Sample records for dielectric continuum dc

  1. Effect of DC bias on dielectric properties of nanocrystalline CuAlO2

    NASA Astrophysics Data System (ADS)

    Prakash, T.; Ramasamy, S.; Murty, B. S.

    2013-03-01

    Grain boundary effect on the room temperature dielectric behavior in mechanically alloyed nanocrystalline CuAlO2 has been investigated using impedance spectroscopy under the applied DC bias voltages 0 V to 4.8 V in a periodic interval of 0.2 V. Analysis of impedance data confirms the existence of double Schottky potential barrier heights ( Φ b ) between two adjacent grains (left and right side) with grain boundary and its influences in dielectric relaxation time ( τ), dielectric constant ( ɛ') and dielectric loss (tan δ) factor. Also, clear evidence on the suppression of Φ b was demonstrated in the higher applied bias voltages with the parameter τ. At equilibrium state, τ is 0.63 ms and it was reduced to 0.13 ms after the 3.2 V applied DC bias. These observed DC bias voltage effects are obeying `brick layer model' and also elucidates Φ b is playing a crucial role in controlling dielectric properties of nanomaterials.

  2. Gradient Models in Molecular Biophysics: Progress, Challenges, Opportunities

    PubMed Central

    Bardhan, Jaydeep P.

    2014-01-01

    In the interest of developing a bridge between researchers modeling materials and those modeling biological molecules, we survey recent progress in developing nonlocal-dielectric continuum models for studying the behavior of proteins and nucleic acids. As in other areas of science, continuum models are essential tools when atomistic simulations (e.g. molecular dynamics) are too expensive. Because biological molecules are essentially all nanoscale systems, the standard continuum model, involving local dielectric response, has basically always been dubious at best. The advanced continuum theories discussed here aim to remedy these shortcomings by adding features such as nonlocal dielectric response, and nonlinearities resulting from dielectric saturation. We begin by describing the central role of electrostatic interactions in biology at the molecular scale, and motivate the development of computationally tractable continuum models using applications in science and engineering. For context, we highlight some of the most important challenges that remain and survey the diverse theoretical formalisms for their treatment, highlighting the rigorous statistical mechanics that support the use and improvement of continuum models. We then address the development and implementation of nonlocal dielectric models, an approach pioneered by Dogonadze, Kornyshev, and their collaborators almost forty years ago. The simplest of these models is just a scalar form of gradient elasticity, and here we use ideas from gradient-based modeling to extend the electrostatic model to include additional length scales. The paper concludes with a discussion of open questions for model development, highlighting the many opportunities for the materials community to leverage its physical, mathematical, and computational expertise to help solve one of the most challenging questions in molecular biology and biophysics. PMID:25505358

  3. Gradient Models in Molecular Biophysics: Progress, Challenges, Opportunities.

    PubMed

    Bardhan, Jaydeep P

    2013-12-01

    In the interest of developing a bridge between researchers modeling materials and those modeling biological molecules, we survey recent progress in developing nonlocal-dielectric continuum models for studying the behavior of proteins and nucleic acids. As in other areas of science, continuum models are essential tools when atomistic simulations (e.g. molecular dynamics) are too expensive. Because biological molecules are essentially all nanoscale systems, the standard continuum model, involving local dielectric response, has basically always been dubious at best. The advanced continuum theories discussed here aim to remedy these shortcomings by adding features such as nonlocal dielectric response, and nonlinearities resulting from dielectric saturation. We begin by describing the central role of electrostatic interactions in biology at the molecular scale, and motivate the development of computationally tractable continuum models using applications in science and engineering. For context, we highlight some of the most important challenges that remain and survey the diverse theoretical formalisms for their treatment, highlighting the rigorous statistical mechanics that support the use and improvement of continuum models. We then address the development and implementation of nonlocal dielectric models, an approach pioneered by Dogonadze, Kornyshev, and their collaborators almost forty years ago. The simplest of these models is just a scalar form of gradient elasticity, and here we use ideas from gradient-based modeling to extend the electrostatic model to include additional length scales. The paper concludes with a discussion of open questions for model development, highlighting the many opportunities for the materials community to leverage its physical, mathematical, and computational expertise to help solve one of the most challenging questions in molecular biology and biophysics.

  4. Exact solution for the hydrogen atom confined by a dielectric continuum and the correct basis set to study many-electron atoms under similar confinements

    NASA Astrophysics Data System (ADS)

    Martínez-Sánchez, Michael-Adán; Aquino, Norberto; Vargas, Rubicelia; Garza, Jorge

    2017-12-01

    The Schrödinger equation associated to the hydrogen atom confined by a dielectric continuum is solved exactly and suggests the appropriate basis set to be used when an atom is immersed in a dielectric continuum. Exact results show that this kind of confinement spread the electron density, which is confirmed through the Shannon entropy. The basis set suggested by the exact results is similar to Slater type orbitals and it was applied on two-electron atoms, where the H- ion ejects one electron for moderate confinements for distances much larger than those commonly used to generate cavities in solvent models.

  5. The Cotton-Mouton effect of liquid water. Part I: The dielectric continuum model

    NASA Astrophysics Data System (ADS)

    Ruud, Kenneth; Helgaker, Trygve; Rizzo, Antonio; Coriani, Sonia; Mikkelsen, Kurt V.

    1997-07-01

    We present a gauge-origin independent method for calculating the electric-field dependence of the molecular magnetizability—that is, the hypermagnetizability, related to the Cotton-Mouton Effect (CME)—of solvated molecules. In our approach, the solvated molecule is placed in a spherical cavity surrounded by a linear, homogeneous, and polarizable dielectric medium. We apply the model to investigate the dielectric-medium effects on the CME of liquid water. The effects of electron correlation, molecular geometry, and the surrounding dielectric continuum on the hypermagnetizability and the CME are investigated. The change induced in the hypermagnetizability anisotropy by the dielectric medium is the dominating effect, being almost twice as large as the correlation contribution. The combined effect of electron correlation and the dielectric continuum leads to a doubling of the hypermagnetizability anisotropy when going from the SCF gas phase value (Δη=17.89 a.u.) to the value obtained for the MCSCF wave function in the dielectric medium (Δη=39.74 a.u.). The effects of change in geometry are shown to be small. Our result for the static Cotton-Mouton constant averaged in the temperature range 283.15 K to 293.15 K, mC=15.2×10-20 G-2 cm3 mol-1, differs from experiment still by the sign and by a factor of almost 8. The major reason for this discrepancy is the neglect of short-range interactions such as hydrogen bonding and van der Waals interactions not accounted for by the continuum model.

  6. On the nonlinear variation of dc conductivity with dielectric relaxation time

    NASA Astrophysics Data System (ADS)

    Johari, G. P.; Andersson, Ove

    2006-09-01

    The long-known observations that dc conductivity σdc of an ultraviscous liquid varies nonlinearly with the dielectric relaxation time τ, and the slope of the logσdc against logτ plot deviates from -1 are currently seen as two of the violations of the Debye-Stokes-Einstein equation. Here we provide a formalism using a zeroth order Bjerrum description for ion association to show that in addition to its variation with temperature T and pressure P, impurity ion population varies with a liquid's equilibrium dielectric permittivity. Inclusion of this electrostatic effect modifies the Debye-Stokes-Einstein equation to log(σdcτ )=constant+logα, where α is the T and P-dependent degree of ionic dissociation of an electrolytic impurity. Variation of a liquid's shear modulus with T and P would add to the nonlinearity of σdc-τ relation, as would a nonequivalence of the shear and dielectric relaxation times, proton transfer along the hydrogen bonds, or occurrence of another chemical process. This is illustrated by using the data for ultraviscous acetaminophen-aspirin liquid.

  7. The DC and AC insulating properties of magnetic fluids based on transformer oil

    NASA Astrophysics Data System (ADS)

    Tomo, L.; Marton, K.; Herchl, F.; Kopanský, P.; Potoová, I.; Koneracká, M.; Timko, M.

    2006-01-01

    The AC-dielectric breakdown was investigated in magnetic fluids based on transformer oil TECHNOL US 4000 for two orientations of external magnetic field (B E and B E) and in B = 0. The found results were compared with those obtained formerly for the DC-dielectric breakdown. The observations of the time development of the AC-dielectric breakdown showed the presence of partial discharges long before the complete breakdown occurrence, while for DC-dielectric breakdown a complete breakdown of the gap next to the onset of a measurable ionization was characteristic. The comparison of the AC-dielectric breakdown strengths of pure transformer oil and transformer-oil-based magnetic fluid showed better dielectric properties of magnetic fluid in external magnetic field and comparable, but not worse, in B = 0. Regarding to the better heat transfer, provided by magnetic fluids, they could be used in power transformers as insulating fluids.

  8. Dielectric properties of organic solvents from non-polarizable molecular dynamics simulation with electronic continuum model and density functional theory.

    PubMed

    Lee, Sanghun; Park, Sung Soo

    2011-11-03

    Dielectric constants of electrolytic organic solvents are calculated employing nonpolarizable Molecular Dynamics simulation with Electronic Continuum (MDEC) model and Density Functional Theory. The molecular polarizabilities are obtained by the B3LYP/6-311++G(d,p) level of theory to estimate high-frequency refractive indices while the densities and dipole moment fluctuations are computed using nonpolarizable MD simulations. The dielectric constants reproduced from these procedures are evaluated to provide a reliable approach for estimating the experimental data. An additional feature, two representative solvents which have similar molecular weights but are different dielectric properties, i.e., ethyl methyl carbonate and propylene carbonate, are compared using MD simulations and the distinctly different dielectric behaviors are observed at short times as well as at long times.

  9. Gradient models in molecular biophysics: progress, challenges, opportunities

    NASA Astrophysics Data System (ADS)

    Bardhan, Jaydeep P.

    2013-12-01

    In the interest of developing a bridge between researchers modeling materials and those modeling biological molecules, we survey recent progress in developing nonlocal-dielectric continuum models for studying the behavior of proteins and nucleic acids. As in other areas of science, continuum models are essential tools when atomistic simulations (e.g., molecular dynamics) are too expensive. Because biological molecules are essentially all nanoscale systems, the standard continuum model, involving local dielectric response, has basically always been dubious at best. The advanced continuum theories discussed here aim to remedy these shortcomings by adding nonlocal dielectric response. We begin by describing the central role of electrostatic interactions in biology at the molecular scale, and motivate the development of computationally tractable continuum models using applications in science and engineering. For context, we highlight some of the most important challenges that remain, and survey the diverse theoretical formalisms for their treatment, highlighting the rigorous statistical mechanics that support the use and improvement of continuum models. We then address the development and implementation of nonlocal dielectric models, an approach pioneered by Dogonadze, Kornyshev, and their collaborators almost 40 years ago. The simplest of these models is just a scalar form of gradient elasticity, and here we use ideas from gradient-based modeling to extend the electrostatic model to include additional length scales. The review concludes with a discussion of open questions for model development, highlighting the many opportunities for the materials community to leverage its physical, mathematical, and computational expertise to help solve one of the most challenging questions in molecular biology and biophysics.

  10. Effect of neodymium substitution on the electric and dielectric properties of Mn-Ni-Zn ferrite

    NASA Astrophysics Data System (ADS)

    Agami, W. R.

    2018-04-01

    Ferrite samples of Mn0.5Ni0.1Zn0.4NdxFe2-xO4 (x = 0.0, 0.01, 0.02, 0.05, 0.075 and 0.1) have been prepared by usual ceramic method. The temperature and composition dependences of the dc electric resistivity (ρdc) were studied. The frequency and composition dependences of the ac electric resistivity (ρac) and dielectric parameters (dielectric constant ε' and dielectric loss ε'') have been investigated. ρdc was found to decrease with temperature for all samples while it increases with increasing Nd3+ concentration. On the other hand, ρac and the dielectric properties were found to decrease with increasing the frequency while ρac increases and both ε' and ε'' decrease with increasing Nd3+ concentration. These results were explained by the Maxwell-Wagner two-layer model and Koops's theory. The improvement in dc and ac electric resistivities shows that these prepared materials are valid for decreasing the eddy current losses at high frequencies, so they can be used in the fabrication of multilayer chip inductor (MLCI) devices.

  11. Multipactor susceptibility on a dielectric with a bias dc electric field and a background gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Peng; Lau, Y. Y.; Franzi, Matthew

    2011-05-15

    We use Monte Carlo simulations and analytical calculations to derive the condition for the onset of multipactor discharge on a dielectric surface at various combinations of the bias dc electric field, rf electric field, and background pressures of noble gases, such as Argon. It is found that the presence of a tangential bias dc electric field on the dielectric surface lowers the magnitude of rf electric field threshold to initiate multipactor, therefore plausibly offering robust protection against high power microwaves. The presence of low pressure gases may lead to a lower multipactor saturation level, however. The combined effects of tangentialmore » dc electric field and external gases on multipactor susceptibility are presented.« less

  12. Multiple electrical phase transitions in Al substituted barium hexaferrite

    NASA Astrophysics Data System (ADS)

    Kumar, Sunil; Supriya, Sweety; Kar, Manoranjan

    2017-12-01

    Barium hexaferrite is known to be a very good ferromagnetic material. However, it shows very good dielectric properties, i.e., the dielectric constant is comparable to that of the ferroelectric material. However, its crystal symmetry does not allow it to be a ferroelectric material. Hence, the electrical properties have revived the considerable research interest on these materials, not only for academic interest, but also for technological applications. There are a few reports on temperature dependent dielectric behavior of these materials. However, the exact cause of dielectric as well as electrical conductivity is yet to be established. Hence, Al (very good conducting material) substituted barium hexaferrite (BaFe12-xAlxO19, x = 0.0-4.0) has been prepared by following the modified sol-gel method to understand the ac and DC electrical properties of these materials. The crystal structure and parameters have been studied by employing the XRD and FTIR techniques. There are two transition temperatures, which have been observed in the temperature dependent ac dielectric and DC resistivity measurement. The response of dielectric behaviors to temperature is similar to that of the ferroelectric material; however, the dielectric polarization is due to the polaron hopping, which is evident from the DC resistivity analysis. Hence, the present observations lead to understand the electrical properties of barium hexaferrite. The frequency dependent dielectric dispersion can be understood by the modified Debye model. More interestingly, the dielectric constant decreases and DC resistivity increases with the increase in the Al concentration, which has the correlation between bond length modifications in the crystal due to substitution.

  13. Research on breakdown characteristics of oil-paper insulation in compound field at different temperatures

    NASA Astrophysics Data System (ADS)

    Li, L.; Chen, M. Y.; Zhu, X. C.; Gao, Z. W.; Zhang, H. D.; Li, G. X.; Zhang, J.; Yu, C. L.; Feng, Y. M.

    2018-01-01

    The breakdown characteristics of oil-paper insulation in AC, DC and compound field at different temperatures were studied. The breakdown mechanism of oil-paper insulation at different temperatures and in AC and DC electric fields was analyzed. The breakdown characteristic mechanisms of the oil-paper insulation in the compound field at different temperatures were obtained: the dielectric strength of oil-paper compound insulation is changed gradually from dependence on oil dielectric strength to dependence on paperboard dielectric strength at low temperature. The dielectric strength of oil-paper compound insulation is always related to the oil dielectric strength closely at high temperature with decrease of AC content.

  14. The DC dielectric breakdown strength of magnetic fluids based on transformer oil

    NASA Astrophysics Data System (ADS)

    Kopčanský, Peter; Tomčo, Ladislav; Marton, Karol; Koneracká, Martina; Timko, Milan; Potočová, Ivana

    2005-03-01

    The DC dielectric breakdown strength of magnetic fluids based on transformer oil TECHNOL US 4000, with different saturation magnetizations, was investigated in various orientations of external magnetic field. It was shown that the dielectric breakdown strength in H∣∣ E is strongly influenced by the aggregation effects. As a boundary volume concentration of magnetic particles, below which the magnetic fluids have better dielectric properties than pure transformer oil, the volume concentration Φ=0.01 was found. Thus magnetic fluids with Φ<0.01 are suitable for the use as a high-voltage insulation.

  15. Optical and Electrical Characteristics of Silver Ion Conducting Nanocomposite Solid Polymer Electrolytes Based on Chitosan

    NASA Astrophysics Data System (ADS)

    Aziz, Shujahadeen B.; Rasheed, Mariwan A.; Abidin, Zul H. Z.

    2017-10-01

    Optical and electrical properties of nanocomposite solid polymer electrolytes based on chitosan have been investigated. Incorporation of alumina nanoparticles into the chitosan:silver triflate (AgTf) system broadened the surface plasmon resonance peaks of the silver nanoparticles and shifted the absorption edge to lower photon energy. A clear decrease of the optical bandgap in nanocomposite samples containing alumina nanoparticles was observed. The variation of the direct-current (DC) conductivity and dielectric constant followed the same trend with alumina concentration. The DC conductivity increased by two orders of magnitude, which can be attributed to hindrance of silver ion reduction. Transmission electron microscopy was used to interpret the space-charge and blocking effects of alumina nanoparticles on the DC conductivity and dielectric constant. The ion conduction mechanism was interpreted based on the dependences of the electrical and dielectric parameters. The dependence of the DC conductivity on the dielectric constant is explained empirically. Relaxation processes associated with conductivity and viscoelasticity were distinguished based on the incomplete semicircular arcs in plots of the real and imaginary parts of the electric modulus.

  16. Do dielectric nanostructures turn metallic in high-electric dc fields?

    PubMed

    Silaeva, E P; Arnoldi, L; Karahka, M L; Deconihout, B; Menand, A; Kreuzer, H J; Vella, A

    2014-11-12

    Three-dimensional dielectric nanostructures have been analyzed using field ion microscopy (FIM) to study the electric dc field penetration inside these structures. The field is proved to be screened within a few nanometers as theoretically calculated taking into account the high-field impact ionization process. Moreover, the strong dc field of the order of 0.1 V/Å at the surface inside a dielectric nanostructure modifies its band structure leading to a strong band gap shrinkage and thus to a strong metal-like optical absorption near the surface. This metal-like behavior was theoretically predicted using first-principle calculations and experimentally proved using laser-assisted atom probe tomography (APT). This work opens up interesting perspectives for the study of the performance of all field-effect nanodevices, such as nanotransistor or super capacitor, and for the understanding of the physical mechanisms of field evaporation of dielectric nanotips in APT.

  17. Colossal dielectric behavior of semiconducting Sr2TiMnO6 ceramics

    NASA Astrophysics Data System (ADS)

    Meher, K. R. S. Preethi; Varma, K. B. R.

    2009-02-01

    Manganitelike double perovskite Sr2TiMnO6 (STMO) ceramics fabricated from the powders synthesized via the solid-state reaction route, exhibited dielectric constants as high as ˜105 in the low frequency range (100 Hz-10 kHz) at room temperature. The Maxwell-Wagner type of relaxation mechanism was found to be more appropriate to rationalize such high dielectric constant values akin to that observed in materials such as KxTiyNi(1-x-y)O and CaCu3Ti4O12. The dielectric measurements carried out on the samples with different thicknesses and electrode materials reflected the influence of extrinsic effects. The impedance studies (100 Hz-10 MHz) in the 180-300 K temperature range revealed the presence of two dielectric relaxations corresponding to the grain boundary and the electrode. The dielectric response of the grain boundary was found to be weakly dependent on the dc bias field (up to 11 V/cm). However, owing to the electrode polarization, the applied ac/dc field had significant effect on the low frequency dielectric response. At low temperatures (100-180 K), the dc conductivity of STMO followed a variable range hopping behavior. Above 180 K, it followed the Arrhenius behavior because of the thermally activated conduction process. The bulk conductivity relaxation owing to the localized hopping of charge carriers obeyed the typical universal dielectric response.

  18. Possible origin of nonlinear conductivity and large dielectric constant in the commensurate charge-density-wave phase of 1 T -TaS2

    NASA Astrophysics Data System (ADS)

    Ma, Yongchang; Hou, Yanhui; Lu, Cuimin; Li, Lijun; Petrovic, Cedomir

    2018-05-01

    The electric field dependence of the dielectric properties and the nonlinear conductance of 1 T -TaS2 below 50 K has been investigated. A large dielectric constant of about 104 is obtained up to 107 Hz, which cannot be attributed to hopping of the localized carriers alone, the collective excitations of the commensurate charge-density-wave must be another contributor. The dielectric spectra disperse slightly in our measured temperature and frequency range. At a moderate dc bias field, the real part of the dielectric constant ɛ1(ω ) decreases. We propose that the separation of bound soliton-antisoliton pairs may be a contributor to the reduction of ɛ1(ω ) and the accompanying nonlinear conductivity with increasing dc bias.

  19. Pulsed-DC DBD Plasma Actuators

    NASA Astrophysics Data System (ADS)

    Duong, Alan; Corke, Thomas; Thomas, Flint

    2017-11-01

    A power system for dielectric barrier discharge (DBD) plasma actuators that utilizes a pulsed-DC waveform is presented. The plasma actuator arrangement is identical to most typical AC-DBD designs with staggered electrodes that are separated by a dielectric insulator. A key difference is that the pulsed-DC actuator utilizes a DC voltage source to drive the actuator instead of an AC voltage input. The DC source is supplied to both electrodes. The exposed electrode remains constant in time while the encapsulated electrode is periodically grounded for short instances then is allowed to rise to the source DC level. Further investigation of the pulsed-DC plasma actuator was conducted. Time-resolved velocity measurements were done to characterize the induced velocity field generated by the pulsed-DC plasma actuator. A model of the pulsed-DC plasma actuator is developed in LTspice for further study. The work presented are intended in developing a model to be used in CFD flow control simulations. NASA SBIR NNX14CC12C.

  20. Electrical conductivity and dielectric relaxation of 2-(antipyrin-4-ylhydrazono)-2-(4-nitrophenyl)acetonitrile

    NASA Astrophysics Data System (ADS)

    El-Menyawy, E. M.; Zedan, I. T.; Nawar, H. H.

    2014-03-01

    The electrical and dielectric properties of the synthesized 2-(antipyrin-4-ylhydrazono)-2-(4-nitrophenyl)acetonitrile (AHNA) have been studied. The direct and alternating current (DC and AC) conductivities and complex dielectric constant were investigated in temperature range 303-403 K. The AC conductivity and dielectric properties of AHNA were investigated over frequency range 100 Hz-5 MHz. From DC and AC measurements, electrical conduction is found to be a thermally activated process. The frequency-dependent AC conductivity obeys Jonscher's universal power law in which the frequency exponent decreases with increasing temperature. The correlated barrier hopping (CBH) is the predominant model for describing the charge carrier transport in which the electrical parameters are evaluated. The activation energy is found to decrease with increasing frequency. The behaviors of dielectric and dielectric loss are discussed in terms of a polarization mechanism. The dielectric loss shows frequency power law from which the maximum barrier height is determined as 0.19 eV in terms of the Guintini model.

  1. Electrical properties of lunar soil sample 15301,38

    NASA Technical Reports Server (NTRS)

    Olhoeft, G. R.; Frisillo, A. L.; Strangway, D. W.

    1974-01-01

    Electrical property measurements have been made on an Apollo 15 lunar soil sample in ultrahigh vacuum from room temperature to 827 C for the frequency spectrum from 100 Hz through 1 MHz. The dielectric constant, the total ac loss tangent, and the dc conductivity were measured. The dc conductivity showed no thermal hysteresis, but an irreversible (in vacuum) thermal effect was found in the dielectric loss tangent on heating above 700 C and during the subsequent cooling. This appears to be related to several effects associated with lunar glass above 700 C. The sample also showed characteristic low-frequency dispersion in the dielectric constant with increasing temperature, presumably due to Maxwell-Wagner intergranular effects. The dielectric properties may be fitted to a model involving a Cole-Cole frequency distribution that is relatively temperature-independent below 200 C and follows a Boltzmann temperature distribution with an activation energy of 2.5 eV above 200 C. The dc conductivity is fitted by an exponential temperature distribution and becomes the dominant loss above 700 C.

  2. 47 CFR 73.184 - Groundwave field strength graphs.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... a dielectric constant of the ground (referred to air as unity) equal to 15 for land and 80 for sea..., Washington, DC 20554, (202) 632-7000. (c) Provided the value of the dielectric constant is near 15, the... dielectric constant, the following procedure may be used to determine the dielectric constant of the ground...

  3. The experimental study of the DC dielectric breakdown strength in magnetic fluids

    NASA Astrophysics Data System (ADS)

    Kopčanský, P.; Tomčo, L.; Marton, K.; Koneracká, M.; Potočová, I.; Timko, M.

    2004-05-01

    Magnetic fluids have been studied for use as a high-voltage insulation. High-voltage measurements on magnetic fluids based on transformer oil, as a function of volume concentrations of magnetite particles and applied magnetic field, showed the increase of the DC dielectric breakdown strength opposite transformer oil, if the saturation magnetization of magnetic fluid is up to 4 mT approximately.

  4. REPORT OF THE QUALIFICATION TESTING OF SNAP 10A FUSISTORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holtwick, J.S. III; Nowell, V.P.

    1963-07-31

    Qualification testing of SNAP 10A fusistors was performed. Test operations included: visual inspection, insulation resistance, dielectric strength, and d-c resistance testing prior to subjecting the fusisters to environmental testing; opening-time testing prior to, during, and following vacuum and temperature testing; and insulation resistance, dielectric strength, and d-c resistance testing following environmental applications of temperature, vacuum, and sinusoidal vibration. (auth)

  5. Propagating bound states in the continuum in dielectric gratings

    NASA Astrophysics Data System (ADS)

    Bulgakov, E. N.; Maksimov, D. N.; Semina, P. N.; Skorobogatov, S. A.

    2018-06-01

    We consider propagating bound states in the continuum in dielectric gratings. The gratings consist of a slab with ridges periodically arranged ether on top or on the both sides of the slab. Based on the Fourier modal approach we recover the leaky zones above the line of light to identify the geometries of the gratings supporting Bloch bound states propagating in the direction perpendicular to the ridges. Most importantly, it is demonstrated that if a two-side grating possesses either mirror or glide symmetry the Bloch bound states are stable to variation of parameters as far as the above symmetries are preserved.

  6. Comparison of all atom, continuum, and linear fitting empirical models for charge screening effect of aqueous medium surrounding a protein molecule

    NASA Astrophysics Data System (ADS)

    Takahashi, Takuya; Sugiura, Junnnosuke; Nagayama, Kuniaki

    2002-05-01

    To investigate the role hydration plays in the electrostatic interactions of proteins, the time-averaged electrostatic potential of the B1 domain of protein G in an aqueous solution was calculated with full atomic molecular dynamics simulations that explicitly considers every atom (i.e., an all atom model). This all atom calculated potential was compared with the potential obtained from an electrostatic continuum model calculation. In both cases, the charge-screening effect was fairly well formulated with an effective relative dielectric constant which increased linearly with increasing charge-charge distance. This simulated linear dependence agrees with the experimentally determined linear relation proposed by Pickersgill. Cut-off approximations for Coulomb interactions failed to reproduce this linear relation. Correlation between the all atom model and the continuum models was found to be better than the respective correlation calculated for linear fitting to the two models. This confirms that the continuum model is better at treating the complicated shapes of protein conformations than the simple linear fitting empirical model. We have tried a sigmoid fitting empirical model in addition to the linear one. When weights of all data were treated equally, the sigmoid model, which requires two fitting parameters, fits results of both the all atom and the continuum models less accurately than the linear model which requires only one fitting parameter. When potential values are chosen as weighting factors, the fitting error of the sigmoid model became smaller, and the slope of both linear fitting curves became smaller. This suggests the screening effect of an aqueous medium within a short range, where potential values are relatively large, is smaller than that expected from the linear fitting curve whose slope is almost 4. To investigate the linear increase of the effective relative dielectric constant, the Poisson equation of a low-dielectric sphere in a high-dielectric medium was solved and charges distributed near the molecular surface were indicated as leading to the apparent linearity.

  7. Methods and Apparatus for Pulsed-DC Dielectric Barrier Discharge Plasma Actuator and Circuit

    NASA Technical Reports Server (NTRS)

    Corke, Thomas C. (Inventor); Gold, Calman (Inventor); Kaszeta, Richard (Inventor)

    2017-01-01

    A plasma generating device intended to induce a flow in a fluid via plasma generation includes a dielectric separating two electrodes and a power supply. The first electrode is exposed to a fluid flow while the second electrode is positioned under the dielectric. The power supply is electrically coupled to a switch and the first and second electrodes. When the power supply is energized by repeated action of the switch, it causes a pulsed DC current between the electrodes which causes the fluid to ionize generating a plasma. The generation of the plasma induces a force with a velocity component in the fluid.

  8. Electrical Properties of Thin-Film Capacitors Fabricated Using High Temperature Sputtered Modified Barium Titanate.

    PubMed

    Reynolds, Glyn J; Kratzer, Martin; Dubs, Martin; Felzer, Heinz; Mamazza, Robert

    2012-04-13

    Simple thin-film capacitor stacks were fabricated from sputter-deposited doped barium titanate dielectric films with sputtered Pt and/or Ni electrodes and characterized electrically. Here, we report small signal, low frequency capacitance and parallel resistance data measured as a function of applied DC bias, polarization versus applied electric field strength and DC load/unload experiments. These capacitors exhibited significant leakage (in the range 8-210 μA/cm²) and dielectric loss. Measured breakdown strength for the sputtered doped barium titanate films was in the range 200 kV/cm -2 MV/cm. For all devices tested, we observed clear evidence for dielectric saturation at applied electric field strengths above 100 kV/cm: saturated polarization was in the range 8-15 μC/cm². When cycled under DC conditions, the maximum energy density measured for any of the capacitors tested here was ~4.7 × 10 -2 W-h/liter based on the volume of the dielectric material only. This corresponds to a specific energy of ~8 × 10 -3 W-h/kg, again calculated on a dielectric-only basis. These results are compared to those reported by other authors and a simple theoretical treatment provided that quantifies the maximum energy that can be stored in these and similar devices as a function of dielectric strength and saturation polarization. Finally, a predictive model is developed to provide guidance on how to tailor the relative permittivities of high-k dielectrics in order to optimize their energy storage capacities.

  9. Electrical Properties of Thin-Film Capacitors Fabricated Using High Temperature Sputtered Modified Barium Titanate

    PubMed Central

    Reynolds, Glyn J.; Kratzer, Martin; Dubs, Martin; Felzer, Heinz; Mamazza, Robert

    2012-01-01

    Simple thin-film capacitor stacks were fabricated from sputter-deposited doped barium titanate dielectric films with sputtered Pt and/or Ni electrodes and characterized electrically. Here, we report small signal, low frequency capacitance and parallel resistance data measured as a function of applied DC bias, polarization versus applied electric field strength and DC load/unload experiments. These capacitors exhibited significant leakage (in the range 8–210 μA/cm2) and dielectric loss. Measured breakdown strength for the sputtered doped barium titanate films was in the range 200 kV/cm −2 MV/cm. For all devices tested, we observed clear evidence for dielectric saturation at applied electric field strengths above 100 kV/cm: saturated polarization was in the range 8–15 μC/cm2. When cycled under DC conditions, the maximum energy density measured for any of the capacitors tested here was ~4.7 × 10−2 W-h/liter based on the volume of the dielectric material only. This corresponds to a specific energy of ~8 × 10−3 W-h/kg, again calculated on a dielectric-only basis. These results are compared to those reported by other authors and a simple theoretical treatment provided that quantifies the maximum energy that can be stored in these and similar devices as a function of dielectric strength and saturation polarization. Finally, a predictive model is developed to provide guidance on how to tailor the relative permittivities of high-k dielectrics in order to optimize their energy storage capacities. PMID:28817001

  10. Continuum theory of lipid bilayer electrostatics.

    PubMed

    Gerami, R; Bruinsma, R F

    2009-10-01

    In order to address the concerns about the applicability of the continuum theory of lipid bilayers, we generalize it by including a film with uniaxial dielectric properties representing the polar head groups of the lipid molecules. As a function of the in-plane dielectric constant κ|| of this film, we encounter a sequence of different phases. For low values of κ||, transmembrane pores have aqueous cores, ions are repelled by the bilayer, and the ion permeability of the bilayer is independent of the ion radius as in the existing theory. For increasing κ||, a threshold is reached--of the order of the dielectric constant of water--beyond which ions are attracted to the lipid bilayer by generic polarization attraction, transmembrane pores collapse, and the ion permeability becomes sensitively dependent on the ion radius, results that are more consistent with experimental and numerical studies of the interaction of ions with neutral lipid bilayers. At even higher values of κ||, the ion/pore complexes are predicted to condense in the form of extended arrays. The generalized continuum theory can be tested quantitatively by studies of the ion permeability as a function of salt concentration and co-surfactant concentration.

  11. Temperature Effects of Dielectric Properties of ER Fluids

    NASA Astrophysics Data System (ADS)

    Qiu, Z. Y.; Hu, L.; Liu, M. W.; Bao, H. X.; Jiang, Y. G.; Zhou, L. W.; Tang, Y.; Gao, Z.; Sun, M.; Korobko, E. V.

    Under the consideration of the role that energy transfer and dissipation play in ER effect, an improved theory frame for ER effects, polarization-dissipation-structure-rheology, is suggested. The theory frame is substantiated by the basic physical laws and certain critical experimental facts. The dielectric response of a diatomite ER fluid to temperature is measured in the temperature range of 140 K to 400 K. By comparison of the DC conductivity with the AC effective conductivity of the sample, we found that the AC dielectric loss consists of two parts. One part comes from the DC conductivity, the other from the response of the bound charges in scope of particle to AC field. It is suggested that the response of bound charges is very important to ER effects. Besides, the effect of temperature on shear stress is measured, and interpreted based on the dielectric measurements. The source of two loss peaks in the curve of the dielectric loss versus temperature is not clear.

  12. Incorporation of the TIP4P water model into a continuum solvent for computing solvation free energy

    NASA Astrophysics Data System (ADS)

    Yang, Pei-Kun

    2014-10-01

    The continuum solvent model is one of the commonly used strategies to compute solvation free energy especially for large-scale conformational transitions such as protein folding or to calculate the binding affinity of protein-protein/ligand interactions. However, the dielectric polarization for computing solvation free energy from the continuum solvent is different than that obtained from molecular dynamic simulations. To mimic the dielectric polarization surrounding a solute in molecular dynamic simulations, the first-shell water molecules was modeled using a charge distribution of TIP4P in a hard sphere; the time-averaged charge distribution from the first-shell water molecules were estimated based on the coordination number of the solute, and the orientation distribution of the first-shell waters and the intermediate water molecules were treated as that of a bulk solvent. Based on this strategy, an equation describing the solvation free energy of ions was derived.

  13. Experimental Investigation of Electrical Conductivity and Permittivity of SC-TiO 2 -EG Nanofluids.

    PubMed

    Fal, Jacek; Barylyak, Adriana; Besaha, Khrystyna; Bobitski, Yaroslav V; Cholewa, Marian; Zawlik, Izabela; Szmuc, Kamil; Cebulski, Józef; Żyła, Gaweł

    2016-12-01

    The paper presents experimental studies of dielectric properties of nanofluids based on ethylene glycol and SC-TiO2 nanoparticles with average size of 15-40 nm with various mass concentrations. The dielectric permittivity both real part and imaginary part as a function of temperature and frequency were measured. Also, dependence ac conductivity on frequency, temperature, and mass concentration were investigated. Based on the curves of ac conductivity, dc conductivity was calculated, and 400 % enhancement in dc conductivity was exposed.

  14. Experimental Investigation of Electrical Conductivity and Permittivity of SC-TiO 2 -EG Nanofluids

    NASA Astrophysics Data System (ADS)

    Fal, Jacek; Barylyak, Adriana; Besaha, Khrystyna; Bobitski, Yaroslav V.; Cholewa, Marian; Zawlik, Izabela; Szmuc, Kamil; Cebulski, Józef; żyła, Gaweł

    2016-08-01

    The paper presents experimental studies of dielectric properties of nanofluids based on ethylene glycol and SC-TiO2 nanoparticles with average size of 15-40 nm with various mass concentrations. The dielectric permittivity both real part and imaginary part as a function of temperature and frequency were measured. Also, dependence ac conductivity on frequency, temperature, and mass concentration were investigated. Based on the curves of ac conductivity, dc conductivity was calculated, and 400 % enhancement in dc conductivity was exposed.

  15. Structural, morphological and electrical properties of Sn-substituted Ni-Zn ferrites synthesized by double sintering technique

    NASA Astrophysics Data System (ADS)

    Ali, M. A.; Uddin, M. M.; Khan, M. N. I.; Chowdhury, F.-U.-Z.; Haque, S. M.

    2017-02-01

    The Sn-substituted Ni-Zn ferrites, (0.0≤x≤0.30), have been synthesized by the standard double sintering technique from the oxide nanopowders of Ni, Zn, Fe and Sn. The structural and electrical properties have been investigated by the X-ray diffraction (XRD), scanning electron microscopy (SEM), DC resistivity and dielectric measurements. From XRD data, the single cubic spinel phase has been confirmed for x≤0.1, whereas for x>0.1 an extra intermediate phase has been detected along with the cubic spinel phase of Ni-Zn ferrite. The grain size is increased due to Sn substitution in Ni-Zn ferrites. DC resistivity as a function of temperature has been measured by two probe method. The semiconducting nature has been found operative in the samples. The DC resistivity was found to decrease whilst the dielectric constant increased with increasing Sn content in Ni-Zn ferrites. The unusual behavior of the dielectric loss factor of the ferrites was explained by the Rezlescu model. The electrical relaxation of the ferrites has been studied in terms of electric modulus formalism and the time for dielectric relaxation was calculated. The contribution of grain resistance has been studied from the Cole-Cole plot. The suitability to use the as prepared samples in the miniaturized memory devices based capacitive components or energy storage principles are confirmed from the values of dielectric constant.

  16. Beyond the continuum: how molecular solvent structure affects electrostatics and hydrodynamics at solid-electrolyte interfaces.

    PubMed

    Bonthuis, Douwe Jan; Netz, Roland R

    2013-10-03

    Standard continuum theory fails to predict several key experimental results of electrostatic and electrokinetic measurements at aqueous electrolyte interfaces. In order to extend the continuum theory to include the effects of molecular solvent structure, we generalize the equations for electrokinetic transport to incorporate a space dependent dielectric profile, viscosity profile, and non-electrostatic interaction potential. All necessary profiles are extracted from atomistic molecular dynamics (MD) simulations. We show that the MD results for the ion-specific distribution of counterions at charged hydrophilic and hydrophobic interfaces are accurately reproduced using the dielectric profile of pure water and a non-electrostatic repulsion in an extended Poisson-Boltzmann equation. The distributions of Na(+) at both surface types and Cl(-) at hydrophilic surfaces can be modeled using linear dielectric response theory, whereas for Cl(-) at hydrophobic surfaces it is necessary to apply nonlinear response theory. The extended Poisson-Boltzmann equation reproduces the experimental values of the double-layer capacitance for many different carbon-based surfaces. In conjunction with a generalized hydrodynamic theory that accounts for a space dependent viscosity, the model captures the experimentally observed saturation of the electrokinetic mobility as a function of the bare surface charge density and the so-called anomalous double-layer conductivity. The two-scale approach employed here-MD simulations and continuum theory-constitutes a successful modeling scheme, providing basic insight into the molecular origins of the static and kinetic properties of charged surfaces, and allowing quantitative modeling at low computational cost.

  17. A quantum mechanical-Poisson-Boltzmann equation approach for studying charge flow between ions and a dielectric continuum

    NASA Astrophysics Data System (ADS)

    Gogonea, Valentin; Merz, Kenneth M.

    2000-02-01

    This paper presents a theoretical model for the investigation of charge transfer between ions and a solvent treated as a dielectric continuum media. The method is a combination of a semiempirical effective Hamiltonian with a modified Poisson-Boltzmann equation which includes charge transfer in the form of a surface charge density positioned at the dielectric interface. The new Poisson-Boltzmann equation together with new boundary conditions results in a new set of equations for the electrostatic potential (or polarization charge densities). Charge transfer adds a new free energy component to the solvation free energy term, which accounts for all interactions between the transferred charge at the dielectric interface, the solute wave function and the solvent polarization charges. Practical calculations on a set of 19 anions and 17 cations demonstrate that charge exchange with a dielectric is present and it is in the range of 0.06-0.4 eu. Furthermore, the pattern of the magnitudes of charge transfer can be related to the acid-base properties of the ions in many cases, but exceptions are also found. Finally, we show that the method leads to an energy decomposition scheme of the total electrostatic energy, which can be used in mechanistic studies on protein and DNA interaction with water.

  18. Magnetic, dielectric properties, and scaling behaviors of Aurivillius compounds Bi6-x/3Fe2Ti3-2x(WCo)xO18 (0 ≤ x ≤ 0.15)

    NASA Astrophysics Data System (ADS)

    Zuo, X. Z.; Yang, J.; Yuan, B.; Song, D. P.; Tang, X. W.; Zhang, K. J.; Zhu, X. B.; Song, W. H.; Dai, J. M.; Sun, Y. P.

    2015-03-01

    We investigate the structural, magnetic, dielectric properties, and scaling behaviors of Aurivillius compounds Bi6-x/3Fe2Ti3-2x(WCo)xO18 (0 ≤ x ≤ 0.15). The room-temperature weak ferromagnetism is observed for the W/Co co-doped samples. The results of the dielectric constant ɛr, complex impedance Z ″ , the dc conductivity σdc, and hopping frequency fH manifest that the dielectric relaxation of the x = 0 sample and the doped samples in the dielectric anomaly region (450-750 K) can be ascribed to the trap-controlled ac conduction around the doubly ionized oxygen vacancies and the localized hopping process of oxygen vacancies, respectively. The scaling behaviors reveal that the dynamic process of both electrons in the x = 0 sample and oxygen vacancies in the doped samples is temperature independent. The ferroelectric Curie-temperature Tc decreases slightly from 973 K to 947 K with increasing the doping level of W/Co. In addition, the dielectric loss exhibits a dielectric relaxation above 800 K with the rather large activation energies (1.95 eV ≤ Ea ≤ 2.72 eV).

  19. Note: Optimization of the numerical data analysis for conductivity percolation studies of drying moist porous systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moscicki, J. K.; Sokolowska, D.; Dziob, D.

    2014-02-15

    A simplified data analysis protocol, for dielectric spectroscopy use to study conductivity percolation in dehydrating granular media is discussed. To enhance visibility of the protonic conductivity contribution to the dielectric loss spectrum, detrimental effects of either low-frequency dielectric relaxation or electrode polarization are removed. Use of the directly measurable monofrequency dielectric loss factor rather than estimated DC conductivity to parameterize the percolation transition substantially reduces the analysis work and time.

  20. Development of a Lumped Element Circuit Model for Approximation of Dielectric Barrier Discharges

    DTIC Science & Technology

    2011-08-01

    dielectric barrier discharge (DBD) plasmas. Based on experimental observations, it is assumed that nanosecond pulsed DBDs, which have been proposed...species for pulsed direct current (DC) dielectric barrier discharge (DBD) plasmas. Based on experimental observations, it is assumed that nanosecond...momentum-based approaches. Given the fundamental differences between the novel pulsed discharge approach and the more conventional momentum-based

  1. Continuum description of ionic and dielectric shielding for molecular-dynamics simulations of proteins in solution

    NASA Astrophysics Data System (ADS)

    Egwolf, Bernhard; Tavan, Paul

    2004-01-01

    We extend our continuum description of solvent dielectrics in molecular-dynamics (MD) simulations [B. Egwolf and P. Tavan, J. Chem. Phys. 118, 2039 (2003)], which has provided an efficient and accurate solution of the Poisson equation, to ionic solvents as described by the linearized Poisson-Boltzmann (LPB) equation. We start with the formulation of a general theory for the electrostatics of an arbitrarily shaped molecular system, which consists of partially charged atoms and is embedded in a LPB continuum. This theory represents the reaction field induced by the continuum in terms of charge and dipole densities localized within the molecular system. Because these densities cannot be calculated analytically for systems of arbitrary shape, we introduce an atom-based discretization and a set of carefully designed approximations. This allows us to represent the densities by charges and dipoles located at the atoms. Coupled systems of linear equations determine these multipoles and can be rapidly solved by iteration during a MD simulation. The multipoles yield the reaction field forces and energies. Finally, we scrutinize the quality of our approach by comparisons with an analytical solution restricted to perfectly spherical systems and with results of a finite difference method.

  2. Dielectric properties of layered perovskite Sr1-xAxBi2Nb2O9 ferroelectrics (A=La, Ca and x=0,0.1)

    NASA Astrophysics Data System (ADS)

    Forbess, M. J.; Seraji, S.; Wu, Y.; Nguyen, C. P.; Cao, G. Z.

    2000-05-01

    In this letter, we report an experimental study on the influences of 10 at. % Ca2+ and La3+ doping on dielectric properties and dc conductivity of SrBi2Nb2O9 ferroelectric ceramics. All the samples were made by two-step solid-state reaction sintering at temperatures up to 1150 °C for 0.5-1 h in air. X-ray diffraction analysis indicated that single-phase layered perovskite ferroelectrics were obtained and no appreciable secondary phase was found. The Curie point was found to increase from 418 °C without doping to 475 °C with Ca2+ doping and to 480 °C with La3+ doping. Dielectric constants, loss tangent, and dc conductivity of SrBi2Nb2O9 ferroelectrics doped with Ca2+ and La3+ were studied and the relationships among doping, crystal structure, and dielectric properties were discussed.

  3. AC conductivity and Dielectric Study of Chalcogenide Glasses of Se-Te-Ge System

    NASA Astrophysics Data System (ADS)

    Salman, Fathy

    2004-01-01

    The ac conductivity and dielectric properties of glassy system SexTe79 - xGe21, with x = 11, 14, 17 at.%, has been studied at temperatures 300 to 450 K and over a wide range of frequencies (50 Hz to 500 kHz). Experimental results indicate that the ac conductivity and the dielectric constants depend on temperature, frequency and Se content. The conductivity as a function of frequency exhibited two components: dc conductivity s dc, and ac conductivity s ac, where s ac ˜ w s. The mechanism of ac conductivity can be reasonably interpreted in terms of the correlated barrier hopping model (CBH). The activation energies are estimated and discussed. The dependence of ac conductivity and dielectric constants on the Se content x can be interpreted as the effect of Se fraction on the positional disorder. The impedance plot at each temperature appeared as a semicircle passes through the origin. Each semicircle is represented by an equivalent circuit of parallel resistance Rb and capacitance Cb.

  4. Dielectric property study of poly(4-vinylphenol)-graphene oxide nanocomposite thin film

    NASA Astrophysics Data System (ADS)

    Roy, Dhrubojyoti

    2018-05-01

    Thin film capacitor device having a sandwich structure of indium tin oxide (ITO)-coated glass/polymer or polymer nanocomposite /silver has been fabricated and their dielectric and leakage current properties has been studied. The dielectric properties of the capacitors were characterized for frequencies ranging from 1 KHz to 1 MHz. 5 wt% Poly(4-vinylphenol)(PVPh)-Graphene (GO) nanocomposite exhibited an increase in dielectric constant to 5.6 and small rise in dielectric loss to around˜0.05 at 10 KHz w.r.t polymer. The DC conductivity measurements reveal rise of leakage current in nanocomposite.

  5. Protein-ion binding process on finite macromolecular concentration. A Poisson-Boltzmann and Monte Carlo study.

    PubMed

    de Carvalho, Sidney Jurado; Fenley, Márcia O; da Silva, Fernando Luís Barroso

    2008-12-25

    Electrostatic interactions are one of the key driving forces for protein-ligands complexation. Different levels for the theoretical modeling of such processes are available on the literature. Most of the studies on the Molecular Biology field are performed within numerical solutions of the Poisson-Boltzmann Equation and the dielectric continuum models framework. In such dielectric continuum models, there are two pivotal questions: (a) how the protein dielectric medium should be modeled, and (b) what protocol should be used when solving this effective Hamiltonian. By means of Monte Carlo (MC) and Poisson-Boltzmann (PB) calculations, we define the applicability of the PB approach with linear and nonlinear responses for macromolecular electrostatic interactions in electrolyte solution, revealing some physical mechanisms and limitations behind it especially due the raise of both macromolecular charge and concentration out of the strong coupling regime. A discrepancy between PB and MC for binding constant shifts is shown and explained in terms of the manner PB approximates the excess chemical potentials of the ligand, and not as a consequence of the nonlinear thermal treatment and/or explicit ion-ion interactions as it could be argued. Our findings also show that the nonlinear PB predictions with a low dielectric response well reproduce the pK shifts calculations carried out with an uniform dielectric model. This confirms and completes previous results obtained by both MC and linear PB calculations.

  6. Low dielectric response in enzyme active site

    PubMed Central

    Mertz, Edward L.; Krishtalik, Lev I.

    2000-01-01

    The kinetics of charge transfer depend crucially on the dielectric reorganization of the medium. In enzymatic reactions that involve charge transfer, atomic dielectric response of the active site and of its surroundings determines the efficiency of the protein as a catalyst. We report direct spectroscopic measurements of the reorganization energy associated with the dielectric response in the active site of α-chymotrypsin. A chromophoric inhibitor of the enzyme is used as a spectroscopic probe. We find that water strongly affects the dielectric reorganization in the active site of the enzyme in solution. The reorganization energy of the protein matrix in the vicinity of the active site is similar to that of low-polarity solvents. Surprisingly, water exhibits an anomalously high dielectric response that cannot be described in terms of the dielectric continuum theory. As a result, sequestering the active site from the aqueous environment inside low-dielectric enzyme body dramatically reduces the dielectric reorganization. This reduction is particularly important for controlling the rate of enzymatic reactions. PMID:10681440

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuo, X. Z.; Yang, J., E-mail: jyang@issp.ac.cn; Yuan, B.

    We investigate the structural, magnetic, dielectric properties, and scaling behaviors of Aurivillius compounds Bi{sub 6−x∕3}Fe{sub 2}Ti{sub 3−2x}(WCo){sub x}O{sub 18} (0 ≤ x ≤ 0.15). The room-temperature weak ferromagnetism is observed for the W/Co co-doped samples. The results of the dielectric constant ε{sub r}, complex impedance Z″, the dc conductivity σ{sub dc}, and hopping frequency f{sub H} manifest that the dielectric relaxation of the x = 0 sample and the doped samples in the dielectric anomaly region (450–750 K) can be ascribed to the trap-controlled ac conduction around the doubly ionized oxygen vacancies and the localized hopping process of oxygen vacancies, respectively.more » The scaling behaviors reveal that the dynamic process of both electrons in the x = 0 sample and oxygen vacancies in the doped samples is temperature independent. The ferroelectric Curie-temperature T{sub c} decreases slightly from 973 K to 947 K with increasing the doping level of W/Co. In addition, the dielectric loss exhibits a dielectric relaxation above 800 K with the rather large activation energies (1.95 eV ≤ E{sub a} ≤ 2.72 eV)« less

  8. Quantum chemistry in arbitrary dielectric environments: Theory and implementation of nonequilibrium Poisson boundary conditions and application to compute vertical ionization energies at the air/water interface

    NASA Astrophysics Data System (ADS)

    Coons, Marc P.; Herbert, John M.

    2018-06-01

    Widely used continuum solvation models for electronic structure calculations, including popular polarizable continuum models (PCMs), usually assume that the continuum environment is isotropic and characterized by a scalar dielectric constant, ɛ. This assumption is invalid at a liquid/vapor interface or any other anisotropic solvation environment. To address such scenarios, we introduce a more general formalism based on solution of Poisson's equation for a spatially varying dielectric function, ɛ(r). Inspired by nonequilibrium versions of PCMs, we develop a similar formalism within the context of Poisson's equation that includes the out-of-equilibrium dielectric response that accompanies a sudden change in the electron density of the solute, such as that which occurs in a vertical ionization process. A multigrid solver for Poisson's equation is developed to accommodate the large spatial grids necessary to discretize the three-dimensional electron density. We apply this methodology to compute vertical ionization energies (VIEs) of various solutes at the air/water interface and compare them to VIEs computed in bulk water, finding only very small differences between the two environments. VIEs computed using approximately two solvation shells of explicit water molecules are in excellent agreement with experiment for F-(aq), Cl-(aq), neat liquid water, and the hydrated electron, although errors for Li+(aq) and Na+(aq) are somewhat larger. Nonequilibrium corrections modify VIEs by up to 1.2 eV, relative to models based only on the static dielectric constant, and are therefore essential to obtain agreement with experiment. Given that the experiments (liquid microjet photoelectron spectroscopy) may be more sensitive to solutes situated at the air/water interface as compared to those in bulk water, our calculations provide some confidence that these experiments can indeed be interpreted as measurements of VIEs in bulk water.

  9. Quantum chemistry in arbitrary dielectric environments: Theory and implementation of nonequilibrium Poisson boundary conditions and application to compute vertical ionization energies at the air/water interface.

    PubMed

    Coons, Marc P; Herbert, John M

    2018-06-14

    Widely used continuum solvation models for electronic structure calculations, including popular polarizable continuum models (PCMs), usually assume that the continuum environment is isotropic and characterized by a scalar dielectric constant, ε. This assumption is invalid at a liquid/vapor interface or any other anisotropic solvation environment. To address such scenarios, we introduce a more general formalism based on solution of Poisson's equation for a spatially varying dielectric function, ε(r). Inspired by nonequilibrium versions of PCMs, we develop a similar formalism within the context of Poisson's equation that includes the out-of-equilibrium dielectric response that accompanies a sudden change in the electron density of the solute, such as that which occurs in a vertical ionization process. A multigrid solver for Poisson's equation is developed to accommodate the large spatial grids necessary to discretize the three-dimensional electron density. We apply this methodology to compute vertical ionization energies (VIEs) of various solutes at the air/water interface and compare them to VIEs computed in bulk water, finding only very small differences between the two environments. VIEs computed using approximately two solvation shells of explicit water molecules are in excellent agreement with experiment for F - (aq), Cl - (aq), neat liquid water, and the hydrated electron, although errors for Li + (aq) and Na + (aq) are somewhat larger. Nonequilibrium corrections modify VIEs by up to 1.2 eV, relative to models based only on the static dielectric constant, and are therefore essential to obtain agreement with experiment. Given that the experiments (liquid microjet photoelectron spectroscopy) may be more sensitive to solutes situated at the air/water interface as compared to those in bulk water, our calculations provide some confidence that these experiments can indeed be interpreted as measurements of VIEs in bulk water.

  10. Effect of oxygen partial pressure during preparation of rutile-type FeNbTiO6 on electrical and dielectric properties, thermopower and Mössbauer spectra

    NASA Astrophysics Data System (ADS)

    Günther, A.; Hochleitner, R.; Lohringer, H.; Schmidbauer, E.; Schöttler-Himmel, A.; Volk, M.

    2017-05-01

    Electrical and dielectric properties were measured on rutile-type FeNbTiO6, sintered in air, CO2 or 5%H2/CO2 atmosphere between temperatures of 1423 and 1573 K. The individual samples show characteristic differences in DC and AC conductivity, dielectric constant ε(ω) (ω is angular frequency), dielectric loss and dissipation factor. Attempts were made to distinguish between bulk, grain boundary (GB) and sample-electrode (SE) processes. Samples show very high relaxor-like ε(ω) peaks at 500-600 K using Ag-paint contacts as expected from previous studies during preparation in air that is of interest for industrial application; utilizing Pt-paint and using slightly reducing sintering conditions, a clear variation was observed. These findings point to a notable influence of GB and/or SE effects on the experimental ε(ω), in addition to the intrinsic origin by polar nanoregions, as suggested earlier. Complex plane impedance plots are characterized by semicircular arcs due to bulk, GB and/or SE charge transport. The derived DC conductivity σDC shows Arrhenius behavior with activation energy of EA≈0.27-0.37 eV and σDC(300 K) ≈1×10-6-3×10-4 Ω-1cm-1 for the bulk, EA≈0.7-0.9 eV and σDC(300 K)≈5×10-10-1×10-4 Ω-1cm-1 for GB and/or SE processes, depending on the preparation conditions. The thermopower is small and negative, hence n-type conduction occurs and the charge carriers are electrons or electron polarons. 57Fe Mössbauer spectroscopy enabled to gain knowledge of local nonstoichiometry in the environment of Fe cations, presumably affecting electrical conduction in the bulk and GBs; after sample preparation in reducing conditions, apart from Fe3+ also the presence of Fe2+ ions was established.

  11. Broadband dielectric response of CaCu3Ti4O12 : From dc to the electronic transition regime

    NASA Astrophysics Data System (ADS)

    Kant, Ch.; Rudolf, T.; Mayr, F.; Krohns, S.; Lunkenheimer, P.; Ebbinghaus, S. G.; Loidl, A.

    2008-01-01

    We report on phonon properties and electronic transitions in CaCu3Ti4O12 , a material which reveals a colossal dielectric constant at room temperature without any ferroelectric transition. The results of far- and midinfrared measurements are compared to those obtained by broadband dielectric and millimeter-wave spectroscopy on the same single crystal. The unusual temperature dependence of phonon eigenfrequencies, dampings, and ionic plasma frequencies of low-lying phonon modes is analyzed and discussed in detail. Electronic excitations below 4eV are identified as transitions between full and empty hybridized oxygen-copper bands and between oxygen-copper and unoccupied Ti3d bands. The unusually small band gap determined from the dc conductivity (˜200meV) compares well with the optical results.

  12. Free energy functionals for polarization fluctuations: Pekar factor revisited

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dinpajooh, Mohammadhasan; Newton, Marshall D.; Matyushov, Dmitry V.

    The separation of slow nuclear and fast electronic polarization in problems related to electron mobility in polarizable media was considered by Pekar 70 years ago. Within dielectric continuum models, this separation leads to the Pekar factor in the free energy of solvation by the nuclear degrees of freedom. The main qualitative prediction of Pekar’s perspective is a significant, by about a factor of two, drop of the nuclear solvation free energy compared to the total (electronic plus nuclear) free energy of solvation. The Pekar factor enters the solvent reorganization energy of electron transfer reactions and is a significant mechanistic parametermore » accounting for the solvent effect on electron transfer. Here, we study the separation of the fast and slow polarization modes in polar molecular liquids (polarizable dipolar liquids and polarizable water force fields) without relying on the continuum approximation. We derive the nonlocal free energy functional and use atomistic numerical simulations to obtain nonlocal, reciprocal space electronic and nuclear susceptibilities. A consistent transition to the continuum limit is introduced by extrapolating the results of finite-size numerical simulation to zero wavevector. The continuum nuclear susceptibility extracted from simulations is numerically close to the Pekar factor. However, we derive a new functionality involving the static and high-frequency dielectric constants. The main distinction of our approach from the traditional theories is found for the solvation free energy due to the nuclear polarization: the anticipated significant drop of its magnitude with increasing liquid polarizability does not occur. The reorganization energy of electron transfer is either nearly constant with increasing the solvent polarizability and the corresponding high-frequency dielectric constant (polarizable dipolar liquids) or actually noticeably increases (polarizable force fields of water).« less

  13. Free energy functionals for polarization fluctuations: Pekar factor revisited

    DOE PAGES

    Dinpajooh, Mohammadhasan; Newton, Marshall D.; Matyushov, Dmitry V.

    2017-02-13

    The separation of slow nuclear and fast electronic polarization in problems related to electron mobility in polarizable media was considered by Pekar 70 years ago. Within dielectric continuum models, this separation leads to the Pekar factor in the free energy of solvation by the nuclear degrees of freedom. The main qualitative prediction of Pekar’s perspective is a significant, by about a factor of two, drop of the nuclear solvation free energy compared to the total (electronic plus nuclear) free energy of solvation. The Pekar factor enters the solvent reorganization energy of electron transfer reactions and is a significant mechanistic parametermore » accounting for the solvent effect on electron transfer. Here, we study the separation of the fast and slow polarization modes in polar molecular liquids (polarizable dipolar liquids and polarizable water force fields) without relying on the continuum approximation. We derive the nonlocal free energy functional and use atomistic numerical simulations to obtain nonlocal, reciprocal space electronic and nuclear susceptibilities. A consistent transition to the continuum limit is introduced by extrapolating the results of finite-size numerical simulation to zero wavevector. The continuum nuclear susceptibility extracted from simulations is numerically close to the Pekar factor. However, we derive a new functionality involving the static and high-frequency dielectric constants. The main distinction of our approach from the traditional theories is found for the solvation free energy due to the nuclear polarization: the anticipated significant drop of its magnitude with increasing liquid polarizability does not occur. The reorganization energy of electron transfer is either nearly constant with increasing the solvent polarizability and the corresponding high-frequency dielectric constant (polarizable dipolar liquids) or actually noticeably increases (polarizable force fields of water).« less

  14. Free energy functionals for polarization fluctuations: Pekar factor revisited.

    PubMed

    Dinpajooh, Mohammadhasan; Newton, Marshall D; Matyushov, Dmitry V

    2017-02-14

    The separation of slow nuclear and fast electronic polarization in problems related to electron mobility in polarizable media was considered by Pekar 70 years ago. Within dielectric continuum models, this separation leads to the Pekar factor in the free energy of solvation by the nuclear degrees of freedom. The main qualitative prediction of Pekar's perspective is a significant, by about a factor of two, drop of the nuclear solvation free energy compared to the total (electronic plus nuclear) free energy of solvation. The Pekar factor enters the solvent reorganization energy of electron transfer reactions and is a significant mechanistic parameter accounting for the solvent effect on electron transfer. Here, we study the separation of the fast and slow polarization modes in polar molecular liquids (polarizable dipolar liquids and polarizable water force fields) without relying on the continuum approximation. We derive the nonlocal free energy functional and use atomistic numerical simulations to obtain nonlocal, reciprocal space electronic and nuclear susceptibilities. A consistent transition to the continuum limit is introduced by extrapolating the results of finite-size numerical simulation to zero wavevector. The continuum nuclear susceptibility extracted from the simulations is numerically close to the Pekar factor. However, we derive a new functionality involving the static and high-frequency dielectric constants. The main distinction of our approach from the traditional theories is found in the solvation free energy due to the nuclear polarization: the anticipated significant drop of its magnitude with increasing liquid polarizability does not occur. The reorganization energy of electron transfer is either nearly constant with increasing the solvent polarizability and the corresponding high-frequency dielectric constant (polarizable dipolar liquids) or actually noticeably increases (polarizable force fields of water).

  15. Casimir free energy of dielectric films: classical limit, low-temperature behavior and control.

    PubMed

    Klimchitskaya, G L; Mostepanenko, V M

    2017-07-12

    The Casimir free energy of dielectric films, both free-standing in vacuum and deposited on metallic or dielectric plates, is investigated. It is shown that the values of the free energy depend considerably on whether the calculation approach used neglects or takes into account the dc conductivity of film material. We demonstrate that there are material-dependent and universal classical limits in the former and latter cases, respectively. The analytic behavior of the Casimir free energy and entropy for a free-standing dielectric film at low temperature is found. According to our results, the Casimir entropy goes to zero when the temperature vanishes if the calculation approach with neglected dc conductivity of a film is employed. If the dc conductivity is taken into account, the Casimir entropy takes the positive value at zero temperature, depending on the parameters of a film, i.e. the Nernst heat theorem is violated. By considering the Casimir free energy of SiO 2 and Al 2 O 3 films deposited on a Au plate in the framework of two calculation approaches, we argue that physically correct values are obtained by disregarding the role of dc conductivity. A comparison with the well known results for the configuration of two parallel plates is made. Finally, we compute the Casimir free energy of SiO 2 , Al 2 O 3 and Ge films deposited on high-resistivity Si plates of different thicknesses and demonstrate that it can be positive, negative and equal to zero. The effect of illumination of a Si plate with laser light is considered. Possible applications of the obtained results to thin films used in microelectronics are discussed.

  16. Casimir free energy of dielectric films: classical limit, low-temperature behavior and control

    NASA Astrophysics Data System (ADS)

    Klimchitskaya, G. L.; Mostepanenko, V. M.

    2017-07-01

    The Casimir free energy of dielectric films, both free-standing in vacuum and deposited on metallic or dielectric plates, is investigated. It is shown that the values of the free energy depend considerably on whether the calculation approach used neglects or takes into account the dc conductivity of film material. We demonstrate that there are material-dependent and universal classical limits in the former and latter cases, respectively. The analytic behavior of the Casimir free energy and entropy for a free-standing dielectric film at low temperature is found. According to our results, the Casimir entropy goes to zero when the temperature vanishes if the calculation approach with neglected dc conductivity of a film is employed. If the dc conductivity is taken into account, the Casimir entropy takes the positive value at zero temperature, depending on the parameters of a film, i.e. the Nernst heat theorem is violated. By considering the Casimir free energy of SiO2 and Al2O3 films deposited on a Au plate in the framework of two calculation approaches, we argue that physically correct values are obtained by disregarding the role of dc conductivity. A comparison with the well known results for the configuration of two parallel plates is made. Finally, we compute the Casimir free energy of SiO2, Al2O3 and Ge films deposited on high-resistivity Si plates of different thicknesses and demonstrate that it can be positive, negative and equal to zero. The effect of illumination of a Si plate with laser light is considered. Possible applications of the obtained results to thin films used in microelectronics are discussed.

  17. Dielectric and AC conductivity studies on SrBi4Ti4O15

    NASA Astrophysics Data System (ADS)

    Jose, Roshan; Saravanan, K. Venkata

    2018-05-01

    The four layered SrBi4Ti4O15 ceramics which belong to the aurivillius family of oxide was prepared by conventional solid state reaction technique. Analysis of the dielectric data as a function of temperature and frequency revealed normal phase transition. The frequency dependent ac conductivity follows Jonscher's universal power law. Frequency exponent (n), pre-exponential factor (A), bulk dc conductivity (σdc), and hopping frequency (ωp) were determined from the fitting curves. The variation of frequency exponent with temperature indicates that large polaron hopping mechanism up to curie-temperature, then its changes to small polaron hopping. The activation energies were calculated from ac conductivity, bulk dc conductivity and hopping frequency. The activation energies revealed that conductivity had contributions from migrations of oxygen vacancies, bismuth ion vacancies and strontium ion vacancies.

  18. Evaluation of DC electric field distribution of PPLP specimen based on the measurement of electrical conductivity in LN2

    NASA Astrophysics Data System (ADS)

    Hwang, Jae-Sang; Seong, Jae-Kyu; Shin, Woo-Ju; Lee, Jong-Geon; Cho, Jeon-Wook; Ryoo, Hee-Suk; Lee, Bang-Wook

    2013-11-01

    High temperature superconducting (HTS) cable has been paid much attention due to its high efficiency and high current transportation capability, and it is also regarded as eco-friendly power cable for the next generation. Especially for DC HTS cable, it has more sustainable and stable properties compared to AC HTS cable due to the absence of AC loss in DC HTS cable. Recently, DC HTS cable has been investigated competitively all over the world, and one of the key components of DC HTS cable to be developed is a cable joint box considering HVDC environment. In order to achieve the optimum insulation design of the joint box, analysis of DC electric field distribution of the joint box is a fundamental process to develop DC HTS cable. Generally, AC electric field distribution depends on relative permittivity of dielectric materials but in case of DC, electrical conductivity of dielectric material is a dominant factor which determines electric field distribution. In this study, in order to evaluate DC electric field characteristics of the joint box for DC HTS cable, polypropylene laminated paper (PPLP) specimen has been prepared and its DC electric field distribution was analyzed based on the measurement of electrical conductivity of PPLP in liquid nitrogen (LN2). Electrical conductivity of PPLP in LN2 has not been reported yet but it should be measured for DC electric field analysis. The experimental works for measuring electrical conductivity of PPLP in LN2 were presented in this paper. Based on the experimental works, DC electric field distribution of PPLP specimen was fully analyzed considering the steady state and the transient state of DC. Consequently, it was possible to determine the electric field distribution characteristics considering different DC applying stages including DC switching on, DC switching off and polarity reversal conditions.

  19. Dielectric Self-Energy in Poisson-Boltzmann and Poisson-Nernst-Planck Models of Ion Channels

    PubMed Central

    Corry, Ben; Kuyucak, Serdar; Chung, Shin-Ho

    2003-01-01

    We demonstrated previously that the two continuum theories widely used in modeling biological ion channels give unreliable results when the radius of the conduit is less than two Debye lengths. The reason for this failure is the neglect of surface charges on the protein wall induced by permeating ions. Here we attempt to improve the accuracy of the Poisson-Boltzmann and Poisson-Nernst-Planck theories, when applied to channel-like environments, by including a specific dielectric self-energy term to overcome spurious shielding effects inherent in these theories. By comparing results with Brownian dynamics simulations, we show that the inclusion of an additional term in the equations yields significant qualitative improvements. The modified theories perform well in very wide and very narrow channels, but are less successful at intermediate sizes. The situation is worse in multi-ion channels because of the inability of the continuum theories to handle the ion-to-ion interactions correctly. Thus, further work is required if these continuum theories are to be reliably salvaged for quantitative studies of biological ion channels in all situations. PMID:12770869

  20. Continuum and atomistic description of excess electrons in TiO2

    NASA Astrophysics Data System (ADS)

    Maggio, Emanuele; Martsinovich, Natalia; Troisi, Alessandro

    2016-02-01

    The modelling of an excess electron in a semiconductor in a prototypical dye sensitised solar cell is carried out using two complementary approaches: atomistic simulation of the TiO2 nanoparticle surface is complemented by a dielectric continuum model of the solvent-semiconductor interface. The two methods are employed to characterise the bound (excitonic) states formed by the interaction of the electron in the semiconductor with a positive charge opposite the interface. Density-functional theory (DFT) calculations show that the excess electron in TiO2 in the presence of a counterion is not fully localised but extends laterally over a large region, larger than system sizes accessible to DFT calculations. The numerical description of the excess electron at the semiconductor-electrolyte interface based on the continuum model shows that the exciton is also delocalised over a large area: the exciton radius can have values from tens to hundreds of Ångströms, depending on the nature of the semiconductor (characterised by the dielectric constant and the electron effective mass in our model).

  1. Synthesis, characterization and study of magnetic, electrical and dielectric properties of La1-xDyxCo1-yFeyO3 nanoparticles prepared by wet chemical route

    NASA Astrophysics Data System (ADS)

    Choudhry, Qurshia; Azhar Khan, Muhammad; Nasar, Gulfam; Mahmood, Azhar; Shahid, Muhammad; Shakir, Imran; Farooq Warsi, Muhammad

    2015-11-01

    Dy3+ and Fe3+ co-doped LaCoO3 perovskite nanoparticles were prepared by chemical co-precipitation route. Structural elucidation was carried out by thermo gravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared (FTIR) spectroscopy. The data of all these characterization techniques confirmed the orthorhombic phase with particles size in the range of 20-60 nm. The magnetic parameters, DC-resistivity and dielectric properties were measured for La1-xDyxCo1-yFeyO3 nanoparticles. The purpose of all these application studies was to evaluate the prepared materials for practical applications. The substitution of Dy3+ and Fe3+ with La3+ and Co3+ respectively greatly influenced the magnetic, DC-resistivity and dielectric parameters.

  2. Effect of a direct current bias on the electrohydrodynamic performance of a surface dielectric barrier discharge actuator for airflow control

    NASA Astrophysics Data System (ADS)

    Yan, Huijie; Yang, Liang; Qi, Xiaohua; Ren, Chunsheng

    2015-02-01

    The effect of a DC bias on the electrohydrodynamics (EHD) force induced by a surface dielectric barrier AC discharge actuator for airflow control at the atmospheric pressure is investigated. The measurement of the surface potential due to charge deposition at different DC biases is carried out by using a special designed corona like discharge potential probe. From the surface potential data, the plasma electromotive force is shown not affected much by the DC biases except for some reduction of the DC bias near the exposed electrode edge for the sheath-like configuration. The total thrust is measured by an analytical balance, and an almost linear relationship to the potential voltage at the exposed electrode edge is found for the direct thrust force. The temporally averaged ionic wind characteristics are investigated by Pitot tube sensor and schlieren visualization system. It is found that the ionic wind velocity profiles with different DC biases are almost the same in the AC discharge plasma area but gradually diversified in the further downstream area as well as the upper space away from the discharge plasma area. Also, the DC bias can significantly modify the topology of the ionic wind produced by the AC discharge actuator. These results can provide an insight into how the DC biases to affect the force generation.

  3. Axial interface optical phonon modes in a double-nanoshell system.

    PubMed

    Kanyinda-Malu, C; Clares, F J; de la Cruz, R M

    2008-07-16

    Within the framework of the dielectric continuum (DC) model, we analyze the axial interface optical phonon modes in a double system of nanoshells. This system is constituted by two identical equidistant nanoshells which are embedded in an insulating medium. To illustrate our results, typical II-VI semiconductors are used as constitutive polar materials of the nanoshells. Resolution of Laplace's equation in bispherical coordinates for the potentials derived from the interface vibration modes is made. By imposing the usual electrostatic boundary conditions at the surfaces of the two-nanoshell system, recursion relations for the coefficients appearing in the potentials are obtained, which entails infinite matrices. The problem of deriving the interface frequencies is reduced to the eigenvalue problem on infinite matrices. A truncating method for these matrices is used to obtain the interface phonon branches. Dependences of the interface frequencies on the ratio of inter-nanoshell separation to core size are obtained for different systems with several values of nanoshell interdistance. Effects due to the change of shell and embedding materials are also investigated in interface phonon modes.

  4. Novel Physical Model for DC Partial Discharge in Polymeric Insulators

    NASA Astrophysics Data System (ADS)

    Andersen, Allen; Dennison, J. R.

    The physics of DC partial discharge (DCPD) continues to pose a challenge to researchers. We present a new physically-motivated model of DCPD in amorphous polymers based on our dual-defect model of dielectric breakdown. The dual-defect model is an extension of standard static mean field theories, such as the Crine model, that describe avalanche breakdown of charge carriers trapped on uniformly distributed defect sites. It assumes the presence of both high-energy chemical defects and low-energy thermally-recoverable physical defects. We present our measurements of breakdown and DCPD for several common polymeric materials in the context of this model. Improved understanding of DCPD and how it relates to eventual dielectric breakdown is critical to the fields of spacecraft charging, high voltage DC power distribution, high density capacitors, and microelectronics. This work was supported by a NASA Space Technology Research Fellowship.

  5. Negative Capacitance in BaTiO3/BiFeO3 Bilayer Capacitors.

    PubMed

    Hou, Ya-Fei; Li, Wei-Li; Zhang, Tian-Dong; Yu, Yang; Han, Ren-Lu; Fei, Wei-Dong

    2016-08-31

    Negative capacitances provide an approach to reduce heat generations in field-effect transistors during the switch processes, which contributes to further miniaturization of the conventional integrated circuits. Although there are many studies about negative capacitances using ferroelectric materials, the direct observation of stable ferroelectric negative capacitances has rarely been reported. Here, we put forward a dc bias assistant model in bilayer capacitors, where one ferroelectric layer with large dielectric constant and the other ferroelectric layer with small dielectric constant are needed. Negative capacitances can be obtained when external dc bias electric fields are larger than a critical value. Based on the model, BaTiO3/BiFeO3 bilayer capacitors are chosen as study objects, and negative capacitances are observed directly. Additionally, the upward self-polarization effect in the ferroelectric layer reduces the critical electric field, which may provide a method for realizing zero and/or small dc bias assistant negative capacitances.

  6. Temperature dependence of direct current conductivity in Ag-ED20 nanocomposite films

    NASA Astrophysics Data System (ADS)

    Novikov, G. F.; Rabenok, E. V.; Bogdanova, L. M.; Irzhak, V. I.

    2017-10-01

    The effect of silver nanoparticles (NPs) in the concentration range of ≤0.8 wt % have on direct current conductivity σdc of Ag-ED20 nanocomposite is studied by method of broadband dielectric spectroscopy (10-2-105 Hz) method of broadband dielectric spectroscopy. It is found that temperature dependence σdc consists of two sections: above the glass transition temperature ( T g), the dependence corresponds to the empirical Vogel-Fulcher-Tammann law (Vogel temperature T 0 does not depend on the NP concentration); below T g, the dependence is Arrhenius with activation energy E a ≈ 1.2 eV. In the region where T > T g, the σdc value grows along with NP concentration. It is concluded that the observed broken form of the temperature dependence is apparently due to a change in the conduction mechanism after the freezing of ion mobility at temperatures below T g.

  7. Nearly bound states in the radiation continuum in a circular array of dielectric rods

    NASA Astrophysics Data System (ADS)

    Bulgakov, Evgeny N.; Sadreev, Almas F.

    2018-03-01

    We consider E -polarized bound states in the radiation continuum (BICs) in circular periodical arrays of N infinitely long dielectric rods. We find that each true BIC which occurs in an infinite linear array has its counterpart in the circular array as a near-BIC with extremely large quality factor. We argue analytically as well as numerically that the quality factor of the symmetry-protected near-BICs diverges as eλ N, where λ is a material parameter dependent on the radius and the refraction index of the rods. By tuning of the radius of rods, we also find numerically non-symmetry-protected near-BICs. These near-BICs are localized with exponential accuracy outside the circular array, but fill the whole inner space of the array carrying orbital angular momentum.

  8. Dielectric and impedance study of praseodymium substituted Mg-based spinel ferrites

    NASA Astrophysics Data System (ADS)

    Farid, Hafiz Muhammad Tahir; Ahmad, Ishtiaq; Ali, Irshad; Ramay, Shahid M.; Mahmood, Asif; Murtaza, G.

    2017-07-01

    Spinel ferrites with nominal composition MgPryFe2-yO4 (y = 0.00, 0.025, 0.05, 0.075, 0.10) were prepared by sol-gel method. Temperature dependent DC electrical conductivity and drift mobility were found in good agreement with each other, reflecting semiconducting behavior. The dielectric properties of all the samples as a function of frequency (1 MHz-3 GHz) were measured at room temperature. The dielectric constant and complex dielectric constant of these samples decreased with the increase of praseodymium concentration. In the present spinel ferrite, Cole-Cole plots were used to separate the grain and grain boundary's effects. The substitution of praseodymium ions in Mg-based spinel ferrites leads to a remarkable rise of grain boundary's resistance as compared to the grain's resistance. As both AC conductivity and Cole-Cole plots are the functions of concentration, they reveal the dominant contribution of grain boundaries in the conduction mechanism. AC activation energy was lower than dc activation energy. Temperature dependence normalized AC susceptibility of spinel ferrites reveals that MgFe2O4 exhibits multi domain (MD) structure with high Curie temperature while on substitution of praseodymium, MD to SD transitions occurs. The low values of conductivity and low dielectric loss make these materials best candidate for high frequency application.

  9. Fabrication of Nd3+ and Mn2+ ions Co-doped Spinal Strontium Nanoferrites for High Frequency Device Applications

    NASA Astrophysics Data System (ADS)

    Ahmad, Iqbal; Shah, Syed Mujtaba; Ashiq, Muhammad Naeem; Nawaz, Faisal; Shah, Afzal; Siddiq, Muhammad; Fahim, Iqra; Khan, Samiullah

    2016-10-01

    Microemulsion method has been used for the synthesis of high resistive spinal nanoferrites with nominal composition Sr1- x Nd x Fe2- y Mn y O4 (0.0 ≤ x ≤ 0.1, 0.0 ≤ y ≤ 1.0) for high frequency device applications. It has been confirmed by x-ray diffraction (XRD) results that these ferrites have a cubic spinal structure with a mean crystallite size ranging from 34 mm to 47 nm. The co-substitution of Nd3+ and Mn2+ ions was performed, and its effect on electrical, dielectric and impedance properties was analyzed employing direct current (DC) resistivity measurements, dielectric measurements and electrochemical impedance spectroscopy (EIS). The DC resistivity ( ρ) value was the highest for the composition Sr0.90Nd0.1FeMnO4, but for the same composition, dielectric parameters and alternating current (AC) conductivity showed their minimum values. In the lower frequency range, the magnitudes of dielectric parameters decrease with increasing frequency and show an almost independent frequency response at higher frequencies. Dielectric polarization has been employed to explain these results. It was inferred from the results of EIS that the conduction process in the studied ferrite materials is predominantly governed by grain boundary volume.

  10. Purely hopping conduction in c-axis oriented LiNbO3 thin films

    NASA Astrophysics Data System (ADS)

    Shandilya, Swati; Tomar, Monika; Sreenivas, K.; Gupta, Vinay

    2009-05-01

    Dielectric constant and ac conductivity of highly c-axis oriented LiNbO3 thin film grown by pulsed laser deposition were studied in a metal-insulator-metal configuration over a wide temperature (200 to 450 K) and frequency (100 Hz to 1 MHz) range. The preferred oriented Al (1%) doped ZnO film with electrical conductivity 1.1×103 Ω-1 cm-1 was deposited for dual purpose: (1) to serve as nucleating center for LiNbO3 crystallites along preferred c-axis growth direction, and (2) to act as a suitable bottom electrode for electrical studies. The room temperature dc conductivity (σdc) of LiNbO3 film was about 5.34×10-10 Ω-1 cm-1 with activation energy ˜0.3 eV, indicating extrinsic conduction. The ac conductivity σac was found to be much higher in comparison to σdc in the low temperature region (<300 K) and exhibits a power law behavior due to the hopping of charge carriers. In higher temperature region (>300 K), σac shows a weak frequency dependence, whereas dielectric constant exhibits a strong frequency dispersion. The dielectric dispersion data has been discussed in the light of theoretical models based on Debye type mixed conduction and purely hopping conduction. The dominant conduction in c-axis oriented LiNbO3 thin film is attributed to the purely hopping where both σdc and σac arise due to same mechanism.

  11. DC-pulse atmospheric-pressure plasma jet and dielectric barrier discharge surface treatments on fluorine-doped tin oxide for perovskite solar cell application

    NASA Astrophysics Data System (ADS)

    Tsai, Jui-Hsuan; Cheng, I.-Chun; Hsu, Cheng-Che; Chen, Jian-Zhang

    2018-01-01

    Nitrogen DC-pulse atmospheric-pressure plasma jet (APPJ) and nitrogen dielectric barrier discharge (DBD) were applied to pre-treat fluorine-doped tin oxide (FTO) glass substrates for perovskite solar cells (PSCs). Nitrogen DC-pulse APPJ treatment (substrate temperature: ~400 °C) for 10 s can effectively increase the wettability, whereas nitrogen DBD treatment (maximum substrate temperature: ~140 °C) achieved limited improvement in wettability even with increased treatment time of 60 s. XPS results indicate that 10 s APPJ, 60 s DBD, and 15 min UV-ozone treatment of FTO glass substrates can decontaminate the surface. A PSC fabricated on APPJ-treated FTO showed the highest power conversion efficiency (PCE) of 14.90%; by contrast, a PSC with nitrogen DBD-treated FTO shows slightly lower PCE of 12.57% which was comparable to that of a PSC on FTO treated by a 15 min UV-ozone process. Both nitrogen DC-pulse APPJ and nitrogen DBD can decontaminate FTO substrates and can be applied for the substrate cleaning step of PSC.

  12. On the room temperature multiferroic BiFeO3: magnetic, dielectric and thermal properties

    NASA Astrophysics Data System (ADS)

    Lu, J.; Günther, A.; Schrettle, F.; Mayr, F.; Krohns, S.; Lunkenheimer, P.; Pimenov, A.; Travkin, V. D.; Mukhin, A. A.; Loidl, A.

    2010-06-01

    Magnetic dc susceptibility between 1.5 and 800 K, ac susceptibility and magnetization, thermodynamic properties, temperature dependence of radio and audio-wave dielectric constants and conductivity, contact-free dielectric constants at mm-wavelengths, as well as ferroelectric polarization are reported for single crystalline BiFeO3. A well developed anomaly in the magnetic susceptibility signals the onset of antiferromagnetic order close to 635 K. Beside this anomaly no further indications of phase or glass transitions are indicated in the magnetic dc and ac susceptibilities down to the lowest temperatures. The heat capacity has been measured from 2 K up to room temperature and significant contributions from magnon excitations have been detected. From the low-temperature heat capacity an anisotropy gap of the magnon modes of the order of 6 meV has been determined. The dielectric constants measured in standard two-point configuration are dominated by Maxwell-Wagner like effects for temperatures T > 300 K and frequencies below 1 MHz. At lower temperatures the temperature dependence of the dielectric constant and loss reveals no anomalies outside the experimental errors, indicating neither phase transitions nor strong spin phonon coupling. The temperature dependence of the dielectric constant was measured contact free at microwave frequencies. At room temperature the dielectric constant has an intrinsic value of 53. The loss is substantial and strongly frequency dependent indicating the predominance of hopping conductivity. Finally, in small thin samples we were able to measure the ferroelectric polarization between 10 and 200 K. The saturation polarization is of the order of 40 μC/cm2, comparable to reports in literature.

  13. Angular resolution and range of dipole-dipole correlations in water

    NASA Astrophysics Data System (ADS)

    Mathias, Gerald; Tavan, Paul

    2004-03-01

    We investigate the dipolar correlations in liquid water at angular resolution by molecular-dynamics simulations of a large periodic simulation system containing about 40 000 molecules. Because we are particularly interested in the long-range ordering, we use a simple three-point model for these molecules. The electrostatics is treated both by Ewald summation and by minimum image truncation combined with a reaction field approach. To gain insight into the angular dependence of the simulated dipolar ordering we introduce a suitable expansion of the molecular pair distribution function into a set of two-dimensional correlation functions. We show that these functions enable detailed insights into the shell structure of the dipolar ordering around a given water molecule. For these functions we derive analytical expressions in the particular case in which liquid water is conceived as a dielectric continuum. Comparisons of these continuum models with the correlation functions derived from the simulations yield the key result that liquid water behaves like a continuum dielectric beyond distances of about 15 Å from a given water molecule. We argue that this should be a generic property of water independent of our modeling. By comparison of the results of the two different electrostatics treatments with the continuum description we show that the boundary artifacts occurring in both methods are isotropically distributed and are locally small in the respective boundary regions.

  14. Predicting solvation free energies and thermodynamics in polar solvents and mixtures using a solvation-layer interface condition

    PubMed Central

    Goossens, Spencer; Mehdizadeh Rahimi, Ali

    2017-01-01

    We demonstrate that with two small modifications, the popular dielectric continuum model is capable of predicting, with high accuracy, ion solvation thermodynamics (Gibbs free energies, entropies, and heat capacities) in numerous polar solvents. We are also able to predict ion solvation free energies in water–co-solvent mixtures over available concentration series. The first modification to the classical dielectric Poisson model is a perturbation of the macroscopic dielectric-flux interface condition at the solute–solvent interface: we add a nonlinear function of the local electric field, giving what we have called a solvation-layer interface condition (SLIC). The second modification is including the microscopic interface potential (static potential) in our model. We show that the resulting model exhibits high accuracy without the need for fitting solute atom radii in a state-dependent fashion. Compared to experimental results in nine water–co-solvent mixtures, SLIC predicts transfer free energies to within 2.5 kJ/mol. The co-solvents include both protic and aprotic species, as well as biologically relevant denaturants such as urea and dimethylformamide. Furthermore, our results indicate that the interface potential is essential to reproduce entropies and heat capacities. These and previous tests of the SLIC model indicate that it is a promising dielectric continuum model for accurate predictions in a wide range of conditions.

  15. Predicting solvation free energies and thermodynamics in polar solvents and mixtures using a solvation-layer interface condition

    NASA Astrophysics Data System (ADS)

    Molavi Tabrizi, Amirhossein; Goossens, Spencer; Mehdizadeh Rahimi, Ali; Knepley, Matthew; Bardhan, Jaydeep P.

    2017-03-01

    We demonstrate that with two small modifications, the popular dielectric continuum model is capable of predicting, with high accuracy, ion solvation thermodynamics (Gibbs free energies, entropies, and heat capacities) in numerous polar solvents. We are also able to predict ion solvation free energies in water-co-solvent mixtures over available concentration series. The first modification to the classical dielectric Poisson model is a perturbation of the macroscopic dielectric-flux interface condition at the solute-solvent interface: we add a nonlinear function of the local electric field, giving what we have called a solvation-layer interface condition (SLIC). The second modification is including the microscopic interface potential (static potential) in our model. We show that the resulting model exhibits high accuracy without the need for fitting solute atom radii in a state-dependent fashion. Compared to experimental results in nine water-co-solvent mixtures, SLIC predicts transfer free energies to within 2.5 kJ/mol. The co-solvents include both protic and aprotic species, as well as biologically relevant denaturants such as urea and dimethylformamide. Furthermore, our results indicate that the interface potential is essential to reproduce entropies and heat capacities. These and previous tests of the SLIC model indicate that it is a promising dielectric continuum model for accurate predictions in a wide range of conditions.

  16. High Temperature DC Bus Capacitor Cost Reduction & Performance Improvements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yializis, Angelo; Taylor, Ralph S.

    The goal of this DOE program is to develop high temperature, high energy density, lower cost DC- Link capacitors, for inverters used in electric drive vehicles. Most electric motors in Hybrid Electric Vehicles (“HEVs”), Plug-in Hybrid Vehicles (“PHVs”) and Electric Vehicles (“EVs”) are driven with variable AC voltage supplied by an inverter/converter power module that converts the DC battery voltage to three-phase AC voltage. A key component of the inverter circuit is the DC- Link capacitor used to minimize ripple current, voltage fluctuation, and transient suppression. The DC-Link capacitor is one of the largest, costliest, and most failure-prone components inmore » today’s electric drive invertersystems. The principal weakness of present day DC- Link capacitors is their reliance on a low temperature thermoplastic polypropylene (“PP”) film dielectric. PP is the dielectric of choice for inverter capacitor applications due to its high breakdown strength and low dissipation factor. Major limitations of metallized PP film capacitors include volumetric efficiency, performance under high thermal loads and cost. The latter is especially effectual at lower voltage applications (400V) where PP films with a thickness of about 2.5 m are required that are costly to process. Metallized PP capacitors also do not meet the traditional “under-the-hood” requirements for automotive electronics. The standard temperature requirement for most passive components in the automotive industry has been 125ºC and it is evolving to 140°C. The industry has addressed this problem by reducing the ambient temperature specification for PP capacitors from 125ºC to 105ºC, and also by placing the capacitors on a water-cooled bus bar to extend their life and reliably. The supply chain for the production of PP capacitors is, for the most part, horizontally integrated. It includes the producer of the PP film, the toll metallizer, that deposits a patterned aluminum conductor onto the PP film, and the capacitor producer that winds the metallized film, forms electrical connections, and packages the capacitor (some large capacitor OEMs also metallize their films). The horizontal nature of the supply chain is principally due to the very high capital costs required to integrate the film production process as well as the corresponding depreciation costs. The result is that hundreds of capacitor OEMs use the same base films and capacitor products vary mainly in the way they are wound, formed and packaged, with little or no ability to innovate. Sigma Technologies (“Sigma”) has developed a disruptive process for producing polymer dielectric capacitors that overcome the limitations of PP film capacitors. Metallized self-supported films are replaced with deposited polymer dielectrics, metallized in-line with the polymer deposition process. Highly cross linked, high temperature polymers are formed, that have a thickness as low as 0.1μm, a wide range of dielectric constants and breakdown strength higher than that of PP. The supply chain for producing such capacitors is reduced to a single step performed by the capacitor OEM, in which aluminum wire and a liquid monomer are introduced into a machine to create a large area bulk capacitor material. Polymer Multi-Layer (PML) capacitors are produced by depositing 1000s of dielectric and aluminum electrode on a rotating process drum, forming a nanolaminate “mother capacitor” material, that is segmented and processed into individual capacitor elements. The PML process combines the conventional stepsof a) polymer dielectric formation, b) electrode deposition, and c) winding the capacitor, into a single continuous process performed in a single machine. This allows for complete vertical integration of the capacitor production process, where the capacitor OEM has complete control the dielectric chemistry, the polymer thickness and the electrode metallization process. Sigma partnered with Delphi Automotive Systems (“Delphi”) and Oak Ridge National Labs (“ORNL”) to respond to a DOE Vehicle Technologies Office solicitation to develop a DC-Link capacitor with reduced cost, lower volume and superior thermal properties. The major objectives of the development program included: • Optimization of the polymer dielectric to meet an 140ºC operating environment • Improvements to Sigma’s PML capacitor pilot line to allow the production of sample quantities of DC-Link capacitors • Evaluation of the thermal properties of the PML capacitors • Development of a thermal model to predict capacitor performance under various operating conditions • Electrical and environmental evaluation of PML capacitors based on AEC Q200 standard • Development of a package for PML capacitors • Development of a business plan to transition the PML capacitor technology into production.« less

  17. High Energy Density and High Temperature Multilayer Capacitor Films for Electric Vehicle Applications

    NASA Astrophysics Data System (ADS)

    Treufeld, Imre; Song, Michelle; Zhu, Lei; Baer, Eric; Snyder, Joe; Langhe, Deepak

    2015-03-01

    Multilayer films (MLFs) with high energy density and high temperature capability (>120 °C) have been developed at Case Western Reserve University. Such films offer a potential solution for electric car DC-link capacitors, where high ripple currents and high temperature tolerance are required. The current state-of-the-art capacitors used in electric cars for converting DC to AC use biaxially oriented polypropylene (BOPP), which can only operate at temperatures up to 85 °C requiring an external cooling system. The polycarbonate (PC)/poly(vinylidene fluoride) (PVDF) MLFs have a higher permittivity compared to that of BOPP (2.3), leading to higher energy density. They have good mechanical stability and reasonably low dielectric losses at 120 °C. Nonetheless, our preliminary dielectric measurements show that the MLFs exhibit appreciable dielectric losses (20%) at 120 °C, which would, despite all the other advantages, make them not suitable for practical applications. Our preliminary data showed that dielectric losses of the MLFs at 120 °C up to 400 MV/m and 1000 Hz originate mostly from impurity ionic conduction. This work is supported by the NSF PFI/BIC Program (IIP-1237708).

  18. Structural, electrical, optical and magneto-electric characteristics of chemically synthesized CaCu3Ti4O12 dielectric ceramics

    NASA Astrophysics Data System (ADS)

    Parida, Kalpana; Choudhary, R. N. P.

    2017-07-01

    CaCu3Ti4O12 (CCTO) was prepared by a chemical reaction method. The pellets prepared from the calcined powder of the material were sintered at 1100 °C. Analysis of x-ray diffraction pattern, recorded on CCTO powder, confirms the phase formation of CCTO. Studies of dielectric (ɛ r, tanδ) and impedance parameters using dielectric and impedance spectroscopy of the compound have provided information about the electrical properties and the dielectric relaxation mechanism of the material. Detailed studies on the variation of electrical conductivity (dc) with temperature show semi-conducting nature of the material. Study of frequency (of applied electric field) dependence of ac conductivity at different temperatures suggests that the compound follows the Jonscher’s power law. Complex impedance spectroscopic analysis suggests that the semicircles formed in the Nyquist plot are connected to the grains, grain boundary and interface effects. An optical energy band gap of ~1.9 eV is obtained from the UV-visible absorbance spectrum. The magnetic data related to magneto-electric (ME) coefficient, measured by varying dc bias magnetic field, have been obtained at room temperature.

  19. Bringing Promise to Washington, DC. The DC Promise Neighborhood Initiative. Program on Neighborhoods and Youth Development

    ERIC Educational Resources Information Center

    Comey, Jennifer; Scott, Molly M.; Popkin, Susan J.; Falkenburger, Elsa

    2012-01-01

    The U.S. Department of Education's Promise Neighborhood Initiative (DCPNI) is one of the Obama administration's major antipoverty initiatives and a core strategy of the White House's Neighborhood Revitalization Initiative. It is intended to improve educational outcomes by creating a continuum of school readiness, academic services, and family and…

  20. Bias Voltage-Dependent Impedance Spectroscopy Analysis of Hydrothermally Synthesized ZnS Nanoparticles

    NASA Astrophysics Data System (ADS)

    Dey, Arka; Dhar, Joydeep; Sil, Sayantan; Jana, Rajkumar; Ray, Partha Pratim

    2018-04-01

    In this report, bias voltage-dependent dielectric and electron transport properties of ZnS nanoparticles were discussed. ZnS nanoparticles were synthesized by introducing a modified hydrothermal process. The powder XRD pattern indicates the phase purity, and field emission scanning electron microscope image demonstrates the morphology of the synthesized sample. The optical band gap energy (E g = 4.2 eV) from UV measurement explores semiconductor behavior of the synthesized material. The electrical properties were performed at room temperature using complex impedance spectroscopy (CIS) technique as a function of frequency (40 Hz-10 MHz) under different forward dc bias voltages (0-1 V). The CIS analysis demonstrates the contribution of bulk resistance in conduction mechanism and its dependency on forward dc bias voltages. The imaginary part of the impedance versus frequency curve exhibits the existence of relaxation peak which shifts with increasing dc forward bias voltages. The dc bias voltage-dependent ac and dc conductivity of the synthesized ZnS was studied on thin film structure. A possible hopping mechanism for electrical transport processes in the system was investigated. Finally, it is worth to mention that this analysis of bias voltage-dependent dielectric and transport properties of as-synthesized ZnS showed excellent properties for emerging energy applications.

  1. Self-consistent elastic continuum theory of degenerate, equilibrium aperiodic solids.

    PubMed

    Bevzenko, Dmytro; Lubchenko, Vassiliy

    2014-11-07

    We show that the vibrational response of a glassy liquid at finite frequencies can be described by continuum mechanics despite the vast degeneracy of the vibrational ground state; standard continuum elasticity assumes a unique ground state. The effective elastic constants are determined by the bare elastic constants of individual free energy minima of the liquid, the magnitude of built-in stress, and temperature, analogously to how the dielectric response of a polar liquid is determined by the dipole moment of the constituent molecules and temperature. In contrast with the dielectric constant--which is enhanced by adding polar molecules to the system--the elastic constants are down-renormalized by the relaxation of the built-in stress. The renormalization flow of the elastic constants has three fixed points, two of which are trivial and correspond to the uniform liquid state and an infinitely compressible solid, respectively. There is also a nontrivial fixed point at the Poisson ratio equal to 1/5, which corresponds to an isospin-like degeneracy between shear and uniform deformation. The present description predicts a discontinuous jump in the (finite frequency) shear modulus at the crossover from collisional to activated transport, consistent with the random first order transition theory.

  2. Continuum description of solvent dielectrics in molecular-dynamics simulations of proteins

    NASA Astrophysics Data System (ADS)

    Egwolf, Bernhard; Tavan, Paul

    2003-02-01

    We present a continuum approach for efficient and accurate calculation of reaction field forces and energies in classical molecular-dynamics (MD) simulations of proteins in water. The derivation proceeds in two steps. First, we reformulate the electrostatics of an arbitrarily shaped molecular system, which contains partially charged atoms and is embedded in a dielectric continuum representing the water. A so-called fuzzy partition is used to exactly decompose the system into partial atomic volumes. The reaction field is expressed by means of dipole densities localized at the atoms. Since these densities cannot be calculated analytically for general systems, we introduce and carefully analyze a set of approximations in a second step. These approximations allow us to represent the dipole densities by simple dipoles localized at the atoms. We derive a system of linear equations for these dipoles, which can be solved numerically by iteration. After determining the two free parameters of our approximate method we check its quality by comparisons (i) with an analytical solution, which is available for a perfectly spherical system, (ii) with forces obtained from a MD simulation of a soluble protein in water, and (iii) with reaction field energies of small molecules calculated by a finite difference method.

  3. Improving accuracy of electrochemical capacitance and solvation energetics in first-principles calculations

    NASA Astrophysics Data System (ADS)

    Sundararaman, Ravishankar; Letchworth-Weaver, Kendra; Schwarz, Kathleen A.

    2018-04-01

    Reliable first-principles calculations of electrochemical processes require accurate prediction of the interfacial capacitance, a challenge for current computationally efficient continuum solvation methodologies. We develop a model for the double layer of a metallic electrode that reproduces the features of the experimental capacitance of Ag(100) in a non-adsorbing, aqueous electrolyte, including a broad hump in the capacitance near the potential of zero charge and a dip in the capacitance under conditions of low ionic strength. Using this model, we identify the necessary characteristics of a solvation model suitable for first-principles electrochemistry of metal surfaces in non-adsorbing, aqueous electrolytes: dielectric and ionic nonlinearity, and a dielectric-only region at the interface. The dielectric nonlinearity, caused by the saturation of dipole rotational response in water, creates the capacitance hump, while ionic nonlinearity, caused by the compactness of the diffuse layer, generates the capacitance dip seen at low ionic strength. We show that none of the previously developed solvation models simultaneously meet all these criteria. We design the nonlinear electrochemical soft-sphere solvation model which both captures the capacitance features observed experimentally and serves as a general-purpose continuum solvation model.

  4. Temperature dependent dielectric properties and ion transportation in solid polymer electrolyte for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Sengwa, R. J.; Dhatarwal, Priyanka; Choudhary, Shobhna

    2016-05-01

    Solid polymer electrolyte (SPE) film consisted of poly(ethylene oxide) (PEO) and poly(methyl methacrylate) (PMMA) blend matrix with lithium tetrafluroborate (LiBF4) as dopant ionic salt and poly(ethylene glycol) (PEG) as plasticizer has been prepared by solution casting method followed by melt pressing. Dielectric properties and ionic conductivity of the SPE film at different temperatures have been determined by dielectric relaxation spectroscopy. It has been observed that the dc ionic conductivity of the SPE film increases with increase of temperature and also the decrease of relaxation time. The temperature dependent relaxation time and ionic conductivity values of the electrolyte are governed by the Arrhenius relation. Correlation observed between dc conductivity and relaxation time confirms that ion transportation occurs with polymer chain segmental dynamics through hopping mechanism. The room temperature ionic conductivity is found to be 4 × 10-6 S cm-1 which suggests the suitability of the SPE film for rechargeable lithium batteries.

  5. Temperature dependent dielectric properties and ion transportation in solid polymer electrolyte for lithium ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sengwa, R. J., E-mail: rjsengwa@rediffmail.com; Dhatarwal, Priyanka, E-mail: dhatarwalpriyanka@gmail.com; Choudhary, Shobhna, E-mail: shobhnachoudhary@rediffmail.com

    2016-05-06

    Solid polymer electrolyte (SPE) film consisted of poly(ethylene oxide) (PEO) and poly(methyl methacrylate) (PMMA) blend matrix with lithium tetrafluroborate (LiBF{sub 4}) as dopant ionic salt and poly(ethylene glycol) (PEG) as plasticizer has been prepared by solution casting method followed by melt pressing. Dielectric properties and ionic conductivity of the SPE film at different temperatures have been determined by dielectric relaxation spectroscopy. It has been observed that the dc ionic conductivity of the SPE film increases with increase of temperature and also the decrease of relaxation time. The temperature dependent relaxation time and ionic conductivity values of the electrolyte are governedmore » by the Arrhenius relation. Correlation observed between dc conductivity and relaxation time confirms that ion transportation occurs with polymer chain segmental dynamics through hopping mechanism. The room temperature ionic conductivity is found to be 4 × 10{sup −6} S cm{sup −1} which suggests the suitability of the SPE film for rechargeable lithium batteries.« less

  6. Computation of forces arising from the polarizable continuum model within the domain-decomposition paradigm

    NASA Astrophysics Data System (ADS)

    Gatto, Paolo; Lipparini, Filippo; Stamm, Benjamin

    2017-12-01

    The domain-decomposition (dd) paradigm, originally introduced for the conductor-like screening model, has been recently extended to the dielectric Polarizable Continuum Model (PCM), resulting in the ddPCM method. We present here a complete derivation of the analytical derivatives of the ddPCM energy with respect to the positions of the solute's atoms and discuss their efficient implementation. As it is the case for the energy, we observe a quadratic scaling, which is discussed and demonstrated with numerical tests.

  7. Continuum electromechanical modeling of protein-membrane interactions

    NASA Astrophysics Data System (ADS)

    Zhou, Y. C.; Lu, Benzhuo; Gorfe, Alemayehu A.

    2010-10-01

    A continuum electromechanical model is proposed to describe the membrane curvature induced by electrostatic interactions in a solvated protein-membrane system. The model couples the macroscopic strain energy of membrane and the electrostatic solvation energy of the system, and equilibrium membrane deformation is obtained by minimizing the electroelastic energy functional with respect to the dielectric interface. The model is illustrated with the systems with increasing geometry complexity and captures the sensitivity of membrane curvature to the permanent and mobile charge distributions.

  8. Magnetic field tunable ac electrical transport of LaFeO3-wax nanocomposites

    NASA Astrophysics Data System (ADS)

    Roy, Supratim; Mandal, S. K.; Debnath, Rajesh; Nath, Debajyoti; Dey, P.

    2018-04-01

    Single phase perovskite LaFeO3 nanoparticles have been prepared through chemical pyrophoric reaction process. It is further grinded with paraffin wax of quantity 0.5 wt% of total composition to obtain an organic composite 99.5%LaFeO3-0.5%Wax. Studies of ac electrical properties viz. complex impedance, dielectric response, loss coefficient have been done in presence of external dc magnetic field, which reveals a good magnetoimpedance (˜221%) and a negative magnetodielectric (˜ 64%). The value of impedance, its real and imaginary part is observed to increase with dc field. The composite exhibits high dielectric constant (˜4760). The ac conductivity is found to decrease with applied field and increase with ac frequency.

  9. Wall charging of a helicon antenna wrapped plasma filled dielectric tube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barada, Kshitish K., E-mail: kbarada@physics.ucla.edu; Chattopadhyay, P. K., E-mail: pkchatto@ipr.res.in; Ghosh, J.

    2015-01-15

    Dielectric wall charging of a cylindrical glass wall surrounded by a helicon antenna of 18 cm length is measured in a linear helicon plasma device with a diverging magnetic field. The ions because of their lesser mobility do not respond to the high frequency electric field and the electrons charge the wall to a negative DC potential also known as the DC self-bias. The wall potential in this device is characterized for different neutral pressure, magnetic field, and radio frequency (RF) power. Axial variation of wall potential shows higher self-bias potentials near the antenna rings. Ion magnetization in the source chambermore » increases both wall charging and plasma potential of the source due to confinement.« less

  10. Enhance D. C. resistivity of Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} ceramic by acceptor (Mn) doping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Hakikat, E-mail: sharmahakikat@yahoo.in; Arya, G. S.; Pramar, Kusum

    2015-05-15

    In the present work, we prepared Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} and Mn (2 and 3 at % on Ti site) doped Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} ceramic by sol- gel method. The samples were characterized by X-ray diffraction (XRD). The XRD patterns reveled that Mn ions did not change the perovskite structure of BST (70/30). The dielectric measurements proved that dielectric constant decreased with Mn doping. The dc resistivity was studied by using I-V measurements. The dc resistivity of the BST increased with Mn doping, which suppressed the leakage current.

  11. Role of silver nanotube on conductivity, dielectric permittivity and current voltage characteristics of polyvinyl alcohol-silver nanocomposite film

    NASA Astrophysics Data System (ADS)

    Mukherjee, P. S.; Das, A. K.; Dutta, B.; Meikap, A. K.

    2017-12-01

    A comprehensive study on the prevailing conduction mechanism, dielectric relaxation and current voltage behaviour of Polyvinyl alcohol (PVA) - Silver (Ag) nanotube composite film has been reported. Introduction of Ag nanotubes enhances the conductivity and dielectric permittivity of film. Film shows semiconducting behaviour with two activation energies. The dc conductivity of the nanocomposite film obeys the adiabatic small polaron model. The dielectric permittivity can be analysed by modified Cole-Cole model. A non-Debye type asymmetric behaviour has been observed in the sample. The back to back Schottky diode concept has been used to describe the current-voltage characteristic of the composite film.

  12. Short range ferromagnetic, magneto-electric, and magneto-dielectric effect in ceramic Co{sub 3}TeO{sub 6}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Harishchandra, E-mail: singh85harish@gmail.com, E-mail: singh85harish@rrcat.gov.in; Ghosh, Haranath; Indus Synchrotrons Utilization Division, Raja Ramanna Center for Advanced Technology, Indore 452013

    2016-01-28

    We report observation of magneto-electric and magneto-dielectric couplings along with short range ferromagnetic order in ceramic Cobalt Tellurate (Co{sub 3}TeO{sub 6}, CTO) using magnetic, structural, dielectric, pyroelectric, and polarization studies. DC magnetization along with dielectric constant measurements indicate a coupling between magnetic order and electrical polarization. A strong anomaly in the dielectric constant at ∼17.4 K in zero magnetic field indicates spontaneous electric polarization, consistent with a recent neutron diffraction study. Observation of weak short range ferromagnetic order at lower temperatures is attributed to the Griffiths-like ferromagnetism. Furthermore, magnetic field dependence of the ferroelectric transition follows earlier theoretical predictions, applicable tomore » single crystal CTO. Finally, combined dielectric, pyroelectric, and polarization measurements suggest that the ground state of CTO may possess spontaneous symmetry breaking in the absence of magnetic field.« less

  13. Frequency dependent electrical characteristics of ferroelectric Pb{4.0}K{1.0}Li{1.0}Nb{10}O{30} ceramics

    NASA Astrophysics Data System (ADS)

    Rao, K. S.; Krishna, P. M.; Prasad, D. M.; Latha, T. S.; Hussain, M.

    2007-09-01

    Dielectric, impedance, modulus and conductivity studies were performed over temperature 35 °C 600 °C and frequency 45 Hz 5 MHz range on the Lead Potassium Lithium Niobate (Pb{4.0}K{1.0}Li{1.0}Nb{10}O{30}, PKLN) ceramics. These studies established the conduction ion motion and polarization mechanism in the material. The dispersive dielectric loss at high temperature reveals the ionic conductivity. From frequency variation of \\varepsilonl response the pre-factor A(T) and critical exponent n(T) are evaluated, and are used in Jonscher's dielectric dispersion relation for \\varepsilon ' to fit with the experimental data. Complex impedance plots showed a non Debye type relaxation, are used to evaluate the grain and grain boundary conduction and relaxation activation energies. DC and ac conduction activation energies are estimated from Arrhenius plots. Occupancy of Li+ for C-sites gave a completely filled structure and enhanced the phase transition temperature to 520 °C compared to PKN. This is supported by the conduction activation energy in ferro region is more than the para region. Also, the dc conductivity characterized from bulk resistance and M^ll peak frequency. Polaron hoping mechanism at room temperature has been confirmed via the linear variation of the plot log (σ ac-σ dc) as a function of log ω 2. Stretched exponential parameter, β (0 < β ≤slant 1) has been evaluated from impedance plots, interpreted as a result of correlated motions between the Li+ ions and distribution of dielectric relaxation. Compared the results from different techniques, and discussed the conduction mechanism in the material.

  14. Dielectric boundary force and its crucial role in gramicidin

    NASA Astrophysics Data System (ADS)

    Nadler, Boaz; Hollerbach, Uwe; Eisenberg, R. S.

    2003-08-01

    In an electrostatic problem with nonuniform geometry, a charge Q in one region induces surface charges [called dielectric boundary charges (DBC)] at boundaries between different dielectrics. These induced surface charges, in return, exert a force [called dielectric boundary force (DBF)] on the charge Q that induced them. The DBF is often overlooked. It is not present in standard continuum theories of (point) ions in or near membranes and proteins, such as Gouy-Chapman, Debye-Huckel, Poisson-Boltzmann or Poisson-Nernst- Planck. The DBF is important when a charge Q is near dielectric interfaces, for example, when ions permeate through protein channels embedded in biological membranes. In this paper, we define the DBF and calculate it explicitly for a planar dielectric wall and for a tunnel geometry resembling the ionic channel gramicidin. In general, we formulate the DBF in a form useful for continuum theories, namely, as a solution of a partial differential equation with boundary conditions. The DBF plays a crucial role in the permeation of ions through the gramicidin channel. A positive ion in the channel produces a DBF of opposite sign to that of the fixed charge force (FCF) produced by the permanent charge of the gramicidin polypeptide, and so the net force on the positive ion is reduced. A negative ion creates a DBF of the same sign as the FCF and so the net (repulsive) force on the negative ion is increased. Thus, a positive ion can permeate the channel, while a negative ion is excluded from it. In gramicidin, it is this balance between the FCF and DBF that allows only singly charged positive ions to move into and through the channel. The DBF is not directly responsible, however, for selectivity between the alkali metal ions (e.g., Li+, Na+, K+): we prove that the DBF on a mobile spherical ion is independent of the ion’s radius.

  15. Effect of Temperature on Formation and Stability of Shallow Trap at a Dielectric Interface of the Multilayer

    NASA Astrophysics Data System (ADS)

    Rogti, F.

    2015-12-01

    Space-charge behavior at dielectric interfaces in multilayer low-density polyethylene (LDPE) and fluorinated ethylene propylene (FEP) subjected to a direct-current (DC) field has been investigated as a function of temperature using the pulsed electroacoustic technique. A sandwich structure constituted by two nonidentical LDPE/FEP dielectric films was used to study the charging propensity of electrode/dielectric and dielectric/dielectric interfaces. The time dependence of the space-charge distribution was subsequently recorded at four temperatures, 20°C, 25°C, 40°C, and 60°C, under field (polarization) and short-circuit (depolarization) conditions. The experimental results demonstrate that temperature plays a significant role in the space-charge dynamics at the dielectric interface. It affects the charge injection, increases the charge mobility and electrical conductivity, and increases the density of shallow traps and trap filling. It is found that traps formed during polarization at high temperature do not remain stable after complete discharge of the multidielectric structure and when poled at low temperatures.

  16. Electrical properties of binary mixtures of amino silicone oil and methyl iso butyl ketone

    NASA Astrophysics Data System (ADS)

    Shah, K. N.; Rana, V. A.; Vankar, H. P.

    2018-05-01

    The real and imaginary parts of the dielectric function of the binary mixtures of the methyl iso butyl ketone and amino silicone oil in the frequency range 100 Hz to 2 MHz were measured using precision LCR meter at 305.15 K. The electrical properties such as electrical modulus M*(ω), electrical conductivity σ*(ω) and complex impedance Z*(ω) were calculated using the dielectric function ɛ*(ω). The ionic polarization relaxation time (Τσ) and D.C. conductivity (σdc) were also calculated using electrical properties. The ionic behavior of methyl iso butyl ketone and non-ionic behavior of amino silicone oil are also explained. The electrical parameters are used to gain information about the effect of concentration variation of components of the mixtures on the electrical properties.

  17. Gas-phase geometry optimization of biological molecules as a reasonable alternative to a continuum environment description: fact, myth, or fiction?

    PubMed

    Sousa, Sérgio Filipe; Fernandes, Pedro Alexandrino; Ramos, Maria João

    2009-12-31

    Gas-phase optimization of single biological molecules and of small active-site biological models has become a standard approach in first principles computational enzymology. The important role played by the surrounding environment (solvent, enzyme, both) is normally only accounted for through higher-level single point energy calculations performed using a polarizable continuum model (PCM) and an appropriate dielectric constant with the gas-phase-optimized geometries. In this study we analyze this widely used approximation, by comparing gas-phase-optimized geometries with geometries optimized with different PCM approaches (and considering different dielectric constants) for a representative data set of 20 very important biological molecules--the 20 natural amino acids. A total of 323 chemical bonds and 469 angles present in standard amino acid residues were evaluated. The results show that the use of gas-phase-optimized geometries can in fact be quite a reasonable alternative to the use of the more computationally intensive continuum optimizations, providing a good description of bond lengths and angles for typical biological molecules, even for charged amino acids, such as Asp, Glu, Lys, and Arg. This approximation is particularly successful if the protonation state of the biological molecule could be reasonably described in vacuum, a requirement that was already necessary in first principles computational enzymology.

  18. A split-cavity design for the incorporation of a DC bias in a 3D microwave cavity

    NASA Astrophysics Data System (ADS)

    Cohen, Martijn A.; Yuan, Mingyun; de Jong, Bas W. A.; Beukers, Ewout; Bosman, Sal J.; Steele, Gary A.

    2017-04-01

    We report on a technique for applying a DC bias in a 3D microwave cavity. We achieve this by isolating the two halves of the cavity with a dielectric and directly using them as DC electrodes. As a proof of concept, we embed a variable capacitance diode in the cavity and tune the resonant frequency with a DC voltage, demonstrating the incorporation of a DC bias into the 3D cavity with no measurable change in its quality factor at room temperature. We also characterize the architecture at millikelvin temperatures and show that the split cavity design maintains a quality factor Qi ˜ 8.8 × 105, making it promising for future quantum applications.

  19. Ferroelectric and paraelectric Ba0.5Sr0.5TiO3 film structure distortions at room temperature and their effects on tunable microwave properties

    NASA Astrophysics Data System (ADS)

    Alldredge, L. M. B.; Chang, Wontae; Qadri, Syed B.; Kirchoefer, Steven W.; Pond, Jeffrey M.

    2007-05-01

    Sputter-deposited Ba0.5Sr0.5TiO3 films on (001) MgO were characterized for their dielectric properties with different lattice structures. With varying Ar :O2 ratios during deposition, the films showed either in-plane (ca) tetragonal distortions, significantly affecting the dielectric constant and tunability. The dielectric constant exhibited clear hysteresis with dc bias at room temperature, indicating that the films were ferroelectric. The relationship between the dielectric properties and the distortions was the reverse of that observed in films deposited by pulsed laser deposition. The anisotropic in-plane dielectric behavior can be understood by relating polarization to film distortions and to the presence of permanent dipoles.

  20. Influence of the Biasing Scheme on the Performance of Au/SrTiO3/LaAlO3 Thin Film Conductor/Ferroelectric Tunable Ring Resonators

    NASA Technical Reports Server (NTRS)

    VanKeuls, F. W.; Romanofsky, R. R.; Bohman, D. Y.; Miranda, F. A.

    1998-01-01

    The performance of gold/SrTio3 /LaAlO3 conductor/ferroelectric/dielectric side-coupled, tunable ring resonators at K-band frequencies is presented. The tunability of these rings arises from the sensitivity of the relative dielectric constant (Er) of SrTiO 3 to changes in temperature and dc electric fields (E). We observed that the change in F-, which takes place by biasing the ring up to 450 V alters the effective dielectric constant (e-eff) of the circuit resulting in a 3k resonant frequency shift of nearly 12 % at 77 K. By applying a separate dc bias between the microstrip line and the ring, one can optimize their coupling to obtain bandstop resonators with unloaded quality factors (Q(sub o)) as high as 12,000. The 31 resonance was tuned from 15.75 to 17.41 GHz while keeping Q. above 768 over this range. The relevance of these results for practical microwave components will be discussed.

  1. Effect of Mn2+ doping on structural, electrical transport and dielectric properties of CoFe2O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Ansari, Mohd Mohsin Nizam; Khan, Shakeel; Bhargava, Richa; Ahmad, Naseem

    2018-05-01

    Manganese substituted cobalt ferrites, Co1-xMnxFe2O4 (0.0, 0.1, 0.2, 0.3 and 0.4) were successfully synthesized by sol-gel method. XRD analysis confirmed the formation of a single-phase cubic spinel structures having Fd-3m space group and crystallite size is found to be in the range of 12.9 - 15.5 nm. The lattice parameter increased from 8.4109 Å to 8.4531 Å with increasing Mn2+ ion doping. Dielectric constant (ɛ'), dielectric loss (tanδ) and ac conductivity (σac) were analyzed at room temperature as a function of frequency (42 Hz to 5 MHz) and the behavior is explained on the basis of Maxwell-Wagner interfacial polarization. DC electrical resistivity measurements were carried out by two-probe method. DC electrical resistivity decreases with increase in temperature confirms the semiconducting nature of the samples. Impedance spectroscopy method has been used to understand the conduction mechanism and the effect of grains and grain boundary on the electrical properties of the materials.

  2. Dielectric relaxation spectroscopy of aqueous solutions of diclofenac potassium over the frequency range of 20 Hz to 2 MHz at 303.15 K temperature

    NASA Astrophysics Data System (ADS)

    Karakthala, J. B.; Vankar, H. P.; Rana, V. A.

    2018-05-01

    The complex relative dielectric function ɛ*(ω) = ɛ' - jɛ″ of aqueous solutions of diclofenac potassium (DK) in the frequency range 20 Hz to 2 MHz at 303.15 K was measured using a precision LCR meter. The electrical/dielectric properties of the solutions samples were represented in terms of complex relative dielectric function ɛ*(ω) real part σ'(ω) of complex ac conductivity and dc conductivity. These types of studies can be used to explore various mechanism contributed in the absorption, transportation of drug through tissues and membranes of body as well as interactions of drug with body fluid and blood plasma.

  3. Low temperature synthesis and enhanced electrical properties by substitution of Al3+ and Cr3+ in Co-Ni nanoferrites

    NASA Astrophysics Data System (ADS)

    Pervaiz, Erum; Gul, I. H.

    2013-10-01

    Aluminum and chromium substituted Co-Ni spinel nanoferrites were prepared by sol-gel auto combustion method. Structural parameters along with electrical and magnetic properties have been investigated in the present work. Crystallite sizes of nano ferrite estimated from the peak (311) lies in the range of 13-21 nm ±2 nm and compared with crystallite sizes calculated from Williamsons-Hall plots. DC electrical resistivity variations due to the concentration of aluminum and chromium in the host ferrite have been measured from 368 K to 573 K. Increase in the room temperature DC electrical resistivity was observed up to a concentration x=0.2 and then decreases for x >0.2. Dielectric parameters (real and imaginary part of complex permittivity, dielectric loss tangent) were studied as a function of frequency (20 Hz-5 MHz) and a decrease in the dielectric parameters was observed due to substitution of nickel, aluminum and chromium ions in cobalt nanoferrites. AC conductivity, complex impedance and complex electrical modulus were studied as a function of frequency for the conduction and relaxation mechanisms in the present ferrite system. Saturation magnetization, coercivity, canting angles and magneto crystalline anisotropy variations with composition were observed and presented for the present ferrites under an applied magnetic field of 10 kOe at room temperature. It was found that both magnetization and coercivity decreases with increase in the concentration of aluminum and chromium along with a decrease in the anisotropy parameters. High DC resistivity with low dielectric parameters of the present nanoferrites make them suitable for high frequency and electromagnetic wave absorbing devices. High purity mixed Co-Ni-Al-Cr nanoferrites have been prepared by sol-gel auto combustion method. DC electrical resistivity increases due to substitution of Al3+ and Cr3+. Complex permittivity decrease for Co-Ni-Al-Cr nanoferrites. Detailed AC response analysis has been presented for mixed Co-Ni-Al-Cr nanoferrites. Magnetization and coercively reduces for Al3+ and Cr3+ doped Co-Ni ferrite nanoparticles showing that material is becoming soft magnetic.

  4. Temperature dependent dielectric and conductivity studies of polyvinyl alcohol-ZnO nanocomposite films by impedance spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hemalatha, K. S.; Damle, R.; Rukmani, K., E-mail: rukmani9909@yahoo.co.in

    2015-10-21

    Dielectric and conductivity behaviors of nano ZnO doped polyvinyl alcohol (PVA) composites for various concentrations of dopant were investigated using impedance spectroscopy for a wide range of temperatures (303 K–423 K) and frequencies (5 Hz–30 MHZ). The dielectric properties of host polymer matrix have been improved by the addition of nano ZnO and are found to be highly temperature dependent. Anomalous dielectric behavior was observed in the frequency range of 2.5 MHz–5 MHz. Increase in dielectric permittivity and dielectric loss was observed with respect to temperature. The Cole-Cole plot could be modeled by low resistance regions in a high resistance matrix and the lowest resistance wasmore » observed for the 10 mol. % films. The imaginary part of the electric modulus showed asymmetric peaks with the relaxation following Debye nature below and non-Debye nature above the peaks. The ac conductivity is found to obey Jonscher's power law, whereas the variation of dc conductivity with temperature was found to follow Arrhenius behavior. Two different activation energy values were obtained from Arrhenius plot indicating that two conduction mechanisms are involved in the composite films. Fitting the ac conductivity data to Jonscher's law indicates that large polaron assisted tunneling is the most likely conduction mechanism in the composites. Maximum conductivity is observed at 423 K for all the samples and it is optimum for 10 mol. % ZnO doped PVA composite film. Significant increase in dc and ac conductivities in these composite films makes them a potential candidate for application in electronic devices.« less

  5. Surveying the Dynamic Radio Sky with the Long Wavelength Demonstrator Array

    DTIC Science & Technology

    2010-10-01

    and potentially the Lunar Radio Array. Subject headings: instrumentation: interferometers — methods : observational — radio continuum: gen- eral 1Remote...Sensing Division, Naval Research Laboratory, 4555 Overlook Ave. SW, Washington, DC 20375 USA 2NASA Lunar Science Institute, NASA Ames Research Center...Moffett Field, CA 94035 USA 3Space Science Division, Naval Research Laboratory, 4555 Overlook Ave. SW, Washington, DC 20375-5382 USA 4Praxis, Inc

  6. Hafnium transistor design for neural interfacing.

    PubMed

    Parent, David W; Basham, Eric J

    2008-01-01

    A design methodology is presented that uses the EKV model and the g(m)/I(D) biasing technique to design hafnium oxide field effect transistors that are suitable for neural recording circuitry. The DC gain of a common source amplifier is correlated to the structural properties of a Field Effect Transistor (FET) and a Metal Insulator Semiconductor (MIS) capacitor. This approach allows a transistor designer to use a design flow that starts with simple and intuitive 1-D equations for gain that can be verified in 1-D MIS capacitor TCAD simulations, before final TCAD process verification of transistor properties. The DC gain of a common source amplifier is optimized by using fast 1-D simulations and using slower, complex 2-D simulations only for verification. The 1-D equations are used to show that the increased dielectric constant of hafnium oxide allows a higher DC gain for a given oxide thickness. An additional benefit is that the MIS capacitor can be employed to test additional performance parameters important to an open gate transistor such as dielectric stability and ionic penetration.

  7. Glass transition and relaxation processes of nanocomposite polymer electrolytes.

    PubMed

    Money, Benson K; Hariharan, K; Swenson, Jan

    2012-07-05

    This study focus on the effect of δ-Al(2)O(3) nanofillers on the dc-conductivity, glass transition, and dielectric relaxations in the polymer electrolyte (PEO)(4):LiClO(4). The results show that there are three dielectric relaxation processes, α, β, and γ, in the systems, although the structural α-relaxation is hidden in the strong conductivity contribution and could therefore not be directly observed. However, by comparing an enhanced dc-conductivity, by approximately 2 orders of magnitude with 4 wt % δ-Al(2)O(3) added, with a decrease in calorimetric glass transition temperature, we are able to conclude that the dc-conductivity is directly coupled to the hidden α-relaxation, even in the presence of nanofillers (at least in the case of δ-Al(2)O(3) nanofillers at concentrations up to 4 wt %). This filler induced speeding up of the segmental polymer dynamics, i.e., the α-relaxation, can be explained by the nonattractive nature of the polymer-filler interactions, which enhance the "free volume" and mobility of polymer segments in the vicinity of filler surfaces.

  8. AC/DC electrical conduction and dielectric properties of PMMA/PVAc/C60 down-shifting nanocomposite films

    NASA Astrophysics Data System (ADS)

    El-Bashir, S. M.; Alwadai, N. M.; AlZayed, N.

    2018-02-01

    Polymer nanocomposite films were prepared by doping fullerene C60 in polymer blend composed of polymethacrylate/polyvinyl acetate blends (PMMA/PVAc) using solution cast technique. The films were characterized by differential scanning calorimeter (DSC), Transmission electron microscope (TEM), DC/AC electrical conductivity and dielectric measurements in the frequency range (100 Hz- 1 MHz). The glass transition temperature, Tg, was increased by increasing the concentration of fullerene C60; this property reflects the increase of thermal stability by increasing the nanofiller content. The DC and AC electrical conductivities were enhanced by increasing C60 concentration due to the electron hopping or tunneling between filled and empty localized states above Tg. The relaxation time was determined from the αβ -relaxations and found to be attenuated by increasing the temperature as a typical behavior of amorphous polymers. The calculated values of thermodynamic parameters revealed the increase of molecular stability by increasing the doping concentration; this feature supports the application of PMMA/PVAc/C60 nanocomposite films in a wide scale of solar energy conversion applications such as luminescent down-shifting (LDS) coatings for photovoltaic cells.

  9. Dynamical properties of epitaxial ferroelectric superlattices

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Gerhardt, R. A.; Erbil, A.

    1997-04-01

    The dynamical properties of epitaxial ferroelectric heterostructures have been investigated by studying the dielectric behavior under external electric field. A phenomenon with a giant permittivity was observed. At low frequencies, real permittivities as high as 420 000 have been measured. Real and imaginary parts of the dielectric constant show large dispersion at high frequencies. In dc measurements, a nonlinear resistance is observed with a well-defined threshold field, correlating with the dc bias-field dependence of ac permittivities. We model these observations as a result of the motion of pinned domain-wall lattices, having sliding-mode motion at high electric fields. The good agreement between the experimental and theoretical results suggests that the deposited interdigitated electrode pattern plays a crucial role in controlling domain-wall dynamics. The pinning of the domain wall comes from a nucleation barrier to the creation of new domain walls.

  10. Structural, dielectric and magnetic studies of magnetoelectric trirutile Fe{sub 2}TeO{sub 6}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaushik, S. D., E-mail: sdkaushik@csr.res.in; Sahu, B.; Mohapatra, S. R.

    2016-05-23

    We have investigated structural, magnetic and dielectric properties of Fe{sub 2}TeO{sub 6} which is a magnetoelectric antiferromagnet with the trirutile lattice. Rietveld analysis of room temperature X-ray diffraction data shows the phase purity of the sample with tetragonal trirutile structure (space group P4{sub 2}/mnm). The DC susceptibility measurement performed on polycrystalline powders exhibits antiferromagnetic ordering below transition temperature ~ 210K. The employment of Curie-Weiss law to inverse magnetic susceptibility only in the temperature range 350-260 K indicates the magnetic ordering starts developing before the transition temperature. The temperature dependent dielectric measurements show an intrinsic behavior of dielectric constant below 150more » K while a continuous increase in dielectric constant with temperature above 150 K may be attributed to a small increase in electrical conduction, known commonly in the literatures.« less

  11. Measured current drainage through holes in various dielectrics up to 2 kilovolts in a dilute plasma

    NASA Technical Reports Server (NTRS)

    Grier, N. T.; Mckinzie, D. J., Jr.

    1972-01-01

    The electron current drained from a plasma through approximately 0.05 cm diameter holes in eight possible space applicable dielectrics placed on a probe biased at voltages up to 2000 V dc have been determined both theoretically and experimentally. The dielectrics tested were Parylene C and N, Teflon FEP type C, Teflon TFE, Nomex, quartz 7940 Corning Glass, Mylar A, and Kapton H polymide film. A Laplace field was used to predict an upper limit for the drainage current. The measured current was less than the computed current for quartz, Teflon FEP, and the 0.0123 cm thick sample of Parylene N for all voltages tested. The drainage current through the other dielectrics became equal to or greater than the computed current at a voltage below 2000 V. The magnitudes of the currents were between 0.1 and 10 microamperes for most of the dielectrics.

  12. Dielectric and transport properties of CaTiO3

    NASA Astrophysics Data System (ADS)

    Bhadala, Falguni; Suthar, Lokesh; Roy, M.; Jha, Vikash Kumar

    2018-05-01

    The ceramic sample of CaTiO3 (CTO) has been prepared by standard high temperature solid state reaction method using high purity oxides. The formation of the compound as well as structural analysis has been carried out by X-ray diffraction method. The dielectric constant and dielectric loss as a function of frequency (20kHz-10MHz) and temperature (RT-490K) have been measured. The dc conductivity has been measured and activation energy was calculated using the Arrhenius relation. The Enthalpy change (ΔH), Specific heat and Weight-loss of the compound have been measured using DTA/TGA techniques. The results are discussed in detail.

  13. Effect of aluminium substitution on the electrical properties of Ni-Zn nanoferrites

    NASA Astrophysics Data System (ADS)

    Paramesh, D.; Vijaya Kumar, K.; Venkat Reddy, P.

    2017-12-01

    Nanoferrites of general formula Ni0.5 Zn0.5 Alx Fe2-x O4 (x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8 and 2.0) synthesized by sol-gel auto combustion technique can be characterized by dielectric behaviour and AC conductivity studies with the help of LCR impedance meter. This paper gives an insight on variations in dielectric constant, dielectric loss with reference to frequency, temperature and Al3+ ion substitution and also the determination of DC resistivity, activation energy and Curie temperature by two probe experimental set-up.

  14. Fault current limiter

    DOEpatents

    Darmann, Francis Anthony

    2013-10-08

    A fault current limiter (FCL) includes a series of high permeability posts for collectively define a core for the FCL. A DC coil, for the purposes of saturating a portion of the high permeability posts, surrounds the complete structure outside of an enclosure in the form of a vessel. The vessel contains a dielectric insulation medium. AC coils, for transporting AC current, are wound on insulating formers and electrically interconnected to each other in a manner such that the senses of the magnetic field produced by each AC coil in the corresponding high permeability core are opposing. There are insulation barriers between phases to improve dielectric withstand properties of the dielectric medium.

  15. Effect of Shock Waves on Dielectric Properties of KDP Crystal

    NASA Astrophysics Data System (ADS)

    Sivakumar, A.; Suresh, S.; Pradeep, J. Anto; Balachandar, S.; Martin Britto Dhas, S. A.

    2018-05-01

    An alternative non-destructive approach is proposed and demonstrated for modifying electrical properties of crystal using shock-waves. The method alters dielectric properties of a potassium dihydrogen phosphate (KDP) crystal by loading shock-waves generated by a table-top shock tube. The experiment involves launching the shock-waves perpendicular to the (100) plane of the crystal using a pressure driven table-top shock tube with Mach number 1.9. Electrical properties of dielectric constant, dielectric loss, permittivity, impedance, AC conductivity, DC conductivity and capacitance as a function of spectrum of frequency from 1 Hz to 1 MHz are reported for both pre- and post-shock wave loaded conditions of the KDP crystal. The experimental results reveal that dielectric constant of KDP crystal is sensitive to the shock waves such that the value decreases for the shock-loaded KDP sample from 158 to 147. The advantage of the proposed approach is that it is an alternative to the conventional doping process for tailoring dielectric properties of this type of crystal.

  16. Potential damage to dc superconducting magnets due to high frequency electromagnetic waves

    NASA Technical Reports Server (NTRS)

    Gabriel, G. J.; Burkhart, J. A.

    1977-01-01

    Studies of a d.c. superconducting magnet coil indicate that the large coil behaves as a straight waveguide structure. Voltages between layers within the coil sometimes exceeded those recorded at terminals where protective resistors are located. Protection of magnet coils against these excessive voltages could be accomplished by impedance matching throughout the coil system. The wave phenomenon associated with superconducting magnetic coils may create an instability capable of converting the energy of a quiescent d.c. superconducting coil into dissipative a.c. energy, even in cases when dielectric breakdown does not take place.

  17. SHALLOW ELECTRON TRAPS IN SINGLE CRYSTALS OF RUTILE STUDIED BY X-RAY IRRADIATION USING LOW FREQUENCY DIELECTRIC MEASUREMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, K.G.

    1962-04-01

    Defect structure in single crystals of rutile was studied by dielectric measurements at 2 cps and above, before and after irradiation with hard x rays. The results were analyzed by a Cole-Cole plot, which is a circle with its cenier shifted away from the dielectric constant axis. X irradiation shifts the center of the Cole-Cole plot toward the dielectric constant axis, indicating a decrease in distribution of relaxation times by evacuation of electrons from their shallow traps, which after release produce interfacial polarization. An attempt was also made to calculate the a-c behavior from d-c data, but the errors atmore » frequencies of measurement were toe high, thus defying comparison with experimental data. (auth)« less

  18. Impedance analysis and dielectric response of anatase TiO2 nanoparticles codoped with Mn and Co ions

    NASA Astrophysics Data System (ADS)

    Kumar, Anand; Kashyap, Manish K.; Sabharwal, Namita; Kumar, Sarvesh; Kumar, Ashok; Kumar, Parmod; Asokan, K.

    2017-11-01

    In order to elucidate the effect of transition metal (TM) doping, the impedance and dielectric responses of Co and/or Mn-doped TiO2 nanocrystalline powder samples with 3% doping concentration synthesized via sol gel technique, have been analyzed. X-ray diffraction (XRD) analysis confirms the formation of tetragonal TiO2 anatase phase for all studied samples without any extra impurity phase peaks. The variation in the grain size measured from field emission scanning electron microscope (FESEM) measurements for all the samples are in accordance with the change in crystallite size as obtained from XRD. The DC resistivity for pure TiO2 nanoparticles is the highest while codoped samples exhibit low resistivity. The temperature dependent dielectric constant and dielectric loss possess step like enhancement and show the relaxation behavior. At room temperature, the dielectric function and dielectric loss decrease rapidly with increase in frequency and become almost constant at the higher frequencies. Such a decrease in dielectric loss is suitable for energy storage devices.

  19. Evaluation of the influence of the internal aqueous solvent structure on electrostatic interactions at the protein-solvent interface by nonlocal continuum electrostatic approach.

    PubMed

    Rubinstein, Alexander; Sherman, Simon

    The dielectric properties of the polar solvent on the protein-solvent interface at small intercharge distances are still poorly explored. To deconvolute this problem and to evaluate the pair-wise electrostatic interaction (PEI) energies of the point charges located at the protein-solvent interface we used a nonlocal (NL) electrostatic approach along with a static NL dielectric response function of water. The influence of the aqueous solvent microstructure (determined by a strong nonelectrostatic correlation effect between water dipoles within the orientational Debye polarization mode) on electrostatic interactions at the interface was studied in our work. It was shown that the PEI energies can be significantly higher than the energies evaluated by the classical (local) consideration, treating water molecules as belonging to the bulk solvent with a high dielectric constant. Our analysis points to the existence of a rather extended, effective low-dielectric interfacial water shell on the protein surface. The main dielectric properties of this shell (effective thickness together with distance- and orientation-dependent dielectric permittivity function) were evaluated. The dramatic role of this shell was demonstrated when estimating the protein association rate constants.

  20. Electromagnetic momentum and the energy–momentum tensor in a linear medium with magnetic and dielectric properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crenshaw, Michael E., E-mail: michael.e.crenshaw4.civ@mail.mil

    2014-04-15

    In a continuum setting, the energy–momentum tensor embodies the relations between conservation of energy, conservation of linear momentum, and conservation of angular momentum. The well-defined total energy and the well-defined total momentum in a thermodynamically closed system with complete equations of motion are used to construct the total energy–momentum tensor for a stationary simple linear material with both magnetic and dielectric properties illuminated by a quasimonochromatic pulse of light through a gradient-index antireflection coating. The perplexing issues surrounding the Abraham and Minkowski momentums are bypassed by working entirely with conservation principles, the total energy, and the total momentum. We derivemore » electromagnetic continuity equations and equations of motion for the macroscopic fields based on the material four-divergence of the traceless, symmetric total energy–momentum tensor. We identify contradictions between the macroscopic Maxwell equations and the continuum form of the conservation principles. We resolve the contradictions, which are the actual fundamental issues underlying the Abraham–Minkowski controversy, by constructing a unified version of continuum electrodynamics that is based on establishing consistency between the three-dimensional Maxwell equations for macroscopic fields, the electromagnetic continuity equations, the four-divergence of the total energy–momentum tensor, and a four-dimensional tensor formulation of electrodynamics for macroscopic fields in a simple linear medium.« less

  1. Polarization and angle insensitive dual-band bandpass frequency selective surface using all-dielectric metamaterials

    NASA Astrophysics Data System (ADS)

    Yu, Fei; Wang, Jun; Wang, Jiafu; Ma, Hua; Du, Hongliang; Xu, Zhuo; Qu, Shaobo

    2016-04-01

    In this paper, we demonstrate a dual-band bandpass all-dielectric frequency selective surface (FSS), the building elements of which are high-permittivity ceramic particles rather than metallic patterns. With proper structural design and parameter adjustment, the resonant frequency can be tuned at will. Dual-band bandpass response can be realized due to the coupling between electric and magnetic resonances. As an example, a dual-band bandpass FSS is designed in Ku band, which is composed of two-dimensional periodic arrays of complementary quatrefoil structures (CQS) cut from dielectric plates. Moreover, cylindrical dielectric resonators are introduced and placed in the center of each CQS to broaden the bandwidth and to sharpen the cut-off frequency. Theoretical analysis shows that the bandpass response arises from impedance matching caused by electric and magnetic resonances. In addition, effective electromagnetic parameters and dynamic field distributions are presented to explain the mechanism of impedance matching. The proposed FSS has the merits of polarization independence, stable transmission, and sharp roll-off frequency. The method can also be used to design all-dielectric FSSs with continuum structures at other frequencies.

  2. What is the origin of anomalous dielectric response in 2D organic dimer Mott insulators κ-(BEDT-TTF)2Cu[N(CN)2]Cl and κ-(BEDT-TTF)2Cu2(CN)3

    NASA Astrophysics Data System (ADS)

    Pinterić, M.; Ivek, T.; Čulo, M.; Milat, O.; Basletić, M.; Korin-Hamzić, B.; Tafra, E.; Hamzić, A.; Dressel, M.; Tomić, S.

    2015-03-01

    Novel forms of the low-temperature phases in the two-dimensional molecular solids with competing interactions between charges, spins and lattice, in particular those featuring anomalous dielectric relaxation, have been the focus of intense activity in recent years. Open issues concern the nature of collective charge excitations as well as their coupling to applied ac and dc electric fields. The charge response is reasonably well understood by now in the charge-ordered phase with the formation of ferroelectric-like domains below the metal-to-insulator phase transition. Conversely, the dielectric response observed in dimer Mott insulator phases with no complete evidence for charge ordering is rather intriguing. We overview our recent results of anisotropic complex conductivity (dc - MHz) in the magnetic phase of κ-(BEDT - TTF) 2 Cu [ N(CN)2 ] Cl and in the spin-liquid phase of κ-(BEDT - TTF) 2Cu2(CN)3. We discuss possible explanations for the observed dynamics within current theoretical models and compare them with the well-known fingerprints of the spin density wave response to ac electric fields.

  3. Patterned Ferroelectric Films for Tunable Microwave Devices

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.; Mueller, Carl H.

    2008-01-01

    Tunable microwave devices based on metal terminals connected by thin ferroelectric films can be made to perform better by patterning the films to include suitably dimensioned, positioned, and oriented constrictions. The patterns can be formed during fabrication by means of selective etching processes. If the width of the ferroelectric film in such a device is reduced at one or more locations, then both the microwave field and any applied DC bias (tuning) electric field become concentrated at those locations. The magnitudes of both the permittivity and the dielectric loss of a ferroelectric material are reduced by application of a DC field. Because the concentration of the DC field in the constriction(s) magnifies the permittivity- and loss-reducing effects of the applied DC voltage, the permittivity and dielectric loss in the constriction(s) are smaller in the constriction(s) than they are in the wider parts of the ferroelectric film. Furthermore, inasmuch as displacement current must flow through either the constriction(s) or the low-loss dielectric substrate, the net effect of the constriction(s) is equivalent to that of incorporating one or more low-loss, low-permittivity region(s) in series with the high-loss, high-permittivity regions. In a series circuit, the properties of the low-capacitance series element (in this case, the constriction) dominate the overall performance. Concomitantly, the capacitance between the metal terminals is reduced. By making the capacitance between the metal terminals small but tunable, a constriction increases the upper limit of the frequency range amenable to ferroelectric tuning. The present patterning concept is expected to be most advantageous for devices and circuits that must operate at frequencies from about 4 to about 60 GHz. A constriction can be designed such that the magnitude of the microwave electric field and the effective width of the region occupied by the microwave electric field become functions of the applied DC electric field, so that tunability is enhanced. It should even be possible to design the constriction to obtain a specific tuning-versus-voltage profile.

  4. Rotating turkeys and self-commutating artificial muscle motors

    NASA Astrophysics Data System (ADS)

    O'Brien, Benjamin M.; McKay, Thomas G.; Gisby, Todd A.; Anderson, Iain A.

    2012-02-01

    Electrostatic motors—first used by Benjamin Franklin to rotisserie a turkey—are making a comeback in the form of high energy density dielectric elastomer artificial muscles. We present a self-commutated artificial muscle motor that uses dielectric elastomer switches in the place of bulky external electronics. The motor simply requires a DC input voltage to rotate a shaft (0.73 Nm/kg, 0.24 Hz) and is a step away from hard metallic electromagnetic motors towards a soft, light, and printable future.

  5. Characteristics of space charge formed in a laminated LDPE/EVA dielectric under DC stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, Toshikatsu; Kisanuki, Osamu; Sakata, Masataka

    1996-12-31

    A laser-induced pressure pulse (LIPP) method was used for measuring the space charge distribution of LDPE/EVA laminate dielectrics under dc stress. The constant voltage up to {+-}20 kV was applied to a side of the laminates of 0.5 mm thickness for 30 minutes. The other side is grounded. When the amount of space charge was measured by LIPP, both sides were virtually grounded. Space charge built up in or near the interface between LDPE and EVA was mainly investigated. Positive and negative voltage was applied to the side of LDPE in the laminates. It was clarified that the space chargemore » was larger in case of LDPE negatively biased than in case of LDPE positively biased. The density of the space charge ranged around 1 nC/mm{sup 3}. The formation of interfacial space charge is analyzed.« less

  6. Improved dc and power performance of AlGaN/GaN high electron mobility transistors with Sc 2O 3 gate dielectric or surface passivation

    NASA Astrophysics Data System (ADS)

    Luo, B.; Mehandru, R.; Kim, Jihyun; Ren, F.; Gila, B. P.; Onstine, A. H.; Abernathy, C. R.; Pearton, S. J.; Gotthold, D.; Birkhahn, R.; Peres, B.; Fitch, R. C.; Moser, N.; Gillespie, J. K.; Jessen, G. H.; Jenkins, T. J.; Yannuzi, M. J.; Via, G. D.; Crespo, A.

    2003-10-01

    The dc and power characteristics of AlGaN/GaN MOS-HEMTs with Sc 2O 3 gate dielectrics were compared with that of conventional metal-gate HEMTs fabricated on the same material. The MOS-HEMT shows higher saturated drain-source current (˜0.75 A/mm) and significantly better power-added efficiency (PAE, 27%) relative to the HEMT (˜0.6 A/mm and ˜5%). The Sc 2O 3 also provides effective surface passivation, with higher drain current, lower leakage currents and higher three-terminal breakdown voltage in passivated devices relative to unpassivated devices. The PAE also increases (from ˜5% to 12%) on the surface passivated HEMTs, showing that Sc 2O 3 is an attractive option for reducing gate and surface leakage in AlGaN/GaN heterostructure transistors.

  7. Origin of the colossal dielectric response of Pr0.6 Ca0.4 Mn O3

    NASA Astrophysics Data System (ADS)

    Biškup, N.; de Andrés, A.; Martinez, J. L.; Perca, C.

    2005-07-01

    We report the detailed study of dielectric response of Pr0.6Ca0.4MnO3 (PCMO), a member of the manganite family showing colossal magnetoresistance. Measurements have been performed on four polycrystalline samples and four single crystals, allowing us to compare and extract the essence of dielectric response in the material. High-frequency dielectric function is found to be ɛHF=30 , as expected for the perovskite material. Dielectric relaxation is found in the frequency window of 20Hzto1MHz at temperatures of 50-200K that yields to colossal low-frequency dielectric function, i.e., the static dielectric constant. The static dielectric constant is always colossal, but varies considerably in different samples from ɛ(0)=103to105 . The measured data can be simulated very well by blocking (surface barrier) capacitance in series with sample resistance. This indicates that the large dielectric constant in PCMO arises from the Schottky barriers at electrical contacts. Measurements in magnetic field and with dc bias support this interpretation. Colossal magnetocapacitance observed in the title compound is thus attributed to extrinsic effects. Weak anomaly at the charge ordering temperature can also be attributed to interplay of sample and contact resistance. We comment on our results in the framework of related studies by other groups.

  8. Nonlocal continuum electrostatic theory predicts surprisingly small energetic penalties for charge burial in proteins.

    PubMed

    Bardhan, Jaydeep P

    2011-09-14

    We study the energetics of burying charges, ion pairs, and ionizable groups in a simple protein model using nonlocal continuum electrostatics. Our primary finding is that the nonlocal response leads to markedly reduced solvent screening, comparable to the use of application-specific protein dielectric constants. Employing the same parameters as used in other nonlocal studies, we find that for a sphere of radius 13.4 Å containing a single +1e charge, the nonlocal solvation free energy varies less than 18 kcal/mol as the charge moves from the surface to the center, whereas the difference in the local Poisson model is ∼35 kcal/mol. Because an ion pair (salt bridge) generates a comparatively more rapidly varying Coulomb potential, energetics for salt bridges are even more significantly reduced in the nonlocal model. By varying the central parameter in nonlocal theory, which is an effective length scale associated with correlations between solvent molecules, nonlocal-model energetics can be varied from the standard local results to essentially zero; however, the existence of the reduction in charge-burial penalties is quite robust to variations in the protein dielectric constant and the correlation length. Finally, as a simple exploratory test of the implications of nonlocal response, we calculate glutamate pK(a) shifts and find that using standard protein parameters (ε(protein) = 2-4), nonlocal results match local-model predictions with much higher dielectric constants. Nonlocality may, therefore, be one factor in resolving discrepancies between measured protein dielectric constants and the model parameters often used to match titration experiments. Nonlocal models may hold significant promise to deepen our understanding of macromolecular electrostatics without substantially increasing computational complexity. © 2011 American Institute of Physics

  9. Diagnostics of pre-breakdown light emission in a helium coplanar barrier discharge: the presence of neutral bremsstrahlung

    NASA Astrophysics Data System (ADS)

    Navrátil, Zdeněk; Morávek, Tomáš; Ráheľ, Jozef; Čech, Jan; Lalinský, Ondřej; Trunec, David

    2017-05-01

    Weak light emission (˜10-3 of active discharge signal; average count rate ˜ 1 photon s-1 nm-1) associated with surface charge relaxation during the dark phase of a helium diffuse coplanar barrier discharge was studied by optical emission spectroscopy, using a technique of phase-resolved single photon counting. The optical emission spectra of the dark phase contained luminescent bands of the dielectrics used (Al2O3, AlN) and spectral lines from the gas constituents (OH*, {{{N}}}2* , {{{N}}}2+* , He*, He{}2* , O*). During the charge relaxation event, a broad continuum appeared in the optical emission spectra, consisting of bremsstrahlung radiation and amplified luminescence of the dielectric barrier. The analysis presented suggests that the bremsstrahlung radiation originated from slow electrons colliding with neutral helium atoms. The fitting procedure we developed reproduced well the observed shape of the continuum. Moreover, it provided a method for the determination of electric field strength in the discharge during this particular phase. The electric field reached 1 kV cm-1 during the charge relaxation event.

  10. Performance enhanced miniaturized and electrically tunable patch antenna with patterned permalloy based magneto-dielectric substrate

    NASA Astrophysics Data System (ADS)

    Peng, Yujia; Farid Rahman, B. M.; Wang, Xuehe; Wang, Guoan

    2014-05-01

    Perspective magneto-dielectric materials with high permeability are potential substrates to miniaturize the patch antenna without deteriorating its performance. Besides its high permeability at high frequency, patterned Permalloy (Py) also presents tunable permeability by applying DC current. A performance enhanced miniaturized and electrically tunable patch antenna with patterned Py thin film is first presented and developed in this paper. To suppress the magnetic loss, the Py thin film layer is consisted of an array of 2 μm × 2 μm square Py patterns between the copper patch antenna and dielectric substrate. The DC current could be applied directly on Py patterns through the copper strip lines beneath the Py patterns along the length of patch antenna. The copper strip lines are specially designed with the same width of Py patterns and the thickness much less than the skin depth at the operating frequency, which can reduce their deteriorating effects to the performance of antenna. The structure of the antenna is presented and simulated with high frequency structure simulator. The results show that compared with non-magnetic antenna, the performance of Py thin film based antenna is improved with 50% bandwidth increase from 4 MHz to 8 MHz and 1.2 dB gain enhancement from 1.16 dB to 2.36 dB. The resonant frequency of the antenna could be continuously tuned from 937 MHz to 911 MHz with the permeability of Py thin film changing from 1750 to 1 900 by applying the DC current.

  11. Novel Parallelized Electroporation by Electrostatic Manipulation of a Water-in-Oil Droplet as a Microreactor

    PubMed Central

    Takahashi, Shota; Asada, Atsushi; Matsuo, Minako; Kishikawa, Kenta; Mizuno, Akira

    2015-01-01

    Electroporation is the most widely used transfection method for delivery of cell-impermeable molecules into cells. We developed a novel gene transfection method, water-in-oil (W/O) droplet electroporation, using dielectric oil and an aqueous droplet containing mammalian cells and transgene DNA. When a liquid droplet suspended between a pair of electrodes in dielectric oil is exposed to a DC electric field, the droplet moves between the pair of electrodes periodically and droplet deformation occurs under the intense DC electric field. During electrostatic manipulation of the droplet, the local intense electric field and instantaneous short circuit via the droplet due to droplet deformation facilitate gene transfection. This method has several advantages over conventional transfection techniques, including co-transfection of multiple transgene DNAs into even as few as 103 cells, transfection into differentiated neural cells, and the capable establishment of stable cell lines. In addition, there have been improvements in W/O droplet electroporation electrodes for disposable 96-well plates making them suitable for concurrent performance without thermal loading by a DC electric field. This technique will lead to the development of cell transfection methods for novel regenerative medicine and gene therapy. PMID:26649904

  12. Dielectric Barrier Discharge Plasma Actuator for Flow Control

    NASA Technical Reports Server (NTRS)

    Opaits, Dmitry, F.

    2012-01-01

    This report is Part II of the final report of NASA Cooperative Agreement contract no. NNX07AC02A. It includes a Ph.D. dissertation. The period of performance was January 1, 2007 to December 31, 2010. Part I of the final report is the overview published as NASA/CR-2012- 217654. Asymmetric dielectric barrier discharge (DBD) plasma actuators driven by nanosecond pulses superimposed on dc bias voltage are studied experimentally. This produces non-self-sustained discharge: the plasma is generated by repetitive short pulses, and the pushing of the gas occurs primarily due to the bias voltage. The parameters of ionizing pulses and the driving bias voltage can be varied independently, which adds flexibility to control and optimization of the actuators performance. The approach consisted of three elements coupled together: the Schlieren technique, burst mode of plasma actuator operation, and 2-D numerical fluid modeling. During the experiments, it was found that DBD performance is severely limited by surface charge accumulation on the dielectric. Several ways to mitigate the surface charge were found: using a reversing DC bias potential, three-electrode configuration, slightly conductive dielectrics, and semi conductive coatings. Force balance measurements proved the effectiveness of the suggested configurations and advantages of the new voltage profile (pulses+bias) over the traditional sinusoidal one at relatively low voltages. In view of practical applications certain questions have been also addressed, such as electrodynamic effects which accompany scaling of the actuators to real size models, and environmental effects of ozone production by the plasma actuators.

  13. Effects of substrate temperature on properties of pulsed dc reactively sputtered tantalum oxide films

    NASA Astrophysics Data System (ADS)

    Jain, Pushkar; Juneja, Jasbir S.; Bhagwat, Vinay; Rymaszewski, Eugene J.; Lu, Toh-Ming; Cale, Timothy S.

    2005-05-01

    The effects of substrate heating on the stoichiometry and the electrical properties of pulsed dc reactively sputtered tantalum oxide films over a range of film thickness (0.14 to 5.4 μm) are discussed. The film stoichiometry, and hence the electrical properties, of tantalum oxide films; e.g., breakdown field, leakage current density, dielectric constant, and dielectric loss are compared for two different cases: (a) when no intentional substrate/film cooling is provided, and (b) when the substrate is water cooled during deposition. All other operating conditions are the same, and the film thickness is directly related to deposition time. The tantalum oxide films deposited on the water-cooled substrates are stoichiometric, and exhibit excellent electrical properties over the entire range of film thickness. ``Noncooled'' tantalum oxide films are stoichiometric up to ~1 μm film thickness, beyond that the deposited oxide is increasingly nonstoichiometric. The presence of partially oxidized Ta in thicker (>~1 μm) noncooled tantalum oxide films causes a lower breakdown field, higher leakage current density, higher apparent dielectric constant, and dielectric loss. The growth of nonstoichiometric tantalum oxide in thicker noncooled films is attributed to decreased surface oxygen concentration due to oxygen recombination and desorption at higher film temperatures (>~100 °C). The quantitative results presented reflect experience with a specific piece of equipment; however, the procedures presented can be used to characterize deposition processes in which film stoichiometry can change.

  14. Charging of moving surfaces by corona discharges sustained in air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jun-Chieh, E-mail: junchwan@umich.edu; Kushner, Mark J., E-mail: mjkush@umich.edu; Zhang, Daihua, E-mail: dhzhang@tju.edu.cn

    Atmospheric pressure corona discharges are used in electrophotographic (EP) printing technologies for charging imaging surfaces such as photoconductors. A typical corona discharge consists of a wire (or wire array) biased with a few hundred volts of dc plus a few kV of ac voltage. An electric discharge is produced around the corona wire from which electrons drift towards and charge the underlying dielectric surface. The surface charging reduces the voltage drop across the gap between the corona wire and the dielectric surface, which then terminates the discharge, as in a dielectric barrier discharge. In printing applications, this underlying surface ismore » continuously moving throughout the charging process. For example, previously charged surfaces, which had reduced the local electric field and terminated the local discharge, are translated out of the field of view and are replaced with uncharged surface. The uncharged surface produces a rebound in the electric field in the vicinity of the corona wire which in turn results in re-ignition of the discharge. The discharge, so reignited, is then asymmetric. We found that in the idealized corona charging system we investigated, a negatively dc biased corona blade with a dielectric covered ground electrode, the discharge is initially sustained by electron impact ionization from the bulk plasma and then dominated by ionization from sheath accelerated secondary electrons. Depending on the speed of the underlying surface, the periodic re-ignition of the discharge can produce an oscillatory charging pattern on the moving surface.« less

  15. Conduction mechanism and dielectric relaxation in high dielectric KxTiyNi1-x-yO

    NASA Astrophysics Data System (ADS)

    Jana, Pradip Kumar; Sarkar, Sudipta; Karmakar, Shilpi; Chaudhuri, B. K.

    2007-10-01

    Complex impedance spectroscopic study has been made to elucidate the conductivity mechanism and dielectric relaxations in a low loss giant dielectric (ɛ'˜104) KxTiyNi1-x-yO (KTNO) system with x =0.05-0.30 and y =0.02 over a wide temperature range (200-400K). Below ambient temperature (300K), dc conductivity follows variable range hopping mechanism. The estimated activation energy for dielectric relaxation is found to be higher than the corresponding polaron hopping energy, which is attributed to the combined effect of K-doped grains and highly disordered grain boundary (GB) contributions in KTNO. Observed sharp fall of ɛ' below ˜270K is ascribed to the freezing of charge carriers. Comparatively lower value of relaxation time distribution parameter β of KTNO than that of the CaCu3Ti4O12 (CCTO) system reveals more disorder in KTNO. It is also found that KTNO is structurally more stable compared to the CCTO system, both having giant ɛ' value.

  16. Comparison of dielectric properties of additively manufactured vs. solvent cast polyimide dielectrics

    DOE PAGES

    Appelhans, Leah N.; Keicher, David M.; Lavin, Judith Maria

    2016-10-01

    The permittivity, dielectric loss, and DC dielectric breakdown strength of additively manufactured, solvent-cast, and commercial polyimide films are reported As expected, commercial films performed better than both AM and solvent-cast lab-made films. Solvent-cast films generally performed better than AM films, although performance depended on the optimization of the material for the specific deposition technique. The most significant degradation of performance in all the lab-made films was in the dispersion of both the x/Df measurements and the dielectric breakdown strength (Weibull β). Commercial films had a breakdown strength of 4891 kV/cm and β = 13.0 whereas the highest performing lab-made filmsmore » had a breakdown strength of 4072 kV/cm and β = 3.8. Furthermore, this increase in dispersion in all the lab-made samples is attributed to higher variability in the preparation, a higher defect level related to fabrication in the lab environment and, for some AM samples, to morphology/topology features resulting from the deposition technique.« less

  17. Morphological, Raman, electrical and dielectric properties of rare earth doped X-type hexagonal ferrites

    NASA Astrophysics Data System (ADS)

    Majeed, Abdul; Khan, Muhammad Azhar; ur Raheem, Faseeh; Ahmad, Iftikhar; Akhtar, Majid Niaz; Warsi, Muhammad Farooq

    2016-12-01

    The influence of rare-earth metals (La, Nd, Gd, Tb, Dy) on morphology, Raman, electrical and dielectric properties of Ba2NiCoRExFe28-xO46 ferrites were studied. The scanning electron microscopy (SEM) exhibited the platelet like structure of these hexagonal ferrites. The surface morphology indicated the formation of ferrite grains in the nano-regime scale. The bands obtained at lower wave number may be attributed to the metal-oxygen vibration at octahedral site which confirm the development of hexagonal phase of these ferrites. The resonance peaks were observed in dielectric constant, dielectric loss factor and quality factor versus frequency graphs. These dielectric parameters indicate that these ferrites nano-materials are potential candidates in the high frequency applications. The enhancement in DC electric resistivity from 2.48×108 to 1.20×109 Ω cm indicates that the prepared materials are beneficial for decreasing the eddy current losses at high frequencies and for the fabrication of multilayer chip inductor (MLCI) devices.

  18. Multiferroics BiMn1-xAlxO3 nanoparticles: Synthesis, characterization and evaluation of various structural, physical, electrical and dielectric parameters

    NASA Astrophysics Data System (ADS)

    Ahmad, Bashir; Raissat, Rabia; Mumtaz, Saleem; Ahmad, Zahoor; Sadiq, Imran; Ashiq, Muhammad Naeem; Najam-ul-Haq, Muhammad

    2017-07-01

    The aluminium substituted bismuth based manganates with nominal composition BiMn1-xAlxO3 (x = 0.0, 0.2, 0.4, 0.6 and 0.8) were prepared by the simple microemulsion method. The alteration in their structural, electrical and dielectric parameters due to Al substitution has been investigated. The X-ray diffraction analysis (XRD) confirms the formation of single phase orthorhombic with crystallite size ranges from 32 to 52 nm. The morphological features and particle size were determined by using scanning electron microscopy (SEM). The dc electrical resistivity increased from 6 × 108 to 8 × 109 Ω cm with the increase in substituent concentration. The dielectric constant, dielectric loss tangent and dielectric loss factor decreased with the increase in frequency. The increase in electrical resistivity makes the synthesized materials paramount over other materials and can be useful for technological applications in microwave devices.

  19. Comparison of dielectric properties of additively manufactured vs. solvent cast polyimide dielectrics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Appelhans, Leah N.; Keicher, David M.; Lavin, Judith Maria

    The permittivity, dielectric loss, and DC dielectric breakdown strength of additively manufactured, solvent-cast, and commercial polyimide films are reported As expected, commercial films performed better than both AM and solvent-cast lab-made films. Solvent-cast films generally performed better than AM films, although performance depended on the optimization of the material for the specific deposition technique. The most significant degradation of performance in all the lab-made films was in the dispersion of both the x/Df measurements and the dielectric breakdown strength (Weibull β). Commercial films had a breakdown strength of 4891 kV/cm and β = 13.0 whereas the highest performing lab-made filmsmore » had a breakdown strength of 4072 kV/cm and β = 3.8. Furthermore, this increase in dispersion in all the lab-made samples is attributed to higher variability in the preparation, a higher defect level related to fabrication in the lab environment and, for some AM samples, to morphology/topology features resulting from the deposition technique.« less

  20. Off Axis Growth of Strontium Titanate Films with High Dielectric Constant Tuning and Low Loss

    NASA Astrophysics Data System (ADS)

    Kampangkeaw, Satreerat

    2002-03-01

    Using off-axis pulsed laser deposition, we have grown strontium titanate (STO) films on neodymium gallate (NGO) and lanthanum aluminate (LAO) substrates. We measured the film dielectric constant and loss tangent as a function of temperature in the 10kHz to 1 MHz frequency range. We found that the loss is less than 0.01 We also obtained a figure of merit from the relative variation of the dielectric constant divided by the loss tangent. The obtained figured of merit at 35K and 1MHz is about 1000 comparable to bulk values. The dielectric constant of these films can be changed by a factor of 4-8 in the presence of a DC electric field up to 5V/μm. The films show significant variations of dielectric properties grown on different substrates at different locations respect to the axis of the plume. The STO films on LAO having high dielectric constant and dielectric tuning were grown in region near the center of the plume. On the other hand, STO on NGO shows this effect only on the films grown far from the plume axis.

  1. DC breakdown characteristics of silicone polymer composites for HVDC insulator applications

    NASA Astrophysics Data System (ADS)

    Han, Byung-Jo; Seo, In-Jin; Seong, Jae-Kyu; Hwang, Young-Ho; Yang, Hai-Won

    2015-11-01

    Critical components for HVDC transmission systems are polymer insulators, which have stricter requirements that are more difficult to achieve compared to those of HVAC insulators. In this study, we investigated the optimal design of HVDC polymer insulators by using a DC electric field analysis and experiments. The physical properties of the polymer specimens were analyzed to develop an optimal HVDC polymer material, and four polymer specimens were prepared for DC breakdown experiments. Single and reverse polarity breakdown tests were conducted to analyze the effect of temperature on the breakdown strength of the polymer. In addition, electric fields were analyzed via simulations, in which a small-scale polymer insulator model was applied to prevent dielectric breakdown due to electric field concentration, with four DC operating conditions taken into consideration. The experimental results show that the electrical breakdown strength and the electric field distribution exhibit significant differences in relation to different DC polarity transition procedures.

  2. Hot electron energy relaxation in lattice-matched InAlN/AlN/GaN heterostructures: The sum rules for electron-phonon interactions and hot-phonon effect

    NASA Astrophysics Data System (ADS)

    Zhang, J.-Z.; Dyson, A.; Ridley, B. K.

    2015-01-01

    Using the dielectric continuum (DC) and three-dimensional phonon (3DP) models, energy relaxation (ER) of the hot electrons in the quasi-two-dimensional channel of lattice-matched InAlN/AlN/GaN heterostructures is studied theoretically, taking into account non-equilibrium polar optical phonons, electron degeneracy, and screening from the mobile electrons. The electron power dissipation (PD) and ER time due to both half-space and interface phonons are calculated as functions of the electron temperature Te using a variety of phonon lifetime values from experiment, and then compared with those evaluated by the 3DP model. Thereby, particular attention is paid to examination of the 3DP model to use for the hot-electron relaxation study. The 3DP model yields very close results to the DC model: With no hot phonons or screening, the power loss calculated from the 3DP model is 5% smaller than the DC power dissipation, whereas slightly larger 3DP power loss (by less than 4% with a phonon lifetime from 0.1 to 1 ps) is obtained throughout the electron temperature range from room temperature to 2500 K after including both the hot-phonon effect (HPE) and screening. Very close results are obtained also for ER time with the two phonon models (within a 5% of deviation). However, the 3DP model is found to underestimate the HPE by 9%. The Mori-Ando sum rule is restored by which it is proved that the PD values obtained from the DC and 3DP models are in general different in the spontaneous phonon emission process, except when scattering with interface phonons is sufficiently weak, or when the degenerate modes condition is imposed, which is also consistent with Register's scattering rate sum rule. The discrepancy between the DC and 3DP results is found to be caused by how much the high-energy interface phonons contribute to the ER: their contribution is enhanced in the spontaneous emission process but is dramatically reduced after including the HPE. Our calculation with both phonon models has obtained a great fall in ER time at low electron temperatures (Te < 750 K) and slow decrease at the high temperatures with the use of decreasing phonon lifetime with Te. The calculated temperature dependence of the relaxation time and the high-temperature relaxation time ˜0.09 ps are in good agreement with experimental results.

  3. High-gradient compact linear accelerator

    DOEpatents

    Carder, B.M.

    1998-05-26

    A high-gradient linear accelerator comprises a solid-state stack in a vacuum of five sets of disc-shaped Blumlein modules each having a center hole through which particles are sequentially accelerated. Each Blumlein module is a sandwich of two outer conductive plates that bracket an inner conductive plate positioned between two dielectric plates with different thicknesses and dielectric constants. A third dielectric core in the shape of a hollow cylinder forms a casing down the series of center holes, and it has a dielectric constant different that the two dielectric plates that sandwich the inner conductive plate. In operation, all the inner conductive plates are charged to the same DC potential relative to the outer conductive plates. Next, all the inner conductive plates are simultaneously shorted to the outer conductive plates at the outer diameters. The signal short will propagate to the inner diameters at two different rates in each Blumlein module. A faster wave propagates quicker to the third dielectric core across the dielectric plates with the closer spacing and lower dielectric constant. When the faster wave reaches the inner extents of the outer and inner conductive plates, it reflects back outward and reverses the field in that segment of the dielectric core. All the field segments in the dielectric core are then in unipolar agreement until the slower wave finally propagates to the third dielectric core across the dielectric plates with the wider spacing and higher dielectric constant. During such unipolar agreement, particles in the core are accelerated with gradients that exceed twenty megavolts per meter. 10 figs.

  4. High-gradient compact linear accelerator

    DOEpatents

    Carder, Bruce M.

    1998-01-01

    A high-gradient linear accelerator comprises a solid-state stack in a vacuum of five sets of disc-shaped Blumlein modules each having a center hole through which particles are sequentially accelerated. Each Blumlein module is a sandwich of two outer conductive plates that bracket an inner conductive plate positioned between two dielectric plates with different thicknesses and dielectric constants. A third dielectric core in the shape of a hollow cylinder forms a casing down the series of center holes, and it has a dielectric constant different that the two dielectric plates that sandwich the inner conductive plate. In operation, all the inner conductive plates are charged to the same DC potential relative to the outer conductive plates. Next, all the inner conductive plates are simultaneously shorted to the outer conductive plates at the outer diameters. The signal short will propagate to the inner diameters at two different rates in each Blumlein module. A faster wave propagates quicker to the third dielectric core across the dielectric plates with the closer spacing and lower dielectric constant. When the faster wave reaches the inner extents of the outer and inner conductive plates, it reflects back outward and reverses the field in that segment of the dielectric core. All the field segments in the dielectric core are then in unipolar agreement until the slower wave finally propagates to the third dielectric core across the dielectric plates with the wider spacing and higher dielectric constant. During such unipolar agreement, particles in the core are accelerated with gradients that exceed twenty megavolts per meter.

  5. On the nature of high field charge transport in reinforced silicone dielectrics: Experiment and simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Yanhui, E-mail: huangy12@rpi.edu; Schadler, Linda S.

    The high field charge injection and transport properties in reinforced silicone dielectrics were investigated by measuring the time-dependent space charge distribution and the current under dc conditions up to the breakdown field and were compared with the properties of other dielectric polymers. It is argued that the energy and spatial distribution of localized electronic states are crucial in determining these properties for polymer dielectrics. Tunneling to localized states likely dominates the charge injection process. A transient transport regime arises due to the relaxation of charge carriers into deep traps at the energy band tails and is successfully verified by amore » Monte Carlo simulation using the multiple-hopping model. The charge carrier mobility is found to be highly heterogeneous due to the non-uniform trapping. The slow moving electron packet exhibits a negative field dependent drift velocity possibly due to the spatial disorder of traps.« less

  6. Dielectric relaxation in Li2SO4 in the intermedia-temperature regime

    NASA Astrophysics Data System (ADS)

    Diosa, J. E.; Vargas, R. A.; Fernández, M. E.; Albinsson, I.; Mellander, B.-E.

    2005-08-01

    The dielectric permittivity of polycrystalline Li2SO4 was measured from 5 Hz to 13 MHz and over the temperature range 235-460 °C. The corrected imaginary part of permittivity, , and its real part vs. frequency clearly show a new dielectric relaxation around fmax = 2 × 104 Hz at T = 256 °C, which shifts to higher frequencies (1 MHz) as the temperatures increases. The relaxation frequency (calculated from the peak position of ) vs. reciprocal T shows an activated relaxation process with activation energy Ea= 0.9 eV, which is very close to that derived from the dc conductivity, E (0.87 eV). We suggest that this dielectric relaxation could be due to the Li+ jump and SO4- reorientation that cause distortion and change of the local lattice polarizability inducing dipoles like LiSO4-.

  7. Differences between direct current and alternating current capacitance nonlinearities in high-k dielectrics and their relation to hopping conduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khaldi, O.; Kassmi, M.; El Manar University, LMOP, 2092 Tunis

    2014-08-28

    Capacitance nonlinearities were studied in atomic layer deposited HfO{sub 2} films using two types of signals: a pure ac voltage of large magnitude (ac nonlinearities) and a small ac voltage superimposed to a large dc voltage (dc nonlinearities). In theory, ac and dc nonlinearities should be of the same order of magnitude. However, in practice, ac nonlinearities are found to be an order of magnitude higher than dc nonlinearities. Besides capacitance nonlinearities, hopping conduction is studied using low-frequency impedance measurements and is discussed through the correlated barrier hopping model. The link between hopping and nonlinearity is established. The ac nonlinearitiesmore » are ascribed to the polarization of isolated defect pairs, while dc nonlinearities are attributed to electrode polarization which originates from defect percolation paths. Both the ac and dc capacitance nonlinearities display an exponential variation with voltage, which results from field-induced lowering of the hopping barrier energy.« less

  8. Solvent effects on the excited-state double proton transfer mechanism in the 7-azaindole dimer: a TDDFT study with the polarizable continuum model.

    PubMed

    Yu, Xue-Fang; Yamazaki, Shohei; Taketsugu, Tetsuya

    2017-08-30

    Solvent effects on the excited-state double proton transfer (ESDPT) mechanism in the 7-azaindole (7AI) dimer were investigated using the time-dependent density functional theory (TDDFT) method. Excited-state potential energy profiles along the reaction paths in a locally excited (LE) state and a charge transfer (CT) state were calculated using the polarizable continuum model (PCM) to include the solvent effect. A series of non-polar and polar solvents with different dielectric constants were used to examine the polarity effect on the ESDPT mechanism. The present results suggest that in a non-polar solvent and a polar solvent with a small dielectric constant, ESDPT follows a concerted mechanism, similar to the case in the gas phase. In a polar solvent with a relatively large dielectric constant, however, ESDPT is likely to follow a stepwise mechanism via a stable zwitterionic intermediate in the LE state on the adiabatic potential energy surface, although inclusion of zero-point vibrational energy (ZPE) corrections again suggests the concerted mechanism. In the meantime, the stepwise reaction path involving the CT state with neutral intermediates is also examined, and is found to be less competitive than the concerted or stepwise path in the LE state in both non-polar and polar solvents. The present study provides a new insight into the experimental controversy of the ESDPT mechanism of the 7AI dimer in a solution.

  9. Generation of large-area and glow-like surface discharge in atmospheric pressure air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Ying; Bi, Zhenhua; Wang, Xueyang

    2016-08-15

    A large-area (6 cm × 6 cm) air surface dielectric barrier discharge has been generated at atmospheric pressure by using well-aligned and micron-sized dielectric tubes with tungsten wire electrodes. Intensified CCD images with an exposure time of 5 ns show that the uniform surface air discharge can be generated during the rising and falling time of pulsed DC voltage. Current and voltage and optical measurements confirm the formation of glow-like air discharges on the surface of micron-sized dielectric tubes. Simulation results indicate that the microelectrode configuration contributes to the formation of strong surface electric field and plays an important role in the generation of uniformmore » surface air discharge.« less

  10. Magnetic and dielectric studies on half-doped orthochromite R(Fe0.5Cr0.5)O3 (R=Gd, Sm) ceramics

    NASA Astrophysics Data System (ADS)

    Tirupathi, Patri; Reddy, H. Satish Kumar

    2018-05-01

    In the present paper, we report a details on magnetic and dielectric studies on ball milled single phase Gd(Fe0.5Cr0.5)O3 (GFC) and Sm(Fe0.5Cr0.5)O3 (SmFC) ceramics. The room temperature X-ray diffraction suggest that GFC and SmFC are exhibit orthorhombic crystal system with Pnma space group. Temperature dependent dc-magnetic studies exhibit a complex sequence of magnetic transitions (TN = 281 K) for GFC (TN = 249 K for SmFC ceramics respectively. A weak ferromagnetic character at low temperature were observed for both compounds. In addition, high temperature dielectric studies were also reported for SmFC ceramics.

  11. FAST TRACK COMMUNICATION: Ferroelectric properties and dielectric responses of multiferroic BiFeO3 films grown by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Qi, Xiaoding; Tsai, Po-Chou; Chen, Yi-Chun; Ko, Cheng-Hung; Huang, Jung-Chun-Andrew; Chen, In-Gann

    2008-12-01

    Multiferroic BiFeO3 films have been grown on LaNiO3-x/SrTiO3 and Pt/Si substrates by RF magnetron sputtering. The films showed fully saturated ferroelectric hysteresis loops with large remanent polarization of 64 µC cm-2, suitable for most device applications. Piezoresponse force microscopy confirmed that the films were electrically writable. In addition to the high-frequency intrinsic dielectric loss of epitaxial films, the Argand diagram also revealed low-frequency contributions from both dc conductivity and interfacial polarization at electrodes. For polycrystalline films on Pt/Si, the dominant contribution to dielectric loss was space charge polarization at grain boundaries.

  12. Synthesis and dielectric properties of zinc oxide nanoparticles using a biotemplate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P, Sharmila P, E-mail: sharmilavishram@gmail.com; Tharayil, Nisha J., E-mail: nishajohntharayil@gmail.com

    Zinc Oxide nanoparticles are synthesized using DNA as capping agent. Zinc oxide nanoparticles are synthesized using DNA as a capping agent. Structural and morphological characterizations are done using SEM, FTIR and XRD. The particle size and lattice parameters are calculated from the diffraction data. The optical properties are studied using UV-Vis absorption spectroscopy and bandgap variation with temperature is determined. The dielectric property of nanoparticles is studied by varying temperature and frequency. The dielectric constant and dispersion parameters are found out. Method of Cole-Cole analysis is used to study the high temperature dispersion of relaxation time. The variation of bothmore » AC and DC conductivity are studied and activation energy calculated.« less

  13. Self-consistent treatment of the local dielectric permittivity and electrostatic potential in solution for polarizable macromolecular force fields.

    PubMed

    Hassan, Sergio A

    2012-08-21

    A self-consistent method is presented for the calculation of the local dielectric permittivity and electrostatic potential generated by a solute of arbitrary shape and charge distribution in a polar and polarizable liquid. The structure and dynamics behavior of the liquid at the solute/liquid interface determine the spatial variations of the density and the dielectric response. Emphasis here is on the treatment of the interface. The method is an extension of conventional methods used in continuum protein electrostatics, and can be used to estimate changes in the static dielectric response of the liquid as it adapts to charge redistribution within the solute. This is most relevant in the context of polarizable force fields, during electron structure optimization in quantum chemical calculations, or upon charge transfer. The method is computationally efficient and well suited for code parallelization, and can be used for on-the-fly calculations of the local permittivity in dynamics simulations of systems with large and heterogeneous charge distributions, such as proteins, nucleic acids, and polyelectrolytes. Numerical calculation of the system free energy is discussed for the general case of a liquid with field-dependent dielectric response.

  14. Self-consistent treatment of the local dielectric permittivity and electrostatic potential in solution for polarizable macromolecular force fields

    NASA Astrophysics Data System (ADS)

    Hassan, Sergio A.

    2012-08-01

    A self-consistent method is presented for the calculation of the local dielectric permittivity and electrostatic potential generated by a solute of arbitrary shape and charge distribution in a polar and polarizable liquid. The structure and dynamics behavior of the liquid at the solute/liquid interface determine the spatial variations of the density and the dielectric response. Emphasis here is on the treatment of the interface. The method is an extension of conventional methods used in continuum protein electrostatics, and can be used to estimate changes in the static dielectric response of the liquid as it adapts to charge redistribution within the solute. This is most relevant in the context of polarizable force fields, during electron structure optimization in quantum chemical calculations, or upon charge transfer. The method is computationally efficient and well suited for code parallelization, and can be used for on-the-fly calculations of the local permittivity in dynamics simulations of systems with large and heterogeneous charge distributions, such as proteins, nucleic acids, and polyelectrolytes. Numerical calculation of the system free energy is discussed for the general case of a liquid with field-dependent dielectric response.

  15. Self-consistent treatment of the local dielectric permittivity and electrostatic potential in solution for polarizable macromolecular force fields

    PubMed Central

    Hassan, Sergio A.

    2012-01-01

    A self-consistent method is presented for the calculation of the local dielectric permittivity and electrostatic potential generated by a solute of arbitrary shape and charge distribution in a polar and polarizable liquid. The structure and dynamics behavior of the liquid at the solute/liquid interface determine the spatial variations of the density and the dielectric response. Emphasis here is on the treatment of the interface. The method is an extension of conventional methods used in continuum protein electrostatics, and can be used to estimate changes in the static dielectric response of the liquid as it adapts to charge redistribution within the solute. This is most relevant in the context of polarizable force fields, during electron structure optimization in quantum chemical calculations, or upon charge transfer. The method is computationally efficient and well suited for code parallelization, and can be used for on-the-fly calculations of the local permittivity in dynamics simulations of systems with large and heterogeneous charge distributions, such as proteins, nucleic acids, and polyelectrolytes. Numerical calculation of the system free energy is discussed for the general case of a liquid with field-dependent dielectric response. PMID:22920098

  16. Dielectric relaxation of gamma irradiated muscovite mica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaur, Navjeet; Singh, Mohan, E-mail: mohansinghphysics@gmail.com; Singh, Lakhwant

    2015-03-15

    Highlights: • The present article reports the effect of gamma irradiation on the dielectric relaxation characteristics of muscovite mica. • Dielectric and electrical relaxations have been analyzed in the framework of dielectric permittivity, electric modulus and Cole–Cole formalisms. • The frequency dependent electrical conductivity has been rationalized using Johnsher’s universal power law. • The experimentally measured electric modulus and conductivity data have been fitted using Havriliak–Negami dielectric relaxation function. - Abstract: In the present research, the dielectric relaxation of gamma irradiated muscovite mica was studied in the frequency range of 0.1 Hz–10 MHz and temperature range of 653–853 K, usingmore » the dielectric permittivity, electric modulus and conductivity formalisms. The dielectric constants (ϵ′ and ϵ′′) are found to be high for gamma irradiated muscovite mica as compared to the pristine sample. The frequency dependence of the imaginary part of complex electric modulus (M′′) and dc conductivity data conforms Arrhenius law with single value of activation energy for pristine sample and two values of activation energy for gamma irradiated mica sample. The experimentally assessed electric modulus and conductivity information have been interpreted by the Havriliak–Negami dielectric relaxation explanation. Using the Cole–Cole framework, an analysis of real and imaginary characters of the electric modulus for pristine and gamma irradiated sample was executed which reflects the non-Debye relaxation mechanism.« less

  17. Dielectric Breakdown Strength of Thermally Sprayed Ceramic Coatings: Effects of Different Test Arrangements

    NASA Astrophysics Data System (ADS)

    Niittymäki, Minna; Lahti, Kari; Suhonen, Tomi; Metsäjoki, Jarkko

    2015-02-01

    Dielectric properties (e.g., DC resistivity and dielectric breakdown strength) of insulating thermally sprayed ceramic coatings differ depending on the form of electrical stress, ambient conditions, and aging of the coating, however, the test arrangements may also have a remarkable effect on the properties. In this paper, the breakdown strength of high velocity oxygen fuel-sprayed alumina coating was studied using six different test arrangements at room conditions in order to study the effects of different test and electrode arrangements on the breakdown behavior. In general, it was shown that test arrangements have a considerable influence on the results. Based on the results, the recommended testing method is to use embedded electrodes between the voltage electrode and the coating at least in DC tests to ensure a good contact with the surface. With and without embedded electrodes, the DBS was 31.7 and 41.8 V/µm, respectively. Under AC excitation, a rather good contact with the sample surface is, anyhow, in most cases acquired by a rather high partial discharge activity and no embedded electrodes are necessarily needed (DBS 29.2 V/µm). However, immersion of the sample in oil should strongly be avoided because the oil penetrates quickly into the coating affecting the DBS (81.2 V/µm).

  18. A K-band Frequency Agile Microstrip Bandpass Filter using a Thin Film HTS/Ferroelectric/dielectric Multilayer Configuration

    NASA Technical Reports Server (NTRS)

    Subramanyam, Guru; VanKeuls, Fred; Miranda, Felix A.

    1998-01-01

    We report on YBa2Cu3O(7-delta) (YBCO) thin film/SrTiO3 (STO) thin film K-band tunable bandpass filters on LaAlO3 (LAO) dielectric substrates. The 2 pole filter has a center frequency of 19 GHz and a 4% bandwidth. Tunability is achieved through the non-linear dc electric field dependence of the relative dielectric constant of STO(epsilon(sub rSTO). A large tunability ((Delta)f/f(sub 0) = (f(sub Vmax) - f(sub 0)/f(sub 0), where f(sub 0) is the center frequency of the filter at no bias and f(sub Vmax) is the center frequency of the filter at the maximum applied bias) of greater than 10% was obtained in YBCO/STO/LAO microstrip bandpass filters operating below 77 K. A center frequency shift of 2.3 GHz (i.e., a tunability factor of approximately 15%) was obtained at a 400 V bipolar dc bias, and 30 K, with minimal degradation in the insertion loss of the filter. This paper addresses design, fabrication and testing of tunable filters based on STO ferroelectric thin films. The performance of the YBCO/STO/LAO filters is compared to that of gold/STO/LAO counterparts.

  19. Electromechanical instability in soft materials: Theory, experiments and applications

    NASA Astrophysics Data System (ADS)

    Suo, Zhigang

    2013-03-01

    Subject to a voltage, a membrane of a dielectric elastomer reduces thickness and expands area, possibly straining over 100%. The phenomenon is being developed as transducers for broad applications, including soft robots, adaptive optics, Braille displays, and electric generators. The behavior of dielectric elastomers is closely tied to electromechanical instability. This instability may limit the performance of devices, and may also be used to achieve giant actuation strains. This talk reviews the theory of dielectric elastomers, coupling large deformation and electric potential. The theory is developed within the framework of continuum mechanics and thermodynamics. The theory attempts to answer commonly asked questions. How do mechanics and electrostatics work together to generate large deformation? How efficiently can a material convert energy from one form to another? How do molecular processes affect macroscopic behavior? The theory is used to describe electromechanical instability, and is related to recent experiments.

  20. Dielectric Breakdown Characteristics of Oil-pressboard Insulation System against AC/DC Superposed Voltage

    NASA Astrophysics Data System (ADS)

    Ebisawa, Yoshihito; Yamada, Shin; Mori, Shigekazu; Ikeda, Masami

    This paper describes breakdown characteristics of an oil-pressboard insulation system to a superposition voltage of AC and DC voltages. Although AC electric field is decided by the ratio of the relative permittivity of a pressboard and insulating oil, DC electric field is decided by ratio α of volume resistivities. From the measurement in this study, 13—78 and 1.8—5.7 are obtained as the volume resistivity ratios α at temperature of 30°C and 80°C, respectively. The breakdown voltages against AC, DC, and those superposition voltages are surveyed to insulation models. In normal temperature, the breakdown voltage to the superposition voltage of AC and DC is determined by AC electric field applied to the oil duct. Since the α becomes as low as 2-3 at temperature of 80°C, AC and DC voltages almost equally contribute to the electric field of the oil duct as a result. That is, it became clear that superposed DC voltage boosts the electric field across oil ducts at operating high temperature.

  1. The total energy-momentum tensor for electromagnetic fields in a dielectric

    NASA Astrophysics Data System (ADS)

    Crenshaw, Michael E.

    2017-08-01

    Radiation pressure is an observable consequence of optically induced forces on materials. On cosmic scales, radiation pressure is responsible for the bending of the tails of comets as they pass near the sun. At a much smaller scale, optically induced forces are being investigated as part of a toolkit for micromanipulation and nanofabrication technology [1]. A number of practical applications of the mechanical effects of light-matter interaction are discussed by Qiu, et al. [2]. The promise of the nascent nanophotonic technology for manufacturing small, low-power, high-sensitivity sensors and other devices has likely motivated the substantial current interest in optical manipulation of materials at the nanoscale, see, for example, Ref. [2] and the references therein. While substantial progress toward optical micromanipulation has been achieved, e.g. optical tweezers [1], in this report we limit our consideration to the particular issue of optically induced forces on a transparent dielectric material. As a matter of electromagnetic theory, these forces remain indeterminate and controversial. Due to the potential applications in nanotechnology, the century-old debate regarding these forces, and the associated momentums, has ramped up considerably in the physics community. The energy-momentum tensor is the centerpiece of conservation laws for the unimpeded, inviscid, incompressible flow of non-interacting particles in the continuum limit in an otherwise empty volume. The foundations of the energy-momentum tensor and the associated tensor conservation theory come to electrodynamics from classical continuum dynamics by applying the divergence theorem to a Taylor series expansion of a property density field of a continuous flow in an otherwise empty volume. The dust tensor is a particularly simple example of an energy-momentum tensor that deals with particles of matter in the continuum limit in terms of the mass density ρm, energy density ρmc 2 , and momentum density ρmv. Newtonian fluids can behave very much like dust with the same energy-momentum tensor. The energy and momentum conservation properties of light propagating in the vacuum were long-ago cast in the energy-momentum tensor formalism in terms of the electromagnetic energy density and electromagnetic momentum density. However, extrapolating the tensor theory of energy-momentum conservation for propagation of light in the vacuum to propagation of light in a simple linear dielectric medium has proven to be problematic and controversial. A dielectric medium is not "otherwise empty" and it is typically assumed that optically induced forces accelerate and decelerate nanoscopic material constituents of the dielectric. The corresponding material energy-momentum tensor is added to the electromagnetic energy-momentum tensor to form the total energy-momentum tensor, thereby ensuring that the total energy and the total momentum of the thermodynamically closed system remain constant in time.

  2. Energy transfer studies in krypton-xenon mixtures excited in a cooled DC discharge

    NASA Astrophysics Data System (ADS)

    Krylov, B.; Gerasimov, G.; Morozov, A.; Arnesen, A.; Hallin, R.; Heijkenskjold, F.

    2000-01-01

    The VUV spectrum of gaseous mixtures of krypton with a small amount of xenon added was investigated in the range 115-200 nm. The mixtures were excited in a capillary DC discharge where the capillary could be cooled by using liquid nitrogen. The mixed molecule band around the Xe I resonance line at λ = 147 nm and the mixed molecule continuum to the long wavelength side from the line were analysed. The band around λ = 147 nm was identified as transitions between a weakly bound excited state and the weakly bound ground state of XeKr molecules. When cooling the capillary wall, the appearance of the Xe2 continuum was observed. The effect is ascribed to energy transfer between molecular states as a consequence of radiation trapping in the band around λ = 147 nm. The role of the mixed molecule in the formation of the VUV spectrum of the gas mixture is discussed and underlined.

  3. Microstructure and texture dependence of the dielectric anomalies and dc conductivity of Bi3TiNbO9 ferroelectric ceramics

    NASA Astrophysics Data System (ADS)

    Moure, A.; Pardo, L.

    2005-04-01

    Ceramics of composition Bi3TiNbO9 (BTN) and perovskite-layered structure (Aurivillius type) [B. Aurivillius, Ark. Kemi 1, 463 (1949)] were processed by natural sintering and hot pressing from amorphous precursors. Precursors were obtained by mechanochemical activation of stoichiometric mixtures of oxides. These materials are in general interesting for their use as high-temperature piezoelectrics. Among them, BTN possesses the highest ferroparaelectric phase-transition temperature (>900°C). The transition temperature establishes the working limit of the ceramic and the electric properties, especially the dc conductivity, affect on its polarizability. In this work, dielectric studies of BTN ceramics with controlled texture and microstructure have been made at 1, 100KHz, and 1MHZ and in the temperature range from 200°C up to the ferroparaelectric transition temperature. Values of ɛ'˜250 at 200°C are achieved in ceramics hot pressed at temperatures as low as 700°C for 1h.

  4. Trap Modulated Charge Carrier Transport in Polyethylene/Graphene Nanocomposites.

    PubMed

    Li, Zhonglei; Du, Boxue; Han, Chenlei; Xu, Hang

    2017-06-21

    The role of trap characteristics in modulating charge transport properties is attracting much attentions in electrical and electronic engineering, which has an important effect on the electrical properties of dielectrics. This paper focuses on the electrical properties of Low-density Polyethylene (LDPE)/graphene nanocomposites (NCs), as well as the corresponding trap level characteristics. The dc conductivity, breakdown strength and space charge behaviors of NCs with the filler content of 0 wt%, 0.005 wt%, 0.01 wt%, 0.1 wt% and 0.5 wt% are studied, and their trap level distributions are characterized by isothermal discharge current (IDC) tests. The experimental results show that the 0.005 wt% LDPE/graphene NCs have a lower dc conductivity, a higher breakdown strength and a much smaller amount of space charge accumulation than the neat LDPE. It is indicated that the graphene addition with a filler content of 0.005 wt% introduces large quantities of deep carrier traps that reduce charge carrier mobility and result in the homocharge accumulation near the electrodes. The deep trap modulated charge carrier transport attributes to reduce the dc conductivity, suppress the injection of space charges into polymer bulks and enhance the breakdown strength, which is of great significance in improving electrical properties of polymer dielectrics.

  5. Novel design of high voltage pulse source for efficient dielectric barrier discharge generation by using silicon diodes for alternating current.

    PubMed

    Truong, Hoa Thi; Hayashi, Misaki; Uesugi, Yoshihiko; Tanaka, Yasunori; Ishijima, Tatsuo

    2017-06-01

    This work focuses on design, construction, and optimization of configuration of a novel high voltage pulse power source for large-scale dielectric barrier discharge (DBD) generation. The pulses were generated by using the high-speed switching characteristic of an inexpensive device called silicon diodes for alternating current and the self-terminated characteristic of DBD. The operation started to be powered by a primary DC low voltage power supply flexibly equipped with a commercial DC power supply, or a battery, or DC output of an independent photovoltaic system without transformer employment. This flexible connection to different types of primary power supply could provide a promising solution for the application of DBD, especially in the area without power grid connection. The simple modular structure, non-control requirement, transformer elimination, and a minimum number of levels in voltage conversion could lead to a reduction in size, weight, simple maintenance, low cost of installation, and high scalability of a DBD generator. The performance of this pulse source has been validated by a load of resistor. A good agreement between theoretically estimated and experimentally measured responses has been achieved. The pulse source has also been successfully applied for an efficient DBD plasma generation.

  6. Novel design of high voltage pulse source for efficient dielectric barrier discharge generation by using silicon diodes for alternating current

    NASA Astrophysics Data System (ADS)

    Truong, Hoa Thi; Hayashi, Misaki; Uesugi, Yoshihiko; Tanaka, Yasunori; Ishijima, Tatsuo

    2017-06-01

    This work focuses on design, construction, and optimization of configuration of a novel high voltage pulse power source for large-scale dielectric barrier discharge (DBD) generation. The pulses were generated by using the high-speed switching characteristic of an inexpensive device called silicon diodes for alternating current and the self-terminated characteristic of DBD. The operation started to be powered by a primary DC low voltage power supply flexibly equipped with a commercial DC power supply, or a battery, or DC output of an independent photovoltaic system without transformer employment. This flexible connection to different types of primary power supply could provide a promising solution for the application of DBD, especially in the area without power grid connection. The simple modular structure, non-control requirement, transformer elimination, and a minimum number of levels in voltage conversion could lead to a reduction in size, weight, simple maintenance, low cost of installation, and high scalability of a DBD generator. The performance of this pulse source has been validated by a load of resistor. A good agreement between theoretically estimated and experimentally measured responses has been achieved. The pulse source has also been successfully applied for an efficient DBD plasma generation.

  7. Polarization-tuned Dynamic Color Filters Incorporating a Dielectric-loaded Aluminum Nanowire Array

    PubMed Central

    Raj Shrestha, Vivek; Lee, Sang-Shin; Kim, Eun-Soo; Choi, Duk-Yong

    2015-01-01

    Nanostructured spectral filters enabling dynamic color-tuning are saliently attractive for implementing ultra-compact color displays and imaging devices. Realization of polarization-induced dynamic color-tuning via one-dimensional periodic nanostructures is highly challenging due to the absence of plasmonic resonances for transverse-electric polarization. Here we demonstrate highly efficient dynamic subtractive color filters incorporating a dielectric-loaded aluminum nanowire array, providing a continuum of customized color according to the incident polarization. Dynamic color filtering was realized relying on selective suppression in transmission spectra via plasmonic resonance at a metal-dielectric interface and guided-mode resonance for a metal-clad dielectric waveguide, each occurring at their characteristic wavelengths for transverse-magnetic and electric polarizations, respectively. A broad palette of colors, including cyan, magenta, and yellow, has been attained with high transmission beyond 80%, by tailoring the period of the nanowire array and the incident polarization. Thanks to low cost, high durability, and mass producibility of the aluminum adopted for the proposed devices, they are anticipated to be diversely applied to color displays, holographic imaging, information encoding, and anti-counterfeiting. PMID:26211625

  8. Dielectric properties of carbon nanotubes/epoxy composites.

    PubMed

    Peng, Jin-Ping; Zhang, Hui; Tang, Long-Cheng; Jia, Yu; Zhang, Zhong

    2013-02-01

    Material with high dielectric properties possesses the effect of energy storage and electric field homogenization, which plays an important role in the electrical and electronics domain, especially in the capacitor, electrical machinery and cable realm. In this paper, epoxy-based nanocomposites with high dielectric constant were fabricated by adding pristine and ozone functionalized multi-wall carbon nanotubes (MWCNTs). In the process-related aspect, the favorable technological parameter was obtained via reasonable arrangement and consideration of the dispersing methods including high-speed stirring and three-roller mill. As a result, a uniform dispersion status of MWCNTs in matrix has been guaranteed, which was observed by scanning and transmission electron microscopy. Meanwhile, the influence of different MWCNTs contents and diverse frequencies on the dielectric properties was compared. It was found that the dielectric constant of nano-composites decreased gradually with the increasing of frequency (10(3)-10(6) Hz). Moreover, as the content of MWCNTs increasing, the dielectric constant reached to a maximum of about 1,328 at 10(3) Hz when the pristine MWCNTs content was 0.5 wt.%. Accordingly, the DC conductivity results could interpret the peak value phenomenon by percolation threshold of MWCNTs. In addition, at the fixed content, the dielectric constant of epoxy-based nano-composites with ozone functionalized MWCNTs was lower than that of pristine ones.

  9. Bound states in the continuum and polarization singularities in periodic arrays of dielectric rods

    NASA Astrophysics Data System (ADS)

    Bulgakov, Evgeny N.; Maksimov, Dmitrii N.

    2017-12-01

    We consider optical bound states in the continuum (BICs) in periodic arrays of dielectric rods. The full classification of BICs in the above system is provided, including the modes propagating along the axes of the rods and bidirectional BICs propagating both along the axes of the rods and the axis of periodicity. It is shown that the leaky zones supporting the BICs generally have elliptically polarized far-field radiation patterns, with the polarization ellipses collapsing on approach to the BICs in momentum space. That allowed us to apply the concept of polarization singularities and demonstrate that the BICs possess a topological charge defined as the winding number of the polarization direction [Phys. Rev. Lett. 113, 257401 (2014), 10.1103/PhysRevLett.113.257401]. It is found that the evolution of the BICs, including their creation and annihilation, under variation of geometric parameters is controlled by the topological charge. Three scenarios of such evolution for different leaky zones are described. Finally, it is shown that the topological properties of the BICs can be extracted from transmission spectra when the system is illuminated by a plane wave of circular polarization.

  10. Stiff, strong, yet tough free-standing dielectric films of graphene nanosheets-polyurethane nanocomposites with very high dielectric constant and loss

    NASA Astrophysics Data System (ADS)

    Jan, Rahim; Habib, Amir; Gul, Iftikhar Hussain

    2016-01-01

    In this study, graphene nanosheets (GNS) prepared through a liquid exfoliation technique are dispersed in thermoplastic polyurethane (TPU) at a volume fraction (Vf) of up to 0.19. Then, the electrical and mechanical properties of the obtained composites are characterized. The dielectric spectroscopy shows an excessive variation in dielectric constant (1.1 to 3.53 × 107) and dielectric tangent loss (0.03 to 2515) with varying Vf over the frequency range of 25 kHz to 5 MHz. A considerable enhancement in electrical conductivity (DC) is found, from 3.87 × 10-10 S/m (base polymer) to 53.5 S/m for the 0.19 Vf GNS-TPU nanocomposite. The GNS-TPU composites are mechanically robust, with a considerable increase in stiffness (˜4-fold) and strength (almost twice), maintaining its ductility up to 0.09 Vf GNS. The high dielectric constant at lower frequencies is attributed to the well-established Maxwell-Wagner polarization effect, whereas the high dielectric tangent loss is due to leakage currents as a physical conducting network is formed at high filler loadings. The layered structure, high aspect ratio, and improved dispersion of GNS are the main reasons for the improvement in both the dielectric characteristics and the mechanical properties of the host polymer. [Figure not available: see fulltext.

  11. Artificial muscles of dielectric elastomers attached to artificial tendons of functionalized carbon fibers

    NASA Astrophysics Data System (ADS)

    Ye, Zhihang; Faisal, Md. Shahnewaz Sabit; Asmatulu, Ramazan; Chen, Zheng

    2014-03-01

    Dielectric elastomers are soft actuation materials with promising applications in robotics and biomedical de- vices. In this paper, a bio-inspired artificial muscle actuator with artificial tendons is developed for robotic arm applications. The actuator uses dielectric elastomer as artificial muscle and functionalized carbon fibers as artificial tendons. A VHB 4910 tape is used as the dielectric elastomer and PDMS is used as the bonding material to mechanically connect the carbon fibers to the elastomer. Carbon fibers are highly popular for their high electrical conductivities, mechanical strengths, and bio-compatibilities. After the acid treatments for the functionalization of carbon fibers (500 nm - 10 μm), one end of carbon fibers is spread into the PDMS material, which provides enough bonding strength with other dielectric elastomers, while the other end is connected to a DC power supply. To characterize the actuation capability of the dielectric elastomer and electrical conductivity of carbon fibers, a diaphragm actuator is fabricated, where the carbon fibers are connected to the actuator. To test the mechanical bonding between PDMS and carbon fibers, specimens of PDMS bonded with carbon fibers are fabricated. Experiments have been conducted to verify the actuation capability of the dielectric elastomer and mechanical bonding of PDMS with carbon fibers. The energy efficiency of the dielectric elastomer increases as the load increases, which can reach above 50%. The mechanical bonding is strong enough for robotic arm applications.

  12. Low-voltage bendable pentacene thin-film transistor with stainless steel substrate and polystyrene-coated hafnium silicate dielectric.

    PubMed

    Yun, Dong-Jin; Lee, Seunghyup; Yong, Kijung; Rhee, Shi-Woo

    2012-04-01

    The hafnium silicate and aluminum oxide high-k dielectrics were deposited on stainless steel substrate using atomic layer deposition process and octadecyltrichlorosilane (OTS) and polystyrene (PS) were treated improve crystallinity of pentacene grown on them. Besides, the effects of the pentacene deposition condition on the morphologies, crystallinities and electrical properties of pentacene were characterized. Therefore, the surface treatment condition on dielectric and pentacene deposition conditions were optimized. The pentacene grown on polystyrene coated high-k dielectric at low deposition rate and temperature (0.2-0.3 Å/s and R.T.) showed the largest grain size (0.8-1.0 μm) and highest crystallinity among pentacenes deposited various deposition conditions, and the pentacene TFT with polystyrene coated high-k dielectric showed excellent device-performance. To decrease threshold voltage of pentacene TFT, the polystyrene-thickness on high-k dielectric was controlled using different concentration of polystyrene solution. As the polystyrene-thickness on hafnium silicate decreases, the dielectric constant of polystyrene/hafnium silicate increases, while the crystallinity of pentacene grown on polystyrene/hafnium silicate did not change. Using low-thickness polystyrene coated hafnium silicate dielectric, the high-performance and low voltage operating (<5 V) pentacene thin film transistor (μ: ~2 cm(2)/(V s), on/off ratio, >1 × 10(4)) and complementary inverter (DC gains, ~20) could be fabricated.

  13. Study of electrical properties of Sc doped BaFe12O19 ceramic using dielectric, impedance, modulus spectroscopy and AC conductivity

    NASA Astrophysics Data System (ADS)

    Gupta, Surbhi; Deshpande, S. K.; Sathe, V. G.; Siruguri, V.

    2018-04-01

    We present dielectric, complex impedance, modulus spectroscopy and AC conductivity studies of the compound BaFe10Sc2O19 as a function of temperature and frequency to understand the conduction mechanism. The variation in complex dielectric constant with frequency and temperature were analyzed on the basis of Maxwell-Wagner-Koop's theory and charge hopping between ferrous and ferric ions. The complex impedance spectroscopy study shows only grain contribution whereas complex modulus plot shows two semicircular arcs which indicate both grain and grain boundary contributions in conduction mechanism. AC conductivity has also been evaluated which follows the Jonscher's law. The activation energy calculated from temperature dependence of DC conductivity comes out to be Ea˜ 0.31eV.

  14. Electrode effects in dielectric spectroscopy measurements on (Nb +In) co-doped TiO2

    NASA Astrophysics Data System (ADS)

    Crandles, David; Yee, Susan; Savinov, Maxim; Nuzhnyy, Dimitri; Petzelt, Jan; Kamba, Stanislav; Prokes, Jan

    Recently, several papers reported the discovery of giant permittivity and low dielectric loss in (Nb+In) co-doped TiO2. A series of tests was performed which included the measurement of the frequency dependence of the dielectric permittivity and ac conductivity of co-doped (Nb+In)TiO2 as a function of electrode type, sample thickness and temperature. The data suggest that the measurements are strongly affected by the electrodes. The consistency between four contact van der Pauw dc conductivity measurements and bulk conductivity values extracted from two contact ac conductivity measurements suggest that the values of colossal permittivity are, at least in part, a result of Schottky barrier depletion widths that depend on electrode type and temperature. Nserc, Czech Science Foundation (Project 15-08389S).

  15. Crystal orientation dependence of the dielectric properties for epitaxial BaZr0.15Ti0.85O3 thin films

    NASA Astrophysics Data System (ADS)

    Miao, J.; Yuan, J.; Wu, H.; Yang, S. B.; Xu, B.; Cao, L. X.; Zhao, B. R.

    2007-01-01

    Epitaxial Ba0.15Zr0.85TiO3 (BZT) ferroelectric thin films with (001), (011), and (111) orientations were, respectively, grown on La0.67Sr0.33MnO3 (LSMO) buffered LaAlO3 substrates by pulsed laser deposition method. The dc electric-field dependence of permittivity and dielectric loss of (001)-, (011)-, and (111)-oriented BZT/LSMO heterostructures obeys the Johnson formula, and the ac electric-field dependence of that obeys the Rayleigh law under the subswitching field region. The anisotropic dielectric properties are attributed to the higher mobility of the charge carriers, the concentration of mobile interfacial domain walls, and boundaries in the (111)-oriental films than in the (110)- and (100)-oriented films.

  16. Surface Flashover on Epoxy-Resin Printed Circuit Boards in Vacuum under Electron Irradiation

    NASA Astrophysics Data System (ADS)

    Fujii, Haruhisa; Hasegawa, Taketoshi; Osuga, Hiroyuki; Matsui, Katsuaki

    This paper deals with the surface flashover characteristics of dielectric material in vacuum during electron beam irradiation in order to design adequately the conductive patterns on printed circuit boards used inside a spacecraft. The dielectric material, glass-fiber reinforced epoxy resin, and the electrodes printed on it were irradiated with electrons of the energy of 3-10 keV. DC high voltage was applied between the two electrodes during electron irradiation. The voltage was increased stepwise until the surface flashover occurred on the dielectric material. We obtained the results that the surface flashover voltage increased with the insulation distance between the electrodes but electron irradiation made the flashover voltage lower. The flashover voltage characteristics were obtained as parameters of the electrode distance and the energy of the electron beam.

  17. RF models for plasma-surface interactions

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas; Smithe, David; Lin, Ming-Chieh; Kruger, Scott; Stoltz, Peter

    2013-09-01

    Computational models for DC and oscillatory (RF-driven) sheath potentials, arising at metal or dielectric-coated surfaces in contact with plasma, are developed within the VSim code and applied in parameter regimes characteristic of fusion plasma experiments and plasma processing scenarios. Results from initial studies quantifying the effects of various dielectric wall coating materials and thicknesses on these sheath potentials, as well as on the ensuing flux of plasma particles to the wall, are presented. As well, the developed models are used to model plasma-facing ICRF antenna structures in the ITER device; we present initial assessments of the efficacy of dielectric-coated antenna surfaces in reducing sputtering-induced high-Z impurity contamination of the fusion reaction. Funded by U.S. DoE via a Phase I SBIR grant, award DE-SC0009501.

  18. Enhanced electrohydrodynamic force generation in a two-stroke cycle dielectric-barrier-discharge plasma actuator

    NASA Astrophysics Data System (ADS)

    Sato, Shintaro; Takahashi, Masayuki; Ohnishi, Naofumi

    2017-05-01

    An approach for electrohydrodynamic (EHD) force production is proposed with a focus on a charge cycle on a dielectric surface. The cycle, consisting of positive-charging and neutralizing strokes, is completely different from the conventional methodology, which involves a negative-charging stroke, in that the dielectric surface charge is constantly positive. The two-stroke charge cycle is realized by applying a DC voltage combined with repetitive pulses. Simulation results indicate that the negative pulse eliminates the surface charge accumulated during constant voltage phase, resulting in repetitive EHD force generation. The time-averaged EHD force increases almost linearly with increasing repetitive pulse frequency and becomes one order of magnitude larger than that driven by the sinusoidal voltage, which has the same peak-to-peak voltage.

  19. Influence of Al3+ substitution on the electrical resistivity and dielectric behavior of Ni0.25Cu0.20Zn0.55AlxFe2-xO4 ferrites synthesized by solid state reaction technique

    NASA Astrophysics Data System (ADS)

    Rahman, K. R.; Chowdhury, F.-U.-Z.; Khan, M. N. I.

    2017-12-01

    In this paper, the effect of Al3+ substitution on the electrical and dielectric properties of Ni0.25Cu0.20Zn0.55AlxFe2-xO4 ferrites with x = 0.0, 0.05. 0.10, 0.15 and 0.20, synthesized by solid state reaction has been reported. Using two probe method, the DC resistivity has been investigated in the temperature range from 30 °C to 300 °C. Activation energy was calculated from the Arrhenius plot. The electrical conduction is explained on the basis of the hopping mechanism. The frequency dependent dielectric properties of these spinel ferrites have been studied at room temperature by measuring AC resistivity, conductivity (σac), dielectric constant and dielectric loss tangent (tan δ) in the frequency range between 1 kHz and 120 MHz. The study of dielectric properties showed that the dielectric constant and dielectric loss increased with increasing non-magnetic Al ions. The dependence of dielectric constant with frequency has been explained by Maxwell-Wagner interfacial polarization. Cole-Cole plots show semicircular arc(s) for the samples, and equivalent RC circuits have been proposed to clarify the phenomena involved therein. The analysis of complex impedance spectroscopy has been used to distinguish between the grain and grain boundary contribution to the total resistance.

  20. Characterization of oxygen vacancies and their migration in Ba-doped Pb(Zr0.52Ti0.48)O3 ferroelectrics

    NASA Astrophysics Data System (ADS)

    Zhang, M. F.; Wang, Y.; Wang, K. F.; Zhu, J. S.; Liu, J.-M.

    2009-03-01

    We investigate in detail the migration kinetics of oxygen vacancies (OVs) in Ba-doped Pb(Zr0.52Ti0.48)O3 (PZT) ferroelectrics by complex impedance spectroscopy. The temperature dependent dc-electrical conductivity σdc suggests that Ba doping into PZT can lower significantly the density of OVs, leading to the distinctly decreased σdc and slightly enhanced activation energy U for the migration of OVs, thus benefiting the polarization fatigue resistance. Furthermore, the polarization fluctuation induced by the relaxation of OVs is reduced by the Ba doping. The Cole-Cole fitting to the dielectric loss manifests strong correlation among OVs, and the migration of OVs appears to be a collective behavior.

  1. Paraelectric-antiferroelectric phase transition in achiral liquid crystals

    NASA Astrophysics Data System (ADS)

    Pociecha, Damian; Gorecka, Ewa; Čepič, Mojca; Vaupotič, Nataša; Gomola, Kinga; Mieczkowski, Jozef

    2005-12-01

    Critical freezing of molecular rotation in an achiral smectic phase, which leads to polar ordering through the second order paraelectric-antiferroelectric (Sm-A→Sm-APA) phase transition is studied theoretically and experimentally. Strong softening of the polar mode in the Sm-A phase and highly intensive dielectric mode in the Sm-APA phase are observed due to weak antiferroelectric interactions in the system. In the Sm-APA phase the dielectric response behaves critically upon biasing by a dc electric field. Such a behavior is found general for the antiferroelectric smectic phase with significant quadrupolar interlayer coupling.

  2. Comparison of the Marcus and Pekar partitions in the context of non-equilibrium, polarizable-continuum solvation models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    You, Zhi-Qiang; Herbert, John M., E-mail: herbert@chemistry.ohio-state.edu; Mewes, Jan-Michael

    2015-11-28

    The Marcus and Pekar partitions are common, alternative models to describe the non-equilibrium dielectric polarization response that accompanies instantaneous perturbation of a solute embedded in a dielectric continuum. Examples of such a perturbation include vertical electronic excitation and vertical ionization of a solution-phase molecule. Here, we provide a general derivation of the accompanying polarization response, for a quantum-mechanical solute described within the framework of a polarizable continuum model (PCM) of electrostatic solvation. Although the non-equilibrium free energy is formally equivalent within the two partitions, albeit partitioned differently into “fast” versus “slow” polarization contributions, discretization of the PCM integral equations failsmore » to preserve certain symmetries contained in these equations (except in the case of the conductor-like models or when the solute cavity is spherical), leading to alternative, non-equivalent matrix equations. Unlike the total equilibrium solvation energy, however, which can differ dramatically between different formulations, we demonstrate that the equivalence of the Marcus and Pekar partitions for the non-equilibrium solvation correction is preserved to high accuracy. Differences in vertical excitation and ionization energies are <0.2 eV (and often <0.01 eV), even for systems specifically selected to afford a large polarization response. Numerical results therefore support the interchangeability of the Marcus and Pekar partitions, but also caution against relying too much on the fast PCM charges for interpretive value, as these charges differ greatly between the two partitions, especially in polar solvents.« less

  3. Self-consistent field model for strong electrostatic correlations and inhomogeneous dielectric media.

    PubMed

    Ma, Manman; Xu, Zhenli

    2014-12-28

    Electrostatic correlations and variable permittivity of electrolytes are essential for exploring many chemical and physical properties of interfaces in aqueous solutions. We propose a continuum electrostatic model for the treatment of these effects in the framework of the self-consistent field theory. The model incorporates a space- or field-dependent dielectric permittivity and an excluded ion-size effect for the correlation energy. This results in a self-energy modified Poisson-Nernst-Planck or Poisson-Boltzmann equation together with state equations for the self energy and the dielectric function. We show that the ionic size is of significant importance in predicting a finite self energy for an ion in an inhomogeneous medium. Asymptotic approximation is proposed for the solution of a generalized Debye-Hückel equation, which has been shown to capture the ionic correlation and dielectric self energy. Through simulating ionic distribution surrounding a macroion, the modified self-consistent field model is shown to agree with particle-based Monte Carlo simulations. Numerical results for symmetric and asymmetric electrolytes demonstrate that the model is able to predict the charge inversion at high correlation regime in the presence of multivalent interfacial ions which is beyond the mean-field theory and also show strong effect to double layer structure due to the space- or field-dependent dielectric permittivity.

  4. Influence of sodium dodecyl sulfate concentration on the photocatalytic activity and dielectric properties of intercalated sodium dodecyl sulfate into Zn–Cd–Al layered double hydroxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, Abdullah Ahmed Ali, E-mail: abdullah2803@gmail.com; Talib, Zainal Abidin; Hussein, Mohd Zobir

    2015-02-15

    Highlights: • Zn–Cd–Al–LDH–DS were synthesized with different SDS concentrations. • Photocatalytic activity of samples was improved by increasing SDS concentration. • Dielectric response of LDH can be described by anomalous low frequency dispersion. • The dc conductivity values were calculated for Zn–Cd–Al–LDH–DS samples. • ESR spectra exhibited the successful intercalation of DS molecule into LDH gallery. - Abstract: Sodium dodecyl sulfate (SDS) has been successfully intercalated into Zn–Cd–Al–LDH precursor with different SDS concentrations (0.2, 0.3, 0.4, 0.5 and 1 mol L{sup −1}) using the coprecipitation method at (Zn{sup 2+} + Cd{sup 2+})/Al{sup 3+} molar ratio of 13 and pH 8.more » The structural, morphological, texture and composition properties of the synthesized (Zn–Cd–Al–LDH–DS) nanostructure were investigated using powder X-ray diffraction (PXRD), scanning electron microscope (SEM), thermogravimetric analysis (TGA) and Fourier transform infrared (FT-IR), respectively. The photocatalytic activity of these materials was developed by increasing the concentration of intercalated SDS. The absorbance spectra have been used to detect an anion in the LDH interlayer before and after the intercalation process, which confirmed the presence of the dodecyl sulfate (DS{sup −}) anion into LDH gallery after intercalation. The anomalous low frequency dispersion (ALFD) has been used to describe the dielectric response of Zn–Cd–Al–LDH–DS nanostructure using the second type of universal power law. At low frequency, the polarization effect of electrodes caused the rising in dielectric constant and loss values. An important result of the dielectric measurements is the calculated dc conductivity values, which are new in dielectric spectroscopy of LDH materials. An important result of the electron spin resonance (ESR) spectra exhibited the successful intercalation of DS molecule into LDH gallery. The g-factor value was affected by the SDS concentration which indicated changes to the environment around the DS molecule in LDH interlayer.« less

  5. High temperature dielectric properties of Apical, Kapton, Peek, Teflon AF, and Upilex polymers

    NASA Technical Reports Server (NTRS)

    Hammoud, A. N.; Baumann, E. D.; Overton, E.; Myers, I. T.; Suthar, J. L.; Khachen, W.; Laghari, J. R.

    1992-01-01

    Reliable lightweight systems capable of providing electrical power at the magawatt level are a requirement for future manned space exploration missions. This can be achieved by the development of high temperature insulating materials which are not only capable of surviving the hostile space environment but can contribute to reducing the mass and weight of the heat rejection system. In this work, Apical, Upilex, Kapton, Teflon AF, and Peek polymers are characterized for AC and DC dielectric breakdown in air and in silicone oil at temperatures up to 250 C. The materials are also tested in terms of their dielectric constant and dissipation factor at high temperatures with an electrical stress of 60 Hz, 200 V/mil present. The effects of thermal aging on the properties of the films are determined after 15 hours of exposure to 200 and 250 C, each. The results obtained are discussed and conclusions are made concerning the suitability of these dielectrics for use in capacitors and cable insulations in high temperature environments.

  6. Dielectric and structural properties of diffuse ferroelectric phase transition in Pb1.85K1.15Li0.15Nb5O15 ceramic

    NASA Astrophysics Data System (ADS)

    Choukri, E.; Gagou, Y.; Mezzane, D.; Abkhar, Z.; El Moznine, R.; Luk'yanchuk, I.; Saint-Grégoire, P.; Kavokin, A. V.

    2011-02-01

    We studied the structural and dielectric properties of new Tetragonal Tungsten Bronze (TTB) ceramics Pb1.85K1.15Li0.15Nb5O15 that was synthesized by solid-state reaction. We pay a special attention to the diffuse phase transition (DPT) that occurs close to 425 °C. Using dielectric measurements in a frequency range of 10 Hz-1 MHz and in the temperature range 30-560 °C, we have shown that the real permittivity close to DPT is well described by Santos-Eiras phenomenological model. Space-charge polarization, relaxation phenomena and free charges conductivity have been analyzed using dielectric spectroscopy impedance and modulus characterization. Cole-Cole plots show a non-Debye (polydispersive) type relaxation. In paraelectric phase the Arrhenius activation energy was determined as Eτ = 0.72 eV. We demonstrated that frequency dependence of ac conductivity at different temperatures obeys the Jonscher's universal law: σac = σdc + A(ω)n.

  7. High temperature dielectric properties of Apical, Kapton, Peek, Teflon AF, and Upilex polymers

    NASA Astrophysics Data System (ADS)

    Hammoud, A. N.; Baumann, E. D.; Overton, E.; Myers, I. T.; Suthar, J. L.; Khachen, W.; Laghari, J. R.

    1992-06-01

    Reliable lightweight systems capable of providing electrical power at the magawatt level are a requirement for future manned space exploration missions. This can be achieved by the development of high temperature insulating materials which are not only capable of surviving the hostile space environment but can contribute to reducing the mass and weight of the heat rejection system. In this work, Apical, Upilex, Kapton, Teflon AF, and Peek polymers are characterized for AC and DC dielectric breakdown in air and in silicone oil at temperatures up to 250 C. The materials are also tested in terms of their dielectric constant and dissipation factor at high temperatures with an electrical stress of 60 Hz, 200 V/mil present. The effects of thermal aging on the properties of the films are determined after 15 hours of exposure to 200 and 250 C, each. The results obtained are discussed and conclusions are made concerning the suitability of these dielectrics for use in capacitors and cable insulations in high temperature environments.

  8. Low Voltage Electrowetting on Ferroelectric PVDF-HFP Insulator with Highly Tunable Contact Angle Range.

    PubMed

    Sawane, Yogesh B; Ogale, Satishchandra B; Banpurkar, Arun G

    2016-09-14

    We demonstrate a consistent electrowetting response on ferroelectric poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) insulator covered with a thin Teflon AF layer. This bilayer exhibits a factor of 3 enhancement in the contact angle modulation compared to that of conventional single-layered Teflon AF dielectric. On the basis of the proposed model the enhancement is attributed to the high value of effective dielectric constant (εeff ≈ 6) of the bilayer. Furthermore, the bilayer dielectric exhibits a hysteresis-free contact angle modulation over many AC voltage cycles. But the contact angle modulation for DC voltage shows a hysteresis because of the field-induced residual polarization in the ferroelectric layer. Finally, we show that a thin bilayer exhibits contact angle modulation of Δθ (U) ≈ 60° at merely 15 V amplitude of AC voltage indicating a potential dielectric for practical low voltage electrowetting applications. A proof of concept confirms electrowetting based rapid mixing of a fluorescent dye in aqueous glycerol solution for 15 V AC signal.

  9. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions.

    PubMed

    Marenich, Aleksandr V; Cramer, Christopher J; Truhlar, Donald G

    2009-05-07

    We present a new continuum solvation model based on the quantum mechanical charge density of a solute molecule interacting with a continuum description of the solvent. The model is called SMD, where the "D" stands for "density" to denote that the full solute electron density is used without defining partial atomic charges. "Continuum" denotes that the solvent is not represented explicitly but rather as a dielectric medium with surface tension at the solute-solvent boundary. SMD is a universal solvation model, where "universal" denotes its applicability to any charged or uncharged solute in any solvent or liquid medium for which a few key descriptors are known (in particular, dielectric constant, refractive index, bulk surface tension, and acidity and basicity parameters). The model separates the observable solvation free energy into two main components. The first component is the bulk electrostatic contribution arising from a self-consistent reaction field treatment that involves the solution of the nonhomogeneous Poisson equation for electrostatics in terms of the integral-equation-formalism polarizable continuum model (IEF-PCM). The cavities for the bulk electrostatic calculation are defined by superpositions of nuclear-centered spheres. The second component is called the cavity-dispersion-solvent-structure term and is the contribution arising from short-range interactions between the solute and solvent molecules in the first solvation shell. This contribution is a sum of terms that are proportional (with geometry-dependent proportionality constants called atomic surface tensions) to the solvent-accessible surface areas of the individual atoms of the solute. The SMD model has been parametrized with a training set of 2821 solvation data including 112 aqueous ionic solvation free energies, 220 solvation free energies for 166 ions in acetonitrile, methanol, and dimethyl sulfoxide, 2346 solvation free energies for 318 neutral solutes in 91 solvents (90 nonaqueous organic solvents and water), and 143 transfer free energies for 93 neutral solutes between water and 15 organic solvents. The elements present in the solutes are H, C, N, O, F, Si, P, S, Cl, and Br. The SMD model employs a single set of parameters (intrinsic atomic Coulomb radii and atomic surface tension coefficients) optimized over six electronic structure methods: M05-2X/MIDI!6D, M05-2X/6-31G, M05-2X/6-31+G, M05-2X/cc-pVTZ, B3LYP/6-31G, and HF/6-31G. Although the SMD model has been parametrized using the IEF-PCM protocol for bulk electrostatics, it may also be employed with other algorithms for solving the nonhomogeneous Poisson equation for continuum solvation calculations in which the solute is represented by its electron density in real space. This includes, for example, the conductor-like screening algorithm. With the 6-31G basis set, the SMD model achieves mean unsigned errors of 0.6-1.0 kcal/mol in the solvation free energies of tested neutrals and mean unsigned errors of 4 kcal/mol on average for ions with either Gaussian03 or GAMESS.

  10. Stability of the electroosmotic flow of a two-layer electrolyte-dielectric system with external pressure gradient⋆.

    PubMed

    Gorbacheva, E V; Ganchenko, G S; Demekhin, E A

    2018-03-27

    The stability of the electroosmotic flow of electrolyte-dielectric viscous liquids under the influence of the DC and AC electric fields along with the external pressure gradient is studied theoretically. Liquids are bounded by two infinite parallel plates. The lower wall bordering the electrolyte is assumed to be a charged surface, and the upper wall is electrically isolated. The charge at the lower boundary is assumed to be immobile, while the surface charge at the free surface is assumed to be mobile. In this paper, we study the micro- and nanosized liquid layers. The mathematical model is described by a nonlinear system of the Nernst-Planck-Poisson-Stokes partial differential equations with the appropriate boundary conditions on the solid surface, the electrolyte/dielectric interface, and on the upper wall. The pressure gradient is highly important for the stability of the flow. For the DC case, the external pressure could either stabilize and destabilize the flow depending on the relative directions of the electroosmotic flow and the pressure-driven flow. For the AC case, the dependence on the value of the external pressure is not monotonous for different wave numbers of perturbations, but, as a rule, the external pressure destabilizes the flow. As the frequency of the electric field increases, the one-dimensional solution of the problem becomes stable.

  11. Dielectric-spectroscopy approach to ferrofluid nanoparticle clustering induced by an external electric field.

    PubMed

    Rajnak, Michal; Kurimsky, Juraj; Dolnik, Bystrik; Kopcansky, Peter; Tomasovicova, Natalia; Taculescu-Moaca, Elena Alina; Timko, Milan

    2014-09-01

    An experimental study of magnetic colloidal particles cluster formation induced by an external electric field in a ferrofluid based on transformer oil is presented. Using frequency domain isothermal dielectric spectroscopy, we study the influence of a test cell electrode separation distance on a low-frequency relaxation process. We consider the relaxation process to be associated with an electric double layer polarization taking place on the particle surface. It has been found that the relaxation maximum considerably shifts towards lower frequencies when conducting the measurements in the test cells with greater electrode separation distances. As the electric field intensity was always kept at a constant value, we propose that the particle cluster formation induced by the external ac electric field accounts for that phenomenon. The increase in the relaxation time is in accordance with the Schwarz theory of electric double layer polarization. In addition, we analyze the influence of a static electric field generated by dc bias voltage on a similar shift in the relaxation maximum position. The variation of the dc electric field for the hysteresis measurements purpose provides understanding of the development of the particle clusters and their decay. Following our results, we emphasize the utility of dielectric spectroscopy as a simple, complementary method for detection and study of clusters of colloidal particles induced by external electric field.

  12. Influence of stress on the structural and dielectric properties of rf magnetron sputtered zinc oxide thin film

    NASA Astrophysics Data System (ADS)

    Menon, Rashmi; Sreenivas, K.; Gupta, Vinay

    2008-05-01

    Highly c axis oriented zinc oxide (ZnO) thin films have been prepared on 1737 Corning glass substrate by planar rf magnetron sputtering under varying pressure (10-50mTorr) and different oxygen percentage (40%-100%) in reactive gas mixtures. The as-grown ZnO thin films were found to have stress over a wide range from -6×1010to-9×107dynes/cm2. The presence of stress depends strongly on processing conditions, and films become almost stress free under a unique combination of sputtering pressure and reactive gas composition. The studies show a correlation of stress with structural and electrical properties of the ZnO thin film. The stressed films possess high electrical conductivity and exhibits strong dielectric dispersion over a wide frequency (1kHz-1MHz). The dielectric constant ɛ'(ω) of stress free ZnO film was almost frequency independent and was close to the bulk value. The measured value of dc conductivity, σdc(ω) and ac conductivity σac(ω) of stress free ZnO film was 1.3×10-9 and 6.8×10-5Ω-1cm-1, respectively. The observed variation in the structural and electrical properties of ZnO thin film with stress has been analyzed in the light of growth kinetics.

  13. Alternating-current conductivity and dielectric relaxation of bulk iodoargentate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, Hai-Bao, E-mail: duanhaibao4660@163.com; Yu, Shan-Shan; Zhou, Hong

    Graphical abstract: The electric modulus shows single dielectric relaxation process in the measured frequency range. - Highlights: • The conduction mechanism is described by quantum mechanical tunneling model. • The applications of dielectric modulus give a simple method for evaluating the activation energy of the dielectric relaxation. • The [Ag{sub 2}I{sub 4}]{sup 2−}1-D chain and [Cu(en){sub 2}]{sup 2+} cation column form the layered stacks by hydrogen bond interactions. - Abstract: An inorganic-organic hybrid compound Cu(en){sub 2}Ag{sub 2}I{sub 4} (en = ethylenediamine) (1) was synthesized and single crystal structurally characterized. Along the [001] direction, the inorganic parts form an infinite 1-Dmore » chain and [Cu(en){sub 2}]{sup 2+} cations are separated by inorganic chain. The electrical conductivity and dielectric properties of 1 have been investigated over wide ranges of frequency. The alternating-current conductivities have been fitted to the Almond–West type power law expression with use of a single value of S. It is found that S values for 1 are nearly temperature-independent, which indicates that the conduction mechanism could be quantum mechanical tunneling (QMT) model. The dielectric loss and electric modulus show single dielectric relaxation process. The activation energy obtained from temperature-dependent electric modulus compare with the calculated from the dc conductivity plots.« less

  14. Giant Permittivity in Epitaxial Ferroelectric Heterostructures

    NASA Astrophysics Data System (ADS)

    Erbil, A.; Kim, Y.; Gerhardt, R. A.

    1996-08-01

    A giant permittivity associated with the motion of domain walls is reported in epitaxial hetero- structures having alternating layers of ferroelectric and nonferroelectric oxides. At low frequencies, permittivities as high as 420 000 are found. Real and imaginary parts of the dielectric constant show large dispersion at high frequencies. In dc measurements, a nonlinear resistance is observed with a well-defined threshold field correlated with the dc bias-field dependence of ac permittivities. We interpret the observations as a result of the motion of a pinned domain wall lattice at low electric fields and sliding-mode motion at high electric fields.

  15. Probing potential Li-ion battery electrolyte through first principles simulation of atomic clusters

    NASA Astrophysics Data System (ADS)

    Kushwaha, Anoop Kumar; Sahoo, Mihir Ranjan; Nayak, Saroj

    2018-04-01

    Li-ion battery has wide area of application starting from low power consumer electronics to high power electric vehicles. However, their large scale application in electric vehicles requires further improvement due to their low specific power density which is an essential parameter and is closely related to the working potential windows of the battery system. Several studies have found that these parameters can be taken care of by considering different cathode/anode materials and electrolytes. Recently, a unique approach has been reported on the basis of cluster size in which the use of Li3 cluster has been suggested as a potential component of the battery electrode material. The cluster based approach significantly enhances the working electrode potential up to 0.6V in the acetonitrile solvent. In the present work, using ab-initio quantum chemical calculation and the dielectric continuum model, we have investigated various dielectric solvent medium for the suitable electrolyte for the potential component Li3 cluster. This study suggests that high dielectric electrolytic solvent (ethylene carbonate and propylene carbonate) could be better for lithium cluster due to improvement in the total electrode potential in comparison to the other dielectric solvent.

  16. Nonlinear dielectric properties of planar structures based on ferroelectric betaine phosphite films

    NASA Astrophysics Data System (ADS)

    Balashova, E. V.; Krichevtsov, B. B.; Svinarev, F. B.; Yurko, E. I.

    2014-02-01

    Ferroelectric films of partly deuterated betaine phosphite are grown on NdGaO3(001) substrates with an interdigitated system of electrodes on their surfaces by evaporation at room temperature. These films have a high capacitance in the ferroelectric phase transition range. The dielectric nonlinearity of the grown structures is studied in small-signal and strong-signal response modes and in the intermediate region between these two modes by measuring the capacitance in a dc bias field, dielectric hysteresis loops, and the Fourier spectra of an output signal in the Sawyer-Tower circuit. In the phase transition range, the capacitance control ratio at a bias voltage U bias = 40 V is K ≅ 7. The dielectric nonlinearity of the structures in the paraelectric phase is described by the Landau theory of second-order phase transitions. The additional contribution to the nonlinearity in the ferroelectric phase is related to the motion of domain walls and manifests itself when the input signal amplitude is higher than U st ˜ 0.7-1.0 V. The relaxation times of domain walls are determined from an analysis of the frequency dependences of the dielectric hysteresis.

  17. Oxygen-vacancy-related dielectric relaxation in SrBi2Ta1.8V0.2O9 ferroelectrics

    NASA Astrophysics Data System (ADS)

    Wu, Yun; Forbess, Mike J.; Seraji, Seana; Limmer, Steven J.; Chou, Tammy P.; Cao, Guozhong

    2001-05-01

    The strontium bismuth tantalate vanadate, SrBi2Ta1.8V0.2O9, (SBTV) layered perovskite ferroelectrics were made by solid state powder sintering. It was found that the SBTV ferroelectrics had the same crystal structure as that of strontium bismuth tantalate, SrBi2Ta2O9 (SBT), but an increased paraferroelectric transition temperature at ˜360 °C as compared to 305 °C for SBT. In addition, SBTV ferroelectrics showed a frequency dispersion at low frequencies and broadened dielectric peaks at the paraferroelectric transition temperature that shifted to a higher temperature with a reduced frequency. However, after a postsintering annealing at 850 °C in air for 60 h, SBTV ferroelectrics showed reduced dielectric constants and tangent loss, particularly at high temperatures. In addition, no frequency dependence of paraferroelectric transition was found in the annealed SBTV ferroelectrics. Furthermore, there was a significant reduction in dc conductivity with annealing. The prior results implied that the dielectric relaxation in the as-sintered SBTV ferroelectrics was most likely due to the oxygen-vacancy-related dielectric relaxation instead of relaxor ferroelectric behavior.

  18. Modification of the erythrocyte membrane dielectric constant by alcohols.

    PubMed

    Orme, F W; Moronne, M M; Macey, R I

    1988-08-01

    Aliphatic alcohols are found to stimulate the transmembrane fluxes of a hydrophobic cation (tetraphenylarsonium, TPA) and anion (AN-12) 5-20 times in red blood cells. The results are analyzed using the Born-Parsegian equation (Parsegian, A., 1969, Nature (London) 221:844-846), together with the Clausius-Mossotti equation to calculate membrane dielectric energy barriers. Using established literature values of membrane thickness, native membrane dielectric constant, TPA ionic radius, and alcohol properties (partition coefficient, molar volume, dielectric constant), the TPA permeability data is predicted remarkably well by theory. If the radius of AN-12 is taken as 1.9 A, its permeability in the presence of butanol is also described by our analysis. Further, the theory quantitatively accounts for the data of Gutknecht and Tosteson (Gutknecht, J., Tosteson, D.C., 1970, J. Gen. Physiol. 55:359-374) covering alcohol-induced conductivity changes of 3 orders of magnitude in artificial bilayers. Other explanations including perturbations of membrane fluidity, surface charge, membrane thickness, and dipole potential are discussed. However, the large magnitude of the stimulation, the more pronounced effect on smaller ions, and the acceleration of both anions and cations suggest membrane dielectric constant change as the primary basis of alcohol effects.

  19. Structure dependent resistivity and dielectric characteristics of tantalum oxynitride thin films produced by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Cristea, D.; Crisan, A.; Cretu, N.; Borges, J.; Lopes, C.; Cunha, L.; Ion, V.; Dinescu, M.; Barradas, N. P.; Alves, E.; Apreutesei, M.; Munteanu, D.

    2015-11-01

    The main purpose of this work is to present and to interpret the change of electrical properties of TaxNyOz thin films, produced by DC reactive magnetron sputtering. Some parameters were varied during deposition: the flow of the reactive gases mixture (N2 and O2, with a constant concentration ratio of 17:3); the substrate voltage bias (grounded, -50 V or -100 V) and the substrate (glass, (1 0 0) Si or high speed steel). The obtained films exhibit significant differences. The variation of the deposition parameters induces variations of the composition, microstructure and morphology. These differences cause variation of the electrical resistivity essentially correlated with the composition and structural changes. The gradual decrease of the Ta concentration in the films induces amorphization and causes a raise of the resistivity. The dielectric characteristics of some of the high resistance TaxNyOz films were obtained in the samples with a capacitor-like design (deposited onto high speed steel, with gold pads deposited on the dielectric TaxNyOz films). Some of these films exhibited dielectric constant values higher than those reported for other tantalum based dielectric films.

  20. Dielectric properties of (K0.5Na0.5)NbO3-(Bi0.5Li0.5)ZrO3 lead-free ceramics as high-temperature ceramic capacitors

    NASA Astrophysics Data System (ADS)

    Yan, Tianxiang; Han, Feifei; Ren, Shaokai; Ma, Xing; Fang, Liang; Liu, Laijun; Kuang, Xiaojun; Elouadi, Brahim

    2018-04-01

    (1 - x)K0.5Na0.5NbO3- x(Bi0.5Li0.5)ZrO3 (labeled as (1 - x)KNN- xBLZ) lead-free ceramics were fabricated by a solid-state reaction method. A research was conducted on the effects of BLZ content on structure, dielectric properties and relaxation behavior of KNN ceramics. By combining the X-ray diffraction patterns with the temperature dependence of dielectric properties, an orthorhombic-tetragonal phase coexistence was identified for x = 0.03, a tetragonal phase was determined for x = 0.05, and a single rhombohedral structure occurred at x = 0.08. The 0.92KNN-0.08BLZ ceramic exhibits a high and stable permittivity ( 1317, ± 15% variation) from 55 to 445 °C and low dielectric loss (≤ 6%) from 120 to 400 °C, which is hugely attractive for high-temperature capacitors. Activation energies of both high-temperature dielectric relaxation and dc conductivity first increase and then decline with the increase of BLZ, which might be attributed to the lattice distortion and concentration of oxygen vacancies.

  1. High energy density capacitors for vacuum operation with a pulsed plasma load

    NASA Technical Reports Server (NTRS)

    Guman, W. J.

    1976-01-01

    Results of the effort of designing, fabricating, and testing of a 40 joules/lb (88.2 joules/Kg) high voltage energy storage capacitor suitable for operating a pulsed plasma thruster in a vacuum environment for millions of pulses are presented. Using vacuum brazing and heli-arc welding techniques followed by vacuum and high pressure helium leak tests it was possible to produce a hermetically sealed relatively light weight enclosure for the dielectric system. An energy density of 40 joules/lb was realized with a KF-polyvinylidene fluoride dielectric system. One capacitor was D.C. life tested at 4 KV (107.8 joules/lb) for 2,000 hours before it failed. Another exceeded 2,670 hours without failure at 38.3 joules/lb. Pulse life testing in a vacuum exceeded 300,000 discharges with testing still in progress. The D.C. life test data shows a small decrease in capacitance and an increase in dissipation factor with time. Heat transfer from the load to the capacitor must also be considered besides the self-heat generated by the capacitor.

  2. Effects of interband transitions on Faraday rotation in metallic nanoparticles.

    PubMed

    Wysin, G M; Chikan, Viktor; Young, Nathan; Dani, Raj Kumar

    2013-08-14

    The Faraday rotation in metallic nanoparticles is considered based on a quantum model for the dielectric function ϵ(ω) in the presence of a DC magnetic field B. We focus on effects in ϵ(ω) due to interband transitions (IBTs), which are important in the blue and ultraviolet for noble metals used in plasmonics. The dielectric function is found using the perturbation of the electron density matrix due to the optical field of the incident electromagnetic radiation. The calculation is applied to transitions between two bands (d and p, for example) separated by a gap, as one finds in gold at the L-point of the Fermi surface. The result of the DC magnetic field is a shift in the effective optical frequency causing IBTs by ±μBB/ħ, where opposite signs are associated with left/right circular polarizations. The Faraday rotation for a dilute solution of 17 nm diameter gold nanoparticles is measured and compared with both the IBT theory and a simpler Drude model for the bound electron response. Effects of the plasmon resonance mode on Faraday rotation in nanoparticles are also discussed.

  3. Doping mechanism of antinomy in PbWO4

    NASA Astrophysics Data System (ADS)

    Li, Wensheng; Tang, Tong B.; Feng, Xiqi

    2002-01-01

    Sb doped PbWO4 (Sb:PWO) shows unique features in its dielectric and visible spectra. We propose that, in low concentration, the dopant enters the lattice as interstitial ions, and at high level it also substitute for W6+ sties. The existence of interstitial ions with relatively high mobility leads to non-negligible dc conductivity, whereas the substitutional impurity produces O23- color centers, which results in absorption at 420 nm, as well as holes hopping among oxygen ions in the Sb-O tetrahedra, that is the origin for the observed dielectric relaxation with an unusually low activation energy of 30±2 meV.

  4. Influence of Ag, Cd or Pb Addition on Electrical and Dielectric Properties of Bulk Glassy Se-Ge

    NASA Astrophysics Data System (ADS)

    El-Metwally, E. G.; Shakra, A. M.

    2018-05-01

    Bulk glassy samples of Se0.7Ge0.3 and Se0.7Ge0.25 X 0.05 (X = Ag, Cd or Pb) chalcogenide glass have been prepared by melt-quenching method. The studied compositions were examined in powder form by x-ray diffraction analysis. The direct-current (dc) conductivity σ_{{dc}} was measured for bulk samples in the temperature range from 303 K to 433 K, revealing enhancement with temperature for all samples. The results indicate two values of activation energy ( Δ E_{{σ1 }} and Δ E_{{σ2 }} ) due to two conduction mechanisms. Measurements of the alternating-current (ac) conductivity σ_{{ac}} ( ω ) and dielectric properties for bulk samples were carried out in the temperature range from 303 K to 433 K and frequency range from 1 kHz to 1 MHz. The ac conductivity σ_{{ac}} ( ω ) was temperature dependent and proportional to ωS , where S is the frequency exponent, which reduced with rising temperature, and ω is the angular frequency. These results are discussed based on a correlated barrier hopping model. The calculated values of the maximum height of the barrier W_{{M}} for each composition are consistent with carrier hopping over a potential barrier. The density of localized states N( {E_{{F}} } ) at the Fermi level lay in the range from 1019 eV-1 cm-3 to 1020 eV-1 cm-3, and increased with temperature. The dielectric constant ɛ1 ( ω ) and loss ɛ2 ( ω ) increased with temperature but decreased with frequency. The values of σ_{{dc}} , σ_{{ac}} ( ω ) , ɛ1 ( ω ) , and ɛ2 ( ω ) increased with temperature and with addition of Ag, Cd or Pb. The observed increase was greater for Se0.7Ge0.25Pb0.05 than for Se0.7Ge0.25Cd0.05, which was greater than for Se0.7Ge0.25Ag0.05.

  5. Dielectric relaxations and conduction mechanisms in polyether-clay composite polymer electrolytes under high carbon dioxide pressure.

    PubMed

    Kitajima, Shunsuke; Bertasi, Federico; Vezzù, Keti; Negro, Enrico; Tominaga, Yoichi; Di Noto, Vito

    2013-10-21

    The composite material P(EO/EM)-Sa consisting of synthetic saponite (Sa) dispersed in poly[ethylene oxide-co-2-(2-methoxyethoxy)ethyl glycidyl ether] (P(EO/EM)) is studied by "in situ" measurements using broadband electrical spectroscopy (BES) under pressurized CO2 to characterize the dynamic behavior of conductivity and the dielectric relaxations of the ion host polymer matrix. It is revealed that there are three dielectric relaxation processes associated with: (I) the dipolar motions in the short oxyethylene side chains of P(EO/EM) (β); and (II) the segmental motion of the main chains comprising the polyether components (αfast, αslow). αslow is attributed to the slow α-relaxation of P(EO/EM) macromolecules, which is hindered by the strong coordination interactions with the ions. Two conduction processes are observed, σDC and σID, which are attributed, respectively, to the bulk conductivity and the interdomain conductivity. The temperature dependence of conductivity and relaxation processes reveals that αfast and αslow are strongly correlated with σDC and σID. The "in situ" BES measurements under pressurized CO2 indicate a fast decrease in σDC at the initial CO2 treatment time resulting from the decrease in the concentration of polyether-M(n+) complexes, which is driven by the CO2 permeation. The relaxation frequency (fR) of αslow at the initial CO2 treatment time increases and shows a steep rise with time with the same behavior of the αfast mode. It is demonstrated that the interactions between polyether chains of P(EO/EM) and cations in the polymer electrolyte layers embedded in Sa are probably weakened by the low permittivity of CO2 (ε = 1.08). Thus, the formation of ion pairs in the polymer electrolyte domains of P(EO/EM)-Sa occurs, with a corresponding reduction in the concentration of ion carriers.

  6. Advanced dielectric continuum model of preferential solvation

    NASA Astrophysics Data System (ADS)

    Basilevsky, Mikhail; Odinokov, Alexey; Nikitina, Ekaterina; Grigoriev, Fedor; Petrov, Nikolai; Alfimov, Mikhail

    2009-01-01

    A continuum model for solvation effects in binary solvent mixtures is formulated in terms of the density functional theory. The presence of two variables, namely, the dimensionless solvent composition y and the dimensionless total solvent density z, is an essential feature of binary systems. Their coupling, hidden in the structure of the local dielectric permittivity function, is postulated at the phenomenological level. Local equilibrium conditions are derived by a variation in the free energy functional expressed in terms of the composition and density variables. They appear as a pair of coupled equations defining y and z as spatial distributions. We consider the simplest spherically symmetric case of the Born-type ion immersed in the benzene/dimethylsulfoxide (DMSO) solvent mixture. The profiles of y(R ) and z(R ) along the radius R, which measures the distance from the ion center, are found in molecular dynamics (MD) simulations. It is shown that for a given solute ion z(R ) does not depend significantly on the composition variable y. A simplified solution is then obtained by inserting z(R ), found in the MD simulation for the pure DMSO, in the single equation which defines y(R ). In this way composition dependences of the main solvation effects are investigated. The local density augmentation appears as a peak of z(R ) at the ion boundary. It is responsible for the fine solvation effects missing when the ordinary solvation theories, in which z =1, are applied. These phenomena, studied for negative ions, reproduce consistently the simulation results. For positive ions the simulation shows that z ≫1 (z =5-6 at the maximum of the z peak), which means that an extremely dense solvation shell is formed. In such a situation the continuum description fails to be valid within a consistent parametrization.

  7. Dynamics of electrical double layer formation in room-temperature ionic liquids under constant-current charging conditions

    NASA Astrophysics Data System (ADS)

    Jiang, Xikai; Huang, Jingsong; Zhao, Hui; Sumpter, Bobby G.; Qiao, Rui

    2014-07-01

    We report detailed simulation results on the formation dynamics of an electrical double layer (EDL) inside an electrochemical cell featuring room-temperature ionic liquids (RTILs) enclosed between two planar electrodes. Under relatively small charging currents, the evolution of cell potential from molecular dynamics (MD) simulations during charging can be suitably predicted by the Landau-Ginzburg-type continuum model proposed recently (Bazant et al 2011 Phys. Rev. Lett. 106 046102). Under very large charging currents, the cell potential from MD simulations shows pronounced oscillation during the initial stage of charging, a feature not captured by the continuum model. Such oscillation originates from the sequential growth of the ionic space charge layers near the electrode surface. This allows the evolution of EDLs in RTILs with time, an atomistic process difficult to visualize experimentally, to be studied by analyzing the cell potential under constant-current charging conditions. While the continuum model cannot predict the potential oscillation under such far-from-equilibrium charging conditions, it can nevertheless qualitatively capture the growth of cell potential during the later stage of charging. Improving the continuum model by introducing frequency-dependent dielectric constant and density-dependent ion diffusion coefficients may help to further extend the applicability of the model. The evolution of ion density profiles is also compared between the MD and the continuum model, showing good agreement.

  8. Dynamics of electrical double layer formation in room-temperature ionic liquids under constant-current charging conditions.

    PubMed

    Jiang, Xikai; Huang, Jingsong; Zhao, Hui; Sumpter, Bobby G; Qiao, Rui

    2014-07-16

    We report detailed simulation results on the formation dynamics of an electrical double layer (EDL) inside an electrochemical cell featuring room-temperature ionic liquids (RTILs) enclosed between two planar electrodes. Under relatively small charging currents, the evolution of cell potential from molecular dynamics (MD) simulations during charging can be suitably predicted by the Landau-Ginzburg-type continuum model proposed recently (Bazant et al 2011 Phys. Rev. Lett. 106 046102). Under very large charging currents, the cell potential from MD simulations shows pronounced oscillation during the initial stage of charging, a feature not captured by the continuum model. Such oscillation originates from the sequential growth of the ionic space charge layers near the electrode surface. This allows the evolution of EDLs in RTILs with time, an atomistic process difficult to visualize experimentally, to be studied by analyzing the cell potential under constant-current charging conditions. While the continuum model cannot predict the potential oscillation under such far-from-equilibrium charging conditions, it can nevertheless qualitatively capture the growth of cell potential during the later stage of charging. Improving the continuum model by introducing frequency-dependent dielectric constant and density-dependent ion diffusion coefficients may help to further extend the applicability of the model. The evolution of ion density profiles is also compared between the MD and the continuum model, showing good agreement.

  9. Pyroelectric response mechanism of barium strontium titanate ceramics in dielectric bolometer mode: The underlying essence of the enhancing effect of direct current bias field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, Chaoliang; Cao, Sheng; Yan, Shiguang

    Pyroelectric response mechanism of Ba{sub 0.70}Sr{sub 0.30}TiO{sub 3} ceramics under dielectric bolometer (DB) mode was investigated by dielectric and pyroelectric properties measurement. The variations of total, intrinsic, and induced pyroelectric coefficients (p{sub tot}, p{sub int}, p{sub ind}) with temperatures and bias fields were analyzed. p{sub int} plays the dominant role to p{sub tot} through most of the temperature range and p{sub ind} will be slightly higher than p{sub int} above T{sub 0}. The essence of the enhancing effect of DC bias field on pyroelectric coefficient can be attributed to the high value of p{sub int}. This mechanism is useful formore » the pyroelectric materials (DB mode) applications.« less

  10. Magnetodielectric behaviour in La0.53Ca0.47MnO3

    NASA Astrophysics Data System (ADS)

    Pandey, Suchita; Kumar, Jitender; Awasthi, A. M.

    2014-10-01

    We explore magneto-dielectricity in La0.53Ca0.47MnO3 across its paramagnetic (PMI) to ferromagnetic (FMM) isostructural transition at TC ˜ 253 K, by magnetic (M), caloric (W), dielectric (ɛ‧), magnetoresistive (MR), and magnetocapacitance (MC) investigations. A skew-broadened first-order transition character is confirmed via heating/cooling hystereses in M(T) and W(T), with a superheating temperature T** next to TC and supercooling temperature T* exhibiting kinetics. Above TC, linearly related MC and MR reflect purely a magnetoresistance effect. Near TC, the high-frequency MC (5 Tesla (T)), far exceeds the magneto-losses, and is uncorrelated with dc MR (5 T) in the FM-ordered state. The intrinsic magneto-dielectricity manifest below TC and above ˜kHz is traced to an intra-granular Maxwell-Wagner-type effect at the interface region of PMI-FMM phase coexistence.

  11. Real Space Imaging of the Microscopic Origins of the Ultrahigh Dielectric Constant in Polycrystalline CaCu 3Ti 4O 12

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalinin, Sergei V; Shin, Junsoo; Veith, Gabriel M

    2005-01-01

    The origins of an ultrahigh dielectric constant in polycrystalline CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) were studied using the combination of impedance spectroscopy, electron microscopy, and scanning probe microscopy (SPM). Impedance spectra indicate that the transport properties in the 0.1 Hz-1 MHz frequency range are dominated by a single parallel resistive-capacitive (RC) element with a characteristic relaxation frequency of 16 Hz. dc potential distributions measurements by SPM illustrate that significant potential drops occur at the grain boundaries, which thus can be unambiguously identified as the dominant RC element. High frequency ac amplitude and phase distributions illustrate very weak grain boundary contrastmore » in SPM, indicative of strong capacitive coupling across the interfaces. These results demonstrate that the ultrahigh dielectric constant reported for polycrystalline CCTO materials is related to grain-boundary behavior.« less

  12. Influence of interface point defect on the dielectric properties of Y doped CaCu3Ti4O12 ceramics

    NASA Astrophysics Data System (ADS)

    Deng, Jianming; Sun, Xiaojun; Liu, Saisai; Liu, Laijun; Yan, Tianxiang; Fang, Liang; Elouadi, Brahim

    2016-04-01

    CaCu3Ti4-xYxO12 (0≤x≤0.12) ceramics were fabricated with conventional solid-state reaction method. Phase structure and microstructure of prepared ceramics were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The impedance and modulus tests both suggested the existence of two different relaxation behavior, which were attributed to bulk and grain boundary response. In addition, the conductivity and dielectric permittivity showed a step-like behavior under 405K. Meanwhile, frequency independence of dc conduction became dominant when above 405K. In CCTO ceramic, rare earth element Y3+ ions as an acceptor were used to substitute Ti sites, decreasing the concentration of oxygen vacancy around grain-electrode and grain boundary. The reason to the reduction of dielectric behavior in low frequencies range was associated with the Y doping in CCTO ceramic.

  13. Dynamics of near-surface electric discharges and mechanisms of their interaction with the airflow

    NASA Astrophysics Data System (ADS)

    Leonov, Sergey B.; Adamovich, Igor V.; Soloviev, Victor R.

    2016-12-01

    The main focus of the review is on dynamics and kinetics of near-surface discharge plasmas, such as surface dielectric barrier discharges sustained by AC and repetitively pulsed waveforms, pulsed DC discharges, and quasi-DC discharges, generated in quiescent air and in the airflow. A number of technical issues related to plasma flow control applications are discussed in detail, including discharge development via surface ionization waves, charge transport and accumulation on dielectric surface, discharge contraction, different types of flow perturbations generated by surface discharges, and effect of high-speed flow on discharge dynamics. In the first part of the manuscript, plasma morphology and results of electrical and optical emission spectroscopy measurements are discussed. Particular attention is paid to dynamics of surface charge accumulation and dissipation, both in diffuse discharges and during development of ionization instabilities resulting in discharge contraction. Contraction leads to significant increase of both the surface area of charge accumulation and the energy coupled to the plasma. The use of alternating polarity pulse waveforms accelerates contraction of surface dielectric barrier discharges and formation of filamentary plasmas. The second part discusses the interaction of discharge plasmas with quiescent air and the external airflow. Four major types of flow perturbations have been identified: (1) low-speed near-surface jets generated by electrohydrodynamic interaction (ion wind); (2) spanwise and streamwise vortices formed by both electrohydrodynamic and thermal effects; (3) weak shock waves produced by rapid heating in pulsed discharges on sub-microsecond time scale; and (4) near-surface localized stochastic perturbations, on sub-millisecond time, detected only recently. The mechanism of plasma-flow interaction remains not fully understood, especially in filamentary surface dielectric barrier discharges. Localized quasi-DC surface discharges sustained in a high-speed flow are discussed in the third part of the review. Although dynamics of this type of the discharge is highly transient, due to its strong interaction with the flow, the resultant flow structure is stationary, including the oblique shock and the flow separation region downstream of the discharge. The oblique shock is attached to a time-averaged, wedge-shaped, near-wall plasma layer, with the shock angle controlled by the discharge power, which makes possible changing the flow structure and parameters in a controlled way. Finally, unresolved and open-ended issues are discussed in the summary.

  14. Calculation of hydraulic friction losses in dc motors filled with liquid dielectric

    NASA Astrophysics Data System (ADS)

    Morozkin, V. P.

    1984-06-01

    Hydraulic friction during rotation of the armature in a dc motor filled with liquid dielectric is a major source of power loss, up to 40% of all power losses in such a motor. These losses are usually reduced by impregnating the end turns of armature coils with a compound and smoothing their outside surfaces. Hydraulic losses are best determined experimentally on a model armature and then calculated according to the theory of similarity for any other motor. This was with the armatures of DPK-8-3000, DPK-08-1000 small motors and P-42, Mu-52 large motors as test models. For subsequent calculations the armature is treated as a structure consisting of three cylinders: (1) slotted wound active core rotating inside a stationary cylinder with a radial gap between them; (2) end turns of coils rotating in free space; and (3) slotted commutator rotating in free space. The back plate of the armature constitutes a rotating disk. Considering that the hydraulic drag coefficient is a function of the Reynolds number only, it is calculated for each component of the armature on the basis of semiempirical relations with length and radius, gap width between stator (field) bore and active rotor core, angular velocity or rpm, and density of the dielectric as parameters. The resultant hydraulic drag coefficient is found by weighted combining of the four partial ones, with use of diameter ratios and a length-to-diameter ratio for the active core.

  15. Hydrothermal synthesis of doped lanthanum zirconate nanomaterials and the effect of V–Ge substitution on their structural, electrical and dielectric properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farid, Muhammad Asim; Asghar, Muhammad Adnan; Ashiq, Muhammad Naeem, E-mail: naeemashiqqau@yahoo.com

    2014-11-15

    Graphical abstract: Variation of dielectric constant with frequency for all the synthesized materials. - Highlights: • Hydrothermal method has been successfully employed to synthesize the zirconates. • XRD confirmed the formation of required phase. • Increased electrical resistivity makes these materials useful for microwave devices. • Dielectric parameters of zirconates decrease with increasing frequency. • Dielectric constant decreases with increasing substituents concentration. - Abstract: A hydrothermal method was successfully employed for the synthesis of a series of vanadium and germanium co-doped pyrochlore lanthanum zirconates with composition La{sub 2−x}V{sub x}Zr{sub 2−y}Ge{sub y}O{sub 7} (where x, y = 0.0, 0.25, 0.50, 0.75more » and 1.0). The XRD and FTIR analyses confirmed the formation of single phase except vanadium and germanium substituted samples and the crystallite sizes are in the range of 7–31 nm for V{sup 3+}–Ge{sup 4+} substituted samples. The theoretical compositions are confirmed by the ED-XRF studies. The room temperature electrical resistivity increase with the substituents concentration which suggests that the synthesized materials can be used for microwave devices as such devices required highly resistive materials. Dielectric properties were measured in the frequency range of 6 kHz to 1 MHz. The dielectric parameters decrease with increase in frequency. The DC resistivity data is in good agreement with the dielectric data.« less

  16. A New Poisson-Nernst-Planck Model with Ion-Water Interactions for Charge Transport in Ion Channels.

    PubMed

    Chen, Duan

    2016-08-01

    In this work, we propose a new Poisson-Nernst-Planck (PNP) model with ion-water interactions for biological charge transport in ion channels. Due to narrow geometries of these membrane proteins, ion-water interaction is critical for both dielectric property of water molecules in channel pore and transport dynamics of mobile ions. We model the ion-water interaction energy based on realistic experimental observations in an efficient mean-field approach. Variation of a total energy functional of the biological system yields a new PNP-type continuum model. Numerical simulations show that the proposed model with ion-water interaction energy has the new features that quantitatively describe dielectric properties of water molecules in narrow pores and are possible to model the selectivity of some ion channels.

  17. Synthesis and electrical behavior of Ni-Ti substituted Y-type hexaferrites for high frequency application

    NASA Astrophysics Data System (ADS)

    Ahmad, Bashir; Ashiq, Muhammad Naeem; Mumtaz, Saleem; Ali, Irshad; Najam-Ul-Haq, Muhmmad; Sadiq, Imran

    2018-04-01

    This article reports the fabrication of Ni-Ti doped derivatives of Sr2Co2Fe12-2xO22 by economical Sol-gel method. At room temperature X-ray diffraction (XRD) pattern of powder was obtained after sintering at 1050 °C. The XRD analysis revealed the formation of pure Sr-Y hexaferrite phase. It was found that the observed values of dielectric parameters decreased with increasing Ni-Ti substitution. The higher values of dielectric constants and dielectric loss factor at lower frequency were owing to surface charge polarization. In all the samples the resonance peaks were also observed. The observed room temperature DC electrical resistivity found to increase from 1.8x106 to 4.9x109 ohm cm. The observed activation energies values of the fabricated materials are found in 0.52-0.82 eV range. The decrease in dielectric parameters and increase in resistivity of the fabricated samples with substituents suggest these materials have worth application in micro-wave devices as such devices required highly resistive materials.

  18. Temperature characterization of dielectric permittivity and AC conductivity of nano copper oxide-doped polyaniline composite

    NASA Astrophysics Data System (ADS)

    Shubha, L. N.; Madhusudana Rao, P.

    2016-06-01

    The polyaniline/copper oxide (PANI/CuO) nanocomposite was prepared by mixing solutions of polyaniline and copper oxide nanoparticles in dimethyl sulfoxide (DMSO). The synthesized polymer nanocomposites were characterized by X-ray powder diffraction (XRD), scanning electron microscope (SEM) and UV-visible spectroscopy. The characteristic peaks in XRD and UV-visible spectra confirmed the presence of CuO in the polymer structure. SEM images indicated morphological changes in the composite matrix as compared to the pristine PANI. The DC conductivity measurements were performed using two-probe method for various temperatures. AC conductivity and dielectric response of the composites were investigated in the frequency range of 102-106Hz using LCR meter. Dielectric permittivity ɛ‧(w) and dielectric loss factor ɛ‧‧(w) were investigated. It was observed that ɛ‧(w) and ɛ‧‧(w) decrease with increase in frequency at all temperatures. At a particular frequency it is observed that both ɛ‧(w) and ɛ‧‧(w) increase with increase in temperature. It was also observed that AC conductivity increased with increase in frequency and temperature.

  19. Spontaneous polarization and dielectric relaxation dynamics of ferroelectric liquid crystals derived from 2(S)-[2(S)-ethylhexyolxy] propionic acid and its (S, R)-diastereomer

    NASA Astrophysics Data System (ADS)

    Huang, Lei-Ching; Fu, Chao-Ming

    2015-09-01

    The spontaneous polarization and molecular dynamics of four ferroelectric liquid crystals (FLCs) with two different kinds of core rings and two types of diastereomeric structures were investigated in this study. The FLCs with a biphenyl ring core structure showed higher spontaneous polarization than the FLCs with a naphthalene ring core structure. The complex dielectric spectra exhibited the Goldstone mode in the ferroelectric (SmC*) phase for all FLCs. The complex dielectric spectra of the four FLCs can be optimally fitted by the Debye model and the Cole-Cole model. Moreover, the Goldstone mode was enhanced under low DC bias fields for the FLCs with the (S, R)- diastereomeric structure, whereas the mode was suppressed for the FLCs with the (S, S)- diastereomeric structure. A microscopic molecular dynamic model is proposed to describe the underlying mechanism of the particular enhancement of the Goldstone mode. The experimental results of dielectric spectra and spontaneous polarization are explained in the discussion of the mesomorphic properties related to the FLC molecular structure.

  20. Correlating morphology to dc conductivity in polymerized ionic liquids

    NASA Astrophysics Data System (ADS)

    Iacob, Ciprian; Matusmoto, Atsushi; Inoue, Tadashi; Runt, James

    Polymerized ionic liquids (PILs) combine the attractive mechanical characteristics of polymers and unique physico-chemical properties of low molecular weight ionic liquids in the same material. PILs have shown remarkable advantages when employed in electrochemical devices such as dye-sensitized solar cells and lithium batteries, among others. Understanding their ionic transport mechanism is the key for designing highly conductive PILs. In the current study, the correlation between morphology and charge transport in two homologous series of PILs with systematic variation of the alkyl chain length and anions is investigated using broadband dielectric spectroscopy, rheology, differential scanning calorimetry and X-ray scattering. As the alkyl chain length increases, the backbone-to-backbone separation increases, and dc-conductivity consequently decreases. The cations dominate structural dynamics since they are attached to the polymer chains, while the anions are smaller and more mobile ionic species thereby controlling the ionic conductivity. Further interpretation of decoupling of dc conductivity from the segmental relaxation enabled the correlation between polymer morphology and dc conductivity. Supported by the National Science Foundation, Polymers Program.

  1. Optimization of Processing Variables Which Affect Adhesion of Organic Coatings to Anodized Aluminum Alloys

    DTIC Science & Technology

    1975-10-01

    DC anodizing all adhesion values were lower but almost equal. 36 mnamnminmh TABU X SWOT OF EFFECT OF CURRaTT DEÄITT, TIME ABD SEAUK OF CHJOOC...Continuum Interpretation for Fracture and Adhesion", J. Appl . Polymer Science, 1^, 29 (I969) 3. Williams, M. L., "Stress Singularities, Adhesion, and

  2. Dielectric properties of (CuO, CaO2, and BaO)y/CuTl-1223 composites

    NASA Astrophysics Data System (ADS)

    Mumtaz, M.; Kamran, M.; Nadeem, K.; Jabbar, Abdul; Khan, Nawazish A.; Saleem, Abida; Tajammul Hussain, S.; Kamran, M.

    2013-07-01

    We synthesized (CuO, CaO2, and BaO)y/Cu0.5Tl0.5Ba2Ca2Cu3O10-δ (y = 0, 5%, 10%, 15%) composites by solid-state reaction and characterized them by x-ray diffraction, scanning electron microscopy, dc-resistivity, and Fourier transform infrared spectroscopy. Frequency and temperature dependent dielectric properties, such as real and imaginary parts of the dielectric constant, dielectric loss, and ac-conductivity of these composites were studied by capacitance and conductance measurements as a function of frequency (10 kHz to 10 MHz) and temperature (78 to 300 K). X-ray diffraction analysis reveals that the characteristic behavior of the superconductor phase and the structure of Cu0.5Tl0.5Ba2Ca2Cu3O10-δ are nearly undisturbed by doping with nanoparticles. Scanning electron microscopy images show the improvement in the intergranular linking between the superconducting grains occurring with increasing nanoparticle concentration. Microcracks are healed up with these nanoparticles, and superconducting volume fraction is also increased. Dielectric properties of these composites strongly depend on the frequency and temperature. Zero resistivity critical temperature and dielectric properties show opposite trends with the addition of nanoparticles to the Cu0.5Tl0.5Ba2Ca2Cu3O10-δ superconductor matrix.

  3. Proceedings of the European Conference on the Application of Polar Dielectrics (2nd) to Celebrate the Anniversary of the Dielectric Society (25th), Incorporating the International Workshop on Integrated Ferroelectrics (1st) Held in London (United Kingdom) on 12-15 April 1992

    DTIC Science & Technology

    1993-04-01

    continuous streaking in the b -direction, possibly due to the twinned nature of the ferroelectic domains. The presence of a twinned domain structure has been...Box 211, Princeton, New Jersvey 08540. U. S. A ASSOCIATE ED)ITORS Peter Guinter Sidney B . Lang Koichi Tovoda In xtjtut hir Quaniei’rwhktriorik D...Oregon S. B . Lang (Pyroelectrics) EDITORIAL BOARD R pil Abcý Nagova. Japan Wi. Il ’ vwang. Auniclr. Germainy C. F. I’uilvari . Wa~shingiioi. DC( F

  4. Dielectric properties of Ti4+ substituted BaFe12O19 nanoparticles

    NASA Astrophysics Data System (ADS)

    Ghoneim, A. I.; Amer, M. A.; Meaz, T. M.; Attalah, S. S.

    2017-02-01

    Series of nanocrystalline BaTixFe12-(4/3)xO19 hexagonal ferrites, 0≤x≤1, was prepared using the chemical co-precipitation method. As-prepared samples were heated at 1200 °C for 20 h and slowly cooled to room temperature (RT). XRD studies proved that the samples have single phase M-type hexagonal nanostructure, where their grain size lies in the range of 42.4 - 61.3 nm. Their dielectric properties were studied against temperature (T) and frequency (F). DC conductivity showed increase against T, whereas AC conductivity showed increase with increasing both T and F. This proved the semiconducting behavior of the samples. Activation energies were found to lie in the range of 0.054-0.169 eV for temperature range of RT 373 K and of 0.114-0.274 eV for higher temperatures up to 473 K. Variation of the dielectric constant and AC conductivity against F revealed dispersion in all these hexagonal nanostructures, which was assigned to Maxwell-Wagner type of interfacial polarization. Variation of the dielectric loss tangent against F showed a relaxation spectrum for all samples, whereas the dielectric constant and loss tangent showed an increasing trend against T. The relative magnetic permeability μr showed an increasing trend with temperature.

  5. Anomalous response of supported few-layer hexagonal boron nitride to DC electric fields: a confined water effect?

    NASA Astrophysics Data System (ADS)

    Oliveira, Camilla; Matos, Matheus; Mazzoni, Mário; Chacham, Hélio; Neves, Bernardo

    2013-03-01

    Hexagonal boron nitride (h-BN) is a two-dimensional compound from III-V family, with the atoms of boron and nitrogen arranged in a honeycomb lattice, similar to graphene. Unlike graphene though, h-BN is an insulator material, with a gap larger than 5 eV. Here, we use Electric Force Microscopy (EFM) to study the electrical response of mono and few-layers of h-BN to an electric field applied by the EFM tip. Our results show an anomalous behavior in the dielectric response for h-BN for different bias orientation: for a positive bias applied to the tip, h-BN layers respond with a larger dielectric constant than the dielectric constant of the silicon dioxide substrate; while for a negative bias, the h-BN dielectric constant is smaller than the dielectric constant of the substrate. Based on first-principles calculations, we showed that this anomalous response may be interpreted as a macroscopic consequence of confinement of a thin water layer between h-BN and substrate. These results were confirmed by sample annealing and also also by a comparative analysis with h-BN on a non-polar substrate. All the authors acknowledge financial support from CNPq, Fapemig, Rede Nacional de Pesquisa em Nanotubos de Carbono and INCT-Nano-Carbono.

  6. Mathematical analysis of the boundary-integral based electrostatics estimation approximation for molecular solvation: exact results for spherical inclusions.

    PubMed

    Bardhan, Jaydeep P; Knepley, Matthew G

    2011-09-28

    We analyze the mathematically rigorous BIBEE (boundary-integral based electrostatics estimation) approximation of the mixed-dielectric continuum model of molecular electrostatics, using the analytically solvable case of a spherical solute containing an arbitrary charge distribution. Our analysis, which builds on Kirkwood's solution using spherical harmonics, clarifies important aspects of the approximation and its relationship to generalized Born models. First, our results suggest a new perspective for analyzing fast electrostatic models: the separation of variables between material properties (the dielectric constants) and geometry (the solute dielectric boundary and charge distribution). Second, we find that the eigenfunctions of the reaction-potential operator are exactly preserved in the BIBEE model for the sphere, which supports the use of this approximation for analyzing charge-charge interactions in molecular binding. Third, a comparison of BIBEE to the recent GBε theory suggests a modified BIBEE model capable of predicting electrostatic solvation free energies to within 4% of a full numerical Poisson calculation. This modified model leads to a projection-framework understanding of BIBEE and suggests opportunities for future improvements. © 2011 American Institute of Physics

  7. Electrostatic field and charge distribution in small charged dielectric droplets

    NASA Astrophysics Data System (ADS)

    Storozhev, V. B.

    2004-08-01

    The charge distribution in small dielectric droplets is calculated on the basis of continuum medium approximation. There are considered charged liquid spherical droplets of methanol in the range of nanometer sizes. The problem is solved by the following way. We find the free energy of some ion in dielectric droplet, which is a function of distribution of other ions in the droplet. The probability of location of the ion in some element of volume in the droplet is a function of its free energy in this element of volume. The same approach can be applied to other ions in the droplet. The obtained charge distribution differs considerably from the surface distribution. The curve of the charge distribution in the droplet as a function of radius has maximum near the surface. Relative concentration of charges in the vicinity of the center of the droplet does not equal to zero, and it is the higher, the less is the total charge of the droplet. According to the estimates the model is applicable if the droplet radius is larger than 10 nm.

  8. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marenich, Aleksandr; Cramer, Christopher J; Truhlar, Donald G

    2009-04-30

    We present a new continuum solvation model based on the quantum mechanical charge density of a solute molecule interacting with a continuum description of the solvent. The model is called SMD, where the “D” stands for “density” to denote that the full solute electron density is used without defining partial atomic charges. “Continuum” denotes that the solvent is not represented explicitly but rather as a dielectric medium with surface tension at the solute-solvent boundary. SMD is a universal solvation model, where “universal” denotes its applicability to any charged or uncharged solute in any solvent or liquid medium for which amore » few key descriptors are known (in particular, dielectric constant, refractive index, bulk surface tension, and acidity and basicity parameters). The model separates the observable solvation free energy into two main components. The first component is the bulk electrostatic contribution arising from a self-consistent reaction field treatment that involves the solution of the nonhomogeneous Poisson equation for electrostatics in terms of the integral-equation-formalism polarizable continuum model (IEF-PCM). The cavities for the bulk electrostatic calculation are defined by superpositions of nuclear-centered spheres. The second component is called the cavity-dispersion-solvent-structure term and is the contribution arising from short-range interactions between the solute and solvent molecules in the first solvation shell. This contribution is a sum of terms that are proportional (with geometry-dependent proportionality constants called atomic surface tensions) to the solvent-accessible surface areas of the individual atoms of the solute. The SMD model has been parametrized with a training set of 2821 solvation data including 112 aqueous ionic solvation free energies, 220 solvation free energies for 166 ions in acetonitrile, methanol, and dimethyl sulfoxide, 2346 solvation free energies for 318 neutral solutes in 91 solvents (90 nonaqueous organic solvents and water), and 143 transfer free energies for 93 neutral solutes between water and 15 organic solvents. The elements present in the solutes are H, C, N, O, F, Si, P, S, Cl, and Br. The SMD model employs a single set of parameters (intrinsic atomic Coulomb radii and atomic surface tension coefficients) optimized over six electronic structure methods: M05-2X/MIDI!6D, M05-2X/6-31G*, M05-2X/6-31+G**, M05-2X/cc-pVTZ, B3LYP/6-31G*, and HF/6-31G*. Although the SMD model has been parametrized using the IEF-PCM protocol for bulk electrostatics, it may also be employed with other algorithms for solving the nonhomogeneous Poisson equation for continuum solvation calculations in which the solute is represented by its electron density in real space. This includes, for example, the conductor-like screening algorithm. With the 6-31G* basis set, the SMD model achieves mean unsigned errors of 0.6-1.0 kcal/mol in the solvation free energies of tested neutrals and mean unsigned errors of 4 kcal/mol on average for ions with either Gaussian03 or GAMESS.« less

  9. Research on Damage Models for Continuous Fiber Composites

    DTIC Science & Technology

    1988-07-01

    r ~.F (~ Mechanics and Materials Center TEXAS A&M UNIVERSITY College Station, Texas RESEARCH ON DAMAGE MODELS FOR CONTINUOUS FIBER COMPOSITES Final...Washington, DC 20332 11. TITLE (Include Security Clas=fication) Research on Damage Models for Continuous Fiber Composites - Final Technical Report 1...GROUP SUB-GROU ::=, COMPOsites ) continuum mechanics , ~ idamage, internal state variables V experimental mechanics, laminated composites o 19. ABSTRACT

  10. Research in Image Understanding as Applied to 3-D Microwave Tomographic Imaging with Near Optical Resolution.

    DTIC Science & Technology

    1986-03-10

    and P. Frangos , "Inverse Scattering for Dielectric Media", Annual OSA Meeting, Wash. D.C., Oct. 1985. Invited Presentations 1. N. Farhat, "Tomographic...Optical Computing", DARPA Briefing, ~~April 1985. ... -7--.. , 1% If .% P . .% .% *-. 7777~14e 7-7. K-7 77 Theses 0 P.V. Frangos , "The Electromagnetic

  11. F-centers mechanism of long-term relaxation in lead zirconate-titanate based piezoelectric ceramics. 2. After-field relaxation

    NASA Astrophysics Data System (ADS)

    Ishchuk, V. M.; Kuzenko, D. V.

    2016-08-01

    The paper presents results of experimental study of the dielectric constant relaxation during aging process in Pb(Zr,Ti)O3 based solid solutions (PZT) after action of external DC electric field. The said process is a long-term one and is described by the logarithmic function of time. Reversible and nonreversible relaxation process takes place depending on the field intensity. The relaxation rate depends on the field strength also, and the said dependence has nonlinear and nonmonotonic form, if external field leads to domain disordering. The oxygen vacancies-based model for description of the long-term relaxation processes is suggested. The model takes into account the oxygen vacancies on the sample's surface ends, their conversion into F+- and F0-centers under external effects and subsequent relaxation of these centers into the simple oxygen vacancies after the action termination. F-centers formation leads to the violation of the original sample's electroneutrality, and generate intrinsic DC electric field into the sample. Relaxation of F-centers is accompanied by the reduction of the electric field, induced by them, and relaxation of the dielectric constant, as consequent effect.

  12. An ab initio time-dependent Hartree Fock study of solvent effects on the polarizability and second hyperpolarizability of polyacetylene chains within the polarizable continuum model

    NASA Astrophysics Data System (ADS)

    Champagne, Benoı̂t; Mennucci, Benedetta; Cossi, Maurizio; Cammi, Roberto; Tomasi, Jacopo

    1998-11-01

    The solvent effects upon the longitudinal polarizability ( αL) and second hyperpolarizability ( γL) of small all-trans polyacetylene (PA) chains ranging from C 2H 4 to C 10H 12 have been evaluated at the time-dependent Hartree-Fock (TDHF) level within the framework of the polarizable continuum model. The solvent effects, which correspond to the solvent-induced modifications of the solute properties, result in large increases of the linear and nonlinear responses even for solvents with low dielectric constants. When the dielectric constant is increased, the αL values tend to saturate at values 30%-40% larger than in vacuo, whereas for γL it ranges from 100% to 400% depending upon the nonlinear optical process and the length of the PA chain. These solvent-induced αL and γL enhancements can partially be accounted for by the corresponding decrease of the energy of the lowest optically-allowed electronic excitation. The geometrical parameters of the ground state of the PA chains are almost unaffected by the solvent. This shows that the solvent effects are mainly of electronic nature. In addition, the local field factors, which relate the macroscopic or Maxwell field to the field experienced by the solute, tend towards unity with increasing chain length for the longitudinal PA axis.

  13. Dielectric barrier discharge plasma actuator for flow control

    NASA Astrophysics Data System (ADS)

    Opaits, Dmitry Florievich

    Electrohydrodynamic (EHD) and magnetohydrodynamic phenomena are being widely studied for aerodynamic applications. The major effects of these phenomena are heating of the gas, body force generation, and enthalpy addition or extraction, [1, 2, 3]. In particular, asymmetric dielectric barrier discharge (DBD) plasma actuators are known to be effective EHD device in aerodynamic control, [4, 5]. Experiments have demonstrated their effectiveness in separation control, acoustic noise reduction, and other aeronautic applications. In contrast to conventional DBD actuators driven by sinusoidal voltages, we proposed and used a voltage profile consisting of nanosecond pulses superimposed on dc bias voltage. This produces what is essentially a non-self-sustained discharge: the plasma is generated by repetitive short pulses, and the pushing of the gas occurs primarily due to the bias voltage. The advantage of this non-self-sustained discharge is that the parameters of ionizing pulses and the driving bias voltage can be varied independently, which adds flexibility to control and optimization of the actuators performance. Experimental studies were conducted of a flow induced in a quiescent room air by a single DBD actuator. A new approach for non-intrusive diagnostics of plasma actuator induced flows in quiescent gas was proposed, consisting of three elements coupled together: the Schlieren technique, burst mode of plasma actuator operation, and 2-D numerical fluid modeling. During the experiments, it was found that DBD performance is severely limited by surface charge accumulation on the dielectric. Several ways to mitigate the surface charge were found: using a reversing DC bias potential, three-electrode configuration, slightly conductive dielectrics, and semi conductive coatings. Force balance measurements proved the effectiveness of the suggested configurations and advantages of the new voltage profile (pulses+bias) over the traditional sinusoidal one at relatively low voltages. In view of practical applications certain questions have been also addressed, such as electrodynamic effects which accompany scaling of the actuators to real size models, and environmental effects of ozone production by the plasma actuators.

  14. Syn- and anti-conformations of 5'-deoxy- and 5'-O-methyl-uridine 2',3'-cyclic monophosphate.

    PubMed

    Grabarkiewicz, Tomasz; Hoffmann, Marcin

    2006-01-01

    Two uridine 2',3'-cyclic monophosphate (cUMP) derivatives, 5'-deoxy (DcUMP) and 5'-O-methyl (McUMP), were studied by means of quantum chemical methods. Aqueous solvent effects were estimated based on the isodensity-surface polarized-continuum model (IPCM). Gas phase calculations revealed only slight energy differences between the syn- and anti-conformers of both compounds: the relative energies of the syn-structure are -0.9 and 0.2 kcal mol(-1) for DcUMP and McUMP, respectively. According to the results from the IPCM calculations, however, both syn-conformers become about 14 kcal mol(-1) more stable in aqueous solution than their corresponding anti-structures. Additionally, the effects of a countercation and protonation on DcUMP were studied, revealing that the syn-structure is also favored over the anti-one for these systems.

  15. AC and DC electrical behavior of MWCNT/epoxy nanocomposite near percolation threshold: Equivalent circuits and percolation limits

    NASA Astrophysics Data System (ADS)

    Alizadeh Sahraei, Abolfazl; Ayati, Moosa; Baniassadi, Majid; Rodrigue, Denis; Baghani, Mostafa; Abdi, Yaser

    2018-03-01

    This study attempts to comprehensively investigate the effects of multi-walled carbon nanotubes (MWCNTs) on the AC and DC electrical conductivity of epoxy nanocomposites. The samples (0.2, 0.3, and 0.5 wt. % MWCNT) were produced using a combination of ultrason and shear mixing methods. DC measurements were performed by continuous measurement of the current-voltage response and the results were analyzed via a numerical percolation approach, while for the AC behavior, the frequency response was studied by analyzing phase difference and impedance in the 10 Hz to 0.2 MHz frequency range. The results showed that the dielectric parameters, including relative permittivity, impedance phase, and magnitude, present completely different behaviors for the frequency range and MWCNT weight fractions studied. To better understand the nanocomposites electrical behavior, equivalent electric circuits were also built for both DC and AC modes. The DC equivalent networks were developed based on the current-voltage curves, while the AC equivalent circuits were proposed by using an optimization problem according to the impedance magnitude and phase at different frequencies. The obtained equivalent electrical circuits were found to be highly useful tools to understand the physical mechanisms involved in MWCNT filled polymer nanocomposites.

  16. Controlled growth of aligned carbon nanotube using pulsed glow barrier discharge

    NASA Astrophysics Data System (ADS)

    Nozaki, Tomohiro; Kimura, Yoshihito; Okazaki, Ken

    2002-10-01

    We first achieved a catalytic growth of aligned carbon nanotube (CNT) using atmospheric pressure pulsed glow barrier discharge combined with DC bias (1000 V). Aligned CNT can grow with the directional electric field, and this is a big challenge in barrier discharges since dielectric barrier does not allow DC bias and forces to use AC voltage to maintain stable plasma conditions. To overcome this, we developed a power source generating Gaussian-shape pulses at 20 kpps with 4% duty, and DC bias was applied to the GND electrode where Ni-, Fe-coated substrate existed. With positive pulse, i.e. substrate was the cathode, random growth of CNT was observed at about 10^9 cm-2. Growth rate significantly reduced when applied negative pulse; Negative glow formation near substrate is essential for sufficient supply of radical species to the catalyst. If -DC was biased, aligned CNT with 20 nm was synthesized because negative bias enhanced negative glow formation. Interestingly, 2 to 3 CNTs stuck each other with +DC bias, resulting in 50-70 nm and non-aligned CNT. Atmospheric pressure glow barrier discharges can be highly controlled and be a potential alternative to vacuum plasmas for CVD, micro-scale, nano-scale fabrication.

  17. Governing equations for electro-conjugate fluid flow

    NASA Astrophysics Data System (ADS)

    Hosoda, K.; Takemura, K.; Fukagata, K.; Yokota, S.; Edamura, K.

    2013-12-01

    An electro-conjugation fluid (ECF) is a kind of dielectric liquid, which generates a powerful flow when high DC voltage is applied with tiny electrodes. This study deals with the derivation of the governing equations for electro-conjugate fluid flow based on the Korteweg-Helmholtz (KH) equation which represents the force in dielectric liquid subjected to high DC voltage. The governing equations consist of the Gauss's law, charge conservation with charge recombination, the KH equation, the continuity equation and the incompressible Navier-Stokes equations. The KH equation consists of coulomb force, dielectric constant gradient force and electrostriction force. The governing equation gives the distribution of electric field, charge density and flow velocity. In this study, direct numerical simulation (DNS) is used in order to get these distribution at arbitrary time. Successive over-relaxation (SOR) method is used in analyzing Gauss's law and constrained interpolation pseudo-particle (CIP) method is used in analyzing charge conservation with charge recombination. The third order Runge-Kutta method and conservative second-order-accurate finite difference method is used in analyzing the Navier-Stokes equations with the KH equation. This study also deals with the measurement of ECF ow generated with a symmetrical pole electrodes pair which are made of 0.3 mm diameter piano wire. Working fluid is FF-1EHA2 which is an ECF family. The flow is observed from the both electrodes, i.e., the flow collides in between the electrodes. The governing equation successfully calculates mean flow velocity in between the collector pole electrode and the colliding region by the numerical simulation.

  18. Non-trivial behavior of the low temperature maximum of dielectric constant and location of the end critical point in Na0.5Bi0.5TiO3-0.06BaTiO3 lead free relaxor ferroelectrics crystals detected by acoustic emission

    NASA Astrophysics Data System (ADS)

    Dul'kin, Evgeniy; Tiagunova, Jenia; Mojaev, Evgeny; Roth, Michael

    2018-01-01

    [001] lead free relaxor ferroelectrics crystals of Na0.5Bi0.5TiO3-0.06BaTiO3 were studied by means of dielectric and acoustic emission methods in the temperature range of 25-240 °C and under a dc bias electric field up to 0.4 kV/cm. A temperature maximum of the dielectric constant was found near 170 °C, as well as the acoustic emission bursts pointed out to both the depolarization temperature near 120 °C and the temperature, corresponding to the maximum of dielectric constant, near 170 °C. While the depolarization temperature increased linearly, the temperature of the dielectric constant maximum was shown to exhibit a V-shape behavior under an electric field: it initially decreases, reaches a sharp minimum at some small threshold electric field of 0.15 kV/cm, and then starts to increase similar to the Curie temperature of the normal ferroelectrics, as the field enhances. Acoustic emission bursts, accompanying the depolarization temperature, weakened with the enhancing field, whereas the ones accompanying the temperature of the dielectric constant maximum exhibited two maxima: near 0.1 kV/cm and near 0.3 kV/cm. The meaning of these two acoustic emission maxima is discussed.

  19. Conductivity measurements on CdCl2 doped PVA solid polymeric electrolyte for battery application

    NASA Astrophysics Data System (ADS)

    Baraker, Basavarajeshwari M.; Lobo, Blaise

    2018-04-01

    Ionic conductivity of pure polyvinyl alcohol (PVA) and 6.3 wt% of CdCl2 doped PVA solid polymeric electrolyte have been studied using DC and AC electrical measurements. From DC electrical results, the determination transference number confirmed that ions are the dominant charge carriers in CdCl2 doped PVA. Interestingly, the ion transference number (ti) for 6.3 wt% CdCl2 doped sample is significantly more (0.993), when compared to that of pure PVA (for which, ti is 0.988). Temperature dependent dielectric studies showed interesting results at different frequencies: 120 Hz, 500 Hz, 1 kHz, 5 kHz, 10 kHz and 100 kHz.

  20. Observations of non-linear plasmon damping in dense plasmas

    NASA Astrophysics Data System (ADS)

    Witte, B. B. L.; Sperling, P.; French, M.; Recoules, V.; Glenzer, S. H.; Redmer, R.

    2018-05-01

    We present simulations using finite-temperature density-functional-theory molecular-dynamics to calculate dynamic dielectric properties in warm dense aluminum. The comparison between exchange-correlation functionals in the Perdew, Burke, Ernzerhof approximation, Strongly Constrained and Appropriately Normed Semilocal Density Functional, and Heyd, Scuseria, Ernzerhof (HSE) approximation indicates evident differences in the electron transition energies, dc conductivity, and Lorenz number. The HSE calculations show excellent agreement with x-ray scattering data [Witte et al., Phys. Rev. Lett. 118, 225001 (2017)] as well as dc conductivity and absorption measurements. These findings demonstrate non-Drude behavior of the dynamic conductivity above the Cooper minimum that needs to be taken into account to determine optical properties in the warm dense matter regime.

  1. Epitaxial thin films

    DOEpatents

    Hunt, Andrew Tye; Deshpande, Girish; Lin, Wen-Yi; Jan, Tzyy-Jiuan

    2006-04-25

    Epitatial thin films for use as buffer layers for high temperature superconductors, electrolytes in solid oxide fuel cells (SOFC), gas separation membranes or dielectric material in electronic devices, are disclosed. By using CCVD, CACVD or any other suitable deposition process, epitaxial films having pore-free, ideal grain boundaries, and dense structure can be formed. Several different types of materials are disclosed for use as buffer layers in high temperature superconductors. In addition, the use of epitaxial thin films for electrolytes and electrode formation in SOFCs results in densification for pore-free and ideal gain boundary/interface microstructure. Gas separation membranes for the production of oxygen and hydrogen are also disclosed. These semipermeable membranes are formed by high-quality, dense, gas-tight, pinhole free sub-micro scale layers of mixed-conducting oxides on porous ceramic substrates. Epitaxial thin films as dielectric material in capacitors are also taught herein. Capacitors are utilized according to their capacitance values which are dependent on their physical structure and dielectric permittivity. The epitaxial thin films of the current invention form low-loss dielectric layers with extremely high permittivity. This high permittivity allows for the formation of capacitors that can have their capacitance adjusted by applying a DC bias between their electrodes.

  2. Pulse Power Capability Of High Energy Density Capacitors Based on a New Dielectric Material

    NASA Technical Reports Server (NTRS)

    Winsor, Paul; Scholz, Tim; Hudis, Martin; Slenes, Kirk M.

    1999-01-01

    A new dielectric composite consisting of a polymer coated onto a high-density metallized Kraft has been developed for application in high energy density pulse power capacitors. The polymer coating is custom formulated for high dielectric constant and strength with minimum dielectric losses. The composite can be wound and processed using conventional wound film capacitor manufacturing equipment. This new system has the potential to achieve 2 to 3 J/cu cm whole capacitor energy density at voltage levels above 3.0 kV, and can maintain its mechanical properties to temperatures above 150 C. The technical and manufacturing development of the composite material and fabrication into capacitors are summarized in this paper. Energy discharge testing, including capacitance and charge-discharge efficiency at normal and elevated temperatures, as well as DC life testing were performed on capacitors manufactured using this material. TPL (Albuquerque, NM) has developed the material and Aerovox (New Bedford, MA) has used the material to build and test actual capacitors. The results of the testing will focus on pulse power applications specifically those found in electro-magnetic armor and guns, high power microwave sources and defibrillators.

  3. Effect of CaRuO3 interlayer on the dielectric properties of Ba(Zr ,Ti)O3 thin films prepared by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Tang, X. G.; Tian, H. Y.; Wang, J.; Wong, K. H.; Chan, H. L. W.

    2006-10-01

    Ba(Zr0.2Ti0.8)O3 (BZT) thin films on Pt(111)/Ti /SiO2/Si(100) substrates without and with CaRuO3 (CRO) buffer layer were fabricated at 650°C in situ by pulsed laser deposition. The BZT thin films showed a dense morphology, many clusters are found on the surface images of BZT/Pt films, which are composed by nanosized grains of 25-35nm; the average grain size of BZT/CRO films is about 80nm, which lager than that of BZT/Pt thin film. The dielectric constants and dissipation factors of BZT/Pt and BZT/CRO thin films were 392 and 0.019 and 479 and 0.021 at 1MHz, respectively. The dielectric constant of BZT/Pt and BZT/CRO thin films changes significantly with applied dc bias field and has high tunabilities and figures of merit of ˜70% and 37 and 75% and 36, respectively, under an applied field of 400kV /cm. The possible microstructural background responsible for the high dielectric constant and tunability was discussed.

  4. Radiation characteristics of Al wire arrays on Z*

    NASA Astrophysics Data System (ADS)

    Coverdale, C. A.; Ampleford, D. J.; Jones, B.; Cuneo, M. E.; Hansen, S.; Jennings, C. A.; Moore, N.; Jones, S. C.; Deeney, C.

    2011-10-01

    Analysis of mixed material nested wire array experiments at Z have shown that the inner wire array dominates the hottest regions of the stagnated z pinch. In those experiments, substantial free-bound continuum radiation was observed when Al was fielded on the inner wire array. Experiments with Al (5% Mg) on both wire arrays have also been fielded, with variations in the free-bound continuum observed. These variations appear to be tied to the initial mass and diameter of the wire array. The results presented here will investigate the trends in the measured emission (Al and Mg K-shell and free-bound continuum) and will compare the measured output to more recent Al wire array experimental results on the refurbished Z accelerator. *Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. +current address: NNSA/DOE Headquarters, Washington D.C.

  5. Material design of two-phase-coexisting niobate dielectrics by electrostatic adsorption

    NASA Astrophysics Data System (ADS)

    Fuchigami, Teruaki; Yoshida, Katsuya; Kakimoto, Ken-ichi

    2017-10-01

    A material design process using electrostatic adsorption was proposed to synthesize composite ceramics with a two-phase-coexisting structure. Supported particles were fabricated by the electrostatic adsorption of (Na,K)NbO3-SrTiO3 (NKN-ST) nanoparticles on (Na,K)NbO3-Ba2NaNb5O15 (NKN-BNN) particles. NKN-ST and NKN-BNN were well dispersed with no aggregate in NKN-ST/NKN-BNN ceramics synthesized using the supported particles in comparison with ceramics synthesized using a mixture obtained by simply mixing NKN-ST and NKN-BNN powder. The temperature dependence of dielectric constant is closely related to the composite structure and the dielectric constant was stable in a wide temperature range from room temperature to 400 °C. Capacitance for DC bias was also insensitive to temperature in the range of 0-2 kV/mm, and the change rate of the capacitance was within ±5% in the temperature range from room temperature to 200 °C.

  6. Structural, electrical, magnetic and magnetoelectric properties of composites

    NASA Astrophysics Data System (ADS)

    Rani, Renu; Juneja, J. K.; Singh, Sangeeta; Prakash, Chandra; Raina, K. K.

    2013-11-01

    The magnetoelectric (ME) composites with composition (y)Ni0.8Zn0.2Fe2O4+(1-y) Ba0.90Sr0.10Zr0.04Ti0.96O3 ((y)NZF+(1-y)BSZT) (where y=0.00-0.15 in wt%) were prepared by the conventional solid state reaction route. The existence of both phases was confirmed by the X-Ray diffraction technique and the lattice parameters for all samples were calculated. The dielectric properties such as dielectric constant and dielectric loss were measured as a function of temperature at different frequencies. P-E hysteresis loops and M-H hysteresis loops confirm the ferroelectric and ferrimagnetic nature of the composite samples. M-H loops for electrically poled and un-poled samples were compared to prove ME evidences. Variation of ME coefficient (α) with dc magnetic field was also studied for all composite samples. The maximum value of α (1.6 mV/cm Oe) was observed for y=0.10 at 750 Oe.

  7. Electromechanical response of silicone dielectric elastomers

    NASA Astrophysics Data System (ADS)

    Cârlescu, V.; Prisăcaru, G.; Olaru, D.

    2016-08-01

    This paper presents an experimental technique to investigate the electromechanical properties of silicone dielectric elastomers actuated with high DC electric fields. A non-contact measurement technique is used to capture and monitor the thickness strain (contraction) of a circular film placed between two metallic disks electrodes. Two active fillers such as silica (10, 15 and 30 wt%) and barium titanate (5 and 15 wt%) were incorporated in order to increase the actuation performance. Thickness strain was measured at HV stimuli up to 4.5 kV and showed a quadratic dependence against applied electric field indicating that the induced strain is triggered by the Maxwell effect and/or electrostriction phenomenon as reported in literature. The actuation process evidences a rapid contraction upon HV activation and a slowly relaxation when the electrodes are short-circuit due to visco-elastic nature of elastomers. A maximum of 1.22 % thickness strain was obtained at low actuating field intensity (1.5 V/pm) comparable with those reported in literature for similar dielectric elastomer materials.

  8. Test results for electron beam charging of flexible insulators and composites. [solar array substrates, honeycomb panels, and thin dielectric films

    NASA Technical Reports Server (NTRS)

    Staskus, J. V.; Berkopec, F. D.

    1979-01-01

    Flexible solar-array substrates, graphite-fiber/epoxy - aluminum honeycomb panels, and thin dielectric films were exposed to monoenergetic electron beams ranging in energy from 2 to 20 keV in the Lewis Research Center's geomagnetic-substorm-environment simulation facility to determine surface potentials, dc currents, and surface discharges. The four solar-array substrate samples consisted of Kapton sheet reinforced with fabrics of woven glass or carbon fibers. They represented different construction techniques that might be used to reduce the charge accumulation on the array back surface. Five honeycomb-panel samples were tested, two of which were representative of Voyager antenna materials and had either conductive or nonconductive painted surfaces. A third sample was of Navstar solar-array substrate material. The other two samples were of materials proposed for use on Intelsat V. All the honeycomb-panel samples had graphite-fiber/epoxy composite face sheets. The thin dielectric films were 2.54-micrometer-thick Mylar and 7.62-micrometer-thick Kapton.

  9. Sol-gel derived CaCu{sub 3}Ti{sub 4}O{sub 12} ceramics: Synthesis, characterization and electrical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Laijun; Fan Huiqing; Fang Pinyang

    2008-07-01

    The giant dielectric constant material CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) has been synthesized by sol-gel method, for the first time, using nitrate and alkoxide precursor. The electrical properties of CCTO ceramics, showing an enormously large dielectric constant {epsilon} {approx} 60,000 (100 Hz at RT), were investigated in the temperature range from 298 to 358 K at 0, 5, 10, 20, and 40 V dc. The phases, microstructures, and impedance properties of final samples were characterized by X-ray diffraction, scanning electron microscopy, and precision impedance analyzer. The dielectric permittivity of CCTO synthesized by sol-gel method is at least three times ofmore » magnitude larger than that synthesized by other low-temperature method and solid-state reaction method. Furthermore, the results support the internal barrier layer capacitor (IBLC) model of Schottky barriers at grain boundaries between semiconducting grains.« less

  10. New sample cell configuration for wide-frequency dielectric spectroscopy: DC to radio frequencies.

    PubMed

    Nakanishi, Masahiro; Sasaki, Yasutaka; Nozaki, Ryusuke

    2010-12-01

    A new configuration for the sample cell to be used in broadband dielectric spectroscopy is presented. A coaxial structure with a parallel plate capacitor (outward parallel plate cell: OPPC) has made it possible to extend the frequency range significantly in comparison with the frequency range of the conventional configuration. In the proposed configuration, stray inductance is significantly decreased; consequently, the upper bound of the frequency range is improved by two orders of magnitude from the upper limit of conventional parallel plate capacitor (1 MHz). Furthermore, the value of capacitance is kept high by using a parallel plate configuration. Therefore, the precision of the capacitance measurement in the lower frequency range remains sufficiently high. Finally, OPPC can cover a wide frequency range (100 Hz-1 GHz) with an appropriate admittance measuring apparatus such as an impedance or network analyzer. The OPPC and the conventional dielectric cell are compared by examining the frequency dependence of the complex permittivity for several polar liquids and polymeric films.

  11. Fatigue response of a PZT multilayer actuator under high-field electric cycling with mechanical preload

    NASA Astrophysics Data System (ADS)

    Wang, Hong; Wereszczak, Andrew A.; Lin, Hua-Tay

    2009-01-01

    An electric fatigue test system was developed for evaluating the reliability of piezoelectric actuators with a mechanical loading capability. Fatigue responses of a lead zirconate titanate (PZT) multilayer actuator with a platethrough electrode configuration were studied under an electric field (1.7 times that of the coercive field of PZT material) and a concurrent mechanical preload (30.0 MPa). A total of 109 cycles was carried out. Variations in charge density and mechanical strain under the high electric field and constant mechanical loads were observed during the fatigue test. The dc and the first harmonic (at 10 Hz) dielectric and piezoelectric coefficients were subsequently characterized using fast Fourier transformation. Both the dielectric and the piezoelectric coefficients exhibited a monotonic decrease prior to 2.86×108 cycles under certain preloading conditions, and then fluctuated. Both the dielectric loss tangent and the piezoelectric loss tangent also fluctuated after a decrease. The results are interpreted and discussed with respect to domain wall activities, microdefects, and other anomalies.

  12. In-plane dielectric properties of epitaxial Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} thin films grown on GaAs for tunable device application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang Zhibin; Hao Jianhua

    2012-09-01

    We have epitaxially deposited ferroelectric Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} (BST) thin films grown on GaAs substrate via SrTiO{sub 3} buffer layer by laser molecular beam epitaxy. Structural characteristics of the heterostructure were measured by various techniques. The in-plane dielectric properties of the heteroepitaxial structure under different applying frequency were investigated from -190 to 90 Degree-Sign C, indicating Curie temperature of the BST film to be around 52 Degree-Sign C. At room temperature, the dielectric constant of the heterostructure under moderate dc bias field can be tuned by more than 30% and K factor used for frequency agile materials is foundmore » to be close to 8. Our results offer the possibility to combine frequency agile electronics of ferroelectric titanate with the high-performance microwave capabilities of GaAs for room temperature tunable device application.« less

  13. Free volume dependence on electrical properties of Poly (styrene co-acrylonitrile)/Nickel oxide polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Ningaraju, S.; Hegde, Vinayakaprasanna N.; Prakash, A. P. Gnana; Ravikumar, H. B.

    2018-04-01

    Polymer nanocomposites of Poly (styrene co-acrylonitrile)/Nickel Oxide (PSAN/NiO) have been prepared. The increased free volume sizes up to 0.4 wt% of NiO loading indicates overall reduction in packing density of polymer network. The decreased o-Ps lifetime (τ3) at higher concentration of NiO indicates improved interfacial interaction between the surface of NiO nanoparticles and side chain of PSAN polymer matrix. The increased AC/DC conductivity at lower wt% of NiO loading demonstrates increased number of electric charge carriers/mobile ions and their mobility. The increased dielectric constant and dielectric loss up to 0.4 wt% of NiO loading suggests the increased dipoles polarization.

  14. Tailoring the soft magnetic properties of sputtered multilayers by microstructure engineering for high frequency applications

    NASA Astrophysics Data System (ADS)

    Falub, Claudiu V.; Rohrmann, Hartmut; Bless, Martin; Meduňa, Mojmír; Marioni, Miguel; Schneider, Daniel; Richter, Jan H.; Padrun, Marco

    2017-05-01

    Soft magnetic Ni78.5Fe21.5, Co91.5Ta4.5Zr4 and Fe52Co28B20 thin films laminated with SiO2, Al2O3, AlN, and Ta2O5 dielectric interlayers were deposited on 8" Si wafers using DC, pulsed DC and RF cathodes in the industrial, high-throughput Evatec LLS-EVO-II magnetron sputtering system. A typical multilayer consists of a bilayer stack up to 50 periods, with alternating (50-100) nm thick magnetic layers and (2-20) nm thick dielectric interlayers. We introduced the in-plane magnetic anisotropy in these films during sputtering by a combination of a linear magnetic field, seed layer texturing by means of linear collimators, and the oblique incidence inherent to the geometry of the sputter system. Depending on the magnetic material, the anisotropy field for these films was tuned in the range of ˜(7-120) Oe by choosing the appropriate interlayer thickness, the aspect ratios of the linear collimators in front of the targets, and the sputter process parameters (e.g. pressure, power, DC pulse frequency), while the coercivity was kept low, ˜(0.05-0.9) Oe. The alignment of the easy axis (EA) on the 8" wafers was typically between ±1.5° and ±4°. We discuss the interdependence of structure and magnetic properties in these films, as revealed by atomic force microscopy (AFM), X-ray reflectivity (XRR) with reciprocal space mapping (RSM) and magneto-optical Kerr effect (MOKE) measurements.

  15. Development of a new medium frequency EM device: Mapping soil water content variations using electrical conductivity and dielectric permittivity

    NASA Astrophysics Data System (ADS)

    Kessouri, P.; Buvat, S.; Tabbagh, A.

    2012-12-01

    Both electrical conductivity and dielectric permittivity of soil are influenced by its water content. Dielectric permittivity is usually measured in the high frequency range, using GPR or TDR, where the sensitivity to water content is high. However, its evaluation is limited by a low investigation depth, especially for clay rich soils. Electrical conductivity is closely related not only to soil water content, but also to clay content and soil structure. A simultaneous estimation of these electrical parameters can allow the mapping of soil water content variations for an investigation depth close to 1m. In order to estimate simultaneously both soil electrical conductivity and dielectric permittivity, an electromagnetic device working in the medium frequency range (between 100 kHz and 10 MHz) has been designed. We adopted Slingram geometry for the EM prototype: its PERP configuration (vertical transmission loop Tx and horizontal measuring loop Rx) was defined using 1D ground models. As the required investigation depth is around 1m, the coil spacing was fixed to 1.2m. This prototype works in a frequency range between 1 and 5 MHz. After calibration, we tested the response of prototype to objects with known properties. The first in situ measurements were led on experimental sites with different types of soils and different water content variations (artificially created or natural): sandy alluvium on a plot of INRA (French National Institute for Agricultural Research) in Orléans (Centre, France), a clay-loam soil on an experimental site in Estrée-Mons (Picardie, France) and fractured limestone at the vicinity of Grand (Vosges, France). In the case of the sandy alluvium, the values of dielectric permittivity measured are close to those of HF permittivity and allow the use of existing theoretical models to determine the soil water content. For soils containing higher amount of clay, the coupled information brought by the electrical conductivity and the dielectric permittivity is used. Variations of water content detected by the EM prototype are confirmed by additional DC electrical profiling and direct mass water content measurements along depth. For the clay-loam soil, containing more than 20% of clay, the relative dielectric permittivity values, ranging from 63 to 138, are much higher than those expected in the high frequency range (above 20 MHz, the highest measured permittivity is equal to 81 for water). In the medium frequency range, those values are very likely due to interfacial polarization. This effect, also known as Maxwell-Wagner polarization, should increase with the soil clay content. The first measuring trial is coherent with the gravimetric water content as well as DC electrical profiling measurements. For a clay rich soil, the EM prototype is able to detect water content variations for an investigation depth close to 1m with both electrical conductivity and dielectric permittivity in the medium frequency range. Other field experiments are scheduled to confirm these results on other types of soils.

  16. Structural and dielectric properties of Sr3(MgTa2)O9 and Sr3(ZnTa2)O9

    NASA Astrophysics Data System (ADS)

    Hoque, Md. M.; Dutta, Alo; Kumar, S.; Sinha, T. P.

    2015-07-01

    Herein, we report the crystal structures and morphological properties of Sr3(MgTa2)O9 (SMT) and Sr3(ZnTa2)O9 (SZT) synthesized by solid state ceramic method along with the results of alternating current impedance spectroscopic (ACIS) study in a frequency range from 50 Hz to 1 MHz at selective temperatures between 393 and 573 K. The crystal structures of SMT and SZT have been determined by Rietveld refinement of powder X-ray diffraction pattern using an initial structural model developed on the basis of literature survey. The results indicate that both the samples possess hexagonal structure of trigonal P 3 bar m 1 space group. The lattice parameters of SMT are a=b=5.65162 Å, c=6.94440 Å, α=β=90° and γ=120° and those of SZT are a=b=5.65832 Å, c=6.95911 Å and α=β=90° and γ=120°. SMT and SZT are isostructural and they exhibit 2:1 B site ordering with the staking sequence of {-Ta-Ta-Mg (Zn)-} (Mg for SMT and Zn for SZT) layer repeat on (111) plane of the pseudocells. The characteristic vibrational bands due to Ta-O, Mg-O and Zn-O bonds have been observed in the FTIR spectra of the samples. The FESEM micrographs of the samples show that the grains size ranges between 0.40 and 3.65 μm and 0.9 to 4.2 μm for SMT and SZT, respectively. To account for the polydispersive nature of the dielectric relaxation mechanism along with the effects of dc conductivity and localized space charges the variation of real (ε‧) and imaginary (ε″) parts of dielectric constant with frequency has been analytically interpreted in the framework of modified Cole-Cole model. SMT and SZT having the activation energies of 0.35 eV and 0.33 eV, respectively (obtained from the Arrhenius plot of dc conductivity), are semiconducting in nature. The electrical current conduction in the samples occurs by polaron hopping process. Further, we have shown that chemical property of A site cations has significant role in determining the dielectric properties of A3B‧B″2O9 type perovskites and these properties do not change appreciably upon replacement of the divalent B‧ cations. Moreover, owing to their high dielectric constant and low dielectric loss SMT and SZT appear to be potent candidates for technological applications in radio-frequency devices.

  17. Accurate Solution of Multi-Region Continuum Biomolecule Electrostatic Problems Using the Linearized Poisson-Boltzmann Equation with Curved Boundary Elements

    PubMed Central

    Altman, Michael D.; Bardhan, Jaydeep P.; White, Jacob K.; Tidor, Bruce

    2009-01-01

    We present a boundary-element method (BEM) implementation for accurately solving problems in biomolecular electrostatics using the linearized Poisson–Boltzmann equation. Motivating this implementation is the desire to create a solver capable of precisely describing the geometries and topologies prevalent in continuum models of biological molecules. This implementation is enabled by the synthesis of four technologies developed or implemented specifically for this work. First, molecular and accessible surfaces used to describe dielectric and ion-exclusion boundaries were discretized with curved boundary elements that faithfully reproduce molecular geometries. Second, we avoided explicitly forming the dense BEM matrices and instead solved the linear systems with a preconditioned iterative method (GMRES), using a matrix compression algorithm (FFTSVD) to accelerate matrix-vector multiplication. Third, robust numerical integration methods were employed to accurately evaluate singular and near-singular integrals over the curved boundary elements. Finally, we present a general boundary-integral approach capable of modeling an arbitrary number of embedded homogeneous dielectric regions with differing dielectric constants, possible salt treatment, and point charges. A comparison of the presented BEM implementation and standard finite-difference techniques demonstrates that for certain classes of electrostatic calculations, such as determining absolute electrostatic solvation and rigid-binding free energies, the improved convergence properties of the BEM approach can have a significant impact on computed energetics. We also demonstrate that the improved accuracy offered by the curved-element BEM is important when more sophisticated techniques, such as non-rigid-binding models, are used to compute the relative electrostatic effects of molecular modifications. In addition, we show that electrostatic calculations requiring multiple solves using the same molecular geometry, such as charge optimization or component analysis, can be computed to high accuracy using the presented BEM approach, in compute times comparable to traditional finite-difference methods. PMID:18567005

  18. Generalized Born Models of Macromolecular Solvation Effects

    NASA Astrophysics Data System (ADS)

    Bashford, Donald; Case, David A.

    2000-10-01

    It would often be useful in computer simulations to use a simple description of solvation effects, instead of explicitly representing the individual solvent molecules. Continuum dielectric models often work well in describing the thermodynamic aspects of aqueous solvation, and approximations to such models that avoid the need to solve the Poisson equation are attractive because of their computational efficiency. Here we give an overview of one such approximation, the generalized Born model, which is simple and fast enough to be used for molecular dynamics simulations of proteins and nucleic acids. We discuss its strengths and weaknesses, both for its fidelity to the underlying continuum model and for its ability to replace explicit consideration of solvent molecules in macromolecular simulations. We focus particularly on versions of the generalized Born model that have a pair-wise analytical form, and therefore fit most naturally into conventional molecular mechanics calculations.

  19. Investigation of surface boundary conditions for continuum modeling of RF plasmas

    NASA Astrophysics Data System (ADS)

    Wilson, A.; Shotorban, B.

    2018-05-01

    This work was motivated by a lacking general consensus in the exact form of the boundary conditions (BCs) required on the solid surfaces for the continuum modeling of Radiofrequency (RF) plasmas. Various kinds of number and energy density BCs on solid surfaces were surveyed, and how they interacted with the electric potential BC to affect the plasma was examined in two fundamental RF plasma reactor configurations. A second-order local mean energy approximation with equations governing the electron and ion number densities and the electron energy density was used to model the plasmas. Zero densities and various combinations of drift, diffusion, and thermal fluxes were considered to set up BCs. It was shown that the choice of BC can have a significant impact on the sheath and bulk plasma. The thermal and diffusion fluxes to the surface were found to be important. A pure drift BC for dielectric walls failed to produce a sheath.

  20. Slits, plates, and Poisson-Boltzmann theory in a local formulation of nonlocal electrostatics

    NASA Astrophysics Data System (ADS)

    Paillusson, Fabien; Blossey, Ralf

    2010-11-01

    Polar liquids like water carry a characteristic nanometric length scale, the correlation length of orientation polarizations. Continuum theories that can capture this feature commonly run under the name of “nonlocal” electrostatics since their dielectric response is characterized by a scale-dependent dielectric function ɛ(q) , where q is the wave vector; the Poisson(-Boltzmann) equation then turns into an integro-differential equation. Recently, “local” formulations have been put forward for these theories and applied to water, solvated ions, and proteins. We review the local formalism and show how it can be applied to a structured liquid in slit and plate geometries, and solve the Poisson-Boltzmann theory for a charged plate in a structured solvent with counterions. Our results establish a coherent picture of the local version of nonlocal electrostatics and show its ease of use when compared to the original formulation.

  1. Electrostatic forces in the Poisson-Boltzmann systems

    NASA Astrophysics Data System (ADS)

    Xiao, Li; Cai, Qin; Ye, Xiang; Wang, Jun; Luo, Ray

    2013-09-01

    Continuum modeling of electrostatic interactions based upon numerical solutions of the Poisson-Boltzmann equation has been widely used in structural and functional analyses of biomolecules. A limitation of the numerical strategies is that it is conceptually difficult to incorporate these types of models into molecular mechanics simulations, mainly because of the issue in assigning atomic forces. In this theoretical study, we first derived the Maxwell stress tensor for molecular systems obeying the full nonlinear Poisson-Boltzmann equation. We further derived formulations of analytical electrostatic forces given the Maxwell stress tensor and discussed the relations of the formulations with those published in the literature. We showed that the formulations derived from the Maxwell stress tensor require a weaker condition for its validity, applicable to nonlinear Poisson-Boltzmann systems with a finite number of singularities such as atomic point charges and the existence of discontinuous dielectric as in the widely used classical piece-wise constant dielectric models.

  2. Change in dielectric relaxation with the presence of water in highly filled composites

    NASA Astrophysics Data System (ADS)

    Tuncer, Enis

    It is important to determine the dielectric characteristics of semiconductor encapsulation materials based on epoxy resins. We employed the dielectric spectroscopy technique to investigate the dielectric relaxation in the presence of water and how it changes the relaxation. It was observed that the dielectric relaxation of the material was significantly influenced by absorbed water, the local segmental motion (also known as Johari-Goldstein (β) relaxation) was influenced most by the presence of the water, it was modified by the wet sample compared to dry one, and required high activation energy. The relaxation related to the glass transition was contributed by the cooperative motion (the α-relaxation) of the epoxy resin system. The α-relaxation was shifted to a low temperature in the wet sample compared to dry one. The relaxation was modeled with a clear Vogel-Fulcher-Tammann-Hesse (VFTH) behavior; the Vogel temperature of the wet sample was 8K lower than the dry sample. The presence of water acts as a plasticizer for the molecular relaxation, and speed-up the cooperative process. The measured data were also used to estimate the electrical properties of the resin system by employing an effective-medium model together with a porous media continuum model by taking into account the physical properties of the system. It is already known that the influence of water in semiconductor packaging is important in sensitive applications. The presented measurements and the analysis method would be appreciated within the semiconductor packaging community to improve material selection and performance evaluation efforts.

  3. Interfacial ion solvation: Obtaining the thermodynamic limit from molecular simulations

    NASA Astrophysics Data System (ADS)

    Cox, Stephen J.; Geissler, Phillip L.

    2018-06-01

    Inferring properties of macroscopic solutions from molecular simulations is complicated by the limited size of systems that can be feasibly examined with a computer. When long-ranged electrostatic interactions are involved, the resulting finite size effects can be substantial and may attenuate very slowly with increasing system size, as shown by previous work on dilute ions in bulk aqueous solution. Here we examine corrections for such effects, with an emphasis on solvation near interfaces. Our central assumption follows the perspective of Hünenberger and McCammon [J. Chem. Phys. 110, 1856 (1999)]: Long-wavelength solvent response underlying finite size effects should be well described by reduced models like dielectric continuum theory, whose size dependence can be calculated straightforwardly. Applied to an ion in a periodic slab of liquid coexisting with vapor, this approach yields a finite size correction for solvation free energies that differs in important ways from results previously derived for bulk solution. For a model polar solvent, we show that this new correction quantitatively accounts for the variation of solvation free energy with volume and aspect ratio of the simulation cell. Correcting periodic slab results for an aqueous system requires an additional accounting for the solvent's intrinsic charge asymmetry, which shifts electric potentials in a size-dependent manner. The accuracy of these finite size corrections establishes a simple method for a posteriori extrapolation to the thermodynamic limit and also underscores the realism of dielectric continuum theory down to the nanometer scale.

  4. Dynamic Scattering Mode LCDs

    NASA Astrophysics Data System (ADS)

    Bahadur, Birendra

    The following sections are included: * INTRODUCTION * CELL DESIGNING * EXPERIMENTAL OBSERVATIONS IN NEMATICS RELATED WITH DYNAMIC SCATTERING * Experimental Observations at D.C. Field and Electrode Effects * Experimental Observation at Low Frequency A.C. Fields * Homogeneously Aligned Nematic Regime * Williams Domains * Dynamic Scattering * Experimental Observation at High Frequency A.C. Field * Other Experimental Observations * THEORETICAL INTERPRETATIONS * Felici Model * Carr-Helfrich Model * D.C. Excitation * Dubois-Violette, de Gennes and Parodi Model * Low Freqency or Conductive Regime * High Frequency or Dielectric Regime * DYNAMIC SCATTERING IN SMECRIC A PHASE * ELECTRO-OPTICAL CHARACTERISTICS AND LIMITATIONS * Contrast Ratio vs. Voltage, Viewing Angle, Cell Gap, Wavelength and Temperature * Display Current vs. Voltage, Cell Gap and Temperature * Switching Time * Effect of Alignment * Effect of Conductivity, Temperature and Frequency * Addressing of DSM LCDs * Limitations of DSM LCDs * ACKNOWLEDGEMENTS * REFERENCES

  5. Novel passivation dielectrics-The boron- or phosphorus-doped hydrogenated amorphous silicon carbide films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, C.Y.; Fang, Y.K.; Huang, C.F.

    1985-02-01

    Hydrogenated amorphous silicon carbide (a-SiC:H) thin films were prepared and studied in a radiofrequency glowdischarge system, using a gas mixture of SiH/sub 4/ and one of the following carbon sources: methane (CH/sub 4/), benzene (C/sub 6/H/sub 6/), toluene (C/sub 7/H/sub 8/), sigma-xylene (C/sub 8/H/sub 10/), trichloroethane (C/sub 2/H/sub 3/Cl/sub 3/), trichloroethylene (C/sub 2/HCl/sub 3/), or carbon tetrachloride (CCl/sub 4/). The effect of doping phosphorus and boron into those a-SiC:H films on chemical etching rate, electrica dc resistivity, breakdown strength, and optical refractive index have been systematically investigated. Their chemical etching properties were examined by immersing in 49% HF, buffered HF,more » 180/sup 0/C H/sub 3/PO/sub 4/ solutions, or in CF/sub 4/ + O/sub 2/ plasma. It was found that the boron-doped a-SiC:H film possesses five times slower etching rate than the undoped one, while phosphorus-doped a-SiC:H film shows about three times slower. Among those a-SiC:H films, the one obtained from a mixture of SiH/sub 4/ and benzene shows the best etch-resistant property, while the ones obtained from a mixture of SiH/sub 4/ and chlorine containing carbon sources (e.g., trichloroethylene, trichloroethane, or carbon tetrachloride) shows that they are poor in etching resistance (i.e., the etching rate is higher). By measuring dc resistivity, dielectric breakdown strength, and effective refractive index, it was found that boron- or phosphorus-doped a-SiC:H films exhibit much higher dielectric strength and resistivity, but lower etching rate, presumably because of higher density.« less

  6. Electronic Polarizability and the Effective Pair Potentials of Water

    PubMed Central

    Leontyev, I. V.; Stuchebrukhov, A. A.

    2014-01-01

    Employing the continuum dielectric model for electronic polarizability, we have developed a new consistent procedure for parameterization of the effective nonpolarizable potential of liquid water. The model explains the striking difference between the value of water dipole moment μ~3D reported in recent ab initio and experimental studies with the value μeff~2.3D typically used in the empirical potentials, such as TIP3P or SPC/E. It is shown that the consistency of the parameterization scheme can be achieved if the magnitude of the effective dipole of water is understood as a scaled value μeff=μ∕εel, where εel =1.78 is the electronic (high-frequency) dielectric constant of water, and a new electronic polarization energy term, missing in the previous theories, is included. The new term is evaluated by using Kirkwood - Onsager theory. The new scheme is fully consistent with experimental data on enthalpy of vaporization, density, diffusion coefficient, and static dielectric constant. The new theoretical framework provides important insights into the nature of the effective parameters, which is crucial when the computational models of liquid water are used for simulations in different environments, such as proteins, or for interaction with solutes. PMID:25383062

  7. Dielectric Screening Meets Optimally Tuned Density Functionals.

    PubMed

    Kronik, Leeor; Kümmel, Stephan

    2018-04-17

    A short overview of recent attempts at merging two independently developed methods is presented. These are the optimal tuning of a range-separated hybrid (OT-RSH) functional, developed to provide an accurate first-principles description of the electronic structure and optical properties of gas-phase molecules, and the polarizable continuum model (PCM), developed to provide an approximate but computationally tractable description of a solvent in terms of an effective dielectric medium. After a brief overview of the OT-RSH approach, its combination with the PCM as a potentially accurate yet low-cost approach to the study of molecular assemblies and solids, particularly in the context of photocatalysis and photovoltaics, is discussed. First, solvated molecules are considered, with an emphasis on the challenge of balancing eigenvalue and total energy trends. Then, it is shown that the same merging of methods can also be used to study the electronic and optical properties of molecular solids, with a similar discussion of the pros and cons. Tuning of the effective scalar dielectric constant as one recent approach that mitigates some of the difficulties in merging the two approaches is considered. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Distinguishing between deep trapping transients of electrons and holes in TiO2 nanotube arrays using planar microwave resonator sensor.

    PubMed

    Zarifi, Mohammad H; Wiltshire, Benjamin Daniel; Mahdi, Najia; Shankar, Karthik; Daneshmand, Mojgan

    2018-05-16

    A large signal DC bias and a small signal microwave bias were simultaneously applied to TiO2 nanotube membranes mounted on a planar microwave resonator. The DC bias modulated the electron concentration in the TiO2 nanotubes, and was varied between 0 and 120 V in this study. Transients immediately following the application and removal of DC bias were measured by monitoring the S-parameters of the resonator as a function of time. The DC bias stimulated Poole-Frenkel type trap-mediated electrical injection of excess carriers into TiO2 nanotubes which resulted in a near constant resonant frequency but a pronounced decrease in the microwave amplitude due to free electron absorption. When ultraviolet illumination and DC bias were both present and then step-wise removed, the resonant frequency shifted due to trapping -mediated change in the dielectric constant of the nanotube membranes. Characteristic lifetimes of 60-80 s, 300-800 s and ~3000 s were present regardless of whether light or bias was applied and are also observed in the presence of a hole scavenger, which we attribute to oxygen adsorption and deep electron traps while another characteristic lifetime > 9000 s was only present when illumination was applied, and is attributed to the presence of hole traps.

  9. Time-dependent deformation of polymer network in polymer-stabilized cholesteric liquid crystals (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lee, Kyung Min; Tondiglia, Vincent P.; Bunning, Timothy J.; White, Timothy J.

    2017-02-01

    Recently, we reported direct current (DC) field controllable electro-optic (EO) responses of negative dielectric anisotropy polymer stabilized cholesteric liquid crystals (PSCLCs). A potential mechanism is: Ions in the liquid crystal mixtures are trapped in/on the polymer network during the fast photopolymerization process, and the movement of ions by the application of the DC field distorts polymer network toward the negative electrode, inducing pitch variation through the cell thickness, i.e., pitch compression on the negative electrode side and pitch expansion on positive electrode side. As the DC voltage is directly applied to a target voltage, charged polymer network is deformed and the reflection band is tuned. Interestingly, the polymer network deforms further (red shift of reflection band) with time when constantly applied DC voltage, illustrating DC field induced time dependent deformation of polymer network (creep-like behavior). This time dependent reflection band changes in PSCLCs are investigated by varying the several factors, such as type and concentration of photoinitiators, liquid crystal monomer content, and curing condition (UV intensity and curing time). In addition, simple linear viscoelastic spring-dashpot models, such as 2-parameter Kelvin and 3-parameter linear models, are used to investigate the time-dependent viscoelastic behaviors of polymer networks in PSCLC.

  10. Nonlocal Continuum Theory for Dislocation and Fracture.

    DTIC Science & Technology

    1984-04-01

    Pasadena, California 91109 Washington, D.C. 20553 Professor Paul M. Naghdi National Academy of Sciences University of California National Research...Burt Paul University of Pennsylvania Dr. Samuel B. Batdorf Towne School of Civil and University of California Mechanical Engineering School of...Pittsburgh, Pennsylvania 15213 474:NP:716:lab 78u474 -619 Universities (Con’t) Universities (Con’t) Dr. V. K. Varadan Professor V. 9. Neubert Ohio

  11. An Intelligence-Sharing Continuum: Next Generation Requirements for U.S. Counterterrorism Efforts

    DTIC Science & Technology

    2011-09-01

    of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE...for U.S. Counterterrorism Efforts 5. FUNDING NUMBERS 6. AUTHOR(S) David Carabin 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval...Postgraduate School Monterey, CA 93943-5000 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) N/A

  12. Design and Modelling of a Microfluidic Electro-Lysis Device with Controlling Plates

    NASA Technical Reports Server (NTRS)

    Jenkins, A.; Chen, C. P.; Spearing, S.; Monaco, L. A.; Steele, A.; Flores, G.

    2006-01-01

    Many Lab-on-Chip applications require sample pre-treatment systems. Using electric fields to perform cell-lysis in bio-MEMS systems has provided a powerful tool which can be integrated into Lab-on-a-Chip platforms. The major design considerations for electro-lysis devices include optimal geometry and placement of micro-electrodes, cell concentration, flow rates, optimal electric field (e.g. pulsed DC vs. AC), etc. To avoid electrolysis of the flowing solution at the exposed electrode surfaces, magnitudes and the applied voltages and duration of the DC pulse, or the AC frequency of the AC, have to be optimized for a given configuration. Using simulation tools for calculation of electric fields has proved very useful, for exploring alternative configurations and operating conditions for achieving electro cell-lysis. To alleviate the problem associated with low electric fields within the microfluidics channel and the high voltage demand on the contact electrode strips, two "control plates" are added to the microfluidics configuration. The principle of placing the two controlling plate-electrodes is based on the electric fields generated by a combined insulator/dielectric (gladwater) media. Surface charges are established at the insulator/dielectric interface. This paper discusses the effects of this interface charge on the modification of the electric field of the flowing liquid/cell solution.

  13. Design and Modelling of a Microfluidic Electro-Lysis Device with Controlling Plates

    NASA Astrophysics Data System (ADS)

    Jenkins, A.; Chen, C. P.; Spearing, S.; Monaco, L. A.; Steele, A.; Flores, G.

    2006-04-01

    Many Lab-on-Chip applications require sample pre-treatment systems. Using electric fields to perform cell lysis in bio-MEMS systems has provided a powerful tool which can be integrated into Lab-on-a- Chip platforms. The major design considerations for electro-lysis devices include optimal geometry and placement of micro-electrodes, cell concentration, flow rates, optimal electric field (e.g. pulsed DC vs. AC), etc. To avoid electrolysis of the flowing solution at the exposed electrode surfaces, magnitudes and the applied voltages and duration of the DC pulse, or the AC frequency of the AC, have to be optimized for a given configuration. Using simulation tools for calculation of electric fields has proved very useful, for exploring alternative configurations and operating conditions for achieving electro cell-lysis. To alleviate the problem associated with low electric fields within the microfluidics channel and the high voltage demand on the contact electrode strips, two ''control plates'' are added to the microfluidics configuration. The principle of placing the two controlling plate-electrodes is based on the electric fields generated by a combined insulator/dielectric (glass/water) media. Surface charges are established at the insulator/dielectric interface. This paper discusses the effects of this interface charge on the modification of the electric field of the flowing liquid/cell solution.

  14. Ultra-capacitor flexible films with tailored dielectric constants using electric field assisted assembly of nanoparticles.

    PubMed

    Batra, Saurabh; Cakmak, Miko

    2015-12-28

    In this study, the chaining and preferential alignment of barium titanate nanoparticles (100 nm) through the thickness direction of a polymer matrix in the presence of an electric field is shown. Application of an AC electric field in a well-dispersed solution leads to the formation of chains of nanoparticles in discrete rows oriented with their primary axis in the E-field direction due to dielectrophoresis. The change in the orientation of these chains was quantified through statistical analysis of SEM images and was found to be dependent on E-field, frequency and viscosity. When a DC field is applied a distinct layer consisting of dense particles was observed with micro-computed tomography. These studies show that the increase in DC voltage leads to increase in the thickness of the particle rich layer along with the packing density also increasing. Increasing the mutual interactions between particles due to the formation of particle chains in the "Z"-direction decreases the critical percolation concentration above which substantial enhancement of properties occurs. This manufacturing method therefore shows promise to lower the cost of the products for a range of applications including capacitors by either enhancing the dielectric properties for a given concentration or reduces the concentration of nanoparticles needed for a given property.

  15. Automated qualification and analysis of protective spark gaps for DC accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Srutarshi; Rajan, Rehim N.; Dewangan, S.

    2014-07-01

    Protective spark gaps are used in the high voltage multiplier column of a 3 MeV DC Accelerator to prevent excessive voltage build-ups. Precise gap of 5 mm is maintained between the electrodes in these spark gaps for obtaining 120 kV± 5 kV in 6 kg/cm{sup 2} SF{sub 6} environment which is the dielectric medium. There are 74 such spark gaps used in the multiplier. Each spark gap has to be qualified for electrical performance before fitting in the accelerator to ensure reliable operation. As the breakdown voltage stabilizes after a large number of sparks between the electrodes, the qualification processmore » becomes time consuming and cumbersome. For qualifying large number of spark gaps an automatic breakdown analysis setup has been developed. This setup operates in air, a dielectric medium. The setup consists of a flyback topology based high voltage power supply with maximum rating of 25 kV. This setup works in conjunction with spark detection and automated shutdown circuit. The breakdown voltage is sensed using a peak detector circuit. The voltage breakdown data is recorded and statistical distribution of the breakdown voltage has been analyzed. This paper describes details of the diagnostics and the spark gap qualification process based on the experimental data. (author)« less

  16. Light induced dielectric constant of Alumina doped lead silicate glass based on silica sands

    NASA Astrophysics Data System (ADS)

    Diantoro, Markus; Natalia, Desi Ayu; Mufti, Nandang; Hidayat, Arif

    2016-04-01

    Numerous studies on glass ceramic compounds have been conducted intensively. Two major problems to be solved are to simplify the fabrication process by reducing melting temperature as well as improving various properties for various fields of technological application. To control the dielectric constant, the researchers generally use a specific dopant. So far there is no comprehensive study to control the dielectric constant driven by both of dopant and light intensity. In this study it is used Al2O3 dopant to increase the light induced dielectric constant of the glass. The source of silica was taken from local silica sands of Bancar Tuban. The sands were firstly leached using hydrochloric acid to improve the purity of silica which was investigated by means of XRF. Fabricating the glass samples were performed by using melting-glass method. Silica powder was mixed with various ratio of SiO2:Na2CO3:PbO:Al2O3. Subsequently, a mixture of various Al2O3 doped lead silicate glasses were melted at 970°C and directy continued by annealed at 300°C. The samples were investigated by XRD, FTIR, SEM-EDX and measuring dielectric constant was done using dc-capacitance meter with various light intensities. The investigation result of XRD patterns showed that the crystal structures of the samples are amorphous state. The introduction of Al2O3 does not alter the crystal structure, but significantly change the structure of the functional glass bonding PbO-SiO2 which was shown by the FTIR spectra. It was noted that some new peak peaks were exist in the doped samples. Measuring result of dielectricity shows that the dielectric constant of glass increases with the addition of Al2O3. Increasing the light intensity gives rise to increase their dielectric constant in general. A detail observation of the dielectric seen that there are discontinuous step-like of dielectric. Most likely a specific quantization mechanism occurs when glass exposed under light.

  17. Multiscale simulation of DC corona discharge and ozone generation from nanostructures

    NASA Astrophysics Data System (ADS)

    Wang, Pengxiang

    Atmospheric direct current (dc) corona discharge from micro-sized objects has been widely used as an ion source in many devices, such as photocopiers, laser printers, and electronic air cleaners. Shrinking the size of the discharge electrode to the nanometer range (e.g., through the use of carbon nanotubes or CNTs) is expected to lead to a significant reduction in power consumption and detrimental ozone production in these devices. The objectives of this study are to unveil the fundamental physics of the nanoscale corona discharge and to evaluate its performance and ozone production through numerical models. The extremely small size of CNTs presents considerable complexity and challenges in modeling CNT corona discharges. A hybrid multiscale model, which combines a kinetic particle-in-cell plus Monte Carlo collision (PIC-MCC) model and a continuum model, is developed to simulate the corona discharge from nanostructures. The multiscale model is developed in several steps. First, a pure PIC-MCC model is developed and PIC-MCC simulations of corona plasma from micro-sized electrode with same boundary conditions as prior model are performed to validate the PIC-MCC scheme. The agreement between the PIC-MCC model and the prior continuum model indicates the validity of the PIC-MCC scheme. The validated PIC-MCC scheme is then coupled with a continuum model to simulate the corona discharge from a micro-sized electrode. Unlike the prior continuum model which only predicts the corona plasma region, the hybrid model successfully predicts the self-consistent discharge process in the entire corona discharge gap that includes both corona plasma region and unipolar ion region. The voltage-current density curves obtained by the hybrid model agree well with analytical prediction and experimental results. The hybrid modeling approach, which combines the accuracy of a kinetic model and the efficiency of a continuum model, is thus validated for modeling dc corona discharges. For simulation of corona discharges from nanostructures, a one-dimensional (1-D) multiscale model is used due to the prohibitive computational expense associated with two-dimensional (2-D) modeling. Near the nanoscale discharge electrode surface, a kinetic model based on PIC-MCC is used due to a relatively large Knudsen number in this region. Far away from the nanoscale discharge electrode, a continuum model is used since the Knudsen number is very small there. The multiscale modeling results are compared with experimental data. The quantitative agreement in positive discharges and qualitative agreement in negative discharges validate the modeling approach. The mechanism of sustaining the discharge process from nanostructures is revealed and is found to be different from that of discharge from micro- or macro-sized electrodes. Finally, the corona plasma model is combined with a plasma chemistry model and a transport model to predict the ozone production from the nanoscale corona. The dependence of ozone production on the applied potential and air velocity is studied. The electric field distribution in a 2-D multiscale domain (from nanoscale to microscale) is predicted by solving the Poisson's equation using a finite difference scheme. The discretized linear equations are solved using a multigrid method under the framework of PETSc on a paralleled supercomputer. Although the Poisson solver is able to resolve the multiscale field, the prohibitively long computation time limits the use of a 2-D solver in the current PIC-MCC scheme.

  18. Validation of Spanish Language Evaluation Instruments for Body Dysmorphic Disorder and the Dysmorphic Concern Construct

    PubMed Central

    Senín-Calderón, Cristina; Valdés-Díaz, María; Benítez-Hernández, Ma M.; Núñez-Gaitán, Ma C.; Perona-Garcelán, Salvador; Martínez-Cervantes, Rafael; Rodríguez-Testal, Juan F.

    2017-01-01

    Dysmorphic concern (DC) refers to excessive preoccupation with a slight or imagined defect in physical appearance with social avoidance and behavior directed at controlling the defect in appearance. This study attempted to adapt the factor structure of two instruments that cover the DC construct, the Dysmorphic Concern Questionnaire (DCQ) and the Body Dysmorphic Disorder Examination Self-Report (BDDE-SR), to Spanish and establish their psychometric properties. A total of 920 subjects (62.7% women, Mage = 32.44 years) participated. Exploratory and Confirmatory Factor Analysis of both scales found adequate goodness of fit indices. A one-dimensional structure was found for the DCQ and two first-order factors (dissatisfaction/preoccupation with body image (BI) and BI avoidance behavior) were identified for the BDDE-SR. The psychometric test–retest reliability and validity properties (content, convergent, and discriminant) were satisfactory. It is suggested that the DC construct includes both cognitive and behavioral aspects and may represent a continuum of severity with Body Dysmorphic Disorder at the end. PMID:28713311

  19. Validation of Spanish Language Evaluation Instruments for Body Dysmorphic Disorder and the Dysmorphic Concern Construct.

    PubMed

    Senín-Calderón, Cristina; Valdés-Díaz, María; Benítez-Hernández, Ma M; Núñez-Gaitán, Ma C; Perona-Garcelán, Salvador; Martínez-Cervantes, Rafael; Rodríguez-Testal, Juan F

    2017-01-01

    Dysmorphic concern (DC) refers to excessive preoccupation with a slight or imagined defect in physical appearance with social avoidance and behavior directed at controlling the defect in appearance. This study attempted to adapt the factor structure of two instruments that cover the DC construct, the Dysmorphic Concern Questionnaire (DCQ) and the Body Dysmorphic Disorder Examination Self-Report (BDDE-SR), to Spanish and establish their psychometric properties. A total of 920 subjects (62.7% women, M age = 32.44 years) participated. Exploratory and Confirmatory Factor Analysis of both scales found adequate goodness of fit indices. A one-dimensional structure was found for the DCQ and two first-order factors (dissatisfaction/preoccupation with body image (BI) and BI avoidance behavior) were identified for the BDDE-SR. The psychometric test-retest reliability and validity properties (content, convergent, and discriminant) were satisfactory. It is suggested that the DC construct includes both cognitive and behavioral aspects and may represent a continuum of severity with Body Dysmorphic Disorder at the end.

  20. AC and DC conductivity study on Ca substituted bismuth ferrite

    NASA Astrophysics Data System (ADS)

    Pandey, Rabichandra; Pradhan, Lagen Kumar; Kumar, Sunil; Kar, Manoranjan

    2018-05-01

    Bi0.95Ca0.05FeO3 multiferroic compound was synthesized by the citric acid modified sol-gel method. Crystal structure of Bi0.95Ca0.05FeO3 is studied by the X-ray diffraction (XRD) technique. The ac impedance analysis of the compound has been carried out in a wide range of frequency (100 Hz - 1MHz) as well as temperature (40-2500C). Frequency variation of dielectric constant at different temperatures can be understood by the modified Debye formula. The activation energy was found to be 0.48eV, which was obtained by employing Arrhenius equation. The AC conductivity of the sample follows the Johnscher's power law which indicates the presence of hopping type conduction in localized charged states. To understand the conduction mechanism with localized charge states, the DC resistivity data were analyzed by Mott's variable range hopping (VRH) model. The activation energy calculated from Debye relaxation time, AC conductivity and DC resistivity are comparable to each other.

  1. Transmission line design for the lunar environment

    NASA Technical Reports Server (NTRS)

    Gaustad, Krista L.; Gordon, Lloyd B.

    1990-01-01

    How the mass, operating temperature, and efficiency of a transmission line operating on the moon are affected by its operating parameters, the lunar environment, and the choice of materials is examined. The key transmission line parameters which have an effect on mass, operating temperature, and efficiency are voltage, power loss, and waveform. The choice of waveform for transmission will be influenced by the waveform of the source and load, and therefore an analysis of both DC and AC transmission is necessary for a complete understanding of lunar power transmission. The data presented are for the DC case only; however, the discussion of the environmental effects and of material selection is pertinent to both AC and DC transmission. The operating voltage is shown to be a key parameter in transmission line design. The role efficiency plays in transmission line design is also examined. The analyses include above- and below-the-surface operation for both a vacuum-insulated, two-wire, transmission line, and a solid-dielectric-insulated, coaxial, transmission line.

  2. Effect of annealing temperatures on the electrical conductivity and dielectric properties of Ni1.5Fe1.5O4 spinel ferrite prepared by chemical reaction at different pH values

    NASA Astrophysics Data System (ADS)

    Aneesh Kumar, K. S.; Bhowmik, R. N.

    2017-12-01

    The electrical conductivity and dielectric properties of Ni1.5Fe1.5O4 ferrite has been controlled by varying the annealing temperature of the chemical routed samples. The frequency activated conductivity obeyed Jonscher’s power law and universal scaling suggested semiconductor nature. An unusual metal like state has been revealed in the measurement temperature scale in between two semiconductor states with different activation energy. The metal like state has been affected by thermal annealing of the material. The analysis of electrical impedance and modulus spectra has confirmed non-Debye dielectric relaxation with contributions from grains and grain boundaries. The dielectric relaxation process is thermally activated in terms of measurement temperature and annealing temperature of the samples. The hole hopping process, due to presence of Ni3+ ions in the present Ni rich ferrite, played a significant role in determining the thermal activated conduction mechanism. This work has successfully applied the technique of a combined variation of annealing temperature and pH value during chemical reaction for tuning electrical parameters in a wide range; for example dc limit of conductivity ~10-4-10-12 S cm-1, and unusually high activation energy ~0.17-1.36 eV.

  3. High Pressure Experimental Studies on CuO: Indication of Re-entrant Multiferroicity at Room Temperature

    PubMed Central

    Jana, Rajesh; Saha, Pinku; Pareek, Vivek; Basu, Abhisek; Kapri, Sutanu; Bhattacharyya, Sayan; Mukherjee, Goutam Dev

    2016-01-01

    We have carried out detailed experimental investigations on polycrystalline CuO using dielectric constant, dc resistance, Raman spectroscopy and X-ray diffraction measurements at high pressures. Observation of anomalous changes both in dielectric constant and dielectric loss in the pressure range 3.7–4.4 GPa and reversal of piezoelectric current with reversal of poling field direction indicate to a change in ferroelectric order in CuO at high pressures. A sudden jump in Raman integrated intensity of Ag mode at 3.4 GPa and observation of Curie-Weiss type behaviour in dielectric constant below 3.7 GPa lends credibility to above ferroelectric transition. A slope change in the linear behaviour of the Ag mode and a minimum in the FWHM of the same indicate indirectly to a change in magnetic ordering. Since all the previous studies show a strong spin-lattice interaction in CuO, observed change in ferroic behaviour at high pressures can be related to a reentrant multiferroic ordering in the range 3.4 to 4.4 GPa, much earlier than predicted by theoretical studies. We argue that enhancement of spin frustration due to anisotropic compression that leads to change in internal lattice strain brings the multiferroic ordering to room temperature at high pressures. PMID:27530329

  4. Charge carrier transport mechanisms in perovskite CdTiO{sub 3} fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imran, Z.; Rafiq, M. A., E-mail: aftab@cantab.net; Hasan, M. M.

    Electrical transport properties of electrospun cadmium titanate (CdTiO{sub 3}) fibers have been investigated using ac and dc measurements. Air annealing of as spun fibers at 1000 °C yielded the single phase perovskite fibers having diameter ∼600 nm - 800 nm. Both the ac and dc electrical measurements were carried out at temperatures from 200 K – 420 K. The complex impedance plane plots revealed a single semicircular arc which indicates the interfacial effect due to grain boundaries of fibers. The dielectric properties obey the Maxwell-Wagner theory of interfacial polarization. In dc transport study at low voltages, data show Ohmic like behaviormore » followed by space charge limited current (SCLC) with traps at higher voltages at all temperatures (200 K – 420 K). Trap density in our fibers system is N{sub t} = 6.27 × 10{sup 17} /cm{sup 3}. Conduction mechanism in the sample is governed by 3-D variable range hopping (VRH) from 200 K – 300 K. The localized density of states were found to be N(E{sub F}) = 5.51 × 10{sup 21} eV{sup −1} cm{sup −3} at 2 V. Other VRH parameters such as hopping distance (R{sub hop}) and hopping energy (W{sub hop}) were also calculated. In the high temperature range of 320 K – 420 K, conductivity follows the Arrhenius law. The activation energy found at 2 V is 0.10 eV. Temperature dependent and higher values of dielectric constant make the perovskite CdTiO{sub 3} fibers efficient material for capacitive energy storage devices.« less

  5. Localized Surface Plasmon Resonance in Au Nanoparticles Embedded dc Sputtered ZnO Thin Films.

    PubMed

    Patra, Anuradha; Balasubrahmaniyam, M; Lahal, Ranjit; Malar, P; Osipowicz, T; Manivannan, A; Kasiviswanathan, S

    2015-02-01

    The plasmonic behavior of metallic nanoparticles is explicitly dependent on their shape, size and the surrounding dielectric space. This study encompasses the influence of ZnO matrix, morphology of Au nanoparticles (AuNPs) and their organization on the optical behavior of ZnO/AuNPs-ZnO/ZnO/GP structures (GP: glass plate). These structures have been grown by a multiple-step physical process, which includes dc sputtering, thermal evaporation and thermal annealing. Different analytical techniques such as scanning electron microscopy, glancing angle X-ray diffraction, Rutherford backscattering spectrometry and optical absorption have been used to study the structures. In-situ rapid thermal treatment during dc sputtering of ZnO film has been found to induce subtle changes in the morphology of AuNPs, thereby altering the profile of the plasmon band in the absorption spectra. The results have been contrasted with a recent study on the spectral response of dc magnetron sputtered ZnO films embedded with AuNPs. Initial simulation results indicate that AuNPs-ZnO/Au/GP structure reflects/absorbs UV and infrared radiations, and therefore can serve as window coatings.

  6. Solvent Effects on the Kinetics of Simple Electrochemical Reactions. I. Comparison of the Behavior of Co(III)/(II) Trisethylenediamine and Ammine Couples with the Predictions of Dielectric Continuum Theory.

    DTIC Science & Technology

    1981-01-08

    lithium perchlorate was dried at -180°C for several days. Tetraethylammonium perchlorate was recrystallized from water and dried in a vacuum oven at...cases the electrolyte composition p, was chosen to be 0.1 M lithium perchlorate or 0.1 M tetraethyl ammonium perchlorate (TEAP). These electrolytes...perchlorate specific adsorption is quite noticeable. Hexafluorophosphate adsorption is sufficiently weak so that small positive values of the potential across

  7. Nonlocal and nonlinear electrostatics of a dipolar Coulomb fluid.

    PubMed

    Sahin, Buyukdagli; Ralf, Blossey

    2014-07-16

    We study a model Coulomb fluid consisting of dipolar solvent molecules of finite extent which generalizes the point-like dipolar Poisson-Boltzmann model (DPB) previously introduced by Coalson and Duncan (1996 J. Phys. Chem. 100 2612) and Abrashkin et al (2007 Phys. Rev. Lett. 99 077801). We formulate a nonlocal Poisson-Boltzmann equation (NLPB) and study both linear and nonlinear dielectric response in this model for the case of a single plane geometry. Our results shed light on the relevance of nonlocal versus nonlinear effects in continuum models of material electrostatics.

  8. Exogenous contrast agents for thermoacoustic imaging: An investigation into the underlying sources of contrast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogunlade, Olumide, E-mail: o.ogunlade@ucl.ac.uk; Beard, Paul

    2015-01-15

    Purpose: Thermoacoustic imaging at microwave excitation frequencies is limited by the low differential contrast exhibited by high water content tissues. To overcome this, exogenous thermoacoustic contrast agents based on gadolinium compounds, iron oxide, and single wall carbon nanotubes have previously been suggested and investigated. However, these previous studies did not fully characterize the electric, magnetic, and thermodynamic properties of these agents thus precluding identification of the underlying sources of contrast. To address this, measurements of the complex permittivity, complex permeability, DC conductivity, and Grüneisen parameter have been made. These measurements allowed the origins of the contrast provided by each substancemore » to be identified. Methods: The electric and magnetic properties of the contrast agents were characterized at 3 GHz using two rectangular waveguide cavities. The DC conductivity was measured separately using a conductivity meter. Thermoacoustic signals were then acquired and compared to those generated in water. Finally, 3D electromagnetic simulations were used to decouple the different contributions to the absorbed power density. Results: It was found that the gadolinium compounds provided appreciable electric contrast but not originating from the gadolinium itself. The contrast was either due to dissociation of the gadolinium salt which increased ionic conductivity or its nondissociated polar fraction which increased dielectric polarization loss or a combination of both. In addition, very high concentrations were required to achieve appreciable contrast, to the extent that the Grüneisen parameter increased significantly and became a source of contrast. Iron oxide particles were found to produce low but measurable dielectric contrast due to dielectric polarization loss, but this is attributed to the coating of the particles not the iron oxide. Single wall carbon nanotubes did not provide measurable contrast of any type. Conclusions: It is concluded that gadolinium based contrast agents, iron oxide particles, and single walled carbon nanotubes have little intrinsic merit as thermoacoustic contrast agents. Simple electrolytes such as saline which yield high contrast based on ionic conductivity provide much higher dielectric contrast per unit solute concentration and are likely to be significantly more effective as contrast agents.« less

  9. Study of temperature effect on junctionless Si nanotube FET concerning analog/RF performance

    NASA Astrophysics Data System (ADS)

    Tayal, Shubham; Nandi, Ashutosh

    2018-06-01

    This paper for the first time investigates the effect of temperature variation on analog/RF performance of SiO2 as well as high-K gate dielectric based junctionless silicon nanotube FET (JL-SiNTFET). It is observed that the change in temperature does not variate the analog/RF performance of junctionless silicon nanotube FET by substantial amount. By increasing the temperature from 77 K to 400 K, the deterioration in intrinsic dc gain (AV) is marginal that is only ∼3 dB. Furthermore, the variation in cut-off frequency (fT), maximum oscillation frequency (fMAX), and gain-frequency product (GFP) with temperature is also minimal in JLSiNT-FET. More so, the same trend is observed even at scaled gate length (Lg = 15 nm). Furthermore, we have observed that the use of high-K gate dielectric deteriorates the analog/RF performance of JLSiNT-FET. However, the use of high-K gate dielectric negligibly changes the effect of temperature variation on analog/RF performance of JLSINT-FET device.

  10. Nonlinear effective permittivity of field grading composite dielectrics

    NASA Astrophysics Data System (ADS)

    Yang, Xiao; Zhao, Xiaolei; Li, Qi; Hu, Jun; He, Jinliang

    2018-02-01

    Field grading composite dielectrics with good nonlinear electrical properties can function as smart materials for electrical field control in a high-voltage apparatus. Besides the well-documented nonlinear conducting behavior, the field-dependent effective permittivity of field grading composites were also reported; however, in-depth research on the mechanism and influencing factors of this nonlinear permittivity are absent. This paper theoretically discusses the origin of the nonlinear effective permittivity, and the mechanism is illustrated through the waveform analysis of the nonlinear response of ZnO microvaristor/silicone rubber composites under a pure AC field. The field-dependent effective permittivity and loss property of the ZnO composites are measured by a dielectric spectrometer in both DC and AC fields under different frequencies. Through comparison of measurement results and theoretical models, the influence of the filler concentration, frequency, and time domain characteristics of the applied field on the nonlinear permittivity of the field grading composites are well explained. This paper provides insight into the nonlinear permittivity of field grading composites, and will be helpful for further tuning the performance of field grading composites.

  11. Dielectric study on mixtures of ionic liquids.

    PubMed

    Thoms, E; Sippel, P; Reuter, D; Weiß, M; Loidl, A; Krohns, S

    2017-08-07

    Ionic liquids are promising candidates for electrolytes in energy-storage systems. We demonstrate that mixing two ionic liquids allows to precisely tune their physical properties, like the dc conductivity. Moreover, these mixtures enable the gradual modification of the fragility parameter, which is believed to be a measure of the complexity of the energy landscape in supercooled liquids. The physical origin of this index is still under debate; therefore, mixing ionic liquids can provide further insights. From the chemical point of view, tuning ionic liquids via mixing is an easy and thus an economic way. For this study, we performed detailed investigations by broadband dielectric spectroscopy and differential scanning calorimetry on two mixing series of ionic liquids. One series combines an imidazole based with a pyridine based ionic liquid and the other two different anions in an imidazole based ionic liquid. The analysis of the glass-transition temperatures and the thorough evaluations of the measured dielectric permittivity and conductivity spectra reveal that the dynamics in mixtures of ionic liquids are well defined by the fractions of their parent compounds.

  12. Electrohydrodynamic interactions in Quincke rotation: from pair dynamics to collective motion

    NASA Astrophysics Data System (ADS)

    Das, Debasish; Saintillan, David

    2013-11-01

    Weakly conducting dielectric particles suspended in a dielectric liquid can undergo spontaneous sustained rotation when placed in a sufficiently strong dc electric field. This phenomenon of Quincke rotation has interesting implications for the rheology of these suspensions whose effective viscosity can be reduced by application of an external field. While previous models based on the rotation of isolated particles have provided accurate estimates for this viscosity reduction in dilute suspensions discrepancies have been reported in more concentrated systems where particle-particle interactions are likely significant. Motivated by this observation we extend the classic description of Quincke rotation based on the Taylor-Melcher leaky dielectric model to account for pair electrohydrodynamic interactions between identical spheres using method of reflections. We also consider the case of spherical particles undergoing Quincke rotation next to a planar electrode, where hydrodynamic interactions with the no-slip boundary lead to a self-propelled velocity. The interactions between such Quincke rollers are analyzed, and a transition to collective motion is predicted in sufficiently dense collections of many rollers, in agreement with recent experiments.

  13. The impedance spectroscopy analysis of complex perovskite Sr2YbSbO6

    NASA Astrophysics Data System (ADS)

    Barua, A.; Maity, S.; Mondal, R.; Kumar, S.

    2018-04-01

    Herein, we have reported the dielectric properties of single phase monoclinic double perovskite oxide of Sr2YbSbO6 having lattice parameter a=5.79 Å, b=5.79 Å, c=8.19 Å and β = 90.136° with grain size ranging between 0.5 to 2.4 µm. The sample has been synthesized by solid state ceramic method. We have performed the impedence spectroscopic study of the sample in the frequency range of 40 Hz to 5 MHz at various temperatures. The relaxation in the sample is polydispersive in nature and obeys the Cole-Cole model. The values of dielectric permittivity and loss tangent at room temperature are 117.94 and 0.18 respectively. The temperature variation of dc conductivity follows the Arrhenius Law with activation energy 0.2 eV and the conduction mechanism of the sample is governed by p-type polaron hopping. Due to its high dielectric permittivity and low loss tangent the sample can be fruitfully utilized for the fabrication of radio frequency devices.

  14. Preferential growth and enhanced dielectric properties of Ba0.7Sr0.3TiO3 thin films with preannealed Pt bottom electrode

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaohong; Defaÿ, Emmanuel; Aïd, Marc; Ren, Yinjuan; Zhang, Caiyun; Zhu, Jiliang; Zhu, Jianguo; Xiao, Dingquan

    2013-03-01

    Ba0.7Sr0.3TiO3 (BST) thin films, about 100 nm in thickness, were prepared on unannealed and 700 °C-preannealed Pt bottom electrodes by the ion beam sputtering and post-deposition annealing method. It was found that the preannealed Pt layer has a more compact structure, making it not only a bottom electrode but also a good template for high-quality BST thin film growth. The BST films deposited on preannealed Pt bottom electrodes showed (0 0 l)-preferred orientation, dense and uniform microstructure with no intermediate phase formed at the film/electrode interface, and thus enhanced dielectric properties. As a result, the typical relative dielectric constant and tunability (under a dc electric field of 1 MV cm-1) reach 180 and 50.1%, respectively, for the BST thin films with preannealed Pt bottom electrodes, which are significantly higher than those (166 and 41.3%, respectively) for the BST thin films deposited on unannealed Pt bottom electrodes.

  15. Growth and characterization of pure and Ca2+ doped MnHg(SCN)4 single crystals

    NASA Astrophysics Data System (ADS)

    Latha, C.; Mahadevan, C. K.; Guo, Li; Liu, Jinghe

    2018-05-01

    Manganese-mercury thiocyanate, MnHg(SCN)4, crystal is considered to be an important organometallic nonlinear optical (NLO) material exhibiting higher thermal stability and second harmonic generation (SHG) efficiency. In order to understand the effect of Ca2+ as an impurity on the physicochemical properties, we have grown pure and Ca2+ doped (with a concentration of 1 mol%) MnHg(SCN)4 single crystals by the free evaporation of solvent method and characterized structurally, chemically, optically and electrically by adopting the available standard methods. Results obtained indicate that Ca2+ doping increases significantly the optical transmittance, SHG efficiency, and DC electrical conductivity and decreases the dielectric loss factor (improves the crystal quality), and AC electrical conductivity without distorting the crystal structure. Also, the low dielectric constant (εr) values observed for both the pure and doped crystals considered at near ambient temperatures indicate the possibility of using these crystals not only as potential NLO materials (useful in the photonics industry) but also as promising low εr value dielectric materials (useful in the microelectronics industry).

  16. AC Conductivity and Dielectric Properties of Borotellurite Glass

    NASA Astrophysics Data System (ADS)

    Taha, T. A.; Azab, A. A.

    2016-10-01

    Borotellurite glasses with formula 60B2O3-10ZnO-(30 - x)NaF- xTeO2 ( x = 0 mol.%, 5 mol.%, 10 mol.%, and 15 mol.%) have been synthesized by thermal melting. X-ray diffraction (XRD) analysis confirmed that the glasses were amorphous. The glass density ( ρ) was determined by the Archimedes method at room temperature. The density ( ρ) and molar volume ( V m) were found to increase with increasing TeO2 content. The direct-current (DC) conductivity was measured in the temperature range from 473 K to 623 K, in which the electrical activation energy of ionic conduction increased from 0.27 eV to 0.48 eV with increasing TeO2 content from 0 mol.% to 15 mol.%. The dielectric parameters and alternating-current (AC) conductivity ( σ ac) were investigated in the frequency range from 1 kHz to 1 MHz and temperature range from 300 K to 633 K. The AC conductivity and dielectric constant decreased with increasing TeO2 content from 0 mol.% to 15 mol.%.

  17. Influence of interfacial viscosity on the dielectrophoresis of drops

    NASA Astrophysics Data System (ADS)

    Mandal, Shubhadeep; Chakraborty, Suman

    2017-05-01

    The dielectrophoresis of a Newtonian uncharged drop in the presence of an axisymmetric nonuniform DC electric field is studied analytically. The present study is focused on the effects of interfacial viscosities on the dielectrophoretic motion and shape deformation of an isolated suspended drop. The interfacial viscosities generate surface-excess viscous stress which is modeled as a two-dimensional Newtonian fluid which obeys the Boussinesq-Scriven constitutive law with constant values of interfacial tension, interfacial shear, and dilatational viscosities. In the regime of small drop deformation, we have obtained analytical solution for the drop velocity and deformed shape by neglecting surface charge convection and fluid inertia. Our study demonstrates that the drop velocity is independent of the interfacial shear viscosity, while the interfacial dilatational viscosity strongly affects the drop velocity. The interfacial viscous effects always retard the dielectrophoretic motion of a perfectly conducting/dielectric drop. Notably, the interfacial viscous effects can retard or augment the dielectrophoretic motion of a leaky dielectric drop depending on the electrohydrodynamic properties. The shape deformation of a leaky dielectric drop is found to decrease (or increase) due to interfacial shear (or dilatational) viscosity.

  18. Characteristics of the Li+-Ion Conductivity of Li3R2(PO4)3 Crystals (R = Fe, Sc) in the Superionic State

    NASA Astrophysics Data System (ADS)

    Sorokin, N. I.

    2018-05-01

    The characteristics of Li+-ion conductivity σdc of structural γ modifications of Li3R2(PO4)3 compounds (R = Fe, Sc) existing in the superionic state have been investigated by impedance spectroscopy. The type of structural framework [R2P3O12]∞ 3- affects the σdc value and the σdc activation enthalpy in these compounds. The ion transport activation enthalpy in γ-Li3R2(PO4)3 (Δ H σ = 0.31 ± 0.03 eV) is lower than in γ-Li3Fe2(PO4)3 (Δ H σ = 0.36 ± 0.03 eV). The conductivity of γ-Li3Fe2(PO4)3 (σdc = 0.02 S/cm at 573 K) is twice as high as that of γ-Li3R2(PO4)3. A decrease in temperature causes a structural transformation of Li3R2(PO4)3 from the superionic γ modification (space group Pcan) through the intermediate metastable β modification (space group P21/ n) into the "dielectric" α modification (space group P21/ n). Upon cooling, σdc for both phosphates decreases by a factor of about 100 at the superionic TSIC transition. In Li3Fe2(PO4)3 σdc gradually decreases in the temperature range T SIC = 430-540 K, whereas in Li3R2(PO4)3 σdc undergoes a jump at T SIC = 540 ± 25 K. Possible crystallochemical factors responsible for the difference in the σdc and Δ H σ values and the thermodynamics and kinetics of the superionic transition for Li3R2(PO4)3 are discussed.

  19. Combat Comptrollers: Considerations across the Planning Continuum

    DTIC Science & Technology

    2006-06-01

    gain Process DD 1081 to transf er accountability to PA ALO prepares v oucher f or bank f ees Cost : $50 per month Rework: 30% Time: 40 manhours per...Operations Costs . (2002, May). United States General Accounting Office Report (GAO-02-450). 10 Telephone interview with Maj Tony Hernandez. Commander...Washington, DC. p. A-5. 97 Horngren , C. T., Selto, F. H., Sundem, G. L. (1993). Introduction to Management Accounting . 9th Ed. Prentice Hall

  20. Dielectric Spectroscopy of Semiconductors.

    DTIC Science & Technology

    1985-05-01

    PRGRAM ELEMET.PROJCT AScong. 4AREA AWORK UNIT NUNSCrS Chelsa Cble" .11. 02AUniversity of London 110B5-3 London, UK _ _ _ _ _ _ _ 11. CONTROLLING OFFICE...volume of the material in which "incomplete dc transport" is taking place, charges beirg prevented from freely crossing the sample from one electrode...process. The limitation of the method arises from the dark current and from the need to cool to sufficiently low temperature to prevent re-emission

  1. Graphene-based magnetless converter of terahertz wave polarization

    NASA Astrophysics Data System (ADS)

    Melnikova, Veronica S.; Polischuk, Olga V.; Popov, Vyacheslav V.

    2016-04-01

    The polarization conversion of terahertz radiation by the periodic array of graphene nanoribbons located at the surface of a high-refractive-index dielectric substrate (terahertz prism) is studied theoretically. Giant polarization conversion at the plasmon resonance frequencies takes place without applying external DC magnetic field. It is shown that the total polarization conversion can be reached at the total internal reflection of THz wave from the periodic array of graphene nanoribbons even at room temperature.

  2. Passive, Highly-Sensitive, Room-Temperature Magnetic Field Sensors and Arrays for Detection and Imaging of Hidden Threats in Urban Environments

    DTIC Science & Technology

    2012-07-01

    units made from the various sensors. This was because the different types of ME laminates have different electrical properties ( resistance and...DC resistance of a sensor (Rdc) 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT: SAR 18. NUMBER OF PAGES 338 19a. NAME OF...3.3.6. Electric -field tuning effect ..................................................................70 A.3.4. Dielectric loss noise reduction

  3. Study on electrostatic and electromagnetic probes operated in ceramic and metallic depositing plasmas

    NASA Astrophysics Data System (ADS)

    Styrnoll, T.; Bienholz, S.; Lapke, M.; Awakowicz, P.

    2014-04-01

    This paper discusses plasma probe diagnostics, namely the multipole resonance probe (MRP) and Langmuir probe (LP), operated in depositing plasmas. The aim of this work is to show that the combination of both probes provides stable and robust measurements and clear determination of plasma parameters for metallic and ceramic coating processes. The probes use different approaches to determine plasma parameters, e.g. electron density ne and electron temperature Te. The LP is a well-established plasma diagnostic, and its applicability in technological plasmas is well documented. The LP is a dc probe that performs a voltage sweep and analyses the measured current, which makes it insensitive against conductive metallic coating. However, once the LP is dielectrically coated with a ceramic film, its functionality is constricted. In contrast, the MRP was recently presented as a monitoring tool, which is insensitive to coating with dielectric ceramics. It is a new plasma diagnostic based on the concept of active plasma resonance spectroscopy, which uses the universal characteristic of all plasmas to resonate on or near the electron plasma frequency. The MRP emits a frequency sweep and the absorption of the signal, the |S11| parameter, is analysed. Since the MRP concept is based on electromagnetic waves, which are able to transmit dielectrics, it is insensitive to dielectric coatings. But once the MRP is metallized with a thin conductive film, no undisturbed RF-signal can be emitted into the plasma, which leads to falsified plasma parameter. In order to compare both systems, during metallic or dielectric coating, the probes are operated in a magnetron CCP, which is equipped with a titanium target. We present measurements in metallic and dielectric coating processes with both probes and elaborate advantages and problems of each probe operated in each coating environment.

  4. Analysis and design of ferroelectric-based smart antenna structures

    NASA Astrophysics Data System (ADS)

    Ramesh, Prashanth; Washington, Gregory N.

    2009-03-01

    Ferroelectrics in microwave antenna systems offer benefits of electronic tunability, compact size and light weight, speed of operation, high power-handling, low dc power consumption, and potential for low loss and cost. Ferroelectrics allow for the tuning of microwave devices by virtue of the nonlinear dependence of their dielectric permittivity on an applied electric field. Experiments on the field-polarization dependence of ferroelectric thin films show variation in dielectric permittivity of up to 50%. This is in contrast to the conventional dielectric materials used in electrical devices which have a relatively constant permittivity, indicative of the linear field-polarization curve. Ferroelectrics, with their variable dielectric constant introduce greater flexibility in correction and control of beam shapes and beam direction of antenna structures. The motivation behind this research is applying ferroelectrics to mechanical load bearing antenna structures, but in order to develop such structures, we need to understand not just the field-permittivity dependence, but also the coupled electro-thermo-mechanical behavior of ferroelectrics. In this paper, two models are discussed: a nonlinear phenomenological model relating the applied fields, strains and temperature to the dielectric permittivity based on the Devonshire thermodynamic framework, and a phenomenological model relating applied fields and temperature to the dielectric loss tangent. The models attempt to integrate the observed field-permittivity, strain-permittivity and temperature-permittivity behavior into one single unified model and extend the resulting model to better fit experimental data. Promising matches with experimental data are obtained. These relations, coupled with the expression for operating frequency vs. the permittivity are then used to understand the bias field vs. frequency behavior of the antenna. Finally, the effect of the macroscopic variables on the antenna radiation efficiency is discussed.

  5. Design of double gate vertical tunnel field effect transistor using HDB and its performance estimation

    NASA Astrophysics Data System (ADS)

    Seema; Chauhan, Sudakar Singh

    2018-05-01

    In this paper, we demonstrate the double gate vertical tunnel field-effect transistor using homo/hetero dielectric buried oxide (HDB) to obtain the optimized device characteristics. In this concern, the existence of double gate, HDB and electrode work-function engineering enhances DC performance and Analog/RF performance. The use of electrostatic doping helps to achieve higher on-current owing to occurrence of higher tunneling generation rate of charge carriers at the source/epitaxial interface. Further, lightly doped drain region and high- k dielectric below channel and drain region are responsible to suppress the ambipolar current. Simulated results clarifies that proposed device have achieved the tremendous performance in terms of driving current capability, steeper subthreshold slope (SS), drain induced barrier lowering (DIBL), hot carrier effects (HCEs) and high frequency parameters for better device reliability.

  6. Electrical characterization of glass, teflon, and tantalum capacitors at high temperatures

    NASA Technical Reports Server (NTRS)

    Hammoud, A. N.; Baumann, E. D.; Myers, I. T.; Overton, E.

    1991-01-01

    Dielectric materials and electrical components and devices employed in radiation fields and the space environment are often exposed to elevated temperatures among other things. Therefore, these systems must withstand the high temperature exposure while still providing good electrical and other functional properties. Experiments were carried out to evaluate glass, teflon, and tantalum capacitors for potential use in high temperature applications. The capacitors were characterized in terms of their capacitance and dielectric loss as a function of temperature up to 200 C. At a given temperature, these properties were obtained in a frequency range of 50 Hz to 100 kHz. The DC leakage current measurements were also performed in a temperature range from 20 to 200 C. The obtained results are discussed and conclusions are made concerning the suitability of the capacitors investigated for high temperature applications.

  7. Evaluation of Capacitors at Cryogenic Temperatures for Space Applications

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad; Gerber, Scott S.

    1998-01-01

    Advanced electronic systems designed for use in planetary exploration missions must operate efficiently and reliably under the extreme cold temperatures of deep space environment. In addition, spacecraft power electronics capable of cold temperature operation will greatly simplify the thermal management system by eliminating the need for heating units and associated equipment and thereby reduce the size and weight of the overall power system. In this study, film, mica, solid tantalum and electric double layer capacitors were evaluated as a function of temperature from room to liquid nitrogen in terms of their dielectric properties. These properties included capacitance stability and dielectric loss in the frequency range of 50 Hz to 100 kHz. DC leakage current measurements were also performed on the capacitors. The results obtained are discussed and conclusions are made concerning the suitability of the capacitors investigated for low temperature applications.

  8. Low Temperature Characterization of Ceramic and Film Power Capacitors

    NASA Technical Reports Server (NTRS)

    Hammoud, Ahmad; Overton, Eric

    1996-01-01

    Among the key requirements for advanced electronic systems is the ability to withstand harsh environments while maintaining reliable and efficient operation. Exposures to low temperature as well as high temperature constitute such stresses. Applications where low temperatures are encountered include deep space missions, medical imaging equipment, and cryogenic instrumentation. Efforts were taken to design and develop power capacitors capable of wide temperature operation. In this work, ceramic and film power capacitors were developed and characterized as a function of temperature from 20 C to -185 C in terms of their dielectric properties. These properties included capacitance stability and dielectric loss in the frequency range of 50 Hz to 100 kHz. DC leakage current measurements were also performed on the capacitors. The manuscript presents the results that indicate good operational characteristic behavior and stability of the components tested at low temperatures.

  9. Electrostatics of proteins in dielectric solvent continua. II. First applications in molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Stork, Martina; Tavan, Paul

    2007-04-01

    In the preceding paper by Stork and Tavan, [J. Chem. Phys. 126, 165105 (2007)], the authors have reformulated an electrostatic theory which treats proteins surrounded by dielectric solvent continua and approximately solves the associated Poisson equation [B. Egwolf and P. Tavan, J. Chem. Phys. 118, 2039 (2003)]. The resulting solution comprises analytical expressions for the electrostatic reaction field (RF) and potential, which are generated within the protein by the polarization of the surrounding continuum. Here the field and potential are represented in terms of Gaussian RF dipole densities localized at the protein atoms. Quite like in a polarizable force field, also the RF dipole at a given protein atom is induced by the partial charges and RF dipoles at the other atoms. Based on the reformulated theory, the authors have suggested expressions for the RF forces, which obey Newton's third law. Previous continuum approaches, which were also built on solutions of the Poisson equation, used to violate the reactio principle required by this law, and thus were inapplicable to molecular dynamics (MD) simulations. In this paper, the authors suggest a set of techniques by which one can surmount the few remaining hurdles still hampering the application of the theory to MD simulations of soluble proteins and peptides. These techniques comprise the treatment of the RF dipoles within an extended Lagrangian approach and the optimization of the atomic RF polarizabilities. Using the well-studied conformational dynamics of alanine dipeptide as the simplest example, the authors demonstrate the remarkable accuracy and efficiency of the resulting RF-MD approach.

  10. Bridging the Economic Development Gap: Establishing a Practical Military Expeditionary Economics Continuum

    DTIC Science & Technology

    2013-04-05

    59NGOs typically allow two weeks to one month before repayment begins, although longer time periods may be necessary. See Tillman Bruett et al ...D.C.: USAID, 2001), 1. 68Ibid, 3-4. 69Tillman Bruett et al ., Conflict and Post-Conflict Environments: Ten Short Lessons to make Microfinance Work...Germany to Iraq, by James Dobbins, et al ., 25-53. Santa Monica,CA: RAND Publications, 2005, 39. 4 Timothy Nourse, "Refuge to Return: Operational

  11. Studies of the Electro-Optic Effect.

    DTIC Science & Technology

    1983-01-01

    electro - optic effect in crystalline solids has been pursued by employing a tight-binding theory for dielectric susceptibilities. The electronic and lattice contributions to the second-order electro - optic susceptibility have been treated separately and the lattice response of a crystal to an external dc electric field has been investigated in a general formalism. The theory has been specifically applied to the compound, tellurium dioxide. In addition, an experimental determination of the electro - optic coefficient, re, in thallium

  12. High Flux Heat Exchanger

    DTIC Science & Technology

    1993-01-01

    maximum jet velocity (6.36 m/s), and maximum number of jets (nine). Wadsworth and Mudawar [49] describe the use of a single slotted nozzle to provide...H00503 (ASME), pp. 121-128, 1989. 40 49. D. C. Wadsworth and I. Mudawar , "Cooling of a Multichip Electronic Module by Means of Confined Two-Dimensional...Jets of Dielectric Liquid," HTD-Vol. 111, Heat Transfer in Electrglif, Book No. H00503 (ASME), pp. 79-87, 1989. 50. D.C. Wadsworth and I. Mudawar

  13. Interfacial Properties of Germanium Nitride Dielectric Layers in Germanium.

    DTIC Science & Technology

    1986-01-01

    operating information are discussed, INTRODUCTION sible way to construct a circuit for adjusting the power out- A type of apparatus being used with...described as an empirical art at best and by the unot considered a good way to modulate the power output usually greater cost of the microwave power...continuously adjusted. A com- input to the cathode dc supply, and miscellaneous hardware. mon method for the modulation of microwave power to a Figure 1

  14. Role of Silver Salts Lattice Energy on Conductivity Drops in Chitosan Based Solid Electrolyte: Structural, Morphological and Electrical Characteristics

    NASA Astrophysics Data System (ADS)

    Aziz, Shujahadeen B.; Abdullah, Omed Gh.; Hussein, Sarkawt A.

    2018-03-01

    The influence of anion type on silver ion reduction and drop in direct current (DC) conductivity was investigated experimentally. The structural, optical, morphological and electrical properties of the samples were investigated using x-ray diffraction (XRD), ultraviolet-visible (UV-Vis), optical micrographs (OM) and impedance spectroscopy. The XRD results reveal significant disruption in the crystalline structure of chitosan (CS) for different concentrations of silver nitrate (AgNt) salt. The localized surface resonance plasmonic (LSRP) peaks that were observed for CS:AgNt samples, along with the white silver specs detected by OM technique confirm the formation of Ag nanoparticles. The appearance of obvious dark regions in the CS:AgNt system reveals the existence of a large percentage of amorphous domains. The nonexistence of spherulitic texture confirms the amorphous nature of the samples. The second semicircle in an impedance plot can be attributed to an Ag nanoparticle grain boundary. The established relationships between dielectric constant and carrier concentration and the behavior of dielectric constant versus salt concentration were used to explain the phenomenon of ion-ion association. The continuous increase of DC conductivity was noticed at high temperatures, which was then explained on the basis of lattice energy of silver salts. The influences of anion size on the rate of silver ion reductions are also interpreted.

  15. Dynamical heat transport amplification in a far-field thermal transistor of VO{sub 2} excited with a laser of modulated intensity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ordonez-Miranda, Jose, E-mail: jose.ordonez@cnrs.pprime.fr; Ezzahri, Younès; Drevillon, Jérémie

    2016-05-28

    Far-field radiative heat transport in a thermal transistor made up of a vanadium dioxide base excited with a laser of modulated intensity is analytically studied and optimized. This is done by solving the equation of energy conservation for the steady-state and modulated components of the temperature and heat fluxes that the base exchanges with the collector and emitter. The thermal bistability of VO{sub 2} is used to find an explicit condition on the laser intensity required to maximize these heat fluxes to values higher than the incident flux. For a 1 μm-thick base heated with a modulation frequency of 0.5 Hz, itmore » is shown that both the DC and AC components of the heat fluxes are about 4 times the laser intensity, while the AC temperature remains an order of magnitude smaller than the DC one at around 343 K. Higher AC heat fluxes are obtained for thinner bases and/or lower frequencies. Furthermore, we find that out of the bistability temperatures associated with the dielectric-to-metal and metal-to-dielectric transitions of VO{sub 2}, the amplification of the collector-to-base and base-to-emitter heat fluxes is still possible, but at modulation frequencies lower than 0.1 Hz.« less

  16. Response to ``Comment on `Slow Debye-type peak observed in the dielectric response of polyalcohols' '' [J. Chem. Phys. 134, 037101 (2011)

    NASA Astrophysics Data System (ADS)

    Bergman, R.; Jansson, H.; Swenson, J.

    2011-01-01

    In our recent article [R. Bergman et al., J. Chem. Phys. 132, 044504 (2010)] we investigated some polyalcohols, i.e., glycerol, xylitol, and sorbitol by dielectric spectroscopy. In the study, a low-frequency peak of Debye character that normally is hidden by the large low-frequency dispersion due to conductivity was revealed by analyzing the real part of the permittivity and by using a thin Teflon film to suppress the low-frequency dispersion. We agree with the comment by Paluch et al. [J. Chem. Phys. 134, 037101 (2011)] that the Teflon film setup will indeed create a peak due to the dc conductivity. However, due to the fact that the location of the peak was almost identical in measurement with and without Teflon, we unfortunately mainly showed the data measured with Teflon, despite that it could also be observed in the real part of the permittivity without using the Teflon setup, as shown in our original article [R. Bergman et al., J. Chem. Phys. 132, 044504 (2010)]. Here, we show that the low-frequency peak of Debye character can also be observed by subtracting the dc conductivity. Furthermore, we show that the modulus representation used in Paluch et al. [J. Chem. Phys. 134, 037101 (2011).] is also not suitable for detecting processes hidden by the conductivity.

  17. Correlation between dielectric property by dielectrophoretic levitation and growth activity of cells exposed to electric field.

    PubMed

    Hakoda, Masaru; Hirota, Yusuke

    2013-09-01

    The purpose of this study is to develop a system analyzing cell activity by the dielectrophoresis method. Our previous studies revealed a correlation between the growth activity and dielectric property (Re[K(ω)]) of mouse hybridoma 3-2H3 cells using dielectrophoretic levitation. Furthermore, it was clarified that the differentiation activity of many stem cells could be evaluated by the Re[K(ω)] without differentiation induction. In this paper, 3-2H3 cells exposed to an alternating current (AC) electric field or a direct current (DC) electric field were cultivated, and the influence of damage by the electric field on the growth activity of the cells was examined. To evaluate the activity of the cells by measuring the Re[K(ω)], the correlation between the growth activity and the Re[K(ω)] of the cells exposed to the electric field was examined. The relations between the cell viability, growth activity, and Re[K(ω)] in the cells exposed to the AC electric field were obtained. The growth activity of the cells exposed to the AC electric field could be evaluated by the Re[K(ω)]. Furthermore, it was found that the adverse effects of the electric field on the cell viability and the growth activity were smaller in the AC electric field than the DC electric field.

  18. Study of structural, electrical, and dielectric properties of phosphate-borate glasses and glass-ceramics

    NASA Astrophysics Data System (ADS)

    Melo, B. M. G.; Graça, M. P. F.; Prezas, P. R.; Valente, M. A.; Almeida, A. F.; Freire, F. N. A.; Bih, L.

    2016-08-01

    In this work, phosphate-borate based glasses with molar composition 20.7P2O5-17.2Nb2O5-13.8WO3-34.5A2O-13.8B2O3, where A = Li, Na, and K, were prepared by the melt quenching technique. The as-prepared glasses were heat-treated in air at 800 °C for 4 h, which led to the formation of glass-ceramics. These high chemical and thermal stability glasses are good candidates for several applications such as fast ionic conductors, semiconductors, photonic materials, electrolytes, hermetic seals, rare-earth ion host solid lasers, and biomedical materials. The present work endorses the analysis of the electrical conductivity of the as-grown samples, and also the electrical, dielectric, and structural changes established by the heat-treatment process. The structure of the samples was analyzed using X-Ray powder Diffraction (XRD), Raman spectroscopy, and density measurements. Both XRD and Raman analysis confirmed crystals formation through the heat-treatment process. The electrical ac and dc conductivities, σac and σdc, respectively, and impedance spectroscopy measurements as function of the temperature, varying from 200 to 380 K, were investigated for the as-grown and heat-treated samples. The impedance spectroscopy was measured in the frequency range of 100 Hz-1 MHz.

  19. Effect of crystal structure on strontium titanate thin films and their dielectric properties

    NASA Astrophysics Data System (ADS)

    Kampangkeaw, Satreerat

    Strontium titanate (SrTiO3 or STO) has application in radio and microwave-frequency tunable capacitor devices particularly at low temperatures due to its high dielectric constant, low loss and the electric field tunability of its dielectric constant. The main goal of improving the performance in these devices is to increase the tunability and decrease the dielectric loss at the same time, especially at microwave frequencies. Thin films of STO however, show dramatic differences compared to the bulk. The dielectric constant of bulk STO increases nonlinearly from 300 at room temperature to 30000 at 4 K and the loss range is 10-3--10 -4. On the other hand. STO thin films, while showing a dielectric constant close to 300 at room temperature, typically reach a maximum between 1000 and 10000 in the 30 K to 100 K range before decreasing, and the high-loss range is 10-2--10-3. We have grown strontium titanate thin films using a pulsed laser deposition technique on substrates selected to have a small lattice mismatch between the film and substrate. Neodymium gallate (NdGaO3 or NGO) and lanthanum aluminate (LaAlO3 or LAO) substrates were good candidates due to only 1--2% mismatching. Film capacitor devices were fabricated with 25 micron gap separation. 1.5 mm total gap length and an overall 1 x 2 mm dimension using standard lithography and gold metal evaporative techniques. Their nonlinear dielectric constant and loss tangent were measured at low frequencies and also at 2 GHz, and from room temperature down to 4 K. The resulting films show significant variations of dielectric properties with position on the substrates with respect to the deposition plume axis. In the presence of DC electric fields up to +/-4 V/mum, STO films show improved dielectric tunability and low loss in regions far from the plume axis. We found that the films grown on NCO have lower dielectric loss than those on LAO due to a closer match of the NCO lattice to that of STO. We investigated the possible causes that make dielectric behavior in STO thin films different from the bulk. We characterized such film structures as lattice parameters, out-of-plane grain size, in-plane grain size, thickness, roughness, strains, and defects using ellipsometry, atomic force microscopy, and a high-resolution X-ray diffractometry. In plane grain size and percentage of defects were found to play a major role on the dielectric performance of the films.

  20. Weighted-density functionals for cavity formation and dispersion energies in continuum solvation models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sundararaman, Ravishankar; Gunceler, Deniz; Arias, T. A.

    2014-10-07

    Continuum solvation models enable efficient first principles calculations of chemical reactions in solution, but require extensive parametrization and fitting for each solvent and class of solute systems. Here, we examine the assumptions of continuum solvation models in detail and replace empirical terms with physical models in order to construct a minimally-empirical solvation model. Specifically, we derive solvent radii from the nonlocal dielectric response of the solvent from ab initio calculations, construct a closed-form and parameter-free weighted-density approximation for the free energy of the cavity formation, and employ a pair-potential approximation for the dispersion energy. We show that the resulting modelmore » with a single solvent-independent parameter: the electron density threshold (n c), and a single solvent-dependent parameter: the dispersion scale factor (s 6), reproduces solvation energies of organic molecules in water, chloroform, and carbon tetrachloride with RMS errors of 1.1, 0.6 and 0.5 kcal/mol, respectively. We additionally show that fitting the solvent-dependent s 6 parameter to the solvation energy of a single non-polar molecule does not substantially increase these errors. Parametrization of this model for other solvents, therefore, requires minimal effort and is possible without extensive databases of experimental solvation free energies.« less

  1. Weighted-density functionals for cavity formation and dispersion energies in continuum solvation models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sundararaman, Ravishankar; Gunceler, Deniz; Arias, T. A.

    2014-10-07

    Continuum solvation models enable efficient first principles calculations of chemical reactions in solution, but require extensive parametrization and fitting for each solvent and class of solute systems. Here, we examine the assumptions of continuum solvation models in detail and replace empirical terms with physical models in order to construct a minimally-empirical solvation model. Specifically, we derive solvent radii from the nonlocal dielectric response of the solvent from ab initio calculations, construct a closed-form and parameter-free weighted-density approximation for the free energy of the cavity formation, and employ a pair-potential approximation for the dispersion energy. We show that the resulting modelmore » with a single solvent-independent parameter: the electron density threshold (n{sub c}), and a single solvent-dependent parameter: the dispersion scale factor (s{sub 6}), reproduces solvation energies of organic molecules in water, chloroform, and carbon tetrachloride with RMS errors of 1.1, 0.6 and 0.5 kcal/mol, respectively. We additionally show that fitting the solvent-dependent s{sub 6} parameter to the solvation energy of a single non-polar molecule does not substantially increase these errors. Parametrization of this model for other solvents, therefore, requires minimal effort and is possible without extensive databases of experimental solvation free energies.« less

  2. Polarizable continuum model associated with the self-consistent-reaction field for molecular adsorbates at the interface.

    PubMed

    Wang, Jing-Bo; Ma, Jian-Yi; Li, Xiang-Yuan

    2010-01-07

    In this work, a new procedure has been developed in order to realize the self-consistent-reaction field computation for interfacial molecules. Based on the extension of the dielectric polarizable continuum model, the quantum-continuum calculations for interfacial molecules have been carried out. This work presents an investigation into how the molecular structure influences the adsorbate-solvent interaction and consequently alters the orientation angle at the air/water interface. Taking both electrostatic and non-electrostatic energies into account, we investigate the orientation behavior of three interfacial molecules, 2,6-dimethyl-4-hydroxy-benzonitrile, 3,5-dimethyl-4-hydroxy-benzonitrile and p-cyanophenol, at the air/water interface. The results show that the hydrophilic hydroxyl groups in 2,6-dimethyl-4-hydroxy-benzonitrile and in p-cyanophenol point from the air to the water side, but the hydroxyl group in 3,5-dimethyl-4-hydroxy-benzonitrile takes the opposite direction. Our detailed analysis reveals that the opposite orientation of 3,5-dimethyl-4-hydroxy-benzonitrile results mainly from the cavitation energy. The different orientations of the hydrophilic hydroxyl group indicate the competition of electrostatic and cavitation energies. The theoretical prediction gives a satisfied explanation of the most recent sum frequency generation measurement for these molecules at the interface.

  3. Structure, Nanomechanics and Dynamics of Dispersed Surfactant-Free Clay Nanocomposite Films

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Zhao, Jing; Snyder, Chad; Karim, Alamgir; National Institute of Standards; Technology Collaboration

    Natural Montmorillonite particles were dispersed as tactoids in thin films of polycaprolactone (PCL) through a flow coating technique assisted by ultra-sonication. Wide angle X-ray scattering (WAXS), Grazing-incidence wide angle X-ray scattering (GI-WAXS), and transmission electron microscopy (TEM) were used to confirm the level of dispersion. These characterization techniques are in conjunction with its nanomechanical properties via strain-induced buckling instability for modulus measurements (SIEBIMM), a high throughput technique to characterize thin film mechanical properties. The linear strengthening trend of the elastic modulus enhancements was fitted with Halpin-Tsai (HT) model, correlating the nanoparticle geometric effects and mechanical behaviors based on continuum theories. The overall aspect ratio of dispersed tactoids obtained through HT model fitting is in reasonable agreement with digital electron microscope image analysis. Moreover, glass transition behaviors of the composites were characterized using broadband dielectric relaxation spectroscopy. The segmental relaxation behaviors indicate that the associated mechanical property changes are due to the continuum filler effect rather than the interfacial confinement effect.

  4. Predicting the breakdown strength and lifetime of nanocomposites using a multi-scale modeling approach

    NASA Astrophysics Data System (ADS)

    Huang, Yanhui; Zhao, He; Wang, Yixing; Ratcliff, Tyree; Breneman, Curt; Brinson, L. Catherine; Chen, Wei; Schadler, Linda S.

    2017-08-01

    It has been found that doping dielectric polymers with a small amount of nanofiller or molecular additive can stabilize the material under a high field and lead to increased breakdown strength and lifetime. Choosing appropriate fillers is critical to optimizing the material performance, but current research largely relies on experimental trial and error. The employment of computer simulations for nanodielectric design is rarely reported. In this work, we propose a multi-scale modeling approach that employs ab initio, Monte Carlo, and continuum scales to predict the breakdown strength and lifetime of polymer nanocomposites based on the charge trapping effect of the nanofillers. The charge transfer, charge energy relaxation, and space charge effects are modeled in respective hierarchical scales by distinctive simulation techniques, and these models are connected together for high fidelity and robustness. The preliminary results show good agreement with the experimental data, suggesting its promise for use in the computer aided material design of high performance dielectrics.

  5. A generalized Poisson solver for first-principles device simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bani-Hashemian, Mohammad Hossein; VandeVondele, Joost, E-mail: joost.vandevondele@mat.ethz.ch; Brück, Sascha

    2016-01-28

    Electronic structure calculations of atomistic systems based on density functional theory involve solving the Poisson equation. In this paper, we present a plane-wave based algorithm for solving the generalized Poisson equation subject to periodic or homogeneous Neumann conditions on the boundaries of the simulation cell and Dirichlet type conditions imposed at arbitrary subdomains. In this way, source, drain, and gate voltages can be imposed across atomistic models of electronic devices. Dirichlet conditions are enforced as constraints in a variational framework giving rise to a saddle point problem. The resulting system of equations is then solved using a stationary iterative methodmore » in which the generalized Poisson operator is preconditioned with the standard Laplace operator. The solver can make use of any sufficiently smooth function modelling the dielectric constant, including density dependent dielectric continuum models. For all the boundary conditions, consistent derivatives are available and molecular dynamics simulations can be performed. The convergence behaviour of the scheme is investigated and its capabilities are demonstrated.« less

  6. Coiled transmission line pulse generators

    DOEpatents

    McDonald, Kenneth Fox

    2010-11-09

    Methods and apparatus are provided for fabricating and constructing solid dielectric "Coiled Transmission Line" pulse generators in radial or axial coiled geometries. The pour and cure fabrication process enables a wide variety of geometries and form factors. The volume between the conductors is filled with liquid blends of monomers, polymers, oligomers, and/or cross-linkers and dielectric powders; and then cured to form high field strength and high dielectric constant solid dielectric transmission lines that intrinsically produce ideal rectangular high voltage pulses when charged and switched into matched impedance loads. Voltage levels may be increased by Marx and/or Blumlein principles incorporating spark gap or, preferentially, solid state switches (such as optically triggered thyristors) which produce reliable, high repetition rate operation. Moreover, these Marxed pulse generators can be DC charged and do not require additional pulse forming circuitry, pulse forming lines, transformers, or an a high voltage spark gap output switch. The apparatus accommodates a wide range of voltages, impedances, pulse durations, pulse repetition rates, and duty cycles. The resulting mobile or flight platform friendly cylindrical geometric configuration is much more compact, light-weight, and robust than conventional linear geometries, or pulse generators constructed from conventional components. Installing additional circuitry may accommodate optional pulse shape improvements. The Coiled Transmission Lines can also be connected in parallel to decrease the impedance, or in series to increase the pulse length.

  7. The Charging of Composites in the Space Environment

    NASA Technical Reports Server (NTRS)

    Czepiela, Steven A.

    1997-01-01

    Deep dielectric charging and subsequent electrostatic discharge in composite materials used on spacecraft have become greater concerns since composite materials are being used more extensively as main structural components. Deep dielectric charging occurs when high energy particles penetrate and deposit themselves in the insulating material of spacecraft components. These deposited particles induce an electric field in the material, which causes the particles to move and thus changes the electric field. The electric field continues to change until a steady state is reached between the incoming particles from the space environment and the particles moving away due to the electric field. An electrostatic discharge occurs when the electric field is greater than the dielectric strength of the composite material. The goal of the current investigation is to investigate deep dielectric charging in composite materials and ascertain what modifications have to be made to the composite properties to alleviate any breakdown issues. A 1-D model was created. The space environment, which is calculated using the Environmental Workbench software, the composite material properties, and the electric field and voltage boundary conditions are input into the model. The output from the model is the charge density, electric field, and voltage distributions as functions of the depth into the material and time. Analysis using the model show that there should be no deep dielectric charging problem with conductive composites such as carbon fiber/epoxy. With insulating materials such as glass fiber/epoxy, Kevlar, and polymers, there is also no concern of deep dielectric charging problems with average day-to-day particle fluxes. However, problems can arise during geomagnetic substorms and solar particle events where particle flux levels increase by several orders of magnitude, and thus increase the electric field in the material by several orders of magnitude. Therefore, the second part of this investigation was an experimental attempt to measure the continuum electrical properties of a carbon fiber/epoxy composite, and to create a composite with tailorable conductivity without affecting its mechanical properties. The measurement of the conductivity and dielectric strength of carbon fiber/epoxy composites showed that these properties are surface layer dominated and difficult to measure. In the second experimental task, the conductivity of a glass fiber/epoxy composite was increased by 3 orders of magnitude, dielectric constant was increased approximately by a factor of 16, with minimal change to the mechanical properties, by adding conductive carbon black to the epoxy.

  8. Enhanced lifetime for thin-dielectric microdischarge-arrays operating in DC

    NASA Astrophysics Data System (ADS)

    Dussart, Remi; Felix, Valentin; Overzet, Lawrence; Aubry, Olivier; Stolz, Arnaud; Lefaucheux, Philippe; Gremi-Univ Orleans-Cnrs Collaboration; University Of Texas At Dallas Collaboration

    2016-09-01

    Micro-hollow cathode discharge arrays using silicon as the cathode have a very limited lifetime because the silicon bubbles and initiates micro-arcing. To avoid this destructive behavior, the same configuration was kept but, another material was selected for the cathode. Using micro and nanotechnologies ordinarily used in microelectronic and MEMS device fabrication, we made arrays of cathode boundary layer (CBL)-type microreactors consisting of nickel electrodes separated by a 6 µm thick SiO2 layer. Microdischarges were ignited in arrays of 100 µm diameter holes at different pressures (200750 Torr) in different gases. Electrical and optical measurements were made to characterize the arrays. Unlike the microdischarges produced using silicon cathodes, the Ni cathode discharges remain very stable with essentially no micro-arcing. DC currents between 50 and 900 µA flowed through each microreactor with a discharge voltage of typically 200 V. Stable V-I characteristics showing both the normal and abnormal regimes were observed and are consistent with the spread of the plasma over the cathode area. Due to their stability and lifetime, new applications of these DC, CBL-type microreactors can now be envisaged.

  9. Study of DC Circuit Breaker of H2-N2 Mixture Gas for High Voltage

    NASA Astrophysics Data System (ADS)

    Shiba, Yuji; Morishita, Yukinaga; Kaneko, Shuhei; Okabe, Shigemitsu; Mizoguchi, Hitoshi; Yanabu, Satoru

    Global warming caused by CO2 etc. is a field where the concern is very high. Especially, automobile emissions are problem for it. Therefore, the hybrid car is widely development and used recently. Hybrid car used electric power and gasoline. So, the car reduces CO2. Hybrid car has engine and motor. To rotate the motor, hybrid car has battery. This battery is large capacity. Therefore, the relay should interrupt high DC current for the switch of the motor and the engine. So, hybrid car used hydrogen gas filling relay We studied interruption test for the research of a basic characteristic of hydrogen gas. DC current has not current zero point. So, it is necessary to make the current zero by high arc voltage and forcible current zero point. The loss coefficient and arc voltage of hydrogen is high. Therefore, we studied interruption test for used high arc voltage. We studied interruption test and dielectric breakdown test of air, pure Hydrogen, and Hydrogen- nitrogen mixture gas. As a result, we realized H2-N2(80%-20%) is the best gas.

  10. Nonequilibrium Green's function theory of resonant steady state photoconduction in a double quantum well FET subject to THz radiation at plasmon frequency

    NASA Astrophysics Data System (ADS)

    Morgenstern Horing, Norman J.; Popov, Vyacheslav V.

    2006-04-01

    Recent experimental observations by X.G. Peralta and S.J. Allen, et al. of dc photoconductivity resonances in steady source-drain current subject to terahertz radiation in a grid-gated double-quantum well FET suggested an association with plasmon resonances. This association was definitively confirmed for some parameter ranges in our detailed electrodynamic absorbance calculations. In this paper we propose that the reason that the dc photoconductance resonances match the plasmon resonances in semiconductors is based on a nonlinear dynamic screening mechanism. In this, we employ a shielded potential approximation that is nonlinear in the terahertz field to determine the nonequilibrium Green's function and associated density perturbation that govern the nonequilibrium dielectric polarization of the medium. This ''conditioning'' of the system by the incident THz radiation results in resonant polarization response at the plasmon frequencies which, in turn, causes a sharp drop of the resistive shielded impurity scattering potentials and attendant increase of the dc source-drain current. This amounts to disabling the impurity scattering mechanism by plasmon resonant behavior in nonlinear screening.

  11. Electrical properties of dispersions of graphene in mineral oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monteiro, O. R., E-mail: othon.monteiro@bakerhughes.com

    2014-02-03

    Dispersions of graphene in mineral oil have been prepared and electrical conductivity and permittivity have been measured. The direct current (DC) conductivity of the dispersions depends on the surface characteristics of the graphene platelets and followed a percolation model with a percolation threshold ranging from 0.05 to 0.1 wt. %. The difference in DC conductivities can be attributed to different states of aggregation of the graphene platelets and to the inter-particle electron transfer, which is affected by the surface radicals. The frequency-dependent conductivity (σ(ω)) and permittivity (ε(ω)) were also measured. The conductivity of dispersions with particle contents much greater than themore » percolation threshold remains constant and equal to the DC conductivity at low frequencies ω with and followed a power-law σ(ω)∝ ω{sup s} dependence at very high frequencies with s≈0.9. For dispersions with graphene concentration near the percolation threshold, a third regime was displayed at intermediate frequencies indicative of interfacial polarization consistent with Maxwell-Wagner effect typically observed in mixtures of two (or more) phases with very distinct electrical and dielectric properties.« less

  12. Study of a DC gas discharge with a copper cathode in a water flow

    NASA Astrophysics Data System (ADS)

    Tazmeev, G. Kh.; Timerkaev, B. A.; Tazmeev, Kh. K.

    2017-07-01

    A dc gas discharge between copper electrodes in the current range of 5-20 A was studied experimentally. The discharge gap length was varied within 45-70 mm. The cathode was a 10-mm-diameter rod placed in the water flowing out from a dielectric tube. Three discharge configurations differing in the position of the cathode upper end with respect to the water surface were considered: (i) above water; (ii) flush with the water surface, and (iii) under water. The electric and optical characteristics of the discharge in the second configuration were studied in more detail. It is established that the discharge properties are similar to those of an electric arc. Considerable cathode erosion was observed in the third configuration. It is revealed that fine-dispersed copper grains form in the course of erosion.

  13. Current-controlled light scattering and asymmetric plasmon propagation in graphene

    NASA Astrophysics Data System (ADS)

    Wenger, Tobias; Viola, Giovanni; Kinaret, Jari; Fogelström, Mikael; Tassin, Philippe

    2018-02-01

    We demonstrate that plasmons in graphene can be manipulated using a dc current. A source-drain current lifts the forward/backward degeneracy of the plasmons, creating two modes with different propagation properties parallel and antiparallel to the current. We show that the propagation length of the plasmon propagating parallel to the drift current is enhanced, while the propagation length for the antiparallel plasmon is suppressed. We also investigate the scattering of light off graphene due to the plasmons in a periodic dielectric environment and we find that the plasmon resonance separates in two peaks corresponding to the forward and backward plasmon modes. The narrower linewidth of the forward propagating plasmon may be of interest for refractive index sensing and the dc current control could be used for the modulation of mid-infrared electromagnetic radiation.

  14. Microwave switching power divider. [antenna feeds

    NASA Technical Reports Server (NTRS)

    Stockton, R. J.; Johnson, R. W. (Inventor)

    1981-01-01

    A pair of parallel, spaced-apart circular ground planes define a microwave cavity with multi-port microwave power distributing switching circuitry formed on opposite sides of a thin circular dielectric substrate disposed between the ground planes. The power distributing circuitry includes a conductive disk located at the center of the substrate and connected to a source of microwave energy. A high speed, low insertion loss switching diode and a dc blocking capacitor are connected in series between the outer end of a transmission line and an output port. A high impedance, microwave blocking dc bias choke is connected between each switching diode and a source of switching current. The switching source forward biases the diodes to couple microwave energy from the conductive disk to selected output ports and, to associated antenna elements connected to the output ports to form a synthesized antenna pattern.

  15. Ionization potential depression and optical spectra in a Debye plasma model

    NASA Astrophysics Data System (ADS)

    Lin, Chengliang; Röpke, Gerd; Reinholz, Heidi; Kraeft, Wolf-Dietrich

    2017-11-01

    We show how optical spectra in dense plasmas are determined by the shift of energy levels as well as the broadening owing to collisions with the plasma particles. In lowest approximation, the interaction with the plasma particles is described by the RPA dielectric function, leading to the Debye shift of the continuum edge. The bound states remain nearly un-shifted, their broadening is calculated in Born approximation. The role of ionization potential depression as well as the Inglis-Teller effect are shown. The model calculations have to be improved going beyond the lowest (RPA) approximation when applying to WDM spectra.

  16. High order ADER schemes for a unified first order hyperbolic formulation of Newtonian continuum mechanics coupled with electro-dynamics

    NASA Astrophysics Data System (ADS)

    Dumbser, Michael; Peshkov, Ilya; Romenski, Evgeniy; Zanotti, Olindo

    2017-11-01

    In this paper, we propose a new unified first order hyperbolic model of Newtonian continuum mechanics coupled with electro-dynamics. The model is able to describe the behavior of moving elasto-plastic dielectric solids as well as viscous and inviscid fluids in the presence of electro-magnetic fields. It is actually a very peculiar feature of the proposed PDE system that viscous fluids are treated just as a special case of elasto-plastic solids. This is achieved by introducing a strain relaxation mechanism in the evolution equations of the distortion matrix A, which in the case of purely elastic solids maps the current configuration to the reference configuration. The model also contains a hyperbolic formulation of heat conduction as well as a dissipative source term in the evolution equations for the electric field given by Ohm's law. Via formal asymptotic analysis we show that in the stiff limit, the governing first order hyperbolic PDE system with relaxation source terms tends asymptotically to the well-known viscous and resistive magnetohydrodynamics (MHD) equations. Furthermore, a rigorous derivation of the model from variational principles is presented, together with the transformation of the Euler-Lagrange differential equations associated with the underlying variational problem from Lagrangian coordinates to Eulerian coordinates in a fixed laboratory frame. The present paper hence extends the unified first order hyperbolic model of Newtonian continuum mechanics recently proposed in [110,42] to the more general case where the continuum is coupled with electro-magnetic fields. The governing PDE system is symmetric hyperbolic and satisfies the first and second principle of thermodynamics, hence it belongs to the so-called class of symmetric hyperbolic thermodynamically compatible systems (SHTC), which have been studied for the first time by Godunov in 1961 [61] and later in a series of papers by Godunov and Romenski [67,69,119]. An important feature of the proposed model is that the propagation speeds of all physical processes, including dissipative processes, are finite. The model is discretized using high order accurate ADER discontinuous Galerkin (DG) finite element schemes with a posteriori subcell finite volume limiter and using high order ADER-WENO finite volume schemes. We show numerical test problems that explore a rather large parameter space of the model ranging from ideal MHD, viscous and resistive MHD over pure electro-dynamics to moving dielectric elastic solids in a magnetic field.

  17. Direct current dielectric barrier assistant discharge to get homogeneous plasma in capacitive coupled discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Yinchang, E-mail: ycdu@mail.ustc.edu.cn; Max-Planck Institute for Extraterrestrial Physics, D-85748 Garching; Li, Yangfang

    In this paper, we propose a method to get more homogeneous plasma in the geometrically asymmetric capacitive coupled plasma (CCP) discharge. The dielectric barrier discharge (DBD) is used for the auxiliary discharge system to improve the homogeneity of the geometrically asymmetric CCP discharge. The single Langmuir probe measurement shows that the DBD can increase the electron density in the low density volume, where the DBD electrodes are mounted, when the pressure is higher than 5 Pa. By this manner, we are able to improve the homogeneity of the plasma production and increase the overall density in the target volume. At last,more » the finite element simulation results show that the DC bias, applied to the DBD electrodes, can increase the homogeneity of the electron density in the CCP discharge. The simulation results show a good agreement with the experiment results.« less

  18. Solid state parameters, structure elucidation, High Resolution X-Ray Diffraction (HRXRD), phase matching, thermal and impedance analysis on L-Proline trichloroacetate (L-PTCA) NLO single crystals.

    PubMed

    Kalaiselvi, P; Raj, S Alfred Cecil; Jagannathan, K; Vijayan, N; Bhagavannarayana, G; Kalainathan, S

    2014-11-11

    Nonlinear optical single crystal of L-Proline trichloroacetate (L-PTCA) was successfully grown by Slow Evaporation Solution Technique (SEST). The grown crystals were subjected to single crystal X-ray diffraction analysis to confirm the structure. From the single crystal XRD data, solid state parameters were determined for the grown crystal. The crystalline perfection has been evaluated using high resolution X-ray diffractometer. The frequencies of various functional groups were identified from FTIR spectral analysis. The percentage of transmittance was obtained from UV Visible spectral analysis. TGA-DSC measurements indicate the thermal stability of the crystal. The dielectric constant, dielectric loss and ac conductivity were measured by the impedance analyzer. The DC conductivity was calculated by the cole-cole plot method. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Investigation of structural, optical and electrical properties of Co3O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Bhargava, Richa; Khan, Shakeel; Ahmad, Naseem; Ansari, Mohd Mohsin Nizam

    2018-05-01

    In the current work, we report the synthesis of Cobalt oxide (Co3O4) NPs (NPs) by co-precipitation method. The structural analysis was confirmed by using X-ray diffractometer (XRD) which shows that the Co3O4 NPs have cubic phase. The average crystallite size and the lattice parameter were calculated for Co3O4 NPs. The functional groups of the as-synthesized sample were examined by Fourier transform infrared spectroscopy (FTIR). The optical band gap of Co3O4 NPs was estimated by using UV diffuse reflectance spectroscopy and the Band gap was evaluated by using Tauc relation. The temperature dependence of dielectric constant and dielectric loss were studied over a range of temperature 50-300 °C. The DC electrical resistivity of Co3O4 NPs shows a semiconducting behaviour and the value of activation energy was calculated by using Arrhenius equation.

  20. A solid-state dielectric elastomer switch for soft logic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chau, Nixon; Slipher, Geoffrey A., E-mail: geoffrey.a.slipher.civ@mail.mil; Mrozek, Randy A.

    In this paper, we describe a stretchable solid-state electronic switching material that operates at high voltage potentials, as well as a switch material benchmarking technique that utilizes a modular dielectric elastomer (artificial muscle) ring oscillator. The solid-state switching material was integrated into our oscillator, which self-started after 16 s and performed 5 oscillations at a frequency of 1.05 Hz with 3.25 kV DC input. Our materials-by-design approach for the nickel filled polydimethylsiloxane based switch has resulted in significant improvements over previous carbon grease-based switches in four key areas, namely, sharpness of switching behavior upon applied stretch, magnitude of electrical resistance change, ease ofmore » manufacture, and production rate. Switch lifetime was demonstrated to be in the range of tens to hundreds of cycles with the current process. An interesting and potentially useful strain-based switching hysteresis behavior is also presented.« less

  1. Numerical and experimental study on a pulsed-dc plasma jet

    NASA Astrophysics Data System (ADS)

    Liu, X. Y.; Pei, X. K.; Lu, X. P.; Liu, D. W.

    2014-06-01

    A numerical and experimental study of plasma jet propagation in a low-temperature, atmospheric-pressure, helium jet in ambient air is presented. A self-consistent, multi-species, two-dimensional axially symmetric plasma model with detailed finite-rate chemistry of helium-air mixture composition is used to provide insights into the propagation of the plasma jet. The obtained simulation results suggest that the sheath forms near the dielectric tube inner surface and shields the plasma channel from the tube surface. The strong electric field at the edge of the dielectric field enhances the ionization in the air mixing layer; therefore, the streamer head becomes ring-shaped when the streamer runs out of the tube. The avalanche-to-streamer transition is the main mechanism of streamer advancement. Penning ionization dominates the ionization reactions and increases the electrical conductivity of the plasma channel. The simulation results are supported by experimental observations under similar discharge conditions.

  2. Effect of Dielectric Barrier Discharge Plasma Actuators on Non-equilibrium Hypersonic Flows

    DTIC Science & Technology

    2014-10-28

    goes into the kinetic energy of the electrons rather than heating of the surrounding gas.24 The examples of these include corona discharge and micro...Moreau, G. Artana, and G. Touchard, “Influence of a DC corona discharge on the airflow along an inclined flat plate,” J. Electrostat. 51–52, 300 306...10), 2554 2564 (2007). 42E. Moreau, G. Artana, and G. Touchard, “Surface corona discharge along an insulating flat plate in air applied to

  3. Electrode and grain-boundary effects on the conductivity of CaCu{sub 3}Ti{sub 4}O{sub 12}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Lei

    2005-07-11

    The ac conductivity of CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) ceramics was studied in the temperature range 173

  4. Investigation of Optical Fibers for Coherent Anti-Stokes Raman Scattering (CARS) Spectroscopy in Reacting Flows (Postprint)

    DTIC Science & Technology

    2012-03-01

    applications. Springer, Netherlands Pronko PP, VanRompay PA, Horvath C, Loesel F, Juhasz T, Liu X, Mourou G (1998) Avalanche ionization and dielectric Exp...Birks TA, Russell PSJ, Roberts PJ, Allan DC (1999) Single-mode photonic band gap guidance of light in air. Science 285:1537–1539 Du D, Liu X, Mourou G ...Lowdermilk WH, Milam D (1984) Review of ultraviolet damage threshold measurements at Lawrence Livemore National Labo- ratory. Proc SPIE 476:143–162 Mann G

  5. New Insulation Constructions for Aerospace Wiring Applications. Volume 1. Testing and Evaluation

    DTIC Science & Technology

    1991-06-01

    28 S.3.2 CORONA INCEPTION AND EXTINCIION VOLTAGES 5 - 33 5.3.2.. AC CORONA INCEPTION AND EXTINCTION VOLTAGES 5...... - 33 5.3.2.2 DC CORONA ...SETUP ....... .. 5 - 27 5.10 DIELECTRIC CONSTANT TEST RESULTS .......... .. 5 - 32 5.11 AC CORONA INCEPTION AND EXTINCTION TEST, 22 AWG, 8.6 MIL WALL...AIRFRAME WIRE ... .......... 5 - 39 5.12 AC CORONA INCEPTION AND EXTINCTION TEST, 22 AWG, 5.8 MIL WALL, HOOK UP WIRE .... ........... 5 - 40 5.13 AC

  6. Characteristics of dielectric properties and conduction mechanism of TlInS2:Cu single crystals

    NASA Astrophysics Data System (ADS)

    El-Nahass, M. M.; Ali, H. A. M.; El-Zaidia, E. F. M.

    2013-12-01

    Single crystals of TlInS2:Cu were grown by the modified Bridgman method. The dielectric behavior of TlInS2:Cu was investigated using the impedance spectroscopy technique. The real (ε1), imaginary (ε2) parts of complex dielectric permittivity and ac conductivity were measured in the frequency range (42-2×105) Hz with a variation of temperature in the range from 291 K to 483 K. The impedance data were presented in Nyquist diagrams for different temperatures. The frequency dependence of σtot (ω) follows the Jonscher's universal dynamic law with the relation σtot (ω)=σdc+Aωs, (where s is the frequency exponent). The mechanism of the ac charge transport across the layers of TlInS2:Cu single crystals was referred to the hopping over localized states near the Fermi level. The examined system exhibits temperature dependence of σac (ω), which showed a linear increase with the increase in temperature at different frequencies. Some parameters were calculated as: the density of localized states near the Fermi level, NF, the average time of charge carrier hopping between localized states, τ, and the average hopping distance, R.

  7. Dielectric investigation of the sliding charge-density wave in Tl0.3MoO3

    NASA Astrophysics Data System (ADS)

    Ramanujachary, K. V.; Collins, B. T.; Greenblatt, M.; Gerhardt, R.; Rietman, E. A.

    1988-10-01

    We have investigated the low-frequency complex conductivity of the charge-density-wave condensate in Tl0.3MoO3, in the temperature range 40-90 K, by the measurement of admittance sampled in the frequency interval 5 Hz-13 MHz. The observed response can be characterized in terms of a simple Debye relaxation model with a distribution of relaxation times by analogy with the reported behavior of its isostructural analog K0.3MoO3. Despite qualitative similarities with the general trends observed in K0.3MoO3, the relaxational response in Tl0.3MoO3 differed significantly in detail. Both the mean relaxation times (τ0) and static dielectric constants (ɛ0) are shown to have Arrhenius temperature dependence with activation energies of 743 and 152 K, respectively. For applied dc biases above the threshold field (ET) for nonlinear conduction, the response shows structure at frequencies that resemble ``washboard'' characteristics of a moving charge condensate. From the values of the high-frequency real and imaginary parts of the dielectric constants, the existence of yet another relaxation process is proposed.

  8. Impedance spectroscopy study of SiO2-Li2O:Nd2O3 glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pereia, R.; Gozzo, C B; Guedes, I.

    2014-01-01

    In the present study, neodymium-doped lithium silicate glasses have been prepared by the conventional melt-quenching technique. The dielectric properties, electric modulus and electrical conductivity of SiO2-Li2O (SiLi-0Nd) and SiO2-Li2O:Nd2O3 (SiLi-1.35Nd) have been studied from 1 Hz to 1 MHz in the 333 423 K temperature range. At a given temperature and frequency, we observe that the resistivity increases while the conductivity accordingly decreases when neodymium ions are added to the glass matrix. The activation energy of two distinct regions was evaluated from the ln( dc)=f(1/T) plot and was found to be E1(T<363K)=0.61(0.66)eV and E2(T>363K)=1.26(1.09)eV for SiLi-0Nd (SiLi-1,35Nd). The dielectric constantmore » ( Re) decreases while the dielectric loss (tan ( )) increases under Nd2O3 doping. We also observe that for both glasses, Re and tan ( ) tend to increase with increasing temperature and decrease with increasing frequency.« less

  9. Ferroelectric properties of PbxSr1-xTiO3 and its compositionally graded thin films grown on the highly oriented LaNiO3 buffered Pt /Ti/SiO2/Si substrates

    NASA Astrophysics Data System (ADS)

    Zhai, Jiwei; Yao, Xi; Xu, Zhengkui; Chen, Haydn

    2006-08-01

    Thin films of ferroelectric PbxSr1-xTiO3 (PST) with x =0.3-0.7 and graded composition were fabricated on LaNiO3 buffered Pt /Ti/SiO2/Si substrates by a sol-gel deposition method. The thin films crystallized into a single perovskite structure and exhibited highly (100) preferred orientation after postdeposition annealing at 650°C. The grain size of PST thin films systematically decreased with the increase of Sr content. Dielectric and ferroelectric properties were investigated as a function of temperature, frequency, and dc applied field. Pb0.6Sr0.4TiO3 films showed a dominant voltage dependence of dielectric constant with a high tunability in a temperature range of 25-230°C. The compositionally graded PST thin films with x =0.3-0.6 also showed the high tunability. The graded thin films exhibited a diffused phase transition accompanied by a diffused peak in the temperature variations of dielectric constants. This kind of thin films has a potential in a fabrication of a temperature stable tunable device.

  10. Ultrahigh frequency tunability of aperture-coupled microstrip antenna via electric-field tunable BST

    NASA Astrophysics Data System (ADS)

    Du, Hong-Lei; Xue, Qian; Gao, Xiao-Yang; Yao, Feng-Rui; Lu, Shi-Yang; Wang, Ye-Long; Liu, Chun-Heng; Zhang, Yong-Cheng; Lü, Yue-Guang; Li, Shan-Dong

    2015-12-01

    A composite ceramic with nominal composition of 45.0 wt%(Ba0.5Sr0.5)TiO3-55.0 wt%MgO (acronym is BST-MgO) is sintered for fabricating a frequency reconfigurable aperture-coupled microstrip antenna. The calcined BST-MgO composite ceramic exhibits good microwave dielectric properties at X-band with appropriate dielectric constant ɛr around 85, lower dielectric loss tan δ about 0.01, and higher permittivity tunability 14.8% at 8.33 kV/cm. An ultrahigh E-field tunability of working frequency up to 11.0% (i.e., from 9.1 GHz to 10.1 GHz with a large frequency shift of 1000 MHz) at a DC bias field from 0 to 8.33 kV/cm and a considerably large center gain over 7.5 dB are obtained in the designed frequency reconfigurable microstrip antenna. These results demonstrate that BST materials are promising for the frequency reconfigurable antenna. Project supported by the National Natural Science Foundation of China (Grant No. 11074040) and the Key Project of Shandong Provincial Department of Science and Technology, China (Grant No. ZR2012FZ006).

  11. Soft Dielectric Elastomer Oscillators Driving Bioinspired Robots.

    PubMed

    Henke, E-F Markus; Schlatter, Samuel; Anderson, Iain A

    2017-12-01

    Entirely soft robots with animal-like behavior and integrated artificial nervous systems will open up totally new perspectives and applications. To produce them, we must integrate control and actuation in the same soft structure. Soft actuators (e.g., pneumatic and hydraulic) exist but electronics are hard and stiff and remotely located. We present novel soft, electronics-free dielectric elastomer oscillators, which are able to drive bioinspired robots. As a demonstrator, we present a robot that mimics the crawling motion of the caterpillar, with an integrated artificial nervous system, soft actuators and without any conventional stiff electronic parts. Supplied with an external DC voltage, the robot autonomously generates all signals that are necessary to drive its dielectric elastomer actuators, and it translates an in-plane electromechanical oscillation into a crawling locomotion movement. Therefore, all functional and supporting parts are made of polymer materials and carbon. Besides the basic design of this first electronic-free, biomimetic robot, we present prospects to control the general behavior of such robots. The absence of conventional stiff electronics and the exclusive use of polymeric materials will provide a large step toward real animal-like robots, compliant human machine interfaces, and a new class of distributed, neuron-like internal control for robotic systems.

  12. A Simple Method for High-Performance, Solution-Processed, Amorphous ZrO2 Gate Insulator TFT with a High Concentration Precursor

    PubMed Central

    Cai, Wei; Zhu, Zhennan; Wei, Jinglin; Fang, Zhiqiang; Zheng, Zeke; Zhou, Shangxiong; Peng, Junbiao; Lu, Xubing

    2017-01-01

    Solution-processed high-k dielectric TFTs attract much attention since they cost relatively little and have a simple fabrication process. However, it is still a challenge to reduce the leakage of the current density of solution-processed dielectric TFTs. Here, a simple solution method is presented towards enhanced performance of ZrO2 films by intentionally increasing the concentration of precursor. The ZrO2 films not only exhibit a low leakage current density of 10−6 A/cm2 at 10 V and a breakdown field of 2.5 MV/cm, but also demonstrate a saturation mobility of 12.6 cm2·V−1·s−1 and a Ion/Ioff ratio of 106 in DC pulse sputtering IGZO-TFTs based on these films. Moreover, the underlying mechanism of influence of precursor concentration on film formation is presented. Higher concentration precursor results in a thicker film within same coating times with reduced ZrO2/IGZO interface defects and roughness. It shows the importance of thickness, roughness, and annealing temperature in solution-processed dielectric oxide TFT and provides an approach to precisely control solution-processed oxide films thickness. PMID:28825652

  13. A Simple Method for High-Performance, Solution-Processed, Amorphous ZrO₂ Gate Insulator TFT with a High Concentration Precursor.

    PubMed

    Cai, Wei; Zhu, Zhennan; Wei, Jinglin; Fang, Zhiqiang; Ning, Honglong; Zheng, Zeke; Zhou, Shangxiong; Yao, Rihui; Peng, Junbiao; Lu, Xubing

    2017-08-21

    Solution-processed high-k dielectric TFTs attract much attention since they cost relatively little and have a simple fabrication process. However, it is still a challenge to reduce the leakage of the current density of solution-processed dielectric TFTs. Here, a simple solution method is presented towards enhanced performance of ZrO₂ films by intentionally increasing the concentration of precursor. The ZrO₂ films not only exhibit a low leakage current density of 10 -6 A/cm² at 10 V and a breakdown field of 2.5 MV/cm, but also demonstrate a saturation mobility of 12.6 cm²·V -1 ·s -1 and a I on /I off ratio of 10⁶ in DC pulse sputtering IGZO-TFTs based on these films. Moreover, the underlying mechanism of influence of precursor concentration on film formation is presented. Higher concentration precursor results in a thicker film within same coating times with reduced ZrO₂/IGZO interface defects and roughness. It shows the importance of thickness, roughness, and annealing temperature in solution-processed dielectric oxide TFT and provides an approach to precisely control solution-processed oxide films thickness.

  14. Performance investigation of bandgap, gate material work function and gate dielectric engineered TFET with device reliability improvement

    NASA Astrophysics Data System (ADS)

    Raad, Bhagwan Ram; Nigam, Kaushal; Sharma, Dheeraj; Kondekar, P. N.

    2016-06-01

    This script features a study of bandgap, gate material work function and gate dielectric engineering for enhancement of DC and Analog/RF performance, reduction in the hot carriers effect (HCEs) and drain induced barrier lowering (DIBL) for better device reliability. In this concern, the use of band gap and gate material work function engineering improves the device performance in terms of the ON-state current and suppressed ambipolar behaviour with maintaining the low OFF-state current. With these advantages, the use of gate material work function engineering imposes restriction on the high frequency performance due to increment in the parasitic capacitances and also introduces the hot carrier effects. Hence, the gate dielectric engineering with bandgap and gate material work function engineering are used in this paper to overcome the cons of the gate material work function engineering by obtaining a superior performance in terms of the current driving capability, ambipolar conduction, HCEs, DIBL and high frequency parameters of the device for ultra-low power applications. Finally, the optimization of length for different work function is performed to get the best out of this.

  15. Sources and transformations of anthropogenic nitrogen along an urban river-estuarine continuum

    NASA Astrophysics Data System (ADS)

    Pennino, Michael J.; Kaushal, Sujay S.; Murthy, Sudhir N.; Blomquist, Joel D.; Cornwell, Jeff C.; Harris, Lora A.

    2016-11-01

    Urbanization has altered the fate and transport of anthropogenic nitrogen (N) in rivers and estuaries globally. This study evaluates the capacity of an urbanizing river-estuarine continuum to transform N inputs from the world's largest advanced (e.g., phosphorus and biological N removal) wastewater treatment facility. Effluent samples and surface water were collected monthly along the Potomac River estuary from Washington D.C. to the Chesapeake Bay over a distance of 150 km. In conjunction with box model mass balances, nitrate stable isotopes and mixing models were used to trace the fate of urban wastewater nitrate. Nitrate concentrations and δ15N-NO3- values were higher down-estuary from the Blue Plains wastewater outfall in Washington D.C. (2.25 ± 0.62 mg L-1 and 25.7 ± 2.9 ‰, respectively) compared to upper-estuary concentrations (1.0 ± 0.2 mg L-1 and 9.3 ± 1.4 ‰, respectively). Nitrate concentration then decreased rapidly within 30 km down-estuary (to 0.8 ± 0.2 mg L-1), corresponding to an increase in organic nitrogen and dissolved organic carbon, suggesting biotic uptake and organic transformation. TN loads declined down-estuary (from an annual average of 48 000 ± 5000 kg day-1 at the sewage treatment plant outfall to 23 000 ± 13 000 kg day-1 at the estuary mouth), with the greatest percentage decrease during summer and fall. Annually, there was a 70 ± 31 % loss in wastewater NO3- along the estuary, and 28 ± 6 % of urban wastewater TN inputs were exported to the Chesapeake Bay, with the greatest contribution of wastewater TN loads during the spring. Our results suggest that biological transformations along the urban river-estuary continuum can significantly transform wastewater N inputs from major cities globally, and more work is necessary to evaluate the potential of organic nitrogen and carbon to contribute to eutrophication and hypoxia.

  16. Optical studies of metallo-dielectric photonic crystals

    NASA Astrophysics Data System (ADS)

    Kamaev, Vladimir

    2007-12-01

    Metallo-dielectric photonic crystals (MDPCs) are characterized by a large difference between the dielectric constants of the constituents. Owing to their high DC conductivity a broad omnidirectional band gap is formed at low frequencies. At the same time there exist numerous propagating electromagnetic modes at frequencies above a cutoff. This gives a possibility of creating a "transparent" metal: a crystal transparent in the visible spectral range and simultaneously having high DC conductivity. Since the cutoff wavelength linearly scales with the crystal periodicity, in order to make an MDPC with propagating modes in the visible range the crystal periodicity has to be around a quarter micrometer. Fabrication of such a crystal is a challenging task. One of the feasible choices is natural or artificial opals, structures made of silica balls arranged into a close packed fcc lattice. The ball diameters could vary from 200 nm to several microns, allowing the desired optical features to be in the visible spectral range. In the present work we studied metal-infiltrated opals numerically, analytically, and experimentally (Chapters 1 and 4). Both theory and experiment revealed high reflectance of the samples at large wavelengths associated with the low frequency metallic band gap formation, and low reflectance at short wavelengths that has characteristic wiggles. Contrarily, the absorbance is low in the IR region and goes up towards the UV end, which is due to low group velocity of light and high metal absorption in the region. Numerical analysis of thin metal-infiltrated opals (˜3-5 layers) did show a transmission peak around the first reflectance minimum and cutoff frequency. In Chapter 5 we present transmission experiments on thin metal films perforated with periodic arrays of holes or deposited on an opal monolayer. Both types of 2D MDPCs exhibited anomalous transmission peaks associated with surface plasma excitations. It was shown that the phenomenon could be utilized in organic light emitting diodes (OLEDs) and promotes an enhancement in the OLED electroluminescence quantum efficiency (ELQE).

  17. Improvements in electrical and dielectric properties of substituted multiferroic LaMnO{sub 3} based nanostructures synthesized by co-precipitation method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahmood, Azhar; Warsi, Muhammad Farooq, E-mail: Farooq.warsi@iub.edu.pk; Ashiq, Muhammad Naeem

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ► Simultaneous double ion substitutions philosophy is introduced in LaMnO{sub 3}. ► La{sub 1−x}Gd{sub x}Mn{sub 1−y}Cr{sub y}O{sub 3} nanoparticles are not reported previously. ► La{sub 1−x}Gd{sub x}Mn{sub 1−y}Cr{sub y}O{sub 3} nanoparticles are synthesized by co-precipitation method. ► The 12 fold increase in resistivity of LaMnO{sub 3} nanostructures is observed. -- Abstract: A series of La{sub 1−x}Gd{sub x}Mn{sub 1−y}Cr{sub y}O{sub 3} nanoparticles (where x, y = 0, 0.25, 0.50, 0.75 and 1.0) has been synthesized by the chemical co-precipitation method, involving double ion substitution philosophy. The nanoparticles were characterized by thermo gravimetric analysis (TGA), X-ray fluorescencemore » spectrometry (XRF), X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, vibrating sample magnetometer (VSM), DC electrical resistivity and dielectric measurements. The XRD and FTIR analysis confirmed the single orthorhombic phase and the crystallite size were found in the range of 16–34 nm. DC resistivity exhibited very interesting behavior which increased from 1.41 × 10{sup 8} to 16.35 ± 0.2 × 10{sup 8} Ω cm upon complete double ions replacement of La and Mn with Gd and Cr, respectively. This very high resistivity variation upon substitution definitely would open new avenues for applications of these materials in microwave devices and other related areas. The dielectric properties of these nanoparticles were also studied at room temperature in the range of 6 kHz to 5 MHz and the maximum dielectric behavior (ε′ = 2.86 × 10{sup 3}, tan δ = 5.41, ε″ = 15.5 × 10{sup 3}) was exhibited by La{sub 0.75}Gd{sub 0.25}Mn{sub 0.75}Cr{sub 0.25}O{sub 3} at 6 kHz. Hysteresis loops measurements showed that the synthesized nanomaterials are paramagnetic in nature at room temperature.« less

  18. Development of an HIV Testing Dashboard to Complement the HIV Care Continuum Among MSM, PWID, and Heterosexuals in Washington, DC, 2007-2015.

    PubMed

    Patrick, Rudy; Greenberg, Alan; Magnus, Manya; Opoku, Jenevieve; Kharfen, Michael; Kuo, Irene

    2017-07-01

    We developed an HIV testing dashboard to complement the HIV care continuum in selected high-risk populations. Using National HIV Behavioral Surveillance (NHBS) data, we examined trends in HIV testing and care for men who have sex with men (MSM), persons who inject drugs (PWID), and heterosexuals at elevated risk (HET). Between 2007 and 2015, 4792 participants ≥18 years old completed a behavioral survey and were offered HIV testing. For the testing dashboard, proportions ever tested, tested in the past year, testing HIV-positive, and newly testing positive were calculated. An abbreviated care continuum for self-reported positive (SRP) persons included ever engagement in care, past year care, and current antiretroviral (ARV) use. The testing dashboard and care continuum were calculated separately for each population. Chi-square test for trend was used to assess significant trends over time. Among MSM, lifetime HIV testing and prevalence significantly increased from 96% to 98% (P = 0.01) and 14%-20% (P = 0.02) over time; prevalence was highest among black MSM at all time points. HIV prevalence among female persons who inject drugs was significantly higher in 2015 vs. 2009 (27% and 13%; P < 0.01). Among heterosexuals at elevated risk from 2010 to 2013, annual testing increased significantly (45%-73%; P < 0.001) and the proportion newly diagnosed decreased significantly (P < 0.01). Self-reported positive MSM had high levels of care engagement and antiretroviral use; among self-reported positive persons who inject drugs and heterosexuals at elevated risk, past year care engagement and antiretroviral use increased over time. The HIV testing dashboard can be used to complement the HIV care continuum to display improvements and disparities in HIV testing and care over time.

  19. Effect of surface charge convection and shape deformation on the dielectrophoretic motion of a liquid drop

    NASA Astrophysics Data System (ADS)

    Mandal, Shubhadeep; Bandopadhyay, Aditya; Chakraborty, Suman

    2016-04-01

    The dielectrophoretic motion and shape deformation of a Newtonian liquid drop in an otherwise quiescent Newtonian liquid medium in the presence of an axisymmetric nonuniform dc electric field consisting of uniform and quadrupole components is investigated. The theory put forward by Feng [J. Q. Feng, Phys. Rev. E 54, 4438 (1996), 10.1103/PhysRevE.54.4438] is generalized by incorporating the following two nonlinear effects—surface charge convection and shape deformation—towards determining the drop velocity. This two-way coupled moving boundary problem is solved analytically by considering small values of electric Reynolds number (ratio of charge relaxation time scale to the convection time scale) and electric capillary number (ratio of electrical stress to the surface tension) under the framework of the leaky dielectric model. We focus on investigating the effects of charge convection and shape deformation for different drop-medium combinations. A perfectly conducting drop suspended in a leaky (or perfectly) dielectric medium always deforms to a prolate shape and this kind of shape deformation always augments the dielectrophoretic drop velocity. For a perfectly dielectric drop suspended in a perfectly dielectric medium, the shape deformation leads to either increase (for prolate shape) or decrease (for oblate shape) in the dielectrophoretic drop velocity. Both surface charge convection and shape deformation affect the drop motion for leaky dielectric drops. The combined effect of these can significantly increase or decrease the dielectrophoretic drop velocity depending on the electrohydrodynamic properties of both the liquids and the relative strength of the electric Reynolds number and electric capillary number. Finally, comparison with the existing experiments reveals better agreement with the present theory.

  20. Electrowetting on dielectric: experimental and model study of oil conductivity on rupture voltage

    NASA Astrophysics Data System (ADS)

    Zhao, Qing; Tang, Biao; Dong, Baoqin; Li, Hui; Zhou, Rui; Guo, Yuanyuan; Dou, Yingying; Deng, Yong; Groenewold, Jan; Henzen, Alexander Victor; Zhou, Guofu

    2018-05-01

    Electrowetting on dielectric devices uses a conducting (water) and insulating (oil) liquid phase in conjunction on a dielectric layer. In these devices, the wetting properties of the liquid phases can be manipulated by applying an electric field. The electric field can rupture the initially flat oil film and promotes further dewetting of the oil. Here, we investigate a problem in the operation of electrowetting on dielectric caused by a finite conductivity of the oil. In particular, we find that the voltage at which the oil film ruptures is sensitive to the application of relatively low DC voltages prior to switching. Here, we systematically investigate this dependence using controlled driving schemes. The mechanism behind these history effects point to charge transport processes in the dielectric and the oil, which can be modeled and characterized by a decay time. To quantify the effects the typical response timescales have been measured with a high-speed video camera. The results have been reproduced in simulations. In addition, a simplified yet accurate equivalent circuit model is developed to analyze larger data sets more conveniently. The experimental data support the hypothesis that each pixel can be characterized by a single decay time. We studied an ensemble of pixels and found that they showed a rather broad distribution of decay times with an average value of about 440 ms. This decay time can be interpreted as a discharge timescale of the oil, not to be confused with discharge of the entire system which is generally much faster (<1 ms). Through the equivalent circuit model, we also found that variations in the fluoropolymer (FP) conductivity cannot explain the distribution of decay times, while variations in oil conductivity can.

  1. Conformation and dynamics of polymer chains on dirty surfaces: A discrete-to-continuum approach

    NASA Astrophysics Data System (ADS)

    Foo, Grace M.; Pandey, R. B.

    1998-07-01

    A discrete-to-continuum (DC) simulation approach is introduced to study the statics and dynamics of polymer chains in two dimensions with quenched barriers, a dirty surface. In our DC hybrid approach, the large-scale relaxation of polymer chains on a discrete disordered lattice is followed by off-lattice simulation using a bead-spring chain model with a finitely extensible nonlinear elastic (FENE) potential for covalent bonds and Lennard-Jones (LJ) potential for nonbonded interactions. Segregation/folding of chains, which occurs at low temperatures (T=0.2, 1.0) with LJ interaction, becomes more difficult as the concentration of barriers increases, due to a screening effect of the barriers. In contrast to the chains' contraction at high temperature (i.e., T=5) and their collapse in athermal systems, chains are elongated on increasing the barrier concentration—a barrier-induced stretching. Variations of the root-mean-square (rms) displacements of the center of mass (Rcm) of the chains and their center node (Rcn) with time (t) show power-law behaviors (Rcm˜tν1, Rcn˜tν2) with nonuniversal exponents in the range ν1≃0.40-0.05 and ν2≃0.30-0.05, respectively, depending on temperature and barrier concentration. The radius of gyration (Rg) and the average bond length () expand on increasing the barrier concentration at low temperature and contract at high temperature, which is consistent with the variation of the width of the radial distribution function.

  2. Study of structural, electrical, and dielectric properties of phosphate-borate glasses and glass-ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melo, B. M. G.; Graça, M. P. F., E-mail: mpfg@ua.pt; Prezas, P. R.

    2016-08-07

    In this work, phosphate-borate based glasses with molar composition 20.7P{sub 2}O{sub 5}–17.2Nb{sub 2}O{sub 5}–13.8WO{sub 3}–34.5A{sub 2}O–13.8B{sub 2}O{sub 3}, where A = Li, Na, and K, were prepared by the melt quenching technique. The as-prepared glasses were heat-treated in air at 800 °C for 4 h, which led to the formation of glass-ceramics. These high chemical and thermal stability glasses are good candidates for several applications such as fast ionic conductors, semiconductors, photonic materials, electrolytes, hermetic seals, rare-earth ion host solid lasers, and biomedical materials. The present work endorses the analysis of the electrical conductivity of the as-grown samples, and also the electrical, dielectric,more » and structural changes established by the heat-treatment process. The structure of the samples was analyzed using X-Ray powder Diffraction (XRD), Raman spectroscopy, and density measurements. Both XRD and Raman analysis confirmed crystals formation through the heat-treatment process. The electrical ac and dc conductivities, σ{sub ac} and σ{sub dc}, respectively, and impedance spectroscopy measurements as function of the temperature, varying from 200 to 380 K, were investigated for the as-grown and heat-treated samples. The impedance spectroscopy was measured in the frequency range of 100 Hz–1 MHz.« less

  3. Crystal structure, electrical transport and phase transition in 2-methoxyanilinium hexachlorido stannate(IV) dehydrate

    NASA Astrophysics Data System (ADS)

    Karoui, Sahel; Chouaib, Hassen; Kamoun, Slaheddine

    2017-04-01

    A new organic-inorganic (C7H10NO)2[SnCl6]2H2O compound was synthesized and characterized by X-ray diffraction, thermal analysis, NMR spectroscopy and dielectric measurements. The crystal structure refinement shows that this compound crystallizes at 298 K in the monoclinic system (P21/a space group (Z = 2)). The structure was solved by Patterson method and refined to a final value of R = 0.034 for 2207 independent observed reflections. The cohesion and stability of the atomic arrangement result from the establishment of Nsbnd H⋯Cl, O(W)sbnd H(W)⋯Cl and Nsbnd H⋯O(W) hydrogen bonds between (C7H10NO)+ cations, isolated (SnCl6)2- anions and water molecules. This compound exhibits a phase transition at 305 K which was characterized by differential scanning calorimetry (DSC), X-rays powder diffraction and dielectric measurements. At high frequency, the electrical σTot.(ω,T) conductivity obey to the Jonscher's power law σTot.(ω,T) = σDC(T) + B(T) ωS(T). DC and AC conductivity in (C7H10NO)2[SnCl6]2H2O was investigated revealing that the phase transition from the monoclinic P21/a (phase I) to the monoclinic C2/c (phase II) which occurs at 305 K is characterized by a change of the mechanism of the electric transport: SPT in phase I and CBH in phase II.

  4. Ferroelectric films of deuterated glycine phosphite: Structure and dielectric properties

    NASA Astrophysics Data System (ADS)

    Balashova, E. V.; Krichevtsov, B. B.; Svinarev, F. B.; Lemanov, V. V.

    2013-05-01

    Polycrystalline textured films of deuterated glycine phosphite consisting of single-crystal blocks with lateral dimensions ˜(50-100) μm and a thickness d ˜ (1-5) μm have been grown by evaporation on NdGaO3(100) and α-Al2O3 substrates with preliminarily deposited interdigitated electrodes, as well as on Al substrates. The c* ( Z) crystallographic axis in the blocks is normal to the film plane, and the a ( X) axis and the polar axis b ( Y) are oriented in the film plane. The temperature dependences of the capacitance of the structures measured with the interdigitated electrode system reveal a strong dielectric anomaly at the film transition to the ferroelectric state. The phase transition temperature T c depends on the degree of deuteration D of the glycine phosphite. The maximum value T c = 275 K obtained in the structures studied corresponds to a degree of deuteration of the glycine phosphite D ˜ 50%. The frequency behavior of the dielectric hysteresis loops in glycine phosphite films differs radically from that of the previously studied films of deuterated betaine phosphite, which evidences that polarization switching in these structures proceeds by different mechanisms. It has been that application of a dc bias to the electrodes changes the shape of the dielectric hysteresis loops and shifts them along the electric field axis. The shift of the loops depends on the sign, magnitude, and time of application of the bias. Possible mechanisms underlying the induced unipolarity are discussed.

  5. Structural, electrical properties and dielectric relaxations in Na+-ion-conducting solid polymer electrolyte.

    PubMed

    Arya, Anil; Sharma, A L

    2018-04-25

    In this paper, we have studied the structural, microstructural, electrical, dielectric properties and ion dynamics of a sodium-ion-conducting solid polymer electrolyte film comprising PEO 8 -NaPF 6 +  x wt. % succinonitrile. The structural and surface morphology properties have been investigated, respectively using x-ray diffraction and field emission scanning electron microscopy. The complex formation was examined using Fourier transform infrared spectroscopy, and the fraction of free anions/ion pairs obtained via deconvolution. The complex dielectric permittivity and loss tangent has been analyzed across the whole frequency window, and enables us to estimate the DC conductivity, dielectric strength, double layer capacitance and relaxation time. The presence of relaxing dipoles was determined by the addition of succinonitrile (wt./wt.) and the peak shift towards high frequency indicates the decrease of relaxation time. Further, relations among various relaxation times ([Formula: see text]) have been elucidated. The complex conductivity has been examined across the whole frequency window; it obeys the Universal Power Law, and displays strong dependency on succinonitrile content. The sigma representation ([Formula: see text]) was introduced in order to explore the ion dynamics by highlighting the dispersion region in the Cole-Cole plot ([Formula: see text]) in the lower frequency window; increase in the semicircle radius indicates a decrease of relaxation time. This observation is accompanied by enhancement in ionic conductivity and faster ion transport. A convincing, logical scheme to justify the experimental data has been proposed.

  6. Structural, electrical and dielectric properties of spinel nickel ferrite prepared by soft mechanochemical synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lazarević, Zorica Ž., E-mail: lzorica@yahoo.com; Jovalekić, Čedomir; Sekulić, Dalibor L.

    2013-10-15

    Graphical abstract: - Highlights: • Sintered NiFe{sub 2}O{sub 4} was prepared by a soft mechanochemical route from mixture powders. • XRD and Raman measurements indicate that the prepared samples have spinel structure. • The activation energy ΔE are 0.653 and 0.452 eV for NiFe{sub 2}O{sub 4} samples. • Ferrite from Ni(OH){sub 2}/Fe{sub 2}O{sub 3} has lower DC conductivity than from Ni(OH){sub 2}/Fe(OH){sub 3} powders. • The values of dielectric constant of samples NiFe{sub 2}O{sub 4} are 70 and 200, respectively. - Abstract: Nickel ferrite, NiFe{sub 2}O{sub 4} was prepared by a soft mechanochemical route from a mixture of (1) Ni(OH){submore » 2} and α-Fe{sub 2}O{sub 3} and (2) Ni(OH){sub 2} and Fe(OH){sub 3} powders in a planetary ball mill for 25 h. The powder samples were sintered at 1100 °C for 2 h and were characterized by X-ray diffraction (XRD), Raman spectroscopy and scanning electron microscopy (SEM). Impedance spectroscopy techniques were used to study the effect of grain and grain boundary on the electrical properties of the prepared samples. A difference in dielectric constant (ε) and dielectric loss tangent (tan δ) of NiFe{sub 2}O{sub 4} samples obtained by the same methods but starting from different initial components was observed.« less

  7. Dielectric studies on mobility of the glycosidic linkage in seven disaccharides.

    PubMed

    Kaminski, K; Kaminska, E; Wlodarczyk, P; Pawlus, S; Kimla, D; Kasprzycka, A; Paluch, M; Ziolo, J; Szeja, W; Ngai, K L

    2008-10-09

    Isobaric dielectric relaxation measurements were performed on seven chosen disaccharides. For five of them, i.e., sucrose, maltose, trehalose, lactulose, and leucrose, we were able to observe the temperature evolution of the structural relaxation process. In the case of the other disaccharides studied (lactose and cellobiose), it was impossible to obtain such information because of the large contribution of the dc conductivity and polarization of the capacitor plates to the imaginary and real part of the complex permittivity, respectively. On the other hand, in the glassy state, two secondary relaxations have been identified in the dielectric spectra of all investigated carbohydrates. The faster one (gamma) is a common characteristic feature of the entire sugar family (mono-, di-, oligo-, and polysaccharide). The molecular origin of this process is still not unambiguously identified but is expected to involve intramolecular degrees of freedom as inferred from insensitivity of its relaxation time to pressure found in some monosaccharides (fructose and ribose). The slower one (labeled beta) was recently identified to be intermolecular in origin (i.e., a Johari-Goldstein (JG) beta-relaxation), involving twisting motion of the monosugar rings around the glycosidic bond. The activation energies and dielectric strengths for the beta-relaxation determined herein provide us valuable information about the flexibility of the glycosidic bond and the mobility of this particular linkage in the disaccharides studied. In turn, this information is essential for the control of the diffusivity of drugs or water entrapped in the sugar matrix.

  8. CPdock: the complementarity plot for docking of proteins: implementing multi-dielectric continuum electrostatics.

    PubMed

    Basu, Sankar

    2017-12-07

    The complementarity plot (CP) is an established validation tool for protein structures, applicable to both globular proteins (folding) as well as protein-protein complexes (binding). It computes the shape and electrostatic complementarities (S m , E m ) for amino acid side-chains buried within the protein interior or interface and plots them in a two-dimensional plot having knowledge-based probabilistic quality estimates for the residues as well as for the whole structure. The current report essentially presents an upgraded version of the plot with the implementation of the advanced multi-dielectric functionality (as in Delphi version 6.2 or higher) in the computation of electrostatic complementarity to make the validation tool physico-chemically more realistic. The two methods (single- and multi-dielectric) agree decently in their resultant E m values, and hence, provisions for both methods have been kept in the software suite. So to speak, the global electrostatic balance within a well-folded protein and/or a well-packed interface seems only marginally perturbed by the choice of different internal dielectric values. However, both from theoretical as well as practical grounds, the more advanced multi-dielectric version of the plot is certainly recommended for potentially producing more reliable results. The report also presents a new methodology and a variant plot, namely CP dock , based on the same principles of complementarity specifically designed to be used in the docking of proteins. The efficacy of the method to discriminate between good and bad docked protein complexes has been tested on a recent state-of-the-art docking benchmark. The results unambiguously indicate that CP dock can indeed be effective in the initial screening phase of a docking scoring pipeline before going into more sophisticated and computationally expensive scoring functions. CP dock has been made available at https://github.com/nemo8130/CPdock . Graphical Abstract An example showing the efficacy of CP dock to be used in the initial screening phase of a protein-protein docking scoring pipeline.

  9. Theoretical study on the dimerization of Si(OH) 4 in aqueous solution and its dependence on temperature and dielectric constant

    NASA Astrophysics Data System (ADS)

    Tossell, J. A.

    2005-01-01

    Energetics for the condensation dimerization reaction of monosilicic acid: 2Si(⇒SiOH+HO have been calculated quantum mechanically, in gas-phase and aqueous solution, over a range of temperatures and dielectric constants. The calculated gas phase energy, E g, for this reaction is -6.6 kcal/mol at the very accurate composite G2 level, but the vibrational, rotational and translational contributions to the free energy in the gas-phase, ΔG VRT, sum to + 2.5 kcal/mol and the hydration free energy contribution calculated with a polarizable continuum model, ΔΔG COSMO, for a dielectric constant of 78.5, is about + 6.2 kcal/mol. Thus, the free energy change for the reaction in aqueous solution at ambient conditions is about + 2.1 kcal/mol and the equilibrium constant is ˜10 -1.5, in reasonable agreement with experiment. As T increases, ΔG VRT increases slowly. As the dielectric constant decreases (for example, under high T and P conditions in the supercritical region), ΔΔG COSMO decreases substantially. Thus, at elevated T and P, if the effective dielectric constant of the aqueous fluid is 10 or less, the reaction becomes much more favorable, consistent with recent experimental observations. The PΔV contribution to the enthalpy is also considered, but cannot be accurately determined. We have also calculated 29Si-NMR shieldings and Raman frequencies for Si(OH) 4, Si 2O 7H 6 and some other oligomeric silicates. We correctly reproduce the separation of monomer and dimer peaks observed in the 29Si-NMR spectrra at ambient T and P. The Raman spectral data are somewhat ambiguous, and the new peaks seen at high T and P could arise either from the dimer or from a 3-ring trimer, which is calculated to be highly stabilized entropically at high T.

  10. High reliability megawatt transformer/rectifier

    NASA Technical Reports Server (NTRS)

    Zwass, Samuel; Ashe, Harry; Peters, John W.

    1991-01-01

    The goal of the two phase program is to develop the technology and design and fabricate ultralightweight high reliability DC to DC converters for space power applications. The converters will operate from a 5000 V dc source and deliver 1 MW of power at 100 kV dc. The power weight density goal is 0.1 kg/kW. The cycle to cycle voltage stability goals was + or - 1 percent RMS. The converter is to operate at an ambient temperature of -40 C with 16 minute power pulses and one hour off time. The uniqueness of the design in Phase 1 resided in the dc switching array which operates the converter at 20 kHz using Hollotron plasma switches along with a specially designed low loss, low leakage inductance and a light weight high voltage transformer. This approach reduced considerably the number of components in the converter thereby increasing the system reliability. To achieve an optimum transformer for this application, the design uses four 25 kV secondary windings to produce the 100 kV dc output, thus reducing the transformer leakage inductance, and the ac voltage stresses. A specially designed insulation system improves the high voltage dielectric withstanding ability and reduces the insulation path thickness thereby reducing the component weight. Tradeoff studies and tests conducted on scaled-down model circuits and using representative coil insulation paths have verified the calculated transformer wave shape parameters and the insulation system safety. In Phase 1 of the program a converter design approach was developed and a preliminary transformer design was completed. A fault control circuit was designed and a thermal profile of the converter was also developed.

  11. Beyond Clausius-Mossotti - Wave propagation on a polarizable point lattice and the discrete dipole approximation. [electromagnetic scattering and absorption by interstellar grains

    NASA Technical Reports Server (NTRS)

    Draine, B. T.; Goodman, Jeremy

    1993-01-01

    We derive the dispersion relation for electromagnetic waves propagating on a lattice of polarizable points. From this dispersion relation we obtain a prescription for choosing dipole polarizabilities so that an infinite lattice with finite lattice spacing will mimic a continuum with dielectric constant. The discrete dipole approximation is used to calculate scattering and absorption by a finite target by replacing the target with an array of point dipoles. We compare different prescriptions for determining the dipole polarizabilities. We show that the most accurate results are obtained when the lattice dispersion relation is used to set the polarizabilities.

  12. Multilayer Piezoelectric Stack Actuator Characterization

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Jones, Christopher M.; Aldrich, Jack B.; Blodget, Chad; Bao, Xioaqi; Badescu, Mircea; Bar-Cohen, Yoseph

    2008-01-01

    Future NASA missions are increasingly seeking to use actuators for precision positioning to accuracies of the order of fractions of a nanometer. For this purpose, multilayer piezoelectric stacks are being considered as actuators for driving these precision mechanisms. In this study, sets of commercial PZT stacks were tested in various AC and DC conditions at both nominal and extreme temperatures and voltages. AC signal testing included impedance, capacitance and dielectric loss factor of each actuator as a function of the small-signal driving sinusoidal frequency, and the ambient temperature. DC signal testing includes leakage current and displacement as a function of the applied DC voltage. The applied DC voltage was increased to over eight times the manufacturers' specifications to investigate the correlation between leakage current and breakdown voltage. Resonance characterization as a function of temperature was done over a temperature range of -180C to +200C which generally exceeded the manufacturers' specifications. In order to study the lifetime performance of these stacks, five actuators from one manufacturer were driven by a 60volt, 2 kHz sine-wave for ten billion cycles. The tests were performed using a Lab-View controlled automated data acquisition system that monitored the waveform of the stack electrical current and voltage. The measurements included the displacement, impedance, capacitance and leakage current and the analysis of the experimental results will be presented.

  13. Multielectronic conduction in La1-xSrxGa1/2Mn1/2O3-δ as solid oxide fuel cell cathode

    NASA Astrophysics Data System (ADS)

    Iguchi, E.; Hashimoto, Y.; Kurumada, M.; Munakata, F.

    2003-08-01

    Four-probe dc conductivities, capacitances, and thermopower have been measured in the temperature range of 80-1123 K for La1-xSrxGa1/2Mn1/2O3-δ, which is a desirable cathode material for lanthanum-gallate electrolytes of solid oxide fuel cells. The dc conductivities in the specimens (0.1⩽x⩽0.3) are insensitive to x but the thermopower is very sensitive to x, although the x=0 specimen exhibits a somewhat different conduction behavior. At T<300 K, a relaxation process has shown in dielectric loss factor with the activation energy higher than that for dc conduction in every specimen. These results at T<300 K have been numerically analyzed within the framework of the multielectronic conduction consisting of the polaronic conduction of Mn 3d eg holes created by Sr doping, the band conduction of O 2p holes and the hopping conduction of Mn 3d eg electrons, where the O 2p holes and Mn 3d eg electrons are created by thermal excitation of electrons from O 2p bands to Mn 3d eg narrow bands. At T>500 K, the band conduction dominates the electronic transports. The ionic conduction due to O2- migration seems difficult to contribute directly to the dc conduction even at high temperature.

  14. A theory of electrical conductivity, dielectric constant, and electromagnetic interference shielding for lightweight graphene composite foams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Xiaodong; Department of Mechanical and Aerospace Engineering, Rutgers University, New Brunswick, New Jersey 08903; Wang, Yang

    This work was driven by the need to understand the electromagnetic interference (EMI) shielding effectiveness (SE) of light weight, flexible, and high performance graphene composite foams, but as EMI SE of a material depends on its electrical conductivity, dielectric permittivity, and magnetic permeability, the investigation of these three properties also became a priority. In this paper, we first present a continuum theory to determine these three electromagnetic properties, and then use the obtained properties to evaluate the EMI SE of the foam. A two-scale composite model is conceived to evaluate these three properties, with the large one being the skeleton-voidmore » composite and the small one being the graphene-polymer composite that serves as the skeleton of the foam. To evaluate the properties of the skeleton, the effective-medium approach is taken as the starting point. Subsequently, the effect of an imperfect interface and the contributions of electron tunneling to the interfacial conductivity and Maxwell-Wagner-Sillars polarization mechanism to the dielectric constant are also implemented. The derived skeleton properties are then utilized on the large scale to determine the three properties of the composite foam at a given porosity. Then a uniform plane electromagnetic wave is considered to evaluate the EMI SE of the foam. It is demonstrated that the electrical conductivity, dielectric constant, and EMI SE of the foam calculated from the developed theory are in general agreement with the reported experimental data of graphene/PDMS composite foams. The theory is further proven to be valid for the EMI SE of solid graphene/epoxy and solid carbon nanotube/epoxy nanocomposites. It is also shown that, among the three electromagnetic properties, electrical conductivity has the strongest influence on the EMI shielding effectiveness.« less

  15. Applications of MMPBSA to Membrane Proteins I: Efficient Numerical Solutions of Periodic Poisson-Boltzmann Equation

    PubMed Central

    Botello-Smith, Wesley M.; Luo, Ray

    2016-01-01

    Continuum solvent models have been widely used in biomolecular modeling applications. Recently much attention has been given to inclusion of implicit membrane into existing continuum Poisson-Boltzmann solvent models to extend their applications to membrane systems. Inclusion of an implicit membrane complicates numerical solutions of the underlining Poisson-Boltzmann equation due to the dielectric inhomogeneity on the boundary surfaces of a computation grid. This can be alleviated by the use of the periodic boundary condition, a common practice in electrostatic computations in particle simulations. The conjugate gradient and successive over-relaxation methods are relatively straightforward to be adapted to periodic calculations, but their convergence rates are quite low, limiting their applications to free energy simulations that require a large number of conformations to be processed. To accelerate convergence, the Incomplete Cholesky preconditioning and the geometric multi-grid methods have been extended to incorporate periodicity for biomolecular applications. Impressive convergence behaviors were found as in the previous applications of these numerical methods to tested biomolecules and MMPBSA calculations. PMID:26389966

  16. Nonlinear bubble nucleation and growth following filament and white-light continuum generation induced by a single-shot femtosecond laser pulse into dielectrics based on consideration of the time scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mizushima, Yuki; Saito, Takayuki, E-mail: saito.takayuki@shizuoka.ac.jp

    Bubble nucleation and growth following plasma channeling (filament) and white-light continuum in liquid irradiated by a single-shot fs-pulse were experimentally investigated with close observation of the time scale. Making full use of a new confocal system and time-resolved visualization techniques, we obtained evidence suggestive of a major/minor role of the non-linear/thermal effects during the fs-pulse-induced bubble's fountainhead (10{sup −13} s) and growth (10{sup −7} s), which was never observed with the use of the ns-pulse (i.e., optic cavitation). In this context, the fs-pulse-induced bubble is not an ordinary optic cavitation but rather is nonlinear-optic cavitation. We present the intrinsic differencesmore » in the dominant-time domain of the fs-pulse and ns-pulse excitation, and intriguingly, a mere hundred femtoseconds' excitation predetermines the size of the bubble appearing several microseconds after irradiation. That is, the nucleation happens temporally beyond a six-order-of-magnitude difference.« less

  17. Dispersion and decay rate of exciton-polaritons and radiative modes in transition metal dichalcogenide monolayers

    NASA Astrophysics Data System (ADS)

    Alpeggiani, Filippo; Gong, Su-Hyun; Kuipers, L.

    2018-05-01

    The two-dimensional excitons of transition metal dichalcogenide (TMDC) monolayers make these materials extremely promising for optical and optoelectronic applications. When the excitons interact with the electromagnetic field, they will give rise to exciton-polaritons, i.e., modes that propagate in the material plane while being confined in the out-of-plane direction. In this work, we derive the characteristic equations that determine both radiative and polaritonic modes in TMDC monolayers and we analyze the dispersion and decay rate of the modes. The condition for the existence of exciton-polaritons can be described in terms of a strong-coupling regime for the interaction between the exciton and the three-dimensional continuum of free-space electromagnetic modes. We show that the threshold for the strong-coupling regime critically depends on the interplay between nonradiative losses and the dielectric function imbalance at the two sides of the monolayer. Our results illustrate that a fine control of the dielectric function of the embedding media is essential for realizing exciton-polaritons in the strong-coupling regime.

  18. Generation and characterization of field-emitting surface dielectric barrier discharges in liquids

    NASA Astrophysics Data System (ADS)

    Kawamura, Tomohisa; Kanno, Moriyuki; Stauss, Sven; Kuribara, Koichi; Pai, David Z.; Ito, Tsuyohito; Terashima, Kazuo

    2018-01-01

    Field-emitting surface dielectric barrier discharges (FESDBDs), previously generated in CO2 from high pressures up to supercritical conditions using 10 kHz ac excitation, were investigated in non-aqueous liquid CO2 and liquid silicone oil. In both liquids, the maximum amount of negative charge Q-deposited as a function of the applied voltage amplitude was consistent with the Fowler-Nordheim equation, which demonstrated the presence of field emission. Furthermore, purely continuum optical emission spectra attributable to electron-neutral bremsstrahlung were confirmed. The fact that these characteristics were identical to those in high-pressure CO2 reported from previous research shows that FESDBDs can be generated independently of the medium type and that they are low-power (on the order of 10 mW) discharges. To investigate the charging function of FESDBDs, the motion of fine particles suspended above the FESDBDs was studied by high-speed imaging. It revealed that the speed of fine particles affected by the FESDBDs depends on the particle size, the FESDBDs' function being to charge fine particles.

  19. Phosphoryl Transfer Reaction in RNA in Alkaline Conditions.

    PubMed

    Bertran, Joan; Oliva, Antoni; Branchadell, Vicenç; Acosta-Silva, Carles

    2018-06-25

    In this work we have studied the phosphoryl transfer reaction in RNA in alkaline conditions by theoretically exploring the influence of several solvents. The calculations have been carried out using the M06-2X functional while the solvents are taken as a continuum using the SMD method. The main results are that the O2'-P-O5' angle in the reactants, the free activation energies and the reaction mechanism are clearly dependent on the dielectric constant of the environment, thus showing that the electrostatic term is determining for this chemical system with two negative charges. Our study seems to indicate that water, the solvent with the greatest dielectric constant, would be the one that mostly increases the reaction rate. As this is not the case in enzymatic catalysis, one has to conclude that, in the case of proteins as well as in the case of ribozymes, the enzymatic catalysis is not mainly due to the solvent reaction field, but to local electrical fields due to the enzyme preorganization. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Research in Image Understanding as Applied to 3-D Microwave Tomographic Imaging with Near Optical Resolution.

    DTIC Science & Technology

    1987-03-01

    Oct. 1985. 28. D.L. Jaggard, K. Schultz, Y. Kim and P. Frangos , "Inverse Scattering for Dielectric Media", Annual OSA Meeting, Wash. D.C., Oct. 1985...T.H. Chu - Graduate Student (50%) C.Y. Ho - Graduate Student (50%) Y. Kim - Graduate Student (50%) K S. Lee - Graduate Student (50%) P. Frangos ...1982. 3. P. Frangos (Ph.D.) - "One-Dimensional Inverse Scattering: Exact Methods and Applications". 4. C.L. Werner (Ph.D.) - ŗ-D Imaging of Coherent and

  1. Babinet principle applied to the design of metasurfaces and metamaterials.

    PubMed

    Falcone, F; Lopetegi, T; Laso, M A G; Baena, J D; Bonache, J; Beruete, M; Marqués, R; Martín, F; Sorolla, M

    2004-11-05

    The electromagnetic theory of diffraction and the Babinet principle are applied to the design of artificial metasurfaces and metamaterials. A new particle, the complementary split rings resonator, is proposed for the design of metasurfaces with high frequency selectivity and planar metamaterials with a negative dielectric permittivity. Applications in the fields of frequency selective surfaces and polarizers, as well as in microwave antennas and filter design, can be envisaged. The tunability of all these devices by an applied dc voltage is also achievable if these particles are etched on the appropriate substrate.

  2. Methodology for extraction of space charge density profiles at nanoscale from Kelvin probe force microscopy measurements.

    PubMed

    Villeneuve-Faure, C; Boudou, L; Makasheva, K; Teyssedre, G

    2017-12-15

    To understand the physical phenomena occurring at metal/dielectric interfaces, determination of the charge density profile at nanoscale is crucial. To deal with this issue, charges were injected applying a DC voltage on lateral Al-electrodes embedded in a SiN x thin dielectric layer. The surface potential induced by the injected charges was probed by Kelvin probe force microscopy (KPFM). It was found that the KPFM frequency mode is a better adapted method to probe accurately the charge profile. To extract the charge density profile from the surface potential two numerical approaches based on the solution to Poisson's equation for electrostatics were investigated: the second derivative model method, already reported in the literature, and a new 2D method based on the finite element method (FEM). Results highlight that the FEM is more robust to noise or artifacts in the case of a non-flat initial surface potential. Moreover, according to theoretical study the FEM appears to be a good candidate for determining charge density in dielectric films with thicknesses in the range from 10 nm to 10 μm. By applying this method, the charge density profile was determined at nanoscale, highlighting that the charge cloud remains close to the interface.

  3. Multiferroic properties of Indian natural ilmenite

    NASA Astrophysics Data System (ADS)

    Acharya, Truptimayee; Choudhary, R. N. P.

    2017-03-01

    In this communication, the main results and analysis of extensive studies of electric and magnetic characteristics (relative dielectric constant, tangent loss, electric polarization, electric transport, impedance, magnetic polarization and magneto-electric coupling coefficient) of Indian natural ilmenite (NI) have been presented. Preliminary structural analysis was studied by Rietveld refinement of room temperature XRD data, which suggests the rhombohedral crystal system of NI. Maxwell-Wagner mechanism was used to explain the nature of the frequency dependence of the relative dielectric constant. The impedance analysis reveals that below 270 °C, only the bulk contributes, whereas at higher temperature, both grain boundary and the bulk contribute to the resistive characteristics of the material. The magnitude of the depression angles of the semicircles in the Nyquist plot has been estimated. The correlated barrier hopping model has been used to explain the frequency dependence of ac conductivity of the material. The activation energy of the compound has been estimated using the temperature dependence of dc conductivity plot. The obtained polarization hysteresis loops manifest improper ferroelectric behavior of NI. The existence M-H hysteresis loop supports anti-ferromagnetism in the studied material. The magneto-electric voltage coupling coefficient is found to be 0.7 mV/cm Oe. Hence, other than dielectric constant, electric polarization, magnetization and magneto-electric studies support the existence of multiferroic properties in NI.

  4. Methodology for extraction of space charge density profiles at nanoscale from Kelvin probe force microscopy measurements

    NASA Astrophysics Data System (ADS)

    Villeneuve-Faure, C.; Boudou, L.; Makasheva, K.; Teyssedre, G.

    2017-12-01

    To understand the physical phenomena occurring at metal/dielectric interfaces, determination of the charge density profile at nanoscale is crucial. To deal with this issue, charges were injected applying a DC voltage on lateral Al-electrodes embedded in a SiN x thin dielectric layer. The surface potential induced by the injected charges was probed by Kelvin probe force microscopy (KPFM). It was found that the KPFM frequency mode is a better adapted method to probe accurately the charge profile. To extract the charge density profile from the surface potential two numerical approaches based on the solution to Poisson’s equation for electrostatics were investigated: the second derivative model method, already reported in the literature, and a new 2D method based on the finite element method (FEM). Results highlight that the FEM is more robust to noise or artifacts in the case of a non-flat initial surface potential. Moreover, according to theoretical study the FEM appears to be a good candidate for determining charge density in dielectric films with thicknesses in the range from 10 nm to 10 μm. By applying this method, the charge density profile was determined at nanoscale, highlighting that the charge cloud remains close to the interface.

  5. Sputtered (barium(x), strontium(1-x))titanate, BST, thin films on flexible copper foils for use as a non-linear dielectric

    NASA Astrophysics Data System (ADS)

    Laughlin, Brian James

    Ferroelectric thin film dielectrics have a non-linear DC bias dependent permittivity and can be used as the dielectric between metal electrodes to make tunable Metal-Insulator-Metal (MIM) capacitors. Varactors can be used to change the resonance frequency of a circuit allowing high speed frequency switching intra- and inter-band. 2-D geometric arrays of circuitry, where resonant frequency is independently controlled by tunable elements in each section of the array, allow electromagnetic radiation to be focused and the wave front spatial trajectory controlled. BST thin films varactors allow large DC fields to be applied with modest voltages providing large tunabilities. If ferroelectric thin film based devices are to complement or supplant semiconductor varactors as tunable elements then devices must be synthesized using a low cost processing techniques. The Film on Foil process methodology for depositing BST thin films on copper foil substrates was used to create BST/Cu specimens. Sputtering conditions were determined via BST deposition on platinized silicon. Sputtered BST thin films were synthesized on Cu foil substrates and densified using high T, controlled pO2 anneals. XRD showed the absence of Cu2O in as-deposited, post crystallization annealed, and post "re-ox" annealed state. Data showed a polycrystalline BST microstructure with a 55--80 nm grain size and no copper oxidation. HRTEM imaging qualitatively showed evidence of an abrupt BST/Cu interface free from oxide formation. Dielectric properties of Cu/BST/Pt MIM devices were measured as a function of DC bias, frequency, and temperature. A permittivity of 725 was observed with tunability >3:1 while zero bias tan delta of 0.02 saturating to tan delta < 0.003 at high DC bias. No significant frequency dispersion was observed over five decades of frequency. Temperature dependent measurements revealed a broad ferroelectric transition with a maximum at -32°C which sustains a large tunability over -150°C to 150°C. Sputtered BST thin films on copper foils show comparable dielectric properties to CVD deposited films on platinized silicon substrates proving sputtered BST/Cu specimens can reproduce excellent properties using a more cost-effective processing approach. A concept for reducing the temperature dependence was explored. Stacks of multiple compositions of BST thin films were considered as an extension of core-shell structures to a thin film format. Temperature profiles of BST/Cu films were modeled and mathematically combined in simulations of multi-composition film stacks. Simulations showed singular composition BST thin films could meet X7R specifications if a film has a 292 K < TC < 330 K. Simulations of series connected film stacks show only modest temperature profile broadening. Parallel connected dual composition film stacks showed a 75°C temperature range with essentially flat capacitance by simulating compositions that create a DeltaTC = 283°C. Maximum permittivity and temperature profile shape independent of film thickness or composition were assumed for simulations. BST/Cu thickness and compositions series were fabricated and dielectric properties characterized. These studies showed films could be grown from 300 nm and approaching 1 mum without changing the dielectric temperature response. In studying BST composition, an increasing TC shift was observed when increasing Ba mole fraction in BST thin films while tunability >3:1 was maintained. These results provide a route for creating temperature stable capacitors using a BST/Cu embodiment. An effort to reduce surface roughness of copper foil substrates adversely impacted BST film integrity by impairing adhesion. XPS analysis of high surface roughness commercially obtained Cu foils revealed a surface treatment of Zn-Cu-O that was not present on smooth Cu, thus an investigation of surface chemistry was conducted. Sessile drop experiments were performed to characterize Cu-BST adhesion and the effects of metallic Zn and ZnO in this system. The study revealed the work of adhesion of Cu-BST, WCu-BSTa ≈ 0.60 J m-2, an intermediate value relative to noble metals commonly used as electrodes and substrates for electroceramics. Examination of metallic Zn-BST adhesion revealed a dramatic decrease of WZn-BSTa ≈ 0.13 J m-2, while increasing the content of Zn in metallic (Cux,Zn1-x) alloys monotonically reduced WCux,Zn1-x -BSTa . Conversely, a Cu-ZnO interface showed a large work of adhesion, WCu-ZnOa = 2.0 J m-2. These results indicate that a ZnO interlayer between the substrate Cu and the BST thin film provides adequate adhesion for robust films on flexible copper foil substrates. Additionally, this study provided characterization of adhesion for Zn-Al2O3 and Zn-BST; data that does not exist in the open literature. A process has been developed for preparing ultra-smooth copper foils by evaporation and subsequent peel-off of copper metal layers from glass slides. These 15 mum thick substrates exhibited roughness values between 1 and 2 nm RMS and 9 nm RMS over 25 mum2 and 100 mum2 analysis areas, respectively. The deposition and crystallization of BST layers on these ultra-smooth foils is demonstrated. The fully processed dielectric layers exhibited field tunability >5:1, and could withstand fields >750 kV cm-1. High field loss tangents below 0.007 were observed, making these materials excellent candidates for microwave devices. Finally, a process of lamination and contact lithography was used to demonstrate patterning of micron-scale features suitable for microwave circuit element designs.

  6. Antiferromagnetic Resonance and Terahertz Continuum in α-RuCl_{3}.

    PubMed

    Little, A; Wu, Liang; Lampen-Kelley, P; Banerjee, A; Patankar, S; Rees, D; Bridges, C A; Yan, J-Q; Mandrus, D; Nagler, S E; Orenstein, J

    2017-12-01

    We report measurements of optical absorption in the zigzag antiferromagnet α-RuCl_{3} as a function of temperature T, magnetic field B, and photon energy ℏω in the range ∼0.3-8.3 meV, using time-domain terahertz spectroscopy. Polarized measurements show that threefold rotational symmetry is broken in the honeycomb plane from 2 to 300 K. We find a sharp absorption peak at 2.56 meV upon cooling below the Néel temperature of 7 K at B=0 that we identify as the magnetic-dipole excitation of a zero-wave-vector magnon, or antiferromagnetic resonance (AFMR). With the application of B, the AFMR broadens and shifts to a lower frequency as long-range magnetic order is lost in a manner consistent with transitioning to a spin-disordered phase. From a direct, internally calibrated measurement of the AFMR spectral weight, we place an upper bound on the contribution to the dc susceptibility from a magnetic excitation continuum.

  7. Antiferromagnetic Resonance and Terahertz Continuum in α - RuCl 3

    DOE PAGES

    Little, A.; Wu, Liang; Lampen-Kelley, P.; ...

    2017-11-28

    We report measurements of optical absorption in the zigzag antiferromagnet α-RuCl 3 as a function of temperature T , magnetic field B , and photon energy ℏ ω in the range ~ 0.3 –8.3 meV, using time-domain terahertz spectroscopy. Polarized measurements show that threefold rotational symmetry is broken in the honeycomb plane from 2 to 300 K. We find a sharp absorption peak at 2.56 meV upon cooling below the Néel temperature of 7 K at B = 0 that we identify as the magnetic-dipole excitation of a zero-wave-vector magnon, or antiferromagnetic resonance (AFMR). With the application of B ,more » the AFMR broadens and shifts to a lower frequency as long-range magnetic order is lost in a manner consistent with transitioning to a spin-disordered phase. From a direct, internally calibrated measurement of the AFMR spectral weight, we place an upper bound on the contribution to the dc susceptibility from a magnetic excitation continuum.« less

  8. Modeling of dielectric elastomer oscillators for soft biomimetic applications.

    PubMed

    Henke, E-F M; Wilson, Katherine E; Anderson, I A

    2018-06-26

    Biomimetic, entirely soft robots with animal-like behavior and integrated artificial nervous systems will open up totally new perspectives and applications. However, until now, most presented studies on soft robots were limited to only partly soft designs, since all solutions at least needed conventional, stiff electronics to sense, process signals and activate actuators. We present a novel approach for a set up and the experimental validation of an artificial pace maker that is able to drive basic robotic structures and act as artificial central pattern generator. The structure is based on multi-functional dielectric elastomers (DEs). DE actuators, DE switches and DE resistors are combined to create complex DE oscillators (DEOs). Supplied with only one external DC voltage, the DEO autonomously generates oscillating signals that can be used to clock a robotic structure, control the cyclic motion of artificial muscles in bionic robots or make a whole robotic structure move. We present the basic functionality, derive a mathematical model for predicting the generated signal waveform and verify the model experimentally.

  9. Electrical conductivity and dielectric behavior in sodium zinc divanadates

    NASA Astrophysics Data System (ADS)

    Sallemi, F.; Louati, B.; Guidara, K.

    2014-11-01

    The Na2ZnV2O7 compound was obtained by the conventional solid-state reaction. The sample was characterized by X-ray powder diffraction, Raman and impedance spectroscopy. The ac electrical conductivity and dielectric properties have been investigated in the frequency and temperature range of 200 Hz-1 MHz and 513 K-729 K, respectively. The direct current conductivity process is thermally activated. The frequency dependence of the conductivity is interpreted using the power law. The close values of activation energies obtained from the analysis of hopping frequency and dc conductivity implies that the transport is due to Na+ cation displacement parallel to (0 0 1) plane located between ZnO4 and VO4 tetrahedra. The evolution of the complex permittivity as a function of angular frequency was investigated. Several important parameters such as charge carrier concentration, ionic mobility and diffusion coefficient were determined. Thermodynamic parameters such as the free energy of activation ∆F, the enthalpy ∆H, and the change in entropy ∆S have been calculated.

  10. Characterization of Dielectric Nanocomposites with Electrostatic Force Microscopy

    PubMed Central

    El Khoury, D.; Fedorenko, V.; Castellon, J.; Laurentie, J.-C.; Fréchette, M.; Ramonda, M.

    2017-01-01

    Nanocomposites physical properties unexplainable by general mixture laws are usually supposed to be related to interphases, highly present at the nanoscale. The intrinsic dielectric constant of the interphase and its volume need to be considered in the prediction of the effective permittivity of nanodielectrics, for example. The electrostatic force microscope (EFM) constitutes a promising technique to probe interphases locally. This work reports theoretical finite-elements simulations and experimental measurements to interpret EFM signals in front of nanocomposites with the aim of detecting and characterizing interphases. According to simulations, we designed and synthesized appropriate samples to verify experimentally the ability of EFM to characterize a nanoshell covering nanoparticles, for different shell thicknesses. This type of samples constitutes a simplified electrostatic model of a nanodielectric. Experiments were conducted using either DC or AC-EFM polarization, with force gradient detection method. A comparison between our numerical model and experimental results was performed in order to validate our predictions for general EFM-interphase interactions. PMID:29109811

  11. EFFECT OF MICROWAVE SINTERING ON THE STRUCTURAL AND ELECTRICAL PROPERTIES OF Li0.51Zn0.2Ti0.2V0.01Fe2.08O4 FERRITE

    NASA Astrophysics Data System (ADS)

    Maisnam, Mamata; Phanjoubam, Sumitra

    2013-07-01

    Effect of microwave sintering on the structural and electrical properties of Li+0.51Zn2+0.2Ti4+0.2V5+0.01Fe3+2.08O2-4 is studied in comparison with that of conventionally sintered one. The technique is advantageous in terms of significantly reduced size of microwave kilns and rapid heating compared to the cumbersome and slow heating of conventional sintering technology. Microwave sintering produced enhanced densification and much finer microstructures. The DC resistivity is markedly increased. Microwave sintering reduces chances of evaporation of lithium and oxygen during sintering of lithium based ferrites resulting in formation of lesser ferrous ions. This has profound effect on the electrical properties of microwave sintered ferrites. The dielectric constant is significantly reduced possibly due to reduced space charge polarization and the temperature dependence of the dielectric properties are also studied.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ody, A.; Musumeci, P.; Maxson, J.

    In this study we discuss the application of the flat beam transform to generate beams suitable for injection into slab-symmetric dielectric laser-driven accelerators (DLAs). A study of the focusing requirements to keep the particles within the tight apertures characterizing these accelerators shows the benefits of employing ultralow beam emittances. The slab geometry of the many dielectric accelerating structures strongly favors the use of flat beams with large ratio between vertical and horizontal emittances. We employ particle tracking simulations to study the application of the flat beam transform for two injector designs, a DC non relativistic photogun and a 1.6 cellmore » S-band RF photoinjector, obtaining in both cases emittance ratios between the horizontal and vertical plane in excess of 100 in agreement with simple analytical estimates. The 4 MeV RF photoinjector study-case can be directly applied to the UCLA Pegasus beamline and shows normalized emittances down to < 3 nm in the vertical dimension for beam charges up to 20 fC, enabling a two-stage DLA experiment.« less

  13. Depoling and fatigue behavior of Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystal at megahertz frequencies under bipolar electric field

    NASA Astrophysics Data System (ADS)

    Chen, Zhaojiang; Li, Shiyang; Zhang, Yang; Cao, Wenwu

    2017-05-01

    Bipolar electric field induced degradation in [001]c poled Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 (PMN-0.29PT) single crystals was investigated at megahertz frequencies. The electromechanical coupling factor kt, dielectric constant ɛr, dielectric loss D, and piezoelectric constant d33 were measured as a function of amplitude, frequency, and number of cycles of the applied electric field. Our results showed that samples degrade rapidly when the field amplitude is larger than a critical value due to the onset of domain switching. We define this critical value as the effective coercive field Ec at high frequencies, which increases drastically with frequency. We also demonstrate an effective counter-depoling method by using a dc bias, which could help the design of high field driven devices based on PMN-PT single crystals and operated at megahertz frequencies.

  14. Conductive, magnetic and structural properties of multilayer films

    NASA Astrophysics Data System (ADS)

    Kotov, L. N.; Turkov, V. K.; Vlasov, V. S.; Lasek, M. P.; Kalinin, Yu E.; Sitnikov, A. V.

    2013-12-01

    Composite-semiconductor and composite-dielectric multilayer films were obtained by the ion beam sputtering method in the argon and hydrogen atmospheres with compositions: {[(Co45-Fe45-Zr10)x(Al2O3)y]-[α-Si]}120, {[(Co45-Ta45-Nb10)x(SiO2)y]-[SiO2]}56, {[(Co45-Fe45-Zr10)x(Al2O3)y]-[α-Si:H]}120. The images of surface relief and distribution of the dc current on composite layer surface were obtained with using of atomic force microscopy (AFM). The dependencies of specific electric resistance, ferromagnetic resonance (FMR) fields and width of line on metal (magnetic) phase concentration x and nanolayers thickness of multilayer films were obtained. The characteristics of FMR depend on magnetic interaction among magnetic granules in the composite layers and between the layers. These characteristics depend on the thickness of composite and dielectric or semiconductor nanolayers. The dependences of electric microwave losses on the x and alternating field frequency were investigated.

  15. Structural, electrical properties and dielectric relaxations in Na+-ion-conducting solid polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Arya, Anil; Sharma, A. L.

    2018-04-01

    In this paper, we have studied the structural, microstructural, electrical, dielectric properties and ion dynamics of a sodium-ion-conducting solid polymer electrolyte film comprising PEO8-NaPF6+  x wt. % succinonitrile. The structural and surface morphology properties have been investigated, respectively using x-ray diffraction and field emission scanning electron microscopy. The complex formation was examined using Fourier transform infrared spectroscopy, and the fraction of free anions/ion pairs obtained via deconvolution. The complex dielectric permittivity and loss tangent has been analyzed across the whole frequency window, and enables us to estimate the DC conductivity, dielectric strength, double layer capacitance and relaxation time. The presence of relaxing dipoles was determined by the addition of succinonitrile (wt./wt.) and the peak shift towards high frequency indicates the decrease of relaxation time. Further, relations among various relaxation times ({{τ }{{\\varepsilon \\prime}}}>~{{τ }tanδ }>{{τ }z}>{{τ }m} ) have been elucidated. The complex conductivity has been examined across the whole frequency window; it obeys the Universal Power Law, and displays strong dependency on succinonitrile content. The sigma representation ({{σ }\\prime\\prime}~versus~{{σ }\\prime} ) was introduced in order to explore the ion dynamics by highlighting the dispersion region in the Cole–Cole plot ({{\\varepsilon }\\prime\\prime}~versus~{{\\varepsilon }\\prime} ) in the lower frequency window; increase in the semicircle radius indicates a decrease of relaxation time. This observation is accompanied by enhancement in ionic conductivity and faster ion transport. A convincing, logical scheme to justify the experimental data has been proposed.

  16. Comment on "Study of dielectric relaxations of anhydrous trehalose and maltose glasses" [J. Chem. Phys. 134, 014508 (2011)].

    PubMed

    Kaminski, K; Wlodarczyk, P; Paluch, M

    2011-10-28

    Very recently Kwon et al. [H.-J. Kwon, J.-A. Seo, H. K. Kim, and Y. H. Hwang, J. Chem. Phys. 134, 014508 (2011)] published an article on the study of dielectric relaxation in trehalose and maltose glasses. They carried out broadband dielectric measurements at very wide range of temperatures covering supercooled liquid as well as glassy state of both saccharides. It is worth to mention that authors have also applied a new method for obtaining anhydrous glasses of trehalose and maltose that enables avoiding their caramelization. Four relaxation processes were identified in dielectric spectra of both saccharides. The slower one was identified as structural relaxation process the next one, not observed by the others, was assigned as Johari-Goldstein (JG) β-relaxation, while the last two secondary modes were of the same nature as found by Kaminski et al. [K. Kaminski, E. Kaminska, P. Wlodarczyk, S. Pawlus, D. Kimla, A. Kasprzycka, M. Paluch, J. Ziolo, W. Szeja, and K. L. Ngai, J. Phys. Chem. B 112, 12816 (2008)]. In this comment we show that the authors mistakenly assigned the slowest relaxation process as structural mode of disaccharides. We have proven that this relaxation process is an effect of formation of thin layer of air or water between plate of capacitor and sample. The same effect can be observed if plates of capacitor are oxidized. Thus, we concluded that their slowest mode is connected to the dc conduction process while their β JG process is primary relaxation of trehalose and maltose.

  17. Synthesis, morphology and electrical properties of Co2+ substituted NiCuZn ferrites for MLCI applications

    NASA Astrophysics Data System (ADS)

    Kabbur, S. M.; Waghmare, S. D.; Ghodake, U. R.; Suryavanshi, S. S.

    2018-04-01

    Co2+ is a fast relaxing ion which can enhance microwave properties. This work focuses on the synthesis and analysis of Ni0.25-xCoxCu0.30Zn0.45Fe2O4 (x = 0.00, 0.05, 0.01, 0.15, 0.20 and 0.25) ferrites by auto combustion method using glycine as the chelating agent. From X-ray Diffraction (XRD) spectra, the structural parameters are analysed. The lattice parameter (a) decreases due to smaller ionic radius of Co2+ (0.072 nm) which replaces Ni2+ (0.078 nm). Bulk density and porosity measurements show that there are pores and lattice imperfections. The cation distribution of the ferrites based on Neel's two sublattice model is proposed. Transmission Electron Micrographs (TEM) indicate narrow size distribution of spherical shaped nanoparticles. DC electrical resistivity (ρD.C.) is very important factor of low temperature sintered ferrites for MLCI applications. Electroplating of the devices is much affected by electrical resistivity. Maximum DC resistivity (2.89 × 106 Ω-cm) is observed for the sample with x=0.20. The dielectric parameters (ɛ', ɛ″ and tan δ) decrease as the alternating field increases which is due to space charge distribution and hopping mechanism. AC resistivity (ρAC) decreases with frequency, increased concentration of Fe2+ ions induces electron hopping: Fe3+ ↔ Fe2+ at B sites thereby reducing the resistivity. The low dielectric loss factor of 0.07 for x=0.20 ferrite indicates that the sample can be potential candidate for MLCI applications.

  18. Structural And Electrical Properties oF (La{sub 0.5-x}Pr{sub x}Ba{sub 0.5})(Mn{sub 0.5}Ti{sub 0.5})O{sub 3} Perovskite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alias, Nor Hayati; Department of Physics, Faculty Science, University Putra of Malaysia; Shaari, Abdul Halim

    2010-01-05

    A single phase monoclinic new perovskite based titano-manganite (La{sub 0.5-x}Pr{sub x}Ba{sub 0.5})(Mn{sub 0.5}Ti{sub 0.5})O{sub 3} has been successfully prepared by ceramic solid-state technique at sintering temperature of 1300 deg. C. The concentration of Pr (Praseodymium), x, in molar proportion in A site has been varied as x = 0, 0.02 and 0.2. Analysis has been carried out to determine the electrical properties of the synthesized material at frequency ranging from 5 Hz to 1 MHz; and at temperature range between 25 deg. C to 200 deg. C. It is found that Pr addition promoted liquid phase sintering diffusion, porosity andmore » agglomeration formation at 1300 deg. C. Dual relaxation is observed in unsubstituted Pr sample x = 0 and high Pr substituted sample x = 0.2. This phenomenon was a combinational contribution from a quasi dc (QDC) or low frequency dispersion (LFD), two cole-cole relaxational responses and a resistor. While low concentrated Pr substituted sampled x = 0.02 shows a combinational contribution from a quasi dc (QDC) or low frequency dispersion (LFD), single cole-cole relaxational response and a resistor at room temperature. Pr substitution at x = 0(max 12000) and x = 0.2(max 16000) showed high dielectric values compared to low substituted sample x = 0.02. Variation of dielectric loss tangent (tan delta) are observed for all samples at temperature ranged studied.« less

  19. First-principles prediction of the effects of temperature and solvent selection on the dimerization of benzoic acid.

    PubMed

    Pham, Hieu H; Taylor, Christopher D; Henson, Neil J

    2013-01-24

    We introduce a procedure of quantum chemical calculations (B3P86/6-31G**) to study carboxylic acid dimerization and its correlation with temperature and properties of the solvent. Benzoic acid is chosen as a model system for studying dimerization via hydrogen bonding. Organic solvents are simulated using the self-consistent reaction field (SCRF) method with the polarized continuum model (PCM). The cyclic dimer is the most stable structure both in gas phase and solution. Dimer mono- and dihydrates could be found in the gas phase if acid molecules are in contact with water vapor. However, the formation of these hydrated conformers is very limited and cyclic dimer is the principal conformer to coexist with monomer acid in solution. Solvation of the cyclic dimer is more favorable compared to other complexes, partially due to the diminishing of hydrogen bonding capability and annihilation of dipole moments. Solvents have a strong effect on inducing dimer dissociation and this dependence is more pronounced at low dielectric constants. By accounting for selected terms in the total free energy of solvation, the solvation entropy could be incorporated to predict the dimer behavior at elevated temperatures. The temperature dependence of benzoic acid dimerization obtained by this technique is in good agreement with available experimental measurements, in which a tendency of dimer to dissociate is observed with increased temperatures. In addition, dimer breakup is more sensitive to temperature in low dielectric environments rather than in solvents with a higher dielectric constant.

  20. INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Polar Mixing Optical Phonon Spectra in Wurtzite GaN Cylindrical Quantum Dots: Quantum Size and Dielectric Effects

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Liao, Jian-Shang

    2010-05-01

    The interface-optical-propagating (IO-PR) mixing phonon modes of a quasi-zero-dimensional (QoD) wurtzite cylindrical quantum dot (QD) structure are derived and studied by employing the macroscopic dielectric continuum model. The analytical phonon states of IO-PR mixing modes are given. It is found that there are two types of IO-PR mixing phonon modes, i.e. ρ-IO/z-PR mixing modes and the z-IO/ρ-PR mixing modes existing in QoD wurtzite QDs. And each IO-PR mixing modes also have symmetrical and antisymmetrical forms. Via a standard procedure of field quantization, the Fröhlich Hamiltonians of electron-(IO-PR) mixing phonons interaction are obtained. Numerical calculations on a wurtzite GaN cylindrical QD are performed. The results reveal that both the radial-direction size and the axial-direction size as well as the dielectric matrix have great influence on the dispersive frequencies of the IO-PR mixing phonon modes. The limiting features of dispersive curves of these phonon modes are discussed in depth. The phonon modes “reducing" behavior of wurtzite quantum confined systems has been observed obviously in the structures. Moreover, the degenerating behaviors of the IO-PR mixing phonon modes in wurtzite QoD QDs to the IO modes and PR modes in wurtzite Q2D QW and Q1D QWR systems are analyzed deeply from both of the viewpoints of physics and mathematics.

  1. Conduction mechanism, impedance spectroscopic investigation and dielectric behavior of La0.5Ca0.5-xAgxMnO3 manganites with compositions below the concentration limit of silver solubility in perovskites (0 ≤ x ≤ 0.2).

    PubMed

    Rahmouni, H; Smari, M; Cherif, B; Dhahri, E; Khirouni, K

    2015-06-14

    This study presents the electrical properties, complex impedance analysis and dielectrical behavior of La0.5Ca0.5-xAgxMnO3 manganites with compositions below the concentration limit of silver solubility in perovskites (0 ≤ x ≤ 0.2). Transport measurements indicate that all the samples have a semiconductor-like behavior. The metal-semiconductor transition is not observed across the whole temperature range explored [80 K-700 K]. At a specific temperature, a saturation region was marked in the σ (T) curves. We obtained a maximum σdc value at ambient temperature with the introduction of 20% Ag content. Two hopping models were applied to study the conduction mechanism. We found that activation energy (Ea) related to ac-conductivity is lower than the Ea implicated in dc-conductivity. Complex impedance analysis confirms the contribution of grain boundary to conductivity and permits the attribution of grain boundary capacitance evolution to the temperature dependence of the barrier layer width. From the temperature dependence of the average normalized change (ANC), we deduce the temperature at which the available density of trapped charge states vanishes. Such a temperature is close to the temperature at which the saturation region appears in σ(T) curves. Moreover, complex impedance analysis (CIA) indicates the presence of electrical relaxation in materials. It is noteworthy that relaxation species such as defects may be responsible for electrical conduction. The dielectric behavior of La0.5Ca0.5-xAgxMnO3 manganites has a Debye-like relaxation with a sharp decrease in the real part of permittivity at a frequency where the imaginary part of permittivity (ε'') and tg δ plots versus frequency demonstrate a relaxation peak. The Debye-like relaxation is explained by Maxwell-Wagner (MW) polarization. Experimental results are found to be in good agreement with the Smit and Wijn theory.

  2. A theoretical investigation on bio-transformation of third generation anti-cancer drug Heptaplatin and its interaction with DNA purine bases

    NASA Astrophysics Data System (ADS)

    Reddy B., Venkata P.; Mukherjee, Subhajit; Mitra, Ishani; Moi, Sankar Ch.

    2017-12-01

    Heptaplatin is an approved platinum based cytostatic drug for the treatment of gastric cancers. The hydrolytic bio-transformation of Heptaplatin and the platination processes of guanine (G) and adenine (A) with resulting mono and di-aquated species of Heptaplatin have been investigated using density functional theory (DFT) combined with the conductor like dielectric continuum model (CPCM) approach, to spotlight the drug activation energy profiles and their binding mechanisms. The stationary points on the potential energy surfaces were fully optimized and characterized. The mono-functional binding of Heptaplatin, guanine as target over adenine due to electronic factors and more favorable hydrogen-bonds pattern.

  3. Three-dimensional seismic structure and moment tensors of non-double-couple earthquakes at the Hengill-Grensdalur volcanic complex, Iceland

    USGS Publications Warehouse

    Miller, A.D.; Julian, B.R.; Foulger, G.R.

    1998-01-01

    The volcanic and geothermal areas of Iceland are rich sources of non-double-couple (non-DC) earthquakes. A state-of-the-art digital seismometer network deployed at the Hengill-Grensdalur volcanic complex in 1991 recorded 4000 small earthquakes. We used the best recorded of these to determine 3-D VP and VP/VS structure tomographically and accurate earthquake moment tensors. The VP field is dominated by high seismic wave speed bodies interpreted as solidified intrusions. A widespread negative (-4 per cent) VP/VS anomaly in the upper 4 km correlates with the geothermal field, but is too strong to be caused solely by the effect of temperature upon liquid water or the presence of vapour, and requires in addition mineralogical or lithological differences between the geothermal reservoir and its surroundings. These may be caused by geothermal alteration. Well-constrained moment tensors were obtained for 70 of the best-recorded events by applying linear programming methods to P- and S-wave polarities and amplitude ratios. About 25 per cent of the mechanisms are, within observational error, consistent with DC mechanisms consistent with shear faulting. The other 75 per cent have significantly non-DC mechanisms. Many have substantial explosive components, one has a substantial implosive component, and the deviatoric component of many is strongly non-DC. Many of the non-DC mechanisms are consistent, within observational error, with simultaneous tensile and shear faulting. However, the mechanisms occupy a continuum in source-type parameter space and probably at least one additional source process is occurring. This may be fluid flow into newly formed cracks, causing partial compensation of the volumetric component. Studying non-shear earthquakes such as these has great potential for improving our understanding of geothermal processes and earthquake source processes in general.

  4. Temperature dependent charge transport studies across thermodynamic glass transition in P3HT:PCBM bulk heterojunction: insight from J-V and impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Sarkar, Atri; Rahaman, Abdulla Bin; Banerjee, Debamalya

    2018-03-01

    Temperature dependent charge transport properties of P3HT:PCBM bulk heterojunction are analysed by dc and ac measurements under dark conditions across a wide temperature range of 110-473 K, which includes the thermodynamic glass transition temperature (Tg ˜320 K) of the system. A change from Ohmic conduction to space charge limited current conduction at higher (⩾1.2 V) applied bias voltages above  ⩾200 K is observed from J-V characteristics. From capacitance-voltage (C-V) measurement at room temperature, the occurrence of a peak near the built-in voltage is observed below the dielectric relaxation frequency, originating from the competition between drift and diffusion driven motions of charges. Carrier concentration (N) is calculated from C-V measurements taken at different temperatures. Room temperature mobility values at various applied bias voltages are in accordance with that obtained from transient charge extraction by linearly increasing voltage measurement. Sample impedance is measured over five decades of frequency across temperature range by using lock-in detection. This data is used to extract temperature dependence of carrier mobility (μ), and dc conductivity (σ_dc ) which is low frequency extrapolation of ac conductivity. An activation energy of  ˜126 meV for the carrier hopping process at the metal-semiconductor interface is estimated from temperature dependence of σ_dc . Above T g, μ levels off to a constant value, whereas σ_dc starts to decrease after a transition knee at T g that can be seen as a combined effect of changes in μ and N. All these observed changes across T g can be correlated to enhanced polymer motion above the glass transition.

  5. The effect of Cr2O3 doping on structures and dielectric constants of SiO2-Bi2O3-B2O3-Na2CO3 glass based on silica gel of natural sand

    NASA Astrophysics Data System (ADS)

    Diantoro, M.; Zaini, M. B.; Muniroh, Z.; Nasikhudin; Hidayat, A.

    2017-05-01

    One of the abundant natural resources along the coastal lines of Indonesia is silica sand. One of the beaches which has a lot of silica content is Bancar-Tuban beach. Silica can be used as a raw material of glass that has multiple properties in optic, dielectric, and other physical properties by introducing specific dopants. Some oxides have been used as dopant e.g. Al2O3, Fe3O4, and NiO. However, there has not been any comprehensive study discussing the multiple properties of natural silica-sand-based glass with Cr2O3 dopant so far. A series of samples have been prepared, which mean two solid steps to state melting technique. Cr2O3 was selected as a dopant due to its potential to control its color and to increase the dielectric constant of the glass. The synthesis of silica (SiO2) sand from BancarTuban beach was conducted through the sol-gel process. The composition varied as the addition of Cr2O3on 50SiO2-25B2O3-(6.5-x) Bi2O3-18.5Na2CO3-xCr2O3 (x = 0, 0.02, 0.04, 0.06 and 0.08mol), later called SBBN glass. The samples’ characterizations of the structure and morphology were conducted through the use of XRD, and SEM-EDX. The measurements were done by using a DC capacitance meter in order to investigate the dielectric properties of the sample, under the influence of light. It is shown that addition of Cr2O3 did not alter the crystal structure but changed the structure of the functional bond formation. It is also revealed that the dielectric constant increased along with the increasing of Cr2O3. An interesting result was that the dielectric constant of the glass was quantized decreasingly as the increase of light.

  6. Cluster-Continuum Calculations of Hydration Free Energies of Anions and Group 12 Divalent Cations.

    PubMed

    Riccardi, Demian; Guo, Hao-Bo; Parks, Jerry M; Gu, Baohua; Liang, Liyuan; Smith, Jeremy C

    2013-01-08

    Understanding aqueous phase processes involving group 12 metal cations is relevant to both environmental and biological sciences. Here, quantum chemical methods and polarizable continuum models are used to compute the hydration free energies of a series of divalent group 12 metal cations (Zn(2+), Cd(2+), and Hg(2+)) together with Cu(2+) and the anions OH(-), SH(-), Cl(-), and F(-). A cluster-continuum method is employed, in which gas-phase clusters of the ion and explicit solvent molecules are immersed in a dielectric continuum. Two approaches to define the size of the solute-water cluster are compared, in which the number of explicit waters used is either held constant or determined variationally as that of the most favorable hydration free energy. Results obtained with various polarizable continuum models are also presented. Each leg of the relevant thermodynamic cycle is analyzed in detail to determine how different terms contribute to the observed mean signed error (MSE) and the standard deviation of the error (STDEV) between theory and experiment. The use of a constant number of water molecules for each set of ions is found to lead to predicted relative trends that benefit from error cancellation. Overall, the best results are obtained with MP2 and the Solvent Model D polarizable continuum model (SMD), with eight explicit water molecules for anions and 10 for the metal cations, yielding a STDEV of 2.3 kcal mol(-1) and MSE of 0.9 kcal mol(-1) between theoretical and experimental hydration free energies, which range from -72.4 kcal mol(-1) for SH(-) to -505.9 kcal mol(-1) for Cu(2+). Using B3PW91 with DFT-D3 dispersion corrections (B3PW91-D) and SMD yields a STDEV of 3.3 kcal mol(-1) and MSE of 1.6 kcal mol(-1), to which adding MP2 corrections from smaller divalent metal cation water molecule clusters yields very good agreement with the full MP2 results. Using B3PW91-D and SMD, with two explicit water molecules for anions and six for divalent metal cations, also yields reasonable agreement with experimental values, due in part to fortuitous error cancellation associated with the metal cations. Overall, the results indicate that the careful application of quantum chemical cluster-continuum methods provides valuable insight into aqueous ionic processes that depend on both local and long-range electrostatic interactions with the solvent.

  7. Structure-property relationships in polymers for dielectric capacitors

    NASA Astrophysics Data System (ADS)

    Gupta, Sahil

    Effective energy storage is a key challenge of the 21st century that has fueled research in the area of energy storage devices. In this dissertation, structure-property relationships have been evaluated for polymers that might be suitable for storing energy in high-energy density, high-temperature capacitors. Firstly, hydroxyl-modified polypropylenes (PPOH) were synthesized by copolymerization of the propylene and undecenyloxytrimethylsilane monomers. The presence of H-bonding in PPOH copolymers increased their glass-transition temperature. Steric hindrance by the comonomer reduced the PP crystal growth rate and crystal size, resulting in a melting point depression. The comonomer was restricted outside the crystalline domains leaving the alpha-monoclinic crystal structure of PP unaffected, but increasing the fold-surface free energy. Crystallization was slower for PPOH copolymers than PP, but exhibited a skewed bell curve as a function of hydroxyl concentration. H-bonding persisted even at melt temperatures up to 250°C resulting in a higher elasticity and viscosity for PPOH copolymers. Secondly, sulfonated poly(ether ether ketone) (HSPEEK) was synthesized by sulfonating PEEK with sulfuric acid, and further neutralized with Zn to obtain ZnSPEEK. The thermal and dielectric properties of SPEEK were compared with PEEK. The glass-transition increased and melting point were high enough to enable the use of polymer at 180°C. The incorporation of sulfonic groups in PEEK increased the dielectric constant. HSPEEK had a higher dielectric constant than ZnSPEEK due to higher dipolar mobility, but the dielectric loss was also higher for HSPEEK due to electrode polarization and DC conduction. These results were consistent with our observations from sulfonated polystyrene (HSPS), which was used as a >model&lang' polymer. Lastly, commercial poly(4-methyl-1-pentene) (P4MP) was characterized to check its viability as a high-temperature polymer dielectric. Thermal stability up to 200°C, high melting point (> 225°C) and melting onset at 160 - 190°C indicated that P4MP could be used at 180 - 200°C. Thin free-standing films (~10 mum) with controlled crystal structure and surface morphology were prepared using blade coating and their drying dynamics were measured using a custom-designed solvent-casting platform. These films were further stretched uniaxially or biaxially, and their effect on the dielectric properties of P4MP was studied.

  8. Fundamental Scaling of Microplasmas and Tunable UV Light Generation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manginell, Ronald P.; Sillerud, Colin Halliday; Hopkins, Matthew M.

    2016-11-01

    The temporal evolution of spectral lines from microplasma devices (MD) was studied, including impurity transitions. Long-wavelength emission diminishes more rapidly than deep UV with decreasing pulse width and RF operation. Thus, switching from DC to short pulsed or RF operation, UV emissions can be suppressed, allowing for real-time tuning of the ionization energy of a microplasma photo-ionization source, which is useful for chemical and atomic physics. Scaling allows MD to operate near atmospheric pressure where excimer states are efficiently created and emit down to 65 nm; laser emissions fall off below 200 nm, making MD light sources attractive for deepmore » UV use. A first fully-kinetic three-dimensional model was developed that explicitly calculates electron-energy distribution function. This, and non-continuum effects, were studied with the model and how they are impacted by geometry and transient or DC operation. Finally, a global non-dimensional model was developed to help explain general trends MD physics.« less

  9. Electrical Conductivity Mechanism in Unconventional Lead Vanadate Glasses

    NASA Astrophysics Data System (ADS)

    Abdel-Wahab, F.; Merazga, A.; Montaser, A. A.

    2017-03-01

    Lead vanadate glasses of the system (V2O5)_{1-x}(PbO)x with x = 0.4, 0.45, 0.5, 0.55, 0.6 have been prepared by the press-quenching technique. The dc (σ (0)) and ac (σ (ω )) electrical conductivities were measured in the temperature range from 150 to 420 K and the frequency range from 102 to 106 Hz. The electrical properties are shown to be sensitive to composition. The experimental results have been analyzed within the framework of different models. The dc conductivity is found to be proportional to Tp with the exponent p ranging from 8.2 to 9.8, suggesting that the transport is determined by a multi-phonon process of weak electron-lattice coupling. The ac conductivity is explained by the percolation path approximation (PPA). In this model, σ (ω ) is closely related to the σ (0) and fitting the experimental data produces a dielectric relaxation time τ in good agreement with the expected value in both magnitude and temperature dependence.

  10. Morphological, electrical & antibacterial properties of trilayered Cs/PAA/PPy bionanocomposites hydrogel based on Fe3O4-NPs.

    PubMed

    Youssef, A M; Abdel-Aziz, M E; El-Sayed, E S A; Abdel-Aziz, M S; Abd El-Hakim, A A; Kamel, S; Turky, G

    2018-09-15

    Bionanocomposites hydrogel based on conducting polymers were successfully fabricated from chitosan/polyacrylic acid/polypyrrole (CS/PAA/PPy) as well as the magnetite nanoparticle (Fe 3 O 4 -NPs) was prepared via co-precipitation method. In addition, different ratios of Fe 3 O 4 -NPs were added to the prepared bionanocomposites to enhance the antimicrobial and the electrical conductivity of the prepared conductive hydrogel. Furthermore, the morphology, the swelling percent, antimicrobial activity and the dielectric properties of the prepared conducting bionanocomposites hydrogel were investigated. The antibacterial activities of the experienced microbes were improved with the increasing the loading of Fe 3 O 4 -NPs in conducting Bio-nanocomposites hydrogel. Moreover, the DC-conductivity was examined and our resulted indicated that the DC-conductivity was enhanced by increasing the loadings of Fe 3 O 4 -NPs compared to that of the pure CS/PAA as well as CS/PAA/PPy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Nonreciprocal reflection-beam isolators for far-infrared use

    NASA Technical Reports Server (NTRS)

    Kanda, M.; May, W. G.

    1973-01-01

    Magnetoplasma reflection-beam isolators for submillimeter-wave use are discussed in theory and experiment. The basic device uses the Kerr transverse magnetooptic effect (plane of polarization of the EM wave in the plane of incidence, which is perpendicular to a dc magnetic field) in InSb near room temperature. When the semiconductor slab is covered with a thin dielectric layer acting as a matching transformer, improved performance is predicted and observed at 337 microns, and very efficient isolator performance is predicted for 118 microns. Physical arguments are presented to explain the nonreciprocal phenomenon and lead to better device design.

  12. Hidden transition in multiferroic and magnetodielectric CuCrO2 evidenced by ac-susceptibility

    NASA Astrophysics Data System (ADS)

    Shukla, Kaushak K.; Pal, Arkadeb; Singh, Abhishek; Singh, Rahul; Saha, J.; Sinha, A. K.; Ghosh, A. K.; Patnaik, S.; Awasthi, A. M.; Chatterjee, Sandip

    2017-04-01

    Ferroelectric polarization, magnetic-field dependence of the dielectric constant and ac and dc magnetizations of frustrated CuCrO2 have been measured. A new spin freezing transition below 32 K is observed which is thermally driven. The nature of the spin freezing is to be a single-ion process. Dilution by the replacements of Cr ions by magnetic Mn ions showed suppression of the spin freezing transition suggesting it to be fundamentally a single-ion freezing process. The observed freezing, which is seemingly associated to geometrical spin frustration, represents a novel form of magnetic glassy behavior.

  13. Analysis of Blockade in Charge Transport Across Polymeric Heterojunctions as a Function of Thermal Annealing: A Different Perspective

    NASA Astrophysics Data System (ADS)

    Rathi, Sonika; Chauhan, Gayatri; Gupta, Saral K.; Srivastava, Ritu; Singh, Amarjeet

    2017-02-01

    A blend of poly(3-hexylthiophene-2,5diyl) (P3HT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) is popularly used as an active medium in polymeric solar devices. According to the most recent understanding, the blend is a three-phase system contrary to its earlier understanding of two-phase bicontinuous network. We have synthesized a P3HT-PCBM based layered heterostructure system by spin coating and thermal vacuum evaporations. Current density ( J) was measured as a function of applied electric field ( E) across the system bound between two metal electrodes. J- E relations were analyzed into the backdrop of space charge limited current model and Schottky model. The later was used to predict dc-dielectric constants from the linear slopes of ln ( J) versus E 1/2. The curves were not monotonously linear, but observe a knee-bend separating into two linear segments for each curve. Thermal annealing from 40°C to 80°C was used as an activation tool for driving changes in the internal morphology via inter-diffusion of polymers and current measurements were performed at room temperature after each annealing. At the last stage of annealing the two linear slopes were highly distinct. The presence of sharp knee-bend results in approximately 20 times jump in dielectric constant as a function of electric field. Such high jumps in dielectric constant illustrate the potential for switching applications and charge storage. The high dielectric constants can be understood in terms of space charge polarization due to isolated domains which hindrance to charge transport. The high dielectric constants were confirmed by another experiment of capacitance measurements of a different set of similar samples. A study of thermal evolution of internal morphology was also carried out using x-ray diffraction and scanning electron microscopy techniques to correlate the morphological changes with the transport properties.

  14. Size effects and realiability of barium strontium titanate thin films

    NASA Astrophysics Data System (ADS)

    Parker, Charles Bernard

    Thin films of (Ba,Sr)TiO3 (BST) deposited by Liquid Source MOCVD were investigated. BST is a candidate dielectric for future-generation DRAM and as a tunable dielectric. Two areas of both scientific and commercial interest were investigated. The first area is the effect of decreasing dimension on ferroelectric properties. Several theories of size effects in ferroelectrics were evaluated. The dielectric response of a set of BST films of thicknesses from 15 to 580 nm was measured from 85 to 580 K. These films were extensively characterized and the boundary conditions that often influence size effects measurements were considered, including strain, finite screening length in the electrode, depolarization fields in the ferroelectric, atmospheric effects, control of stochiometry, and others. The data set was compared to the theoretical predictions and it was determined that Finite Size Scaling provided the best fit to the data. Using this theory, the predicted dielectric response was compared to the requirements of future generations of DRAM and was found to be sufficient, if film strain can be controlled. The second area is reliability. The types of lifetime-limiting electrical failure observed in BST are resistance degradation, time dependant dielectric breakdown (tddb), and noisy breakdown. Previous work on BST reliability has largely focused on resistance degradation at high temperature. This condition is only a small subset of experimental space. This work extends the understanding of BST failure into the low temperature regime and evaluates the effects of both DC and AC stress. It was found that tddb is the dominant failure mode at low temperature and resistance degradation is the dominant failure modes at high temperature. Synthesizing this work with previous work on resistance degradation allowed a failure framework to be developed. Rigorous extrapolation of resistance degradation and tddb lifetimes was compared to the requirements of future generations of DRAM and was found that while resistance degradation will not limit device lifetimes, tddb will. Refinement of BST processing will be necessary to reduce the defect causing tddb failure.

  15. Power consumption analysis DBD plasma ozone generator

    NASA Astrophysics Data System (ADS)

    Nur, M.; Restiwijaya, M.; Muchlisin, Z.; Susan, I. A.; Arianto, F.; Widyanto, S. A.

    2016-11-01

    Studies on the consumption of energy by an ozone generator with various constructions electrodes of dielectric barrier discharge plasma (DBDP) reactor has been carried out. This research was done to get the configuration of the reactor, that is capable to produce high ozone concentrations with low energy consumption. BDBP reactors were constructed by spiral- cylindrical configuration, plasma ozone was generated by high voltage AC voltage up to 25 kV and maximum frequency of 23 kHz. The reactor consists of an active electrode in the form of a spiral-shaped with variation diameter Dc, and it was made by using copper wire with diameter Dw. In this research, we variated number of loops coil windings N as well as Dc and Dw. Ozone concentrations greater when the wire's diameter Dw and the diameter of the coil windings applied was greater. We found that impedance greater will minimize the concentration of ozone, in contrary to the greater capacitance will increase the concentration of ozone. The ozone concentrations increase with augmenting of power. Maximum power is effective at DBD reactor spiral-cylinder is on the Dc = 20 mm, Dw = 1.2 mm, and the number of coil windings N = 10 loops with the resulting concentration is greater than 20 ppm and it consumes energy of 177.60 watts

  16. Development of a Compact Rectenna for Wireless Powering of a Head-Mountable Deep Brain Stimulation Device.

    PubMed

    Hosain, M D Kamal; Kouzani, Abbas Z; Tye, Susannah J; Abulseoud, Osama A; Amiet, Andrew; Galehdar, Amir; Kaynak, Akif; Berk, Michael

    2014-01-01

    Design of a rectangular spiral planar inverted-F antenna (PIFA) at 915 MHz for wireless power transmission applications is proposed. The antenna and rectifying circuitry form a rectenna, which can produce dc power from a distant radio frequency energy transmitter. The generated dc power is used to operate a low-power deep brain stimulation pulse generator. The proposed antenna has the dimensions of 10 mm [Formula: see text]12.5 mm [Formula: see text]1.5 mm and resonance frequency of 915 MHz with a measured bandwidth of 15 MHz at return loss of [Formula: see text]. A dielectric substrate of FR-4 of [Formula: see text] and [Formula: see text] with thickness of 1.5 mm is used for both antenna and rectifier circuit simulation and fabrication because of its availability and low cost. An L-section impedance matching circuit is used between the PIFA and voltage doubler rectifier. The impedance matching circuit also works as a low-pass filter for elimination of higher order harmonics. Maximum dc voltage at the rectenna output is 7.5 V in free space and this rectenna can drive a deep brain stimulation pulse generator at a distance of 30 cm from a radio frequency energy transmitter, which transmits power of 26.77 dBm.

  17. A Crystal-Physical Model of Electrotransfer in the Superionic Conductor Pb1 - x Sc x F2 + x ( x = 0.1)

    NASA Astrophysics Data System (ADS)

    Sorokin, N. I.

    2018-04-01

    The frequency (ν = 10-1-107 Hz) dependences of electrical conductivity σ(ν) of single crystals of superionic conductor Pb0.9Sc0.1F2.1 (10 mol % ScF3) with fluorite type structure (CaF2) in the temperature range 153-410 K have been investigated. The static bulk conductivity σ dc =1.5 × 10-4 S/cm and average hopping frequency ν h = 1.5 × 107 Hz of charge carriers (mobile ions F-) at room temperature (293 K) have been defined from the σ dc (ν) experimental curves. Enthalpies of thermoactivated processes of ionic conductivity σ dc ( T) (Δ H σ = 0.393 ± 0.005 eV) and dielectric relaxation ν h ( T) (Δ H h = 0.37 ± 0.03 eV) coincide within their errors. A crystal-physical model of fluorine-ion transport in a Pb0.9Sc0.1F2.1 crystal lattice has been proposed. The characteristic parameters of charge carriers have been calculated: concentration n mob = 2.0 × 1021 cm-3, the distance of the hopping d ≈ 0.5 nm and mobility μmob = 4.5 × 10-7 cm2/s V (293 K).

  18. Plasma-based Compressor Stall Control

    NASA Astrophysics Data System (ADS)

    McGowan, Ryan; Corke, Thomas

    2017-11-01

    The use of dielectric barrier discharge (DBD) plasma actuator casing treatment to prevent or delay stall inception in an axial fan is examined. The actuators are powered by a pulsed-DC waveform which induces a larger peak velocity than a purely AC waveform such as a sine or sawtooth wave. With this system, a high-voltage DC source is supplied to both electrodes, remaining constant in time for the exposed electrode. Meanwhile, the covered electrode is periodically grounded for several microseconds and allowed to rise back to the source DC level. To test the actuators' ability to interact with and modify the formation of stall cells, a facility has been designed and constructed around nonconductive fan blades. The actuators are installed in the fan casing near the blade tips. The instrumentation allows for the measurement of rotating pressure disturbances (traveling stall cells) in this tip gap region as well as fan performance characteristics including pressure rise and flow rate. The casing plasma actuation is found to reduce the correlation of the rotating stall cells, thereby extending the stall margin of the fan. Various azimuthal arrangements of the plasma actuator casing treatment is explored, as well as input voltage levels to the actuator to determine optimum conditions. NASA SBIR Contract NNX14CC12C.

  19. Preparation of magnetron sputtered ZrO2 films on Si for gate dielectric application

    NASA Astrophysics Data System (ADS)

    Kondaiah, P.; Mohan Rao, G.; Uthanna, S.

    2012-11-01

    Zirconium oxide (ZrO2) thin films were deposited on to p - Si and quartz substrates by sputtering of zirconium target at an oxygen partial pressure of 4x10-2 Pa and sputter pressure of 0.4 Pa by using DC reactive magnetron sputtering technique. The effect of annealing temperature on structural, optical, electrical and dielectric properties of the ZrO2 films was systematically studied. The as-deposited films were mixed phases of monoclinic and orthorhombic ZrO2. As the annealing temperature increased to 1073 K, the films were transformed in to single phase orthorhombic ZrO2. Fourier transform infrared studies conform the presence of interfacial layer between Si and ZrO2. The optical band gap and refractive index of the as-deposited films were 5.82 eV and 1.81. As the annealing temperature increased to 1073 K the optical band gap and refractive index increased to 5.92 eV and 2.10 respectively. The structural changes were influenced the capacitance-voltage and current-voltage characteristics of Al/ZrO2/p-Si capacitors. The dielectric constant was increased from 11.6 to 24.5 and the leakage current was decreased from 1.65×10-7 to 3.30×10-9 A/ cm2 for the as-deposited and annealed at 1073 K respectively.

  20. Structural and electromagnetic characterization of Co-Mn doped Ni-Sn ferrites fabricated via micro-emulsion route

    NASA Astrophysics Data System (ADS)

    Ali, Rajjab; Azhar Khan, Muhammad; Manzoor, Alina; Shahid, Muhammad; Farooq Warsi, Muhammad

    2017-11-01

    Ni0.5Sn0.5CoxMnxFe2-2xO4 ferrites with x = 0.0-0.8 have been prepared by the micro-emulsion method, using CTAB as a surfactant material. X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FTIR) and vibrational sample magnetometer (VSM) were used to investigate the effects of Co and Mn substitutions on cationic distribution, crystallite size, lattice constant, spectral, magnetic and dielectric properties. Lattice constant and crystallite size were found to increase from 7.4 to 9.25 Å and from 11.8 to 19.7 nm respectively with increasing substitution of Co and Mn ions. Saturation magnetization (MS) gradually increased from 20.5 to 47.6 emu/g with increase in the value of x. However, Coercivity increased from 152.7 to 462.4 Oe up to x = 0.4 and then it decreased thereafter. The dielectric constant, complex dielectric constant and tan loss (tanδ) were observed to decrease with increase in frequency, depicting the semiconductor behavior of the ferrites. Dc resistivity was observed to decrease considerably upon addition of Co and Mn content. The outcome for the tunable magnetic properties and achieved modification of the synthesized nanocrystallites may be chosen for tremendous applications; such as miniaturized memory devices that are based on the energy storage principles and capacitive components.

  1. Structural stability, enhanced magnetic, piezoelectric, and transport properties in (1-x)BiFeO3-(x)Ba0.70Sr0.30TiO3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Sharma, Subhash; Singh, Vikash; Anshul, Avneesh; Siqueiros, J. M.; Dwivedi, R. K.

    2018-05-01

    Multiferroic samples with composition (1-x)BiFeO3-(x)(Ba0.70Sr0.30)TiO3 (BFO-BST) were synthesized using a sol-gel route to study the effect of BST doping on structural, transport, and magnetic properties in BiFeO3 (BFO). X-ray diffraction studies with Rietveld analysis revealed that a phase transition occurred from rhombohedral (R3c) (0.0 ≤ × ≤ 0.15) to tetragonal (P4 mm) for x = 0.20 and nanocrystalline nature confirmed by transmission electron microscopy measurements. Piezoelectric properties improved as x increased from x = 0.0 (58 pC/N) to x = 0.20 (112 pC/N) increasing distortion in the crystal structure as evinced by Williamson-Hall analysis. Ferromagnetism was observed in doped BFO, different from the antiferromagnetic ordering in bulk BFO, indicating the noteworthy size effects and Fe-O-Fe bond angle variations in the magnetic ordering of BFO. An improvement in ferroelectric properties is observed with doping of BST compared to pristine BFO. Thermally activated conduction behavior occurred at low and high temperature regions as revealed by temperature dependent dc resistivity measurement. Effective improvements in dielectric response, meaning high dielectric constant with a low dielectric loss, were found in the doped samples.

  2. Comparative investigation of novel hetero gate dielectric and drain engineered charge plasma TFET for improved DC and RF performance

    NASA Astrophysics Data System (ADS)

    Yadav, Dharmendra Singh; Verma, Abhishek; Sharma, Dheeraj; Tirkey, Sukeshni; Raad, Bhagwan Ram

    2017-11-01

    Tunnel-field-effect-transistor (TFET) has emerged as one of the most prominent devices to replace conventional MOSFET due to its ability to provide sub-threshold slope below 60 mV/decade (SS ≤ 60 mV/decade) and low leakage current. Despite this, TFETs suffer from ambipolar behavior, lower ON-state current, and poor RF performance. To address these issues, we have introduced drain and gate work function engineering with hetero gate dielectric for the first time in charge plasma based doping-less TFET (DL TFET). In this, the usage of dual work functionality over the drain region significantly reduces the ambipolar behavior of the device by varying the energy barrier at drain/channel interface. Whereas, the presence of dual work function at the gate terminal increases the ON-state current (ION). The combined effect of dual work function at the gate and drain electrode results in the increment of ON-state current (ION) and decrement of ambipolar conduction (Iambi) respectively. Furthermore, the incorporation of hetero gate dielectric along with dual work functionality at the drain and gate electrode provides an overall improvement in the performance of the device in terms of reduction in ambipolarity, threshold voltage and sub-threshold slope along with improved ON-state current and high frequency figures of merit.

  3. Improving the treatment of coarse-grain electrostatics: CVCEL.

    PubMed

    Ceres, N; Lavery, R

    2015-12-28

    We propose an analytic approach for calculating the electrostatic energy of proteins or protein complexes in aqueous solution. This method, termed CVCEL (Circular Variance Continuum ELectrostatics), is fitted to Poisson calculations and is able to reproduce the corresponding energies for different choices of solute dielectric constant. CVCEL thus treats both solute charge interactions and charge self-energies, and it can also deal with salt solutions. Electrostatic damping notably depends on the degree of solvent exposure of the charges, quantified here in terms of circular variance, a measure that reflects the vectorial distribution of the neighbors around a given center. CVCEL energies can be calculated rapidly and have simple analytical derivatives. This approach avoids the need for calculating effective atomic volumes or Born radii. After describing how the method was developed, we present test results for coarse-grain proteins of different shapes and sizes, using different internal dielectric constants and different salt concentrations and also compare the results with those from simple distance-dependent models. We also show that the CVCEL approach can be used successfully to calculate the changes in electrostatic energy associated with changes in protein conformation or with protein-protein binding.

  4. Rapid mortality of pest arthropods by direct exposure to a dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Bures, Brian Lee

    The spread of arthropods due to trade of agricultural commodities and travel of humans is a significant problem in many countries. Limiting the movement of pest species is commonly achieved by the use of chemical pesticides at quarantine facilities. One potential alternative to chemical pesticides is direct exposure of contaminated commodities to ambient pressure electrical discharges. The arthropods are directly exposed to a 5.0 cm helium discharge with power densities on the order of 60 mW/cm3. Direct measurement of chemical species and ambient gas temperature shows the DBD treatment remains effective when the chemically reactive species are suppressed by helium, and when the ambient gas temperature of the discharge is below 40°C. In addition to gas temperature measurements and chemical species identification, the electron temperature and electron density were measured using the neutral bremsstrahlung continuum technique. This study is the first successful implementation of the neutral bremsstrahlung continuum emission diagnostic to a barrier discharge. The primary advantages of the diagnostic for barrier discharges are the measurement is passive and the spatial resolution is only limited by the collimation of the light and the sensitivity of the detector. Although the electron temperature (1.0--1.5 eV) and electron density (˜108 cm-3) are modest, non-chemical dielectric barrier discharge (DBD) treatment of arthropods has proven effective in significantly reducing the population of some arthropods including human body lice, green peach aphids, and western flower thrips. However, the treatment was not universally effective on all arthropod species. German cockroaches and citrus mealy bugs showed substantial resistance to the treatment. The study has shown the treatment does not always induce instant mortality: however, the mortality increases over a 24 hr-period after treatment. Based upon visual observation and the time after treatment to reach maximum mortality, the mode of action is either direct damage to the nervous system or changes to the hydrocarbon layer that protects the arthropods from dehydration.

  5. Linking measures of adolescent nicotine dependence to a common latent continuum.

    PubMed

    Strong, David R; Kahler, Christopher W; Colby, Suzanne M; Griesler, Pamela C; Kandel, Denise

    2009-01-01

    Using the theoretical model of nicotine dependence (ND) operationalized within the Diagnostic and Statistical Manual of Mental Disorder, fourth Edition (DSM-IV: American Psychiatric [American Psychiatric Association, 1994. Diagnostic and Statistical Manual of Mental Disorders. 4th ed. American Psychiatric Association, Washington, DC]) as a frame of reference, we used methods based in item response theory to link alternative instruments assessing adolescent nicotine dependence severity to a common latent continuum. A multi-ethnic cohort of 6th-10th graders selected from the Chicago Public Schools (CPS) completed five household interviews over 2 years. Youth who reported at least some cigarette use in the last 30 days prior to the interviews at waves W3-W5 completed measures of DSM-IV ND, the Modified Fagertrom Tolerance Questionnaire (mFTQ: Prokhorov et al., 1998) and the Nicotine Dependence Syndrome Scale (NDSS: Shiffman et al., 2004), yielding samples of 253, 241, and 296 respondents at W3-W5, respectively. Confirmatory factor analysis supported a primary dimension of ND. Each instrument's items had complementary and stable relationships to ND across multiple waves of assessment. By aligning symptoms along a common latent ND continuum, we evaluated the consistency of symptoms from different instruments that target similar content. Further, these methods allowed for the examination of the DSM-IV as a continuous index of ND, evaluation of the degree of heterogeneity in levels of ND within groups above and below diagnostic thresholds, and the utility of using the pattern or particular DSM-IV symptoms that led to each score in further differentiating levels of ND. Finally, we examined concurrent validity of the ND continuum and levels of current of smoking at each wave of assessment.

  6. Magnetic and High-Frequency Dielectric Parameters of Divalent Ion-Substituted W-Type Hexagonal Ferrites

    NASA Astrophysics Data System (ADS)

    Ali, Akbar; Grössinger, R.; Imran, Muhammad; Khan, M. Ajmal; Elahi, Asmat; Akhtar, Majid Niaz; Mustafa, Ghulam; Khan, Muhammad Azhar; Ullah, Hafeez; Murtaza, Ghulam; Ahmad, Mukhtar

    2017-02-01

    Polycrystalline W-type hexagonal ferrites with chemical formulae Ba0.5Sr0.5 Co2- x Me x Fe16O27 ( x = 0, 0.5, Me = Mn, Mg, Zn, Ni) have been prepared using sol-gel autocombustion. It has been reported in our earlier published work that all the samples exhibit a single-phase W-type hexagonal structure which was confirmed by x-ray diffraction (XRD) analysis. The values of bulk density lie in the range of 4.64-4.78 g/cm3 for all the samples which are quite high as compared to those for other types of hexaferrites. It was also observed that Zn-substituted ferrite reflects the highest (14.7 × 107 Ω-cm) whereas Mn-substituted ferrite has the lowest (11.3 × 107 Ω-cm) values of direct current (DC) electrical resistivity. The observed values of saturation magnetization ( M s) are found to be in the range of 62.01-68.7 emu/g depending upon the type of cation substitution into the hexagonal lattice. All the samples exhibit a typical soft magnetic character with low values of coercivity ( H c) that are in the range of 26-85 Oe. These ferrites may be promising materials for microwave absorbers due to their higher saturation magnetization and low coercivities. Both the dielectric constant and tangent loss decrease with increasing frequency in the lower frequency region and become constant in the higher frequency region. The much lower dielectric constant obtained in this study makes the investigated ferrites very useful for high-frequency applications, i.e. dielectric resonators and for camouflaging military targets such as ships, tanks and aircrafts, etc.

  7. Fabrication of a Cryogenic Bias Filter for Ultrasensitive Focal Plane

    NASA Technical Reports Server (NTRS)

    Chervenak, James; Wollack, Edward

    2012-01-01

    A fabrication process has been developed for cryogenic in-line filtering for the bias and readout of ultrasensitive cryogenic bolometers for millimeter and submillimeter wavelengths. The design is a microstripline filter that cuts out, or strongly attenuates, frequencies (10 50 GHz) that can be carried by wiring staged at cryogenic temperatures. The filter must have 100-percent transmission at DC and low frequencies where the bias and readout lines will carry signal. The fabrication requires the encapsulation of superconducting wiring in a dielectric-metal envelope with precise electrical characteristics. Sufficiently thick insulation layers with high-conductivity metal layers fully surrounding a patterned superconducting wire in arrayable formats have been demonstrated. A degenerately doped silicon wafer has been chosen to provide a metallic ground plane. A metallic seed layer is patterned to enable attachment to the ground plane. Thick silicon dioxide films are deposited at low temperatures to provide tunable dielectric isolation without degrading the metallic seed layer. Superconducting wiring is deposited and patterned using microstripline filtering techniques to cut out the relevant frequencies. A low Tc superconductor is used so that it will attenuate power strongly above the gap frequency. Thick dielectric is deposited on top of the circuit, and then vias are patterned through both dielectric layers. A thick conductive film is deposited conformally over the entire circuit, except for the contact pads for the signal and bias attachments to complete the encapsulating ground plane. Filters are high-aspect- ratio rectangles, allowing close packing in one direction, while enabling the chip to feed through the wall of a copper enclosure. The chip is secured in the copper wall using a soft metal seal to make good thermal and electrical contact to the outer shield.

  8. Conductivity versus Dielectric Mechanisms for Electrorheology

    NASA Astrophysics Data System (ADS)

    Davis, L. C.

    1997-03-01

    Electrorheological (ER) fluids are continuously and rapidly controllable by an electric field. Controllability of these materials permits the construction of novel intelligent systems such as semiactively controlled shock absorbers and vibration dampers, tunable composite beams and panels, and even reconfigurable Braille arrays. The eventual success of these applications depends in part on developing improved ER fluids, which requires a fundamental understanding of the physics and chemistry of these materials. ER fluids generally consist of highly polarizable colloidal particles suspended in an insulating oil. Particles are typically 1-10 microns in diameter and can be of a wide variety of materials including zeolites, barium titanate, conducting polymers, and oxide-coated metals. Electric fields of magnitude 1-5 kV/mm induce particle chaining and concomitant shear stresses of order 1 kPa. Recent experiments (J. M. Ginder and S. L. Ceccio, J. Rheol. 39, 211 (1995)) using square-wave electric-field excitation have helped to elucidate the mechanisms of ER activity. Immediately after a step-function increase of electric field, chaining occurs due to particle-particle forces arising from dielectric polarization (dipoles and higher multipoles), i.e., it is controlled by the dielectric mismatch between particles and fluid. On a longer time scale, currents flow in the fluid and in the particles so that the forces are eventually dominated by the conductivity mismatch. Characteristic times for the transition between the two regimes are 10-50 ms. Likewise, in the frequency domain, conductivity mismatch dominates the dc response of ER fluids whereas dielectric effects dominate for high frequencies. A theory of ER fluids is given including a model for non-linear effects at high electric fields.

  9. DC electrical conductivity measurements for pure and titanium oxide doped KDP Crystals grown by gel medium

    NASA Astrophysics Data System (ADS)

    Mareeswaran, S.; Asaithambi, T.

    2016-10-01

    Now a day's crystals are the pillars of current technology. Crystals are applied in various fields like fiber optic communications, electronic industry, photonic industry, etc. Crystal growth is an interesting and innovative field in the subject of physics, chemistry, material science, metallurgy, chemical engineering, mineralogy and crystallography. In recent decades optically good quality of pure and metal doped KDP crystals have been grown by gel growth method in room temperature and its characterizations were studied. Gel method is a very simple and one of the easiest methods among the various crystal growth methods. Potassium dihydrogen phosphate KH2PO4 (KDP) continues to be an interesting material both academically and technologically. KDP is a delegate of hydrogen bonded materials which possess very good electrical and nonlinear optical properties in addition to interesting electro-optic properties. We made an attempt to grow pure and titanium oxide doped KDP crystals with various doping concentrations (0.002, 0.004, 0.006, 0.008 and 0.010) using gel method. The grown crystals were collected after 20 days. We get crystals with good quality and shaped crystals. The dc electrical conductivity (resistance, capacitance and dielectric constant) values of the above grown crystals were measured at two different frequencies (1KHz and 100 Hz) with a temperature range of 500C to 1200C using simple two probe setup with Q band digital LCR meter present in our lab. The electrical conductivity increases with the increase of temperature. Dielectric constants value of titanium oxide doped KDP crystal was slightly decreased compared with pure KDP crystals. Results were discussed in details.

  10. Quantum Dynamics in Continuum for Proton Transport I: Basic Formulation.

    PubMed

    Chen, Duan; Wei, Guo-Wei

    2013-01-01

    Proton transport is one of the most important and interesting phenomena in living cells. The present work proposes a multiscale/multiphysics model for the understanding of the molecular mechanism of proton transport in transmembrane proteins. We describe proton dynamics quantum mechanically via a density functional approach while implicitly model other solvent ions as a dielectric continuum to reduce the number of degrees of freedom. The densities of all other ions in the solvent are assumed to obey the Boltzmann distribution. The impact of protein molecular structure and its charge polarization on the proton transport is considered explicitly at the atomic level. We formulate a total free energy functional to put proton kinetic and potential energies as well as electrostatic energy of all ions on an equal footing. The variational principle is employed to derive nonlinear governing equations for the proton transport system. Generalized Poisson-Boltzmann equation and Kohn-Sham equation are obtained from the variational framework. Theoretical formulations for the proton density and proton conductance are constructed based on fundamental principles. The molecular surface of the channel protein is utilized to split the discrete protein domain and the continuum solvent domain, and facilitate the multiscale discrete/continuum/quantum descriptions. A number of mathematical algorithms, including the Dirichlet to Neumann mapping, matched interface and boundary method, Gummel iteration, and Krylov space techniques are utilized to implement the proposed model in a computationally efficient manner. The Gramicidin A (GA) channel is used to demonstrate the performance of the proposed proton transport model and validate the efficiency of proposed mathematical algorithms. The electrostatic characteristics of the GA channel is analyzed with a wide range of model parameters. The proton conductances are studied over a number of applied voltages and reference concentrations. A comparison with experimental data verifies the present model predictions and validates the proposed model.

  11. Effects of the dielectric properties of the ceramic-solvent interface on the binding of proteins to oxide ceramics: a non-local electrostatic approach.

    PubMed

    Rubinstein, Alexander I; Sabirianov, Renat F; Namavar, Fereydoon

    2016-10-14

    The rapid development of nanoscience and nanotechnology has raised many fundamental questions that significantly impede progress in these fields. In particular, understanding the physicochemical processes at the interface in aqueous solvents requires the development and application of efficient and accurate methods. In the present work we evaluate the electrostatic contribution to the energy of model protein-ceramic complex formation in an aqueous solvent. We apply a non-local (NL) electrostatic approach that accounts for the effects of the short-range structure of the solvent on the electrostatic interactions of the interfacial systems. In this approach the aqueous solvent is considered as a non-ionic liquid, with the rigid and strongly correlated dipoles of the water molecules. We have found that an ordered interfacial aqueous solvent layer at the protein- and ceramic-solvent interfaces reduces the charging energy of both the ceramic and the protein in the solvent, and significantly increases the electrostatic contribution to their association into a complex. This contribution in the presented NL approach was found to be significantly shifted with respect to the classical model at any dielectric constant value of the ceramics. This implies a significant increase of the adsorption energy in the protein-ceramic complex formation for any ceramic material. We show that for several biocompatible ceramics (for example HfO2, ZrO2, and Ta2O5) the above effect predicts electrostatically induced protein-ceramic complex formation. However, in the framework of the classical continuum electrostatic model (the aqueous solvent as a uniform dielectric medium with a high dielectric constant ∼80) the above ceramics cannot be considered as suitable for electrostatically induced complex formation. Our results also show that the protein-ceramic electrostatic interactions can be strong enough to compensate for the unfavorable desolvation effect in the process of protein-ceramic complex formation.

  12. Effects of the dielectric properties of the ceramic-solvent interface on the binding of proteins to oxide ceramics: a non-local electrostatic approach

    NASA Astrophysics Data System (ADS)

    Rubinstein, Alexander I.; Sabirianov, Renat F.; Namavar, Fereydoon

    2016-10-01

    The rapid development of nanoscience and nanotechnology has raised many fundamental questions that significantly impede progress in these fields. In particular, understanding the physicochemical processes at the interface in aqueous solvents requires the development and application of efficient and accurate methods. In the present work we evaluate the electrostatic contribution to the energy of model protein-ceramic complex formation in an aqueous solvent. We apply a non-local (NL) electrostatic approach that accounts for the effects of the short-range structure of the solvent on the electrostatic interactions of the interfacial systems. In this approach the aqueous solvent is considered as a non-ionic liquid, with the rigid and strongly correlated dipoles of the water molecules. We have found that an ordered interfacial aqueous solvent layer at the protein- and ceramic-solvent interfaces reduces the charging energy of both the ceramic and the protein in the solvent, and significantly increases the electrostatic contribution to their association into a complex. This contribution in the presented NL approach was found to be significantly shifted with respect to the classical model at any dielectric constant value of the ceramics. This implies a significant increase of the adsorption energy in the protein-ceramic complex formation for any ceramic material. We show that for several biocompatible ceramics (for example HfO2, ZrO2, and Ta2O5) the above effect predicts electrostatically induced protein-ceramic complex formation. However, in the framework of the classical continuum electrostatic model (the aqueous solvent as a uniform dielectric medium with a high dielectric constant ˜80) the above ceramics cannot be considered as suitable for electrostatically induced complex formation. Our results also show that the protein-ceramic electrostatic interactions can be strong enough to compensate for the unfavorable desolvation effect in the process of protein-ceramic complex formation.

  13. The importance of excluded solvent volume effects in computing hydration free energies.

    PubMed

    Yang, Pei-Kun; Lim, Carmay

    2008-11-27

    Continuum dielectric methods such as the Born equation have been widely used to compute the electrostatic component of the solvation free energy, DeltaG(solv)(elec), because they do not need to include solvent molecules explicitly and are thus far less costly compared to molecular simulations. All of these methods can be derived from Gauss Law of Maxwell's equations, which yields an analytical solution for the solvation free energy, DeltaG(Born), when the solute is spherical. However, in Maxwell's equations, the solvent is assumed to be a structureless continuum, whereas in reality, the near-solute solvent molecules are highly structured unlike far-solute bulk solvent. Since we have recently reformulated Gauss Law of Maxwell's equations to incorporate the near-solute solvent structure by considering excluded solvent volume effects, we have used it in this work to derive an analytical solution for the hydration free energy of an ion. In contrast to continuum solvent models, which assume that the normalized induced solvent electric dipole density P(n) is constant, P(n) mimics that observed from simulations. The analytical formula for the ionic hydration free energy shows that the Born radius, which has been used as an adjustable parameter to fit experimental hydration free energies, is no longer ill defined but is related to the radius and polarizability of the water molecule, the hydration number, and the first peak position of the solute-solvent radial distribution function. The resulting DeltaG(solv)(elec) values are shown to be close to the respective experimental numbers.

  14. Linearly scaling and almost Hamiltonian dielectric continuum molecular dynamics simulations through fast multipole expansions

    NASA Astrophysics Data System (ADS)

    Lorenzen, Konstantin; Mathias, Gerald; Tavan, Paul

    2015-11-01

    Hamiltonian Dielectric Solvent (HADES) is a recent method [S. Bauer et al., J. Chem. Phys. 140, 104103 (2014)] which enables atomistic Hamiltonian molecular dynamics (MD) simulations of peptides and proteins in dielectric solvent continua. Such simulations become rapidly impractical for large proteins, because the computational effort of HADES scales quadratically with the number N of atoms. If one tries to achieve linear scaling by applying a fast multipole method (FMM) to the computation of the HADES electrostatics, the Hamiltonian character (conservation of total energy, linear, and angular momenta) may get lost. Here, we show that the Hamiltonian character of HADES can be almost completely preserved, if the structure-adapted fast multipole method (SAMM) as recently redesigned by Lorenzen et al. [J. Chem. Theory Comput. 10, 3244-3259 (2014)] is suitably extended and is chosen as the FMM module. By this extension, the HADES/SAMM forces become exact gradients of the HADES/SAMM energy. Their translational and rotational invariance then guarantees (within the limits of numerical accuracy) the exact conservation of the linear and angular momenta. Also, the total energy is essentially conserved—up to residual algorithmic noise, which is caused by the periodically repeated SAMM interaction list updates. These updates entail very small temporal discontinuities of the force description, because the employed SAMM approximations represent deliberately balanced compromises between accuracy and efficiency. The energy-gradient corrected version of SAMM can also be applied, of course, to MD simulations of all-atom solvent-solute systems enclosed by periodic boundary conditions. However, as we demonstrate in passing, this choice does not offer any serious advantages.

  15. Flat electron beam sources for DLA accelerators

    DOE PAGES

    Ody, A.; Musumeci, P.; Maxson, J.; ...

    2016-10-26

    In this study we discuss the application of the flat beam transform to generate beams suitable for injection into slab-symmetric dielectric laser-driven accelerators (DLAs). A study of the focusing requirements to keep the particles within the tight apertures characterizing these accelerators shows the benefits of employing ultralow beam emittances. The slab geometry of the many dielectric accelerating structures strongly favors the use of flat beams with large ratio between vertical and horizontal emittances. We employ particle tracking simulations to study the application of the flat beam transform for two injector designs, a DC non relativistic photogun and a 1.6 cellmore » S-band RF photoinjector, obtaining in both cases emittance ratios between the horizontal and vertical plane in excess of 100 in agreement with simple analytical estimates. The 4 MeV RF photoinjector study-case can be directly applied to the UCLA Pegasus beamline and shows normalized emittances down to < 3 nm in the vertical dimension for beam charges up to 20 fC, enabling a two-stage DLA experiment.« less

  16. Electrohydrodynamic interactions of spherical particles under Quincke rotation

    NASA Astrophysics Data System (ADS)

    Das, Debasish; Saintillan, David

    2012-11-01

    Quincke rotation denotes the spontaneous rotation of dielectric particles immersed in a slightly dielectric liquid when subjected to a high enough DC electric field. It occurs when the charge relaxation time of the particles is greater than that of the fluid medium, causing the particles to become polarized in a direction opposite to that of the electric field and therefore giving rise to an unstable equilibrium position. When slightly perturbed, the particles start to rotate, and if the electric field exceeds a critical value the perturbations do not decay and the particle rotations reach a steady state with a constant angular velocity. We use a combination of numerical simulations and asymptotic theory to study the effect of electrohydrodynamic interactions between particles under Quincke rotation. We study the prototypical case of two equally charged spheres carrying no net charge and interacting with each other both hydrodynamically and electrically. The case of spherical particles free to roll on a horizontal grounded electrode is also described. We show that Quincke rotation results in self-propulsion of the particles in the plane of the electrode, and interactions between a pair of such ``rollers'' are analyzed.

  17. A compact nanosecond pulse generator for DBD tube characterization.

    PubMed

    Rai, S K; Dhakar, A K; Pal, U N

    2018-03-01

    High voltage pulses of very short duration and fast rise time are required for generating uniform and diffuse plasma under various operating conditions. Dielectric Barrier Discharge (DBD) has been generated by high voltage pulses of short duration and fast rise time to produce diffuse plasma in the discharge gap. The high voltage pulse power generators have been chosen according to the requirement for the DBD applications. In this paper, a compact solid-state unipolar pulse generator has been constructed for characterization of DBD plasma. This pulsar is designed to provide repetitive pulses of 315 ns pulse width, pulse amplitude up to 5 kV, and frequency variation up to 10 kHz. The amplitude of the output pulse depends on the dc input voltage. The output frequency has been varied by changing the trigger pulse frequency. The pulsar is capable of generating pulses of positive or negative polarity by changing the polarity of pulse transformer's secondary. Uniform and stable homogeneous dielectric barrier discharge plasma has been produced successfully in a xenon DBD tube at 400-mbar pressure using the developed high voltage pulse generator.

  18. A compact nanosecond pulse generator for DBD tube characterization

    NASA Astrophysics Data System (ADS)

    Rai, S. K.; Dhakar, A. K.; Pal, U. N.

    2018-03-01

    High voltage pulses of very short duration and fast rise time are required for generating uniform and diffuse plasma under various operating conditions. Dielectric Barrier Discharge (DBD) has been generated by high voltage pulses of short duration and fast rise time to produce diffuse plasma in the discharge gap. The high voltage pulse power generators have been chosen according to the requirement for the DBD applications. In this paper, a compact solid-state unipolar pulse generator has been constructed for characterization of DBD plasma. This pulsar is designed to provide repetitive pulses of 315 ns pulse width, pulse amplitude up to 5 kV, and frequency variation up to 10 kHz. The amplitude of the output pulse depends on the dc input voltage. The output frequency has been varied by changing the trigger pulse frequency. The pulsar is capable of generating pulses of positive or negative polarity by changing the polarity of pulse transformer's secondary. Uniform and stable homogeneous dielectric barrier discharge plasma has been produced successfully in a xenon DBD tube at 400-mbar pressure using the developed high voltage pulse generator.

  19. Magnetic, local ferroelectricity and magnetodielectric properties of NiFe2O4-poly (vinylidene-fluoride)-BaTiO3 composite film

    NASA Astrophysics Data System (ADS)

    Kumar, Amit; Yadav, K. L.

    2016-04-01

    We report the magnetic, dielectric, and magnetoelctric properties of NiFe2O4-poly (vinylidene-fluoride)-BaTiO3 composite film. The coercive field (±2H c ˜ 344 Oe) and remnant magnetization (M r ˜ 6.1 emu g-1) were observed at room temperature. The dielectric permittivity at room temperature (ɛ‧RT ˜ 281) was found to decrease with increase in frequency. The magnetocapacitance was found to be ˜5.9% at an applied dc magnetic field of 8 kOe (frequency = 1 kHz). Magnetoelectric coupling coefficient (α E ˜ 4.1 mV cm-1 Oe-1) measured by dynamic method (at ac magnetic field = 30 Oe) is observed higher (two times) than those reported for some materials. In addition, we have observed the image of ferroelectric domain using piezoelectric force microscopy at room temperature. Large magnetodielectric/magnetoelectric response in this composite is possibly a result of the effective mechanical interaction between NiFe2O4 and BaTiO3 through the polymer matrix.

  20. Ba doped Fe3O4 nanocrystals: Magnetic field and temperature tuning dielectric and electrical transport

    NASA Astrophysics Data System (ADS)

    Dutta, Papia; Mandal, S. K.; Nath, A.

    2018-05-01

    Nanocrystalline BaFe2O4 has been prepared through low temperature pyrophoric reaction method. The structural, dielectric and electrical transport properties of BaFe2O4 are investigated in detail. AC electrical properties have been studied over the wide range of frequencies with applied dc magnetic fields and temperatures. The value of impedance is found to increase with increase in magnetic field attributing the magnetostriction property of the sample. The observed value of magneto-impedance and magnetodielectric is found to ∼32% and ∼33% at room temperature. Nyquist plots have been fitted using resistance-capacitor circuits at different magnetic fields and temperatures showing the dominant role of grain and grain boundaries of the sample. Metal-semiconductor transition ∼403 K has been discussed in terms of delocalized and localized charge carrier.We have estimated activation energy using Arrhenius relation indicating temperature dependent electrical relaxation process in the system. Ac conductivity follow a Jonscher’s single power law indicating the large and small polaronic hopping conduction mechanism in the system.

  1. Effect of La substitution on structural and electrical properties of BiFeO3 thin film

    NASA Astrophysics Data System (ADS)

    Das, S. R.; Bhattacharya, P.; Choudhary, R. N. P.; Katiyar, R. S.

    2006-03-01

    The effect of La substitution on the structural and electrical properties of multiferroic BiFeO3 thin films grown on Pt/TiO2/SiO2/Si substrates by pulsed laser deposition has been reported. X-ray diffraction data confirmed the substitutions of La into the Bi site with the elimination of all of the secondary phases. The dielectric constant of the films was systematically increased from 165 to ~350 and the films showed excellent dielectric loss behavior. We observed a gradual increase in the remnant polarization (2Pr) with lanthanum substitution obtaining a maximum value of ~42 μC/cm2 at 20 mol % La incorporation. The leakage current behavior at room temperature of the films was studied and it was found that the leakage current decreased from 10-4 to 10-7 A/cm2 for La-substituted films at a field strength of 50 kV/cm. The reduction of dc leakage current of La-substituted films is explained on the basis of relative phase stability and improved microstructure of the material.

  2. Studies on structural, electrical, thermal and magnetic properties of YFeO3 ceramic

    NASA Astrophysics Data System (ADS)

    Suthar, Lokesh; Jha, V. K.; Bhadala, Falguni; Roy, M.; Sahu, S.; Barbar, S. K.

    2017-10-01

    The polycrystalline ceramic sample of YFeO3 has been synthesized by high-temperature solid-state reaction method using high-purity oxides. The formation of the compound has been confirmed by the room temperature (RT) X-ray diffraction analysis. The refined lattice parameters obtained by Rietveld analysis are: a = 5.5907 Å, b = 7.6082 Å and c = 5.2849 Å with orthorhombic symmetry in space group Pnma. The average grain size obtained from the SEM micrograph is around 2 µm. The three-dimensional surface morphology has been investigated using atomic force microscopy (AFM), and the average roughness measured in the sampling area of 100.07 µm2 is around 142 nm. The frequency- and temperature-dependent dielectric constant has been measured. The material shows high dielectric constant value (750) at RT. The activation energy obtained from dc conductivity using Arrhenius relation σ = σ oexp(-Ea/kT) is 2.12 eV. Thermal analysis shows phase change around 625 K with minimum weight loss (i.e. 1.27% of initial weight) from RT to 1273 K. The magnetization measurement indicates soft magnetic behaviour.

  3. Effect of the ordered interfacial water layer in protein complex formation: a non-local electrostatic approach

    NASA Astrophysics Data System (ADS)

    Rubinstein, Alexander; Sabirianov, Renat

    2011-03-01

    Using a non-local electrostatic approach that incorporates the short-range structure of the contacting media, we evaluated the electrostatic contribution to the energy of the complex formation of two model proteins. In this study, we have demonstrated that the existence of an low-dielectric interfacial water layer at the protein-solvent interface reduces the charging energy of the proteins in the aqueous solvent, and consequently increases the electrostatic contribution to the protein binding (change in free energy upon the complex formation of two proteins). This is in contrast with the finding of the continuum electrostatic model, which suggests that electrostatic interactions are not strong enough to compensate for the unfavorable desolvation effects.

  4. Development of a conformational search strategy for flexible ligands: A study of the potent μ-selective opioid analgesic fentanyl

    NASA Astrophysics Data System (ADS)

    Cometta-Morini, Chiara; Loew, Gilda H.

    1991-08-01

    An extensive conformational search of the potent opioid analgesic, fentanyl, was performed using the semiempirical quantum mechanical method AM1 and the CHARMm potential energy function. A combination of two procedures was used to search the conformational space for fentanyl, which included nested dihedral scans, geometry optimization and molecular dynamics simulation at different temperatures. In addition, the effect of a continuum solvent environment was taken into account by use of appropriate values for the dielectric constant in the CHARMm computations. The results of the conformational search allowed the determination of the probable conformation of fentanyl in polar and nonpolar solvents and of three candidate conformers for its bioactive form.

  5. Breakdown of the Simple Arrhenius Law in the Normal Liquid State.

    PubMed

    Thoms, Erik; Grzybowski, Andrzej; Pawlus, Sebastian; Paluch, Marian

    2018-04-05

    It is common practice to discuss the temperature effect on molecular dynamics of glass formers above the melting temperature in terms of the Arrhenius law. Using dielectric spectroscopy measurements of dc conductivity and structural relaxation time on the example of the typical glass former propylene carbonate, we provide experimental evidence that this practice is not justified. Our conclusions are supported by employing thermodynamic density scaling and the occurrence of inflection points in isothermal dynamic data measured at elevated pressure. Additionally, we propose a more suitable approach to describe the dynamics both above and below the inflection point based on a modified MYEGA model.

  6. Antiferromagnetic spin current rectifier

    NASA Astrophysics Data System (ADS)

    Khymyn, Roman; Tiberkevich, Vasil; Slavin, Andrei

    2017-05-01

    It is shown theoretically, that an antiferromagnetic dielectric with bi-axial anisotropy, such as NiO, can be used for the rectification of linearly-polarized AC spin current. The AC spin current excites two evanescent modes in the antiferromagnet, which, in turn, create DC spin current flowing back through the antiferromagnetic surface. Spin diode based on this effect can be used in future spintronic devices as direct detector of spin current in the millimeter- and submillimeter-wave bands. The sensitivity of such a spin diode is comparable to the sensitivity of modern electric Schottky diodes and lies in the range 102-103 V/W for 30 ×30 nm2 structure.

  7. Nonlinear antiferroelectric-like capacitance-voltage curves in ferroelectric BiFeO3 thin films

    NASA Astrophysics Data System (ADS)

    Jiang, A. Q.; Zhang, D. W.; Tang, T. A.

    2013-07-01

    The ferroelectric capacitance is usually nonlinear against increasing/decreasing voltage in sweeping time longer than 1 s and achieves a maximum value at around a coercive voltage within each loop. With the improved short-pulse measurements, we estimated the differential capacitance of ferroelectric Au/BiFeO3/LaNiO3/SrTiO3 thin-film capacitors from a nanosecond discharging current induced by a delta voltage after a stressing voltage pulse with widths of 500 ns-50 ms. With the shortening of the voltage sweeping time, we clearly observed two capacitance maxima from each branch of a capacitance-voltage (C-V) loop, reminiscent of an antiferroelectric behavior. After transformation of nanosecond domain switching current transients under pulses into polarization-voltage hysteresis loops, we further measured time dependent polarization retention as well as imprint in the range of 100 ns-1 s. Both positive and negative polarizations decay exponentially at characteristic times of 2.25 and 198 μs, suggesting the coexistence of preferred domains pointing to top and bottom electrodes in most epitaxial films. This exponential time dependence is similar to the dielectric degradation under a dc voltage, and the polarization retention can be improved through long-time opposite voltage stressing. With this improvement, the additional antiferroelectric-like dielectric maximum within each branch of a C-V loop disappears. This experiment provides the strong evidence of the effect of time-dependent charge injection on polarization retention and dielectric degradation.

  8. Structural, dielectric and impedance spectroscopic studies of Ni0.5Zn0.5-xLixFe2O4 nanocrystalline ferrites

    NASA Astrophysics Data System (ADS)

    Venkatesh, Davuluri; Ramesh, K. V.

    2017-09-01

    Nanocrystalline lithium substituted Ni-Zn ferrites with composition Ni0.5Zn0.5-xLixFe2O4 (x = 0.00-0.25 in steps of 0.05) were synthesized by the citrate gel auto-combustion method and were sintered at 1000∘C for 4 h in air atmosphere. The structural, dielectric, impedance spectroscopic and magnetic properties were studied by using X-ray diffraction, impedance analyzer and vibrating sample magnetometer respectively. The X-ray diffraction patterns confirm that all samples exhibit a single phase cubic spinel structure. Suitable cation distribution for all compositions has been proposed by using the X-ray diffraction line intensity calculations and the theoretical lattice parameter for each composition was observed in close agreement with the experimental ones and thereby supporting the proposed distribution. An increase in the saturation magnetization was observed up to x = 0.10 level of Li+ substitution and thereafter magnetization reduced for higher concentrations to the highest level of Li+ substitution. The dielectric constant and the DC resistivity of Ni-Zn-Li ferrites were noticed to decrease with increase in the Li+ ion concentration. The impedance spectroscopic studies by using the Cole-Cole plots were studied in order to obtain the relaxation time, grain resistance and grain capacitance. AC conductivity initially remained almost independent of frequency for lower frequencies and thereafter for higher frequencies the AC conductivity increased with increase of Lithium concentration.

  9. Transparent electrodes for high E-field production using a buried indium tin oxide layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunton, Will; Polovy, Gene; Semczuk, Mariusz

    2016-03-15

    We present a design and characterization of optically transparent electrodes suitable for atomic and molecular physics experiments where high optical access is required. The electrodes can be operated in air at standard atmospheric pressure and do not suffer electrical breakdown even for electric fields far exceeding the dielectric breakdown of air. This is achieved by putting an indium tin oxide coated dielectric substrate inside a stack of dielectric substrates, which prevents ion avalanche resulting from Townsend discharge. With this design, we observe no arcing for fields of up to 120 kV/cm. Using these plates, we directly verify the production ofmore » electric fields up to 18 kV/cm inside a quartz vacuum cell by a spectroscopic measurement of the dc Stark shift of the 5{sup 2}S{sub 1/2} → 5{sup 2}P{sub 3/2} transition for a cloud of laser cooled rubidium atoms. We also report on the shielding of the electric field and on the residual electric fields that persist within the vacuum cell once the electrodes are discharged. In addition, we discuss observed atom loss that results from the motion of free charges within the vacuum. The observed asymmetry of these phenomena on the bias of the electrodes suggests that field emission of electrons within the vacuum is primarily responsible for these effects and may indicate a way of mitigating them.« less

  10. Li+ transport in poly(ethylene oxide) based electrolytes: neutron scattering, dielectric spectroscopy, and molecular dynamics simulations.

    PubMed

    Do, Changwoo; Lunkenheimer, Peter; Diddens, Diddo; Götz, Marion; Weiss, Matthias; Loidl, Alois; Sun, Xiao-Guang; Allgaier, Jürgen; Ohl, Michael

    2013-07-05

    The dynamics of Li(+) transport in polyethylene oxide (PEO) and lithium bis(trifluoromethanesulfonyl)imde mixtures are investigated by combining neutron spin-echo (NSE) and dielectric spectroscopy with molecular dynamics (MD) simulations. The results are summarized in a relaxation time map covering wide ranges of temperature and time. The temperature dependence of the dc conductivity and the dielectric α relaxation time is found to be identical, indicating a strong coupling between both. The relaxation times obtained from the NSE measurements at 0.05 Å(-1)

  11. Li+ Transport in Poly(Ethylene Oxide) Based Electrolytes: Neutron Scattering, Dielectric Spectroscopy, and Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Do, Changwoo; Lunkenheimer, Peter; Diddens, Diddo; Götz, Marion; Weiß, Matthias; Loidl, Alois; Sun, Xiao-Guang; Allgaier, Jürgen; Ohl, Michael

    2013-07-01

    The dynamics of Li+ transport in polyethylene oxide (PEO) and lithium bis(trifluoromethanesulfonyl)imde mixtures are investigated by combining neutron spin-echo (NSE) and dielectric spectroscopy with molecular dynamics (MD) simulations. The results are summarized in a relaxation time map covering wide ranges of temperature and time. The temperature dependence of the dc conductivity and the dielectric α relaxation time is found to be identical, indicating a strong coupling between both. The relaxation times obtained from the NSE measurements at 0.05Å-1

  12. Thickness-dependent domain wall reorientation in 70/30 lead magnesium niobate- lead titanate thin films

    DOE PAGES

    Keech, Ryan; Morandi, Carl; Wallace, Margeaux; ...

    2017-04-11

    Continued reduction in length scales associated with many ferroelectric film-based technologies is contingent on retaining the functional properties as the film thickness is reduced. Epitaxial and polycrystalline lead magnesium niobate - lead titanate (70PMN-30PT) thin films were studied over the thickness range of 100-350 nm for the relative contributions to property thickness dependence from interfacial and grain boundary low permittivity layers. Epitaxial PMN-PT films were grown on SrRuO 3 /(001)SrTiO 3, while polycrystalline films with {001}-Lotgering factors >0.96 were grown on Pt/TiO 2/SiO 2/Si substrates via chemical solution deposition. Both film types exhibited similar relative permittivities of ~300 at highmore » fields at all measured thicknesses with highly crystalline electrode/dielectric interfaces. These results, with the DC-biased and temperature dependent dielectric characterization, suggest irreversible domain wall mobility is the major contributor to the overall dielectric response and its thickness dependence. In epitaxial films, the irreversible Rayleigh coefficients reduced 85% upon decreasing thickness from 350 to 100 nm. The temperature at which a peak in the relative permittivity is observed was the only measured small signal quantity which was more thickness dependent in polycrystalline than epitaxial films. This is attributed to the relaxor nature present in the films, potentially stabilized by defect concentrations, and/or chemical inhomogeneity. Finally, the effective interfacial layers are found to contribute to the measured thickness dependence in the longitudinal piezoelectric coefficient.« less

  13. Thin Film Multilayer Conductor/Ferroelectric Tunable Microwave Components for Communication Applications

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.; Romanofsky, Robert R.; VanKeuls, Frederick W.; Mueller, Carl H.; Treece, Randolph E.; Rivkin, Tania V.

    1997-01-01

    High Temperature Superconductor/Ferroelectric (HTS/FE ) thin film multilayered structures deposited onto dielectric substrates are currently being investigated for use in low loss, tunable microwave components for satellite and ground based communications. The main goal for this technology is to achieve maximum tunability while keeping the microwave losses as low as possible, so as to avoid performance degradation when replacing conventional technology (e.g., filters and oscillators) with HTS/FE components. Therefore, for HTS/FE components to be successfully integrated into current working systems, full optimization of the material and electrical properties of the ferroelectric films, without degrading those of the HTS film; is required. Hence, aspects such as the appropriate type of ferroelectric and optimization of the deposition conditions (e.g., deposition temperature) should be carefully considered. The tunability range as well as the microwave losses of the desired varactor (i.e., tunable component) are also dependent on the geometry chosen (e.g., parallel plate capacitor, interdigital capacitor, coplanar waveguide, etc.). In addition, the performance of the circuit is dependent on the location of the varactor in the circuit and the biasing circuitry. In this paper, we will present our results on the study of the SrTiO3/YBa2Cu3O(7-delta)/LaAl03 (STO/YBCO/LAO) and the Ba(x)Sr(1-x)TiO3/YBa2Cu3O(7-delta)/LaAl03(BSTO/YBCO/ILAO) HTS/FE multilayered structures. We have observed that the amount of variation of the dielectric constant upon the application of a dc electric field is closely related to the microstructure of the film. The largest tuning of the STO/YBCO/LAO structure corresponded to single-phased, epitaxial STO films deposited at 800 C and with a thickness of 500 nm. Higher temperatures resulted in interfacial degradation and poor film quality, while lower deposition temperatures resulted in films with lower dielectric constants, lower tunabilities, and higher losses. For STO/LAO multilayer structures having STO film of similar quality we have observed that interdigital capacitor configurations allow for higher tunabilities and lower losses than parallel plate configurations, but required higher dc voltage. Results on the use of these geometries in working microwave components such as filters and stabilizing resonators for local oscillators (LO) will be discussed.

  14. Electrohydrodynamics of drops in strong uniform dc electric fields

    NASA Astrophysics Data System (ADS)

    Salipante, Paul F.; Vlahovska, Petia M.

    2010-11-01

    Drop deformation in an uniform dc electric field is a classic problem. The pioneering work of Taylor demonstrated that for weakly conducting media, the drop fluid undergoes a toroidal flow and the drop adopts a prolate or oblate spheroidal shape, the flow and shape being axisymmetrically aligned with the applied field. However, recent studies have revealed a nonaxisymmetric rotational flow in strong fields, similar to the rotation of solid dielectric particles observed by Quincke in the 19th century. We present a systematic experimental study of this phenomenon, which highlights the importance of charge convection along the drop surface. The critical electric field, drop inclination angle, and rate of rotation are measured. We find that for small, high viscosity drops, the threshold field strength is well approximated by the Quincke rotation criterion. Reducing the viscosity ratio shifts the onset for rotation to stronger fields. The drop inclination angle increases with field strength. The rotation rate is approximately given by the inverse Maxwell-Wagner polarization time. Novel features are also observed such as a hysteresis in the tilt angle for large low-viscosity drops.

  15. Recent Advances in Alternating Current-Driven Organic Light-Emitting Devices.

    PubMed

    Pan, Yufeng; Xia, Yingdong; Zhang, Haijuan; Qiu, Jian; Zheng, Yiting; Chen, Yonghua; Huang, Wei

    2017-11-01

    Organic light-emitting devices (OLEDs), typically operated with constant-voltage or direct-current (DC) power sources, are candidates for next-generation solid-state lighting and displays, as they are light, thin, inexpensive, and flexible. However, researchers have focused mainly on the device itself (e.g., development of novel materials, design of the device structure, and optical outcoupling engineering), and little attention has been paid to the driving mode. Recently, an alternative concept to DC-driven OLEDs by directly driving devices using time-dependent voltages or alternating current (AC) has been explored. Here, the effects of different device structures of AC-driven OLEDs, for example, double-insulation, single-insulation, double-injection, and tandem structure, on the device performance are systematically investigated. The formation of excitons and the dielectric layer, which are important to achieve high-performance AC-driven OLEDs, are carefully considered. The importance of gaining further understanding of the fundamental properties of AC-driven OLEDs is then discussed, especially as they relate to device physics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Diurnal water relations of walnut trees - Implications for remote sensing

    NASA Technical Reports Server (NTRS)

    Weber, James A.; Ustin, Susan L.

    1991-01-01

    Leaflet water content (WC), relative water content (RWC), and water potential, Phi(lf) were measured as indicators of diurnal change in tree water status in an experimental walnut orchard receiving two irrigation treatments: 100 and 33 percent of potential evapotranspiration (PET). Diurnal change was greatest in Phi(lf) throughout the experimental period, with minima occurring each day in early to mid-afternoon and maxima between midnight and sunrise. Leaflet WC and RWC were lower in the afternoon than at night, but had greater variability so that the diurnal pattern was not as clear. Comparison between the pattern of Phi(lf) and dielectric constants (DCs) measured from probes inserted 2 cm into a tree hole showed that both declined nearly in parallel in the morning. Phi(lf) recovered more rapidly than DC in the afternoon. This temporal discrepancy could be caused by cavitation of xylem elements in the vicinity of the DC probe. Microwave backscatter for L- and X-bands also measured diurnal variation that had local minima in the afternoon, but the pattern among wavelength and polarization signatures was complex.

  17. Structural characterization and observation of variable range hopping conduction mechanism at high temperature in CdSe quantum dot solids

    NASA Astrophysics Data System (ADS)

    Sinha, Subhojyoti; Kumar Chatterjee, Sanat; Ghosh, Jiten; Kumar Meikap, Ajit

    2013-03-01

    We have used Rietveld refinement technique to extract the microstructural parameters of thioglycolic acid capped CdSe quantum dots. The quantum dot formation and its efficient capping are further confirmed by HR-TEM, UV-visible and FT-IR spectroscopy. Comparative study of the variation of dc conductivity with temperature (298 K ≤ T ≤ 460 K) is given considering Arrhenius formalism, small polaron hopping and Schnakenberg model. We observe that only Schnakenberg model provides good fit to the non-linear region of the variation of dc conductivity with temperature. Experimental variation of ac conductivity and dielectric parameters with temperature (298 K ≤ T ≤ 460 K) and frequency (80 Hz ≤ f ≤ 2 MHz) are discussed in the light of hopping theory and quantum confinement effect. We have elucidated the observed non-linearity in the I-V curves (measured within ±50 V), at dark and at ambient light, in view of tunneling mechanism. Tunnel exponents and non-linearity weight factors have also been evaluated in this regard.

  18. Relation between the microstructure and the electromagnetic properties of BaTiO3/Ni0.5Zn0.5Fe2O4 ceramic composite

    NASA Astrophysics Data System (ADS)

    Xiao, Bin; Tang, Yu; Ma, Guodong; Ma, Ning; Du, Piyi

    2015-06-01

    The microstructure-property relation in ferroelectric/ferromagnetic composite is investigated in detail, exemplified by typical sol-gel-derived 0.3BTO/0.7NZFO ceramic composite. The effect of microstructural factors including intergrain connectivity, grain size and interfaces on the dielectric and magnetic properties of the composite prepared by conventional ceramic method and three-step sintering method is discussed both experimentally and theoretically. It reveals that the dielectric behavior of the composite is controlled by a hybrid dielectric process that combines the contribution of Debye-like dipoles and Maxwell-Wagner (M-W or interfacial) polarization. Enhanced dielectric, magnetic and conductive behaviors appear in the composite with better intergrain connectivity and larger grain size derived by sol-gel route and three-step sintering method. The effective permittivity contributed by Debye-like dipoles exhibits a value of ~130,000 in three-step sintered composite, which is almost the same as that in conventionally sintered one, but that contributed by M-W response is much smaller in the former. Compared with conventionally prepared samples, the relaxation time ( τ) is 3.476 × 10-6 s, about one order of magnitude smaller, and the dc electrical conductivity is 3.890 × 10-3 S/m, one order of magnitude higher in three-step sintered composite. The minimum dielectric loss reveals almost the same (~0.2) for all samples, but shows distinguishable difference in low-frequency region. Meanwhile, an initial permeability of 84, twice as large as that of conventionally prepared composite and 56 % the value of single-phased NZFO ferrite (~150), and a saturation magnetization of 63.5 emu/g, 32 % higher than that of conventional one and approximately 84 % the value of single-phased NZFO ferrite (~76 emu/g), appear simultaneously in three-step sintered composite with larger grain size and better intergrain connectivity. It is clear that the discovery is helpful for establishing a more explicit view on the physics of multi-functional composite materials, while the composite with optimized microstructure is beneficial to be used as a high-performance material.

  19. Structural, magnetic, and dielectric studies of the Aurivillius compounds SrBi{sub 5}Ti{sub 4}MnO{sub 18} and SrBi{sub 5}Ti{sub 4}Mn{sub 0.5}Co{sub 0.5}O{sub 18}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, B.; Yang, J., E-mail: jyang@issp.ac.cn; Zuo, X. Z.

    We have successfully synthesized the Aurivillius compounds SrBi{sub 5}Ti{sub 4}MnO{sub 18} and SrBi{sub 5}Ti{sub 4}Mn{sub 0.5}Co{sub 0.5}O{sub 18} using a modified Pechini method. Both samples have an orthorhombic structure with the space group B2cb. The valence state of Mn is suggested to be +3 and the doped Co ions exist in the form of Co{sup 2+} and Co{sup 3+} based on the results of x-ray photoelectron spectroscopy. The sample SrBi{sub 5}Ti{sub 4}MnO{sub 18} exhibits a dominant paramagnetic state with the existence of superparamagnetic state as evidenced by the electron paramagnetic resonance results, whereas SrBi{sub 5}Ti{sub 4}Mn{sub 0.5}Co{sub 0.5}O{sub 18} undergoesmore » a ferrimagnetic transition at 161 K originating from the antiferromagnetic coupling of Co-based and Mn-based sublattices, and a ferromagnetic transition at 45 K arising from the Mn{sup 3+}-O-Co{sup 3+} (low spin) interaction. The sample SrBi{sub 5}Ti{sub 4}Mn{sub 0.5}Co{sub 0.5}O{sub 18} exhibits two dielectric anomalies. One corresponds to a relaxor-like dielectric relaxation which follows the Vogel-Fulcher function and the other dielectric relaxation obeys the Arrhenius law arising from the collective motion of oxygen vacancies. In addition, the sample SrBi{sub 5}Ti{sub 4}Mn{sub 0.5}Co{sub 0.5}O{sub 18} exhibits a magnetodielectric effect caused by the Maxwell-Wagner effect because of the conductivity of the sample. This is demonstrated by the fact that the activation energy in dielectric loss process is close to that for dc conductivity and the magnetodielectric effect is sensitive to the measured frequency.« less

  20. Coupled molecular dynamics and continuum electrostatic method to compute the ionization pKa's of proteins as a function of pH. Test on a large set of proteins.

    PubMed

    Vorobjev, Yury N; Scheraga, Harold A; Vila, Jorge A

    2018-02-01

    A computational method, to predict the pKa values of the ionizable residues Asp, Glu, His, Tyr, and Lys of proteins, is presented here. Calculation of the electrostatic free-energy of the proteins is based on an efficient version of a continuum dielectric electrostatic model. The conformational flexibility of the protein is taken into account by carrying out molecular dynamics simulations of 10 ns in implicit water. The accuracy of the proposed method of calculation of pKa values is estimated from a test set of experimental pKa data for 297 ionizable residues from 34 proteins. The pKa-prediction test shows that, on average, 57, 86, and 95% of all predictions have an error lower than 0.5, 1.0, and 1.5 pKa units, respectively. This work contributes to our general understanding of the importance of protein flexibility for an accurate computation of pKa, providing critical insight about the significance of the multiple neutral states of acid and histidine residues for pKa-prediction, and may spur significant progress in our effort to develop a fast and accurate electrostatic-based method for pKa-predictions of proteins as a function of pH.

  1. Electrostatic Solvation Energy for Two Oppositely Charged Ions in a Solvated Protein System: Salt Bridges Can Stabilize Proteins

    PubMed Central

    Gong, Haipeng; Freed, Karl F.

    2010-01-01

    Abstract Born-type electrostatic continuum methods have been an indispensable ingredient in a variety of implicit-solvent methods that reduce computational effort by orders of magnitude compared to explicit-solvent MD simulations and thus enable treatment using larger systems and/or longer times. An analysis of the limitations and failures of the Born approaches serves as a guide for fundamental improvements without diminishing the importance of prior works. One of the major limitations of the Born theory is the lack of a liquidlike description of the response of solvent dipoles to the electrostatic field of the solute and the changes therein, a feature contained in the continuum Langevin-Debye (LD) model applied here to investigate how Coulombic interactions depend on the location of charges relative to the protein/water boundary. This physically more realistic LD model is applied to study the stability of salt bridges. When compared head to head using the same (independently measurable) physical parameters (radii, dielectric constants, etc.), the LD model is in good agreement with observations, whereas the Born model is grossly in error. Our calculations also suggest that a salt bridge on the protein's surface can be stabilizing when the charge separation is ≤4 Å. PMID:20141761

  2. Solvent-Induced Shift of Spectral Lines in Polar–Polarizable Solvents

    DOE PAGES

    Matyushov, Dmitry V.; Newton, Marshall D.

    2017-03-09

    Solvent-induced shift of optical transition lines is traditionally described by the Lippert- McRae equation given in terms of the Onsager theory for dipole solvation. It splits the overall shift into the equilibrium solvation by induced dipoles and the reaction field by the permanent dipoles in equilibrium with the chromophore in the ground state. Here we have reconsidered this classical problem from the perspective of microscopic solvation theories. A microscopic solvation functional is derived and continuum solvation is consistently introduced by taking the limit of zero wavevector in the reciprocal-space solvation susceptibility functions. We show that the phenomenological expression for themore » reaction field of permanent dipoles in the Lippert-McRae equation is not consistent with the microscopic theory. The main deficiency of the Lippert- McRae equation equation is the use of additivity of the response by permanent and induced dipoles of the liquid. An alternative closed-form equation for the spectral shift is derived. Its continuum limit allows a new, non-additive functionality for the solvent-induced shift in terms of the high-frequency and static dielectric constants. Finally, the main qualitative outcome of the theory is a significantly weaker dependence of the spectral shift on the polarizability of the solvent than predicted by the Lippert-McRae formula.« less

  3. Solvent-Induced Shift of Spectral Lines in Polar-Polarizable Solvents.

    PubMed

    Matyushov, Dmitry V; Newton, Marshall D

    2017-03-23

    Solvent-induced shift of optical transition lines is traditionally described by the Lippert-McRae equation given in terms of the Onsager theory for dipole solvation. It splits the overall shift into the equilibrium solvation by induced dipoles and the reaction field by the permanent dipoles in equilibrium with the chromophore in the ground state. We have reconsidered this classical problem from the perspective of microscopic solvation theories. A microscopic solvation functional is derived, and continuum solvation is consistently introduced by taking the limit of zero wavevector in the reciprocal-space solvation susceptibility functions. We show that the phenomenological expression for the reaction field of permanent dipoles in the Lippert-McRae equation is not consistent with the microscopic theory. The main deficiency of the Lippert-McRae equation is the use of additivity of the response by permanent and induced dipoles of the liquid. An alternative closed-form equation for the spectral shift is derived. Its continuum limit allows a new, nonadditive functionality for the solvent-induced shift in terms of the high-frequency and static dielectric constants. The main qualitative outcome of the theory is a significantly weaker dependence of the spectral shift on the polarizability of the solvent than predicted by the Lippert-McRae formula.

  4. Water Lone Pair Delocalization in Classical and Quantum Descriptions of the Hydration of Model Ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Remsing, Richard C.; Duignan, Timothy T.; Baer, Marcel D.

    Understanding the nature of ionic hydration at a fundamental level has eluded scientists despite intense interest for nearly a century. In particular, the microscopic origins of the asymmetry of ion solvation thermodynamics with respect to the sign of the ionic charge remains a mystery. Here, we determine the response of accurate quantum mechanical water models to strong nanoscale solvation forces arising from excluded volumes and ionic electrostatic fields. This is compared to the predictions of two important limiting classes of classical models of water with fixed point changes, differing in their treatment of "lone-pair" electrons. Using the quantum water modelmore » as our standard of accuracy, we find that a single fixed classical treatment of lone pair electrons cannot accurately describe solvation of both apolar and cationic solutes, underlining the need for a more flexible description of local electronic effects in solvation processes. However, we explicitly show that all water models studied respond to weak long-ranged electrostatic perturbations in a manner that follows macroscopic dielectric continuum models, as would be expected. We emphasize the importance of these findings in the context of realistic ion models, using density functional theory and empirical models, and discuss the implications of our results for quantitatively accurate reduced descriptions of solvation in dielectric media.« less

  5. Revisiting the Dielectric Constant Effect on the Nucleophile and Leaving Group of Prototypical Backside Sn2 Reactions: a Reaction Force and Atomic Contribution Analysis.

    PubMed

    Pedraza-González, Laura Milena; Galindo, Johan Fabian; Gonzalez, Ronald; Reyes, Andrés

    2016-10-09

    The solvent effect on the nucleophile and leaving group atoms of the prototypical F - + CH 3 Cl → CH 3 F + Cl - backside bimolecular nucleophilic substitution reaction (S N 2) is analyzed employing the reaction force and the atomic contributions methods on the intrinsic reaction coordinate (IRC). Solvent effects were accounted for using the polarizable continuum solvent model. Calculations were performed employing eleven dielectric constants, ε, ranging from 1.0 to 78.5, to cover a wide spectrum of solvents. The reaction force data reveals that the solvent mainly influences the region of the IRC preceding the energy barrier, where the structural rearrangement to reach the transition state occurs. A detailed analysis of the atomic role in the reaction as a function of ε reveals that the nucleophile and the carbon atom are the ones that contribute the most to the energy barrier. In addition, we investigated the effect of the choice of nucleophile and leaving group on the ΔE 0 and ΔE ↕ of Y - + CH 3 X → YCH 3 + X - (X,Y= F, Cl, Br, I) in aqueous solution. Our analysis allowed us to find relationships between the atomic contributions to the activation energy and leaving group ability and nucleophilicity.

  6. A biologically inspired artificial muscle based on fiber-reinforced and electropneumatic dielectric elastomers

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Zhang, Chi; Luo, Meng; Chen, Xi; Li, Dichen; Chen, Hualing

    2017-08-01

    Dielectric elastomers (DEs) have great potential for use as artificial muscles because of the following characteristics: electrical activity, fast and large deformation under stimuli, and softness as natural muscles. Inspired by the traditional McKibben actuators, in this study, we developed a cylindrical soft fiber-reinforced and electropneumatic DE artificial muscle (DEAM) by mimicking the spindle shape of natural muscles. Based on continuum mechanics and variation principle, the inhomogeneous actuation of DEAMs was theoretically modeled and calculated. Prototypes of DEAMs were prepared to validate the design concept and theoretical model. The theoretical predictions are consistent with the experimental results; they successfully predicted the evolutions of the contours of DEAMs with voltage. A pneumatically supported high prestretch in the hoop direction was achieved by our DEAM prototype without buckling the soft fibers sandwiched by the DE films. Besides, a continuously tunable prestretch in the actuation direction was achieved by varying the supporting pressure. Using the theoretical model, the failure modes, maximum actuations, and critical voltages were analyzed; they were highly dependent on the structural parameters, i.e., the cylinder aspect ratio, prestretch level, and supporting pressure. The effects of structural parameters and supporting pressure on the actuation performance were also investigated to optimize the DEAMs.

  7. Rotational dynamics of polyatomic ions in aqueous solutions: From continuum model to mode-coupling theory, aided by computer simulations.

    PubMed

    Banerjee, Puja; Bagchi, Biman

    2018-06-14

    Due to the presence of the rotational mode and the distributed surface charges, the dynamical behavior of polyatomic ions in water differs considerably from those of the monatomic ions. However, their fascinating dynamical properties have drawn scant attention. We carry out theoretical and computational studies of a series of well-known polyatomic ions, namely, sulfate, nitrate, and acetate ions. All three ions exhibit different rotational diffusivity, with that of the nitrate ion being considerably larger than the other two. They all defy the hydrodynamic laws of size dependence. Study of the local structure around the ions provides valuable insight into the origin of these differences. We carry out a detailed study of the rotational diffusion of these ions by extensive computer simulation and by using the theoretical approaches of the dielectric friction developed by Fatuzzo-Mason (FM) and Nee-Zwanzig (NZ), and subsequently generalized by Alavi and Waldeck. A critical element of the FM-NZ theory is the decomposition of the total rotational friction, ζ Rot , into Stokes and dielectric parts. The study shows a dominant role of dielectric friction in the sense that if the ions are made neutral, the nature of diffusion changes and the values become much larger. Our analyses further reveal that the decomposition of total friction into the Stokes and dielectric friction breaks down for sulfate ions but remains semi-quantitatively valid for nitrate and acetate ions. We discuss the relationship between translational and rotational dielectric friction on rigid spherical ions. We develop a self-consistent mode-coupling theory (SC-MCT) formalism that could provide a unified view of rotational friction of polyatomic ions in polar medium. Our SC-MCT shows that the breakdown can be attributed to the change in the microscopic structural features. The mode-coupling theory helps in elucidating the role of coupling between translational and rotational motion of these ions. In fact, these two motions self-consistently determine the value of each other. The reference interaction site model-based MCT suggests an interesting relation between the torque-torque and the force-force time correlation function with the proportionality constant being determined by the geometry and the charge distribution of the polyatomic molecule. We point out several parallelisms between the theories of translational and rotation friction calculations of ions in polar liquids.

  8. MCCE2: improving protein pKa calculations with extensive side chain rotamer sampling.

    PubMed

    Song, Yifan; Mao, Junjun; Gunner, M R

    2009-11-15

    Multiconformation continuum electrostatics (MCCE) explores different conformational degrees of freedom in Monte Carlo calculations of protein residue and ligand pK(a)s. Explicit changes in side chain conformations throughout a titration create a position dependent, heterogeneous dielectric response giving a more accurate picture of coupled ionization and position changes. The MCCE2 methods for choosing a group of input heavy atom and proton positions are described. The pK(a)s calculated with different isosteric conformers, heavy atom rotamers and proton positions, with different degrees of optimization are tested against a curated group of 305 experimental pK(a)s in 33 proteins. QUICK calculations, with rotation around Asn and Gln termini, sampling His tautomers and torsion minimum hydroxyls yield an RMSD of 1.34 with 84% of the errors being <1.5 pH units. FULL calculations adding heavy atom rotamers and side chain optimization yield an RMSD of 0.90 with 90% of the errors <1.5 pH unit. Good results are also found for pK(a)s in the membrane protein bacteriorhodopsin. The inclusion of extra side chain positions distorts the dielectric boundary and also biases the calculated pK(a)s by creating more neutral than ionized conformers. Methods for correcting these errors are introduced. Calculations are compared with multiple X-ray and NMR derived structures in 36 soluble proteins. Calculations with X-ray structures give significantly better pK(a)s. Results with the default protein dielectric constant of 4 are as good as those using a value of 8. The MCCE2 program can be downloaded from http://www.sci.ccny.cuny.edu/~mcce. 2009 Wiley Periodicals, Inc.

  9. Linearly scaling and almost Hamiltonian dielectric continuum molecular dynamics simulations through fast multipole expansions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lorenzen, Konstantin; Mathias, Gerald; Tavan, Paul, E-mail: tavan@physik.uni-muenchen.de

    2015-11-14

    Hamiltonian Dielectric Solvent (HADES) is a recent method [S. Bauer et al., J. Chem. Phys. 140, 104103 (2014)] which enables atomistic Hamiltonian molecular dynamics (MD) simulations of peptides and proteins in dielectric solvent continua. Such simulations become rapidly impractical for large proteins, because the computational effort of HADES scales quadratically with the number N of atoms. If one tries to achieve linear scaling by applying a fast multipole method (FMM) to the computation of the HADES electrostatics, the Hamiltonian character (conservation of total energy, linear, and angular momenta) may get lost. Here, we show that the Hamiltonian character of HADESmore » can be almost completely preserved, if the structure-adapted fast multipole method (SAMM) as recently redesigned by Lorenzen et al. [J. Chem. Theory Comput. 10, 3244-3259 (2014)] is suitably extended and is chosen as the FMM module. By this extension, the HADES/SAMM forces become exact gradients of the HADES/SAMM energy. Their translational and rotational invariance then guarantees (within the limits of numerical accuracy) the exact conservation of the linear and angular momenta. Also, the total energy is essentially conserved—up to residual algorithmic noise, which is caused by the periodically repeated SAMM interaction list updates. These updates entail very small temporal discontinuities of the force description, because the employed SAMM approximations represent deliberately balanced compromises between accuracy and efficiency. The energy-gradient corrected version of SAMM can also be applied, of course, to MD simulations of all-atom solvent-solute systems enclosed by periodic boundary conditions. However, as we demonstrate in passing, this choice does not offer any serious advantages.« less

  10. Theoretical studies of UO(2)(OH)(H(2)O)(n) (+), UO(2)(OH)(2)(H(2)O)(n), NpO(2)(OH)(H(2)O)(n), and PuO(2)(OH)(H(2)O)(n) (+) (n

    PubMed

    Cao, Zhiji; Balasubramanian, K

    2009-10-28

    Extensive ab initio calculations have been carried out to study equilibrium structures, vibrational frequencies, and the nature of chemical bonds of hydrated UO(2)(OH)(+), UO(2)(OH)(2), NpO(2)(OH), and PuO(2)(OH)(+) complexes that contain up to 21 water molecules both in first and second hydration spheres in both aqueous solution and the gas phase. The structures have been further optimized by considering long-range solvent effects through a polarizable continuum dielectric model. The hydrolysis reaction Gibbs free energy of UO(2)(H(2)O)(5) (2+) is computed to be 8.11 kcal/mol at the MP2 level in good agreement with experiments. Our results reveal that it is necessary to include water molecules bound to the complex in the first hydration sphere for proper treatment of the hydrated complex and the dielectric cavity although water molecules in the second hydration sphere do not change the coordination complex. Structural reoptimization of the complex in a dielectric cavity seems inevitable to seek subtle structural variations in the solvent and to correlate with the observed spectra and thermodynamic properties in the aqueous environment. Our computations reveal dramatically different equilibrium structures in the gas phase and solution and also confirm the observed facile exchanges between the complex and bulk solvent. Complete active space multiconfiguration self-consistent field followed by multireference singles+doubles CI (MRSDCI) computations on smaller complexes confirm predominantly single-configurational nature of these species and the validity of B3LYP and MP2 techniques for these complexes in their ground states.

  11. The Influence of Solvent on the Structural Properties of trans-(NHC)PtI2Py Complex: A Platinum-Based Anticancer Drug

    NASA Astrophysics Data System (ADS)

    Sadigh Vishkaee, Teherh; Fazaeli, Reza

    2018-06-01

    Quantum chemical calculations using MPW1PW91 method were applied to analyze the solvent effect on the structural, spectral, and thermochemical parameters for a platinum-based anticancer drug trans-(NHC)PtI2Py complex. The solvent effects were examined by the self-consistent reaction field theory (SCRF) based on Polarizable Continuum Model (PCM). The linear correlations between the solvation energies, HOMO-LUMO gaps, IR-active stretching vibration of Pt-N bonds and N-H of NHC ligand with dielectric constants of solvents were studied. The wave numbers of these IR-active stretching vibrations in different solvents were correlated with the Kirkwood-Bauer-Magat equation (KBM). The thermodynamic activation parameter such free energy of solvation, enthalpy of solvation were also calculated.

  12. Electromagnetically induced transparency in sinusoidal modulated ring resonator

    NASA Astrophysics Data System (ADS)

    Malik, Jagannath; Oruganti, Sai Kiran; Song, Seongkyu; Ko, Nak Young; Bien, Franklin

    2018-06-01

    In the present work, we demonstrate controlling the excitation of bright mode (continuum mode) resonance and dark mode (discrete mode) resonance in a planar metasurface made of sinusoidal modulation inside a closed rectangular metallic ring placed over a dielectric substrate. Unlike asymmetrical breaking of a meta-atom (often referred to as the unit cell) to achieve the dark mode response in regular metamaterials, in the present structure, the bright or dark mode resonance is achieved using even or odd half cycle modulation. The achieved dark-mode shows a sharp resonance for a particular polarization of the incident electric field, which results in an electromagnetically induced transparency like spectrum. The electromagnetic behavior of the proposed meta-atom has been investigated in the frequency domain using commercially available software and validated through experiments in the gigahertz regime.

  13. A Grand Canonical Monte Carlo simulation program for computing ion distributions around biomolecules in hard sphere solvents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    The GIBS software program is a Grand Canonical Monte Carlo (GCMC) simulation program (written in C++) that can be used for 1) computing the excess chemical potential of ions and the mean activity coefficients of salts in homogeneous electrolyte solutions; and, 2) for computing the distribution of ions around fixed macromolecules such as, nucleic acids and proteins. The solvent can be represented as neutral hard spheres or as a dielectric continuum. The ions are represented as charged hard spheres that can interact via Coulomb, hard-sphere, or Lennard-Jones potentials. In addition to hard-sphere repulsions, the ions can also be made tomore » interact with the solvent hard spheres via short-ranged attractive square-well potentials.« less

  14. Interactions in charged colloidal suspensions: A molecular dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Padidela, Uday Kumar; Behera, Raghu Nath

    2017-07-01

    Colloidal suspensions are extensively used in everyday life and find several applications in the pharmaceutical, chemical, food industries, etc. We present the classical molecular dynamics simulation results of the structural and transport properties of charged colloidal suspensions as a function of its size, charge and concentration. The system is viewed as a two-component (colloids and counterions) primitive model consisting of spherical colloid particle (macroion) and the counterions (micro-particles), which are treated explicitly. The solvent is treated as dielectric continuum. A systematic trend in the radial distribution functions g(r), potential of mean force W(r), different thermodynamic properties and diffusion coefficients is obtained as a function of colloid charge, size and concentration. An attractive minimum in W(r) is obtained at short interparticle distance.

  15. Meet the new kids on the credentialing block.

    PubMed

    1998-12-01

    The Washington, DC-based American Nurses Credentialing Center's nurse case manager credential continues to get a rocky reception. Following difficulties with last year's test and controversy over the credential's eligibility criteria, the number of applicants remains small. Meanwhile, the inaugural test for the Center for Case Management's new case management administrator certified credential took place on Oct. 24, 1998. While results are not yet available, officials at the South Natick, MA-based Center report that the diversity of candidates for the credential reflected the exam's cross-continuum focus. The Oakbrook Terrace, IL-based Joint Commission on Accreditation of Healthcare Organizations is still developing its upcoming "Diplomate of the Academy" credential, which will feature a formal curriculum and course work.

  16. Depletion-mode vertical Ga2O3 trench MOSFETs fabricated using Ga2O3 homoepitaxial films grown by halide vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Sasaki, Kohei; Thieu, Quang Tu; Wakimoto, Daiki; Koishikawa, Yuki; Kuramata, Akito; Yamakoshi, Shigenobu

    2017-12-01

    We developed depletion-mode vertical Ga2O3 trench metal-oxide-semiconductor field-effect transistors by using n+ contact and n- drift layers. These epilayers were grown on an n+ (001) Ga2O3 single-crystal substrate by halide vapor phase epitaxy. Cu and HfO2 were used for the gate metal and dielectric film, respectively. The mesa width and gate length were approximately 2 and 1 µm, respectively. The devices showed good DC characteristics, with a specific on-resistance of 3.7 mΩ cm2 and clear current modulation. An on-off ratio of approximately 103 was obtained.

  17. Atmospheric-pressure electric discharge as an instrument of chemical activation of water solutions

    NASA Astrophysics Data System (ADS)

    Rybkin, V. V.; Shutov, D. A.

    2017-11-01

    Results of experimental studies and numerical simulations of physicochemical characteristics of plasmas generated in different types of atmospheric-pressure discharges (pulsed streamer corona, gliding electric arc, dielectric barrier discharge, glow-discharge electrolysis, diaphragmatic discharge, and dc glow discharge) used to initiate various chemical processes in water solutions are analyzed. Typical reactor designs are considered. Data on the power supply characteristics, plasma electron parameters, gas temperatures, and densities of active particles in different types of discharges excited in different gases and their dependences on the external parameters of discharges are presented. The chemical composition of active particles formed in water is described. Possible mechanisms of production and loss of plasma particles are discussed.

  18. Improvement of Output Power of ECF Micromotor

    NASA Astrophysics Data System (ADS)

    Yokota, Shinichi; Kawamura, Kiyomi; Takemura, Kenjiro; Edamura, Kazuya

    Electro-conjugate fluid (ECF) is a kind of dielectric fluids, which produces jet-flow (ECF jet) when subjected to a high DC voltage. By using the ECF jet, a new type of micromotor with simple structure and lightweight can be realized. Up to now, we developed a disk-plate type ECF micromotor with inner diameter of 9 mm. In this study, we develope novel ECF micromotors with inner diameter of 5 mm in order to improve the output power density. First, we designed and produced the ECF micromotors with 4-layered and 8-layered disk plate rotors. Then, the performances of the motors are measured. The experimental results confirm the motor developed has a higher performance than the previous ones.

  19. Thin conformal antenna array for microwave power conversions

    NASA Technical Reports Server (NTRS)

    Dickinson, R. M. (Inventor)

    1978-01-01

    A structure of a circularly polarized, thin conformal, antenna array which may be mounted integrally with the skin of an aircraft employs microstrip elliptical elements and interconnecting feed lines spaced from a circuit ground plane by a thin dielectric layer. The feed lines are impedance matched to the elliptical antenna elements by selecting a proper feedpoint inside the periphery of the elliptical antenna elements. Diodes connected between the feed lines and the ground plane rectify the microwave power, and microstrip filters (low pass) connected in series with the feed lines provide dc current to a microstrip bus. Low impedance matching strips are included between the elliptical elements and the rectifying and filtering elements.

  20. Large bipolarons and oxide superconductivity

    NASA Astrophysics Data System (ADS)

    Emin, David

    2017-02-01

    Large-bipolaron superconductivity is plausible with carrier densities well below those of conventional metals. Bipolarons form when carriers self-trap in pairs. Coherently moving large-bipolarons require extremely large ratios of static to optical dielectric-constants. The mutual Coulomb repulsion of a planar large-bipolaron's paired carriers drives it to a four-lobed shape. A phonon-mediated attraction among large-bipolarons propels their condensation into a liquid. This liquid's excitations move slowly with a huge effective mass. Excitations' concomitant weak scattering by phonons produces a moderate low-temperature dc resistivity that increases linearly with rising temperature. With falling temperature an energy gap opens between large-bipolarons' excitations and those of their self-trapped electronic carriers.

  1. Materials characterization and fracture mechanics of a space grade dielectric silicone insulation

    NASA Technical Reports Server (NTRS)

    Abdel-Latif, A. I.; Tweedie, A. T.

    1982-01-01

    The present investigation is concerned with the DC 93-500 high voltage silicone insulation material employed to pot the gun and the collector end of a traveling wave tube (TWT) used on the Landsat D Satellite. The fracture mechanics behavior of the silicone resin was evaluated by measuring the slow crack velocity as a function of the opening mode of the stress intensity factor at +25 and -10 C, taking into account various uniaxial discrete strain values. It was found that the silicone resins slow crack growth is faster than that for a high voltage insulation polyurethane material at the same stress intensity factor value and room temperature.

  2. Cathode surface effects and H.F.-behaviour of vacuum arcs

    NASA Astrophysics Data System (ADS)

    Fu, Yan Hong

    To gain a better understanding of the essential processes occurring during a vacuum arc interruption for the further development of the vacuum arc circuit breaker, cathode spot behavior, current interruption, dielectrical recovery and overvoltage generation are investigated. An experimental study on cathode spot behavior of the DC vacuum arc in relation to cathode surface roughness and a qualitative physical model to interpret the results are reported. An experimental investigation on the High Frequency (HF) current interruption, multiple recognitions and voltage escalation phenomena is reported. A calculation program to predict the level of overvoltages generated by the operation of a vacuum breaker in a realistic single phase circuit is developed. Detailed results are summarized.

  3. Bose-Einstein condensate of rigid rotor molecules

    NASA Astrophysics Data System (ADS)

    Jones, Evan; Smith, Joseph; Rittenhouse, Seth; Peden, Brandon; Wilson, Ryan

    2017-04-01

    We study the ground state phases of a quasi-two-dimensional Bose-Einstein condensate (BEC) of dipolar rigid rotor molecules subject to a DC electric field. In the high-field limit, this system acquires the properties of the fully polarized dipolar BEC, which exhibits a roton-maxon excitation spectrum, and has been thoroughly studied in the theoretical literature. In the weak-field limit, however, qualitatively new physics emerges due to the competition between the (weak) applied field and internal electric fields, which are produced by the molecules themselves. We characterize the ground states of this system, and study its unique dielectric properties. We gratefully acknowledge support from the National Science Foundation under Grant No. PHYS-1516421.

  4. Mechanism of leakage of ion-implantation isolated AlGaN/GaN MIS-high electron mobility transistors on Si substrate

    NASA Astrophysics Data System (ADS)

    Zhang, Zhili; Song, Liang; Li, Weiyi; Fu, Kai; Yu, Guohao; Zhang, Xiaodong; Fan, Yaming; Deng, Xuguang; Li, Shuiming; Sun, Shichuang; Li, Xiajun; Yuan, Jie; Sun, Qian; Dong, Zhihua; Cai, Yong; Zhang, Baoshun

    2017-08-01

    In this paper, we systematically investigated the leakage mechanism of the ion-implantation isolated AlGaN/GaN metal-insulator-semiconductor high electron mobility transistors (MIS-HEMTs) on Si substrate. By means of combined DC tests at different temperatures and electric field dependence, we demonstrated the following original results: (1) It is proved that gate leakage is the main contribution to OFF-state leakage of ion-implantation isolated AlGaN/GaN MIS-HEMTs, and the gate leakage path is a series connection of the gate dielectric Si3N4 and Si3N4-GaN interface. (2) The dominant mechanisms of the leakage current through LPCVD-Si3N4 gate dielectric and Si3N4-GaN interface are identified to be Frenkel-Poole emission and two-dimensional variable range hopping (2D-VRH), respectively. (3) A certain temperature annealing could reduce the density of the interface state that produced by ion implantation, and consequently suppress the interface leakage transport, which results in a decrease in OFF-state leakage current of ion-implantation isolated AlGaN/GaN MIS-HEMTs.

  5. A new design of dielectric elastomer membrane resonator with tunable resonant frequencies and mode shapes

    NASA Astrophysics Data System (ADS)

    Li, Yunlong; Oh, Inkyu; Chen, Jiehao; Hu, Yuhang

    2018-06-01

    Conventional membrane resonators are bulky, and once the geometries and materials are fixed in the fabricated device, the resonators’ characteristics are fixed. In this work, we introduce the active membrane, dielectric elastomer (DE), into the resonator design. Attaching a stiffer passive membrane onto the active DE membrane forms a two-layer system, which generates an out-of-plane deformation when the DE is actuated through a DC voltage applied across the thickness of the DE membrane. When an AC voltage is applied, the two-layer system can generate an out-of-plane oscillation which enables its use as membrane resonators. Both experiments and simulations are carried out to study the dynamic characteristics of the system. The resonant frequencies and mode shapes of the resonator can be tuned through the passive layer properties such as the modulus, thickness, density, and size. The effective stiffness of the DE film changes as the magnitude of the voltage applied on the film changes, which provides an active way to tune the dynamic characteristics of the two-layer resonator even after the device is set. The system is also light weight, low cost, and easy to fabricate, and has great potential in many engineering applications.

  6. Electric conductivity analysis and dielectric relaxation behavior of the hybrid polyvanadate (H{sub 3}N(CH{sub 2}){sub 3}NH{sub 3})[V{sub 4}O{sub 10}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nefzi, H.; Sediri, F., E-mail: faouzi.sediri@ipeit.rnu.tn; Faculté des Sciences de Tunis, Université Tunis El Manar, 2092 El Manar, Tunis

    2013-05-15

    Highlights: ► Plate-like crystals (H{sub 3}N(CH{sub 2}){sub 3}NH{sub 3})[V{sub 4}O{sub 10}] were synthesized. ► Frequency and temperature dependence of AC conductivity indicate CBH model. ► The temperature dependence of DC conductivity exhibits two conduction mechanisms. - Abstract: Layered hybrid compound (H{sub 3}N(CH{sub 2}){sub 3}NH{sub 3})[V{sub 4}O{sub 10}] has been synthesized via hydrothermal method. Techniques X-ray powder diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and impedance spectroscopy have been used to characterize the hybrid material. Electrical and dielectric properties dependence on both temperature and frequency of the compound have been reported. The direct current conductivity process is thermally activated andmore » it is found to be 12.67 × 10{sup −4} Ω{sup −1} m{sup −1} at 523 K. The spectra follow the Arrhenius law with two activation energy 0.25 eV for T < 455 K and 0.5 eV for T > 455 K.« less

  7. Dynamics of glass-forming liquids. XVIII. Does entropy control structural relaxation times?

    NASA Astrophysics Data System (ADS)

    Samanta, Subarna; Richert, Ranko

    2015-01-01

    We study the dielectric dynamics of viscous glycerol in the presence of a large bias field. Apart from dielectric saturation and polarization anisotropy, we observe that the steady state structural relaxation time is longer by 2.7% in the presence of a 225 kV/cm dc-field relative to the linear response counterpart, equivalent to a field induced glass transition (Tg) shift of +84 mK. This result compares favorably with the 3.0% time constant increase predicted on the basis of a recent report [G. P. Johari, J. Chem. Phys. 138, 154503 (2013)], where the field induced reduction of the configurational entropy translates into slower dynamics by virtue of the Adam-Gibbs relation. Other models of field dependent glass transition temperatures are also discussed. Similar to observations related to the electro-optical Kerr effect, the rise time of the field induced effect is much longer than its collapse when the field is removed again. The orientational relaxation time of the plastic crystal cyclo-octanol is more sensitive to a bias field, showing a 13.5% increase at a field of 150 kV/cm, equivalent to an increase of Tg by 0.58 K.

  8. Diagnostics of an AC driven atmospheric pressure non-thermal plasma jet and its use for radially directed jet array

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Wang, R.

    2017-08-01

    An alternating current atmospheric pressure plasma jet is generated with noble gas or noble gas/oxygen admixture as working gas. A "core plasma filament" is observed at the center of the dielectric tube and extends to the plasma jet at higher peak-to-peak voltages. This type of plasma jet is believed to be of the same nature with the reported plasma bullet driven by pulsed DC power sources. Double current probes are used to assess the speed of the plasma bullet and show that the speed is around 104-105 m/s. The time dependence of the downstream bullet speed is attributed to the gas heating and in turn the increase of the reduced electric field E/N. Optical emission spectra show the dependence of helium and oxygen emission intensities on the concentration of oxygen additive in the carrier gas, with peak values found at 0.5% O2. Multiple radial jets are realized on dielectric tubes of different sizes. As a case study, one of these multi-jet devices is used to treat B. aureus on the inner surface of a plastic beaker and is shown to be more effective than a single jet.

  9. Influence of cobalt ions on spectroscopic and dielectric properties of Sb2O3 doped lithium fluoroborophosphate glasses

    NASA Astrophysics Data System (ADS)

    Kumar, G. Ravi; Srikumar, T.; Rao, M. C.; Venkat Reddy, P.; Srinivasa Rao, Ch

    2018-03-01

    Glasses with compositions (20–x) LiF–10 Sb2O3–10 B2O3–60 P2O5: x CoO (0 < x < 0.25) were synthesized by conventional rapid melt quenching method. The non–crystalline nature of the samples was confirmed by XRD analysis and the glass forming abilities were analyzed by DTA studies. The compositional dependence of various structural vibrational units was analyzed by FT–IR and Raman studies. The DTA, FT–IR and Raman studies suggested a higher degree of disorder in the glass network with increasing concentration of CoO up to 0.15 mol%. The reversal trend has been observed beyond 0.15 mol% suggesting an increasing polymerization of glass network. The optical properties of LiF–Sb2O3–B2O3–P2O5: CoO glasses were analyzed by optical absorption and photoluminescence studies. The observations from OA and PL spectral studies suggested that the gradual increase of octahedral Co2+ ions with the increase in the concentration of CoO up to 0.15 mol%. At higher concentration i.e. above 0.15 mol% of CoO, there was a reduction in the concentration of octahedral Co2+ ions. The electrical properties of the glass samples were studied by both DC and AC conductivity studies. The dielectric dispersion analysis was also performed on the prepared glass samples. The results of these studies indicated that there is a mixed conduction (both ionic and polaronic) and the polaron hoping seems to prevail over ionic conduction in the glasses containing CoO less than 0.15 mol%. The increasing space charge polarization is responsible for enhanced values of dielectric constant, dielectric loss and AC conductivity for all frequency and temperature ranges with the increase in concentration of CoO up to 0.15 mol%.

  10. Development of a self-consistent free-form approach for studying the three-dimensional morphology of a thin film

    NASA Astrophysics Data System (ADS)

    Kozhevnikov, Igor V.; Peverini, Luca; Ziegler, Eric

    2012-03-01

    A method capable of extracting the depth distribution of the dielectric constant of a thin film deposited on a substrate and the three power spectral density (PSD) functions characterizing its roughness is presented. It is based on the concurrent analysis of x-ray reflectivity and scattering measurements obtained at different glancing angle values of the probe beam so that the effect of roughness is taken into account during reconstruction of the dielectric constant profile. Likewise, the latter is taken into account when determining the PSD functions describing the film roughness. This approach is using a numerical computation iterative procedure that demonstrated a rapid convergence for the overall set of data leading to a precise description of the three-dimensional morphology of a film. In the case of a tungsten thin film deposited by dc-magnetron sputtering onto a silicon substrate and characterized under vacuum, the analysis of the x-ray data showed the tungsten density to vary with depth from 95% of the bulk density at the top of the film to about 80% near the substrate, where the presence of an interlayer, estimated to be 0.7 nm thick, was evidenced. The latter may be due to diffusion and/or implantation of tungsten atoms into the silicon substrate. In the reconstruction of the depth profile, the resolution (minimum feature size correctly reconstructed) was estimated to be of the order of 0.4-0.5 nm. The depth distribution of the dielectric constant was shown to affect the roughness conformity coefficient extracted from the measured x-ray scattering distributions, while the deposition process increased the film roughness at high spatial frequency as compared to the virgin substrate. On the contrary, the roughness showed a weak influence on the dielectric constant depth profile extracted, as the sample used in our particular experiment was extremely smooth.

  11. Impedance spectroscopy of V2O5-Bi2O3-BaTiO3 glass-ceramics

    NASA Astrophysics Data System (ADS)

    Al-syadi, Aref M.; Yousef, El Sayed; El-Desoky, M. M.; Al-Assiri, M. S.

    2013-12-01

    The glasses within composition as: (80 - x)V2O5/20Bi2O3/xBaTiO3 with x = 2.5, 5, 7.5 and 10 mol% have been prepared. The glass transition (Tg) increases with increasing BaTiO3 content. Synthesized glasses ceramic containing BaTi4O9, Ba3TiV4O15 nanoparticles of the order of 25-35 nm and 30-46 nm, respectively were estimated using XRD. The dielectric properties over wide ranges of frequencies and temperatures were investigated as a function of BaTiO3 content by impedance spectroscopy measurements. The hopping frequency, ωh, dielectric constant, ɛ', activation energies for the DC conduction, Eσ, the relaxation process, Ec, and stretched exponential parameter β of the glasses samples have been estimated. The, ωh,β, decrease from 51.63 to 0.31 × 106 (s-1), 0.84 to 0.79 with increasing BaTiO3 respectively. Otherwise, the Eσ, increase from 0.279 to 0.306 eV with increasing BaTiO3. The value of dielectric constant equal 9.5·103 for the 2.5BaTiO3/77.5V2O5/20Bi2O3 glasses-ceramic at 330 K for 1 KHz which is ten times larger than that of same glasses composition. Finally the relaxation properties of the investigated glasses are presented in the electric modulus formalism, where the relaxation time and the respective activation energy were determined.

  12. Effect of Eu–Ni substitution on electrical and dielectric properties of Co–Sr–Y-type hexagonal ferrite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali, Irshad, E-mail: irshadalibzu@gmail.com; Islam, M.U.; Ashiq, Muhammad Naeem, E-mail: naeemashiqqau@yahoo.com

    2014-01-01

    Graphical abstract: - Highlights: • Single phase nanostructured Sr{sub 2}Co{sub 2−x}Ni{sub x} Eu{sub y}Fe{sub 12−y}O{sub 22} were synthesized by the microemulsion method. • The materials show semiconducting behavior. • The high resistivity makes these materials useful for high frequency applications. • The Curie temperature decreases with the substituents. - Abstract: Single phase nanostructured Eu–Ni substituted Y-type hexaferrites with nominal composition Sr{sub 2}Co{sub 2−x}Ni{sub x} Eu{sub y}Fe{sub 12−y}O{sub 22} (x = 0.0–1, y = 0.0–0.1) were synthesized by the normal microemulsion method. X-ray diffraction (XRD) technique was employed for phase analysis and indexing of each pattern corroborates that well defined Y-typemore » crystalline phase is formed. It is observed that DC resistivity enhanced which is accredited to room temperature resistivity differences of dopant and host ions. The hopping of electrons and jumping of holes are responsible for conduction below Curie temperature (T{sub C}), whereas above Curie temperature is due to polaron hopping. The decrease in T{sub C} may be due to the fact that Eu–Fe interactions on the B sites are weaker than Fe–Fe interaction. The dispersion in the dielectric constant ε′(f) favor the occurrence of peaks in the tan δ(f). The extraordinary values of resistivity and small dielectric loss make these materials pre-eminent contestant for high frequency applications.« less

  13. Dielectric constant tunability at microwave frequencies and pyroelectric behavior of lead-free submicrometer-structured (Bi0.5Na0.5)1-xBaxTiO3 ferroelectric ceramics.

    PubMed

    Martínez, Félix L; Hinojosa, Juan; Doménech, Ginés; Fernández-Luque, Francisco J; Zapata, Juan; Ruiz, Ramon; Pardo, Lorena

    2013-08-01

    In this article, we show that the dielectric constant of lead-free ferroelectric ceramics based on the solid solution (1-x)(Bi(0.5)Na(0.5))TiO(3)-xBaTiO(3), with compositions at or near the morphotropic phase boundary (MPB), can be tuned by a local applied electric field. Two compositions have been studied, one at the MPB, with x = 0.06 (BNBT6), and another one nearer the BNT side of the phase diagram, with x = 0.04 (BNBT4). The tunability of the dielectric constant is measured at microwave frequencies between 100 MHz and 3 GHz by a nonresonant method and simultaneously applying a dc electric field. As expected, the tunability is higher for the composition at the MPB (BNBT6), reaching a maximum value of 60% for an electric field of 900 V/cm, compared with the composition below this boundary (BNBT4), which saturates at 40% for an electric field of 640 V/cm. The high tunability in both cases is attributed to the fine grain and high density of the samples, which have a submicrometer homogeneous grain structure with grain size of the order of a few hundred nanometers. Such properties make these ceramics attractive for microwave tunable devices. Finally, we have tested these ceramics for their application as infrared pyroelectric detectors and we have found that the pyroelectric figure of merit is comparable to traditional lead-containing pyroelectrics.

  14. Quantum dynamics in continuum for proton transport II: Variational solvent-solute interface.

    PubMed

    Chen, Duan; Chen, Zhan; Wei, Guo-Wei

    2012-01-01

    Proton transport plays an important role in biological energy transduction and sensory systems. Therefore, it has attracted much attention in biological science and biomedical engineering in the past few decades. The present work proposes a multiscale/multiphysics model for the understanding of the molecular mechanism of proton transport in transmembrane proteins involving continuum, atomic, and quantum descriptions, assisted with the evolution, formation, and visualization of membrane channel surfaces. We describe proton dynamics quantum mechanically via a new density functional theory based on the Boltzmann statistics, while implicitly model numerous solvent molecules as a dielectric continuum to reduce the number of degrees of freedom. The density of all other ions in the solvent is assumed to obey the Boltzmann distribution in a dynamic manner. The impact of protein molecular structure and its charge polarization on the proton transport is considered explicitly at the atomic scale. A variational solute-solvent interface is designed to separate the explicit molecule and implicit solvent regions. We formulate a total free-energy functional to put proton kinetic and potential energies, the free energy of all other ions, and the polar and nonpolar energies of the whole system on an equal footing. The variational principle is employed to derive coupled governing equations for the proton transport system. Generalized Laplace-Beltrami equation, generalized Poisson-Boltzmann equation, and generalized Kohn-Sham equation are obtained from the present variational framework. The variational solvent-solute interface is generated and visualized to facilitate the multiscale discrete/continuum/quantum descriptions. Theoretical formulations for the proton density and conductance are constructed based on fundamental laws of physics. A number of mathematical algorithms, including the Dirichlet-to-Neumann mapping, matched interface and boundary method, Gummel iteration, and Krylov space techniques are utilized to implement the proposed model in a computationally efficient manner. The gramicidin A channel is used to validate the performance of the proposed proton transport model and demonstrate the efficiency of the proposed mathematical algorithms. The proton channel conductances are studied over a number of applied voltages and reference concentrations. A comparison with experimental data verifies the present model predictions and confirms the proposed model. Copyright © 2011 John Wiley & Sons, Ltd.

  15. Protein electrostatics: a review of the equations and methods used to model electrostatic equations in biomolecules--applications in biotechnology.

    PubMed

    Neves-Petersen, Maria Teresa; Petersen, Steffen B

    2003-01-01

    The molecular understanding of the initial interaction between a protein and, e.g., its substrate, a surface or an inhibitor is essentially an understanding of the role of electrostatics in intermolecular interactions. When studying biomolecules it is becoming increasingly evident that electrostatic interactions play a role in folding, conformational stability, enzyme activity and binding energies as well as in protein-protein interactions. In this chapter we present the key basic equations of electrostatics necessary to derive the equations used to model electrostatic interactions in biomolecules. We will also address how to solve such equations. This chapter is divided into two major sections. In the first part we will review the basic Maxwell equations of electrostatics equations called the Laws of Electrostatics that combined will result in the Poisson equation. This equation is the starting point of the Poisson-Boltzmann (PB) equation used to model electrostatic interactions in biomolecules. Concepts as electric field lines, equipotential surfaces, electrostatic energy and when can electrostatics be applied to study interactions between charges will be addressed. In the second part we will arrive at the electrostatic equations for dielectric media such as a protein. We will address the theory of dielectrics and arrive at the Poisson equation for dielectric media and at the PB equation, the main equation used to model electrostatic interactions in biomolecules (e.g., proteins, DNA). It will be shown how to compute forces and potentials in a dielectric medium. In order to solve the PB equation we will present the continuum electrostatic models, namely the Tanford-Kirkwood and the modified Tandord-Kirkwood methods. Priority will be given to finding the protonation state of proteins prior to solving the PB equation. We also present some methods that can be used to map and study the electrostatic potential distribution on the molecular surface of proteins. The combination of graphical visualisation of the electrostatic fields combined with knowledge about the location of key residues on the protein surface allows us to envision atomic models for enzyme function. Finally, we exemplify the use of some of these methods on the enzymes of the lipase family.

  16. Application of sub-micrometer patterned permalloy thin film in tunable radio frequency inductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahman, B.M. Farid; Divan, Ralu; Rosenmann, Daniel

    Electrical tunable meander line inductor using coplanar waveguide structures with patterned permalloy (Py) thin film has been designed and implemented in this paper. High resistivity Si substrate is used to reduce the dielectric loss from the substrate. Inductor is implemented with a 60 nm thick Py deposited and patterned on top of the gold meander line, and Py film is patterned with dimension of 440 nm 10 lm to create the shape anisotropy field, which in turn increases the FMR frequency. Compared to a regular meanderline inductor without the application of sub-micrometer patterned Py thin film, the inductance density hasmore » been increased to 20% for the implemented inductor with patterned Py. Measured FMR frequency of the patterned Py is 4.51 GHz without the application of any external magnetic field. This has enabled the inductor application in the practical circuit boards, where the large external magnet is unavailable. Inductance tunability of the implemented inductor is demonstrated by applying a DC current. Applied DC current creates a magnetic field along the hard axis of the patterned Py thin film, which changes the magnetic moment of the thin film and thus, decreases the inductance of the line. Measured results show that the inductance density of the inductor can be varied 5% by applying 300 mA DC current, larger inductance tunability is achievable by increasing the thickness of Py film. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4918766]« less

  17. Motion of polymer cholesteric liquid crystal flakes in an electric field

    NASA Astrophysics Data System (ADS)

    Kosc, Tanya Zoriana

    Polymer cholesteric liquid crystal (PCLC) flakes suspended in a host fluid can be manipulated with an electric field. Controlling a flake's orientation provides the opportunity to change and control the amount of selective reflection from the flake surface. Flake motion results from charge accumulation and an induced dipole moment established due to Maxwell-Wagner polarization. The type of flake behavior, whether random motion or uniform reorientation, depends upon the dielectric properties of the host fluid, which in turn dictate whether a DC or an AC electric field must be applied. PCLC flakes suspended in highly dielectric silicone oil host fluids tend to move randomly in the presence of a DC electric field, and no motion is seen in AC fields. Flakes suspended in a moderately conductive host fluid reorient 90° in the presence of an AC field within a specific frequency range. The flake shape and size are also important parameters that need to be controlled in order to produce uniform motion. Several methods for patterning flakes were investigated and identical square flakes were produced. Square PCLC flakes (80 mum sides) suspended in propylene carbonate reorient in 400 ms when a 40mVrms/mum field at 70 Hz is applied to the test device. Theoretical modeling supported experimental observations well, particularly in identifying the inverse quadratic dependence on the applied electric field and the electric field frequency dependence that is governed by the host fluid conductivity. Future goals and suggested experiments are provided, as well as an explanation and comparison of possible commercial applications for PCLC flakes. This research has resulted in one patent application and a series of invention disclosures that could place this research group and any industrial collaborators in a strong position to pursue commercial applications, particularly in the area of displays, and more specifically, electronic paper.

  18. Solvent dependent frequency shift and Raman noncoincidence effect of S=O stretching mode of Dimethyl sulfoxide in liquid binary mixtures.

    PubMed

    Upadhyay, Ganesh; Devi, Th Gomti; Singh, Ranjan K; Singh, A; Alapati, P R

    2013-05-15

    The isotropic and anisotropic Raman peak frequencies of S=O stretching mode of Dimethyl sulfoxide (DMSO) have been discussed in different chemical and isotopic solvent molecules using different mechanisms. The shifting of peak frequency in further dilution of DMSO with solvent molecule is observed for all solvents. Transition dipole - transition dipole interaction and hydrogen bonding may play a major role in shifting of peak frequencies. The non-coincidence effect (NCE) of DMSO was determined for all the solvents and compared with four theoretical models such as McHale's model, Mirone's modification of McHale's model, Logan's model and Onsager-Fröhlich dielectric continuum model respectively. Most of the theoretical models are largely consistent with our experimental data. Copyright © 2013. Published by Elsevier B.V.

  19. Viscosity of a Suspension with Internal Rotation

    NASA Astrophysics Data System (ADS)

    Elisabeth, Lemaire; Laurent, Lobry; François, Peters

    2008-07-01

    When an insulating particle immersed into a low conducting liquid is submitted to a sufficiently high DC field, E, it can rotate spontaneously around itself along any axis perpendicular to the electric field. This symmetry break is known as Quincke rotation and could have important consequences on the rheology of such a suspension of particles (insulating particles dispersed in a slightly conducting liquid). Indeed, if the suspension is subject to a shear rate, and a DC electric field is applied in the velocity gradient direction, the spin rate of the particles is greater than in the absence of an E field, so that the macroscopic spin rate of the particles drives the suspending liquid and thus leads to a decrease of the apparent viscosity of the suspension. The purpose of this paper is to provide a relation between the apparent viscosity of the suspension, the spin rate of the particles and the E field intensity. The predictions of the model are compared to experimental data which have been obtained on a suspension of PMMA particles dispersed in a low polar dielectric liquid. The agreement between experiments and theory is rather good even if the model overestimates the viscosity decrease induced by the field.

  20. Exploring DC-Kerr effect of impurity doped quantum dots under the aegis of noise

    NASA Astrophysics Data System (ADS)

    Arif, Sk. Md.; Bera, Aindrila; Ghosh, Anuja; Ghosh, Manas

    2018-02-01

    Present study performs an extensive exploration of the profiles of DC-Kerr effect (DCKE) of doped GaAs quantum dot (QD) under the control of Gaussian white noise. A large number of important physical parameters have been varied over a range and the resultant changes in the DCKE profiles have been thoroughly analyzed. The said physical parameters comprise of electric field, magnetic field, confinement potential, dopant location, dopant potential, noise strength, aluminium concentration (only for Alx Ga1 - x As alloy QD), carrier density, relaxation time, position-dependent effective mass (PDEM), position-dependent dielectric screening function (PDDSF), anisotropy, hydrostatic pressure (HP) and temperature. The particular physical quantity being varied, presence of noise and its pathway of application, in combination, lead to emergence of diverse features in the DCKE profiles. As a technologically significant aspect we often find maximization of DCKE for some typical combinations as mentioned above. Presence of multiplicative noise, in general, causes greater shift and greater augmentation of DCKE profiles from a noise-free condition than its additive counterpart. The outcomes of the study indicate ample scope of tailoring DCKE of doped QD systems in presence of noise by minute adjustment of several control parameters.

Top