been employed to make the measurements. The measurements are made using standard seawater at salinities of 30, 33, 35, and 38 practical salinity units over a range of temperatures from 0 degree C to 35 degree C in 5 degree C intervals. Repeated measurements have been made at each temperature and salinity. Mean values and standard deviations are then computed. The total error budget indicates that the real and imaginary parts of the dielectric constant have a combined standard uncertainty of about 0.3 over the range of salinities and temperatures considered. The measurements are compared with the dielectric constants obtained from the model functions of Klein and Swift and those of Meissner and Wentz. The biggest differences occur at low and high temperatures.
Chemical Sensors Based on Optical Ring Resonators
NASA Technical Reports Server (NTRS)
Homer, Margie; Manfreda, Allison; Mansour, Kamjou; Lin, Ying; Ksendzov, Alexander
2005-01-01
Chemical sensors based on optical ring resonators are undergoing development. A ring resonator according to this concept is a closed-circuit dielectric optical waveguide. The outermost layer of this waveguide, analogous to the optical cladding layer on an optical fiber, is a made of a polymer that (1) has an index of refraction lower than that of the waveguide core and (2) absorbs chemicals from the surrounding air. The index of refraction of the polymer changes with the concentration of absorbed chemical( s). The resonator is designed to operate with relatively strong evanescent-wave coupling between the outer polymer layer and the electromagnetic field propagating along the waveguide core. By virtue of this coupling, the chemically induced change in index of refraction of the polymer causes a measurable shift in the resonance peaks of the ring. In a prototype that has been used to demonstrate the feasibility of this sensor concept, the ring resonator is a dielectric optical waveguide laid out along a closed path resembling a racetrack (see Figure 1). The prototype was fabricated on a silicon substrate by use of standard techniques of thermal oxidation, chemical vapor deposition, photolithography, etching, and spin coating. The prototype resonator waveguide features an inner cladding of SiO2, a core of SixNy, and a chemical-sensing outer cladding of ethyl cellulose. In addition to the ring Chemical sensors based on optical ring resonators are undergoing development. A ring resonator according to this concept is a closed-circuit dielectric optical waveguide. The outermost layer of this waveguide, analogous to the optical cladding layer on an optical fiber, is a made of a polymer that (1) has an index of refraction lower than that of the waveguide core and (2) absorbs chemicals from the surrounding air. The index of refraction of the polymer changes with the concentration of absorbed chemical( s). The resonator is designed to operate with relatively strong evanescent-wave coupling between the outer polymer layer and the electromagnetic field propagating along the waveguide core. By virtue of this coupling, the chemically induced change in index of refraction of the polymer causes a measurable shift in the resonance peaks of the ring. In a prototype that has been used to demonstrate the feasibility of this sensor concept, the ring resonator is a dielectric optical waveguide laid out along a closed path resembling a racetrack (see Figure 1). The prototype was fabricated on a silicon substrate by use of standard techniques of thermal oxidation, chemical vapor deposition, photolithography, etching, and spin coating. The prototype resonator waveguide features an inner cladding of SiO2, a core of SixNy, and a chemical-sensing outer cladding of ethyl cellulose. In addition to the ring res
Dielectric characteristics of Mn-doped LaTiO3+δ ceramics
NASA Astrophysics Data System (ADS)
Chen, Yan; Cui, Yimin
A series of ceramic composites of Mn-doped La1- x MnxTiO3+ δ and LaMnxTi1- x O3+ δ (x = 0.1, 0.2) were synthesized by conventional solid-state reaction method. The low-frequency complex dielectric properties of the composites were investigated as functions of temperature (77 K <= T <= 360 K) and frequency (100 Hz <= f <= 1 MHz), respectively. The dielectric constant of A-site doped samples is higher than that of B-site doped samples. The loss tangent of low doped samples is much less than that of high doped samples. The A-site doped composites exhibit intrinsic dielectric response with a dielectric constant of 40 in the temperature below 250 K. Interestingly, the dielectric constants of B-site doped ceramics increase slightly in the temperature range from 77 to 360 K. And it is clearly observed that extraordinarily high dielectric loss tangent ( 6) appear at low frequency (100 Hz) in LaMn0.2Ti0.8O3+ δ , which is 8 times larger than that of LaMn0.1Ti0.9O3+ δ , which indicates that the doped content can affect the intrinsic dielectric characteristics significantly.
Experimental demonstration of a metal-dielectric metamaterial refractive index sensor
NASA Astrophysics Data System (ADS)
Li, Shengyong; Ai, Xiaochuan; Wu, Ronghua; Chen, Jiajun
2018-03-01
A metamaterial equipment is designed and experimental verified in the near-infrared with two reflectivity dips. The metamaterial equipment shows independent of polarization. Simulated results indicate that the reflectivity dip is excited by the coupling of localized surface plasmon (LSP) modes. The metamaterial equipment can work as a refractive index detection sensor with high figure of merit (FOM) value. This proposed metamaterial sensor can be applied in detecting different biochemical liquid.
Pike, Douglas H.; Nanda, Vikas
2017-01-01
One of the key challenges in modeling protein energetics is the treatment of solvent interactions. This is particularly important in the case of peptides, where much of the molecule is highly exposed to solvent due to its small size. In this study, we develop an empirical method for estimating the local dielectric constant based on an additive model of atomic polarizabilities. Calculated values match reported apparent dielectric constants for a series of Staphylococcus aureus nuclease mutants. Calculated constants are used to determine screening effects on Coulombic interactions and to determine solvation contributions based on a modified Generalized Born model. These terms are incorporated into the protein modeling platform protCAD, and benchmarked on a data set of collagen mimetic peptides for which experimentally determined stabilities are available. Computing local dielectric constants using atomistic protein models and the assumption of additive atomic polarizabilities is a rapid and potentially useful method for improving electrostatics and solvation calculations that can be applied in the computational design of peptides. PMID:25784456
Elastic medium equivalent to Fresnel's double-refraction crystal.
Carcione, José M; Helbig, Klaus
2008-10-01
In 1821, Fresnel obtained the wave surface of an optically biaxial crystal, assuming that light waves are vibrations of the ether in which longitudinal vibrations (P waves) do not propagate. An anisotropic elastic medium mathematically analogous to Fresnel's crystal exists. The medium has four elastic constants: a P-wave modulus, associated with a spherical P wave surface, and three elastic constants, c(44), c(55), and c(66), associated with the shear waves, which are mathematically equivalent to the three dielectric permittivity constants epsilon(11), epsilon(22), and epsilon(33) as follows: mu(0)epsilon(11)<==>rho/c(44), mu(0)epsilon(22)<==>rho/c(55), mu(0)epsilon(33)<==>rho/c(66), where mu(0) is the magnetic permeability of vacuum and rho is the mass density. These relations also represent the equivalence between the elastic and electromagnetic wave velocities along the principal axes of the medium. A complete mathematical equivalence can be obtained by setting the P-wave modulus equal to zero, but this yields an unstable elastic medium (the hypothetical ether). To obtain stability the P-wave velocity has to be assumed infinite (incompressibility). Another equivalent Fresnel's wave surface corresponds to a medium with anomalous polarization. This medium is physically unstable even for a nonzero P-wave modulus.
NASA Astrophysics Data System (ADS)
Hamioud, L.; Boumaza, A.; Touam, S.; Meradji, H.; Ghemid, S.; El Haj Hassan, F.; Khenata, R.; Omran, S. Bin
2016-06-01
The present paper aims to study the structural, electronic, optical and thermal properties of the boron nitride (BN) and BAs bulk materials as well as the BNxAs1-x ternary alloys by employing the full-potential-linearised augmented plane wave method within the density functional theory. The structural properties are determined using the Wu-Cohen generalised gradient approximation that is based on the optimisation of the total energy. For band structure calculations, both the Wu-Cohen generalised gradient approximation and the modified Becke-Johnson of the exchange-correlation energy and potential, respectively, are used. We investigated the effect of composition on the lattice constants, bulk modulus and band gap. Deviations of the lattice constants and the bulk modulus from the Vegard's law and the linear concentration dependence, respectively, were observed for the alloys where this result allows us to explain some specific behaviours in the electronic properties of the alloys. For the optical properties, the calculated refractive indices and the optical dielectric constants were found to vary nonlinearly with the N composition. Finally, the thermal effect on some of the macroscopic properties was predicted using the quasi-harmonic Debye model in which the lattice vibrations are taken into account.
Simoes, Ricardo; Silva, Jaime; Vaia, Richard; Sencadas, Vítor; Costa, Pedro; Gomes, João; Lanceros-Méndez, Senentxu
2009-01-21
The low concentration behaviour and the increase of the dielectric constant in carbon nanotubes/polymer nanocomposites near the percolation threshold are still not well understood. In this work, a numerical model has been developed which focuses on the effect of the inclusion of conductive fillers in a dielectric polymer matrix on the dielectric constant and the dielectric strength. Experiments have been carried out in carbon nanotubes/poly(vinylidene fluoride) nanocomposites in order to compare to the simulation results. This work shows how the critical concentration is related to the formation of capacitor networks and that these networks give rise to high variations in the electrical properties of the composites. Based on numerical studies, the dependence of the percolation transition on the preparation of the nanocomposite is discussed. Finally, based on numerical and experimental results, both ours and from other authors, the causes of anomalous percolation behaviour of the dielectric constant are identified.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cabassi, R.; Bolzoni, F.; Gauzzi, A.
2006-07-15
The semiconducting NaMn{sub 7}O{sub 12} is a doping-free compound with several coexistent properties such as orbital ordering, charge ordering, and magnetic orderings of different types. We investigated its dielectric response by means of frequency impedance measurements in the range from 20 Hz to 1 MHz. Standard measurements on metallized samples exhibit an apparent colossal dielectric constant (CDC) with an {epsilon}{sub R} value of several thousands at low frequencies, but a careful equivalent circuit analysis allows one to ascribe the observed CDC to the effect of a depletion layer on the metal-semiconductor junctions. We bypass this effect by means of amore » nonstandard technique employing mica linings: the resulting dielectric behavior exhibits the presence of the charge ordering transition at T{sub CO}=176 K and shows a net bulk dielectric constant value {epsilon}{sub R}{approx_equal}68 at room temperature.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahesh, P., E-mail: pamu@iitg.ernet.in; Subhash, T., E-mail: pamu@iitg.ernet.in; Pamu, D., E-mail: pamu@iitg.ernet.in
We report the dielectric properties of (K{sub 0.5}Na{sub 0.5})NbO{sub 3} ceramics doped with x wt% of Dy{sub 2}O{sub 3} (x= 0.0-1.5 wt%) using the broadband dielectric spectroscopy. The X-ray diffraction studies showed the formation of perovskite structure signifying that Dy{sub 2}O{sub 3} diffuse into the KNN lattice. Samples doped with x > 0.5 wt% exhibit smaller grain size and lower relative densities. The dielectric properties of KNN ceramics doped with Dy{sub 2}O{sub 3} are enhanced by increasing the Dy{sup 3+} content; among the compositions studied, x = 0.5 wt% exhibited the highest dielectric constant and lowest loss at 1MHz overmore » the temperature range of 30°C to 400°C. All the samples exhibit maximum dielectric constant at the Curie temperature (∼ 326°C) and a small peak in the dielectric constant at around 165°C is due to a structural phase transition.« less
Origin of the colossal dielectric permittivity and magnetocapacitance in LuFe2O4
NASA Astrophysics Data System (ADS)
Ren, P.; Yang, Z.; Zhu, W. G.; Huan, C. H. A.; Wang, L.
2011-04-01
We report the detailed study on the colossal dielectric constant and magnetocapacitance of LuFe2O4. The experimental results indicate that the large dielectric constant of LuFe2O4 is originated from two sources, (1) Maxwell Wagner-type contributions of depletion layers at grain boundaries and the interfaces between sample and contacts, (2) AC response of the constant phase element in the bulk. A detailed equivalent circuit analysis indicates that the conductivity variation can be responsible for the observed "magnetocapacitance."
The p- T phase diagram of KNbO 3 by a dielectric constant measurement
NASA Astrophysics Data System (ADS)
Kobayashi, Y.; Endo, S.; Deguchi, K.; Ming, L. C.; Zou, G.
2001-11-01
A dielectric constant measurement was carried out on perovskite-type ferroelectrics KNbO 3 over a wide range of temperature under high pressure. The temperature- and pressure-dependence of the dielectric constant clarified that all temperatures of the transitions from the ferroelectric rhombohedral to orthorhombic, to tetragonal and then to the paraelectric cubic phase, decrease with increasing pressure. These results indicate that the orthorhombic-tetragonal transition takes place at 8.5 GPa and the tetragonal-cubic transition at 11 GPa, at room temperature.
Yang, Ke; Huang, Xingyi; Fang, Lijun; He, Jinliang; Jiang, Pingkai
2014-12-21
Flexible nanodielectric materials with high dielectric constant and low dielectric loss have huge potential applications in the modern electronic and electric industry. Graphene sheets (GS) and reduced-graphene oxide (RGO) are promising fillers for preparing flexible polymer-based nanodielectric materials because of their unique two-dimensional structure and excellent electrical and mechanical properties. However, the easy aggregation of GS/RGO significantly limits the potential of graphene in enhancing the dielectric constant of polymer composites. In addition, the poor filler/matrix nanoscale interfacial adhesion also causes difficulties in suppressing the dielectric loss of the composites. In this work, using a facile and environmentally friendly approach, polydopamine coated RGO (PDA-RGO) and fluoro-polymer functionalized RGO (PF-PDA-RGO) were prepared. Compared with the RGO prepared by the conventional methods [i.e. hydrazine reduced-graphene oxide (H-RGO)] and PDA-RGO, the resulting PF-PDA-RGO nanosheets exhibit excellent dispersion in the ferroelectric polymer matrix [i.e. poly(vinylidene fluoride-co-hexafluoro propylene), P(VDF-HFP)] and strong interfacial adhesion with the matrix, leading to a low percolation threshold (fc = 1.06 vol%) and excellent flexibility for the corresponding nanocomposites. Among the three nanocomposites, the P(VDF-HFP)/PF-PDA-RGO nanocomposites exhibited the optimum performance (i.e. simultaneously having high dielectric constant and low dielectric loss). For instance, at 1000 Hz, the P(VDF-HFP) nanocomposite sample with 1.0 vol% PF-PDA-RGO has a dielectric constant of 107.9 and a dielectric loss of 0.070, showing good potential for dielectric applications. Our strategy provides a new pathway to prepare high performance flexible nanodielectric materials.
Origin of the colossal dielectric response of Pr0.6 Ca0.4 Mn O3
NASA Astrophysics Data System (ADS)
Biškup, N.; de Andrés, A.; Martinez, J. L.; Perca, C.
2005-07-01
We report the detailed study of dielectric response of Pr0.6Ca0.4MnO3 (PCMO), a member of the manganite family showing colossal magnetoresistance. Measurements have been performed on four polycrystalline samples and four single crystals, allowing us to compare and extract the essence of dielectric response in the material. High-frequency dielectric function is found to be ɛHF=30 , as expected for the perovskite material. Dielectric relaxation is found in the frequency window of 20Hzto1MHz at temperatures of 50-200K that yields to colossal low-frequency dielectric function, i.e., the static dielectric constant. The static dielectric constant is always colossal, but varies considerably in different samples from ɛ(0)=103to105 . The measured data can be simulated very well by blocking (surface barrier) capacitance in series with sample resistance. This indicates that the large dielectric constant in PCMO arises from the Schottky barriers at electrical contacts. Measurements in magnetic field and with dc bias support this interpretation. Colossal magnetocapacitance observed in the title compound is thus attributed to extrinsic effects. Weak anomaly at the charge ordering temperature can also be attributed to interplay of sample and contact resistance. We comment on our results in the framework of related studies by other groups.
Huang, Limin; Liu, Shuangyi; Van Tassell, Barry J; Liu, Xiaohua; Byro, Andrew; Zhang, Henan; Leland, Eli S; Akins, Daniel L; Steingart, Daniel A; Li, Jackie; O'Brien, Stephen
2013-10-18
Self-assembled films built from nanoparticles with a high dielectric constant are attractive as a foundation for new dielectric media with increased efficiency and range of operation, due to the ability to exploit nanofabrication techniques and emergent electrical properties originating from the nanoscale. However, because the building block is a discrete one-dimensional unit, it becomes a challenge to capture potential enhancements in dielectric performance in two or three dimensions, frequently due to surface effects or the presence of discontinuities. This is a recurring theme in nanoparticle film technology when applied to the realm of thin film semiconductor and device electronics. We present the use of chemically synthesized (Ba,Sr)TiO3 nanocrystals, and a novel deposition-polymerization technique, as a means to fabricate the dielectric layer. The effective dielectric constant of the film is tunable according to nanoparticle size, and effective film dielectric constants of up to 34 are enabled. Wide area and multilayer dielectrics of up to 8 cm(2) and 190 nF are reported, for which the building block is an 8 nm nanocrystal. We describe models for assessing dielectric performance, and distinct methods for improving the dielectric constant of a nanocrystal thin film. The approach relies on evaporatively driven assembly of perovskite nanocrystals with uniform size distributions in a tunable 7-30 nm size range, coupled with the use of low molecular weight monomer/polymer precursor chemistry that can infiltrate the porous nanocrystal thin film network post assembly. The intercrystal void space (low k dielectric volume fraction) is minimized, while simultaneously promoting intercrystal connectivity and maximizing volume fraction of the high k dielectric component. Furfuryl alcohol, which has good affinity to the surface of (Ba,Sr)TiO3 nanocrystals and miscibility with a range of solvents, is demonstrated to be ideal for the production of nanocomposites. The nanocrystal/furfuryl alcohol dispersions are suitable for the fabrication of thin films by chemical deposition techniques, including spin-coating, printing or a spraying process. To demonstrate the application of this technique to device fabrication, a multilayer capacitor with capacitance of 0.83 nF mm(-2) at 1 MHz is presented.
An empirical model for the complex dielectric permittivity of soils as a function of water content
NASA Technical Reports Server (NTRS)
Wang, J. R.; Chmugge, T. J.
1978-01-01
The recent measurements on the dielectric properties of soils shows that the variation of dielectric constant with moisture content depends on soil types. The observed dielectric constant increases only slowly with moisture content up to a transition point. Beyond the transition it increases rapidly with moisture content. The moisture value of transition region was found to be higher for high clay content soils than for sandy soils. Many mixing formulas were compared with, and were found incompatible with, the measured dielectric variations of soil-water mixtures. A simple empirical model was proposed to describe the dielectric behavior of ths soil-water mixtures. The relationship between transition moisture and wilting point provides a means of estimating soil dielectric properties on the basis of texture information.
Size-dependent Hamaker constants for silver and gold nanoparticles
NASA Astrophysics Data System (ADS)
Pinchuk, Pavlo; Jiang, Ke
2015-08-01
Hamaker-Lifshitz constants are material specific constants that are used to calculate van der Waals interaction forces between small particles in solution. Typically, these constants are size-independent and material specific. According to the Lifshitz theory, the Hamaker-Lifshitz constants can be calculated by taking integrals that include the dielectric permittivity, as a function of frequency, of the interacting particles and the medium around particles. The dielectric permittivity of interacting metal nanoparticles can be calculated using the Drude model, which is based on the assumption of motion of free conducting electrons. For bulk metals, the Drude model does not predict any sizedependence of the dielectric permittivity. However, the conducting electrons in small noble metal nanoparticles (R ~ 10nm) exhibit surface scattering, which changes the complex permittivity function. In this work, we show theoretically that scattering of the free conducting electrons inside silver and gold nanoparticles with the size of 1 - 50 nm leads to size-dependent dielectric permittivity and Hamaker-Lifshitz constants. We calculate numerically the Hamaker-Lifshitz constants for silver and gold nanoparticles with different diameters. The results of the study might be of interests for understanding colloidal stability of metal nanoparticles.
Long range wetting transparency on top of layered metal dielectric substrates
2015-11-20
multi-layered stacks were deposited onto glass substrates ( silica -based Micro cover glass , 22mmx22mm from VWR (48366-067), index of refraction n...necessarily endorsed by the United States Government. Long-range wetting transparency on top of layered metal-dielectric substrates M. A...as far as ~100 nm beneath the water/MgF2 interface. We refer to this phenomenon as long range wetting transparency . The latter effect cannot be
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shri Prakash, B.; Varma, K.B.R.
2007-06-15
The effect of the addition of glassy phases on the microstructure and dielectric properties of CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) ceramics was investigated. Both single-component (B{sub 2}O{sub 3}) and multi-component (30 wt% BaO-60 wt% B{sub 2}O{sub 3}-10 wt% SiO{sub 2} (BBS)) glass systems were chosen to study their effect on the density, microstructure and dielectric properties of CCTO. Addition of an optimum amount of B{sub 2}O{sub 3} glass facilitated grain growth and an increase in dielectric constant. However, further increase in the B{sub 2}O{sub 3} content resulted in its segregation at the grain boundaries associated with a reduction in themore » grain size. In contrast, BBS glass addition resulted in well-faceted grains and increase in the dielectric constant and decrease in the dielectric loss. An internal barrier layer capacitance (IBLC) model was invoked to correlate the dielectric constant with the grain size in these samples. - Graphical abstract: Scanning electron micrograph of 30 wt% BaO-60 wt% B{sub 2}O{sub 3}-10 wt% SiO{sub 2} (BBS) glass-added CaCu{sub 3}Ti{sub 4}O{sub 12} ceramic on sintering.« less
An Improved Dielectric Constant Cell for Use in Student and Research Laboratories.
ERIC Educational Resources Information Center
Thompson, H. Bradford.; Walmsley, Judith A.
1979-01-01
Describes the latest stage in the design of an economical dielectric constant cell, tested in both instructional and research applications, that is suitable for student laboratories and for precision research measurements. (BT)
Advanced concepts for transformers pressboard dielectric constant and mechanical strength
NASA Astrophysics Data System (ADS)
1982-03-01
Of the numerous electrical considerations in a material, the value of the dielectric constant serves as an important criterion in designing proper insulation systems. Ways to reduce the dielectric constant of solid (fibrous) insulating materials were investigated. A literature search was made on cellulosic and synthetic fibers and also additives which offered the potential for dielectric constant reduction of the solid insulation. Sample board structures were produced in the laboratory and tested for electrical, mechanical and chemical characteristics. Electrical tests determined the suitability of the material at transformer test and operating conditions. The mechanical tests established the physical characteristics of the modified board structures. Chemical tests checked the conductivity of the aqueous extract, acidity, and ash content. Further, compatibility with transformer oil and some aging tests were performed. An actual computer transformer design was made based on one of the modified board structures and the reduction in core steel and transformer losses were shown.
Ahmad, Ahmad F.; Abbas, Zulkifly; Obaiys, Suzan J.; Ibrahim, Norazowa; Hashim, Mansor; Khaleel, Haider
2015-01-01
Bio-composites of oil palm empty fruit bunch (OPEFB) fibres and polycaprolactones (PCL) with a thickness of 1 mm were prepared and characterized. The composites produced from these materials are low in density, inexpensive, environmentally friendly, and possess good dielectric characteristics. The magnitudes of the reflection and transmission coefficients of OPEFB fibre-reinforced PCL composites with different percentages of filler were measured using a rectangular waveguide in conjunction with a microwave vector network analyzer (VNA) in the X-band frequency range. In contrast to the effective medium theory, which states that polymer-based composites with a high dielectric constant can be obtained by doping a filler with a high dielectric constant into a host material with a low dielectric constant, this paper demonstrates that the use of a low filler percentage (12.2%OPEFB) and a high matrix percentage (87.8%PCL) provides excellent results for the dielectric constant and loss factor, whereas 63.8% filler material with 36.2% host material results in lower values for both the dielectric constant and loss factor. The open-ended probe technique (OEC), connected with the Agilent vector network analyzer (VNA), is used to determine the dielectric properties of the materials under investigation. The comparative approach indicates that the mean relative error of FEM is smaller than that of NRW in terms of the corresponding S21 magnitude. The present calculation of the matrix/filler percentages endorses the exact amounts of substrate utilized in various physics applications. PMID:26474301
NASA Astrophysics Data System (ADS)
Kiyota, Yuji; Itaka, Kenji; Iwashita, Yuta; Adachi, Tetsuya; Chikyow, Toyohiro; Ogura, Atsushi
2011-06-01
We investigated zirconia (ZrO2)-based material libraries in search of new dielectric materials for dynamic random-access memory (DRAM) by combinatorial-pulsed laser deposition (combi-PLD). We found that the substitution of yttrium (Y) to Zr sites in the ZrO2 system suppressed the leakage current effectively. The metal-insulator-metal (MIM) capacitor property of this system showed a leakage current density of less than 5×10-7 A/cm2 and the dielectric constant was 20. Moreover, the addition of titanium (Ti) or tantalum (Ta) to this system caused the dielectric constant to increase to ˜25 within the allowed leakage level of 5×10-7 A/cm2. Therefore, Zr-Y-Ti-O and Zr-Y-Ta-O systems have good potentials for use as new materials with high dielectric constants of DRAM capacitors instead of silicon dioxides (SiO2).
Microfabricated bragg waveguide
Fleming, James G.; Lin, Shawn-Yu; Hadley, G. Ronald
2004-10-19
A microfabricated Bragg waveguide of semiconductor-compatible material having a hollow core and a multilayer dielectric cladding can be fabricated by integrated circuit technologies. The microfabricated Bragg waveguide can comprise a hollow channel waveguide or a hollow fiber. The Bragg fiber can be fabricated by coating a sacrificial mandrel or mold with alternating layers of high- and low-refractive-index dielectric materials and then removing the mandrel or mold to leave a hollow tube with a multilayer dielectric cladding. The Bragg channel waveguide can be fabricated by forming a trench embedded in a substrate and coating the inner wall of the trench with a multilayer dielectric cladding. The thicknesses of the alternating layers can be selected to satisfy the condition for minimum radiation loss of the guided wave.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajmi, R.; Yahya, A. K.; Deni, M. S. M.
2010-07-07
Effects of Zn and Cr substitutions on dielectric properties of CaCu{sub 3-x}Zn{sub x}Ti{sub 4-y}Cr{sub y}O{sub 12} ceramics are reported. Dielectric measurements at room temperature for un-substituted CaCu{sub 3-x}Zn{sub x}Ti{sub 4-y}Cr{sub y}O{sub 12}(x = 0, y = 0) between 10{sup 2}-10{sup 6} Hz showed dielectric constant of 2.7x10{sup 4} at 10{sup 2} Hz. Substitution of Zn for Cu in CaCu{sub 3-x}Zn{sub xTi{sub 4{sub -{sub yCr{sub yO{sub 1{sub 2}}}}}}}(y = 0, x = 0.10, 0.50)caused dielectric constant to drop with increasing x. Cr substitution at Ti-site in CaCu{sub 3-x}Zn{sub xTi{sub 4{sub -{sub yCr{sub yO{sub 1{sub 2}}}}}}}(x = 0, x = 0,) alsomore » caused decrease in dielectric constant. However, at x = 0.50, the dielectric constant at low frequency was enhanced compared to the un-substituted sample. Our results indicate that Cu and Ti sites play an important role in the formation of Internal Barrier Layer Capacitance (IBLC) in CCTO.« less
NASA Technical Reports Server (NTRS)
Warnock, J. M.; Vanzandt, T. E.
1986-01-01
A computer program has been tested and documented (Warnock and VanZandt, 1985) that estimates mean values of the refractivity turbulence structure constant in the stable free atmosphere from standard National Weather Service balloon data or an equivalent data set. The program is based on the statistical model for the occurrence of turbulence developed by VanZandt et al. (1981). Height profiles of the estimated refractivity turbulence structure constant agree well with profiles measured by the Sunset radar with a height resolution of about 1 km. The program also estimates the energy dissipation rate (epsilon), but because of the lack of suitable observations of epsilon, the model for epsilon has not yet been evaluated sufficiently to be used in routine applications. Vertical profiles of the refractivity turbulence structure constant were compared with profiles measured by both radar and optical remote sensors and good agreement was found. However, at times the scintillometer measurements were less than both the radar and model values.
Dielectric constant of ionic solutions: a field-theory approach.
Levy, Amir; Andelman, David; Orland, Henri
2012-06-01
We study the variation of the dielectric response of a dielectric liquid (e.g. water) when a salt is added to the solution. Employing field-theoretical methods, we expand the Gibbs free energy to first order in a loop expansion and calculate self-consistently the dielectric constant. We predict analytically the dielectric decrement which depends on the ionic strength in a complex way. Furthermore, a qualitative description of the hydration shell is found and is characterized by a single length scale. Our prediction fits rather well a large range of concentrations for different salts using only one fit parameter related to the size of ions and dipoles.
Reversible dielectric property degradation in moisture-contaminated fiber-reinforced laminates
NASA Astrophysics Data System (ADS)
Rodriguez, Luis A.; García, Carla; Fittipaldi, Mauro; Grace, Landon R.
2016-03-01
The potential for recovery of dielectric properties of three water-contaminated fiber-reinforced laminates is investigated using a split-post dielectric resonant technique at X-band (10 GHz). The three material systems investigated are bismaleimide (BMI) reinforced with an eight-harness satin weave quartz fabric, an epoxy resin reinforced with an eight- harness satin weave glass fabric (style 7781), and the same epoxy reinforced with a four-harness woven glass fabric (style 4180). A direct correlation between moisture content, dielectric constant, and loss tangent was observed during moisture absorption by immersion in distilled water at 25 °C for five equivalent samples of each material system. This trend is observed through at least 0.72% water content by weight for all three systems. The absorption of water into the BMI, 7781 epoxy, and 4180 epoxy laminates resulted in a 4.66%, 3.35%, and 4.01% increase in dielectric constant for a 0.679%, 0.608%, and 0.719% increase in water content by weight, respectively. Likewise, a significant increase was noticed in loss tangent for each material. The same water content is responsible for a 228%, 71.4%, and 64.1% increase in loss tangent, respectively. Subsequent to full desorption through drying at elevated temperature, the dielectric constant and loss tangent of each laminate exhibited minimal change from the dry, pre-absorption state. The dielectric constant and loss tangent change after the absorption and desorption cycle, relative to the initial state, was 0.144 % and 2.63% in the BMI, 0.084% and 1.71% in the style 7781 epoxy, and 0.003% and 4.51% in the style 4180 epoxy at near-zero moisture content. The similarity of dielectric constant and loss tangent in samples prior to absorption and after desorption suggests that any chemical or morphological changes induced by the presence of water have not caused irreversible changes in the dielectric properties of the laminates.
NASA Astrophysics Data System (ADS)
Prasad Nanda, Bishnu; Satapathy, Alok
2018-03-01
This paper reports on the dielectric and thermal properties of hair fibers reinforced epoxy composites. Hair is an important part of human body which also offers protection to the human body. It is also viewed as a biological waste which is responsible for creating environmental pollution due to its low decomposition rate. But at the same time it has unique microstructural, mechanical and thermal properties. In the present work, epoxy composites are made by solution casting method with different proportions of short hair fiber (SHF). Effects of fiber content on the thermal conductivity and dielectric constant of epoxy resin are studied. Thermal conductivities of the composites are obtained using a UnithermTM Model 2022 tester. An HIOKI-3532-50 Hi Tester Elsier Analyzer is used for measuring the capacitance of the epoxy-SHF composite, from which dielectric constant (Dk) of the composite are calculated. A reduction in thermal conductivity of the composite is noticed with the increase in wt. % of fiber. The dielectric constant value of the composites also found to be significantly affected by the fiber content.
Plasma Parameters From Reentry Signal Attenuation
Statom, T. K.
2018-02-27
This study presents the application of a theoretically developed method that provides plasma parameter solution space information from measured RF attenuation that occurs during reentry. The purpose is to provide reentry plasma parameter information from the communication signal attenuation. The theoretical development centers around the attenuation and the complex index of refraction. The methodology uses an imaginary index of the refraction matching algorithm with a tolerance to find suitable solutions that satisfy the theory. The imaginary matching terms are then used to determine the real index of refraction resulting in the complex index of refraction. Then a filter is usedmore » to reject nonphysical solutions. Signal attenuation-based plasma parameter properties investigated include the complex index of refraction, plasma frequency, electron density, collision frequency, propagation constant, attenuation constant, phase constant, complex plasma conductivity, and electron mobility. RF plasma thickness attenuation is investigated and compared to the literature. Finally, similar plasma thickness for a specific signal attenuation can have different plasma properties.« less
Plasma Parameters From Reentry Signal Attenuation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Statom, T. K.
This study presents the application of a theoretically developed method that provides plasma parameter solution space information from measured RF attenuation that occurs during reentry. The purpose is to provide reentry plasma parameter information from the communication signal attenuation. The theoretical development centers around the attenuation and the complex index of refraction. The methodology uses an imaginary index of the refraction matching algorithm with a tolerance to find suitable solutions that satisfy the theory. The imaginary matching terms are then used to determine the real index of refraction resulting in the complex index of refraction. Then a filter is usedmore » to reject nonphysical solutions. Signal attenuation-based plasma parameter properties investigated include the complex index of refraction, plasma frequency, electron density, collision frequency, propagation constant, attenuation constant, phase constant, complex plasma conductivity, and electron mobility. RF plasma thickness attenuation is investigated and compared to the literature. Finally, similar plasma thickness for a specific signal attenuation can have different plasma properties.« less
Vinayasree, S; Nitha, T S; Tiwary, C S; Ajayan, P M; Joy, P A; Anantharaman, M R
2018-06-29
A liquid dielectric based on a core-shell architecture having a superparamagnetic iron oxide core and a shell of silicon dioxide was synthesized. The frequency dependence of dielectric properties was evaluated for different concentrations of iron oxide. The dependence of magnetic field on the dielectric properties was also studied. Aqueous ferrofluid exhibited a giant dielectric constant of 6.4 × 10 5 at 0.1 MHz at a concentration of 0.2 vol% and the loss tangent was 3. The large rise in dielectric constant at room temperature is modelled and explained using percolation theory and Maxwell-Wagner-Sillars type polarization. The ferrofluid is presumed to consist of nanocapacitor networks which are wired in series along the lateral direction and parallel along longitudinal direction. On the application of an external magnetic field, the chain formation and its alignment results in the variation of dielectric permittivity.
NASA Astrophysics Data System (ADS)
Harmel, M.; Khachai, H.; Ameri, M.; Khenata, R.; Baki, N.; Haddou, A.; Abbar, B.; UǦUR, Ş.; Omran, S. Bin; Soyalp, F.
2012-12-01
Density functional theory (DFT) is performed to study the structural, electronic and optical properties of cubic fluoroperovskite AMF3 (A = Cs; M = Ca and Sr) compounds. The calculations are based on the total-energy calculations within the full-potential linearized augmented plane wave (FP-LAPW) method. The exchange-correlation potential is treated by local density approximation (LDA) and generalized gradient approximation (GGA). The structural properties, including lattice constants, bulk modulus and their pressure derivatives are in very good agreement with the available experimental and theoretical data. The calculations of the electronic band structure, density of states and charge density reveal that compounds are both ionic insulators. The optical properties (namely: the real and the imaginary parts of the dielectric function ɛ(ω), the refractive index n(ω) and the extinction coefficient k(ω)) were calculated for radiation up to 40.0 eV.
New 1,6-heptadienes with pyrimidine bases attached: Syntheses and spectroscopic analyses
NASA Astrophysics Data System (ADS)
Hammud, Hassan H.; Ghannoum, Amer M.; Fares, Fares A.; Abramian, Lara K.; Bouhadir, Kamal H.
2008-06-01
A simple, high yielding synthesis leading to the functionalization of some pyrimidine bases with a 1,6-heptadienyl moiety spaced from the N - 1 position by a methylene group is described. A key step in this synthesis involves a Mitsunobu reaction by coupling 3N-benzoyluracil and 3N-benzoylthymine to 2-allyl-pent-4-en-1-ol followed by alkaline hydrolysis of the 3N-benzoyl protecting groups. This protocol should eventually lend itself to the synthesis of a host of N-alkylated nucleoside analogs. The absorption and emission properties of these pyrimidine derivatives ( 3- 6) were studied in solvents of different physical properties. Computerized analysis and multiple regression techniques were applied to calculate the regression and correlation coefficients based on the equation that relates peak position λmax to the solvent parameters that depend on the H-bonding ability, refractive index, and dielectric constant of solvents.
NASA Astrophysics Data System (ADS)
Talreja, Sonal; Ahuja, B. L.
2015-08-01
Electronic and optical properties of CdxZn1-xSe (x = 0, 0.25, 0.5, 0.75, 1) compounds are investigated using the first-principles full potential linearized augmented plane wave method. In particular, we have used modified version of the exchange potential of Becke and Johnson, so called mBJ potential. We have discussed the energy bands, density of states, and optical properties such as dielectric constants, refractive indices, reflection spectra, extinction coefficients of all the CdxZn1-xSe compounds. Our mBJ potential based data are found to be in excellent agreement with the available experimental data, which unambiguously validates the applicability of orbital independent exchange-correlation potential in mixed semiconductor crystals. The optical properties are discussed in terms of applicability of Cd-Zn-Se system in light-emitting diodes, UV detectors and filters, etc.
Unified beam splitter of fused silica grating under the second Bragg incidence.
Sun, Zhumei; Zhou, Changhe; Cao, Hongchao; Wu, Jun
2015-11-01
A unified design for a 1×2 beam splitter of dielectric rectangular transmission gratings under the second Bragg incidence is theoretically investigated for TE- and TM-polarized light. The empirical equations of the relative grating parameters (ratio of the absolute one to incidence wavelength) for this design are also obtained with the simplified modal method (SMM). The influences of polarization of incident light and relative grating parameters on the performance of the beam splitter are thoroughly studied based on the SMM and rigorous coupled-wave analysis. Two specific gratings are demonstrated with an even split and high diffraction efficiency (>94% for TE polarization and >97% for the TM counterpart). The unified profiles of the 1×2 beam splitter are independent from the incidence wavelength since the refractive index of fused silica is roughly a constant over a wide range of wavelengths, which should be promising for future applications.
Ab-initio investigation of Rb substitution in KTP single crystal
NASA Astrophysics Data System (ADS)
Ghoohestani, Marzieh; Arab, Ali; Hashemifar, S. Javad; Sadeghi, Hossein
2018-01-01
The effects of rubidium doping on the structural, electronic, and optical properties of KTiOPO4 (KTP) are investigated in the framework of density functional theory. The equilibrium structural parameters of KTP and RbTiOPO4 (RTP) are calculated within the local density and Perdew-Burke-Ernzerhof (PBE), Wu-Cohen, and PBEsol formulation of generalized gradient approximations. We discuss that PBEsol predicts better equilibrium parameters for the KTP alloy. In addition, the variation of lattice constants and Ti-O-Ti bond angles are evaluated as a function of rubidium concentration. The modern modified Becke-Johnson functional is applied for more accurate band gap determination in the pure and alloyed KTP/RTP compounds. The phenomenological pseudoinversion parameter is calculated for a qualitative understanding of the effect of impurity on a non-linear optical response of KTP. We also analyze the behavior of the dielectric function, dispersive refractive indices, and birefringence of KTP/RTP alloys.
NASA Astrophysics Data System (ADS)
Aslam, Muhammad; Kalyar, Mazhar Ali; Raza, Zulfiqar Ali
2017-06-01
Laminar graphene nanosheets have raised passionate attention due to their incredible physico-chemical properties. Its wide-scale, high-yield production at low-cost has made it possible to produce top class promising versatile polymer nanocomposites. Reduced graphene oxide (RGO) nanosheets were incorporated to prepare optically tunable and high mechanical strength polymer nanocomposite films. RGO-doped poly(vinyl alcohol) (PVA) nanocomposite films were prepared via solution casting. Low level RGO doping significantly altered the structural, optical and mechanical properties of pure PVA films. Most of the band structure parameters like direct/indirect band gap, band tail, refractive index, dielectric constant, optical conductivity and dispersion parameters were investigated in detail for the first time. Tauc's, Wemple-DiDomenico, Helpin-Tsai and mixture rule models were employed to investigate optical and mechanical parameters. The applied models reinforced the experimental results in the present study. Advanced analytical techniques were engaged to characterize the nanocomposites films.
NASA Astrophysics Data System (ADS)
Mohammadi, Asadollah; Yazdanbakhsh, Mohammad Reza; Farahnak, Lahya
2012-04-01
Five azo disperse dyes were prepared by diazotizing 4'-aminoacetophenone and p-anisidine and coupling with varies N-alkylated aromatic amines. Characterization of the dyes was carried out by using UV-vis, FTIR and 1H NMR spectroscopic techniques. The electronic absorption spectra of dyes are determined at room temperature in fifteen solvents with different polarities. The solvent dependent maximum absorption band shifts, were investigated using dielectric constant (ɛ), refractive index (n) and Kamlet-Taft polarity parameters (hydrogen bond donating ability (α), hydrogen bond accepting ability (β) and dipolarity/polarizability polarity scale (π*)). Acceptable agreement was found between the maximum absorption band of dyes and solvent polarity parameters especially with π*. The effect of substituents of coupler and/or diazo component on the color of dyes was investigated. The effects of acid and base on the visible absorption maxima of the dyes are also reported.
NASA Astrophysics Data System (ADS)
Taha, A.; Farag, A. A. M.; Adly, O. M. I.; Roushdy, N.; Shebl, Magdy; Ahmed, H. M.
2017-08-01
A newly Schiff base,2-benzylidene-3-hydroxy-1-(5,6-diphenyl-1,2,4-triazine-3-yl)hydrazine] (HBDHT) was synthesized and characterized on the basis of micro-analytical and spectroscopic studies. Basic parameters of the combined compound HBDHT were ascertained on the premise of DFT level actualized on Gaussian 09. Thin films of HBDHT were successfully prepared by spin coating technique and confirmed by atomic force microscopy (AFM). The optical attributes of the studied films were considered utilizing spectrophotometric estimations in a wide spectral range of 200-2500 nm. Some important optical parameters such as extinction index, refractive index, dispersion energy, oscillator energy and high-frequency dielectric constant were extracted. Analysis of the absorption coefficient near the fundamental absorption edge confirms an indirectly allowed transition with an energy gap of 1.7eV. The refractive index dispersion was estimated on basis of single oscillator model expressed by Wemple-Didomenico. Current-voltage (I-V) characteristics were studied in dark and under illumination of 100 mW/cm2 to clarify the sensitivity to light. Moreover, the photo-transient properties were also investigated to confirm that the prepared heterojunction based HBDHT can be operated as a photodiode.
NASA Astrophysics Data System (ADS)
Pinchuk, P.; Pinchuk, A. O.
2016-09-01
Hamaker-Lifshitz constants are used to calculate van der Waals interaction forces between small particles in solution. Typically, these constants are size-independent and material specific. According to the Lifshitz theory, the Hamaker-Lifshitz constants can be calculated by taking integrals that include the dielectric permittivity, as a function of frequency, of the interacting particles and the medium around particles. The dielectric permittivity of interacting metal nanoparticles can be calculated using the free-electron Drude model for metals. For bulk metals, the Drude model does is size independent. However, the conducting electrons in small metal nanoparticles exhibit surface scattering, which changes the complex dielectric permittivity function. Additionally, the Drude model can be modified to include temperature dependence. That is, an increase in temperature leads to thermal volume expansion and increased phonon population, which affect the scattering rate of the electrons and the plasma frequency. Both of these terms contribute significantly to the Drude model for the dielectric permittivity of the particles. In this work, we show theoretically that scattering of the free conducting electrons inside noble metal nanoparticles with the size of 1 - 50 nm leads to size-dependent dielectric permittivity and Hamaker-Lifshitz constants. In addition, we calculate numerically the Hamaker-Lifshitz constants for a variety of temperatures. The results of the study might be of interest for understanding colloidal stability of metal nanoparticles.
Designs and Materials for Better Coronagraph Occulting Masks
NASA Technical Reports Server (NTRS)
Balasubramanian, Kunjithapatham
2010-01-01
New designs, and materials appropriate for such designs, are under investigation in an effort to develop coronagraph occulting masks having broad-band spectral characteristics superior to those currently employed. These designs and materials are applicable to all coronagraphs, both ground-based and spaceborne. This effort also offers potential benefits for the development of other optical masks and filters that are required (1) for precisely tailored spatial transmission profiles, (2) to be characterized by optical-density neutrality and phase neutrality (that is, to be characterized by constant optical density and constant phase over broad wavelength ranges), and/or (3) not to exhibit optical- density-dependent phase shifts. The need for this effort arises for the following reasons: Coronagraph occulting masks are required to impose, on beams of light transmitted through them, extremely precise control of amplitude and phase according to carefully designed transmission profiles. In the original application that gave rise to this effort, the concern has been to develop broad-band occulting masks for NASA s Terrestrial Planet Finder coronagraph. Until now, experimental samples of these masks have been made from high-energy-beam-sensitive (HEBS) glass, which becomes locally dark where irradiated with a high-energy electron beam, the amount of darkening depending on the electron-beam energy and dose. Precise mask profiles have been written on HEBS glass blanks by use of electron beams, and the masks have performed satisfactorily in monochromatic light. However, the optical-density and phase profiles of the HEBS masks vary significantly with wavelength; consequently, the HEBS masks perform unsatisfactorily in broad-band light. The key properties of materials to be used in coronagraph occulting masks are their extinction coefficients, their indices of refraction, and the variations of these parameters with wavelength. The effort thus far has included theoretical predictions of performances of masks that would be made from alternative materials chosen because the wavelength dependences of their extinction coefficients and their indices of refraction are such that that the optical-density and phase profiles of masks made from these materials can be expected to vary much less with wavelength than do those of masks made from HEBS glass. The alternative materials considered thus far include some elemental metals such as Pt and Ni, metal alloys such as Inconel, metal nitrides such as TiN, and dielectrics such as SiO2. A mask as now envisioned would include thin metal and dielectric films having stepped or smoothly varying thicknesses (see figure). The thicknesses would be chosen, taking account of the indices of refraction and extinction coefficients, to obtain an acceptably close approximation of the desired spatial transmittance profile with a flat phase profile
Improved nonlinear plasmonic slot waveguide: a full study
NASA Astrophysics Data System (ADS)
Elsawy, Mahmoud M. R.; Nazabal, Virginie; Chauvet, Mathieu; Renversez, Gilles
2016-04-01
We present a full study of an improved nonlinear plasmonic slot waveguides (NPSWs) in which buffer linear dielectric layers are added between the Kerr type nonlinear dielectric core and the two semi-infinite metal regions. Our approach computes the stationary solutions using the fixed power algorithm, in which for a given structure the wave power is an input parameter and the outputs are the propagation constant and the corresponding field components. For TM polarized waves, the inclusion of these supplementary layers have two consequences. First, they reduced the overall losses. Secondly, they modify the types of solutions that propagate in the NPSWs adding new profiles enlarging the possibilities offered by these nonlinear waveguides. In addition to the symmetric linear plasmonic profile obtained in the simple plasmonic structure with linear core such that its effective index is above the linear core refractive index, we obtained a new field profile which is more localized in the core with an effective index below the core linear refractive index. In the nonlinear case, if the effective index of the symmetric linear mode is above the core linear refractive index, the mode field profiles now exhibit a spatial transition from a plasmonic type profile to a solitonic type one. Our structure also provides longer propagation length due to the decrease of the losses compared to the simple nonlinear slot waveguide and exhibits, for well-chosen refractive index or thickness of the buffer layer, a spatial transition of its main modes that can be controlled by the power. We provide a full phase diagram of the TM wave operating regimes of these improved NPSWs. The stability of the main TM modes is then demonstrated numerically using the FDTD. We also demonstrate the existence of TE waves for both linear and nonlinear cases (for some configurations) in which the maximum intensity is located in the middle of the waveguide. We indicate the bifurcation of the nonlinear asymmetric TE mode from the symmetric nonlinear one through the Hopf bifurcation. This kind of bifurcation is similar to the ones already obtained in TM case for our improved structure, and also for the simple NPSWs. At high power, above the bifurcation threshold, the fundamental symmetric nonlinear TE mode moves gradually to new nonlinear mode in which the soliton peak displays two peaks in the core. The losses of the TE modes decrease with the power for all the cases. This kind of structures could be fabricated and characterized experimentally due to the realistic parameters chosen to model them.
Numerical computations on one-dimensional inverse scattering problems
NASA Technical Reports Server (NTRS)
Dunn, M. H.; Hariharan, S. I.
1983-01-01
An approximate method to determine the index of refraction of a dielectric obstacle is presented. For simplicity one dimensional models of electromagnetic scattering are treated. The governing equations yield a second order boundary value problem, in which the index of refraction appears as a functional parameter. The availability of reflection coefficients yield two additional boundary conditions. The index of refraction by a k-th order spline which can be written as a linear combination of B-splines is approximated. For N distinct reflection coefficients, the resulting N boundary value problems yield a system of N nonlinear equations in N unknowns which are the coefficients of the B-splines.
Electrical conduction mechanism and dielectric characterization of MnTPPCl thin films
NASA Astrophysics Data System (ADS)
Meikhail, M. S.; Oraby, A. H.; El-Nahass, M. M.; Zeyada, H. M.; Al-Muntaser, A. A.
2018-06-01
The AC conductivity and dielectric properties of MnTPPCl sandwich structure as Au/MnTPPCl/Au were studied. The conductivity of the MnTPPCl thin films have been interpreted by the correlated barrier hopping (CBH) model. The dominant conduction process have found to be the single polaron hopping conduction. The values of the hopping distance, Rω, barrier height, W, and the localized-state density, N, are estimated at different frequencies. The behavior of dielectric constant and dielectric loss was discussed as a function of temperature and frequency. The dielectric constant was described in terms of polarization mechanism in materials. The spectral behavior of dielectric loss is interpreted on the basis of the Giuntini et al. model [1]. The value of WM is obtained as 0.32 eV. A non-Debye relaxation phenomenon was observed from the dielectric relaxation mechanism.
Structural, optical, and thermal properties of MAX-phase Cr2AlB2
NASA Astrophysics Data System (ADS)
Li, Xiao-Hong; Cui, Hong-Ling; Zhang, Rui-Zhou
2018-04-01
First-principles calculations of the structural, optical, and thermal properties of Cr2AlB2 are performed using the pseudopotential plane-wave method within the generalized gradient approximation (GGA). Calculation of the elastic constant and phonon dispersion indicates that Cr2AlB2 is mechanically and thermodynamically stable. Analysis of the band structure and density of states indicates that Cr2AlB2 is metallic. The thermal properties under increasing temperature and pressure are investigated using the quasi-harmonic Debye model. The results show that anharmonic effects on Cr2AlB2 are important at low temperature and high pressure. The calculated equilibrium primitive cell volume is 95.91 Å3 at T = 300 K, P = 0 GPa. The ability of Cr2AlB2 to resist volume changes becomes weaker with increasing temperature and stronger with increasing pressure. Analysis of optical properties of Cr2AlB2 shows that the static dielectric function of Cr2AlB2 is 53.1, and the refractive index n 0 is 7.3. If the incident light has a frequency exceeding 16.09 eV, which is the plasma frequency of Cr2AlB2, Cr2AlB2 changes from metallic to dielectric material.
Optical and dielectric properties of NiFe2O4 nanoparticles under different synthesized temperature
NASA Astrophysics Data System (ADS)
Parishani, Marziye; Nadafan, Marzieh; Dehghani, Zahra; Malekfar, Rasoul; Khorrami, G. H. H.
In this research, NiFe2O4 nanoparticles was prepared via the simple sol-gel route, using different sintering temperature. This nanoparticle was characterized via X-ray diffraction (XRD) pattern, scanning electron microscopy (SEM), and FTIR spectra. The XRD patterns show by increasing the synthesized temperature, the intensity, and broadening of peaks are decreased so the results are more crystallization and raising the size of nanoparticles. The size distribution in the histogram of the NiFe2O4 nanoparticles is 42, 96, and 315 nm at 750 °C, 850 °C, and 950 °C, respectively. The FTIR spectra were evaluated using Kramers-Kronig method. Results approved the existing of certain relations between sintering temperatures and grain size of nanoparticles. By raising the temperature from 750 °C to 950 °C, the grain size was increased from 70 nm to 300 nm and the optical constants of nanoparticles were strongly related to synthesizing temperature as well. Since by increasing temperature, both real/imaginary parts of the refractive index and dielectric function were decreased. Consequently, the transversal (TO) and longitudinal (LO) phonon frequencies are detected. The TO and LO frequencies have shifted to red frequencies by increasing reaction temperature.
NASA Astrophysics Data System (ADS)
Jilani, Asim; Abdel-wahab, M. Sh; Al-ghamdi, Attieh A.; Dahlan, Ammar sadik; Yahia, I. S.
2016-01-01
The 2.2 wt% of aluminum (Al)-doped zinc oxide (AZO) transparent and preferential c-axis oriented thin films were prepared by using radio frequency (DC/RF) magnetron sputtering at different substrate temperature ranging from room temperature to 200 °C. For structural analysis, X-ray Diffraction (XRD) and Atomic Force Electron Microscope (AFM) was used for morphological studies. The optical parameters such as, optical energy gap, refractive index, extinction coefficient, dielectric loss, tangent loss, first and third order nonlinear optical properties of transparent films were investigated. High transmittance above 90% and highly homogeneous surface were observed in all samples. The substrate temperature plays an important role to get the best transparent conductive oxide thin films. The substrate temperature at 150 °C showed the growth of highly transparent AZO thin film. Energy gap increased with the increased in substrate temperature of Al doped thin films. Dielectric constant and loss were found to be photon energy dependent with substrate temperature. The change in substrate temperature of Al doped thin films also affect the non-liner optical properties of thin films. The value of χ(3) was found to be changed with the grain size of the thin films that directly affected by the substrate temperature of the pure and Al doped ZnO thin films.
Bor, E; Turduev, M; Kurt, H
2016-08-01
Photonic structure designs based on optimization algorithms provide superior properties compared to those using intuition-based approaches. In the present study, we numerically and experimentally demonstrate subwavelength focusing of light using wavelength scale absorption-free dielectric scattering objects embedded in an air background. An optimization algorithm based on differential evolution integrated into the finite-difference time-domain method was applied to determine the locations of each circular dielectric object with a constant radius and refractive index. The multiobjective cost function defined inside the algorithm ensures strong focusing of light with low intensity side lobes. The temporal and spectral responses of the designed compact photonic structure provided a beam spot size in air with a full width at half maximum value of 0.19λ, where λ is the wavelength of light. The experiments were carried out in the microwave region to verify numerical findings, and very good agreement between the two approaches was found. The subwavelength light focusing is associated with a strong interference effect due to nonuniformly arranged scatterers and an irregular index gradient. Improving the focusing capability of optical elements by surpassing the diffraction limit of light is of paramount importance in optical imaging, lithography, data storage, and strong light-matter interaction.
Bor, E.; Turduev, M.; Kurt, H.
2016-01-01
Photonic structure designs based on optimization algorithms provide superior properties compared to those using intuition-based approaches. In the present study, we numerically and experimentally demonstrate subwavelength focusing of light using wavelength scale absorption-free dielectric scattering objects embedded in an air background. An optimization algorithm based on differential evolution integrated into the finite-difference time-domain method was applied to determine the locations of each circular dielectric object with a constant radius and refractive index. The multiobjective cost function defined inside the algorithm ensures strong focusing of light with low intensity side lobes. The temporal and spectral responses of the designed compact photonic structure provided a beam spot size in air with a full width at half maximum value of 0.19λ, where λ is the wavelength of light. The experiments were carried out in the microwave region to verify numerical findings, and very good agreement between the two approaches was found. The subwavelength light focusing is associated with a strong interference effect due to nonuniformly arranged scatterers and an irregular index gradient. Improving the focusing capability of optical elements by surpassing the diffraction limit of light is of paramount importance in optical imaging, lithography, data storage, and strong light-matter interaction. PMID:27477060
1992-03-06
coupling reactions of perfluoroalkyl iodides with certain aryl iodides have been studied. Simple trial tests were carried out between perfluorooctyl iodide...omega Difunctional Perfluoroaliphatic Compounds for Low Dielectric Constant Resins by Robert L. Soulen Department of Chemistry Southwestern University...Difunctional Perfluoroaliphatic Compounds for Low Dielectric Resins 12 PERSONAL AUTHOR(S) Robert L. Soulen 1Ja TYPE OF REPORT 73b TIME COVERED FI DATE OF
Petrowsky, Matt; Frech, Roger
2010-07-08
Self-diffusion coefficients are measured from -5 to 80 degrees C in a series of linear alcohols using pulsed field gradient NMR. The temperature dependence of these data is studied using a compensated Arrhenius formalism that assumes an Arrhenius-like expression for the diffusion coefficient; however, this expression includes a dielectric constant dependence in the exponential prefactor. Scaling temperature-dependent diffusion coefficients to isothermal diffusion coefficients so that the exponential prefactors cancel results in calculated energies of activation E(a). The exponential prefactor is determined by dividing the temperature-dependent diffusion coefficients by the Boltzmann term exp(-E(a)/RT). Plotting the prefactors versus the dielectric constant places the data on a single master curve. This procedure is identical to that previously used to study the temperature dependence of ionic conductivities and dielectric relaxation rate constants. The energies of activation determined from self-diffusion coefficients in the series of alcohols are strikingly similar to those calculated for the same series of alcohols from both dielectric relaxation rate constants and ionic conductivities of dilute electrolytes. The experimental results are described in terms of an activated transport mechanism that is mediated by relaxation of the solution molecules. This microscopic picture of transport is postulated to be common to diffusion, dielectric relaxation, and ionic transport.
NASA Astrophysics Data System (ADS)
Zhao, Jianlin; Zhang, Jiwei; Dai, Siqing; Di, Jianglei; Xi, Teli
2018-02-01
Surface plasmon microscopy (SPM) is widely applied for label-free detection of changes of refractive index and concentration, as well as mapping thin films in near field. Traditionally, the SPM systems are based on the detection of light intensity or phase changes. Here, we present two kinds of surface plasmon holographic microscopy (SPHM) systems for amplitude- and phase-contrast imaging simultaneously. Through recording off-axis holograms and numerical reconstruction, the complex amplitude distributions of surface plasmon resonance (SPR) images can be obtained. According to the Fresnel's formula, in a prism/ gold/ dielectric structure, the reflection phase shift is uniquely decided by refractive index of the dielectric. By measuring the phase shift difference of the reflected light exploiting prism-coupling SPHM system based on common-path interference configuration, monitoring tiny refractive index variation and imaging biological tissue are performed. Furthermore, to characterize the thin film thickness in near field, we employ a four-layer SPR model in which the third film layer is within the evanescent field. The complex reflection coefficient, including the reflectivity and reflection phase shift, is uniquely decided by the film thickness. By measuring the complex amplitude distributions of the SPR images exploiting objective-coupling SPHM system based on common-path interference configuration, the thickness distributions of thin films are mapped with sub-nanometer resolution theoretically. Owing to its high temporal stability, the recommended SPHMs show great potentials for monitoring tiny refractive index variations, imaging biological tissues and mapping thin films in near field with dynamic, nondestructive and full-field measurement capabilities in chemistry, biomedicine field, etc.
Dielectric constants of soils at microwave frequencies-2
NASA Technical Reports Server (NTRS)
Wang, J.; Schmugge, T.; Williams, D.
1978-01-01
The dielectric constants of several soil samples were measured at frequencies of 5 and 19 GHz using the infinite transmission line method. The results of these measurements are presented and discussed with respect to soil types and texture structures. A comparison is made with other measurements at 1.4 GHz. At all three frequencies, the dependence of dielectric constant on soil moisture can be approximated by two straight lines. At low moisture, the slope is less than at high moisture level. The intersection of the two lines is believed to be a function of soil texture.
Role of dielectric constant in electrohydrodynamics of conducting fluids
NASA Technical Reports Server (NTRS)
Rhodes, Percy H.; Snyder, Robert S.; Roberts, Glyn O.
1994-01-01
Electrohydrodynamic sample distortion during continuous flow electrophoresis is an experiment to be conducted during the second International Microgravity Laboratory (IML-2) in July 1994. The specific objective of this experiment is the distortion caused by the difference in dielectric constant between the sample and surrounding buffer. Although the role of sample conductivity in electrohydrodynamic has been the subject of both flight and ground experiments, the separate role of dielectric constant, independent of sample conductivity, has not been measured. This paper describes some of the laboratory research and model development that will support the flight experiment on IML-2.
Remote Sensing of Salinity: The Dielectric Constant of Sea Water
NASA Technical Reports Server (NTRS)
LeVine, David M.; Lang, R.; Utku, C.; Tarkocin, Y.
2011-01-01
Global monitoring of sea surface salinity from space requires an accurate model for the dielectric constant of sea water as a function of salinity and temperature to characterize the emissivity of the surface. Measurements are being made at 1.413 GHz, the center frequency of the Aquarius radiometers, using a resonant cavity and the perturbation method. The cavity is operated in a transmission mode and immersed in a liquid bath to control temperature. Multiple measurements are made at each temperature and salinity. Error budgets indicate a relative accuracy for both real and imaginary parts of the dielectric constant of about 1%.
NASA Technical Reports Server (NTRS)
Zimmermann, R.; McDonald, K.; Way, J.; Oren, R.
1994-01-01
Tree canopy microclimate, xylem water flux and xylem dielectric constant have been monitored in situ since June 1993 in two adjacent natural forest stands in central Alaska. The deciduous stand represents a mature balsam poplar site on the Tanana River floodplain, while the coniferous stand consists of mature white spruce with some black spruce mixed in. During solstice in June and later in summer, diurnal changes of xylem water potential were measured to investigate the occurrence and magnitude of tree transpiration and dielectric constant changes in stems.
Abraham, Kuzhikalail M.; Alamgir, Mohamed
1993-06-15
This invention pertains to Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized (encapsulated) in a solid organic polymer matrix. In particular, this invention relates to solid polymer electrolytes derived by immobilizing complexes (solvates) formed between a Li salt such as LiAsF.sub.6, LiCF.sub.3 SO.sub.3 or LiClO.sub.4 and a mixture of aprotic organic solvents having high dielectric constants such as ethylene carbonate (EC) (dielectric constant=89.6) and propylene carbonate (PC) (dielectric constant=64.4) in a polymer matrix such as polyacrylonitrile, poly(tetraethylene glycol diacrylate), or poly(vinyl pyrrolidinone).
Kungwan, Nawee; Ngaojampa, Chanisorn; Ogata, Yudai; Kawatsu, Tsutomu; Oba, Yuki; Kawashima, Yukio; Tachikawa, Masanori
2017-10-05
Solvent dependence of double proton transfer in the formic acid-formamidine (FA-FN) complex at room temperature was investigated by means of ab initio path integral molecular dynamics (AIPIMD) simulation with taking nuclear quantum and thermal effects into account. The conductor-like screening model (COSMO) was applied for solvent effect. In comparison with gas phase, double proton delocalization between two heavy atoms (O and N) in FA-FN were observed with reduced proton transfer barrier height in low dielectric constant medium (<4.8). For dielectric constant medium at 4.8, the chance of finding these two protons are more pronounced due to the solvent effect which completely washes out the proton transfer barrier. In the case of higher dielectric constant medium (>4.8), the ionic species becomes more stable than the neutral ones and the formate anion and formamidium cation are thermodynamically stable. For ab initio molecular dynamics simulation, in low dielectric constant medium (<4.8) a reduction of proton transfer barrier with solvent effect is found to be less pronounced than the AIPIMD due to the absence of nuclear quantum effect. Moreover, the motions of FA-FN complex are significantly different with increasing dielectric constant medium. Such a difference is revealed in detail by the principal component analysis.
Non-polarizable force field of water based on the dielectric constant: TIP4P/ε.
Fuentes-Azcatl, Raúl; Alejandre, José
2014-02-06
The static dielectric constant at room temperature and the temperature of maximum density are used as target properties to develop, by molecular dynamics simulations, the TIP4P/ε force field of water. The TIP4P parameters are used as a starting point. The key step, to determine simultaneously both properties, is to perform simulations at 240 K where a molecular dipole moment of minimum density is found. The minimum is shifted to larger values of μ as the distance between the oxygen atom and site M, lOM, decreases. First, the parameters that define the dipole moment are adjusted to reproduce the experimental dielectric constant and then the Lennard-Jones parameters are varied to match the temperature of maximum density. The minimum on density at 240 K allows understanding why reported TIP4P models fail to reproduce the temperature of maximum density, the dielectric constant, or both properties. The new model reproduces some of the thermodynamic and transport anomalies of water. Additionally, the dielectric constant, thermodynamics, and dynamical and structural properties at different temperatures and pressures are in excellent agreement with experimental data. The computational cost of the new model is the same as that of the TIP4P.
Brillouin Scattering from Opaque Semiconducting Alloys and Thin Films.
NASA Astrophysics Data System (ADS)
Krabach, Timothy Norbert
Brillouin scattering spectra were measured in MBE grown single crystal films of Al_{ rm x}Ga_{rm 1 - x}As alloys and Al_{ rm x}Ga_{rm 1 - x}As-GaAs superlattices on GaAs substrates, and GaAs films grown on miscut Si substrates. To detect the Brillouin shifted light against the strong elastic background present in opaque materials, a tandem multipass Fabry-Perot system was designed and constructed, providing high resolution and contrast. Scattering from both surface and bulk acoustic waves were used to derive information on the elastic and dielectric constants of Al_{rm x}Ga_{rm 1 - x} As alloys. The surface acoustic wave velocities along the (100) and (110) axes were measured for a number of aluminum concentrations. In samples that were transparent to the exciting laser frequency, a leaky surface longitudinal wave was also observed. By fitting to this data, the elastic constants as a function of alloy concentration were found to be c_{11} = 11.88 + 0.05x, c_{12} = 5.38 + 1.6x, and c_{44} = 5.95 - .8x (times 10^{10} dyn/cm ^2). Scattering from bulk acoustic waves was used to measure the complex index of refraction. The results agree very closely with previous ellipsometric data. Spectra were taken on two superlattices and compared to an alloy of the same average aluminum concentration. No differences were seen in the acoustic velocities or the index of refraction. Brillouin spectra taken of GaAs films on Si exhibited peaks due to acoustic waves trapped in the film. The dispersion curves of these modes as a function of wavevector were fitted by using the bulk elastic constants of GaAs and Si. The good fit obtained, and the narrowness of the peaks, are corroborating evidence of the high crystalline quality of these films.
NASA Astrophysics Data System (ADS)
Dul'kin, Evgeniy; Tiagunova, Jenia; Mojaev, Evgeny; Roth, Michael
2018-01-01
[001] lead free relaxor ferroelectrics crystals of Na0.5Bi0.5TiO3-0.06BaTiO3 were studied by means of dielectric and acoustic emission methods in the temperature range of 25-240 °C and under a dc bias electric field up to 0.4 kV/cm. A temperature maximum of the dielectric constant was found near 170 °C, as well as the acoustic emission bursts pointed out to both the depolarization temperature near 120 °C and the temperature, corresponding to the maximum of dielectric constant, near 170 °C. While the depolarization temperature increased linearly, the temperature of the dielectric constant maximum was shown to exhibit a V-shape behavior under an electric field: it initially decreases, reaches a sharp minimum at some small threshold electric field of 0.15 kV/cm, and then starts to increase similar to the Curie temperature of the normal ferroelectrics, as the field enhances. Acoustic emission bursts, accompanying the depolarization temperature, weakened with the enhancing field, whereas the ones accompanying the temperature of the dielectric constant maximum exhibited two maxima: near 0.1 kV/cm and near 0.3 kV/cm. The meaning of these two acoustic emission maxima is discussed.
Porosity in plasma enhanced chemical vapor deposited SiCOH dielectrics: A comparative study
NASA Astrophysics Data System (ADS)
Grill, A.; Patel, V.; Rodbell, K. P.; Huang, E.; Baklanov, M. R.; Mogilnikov, K. P.; Toney, M.; Kim, H.-C.
2003-09-01
The low dielectric constant (k) of plasma enhanced chemical vapor deposited SiCOH films has been attributed to porosity in the films. We have shown previously that the dielectric constant of such materials can be extended from the typical k values of 2.7-2.9 to ultralow-k values of k=2.0. The reduction in the dielectric constants has been achieved by enhancing the porosity in the films through the addition of an organic material to the SiCOH precursor and annealing the films to remove the thermally less-stable organic fractions. In order to confirm the relation between dielectric constant and film porosity the latter has been evaluated for SiCOH films with k values from 2.8 to 2.05 using positron annihilation spectroscopy, positron annihilation lifetime spectroscopy, small angle x-ray scattering, specular x-ray reflectivity, and ellipsometric porosimetry measurements. It has been found that the SiCOH films with k=2.8 had no detectable porosity, however the porosity increased with decreasing dielectric constant reaching values of 28%-39% for k values of 2.05. The degree of porosity and the pore size determined by the dissimilar techniques agreed within reasonable limits, especially when one takes into account the small pore size in these films and the different assumptions used by the different techniques. The pore size increases with decreasing k, however the diameter remains below 5 nm for k=2.05, most of the pores being smaller than 2.5 nm.
Bathymetry and absorbitivity of Titan's Ontario Lacus
Hayes, A.G.; Wolf, A.S.; Aharonson, O.; Zebker, H.; Lorenz, R.; Kirk, R.L.; Paillou, P.; Lunine, J.; Wye, L.; Callahan, P.; Wall, S.; Elachi, C.
2010-01-01
Ontario Lacus is the largest and best characterized lake in Titan's south polar region. In June and July 2009, the Cassini RADAR acquired its first Synthetic Aperture Radar (SAR) images of the area. Together with closest approach altimetry acquired in December 2008, these observations provide a unique opportunity to study the lake's nearshore bathymetry and complex refractive properties. Average radar backscatter is observed to decrease exponentially with distance from the local shoreline. This behavior is consistent with attenuation through a deepening layer of liquid and, if local topography is known, can be used to derive absorptive dielectric properties. Accordingly, we estimate nearshore topography from a radar altimetry profile that intersects the shoreline on the East and West sides of the lake. We then analyze SAR backscatter in these regions to determine the imaginary component of the liquid's complex index of refraction (Kappa). The derived value, Kappa = (6.1-1.3+1.7) x 10-4, corresponds to a loss tangent of tan Delta = (9.2-2.0+2.5) x 10-4 and is consistent with a composition dominated by liquid hydrocarbons. This value can be used to test compositional models once the microwave optical properties of candidate materials have been measured. In areas that do not intersect altimetry profiles, relative slopes can be calculated assuming the index of refraction is constant throughout the liquid. Accordingly, we construct a coarse bathymetry map for the nearshore region by measuring bathymetric slopes for eleven additional areas around the lake. These slopes vary by a factor of ~5 and correlate well with observed shoreline morphologies.
NASA Astrophysics Data System (ADS)
Podpirka, Adrian; Ramanathan, Shriram
2011-01-01
We have successfully synthesized the colossal dielectric constant oxide La2-xSrxNiO4 in thin film form by reactive cosputtering from metallic targets and careful annealing protocols. Composition and phase purity was determined through energy dispersive spectra and x-ray diffraction, respectively. The dielectric constant exceeds values of over 20 000 up to 1 kHz and the activation energy for the frequency-independent conductivity plateau was extracted to be approximately 155 meV from 300 to 473 K, both in agreement with measurements conducted on bulk single crystals. However, unlike in single crystals, we observe early onset of relaxation in thin films indicating the crucial role of grain boundaries in influencing the dielectric response. ac conductivity at varying temperatures is analyzed within the framework of the universal dielectric law leading to an exponent of approximately 0.3, dependent on the electrode material. Impedance spectroscopy with electrodes of different work function (Pt, Pd, and Ag) was further carried out as a function of temperature and applied bias to provide mechanistic insights into the nature of the dielectric response.
NASA Astrophysics Data System (ADS)
Jongprateep, Oratai; Sato, Nicha
2018-04-01
Calcium titanate (CaTiO3) has been recognized as a material for fabrication of dielectric components, owing to its moderate dielectric constant and excellent microwave response. Enhancement of dielectric properties of the material can be achieved through doping, compositional and microstructural control. This study, therefore, aimed at investigating effects of powder synthesis techniques on compositions, microstructure, and dielectric properties of Mg-doped CaTiO3. Solution combustion and solid-state reaction were powder synthesis techniques employed in preparation of undoped CaTiO3 and CaTiO3 doped with 5-20 at% Mg. Compositional analysis revealed that powder synthesis techniques did not exhibit a significant effect on formation of secondary phases. When Mg concentration did not exceed 5 at%, the powders prepared by both techniques contained only a single phase. An increase of MgO secondary phase was observed as Mg concentrations increased from 10 to 20 at%. Experimental results, on the contrary, revealed that powder synthesis techniques contributed to significant differences in microstructure. Solution combustion technique produced powders with finer particle sizes, which consequently led to finer grain sizes and density enhancement. High-density specimens with fine microstructure generally exhibit improved dielectric properties. Dielectric measurements revealed that dielectric constants of all samples ranged between 231 and 327 at 1 MHz, and that superior dielectric constants were observed in samples prepared by the solution combustion technique.
NASA Astrophysics Data System (ADS)
Zheng, Longhui; Yuan, Li; Guan, Qingbao; Liang, Guozheng; Gu, Aijuan
2018-01-01
Higher dielectric constant, lower dielectric loss and better frequency stability have been the developing trends for high dielectric constant (high-k) materials. Herein, new composites have been developed through building unique structure by using hyperbranched polysiloxane modified 3D-barium titanate foam (BTF) (BTF@HSi) as the functional fillers and phenolphthalein poly(ether sulfone) (cPES)/cyanate ester (CE) blend as the resin matrix. For BTF@HSi/cPES/CE composite with 34.1 vol% BTF, its dielectric constant at 100 Hz is as high as 162 and dielectric loss is only 0.007; moreover, the dielectric properties of BTF@HSi/cPES/CE composites exhibit excellent frequency stability. To reveal the mechanism behind these attractive performances of BTF@HSi/cPES/CE composites, three kinds of composites (BTF/CE, BTF/cPES/CE, BTF@HSi/CE) were prepared, their structure and integrated performances were intensively investigated and compared with those of BTF@HSi/cPES/CE composites. Results show that the surface modification of BTF is good for preparing composites with improved thermal stability; while introducing flexible cPES to CE is beneficial to fabricate composites with good quality through effectively blocking cracks caused by the stress concentration, and then endowing the composites with good dielectric properties at reduced concentration of ceramics.
Numerical study on refractive index sensor based on hybrid-plasmonic mode
NASA Astrophysics Data System (ADS)
Yun, Jeong-Geun; Kim, Joonsoo; Lee, Kyookeun; Lee, Yohan; Lee, Byoungho
2017-04-01
We propose a highly sensitive hybrid-plasmonic sensor based on thin-gold nanoslit arrays. The transmission characteristics of gold nanoslit arrays are analyzed as changing the thickness of gold layer. The surface plasmon polariton mode excited on the sensing medium, which is sensitive to refractive index change of the sensing medium, is strengthened by reducing the thickness of the gold layer. A design rule is suggested that steeper dispersion curve of the surface plasmon polariton mode leads to higher sensitivity. For the dispersion engineering, hybrid-plasmonic structure, which consists of thin-gold nanoslit arrays, sensing region and high refractive index dielectric space is introduced. The proposed sensor structure with period of 700 nm shows the improved sensitivity up to 1080 nm/RIU (refractive index unit), and the surface sensitivity is extremely enhanced.
NASA Astrophysics Data System (ADS)
Marksteiner, Quinn R.; Treiman, Michael B.; Chen, Ching-Fong; Haynes, William B.; Reiten, M. T.; Dalmas, Dale; Pulliam, Elias
2017-06-01
A resonant cavity method is presented which can measure loss tangents and dielectric constants for materials with dielectric constant from 150 to 10 000 and above. This practical and accurate technique is demonstrated by measuring barium strontium zirconium titanate bulk ferroelectric ceramic blocks. Above the Curie temperature, in the paraelectric state, barium strontium zirconium titanate has a sufficiently low loss that a series of resonant modes are supported in the cavity. At each mode frequency, the dielectric constant and loss tangent are obtained. The results are consistent with low frequency measurements and computer simulations. A quick method of analyzing the raw data using the 2D static electromagnetic modeling code SuperFish and an estimate of uncertainties are presented.
Dielectric response of Anderson and pseudogapped insulators
NASA Astrophysics Data System (ADS)
Feigel’man, M. V.; Ivanov, D. A.; Cuevas, E.
2018-05-01
Using a combination of analytic and numerical methods, we study the polarizability of a (non-interacting) Anderson insulator in one-, two-, and three-dimensions and demonstrate that, in a wide range of parameters, it scales proportionally to the square of the localization length, contrary to earlier claims based on the effective-medium approximation. We further analyze the effect of electron–electron interactions on the dielectric constant in quasi-1D, quasi-2D and 3D materials with large localization length, including both Coulomb repulsion and phonon-mediated attraction. The phonon-mediated attraction (in the pseudogapped state on the insulating side of the superconductor-insulator transition) produces a correction to the dielectric constant, which may be detected from a linear response of a dielectric constant to an external magnetic field.
NASA Astrophysics Data System (ADS)
Shchukin, V. A.; Ledentsov, N. N.; Slight, T.; Meredith, W.; Gordeev, N. Y.; Nadtochy, A. M.; Payusov, A. S.; Maximov, M. V.; Blokhin, S. A.; Blokhin, A. A.; Zadiranov, Yu. M.; Maleev, N. A.; Ustinov, V. M.; Choquette, K. D.
2016-03-01
A concept of passive cavity surface-emitting laser is proposed aimed to control the temperature shift of the lasing wavelength. The device contains an all-semiconductor bottom distributed Bragg reflector (DBR), in which the active medium is placed, a dielectric resonant cavity and a dielectric top DBR, wherein at least one of the dielectric materials has a negative temperature coefficient of the refractive index, dn/dT < 0. This is shown to be the case for commonly used dielectric systems SiO2/TiO2 and SiO2/Ta2O5. Two SiO2/TiO2 resonant structures having a cavity either of SiO2 or TiO2 were deposited on a substrate, their optical power reflectance spectra were measured at various temperatures, and refractive index temperature coefficients were extracted, dn/dT = 0.0021 K-1 for SiO2 and dn/dT = -0.0092 K-1 for TiO2. Using such dielectric materials allows designing passive cavity surface-emitting lasers having on purpose either positive, or zero, or negative temperature shift of the lasing wavelength dλ/dT. A design for temperature-insensitive lasing wavelength (dλ/dT = 0) is proposed. Employing devices with temperature-insensitive lasing wavelength in wavelength division multiplexing systems may allow significant reducing of the spectral separation between transmission channels and an increase in number of channels for a defined spectral interval enabling low cost energy efficient uncooled devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogwu, A. A.; Okpalugo, T. I. T.; Nanotechnology Institute, School of Electrical and Mechanical Engineering, University of Ulster, Northern Ireland
We have carried out investigations aimed at understanding the mechanism responsible for a water contact angle increase of up to ten degrees and a decrease in dielectric constant in silicon modified hydrogenated amorphous carbon films compared to unmodified hydrogenated amorphous carbon films. Our investigations based on surface chemical constituent analysis using Raman spectroscopy, x-ray photoelectron spectroscopy (XPS), SIMS, FTIR, contact angle / surface energy measurements and spectroscopic ellipsometry suggests the presence of hydrophobic chemical entities on the surface of the films. This observation is consistent with earlier theoretical plasma chemistry predictions and observed Raman peak shifts in the films. Thesemore » surface hydrophobic entities also have a lower polarizability than the bonds in the un-modified films thereby reducing the dielectric constant of the silicon modified films measured by spectroscopic ellipsometry. Ellipsometric dielectric constant measurement is directly related to the surface energy through Hamaker's constant. Our current finding is expected to be of benefit to understanding stiction, friction and lubrication in areas that range from nano-tribology to microfluidics.« less
NASA Astrophysics Data System (ADS)
Ogwu, A. A.; Okpalugo, T. I. T.; McLaughlin, J. A. D.
2012-09-01
We have carried out investigations aimed at understanding the mechanism responsible for a water contact angle increase of up to ten degrees and a decrease in dielectric constant in silicon modified hydrogenated amorphous carbon films compared to unmodified hydrogenated amorphous carbon films. Our investigations based on surface chemical constituent analysis using Raman spectroscopy, x-ray photoelectron spectroscopy (XPS), SIMS, FTIR, contact angle / surface energy measurements and spectroscopic ellipsometry suggests the presence of hydrophobic chemical entities on the surface of the films. This observation is consistent with earlier theoretical plasma chemistry predictions and observed Raman peak shifts in the films. These surface hydrophobic entities also have a lower polarizability than the bonds in the un-modified films thereby reducing the dielectric constant of the silicon modified films measured by spectroscopic ellipsometry. Ellipsometric dielectric constant measurement is directly related to the surface energy through Hamaker's constant. Our current finding is expected to be of benefit to understanding stiction, friction and lubrication in areas that range from nano-tribology to microfluidics.
Experimental demonstration of in-plane negative-angle refraction with an array of silicon nanoposts.
Wu, Aimin; Li, Hao; Du, Junjie; Ni, Xingjie; Ye, Ziliang; Wang, Yuan; Sheng, Zhen; Zou, Shichang; Gan, Fuwan; Zhang, Xiang; Wang, Xi
2015-03-11
Controlling an optical beam is fundamental in optics. Recently, unique manipulation of optical wavefronts has been successfully demonstrated by metasurfaces. However, these artificially engineered nanostructures have thus far been limited to operate on light beams propagating out-of-plane. The in-plane operation is critical for on-chip photonic applications. Here, we demonstrate an anomalous negative-angle refraction of a light beam propagating along the plane, by designing a thin dielectric array of silicon nanoposts. The circularly polarized dipoles induced by the high-permittivity nanoposts at the scattering resonance significantly shape the wavefront of the light beam and bend it anomalously. The unique capability of a thin line of the nanoposts for manipulating in-plane wavefronts makes the device extremely compact. The low loss all-dielectric structure is compatible with complementary metal-oxide semiconductor technologies, offering an effective solution for in-plane beam steering and routing for on-chip photonics.
NASA Astrophysics Data System (ADS)
Arshad Javid, M.; Khan, Zafar Ullah; Mehmood, Zahid; Nabi, Azeem; Hussain, Fayyaz; Imran, M.; Nadeem, Muhammad; Anjum, Naeem
2018-06-01
In the present work, first-principles calculations were performed to obtain the structural, electronic and optical properties of lithium niobate crystal using two exchange-correlation functionals (GGA-PBE and TB-mBJ). The calculated structural parameters were very close to the experimental values. TB-mBJ functional was found to be good when compared to LDA and GGA functionals in case of bandgap energy of 3.715 eV of lithium niobate. It was observed that the upper valence and lower conduction bands consist mainly the O-2p and Nb-4d states, respectively. Furthermore, calculations for real and imaginary parts of frequency-dependent dielectric function 𝜀(ω) of lithium niobate crystal were performed using TD-DFT method. The ordinary refractive index no(ω), extraordinary refractive index ne(ω), its birefringence and absorption peaks in imaginary dielectric function 𝜀2(ω) were also calculated.
NASA Astrophysics Data System (ADS)
Shen, Ke-Sheng; Jiao, Zhao-Yong; Zhang, Xian-Zhou; Huang, Xiao-Fen
2013-11-01
The structural, electronic and optical properties of the CuGa (Se x S1- x )2 alloy system have been performed systematic within generalized gradient approximation (GGA) of Perdew-Burke-Ernzerhof (PBE) implemented in the Cambridge serial total energy package (CASTEP) code. We calculate the lattice parameters and axial ratio, which agree with the experimental values quite well. The anion position parameters u are also predicted using the model of Abrahams and Bernstein and the results seem to be trustworthy as compared to the experimental and theoretical values. The total and part density of states are discussed which follow the common rule of the conventional semiconductors. The static dielectric tenser and refractive index are summarized compared with available experimental and theoretical values. Also the spectra of the dielectric functions, refractive index, reflectance, absorption coefficient and real parts of photoconductivity are discussed in details.
Effects of Source Correlations on the Spectrum of Radiated Fields
1990-09-01
media. When the refractive index n(co) is nearly constant over the source spectral width, the medium acts as a non- dispersive homogeneous medium of...constant refractive index no = n(w0 ), where o is the central frequency of the source spectrum. We will consider the non- dispersive case first. It is...in free space (a), for propagation in a homogeneous medium of an index of refraction n((o) = 1.5 (b) and for propagation in a medium of index of
Effect of soil texture on the microwave emission from soils
NASA Technical Reports Server (NTRS)
Schmugge, T. J.
1980-01-01
The intensity brightness temperature of the microwave emission from the soil is determined primarily by its dielectric properties. The large difference between the dielectric constant of water and that of dry soil produces a strong dependence of the soil's dielectric constant on its moisture content. This dependence is effected by the texture of the soil because the water molecules close to the particle surface are tightly bound and do not contribute significantly to the dielectric properties. Since this surface area is a function of the particle size distribution (soil texture), being larger for clay soils with small particles, and smaller for sandy soils with larger particles; the dielectric properties will depend on soil texture. Laboratory measurements of the dielectric constant for soils are summarized. The dependence of the microwave emission on texture is demonstrated by measurements of brightness temperature from an aircraft platform for a wide range of soil textures. It is concluded that the effect of soil texture differences on the observed values can be normalized by expressing the soil moisture values as a percent field capacity for the soil.
Synthesis and characterization of novel electronic materials with volatile species
NASA Astrophysics Data System (ADS)
Zhizhong, Tang
In this thesis, two novel electronic materials, including semiconductor ZnGeAs2 and dielectric Ba(Zn1/3Ta 2/3)O3 were studied. The growth, characterization and application of ZnGeAs2 in photovoltaics were explored. The structure, optic and electric properties of expitaxial Ba(Zn1/3Ta2/3)O 3 films were also reported. ZnGeAs2 films were grown by pulsed laser deposition from the home-made target. The composition study showed that the Ge element incorporation rate remained constant, while the Zn and As incorporation rates decrease monotonically at elevated growth temperatures. Prototype of photovoltaic cell made with heterojunction p-ZnGeAs2/n-CdS/n+-SnO2 diode showed 0.14 Volt open circuit voltage under ˜100 mW/cm2 lab lamp illumination (1 sun) and 0.45 Volt Voc under 100 mW/cm 2 green LED illumination. Thermal decomposition studied of bulk ZnGeAs2 showed that the Zn and As dissociation rate from ZnGeAs2 approaches one monolayer per second at around 425 °C with activation energy of 1.08 eV. Thermodynamic and kinetic analysis showed that synthesis of ZnGeAs2 thin film is a metastable process involving a competition between the forward reaction which depends on the arrival of reactants at the growth surface, and the reverse kinetically-limited decomposition reaction. Ba(Zn1/3Ta2/3)O3 (100) dielectric thin films grown on MgO (100) substrates by pulsed laser deposition. The thin film structure, optic and electric properties were systematically characterized. Advanced electronic structure calculations were used to guide the interpretation of the experimental data. The Ba(Zn1/3Ta2/3)O3 films have an indirect optical band gap of ˜3.0 eV and a refractive index of 1.91 in the visible spectral range, with dielectric constant of 25 and dissipation factor of 0.0025 at 100 kHz. The Ba(Zn1/3Ta 2/3)O3 films exhibit a small thermally-activated Ohmic leakage current at high fields (<250 KV/cm) and high temperatures (<200 °C) with an activation energy of 0.85 eV. Ba(Zn1/3Ta2/3)O3 dielectric ceramics powder was used to synthesize Metallo-Dielectric Electromagnetic Band Gap structures by ceramic injection molding. Capacitive series and shunt defects were introduced in Metallo-Dielectric Electromagnetic Band Gap structures to generate sub-wavelength resonances. The frequency responses of both defect-free and defect-laden EBG structures were characterized at microwave frequencies and were found to agree with the results of electromagnetic simulations using the commercial HFSS modeling package.
New dielectric elastomers with improved properties for energy harvesting and actuation
NASA Astrophysics Data System (ADS)
Stiubianu, George; Bele, Adrian; Tugui, Codrin; Musteata, Valentina
2015-02-01
New materials with large value for dielectric constant were obtained by using siloxane and chemically modified lignin. The modified lignin does not act as a stiffening filler material for the siloxane but acts as bulk filler, preserving the softness and low value of Young's modulus specific for silicones. The measured values for dielectric constant compare positively with the ones for previously tested dielectric elastomers based on siloxane rubber or acrylic rubber loaded with ceramic nanoparticles. The new materials use the well-known silicone chemistry and lignin which is available worldwide in large amounts as a by-product of pulp and paper industry, making its manufacturing affordable. The prepared dielectric elastomers were tested for possible applications for wave, wind and kinetic body motion energy harvesting. Siloxane, lignin, dielectric
Off Axis Growth of Strontium Titanate Films with High Dielectric Constant Tuning and Low Loss
2003-04-03
80309, U.S.A. ABSTRACT We have measured the nonlinear dielectric properties of strontium titanate (STO) thin films grown on neodymium gallate (NGO...and lanthanum aluminate (LAO) substrates. The films prepared by off-axis pulsed laser deposition were characterized by their dielectric constant and...performed on the films prepared with the off axis growth. EXPERIMENTAL Pulsed laser deposition (PLD) was used to deposit STO films on lanthanum
NASA Astrophysics Data System (ADS)
John, Rita; Merlin, Benita
2017-11-01
This study offers an analysis of optical properties of Graphene and its 2D analogues: Silicene, Germanene, and Stanene with the help of band structures based on Density Functional Theory. The complex dielectric function and complex refractive index are calculated in both parallel (||) and perpendicular (⊥) polarization directions of the electromagnetic field. From these calculated values, optical observables like absorption, reflection, optical conductivity, and electron loss function have been studied. The optical response of all materials is shifted from ultraviolet (UV) to infrared (IR) from graphene to stanene; Graphene is more into UV region and other materials in the IR and visible regions. The intensity of absorption is maximum for stanene. The real part of dielectric function reveals the existence of plasma frequency in the || polarization direction indicating the metal to dielectric transition except for graphene. Study on refractive index clearly displays the birefringence characteristics of all materials. Reflectivity is enhanced in the mid IR and visible regions when light is polarized in the || direction. The in-depth investigations arrive at fine results which would enable the prediction of their potential applications in the optical and optoelectronic industries.
NASA Astrophysics Data System (ADS)
Ben Amara, Imen; Hichri, Aida; Jaziri, Sihem
2017-12-01
Electronic and optical performances of the β-InSe monolayer (ML) are considerably boosted by tuning the corresponding band energies through lattice in-plane compressive strain engineering. First principles calculations show an indirect-direct gap transition with a large bandgap size. The crossover is due to different responses of the near-gap state energies with respect to strain. This is explained by the variation of In-Se bond length, the bond nature of near-band-edge electronic orbital and of the momentum angular contribution versus in-plane compressive strain. The effective masses of charge carriers are also found to be highly modulated and significantly light at the indirect-direct-gap transition. The tuned optical response of the resulting direct-gap ML β-InSe is evaluated versus applied energy to infer the allowed optical transitions, dielectric constants, semiconductor-metal behavior and refractive index. The environmental dielectric engineering of exciton behavior of the resulting direct-gap ML β-InSe is handled within the effective mass Wannier-Mott model and is expected to be important. Our results highlight the increase of binding energy and red-shifted exciton energy with decreasing screening substrates, resulting in a stable exciton at room temperature. The intensity and energy of the ground-state exciton emission are expected to be strongly influenced under substrate screening effect. According to our findings, the direct-gap ML β-InSe assures tremendous 2D optoelectronic and nanoelectronic merits that could overcome several limitations of unstrained ML β-InSe.
Microwave measurement and modeling of the dielectric properties of vegetation
NASA Astrophysics Data System (ADS)
Shrestha, Bijay Lal
Some of the important applications of microwaves in the industrial, scientific and medical sectors include processing and treatment of various materials, and determining their physical properties. The dielectric properties of the materials of interest are paramount irrespective of the applications, hence, a wide range of materials covering food products, building materials, ores and fuels, and biological materials have been investigated for their dielectric properties. However, very few studies have been conducted towards the measurement of dielectric properties of green vegetations, including commercially important plant crops such as alfalfa. Because of its high nutritional value, there is a huge demand for this plant and its processed products in national and international markets, and an investigation into the possibility of applying microwaves to improve both the net yield and quality of the crop can be beneficial. Therefore, a dielectric measurement system based upon the probe reflection technique has been set up to measure dielectric properties of green plants over a frequency range from 300 MHz to 18 GHz, moisture contents from 12%, wet basis to 79%, wet basis, and temperatures from -15°C to 30°C. Dielectric properties of chopped alfalfa were measured with this system over frequency range of 300 MHz to 18 GHz, moisture content from 11.5%, wet basis, to 73%, wet basis, and density over the range from 139 kg m-3 to 716 kg m-3 at 23°C. The system accuracy was found to be +/-6% and +/-10% in measuring the dielectric constant and loss factor respectively. Empirical, semi empirical and theoretical models that require only moisture content and operating frequency were determined to represent the dielectric properties of both leaves and stems of alfalfa at 22°C. The empirical models fitted the measured dielectric data extremely well. The root mean square error (RMSE) and the coefficient of determination (r2) for dielectric constant and loss factor of leaves were 0.89 and 0.99, and 0.52 and 0.99 respectively. The RMSE and r2 values for dielectric constant and loss factor of stems were 0.89 and 0.99, and 0.77 and 0.99 respectively. Among semi empirical or theoretical models, Power law model showed better performance (RMSE = 1.78, r2 = 0.96) in modeling dielectric constant of leaves, and Debye-ColeCole model was more appropriate (RMSE = 1.23, r2 = 0.95) for the loss factor. For stems, the Debye-ColeCole models (developed on an assumption that they do not shrink as they dry) were found to be the best models to calculate the dielectric constant with RMSE 0.53 and r2 = 0.99, and dielectric loss factor with RMSE = 065 and r2 = 0.95. (Abstract shortened by UMI.)
Age-dependence of the average and equivalent refractive indices of the crystalline lens
Charman, W. Neil; Atchison, David A.
2013-01-01
Lens average and equivalent refractive indices are required for purposes such as lens thickness estimation and optical modeling. We modeled the refractive index gradient as a power function of the normalized distance from lens center. Average index along the lens axis was estimated by integration. Equivalent index was estimated by raytracing through a model eye to establish ocular refraction, and then backward raytracing to determine the constant refractive index yielding the same refraction. Assuming center and edge indices remained constant with age, at 1.415 and 1.37 respectively, average axial refractive index increased (1.408 to 1.411) and equivalent index decreased (1.425 to 1.420) with age increase from 20 to 70 years. These values agree well with experimental estimates based on different techniques, although the latter show considerable scatter. The simple model of index gradient gives reasonable estimates of average and equivalent lens indices, although refinements in modeling and measurements are required. PMID:24466474
Effect of embedded silver nanoparticles on refractive index of soda lime glass
NASA Astrophysics Data System (ADS)
Sonal, Sharma, Annu; Aggarwal, Sanjeev
2018-05-01
Silver glass nanocomposites were prepared by exposing silver doped soda lime glass slides obtained via ion-exchange reaction to a beam of 200 keV Argon ions (Ar+) at an off normal angle of 400 with doses of 5x1015 ions cm-2 and 1x1016 ions cm-2. These nanocomposites were further characterized using UV-visible spectrophotometer so as to study their transmission and reflection behavior and compute their refractive index and real and imaginary parts of dielectric function.
Alkali resistant optical coatings for alkali lasers and methods of production thereof
Soules, Thomas F; Beach, Raymond J; Mitchell, Scott C
2014-11-18
In one embodiment, a multilayer dielectric coating for use in an alkali laser includes two or more alternating layers of high and low refractive index materials, wherein an innermost layer includes a thicker, >500 nm, and dense, >97% of theoretical, layer of at least one of: alumina, zirconia, and hafnia for protecting subsequent layers of the two or more alternating layers of high and low index dielectric materials from alkali attack. In another embodiment, a method for forming an alkali resistant coating includes forming a first oxide material above a substrate and forming a second oxide material above the first oxide material to form a multilayer dielectric coating, wherein the second oxide material is on a side of the multilayer dielectric coating for contacting an alkali.
Structural, optical and dielectric properties of graphene oxide
NASA Astrophysics Data System (ADS)
Bhargava, Richa; Khan, Shakeel
2018-05-01
The Modified Hummers method has been used to synthesize Graphene oxide nanoparticles. Microstructural analyses were carried out by X-ray diffraction and Fourier transform infrared spectroscopy. Optical properties were studied by UV-visible spectroscopy in the range of 200-700 nm. The energy band gap was calculated with the help of Tauc relation. The frequency dependence of dielectric constant and dielectric loss were studied over a range of the frequency 75Hz to 5MHz at room temperature. The dispersion in dielectric constant can be explained with the help of Maxwell-Wagner model in studied nanoparticles.
Preparation of dielectric coating of variable dielectric constant by plasma polymerization
NASA Technical Reports Server (NTRS)
Hudis, M.; Wydeven, T. (Inventor)
1979-01-01
A plasma polymerization process for the deposition of a dielectric polymer coating on a substrate comprising disposing of the substrate in a closed reactor between two temperature controlled electrodes connected to a power supply is presented. A vacuum is maintained within the closed reactor, causing a monomer gas or gas mixture of a monomer and diluent to flow into the reactor, generating a plasma between the electrodes. The vacuum varies and controls the dielectric constant of the polymer coating being deposited by regulating the gas total and partial pressure, the electric field strength and frequency, and the current density.
NASA Astrophysics Data System (ADS)
Anis, Mohd; Muley, Gajanan. G.
2017-05-01
In current scenario good quality crystals are demanded for NLO device application hence present communication is aimed to grow bulk crystal and investigate the doping effect of rare earth element Nd3+ on structural, linear-nonlinear optical, luminescence, mechanical and dielectric properties of zinc thiourea chloride (ZTC) crystal. The ZTC crystal of dimension 21×10×8 mm3 and the Nd3+ doped ZTC crystal of dimension 27×17×5 mm3 have been grown from aqueous solution by slow evaporation technique. The elemental analysis of Nd3+ doped ZTC single crystal has been performed by means of energy dispersive spectroscopic technique. The powder X-ray diffraction technique has been employed to confirm the crystalline phase and identify the effect of Nd3+ doping on structural dimensions of ZTC crystal. The grown crystals have been characterized by UV-Vis-NIR study in the range of 190-1100 nm to ascertain the enhancement in optical transparency of ZTC crystal facilitated by dopant Nd3+. The recorded transmittance data has been utilized to investigate the vital optical constants of grown crystals. The second order nonlinear optical behavior of grown crystals has been evaluated by means of Kurtz-Perry test and the second harmonic generation efficiency of Nd3+ doped ZTC crystal is found to be 1.24 times higher than ZTC crystal. The luminescence analysis has been performed to examine the electronic purity and the color centered photoluminescence emission nature of pure and Nd3+ doped ZTC crystals. The influence of Nd3+ ion on mechanical behavior of ZTC crystal has been investigated by means of microhardness studies. The nature of dielectric constant and dielectric loss of pure and Nd3+ doped ZTC crystal has been examined in the range of 40-100 °C under dielectric study. The Z-scan technique has been employed using the He-Ne laser to investigate the third order nonlinear optical (TONLO) nature of Nd3+ doped ZTC single crystal. The magnitude of TONLO susceptibility, absorption coefficient and refraction has been determined using the Z-scan transmittance data.
Compensation for Phase Anisotropy of a Metal Reflector
NASA Technical Reports Server (NTRS)
Hong, John
2007-01-01
A method of compensation for the polarization- dependent phase anisotropy of a metal reflector has been proposed. The essence of the method is to coat the reflector with multiple thin alternating layers of two dielectrics that have different indices of refraction, so as to introduce an opposing polarization-dependent phase anisotropy. The anisotropy in question is a phenomenon that occurs in reflection of light at other than normal incidence: For a given plane wave having components polarized parallel (p) and perpendicular (s) to the plane of incidence, the phase of s-polarized reflected light differs from the phase p-polarized light by an amount that depends on the angle of incidence and the complex index of refraction of the metal. The magnitude of the phase difference is zero at zero angle of incidence (normal incidence) and increases with the angle of incidence. This anisotropy is analogous to a phase anisotropy that occurs in propagation of light through a uniaxial dielectric crystal. In such a case, another uniaxial crystal that has the same orientation but opposite birefringence can be used to cancel the phase anisotropy. Although it would be difficult to prepare a birefringent material in a form suitable for application to the curved surface of a typical metal reflector in an optical instrument, it should be possible to effect the desired cancellation of phase anisotropy by exploiting the form birefringence of multiple thin dielectric layers. (The term "form birefringence" can be defined loosely as birefringence arising, in part, from a regular array of alternating subwavelength regions having different indices of refraction.)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habu, Daiki; Masubuchi, Yuji; Torii, Shuki
As is the case with SrTaO{sub 2}N, both cis-ordering of nitride anions and octahedral titling are also preferable in La{sub 1−x}Sr{sub x}TiO{sub 2+x}N{sub 1−x} (x=0, 0.2) oxynitride perovskites. A larger dielectric constant of ε{sub r}≈5.0×10{sup 3} was estimated for the pure oxynitride with x=0.2, compared with ε{sub r}≈750 for the product with x=0, by extrapolating the ε{sub r} values obtained from powders mixed with paraffin at various mixing ratios. The crystal structure of x=0.2 with larger tolerance factor than x=0 increased the octahedral tilting, which contributes to the increased dielectric constant. The increased dielectric constant supports the exchange mechanism formore » the dielectric property between two kinds of –Ti–N– helical coils (clockwise and anticlockwise) derived from the above cis-ordering of nitride anions. - Graphical abstract: Very large dielectric constant values were estimated for La{sub 1−x}Sr{sub x}TiO{sub 2+x}N{sub 1−x}; ε{sub r}≈5.0×10{sup 3} in x=0.2 and ε{sub r}≈750 in x=0. - Highlights: • Cis-configuration of nitride anions was confirmed in La{sub 1−x}Sr{sub x}TiO{sub 2+x}N{sub 1−x} (x=0, 0.2). • Dielectric constant values were estimated to be 750 for x=0 and 5.0×10{sup 3} for x=0.2, respectively. • The large dielectric property is to the exchange mechanism between clockwise and anticlockwise –Ti–N– coil motifs.« less
Alexe-Ionescu, A L; Barbero, G; Lelidis, I
2014-08-28
We consider the influence of the spatial dependence of the ions distribution on the effective dielectric constant of an electrolytic solution. We show that in the linear version of the Poisson-Nernst-Planck model, the effective dielectric constant of the solution has to be considered independent of any ionic distribution induced by the external field. This result follows from the fact that, in the linear approximation of the Poisson-Nernst-Planck model, the redistribution of the ions in the solvent due to the external field gives rise to a variation of the dielectric constant that is of the first order in the effective potential, and therefore it has to be neglected in the Poisson's equation that relates the actual electric potential across the electrolytic cell to the bulk density of ions. The analysis is performed in the case where the electrodes are perfectly blocking and the adsorption at the electrodes is negligible, and in the absence of any ion dissociation-recombination effect.
Modification of the erythrocyte membrane dielectric constant by alcohols.
Orme, F W; Moronne, M M; Macey, R I
1988-08-01
Aliphatic alcohols are found to stimulate the transmembrane fluxes of a hydrophobic cation (tetraphenylarsonium, TPA) and anion (AN-12) 5-20 times in red blood cells. The results are analyzed using the Born-Parsegian equation (Parsegian, A., 1969, Nature (London) 221:844-846), together with the Clausius-Mossotti equation to calculate membrane dielectric energy barriers. Using established literature values of membrane thickness, native membrane dielectric constant, TPA ionic radius, and alcohol properties (partition coefficient, molar volume, dielectric constant), the TPA permeability data is predicted remarkably well by theory. If the radius of AN-12 is taken as 1.9 A, its permeability in the presence of butanol is also described by our analysis. Further, the theory quantitatively accounts for the data of Gutknecht and Tosteson (Gutknecht, J., Tosteson, D.C., 1970, J. Gen. Physiol. 55:359-374) covering alcohol-induced conductivity changes of 3 orders of magnitude in artificial bilayers. Other explanations including perturbations of membrane fluidity, surface charge, membrane thickness, and dipole potential are discussed. However, the large magnitude of the stimulation, the more pronounced effect on smaller ions, and the acceleration of both anions and cations suggest membrane dielectric constant change as the primary basis of alcohol effects.
Enhanced dielectric and electrical properties of annealed PVDF thin film
NASA Astrophysics Data System (ADS)
Arshad, A. N.; Rozana, M. D.; Wahid, M. H. M.; Mahmood, M. K. A.; Sarip, M. N.; Habibah, Z.; Rusop, M.
2018-05-01
Poly (vinylideneflouride) (PVDF) thin films were annealed at various annealing temperatures ranging from 70°C to 170°C. This study demonstrates that PVDF thin films annealed at temperature of 70°C (AN70) showed significant enhancement in their dielectric constant (14) at frequency of 1 kHz in comparison to un-annealed PVDF (UN-PVDF), dielectric constant (10) at the same measured frequency. As the annealing temperature was increased from 90°C (AN90) to 150°C (AN150), the dielectric constant value of PVDF thin films was observed to decrease gradually to 11. AN70 also revealed low tangent loss (tan δ) value at similar frequency. With respect to its resistivity properties, the values were found to increase from 1.98×104 Ω.cm to 3.24×104 Ω.cm for AN70 and UN-PVDF films respectively. The improved in dielectric constant, with low tangent loss and high resistivity value suggests that 70°C is the favorable annealing temperature for PVDF thin films. Hence, AN70 is a promising film to be utilized for application in electronic devices such as low frequency capacitor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajabtabar-Darvishi, A.; Center for Surface and Nanoanalytics; Bayati, R., E-mail: reza.bayati@intel.com, E-mail: mbayati@ncsu.edu, E-mail: wdfei@hit.edu.cn
2015-03-07
This study sheds light on the effect of alumina on dielectric constant and dielectric loss of novel CaCu{sub 3}Ti{sub 4}O{sub 12} composite ceramics. Alumina, at several concentrations, was deposited on the surface of CaCu{sub 3}Ti{sub 4}O{sub 12} particles via sol-gel technique. The dielectric constant significantly increased for all frequencies and the dielectric loss substantially decreased for low and intermediate frequencies. These observations were attributed to the change in characteristics of grains and grain boundaries. It was found that the insulating properties of the grain boundaries are improved following the addition of Al{sub 2}O{sub 3}. The relative density of CaCu{sub 3}Ti{submore » 4}O{sub 12}/Al{sub 2}O{sub 3} composite ceramics decreased compared to the pure CaCu{sub 3}Ti{sub 4}O{sub 12} and the grain size was greatly changed with the alumina content affecting the dielectric properties. With the addition of alumina into CaCu{sub 3}Ti{sub 4}O{sub 12}, tighter interfaces formed. The 6%- and 10%-alumina ceramics showed the minimum dielectric loss and the maximum dielectric constant, respectively. Both the dielectric constant and loss tangent decreased in the 20%-alumina ceramic due to the formation of CuO secondary phase. It was revealed that Al serves as an electron acceptor decreasing the electron concentration, if Al{sup 3+} ions substitute for Ti{sup 4+} ions, and as an electron donor increasing the electron concentration, if Al{sup 3+} ions substitute for Ca{sup 2+} ions. We established a processing-microstructure-properties paradigm which opens new avenues for novel applications of CaCu{sub 3}Ti{sub 4}O{sub 12}/Al{sub 2}O{sub 3} composite ceramics.« less
2010-01-01
of refraction for a vacuum/matter transition are often called the optical constants of the material . In the optical wavelength range, for instance...thick, can also be applied to GI mirrors, thereby extending the photon energy range out to about 100 keV. The index of refraction or the optical constants...consists of alternating layers of two materials with high contrast in the optical constants δ and β, where 1 − δ is the real part of the index of
Thirumalai, Sundararajan; Shanmugavel, Balasivanandha Prabu
2011-01-01
Barium titanate is a common ferroelectric electro-ceramic material having high dielectric constant, with photorefractive effect and piezoelectric properties. In this research work, nano-scale barium titanate powders were synthesized by microwave assisted mechano-chemical route. Suitable precursors were ball milled for 20 hours. TGA studies were performed to study the thermal stability of the powders. The powders were characterized by XRD, SEM and EDX Analysis. Microwave and Conventional heating were performed at 1000 degrees C. The overall heating schedule was reduced by 8 hours in microwave heating thereby reducing the energy and time requirement. The nano-scale, impurity-free and defect-free microstructure was clearly evident from the SEM micrograph and EDX patterns. LCR meter was used to measure the dielectric constant and dielectric loss values at various frequencies. Microwave heated powders showed superior dielectric constant value with low dielectric loss which is highly essential for the fabrication of Multi Layered Ceramic Capacitors.
Relationship between BaTiO₃ nanowire aspect ratio and the dielectric permittivity of nanocomposites.
Tang, Haixiong; Zhou, Zhi; Sodano, Henry A
2014-04-23
The aspect ratio of barium titanate (BaTiO3) nanowires is demonstrated to be successfully controlled by adjusting the temperature of the hydrothermal growth from 150 to 240 °C, corresponding to aspect ratios from 9.3 to 45.8, respectively. Polyvinylidene fluoride (PVDF) nanocomposites are formed from the various aspect ratio nanowires and the relationship between the dielectric constant of the nanocomposite and the aspect ratio of the fillers is quantified. It was found that the dielectric constant of the nanocomposite increases with the aspect ratio of the nanowires. Nanocomposites with 30 vol % BaTiO3 nanowires and an aspect ratio of 45.8 can reach a dielectric constant of 44.3, which is 30.7% higher than samples with an aspect ratio of 9.3 and 352% larger than the polymer matrix. These results demonstrate that using high-aspect-ratio nanowires is an effective way to control and improve the dielectric performance of nanocomposites for future capacitor applications.
NASA Astrophysics Data System (ADS)
Cho, Kwang-Hwan; Lee, Chil-Hyoung; Kang, Chong-Yun; Yoon, Seok-Jin; Lee, Young-Pak
2007-04-01
The effect of heat treatment in electric field on the structure and dielectric properties at microwave range of rf magnetron sputtering derived (Ba0.5Sr0.5)TiO3 thin films have been studied. It has been demonstrated that postannealing in the proper electric field can increase the dielectric constant and the tunability. The increased out-of-plane lattice constant in the electric-annealed films indicated the formation of small polar regions with tetragonal structure, which are responsible for the increased dielectric constant and tunability. It was proposed that the segregation of Ti3+ ions caused by electric annealing could induce the formation of BaTiO3-like regions, which are ferroelectric at room temperature. And in dielectric loss, as the Ti-O bonding lengths increase, the energy scattering on the ferroelectric mode also increases. So, the value of dielectric loss is slightly increased.
Planar dielectric waveguides in rotation are optical fibers: comparison with the classical model.
Peña García, Antonio; Pérez-Ocón, Francisco; Jiménez, José Ramón
2008-01-21
A novel and simpler method to calculate the main parameters in fiber optics is presented. This method is based in a planar dielectric waveguide in rotation and, as an example, it is applied to calculate the turning points and the inner caustic in an optical fiber with a parabolic refractive index. It is shown that the solution found using this method agrees with the standard (and more complex) method, whose solutions for these points are also summarized in this paper.
Design and manufacture of high absorption metal dielectric coatings for the reduction of straylight
NASA Astrophysics Data System (ADS)
Cathelinaud, Michel; Lemarquis, Frédéric; Torchio, Philippe; Amra, Claude
2017-11-01
This paper describes the design and manufacture of broadband metal dielectric absorbers. First, we give some design principles to obtain achromatic absorption properties. Then, we describe a new method to determine the complex refractive index of metallic layers. A graded index model is developed to take account of the evolution of the film packing density. Manufacturing is detailed in the last section. Absorption levels higher than 99.9% have been measured over the visible range.
NASA Astrophysics Data System (ADS)
Ahmad, Mohamad M.; Yamada, Koji
2014-04-01
In the present work, CaCu3Ti4O12 (CCTO) nanoceramics with different grain sizes were prepared by spark plasma sintering (SPS) at different temperatures (SPS-800, SPS-900, SPS-975, and SPS-1050) of the mechanosynthesized nano-powder. Structural and microstructural properties were studied by XRD and field-emission scanning electron microscope measurements. The grain size of CCTO nanoceramics increases from 80 nm to ˜200 nm for the ceramics sintered at 800 °C and 975 °C, respectively. Further increase of SPS temperature to 1050 °C leads to micro-sized ceramics of 2-3 μm. The electrical and dielectric properties of the investigated ceramics were studied by impedance spectroscopy. Giant dielectric constant was observed in CCTO nanoceramics. The dielectric constant increases with increasing the grain size of the nanoceramics with values of 8.3 × 103, 2.4 × 104, and 3.2 × 104 for SPS-800, SPS-900, and SPS-975, respectively. For the micro-sized SPS-1050 ceramics, the dielectric constant dropped to 2.14 × 104. The dielectric behavior is interpreted within the internal barrier layer capacitance picture due to the electrical inhomogeneity of the ceramics. Besides the resistive grain boundaries that are usually observed in CCTO ceramics, domain boundaries appear as a second source of internal layers in the current nanoceramics.
Cast dielectric composite linear accelerator
Sanders, David M [Livermore, CA; Sampayan, Stephen [Manteca, CA; Slenes, Kirk [Albuquerque, NM; Stoller, H M [Albuquerque, NM
2009-11-10
A linear accelerator having cast dielectric composite layers integrally formed with conductor electrodes in a solventless fabrication process, with the cast dielectric composite preferably having a nanoparticle filler in an organic polymer such as a thermosetting resin. By incorporating this cast dielectric composite the dielectric constant of critical insulating layers of the transmission lines of the accelerator are increased while simultaneously maintaining high dielectric strengths for the accelerator.
Polarizability calculations on water, hydrogen, oxygen, and carbon dioxide
NASA Technical Reports Server (NTRS)
Nir, S.; Adams, S.; Rein, R.
1973-01-01
A semiclassical model of damped oscillators is used as a basis for the calculation of the dispersion of the refractive index, polarizability, and dielectric permeability in water, hydrogen, and oxygen in liquid and gaseous states, and in gaseous carbon dioxide. The absorption coefficient and the imaginary part of the refractive index are also calculated at corresponding wavelengths. A good agreement is obtained between the observed and calculated values of refractive indices, and between those of absorption coefficients in the region of absorption bands. The calculated values of oscillator strengths and damping factors are also discussed. The value of the polarizability of liquid water was about 2.8 times that of previous calculations.
Enhanced dielectric properties of Fe-substituted TiO2 nanoparticles
NASA Astrophysics Data System (ADS)
Ali, T.; Ahmed, Ateeq; Naseem siddique, M.; Tripathi, P.
2018-04-01
We report the structural and dielectric properties Ti1-xFexO2 (0.00 < x < 0.10) nanoparticles (NPs) synthesized by sol-gel method. The synthesized material has been characterized by soft X-ray absorption spectroscopy (SXAS) in order to investigate the fine structure and electronic valence state. SXAS analysis reveals that Fe-ions exist only in 3+ valance state in all the samples. The dielectric properties were studied by the use of LCR impedance spectroscopy. The dielectric constants, dielectric loss and A.C. conductivity have been determined as a function of frequency and composition of iron. At higher frequencies, the materials exhibited high AC Conductivity and low dielectric constant. The above theory could be explained by 'Maxwell Wagner Model' and may provide a new insight to fabricate nanomaterials having possible electrical application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panchal, Nital R.; Jotania, Rajshree B., E-mail: natal_panchal@yahoo.co.in, E-mail: rbjotania@gmail.com
2011-07-01
The M-type Strontium Hexaferrite SRFe{sub 12}O{sub 19} particles were prepared by a Self propagating High temperature Synthesis (SHS) route. Precursors were heated under two different conditions: microwave heating for 30 minutes and sintered at 950 deg C for 4 hrs. The dielectric properties: dielectric constant ({epsilon}{sup '}), dielectric loss (tan {delta} ) and ac conductivity ({sigma}{sub ac}) were measured at room temperature in the frequency range from 100 Hz to 2 MHz. The samples present a non-linear behavior for the dielectric constant at 1 kHz, 100 kHz and 2 MHz. The dielectric properties of prepared Strontium Hexaferrite samples were discussedmore » in view of applications as a material for microwave devices, permanent magnets and high density magnetic recording media. (author)« less
NASA Astrophysics Data System (ADS)
Jan, Rahim; Habib, Amir; Gul, Iftikhar Hussain
2016-01-01
In this study, graphene nanosheets (GNS) prepared through a liquid exfoliation technique are dispersed in thermoplastic polyurethane (TPU) at a volume fraction (Vf) of up to 0.19. Then, the electrical and mechanical properties of the obtained composites are characterized. The dielectric spectroscopy shows an excessive variation in dielectric constant (1.1 to 3.53 × 107) and dielectric tangent loss (0.03 to 2515) with varying Vf over the frequency range of 25 kHz to 5 MHz. A considerable enhancement in electrical conductivity (DC) is found, from 3.87 × 10-10 S/m (base polymer) to 53.5 S/m for the 0.19 Vf GNS-TPU nanocomposite. The GNS-TPU composites are mechanically robust, with a considerable increase in stiffness (˜4-fold) and strength (almost twice), maintaining its ductility up to 0.09 Vf GNS. The high dielectric constant at lower frequencies is attributed to the well-established Maxwell-Wagner polarization effect, whereas the high dielectric tangent loss is due to leakage currents as a physical conducting network is formed at high filler loadings. The layered structure, high aspect ratio, and improved dispersion of GNS are the main reasons for the improvement in both the dielectric characteristics and the mechanical properties of the host polymer. [Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Hashim, Mohd.; Raghasudha, M.; Meena, Sher Singh; Shah, Jyoti; Shirsath, Sagar E.; Kumar, Shalendra; Ravinder, D.; Bhatt, Pramod; Alimuddin; Kumar, Ravi; Kotnala, R. K.
2018-03-01
Ce and Dy substituted Cobalt ferrites with the chemical composition CoCexDyxFe2-2xO4 (x = 0, 0.01, 0.02, 0.03, 0.04, 0.05) were synthesized through the chemical route, citrate-gel auto-combustion method. The structural characterization was carried out with the help of XRD Rieveld analysis, SEM and EDAX analysis. Formation of spinel cubic structure of the ferrites was confirmed by XRD analysis. SEM and EDAX results show that the particles are homogeneous with slight agglomeration without any impurity pickup. The effect of RE ion doping (Ce and Dy) on the dielectric, magnetic and impedance studies was systematically investigated by LCR meter, Vibrating Sample Magnetometer and Impedance analyzer respectively at room temperature in the frequency range of 10 Hz-10 MHz. Various dielectric parameters viz., dielectric constant, dielectric loss and ac conductivity were measured. The dielectric constant of all the ferrite compositions shows normal dielectric dispersion of ferrites with frequency. Impedance analysis confirms that the conduction in present ferrites is majorly due to the grain boundary mechanism. Ferrite sample with x = 0.03 show high dielectric constant, low dielectric loss and hence can be utilized in high frequency electromagnetic devices. Magnetization measurements indicate that with increase in Ce and Dy content in cobalt ferrites, the magnetization values decreased and coercivity has increased.
NASA Astrophysics Data System (ADS)
Rahman, K. R.; Chowdhury, F.-U.-Z.; Khan, M. N. I.
2017-12-01
In this paper, the effect of Al3+ substitution on the electrical and dielectric properties of Ni0.25Cu0.20Zn0.55AlxFe2-xO4 ferrites with x = 0.0, 0.05. 0.10, 0.15 and 0.20, synthesized by solid state reaction has been reported. Using two probe method, the DC resistivity has been investigated in the temperature range from 30 °C to 300 °C. Activation energy was calculated from the Arrhenius plot. The electrical conduction is explained on the basis of the hopping mechanism. The frequency dependent dielectric properties of these spinel ferrites have been studied at room temperature by measuring AC resistivity, conductivity (σac), dielectric constant and dielectric loss tangent (tan δ) in the frequency range between 1 kHz and 120 MHz. The study of dielectric properties showed that the dielectric constant and dielectric loss increased with increasing non-magnetic Al ions. The dependence of dielectric constant with frequency has been explained by Maxwell-Wagner interfacial polarization. Cole-Cole plots show semicircular arc(s) for the samples, and equivalent RC circuits have been proposed to clarify the phenomena involved therein. The analysis of complex impedance spectroscopy has been used to distinguish between the grain and grain boundary contribution to the total resistance.
Pérez-Medina, Juan C.; Waldo-Mendoza, Miguel A.; Cruz-Delgado, Víctor J.; Quiñones-Jurado, Zoe V.; González-Morones, Pablo; Ziolo, Ronald F.; Martínez-Colunga, Juan G.; Soriano-Corral, Florentino; Avila-Orta, Carlos A.
2016-01-01
Metamaterial behavior of polymer nanocomposites (NCs) based on isotactic polypropylene (iPP) and multi-walled carbon nanotubes (MWCNTs) was investigated based on the observation of a negative dielectric constant (ε′). It is demonstrated that as the dielectric constant switches from negative to positive, the plasma frequency (ωp) depends strongly on the ultrasound-assisted fabrication method, as well as on the melt flow index of the iPP. NCs were fabricated using ultrasound-assisted extrusion methods with 10 wt % loadings of MWCNTs in iPPs with different melt flow indices (MFI). AC electrical conductivity (σ(AC)) as a function of frequency was determined to complement the electrical classification of the NCs, which were previously designated as insulating (I), static-dissipative (SD), and conductive (C) materials. It was found that the SD and C materials can also be classified as metamaterials (M). This type of behavior emerges from the negative dielectric constant observed at low frequencies although, at certain frequencies, the dielectric constant becomes positive. Our method of fabrication allows for the preparation of metamaterials with tunable ωp. iPP pure samples show only positive dielectric constants. Electrical conductivity increases in all cases with the addition of MWCNTs with the largest increases observed for samples with the highest MFI. A relationship between MFI and the fabrication method, with respect to electrical properties, is reported. PMID:28774042
Giant voltage-induced deformation of a dielectric elastomer under a constant pressure
NASA Astrophysics Data System (ADS)
Godaba, Hareesh; Foo, Choon Chiang; Zhang, Zhi Qian; Khoo, Boo Cheong; Zhu, Jian
2014-09-01
Dielectric elastomer actuators coupled with liquid have recently been developed as soft pumps, soft lenses, Braille displays, etc. In this paper, we investigate the performance of a dielectric elastomer actuator, which is coupled with water. The experiments demonstrate that the membrane of a dielectric elastomer can achieve a giant voltage-induced area strain of 1165%, when subject to a constant pressure. Both theory and experiment show that the pressure plays an important role in determining the electromechanical behaviour. The experiments also suggest that the dielectric elastomer actuators, when coupled with liquid, may suffer mechanical instability and collapse after a large amount of liquid is enclosed by the membrane. This failure mode needs to be taken into account in designing soft actuators.
Simulation of Charged Systems in Heterogeneous Dielectric Media via a True Energy Functional
NASA Astrophysics Data System (ADS)
Jadhao, Vikram; Solis, Francisco J.; de la Cruz, Monica Olvera
2012-11-01
For charged systems in heterogeneous dielectric media, a key obstacle for molecular dynamics (MD) simulations is the need to solve the Poisson equation in the media. This obstacle can be bypassed using MD methods that treat the local polarization charge density as a dynamic variable, but such approaches require access to a true free energy functional, one that evaluates to the equilibrium electrostatic energy at its minimum. In this Letter, we derive the needed functional. As an application, we develop a Car-Parrinello MD method for the simulation of free charges present near a spherical emulsion droplet separating two immiscible liquids with different dielectric constants. Our results show the presence of nonmonotonic ionic profiles in the dielectric with a lower dielectric constant.
Photopic visual input is necessary for emmetropization in mice
Tkatchenko, Tatiana V.; Shen, Yimin; Braun, Rod D.; Bawa, Gurinder; Kumar, Pradeep; Avrutsky, Ivan; Tkatchenko, Andrei V.
2013-01-01
It was recently demonstrated that refractive errors in mice stabilize around emmetropic values during early postnatal development, and that they develop experimental myopia in response to both visual form deprivation and imposed optical defocus similar to other vertebrate species. Animal studies also suggest that photopic vision plays critical role in emmetropization in diurnal species; however, it is unknown whether refractive eye development is guided by photopic vision in the mouse, which is a nocturnal species. We used an infrared mouse photorefractor and a high-resolution MRI to clarify the role of photopic visual input in refractive eye development in the mouse. Refractive eye development and form-deprivation myopia in P21-P89 C57BL/6J mice were analyzed under 12:12 h light-dark cycle, constant light and constant darkness regimens. Animals in all experimental groups were myopic at P21 (-13.2 ± 1.6 D, light-dark cycle; -12.5 ± 0.9 D, constant light; -12.5 ± 2.0 D, constant dark). The mean refractive error in the light-dark-cycle-reared animals was -0.5 ± 1.3 D at P32 and, and did not change significantly until P40 (+0.3 ± 0.6 D, P40). Animals in this group became progressively hyperopic between P40 and P89 (+2.2 ± 0.6, P67; +3.7 ± 2.0, P89). The mean refractive error in the constant-light-reared mice was -1.0 ± 0.7 D at P32 and remained stable until P89 (+0.1 ± 0.6, P40; +0.3 ± 0.6, P67; 0.0 ± 0.4, P89). Dark-reared animals exhibited highly hyperopic refractive errors at P32 (+5.2 ± 1.8) and became progressively more hyperopic with age (+8.7 ± 1.9, P40; +11.2 ± 1.4, P67). MRI analysis revealed that emmetropization in the P40-P89 constant-light-reared animals was associated with larger eyes, a longer axial length and a larger vitreous chamber compared to the light-dark-cycle-reared mice. Constant-light-reared mice also developed 4 times higher degrees of form-deprivation myopia on average compared to light-dark-cycle-reared animals (-12.0 ± 1.4, constant light; -2.7 ± 0.7, light-dark cycle). Dark-rearing completely prevented the development of form-deprivation myopia (-0.3 ± 0.5). Thus, photopic vision plays important role in normal refractive eye development and ocular response to visual form deprivation in the mouse. PMID:23838522
Effect of crystal structure on strontium titanate thin films and their dielectric properties
NASA Astrophysics Data System (ADS)
Kampangkeaw, Satreerat
Strontium titanate (SrTiO3 or STO) has application in radio and microwave-frequency tunable capacitor devices particularly at low temperatures due to its high dielectric constant, low loss and the electric field tunability of its dielectric constant. The main goal of improving the performance in these devices is to increase the tunability and decrease the dielectric loss at the same time, especially at microwave frequencies. Thin films of STO however, show dramatic differences compared to the bulk. The dielectric constant of bulk STO increases nonlinearly from 300 at room temperature to 30000 at 4 K and the loss range is 10-3--10 -4. On the other hand. STO thin films, while showing a dielectric constant close to 300 at room temperature, typically reach a maximum between 1000 and 10000 in the 30 K to 100 K range before decreasing, and the high-loss range is 10-2--10-3. We have grown strontium titanate thin films using a pulsed laser deposition technique on substrates selected to have a small lattice mismatch between the film and substrate. Neodymium gallate (NdGaO3 or NGO) and lanthanum aluminate (LaAlO3 or LAO) substrates were good candidates due to only 1--2% mismatching. Film capacitor devices were fabricated with 25 micron gap separation. 1.5 mm total gap length and an overall 1 x 2 mm dimension using standard lithography and gold metal evaporative techniques. Their nonlinear dielectric constant and loss tangent were measured at low frequencies and also at 2 GHz, and from room temperature down to 4 K. The resulting films show significant variations of dielectric properties with position on the substrates with respect to the deposition plume axis. In the presence of DC electric fields up to +/-4 V/mum, STO films show improved dielectric tunability and low loss in regions far from the plume axis. We found that the films grown on NCO have lower dielectric loss than those on LAO due to a closer match of the NCO lattice to that of STO. We investigated the possible causes that make dielectric behavior in STO thin films different from the bulk. We characterized such film structures as lattice parameters, out-of-plane grain size, in-plane grain size, thickness, roughness, strains, and defects using ellipsometry, atomic force microscopy, and a high-resolution X-ray diffractometry. In plane grain size and percentage of defects were found to play a major role on the dielectric performance of the films.
Dielectric spectroscopy of Dy2O3 doped (K0.5Na0.5)NbO3 piezoelectric ceramics
NASA Astrophysics Data System (ADS)
Mahesh, P.; Subhash, T.; Pamu, D.
2014-06-01
We report the dielectric properties of ( K 0.5 Na 0.5 ) NbO 3 ceramics doped with x wt% of Dy 2 O 3 (x= 0.0-1.5 wt%) using the broadband dielectric spectroscopy. The X-ray diffraction studies showed the formation of perovskite structure signifying that Dy 2 O 3 diffuse into the KNN lattice. Samples doped with x > 0.5 wt% exhibit smaller grain size and lower relative densities. The dielectric properties of KNN ceramics doped with Dy 2 O 3 are enhanced by increasing the Dy 3+ content; among the compositions studied, x = 0.5 wt% exhibited the highest dielectric constant and lowest loss at 1MHz over the temperature range of 30°C to 400°C. All the samples exhibit maximum dielectric constant at the Curie temperature (˜ 326°C) and a small peak in the dielectric constant at around 165°C is due to a structural phase transition. At the request of all authors, and by agreement with the Proceedings Editors, a corrected version of this article was published on 19 June 2014. The full text of the Corrigendum is attached to the corrected article PDF file.
Park, Bum Jun; Furst, Eric M
2014-09-23
We present the optical trapping forces that are generated when a single laser beam strongly focuses on a coated dielectric microsphere. On the basis of geometrical optics approximation (GOA), in which a particle intercepts all of the rays that make up a single laser beam, we calculate the trapping forces with varying coating thickness and refractive index values. To increase the optical trapping efficiency, the refractive index (n(b)) of the coating is selected such that n(a) < n(b) < n(c), where na and nc are the refractive indices of the medium and the core material, respectively. The thickness of the coating also increases trapping efficiency. Importantly, we find that trapping forces for the coated particles are predominantly determined by two rays: the incident ray and the first refracted ray to the medium.
Effect of Mn doping on the temperature-dependent anomalous giant dielectric behavior of CaCu3Ti4O12
NASA Astrophysics Data System (ADS)
Kim, C. H.; Jang, Y. H.; Seo, S. J.; Song, C. H.; Son, J. Y.; Yang, Y. S.; Cho, J. H.
2012-06-01
We report dielectric properties and dielectric relaxation behaviors of Mn-substituted CaCu3Ti4O12 (CCTO) on Cu sites. While CCTO exhibits the giant dielectric constant and low dielectric loss in a wide temperature range, drastic suppression of the dielectric constant in Mn-doped CCTO (CCMTO) samples have been observed in temperature and frequency dependencies of dielectric properties with two possible origins as Mn doping increases. The observed suppression of dielectric response in the low Mn doping differs from the heavy doping of Mn in CCMTO samples. The low-Mn-doped CCMTO samples (x=0.01 and 0.02) show that the relaxation time and the activation energy Ea were slightly reduced due to a decreased contribution from the density of the dipolar effect. However, in heavily doped CCMTO samples (x=0.03, 0.04, and 0.05), the dielectric response, relaxation time, and Ea were significantly decreased, suggesting Mn doping plays a significant role in the destruction of the intrinsic dipolar effect.
Classification of Solvents according to Interaction Mechanisms.
ERIC Educational Resources Information Center
Ahmed, Wasi
1979-01-01
Presented is a model for solvent effects based on the observation that the excitation energy of all-trans-N-Retinylidenmethyl-n-butylammonium iodide is directly related to the dielectric constant of a series of aromatic and aliphatic solvents as the dielectric constant (e) ranges from 2 to 10.5. (BT)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Hai-Feng, E-mail: hanlor@163.com, E-mail: lsb@nuaa.edu.cn; Nanjing Artillery Academy, Nanjing 211132; Liu, Shao-Bin, E-mail: hanlor@163.com, E-mail: lsb@nuaa.edu.cn
In this paper, the tunable all-angle negative refraction and photonic band gaps (PBGs) in two types of two-dimensional (2D) plasma photonic crystals (PPCs) composed of homogeneous plasma and dielectric (GaAs) with square-like Archimedean lattices (ladybug and bathroom lattices) for TM wave are theoretically investigated based on a modified plane wave expansion method. The type-1 structure is dielectric rods immersed in the plasma background, and the complementary structure is named as type-2 PPCs. Theoretical simulations demonstrate that the both types of PPCs with square-like Archimedean lattices have some advantages in obtaining the higher cut-off frequency, the larger PBGs, more number ofmore » PBGs, and the relative bandwidths compared to the conventional square lattices as the filling factor or radius of inserted rods is same. The influences of plasma frequency and radius of inserted rod on the properties of PBGs for both types of PPCs also are discussed in detail. The calculated results show that PBGs can be manipulated by the parameters as mentioned above. The possibilities of all-angle negative refraction in such two types of PPCs at low bands also are discussed. Our calculations reveal that the all-angle negative phenomena can be observed in the first two TM bands, and the frequency range of all-angle negative refraction can be tuned by changing plasma frequency. Those properties can be used to design the optical switching and sensor.« less
Ribierre, J C; Ruseckas, A; Staton, S V; Knights, K; Cumpstey, N; Burn, P L; Samuel, I D W
2016-02-07
We study the influence of the film thickness on the time-resolved phosphorescence and the luminescence quantum yield of fac-tris(2-phenylpyridyl)iridium(iii) [Ir(ppy)3]-cored dendrimers deposited on dielectric substrates. A correlation is observed between the surface quenching velocity and the quenching rate by intermolecular interactions in the bulk film, which suggests that both processes are controlled by dipole-dipole interactions between Ir(ppy)3 complexes at the core of the dendrimers. It is also found that the surface quenching velocity decreases as the refractive index of the substrate is increased. This can be explained by partial screening of dipole-dipole interactions by the dielectric environment.
A theoretical study of perovskite CsXCl3 (X=Pb, Cd) within first principles calculations
NASA Astrophysics Data System (ADS)
Ilyas, Bahaa M.; Elias, Badal H.
2017-04-01
The structural, elastic, electronic, optical acoustic and thermodynamic properties of the cubic perovskite CsPbCl3 and CsCdCl3 unit cell, were studied using an ultra-soft pseudopotential plane wave, the Trouiller-Martins-Functional was utilized to perform these calculations. The study was implemented within both the Local Density Approximation (LDA) and the Generalized Gradient Approximation (GGA). the Generalized Gradient Approximation (GGA) scheme proposed by van Leeuwen-Baerends which is the same as the Perdew-Wang 92 functional have been carried out to preform our calculations. As for the Local Density Approximation (LDA) the Teter-Pade parametrization (4/93) was implemented which is the same as Perdew-Wang that in its turn reproduces the Ceperley-Alder-Functional. The computed GGA/LDA-lattice parameter for both CsCdCl3 and CsPbCl3 is in an exquisite agreement with the experimental and theoretical results. The energy band structure shows that CsCdCl3 is Γ-R indirect band gap insulator, while CsPbCl3 is an insulator with a direct band gap Γ-Γ separating the valence bands from the conduction bands, which shows metallic nature after pressure 30 GPa. A hybridization exists between Pb-p states and Cl-p states for CsPbCl3, and Cd-p states and Cs-p states for the CsCdCl3 in the valence bonding region. Optimization of both cell shape (geometry) volume were investigated as pressure of 0-20 GPa and 0-40 GPa for the CsCdCl3 and CsPbCl3 respectively. The Pressure dependence of cubic perovskite elastic constants, Young modulus, bulk and shear moduli, Lame's constants, elastic anisotropy factor, elastic wave velocities, phonon dispersion, Debye temperature and the density of states of CsXCl3 (X=Pb, Cd) were theoretically calculated and compared with the other available theoretical results. The above elastic constants reveal the fact that both compounds are stable and show nature of ductility. For the optical properties, both the static refractive index and dielectric constant are found to be related proportionally to the indirect band gap of CsCdCl3. The refractive index, extinction coefficient, complex dielectric function, energy loss function, optical conductivity, reflectivity and absorption coefficient for 0-25 eV incident photon energies have been predicted. The phonon properties were investigated using response functions to predict the phonon lattice dispersion and the density of states. The thermal effect on the heat capacities, entropy, enthalpy and Free energy were predicted and compared using both the quasi-harmonic Debye model and response functions, the latter provided far better results. To the best of the authors' knowledge, most of the studied properties have not been experimentally reported so far. Generally, the computed results for both CsCdCl3 and CsPbCl3 are very satisfactory and show good agreement with other calculations.