NASA Astrophysics Data System (ADS)
Ye, Zhihang; Faisal, Md. Shahnewaz Sabit; Asmatulu, Ramazan; Chen, Zheng
2014-03-01
Dielectric elastomers are soft actuation materials with promising applications in robotics and biomedical de- vices. In this paper, a bio-inspired artificial muscle actuator with artificial tendons is developed for robotic arm applications. The actuator uses dielectric elastomer as artificial muscle and functionalized carbon fibers as artificial tendons. A VHB 4910 tape is used as the dielectric elastomer and PDMS is used as the bonding material to mechanically connect the carbon fibers to the elastomer. Carbon fibers are highly popular for their high electrical conductivities, mechanical strengths, and bio-compatibilities. After the acid treatments for the functionalization of carbon fibers (500 nm - 10 μm), one end of carbon fibers is spread into the PDMS material, which provides enough bonding strength with other dielectric elastomers, while the other end is connected to a DC power supply. To characterize the actuation capability of the dielectric elastomer and electrical conductivity of carbon fibers, a diaphragm actuator is fabricated, where the carbon fibers are connected to the actuator. To test the mechanical bonding between PDMS and carbon fibers, specimens of PDMS bonded with carbon fibers are fabricated. Experiments have been conducted to verify the actuation capability of the dielectric elastomer and mechanical bonding of PDMS with carbon fibers. The energy efficiency of the dielectric elastomer increases as the load increases, which can reach above 50%. The mechanical bonding is strong enough for robotic arm applications.
Dielectric elastomer actuators for facial expression
NASA Astrophysics Data System (ADS)
Wang, Yuzhe; Zhu, Jian
2016-04-01
Dielectric elastomer actuators have the advantage of mimicking the salient feature of life: movements in response to stimuli. In this paper we explore application of dielectric elastomer actuators to artificial muscles. These artificial muscles can mimic natural masseter to control jaw movements, which are key components in facial expressions especially during talking and singing activities. This paper investigates optimal design of the dielectric elastomer actuator. It is found that the actuator with embedded plastic fibers can avert electromechanical instability and can greatly improve its actuation. Two actuators are then installed in a robotic skull to drive jaw movements, mimicking the masseters in a human jaw. Experiments show that the maximum vertical displacement of the robotic jaw, driven by artificial muscles, is comparable to that of the natural human jaw during speech activities. Theoretical simulations are conducted to analyze the performance of the actuator, which is quantitatively consistent with the experimental observations.
Development of soft robots using dielectric elastomer actuators
NASA Astrophysics Data System (ADS)
Godaba, Hareesh; Wang, Yuzhe; Cao, Jiawei; Zhu, Jian
2016-04-01
Soft robots are gaining in popularity due to their unique attributes such as low weight, compliance, flexibility and diverse range in motion types. This paper illustrates soft robots and actuators which are developed using dielectric elastomer. These developments include a jellyfish robot, a worm like robot and artificial muscle actuators for jaw movement in a robotic skull. The jellyfish robot which employs a bulged dielectric elastomer membrane has been demonstrated too generate thrust and buoyant forces and can move effectively in water. The artificial muscle for jaw movement employs a pure shear configuration and has been shown to closely mimic the jaw motion while chewing or singing a song. Thee inchworm robot, powered by dielectric elastomer actuator can demonstrate stable movement in one-direction.
Computational model of deformable lenses actuated by dielectric elastomers
NASA Astrophysics Data System (ADS)
Lu, Tongqing; Cai, Shengqiang; Wang, Huiming; Suo, Zhigang
2013-09-01
A recent design of deformable lens mimics the human eye, adjusting its focal length in response to muscle-like actuation. The artificial muscle is a membrane of a dielectric elastomer subject to a voltage. Here, we calculate the coupled and inhomogeneous deformation of the lens and the dielectric elastomer actuator by formulating a nonlinear boundary-value problem. We characterize the strain-stiffening elastomer with the Gent model and describe the voltage-induced deformation using the model of ideal dielectric elastomer. The computational predictions agree well with experimental data. We use the model to explore the space of parameters, including the prestretch of the membrane, the volume of the liquid in the lens, and the size of the dielectric elastomer actuator relative to the lens. We examine how various modes of failure limit the minimum radius of curvature.
Rotating turkeys and self-commutating artificial muscle motors
NASA Astrophysics Data System (ADS)
O'Brien, Benjamin M.; McKay, Thomas G.; Gisby, Todd A.; Anderson, Iain A.
2012-02-01
Electrostatic motors—first used by Benjamin Franklin to rotisserie a turkey—are making a comeback in the form of high energy density dielectric elastomer artificial muscles. We present a self-commutated artificial muscle motor that uses dielectric elastomer switches in the place of bulky external electronics. The motor simply requires a DC input voltage to rotate a shaft (0.73 Nm/kg, 0.24 Hz) and is a step away from hard metallic electromagnetic motors towards a soft, light, and printable future.
Development of a soft untethered robot using artificial muscle actuators
NASA Astrophysics Data System (ADS)
Cao, Jiawei; Qin, Lei; Lee, Heow Pueh; Zhu, Jian
2017-04-01
Soft robots have attracted much interest recently, due to their potential capability to work effectively in unstructured environment. Soft actuators are key components in soft robots. Dielectric elastomer actuators are one class of soft actuators, which can deform in response to voltage. Dielectric elastomer actuators exhibit interesting attributes including large voltage-induced deformation and high energy density. These attributes make dielectric elastomer actuators capable of functioning as artificial muscles for soft robots. It is significant to develop untethered robots, since connecting the cables to external power sources greatly limits the robots' functionalities, especially autonomous movements. In this paper we develop a soft untethered robot based on dielectric elastomer actuators. This robot mainly consists of a deformable robotic body and two paper-based feet. The robotic body is essentially a dielectric elastomer actuator, which can expand or shrink at voltage on or off. In addition, the two feet can achieve adhesion or detachment based on the mechanism of electroadhesion. In general, the entire robotic system can be controlled by electricity or voltage. By optimizing the mechanical design of the robot (the size and weight of electric circuits), we put all these components (such as batteries, voltage amplifiers, control circuits, etc.) onto the robotic feet, and the robot is capable of realizing autonomous movements. Experiments are conducted to study the robot's locomotion. Finite element method is employed to interpret the deformation of dielectric elastomer actuators, and the simulations are qualitatively consistent with the experimental observations.
Modeling and control of a dielectric elastomer actuator
NASA Astrophysics Data System (ADS)
Gupta, Ujjaval; Gu, Guo-Ying; Zhu, Jian
2016-04-01
The emerging field of soft robotics offers the prospect of applying soft actuators as artificial muscles in the robots, replacing traditional actuators based on hard materials, such as electric motors, piezoceramic actuators, etc. Dielectric elastomers are one class of soft actuators, which can deform in response to voltage and can resemble biological muscles in the aspects of large deformation, high energy density and fast response. Recent research into dielectric elastomers has mainly focused on issues regarding mechanics, physics, material designs and mechanical designs, whereas less importance is given to the control of these soft actuators. Strong nonlinearities due to large deformation and electromechanical coupling make control of the dielectric elastomer actuators challenging. This paper investigates feed-forward control of a dielectric elastomer actuator by using a nonlinear dynamic model. The material and physical parameters in the model are identified by quasi-static and dynamic experiments. A feed-forward controller is developed based on this nonlinear dynamic model. Experimental evidence shows that this controller can control the soft actuator to track the desired trajectories effectively. The present study confirms that dielectric elastomer actuators are capable of being precisely controlled with the nonlinear dynamic model despite the presence of material nonlinearity and electromechanical coupling. It is expected that the reported results can promote the applications of dielectric elastomer actuators to soft robots or biomimetic robots.
Preparation and Characterizing of PANI/PDMS Elastomer for Artificial Muscles
NASA Astrophysics Data System (ADS)
Zhang, Yiyang; Zhang, Jie; Wang, Genlin; Zhang, Ming; Luo, Zhiwei
2018-01-01
A dielectric elastomer has been synthesized using organic soluble PANI and PDMS through solution blending method for applications as artificial muscles. The dielectric constant of PANI/PDMS composite reached 4.82 with a filling amount of 0.8 wt.%, which was 2.24 times of pure silicone, due to the dipole polarization in matrix network and electron polarization in conductive polyaniline. The actuated strain of 0.8w.t % PANI/PDMS was 16.57% compared to 8.52% of pure silicone at an electric field of 10V/μm, and can be applied as a soft actuator.
Ion implanted dielectric elastomer circuits
NASA Astrophysics Data System (ADS)
O'Brien, Benjamin M.; Rosset, Samuel; Anderson, Iain A.; Shea, Herbert R.
2013-06-01
Starfish and octopuses control their infinite degree-of-freedom arms with panache—capabilities typical of nature where the distribution of reflex-like intelligence throughout soft muscular networks greatly outperforms anything hard, heavy, and man-made. Dielectric elastomer actuators show great promise for soft artificial muscle networks. One way to make them smart is with piezo-resistive Dielectric Elastomer Switches (DES) that can be combined with artificial muscles to create arbitrary digital logic circuits. Unfortunately there are currently no reliable materials or fabrication process. Thus devices typically fail within a few thousand cycles. As a first step in the search for better materials we present a preliminary exploration of piezo-resistors made with filtered cathodic vacuum arc metal ion implantation. DES were formed on polydimethylsiloxane silicone membranes out of ion implanted gold nano-clusters. We propose that there are four distinct regimes (high dose, above percolation, on percolation, low dose) in which gold ion implanted piezo-resistors can operate and present experimental results on implanted piezo-resistors switching high voltages as well as a simple artificial muscle inverter. While gold ion implanted DES are limited by high hysteresis and low sensitivity, they already show promise for a range of applications including hysteretic oscillators and soft generators. With improvements to implanter process control the promise of artificial muscle circuitry for soft smart actuator networks could become a reality.
Dielectric Elastomers for Fluidic and Biomedical Applications
NASA Astrophysics Data System (ADS)
McCoul, David James
Dielectric elastomers have demonstrated tremendous potential as high-strain electromechanical transducers for a myriad of novel applications across all engineering disciplines. Because their soft, viscoelastic mechanical properties are similar to those of living tissues, dielectric elastomers have garnered a strong foothold in a plethora of biomedical and biomimetic applications. Dielectric elastomers consist of a sheet of stretched rubber, or elastomer, coated on both sides with compliant electrode materials; application of a voltage generates an electrostatic pressure that deforms the elastomer. They can function as soft generators, sensors, or actuators, and this last function is the focus of this dissertation. Many design configurations are possible, such as stacks, minimum energy structures, interpenetrating polymer networks, shape memory dielectric elastomers, and others; dielectric elastomers are already being applied to many fields of biomedicine. The first part of the original research presented in this dissertation details a PDMS microfluidic system paired with a dielectric elastomer stack actuator of anisotropically prestrained VHB(TM) 4910 (3M(TM)) and single-walled carbon nanotubes. These electroactive microfluidic devices demonstrated active increases in microchannel width when 3 and 4 kV were applied. Fluorescence microscopy also indicated an accompanying increase in channel depth with actuation. The cross-sectional area strains at 3 and 4 kV were approximately 2.9% and 7.4%, respectively. The device was then interfaced with a syringe pump, and the pressure was measured upstream. Linear pressure-flow plots were developed, which showed decreasing fluidic resistance with actuation, from 0.192 psi/(microL/min) at 0 kV, to 0.160 and 0.157 psi/(microL/min) at 3 and 4 kV, respectively. This corresponds to an ~18% drop in fluidic resistance at 4 kV. Active de-clogging was tested in situ with the device by introducing ~50 microm diameter PDMS microbeads and other smaller particulate debris into the system. After a channel blockage was confirmed, three actuation attempts successfully cleared the blockage. Further tests indicated that the device were biocompatible with HeLa cells at 3 kV. To our knowledge this is the first pairing of dielectric elastomers with microfluidics in a non-electroosmotic context. Applications may include adaptive microfilters, micro-peristaltic pumps, and reduced-complexity lab-on-a-chip devices. Dielectric elastomers can also be adapted to manipulate fluidic systems on a larger scale. The second part of the dissertation research reports a novel low-profile, biomimetic dielectric elastomer tubular actuator capable of actively controlling hydraulic flow. The tubular actuator has been established as a reliable tunable valve, pinching a secondary silicone tube completely shut in the absence of a fluidic pressure bias or voltage, offering a high degree of resistance against fluidic flow, and able to open and completely remove this resistance to flow with an applied low power actuation voltage. The system demonstrates a rise in pressure of ~3.0 kPa when the dielectric elastomer valve is in the passive, unactuated state, and there is a quadratic fall in this pressure with increasing actuation voltage, until ~0 kPa is reached at 2.4 kV. The device is reliable for at least 2,000 actuation cycles for voltages at or below 2.2 kV. Furthermore, modeling of the actuator and fluidic system yields results consistent with the observed experimental dependence of intrasystem pressure on input flow rate, actuator prestretch, and actuation voltage. To our knowledge, this is the first actuator of its type that can control fluid flow by directly actuating the walls of a tube. Potential applications may include an implantable artificial sphincter, part of a peristaltic pump, or a computerized valve for fluidic or pneumatic control. The final part of the dissertation presents a novel dielectric elastomer band with integrated rigid elements for the treatment of chronic acid reflux disorders. This dielectric elastomer ring actuator consists of a two-layer stack of prestretched VHB(TM) 4905 with SWCNT electrodes. Its transverse prestretch was maintained by selective rigidification of the VHB(TM) using a UV-curable, solution-processable polymer network. The actuator exhibited a maximum vertical (circumferential) actuation strain of 25% at 3.4 kV in an 24.5 g weighted isotonic setup. It also exhibited the required passive force of 0.25 N and showed a maximum force drop of 0.11 N at 3.32 kV during isometric tests at 4.5 cm. Modeling was performed to determine the prestretches necessary to achieve maximum strain while simultaneously exerting the force of 0.25 N, which corresponds to a required pinching pressure of 3.35 kPa. Modeling also determined the spacing between and number of rigid elements required. The theoretical model curves were adjusted to account for the passive rigid elements, as well as for the addition of margins; the resulting plots agrees well with experiment. The performance of the DE band is comparable to that of living muscle, and this is the first application of dielectric elastomer actuators in the design of a medical implant for the treatment of gastrointestinal disorders. Related applications that could result from this technology are very low-profile linear peristaltic pumps, artificial intestines, an artificial urethra, and artificial blood vessels.
NASA Astrophysics Data System (ADS)
Yuan, Wei
Dielectric elastomers are the most promising technology for mimicking human muscles in terms of strain, stress, and work density, etc. Actuators have been fabricated based on different design concepts and configurations for applications in robotics, prosthetic devices, medical implants, pumps, and valves. However, to date these actuators have experienced high rates of failure caused by electrical shorting of the compliant electrodes through the elastomer film during electrical breakdown, which has prevented their practical application. In this thesis, single walled carbon nanotube (SWNT) thin films were employed as compliant electrodes for dielectric elastomers to reduce the rate of failure. Thanks to the high aspect ratio of the SWNTs, the electrodes maintain substantial conductance at high biaxial strains. 3M VHB acrylics can be actuated up to 200% area strain with SWNT electrodes, this matches the performance of actuators with carbon grease electrodes. During uni-directional stretching, SWNT electrodes can maintain surface conductivity up to 700% linear strain. SWNT electrodes can experience a self-clearing process under high voltage discharging and electrically isolate the electrodes around the breakdown sites when breakdown events happen. With conventional dielectric elastomer electrode materials such as carbon grease and carbon black, a single breakdown event results in a permanent loss in the actuator's functionality. In contrast, for SWNT electrodes, the SWNTs around the breakdown site will be degraded and become non-conductive. The non-conductive area expands outward until the high voltage discharging stops. As such, the opposing electrodes are prevented from coming into contact with each other and forming an electrical short and the breakdown site is electrically isolated from the remainder of the active area. Despite the existence of the breakdown sites, the dielectric elastomer will resume its functionality and avoid permanent failure. Thus, dielectric elastomers with self-clearable SWNT electrodes will be self-healable. Due to the non-uniform surface morphology of SWNT thin films as well as their low turn-on voltage for field emission, corona discharging tends to occur on the electrode surface, even without the presence of a breakdown site through the film. The corona discharging will damage the SWNT electrodes, especially in the regions where the nanotube density is low. This in turn causes the dielectric elastomer to gradually lose its function. By applying a thin coating of dielectric oil on the SWNT electrodes, the corona discharging will be quenched. Dielectric elastomers with self-clearable SWNT electrodes combined with a dielectric oil coating show much longer lifetime and more stable operation. Thus, the SWNT self-clearable electrodes endow dielectric elastomers with fault-tolerance, high dielectric breakdown strength and long lifetime actuation. For examples, VHB acrylic elastomer can achieve 340 V/mum dielectric strength and 20x longer actuation. A dielectric strength of 270 V/mum and longer than 300 minutes of continuous actuation with 50% area strain have also obtained with silicone elastomers. This addition of self-clearable fault-tolerant electrodes to dielectric elastomers transducers improves the manufacturing yield and operational reliability of these artificial muscles and pushes them closer to commercialization.
Stress measurements of planar dielectric elastomer actuators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osmani, Bekim; Aeby, Elise A.; Müller, Bert
Dielectric elastomer actuator (DEA) micro- and nano-structures are referred to artificial muscles because of their specific continuous power and adequate time response. The bending measurement of an asymmetric, planar DEA is described. The asymmetric cantilevers consist of 1 or 5 μm-thin DEAs deposited on polyethylene naphthalate (PEN) substrates 16, 25, 38, or 50 μm thick. The application of a voltage to the DEA electrodes generates an electrostatic pressure in the sandwiched silicone elastomer layer, which causes the underlying PEN substrate to bend. Optical beam deflection enables the detection of the bending angle vs. applied voltage. Bending radii as large asmore » 850 m were reproducibly detected. DEA tests with electric fields of up to 80 V/μm showed limitations in electrode’s conductivity and structure failures. The actuation measurement is essential for the quantitative characterization of nanometer-thin, low-voltage, single- and multi-layer DEAs, as foreseen for artificial sphincters to efficiently treat severe urinary and fecal incontinence.« less
Soft Dielectric Elastomer Oscillators Driving Bioinspired Robots.
Henke, E-F Markus; Schlatter, Samuel; Anderson, Iain A
2017-12-01
Entirely soft robots with animal-like behavior and integrated artificial nervous systems will open up totally new perspectives and applications. To produce them, we must integrate control and actuation in the same soft structure. Soft actuators (e.g., pneumatic and hydraulic) exist but electronics are hard and stiff and remotely located. We present novel soft, electronics-free dielectric elastomer oscillators, which are able to drive bioinspired robots. As a demonstrator, we present a robot that mimics the crawling motion of the caterpillar, with an integrated artificial nervous system, soft actuators and without any conventional stiff electronic parts. Supplied with an external DC voltage, the robot autonomously generates all signals that are necessary to drive its dielectric elastomer actuators, and it translates an in-plane electromechanical oscillation into a crawling locomotion movement. Therefore, all functional and supporting parts are made of polymer materials and carbon. Besides the basic design of this first electronic-free, biomimetic robot, we present prospects to control the general behavior of such robots. The absence of conventional stiff electronics and the exclusive use of polymeric materials will provide a large step toward real animal-like robots, compliant human machine interfaces, and a new class of distributed, neuron-like internal control for robotic systems.
Modeling of dielectric elastomer oscillators for soft biomimetic applications.
Henke, E-F M; Wilson, Katherine E; Anderson, I A
2018-06-26
Biomimetic, entirely soft robots with animal-like behavior and integrated artificial nervous systems will open up totally new perspectives and applications. However, until now, most presented studies on soft robots were limited to only partly soft designs, since all solutions at least needed conventional, stiff electronics to sense, process signals and activate actuators. We present a novel approach for a set up and the experimental validation of an artificial pace maker that is able to drive basic robotic structures and act as artificial central pattern generator. The structure is based on multi-functional dielectric elastomers (DEs). DE actuators, DE switches and DE resistors are combined to create complex DE oscillators (DEOs). Supplied with only one external DC voltage, the DEO autonomously generates oscillating signals that can be used to clock a robotic structure, control the cyclic motion of artificial muscles in bionic robots or make a whole robotic structure move. We present the basic functionality, derive a mathematical model for predicting the generated signal waveform and verify the model experimentally.
Effect of temperature on the electric breakdown strength of dielectric elastomer
NASA Astrophysics Data System (ADS)
Liu, Lei; Chen, Hualing; Sheng, Junjie; Zhang, Junshi; Wang, Yongquan; Jia, Shuhai
2014-03-01
DE (dielectric elastomer) is one of the most promising artificial muscle materials for its large strain over 100% under driving voltage. However, to date, dielectric elastomer actuators (DEAs) are prone to failure due to the temperature-dependent electric breakdown. Previously studies had shown that the electrical breakdown strength was mainly related to the temperature-dependent elasticity modulus and the permittivity of dielectric substances. This paper investigated the influence of ambient temperature on the electric breakdown strength of DE membranes (VHB4910 3M). The electric breakdown experiment of the DE membrane was conducted at different ambient temperatures and pre-stretch levels. The real breakdown strength was obtained by measuring the deformation and the breakdown voltage simultaneously. Then, we found that with the increase of the environment temperature, the electric breakdown strength decreased obviously. Contrarily, the high pre-stretch level led to the large electric breakdown strength. What is more, we found that the deformations of DEs were strongly dependent on the ambient temperature.
A survey on dielectric elastomer actuators for soft robots.
Gu, Guo-Ying; Zhu, Jian; Zhu, Li-Min; Zhu, Xiangyang
2017-01-23
Conventional industrial robots with the rigid actuation technology have made great progress for humans in the fields of automation assembly and manufacturing. With an increasing number of robots needing to interact with humans and unstructured environments, there is a need for soft robots capable of sustaining large deformation while inducing little pressure or damage when maneuvering through confined spaces. The emergence of soft robotics offers the prospect of applying soft actuators as artificial muscles in robots, replacing traditional rigid actuators. Dielectric elastomer actuators (DEAs) are recognized as one of the most promising soft actuation technologies due to the facts that: i) dielectric elastomers are kind of soft, motion-generating materials that resemble natural muscle of humans in terms of force, strain (displacement per unit length or area) and actuation pressure/density; ii) dielectric elastomers can produce large voltage-induced deformation. In this survey, we first introduce the so-called DEAs emphasizing the key points of working principle, key components and electromechanical modeling approaches. Then, different DEA-driven soft robots, including wearable/humanoid robots, walking/serpentine robots, flying robots and swimming robots, are reviewed. Lastly, we summarize the challenges and opportunities for the further studies in terms of mechanism design, dynamics modeling and autonomous control.
A variable stiffness dielectric elastomer actuator based on electrostatic chucking.
Imamura, Hiroya; Kadooka, Kevin; Taya, Minoru
2017-05-14
Dielectric elastomer actuators (DEA) are one type of promising artificial muscle; however, applications of bending-type DEA for robotic end-effectors may be limited by their low stiffness and ability to resist external loads without buckling. Unimorph DEA can produce large out-of-plane deformation suitable for use as robotic end effectors; however, design of such actuators for large displacement comes at the cost of low stiffness and blocking force. This work proposes and demonstrates a variable stiffness dielectric elastomer actuator (VSDEA) consisting of a plurality of unimorph DEA units operating in parallel, which can exhibit variable electrostatic chucking to modulate the structure's bending stiffness. The unimorph DEA units are additively manufactured using a high-resolution pneumatic dispenser, and VSDEA comprising various numbers of units are assembled. The performance of the DEA units and VSDEA are compared to model predictions, exhibiting a maximum stiffness change of 39.2×. A claw actuator comprising two VSDEA and weighing 0.6 grams is demonstrated grasping and lifting a 10 gram object.
NASA Astrophysics Data System (ADS)
Liu, Yang; Gao, Meng; Mei, Shengfu; Han, Yanting; Liu, Jing
2013-08-01
The method of directly printing liquid metal films as highly conductive and super compliant electrodes for dielectric elastomer actuator (DEA) was proposed and experimentally demonstrated with working mechanisms interpreted. Such soft electrodes enable DE film to approach its maximum strain and stress at relatively low voltages. Further, its unique capability of achieving two-dimensional in-plane self-healing by merely actuating the DEA was disclosed, which would allow actuators more tolerant to fault and resilient to abusive environments. This high performance actuator has important value in a wide spectrum of situations ranging from artificial muscle, flexible electronics to smart clothing etc.
Biomimetic artificial sphincter muscles: status and challenges
NASA Astrophysics Data System (ADS)
Leung, Vanessa; Fattorini, Elisa; Karapetkova, Maria; Osmani, Bekim; Töpper, Tino; Weiss, Florian; Müller, Bert
2016-04-01
Fecal incontinence is the involuntary loss of bowel content and affects more than 12% of the adult population, including 45% of retirement home residents. Severe fecal incontinence is often treated by implanting an artificial sphincter. Currently available implants, however, have long-term reoperation rates of 95% and definitive explantation rates of 40%. These statistics show that the implants fail to reproduce the capabilities of the natural sphincter and that the development of an adaptive, biologically inspired implant is required. Dielectric elastomer actuators (DEA) are being developed as artificial muscles for a biomimetic sphincter, due to their suitable response time, reaction forces, and energy consumption. However, at present the operation voltage of DEAs is too high for artificial muscles implanted in the human body. To reduce the operating voltage to tens of volts, we are using microfabrication to reduce the thickness of the elastomer layer to the nanometer level. Two microfabrication methods are being investigated: molecular beam deposition and electrospray deposition. This communication covers the current status and a perspective on the way forward, including the long-term prospects of constructing a smart sphincter from low-voltage sensors and actuators based on nanometer-thin dielectric elastomer films. As DEA can also provide sensory feedback, a biomimetic sphincter can be designed in accordance with the geometrical and mechanical parameters of its natural counterpart. The availability of such technology will enable fast pressure adaption comparable to the natural feedback mechanism, so that tissue atrophy and erosion can be avoided while maintaining continence du ring daily activities.
Designing micro- and nanostructures for artificial urinary sphincters
NASA Astrophysics Data System (ADS)
Weiss, Florian M.; Deyhle, Hans; Kovacs, Gabor; Müller, Bert
2012-04-01
The dielectric elastomers are functional materials that have promising potential as actuators with muscle-like mechanical properties due to their inherent compliancy and overall performance: the combination of large deformations, high energy densities and unique sensory capabilities. Consequently, such actuators should be realized to replace the currently available artificial urinary sphincters building dielectric thin film structures that work with several 10 V. The present communication describes the determination of the forces (1 - 10 N) and deformation levels (~10%) necessary for the appropriate operation of the artificial sphincter as well as the response time to master stress incontinence (reaction time less than 0.1 s). Knowing the dimensions of the presently used artificial urinary sphincters, these macroscopic parameters form the basis of the actuator design. Here, we follow the strategy to start from organic thin films maybe even monolayers, which should work with low voltages but only provide small deformations. Actuators out of 10,000 or 100,000 layers will finally provide the necessary force. The suitable choice of elastomer and electrode materials is vital for the success. As the number of incontinent patients is steadily increasing worldwide, it becomes more and more important to reveal the sphincter's function under static and stress conditions to realize artificial urinary sphincters, based on sophisticated, biologically inspired concepts to become nature analogue.
Self-sensing of dielectric elastomer actuator enhanced by artificial neural network
NASA Astrophysics Data System (ADS)
Ye, Zhihang; Chen, Zheng
2017-09-01
Dielectric elastomer (DE) is a type of soft actuating material, the shape of which can be changed under electrical voltage stimuli. DE materials have promising usage in future’s soft actuators and sensors, such as soft robotics, energy harvesters, and wearable sensors. In this paper, a stripe DE actuator with integrated sensing capability is designed, fabricated, and characterized. Since the strip actuator can be approximated as a compliant capacitor, it is possible to detect the actuator’s displacement by analyzing the actuator’s impedance change. An integrated sensing scheme that adds a high frequency probing signal into actuation signal is developed. Electrical impedance changes in the probing signal are extracted by fast Fourier transform algorithm, and nonlinear data fitting methods involving artificial neural network are implemented to detect the actuator’s displacement. A series of experiments show that by improving data processing and analyzing methods, the integrated sensing method can achieve error level of lower than 1%.
Stronger multilayer acrylic dielectric elastomer actuators with silicone gel coatings
NASA Astrophysics Data System (ADS)
Lau, Gih-Keong; La, Thanh-Giang; Sheng-Wei Foong, Ervin; Shrestha, Milan
2016-12-01
Multilayer dielectric elastomer actuators (DEA) perform worst off than single-layer DEAs due to higher susceptibility to electro-thermal breakdown. This paper presents a hot-spot model to predict the electro-thermal breakdown field of DEAs and its dependence on thermal insulation. To inhibit the electrothermal breakdown, silicone gel coating was applied as barrier coating to multilayer acrylic DEA. The gel coating helps suppress the electro-thermally induced puncturing of DEA membrane at the hot spot. As a result, the gel-coated DEAs, in either a single layer or a multilayer stack, can produce 30% more isometric stress change as compared to those none-coated. These gel-coated acrylic DEAs show great potential to make stronger artificial muscles.
Thermodynamics and instability of dielectric elastomer (Conference Presentation)
NASA Astrophysics Data System (ADS)
Liu, Liwu; Liu, Yanju; Leng, Jinsong; Mu, Tong
2017-04-01
Dielectric elastomer is a kind of typical soft active material. It can deform obviously when subjected to an external voltage. When a dielectric elastomer with randomly oriented dipoles is subject to an electric field, the dipoles will rotate to and align with the electric field. The polarization of the dielectric elastomer may be saturated when the voltage is high enough. When subjected to a mechanical force, the end-to-end distance of each polymer chain, which has a finite contour length, will approach the finite value, reaching a limiting stretch. On approaching the limiting stretch, the elastomer stiffens steeply. Here, we develop a thermodynamic constitutive model of dielectric elastomers undergoing polarization saturation and strain-stiffening, and then investigate the stability (electromechanical stability, snap-through stability) and voltage induced deformation of dielectric elastomers. Analytical solution has been obtained and it reveals the marked influence of the extension limit and polarization saturation limit on its instability. The developed thermodynamic constitutive model and simulation results would be helpful in future to the research of dielectric elastomer based high-performance transducers.
Dielectric elastomer actuators used for pneumatic valve technology
NASA Astrophysics Data System (ADS)
Giousouf, Metin; Kovacs, Gabor
2013-10-01
Dielectric elastomer actuators have been investigated for applications in the field of pneumatic automation technology. We have developed different valve designs with stacked dielectric elastomer actuators and with integrated high voltage converters. The actuators were made using VHB-4910 material and a stacker machine for automated fabrication of the cylindrical actuators. Typical characteristics of pneumatic valves such as flow rate, power consumption and dynamic behaviour are presented. For valve construction the force and stroke parameters of the dielectric elastomer actuator have been measured. Further, benefits for valve applications using dielectric elastomers are shown as well as their potential operational area. Finally, challenges are discussed that are relevant for the use of elastomer actuators in valves for industrial applications.
Electric field around a dielectric elastomer actuator in proximity to the human body
NASA Astrophysics Data System (ADS)
McKenzie, Anita C.; Calius, Emilio P.; Anderson, Iain A.
2008-03-01
Dielectric elastomer actuators (DEAs) are a promising artificial muscle technology that will enable new kinds of prostheses and wearable rehabilitation devices. DEAs are driven by electric fields in the MV/m range and the dielectric elastomer itself is typically 30μm in thickness or more. Large operating voltages, in the order of several kilovolts, are then required to produce useful strains and these large voltages and the resulting electric fields could potentially pose problems when DEAs are used in close proximity to the human body. The fringing electric fields of a DEA in close association with the skin were modelled using finite element methods. The model was verified against a known analytic solution describing the electric field surrounding a capacitor in air. The agreement between the two is good, as the difference is less than 10% unless within 4.5mm of the DEA's lateral edges. As expected, it was found that for a DEA constructed with thinner dielectric layers, the fringe field strength dropped in direct proportion to the reduction in applied voltage, despite the internal field being maintained at the same level. More interestingly, modelling the electric field around stacked DEAs showed that for an even number of layers the electric field is an order of magnitude less than for an odd number of layers, due to the cancelling of opposing electric fields.
Resonant wave energy harvester based on dielectric elastomer generator
NASA Astrophysics Data System (ADS)
Moretti, Giacomo; Pietro Rosati Papini, Gastone; Righi, Michele; Forehand, David; Ingram, David; Vertechy, Rocco; Fontana, Marco
2018-03-01
Dielectric elastomer generators (DEGs) are a class of capacitive solid-state devices that employ highly stretchable dielectrics and conductors to convert mechanical energy into high-voltage direct-current electricity. Their promising performance in terms of convertible energy and power density has been mostly proven in quasi-static experimental tests with prescribed deformation. However, the assessment of their ability in harvesting energy from a dynamic oscillating source of mechanical energy is crucial to demonstrate their effectiveness in practical applications. This paper reports a first demonstration of a DEG system that is able to convert the oscillating energy carried by water waves into electricity. A DEG prototype is built using a commercial polyacrylate film (VHB 4905 by 3M) and an experimental campaign is conducted in a wave-flume facility, i.e. an artificial basin that makes it possible to generate programmed small-scale waves at different frequencies and amplitudes. In resonant conditions, the designed system demonstrates the delivery of a maximum of 0.87 W of electrical power output and 0.64 J energy generated per cycle, with corresponding densities per unit mass of dielectric elastomer of 197 W kg-1 and 145 J kg-1. Additionally, a notable maximum fraction of 18% of the input wave energy is converted into electricity. The presented results provide a promising demonstration of the operation and effectiveness of ocean wave energy converters based on elastic capacitive generators.
NASA Astrophysics Data System (ADS)
Saini, Abhishek; Ahmad, Dilshad; Patra, Karali
2016-04-01
Dielectric elastomers have received a great deal of attention recently as potential materials for many new types of sensors, actuators and future energy generators. When subjected to high electric field, dielectric elastomer membrane sandwiched between compliant electrodes undergoes large deformation with a fast response speed. Moreover, dielectric elastomers have high specific energy density, toughness, flexibility and shape processability. Therefore, dielectric elastomer membranes have gained importance to be applied as micro pumps for microfluidics and biomedical applications. This work intends to extend the electromechanical performance analysis of inflated dielectric elastomer membranes to be applied as micro pumps. Mechanical burst test and cyclic tests were performed to investigate the mechanical breakdown and hysteresis loss of the dielectric membrane, respectively. Varying high electric field was applied on the inflated membrane under different static pressure to determine the electromechanical behavior and nonplanar actuation of the membrane. These tests were repeated for membranes with different pre-stretch values. Results show that pre-stretching improves the electromechanical performance of the inflated membrane. The present work will help to select suitable parameters for designing micro pumps using dielectric elastomer membrane. However this material lacks durability in operation.This issue also needs to be investigated further for realizing practical micro pumps.
Dielectric elastomer actuators for octopus inspired suction cups.
Follador, M; Tramacere, F; Mazzolai, B
2014-09-25
Suction cups are often found in nature as attachment strategy in water. Nevertheless, the application of the artificial counterpart is limited by the dimension of the actuators and their usability in wet conditions. A novel design for the development of a suction cup inspired by octopus suckers is presented. The main focus of this research was on the modelling and characterization of the actuation unit, and a first prototype of the suction cup was realized as a proof of concept. The actuation of the suction cup is based on dielectric elastomer actuators. The presented device works in a wet environment, has an integrated actuation system, and is soft. The dimensions of the artificial suction cups are comparable to proximal octopus suckers, and the attachment mechanism is similar to the biological counterpart. The design approach proposed for the actuator allows the definition of the parameters for its development and for obtaining a desired pressure in water. The fabricated actuator is able to produce up to 6 kPa of pressure in water, reaching the maximum pressure in less than 300 ms.
Localised strain sensing of dielectric elastomers in a stretchable soft-touch musical keyboard
NASA Astrophysics Data System (ADS)
Xu, Daniel; Tairych, Andreas; Anderson, Iain A.
2015-04-01
We present a new sensing method that can measure the strain at different locations in a dielectric elastomer. The method uses multiple sensing frequencies to target different regions of the same dielectric elastomer to simultaneously detect position and pressure using only a single pair of connections. The dielectric elastomer is modelled as an RC transmission line and its internal voltage and current distribution used to determine localised capacitance changes resulting from contact and pressure. This sensing method greatly simplifies high degree of freedom systems and does not require any modifications to the dielectric elastomer or sensing hardware. It is demonstrated on a multi-touch musical keyboard made from a single low cost carbon-based dielectric elastomer with 4 distinct musical tones mapped along a length of 0.1m. Loudness was controlled by the amount of pressure applied to each of these 4 positions.
Fiber-reinforced dielectric elastomer laminates with integrated function of actuating and sensing
NASA Astrophysics Data System (ADS)
Li, Tiefeng; Xie, Yuhan; Li, Chi; Yang, Xuxu; Jin, Yongbin; Liu, Junjie; Huang, Xiaoqiang
2015-04-01
The natural limbs of animals and insects integrate muscles, skins and neurons, providing both the actuating and sensing functions simultaneously. Inspired by the natural structure, we present a novel structure with integrated function of actuating and sensing with dielectric elastomer (DE) laminates. The structure can deform when subjected to high voltage loading and generate corresponding output signal in return. We investigate the basic physical phenomenon of dielectric elastomer experimentally. It is noted that when applying high voltage, the actuating dielectric elastomer membrane deforms and the sensing dielectric elastomer membrane changes the capacitance in return. Based on the concept, finite element method (FEM) simulation has been conducted to further investigate the electromechanical behavior of the structure.
NASA Astrophysics Data System (ADS)
Liu, Lei; Zhang, Chi; Luo, Meng; Chen, Xi; Li, Dichen; Chen, Hualing
2017-08-01
Dielectric elastomers (DEs) have great potential for use as artificial muscles because of the following characteristics: electrical activity, fast and large deformation under stimuli, and softness as natural muscles. Inspired by the traditional McKibben actuators, in this study, we developed a cylindrical soft fiber-reinforced and electropneumatic DE artificial muscle (DEAM) by mimicking the spindle shape of natural muscles. Based on continuum mechanics and variation principle, the inhomogeneous actuation of DEAMs was theoretically modeled and calculated. Prototypes of DEAMs were prepared to validate the design concept and theoretical model. The theoretical predictions are consistent with the experimental results; they successfully predicted the evolutions of the contours of DEAMs with voltage. A pneumatically supported high prestretch in the hoop direction was achieved by our DEAM prototype without buckling the soft fibers sandwiched by the DE films. Besides, a continuously tunable prestretch in the actuation direction was achieved by varying the supporting pressure. Using the theoretical model, the failure modes, maximum actuations, and critical voltages were analyzed; they were highly dependent on the structural parameters, i.e., the cylinder aspect ratio, prestretch level, and supporting pressure. The effects of structural parameters and supporting pressure on the actuation performance were also investigated to optimize the DEAMs.
Stimuli-Responsive Polymers for Actuation.
Zhang, Qiang Matthew; Serpe, Michael J
2017-06-02
A variety of stimuli-responsive polymers have been developed and used as actuators and/or artificial muscles, with the movement being driven by an external stimulus, such as electrical potential. This Review highlights actuators constructed from liquid-crystal elastomers, dielectric elastomers, ionic polymers, and conducting polymers. The Review covers recent examples of a variety of actuators generated from these materials and their utility. The mechanism of actuation will be detailed for most examples in order to stimulate possible future research, and lead to new applications and advanced applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Giant voltage-induced deformation of a dielectric elastomer under a constant pressure
NASA Astrophysics Data System (ADS)
Godaba, Hareesh; Foo, Choon Chiang; Zhang, Zhi Qian; Khoo, Boo Cheong; Zhu, Jian
2014-09-01
Dielectric elastomer actuators coupled with liquid have recently been developed as soft pumps, soft lenses, Braille displays, etc. In this paper, we investigate the performance of a dielectric elastomer actuator, which is coupled with water. The experiments demonstrate that the membrane of a dielectric elastomer can achieve a giant voltage-induced area strain of 1165%, when subject to a constant pressure. Both theory and experiment show that the pressure plays an important role in determining the electromechanical behaviour. The experiments also suggest that the dielectric elastomer actuators, when coupled with liquid, may suffer mechanical instability and collapse after a large amount of liquid is enclosed by the membrane. This failure mode needs to be taken into account in designing soft actuators.
Multi-functional dielectric elastomer artificial muscles for soft and smart machines
NASA Astrophysics Data System (ADS)
Anderson, Iain A.; Gisby, Todd A.; McKay, Thomas G.; O'Brien, Benjamin M.; Calius, Emilio P.
2012-08-01
Dielectric elastomer (DE) actuators are popularly referred to as artificial muscles because their impressive actuation strain and speed, low density, compliant nature, and silent operation capture many of the desirable physical properties of muscle. Unlike conventional robots and machines, whose mechanisms and drive systems rapidly become very complex as the number of degrees of freedom increases, groups of DE artificial muscles have the potential to generate rich motions combining many translational and rotational degrees of freedom. These artificial muscle systems can mimic the agonist-antagonist approach found in nature, so that active expansion of one artificial muscle is taken up by passive contraction in the other. They can also vary their stiffness. In addition, they have the ability to produce electricity from movement. But departing from the high stiffness paradigm of electromagnetic motors and gearboxes leads to new control challenges, and for soft machines to be truly dexterous like their biological analogues, they need precise control. Humans control their limbs using sensory feedback from strain sensitive cells embedded in muscle. In DE actuators, deformation is inextricably linked to changes in electrical parameters that include capacitance and resistance, so the state of strain can be inferred by sensing these changes, enabling the closed loop control that is critical for a soft machine. But the increased information processing required for a soft machine can impose a substantial burden on a central controller. The natural solution is to distribute control within the mechanism itself. The octopus arm is an example of a soft actuator with a virtually infinite number of degrees of freedom (DOF). The arm utilizes neural ganglia to process sensory data at the local "arm" level and perform complex tasks. Recent advances in soft electronics such as the piezoresistive dielectric elastomer switch (DES) have the potential to be fully integrated with actuators and sensors. With the DE switch, we can produce logic gates, oscillators, and a memory element, the building blocks for a soft computer, thus bringing us closer to emulating smart living structures like the octopus arm. The goal of future research is to develop fully soft machines that exploit smart actuation networks to gain capabilities formerly reserved to nature, and open new vistas in mechanical engineering.
NASA Astrophysics Data System (ADS)
Grotepaß, T.; Förster-Zügel, F.; Mößinger, H.; Schlaak, H. F.
2015-04-01
Multilayer dielectric elastomer stack transducers (DESTs) are a promising new transducer technology with many applications in different industry sectors, like medical devices, human-machine-interaction, etc. Stacked dielectric elastomer transducers show larger thickness contraction driven by lower voltages than transducers made from a single dielectric layer. Traditionally multilayered DESTs are produced by repeatedly cross-linking a liquid elastomeric pre-polymer into the required shape. Our recent research focusses on a novel fabrication method for large scale stack transducers with a surface area over 200 x 300 mm by processing pre-fabricated elastomeric thin films of less than 50 μm thicknesses. The thin films are provided as two- or three-layer composites, where the elastomer is sandwiched between one or two sacrificial liners. Separating the elastomeric film from the residual layers and assembling them into dielectric elastomer stack transducers poses many challenges concerning adhesion, since the dielectric film merely separates from the liner if the adhesive forces between them are overcome. Conversely, during the assembly of a dielectric elastomer stack transducer, adhesive forces have to be established between two elastomeric layers or between the dielectric and the electrode layer. The very low Young's modulus of at least one adhesion partner requires suitable means of increasing the adhesive forces between the different adhesive layers of a dielectric elastomer stack transducer to prevent a delamination of the transducer during its lifetime. This work evaluates different surface activation treatments - corona, low-pressure plasma and UV-light - and their applicability in the production of large scale DESTs made from pre-fabricated elastomeric films.
Musclelike joint mechanism driven by dielectric elastomer actuator for robotic applications
NASA Astrophysics Data System (ADS)
Jung, Ho Sang; Cho, Kyeong Ho; Park, Jae Hyeong; Yang, Sang Yul; Kim, Youngeun; Kim, Kihyeon; Nguyen, Canh Toan; Phung, Hoa; Tien Hoang, Phi; Moon, Hyungpil; Koo, Ja Choon; Ryeol Choi, Hyouk
2018-07-01
The purpose of this study is to develop an artificial muscle actuator suitable for robotic applications, and to demonstrate the feasibility of applying this actuator to an arm mechanism, and controlling it delicately and smoothly like a human being. To accomplish this, we perform the procedures that integrate the soft actuator, called the single body dielectric elastomer actuator, which is very flexible and capable of high speed operation, and the displacement amplification mechanism called the sliding filament joint mechanism, which mimics the sliding filament model of human muscles. In this paper, we describe the characteristics and control method of the actuation system that consists of actuator, mechanism, and embedded controller, and show the experimental results of the closed-loop position and static stiffness control of the robotic arm application. Finally, based on the results, we evaluate the performance of this application.
A solid-state dielectric elastomer switch for soft logic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chau, Nixon; Slipher, Geoffrey A., E-mail: geoffrey.a.slipher.civ@mail.mil; Mrozek, Randy A.
In this paper, we describe a stretchable solid-state electronic switching material that operates at high voltage potentials, as well as a switch material benchmarking technique that utilizes a modular dielectric elastomer (artificial muscle) ring oscillator. The solid-state switching material was integrated into our oscillator, which self-started after 16 s and performed 5 oscillations at a frequency of 1.05 Hz with 3.25 kV DC input. Our materials-by-design approach for the nickel filled polydimethylsiloxane based switch has resulted in significant improvements over previous carbon grease-based switches in four key areas, namely, sharpness of switching behavior upon applied stretch, magnitude of electrical resistance change, ease ofmore » manufacture, and production rate. Switch lifetime was demonstrated to be in the range of tens to hundreds of cycles with the current process. An interesting and potentially useful strain-based switching hysteresis behavior is also presented.« less
Optimization of shape control of a cantilever beam using dielectric elastomer actuators
NASA Astrophysics Data System (ADS)
Liu, Chong; Mao, Boyong; Huang, Gangting; Wu, Qichen; Xie, Shilin; Xu, Minglong
2018-05-01
Dielectric elastomer (DE) is a kind of smart soft material that has many advantages such as large deformation, fast response, lightweight and easy synthesis. These features make dielectric elastomer a suitable material for actuators. This article focuses on the shape control of a cantilever beam by using dielectric elastomer actuators. The shape control equation in finite element formulation of the cantilever beam partially covered with dielectric elastomer actuators is derived based on the constitutive equation of dielectric elastomer material by using Hamilton principle. The actuating forces produced by dielectric elastomer actuators depend on the number of layers, the position and the actuation voltage of dielectric elastomer actuators. First, effects of these factors on the shape control accuracy when one pair or multiple pairs of actuators are employed are simulated, respectively. The simulation results demonstrate that increasing the number of actuators or the number of layers can improve the control effect and reduce the actuation voltages effectively. Second, to achieve the optimal shape control effect, the position of the actuators and the drive voltages are all determined using a genetic algorithm. The robustness of the genetic algorithm is analyzed. Moreover, the implications of using one pair and multiple pairs of actuators to drive the cantilever beam to the expected shape are investigated. The results demonstrate that a small number of actuators with optimal placement and optimal voltage values can achieve the shape control of the beam effectively. Finally, a preliminary experimental verification of the control effect is carried out, which shows the correctness of the theoretical method.
The narrow pass band filter of tunable 1D phononic crystals with a dielectric elastomer layer
NASA Astrophysics Data System (ADS)
Wu, Liang-Yu; Wu, Mei-Ling; Chen, Lien-Wen
2009-01-01
In this paper, we study the defect bands of a 1D phononic crystal consisting of aluminum (Al) and polymethyl methacrylate (PMMA) layers with a dielectric elastomer (DE) defect layer. The plane wave expansion (PWE) method and supercell calculation are used to calculate the band structure and the defect bands. The transmission spectra are obtained using the finite element method (FEM). Since the thickness of the dielectric elastomer defect layer is controlled by applying an electric voltage, the frequencies of the defect bands can be tuned. A narrow pass band filter can be developed and designed by using the dielectric elastomer.
Parameters design of the dielectric elastomer spring-roll bending actuator (Conference Presentation)
NASA Astrophysics Data System (ADS)
Li, Jinrong; Liu, Liwu; Liu, Yanju; Leng, Jinsong
2017-04-01
Dielectric elastomers are novel soft smart material that could deform sustainably when subjected to external electric field. That makes dielectric elastomers promising materials for actuators. In this paper, a spring-roll actuator that would bend when a high voltage is applied was fabricated based on dielectric elastomer. Using such actuators as active parts, the flexible grippers and inchworm-inspired crawling robots were manufactured, which demonstrated some examples of applications in soft robotics. To guide the parameters design of dielectric elastomer based spring-roll bending actuators, the theoretical model of such actuators was established based on thermodynamic theories. The initial deformation and electrical induced bending angle of actuators were formulated. The failure of actuators was also analyzed considering some typical failure modes like electromechanical instability, electrical breakdown, loss of tension and maximum tolerant stretch. Thus the allowable region of actuators was determined. Then the bending angle-voltage relations and failure voltages of actuators with different parameters, including stretches of the dielectric elastomer film, number of active layers, and dimensions of spring, were investigated. The influences of each parameter on the actuator performances were discussed, providing meaningful guidance to the optical design of the spring-roll bending actuators.
A small biomimetic quadruped robot driven by multistacked dielectric elastomer actuators
NASA Astrophysics Data System (ADS)
Nguyen, Canh Toan; Phung, Hoa; Dat Nguyen, Tien; Lee, Choonghan; Kim, Uikyum; Lee, Donghyouk; Moon, Hyungpil; Koo, Jachoon; Nam, Jae-do; Ryeol Choi, Hyouk
2014-06-01
A kind of dielectric elastomer (DE) material, called ‘synthetic elastomer’, has been developed based on acrylonitrile butadiene rubber (NBR) to be used as a dielectric elastomer actuator (DEA). By stacking single layers of synthetic elastomer, a linear actuator, called a multistacked actuator, is produced, and used by mechatronic and robotic systems to generate linear motion. In this paper, we demonstrate the application of the multistacked dielectric elastomer actuator in a biomimetic legged robot. A miniature robot driven by a biomimetic actuation system with four 2-DOF (two-degree-of-freedom) legged mechanisms is realized. Based on the experimental results, we evaluate the performance of the proposed robot and validate the feasibility of the multistacked actuator in a locomotion system as a replacement for conventional actuators.
The Current State of Silicone-Based Dielectric Elastomer Transducers.
Madsen, Frederikke B; Daugaard, Anders E; Hvilsted, Søren; Skov, Anne L
2016-03-01
Silicone elastomers are promising materials for dielectric elastomer transducers (DETs) due to their superior properties such as high efficiency, reliability and fast response times. DETs consist of thin elastomer films sandwiched between compliant electrodes, and they constitute an interesting class of transducer due to their inherent lightweight and potentially large strains. For the field to progress towards industrial implementation, a leap in material development is required, specifically targeting longer lifetime and higher energy densities to provide more efficient transduction at lower driving voltages. In this review, the current state of silicone elastomers for DETs is summarised and critically discussed, including commercial elastomers, composites, polymer blends, grafted elastomers and complex network structures. For future developments in the field it is essential that all aspects of the elastomer are taken into account, namely dielectric losses, lifetime and the very often ignored polymer network integrity and stability. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Development of Dielectric Elastomer Nanocomposites as Stretchable and Flexible Actuating Materials
NASA Astrophysics Data System (ADS)
Wang, Yu
Dielectric elastomers (DEs) are a new type of smart materials showing promising functionalities as energy harvesting materials as well as actuating materials for potential applications such as artificial muscles, implanted medical devices, robotics, loud speakers, micro-electro-mechanical systems (MEMS), tunable optics, transducers, sensors, and even generators due to their high electromechanical efficiency, stability, lightweight, low cost, and easy processing. Despite the advantages of DEs, technical challenges must be resolved for wider applications. A high electric field of at least 10-30 V/um is required for the actuation of DEs, which limits the practical applications especially in biomedical fields. We tackle this problem by introducing the multiwalled carbon nanotubes (MWNTs) in DEs to enhance their relative permittivity and to generate their high electromechanical responses with lower applied field level. This work presents the dielectric, mechanical and electromechanical properties of DEs filled with MWNTs. The micromechanics-based finite element models are employed to describe the dielectric, and mechanical behavior of the MWNT-filled DE nanocomposites. A sufficient number of models are computed to reach the acceptable prediction of the dielectric and mechanical responses. In addition, experimental results are analyzed along with simulation results. Finally, laser Doppler vibrometer is utilized to directly detect the enhancement of the actuation strains of DE nanocomposites filled with MWNTs. All the results demonstrate the effective improvement in the electromechanical properties of DE nanocomposites filled with MWNTs under the applied electric fields.
Asymmetric Dielectric Elastomer Composite Material
NASA Technical Reports Server (NTRS)
Stewart, Brian K. (Inventor)
2014-01-01
Embodiments of the invention provide a dielectric elastomer composite material comprising a plurality of elastomer-coated electrodes arranged in an assembly. Embodiments of the invention provide improved force output over prior DEs by producing thinner spacing between electrode surfaces. This is accomplished by coating electrodes directly with uncured elastomer in liquid form and then assembling a finished component (which may be termed an actuator) from coated electrode components.
Assaf, Tareq; Rossiter, Jonathan M.; Porrill, John
2016-01-01
Electroactive polymer actuators are important for soft robotics, but can be difficult to control because of compliance, creep and nonlinearities. Because biological control mechanisms have evolved to deal with such problems, we investigated whether a control scheme based on the cerebellum would be useful for controlling a nonlinear dielectric elastomer actuator, a class of artificial muscle. The cerebellum was represented by the adaptive filter model, and acted in parallel with a brainstem, an approximate inverse plant model. The recurrent connections between the two allowed for direct use of sensory error to adjust motor commands. Accurate tracking of a displacement command in the actuator's nonlinear range was achieved by either semi-linear basis functions in the cerebellar model or semi-linear functions in the brainstem corresponding to recruitment in biological muscle. In addition, allowing transfer of training between cerebellum and brainstem as has been observed in the vestibulo-ocular reflex prevented the steady increase in cerebellar output otherwise required to deal with creep. The extensibility and relative simplicity of the cerebellar-based adaptive-inverse control scheme suggests that it is a plausible candidate for controlling this type of actuator. Moreover, its performance highlights important features of biological control, particularly nonlinear basis functions, recruitment and transfer of training. PMID:27655667
Dielectric elastomer pump for artificial organisms
NASA Astrophysics Data System (ADS)
Bowers, Amy E.; Rossiter, Jonathan M.; Walters, Peter J.; Ieropoulos, Ioannis A.
2011-04-01
This paper presents a bio-inspired, dielectric elastomer (DE) based tubular pumping unit, developed for eventual use as a component of an artificial digestive tract onboard a microbial fuel cell powered robot (EcoBot). The pump effects fluid displacement by direct actuation of the tube wall as opposed to excitation by an external body. The actuator consists of a DE tube moulded from silicone, held in a negative pressure chamber, which is used for prestraining the tube. The pump is coupled with custom designed polymeric check valves in order to rectify the fluid flow and assess the performance of the unit. The valves exhibited the necessary low opening pressures required for use with the actuator. The tube's actuation characteristics were measured both with and without liquid in the system. Based on these data the optimal operating conditions for the pump are discussed. The pump and valve system has achieved flowrates in excess of 40μl/s. This radially contracting/expanding actuator element is the fundamental component of a peristaltic pump. This 'soft pump' concept is suitable for biomimetic robotic systems, or for the medical or food industries where hard contact with the delivered substrate may be undesirable. Future work will look at connecting multiple tubes in series in order to achieve peristalsis.
Integrated sensing and actuation of dielectric elastomer actuator
NASA Astrophysics Data System (ADS)
Ye, Zhihang; Chen, Zheng
2017-04-01
Dielectric elastomer (DE) is a type of soft actuating material, the shape of which can be changed under electrical voltage stimuli. DE materials have great potential in applications involving energy harvesters, micro-manipulators, and adaptive optics. In this paper, a stripe DE actuator with integrated sensing and actuation is designed and fabricated, and characterized through several experiments. Considering the actuator's capacitor-like structure and its deform mechanism, detecting the actuator's displacement through the actuator's circuit feature is a potential approach. A self-sensing scheme that adds a high frequency probing signal into actuation signal is developed. A fast Fourier transform (FFT) algorithm is used to extract the magnitude change of the probing signal, and a non-linear fitting method and artificial neural network (ANN) approach are utilized to reflect the relationship between the probing signal and the actuator's displacement. Experimental results showed this structure has capability of performing self-sensing and actuation, simultaneously. With an enhanced ANN, the self-sensing scheme can achieve 2.5% accuracy.
Evaluation of area strain response of dielectric elastomer actuator using image processing technique
NASA Astrophysics Data System (ADS)
Sahu, Raj K.; Sudarshan, Koyya; Patra, Karali; Bhaumik, Shovan
2014-03-01
Dielectric elastomer actuator (DEA) is a kind of soft actuators that can produce significantly large electric-field induced actuation strain and may be a basic unit of artificial muscles and robotic elements. Understanding strain development on a pre-stretched sample at different regimes of electrical field is essential for potential applications. In this paper, we report about ongoing work on determination of area strain using digital camera and image processing technique. The setup, developed in house consists of low cost digital camera, data acquisition and image processing algorithm. Samples have been prepared by biaxially stretched acrylic tape and supported between two cardboard frames. Carbon-grease has been pasted on the both sides of the sample, which will be compliant with electric field induced large deformation. Images have been grabbed before and after the application of high voltage. From incremental image area, strain has been calculated as a function of applied voltage on a pre-stretched dielectric elastomer (DE) sample. Area strain has been plotted with the applied voltage for different pre-stretched samples. Our study shows that the area strain exhibits nonlinear relationship with applied voltage. For same voltage higher area strain has been generated on a sample having higher pre-stretched value. Also our characterization matches well with previously published results which have been done with costly video extensometer. The study may be helpful for the designers to fabricate the biaxial pre-stretched planar actuator from similar kind of materials.
NASA Astrophysics Data System (ADS)
Jia; Lu
2016-01-01
The considerable electric-induced shape change, together with the attributes of lightweight, high efficiency, and inexpensive cost, makes dielectric elastomer, a promising soft active material for the realization of actuators in broad applications. Although, a number of prototype devices have been demonstrated in the past few years, the further development of this technology necessitates adequate analytical and numerical tools. Especially, previous theoretical studies always neglect the influence of surrounding medium. Due to the large deformation and nonlinear equations of states involved in dielectric elastomer, finite element method (FEM) is anticipated; however, the few available formulations employ homemade codes, which are inconvenient to implement. The aim of this work is to present a numerical approach with the commercial FEM package COMSOL to investigate the nonlinear response of dielectric elastomer under electric stimulation. The influence of surrounding free space on the electric field is analyzed and the corresponding electric force is taken into account through an electric surface traction on the circumstances edge. By employing Maxwell stress tensor as actuation pressure, the mechanical and electric governing equations for dielectric elastomer are coupled, and then solved simultaneously with the Gent model of stain energy to derive the electric induced large deformation as well as the electromechanical instability. The finite element implementation presented here may provide a powerful computational tool to help design and optimize the engineering applications of dielectric elastomer.
Development of dielectric elastomer nanocomposites as stretchable actuating materials
NASA Astrophysics Data System (ADS)
Wang, Yu; Sun, L. Z.
2017-10-01
Dielectric elastomer nanocomposites (DENCs) filled with multi-walled carbon nanotubes are developed. The electromechanical responses of DENCs to applied electric fields are investigated through laser Doppler vibrometry. It is found that a small amount of carbon nanotube fillers can effectively enhance the electromechanical performance of DENCs. The enhanced electromechanical properties have shown not only that the desired thickness strain can be achieved with reduced required electric fields but also that significantly large thickness strain can be obtained with any electric fields compared to pristine dielectric elastomers.
NASA Astrophysics Data System (ADS)
Cakmak, Enes
Conventional means of converting electrical energy to mechanical work are generally considered too noisy and bulky for many contemporary technologies such as microrobotic, microfluidic, and haptic devices. Dielectric electroactive polymers (D-EAPs) constitude a growing class of electroactive polymers (EAP) that are capable of producing mechanica work induced by an applied electric field. D-EAPs are considered remarkably efficient and well suited for a wide range of applications, including ocean-wave energy harvesters and prosthetic devices. However, the real-world application of D-EAPs is very limited due to a number of factors, one of which is the difficulty of producing high actuation strains at acceptably low electric fields. D-EAPs are elastomeric polymers and produce large strain response induced by external electric field. The electromechanical properties of D-EAPs depend on the dielectric properties and mechanical properties of the D-EAP. In terms of dielectric behavior, these actuators require a high dielectric constant, low dielectric loss, and high dielectric strength to produce an improved actuation response. In addition to their dielectric properties, the mechanical properties of D-EAPs, such as elastic moduli and hysteresis, are also of importance. Therefore, material properties are a key feature of D-EAP technology. DE actuator materials reported in the literature cover many types of elastomers and their composites formed with dielectric fillers. Along with polymeric matrix materials, various ceramic, metal, and organic fillers have been employed in enhancing dielectric behavior of DEs. This work describes an effort to characterize elastomer blends and composites of different matrix and dielectric polymer fillers according to their dielectric, mechanical, and electromechanical responses. This dissertation focuses on the development and characterization of polymer-polymer blends and composites from a high-k polyurethane (PU) and polydimethylsiloxane (PDMS) elastomers. Two different routes were followed with respect to elastomer processing: The first is a simple solution blending of the two types of elastomers, and the second is based on preparation of composites from PU nanofiber webs and PDMS elastomer. Both the blends and the nanofiber web composites showed improved dielectric and actuation characteristics.
New dielectric elastomers with improved properties for energy harvesting and actuation
NASA Astrophysics Data System (ADS)
Stiubianu, George; Bele, Adrian; Tugui, Codrin; Musteata, Valentina
2015-02-01
New materials with large value for dielectric constant were obtained by using siloxane and chemically modified lignin. The modified lignin does not act as a stiffening filler material for the siloxane but acts as bulk filler, preserving the softness and low value of Young's modulus specific for silicones. The measured values for dielectric constant compare positively with the ones for previously tested dielectric elastomers based on siloxane rubber or acrylic rubber loaded with ceramic nanoparticles. The new materials use the well-known silicone chemistry and lignin which is available worldwide in large amounts as a by-product of pulp and paper industry, making its manufacturing affordable. The prepared dielectric elastomers were tested for possible applications for wave, wind and kinetic body motion energy harvesting. Siloxane, lignin, dielectric
Anticipating electrical breakdown in dielectric elastomer actuators
NASA Astrophysics Data System (ADS)
Muffoletto, Daniel P.; Burke, Kevin M.; Zirnheld, Jennifer L.
2013-04-01
The output strain of a dielectric elastomer actuator is directly proportional to the square of its applied electric field. However, since the likelihood of electric breakdown is elevated with an increased applied field, the maximum operating electric field of the dielectric elastomer is significantly derated in systems employing these actuators so that failure due to breakdown remains unlikely even as the material ages. In an effort to ascertain the dielectric strength so that stronger electric fields can be applied, partial discharge testing is used to assess the health of the actuator by detecting the charge that is released when localized instances of breakdown partially bridge the insulator. Pre-stretched and unstretched samples of VHB4910 tape were submerged in dielectric oil to remove external sources of partial discharges during testing, and the partial discharge patterns were recorded just before failure of the dielectric sample.
Elastomer actuators: systematic improvement in properties by use of composite materials
NASA Astrophysics Data System (ADS)
Molberg, Martin; Leterrier, Yves; Plummer, Christopher J. G.; Löwe, Christiane; Opris, Dorina M.; Clemens, Frank; Månson, Jan-Anders E.
2010-04-01
Dielectric elastomer actuators (DEAs) have attracted increasing attention over the last few years owing to their outstanding properties, e.g. their large actuation strains, high energy density, and pliability, which have opened up a wide spectrum of potential applications in fields ranging from microengineering to medical prosthetics. There is consequently a huge demand for new elastomer materials with improved properties to enhance the performance of DEAs and to overcome the limitations associated with currently available materials, such as the need for high activation voltages and the poor long-term stability. The electrostatic pressure that activates dielectric elastomers can be increased by higher permittivity of the elastomer and thus may lead to lower activation voltages. This has led us to consider composite elastomeric dielectrics based on thermoplastic elastomers or PDMS, and conductive polyaniline or ceramic (soft doped PZT) powder fillers. The potential of such materials and strategies to counter the adverse effects of increased conductivity and elastic modulus are discussed.
A validated finite element model of a soft artificial muscle motor
NASA Astrophysics Data System (ADS)
Tse, Tony Chun H.; O'Brien, Benjamin; McKay, Thomas; Anderson, Iain A.
2011-04-01
The Biomimetics Laboratory has developed a soft artificial muscle motor based on Dielectric Elastomers. The motor, 'Flexidrive', is light-weight and has low system complexity. It works by gripping and turning a shaft with a soft gear, like we would with our fingers. The motor's performance depends on many factors, such as actuation waveform, electrode patterning, geometries and contact tribology between the shaft and gear. We have developed a finite element model (FEM) of the motor as a study and design tool. Contact interaction was integrated with previous material and electromechanical coupling models in ABAQUS. The model was experimentally validated through a shape and blocked force analysis.
Dielectric elastomer peristaltic pump module with finite deformation
NASA Astrophysics Data System (ADS)
Mao, Guoyong; Huang, Xiaoqiang; Liu, Junjie; Li, Tiefeng; Qu, Shaoxing; Yang, Wei
2015-07-01
Inspired by various peristaltic structures existing in nature, several bionic peristaltic actuators have been developed. In this study, we propose a novel dielectric elastomer peristaltic pump consisting of short tubular modules, with the saline solution as the electrodes. We investigate the performance of this soft pump module under hydraulic pressure and voltage via experiments and an analytical model based on nonlinear field theory. It is observed that the individual pump module undergoes finite deformation and may experience electromechanical instability during operations. The driving pressure and displaced volume of the peristaltic pump module can be modulated by applied voltage. The efficiency of the pump module is enhanced by alternating current voltage, which can suppress the electromechanical pull-in instability. An analytical model is developed within the framework of the nonlinear field theory, and its predictive capacity is checked by experimental observations. The effects of the prestretch, aspect ratio, and voltage on the performance of the pump modules are characterized by the analytical model. This work can guide the designs of soft active peristaltic pumps in the field of artificial organs and industrial conveying systems.
NASA Astrophysics Data System (ADS)
Kochetov, R.; Tsekmes, I. A.; Morshuis, P. H. F.
2015-07-01
Electroactive polymers have gained considerable attention over the last 20 years for exhibiting a large displacement in response to electrical stimulation. The promising fields of application include wave energy converters, muscle-like actuators, sensors, robotics, and biomimetics. For an electrical engineer, electroactive polymers can be seen as a dielectric elastomer film or a compliant capacitor with a highly deformable elastomeric medium. If the elastomer is pre-stretched and pre-charged, a reduction of the tensile force lets the elastomer revert to its original form and increases the electrical potential. The light weight of electroactive polymers, low cost, high intrinsic breakdown strength, cyclical way of operation, reliable performance, and high efficiency can be exploited to utilize the elastomeric material as a transducer. The energy storage for a linear dielectric polymer is determined by its relative permittivity and the applied electric field. The latter is limited by the dielectric breakdown strength of the material. Therefore, to generate a high energy density of a flexible capacitor, the film must be used at the voltage level close to the material’s breakdown or inorganic particles with high dielectric permittivity which can be introduced into the polymer matrix. In the present study, silicone-titania elastomer nanocomposites were produced and the influence of nanoparticles on the macroscopic dielectric properties of the neat elastomer including space charge dynamics, complex permittivity, and electrical conductivity, were investigated.
NASA Astrophysics Data System (ADS)
O'Brien, Benjamin M.; McKay, Thomas G.; Xie, Sheng Q.; Calius, Emilio P.; Anderson, Iain A.
2011-04-01
Life shows us that the distribution of intelligence throughout flexible muscular networks is a highly successful solution to a wide range of challenges, for example: human hearts, octopi, or even starfish. Recreating this success in engineered systems requires soft actuator technologies with embedded sensing and intelligence. Dielectric Elastomer Actuator(s) (DEA) are promising due to their large stresses and strains, as well as quiet flexible multimodal operation. Recently dielectric elastomer devices were presented with built in sensor, driver, and logic capability enabled by a new concept called the Dielectric Elastomer Switch(es) (DES). DES use electrode piezoresistivity to control the charge on DEA and enable the distribution of intelligence throughout a DEA device. In this paper we advance the capabilities of DES further to form volatile memory elements. A set reset flip-flop with inverted reset line was developed based on DES and DEA. With a 3200V supply the flip-flop behaved appropriately and demonstrated the creation of dielectric elastomer memory capable of changing state in response to 1 second long set and reset pulses. This memory opens up applications such as oscillator, de-bounce, timing, and sequential logic circuits; all of which could be distributed throughout biomimetic actuator arrays. Future work will include miniaturisation to improve response speed, implementation into more complex circuits, and investigation of longer lasting and more sensitive switching materials.
NASA Astrophysics Data System (ADS)
Lefèvre, Victor; Lopez-Pamies, Oscar
2017-02-01
This paper presents an analytical framework to construct approximate homogenization solutions for the macroscopic elastic dielectric response - under finite deformations and finite electric fields - of dielectric elastomer composites with two-phase isotropic particulate microstructures. The central idea consists in employing the homogenization solution derived in Part I of this work for ideal elastic dielectric composites within the context of a nonlinear comparison medium method - this is derived as an extension of the comparison medium method of Lopez-Pamies et al. (2013) in nonlinear elastostatics to the coupled realm of nonlinear electroelastostatics - to generate in turn a corresponding solution for composite materials with non-ideal elastic dielectric constituents. Complementary to this analytical framework, a hybrid finite-element formulation to construct homogenization solutions numerically (in three dimensions) is also presented. The proposed analytical framework is utilized to work out a general approximate homogenization solution for non-Gaussian dielectric elastomers filled with nonlinear elastic dielectric particles that may exhibit polarization saturation. The solution applies to arbitrary (non-percolative) isotropic distributions of filler particles. By construction, it is exact in the limit of small deformations and moderate electric fields. For finite deformations and finite electric fields, its accuracy is demonstrated by means of direct comparisons with finite-element solutions. Aimed at gaining physical insight into the extreme enhancement in electrostriction properties displayed by emerging dielectric elastomer composites, various cases wherein the filler particles are of poly- and mono-disperse sizes and exhibit different types of elastic dielectric behavior are discussed in detail. Contrary to an initial conjecture in the literature, it is found (inter alia) that the isotropic addition of a small volume fraction of stiff (semi-)conducting/high-permittivity particles to dielectric elastomers does not lead to the extreme electrostriction enhancements observed in experiments. It is posited that such extreme enhancements are the manifestation of interphasial phenomena.
Entirely soft dielectric elastomer robots
NASA Astrophysics Data System (ADS)
Henke, E.-F. Markus; Wilson, Katherine E.; Anderson, Iain A.
2017-04-01
Multifunctional Dielectric Elastomer (DE) devices are well established as actuators, sensors and energy har- vesters. Since the invention of the Dielectric Elastomer Switch (DES), a piezoresistive electrode that can directly switch charge on and off, it has become possible to expand the wide functionality of DE structures even more. We show the application of fully soft DE subcomponents in biomimetic robotic structures. It is now possible to couple arrays of actuator/switch units together so that they switch charge between them- selves on and off. One can then build DE devices that operate as self-controlled oscillators. With an oscillator one can produce a periodic signal that controls a soft DE robot - a DE device with its own DE nervous system. DESs were fabricated using a special electrode mixture, and imprinting technology at an exact pre-strain. We have demonstrated six orders of magnitude change in conductivity within the DES over 50% strain. The control signal can either be a mechanical deformation from another DE or an electrical input to a connected dielectric elastomer actuator (DEA). We have demonstrated a variety of fully soft multifunctional subcomponents that enable the design of autonomous soft robots without conventional electronics. The combination of digital logic structures for basic signal processing, data storage in dielectric elastomer flip-flops and digital and analogue clocks with adjustable frequencies, made of dielectric elastomer oscillators (DEOs), enables fully soft, self-controlled and electronics-free robotic structures. DE robotic structures to date include stiff frames to maintain necessary pre-strains enabling sufficient actuation of DEAs. Here we present a design and production technology for a first robotic structure consisting only of soft silicones and carbon black.
NASA Astrophysics Data System (ADS)
Carpi, F.; Gallone, G.; Galantini, F.; De Rossi, D.
2008-03-01
The need for high driving electric fields currently limits the diffusion of dielectric elastomer actuation in some areas of potential application, especially in the case of biomedical disciplines. A reduction of the driving fields may be achieved with new elastomers offering intrinsically superior electromechanical properties. So far, most of attempts in this direction have been focused on composites between elastomer matrixes and high-permittivity ceramic fillers, yielding to limited results. In this work, the electromechanical response of a silicone rubber (poly-dimethyl-siloxane) was improved by blending, rather than loading, the elastomer with a highly polarizable conjugated polymer (undoped poly-hexyl-thiophene). Very low percentages (1-6 wt%) of poly-hexyl-thiophene yielded both an increase of the dielectric permittivity and an unexpected reduction of the tensile elastic modulus. Both these factors contributed to a remarkable increase of the electromechanical response, which reached a maximum at 1 wt% content of conjugated polymer. This approach may lead to the development of new types of improved dielectric elastomers for actuation.
Pressure-volume characteristics of dielectric elastomer diaphragms
NASA Astrophysics Data System (ADS)
Tews, Alyson M.; Pope, Kimberly L.; Snyder, Alan J.
2003-07-01
With the ultimate goal of constructing diaphragm-type pumps, we have measured pressure-volume characteristics of single-layer dielectric elastomers diaphragms. Circular dielectric elastomer diaphragms were prepared by biaxial stretching of 3M VHB 4905 polyacrylate, or spin casting and modest or no biaxial stretching of silicone rubber films, followed by mounting to a sealed chamber having a 3.8 cm diameter opening. Pressure-volume characteristics were measured at voltages that provided field strengths up to 80 MV/m in un-deformed VHB films and 50-75 MV/m in silicone films. The most highly pre-strained VHB diaphragms were found to have linear pressure-volume characteristics whose slopes (diaphragm compliance) depended sensitively upon applied field at higher field strengths. Compliance of unstretched silicone diaphragms was nearly independent of field strength at the fields tested, but pressure-volume characteristics shifted markedly. For both kinds of dielectric elastomers, pressure-volume work loops of significant size can be obtained for certain operating pressures. Each type of diaphragm may have advantages in certain applications.
A dielectric elastomer actuator coupled with water: snap-through instability and giant deformation
NASA Astrophysics Data System (ADS)
Godaba, Hareesh; Foo, Choon Chiang; Zhang, Zhi Qian; Khoo, Boo Cheong; Zhu, Jian
2015-04-01
A dielectric elastomer actuator is one class of soft actuators which can deform in response to voltage. Dielectric elastomer actuators coupled with liquid have recently been developed as soft pumps, soft lenses, Braille displays, etc. In this paper, we conduct experiments to investigate the performance of a dielectric elastomer actuator which is coupled with water. The membrane is subject to a constant water pressure, which is found to significantly affect the electromechanical behaviour of the membrane. When the pressure is small, the membrane suffers electrical breakdown before snap-through instability, and achieves a small voltage-induced deformation. When the pressure is higher to make the membrane near the verge of the instability, the membrane can achieve a giant voltage-induced deformation, with an area strain of 1165%. When the pressure is large, the membrane suffers pressure-induced snap-through instability and may collapse due to a large amount of liquid enclosed by the membrane. Theoretical analyses are conducted to interpret these experimental observations.
NASA Astrophysics Data System (ADS)
Zhang, Quan-Ping; Liu, Jun-Hua; Liu, Hai-Dong; Jia, Fei; Zhou, Yuan-Lin; Zheng, Jian
2017-10-01
Adding ceramic or conductive fillers into polymers for increasing permittivity is a direct and effective approach to enhance the actuation strain of dielectric elastomer actuators (DEAs). Unfortunately, the major dielectric loss caused by weak interfaces potentially harms the electro-mechanical stability and lifetime of DEAs. Here, we construct a desired macromolecular network with a long chain length and low cross-link density to reduce the elastic modulus of silicone elastomers. Selecting a high molecular weight of polymethylvinylsiloxane and a low dose of the cross-linker leads the soft but tough networks with rich entanglements, poor cross-links, and a low amount of defects. Then, a ductile material with low elastic modulus but high elongation at break is obtained. It accounts for much more excellent actuation strain of Hl in comparison to that of the other silicone elastomers. Importantly, without other fillers, the ultralow dielectric loss, conductivity, and firm networks possibly promote the electro-mechanical stability and lifetime for the DEA application.
Hemispherical breathing mode speaker using a dielectric elastomer actuator.
Hosoya, Naoki; Baba, Shun; Maeda, Shingo
2015-10-01
Although indoor acoustic characteristics should ideally be assessed by measuring the reverberation time using a point sound source, a regular polyhedron loudspeaker, which has multiple loudspeakers on a chassis, is typically used. However, such a configuration is not a point sound source if the size of the loudspeaker is large relative to the target sound field. This study investigates a small lightweight loudspeaker using a dielectric elastomer actuator vibrating in the breathing mode (the pulsating mode such as the expansion and contraction of a balloon). Acoustic testing with regard to repeatability, sound pressure, vibration mode profiles, and acoustic radiation patterns indicate that dielectric elastomer loudspeakers may be feasible.
NASA Astrophysics Data System (ADS)
Liu, Yanju; Shi, Liang; Liu, Liwu; Zhang, Zhen; Leng, Jinsong
2008-03-01
Bio-mimetic actuators are inspired to the human or animal organ and they are aimed at replicating actions exerted by the main organic muscles. We present here an inflated dielectric Electroactive Polymer actuator based on acrylic elastomer aiming at mimicing the ocular muscular of the human eye. Two sheets of polyacrylic elastomer coated with conductive carbon grease are sticked to a rotatable backbone, which function like an agonist-antagonist configuration. When stimulating the two elastomer sheets separately, the rotatable mid-arc of the actuator is capable of rotating from -50° to 50°. Experiments shows that the inflated actuator, compared with uninflated one, performs much bigger rotating angle and more strengthened. Connected with the actuator via an elastic tensive line, the eyeball rotates around the symmetrical axes. The realization of more accurate movements and emotional expressions of our native eye system is the next step of our research and still under studied. This inflated dielectric elastomer actuator shows as well great potential application in robofish and adaptive stucture.
NASA Astrophysics Data System (ADS)
Osmani, Bekim; Töpper, Tino; Siketanc, Matej; Kovacs, Gabor M.; Müller, Bert
2017-04-01
Dielectric elastomer transducers (DETs) have attracted interest as actuators, sensors, and even as self-sensing actuators for applications in medicine, soft robotics, and microfluidics. To reach strains of more than 10 %, they currently require operating voltages of several hundred volts. In medical applications for artificial muscles, however, their operation is limited to a very few tens of volts, which implies high permittivity materials and thin-film structures. Such micro- or nanostructures can be prepared using electro-spraying, a cost-effective technique that allows upscaling using multiple nozzles for the fabrication of silicone films down to nanometer thickness. Deposition rates of several micrometers per hour have already been reached. It has been recently demonstrated that such membranes can be fabricated by electro-spraying and subsequent ultraviolet light irradiation. Herein, we introduce a relatively fast deposition of a dimethyl silicone copolymer fluid that contains mercaptopropyl side chains in addition to the methyl groups. Its elastic modulus was tuned with the irradiation dose of the 200 W Hg-Xe lamp. We also investigated the formation of elastomer films, using polymer concentrations in ethyl acetate of 1, 2, 5 and 10 vol%. After curing, the surface roughness was measured by means of atomic force microscopy. This instrument also enabled us to determine the average elastic modulus out of, for example, 400 nanoindentation measurements, using a spherical tip with a radius of 500 nm. The elastomer films were cured for a period of less than one minute, a speed that makes it feasible to combine electro-spraying and in situ curing in a single process step for fabricating low-voltage, multilayer DETs.
NASA Astrophysics Data System (ADS)
Park, Harold
2016-04-01
Dielectric elastomers are a class of soft, active materials that have recently gained significant interest due to the fact that they can be electrostatically actuated into undergoing extremely large deformations. An ongoing challenge has been the development of robust and accurate computational models for elastomers, particularly those that can capture electromechanical instabilities that limit the performance of elastomers such as creasing, wrinkling, and snap-through. I discuss in this work a recently developed finite element model for elastomers that is dynamic, nonlinear, and fully electromechanically coupled. The model also significantly alleviates volumetric locking due that arises due to the incompressible nature of the elastomers, and incorporates viscoelasticity within a finite deformation framework. Numerical examples are shown that demonstrate the performance of the proposed method in capturing electromechanical instabilities (snap-through, creasing, cratering, wrinkling) that have been observed experimentally.
NASA Astrophysics Data System (ADS)
Vatankhah-Varnosfaderani, Mohammad; Daniel, William F. M.; Zhushma, Alexandr P.; Li, Qiaoxi; Morgan, Benjamin J.; Matyjaszewski, Krzysztof; Armstrong, Daniel P.; Dobrynin, Andrey V.; Sheyko, Sergei S.; Spontak, Richard J.
2017-04-01
Electroactive polymers (EAPs) refer to a broad range of relatively soft materials that change size and/or shape upon application of an electrical stimulus. Of these, dielectric elastomers (DEs) generated from either chemically- or physically-crosslinked polymer networks afford the highest levels of electroactuation strain, thereby making this class of EAPs the leading technology for artificial-muscle applications. While mechanically prestraining elastic networks remarkably enhances DEs electroactuation, external prestrain protocols severely limit both actuator performance and device implementation due to gradual DE stress relaxation and the presence of a cumbersome load frame. These drawbacks have persisted with surprisingly minimal advances in the actuation of single-component elastomers since the dawn of the "pre-strain era" introduced by Pelrine et al. (Science, 2000). In this work, we present a bottom-up, molecular-based strategy for the design of prestrain-free (freestanding) DEs derived from covalently-crosslinked bottlebrush polymers. This architecture, wherein design factors such as crosslink density, graft density and graft length can all be independently controlled, yields inherently strained polymer networks that can be readily adapted to a variety of chemistries. To validate the use of these molecularly-tunable materials as DEs, we have synthesized a series of bottlebrush silicone elastomers in as-cast shapes. Examination of these materials reveals that they undergo giant electroactuation strains (>300%) at relatively low fields (<10 V/m), thereby outperforming all commercial DEs to date and opening new opportunities in responsive soft-material technologies (e.g., robotics). The molecular design approach to controlling (electro)mechanical developed here is independent of chemistry and permits access to an unprecedented range of actuation properties from elastomeric materials with traditionally modest electroactuation performance (e.g., polydimethylsiloxane, PDMS). Experimental results obtained here compare favorably with theoretical predictions and demonstrate that the unique behavior of these materials is a direct consequence of the molecular architecture.
NASA Astrophysics Data System (ADS)
Wang, Nianfeng; Guo, Hao; Chen, Bicheng; Cui, Chaoyu; Zhang, Xianmin
2018-05-01
Dielectric elastomers (DE), known as electromechanical transducers, have been widely used in the field of sensors, generators, actuators and energy harvesting for decades. A large number of DE actuators including bending actuators, linear actuators and rotational actuators have been designed utilizing an experience design method. This paper proposes a new method for the design of DE actuators by using a topology optimization method based on pairs of curves. First, theoretical modeling and optimization design are discussed, after which a rotary dielectric elastomer actuator has been designed using this optimization method. Finally, experiments and comparisons between several DE actuators have been made to verify the optimized result.
Investigation on the performance of a viscoelastic dielectric elastomer membrane generator.
Zhou, Jianyou; Jiang, Liying; Khayat, Roger E
2015-04-21
Dielectric elastomer generators (DEGs), as a recent transduction technology, harvest electrical energy by scavenging mechanical energy from diverse sources. Their performance is affected by various material properties and failure modes of the dielectric elastomers. This work presents a theoretical analysis on the performance of a dielectric elastomer membrane generator under equi-biaxial loading conditions. By comparing our simulation results with the experimental observations existing in the literature, this work considers the fatigue life of DE-based devices under cyclic loading for the first time. From the simulation results, it is concluded that the efficiency of the DEG can be improved by raising the deforming rate and the prescribed maximum stretch ratio, and applying an appropriate bias voltage. However, the fatigue life expectancy compromises the efficiency improvement of the DEG. With the consideration of the fatigue life, applying an appropriate bias voltage appears to be a more desirable way to improve the DEG performance. The general framework developed in this work is expected to provide an increased understanding on the energy harvesting mechanisms of the DEGs and benefit their optimal design.
NASA Astrophysics Data System (ADS)
Zhao, Jianwen; Niu, Junyang; McCoul, David; Ren, Zhi; Pei, Qibing
2015-03-01
The dielectric elastomer minimum energy structure can realize large angular deformations by a small voltage-induced strain of the dielectric elastomer, so it is a suitable candidate to make a rotary joint for a soft robot. Driven with an alternating electric field, the joint deformation vibrational frequency follows the input voltage frequency. However, the authors find that if the rotational inertia increases such that the inertial torque makes the frame deform over a negative angle, then the joint motion will become complicated and the vibrational mode will alter with the change of voltage frequency. The vibration with the largest amplitude does not occur while the voltage frequency is equal to natural response frequency of the joint. Rather, the vibrational amplitude will be quite large over a range of other frequencies at which the vibrational frequency is half of the voltage frequency. This phenomenon was analyzed by a comparison of the timing sequences between voltage and joint vibration. This vibrational mode with the largest amplitude can be applied to the generation lift in a flapping wing actuated by dielectric elastomers.
Energy scavenging strain absorber: application to kinetic dielectric elastomer generator
NASA Astrophysics Data System (ADS)
Jean-Mistral, C.; Beaune, M.; Vu-Cong, T.; Sylvestre, A.
2014-03-01
Dielectric elastomer generators (DEGs) are light, compliant, silent energy scavengers. They can easily be incorporated into clothing where they could scavenge energy from the human kinetic movements for biomedical applications. Nevertheless, scavengers based on dielectric elastomers are soft electrostatic generators requiring a high voltage source to polarize them and high external strain, which constitutes the two major disadvantages of these transducers. We propose here a complete structure made up of a strain absorber, a DEG and a simple electronic power circuit. This new structure looks like a patch, can be attached on human's wear and located on the chest, knee, elbow… Our original strain absorber, inspired from a sailing boat winch, is able to heighten the external available strain with a minimal factor of 2. The DEG is made of silicone Danfoss Polypower and it has a total area of 6cm per 2.5cm sustaining a maximal strain of 50% at 1Hz. A complete electromechanical analytical model was developed for the DEG associated to this strain absorber. With a poling voltage of 800V, a scavenged energy of 0.57mJ per cycle is achieved with our complete structure. The performance of the DEG can further be improved by enhancing the imposed strain, by designing a stack structure, by using a dielectric elastomer with high dielectric permittivity.
Nonlinear Dynamics of Electroelastic Dielectric Elastomers
2018-01-30
research will significantly advance the basic science and fundamental understanding of how rate- dependent material response couples to large, nonlinear...experimental studies of constrained dielectric elastomer films, a transition in the surface instability mechanism depending on the elastocapillary number...fundamental understanding of how rate- dependent material response couples to large, nonlinear material deformation under applied electrostatic loading to
NASA Astrophysics Data System (ADS)
Balasoiu, Maria; Bica, Ioan
The fabrication of composite magnetorheological elastomers (MRECs) based on silicone rubber, carbonyl iron microparticles (10% vol.) and polyurethane elastomer doped with 0%, 10% and 20% volume concentration TiO2 microparticles is presented. The obtained MRECs have the shape of thin foils and are used as dielectric materials for manufacturing plane capacitors. Using the plane capacitor method and expression of capacitance as a function of magnetic field intensity, combined with linear elasticity theory, the static magnetoelastic model of the composite is obtained and analyzed.
Self-organized minimum-energy structures for dielectric elastomer actuators
NASA Astrophysics Data System (ADS)
Kofod, G.; Paajanen, M.; Bauer, S.
2006-11-01
When a stretched elastomer is laminated to a flat plastic frame, a complex shape is formed, which is termed a minimum-energy structure. It is shown how self-organized structures can be applied in the development of actuators with complex, out-of-plane actuationmodes. This unusual concept is then demonstrated in the case of dielectric elastomer actuators. Among advantages of this approach are the simplicity in manufacturing, the potential complexity and sophistication of the manufactured structures, and the general benefits of the concept when applied to other electro-mechanically active materials.
Electromechanical response of silicone dielectric elastomers
NASA Astrophysics Data System (ADS)
Cârlescu, V.; Prisăcaru, G.; Olaru, D.
2016-08-01
This paper presents an experimental technique to investigate the electromechanical properties of silicone dielectric elastomers actuated with high DC electric fields. A non-contact measurement technique is used to capture and monitor the thickness strain (contraction) of a circular film placed between two metallic disks electrodes. Two active fillers such as silica (10, 15 and 30 wt%) and barium titanate (5 and 15 wt%) were incorporated in order to increase the actuation performance. Thickness strain was measured at HV stimuli up to 4.5 kV and showed a quadratic dependence against applied electric field indicating that the induced strain is triggered by the Maxwell effect and/or electrostriction phenomenon as reported in literature. The actuation process evidences a rapid contraction upon HV activation and a slowly relaxation when the electrodes are short-circuit due to visco-elastic nature of elastomers. A maximum of 1.22 % thickness strain was obtained at low actuating field intensity (1.5 V/pm) comparable with those reported in literature for similar dielectric elastomer materials.
Novel dielectric elastomer structure of soft robot
NASA Astrophysics Data System (ADS)
Li, Chi; Xie, Yuhan; Huang, Xiaoqiang; Liu, Junjie; Jin, Yongbin; Li, Tiefeng
2015-04-01
Inspired from the natural invertebrates like worms and starfish, we propose a novel elastomeric smart structure. The smart structure can function as a soft robot. The soft robot is made from a flexible elastomer as the body and driven by dielectric elastomer as the muscle. Finite element simulations based on nonlinear field theory are conducted to investigate the working condition of the structure, and guide the design of the smart structure. The effects of the prestretch, structural stiffness and voltage on the performance of the smart structure are investigated. This work can guide the design of soft robot.
NASA Astrophysics Data System (ADS)
Hu, Wei; Niu, Xiaofan; Yang, Xinguo; Zhang, Naifang; Pei, Qibing
2013-04-01
Dielectric Elastomers (DEs) can be actuated under high electric field to produce large strains. Most high-performing DE materials such as the 3M™ VHB™ membranes are commercial products designed for industrial pressure-sensitive adhesives. The limited knowledge of the exact chemical structures of these commercial materials has made it difficult to understand the relationship between molecular structures and electromechanical properties. In this work, new acrylic elastomers based on n-butyl acrylate and acrylic acid were synthesized from monomer solutions by UV-initiated bulk polymerization. The new acrylic copolymers have a potential to obtain high dielectric constant, actuation strain, dielectric strength, and a high energy density. Silicone and ester oligomer diacrylates were also added onto the copolymer structures to suppress crystallization and to crosslink the polymer chains. Four acrylic formulations were developed with different amounts of acrylic acid. This gives a tunable stiffness, while the dielectric constant is varied from 4.3 to 7.1. The figure-of-merit performance of the best formulation is 186 % area strain, 222 MV/m of dielectric strength, and 2.7 MJ/m3 of energy density. To overcome electromechanical instability, different prestrain ratios were investigated, and under the optimized prestrain, the material has a lifetime of thousands of cycles at 120 % area strain.
Current status and future prospects of power generators using dielectric elastomers
NASA Astrophysics Data System (ADS)
Chiba, Seiki; Waki, Mikio; Kornbluh, Roy; Pelrine, Ron
2011-12-01
Electroactive polymer artificial muscle (EPAM), known collectively as dielectric elastomers in the literature, has been shown to offer unique capabilities as an actuator and is now being developed for a wide variety of generator applications. EPAM has several characteristics that make it potentially well suited for wave, water current, wind, human motion, and other environmental energy harvesting systems including a high energy density allowing for minimal EPAM material quantities, high energy conversion efficiency independent of frequency of operation and non-toxic and low-cost materials not susceptible to corrosion. Experiments have been performed on push-button and heel-mounted generator devices powered by human motion, ocean wave power harvesters mounted on buoys and water turbines. While the power output levels of such demonstration devices is small, the performance of these devices has supported the potential benefits of EPAM. For example, an electrical energy conversion efficiency of over 70% was achieved with small wave heights. The ability of EPAM to produce hydrogen fuel for energy storage was also demonstrated. Because the energy conversion principle of EPAM is capacitive in nature, the performance is largely independent of size and it should eventually be possible to scale up EPAM generators to the megawatt level to address a variety of electrical power needs.
NASA Astrophysics Data System (ADS)
Tutcuoglu, A.; Majidi, C.
2014-12-01
Using principles of damped harmonic oscillation with continuous media, we examine electrostatic energy harvesting with a "soft-matter" array of dielectric elastomer (DE) transducers. The array is composed of infinitely thin and deformable electrodes separated by layers of insulating elastomer. During vibration, it deforms longitudinally, resulting in a change in the capacitance and electrical enthalpy of the charged electrodes. Depending on the phase of electrostatic loading, the DE array can function as either an actuator that amplifies small vibrations or a generator that converts these external excitations into electrical power. Both cases are addressed with a comprehensive theory that accounts for the influence of viscoelasticity, dielectric breakdown, and electromechanical coupling induced by Maxwell stress. In the case of a linearized Kelvin-Voigt model of the dielectric, we obtain a closed-form estimate for the electrical power output and a scaling law for DE generator design. For the complete nonlinear model, we obtain the optimal electrostatic voltage input for maximum electrical power output.
Experimental study on behaviors of dielectric elastomer based on acrylonitrile butadiene rubber
NASA Astrophysics Data System (ADS)
An, Kuangjun; Chuc, Nguyen Huu; Kwon, Hyeok Yong; Phuc, Vuong Hong; Koo, Jachoon; Lee, Youngkwan; Nam, Jaedo; Choi, Hyouk Ryeol
2010-04-01
Previously, the dielectric elastomer based on Acrylonitrile Butadiene Rubber (NBR), called synthetic elastomer has been reported by our group. It has the advantages that its characteristics can be modified according to the requirements of performances, and thus, it is applicable to a wide variety of applications. In this paper, we address the effects of additives and vulcanization conditions on the overall performance of synthetic elastomer. In the present work, factors to have effects on the performances are extracted, e.g additives such as dioctyl phthalate (DOP), barium titanium dioxide (BaTiO3) and vulcanization conditions such as dicumyl peroxide (DCP), cross-linking times. Also, it is described how the performances can be optimized by using DOE (Design of Experiments) technique and experimental results are analyzed by ANOVA (Analysis of variance).
Operation tools with dielectric elastomer pressure sensors
NASA Astrophysics Data System (ADS)
Böse, Holger; Müller, Dominik; Ehrlich, Johannes
2017-04-01
New sensors based on dielectric elastomers have recently been shown to exhibit high sensitivity for compression loads. The basic design of these sensors exhibits two profiled surfaces coated with electrode layers between which an elastomer film with the counter-electrode is confined. All components of the sensor are prepared with silicone whose stiffness can be varied in a wide range. Depending on the details of the sensor design, various effects contribute to the enhancement of the capacitance. The intermediate elastomer film is stretched upon compression, the elastomer profiles are deformed and the electrode layers on the elastomer profiles and in the elastomer film approach each other. Beside the detection of pressure, such sensors can also be used for operation tools in human-machine interfaces. To demonstrate this potential, a touch pad with six pressure-sensitive fields is presented. The corresponding sensors integrated in the touch fields detect the exerted forces of the finger, show them on a display and control the brightness of some LEDs. As a second example, the integration of sensor-based control fields on an automotive steering wheel is shown. Finally, the sensors can also be used in fabrics to control arbitrary functions of wearable electronic devices.
Stretchable, High-k Dielectric Elastomers through Liquid-Metal Inclusions.
Bartlett, Michael D; Fassler, Andrew; Kazem, Navid; Markvicka, Eric J; Mandal, Pratiti; Majidi, Carmel
2016-05-01
An all-soft-matter composite with exceptional electro-elasto properties is demonstrated by embedding liquid-metal inclusions in an elastomer matrix. This material exhibits a unique combination of high dielectric constant, low stiffness, and large strain limit (ca. 600% strain). The elasticity, electrostatics, and electromechanical coupling of the composite are investigated, and strong agreement with predictions from effective medium theory is found. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Dielectric elastomer membranes undergoing inhomogeneous deformation
NASA Astrophysics Data System (ADS)
He, Tianhu; Zhao, Xuanhe; Suo, Zhigang
2009-10-01
Dielectric elastomers are capable of large deformation subject to an electric voltage and are promising for use as actuators, sensors, and generators. Because of large deformation, nonlinear equations of states, and diverse modes of failure, modeling the process of electromechanical transduction has been challenging. This paper studies a membrane of a dielectric elastomer deformed into an out-of-plane axisymmetric shape, a configuration used in a family of commercial devices known as the universal muscle actuators. The kinematics of deformation and charging, together with thermodynamics, leads to equations that govern the state of equilibrium. Numerical results indicate that the field in the membrane can be very inhomogeneous, and that the membrane is susceptible to several modes of failure, including electrical breakdown, loss of tension, and rupture by stretch. Care is needed in the design to balance the requirements of averting various modes of failure while using the material efficiently.
Electromechanical instability in soft materials: Theory, experiments and applications
NASA Astrophysics Data System (ADS)
Suo, Zhigang
2013-03-01
Subject to a voltage, a membrane of a dielectric elastomer reduces thickness and expands area, possibly straining over 100%. The phenomenon is being developed as transducers for broad applications, including soft robots, adaptive optics, Braille displays, and electric generators. The behavior of dielectric elastomers is closely tied to electromechanical instability. This instability may limit the performance of devices, and may also be used to achieve giant actuation strains. This talk reviews the theory of dielectric elastomers, coupling large deformation and electric potential. The theory is developed within the framework of continuum mechanics and thermodynamics. The theory attempts to answer commonly asked questions. How do mechanics and electrostatics work together to generate large deformation? How efficiently can a material convert energy from one form to another? How do molecular processes affect macroscopic behavior? The theory is used to describe electromechanical instability, and is related to recent experiments.
NASA Astrophysics Data System (ADS)
Kumar, Ajeet; Ahmad, Dilshad; Patra, Karali
2018-02-01
A dielectric elastomer is capable of large deformation under three basic modes of deformation: equi-biaxial, pure shear and uniaxial. Pre-stretching of dielectric elastomer improves the actuation strain appreciably. Experimental results shows that pre-stretching using equal biaxial mode can result to higher actuation strain compared to other two modes of stretching, i.e., uniaxial and pure shear. However, analysis of the experimental results shows that the actuation strain is independent of the modes of pre-stretching rather it is dependent upon the thickness stretch. For same thickness stretch at a particular voltage, the actuation strain is almost similar for all pre-stretching modes. Power trend lines are obtained to predict the actuation strain at any thickness stretch for a particular voltage. The present analysis opens the door to easily design the actuators, sensors and energy harvesting devices.
Magnetic force induced tristability for dielectric elastomer actuators
NASA Astrophysics Data System (ADS)
Li, Xin-Qiang; Li, Wen-Bo; Zhang, Wen-Ming; Zou, Hong-Xiang; Peng, Zhi-Ke; Meng, Guang
2017-10-01
This paper presents a novel dielectric elastomer actuator (DEA) with three stable states. By introducing magnetic forces and coupling them with two cone dielectric elastomer (DE) films, an inherent tristability for the DEA is obtained with a compact design. It is easy to switch between the three stable states by controlling the voltages applied to the DE films. A theoretical model of the system’s potential energy that contains the free energy of the DEs and the potential energy of the applied magnetic field was developed for the tristable mechanism. The experimental results demonstrate that controllable transitions between the three stable states can be achieved with this design by applying over-critical voltages to the various DE films. The maximum dynamic range of the DEA can exceed 53.8% of the total length of the device and the DE’s creep speed was accelerated under the action of the magnetic field.
Holographic Structuring of Elastomer Actuator: First True Monolithic Tunable Elastomer Optics.
Ryabchun, Alexander; Kollosche, Matthias; Wegener, Michael; Sakhno, Oksana
2016-12-01
Volume diffraction gratings (VDGs) are inscribed selectively by diffusive introduction of benzophenone and subsequent UV-holographic structuring into an electroactive dielectric elastomer actuator (DEA), to afford a continuous voltage-controlled grating shift of 17%. The internal stress coupling of DEA and optical domain allows for a new generation of true monolithic tunable elastomer optics with voltage controlled properties. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Wissman, J.; Finkenauer, L.; Deseri, L.; Majidi, C.
2014-10-01
We introduce a dielectric elastomer actuator (DEA) composed of liquid-phase Gallium-Indium (GaIn) alloy electrodes embedded between layers of poly(dimethylsiloxane) (PDMS) and examine its mechanics using a specialized elastic shell theory. Residual stresses in the dielectric and sealing layers of PDMS cause the DEA to deform into a saddle-like geometry (Gaussian curvature K <0). Applying voltage Φ to the liquid metal electrodes induces electrostatic pressure (Maxwell stress) on the dielectric and relieves some of the residual stress. This reduces the longitudinal bending curvature and corresponding angle of deflection ϑ. Treating the elastomer as an incompressible, isotropic, NeoHookean solid, we develop a theory based on the principle of minimum potential energy to predict the principal curvatures as a function of Φ. Based on this theory, we predict a dependency of ϑ on Φ that is in strong agreement with experimental measurements performed on a GaIn-PDMS composite. By accurately modeling electromechanical coupling in a soft-matter DEA, this theory can inform improvements in design and fabrication.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wissman, J., E-mail: jwissman@andrew.cmu.edu; Finkenauer, L.; Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
We introduce a dielectric elastomer actuator (DEA) composed of liquid-phase Gallium-Indium (GaIn) alloy electrodes embedded between layers of poly(dimethylsiloxane) (PDMS) and examine its mechanics using a specialized elastic shell theory. Residual stresses in the dielectric and sealing layers of PDMS cause the DEA to deform into a saddle-like geometry (Gaussian curvature K<0). Applying voltage Φ to the liquid metal electrodes induces electrostatic pressure (Maxwell stress) on the dielectric and relieves some of the residual stress. This reduces the longitudinal bending curvature and corresponding angle of deflection ϑ. Treating the elastomer as an incompressible, isotropic, NeoHookean solid, we develop a theorymore » based on the principle of minimum potential energy to predict the principal curvatures as a function of Φ. Based on this theory, we predict a dependency of ϑ on Φ that is in strong agreement with experimental measurements performed on a GaIn-PDMS composite. By accurately modeling electromechanical coupling in a soft-matter DEA, this theory can inform improvements in design and fabrication.« less
Bartlett, Michael D; Fassler, Andrew; Kazem, Navid; Markvicka, Eric J; Mandal, Pratiti; Majidi, Carmel
2016-05-01
An all-soft-matter composite consisting of liquid metal microdroplets embedded in a soft elastomer matrix is presented by C. Majidi and co-workers on page 3726. This composite exhibits a high dielectric constant while maintaining exceptional elasticity and compliance. The image shows the composite's microstructure captured by 3D X-ray imaging using a nano-computed tomographic scanner. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Spring roll dielectric elastomer actuators for a portable force feedback glove
NASA Astrophysics Data System (ADS)
Zhang, Rui; Lochmatter, Patrick; Kunz, Andreas; Kovacs, Gabor
2006-03-01
Miniature spring roll dielectric elastomer actuators for a novel kinematic-free force feedback concept were manufactured and experimentally characterized. The actuators exhibited a maximum blocking force of 7.2 N and a displacement of 5 mm. The theoretical considerations based on the material's incompressibility were discussed in order to estimate the actuator behavior under blocked-strain activation and free-strain activation. One prototype was built for the demonstration of the proposed force feedback concept.
Inkjet 3D printing of UV and thermal cure silicone elastomers for dielectric elastomer actuators
NASA Astrophysics Data System (ADS)
McCoul, David; Rosset, Samuel; Schlatter, Samuel; Shea, Herbert
2017-12-01
Dielectric elastomer actuators (DEAs) are an attractive form of electromechanical transducer, possessing high energy densities, an efficient design, mechanical compliance, high speed, and noiseless operation. They have been incorporated into a wide variety of devices, such as microfluidic systems, cell bioreactors, tunable optics, haptic displays, and actuators for soft robotics. Fabrication of DEA devices is complex, and the majority are inefficiently made by hand. 3D printing offers an automated and flexible manufacturing alternative that can fabricate complex, multi-material, integrated devices consistently and in high resolution. We present a novel additive manufacturing approach to DEA devices in which five commercially available, thermal and UV-cure DEA silicone rubber materials have been 3D printed with a drop-on-demand, piezoelectric inkjet system. Using this process, 3D structures and high-quality silicone dielectric elastomer membranes as thin as 2 μm have been printed that exhibit mechanical and actuation performance at least as good as conventionally blade-cast membranes. Printed silicone membranes exhibited maximum tensile strains of up to 727%, and DEAs with printed silicone dielectrics were actuated up to 6.1% area strain at a breakdown strength of 84 V μm-1 and also up to 130 V μm-1 at 2.4% strain. This approach holds great potential to manufacture reliable, high-performance DEA devices with high throughput.
Rate dependent constitutive behavior of dielectric elastomers and applications in legged robotics
NASA Astrophysics Data System (ADS)
Oates, William; Miles, Paul; Gao, Wei; Clark, Jonathan; Mashayekhi, Somayeh; Hussaini, M. Yousuff
2017-04-01
Dielectric elastomers exhibit novel electromechanical coupling that has been exploited in many adaptive structure applications. Whereas the quasi-static, one-dimensional constitutive behavior can often be accurately quantified by hyperelastic functions and linear dielectric relations, accurate predictions of electromechanical, rate-dependent deformation during multiaxial loading is non-trivial. In this paper, an overview of multiaxial electromechanical membrane finite element modeling is formulated. Viscoelastic constitutive relations are extended to include fractional order. It is shown that fractional order viscoelastic constitutive relations are superior to conventional integer order models. This knowledge is critical for transition to control of legged robotic structures that exhibit advanced mobility.
(Electro)Mechanical Properties of Olefinic Block Copolymers
NASA Astrophysics Data System (ADS)
Spontak, Richard
2014-03-01
Conventional styrenic triblock copolymers (SBCs) swollen with a midblock-selective oil have been previously shown to exhibit excellent electromechanical properties as dielectric elastomers. In this class of electroactive polymers, compliant electrodes applied as active areas to opposing surfaces of an elastomer attract each other, and thus compress the elastomer due to the onset of a Maxwell stress, upon application of an external electric field. This isochoric process is accompanied by an increase in lateral area, which yields the electroactuation strain (measuring beyond 300% in SBC systems). Performance parameters such as the Maxwell stress, transverse strain, dielectric breakdown, energy density and electromechanical efficiency are determined directly from the applied electric field and resulting electroactuation strain. In this study, the same principle used to evaluate SBC systems is extended to olefinic block copolymers (OBCs), which can be described as randomly-coupled multiblock copolymers that consist of crystallizable polyethylene hard segments and rubbery poly(ethylene-co-octene) soft segments. Considerations governing the development of a methodology to fabricate electroresponsive OBC systems are first discussed for several OBCs differing in composition and bulk properties. Evidence of electroactuation in selectively-solvated OBC systems is presented and performance metrics measured therefrom are quantitatively compared with dielectric elastomers derived from SBC and related materials.
Dielectric elastomer generators that stack up
NASA Astrophysics Data System (ADS)
McKay, T. G.; Rosset, S.; Anderson, I. A.; Shea, H.
2015-01-01
This paper reports the design, fabrication, and testing of a soft dielectric elastomer power generator with a volume of less than 1 cm3. The generator is well suited to harvest energy from ambient and from human body motion as it can harvest from low frequency (sub-Hz) motions, and is compact and lightweight. Dielectric elastomers are highly stretchable variable capacitors. Electrical energy is produced when the deformation of a stretched, charged dielectric elastomer is relaxed; like-charges are compressed together and opposite-charges are pushed apart, resulting in an increased voltage. This technology provides an opportunity to produce soft, high energy density generators with unparalleled robustness. Two major issues block this goal: current configurations require rigid frames that maintain the dielectric elastomer in a prestretched state, and high energy densities have come at the expense of short lifetime. This paper presents a self-supporting stacked generator configuration which does not require rigid frames. The generator consists of 48 generator films stacked on top of each other, resulting in a structure that fits within an 11 mm diameter footprint while containing enough active material to produce useful power. To ensure sustainable power production, we also present a mathematical model for designing the electronic control of the generator which optimizes energy production while limiting the electrical stress on the generator below failure limits. When cyclically compressed at 1.6 Hz, our generator produced 1.8 mW of power, which is sufficient for many low-power wireless sensor nodes. This performance compares favorably with similarly scaled electromagnetic, piezoelectric, and electrostatic generators. The generator’s small form factor and ability to harvest useful energy from low frequency motions such as tree swaying or shoe impact provides an opportunity to deliver power to remote wireless sensor nodes or to distributed points in the human body without the need for costly periodic battery replacement.
An all-organic composite actuator material with a high dielectric constant.
Zhang, Q M; Li, Hengfeng; Poh, Martin; Xia, Feng; Cheng, Z-Y; Xu, Haisheng; Huang, Cheng
2002-09-19
Electroactive polymers (EAPs) can behave as actuators, changing their shape in response to electrical stimulation. EAPs that are controlled by external electric fields--referred to here as field-type EAPs--include ferroelectric polymers, electrostrictive polymers, dielectric elastomers and liquid crystal polymers. Field-type EAPs can exhibit fast response speeds, low hysteresis and strain levels far above those of traditional piezoelectric materials, with elastic energy densities even higher than those of piezoceramics. However, these polymers also require a high field (>70 V micro m(-1)) to generate such high elastic energy densities (>0.1 J cm(-3); refs 4, 5, 9, 10). Here we report a new class of all-organic field-type EAP composites, which can exhibit high elastic energy densities induced by an electric field of only 13 V micro m(-1). The composites are fabricated from an organic filler material possessing very high dielectric constant dispersed in an electrostrictive polymer matrix. The composites can exhibit high net dielectric constants while retaining the flexibility of the matrix. These all-organic actuators could find applications as artificial muscles, 'smart skins' for drag reduction, and in microfluidic systems for drug delivery.
Switchable adhesion for wafer-handling based on dielectric elastomer stack transducers
NASA Astrophysics Data System (ADS)
Grotepaß, T.; Butz, J.; Förster-Zügel, F.; Schlaak, H. F.
2016-04-01
Vacuum grippers are often used for the handling of wafers and small devices. In order to evacuate the gripper, a gas flow is created that can harm the micro structures on the wafer. A promising alternative to vacuum grippers could be adhesive grippers with switchable adhesion. There have been some publications of gecko-inspired adhesive devices. Most of these former works consist of a structured surface which adheres to the object manipulated and an actuator for switching the adhesion. Until now different actuator principles have been investigated, like smart memory alloys and pneumatics. In this work for the first time dielectric elastomer stack transducers (DEST) are combined with a structured surface. DESTs are a promising new transducer technology with many applications in different industry sectors like medical devices, human-machine-interaction and soft robotics. Stacked dielectric elastomer transducers show thickness contraction originating from the electromechanical pressure of two compliant electrodes compressing an elastomeric dielectric when a voltage is applied. Since DESTs and the adhesive surfaces previously described are made of elastomers, it is self-evident to combine both systems in one device. The DESTs are fabricated by a spin coating process. If the flat surface of the spinning carrier is substituted for example by a perforated one, the structured elastomer surface and the DEST can be fabricated in one process. By electrical actuation the DEST contracts and laterally expands which causes the gecko-like cilia to adhere on the object to manipulate. This work describes the assembly and the experimental results of such a device using switchable adhesion. It is intended to be used for the handling of glass wafers.
Modeling of dielectric elastomer as electromechanical resonator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Bo, E-mail: liboxjtu@mail.xjtu.edu.cn; Liu, Lei; Chen, Hualing
Dielectric elastomers (DEs) feature nonlinear dynamics resulting from an electromechanical coupling. Under alternating voltage, the DE resonates with tunable performances. We present an analysis of the nonlinear dynamics of a DE as electromechanical resonator (DEER) configured as a pure shear actuator. A theoretical model is developed to characterize the complex performance under different boundary conditions. Physical mechanisms are presented and discussed. Chaotic behavior is also predicted, illustrating instabilities in the dynamics. The results provide a guide to the design and application of DEER in haptic devices.
A novel method of fabricating laminated silicone stack actuators with pre-strained dielectric layers
NASA Astrophysics Data System (ADS)
Hinitt, Andrew D.; Conn, Andrew T.
2014-03-01
In recent studies, stack based Dielectric Elastomer Actuators (DEAs) have been successfully used in haptic feedback and sensing applications. However, limitations in the fabrication method, and materials used to con- struct stack actuators constrain their force and displacement output per unit volume. This paper focuses on a fabrication process enabling a stacked elastomer actuator to withstand the high tensile forces needed for high power applications, such as mimetics for mammalian muscle contraction (i.e prostheses), whilst requiring low voltage for thickness-mode contractile actuation. Spun elastomer layers are bonded together in a pre-strained state using a conductive adhesive filler, forming a Laminated Inter-Penetrating Network (L-IPN) with repeatable and uniform electrode thickness. The resulting structure utilises the stored strain energy of the dielectric elas- tomer to compress the cured electrode composite material. The method is used to fabricate an L-IPN example, which demonstrated that the bonded L-IPN has high tensile strength normal to the lamination. Additionally, the uniformity and retained dielectric layer pre-strain of the L-IPN are confirmed. The described method is envisaged to be used in a semi-automated assembly of large-scale multi-layer stacks of pre-strained dielectric layers possessing a tensile strength in the range generated by mammalian muscle.
Ning, Nanying; Ma, Qin; Liu, Suting; Tian, Ming; Zhang, Liqun; Nishi, Toshio
2015-05-27
In this study, we obtained dielectric elastomer composites with controllable dielectric and actuated properties by using a biomimetic method. We used dopamine (DA) to simultaneously coat the graphene oxide (GO) and partially reduce GO by self-polymerization of DA on GO. The poly(dopamine) (PDA) coated GO (GO-PDA) was assembled around rubber latex particles by hydrogen bonding interaction between carboxyl groups of carboxylated nitrile rubber (XNBR) and imino groups or phenolic hydroxyl groups of GO-PDA during latex compounding, forming a segregated GO-PDA network at a low percolation threshold. The results showed that the introduction of PDA on GO prevented the restack of GO in the matrix. The dielectric and actuated properties of the composites depend on the thickness of PDA shell. The dielectric loss and the elastic modulus decrease, and the breakdown strength increases with increasing the thickness of PDA shell. The maximum actuated strain increases from 1.7% for GO/XNBR composite to 4.4% for GO-PDA/XNBR composites with the PDA thickness of about 5.4 nm. The actuated strain at a low electric field (2 kV/mm) obviously increases from 0.2% for pure XNBR to 2.3% for GO-PDA/XNBR composite with the PDA thickness of 1.1 nm, much higher than that of other DEs reported in previous studies. Thus, we successfully obtained dielectric composites with low dielectric loss and improved breakdown strength and actuated strain at a low electric field, facilitating the wide application of dielectric elastomers.
NASA Astrophysics Data System (ADS)
Hwang, Taeseon; Kwon, Hyeok-Yong; Oh, Joon-Suk; Hong, Jung-Pyo; Hong, Seung-Chul; Lee, Youngkwan; Ryeol Choi, Hyouk; Jin Kim, Kwang; Hossain Bhuiya, Mainul; Nam, Jae-Do
2013-07-01
A transparent dielectric elastomer actuator driven by few-layer-graphene (FLG) electrode was experimentally investigated. The electrodes were made of graphene, which was dispersed in N-methyl-pyrrolidone. The transparent actuator was fabricated from developed FLG electrodes. The FLG electrode with its sheet resistance of 0.45 kΩ/sq (80 nm thick) was implemented to mask silicone elastomer. The developed FLG-driven actuator exhibited an optical transparency of over 57% at a wavenumber of 600 nm and produced bending displacement performance ranging from 29 to 946 μm as functions of frequency and voltage. The focus variation was clearly demonstrated under actuation to study its application-feasibility in variable focus lens and various opto-electro-mechanical devices.
Small, fast, and tough: Shrinking down integrated elastomer transducers
NASA Astrophysics Data System (ADS)
Rosset, Samuel; Shea, Herbert R.
2016-09-01
We review recent progress in miniaturized dielectric elastomer actuators (DEAs), sensors, and energy harvesters. We focus primarily on configurations where the large strain, high compliance, stretchability, and high level of integration offered by dielectric elastomer transducers provide significant advantages over other mm or μm-scale transduction technologies. We first present the most active application areas, including: tunable optics, soft robotics, haptics, micro fluidics, biomedical devices, and stretchable sensors. We then discuss the fabrication challenges related to miniaturization, such as thin membrane fabrication, precise patterning of compliant electrodes, and reliable batch fabrication of multilayer devices. We finally address the impact of miniaturization on strain, force, and driving voltage, as well as the important effect of boundary conditions on the performance of mm-scale DEAs.
A soft flying robot driven by a dielectric elastomer actuator (Conference Presentation)
NASA Astrophysics Data System (ADS)
Wang, Yingxi; Zhang, Hui; Godaba, Hareesh; Khoo, Boo Cheong; Zhu, Jian
2017-04-01
Modern unmanned aerial vehicles are gaining promising success because of their versatility, flexibility, and minimized risk of operations. Most of them are normally designed and constructed based on hard components. For example, the body of the vehicle is generally made of aluminum or carbon fibers, and electric motors are adopted as the main actuators. These hard materials are able to offer reasonable balance of structural strength and weight. However, they exhibit apparent limitations. For instance, such robots are fragile in even small clash with surrounding objects. In addition, their noise is quite high due to spinning of rotors or propellers. Here we aim to develop a soft flying robot using soft actuators. Due to its soft body, the robot can work effectively in unstructured environment. The robot may also exhibit interesting attributes, including low weight, low noise, and low power consumption. This robot mainly consists of a dielectric elastomer balloon made of two layers of elastomers. One is VHB (3M), and the other is natural rubber. The balloon is filled with helium, which can make the robot nearly neutral. When voltage is applied to either of the two dielectric elastomers, the balloon expands. So that the buoyance can be larger than the robot's weight, and the robot can move up. In this seminar, we will show how to harness the dielectric breakdown of natural rubber to achieve giant deformation of this soft robot. Based on this method, the robot can move up effectively in air.
Nonlinear dynamic characteristics of dielectric elastomer membranes
NASA Astrophysics Data System (ADS)
Fox, Jason W.; Goulbourne, Nakhiah C.
2008-03-01
The dynamic response of dielectric elastomer membranes subject to time-varying voltage inputs for various initial inflation states is investigated. These results provide new insight into the differences observed between quasi-static and dynamic actuation and presents a new challenge to modeling efforts. Dielectric elastomer membranes are a potentially enabling technology for soft robotics and biomedical devices such as implants and surgical tools. In this work, two key system parameters are varied: the chamber volume and the voltage signal offset. The chamber volume experiments reveal that increasing the size of the chamber onto which the membrane is clamped will increase the deformations as well as cause the membrane's resonance peaks to shift and change in number. For prestretched dielectric elastomer membranes at the smallest chamber volume, the maximum actuation displacement is 81 microns; while at the largest chamber volume, the maximum actuation displacement is 1431 microns. This corresponds to a 1767% increase in maximum pole displacement. In addition, actuating the membrane at the resonance frequencies provides hundreds of percent increase in strain compared to the quasi-static strain. Adding a voltage offset to the time-varying input signal causes the membrane to oscillate at two distinct frequencies rather than one and also presents a unique opportunity to increase the output displacement without electrically overloading the membrane. Experiments to capture the entire motion of the membrane reveal that classical membrane mode shapes are electrically generated although all points of the membrane do not pass through equilibrium at the same moments in time.
Dielectric elastomer for stretchable sensors: influence of the design and material properties
NASA Astrophysics Data System (ADS)
Jean-Mistral, C.; Iglesias, S.; Pruvost, S.; Duchet-Rumeau, J.; Chesné, S.
2016-04-01
Dielectric elastomers exhibit extended capabilities as flexible sensors for the detection of load distributions, pressure or huge deformations. Tracking the human movements of the fingers or the arms could be useful for the reconstruction of sporting gesture, or to control a human-like robot. Proposing new measurements methods are addressed in a number of publications leading to improving the sensitivity and accuracy of the sensing method. Generally, the associated modelling remains simple (RC or RC transmission line). The material parameters are considered constant or having a negligible effect which can lead to serious reduction of accuracy. Comparisons between measurements and modelling require care and skill, and could be tricky. Thus, we propose here a comprehensive modelling, taking into account the influence of the material properties on the performances of the dielectric elastomer sensor (DES). Various parameters influencing the characteristics of the sensors have been identified: dielectric constant, hyper-elasticity. The variations of these parameters as a function of the strain impact the linearity and sensitivity of the sensor of few percent. The sensitivity of the DES is also evaluated changing geometrical parameters (initial thickness) and its design (rectangular and dog-bone shapes). We discuss the impact of the shape regarding stress. Finally, DES including a silicone elastomer sandwiched between two high conductive stretchable electrodes, were manufactured and investigated. Classic and reliable LCR measurements are detailed. Experimental results validate our numerical model of large strain sensor (>50%).
Validated numerical simulation model of a dielectric elastomer generator
NASA Astrophysics Data System (ADS)
Foerster, Florentine; Moessinger, Holger; Schlaak, Helmut F.
2013-04-01
Dielectric elastomer generators (DEG) produce electrical energy by converting mechanical into electrical energy. Efficient operation requires homogeneous deformation of each single layer. However, by different internal and external influences like supports or the shape of a DEG the deformation will be inhomogeneous and hence negatively affect the amount of the generated electrical energy. Optimization of the deformation behavior leads to improved efficiency of the DEG and consequently to higher energy gain. In this work a numerical simulation model of a multilayer dielectric elastomer generator is developed using the FEM software ANSYS. The analyzed multilayer DEG consists of 49 active dielectric layers with layer thicknesses of 50 μm. The elastomer is silicone (PDMS) while the compliant electrodes are made of graphite powder. In the simulation the real material parameters of the PDMS and the graphite electrodes need to be included. Therefore, the mechanical and electrical material parameters of the PDMS are determined by experimental investigations of test samples while the electrode parameters are determined by numerical simulations of test samples. The numerical simulation of the DEG is carried out as coupled electro-mechanical simulation for the constant voltage energy harvesting cycle. Finally, the derived numerical simulation model is validated by comparison with analytical calculations and further simulated DEG configurations. The comparison of the determined results show good accordance with regard to the deformation of the DEG. Based on the validated model it is now possible to optimize the DEG layout for improved deformation behavior with further simulations.
Automated manufacturing process for DEAP stack-actuators
NASA Astrophysics Data System (ADS)
Tepel, Dominik; Hoffstadt, Thorben; Maas, Jürgen
2014-03-01
Dielectric elastomers (DE) are thin polymer films belonging to the class of electroactive polymers (EAP), which are coated with compliant and conductive electrodes on each side. Due to the influence of an electrical field, dielectric elastomers perform a large amount of deformation. In this contribution a manufacturing process of automated fabricated stack-actuators based on dielectric electroactive polymers (DEAP) are presented. First of all the specific design of the considered stack-actuator is explained and afterwards the development, construction and realization of an automated manufacturing process is presented in detail. By applying this automated process, stack-actuators with reproducible and homogeneous properties can be manufactured. Finally, first DEAP actuator modules fabricated by the mentioned process are validated experimentally.
Loading system mechanism for dielectric elastomer generators with equi-biaxial state of deformation
NASA Astrophysics Data System (ADS)
Fontana, M.; Moretti, G.; Lenzo, B.; Vertechy, R.
2014-03-01
Dielectric Elastomer Generators (DEGs) are devices that employ a cyclically variable membrane capacitor to produce electricity from oscillating sources of mechanical energy. Capacitance variation is obtained thanks to the use of dielectric and conductive layers that can undergo different states of deformation including: uniform or non-uniform and uni- or multi-axial stretching. Among them, uniform equi-biaxial stretching is reputed as being the most effective state of deformation that maximizes the amount of energy that can be extracted in a cycle by a unit volume of Dielectric Elastomer (DE) material. This paper presents a DEG concept, with linear input motion and tunable impedance, that is based on a mechanical loading system for inducing uniform equi-biaxial states of deformation. The presented system employs two circular DE membrane capacitors that are arranged in an agonist-antagonist configuration. An analytical model of the overall system is developed and used to find the optimal design parameters that make it possible to tune the elastic response of the generator over the range of motion of interest. An apparatus is developed for the equi-biaxial testing of DE membranes and used for the experimental verification of the employed numerical models.
NASA Astrophysics Data System (ADS)
Moretti, Giacomo; Vertechy, Rocco; Fontana, Marco
2017-04-01
Dielectric Elastomer Generators (DEGs) are very promising systems that are able to directly convert oscillating mechanical energy into direct electricity. Their nature and main attributes make them particularly interesting for harvesting energy form ocean waves. In this context, several efforts have been made in the last years to develop effective Wave Energy Converters based on DEG [1-4]. In this contribution, we present a novel Wave Energy Converter (WEC) based on the Oscillating Water Column principle. The device features an inflatable DEG as Power Take Off (PTO) system and collector - i.e. the part of the device that is directly interacting with waves - that possesses a coaxial-ducted shape as described in [5]. Models of the coupled behavior that consider the electro-hyperelastic response of the DEG and the hydrodynamics are presented. It is shown that the dynamic response and the effectiveness of the system can be largely improved through an appropriate dimensioning of the geometry of the device. Specifically, the dynamic response of the system can be designed to match the corresponding harmonic content of water waves achieving an effective conversion of the incoming mechanical energy. A small/intermediate scale prototype of the system is built and tested in a wave tank facility - i.e. a basin in which artificially controlled waves can be generated - available at Flowave (UK). Mathematical models are validated against experimental results for monochromatic and panchromatic tests. During the experiments, we obtained peak of estimated power output in the range of 1 W to 4 W with an energy density for the dielectric material of approximately 80-120W/kg. The achieved results represent a milestone in the study of WEC based on DEG, paving the path toward scaling up of this technology.
Elastomer modulus and dielectric strength scaling with sample thickness
NASA Astrophysics Data System (ADS)
Larson, Kent
2015-04-01
Material characteristics such as adhesion and dielectric strength have well recognized dependencies on material thickness. There is disagreement, however, on the scale: the long held dictum that dielectric strength is inversely proportional to the square root of sample thickness has been shown to not always hold true for all materials, nor for all possible thickness regions. In D-EAP applications some studies have postulated a "critical thickness" below which properties show significantly less thickness dependency. While a great deal of data is available for dielectric strength, other properties are not nearly as well documented as samples get thinner. In particular, elastic modulus has been found to increase and elongation to decrease as sample thickness is lowered. This trend can be observed experimentally, but has been rarely reported and certainly does not appear in typical suppliers' product data sheets. Both published and newly generated data were used to study properties such as elastic modulus and dielectric strength vs sample thickness in silicone elastomers. Several theories are examined to explain such behavior, such as the impact of defect size and of common (but not well reported) concentration gradients that occur during elastomer curing that create micron-sized layers at the upper and lower interfaces with divergent properties to the bulk material. As Dielectric Electro-Active Polymer applications strive to lower and lower material thickness, changing mechanical properties must be recognized and taken into consideration for accurate electro-mechanical predictions of performance.
Dielectric elastomers with novel highly-conducting electrodes
NASA Astrophysics Data System (ADS)
Böse, Holger; Uhl, Detlev
2013-04-01
Beside the characteristics of the elastomer material itself, the performance of dielectric elastomers in actuator, sensor as well as generator applications depends also on the properties of the electrode material. Various electrode materials based on metallic particles dispersed in a silicone matrix were manufactured and investigated. Anisotropic particles such as silver-coated copper flakes and silver-coated glass flakes were used for the preparation of the electrodes. The concentration of the metallic particles and the thickness of the electrode layers were varied. Specific conductivities derived from resistance measurements reached about 100 S/cm and surmount those of the reference materials based on graphite and carbon black by up to three orders of magnitude. The high conductivities of the new electrode materials can be maintained even at very large stretch deformations up to 200 %.
Frequency-domain trade-offs for dielectric elastomer generators
NASA Astrophysics Data System (ADS)
Zanini, Plinio; Rossiter, Jonathan M.; Homer, Martin
2017-04-01
Dielectric Elastomer Generators (DEGs) are an emerging energy harvesting technology based on a the cyclic stretching of a rubber-like membrane. However, most design processes do not take into account different excitation frequencies; thus limits the applicability studies since in real-world situations forcing frequency is not often constant. Through the use of a practical design scenario we use modeling and simulation to determine the material frequency response and, hence, carefully investigate the excitation frequencies that maximize the performance (power output, efficiency) of DEGs and the factors that influence it.
NASA Astrophysics Data System (ADS)
Baumgartner, Richard; Keplinger, Christoph; Kaltseis, Rainer; Schwödiauer, Reinhard; Bauer, Siegfried
2011-04-01
Electrically deformable materials have a long history, with first quotations in a letter from Alessandro Volta. The topic turned out to be hot at the end of the 19th century, with a landmark paper of Röntgen anticipating the dielectric elastomer principle. In 2000, Pelrine and co-workers generated huge interest in such soft actuators, by demonstrating voltage induced huge area expansion rates of more than 300%. Since then, the field became mature, with first commercial applications appearing on the market. New frontiers also emerged recently, for example by using dielectric transducers in a reverse mode for scavenging mechanical energy. In the present survey we briefly discuss the latest developments in the field.
Monitoring diver kinematics with dielectric elastomer sensors
NASA Astrophysics Data System (ADS)
Walker, Christopher R.; Anderson, Iain A.
2017-04-01
Diving, initially motivated for food purposes, is crucial to the oil and gas industry, search and rescue, and is even done recreationally by millions of people. There is a growing need however, to monitor the health and activity of divers. The Divers Alert Network has reported on average 90 fatalities per year since 1980. Furthermore an estimated 1000 divers require recompression treatment for dive-related injuries every year. One means of monitoring diver activity is to integrate strain sensors into a wetsuit. This would provide kinematic information on the diver potentially improving buoyancy control assessment, providing a platform for gesture communication, detecting panic attacks and monitoring diver fatigue. To explore diver kinematic monitoring we have coupled dielectric elastomer sensors to a wetsuit worn by the pilot of a human-powered wet submarine. This provided a unique platform to test the performance and accuracy of dielectric elastomer strain sensors in an underwater application. The aim of this study was to assess the ability of strain sensors to monitor the kinematics of a diver. This study was in collaboration with the University of Auckland's human-powered submarine team, Team Taniwha. The pilot, completely encapsulated in a hull, pedals to propel the submarine forward. Therefore this study focused on leg motion as that is the primary motion of the submarine pilot. Four carbon-filled silicone dielectric elastomer sensors were fabricated and coupled to the pilot's wetsuit. The first two sensors were attached over the knee joints, with the remaining two attached between the pelvis and thigh. The goal was to accurately measure leg joint angles thereby determining the position of each leg relative to the hip. A floating data acquisition unit monitored the sensors and transmitted data packets to a nearby computer for real-time processing. A GoPro Hero 4 silver edition was used to capture the experiments and provide a means of post-validation. The ability of the sensors to measure joint angles was assessed by examining GoPro footage in the image processing software, ImageJ. This paper applies dielectric elastomer sensor technology to monitoring the leg motion of a diver. The experimental set-up and results are presented and discussed.
Flexible and stretchable electrodes for dielectric elastomer actuators
NASA Astrophysics Data System (ADS)
Rosset, Samuel; Shea, Herbert R.
2013-02-01
Dielectric elastomer actuators (DEAs) are flexible lightweight actuators that can generate strains of over 100 %. They are used in applications ranging from haptic feedback (mm-sized devices), to cm-scale soft robots, to meter-long blimps. DEAs consist of an electrode-elastomer-electrode stack, placed on a frame. Applying a voltage between the electrodes electrostatically compresses the elastomer, which deforms in-plane or out-of plane depending on design. Since the electrodes are bonded to the elastomer, they must reliably sustain repeated very large deformations while remaining conductive, and without significantly adding to the stiffness of the soft elastomer. The electrodes are required for electrostatic actuation, but also enable resistive and capacitive sensing of the strain, leading to self-sensing actuators. This review compares the different technologies used to make compliant electrodes for DEAs in terms of: impact on DEA device performance (speed, efficiency, maximum strain), manufacturability, miniaturization, the integration of self-sensing and self-switching, and compatibility with low-voltage operation. While graphite and carbon black have been the most widely used technique in research environments, alternative methods are emerging which combine compliance, conduction at over 100 % strain with better conductivity and/or ease of patternability, including microfabrication-based approaches for compliant metal thin-films, metal-polymer nano-composites, nanoparticle implantation, and reel-to-reel production of μm-scale patterned thin films on elastomers. Such electrodes are key to miniaturization, low-voltage operation, and widespread commercialization of DEAs.
Lan, Chuwen; Zhu, Di; Gao, Jiannan; Li, Bo; Gao, Zehua
2018-04-30
Terahertz (THz) all-dielectric metasurfaces made of high-index and low-loss resonators have attracted more and more attention due to their versatile properties. However, the all-dielectric metasurfaces in THz suffer from limited bandwidth and low tunability. Meanwhile, they are usually fabricated on flat and rigid substrates, and consequently their applications are restricted. Here, a simple approach is proposed and experimentally demonstrated to obtain a flexible and tunable THz all-dielectric metasurface. In this metasurface, micro ceramic spheres (ZrO 2 ) are embedded in a ferroelectric (strontium titanate) / elastomer (polydimethylsiloxane) composite. It is shown that the Mie resonances in micro ceramic spheres can be thermally and reversibly tuned resulting from the temperature dependent permittivity of the ferroelectric / PDMS composite. This metasurface characterized by flexibility and tunability is expected to have a more extensive application in active THz devices.
New approach to improve the energy density of hybrid electret-dielectric elastomer generators
NASA Astrophysics Data System (ADS)
Lagomarsini, Clara; Jean-Mistral, Claire; Monfray, Stephane; Sylvestre, Alain
2017-04-01
Harvesting human kinetic energy to produce electricity is an attractive alternative to batteries for applications in wearable electronic devices and smart textile. Dielectric elastomers generators (DEGs) represent one of the most promising technologies for these applications. Nevertheless, one of the main disadvantages of these structures is the need of an external polarization source to perform the energetic cycle. In the present work, a hybrid electret-dielectric elastomer generator in DEG mode is presented. In this configuration, the electret material is used as polarization source of a classical DEG, i.e. an electrostatic generator based on electrical capacitance variation. The electrical energy output in this mode (1.06mJ.g-1) could be higher than the one obtained using a classical electret mode (0.55mJ.g-1), i.e. charges recombination. In this paper, the operation principle of the hybrid generator will be fully described and the design rules for the realization of the prototype will be presented. The experimental data obtained from the prototype will be compared to the results of FEM simulations.
Fabrication Process of Silicone-based Dielectric Elastomer Actuators
Rosset, Samuel; Araromi, Oluwaseun A.; Schlatter, Samuel; Shea, Herbert R.
2016-01-01
This contribution demonstrates the fabrication process of dielectric elastomer transducers (DETs). DETs are stretchable capacitors consisting of an elastomeric dielectric membrane sandwiched between two compliant electrodes. The large actuation strains of these transducers when used as actuators (over 300% area strain) and their soft and compliant nature has been exploited for a wide range of applications, including electrically tunable optics, haptic feedback devices, wave-energy harvesting, deformable cell-culture devices, compliant grippers, and propulsion of a bio-inspired fish-like airship. In most cases, DETs are made with a commercial proprietary acrylic elastomer and with hand-applied electrodes of carbon powder or carbon grease. This combination leads to non-reproducible and slow actuators exhibiting viscoelastic creep and a short lifetime. We present here a complete process flow for the reproducible fabrication of DETs based on thin elastomeric silicone films, including casting of thin silicone membranes, membrane release and prestretching, patterning of robust compliant electrodes, assembly and testing. The membranes are cast on flexible polyethylene terephthalate (PET) substrates coated with a water-soluble sacrificial layer for ease of release. The electrodes consist of carbon black particles dispersed into a silicone matrix and patterned using a stamping technique, which leads to precisely-defined compliant electrodes that present a high adhesion to the dielectric membrane on which they are applied. PMID:26863283
Thin-film dielectric elastomer sensors to measure the contraction force of smooth muscle cells
NASA Astrophysics Data System (ADS)
Araromi, O.; Poulin, A.; Rosset, S.; Favre, M.; Giazzon, M.; Martin-Olmos, C.; Liley, M.; Shea, H.
2015-04-01
The development of thin-film dielectric elastomer strain sensors for the characterization of smooth muscle cell (SMC) contraction is presented here. Smooth muscle disorders are an integral part of diseases such as asthma and emphysema. Analytical tools enabling the characterization of SMC function i.e. contractile force and strain, in a low-cost and highly parallelized manner are necessary for toxicology screening and for the development of new and more effective drugs. The main challenge with the design of such tools is the accurate measurement of the extremely low contractile cell forces expected as a result of SMC monolayer contraction (as low as ~ 100 μN). Our approach utilizes ultrathin (~5 μm) and soft elastomer membranes patterned with elastomer-carbon composite electrodes, onto which the SMCs are cultured. The cell contraction induces an in-plane strain in the elastomer membrane, predicted to be in the order 1 %, which can be measured via the change in the membrane capacitance. The cell force can subsequently be deduced knowing the mechanical properties of the elastomer membrane. We discuss the materials and fabrication methods selected for our system and present preliminary results indicating their biocompatibility. We fabricate functional capacitive senor prototypes with good signal stability over the several hours (~ 0.5% variation). We succeed in measuring in-plane strains of 1 % with our fabricated devices with good repeatability and signal to noise ratio.
Zipping dielectric elastomer actuators: characterization, design and modeling
NASA Astrophysics Data System (ADS)
Maffli, L.; Rosset, S.; Shea, H. R.
2013-10-01
We report on miniature dielectric elastomer actuators (DEAs) operating in zipping mode with an analytical model that predicts their behavior. Electrostatic zipping is a well-known mechanism in silicon MEMS to obtain large deformations and forces at lower voltages than for parallel plate electrostatic actuation. We extend this concept to DEAs, which allows us to obtain much larger out-of-plane displacements compared to silicon thanks to the softness of the elastomer membrane. We study experimentally the effect of sidewall angles and elastomer prestretch on 2.3 mm diameter actuators with PDMS membranes. With 15° and 22.5° sidewall angles, the devices zip in a bistable manner down 300 μm to the bottom of the chambers. The highly tunable bistable behavior is controllable by both chamber geometry and membrane parameters. Other specific characteristics of zipping DEAs include well-controlled deflected shape, tunable displacement versus voltage characteristics to virtually any shape, including multi-stable modes, sealing of embedded holes or channels for valving action and the reduction of the operating voltage. These properties make zipping DEAs an excellent candidate for applications such as integrated microfluidics actuators or Braille displays.
High-cycle electromechanical aging of dielectric elastomer actuators with carbon-based electrodes
NASA Astrophysics Data System (ADS)
de Saint-Aubin, C. A.; Rosset, S.; Schlatter, S.; Shea, H.
2018-07-01
We present high-cycle aging tests of dielectric elastomer actuators (DEAs) based on silicone elastomers, reporting on the time-evolution of actuation strain and of electrode resistance over millions of cycles. We compare several types of carbon-based electrodes, and for the first time show how the choice of electrode has a dramatic influence on DEA aging. An expanding circle DEA configuration is used, consisting of a commercial silicone membrane with the following electrodes: commercial carbon grease applied manually, solvent-diluted carbon grease applied by stamping (pad printing), loose carbon black powder applied manually, carbon black powder suspension applied by inkjet-printing, and conductive silicone-carbon composite applied by stamping. The silicone-based DEAs with manually applied carbon grease electrodes show the shortest lifetime of less than 105 cycles at 5% strain, while the inkjet-printed carbon powder and the stamped silicone-carbon composite make for the most reliable devices, with lifetimes greater than 107 cycles at 5% strain. These results are valid for the specific dielectric and electrode configurations that were tested: using other dielectrics or electrode formulations would lead to different lifetimes and failure modes. We find that aging (as seen in the change in resistance and in actuation strain versus cycle number) is independent of the actuation frequency from 10 Hz to 200 Hz, and depends on the total accumulated time the DEA spends in an actuated state.
Dielectric elastomer vibrissal system for active tactile sensing
NASA Astrophysics Data System (ADS)
Conn, Andrew T.; Pearson, Martin J.; Pipe, Anthony G.; Welsby, Jason; Rossiter, Jonathan
2012-04-01
Rodents are able to dexterously navigate confined and unlit environments by extracting spatial and textural information with their whiskers (or vibrissae). Vibrissal-based active touch is suited to a variety of applications where vision is occluded, such as search-and-rescue operations in collapsed buildings. In this paper, a compact dielectric elastomer vibrissal system (DEVS) is described that mimics the vibrissal follicle-sinus complex (FSC) found in rodents. Like the vibrissal FSC, the DEVS encapsulates all sensitive mechanoreceptors at the root of a passive whisker within an antagonistic muscular system. Typically, rats actively whisk arrays of macro-vibrissae with amplitudes of up to +/-25°. It is demonstrated that these properties can be replicated by exploiting the characteristic large actuation strains and passive compliance of dielectric elastomers. A prototype DEVS is developed using VHB 4905 and embedded strain gauges bonded to the root of a tapered whisker. The DEVS is demonstrated to produce a maximum rotational output of +/-22.8°. An electro-mechanical model of the DEVS is derived, which incorporates a hyperelastic material model and Euler- Bernoulli beam equations. The model is shown to predict experimental measurements of whisking stroke amplitude and whisker deflection.
Vibrotactile display for mobile applications based on dielectric elastomer stack actuators
NASA Astrophysics Data System (ADS)
Matysek, Marc; Lotz, Peter; Flittner, Klaus; Schlaak, Helmut F.
2010-04-01
Dielectric elastomer stack actuators (DESA) offer the possibility to build actuator arrays at very high density. The driving voltage can be defined by the film thickness, ranging from 80 μm down to 5 μm and driving field strength of 30 V/μm. In this paper we present the development of a vibrotactile display based on multilayer technology. The display is used to present several operating conditions of a machine in form of haptic information to a human finger. As an example the design of a mp3-player interface is introduced. To build up an intuitive and user friendly interface several aspects of human haptic perception have to be considered. Using the results of preliminary user tests the interface is designed and an appropriate actuator layout is derived. Controlling these actuators is important because there are many possibilities to present different information, e.g. by varying the driving parameters. A built demonstrator is used to verify the concept: a high recognition rate of more than 90% validates the concept. A characterization of mechanical and electrical parameters proofs the suitability of dielectric elastomer stack actuators for the use in mobile applications.
The integration of novel EAP-based Braille cells for use in a refreshable tactile display
NASA Astrophysics Data System (ADS)
Di Spigna, N.; Chakraborti, P.; Winick, D.; Yang, P.; Ghosh, T.; Franzon, P.
2010-04-01
Structures demonstrating the viability of both the hydraulic and latching Braille dot, and the dielectric elastomer fiber Braille dot have been fabricated and characterized. A hydraulic proof-of-concept structure has achieved the necessary volumetric change required to lift a Braille dot over 0.5mm at voltages under 1000V and at speeds under 100ms. Long bimorphs have been fabricated that demonstrate large tip displacements over 2mm that could be used to mechanically latch the Braille rod in the 'up' position to achieve the force requirement. The addition of radial prestrain in dielectric elastomer tubes has reduced the wall thickness and directed the strain in the axial direction which has had a dramatic impact on their resulting characteristics. The required bias voltage for the dielectric elastomer fiber Braille dot has been reduced from 15.5kV to 8.75kV while the Braille head tip displacement of a fabricated prototype has almost tripled on average and now also exceeds the required displacement for a refreshable Braille display. Finally, potential solutions to the current shortcomings of both designs in meeting all of the requirements for such a display are discussed.
Method and Apparatus for Precisely Applying Large Planar Equi-Biaxial Strains to a Circular Membrane
2013-04-01
potential future Army applications. Electronic properties, such as dielectric strength , capacitance, resistance, and inductance, vary significantly and... dielectric strength and resistance are primarily determined by inherent bulk material properties, including microstructure, while shifts in inductance...less and a nominal thickness up to ~1 mm. 15. SUBJECT TERMS large planar equi-biaxial strain, membrane, dielectric elastomers, electromechanical
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stiubianu, George, E-mail: george.stiubianu@icmpp.ro; Bele, Adrian; Cazacu, Maria
Highlights: • Composite ceramics nanoparticles (MCN) with zirconium dioxide and lead zirconate. • Dielectric elastomer films wDith PDMS matrix and MCN as dielectric filler. • Hydrophobic character—water resistant and good flexibility specific to siloxanes. • Increased value of dielectric constant with the content of MCN in dielectric films. • Increased energy output from uniaxial deformation of the dielectric elastomer films. - Abstract: A ceramic material consisting in a zirconium dioxide-lead zirconate mixture has been obtained by precipitation method, its composition being proved by wide angle X-ray powder diffraction and energy-dispersive X-ray spectroscopy. The average diameter of the ceramic particles rangedmore » between 50 and 100 nm, as revealed by transmission electron microscopy images. These were surface treated and used as filler for a high molecular mass polydimethylsiloxane-α,ω-diol (Mn = 450,000) prepared in laboratory, the resulted composites being further processed as films and crosslinked. A condensation procedure, unusual for polydimethylsiloxane having such high molecular mass, with a trifunctional silane was approached for the crosslinking. The effect of filler content on electrical and mechanical properties of the resulted materials was studied and it was found that the dielectric permittivity of nanocomposites increased in line with the concentration of ceramic nanoparticles.« less
Nanomechanical probing of thin-film dielectric elastomer transducers
NASA Astrophysics Data System (ADS)
Osmani, Bekim; Seifi, Saman; Park, Harold S.; Leung, Vanessa; Töpper, Tino; Müller, Bert
2017-08-01
Dielectric elastomer transducers (DETs) have attracted interest as generators, actuators, sensors, and even as self-sensing actuators for applications in medicine, soft robotics, and microfluidics. Their performance crucially depends on the elastic properties of the electrode-elastomer sandwich structure. The compressive displacement of a single-layer DET can be easily measured using atomic force microscopy (AFM) in the contact mode. While polymers used as dielectric elastomers are known to exhibit significant mechanical stiffening for large strains, their mechanical properties when subjected to voltages are not well understood. To examine this effect, we measured the depths of 400 nanoindentations as a function of the applied electric field using a spherical AFM probe with a radius of (522 ± 4) nm. Employing a field as low as 20 V/μm, the indentation depths increased by 42% at a load of 100 nN with respect to the field-free condition, implying an electromechanically driven elastic softening of the DET. This at-a-glance surprising experimental result agrees with related nonlinear, dynamic finite element model simulations. Furthermore, the pull-off forces rose from (23.0 ± 0.4) to (49.0 ± 0.7) nN implying a nanoindentation imprint after unloading. This embossing effect is explained by the remaining charges at the indentation site. The root-mean-square roughness of the Au electrode raised by 11% upon increasing the field from zero to 12 V/μm, demonstrating that the electrode's morphology change is an undervalued factor in the fabrication of DET structures.
Effect of organo-clay on the dielectric relaxation response of silicone rubber
NASA Astrophysics Data System (ADS)
Gharavi, N.; Razzaghi-Kashani, M.; Golshan-Ebrahimi, N.
2010-02-01
Dielectric elastomers are light weight, low-cost, highly deformable and fast response smart materials capable of converting electrical energy into mechanical work or vice versa. Silicone rubber is a well-known dielectric elastomer which is used as actuator, and in order to enhance the efficiency of this smart material, compounding of silicone rubber with various fillers can be carried out. The effect of organically modified montmorillonite (OMMT) nano-clay on improvement of dielectric properties, actuation stress and its relaxation response was considered in this study. OMMT was dispersed in room temperature vulcanized (RTV) silicone rubber, and a composite film was cast. Using an in-house actuation set-up, it was shown that the actuation stress for a given electric field intensity is higher for composites than that for pristine silicone rubber. Also, the time-dependent actuation response of the samples was evaluated, and it was shown that the characteristic relaxation time of the actuation stress for composites is less than for the pristine rubber as a result of OMMT addition.
NASA Astrophysics Data System (ADS)
Osmani, Bekim; Deyhle, Hans; Weiss, Florian M.; Töpper, Tino; Karapetkova, Maria; Leung, Vanessa; Müller, Bert
2016-04-01
Dielectric elastomer actuators (DEA) are often referred to as artificial muscles due to their high specific continuous power, which is comparable to that of human skeletal muscles, and because of their millisecond response time. We intend to use nanometer-thin DEA as medical implant actuators and sensors to be operated at voltages as low as a few tens of volts. The conductivity of the electrode and the impact of its stiffness on the stacked structure are key to the design and operation of future devices. The stiffness of sputtered Au electrodes on polydimethylsiloxane (PDMS) was characterized using AFM nanoindentation techniques. 2500 nanoindentations were performed on 10 x 10 μm2 regions at loads of 100 to 400 nN using a spherical tip with a radius of (522 +/- 2) nm. Stiffness maps based on the Hertz model were calculated using the Nanosurf Flex-ANA system. The low adhesion of Au to PDMS has been reported in the literature and leads to the formation of Au-nanoclusters. The size of the nanoclusters was (25 +/- 10) nm and can be explained by the low surface energy of PDMS leading to a Volmer-Weber growth mode. Therefore, we propose (3-mercaptopropyl)trimethoxysilane (MPTMS) as a molecular adhesive to promote the adhesion between the PDMS and Au electrode. A beneficial side effect of these self-assembling monolayers is the significant improvement of the electrode's conductivity as determined by four-point probe measurements. Therefore, the application of a soft adhesive layer for building a dielectric elastomer actuator appears promising.
Rupture of a highly stretchable acrylic dielectric elastomer
NASA Astrophysics Data System (ADS)
Pharr, George; Sun, Jeong-Yun; Suo, Zhigang
2012-02-01
Dielectric elastomers have found widespread application as energy harvesters, actuators, and sensors. In practice these elastomers are subject to large tensile stretches, which potentially can lead to mechanical fracture. In this study, we have examined fracture properties of the commercial acrylic elastomer VHB 4905. We have found that inserting a pre-cut into the material drastically reduces the stretch at rupture from λrup = 9.43±1.05 for pristine samples down to only λrup = 3.63±0.45 for the samples with a pre-cut. Furthermore, using ``pure-shear'' test specimens with a pre-crack, we have measured the fracture energy and stretch at rupture as a function of the sample geometry. The stretch at rupture was found to decrease with sample height, which agrees with an analytical prediction. Additionally, we have measured the fracture energy as a function of stretch-rate. The apparent fracture energy was found to increase with stretch-rate from γ 1500 J/m^2 to γ 5000 J/m^2 for the investigated rates of deformation. This phenomenon is due to viscoelastic properties of VHB 4905, which result in an apparent stiffening for sufficiently large stretch-rates.
Complaint liquid metal electrodes for dielectric elastomer actuators
NASA Astrophysics Data System (ADS)
Finkenauer, Lauren R.; Majidi, Carmel
2014-03-01
This work presents a liquid-phase metal electrode to be used with poly(dimethylsiloxane) (PDMS) for a dielectric elastomer actuator (DEA). DEAs are favorable for soft-matter applications where high efficiency and response times are desirable. A consistent challenge faced during the fabrication of these devices is the selection and deposition of electrode material. While numerous designs have been demonstrated with a variety of conductive elastomers and greases, these materials have significant and often intrinsic shortcomings, e.g. low conductivity, hysteresis, incapability of large deformations, and complex fabrication requirements. The liquid metal alloy eutectic Gallium-Indium (EGaIn) is a promising alternative to existing compliant electrodes, having both high conductivity and complete soft-matter functionality. The liquid electrode shares almost the same electrical conductivity as conventional metal wiring and provides no mechanical resistance to bending or stretching of the DEA. This research establishes a straightforward and effective method for quickly depositing EGaIn electrodes, which can be adapted for batch fabrication, and demonstrates the successful actuation of sample curved cantilever elastomer actuators using these electrodes. As with the vast majority of electrostatically actuated elastomer devices, the voltage requirements for these curved DEAs are still quite significant, though modifications to the fabrication process show some improved electrical properties. The ease and speed with which this method can be implemented suggests that the development of a more electronically efficient device is realistic and worthwhile.
High-pressure endurable flexible tactile actuator based on microstructured dielectric elastomer
NASA Astrophysics Data System (ADS)
Pyo, Dongbum; Ryu, Semin; Kyung, Ki-Uk; Yun, Sungryul; Kwon, Dong-Soo
2018-02-01
We demonstrate a robust flexible tactile actuator that is capable of working under high external pressures. The tactile actuator is based on a pyramidal microstructured dielectric elastomer layer inducing variation in both mechanical and dielectric properties. The vibrational performance of the actuator can be modulated by changing the geometric parameter of the microstructures. We evaluated the performance of the actuator under high-pressure loads up to 25 kPa, which is over the typical range of pressure applied when humans touch or manipulate objects. Due to the benefit of nonlinearity of the pyramidal structure, the actuator could maintain high mechanical output under various external pressures in the frequency range of 100-200 Hz, which is the most sensitive to vibration acceleration for human finger pads. The responses are not only fast, reversible, and highly durable under consecutive cyclic operations, but also large enough to impart perceivable vibrations for haptic feedback on practical wearable device applications.
Development of elastomeric flight muscles for flapping wing micro air vehicles
NASA Astrophysics Data System (ADS)
Lau, Gih-Keong; Chin, Yao-Wei; La, Thanh-Giang
2017-04-01
Common drivers of flapping wings are a motorized crank mechanisms, which convert the motor rotation into wing reciprocation. Energetic efficiency of the motorized wing flappers can be quite low due to the lack of elastic storage and high friction. This paper relook into the flapping flight apparatus of natural flyers and draw inspiration to develop flight muscles capable of elastic storage, in addition to the frictionless thoracic compliant mechanisms. We review the recent findings on the use of dielectric elastomer actuators as flight muscles. We also discuss the challenges and the prospects of using dielectric elastomer minimum energy structure to create large and fast bending/unbending, possibly for wing flapping.
NASA Astrophysics Data System (ADS)
Li, Zhuoyuan; Sheng, Meiping; Wang, Minqing; Dong, Pengfei; Li, Bo; Chen, Hualing
2018-07-01
In this paper, a novel fabrication process of stacked dielectric elastomer actuator (SDEA) is developed based on casting process and elastomeric electrode. The so-fabricated SDEA benefits the advantages of homogenous and reproducible properties as well as little performance degradation after one-year use. A coupling model of SDEA is established by taking into consideration of the elastomeric electrode and the calculated results agree with the experiments. Based on the model, we attain the method to optimize the SDEA’s parameters. Finally, the SDEA is used as an isolator in active vibration isolation system to verify the feasibility in dynamic application. And the experiment results show a great prospect for SDEA in such application.
Polar Elastomers as Novel Materials for Electromechanical Actuator Applications.
Opris, Dorina M
2018-02-01
Dielectric elastomer actuators are stretchable capacitors capable of a musclelike actuation when charged. They will one day be used to replace malfunctioning muscles supposing the driving voltage can be reduced below 24 V. This focus here is on polar dielectric elastomers and their behavior under an electric field. Emphasis is placed on all the features that are correlated with the molecular structure, its synthetic realization, and its impact on properties. Regarding the polymer class, the focus, to some degree, is on polysiloxanes because of their attractively low glass transition temperatures. This enables introduction of highly polar groups to the backbone while maintaining soft elastic properties. The goal is to provide a few guidelines for future research in this emerging field that may be useful for those considering entering this fascinating endeavor. Because of the large number of materials available, a few restrictions in the selection have to be applied. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lifetime of dielectric elastomer stack actuators
NASA Astrophysics Data System (ADS)
Lotz, Peter; Matysek, Marc; Schlaak, Helmut F.
2011-04-01
Dielectric elastomer stack actuators (DESA) are well suited for the use in mobile devices, fluidic applications and small electromechanical systems. Despite many improvements during the last years the long term behavior of dielectric elastomer actuators in general is not known or has not been published. The first goal of the study is to characterize the overall lifetime under laboratory conditions and to identify potential factors influencing lifetime. For this we have designed a test setup to examine 16 actuators at once. The actuators are subdivided into 4 groups each with a separate power supply and driving signal. To monitor the performance of the actuators driving voltage and current are measured continuously and additionally, the amplitude of the deformations of each actuator is measured sequentially. From our first results we conclude that lifetime of these actuators is mainly influenced by the contact material between feeding line and multilayer electrodes. So far, actuators themselves are not affected by long term actuation. With the best contact material actuators can be driven for more than 2700 h at 200 Hz with an electrical field strength of 20 V/μm. This results in more than 3 billion cycles. Actually, there are further actuators driven at 10 Hz for more than 4000 hours and still working.
A novel variable stiffness mechanism for dielectric elastomer actuators
NASA Astrophysics Data System (ADS)
Li, Wen-Bo; Zhang, Wen-Ming; Zou, Hong-Xiang; Peng, Zhi-Ke; Meng, Guang
2017-08-01
In this paper, a novel variable stiffness mechanism is proposed for the design of a variable stiffness dielectric elastomer actuator (VSDEA) which combines a flexible strip with a DEA in a dielectric elastomer minimum energy structure. The DEA induces an analog tuning of the transverse curvature of the strip, thus conveniently providing a voltage-controllable flexural rigidity. The VSDEA tends to be a fully flexible and compact structure with the advantages of simplicity and fast response. Both experimental and theoretical investigations are carried out to reveal the variable stiffness performances of the VSDEA. The effect of the clamped location on the bending stiffness of the VSDEA is analyzed, and then effects of the lengths, the loading points and the applied voltages on the bending stiffness are experimentally investigated. An analytical model is developed to verify the availability of this variable stiffness mechanism, and the theoretical results demonstrate that the bending stiffness of the VSDEA decreases as the applied voltage increases, which agree well with the experimental data. Moreover, the experimental results show that the maximum change of the relative stiffness can reach about 88.80%. It can be useful for the design and optimization of active variable stiffness structures and DEAs for soft robots, vibration control, and morphing applications.
Dielectric Elastomer Actuators for Soft Wave-Handling Systems.
Wang, Tao; Zhang, Jinhua; Hong, Jun; Wang, Michael Yu
2017-03-01
This article presents a soft handling system inspired by the principle of the natural wave (named Wave-Handling system) aiming to offer a soft solution to delicately transport and sort fragile items such as fruits, vegetables, biological tissues in food, and biological industries. The system consists of an array of hydrostatically coupled dielectric elastomer actuators (HCDEAs). Due to the electrostriction property of dielectric elastomers, the handling system can be controlled by electric voltage rather than the cumbersome pneumatic system. To study the working performance of the Wave-Handling system and how the performance can be improved, the basic properties of HCDEA are investigated through experiments. We find that the HCDEA exhibits some delay and hysteretic characteristics when activated by periodic voltage and the characteristics are influenced by the frequency and external force also. All this will affect the performance of the Wave-Handling system. However, the electric control, simple structure, light weight, and low cost of the soft handling system show great potential to move from laboratory to practical application. As a proof of design concept, a simply made prototype of the handling system is controlled to generate a parallel moving wave to manipulate a ball. Based on the experimental results, the improvements and future work are discussed and we believe this work will provide inspiration for soft robotic engineering.
Stacking Nematic Elastomers for Artificial Muscle Applications
2006-04-01
nematic to isotropic phase transition. In this eport, a new approach is introduced by layering liquid crystal elastomer films to create thermally...actuated stacks. A heating element and thermally onductive grease embedded between elastomer films provide a means for rapid internal heat application...voltage application, stacks composed f two 100 m-thick films and a single heating element produce 18% strain between contracted and relaxed states. In
Electrostrictive Graft Elastomers and Applications
NASA Technical Reports Server (NTRS)
Su, J.; Harrison, J. S.; St.Clair, T. L.; Bar-Cohen, Y.; Leary, S.
1999-01-01
Efficient actuators that are lightweight, high performance and compact are needed to support telerobotic requirements for future NASA missions. In this work, we present a new class of electromechanically active polymers that can potentially be used as actuators to meet many NASA needs. The materials are graft elastomers that offer high strain under an applied electric field. Due to its higher mechanical modulus, this elastomer also has a higher strain energy density as compared to previously reported electrostrictive polyurethane elastomers. The dielectric, mechanical and electromechanical properties of this new electrostrictive elastomer have been studied as a function of temperature and frequency. Combined with structural analysis using x-ray diffraction and differential scanning calorimetry on the new elastomer, structure-property interrelationship and mechanisms of the electric field induced strain in the graft elastomer have also been investigated. This electroactive polymer (EAP) has demonstrated high actuation strain and high mechanical energy density. The combination of these properties with its tailorable molecular composition and excellent processability makes it attractive for a variety of actuation tasks. The experimental results and applications will be presented.
Zaltariov, Mirela-Fernanda; Bele, Adrian; Vasiliu, Lavinia; Gradinaru, Luiza; Vornicu, Nicoleta; Racles, Carmen; Cazacu, Maria
2018-01-05
A series of elastomers, either natural or synthetic (some of them commercial, while others prepared in the laboratory), suitable for use as active elements in devices for wave energy harvesting, were evaluated concerning their behavior and effects on the marine environment. In this aim, the elastomer films, initially evaluated regarding their aspect, structure, surface wettability, and tolerance of microorganisms growth, were immersed in synthetic seawater (SSW) within six months for assessing compounds released. There were analyzed the changes occurred both in the elastomers and salt water in which they were immersed. For this, water samples taken at set time intervals were analyzed by using a sequence of sensitive spectral techniques: UV-vis, IR, and in relevant cases 1 H NMR and electrospray ionization mass spectrometry (ESI-MS), able to detect and identify organic compounds, while after six months, they were also investigated from the point of view of aspect, presence of metal traces, pH, and biological activity. The changes in aspect, structure and morphology of the dielectric films at the end of the dipping period were also evaluated by visual inspection, IR spectroscopy by using spectral subtraction method, and SEM-EDX technique. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ong, Hui-Yng; School of Engineering, Nanyang Polytechnic, Singapore 569830; Shrestha, Milan
2015-09-28
Indium-tin-oxide (ITO) thin films are perceived to be stiff and brittle. This letter reports that crumpled ITO thin films on adhesive poly-acrylate dielectric elastomer can make compliant electrodes, sustaining compression of up to 25% × 25% equi-biaxial strain and unfolding. Its optical transmittance reduces with crumpling, but restored with unfolding. A dielectric elastomer actuator (DEA) using the 14.2% × 14.2% initially crumpled ITO thin-film electrodes is electrically activated to produce a 37% areal strain. Such electric unfolding turns the translucent DEA to be transparent, with transmittance increased from 39.14% to 52.08%. This transmittance tunability promises to make a low-cost smart privacy window.
Implementation and simulation of a cone dielectric elastomer actuator
NASA Astrophysics Data System (ADS)
Wang, Huaming; Zhu, Jianying
2008-11-01
The purpose is to investigate the performance of cone dielectric elastomer actuator (DEA) by experiment and FEM simulation. Two working equilibrium positions of cone DEA, which correspond to its initial displacement and displacement output with voltage off and on respectively, are determined through the analysis on its working principle. Experiments show that analytical results accord with experimental ones, and work output in a workcycle is hereby calculated. Actuator can respond quickly when voltage is applied and can return to its original position rapidly when voltage is released. Also, FEM simulation is used to obtain the movement of cone DEA in advance. Simulation results agree well with experimental ones and prove the feasibility of simulation. Also, causes for small difference between them in displacement output are analyzed.
NASA Astrophysics Data System (ADS)
Karsten, Roman; Flittner, Klaus; Haus, Henry; Schlaak, Helmut F.
2013-04-01
This paper describes the development of an active isolation mat for cancelation of vibrations on sensitive devices with a mass of up to 500 gram. Vertical disturbing vibrations are attenuated actively while horizontal vibrations are damped passively. The dimensions of the investigated mat are 140 × 140 × 20 mm. The mat contains 5 dielectric elastomer stack actuators (DESA). The design and the optimization of active isolation mat are realized by ANSYS FEM software. The best performance shows a DESA with air cushion mounted on its circumference. Within the mounting encased air increases static and reduces dynamic stiffness. Experimental results show that vibrations with amplitudes up to 200 μm can be actively eliminated.
Applications of pressure-sensitive dielectric elastomer sensors
NASA Astrophysics Data System (ADS)
Böse, Holger; Ocak, Deniz; Ehrlich, Johannes
2016-04-01
Dielectric elastomer sensors for the measurement of compression loads with high sensitivity are described. The basic design of the sensors exhibits two profiled surfaces between which an elastomer film is confined. All components of the sensor were prepared with silicone whose stiffness can be varied in a wide range. Depending on details of the sensor design, various effects contribute to the enhancement of the capacitance. The intermediate elastomer film is stretched upon compression and electrode layers on the elastomer profiles and in the elastomer film approach each other. Different designs of the pressure sensor give rise to very different sensor characteristics in terms of the dependence of electric capacitance on compression force. Due to their inherent flexibility, the pressure sensors can be used on compliant substrates such as seats or beds or on the human body. This gives rise to numerous possible applications. The contribution describes also some examples of possible sensor applications. A glove was equipped with various sensors positioned at the finger tips. When grabbing an object with the glove, the sensors can detect the gripping forces of the individual fingers with high sensitivity. In a demonstrator of the glove equipped with seven sensors, the capacitances representing the gripping forces are recorded on a display. In another application example, a lower limb prosthesis was equipped with a pressure sensor to detect the load on the remaining part of the leg and the load is displayed in terms of the measured capacitance. The benefit of such sensors is to detect an eventual overload in order to prevent possible pressure sores. A third example introduces a seat load sensor system based on four extended pressure sensor mats. The sensor system detects the load distribution of a person on the seat. The examples emphasize the high performance of the new pressure sensor technology.
Optical band gap in a cholesteric elastomer doped by metallic nanospheres
NASA Astrophysics Data System (ADS)
Hernández, Julio C.; Reyes, J. Adrián
2017-12-01
We analyzed the optical band gaps for axially propagating electromagnetic waves throughout a metallic doped cholesteric elastomer. The composed medium is made of metallic nanospheres (silver) randomly dispersed in a cholesteric elastomer liquid crystal whose dielectric properties can be represented by a resonant effective uniaxial tensor. We found that the band gap properties of the periodic system greatly depend on the volume fraction of nanoparticles in the cholesteric elastomer. In particular, we observed a displacement of the reflection band for quite small fraction volumes whereas for larger values of this fraction there appears a secondary band in the higher frequency region. We also have calculated the transmittance and reflectance spectra for our system. These calculations verify the mentioned band structure and provide additional information about the polarization features of the radiation.
Electrothermal actuation based on carbon nanotube network in silicone elastomer
NASA Astrophysics Data System (ADS)
Chen, L. Z.; Liu, C. H.; Hu, C. H.; Fan, S. S.
2008-06-01
The authors report an electrothermal actuator, which is fabricated by involving carbon nanotube network into the silicone elastomer. The actuators exhibit excellent performances as good as normal dielectric elastomer actuators while working under much lower voltages (e.g., 1.5Vmm-1). They are longitudinal actuators and there is no need for stacking or rolling sheets of materials. In addition, they can satisfy the demand of different voltage applications ranging from dozens of voltages to thousands of voltages by using different carbon nanotube loading composites. Visible maximal strain of 4.4% occurs at an electric power intensity around 0.03Wmm-3.
Band-gap tunable dielectric elastomer filter for low frequency noise
NASA Astrophysics Data System (ADS)
Jia, Kun; Wang, Mian; Lu, Tongqing; Zhang, Jinhua; Wang, Tiejun
2016-05-01
In the last decades, diverse materials and technologies for sound insulation have been widely applied in engineering. However, suppressing the noise radiation at low frequency still remains a challenge. In this work, a novel membrane-type smart filter, consisting of a pre-stretched dielectric elastomer membrane with two compliant electrodes coated on the both sides, is presented to control the low frequency noise. Since the stiffness of membrane dominates its acoustic properties, sound transmission band-gap of the membrane filter can be tuned by adjusting the voltage applied to the membrane. The impedance tube experiments have been carried out to measure the sound transmission loss (STL) of the filters with different electrodes, membrane thickness and pre-stretch conditions. The experimental results show that the center frequency of sound transmission band-gap mainly depends on the stress in the dielectric elastomer, and a large band-gap shift (more than 60 Hz) can be achieved by tuning the voltage applied to the 85 mm diameter VHB4910 specimen with pre-stretch {λ }0=3. Based on the experimental results and the assumption that applied electric field is independent of the membrane behavior, 3D finite element analysis has also been conducted to calculate the membrane stress variation. The sound filter proposed herein may provide a promising facility to control low frequency noise source with tonal characteristics.
Optimized deformation behavior of a dielectric elastomer generator
NASA Astrophysics Data System (ADS)
Foerster, Florentine; Schlaak, Helmut F.
2014-03-01
Dielectric elastomer generators (DEGs) produce electrical energy by converting mechanical into electrical energy. Efficient operation requires an optimal deformation of the DEG during the energy harvesting cycle. However, the deformation resulting from an external load has to be applied to the DEG. The deformation behavior of the DEG is dependent on the type of the mechanical interconnection between the elastic DEG and a stiff support area. The maximization of the capacitance of the DEG in the deformed state leads to the maximum absolute energy gain. Therefore several configurations of mechanical interconnections between a single DEG module as well as multiple stacked DEG modules and stiff supports are investigated in order to find the optimal mechanical interconnection. The investigation is done with numerical simulations using the FEM software ANSYS. A DEG module consists of 50 active dielectric layers with a single layer thickness of 50 μm. The elastomer material is silicone (PDMS) while the compliant electrodes are made of graphite powder. In the simulation the real material parameters of the PDMS and the graphite electrodes are included to compare simulation results to experimental investigations in the future. The numerical simulations of the several configurations are carried out as coupled electro-mechanical simulation for the first step in an energy harvesting cycle with constant external load strain. The simulation results are discussed and an optimal mechanical interconnection between DEG modules and stiff supports is derived.
Mm-size bistable zipping dielectric elastomer actuators for integrated microfluidics
NASA Astrophysics Data System (ADS)
Maffli, Luc; Rosset, Samuel; Shea, Herbert R.
2013-04-01
We report on a new structure of Dielectric Elastomer Actuators (DEAs) called zipping DEAs, which have a set of unique characteristics that are a good match for the requirements of electrically-powered integrated microfluidic pumping and/or valving units as well as Braille displays. The zipping DEAs operate by pulling electrostatically an elastomer membrane in contact with the rigid sidewalls of a sloped chamber. In this work, we report on fully functional mm-size zipping DEAs that demonstrate a complete sealing of the chamber sidewalls and a tunable bistable behavior, and compare the measurements with an analytical model. Compared to our first generation of devices, we are able vary the sidewall angle and benefit therefore from more flexibility to study the requirements to make fully functional actuators. In particular, we show that with Nusil CF19 as membrane material (1.2 MPa Young's modulus), it is possible to zip completely 2.3 mm diameter chambers with 15° and 21° sidewalls angle equibiaxially prestretched to λ0=1.12 and 15° chambers with λ0=1.27.
Dielectric elastomer bending tube actuators with rigid electrode structures
NASA Astrophysics Data System (ADS)
Wehrheim, F.; Schlaak, H. F.; Meyer, J.-U.
2010-04-01
The common approach for dielectric elastomer actuators (DEA) is based on the assumption that compliant electrodes are a fundamental design requirement. For tube-like applications compliant electrodes cause a change of the actuator diameter during actuation and would require additional support-structures. Focused on thinwalled actuator-tube geometries room consumption and radial stabilityr epresent crucial criteria. Following the ambition of maximum functional integration, the concept of using a rigid electrode structure arises. This structure realizes both, actuation and support characteristics. The intended rigid electrode structure is based on a stacked DEA with a non-compressible dielectric. Byactu ation, the displaced dielectric causes an overlap. This overlap serves as an indicator for geometrical limitations and has been used to extract design rules regarding the electrode size, electrode distance and maximum electrode travel. Bycons idering the strain in anydir ection, the mechanical efficiencyhas been used to define further design aspects. To verifyt he theoretic analysis, a test for determination of the compressive stress-strain-characteristics has been applied for different electrode setups. As result the geometrydep ending elastic pressure module has been formulated by implementation of a shape factor. The presented investigations consider exclusive the static behavior of a DEA-setup with rigid electrodes.
Tuning the dielectric properties of metallic-nanoparticle/elastomer composites by strain.
Gaiser, Patrick; Binz, Jonas; Gompf, Bruno; Berrier, Audrey; Dressel, Martin
2015-03-14
Tunable metal/dielectric composites are promising candidates for a large number of potential applications in electronics, sensor technologies and optical devices. Here we systematically investigate the dielectric properties of Ag-nanoparticles embedded in the highly flexible elastomer poly-dimethylsiloxane (PDMS). As tuning parameter we use uniaxial and biaxial strain applied to the composite. We demonstrate that both static variations of the filling factor and applied strain lead to the same behavior, i.e., the filling factor of the composite can be tuned by application of strain. In this way the effective static permittivity εeff of the composite can be varied over a very large range. Once the Poisson's ratio of the composite is known, the strain dependent dielectric constant can be accurately described by effective medium theory without any additional free fit parameter up to metal filling factors close to the percolation threshold. It is demonstrated that, starting above the percolation threshold in the metallic phase, applying strain provides the possibility to cross the percolation threshold into the insulating region. The change of regime from conductive phase down to insulating follows the description given by percolation theory and can be actively controlled.
Inkjet printed multiwall carbon nanotube electrodes for dielectric elastomer actuators
NASA Astrophysics Data System (ADS)
Baechler, Curdin; Gardin, Samuele; Abuhimd, Hatem; Kovacs, Gabor
2016-05-01
Dielectric elastomers (DE’s) offer promising applications as soft and light-weight electromechanical actuators. It is known that beside the dielectric material, the electrode properties are of particular importance regarding the DE performance. Therefore, in recent years various studies have focused on the optimization of the electrode in terms of conductivity, stretchability and reliability. However, less attention was given to efficient electrode processing and deposition methods. In the present study, digital inkjet printing was used to deposit highly conductive and stretchable electrodes on silicone. Inkjet printing is a versatile and cost effective deposition method, which allows depositing complex-shaped electrode patterns with high precision. The electrodes were printed using an ink based on industrial low-cost MWCNT. Experiments have shown that the strain-conductivity properties of the printed electrode are strongly depended on the deposition parameters like drop-spacing and substrate temperature. After the optimization of the printing parameters, thin film electrodes could be deposited showing conductivities of up to 30 S cm-1 without the need of any post-treatment. In addition, electromechanical tests with fabricated DE actuators have revealed that the inkjet printed MWCNT electrodes are capable to self-clear in case of a dielectric breakdown.
A thin membrane artificial muscle rotary motor
NASA Astrophysics Data System (ADS)
Anderson, Iain A.; Hale, Thom; Gisby, Todd; Inamura, Tokushu; McKay, Thomas; O'Brien, Benjamin; Walbran, Scott; Calius, Emilio P.
2010-01-01
Desirable rotary motor attributes for robotics include the ability to develop high torque in a low mass body and to generate peak power at low rotational speeds. Electro-active polymer artificial muscles offer promise as actuator elements for robotic motors. A promising artificial muscle technology for use as a driving mechanism for rotary motion is the dielectric elastomer actuator (DEA). We present a membrane DEA motor in which phased actuation of electroded sectors of the motor membrane impart orbital motion to a central drive that turns a rotor. The motor is inherently scalable, flexible, flat, silent in operation, amenable to deposition-based manufacturing approaches, and uses relatively inexpensive materials. As a membrane it can also form part of the skin of a robot. We have investigated the torque and power of stacked membrane layers. Specific power and torque ratios when calculated using active membrane mass only were 20.8 W/kg and 4.1 Nm/kg, respectively. These numbers compare favorably with a commercially available stepper motor. Multi-membrane fabrication substantially boosts torque and power and increases the active mass of membrane relative to supporting framework. Through finite element modeling, we show the mechanisms governing the maximum torque the device can generate and how the motor can be improved.
3D Printing of Transparent and Conductive Heterogeneous Hydrogel-Elastomer Systems.
Tian, Kevin; Bae, Jinhye; Bakarich, Shannon E; Yang, Canhui; Gately, Reece D; Spinks, Geoffrey M; In Het Panhuis, Marc; Suo, Zhigang; Vlassak, Joost J
2017-03-01
A hydrogel-dielectric-elastomer system, polyacrylamide and poly(dimethylsiloxane) (PDMS), is adapted for extrusion printing for integrated device fabrication. A lithium-chloride-containing hydrogel printing ink is developed and printed onto treated PDMS with no visible signs of delamination and geometrically scaling resistance under moderate uniaxial tension and fatigue. A variety of designs are demonstrated, including a resistive strain gauge and an ionic cable. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
PZT/PLZT - elastomer composites with improved piezoelectric voltage coefficient
NASA Astrophysics Data System (ADS)
Harikrishnan, K.; Bavbande, D. V.; Mohan, Dhirendra; Manoharan, B.; Prasad, M. R. S.; Kalyanakrishnan, G.
2018-02-01
Lead Zirconate Titanate (PZT) and Lanthanum-modified Lead Zirconate Titanate (PLZT) ceramic sensor materials are widely used because of their excellent piezoelectric coefficients. These materials are brittle, high density and have low achievable piezoelectric voltage coefficients. The density of the sintered ceramics shall be reduced by burnable polymeric sponge method. The achievable porosity level in this case is nearly 60 - 90%. However, the porous ceramic structure with 3-3 connectivity produced by this method is very fragile in nature. The strength of the porous structure is improved with Sylgard®-184 (silicone elastomer) by vacuum impregnation method maintaining the dynamic vacuum level in the range of -650 mm Hg. The elastomer Sylgard®-184 is having low density, low dielectric constant and high compliance (as a resultant stiffness of the composites is increased). To obtain a net dipole moment, the impregnated ceramic composites were subjected to poling treatment with varying conditions of D.C. field and temperature. The properties of the poled PZT/PLZT - elastomer composites were characterized with LCR meter for measuring the dielectric constant values (k), d33 meter used for measuring piezo-electric charge coefficient values (d33) and piezo-electric voltage coefficient (g33) values which were derived from d33 values. The voltage coefficient (g33) values of these composites are increased by 10 fold as compared to the conventional solid ceramics demonstrates that it is possible to fabricate a conformable detector.
Buckling of Dielectric Elastomeric Plates for Electrically Active Microfludic Pumps
NASA Astrophysics Data System (ADS)
Holmes, Douglas; Tavakol, Behrouz; Bozlar, Michael; Froehlicher, Guillaume; Stone, Howard; Aksay, Ilhan
2013-11-01
Fluid flow can be directed and controlled by a variety of mechanisms within industrial and biological environments. Advances in microfluidic technology have required innovative ways to control fluid flow on a small scale, and the ability to actively control fluid flow within microfluidic devices is crucial for advancements in nanofluidics, biomedical fluidic devices, and digital microfluidics. In this work, we present a means for microfluidic control via the electrical actuation of thin, flexible valves within microfluidic channels. These structures consist of a dielectric elastomer confined between two compliant electrodes that can be actively and reversibly buckle out of plane to pump fluids from an applied voltage. The out-of-plane deformation can be quantified using two parameters: net change in surface area and the shape of deformation. Change in surface area depends on the voltage, while the deformation shape, which significantly affects the flow rate, is a function of voltage, and the pressure and volume of the chambers on each side of the thin plate. The use of solid electrodes enables a robust and reversible pumping mechanism that will have will enable advancements in rapid microfluidic diagnostics, adaptive materials, and artificial muscles.
NASA Astrophysics Data System (ADS)
Lau, Gih-Keong; Di-Teng Tan, Desmond; La, Thanh-Giang
2015-04-01
Rolled dielectric elastomer actuators (DEAs) are subjected to necking and non-uniform deformation upon pre-stress relaxation. Though rolled up from flat DEAs, they performed much poorer than the flat ones. Their electrically induced axial strains were previously reported as not more than 37.3%, while the flat ones produced greater than 100% strain. Often, the rolled DEAs succumb to premature breakdown before they can realize the full actuation potential like the flat ones do. This study shows that oil encapsulation, together with large hoop pre-stretch, helps single-wound rolled DEAs, which are also known as tubular DEAs, suppress premature breakdown. Consequently, the oil-encapsulated tubular DEAs can sustain higher electric fields, and thus produce larger isotonic strain and higher isometric stress change. Under isotonic testing, they sustained very high electric fields of up to 712.7 MV m-1, which is approximately 50% higher than those of the dry tubular DEAs. They produced up to 55.4% axial isotonic strain despite axially stiffening by the passive oil capsules. In addition, due to the use of large hoop pre-stretch, even the dry tubular DEAs without oil encapsulation achieved a very large axial strain of up to 84.2% compared to previous works. Under isometric testing, the oil-encapsulated tubular DEA with enhanced breakdown strength produced an axial stress change of up to nearly 0.6 MPa, which is 114% higher than that produced by the dry ones. In conclusion, the oil encapsulation and large pre-stretch help realize fuller actuation potential of tubular dielectric elastomer, which is subjected to initially non-uniform deformation.
Optimal haptic feedback control of artificial muscles
NASA Astrophysics Data System (ADS)
Chen, Daniel; Besier, Thor; Anderson, Iain; McKay, Thomas
2014-03-01
As our population ages, and trends in obesity continue to grow, joint degenerative diseases like osteoarthritis (OA) are becoming increasingly prevalent. With no cure currently in sight, the only effective treatments for OA are orthopaedic surgery and prolonged rehabilitation, neither of which is guaranteed to succeed. Gait retraining has tremendous potential to alter the contact forces in the joints due to walking, reducing the risk of one developing hip and knee OA. Dielectric Elastomer Actuators (DEAs) are being explored as a potential way of applying intuitive haptic feedback to alter a patient's walking gait. The main challenge with the use of DEAs in this application is producing large enough forces and strains to induce sensation when coupled to a patient's skin. A novel controller has been proposed to solve this issue. The controller uses simultaneous capacitive self-sensing and actuation which will optimally apply a haptic sensation to the patient's skin independent of variability in DEAs and patient geometries.
Dynamics of uniaxially oriented elastomers using dielectric spectroscopy
NASA Astrophysics Data System (ADS)
Lee, Hyungki; Fragiadakis, Daniel; Martin, Darren; Runt, James
2009-03-01
We summarize our initial dielectric spectroscopy investigation of the dynamics of oriented segmented polyurethanes and crosslinked polyisoprene elastomers. A specially designed uniaxial stretching rig is used to control the draw ratio, and the electric field is applied normal to the draw direction. For the segmented PUs, we observe a dramatic reduction in relaxation strength of the soft phase segmental process with increasing extension ratio, accompanied by a modest decrease in relaxation frequency. Crosslinking of the polyisoprene was accomplished with dicumyl peroxide and the dynamics of uncrosslinked and crosslinked versions are investigated in the undrawn state and at different extension ratios. Complimentary analysis of the crosslinked PI is conducted with wide angle X- ray diffraction to examine possible strain-induced crystallization, DSC, and swelling experiments. Quantitative analysis of relaxation strengths and shapes as a function of draw ratio will be discussed.
Standards for dielectric elastomer transducers
NASA Astrophysics Data System (ADS)
Carpi, Federico; Anderson, Iain; Bauer, Siegfried; Frediani, Gabriele; Gallone, Giuseppe; Gei, Massimiliano; Graaf, Christian; Jean-Mistral, Claire; Kaal, William; Kofod, Guggi; Kollosche, Matthias; Kornbluh, Roy; Lassen, Benny; Matysek, Marc; Michel, Silvain; Nowak, Stephan; O'Brien, Benjamin; Pei, Qibing; Pelrine, Ron; Rechenbach, Björn; Rosset, Samuel; Shea, Herbert
2015-10-01
Dielectric elastomer transducers consist of thin electrically insulating elastomeric membranes coated on both sides with compliant electrodes. They are a promising electromechanically active polymer technology that may be used for actuators, strain sensors, and electrical generators that harvest mechanical energy. The rapid development of this field calls for the first standards, collecting guidelines on how to assess and compare the performance of materials and devices. This paper addresses this need, presenting standardized methods for material characterisation, device testing and performance measurement. These proposed standards are intended to have a general scope and a broad applicability to different material types and device configurations. Nevertheless, they also intentionally exclude some aspects where knowledge and/or consensus in the literature were deemed to be insufficient. This is a sign of a young and vital field, whose research development is expected to benefit from this effort towards standardisation.
NASA Astrophysics Data System (ADS)
Wilson, Katherine E.; Henke, E.-F. Markus; Slipher, Geoffrey A.; Anderson, Iain A.
2017-04-01
Electromechanically coupled dielectric elastomer actuators (DEAs) and dielectric elastomer switches (DESs) may form digital logic circuitry made entirely of soft and flexible materials. The expansion in planar area of a DEA exerts force across a DES, which is a soft electrode with strain-dependent resistivity. When compressed, the DES drops steeply in resistance and changes state from non-conducting to conducting. Logic operators may be achieved with different arrangements of interacting DE actuators and switches. We demonstrate combinatorial logic elements, including the fundamental Boolean logic gates, as well as sequential logic elements, including latches and flip-flops. With both data storage and signal processing abilities, the necessary calculating components of a soft computer are available. A noteworthy advantage of a soft computer with mechanosensitive DESs is the potential for responding to environmental strains while locally processing information and generating a reaction, like a muscle reflex.
Bio-kinetic energy harvesting using electroactive polymers
NASA Astrophysics Data System (ADS)
Slade, Jeremiah R.; Bowman, Jeremy; Kornbluh, Roy
2012-06-01
In hybrid vehicles, electric motors are used on each wheel to not only propel the car but also to decelerate the car by acting as generators. In the case of the human body, muscles spend about half of their time acting as a brake, absorbing energy, or doing what is known as negative work. Using dielectric elastomers it is possible to use the "braking" phases of walking to generate power without restricting or fatiguing the Warfighter. Infoscitex and SRI have developed and demonstrated methods for using electroactive polymers (EAPs) to tap into the negative work generated at the knee during the deceleration phase of the human gait cycle and convert it into electrical power that can be used to support wearable information systems, including display and communication technologies. The specific class of EAP that has been selected for these applications is termed dielectric elastomers. Because dielectric elastomers dissipate very little mechanical energy into heat, greater amounts of energy can be converted into electricity than by any other method. The long term vision of this concept is to have EAP energy harvesting cells located in components of the Warfighter ensemble, such as the boot uppers, knee pads and eventually even the clothing itself. By properly locating EAPs at these sites it will be possible to not only harvest power from the negative work phase but to actually reduce the amount of work done by the Warfighter's muscles during this phase, thereby reducing fatigue and minimizing the forces transmitted to the joints.
Dielectric properties of magnetorheological elastomers with different microstructure
NASA Astrophysics Data System (ADS)
Moucka, R.; Sedlacik, M.; Cvek, M.
2018-03-01
Composite materials containing magnetic particles organised within the polymer matrix by the means of an external magnetic field during the curing process were prepared, and their dielectric properties were compared with their isotropic analogues of the same filler concentration but homogeneous spatial distribution. A substantial dielectric response observed for anisotropic systems in a form of relaxation processes was explained as charge transport via the mechanism of variable range hopping. The changes in registered relaxations' critical frequency and shape of dielectric spectra with the filler concentration were discussed in terms of decreasing anisotropy of the system. The knowledge of the dielectric response of studied systems is essential for their practical applications such as piezoresistive sensors or radio-absorbing materials.
Fabrication of dielectric elastomer stack transducers (DEST) by liquid deposition modeling
NASA Astrophysics Data System (ADS)
Klug, Florian; Solano-Arana, Susana; Mößinger, Holger; Förster-Zügel, Florentine; Schlaak, Helmut F.
2017-04-01
Established fabrication methods for dielectric elastomer stack transducers (DEST) are mostly based on twodimensional thin-film technology. Because of this, DEST are based on simple two-dimensionally structured shapes. For certain applications, like valves or Braille displays, these structures are suited well enough. However, a more flexible fabrication method allows for more complex actuator designs, which would otherwise require extra processing steps. Fabrication methods with the possibility of three-dimensional structuring allow e.g. the integration of electrical connections, cavities, channels, sensor and other structural elements during the fabrication. This opens up new applications, as well as the opportunity for faster prototype production of individually designed DEST for a given application. In this work, a manufacturing system allowing three dimensional structuring is described. It enables the production of multilayer and three-dimensional structured DEST by liquid deposition modelling. The system is based on a custom made dual extruder, connected to a commercial threeaxis positioning system. It allows a computer controlled liquid deposition of two materials. After tuning the manufacturing parameters the production of thin layers with at thickness of less than 50 μm, as well as stacking electrode and dielectric materials is feasible. With this setup a first DEST with dielectric layer thickness less than 50 μm is build successfully and its performance is evaluated.
Electroactive polymers for healthcare and biomedical applications
NASA Astrophysics Data System (ADS)
Bauer, Siegfried
2017-04-01
Electroactivity was noticed early in biological substances, including proteins, polynucleotides and enzymes, even piezoand pyroelectricity were found in wool, hair, wood, bone and tendon. Recently, ferroelectricity has been identified in a surprisingly large number of biologically relevant materials, including hydroxyapatite, aortic walls and elastin. Inspired by the variety of natural electroactive materials, a wealth of new elastomers and polymers were designed recently, including an all organic elastomer electret and self-healing dielectric elastomers. Let's further draw inspiration from nature and widen the utilization of electroactive polymers towards (mobile) healthcare and biomedical applications. Ferroelectrets, internally charged polymer foams with a strong piezoelectric thickness coefficient are employed in biomedical sensing, for example as blood pressure and pulse sensor, as vital signs monitor or for the detection of tonicclonic seizures. Piezo- and pyroelectric polymers are booming in printed electronics research. They provide electronic skin the ability to "feel" pressure and temperature changes, or to generate electrical energy from vibrations and motions, even from contractile and relaxation motions of the heart and lung. Dielectric elastomers are pioneered by StretchSense as wearable motion capture sensors, monitoring pressure, stretch, bend and shear, quantifying comfort in sports and healthcare. On the cellular level, electroactive polymer arrays are used to study mechanotransduction of individual cells. Ionic electroactive polymers show potential to be used in implantable electroactive biomedical devices. Already with the currently available science and technology, we are at the verge of witnessing the demonstration of truly complex bionic systems.
Röntgen’s electrode-free elastomer actuators without electromechanical pull-in instability
Keplinger, Christoph; Kaltenbrunner, Martin; Arnold, Nikita; Bauer, Siegfried
2010-01-01
Electrical actuators made from films of dielectric elastomers coated on both sides with stretchable electrodes may potentially be applied in microrobotics, tactile and haptic interfaces, as well as in adaptive optical elements. Such actuators with compliant electrodes are sensitive to the pull-in electromechanical instability, limiting operational voltages and attainable deformations. Electrode-free actuators driven by sprayed-on electrical charges were first studied by Röntgen in 1880. They withstand much higher voltages and deformations and allow for electrically clamped (charge-controlled) thermodynamic states preventing electromechanical instabilities. The absence of electrodes allows for direct optical monitoring of the actuated elastomer, as well as for designing new 3D actuator configurations and adaptive optical elements. PMID:20173097
DEMES rotary joint: theories and applications
NASA Astrophysics Data System (ADS)
Wang, Shu; Hao, Zhaogang; Li, Mingyu; Huang, Bo; Sun, Lining; Zhao, Jianwen
2017-04-01
As a kind of dielectric elastomer actuators, dielectric elastomer minimum energy structure (DEMES) can realize large angular deformations by small voltage-induced strains, which make them an attractive candidate for use as biomimetic robotics. Considering the rotary joint is a basic and common component of many biomimetic robots, we have been fabricated rotary joint by DEMES and developed its performances in the past two years. In this paper, we have discussed the static analysis, dynamics analysis and some characteristics of the DEMES rotary joint. Based on theoretical analysis, some different applications of the DEMES rotary joint were presented, such as a flapping wing, a biomimetic fish and a two-legged walker. All of the robots are fabricated by DEMES rotary joint and can realize some basic biomimetic motions. Comparing with traditional rigid robot, the robot based on DEMES is soft and light, so it has advantage on the collision-resistant.
Fish-like propulsion of an airship with planar membrane dielectric elastomer actuators.
Jordi, C; Michel, S; Fink, E
2010-06-01
The goal of our project is to mimic fish-like movement in air, propelling an airship by undulating its hull and a caudal fin. The activation of the fish-like body in air is realized by dielectric elastomers. These actuators are quite unique for their soft light-weight membrane structure and they are therefore very appropriate to the application on inflated structures. The principles of biomimetics for the structural design and movement are discussed and the conception and design of the airship is described. Various development tests, including wind tunnel testing and flight trials, were performed and the results obtained are presented. It can be shown that an 8 m model airship can be propelled in a fish-like manner in air and that the propulsion can be drastically improved by undulating the body as well as the caudal fin contrary to propulsion with only the caudal fin.
Performance improvement of planar dielectric elastomer actuators by magnetic modulating mechanism
NASA Astrophysics Data System (ADS)
Zhao, Yun-Hua; Li, Wen-Bo; Zhang, Wen-Ming; Yan, Han; Peng, Zhi-Ke; Meng, Guang
2018-06-01
In this paper, a novel planar dielectric elastomer actuator (DEA) with magnetic modulating mechanism is proposed. This design can provide the availability of wider actuation range and larger output force, which are significant indicators to evaluate the performance of DEAs. The DEA tends to be a compact and simple design, and an analytical model is developed to characterize the mechanical behavior. The result shows that the output force induced by the DEA can be improved by 76.90% under a certain applied voltage and initial magnet distance. Moreover, experiments are carried out to reveal the performance of the proposed DEA and validate the theoretical model. It demonstrates that the DEA using magnetic modulating mechanism can enlarge the actuation range and has more remarkable effect with decreasing initial magnet distance within the stable range. It can be useful to promote the applications of DEAs to soft robots and haptic feedback.
Wearable Stretch Sensors for Motion Measurement of the Wrist Joint Based on Dielectric Elastomers.
Huang, Bo; Li, Mingyu; Mei, Tao; McCoul, David; Qin, Shihao; Zhao, Zhanfeng; Zhao, Jianwen
2017-11-23
Motion capture of the human body potentially holds great significance for exoskeleton robots, human-computer interaction, sports analysis, rehabilitation research, and many other areas. Dielectric elastomer sensors (DESs) are excellent candidates for wearable human motion capture systems because of their intrinsic characteristics of softness, light weight, and compliance. In this paper, DESs were applied to measure all component motions of the wrist joints. Five sensors were mounted to different positions on the wrist, and each one is for one component motion. To find the best position to mount the sensors, the distribution of the muscles is analyzed. Even so, the component motions and the deformation of the sensors are coupled; therefore, a decoupling method was developed. By the decoupling algorithm, all component motions can be measured with a precision of 5°, which meets the requirements of general motion capture systems.
Understanding efficiency limits of dielectric elastomer driver circuitry
NASA Astrophysics Data System (ADS)
Lo, Ho Cheong; Calius, Emilio; Anderson, Iain
2013-04-01
Dielectric elastomers (DEs) can theoretically operate at efficiencies greater than that of electromagnetics. This is due to their unique mode of operation which involves charging and discharging a capacitive load at a few kilovolts (typically 1kV-4kV). Efficient recovery of the electrical energy stored in the capacitance of the DE is essential in achieving favourable efficiencies as actuators or generators. This is not a trivial problem because the DE acts as a voltage source with a low capacity and a large output resistance. These properties are not ideal for a power source, and will reduce the performance of any power conditioning circuit utilizing inductors or transformers. This paper briefly explores how circuit parameters affect the performance of a simple inductor circuit used to transfer energy from a DE to another capacitor. These parameters must be taken into account when designing the driving circuitry to maximize performance.
NASA Astrophysics Data System (ADS)
De Acutis, A.; Calabrese, L.; Bau, A.; Tincani, V.; Pugno, N. M.; Bicchi, A.; De Rossi, D. E.
2018-07-01
In this article we present an upgraded design of the existing push–pull hydrostatically coupled dielectric elastomer actuator (HC-DEA) for use in the field of soft manipulators. The new design has segmented electrodes, which stand as four independent elements on the active membrane of the actuator. When properly operated, the actuator can generate both out of plane and in-plane motions resulting in a multi-degrees of freedom soft actuator able to exert both normal pushes (like a traditional HC-DEA) and tangential thrusts. This novel design makes the actuator suitable for delicate flat object transportation. In order to use the actuator in soft systems, we experimentally characterized its electromechanical transduction and modeled its contact mechanics. Finally, we show that the proposed actuator can be employed as a modular unit to develop active surfaces for flat object roto-translation.
NASA Astrophysics Data System (ADS)
Plante, Jean-Sébastien; Devita, Lauren M.; Dubowsky, Steven
2007-04-01
Fundamental studies of Dielectric Elastomer Actuators (DEAs) using viscoelastic materials such as VHB 4905/4910 from 3M showed significant advantages at high stretch rates. The film's viscous forces increase actuator life and the short power-on times minimize energy losses through current leakage. This paper presents a design paradigm that exploits these fundamental properties of DEAs called discrete actuation. Discrete actuation uses DEAs at high stretch rates to change the states of robotic or mechatronic systems in discrete steps. Each state of the system is stable and can be maintained without actuator power. Discrete actuation can be used in robotic and mechatronic applications such as manipulation and locomotion. The resolution of such systems increases with the number of discrete states, 10 to 100 being sufficient for many applications. An MRI-guided needle positioning device for cancer treatments and a space exploration robot using hopping for locomotion are presented as examples of this concept.
Equivalent dynamic model of DEMES rotary joint
NASA Astrophysics Data System (ADS)
Zhao, Jianwen; Wang, Shu; Xing, Zhiguang; McCoul, David; Niu, Junyang; Huang, Bo; Liu, Liwu; Leng, Jinsong
2016-07-01
The dielectric elastomer minimum energy structure (DEMES) can realize large angular deformations by a small voltage-induced strain of the dielectric elastomer (DE), so it is a suitable candidate to make a rotary joint for a soft robot. Dynamic analysis is necessary for some applications, but the dynamic response of DEMESs is difficult to model because of the complicated morphology and viscoelasticity of the DE film. In this paper, a method composed of theoretical analysis and experimental measurement is presented to model the dynamic response of a DEMES rotary joint under an alternating voltage. Based on measurements of equivalent driving force and damping of the DEMES, the model can be derived. Some experiments were carried out to validate the equivalent dynamic model. The maximum angle error between model and experiment is greater than ten degrees, but it is acceptable to predict angular velocity of the DEMES, therefore, it can be applied in feedforward-feedback compound control.
NASA Astrophysics Data System (ADS)
Zhang, Junshi; Chen, Hualing; Li, Dichen
2018-02-01
Subject to an AC voltage, dielectric elastomers (DEs) behave as a nonlinear vibration, implying potential applications as soft dynamical actuators and robots. In this article, by utilizing the Lagrange's equation, a theoretical model is deduced to investigate the dynamic performances of DEs by considering three internal properties, including crosslinks, entanglements, and finite deformations of polymer chains. Numerical calculations are employed to describe the dynamic response, stability, periodicity, and resonance properties of DEs. It is observed that the frequency and nonlinearity of dynamic response are tuned by the internal properties of DEs. Phase paths and Poincaré maps are utilized to detect the stability and periodicity of the nonlinear vibrations of DEs, which demonstrate that transitions between aperiodic and quasi-periodic vibrations may occur when the three internal properties vary. The resonance of DEs involving the three internal properties of polymer chains is also investigated.
Nonlinear Dynamical Model of a Soft Viscoelastic Dielectric Elastomer
NASA Astrophysics Data System (ADS)
Zhang, Junshi; Chen, Hualing; Li, Dichen
2017-12-01
Actuated by alternating stimulation, dielectric elastomers (DEs) show a behavior of complicated nonlinear vibration, implying a potential application as dynamic electromechanical actuators. As is well known, for a vibrational system, including the DE system, the dynamic properties are significantly affected by the geometrical sizes. In this article, a nonlinear dynamical model is deduced to investigate the geometrical effects on dynamic properties of viscoelastic DEs. The DEs with square and arbitrary rectangular geometries are considered, respectively. Besides, the effects of tensile forces on dynamic performances of rectangular DEs with comparably small and large geometrical sizes are explored. Phase paths and Poincaré maps are utilized to detect the periodicity of the nonlinear vibrations of DEs. The resonance characteristics of DEs incorporating geometrical effects are also investigated. The results indicate that the dynamic properties of DEs, including deformation response, vibrational periodicity, and resonance, are tuned when the geometrical sizes vary.
Modeling of mechanical properties of stack actuators based on electroactive polymers
NASA Astrophysics Data System (ADS)
Tepel, Dominik; Graf, Christian; Maas, Jürgen
2013-04-01
Dielectric elastomers are thin polymer films belonging to the class of electroactive polymers, which are coated with compliant and conductive electrodes on each side. Under the influence of an electrical field, dielectric elastomers perform a large amount of deformation. Depending on the mechanical setup, stack and roll actuators can be realized. In this contribution the mechanical properties of stack actuators are modeled by a holistic electromechanical approach of a single actuator film, by which the model of a stack actuator without constraints can be derived. Due to the mechanical connection between the stack actuator and the application, bulges occur at the free surfaces of the EAP material, which are calculated, experimentally validated and considered in the model of the stack actuator. Finally, the analytic actuator film model as well as the stack actuator model are validated by comparison to numerical FEM-models in ANSYS.
NASA Astrophysics Data System (ADS)
Quang Tran, Danh; Li, Jin; Xuan, Fuzhen; Xiao, Ting
2018-06-01
Dielectric elastomers (DEs) are belonged to a group of polymers which cause a time-dependence deformation due to the effect of viscoelastic. In recent years, viscoelasticity has been accounted in the modeling in order to understand the complete electromechanical behavior of dielectric elastomer actuators (DEAs). In this paper, we investigate the actuation performance of a circular DEA under different equal, un-equal biaxial pre-stretches, based on a nonlinear rheological model. The theoretical results are validated by experiments, which verify the electromechanical constitutive equation of the DEs. The viscoelastic mechanical characteristic is analyzed by modeling simulation analysis and experimental to describe the influence of frequency, voltage, pre-stretch, and waveform on the actuation response of the actuator. Our study indicates that: The DEA with different equal or un-equal biaxial pre-stretches undergoes different actuation performance when subject to high voltage. Under an un-equal biaxial pre-stretch, the DEA deforms unequally and shows different deformation abilities in two directions. The relative creep strain behavior of the DEA due to the effect of viscoelasticity can be reduced by increasing pre-stretch ratio. Higher equal biaxial pre-stretch obtains larger deformation strain, improves actuation response time, and reduces the drifting of the equilibrium position in the dynamic response of the DEA when activated by step and period voltage, while increasing the frequency will inhibit the output stretch amplitude. The results in this paper can provide theoretical guidance and application reference for design and control of the viscoelastic DEAs.
Wang, Linlin; Liu, Qi; Jing, Dongdong; Zhou, Shanyu; Shao, Longquan
2014-04-01
The aim of this study was to evaluate the effect of TiO2 nanoparticles on the mechanical and anti-ageing properties of a medical silicone elastomer and to assess the biocompatibility of this novel combination. TiO2 (P25, Degussa, Germany) nanoparticles were mixed with the silicone elastomer (MDX4-4210, Dow Corning, USA) at 2%, 4%, and 6% (w/w) using silicone fluid as diluent (Q7-9180, Dow Corning, USA). Blank silicone elastomer served as the control material. The physical properties and biocompatibility of the composites were examined. The tensile strength was tested for 0% and 6% (w/w) before and after artificial ageing. SEM analysis was performed. TiO2 nanoparticles improved the tensile strength and Shore A hardness of the silicone elastomer (P<0.05). However, a decrease in the elongation at break and tear strength was found for the 6% (w/w) composite (P<0.05). All the ageing methods had no effect on the tensile strength of the 6% (w/w) composite (P>0.05), but thermal ageing significantly decreased the tensile strength of the control group (P<0.05). Cellular viability assays indicated that the composite exhibited biocompatibility. We obtained a promising restorative material which yields favourable physical and anti-ageing properties and is biocompatible in our in vitro cellular studies. Copyright © 2014 Elsevier Ltd. All rights reserved.
A new quadrature annular resonator for 3 T MRI based on artificial-dielectrics.
Mikhailovskaya, Anna A; Shchelokova, Alena V; Dobrykh, Dmitry A; Sushkov, Ivan V; Slobozhanyuk, Alexey P; Webb, Andrew
2018-06-01
Dielectric resonators have previously been constructed for ultra-high frequency magnetic resonance imaging and microscopy. However, it is challenging to design these dielectric resonators at clinical field strengths due to their intrinsically large dimensions, especially when using materials with moderate permittivity. Here we propose and characterize a novel approach using artificial-dielectrics which reduces substantially the required outer diameter of the resonator. For a resonator designed to operate in a 3 Tesla scanner using water as the dielectric, a reduction in outer diameter of 37% was achieved. When used in an inductively-coupled wireless mode, the sensitivity of the artificial-dielectric resonator was measured to be slightly higher than that of a standard dielectric resonator operating in its degenerate circularly-polarized hybrid electromagnetic modes (HEM 11 ). This study demonstrates the first application of an artificial-dielectric approach to MR volume coil design. Copyright © 2018 Elsevier Inc. All rights reserved.
A new quadrature annular resonator for 3 T MRI based on artificial-dielectrics
NASA Astrophysics Data System (ADS)
Mikhailovskaya, Anna A.; Shchelokova, Alena V.; Dobrykh, Dmitry A.; Sushkov, Ivan V.; Slobozhanyuk, Alexey P.; Webb, Andrew
2018-06-01
Dielectric resonators have previously been constructed for ultra-high frequency magnetic resonance imaging and microscopy. However, it is challenging to design these dielectric resonators at clinical field strengths due to their intrinsically large dimensions, especially when using materials with moderate permittivity. Here we propose and characterize a novel approach using artificial-dielectrics which reduces substantially the required outer diameter of the resonator. For a resonator designed to operate in a 3 Tesla scanner using water as the dielectric, a reduction in outer diameter of 37% was achieved. When used in an inductively-coupled wireless mode, the sensitivity of the artificial-dielectric resonator was measured to be slightly higher than that of a standard dielectric resonator operating in its degenerate circularly-polarized hybrid electromagnetic modes (HEM11). This study demonstrates the first application of an artificial-dielectric approach to MR volume coil design.
NASA Astrophysics Data System (ADS)
Lee, Byoung Wan; Ko, Jae-Hyeon; Park, Jaehoon; Shin, Dong-Myeong; Hwang, Yoon-Hwae
2016-04-01
The temperature dependences of the acoustic properties and the dielectric relaxation times of polydimethylsiloxane were investigated by using high-resolution Brillouin and broadband dielectric spectroscopies. The longitudinal sound velocity showed a large increase upon approaching the glass transition temperature while the acoustic absorption coefficient exhibited a maximum at ~263 K. Comparison of these results with previous ultrasonic data revealed a substantial frequency dispersion of the acoustic properties of this silicone-based elastomer. The relaxation times derived from the acoustic absorption peaks were consistent with the temperature dependence of the dielectric relaxation time of the structural a process, indicating a strong coupling between the acoustic waves and the segmental motions of the main chains.
Biaxial experimental and analytical characterization of a dielectric elastomer
NASA Astrophysics Data System (ADS)
Helal, Alexander; Doumit, Marc; Shaheen, Robert
2018-01-01
Electroactive polymers (EAPs) have emerged as a strong contender for use in low-cost efficient actuators in multiple applications especially related to biomimetic and mobile-assistive devices. Dielectric elastomers (DE), a subcategory of these smart materials, have been of particular interest due to their large achievable deformation and favourable mechanical and electro-mechanical properties. Previous work has been completed to understand the behaviour of these materials; however, their properties require further investigation to properly integrate them into real-world applications. In this study, a biaxial tensile experimental evaluation of 3M™ VHB 4905 and VHB 4910 is presented with the purpose of illustrating the elastomers' transversely isotropic mechanical behaviours. These tests were applied to both tapes for equibiaxial stretch rates ranging between 0.025 and 0.300 s-1. Subsequently, a dynamic planar biaxial visco-hyperelastic constitutive relationship was derived from a Kelvin-Voigt rheological model and the general Hooke's law for transversely isotropic materials. The model was then fitted to the experimental data to obtain three general material parameters for either tapes. The model's ability to predict tensile stress response and internal energy dissipation, with respect to experimental data, is evaluated with good agreement. The model's ability to predict variations in mechanical behaviour due to changes in kinematic variables is then illustrated for different conditions.
Modeling shape selection of buckled dielectric elastomers
NASA Astrophysics Data System (ADS)
Langham, Jacob; Bense, Hadrien; Barkley, Dwight
2018-02-01
A dielectric elastomer whose edges are held fixed will buckle, given a sufficiently applied voltage, resulting in a nontrivial out-of-plane deformation. We study this situation numerically using a nonlinear elastic model which decouples two of the principal electrostatic stresses acting on an elastomer: normal pressure due to the mutual attraction of oppositely charged electrodes and tangential shear ("fringing") due to repulsion of like charges at the electrode edges. These enter via physically simplified boundary conditions that are applied in a fixed reference domain using a nondimensional approach. The method is valid for small to moderate strains and is straightforward to implement in a generic nonlinear elasticity code. We validate the model by directly comparing the simulated equilibrium shapes with the experiment. For circular electrodes which buckle axisymetrically, the shape of the deflection profile is captured. Annular electrodes of different widths produce azimuthal ripples with wavelengths that match our simulations. In this case, it is essential to compute multiple equilibria because the first model solution obtained by the nonlinear solver (Newton's method) is often not the energetically favored state. We address this using a numerical technique known as "deflation." Finally, we observe the large number of different solutions that may be obtained for the case of a long rectangular strip.
Phase separated microstructure and dynamics of polyurethane elastomers under strain
NASA Astrophysics Data System (ADS)
Iacob, Ciprian; Padsalgikar, Ajay; Runt, James
The molecular mobility of polyurethane elastomers is of the utmost importance in establishing physical properties for uses ranging from automotive tires and shoe soles to more sophisticated aerospace and biomedical applications. In many of these applications, chain dynamics as well as mechanical properties under external stresses/strains are critical for determining ultimate performance. In order to develop a more complete understanding of their mechanical response, we explored the effect of uniaxial strain on the phase separated microstructure and molecular dynamics of the elastomers. We utilize X-ray scattering to investigate soft segment and hard domain orientation, and broadband dielectric spectroscopy for interrogation of the dynamics. Uniaxial deformation is found to significantly perturb the phase-separated microstructure and chain orientation, and results in a considerable slowing down of the dynamics of the elastomers. Attenuated total reflectance Fourier transform infrared spectroscopy measurements of the polyurethanes under uniaxial deformation are also employed and the results are quantitatively correlated with mechanical tensile tests and the degree of phase separation from small-angle X-ray scattering measurements.
Vogel-Fulcher dependence of relaxation rates in a nematic monomer and elastomer
NASA Astrophysics Data System (ADS)
Shenoy, D.; Filippov, S.; Aliev, F.; Keller, P.; Thomsen, D.; Ratna, B.
2000-12-01
Dielectric relaxation spectroscopy is used to study the relaxation processes in a nematic monomer and the corresponding cross-linked polymer nematic liquid crystal (elastomer). In the frequency window 10 mHz to 2 GHz the monomer liquid crystal shows a single relaxation whereas the polymer exhibits three relaxation processes, two of which are quantitatively analyzed. The temperature dependence of relaxation times in both the monomer and polymer follows a Vogel-Fulcher behavior. The relaxation processes are identified with specific molecular motions and activation energies are calculated in a linear approximation for comparison with literature data.
Terahertz Artificial Dielectric Lens.
Mendis, Rajind; Nagai, Masaya; Wang, Yiqiu; Karl, Nicholas; Mittleman, Daniel M
2016-03-14
We have designed, fabricated, and experimentally characterized a lens for the THz regime based on artificial dielectrics. These are man-made media that mimic properties of naturally occurring dielectric media, or even manifest properties that cannot generally occur in nature. For example, the well-known dielectric property, the refractive index, which usually has a value greater than unity, can have a value less than unity in an artificial dielectric. For our lens, the artificial-dielectric medium is made up of a parallel stack of 100 μm thick metal plates that form an array of parallel-plate waveguides. The convergent lens has a plano-concave geometry, in contrast to conventional dielectric lenses. Our results demonstrate that this lens is capable of focusing a 2 cm diameter beam to a spot size of 4 mm, at the design frequency of 0.17 THz. The results further demonstrate that the overall power transmission of the lens can be better than certain conventional dielectric lenses commonly used in the THz regime. Intriguingly, we also observe that under certain conditions, the lens boundary demarcated by the discontinuous plate edges actually resembles a smooth continuous surface. These results highlight the importance of this artificial-dielectric technology for the development of future THz-wave devices.
Terahertz Artificial Dielectric Lens
Mendis, Rajind; Nagai, Masaya; Wang, Yiqiu; Karl, Nicholas; Mittleman, Daniel M.
2016-01-01
We have designed, fabricated, and experimentally characterized a lens for the THz regime based on artificial dielectrics. These are man-made media that mimic properties of naturally occurring dielectric media, or even manifest properties that cannot generally occur in nature. For example, the well-known dielectric property, the refractive index, which usually has a value greater than unity, can have a value less than unity in an artificial dielectric. For our lens, the artificial-dielectric medium is made up of a parallel stack of 100 μm thick metal plates that form an array of parallel-plate waveguides. The convergent lens has a plano-concave geometry, in contrast to conventional dielectric lenses. Our results demonstrate that this lens is capable of focusing a 2 cm diameter beam to a spot size of 4 mm, at the design frequency of 0.17 THz. The results further demonstrate that the overall power transmission of the lens can be better than certain conventional dielectric lenses commonly used in the THz regime. Intriguingly, we also observe that under certain conditions, the lens boundary demarcated by the discontinuous plate edges actually resembles a smooth continuous surface. These results highlight the importance of this artificial-dielectric technology for the development of future THz-wave devices. PMID:26973294
Effect of extraoral aging conditions on mechanical properties of maxillofacial silicone elastomer.
Hatamleh, Muhanad M; Polyzois, Gregory L; Silikas, Nick; Watts, David C
2011-08-01
The purpose of this study was to investigate the effect of extraoral human and environmental conditions on the mechanical properties (tensile strength and modulus, elongation, tear strength hardness) of maxillofacial silicone elastomer. Specimens were fabricated using TechSil-S25 silicone elastomer (Technovent Ltd, Leeds, UK). Eight groups were prepared (21 specimens in each group; eight tensile, eight tear, five hardness) and conditioned differently as follows (groups 1 through 8): Dry storage for 24 hours; dry storage in dark for 6 months; storage in simulated sebum solution for 6 months; storage in simulated acidic perspiration for 6 months; accelerated artificial daylight aging under controlled moisture for 360 hours; outdoor weathering for 6 months; storage in antimicrobial silicone-cleaning solution for 30 hours; and mixed conditioning of sebum storage and light aging for 360 hours. The conditioning period selected simulated a prosthesis being in service for up to 12 months. Tensile and tear test specimens were fabricated and tested according to the International Standards Organization (ISO) standards no. 37 and 34, respectively. Shore A hardness test specimens were fabricated and tested according to the American Standards for Testing and Materials (ASTM) D 2240. Data were analyzed with one-way ANOVA, Bonferroni, and Dunnett's T3 post hoc tests (p < 0.05). Weibull analysis was also used for tensile strength and tear strength. Statistically significant differences were evident among all properties tested. Mixed conditioning of simulated sebum storage under accelerated artificial daylight aging significantly degraded mechanical properties of the silicone (p < 0.05). Mechanical properties of maxillofacial elastomers are adversely affected by human and environmental factors. Mixed aging of storage in simulated sebum under accelerated daylight aging was the most degrading regime. Accelerated aging of silicone specimens in simulated sebum under artificial daylight for 12 months of simulated clinical service greatly affected functional properties of silicone elastomer; however, in real practice, the effect is modest, since sebum concentration is lower, and daylight is less concentrated. © 2011 by The American College of Prosthodontists.
Theory of Dielectric Elastomers
2010-10-25
partly in the air and partly in a dielectric liquid . The applied voltage causes the liquid to rise to a height h. The height results from the...balance of the Maxwell stress and the weight of the liquid . The Maxwell stress parallel to the electrodes in the air is 2/2Eaa , where a is the...permittivity of the air. The Maxwell stress parallel to the electrodes in the liquid is 2/2Ell , where l is the permittivity of the liquid
NASA Astrophysics Data System (ADS)
Fan, Peng; Chen, Hualing; Li, Bo; Wang, Yongquan
2017-11-01
In this letter, a theoretical framework describing an energy harvesting cycle including the loss of tension (LT) process is proposed to investigate the energy harvesting performance of a dielectric elastomer generator (DEG) with a triangular energy harvesting scheme by considering material viscosity and leakage current. As the external force that is applied to the membrane decreases, the membrane is relaxed. When the external force decreases to zero, the condition is known as LT. Then the membrane undergoing LT can further relax, which is referred to as the LT process. The LT process is usually ignored in theoretical analysis but observed from energy harvesting experiments of DEGs. It is also studied how shrinking time and transfer capacitor affect the energy conversion of a DEG. The results indicate that energy density and conversion efficiency can be simultaneously improved by choosing appropriate shrinking time and transfer capacitor to optimize the energy harvesting cycle. The results and methods are expected to provide guidelines for the optimal design and assessment of DEGs.
Numerical analysis of helical dielectric elastomer actuator
NASA Astrophysics Data System (ADS)
Park, Jang Ho; Nair, Saurabh; Kim, Daewon
2017-04-01
Dielectric elastomer actuators (DEA) are known for its capability of experiencing extreme strains, as it can expand and contract based on specific actuation voltage applied. On contrary, helical DEA (HDEA) with its unique configuration does not only provide the contractile and extendable capabilities, but also can aid in attaining results for bending and torsion. The concept of HDEA embraces many new techniques and can be applied in multiple disciplines. Thus, this paper focuses on the simulation of HDEA with helical compliant electrodes that is a major factor prior to its application. The attributes of the material used to build the structure plays a vital role in the behavior of the system. For numerical analysis of HDEA, the material characteristics are input into a commercial grade software, and then the appropriate analysis is performed to retrieve its outcome. Applying the material characteristics into numerical analysis modeling, the functionality of HDEA for various activations can be achieved, which is used to test and comply with the fabricated final product.
Tunable actuation of dielectric elastomer by electromechanical loading rates
NASA Astrophysics Data System (ADS)
Li, Guorui; Zhang, Mingqi; Chen, Xiangping; Yang, Xuxu; Wong, Tuck-Whye; Li, Tiefeng; Huang, Zhilong
2017-10-01
Dielectric elastomer (DE) membranes are able to self-deform with the application of an electric field through the thickness direction. In comparison to conventional rigid counterparts, soft actuators using DE provide a variety of advantages such as high compliance, low noise, and light weight. As one of the challenges in the development of DE actuating devices, tuning the electromechanical actuating behavior is crucial in order to achieve demanded loading paths and to avoid electromechanical failures. In this paper, our experimental results show that the electromechanical loading conditions affect the actuating behaviors of the DE. The electrical actuating force can be tuned by 29.4% with the control of the electrical charging rate. In addition, controllable actuations have been investigated by the mechanical model in manipulating the electromechanical loading rate. The calculated results agree well with the experimental data. Lastly, it is believed that the mechanisms of controlling the electromechanical loading rate may serve as a guide for the design of DE devices and high performance soft robots in the near future.
NASA Astrophysics Data System (ADS)
Loew, P.; Rizzello, G.; Seelecke, S.
2017-04-01
Dielectric Elastomers (DE) represent an attractive technology for the realization of mechatronic actuators, due to their lightweight, high energy density, high energy efficiency, scalability, and low noise features. In order to produce a stroke, a DE membrane needs to be pre-loaded with a mechanical biasing mechanism. In our previous works, we compared the stroke achieved with different biasing mechanisms for a circular out-of-plane DE Actuator (DEA), i.e., hanging masses, linear and bi-stable springs. The novel contribution of this paper is the investigation of a biasing design approach based on permanent magnets. The resulting magnet-based actuators are usually more compact than the spring-based ones, allowing to obtain more compact systems. Two design solutions are proposed and compared, namely a first one characterized by a stable actuation, and a second one which permits to achieve a higher stroke, but it is intrinsically unstable. The effectiveness of the novel design solution is assessed by means of several experiments.
Low-loss electromagnetic composites for RF and microwave applications.
Wang, Hong; Yang, Haibo; Xiang, Feng; Yao, Xi
2011-09-01
Low-loss electromagnetic composites with high permittivity and permeability will benefit the miniaturization and multifunctional of RF devices. A kind of low-loss dielectric-magnetic ceramic-ceramic composite was developed by hybrid processing technology with the goal of integrating the dielectric properties and magnetic properties. The hybrid processing technology exhibits the advantage of lowered sintering temperatures for the composites while retaining good microstructure and high performance. By introducing elastomer as matrix, a kind of flexible low-loss dielectric-magnetic ceramic-polymer composite was prepared and studied. The obtained flexible dielectric-magnetic ceramic-polymer composite exhibited low loss and good mechanical properties. The results show good effects on lowering the dielectric loss and extending the cut-off magnetic frequency of the electromagnetic composite. Methods for tailoring the properties of the multifunctional composites were proposed and discussed.
NASA Astrophysics Data System (ADS)
Lai, William
Inspired by nature, the development of soft actuators has drawn large attention to provide higher flexibility and allow adaptation to more complex environment. This thesis is focused on utilizing electroactive polymers as active materials to develop soft planar dielectric elastomer actuators capable of complex 3D deformation. The potential applications of such soft actuators are in flexible robotic arms and grippers, morphing structures and flapping wings for micro aerial vehicles. The embraces design for a freestanding actuator utilizes the constrained deformation imposed by surface stiffeners on an electroactive membrane to avert the requirement of membrane pre-stretch and the supporting frames. The proposed design increases the overall actuator flexibility and degrees-of-freedom. Actuator design, fabrication, and performance are presented for different arrangement of stiffeners. Digital images correlation technique were utilized to evaluate the in-plane finite strain components, in order to elucidate the role of the stiffeners in controlling the three dimensional deformation. It was found that a key controlling factor was the localized deformation near the stiffeners, while the rest of the membrane would follow through. A detailed finite element modeling framework was developed with a user-material subroutine, built into the ABAQUS commercial finite element package. An experimentally calibrated Neo-Hookean based material model that coupled the applied electrical field to the actuator mechanical deformation was employed. The numerical model was used to optimize different geometrical features, electrode layup and stacking sequence of actuators. It was found that by splitting the stiffeners into finer segments, the force-stroke characteristics of actuator were able to be adjusted with stiffener configuration, while keeping the overall bending stiffness. The efficacy of actuators could also be greatly improved by increasing the stiffener periodicity. The developed framework would aid in designing and optimizing the dielectric elastomer actuator configurations for 3D prescribed deformation configuration. Finally, inspired by the membrane textures of bat wings, a study of utilizing fiber reinforcement on dielectric elastomer actuators were conducted for the mechanical and the coupled electromechanical characteristics. Woven fibers were employed on the surface of actuator membrane with different pre-deformed configurations. Experimentally, actuator stiffness changes were measured for up to four orders of magnitude. The orientation of embedded fibers controlled the level and the triggered phase of stiffness changes. A trade-off between the actuator stiffness and stroke could be controlled during the fabrication stage by the fiber orientation and the prestretch level of the base elastomer membrane. A simplified model using small-strain composite laminate theory was developed and accurately predicted the composite actuator stiffness. Additionally, compliant edge stiffeners were found had to present a marked overall effect on actuator electromechanical response. The developed simplified analytical solutions using Timoshenko-bimaterial laminate solution and composite laminate theory, as well as the developed finite element framework can be utilized in addressing more complex 3D deformation patterns and their electromechanical response.
NASA Technical Reports Server (NTRS)
Miller, Sandi G.; Becker, Kathleen; Williams, Tiffany S.; Scheiman, Daniel A.; McCorkle, Linda S.; Heimann, Paula J.; Ring, Andrew; Woodworth, Andrew
2017-01-01
Achieving NASAs aggressive fuel burn and emission reduction for N-plus-3 aircraft will require hybrid electric propulsion system in which electric motors driven by either power generated from turbine or energy storage system will power the fan for propulsion. Motors designed for hybrid electric aircraft are expected to operate at medium to high voltages over long durations in a high altitude service environment. Such conditions have driven research toward the development of wire insulation with improved mechanical strength, thermal stability and increased breakdown voltage. The silicone class of materials has been considered for electric wire insulation due to its inherent thermal stability, dielectric strength and mechanical integrity. This paper evaluates the dependence of these properties on the cure conditions of a polydimethyl-siloxane (PDMS) elastomer; where both cure temperature and base-to-catalyst ratio were varied. The PDMS elastomer was evaluated as a bulk material and an impregnation matrix within a lightweight glass veil support. The E-glass support was selected for mechanical stiffness and dielectric strength. This work has shown a correlation between cure conditions and material physical properties. Tensile strength increased with cure temperature whereas breakdown voltage tended to be independent of process variations. The results will be used to direct material formulation based on specific insulation requirements.
Polymeric blends for sensor and actuation dual functionality
NASA Technical Reports Server (NTRS)
St. Clair, Terry L. (Inventor); Harrison, Joycelyn S. (Inventor); Su, Ji (Inventor); Ounaies, Zoubeida (Inventor)
2004-01-01
The invention described herein supplies a new class of electroactive polymeric blend materials which offer both sensing and actuation dual functionality. The blend comprises two components, one component having a sensing capability and the other component having an actuating capability. These components should be co-processable and coexisting in a phase separated blend system. Specifically, the materials are blends of a sensing component selected from the group consisting of ferroelectric, piezoelectric, pyroelectric and photoelectric polymers and an actuating component that responds to an electric field in terms of dimensional change. Said actuating component includes, but is not limited to, electrostrictive graft elastomers, dielectric electroactive elastomers, liquid crystal electroactive elastomers and field responsive polymeric gels. The sensor functionality and actuation functionality are designed by tailoring the relative fraction of the two components. The temperature dependence of the piezoelectric response and the mechanical toughness of the dual functional blends are also tailored by the composition adjustment.
Okano, Makoto; Watanabe, Shinichi
2016-01-01
Elastomers are one of the most important materials in modern society because of the inherent viscoelastic properties due to their cross-linked polymer chains. Their vibration-absorbing and adhesive properties are especially useful and thus utilized in various applications, for example, tires in automobiles and bicycles, seismic dampers in buildings, and seals in a space shuttle. Thus, the nondestructive inspection of their internal states such as the internal deformation is essential in safety. Generally, industrial elastomers include various kinds of additives, such as carbon blacks for reinforcing them. The additives make most of them opaque in a wide spectral range from visible to mid-infrared, resulting in that the nondestructive inspection of the internal deformation is quite difficult. Here, we demonstrate transmission terahertz polarization spectroscopy as a powerful technique for investigating the internal optical anisotropy in optically opaque elastomers with conductive additives, which are transparent only in the terahertz frequency region. The internal deformation can be probed through the polarization changes inside the material due to the anisotropic dielectric response of the conductive additives. Our study about the polarization-dependent terahertz response of elastomers with conductive additives provides novel knowledge for in situ, nondestructive evaluation of their internal deformation. PMID:28008942
Real-time dielectric studies of polymerizing systems
NASA Astrophysics Data System (ADS)
Williams, G.; Smith, I. K.; Holmes, P. A.; Varma, S.
1999-03-01
The use of real-time dielectric relaxation spectroscopy (DRS) for monitoring changes in molecular mobility during reaction for thermosetting systems is described together with phenomenological and molecular theories of the time-dependent relaxation functions that are involved. Reduced molecular mobility normally leads to the diffusion control of a reaction and ultimately to glass formation at the polymerization temperature 0953-8984/11/10A/004/img7. We present new DRS results for a boroxine/epoxide system that show glass formation below a `floor temperature' 0953-8984/11/10A/004/img8 and very different behaviour above 0953-8984/11/10A/004/img8, when the dielectric properties become independent of time and an elastomer is formed.
Electrically activated artificial muscles made with liquid crystal elastomers
NASA Astrophysics Data System (ADS)
Shahinpoor, Mohsen
2000-06-01
Composites of monodomain nematic liquid crystal elastomers and a conducting material distributed within their network are shown to exhibit large deformations, i.e. contraction, expansion, bending with strains of over 200% and appreciable force, by Joule heating through electrical activation. The electrical activation of the conducting material induces a rapid Joule heating in the sample leading to a nematic to isotropic phase transition where the elastomer of dimensions 32 mm x 7 mm x 0.4 mm contracted in less than a second. The cooling process, isotropic to nematic transition where the elastomer expands back to its original length, was slow and took 8 seconds. The material studied here is a highly novel liquid crystalline co-elastomer, invented and developed by Heino Finkelmann and co-workers at Albert-Ludwigs-Universitaet in Freiburg, Germany. The material is such that in which the mesogenic units are in both the side chains and the main chains of the elastomer. This co-elastomer was then mechanically loaded to induce a uniaxial network anisotropy before the cross-linking reaction was completed. These samples were then made into a composite with a conducting material such as dispersed silver particles or graphite fibers. The final samples was capable of undergoing more than 200% reversible strain in a few seconds.
Polydopamine-Coated Main-Chain Liquid Crystal Elastomer as Optically Driven Artificial Muscle.
Tian, Hongmiao; Wang, Zhijian; Chen, Yilong; Shao, Jinyou; Gao, Tong; Cai, Shengqiang
2018-03-07
Optically driven active materials have received much attention because their deformation and motion can be controlled remotely, instantly, and precisely in a contactless way. In this study, we investigated an optically actuated elastomer with rapid response: polydopamine (PDA)-coated liquid crystal elastomer (LCE). Because of the photothermal effect of PDA coating and thermal responsiveness of LCE, the elastomer film contracted significantly with near-infrared (NIR) irradiation. With a fixed strain, light-induced actuating stress in the film could be as large as 1.5 MPa, significantly higher than the maximum stress generated by most mammalian skeletal muscle (0.35 MPa). The PDA-coated LCE films could also bend or roll up by surface scanning of an NIR laser. The response time of the film to light exposure could be as short as 1/10 of a second, comparable to or even faster than that of mammalian skeletal muscle. Using the PDA-coated LCE film, we designed and fabricated a prototype of robotic swimmer that was able to swim near the water-air interface by performing "swimming strokes" through reversible bending and unbending motions induced and controlled by an NIR laser. The results presented in this study clearly demonstrated that PDA-coated LCE is a promising optically driven artificial muscle, which may have great potential for applications of soft robotics and optomechanical coupling devices.
Metachronal wave of artificial cilia array actuated by applied magnetic field
NASA Astrophysics Data System (ADS)
Tsumori, Fujio; Marume, Ryuma; Saijou, Akinori; Kudo, Kentaro; Osada, Toshiko; Miura, Hideshi
2016-06-01
In this paper, a biomimetic microstructure related to cilia, which are effective fluidic and conveying systems in nature, is described. Authors have already reported that a magnetic elastomer pillar actuated by a rotating magnetic field can work like a natural cilium. In the present work, we show examples of a cilia array with a metachronal wave as the next step. A metachronal wave is a sequential action of a number of cilia. It is theoretically known that a metachronal wave gives a higher fluidic efficiency; however, there has been no report on a metachronal wave by artificial cilia. We prepared magnetic elastomer pillars that contain chainlike clusters of magnetic particles. The orientation of chains was set to be different in each pillar so that each pillar will deform with a different phase.
NASA Astrophysics Data System (ADS)
Cao, Jian-Bo; E, Shi-Ju; Guo, Zhuang; Gao, Zhao; Luo, Han-Pin
2017-11-01
In order to improve electromechanical conversion efficiency for dielectric elastomer generators (DEG), on the base of studying DEG energy harvesting cycles of constant voltage, constant charge and constant electric field intensity, a new combined cycle mode and optimization theory in terms of the generating mechanism and electromechanical coupling process have been built. By controlling the switching point to achieve the best energy conversion cycle, the energy loss in the energy conversion process is reduced. DEG generating test bench which was used to carry out comparative experiments has been established. Experimental results show that the collected energy in constant voltage cycle, constant charge cycle and constant electric field intensity energy harvesting cycle decreases in turn. Due to the factors such as internal resistance losses, electrical losses and so on, actual energy values are less than the theoretical values. The electric energy conversion efficiency by combining constant electric field intensity cycle with constant charge cycle is larger than that of constant electric field intensity cycle. The relevant conclusions provide a basis for the further applications of DEG.
NASA Astrophysics Data System (ADS)
Fasolt, Bettina; Hodgins, Micah; Seelecke, Stefan
2016-04-01
Screen printing is used as a method for printing electrodes on silicone thin films for the fabrication of dielectric elastomer transducers (DET). This method can be used to manufacture a multitude of patternable designs for actuator and sensor applications, implementing the same method for prototyping as well as large-scale production. The fabrication of DETs does not only require the development of a flexible, highly conductive electrode material, which adheres to a stretched and unstretched silicone film, but also calls for a thorough understanding of the effects of the different printing parameters. This work studies the influence of screen dimensions (open area, mesh thickness) as well as the influence of multiple-layer- printing on the electrode stiffness, electrical resistance and capacitance as well as actuator performance. The investigation was conducted in a custom-built testing device, which enabled an electro-mechanical characterization of the DET, simultaneously measuring parameters such as strain, voltage, current, force, sheet resistance, capacitance and membrane thickness. Magnified pictures of the electrodes will additionally illustrate the effects of the different printing parameters.
Viscoelastic performance of dielectric elastomer subject to different voltage stimulation
NASA Astrophysics Data System (ADS)
Sheng, Junjie; Zhang, Yuqing; Liu, Lei; Li, Bo; Chen, Hualing
2017-04-01
Dielectric elastomer (DE) is capable of giant deformation subject to an electric field, and demonstrates significant advantages in the potentially application of soft machines with muscle-like characteristics. Due to an inherent property of all macromolecular materials, DE exhibits strong viscoelastic properties. Viscoelasticity could cause a time-dependent deformation and lower the response speed and energy conversion efficiency of DE based actuators, thus strongly affect its electromechanical performance and applications. Combining with the rheological model of viscoelastic relaxation, the viscoelastic performance of a VHB membrane in a circular actuator configuration undergoing separately constant, ramp and sinusoidal voltages are analyzed both theoretically and experimentally. The theoretical results indicated that DE could attain a big deformation under a small constant voltage with a longer time or under a big voltage with a shorter time. The model also showed that a higher critical stretch could be achieved by applying ramping voltage with a lower rate and the stretch magnitude under sinusoidal voltage is much larger at a relatively low frequency. Finally, experiments were designed to validate the simulation and show well consistent with the simulation results.
Robust control of dielectric elastomer diaphragm actuator for human pulse signal tracking
NASA Astrophysics Data System (ADS)
Ye, Zhihang; Chen, Zheng; Asmatulu, Ramazan; Chan, Hoyin
2017-08-01
Human pulse signal tracking is an emerging technology that is needed in traditional Chinese medicine. However, soft actuation with multi-frequency tracking capability is needed for tracking human pulse signal. Dielectric elastomer (DE) is one type of soft actuating that has great potential in human pulse signal tracking. In this paper, a DE diaphragm actuator was designed and fabricated to track human pulse pressure signal. A physics-based and control-oriented model has been developed to capture the dynamic behavior of DE diaphragm actuator. Using the physical model, an H-infinity robust control was designed for the actuator to reject high-frequency sensing noises and disturbances. The robust control was then implemented in real-time to track a multi-frequency signal, which verified the tracking capability and robustness of the control system. In the human pulse signal tracking test, a human pulse signal was measured at the City University of Hong Kong and then was tracked using DE actuator at Wichita State University in the US. Experimental results have verified that the DE actuator with its robust control is capable of tracking human pulse signal.
High thermal conductivity in soft elastomers with elongated liquid metal inclusions.
NASA Astrophysics Data System (ADS)
Kazem, Navid; Bartlett, Michael D.; Powell-Palm, Matthew J.; Huang, Xiaonan; Sun, Wenhuan; Malen, Jonathan A.; Majidi, Carmel
Soft dielectric materials typically exhibit poor heat transfer properties due to the dynamics of phonon transport, which constrains thermal conductivity (k) to decrease monotonically with decreasing elastic modulus (E) . This is limiting for wearable computing, soft robotics, and other emerging applications that require materials with both high thermal conductivity and low mechanical stiffness. Here, we overcome this constraint with a dielectric composite that exhibits an unprecedented combination of metal-like thermal conductivity, an elastic compliance similar to soft biological tissue (E <100kPa), and extreme deformations capability (>600% strain). By incorporating liquid metal (LM) microdroplets into a soft elastomer, we achieve a 25x increase in thermal conductivity (4.7 +/-0.2 W/mK) over the base polymer (0.20 +/-0.01 W/mK) under stress-free conditions and a 50x increase (9.8 +/-0.8 W/mK) when strained. This exceptional combination of thermal and mechanical properties is through the deformation of the LM inclusions to create thermally conductive pathways in situ. Moreover, these materials offer new possibilities for passive heat exchange in stretchable electronics and bio-inspired robotics, which we demonstrate through the rapid heat dissipation of an elastomer-mounted extreme high power LED lamp and a swimming soft robot. AFOSR Young Investigator Program (Mechanics of Multifunctional Materials and Microsystems; Dr. Les Lee; FA9550-13-1-0123), NASA Early Career Faculty Award (NNX14AO49G), Army Research Office Grant W911NF-14-0350.
Experimental evaluation of a Dielectric Elastomer robotic arm for space applications
NASA Astrophysics Data System (ADS)
Branz, F.; Francesconi, A.
2017-04-01
A growing interest within the space community focuses on robotics due to the large number of possible applications in many mission scenarios. On-Orbit Servicing (OOS) is arguably the most appealing implementation of space automatic systems. In several cases, OOS requires the capture of orbital objects, which is a complex and risky operation that can be successfully performed by robotic manipulators. Soft robotics, in particular, seems to be suitable for such applications given its intrinsic compliance to the operative environment. Devices based on Dielectric Elastomers (DE) can be employed for the implementation of soft robotic systems and showed promising performances. The introduction of DEs to orbital systems would represent a breakthrough in space technologies. In addition, space conditions could further advantage DE robotics, given the reduced environmental loads experienced and the longer times for operations. Nevertheless, Dielectric Elastomer Actuators (DEA) are a low-TRL (Technology Readiness Level) technology that needs to prove its maturity and suitability to space implementation. In this work, the performances of a redundant manipulator based on DEAs are presented in terms of numerical and experimental results. A 4-DoF planar manipulator has been tested in a gravity-compensated setup. The system is composed by two double-cone actuators mounted in series, each of them providing actuation of two DoF. The end-effector is an optical marker whose position is detected by a vision system. The system has a total of four joint DoF and operates in the xy horizontal plane; only the x and y positions of the end-effector are controlled. Two degrees of redundancy are obtained and exploited for the optimization of joint torques to avoid the saturation of actuators. Numerical simulations have been conducted to predict the system behaviour. The laboratory facility emulates the zero-gravity orbital environment by means of a suspending cable. Detailed experimental results are presented and exploited for the validation of control algorithm and numerical models.
NASA Astrophysics Data System (ADS)
Avendanño, Carlos G.; Martínez, Daniel
2018-07-01
We studied the transmission spectra in a one-dimensional dielectric multilayer photonic structure containing a cholesteric liquid crystal elastomer layer as a defect. For circularly polarized incident electromagnetic waves, we analyzed the optical defect modes induced in the band gap spectrum as a function of the incident angle and the axial strain applied along the same axis as the periodic medium. The physical parameters of the structure were chosen in such a way the photonic band gap of the cholesteric elastomer lies inside that of the multilayer. We found that, in addition to the defect modes associated with the thickness of the defect layer and the anisotropy of the elastic polymer, two new defect modes appear at both band edges of the cholesteric structure, whose amplitudes and spectral positions can be elastically tuned. Particularly, we showed that, at normal incidence, the defect modes shift toward the long-wavelength region with the strain; whereas, for constant elongation, such defects move toward larger frequencies with the incidence angle.
Liquid-Embedded Elastomer Electronics
NASA Astrophysics Data System (ADS)
Kramer, Rebecca; Majidi, Carmel; Park, Yong-Lae; Paik, Jamie; Wood, Robert
2012-02-01
Hyperelastic sensors are fabricated by embedding a silicone rubber film with microchannels of conductive liquid. In the case of soft tactile sensors, pressing the surface of the elastomer will deform the cross-section of underlying channels and change their electrical resistance. Soft pressure sensors may be employed in a variety of applications. For example, a network of pressure sensors can serve as artificial skin by yielding detailed information about contact pressures. This concept was demonstrated in a hyperelastic keypad, where perpendicular conductive channels form a quasi-planar network within an elastomeric matrix that registers the location, intensity and duration of applied pressure. In a second demonstration, soft curvature sensors were used for joint angle proprioception. Because the sensors are soft and stretchable, they conform to the host without interfering with the natural mechanics of motion. This marked the first use of liquid-embedded elastomer electronics to monitor human or robotic motion. Finally, liquid-embedded elastomers may be implemented as conductors in applications that call for flexible or stretchable circuitry, such as robotic origami.
Snap-through instability analysis of dielectric elastomers with consideration of chain entanglements
NASA Astrophysics Data System (ADS)
Zhu, Jiakun; Luo, Jun; Xiao, Zhongmin
2018-06-01
It is widely recognized that the extension limit of polymer chains has a significant effect on the snap-through instability of dielectric elastomers (DEs). The snap-through instability performance of DEs has been extensively studied by two limited-stretch models, i.e., the eight-chain model and Gent model. However, the real polymer networks usually have many entanglements due to the impenetrability of the network chains as well as a finite extensibility resulting from the full stretching of the polymer chains. The effects of entanglements on the snap-through instability of DEs cannot be captured by the previous two limited-stretch models. In this paper, the nonaffine model proposed by Davidson and Goulbourne is adopted to characterize the influence of entanglements and extension limit of the polymer chains. It is demonstrated that the nonaffine model is almost identical to the eight-chain model and is close to the Gent model if we ignore the effects of chain entanglements and adopt the affine assumption. The suitability of the nonaffine model to characterize the mechanical behavior of elastomers is validated by fitting the experimental results reported in the open literature. After that, the snap-through stability performance of an ideal DE membrane under equal-biaxial prestretches is studied with the nonaffine model. It is revealed that besides the prestretch and chain extension limit, the chain entanglements can markedly influence the snap-through instability and the path to failure of DEs. These results provide a more comprehensive understanding on the snap-through instability of a DE and may be helpful to guide the design of DE devices.
Steinhauser, Dagmar; Möwes, Markus; Klüppel, Manfred
2016-12-14
The rheo-dielectric response of carbon black filled elastomer melts is investigated by dielectric relaxation spectroscopy in the frequency range from 0.1 Hz up to 10 MHz during oszillatory shearing in a plate-plate rheometer. Various concentrations and types of carbon blacks dispersed in a non-crosslinked EPDM melt are considered. It is demonstrated that during heat treatment at low strain amplitude a pronounced flocculation of filler particles takes place leading to a successive increase of the shear modulus and conductivity. Followed up by a strain sweep, the filler network breaks up and both quantities decrease simultaneously with increasing strain amplitude. Two relaxation times, obtained from a Cole-Cole fit of the dielectric spectra, are identified, which both decrease strongly with increasing flocculation time. This behaviour is analyzed in the frame of fractal network models, describing the effect of structural disorder of the conducting carbon black network on the diffusive charge transport. Significant deviations from the predictions of percolation theory are observed, which are traced back to a superimposed cluster-cluster aggregation process (CCA). During flocculation, a universal scaling behaviour holds between the conductivity and the corresponding high frequency relaxation time, which fits all the measured data. The scaling exponent agrees fairly well with the prediction obtained from CCA. It is demonstrated that the underlying basic mechanism is a change of the correlation length of the filler network, i.e. the size of the fractal heterogeneities. This decreases during flocculation due to the formation of additional conductive paths, making the system more homogeneous. An addition less pronounced effect is found from nanoscopic gaps between adjacent filler particles, which decrease during flocculation. The same universal scaling behaviour, as obtained for flocculation, is found for temperature-dependent dielectric measurements of the cured crosslinked systems, which are heated from room temperature up to 200 °C. Thereby, the conductivity decreases significantly and the relaxation time increases, indicating that the filler network breaks up randomly due to the thermal expansion of the rubber matrix.
NASA Astrophysics Data System (ADS)
Steinhauser, Dagmar; Möwes, Markus; Klüppel, Manfred
2016-12-01
The rheo-dielectric response of carbon black filled elastomer melts is investigated by dielectric relaxation spectroscopy in the frequency range from 0.1 Hz up to 10 MHz during oszillatory shearing in a plate-plate rheometer. Various concentrations and types of carbon blacks dispersed in a non-crosslinked EPDM melt are considered. It is demonstrated that during heat treatment at low strain amplitude a pronounced flocculation of filler particles takes place leading to a successive increase of the shear modulus and conductivity. Followed up by a strain sweep, the filler network breaks up and both quantities decrease simultaneously with increasing strain amplitude. Two relaxation times, obtained from a Cole-Cole fit of the dielectric spectra, are identified, which both decrease strongly with increasing flocculation time. This behaviour is analyzed in the frame of fractal network models, describing the effect of structural disorder of the conducting carbon black network on the diffusive charge transport. Significant deviations from the predictions of percolation theory are observed, which are traced back to a superimposed cluster-cluster aggregation process (CCA). During flocculation, a universal scaling behaviour holds between the conductivity and the corresponding high frequency relaxation time, which fits all the measured data. The scaling exponent agrees fairly well with the prediction obtained from CCA. It is demonstrated that the underlying basic mechanism is a change of the correlation length of the filler network, i.e. the size of the fractal heterogeneities. This decreases during flocculation due to the formation of additional conductive paths, making the system more homogeneous. An addition less pronounced effect is found from nanoscopic gaps between adjacent filler particles, which decrease during flocculation. The same universal scaling behaviour, as obtained for flocculation, is found for temperature-dependent dielectric measurements of the cured crosslinked systems, which are heated from room temperature up to 200 °C. Thereby, the conductivity decreases significantly and the relaxation time increases, indicating that the filler network breaks up randomly due to the thermal expansion of the rubber matrix.
A finite element model of rigid body structures actuated by dielectric elastomer actuators
NASA Astrophysics Data System (ADS)
Simone, F.; Linnebach, P.; Rizzello, G.; Seelecke, S.
2018-06-01
This paper presents on finite element (FE) modeling and simulation of dielectric elastomer actuators (DEAs) coupled with articulated structures. DEAs have proven to represent an effective transduction technology for the realization of large deformation, low-power consuming, and fast mechatronic actuators. However, the complex dynamic behavior of the material, characterized by nonlinearities and rate-dependent phenomena, makes it difficult to accurately model and design DEA systems. The problem is further complicated in case the DEA is used to activate articulated structures, which increase both system complexity and implementation effort of numerical simulation models. In this paper, we present a model based tool which allows to effectively implement and simulate complex articulated systems actuated by DEAs. A first prototype of a compact switch actuated by DEA membranes is chosen as reference study to introduce the methodology. The commercially available FE software COMSOL is used for implementing and coupling a physics-based dynamic model of the DEA with the external structure, i.e., the switch. The model is then experimentally calibrated and validated in both quasi-static and dynamic loading conditions. Finally, preliminary results on how to use the simulation tool to optimize the design are presented.
Modeling a dielectric elastomer as driven by triboelectric nanogenerator
NASA Astrophysics Data System (ADS)
Chen, Xiangyu; Jiang, Tao; Wang, Zhong Lin
2017-01-01
By integrating a triboelectric nanogenerator (TENG) and a thin film dielectric elastomer actuator (DEA), the DEA can be directly powered and controlled by the output of the TENG, which demonstrates a self-powered actuation system toward various practical applications in the fields of electronic skin and soft robotics. This paper describes a method to construct a physical model for this integrated TENG-DEA system on the basis of nonequilibrium thermodynamics and electrostatics induction theory. The model can precisely simulate the influences from both the viscoelasticity and current leakage to the output performance of the TENG, which can help us to better understand the interaction between TENG and DEA devices. Accordingly, the established electric field, the deformation strain of the DEA, and the output current from the TENG are systemically analyzed by using this model. A comparison between real measurements and simulation results confirms that the proposed model can predict the dynamic response of the DEA driven by contact-electrification and can also quantitatively analyze the relaxation of the tribo-induced strain due to the leakage behavior. Hence, the proposed model in this work could serve as a guidance for optimizing the devices in the future studies.
Voltage-controlled radial wrinkles of a trumpet-like dielectric elastomer structure
NASA Astrophysics Data System (ADS)
Mao, Guoyong; Wu, Lei; Fu, Yimou; Liu, Junjie; Qu, Shaoxing
2018-03-01
Wrinkle is usually considered as one failure mode of membrane structure. However, it can also be harnessed in developing smart devices such as dry adhesion tape, diffraction grating, smart window, etc. In this paper, we present a method to generate voltage-controlled radial wrinkles, which are fast response and reversible, in a stretched circular dielectric elastomer (DE) membrane with boundary fixed. In the experiment, we bond a circular plate on the center of the circular membrane and then pull the DE membrane perpendicular to itself via the plate. The stretched DE membrane is a trumpet-like structure. When the stretched DE membrane is subjected to a certain voltage, wrinkles nucleate from the center of the DE membrane and propagate to the boundary as the voltage increases. We adopt a theoretical framework to analyze the nucleation of the wrinkles. A simple wavelength expression is achieved, which is only related to the geometry and the stretch of the DE membrane. Results show that the theory agrees well with the experiment. This work may help the future design of DE actuators in avoiding mechanical instability and provide a new method to generate controllable radial DE wrinkles.
NASA Astrophysics Data System (ADS)
Li, Yunlong; Oh, Inkyu; Chen, Jiehao; Hu, Yuhang
2018-06-01
Conventional membrane resonators are bulky, and once the geometries and materials are fixed in the fabricated device, the resonators’ characteristics are fixed. In this work, we introduce the active membrane, dielectric elastomer (DE), into the resonator design. Attaching a stiffer passive membrane onto the active DE membrane forms a two-layer system, which generates an out-of-plane deformation when the DE is actuated through a DC voltage applied across the thickness of the DE membrane. When an AC voltage is applied, the two-layer system can generate an out-of-plane oscillation which enables its use as membrane resonators. Both experiments and simulations are carried out to study the dynamic characteristics of the system. The resonant frequencies and mode shapes of the resonator can be tuned through the passive layer properties such as the modulus, thickness, density, and size. The effective stiffness of the DE film changes as the magnitude of the voltage applied on the film changes, which provides an active way to tune the dynamic characteristics of the two-layer resonator even after the device is set. The system is also light weight, low cost, and easy to fabricate, and has great potential in many engineering applications.
From land to water: bringing dielectric elastomer sensing to the underwater realm
NASA Astrophysics Data System (ADS)
Walker, Christopher; Anderson, Iain
2016-04-01
Since the late 1990's dielectric elastomers (DEs) have been investigated for their use as sensors. To date, there have been some impressive developments: finger displacement controls for video games and integration with medical rehabilitation devices to aid patient recovery. It is clear DE sensing is well established for dry applications, the next frontier, however, is to adapt this technology for the other 71% of the Earth's surface. With proven and perhaps improved water resistance, many new applications could be developed in areas such as diver communication and control of underwater robotics; even wearable devices on land must withstand sweat, washing, and the rain. This study investigated the influence of fresh and salt water on DE sensing. In particular, sensors have been manufactured with waterproof connections and submersed in fresh and salt water baths. Temperature and resting capacitance were recorded. Issues with the basic DE sensor have been identified and compensated for with modifications to the sensor. The electrostatic field, prior and post modification, has been modeled with ANSYS Maxwell. The aim of this investigation was to identify issues, perform modifications and propose a new sensor design suited to wet and underwater applications.
A mathematical model for an integrated self priming dielectric elastomer generator
NASA Astrophysics Data System (ADS)
Illenberger, Patrin K.; Wilson, Katherine E.; Henke, E.-F. Markus; Madawala, Udaya K.; Anderson, Iain A.
2017-04-01
Dielectric Elastomer Generators (DEG) can capture energy from natural movement sources such as wind, the tides and human locomotion. The harvested energy can be used for low power devices such as wireless sensor nodes and wearable electronics. A challenge for low power DEG is overcoming the losses associated with charge management. A circuit which can do this exists: the Self Priming Circuit (SPC) which consists of diodes and capacitors. The SPC is connected in parallel to the DEG where it transfers charge onto/o_ the DEG based on changes in the DEG capacitance. Modelling and experimental validation of the SPC have been performed in the past, allowing design and implementation of effective SPCs which match a particular DEG. While the SPC is effective, it is still an external circuit which adds additional mass and cost to the DEG. By splitting the DEG into separate capacitors and using them to build an SPC, the Integrated SPC (I-SPC) can be realized. This reduces the components required to build a SPC/DEG and improves the performance. This paper presents a mathematical model with experimental data of a first order I-SPC. Additionally, comparisons between the SPC and I-SPC are drawn.
NASA Astrophysics Data System (ADS)
Hill, Marc; Rizzello, Gianluca; Seelecke, Stefan
2017-08-01
Due to their many features including lightweight and low energy consumption, dielectric elastomer (DE) membrane actuators are of interest for a number of industrial applications, such as pumping systems or valve control units. In particular, the use of DEs in valve control units offers advantages over traditional solenoid valves, including lower power requirements and relative simplicity in achieving proportional control. Additionally, DEs generate low thermal dissipation and are capable of virtually silent operation. The contribution of this work is the development of a new valve system based on a circular DE membrane pre-loaded with a linear spring. The valve is designed for pressurized air and operates by actuating a lever mechanism that opens and closes an outlet port. After presenting the operating principle and system design, several experiments are presented to compare actuator force, stroke, and dissipated energy for several pressure differentials and associated volume flows. It is observed that the DE-driven valve achieves a performance similar to a solenoid-based valve, while requiring a significantly lower amount of input energy. In addition, it is shown that DE-membrane valves can be controlled proportionally by simply adjusting the actuator voltage.
Fluid electrodes for submersible robotics based on dielectric elastomer actuators
NASA Astrophysics Data System (ADS)
Christianson, Caleb; Goldberg, Nathaniel; Cai, Shengqiang; Tolley, Michael T.
2017-04-01
Recently, dielectric elastomer actuators (DEAs) have gathered interest for soft robotics due to their low cost, light weight, large strain, low power consumption, and high energy density. However, developing reliable, compliant electrodes for DEAs remains an ongoing challenge due to issues with fabrication, uniformity of the conductive layer, and mechanical stiffening of the actuators caused by conductive materials with large Young's moduli. In this work, we present a method for preparing, patterning, and utilizing conductive fluid electrodes. Further, when we submerse the DEAs in a bath containing a conductive fluid connected to ground, the bath serves as a second electrode, obviating the need for depositing a conductive layer to serve as either of the electrodes required of most DEAs. When we apply a positive electrical potential to the conductive fluid in the actuator with respect to ground, the electric field across the dielectric membrane causes charge carriers in the solution to apply an electrostatic force on the membrane, which compresses the membrane and causes the actuator to deform. We have used this process to develop a tethered submersible robot that can swim in a tank of saltwater at a maximum measured speed of 9.2 mm/s. Since saltwater serves as the electrode, we overcome buoyancy issues that may be a challenge for pneumatically actuated soft robots and traditional, rigid robotics. This research opens the door to low-power underwater robots for search and rescue and environmental monitoring applications.
Liu, Shanliangzi; Sun, Xiaoda; Hildreth, Owen J; Rykaczewski, Konrad
2015-03-07
Room temperature liquid-metal microfluidic devices are attractive systems for hyperelastic strain sensing. These liquid-phase electronics are intrinsically soft and retain their functionality even when stretched to several times their original length. Currently two types of liquid metal-based strain sensors exist for in-plane measurements: single-microchannel resistive and two-microchannel capacitive devices. With a winding serpentine channel geometry, these sensors typically have a footprint of about a square centimeter. This large footprint of an individual device limits the number of sensors that can be embedded into, for example, electronic fabric or skin. In this work we introduce an alternative capacitor design consisting of two liquid metal electrodes separated by a liquid dielectric material within a single straight channel. Using a liquid insulator instead of a solid elastomer enables us to tailor the system's capacitance by selecting high or low dielectric constant liquids. We quantify the effects of the electrode geometry including the diameter, spacing, and meniscus shape as well as the dielectric constant of the insulating liquid on the overall system's capacitance. We also develop a procedure for fabricating the two-liquid capacitor within a single straight polydiemethylsiloxane channel and demonstrate that this device can have about 25 times higher capacitance per sensor's base area when compared to two-channel liquid metal capacitors. Lastly, we characterize the response of this compact device to strain and identify operational issues arising from complex hydrodynamics near liquid-liquid and liquid-elastomer interfaces.
Viscoelastic effects on frequency tuning of a dielectric elastomer membrane resonator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Jianyou; Jiang, Liying, E-mail: lyjiang@eng.uwo.ca; Khayat, Roger E.
2014-03-28
As a recent application of dielectric elastomers (DEs), DE resonators have become an alternative to conventional silicon-based resonators used in MEMS and have attracted much interest from the research community. However, most existing modeling works for the DE resonators ignore the intrinsic viscoelastic effect of the material that may strongly influence their dynamic performance. Based on the finite-deformation viscoelasticity theory for dielectrics, this paper theoretically examines the in-plane oscillation of a DE membrane resonator to demonstrate how the material viscoelasticity affects the actuation and frequency tuning processes of the resonator. From the simulation results, it is concluded that not onlymore » the applied voltage can change the natural frequency of the resonator, but also the inelastic deformation contributes to frequency tuning. Due to the viscoelasticity of the material, the electrical loading rate influences the actuation process of the DE resonator, while it has little effect on the final steady frequency tuned by the prescribed voltage within the safety range. With the consideration of the typical failure modes of the resonator and the evolution process of the material, the tunable frequency range and the safe range of the applied voltage of the DE membrane resonator with different dimension parameters are determined in this work, which are found to be dependent on the electrical loading rate. This work is expected to provide a better understanding on the frequency tuning of viscoelastic DE membrane resonators and a guideline for the design of DE devices.« less
Zhang, Zhi; Chen, Ying; Debeli, Dereje Kebebew; Guo, Jian Sheng
2018-04-18
The trends toward flexible and wearable electronic devices give rise to the attention of triboelectric nanogenerators (TENGs) which can gather tiny energy from human body motions. However, to accommodate the needs, wearable electronics are still facing challenges for choosing a better dielectric material to improve their performance and practicability. As a kind of synthetic rubber, the thermoplastic elastomer (TPE) contains many advantages such as lightweight, good flexibility, high tear strength, and friction resistance, accompanied by good adhesion with fabrics, which is an optimal candidate of dielectric materials. Herein, a novel nanoparticle (NP)-doped TPE composite fabric-based TENG (TF-TENG) has been developed, which operates based on the NP-doped TPE composite fabric using a facile coating method. The performances of the TENG device are systematically investigated under various thicknesses of TPE films, NP kinds, and doping mass. After being composited with a Cu NP-doped TPE film, the TPE composite fabric exhibited superior elastic behavior and good bending property, along with excellent flexibility. Moreover, a maximum output voltage of 470 V, a current of 24 μA, and a power of 12 mW under 3 MΩ can be achieved by applying a force of 60 N on the TF-TENG. More importantly, the TF-TENG can be successfully used to harvest biomechanical energy from human body and provides much more comfort. In general, the TF-TENG has great application prospects in sustainable wearable devices owing to its lightweight, flexibility, and high mechanical properties.
Elastin: a representative ideal protein elastomer.
Urry, D W; Hugel, T; Seitz, M; Gaub, H E; Sheiba, L; Dea, J; Xu, J; Parker, T
2002-01-01
During the last half century, identification of an ideal (predominantly entropic) protein elastomer was generally thought to require that the ideal protein elastomer be a random chain network. Here, we report two new sets of data and review previous data. The first set of new data utilizes atomic force microscopy to report single-chain force-extension curves for (GVGVP)(251) and (GVGIP)(260), and provides evidence for single-chain ideal elasticity. The second class of new data provides a direct contrast between low-frequency sound absorption (0.1-10 kHz) exhibited by random-chain network elastomers and by elastin protein-based polymers. Earlier composition, dielectric relaxation (1-1000 MHz), thermoelasticity, molecular mechanics and dynamics calculations and thermodynamic and statistical mechanical analyses are presented, that combine with the new data to contrast with random-chain network rubbers and to detail the presence of regular non-random structural elements of the elastin-based systems that lose entropic elastomeric force upon thermal denaturation. The data and analyses affirm an earlier contrary argument that components of elastin, the elastic protein of the mammalian elastic fibre, and purified elastin fibre itself contain dynamic, non-random, regularly repeating structures that exhibit dominantly entropic elasticity by means of a damping of internal chain dynamics on extension. PMID:11911774
Fractional viscoelasticity of soft elastomers and auxetic foams
NASA Astrophysics Data System (ADS)
Solheim, Hannah; Stanisauskis, Eugenia; Miles, Paul; Oates, William
2018-03-01
Dielectric elastomers are commonly implemented in adaptive structures due to their unique capabilities for real time control of a structure's shape, stiffness, and damping. These active polymers are often used in applications where actuator control or dynamic tunability are important, making an accurate understanding of the viscoelastic behavior critical. This challenge is complicated as these elastomers often operate over a broad range of deformation rates. Whereas research has demonstrated success in applying a nonlinear viscoelastic constitutive model to characterize the behavior of Very High Bond (VHB) 4910, robust predictions of the viscoelastic response over the entire range of time scales is still a significant challenge. An alternative formulation for viscoelastic modeling using fractional order calculus has shown significant improvement in predictive capabilities. While fractional calculus has been explored theoretically in the field of linear viscoelasticity, limited experimental validation and statistical evaluation of the underlying phenomena have been considered. In the present study, predictions across several orders of magnitude in deformation rates are validated against data using a single set of model parameters. Moreover, we illustrate the fractional order is material dependent by running complementary experiments and parameter estimation on the elastomer VHB 4949 as well as an auxetic foam. All results are statistically validated using Bayesian uncertainty methods to obtain posterior densities for the fractional order as well as the hyperelastic parameters.
NASA Astrophysics Data System (ADS)
Jasna, V. C.; Ramesan, M. T.
2017-06-01
Nanocomposites based on SBR with different content of manganous tungstate nanoparticles were prepared and characterized by FTIR, UV-visible spectroscopy, XRD, SEM, TGA, DSC and impedance analysis. The interaction between nanoparticles and the elastomer was clear from the shift in peaks of UV and FTIR. XRD and SEM analysis showed the uniform arrangement of nanoparticles in SBR matrix. Glass transition temperature, thermal stability and dielectric properties of composites were enhanced by the addition of nanoparticles. Sorption studies of nanocomposites were done in aromatic solvents at different temperature. Sorption data obtained were used to estimate the thermodynamic properties.
NASA Astrophysics Data System (ADS)
Krishnan, Arjun Sitaraman
Block copolymers have received significant research attention in recent times due to their ability to spontaneously self-assemble into a variety of nanostructures. Thermoplastic elastomers composed of styrenic triblock copolymers are of great importance in applications such as adhesives and vibration dampening due to their shape memory, resilience and facile processing. The swelling of these polymers by adding midblock selective solvents or oligomers provides an easy route by which to modify the morphology and mechanical behavior of these systems. We first consider a ternary blend of a poly[styrene- b-(ethylene-co-butylene)-b-styrene] triblock copolymer (SEBS) and mixtures of two midblock selective co-solvents, with significantly different physical states. We use dynamic rheology to study the viscoelastic response of a wide variety of systems under oscillatory shear. Frequency spectra acquired at ambient temperature display viscoelastic behavior that shifts in the frequency domain depending on the co-solvent composition. For each copolymer concentration, all the frequency data can be shifted by time-composition superpositioning (tCS) to yield a single master-curve. tCS fails at low frequencies due to presence of endblock pullout, which is a fundamentally different relaxation process from segmental relaxation of the midblock. As an emerging technology, we examine SEBS-oil gels as dielectric elastomers. Dielectric elastomers constitute one class of electroactive polymers (EAPs), polymeric materials that respond to an electric stimulus by changing their macroscopic dimensions, thereby converting electrical energy into mechanical work. We use standard configuration of EAP devices involving stretching, or "prestraining," the elastomer film biaxially. The effect of experimental parameters such as film thickness and amount of prestrain on the (electro)mechanical properties of the material become apparent by recasting as-obtained electroactuation data into compressive electromechanical stress-strain curves. The ultimate dielectric properties of the specimen are strongly correlated with specimen composition and experimental conditions. We shed light on the effect of biaxial prestrain on copolymer morphology. We use small-angle X-ray scattering (SAXS) to probe the nanostructure of SEBS-oil gels by systematically changing the concentration of polymer and the biaxial prestrain. Azimuthally integrated intensity profiles are used to ascertain the extent of deformation of polystyrene microdomains. The structure factor data correlates with prestrain, and is fitted using the Percus-Yevick approximation for interacting spheres. While a hard sphere interaction model is sufficient for unstrained gels, the additional attractive potentials observed in stretched samples are indicative of soft coronal interactions due to interpenetration brought about by strain.
Dual band metamaterial perfect absorber based on artificial dielectric "molecules".
Liu, Xiaoming; Lan, Chuwen; Li, Bo; Zhao, Qian; Zhou, Ji
2016-07-13
Dual band metamaterial perfect absorbers with two absorption bands are highly desirable because of their potential application areas such as detectors, transceiver system, and spectroscopic imagers. However, most of these dual band metamaterial absorbers proposed were based on resonances of metal patterns. Here, we numerically and experimentally demonstrate a dual band metamaterial perfect absorber composed of artificial dielectric "molecules" with high symmetry. The artificial dielectric "molecule" consists of four "atoms" of two different sizes corresponding to two absorption bands with near unity absorptivity. Numerical and experimental absorptivity verify that the dual-band metamaterial absorber is polarization insensitive and can operate in wide-angle incidence.
NASA Astrophysics Data System (ADS)
Hau, S.; Bruch, D.; Rizzello, G.; Motzki, P.; Seelecke, S.
2018-07-01
There are two major categories of dielectric elastomer actuators (DEAs), which differ from the way in which the actuation is exploited: stack DEAs, using the thickness compression, and membrane DEAs, which exploit the expansion in area. In this work we focus on a specific type of membrane DEAs, i.e., silicone-based strip-in-plane (SIP) DEAs with screen printed electrodes. The performance of such actuators strongly depends on their geometry and on the adopted mechanical biasing system. Typically, the biasing is based on elastomer pre-stretch or on dead loads, which results in relatively low actuation strain. Biasing systems characterized by a negative rate spring have proven to significantly increase the performance of circular out-of-plane DEAs. However, this kind of biasing has never been systematically applied to silicone SIP DEAs. In this work, the biasing design based on negative rate springs is extended to strip DEAs as well, allowing to improve speed, strain, and force of the resulting actuator. At first, the DEAs are characterized under electrical and mechanical loading. Afterwards, two actuator systems are studied and compared in terms of actuation strain, force output, and actuation speed. In a first design stage, the DEA is coupled with a linear spring. Subsequently, the membrane is loaded with a combination of linear and nonlinear spring (working in a negative stiffness region). The resulting stroke output of the second systems is more than 9 times higher in comparison to the first one. An actuation strain of up to 45% (11.2 millimeter) and a force output of 0.38 Newton are measured. A maximum speed of 0.29 m s‑1 is achieved, which is about 60 times faster than the one typically measured for similar systems based on VHB.
Nguyen, Caroline Tram; Chambers, Mark S; Powers, John M; Kiat-Amnuay, Sudarat
2013-06-01
There are reports of dissatisfaction with color instability and reduced lifetime of extraoral maxillofacial prostheses. Previous studies showed that UV mineral-based light-protecting agent (LP) improved color stability of MDX4-4210/Type A silicone elastomer. However, effects of this agent and opacifiers on mechanical properties of the elastomer are unknown. The purpose of this study was to evaluate the effect of 2 commonly used opacifiers and LP, a new opacifier, when combined with pigments on the mechanical properties of MDX4-4210/Type A silicone elastomer before and after artificial aging. Two commonly used opacifiers, titanium white dry pigment (TW) and silicone intrinsic white (SW) and LP were each combined with MDX4-4210/type A. Artists' oil pigment was then combined with the LP and TW groups, and silicone intrinsic pigments were combined with the SW group with 5 colors (no pigment=control, red, yellow, blue, or a combination of the 3 pigments). Ten dumbbell-shaped and 10 trouser-shaped specimens of each opacifier + pigment mixture, plus a control group with no opacifier and no pigment, were made for a total of 320 specimens. Half of the specimens (n=5) were aged in a chamber at 450 kJ/m(2). Specimens were tested for hardness (ASTM D2240), tensile strength (ASTM D412), tear strength (ASTM D624), and percentage elongation in a universal testing machine. A 3-way ANOVA and the Fisher PLSD test were performed (α=.05) for each mechanical property. After accelerated aging, values of Shore A hardness were the lowest for LP with all 5 pigments and the control, followed by SW and TW (P<.001). After accelerated aging, tear strength, tensile strength, and elongation decreased significantly (P<.001) for LP, whereas changes for SW and TW varied depending on the pigment. The mechanical properties of specimens with the light-protecting opacifier were adversely affected after being subjected to artificial aging. SW and TW preserved the mechanical properties of silicone in this study. Copyright © 2013 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Töpper, Tino; Wohlfender, Fabian; Weiss, Florian; Osmani, Bekim; Müller, Bert
2016-04-01
The reduction the operation voltage has been the key challenge to realize of dielectric elastomer actuators (DEA) for many years - especially for the application fields of robotics, lens systems, haptics and future medical implants. Contrary to the approach of manipulating the dielectric properties of the electrically activated polymer (EAP), we intend to realize low-voltage operation by reducing the polymer thickness to the range of a few hundred nanometers. A study recently published presents molecular beam deposition to reliably grow nanometer-thick polydimethylsiloxane (PDMS) films. The curing of PDMS is realized using ultraviolet (UV) radiation with wavelengths from 180 to 400 nm radicalizing the functional side and end groups. The understanding of the mechanical properties of sub-micrometer-thin PDMS films is crucial to optimize DEAs actuation efficiency. The elastic modulus of UV-cured spin-coated films is measured by nano-indentation using an atomic force microscope (AFM) according to the Hertzian contact mechanics model. These investigations show a reduced elastic modulus with increased indentation depth. A model with a skin-like SiO2 surface with corresponding elastic modulus of (2.29 +/- 0.31) MPa and a bulk modulus of cross-linked PDMS with corresponding elastic modulus of (87 +/- 7) kPa is proposed. The surface morphology is observed with AFM and 3D laser microscopy. Wrinkled surface microstructures on UV-cured PDMS films occur for film thicknesses above (510 +/- 30) nm with an UV-irradiation density of 7.2 10-4 J cm-2 nm-1 at a wavelength of 190 nm.
NASA Astrophysics Data System (ADS)
Shian, Samuel; Kjeer, Peter; Clarke, David R.
2018-03-01
When a voltage is applied to a percolative, mechanically compliant mat of carbon nanotubes (CNTs) on a smooth elastomer bilayer attached to an ITO coated glass substrate, the in-line optical transmittance decreases with increasing voltage. Two regimes of behavior have been identified based on optical scattering, bright field optical microscopy, and confocal optical microscopy. In the low field regime, the electric field produces a spatially inhomogeneous surface deformation of the elastomer that causes local variations in optical refraction and modulates the light transmittance. The spatial variation is associated with the distribution of the CNTs over the surface. At higher fields, above a threshold voltage, an array of pits in the surface form by a nucleation and growth mechanism and these also scatter light. The formation of pits, and creases, in the thickness of the elastomer, is due to a previously identified electro-mechanical surface instability. When the applied voltage is decreased from its maximum, the transmittance returns to its original value although there is a transmittance hysteresis and a complicated time response. When the applied voltage exceeds the threshold voltage, there can be remnant optical contrast associated with creasing of the elastomer and the recovery time appears to be dependent on local jamming of CNTs in areas where the pits formed. A potential application of this work as an electrically tunable privacy window or camouflaging devices is demonstrated.
Designing components using smartMOVE electroactive polymer technology
NASA Astrophysics Data System (ADS)
Rosenthal, Marcus; Weaber, Chris; Polyakov, Ilya; Zarrabi, Al; Gise, Peter
2008-03-01
Designing components using SmartMOVE TM electroactive polymer technology requires an understanding of the basic operation principles and the necessary design tools for integration into actuator, sensor and energy generation applications. Artificial Muscle, Inc. is collaborating with OEMs to develop customized solutions for their applications using smartMOVE. SmartMOVE is an advanced and elegant way to obtain almost any kind of movement using dielectric elastomer electroactive polymers. Integration of this technology offers the unique capability to create highly precise and customized motion for devices and systems that require actuation. Applications of SmartMOVE include linear actuators for medical, consumer and industrial applications, such as pumps, valves, optical or haptic devices. This paper will present design guidelines for selecting a smartMOVE actuator design to match the stroke, force, power, size, speed, environmental and reliability requirements for a range of applications. Power supply and controller design and selection will also be introduced. An overview of some of the most versatile configuration options will be presented with performance comparisons. A case example will include the selection, optimization, and performance overview of a smartMOVE actuator for the cell phone camera auto-focus and proportional valve applications.
Soft mobile robots driven by foldable dielectric elastomer actuators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Wenjie; Liu, Fan; Ma, Ziqi
A cantilever beam with elastic hinge pulled antagonistically by two dielectric elastomer (DE) membranes in tension forms a foldable actuator if one DE membrane is subject to a voltage and releases part of tension. Simply placing parallel rigid bars on the prestressed DE membranes results in enhanced actuators working in a pure shear state. We report design, analysis, fabrication, and experiment of soft mobile robots that are moved by such foldable DE actuators. We describe systematic measurement of the foldable actuators and perform theoretical analysis of such actuators based on minimization of total energy, and a good agreement is achievedmore » between model prediction and measurement. We develop two versions of prototypes of soft mobile robots driven either by two sets of DE membranes or one DE membrane and elastic springs. We demonstrate locomotion of these soft mobile robots and highlight several key design parameters that influence locomotion of the robots. A 45 g soft robot driven by a cyclic triangle voltage with amplitude 7.4 kV demonstrates maximal stroke 160 mm or maximal rolling velocity 42 mm/s. The underlying mechanics and physics of foldable DE actuators can be leveraged to develop other soft machines for various applications.« less
Eliminating electromechanical instability in dielectric elastomers by employing pre-stretch
NASA Astrophysics Data System (ADS)
Jiang, Liang; Betts, Anthony; Kennedy, David; Jerrams, Stephen
2016-07-01
Electromechanical instability (EMI) is one of most common failure modes for dielectric elastomers (DEs). It has been reported that pre-stretching a DE sample can suppress EMI due to strain stiffening taking place for larger strains and a higher elastic modulus are achieved at high stretch ratios when a voltage is applied to the material. In this work, the influence of equi-biaxial stretch on DE secant modulus was studied using VHB 4910 and silicone rubber (SR) composites containing barium titanate (BaTiO3, BT) particles and also dopamine coated BT (DP-BT) particles. The investigation of equi-biaxial deformation and EMI failure for VHB 4910 was undertaken by introducing a voltage-stretch function. The results showed that EMI was suppressed by equi-biaxial pre-stretch for all the DEs fabricated and tested. The stiffening properties of the DE materials were also studied with respect to the secant modulus. Furthermore, a voltage-induced strain of above 200% was achieved for the polyacrylate film by applying a pre-stretch ratio of 2.0 without EMI occurring. However, a maximum voltage-induced strain in the polyacrylate film of 78% was obtained by the SR/20 wt% DP-BT composite for a lower applied pre-stretch ratio of 1.6 and again EMI was eliminated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buchberger, G., E-mail: erda.buchberger@jku.at; Hauser, B.; Jakoby, B.
Dielectric elastomer minimum energy structures (DEMES) are soft electronic transducers and energy harvesters with potential for consumer goods. The temporal change in their electromechanical properties is of major importance for engineering tasks. Therefore, we study acrylic DEMES by impedance spectroscopy and by optical methods for a total time period of approx. 4.5 months. We apply either compliant electrodes from carbon black particles only or fluid electrodes from a mixture of carbon black particles and silicone oil. From the measurement data, the equivalent series capacitances and resistances as well as the bending angles of the transducers are obtained. We find thatmore » the equivalent series capacitances change in average between −12 %/1000 h and −4.0 %/1000 h, while the bending angles decrease linearly with slopes ranging from −15 %/1000 h to −7 %/1000 h. Transducers with high initial bending angles and electrodes from carbon black particles show the smallest changes of the electromechanical characteristics. The capacitances decrease faster for DEMES with fluid electrodes. Some DEMES of this type reveal huge and unpredictable fluctuations of the resistances over time due to the ageing of the contacts. Design guidelines for DEMES follow directly from the observed transient changes of their electromechanical performance.« less
Opportunities of hydrostatically coupled dielectric elastomer actuators for haptic interfaces
NASA Astrophysics Data System (ADS)
Carpi, Federico; Frediani, Gabriele; De Rossi, Danilo
2011-04-01
As a means to improve versatility and safety of dielectric elastomer actuators (DEAs) for several fields of application, so-called 'hydrostatically coupled' DEAs (HC-DEAs) have recently been described. HC-DEAs are based on an incompressible fluid that mechanically couples a DE-based active part to a passive part interfaced to the load, so as to enable hydrostatic transmission. This paper presents ongoing developments of HC-DEAs and potential applications in the field of haptics. Three specific examples are considered. The first deals with a wearable tactile display used to provide users with tactile feedback during electronic navigation in virtual environments. The display consists of HCDEAs arranged in contact with finger tips. As a second example, an up-scaled prototype version of an 8-dots refreshable cell for dynamic Braille displays is shown. Each Braille dot consists of a miniature HC-DEA, with a diameter lower than 2 mm. The third example refers to a device for finger rehabilitation, conceived to work as a sort of active version of a rehabilitation squeezing ball. The device is designed to dynamically change its compliance according to an electric control. The three examples of applications intend to show the potential of the new technology and the prospective opportunities for haptic interfaces.
Energy harvesting for dielectric elastomer sensing
NASA Astrophysics Data System (ADS)
Anderson, Iain A.; Illenberger, Patrin; O'Brien, Ben M.
2016-04-01
Soft and stretchy dielectric elastomer (DE) sensors can measure large strains on robotic devices and people. DE strain measurement requires electric energy to run the sensors. Energy is also required for information processing and telemetering of data to phone or computer. Batteries are expensive and recharging is inconvenient. One solution is to harvest energy from the strains that the sensor is exposed to. For this to work the harvester must also be wearable, soft, unobtrusive and profitable from the energy perspective; with more energy harvested than used for strain measurement. A promising way forward is to use the DE sensor as its own energy harvester. Our study indicates that it is feasible for a basic DE sensor to provide its own power to drive its own sensing signal. However telemetry and computation that are additional to this will require substantially more power than the sensing circuit. A strategy would involve keeping the number of Bluetooth data chirps low during the entire period of energy harvesting and to limit transmission to a fraction of the total time spent harvesting energy. There is much still to do to balance the energy budget. This will be a challenge but when we succeed it will open the door to autonomous DE multi-sensor systems without the requirement for battery recharge.
A Highly Stretchable and Robust Non-fluorinated Superhydrophobic Surface.
Ju, Jie; Yao, Xi; Hou, Xu; Liu, Qihan; Zhang, Yu Shrike; Khademhosseini, Ali
2017-08-21
Superhydrophobic surface simultaneously possessing exceptional stretchability, robustness, and non-fluorination is highly desirable in applications ranging from wearable devices to artificial skins. While conventional superhydrophobic surfaces typically feature stretchability, robustness, or non-fluorination individually, co-existence of all these features still remains a great challenge. Here we report a multi-performance superhydrophobic surface achieved through incorporating hydrophilic micro-sized particles with pre-stretched silicone elastomer. The commercial silicone elastomer (Ecoflex) endowed the resulting surface with high stretchability; the densely packed micro-sized particles in multi-layers contributed to the preservation of the large surface roughness even under large strains; and the physical encapsulation of the microparticles by silicone elastomer due to the capillary dragging effect and the chemical interaction between the hydrophilic silica and the elastomer gave rise to the robust and non-fluorinated superhydrophobicity. It was demonstrated that the as-prepared fluorine-free surface could preserve the superhydrophobicity under repeated stretching-relaxing cycles. Most importantly, the surface's superhydrophobicity can be well maintained after severe rubbing process, indicating wear-resistance. Our novel superhydrophobic surface integrating multiple key properties, i.e. stretchability, robustness, and non-fluorination, is expected to provide unique advantages for a wide range of applications in biomedicine, energy, and electronics.
Electrically tunable soft solid lens inspired by reptile and bird accommodation.
Pieroni, Michael; Lagomarsini, Clara; De Rossi, Danilo; Carpi, Federico
2016-10-26
Electrically tunable lenses are conceived as deformable adaptive optical components able to change focus without motor-controlled translations of stiff lenses. In order to achieve large tuning ranges, large deformations are needed. This requires new technologies for the actuation of highly stretchable lenses. This paper presents a configuration to obtain compact tunable lenses entirely made of soft solid matter (elastomers). This was achieved by combining the advantages of dielectric elastomer actuation (DEA) with a design inspired by the accommodation of reptiles and birds. An annular DEA was used to radially deform a central solid-body lens. Using an acrylic elastomer membrane, a silicone lens and a simple fabrication method, we assembled a tunable lens capable of focal length variations up to 55%, driven by an actuator four times larger than the lens. As compared to DEA-based liquid lenses, the novel architecture halves the required driving voltages, simplifies the fabrication process and allows for a higher versatility in design. These new lenses might find application in systems requiring large variations of focus with low power consumption, silent operation, low weight, shock tolerance, minimized axial encumbrance and minimized changes of performance against vibrations and variations in temperature.
Hot air vulcanization of rubber profiles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerlach, J.
1995-07-01
Elastomer profiles are deployed in quantity by the automobile industry as seals and wateproofing in coachwork. The high standards demanded by the industry; improvement in weather prediction, noise reduction, restriction of tolerances, together with powerful demand for EPDM force the rubber processing industry into development, particularly of elastomers. Complex proofing systems must also be achieved with extremely complicated profile forms. All too often such profiles have an extremely large surface together with a low cross-section density. They frequently consist of two or three rubber compounds and are steel reinforced. Sometimes they are flocked and coated with a low friction finish.more » Such high-tech seals require an adjustment of the vulcanization method. The consistent trend in the nineties towards lower quantities of elastomer per sealing unit and the dielectric factor, especially with EPDM, has brought an old fashioned vulcanization method once more to the fore, a method developed over the past years to an extremely high standard, namely the hot-air method. This paper describes various vulcanization and curing methods and their relative merits and disadvantages, the Gerlach hot-air concept, the hot air installation concept, and energy saving and efficiency afforded by this technique. 4 figs.« less
Influence of particle arrangement on the permittivity of an elastomeric composite
NASA Astrophysics Data System (ADS)
Tsai, Peiying J.; Nayak, Suchitra; Ghosh, Suvojit; Puri, Ishwar K.
2017-01-01
Elastomers are used as dielectric layers contained between the parallel conductive plates of capacitors. The introduction of filler particles into an elastomer changes its permittivity ɛ. When particle organization in a composite is intentionally varied, this alters its capacitance. Using numerical simulations, we examine how conductive particle chains introduced into polydimethylsiloxane (PDMS) alter ɛ. The effects of filler volume fraction ψ, interparticle d and interchain spacing a, zigzag angle θ between adjacent particles and overall chain orientation, particle size r, and clearance h between particles and the conductive plates are characterized. When filler particles are organized into chainlike structures rather than being just randomly distributed in the elastomer matrix, ɛ increases by as much as 85%. When particles are organized into chainlike forms, ɛ increases with increasing ψ and a, but decreases with increasing d and θ. A composite containing smaller particles has a higher ɛ when ψ <9 % while larger particles provide greater enhancement when ψ is larger than that value. To enhance ɛ, adjacent particles must be interconnected and the overall chain direction should be oriented perpendicular to the conductive plates. These results are useful for additive manufacturing on electrical applications of elastomeric composites.
Dielectric Elastomer Actuated Systems and Methods
NASA Technical Reports Server (NTRS)
Dubowsky, Steven (Inventor); Hafez, Moustapha (Inventor); Lichter, Matthew (Inventor); Weiss, Peter (Inventor); Wingert, Andreas (Inventor)
2008-01-01
The system of the present invention includes an actuator having at least two electrodes, an elastomeric dielectric film disposed between the two electrodes, and a frame attached to the elastomeric dielectric film. The frame provides a linear actuation force characteristic over a displacement range. The displacement range is preferably the stroke of the actuator. The displacement range can be about 5 mm and greater. Further, the frame can include a plurality of configurations, for example, at least a rigid members coupled to a flexible member wherein the frame provides an elastic restoring force. In preferred embodiments, the rigid member can be, but is not limited to, curved beams, parallel beams, rods and plates. In a preferred embodiment the actuator can further include a passive element disposed between two flexible members such as, for example, links to tune a stiffness characteristic of the actuator. The passive element can be a bi-stable element. Further, the actuator can include a plurality of layers of the elastomeric dielectric film integrated into the frame. The elastomeric film can be made of different materials such as, for example, acrylic, silicone and latex.
NASA Astrophysics Data System (ADS)
Reitelshöfer, Sebastian; Göttler, Michael; Schmidt, Philip; Treffer, Philipp; Landgraf, Maximilian; Franke, Jörg
2016-04-01
In this contribution we present recent findings of our efforts to qualify the so called Aerosol-Jet-Printing process as an additive manufacturing approach for stacked dielectric elastomer actuators (DEA). With the presented system we are able to print the two essential structural elements dielectric layer and electrode in one machine. The system is capable of generating RTV-2 silicone layers made of Wacker Elastosil P 7670. Therefore, two aerosol streams of both precursor components A and B are generated in parallel and mixed in one printing nozzle that is attached to a 4-axis kinematic. At maximum speed the printing of one circular Elastosil layer with a calculated thickness of 10 μm and a diameter of 1 cm takes 12 seconds while the process keeps stable for 4.5 hours allowing a quite high overall material output and the generation of numerous silicone layers. By adding a second printing nozzle and the infrastructure to generate a third aerosol, the system is also capable of printing inks with conductive particles in parallel to the silicone. We have printed a reduced graphene oxide (rGO) ink prepared in our lab to generate electrodes on VHB 4905, Elastosil foils and finally on Aerosol-Jet-Printed Elastosil layers. With rGO ink printed on Elastosil foil, layers with a 4-point measured sheet resistance as low as 4 kΩ can be realized leaving room for improving the electrode printing time, which at the moment is not as good as the quite good time-frame for printing the silicone layers. Up to now we have used the system to print a fully functional two-layer stacked DEA to demonstrate the principle of continuously 3D printing actuators.
Artificial dielectric polarizing-beamsplitter and isolator for the terahertz region.
Mendis, Rajind; Nagai, Masaya; Zhang, Wei; Mittleman, Daniel M
2017-07-19
We demonstrate a simple and effective strategy for implementing a polarizing beamsplitter for the terahertz spectral region, based on an artificial dielectric medium that is scalable to a range of desired frequencies. The artificial dielectric medium consists of a uniformly spaced stack of metal plates, which is electromagnetically equivalent to a stacked array of parallel-plate waveguides. The operation of the device relies on both the lowest-order, transverse-electric and transverse-magnetic modes of the parallel-plate waveguide. This is in contrast to previous work that relied solely on the transverse-electric mode. The fabricated polarizing beamsplitter exhibits extinction ratios as high as 42 dB along with insertion losses as low as 0.18 dB. Building on the same idea, we also demonstrate an isolator with non-reciprocal transmission, providing high isolation and low insertion loss at a select design frequency. The performance of our isolator far exceeds that of other experimentally demonstrated terahertz isolators, and indeed, even rivals that of commercially available isolators for optical wavelengths. Because these waveguide-based artificial dielectrics are low loss, inexpensive, and easy to fabricate, this approach offers a promising new route for polarization control of free-space terahertz beams.
Liquid lens driven by elastomer actuator
NASA Astrophysics Data System (ADS)
Jin, Boya; Lee, Ji-Hyeon; Zhou, Zuowei; Lee, Gi-Bbeum; Ren, Hongwen; Nah, Changwoon
2015-09-01
By filling a liquid droplet in the hole of a dielectric elastomer (DE) film directly, we prepared two small liquid lenses. The aperture of one lens is macro size and the other is micro size. The liquid droplet in each hole of the DE film exhibits a lens character due to its biconvex shape. In relaxed state, the focal length of each liquid droplet is the longest. When a sufficiently high DC voltage is applied, the diameter of each DE hole is decreased by the generated Maxwell stress, causing the curvature of its droplet to increase. As a result, the focal length of each lens is reduced. Here the DE film functions as an actuator. In contrast to previous approaches, our miniature liquid lenses possess the advantages of simple fabrication, fast response time (~ 540 ms), and high optical performance (~ 114 lp/mm). Moreover, the micro-sized liquid lens presents good mechanical stability.
Jung, Soon-Won; Koo, Jae Bon; Park, Chan Woo; Na, Bock Soon; Oh, Ji-Young; Lee, Sang Seok
2015-10-01
In this study, stretchable organic-inorganic hybrid thin-film transistors (TFTs) are fabricated on a polyimide (PI) stiff-island/elastomer substrate using blends of poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] and poly(methyl methacrylate) (PMMA) and oxide semiconductor In-Ga-Zn-O as the gate dielectric and semiconducting layer, respectively. Carrier mobility, Ion/Ioff ratio, and subthreshold swing (SS) values of 6.1 cm2 V(-1) s(-1), 10(7), and 0.2 V/decade, respectively, were achieved. For the hybrid TFTs, the endurable maximum strain without degradation of electrical properties was approximately 49%. These results correspond to those obtained in the first study on fabrication of stretchable hybrid-type TFTs on elastomer substrate using an organic gate insulator and oxide semiconducting active channel structure, thus indicating the feasibility of a promising device for stretchable electronic systems.
Towards fast, reliable, and manufacturable DEAs: miniaturized motor and Rupert the rolling robot
NASA Astrophysics Data System (ADS)
Rosset, Samuel; Shea, Herbert
2015-04-01
Dielectric elastomer transducers (DETs) are known for their large strains, low mass and high compliance, making them very attractive for a broad range of applications, from soft robotics to tuneable optics, or energy harvesting. However, 15 years after the first major paper in the field, commercial applications of the technology are still scarce, owing to high driving voltages, short lifetimes, slow response speed, viscoelastic drift, and no optimal solution for the compliant electrodes. At the EPFL's Microsystems for Space Technologies laboratory, we have been working on the miniaturization and manufacturability of DETs for the past 10 years. In the frame of this talk, we present our fabrication processes for high quality thin-_lm silicone membranes, and for patterning compliant electrodes on the sub mm-scale. We use either implantation of gold nano-clusters through a mask, or pad-printing of conductive rubber to precisely shape the electrodes on the dielectric membrane. Our electrodes are compliant, time stable and present strong adhesion to the membrane. The combination of low mechanical- loss elastomers with robust and precisely-defined electrodes allows for the fabrication of very fast actuators that exhibit a long lifetime. We present different applications of our DET fabrication process, such as a soft tuneable lens with a settling time smaller than 175 microseconds, a motor spinning at 1500 rpm, and a self-commutating rolling robot.
Development of a fatigue testing setup for dielectric elastomer membrane actuators
NASA Astrophysics Data System (ADS)
Hill, M.; Rizzello, G.; Seelecke, S.
2017-04-01
Dielectric elastomers (DE's) represent a transduction technology with high potential in many fields, including industries, due to their low weight, flexibility, and small energy consumption. For industrial applications, it is of fundamental importance to quantify the lifetime of DE technology, in terms of electrical and mechanical fatigue, when operating in realistic environmental conditions. This work contributes toward this direction, by presenting the development of an experimental setup which permits systematic fatigue testing of DE membranes. The setup permits to apply both mechanical and electrical stimuli to several membranes simultaneously, while measuring at the same time their mechanical (force, deformation) and electrical response (capacitance, resistance). In its final state, the setup will allow to test up to 15 DE membranes at the same time for several thousands of cycles. Control of the modules, monitoring of the actuators, and data acquisition are realized on a cRio FPGA-system running with LabVIEW. The setup is located in a climate chamber, in order to investigate the fatigue mechanisms at different environmental conditions, i.e., in terms of temperature and humidity. The setup consists of two main parts, namely a fatigue group and a measurement group. The fatigue group stays permanently in the climate chamber, while the measurement group is assembled to the fatigue group and allows to perform measurements at 20°C.
Broadbanding of circularly polarized patch antenna by waveguided magneto-dielectric metamaterial
NASA Astrophysics Data System (ADS)
Yang, Xin Mi; Wen, Juan; Liu, Chang Rong; Liu, Xue Guan; Cui, Tie Jun
2015-12-01
Design of bandwidth-enhanced circularly polarized (CP) patch antenna using artificial magneto-dielectric substrate was investigated. The artificial magneto-dielectric material adopted here takes the form of waveguided metamaterial (WG-MTM). In particular, the embedded meander line (EML) structure was employed as the building element of the WG-MTM. As verified by the retrieved effective medium parameters, the EML-based waveguided magneto-dielectric metamaterial (WG-MDM) exhibits two-dimensionally isotropic magneto-dielectric property with respect to TEM wave excitations applied in two orthogonal directions. A CP patch antenna loaded with the EML-based WG-MDM (WG-MDM antenna) has been proposed and its design procedure is described in detail. Simulation results show that the impedance and axial ratio bandwidths of the WG-MDM antenna have increased by 125% and 133%, respectively, compared with those obtained with pure dielectric substrate offering the same patch size. The design of the novel WG-MDM antenna was also validated by measurement results, which show good agreement with their simulated counterparts.
Yang, Siming; Liu, Peng; Yang, Mingda; Wang, Qiugu; Song, Jiming; Dong, Liang
2016-01-01
This paper reports a flexible and stretchable metamaterial-based “skin” or meta-skin with tunable frequency selective and cloaking effects in microwave frequency regime. The meta-skin is composed of an array of liquid metallic split ring resonators (SRRs) embedded in a stretchable elastomer. When stretched, the meta-skin performs as a tunable frequency selective surface with a wide resonance frequency tuning range. When wrapped around a curved dielectric material, the meta-skin functions as a flexible “cloaking” surface to significantly suppress scattering from the surface of the dielectric material along different directions. We studied frequency responses of multilayer meta-skins to stretching in a planar direction and to changing the spacing between neighboring layers in vertical direction. We also investigated scattering suppression effect of the meta-skin coated on a finite-length dielectric rod in free space. This meta-skin technology will benefit many electromagnetic applications, such as frequency tuning, shielding, and scattering suppression. PMID:26902969
Advanced Artificial Dielectric Materials for Millimeter Wavelength Applications.
1984-10-26
extreme, it reaches a finite value, ot’ = - 3/8ir, corresponding to the magnetic behavior of a superconducting sphere [201. E 0.01 10 / - +.c I/LIMIT...dispersion of small magnetic particles, one must proceed carefully in accounting for the various demagnetizing effects, internal and external fields, etc...rum!:er, * ’B0 GOUPSUB OR Artificial Dielectrics, Induced Magnetic Permeability, Properties of’ Heterogeneous Media. Fine Powder Preparation
Actuators Based on Liquid Crystalline Elastomer Materials
Jiang, Hongrui; Li, Chensha; Huang, Xuezhen
2013-01-01
Liquid crystalline elastomers (LCEs) exhibit a number of remarkable physical effects, including the unique, high-stroke reversible mechanical actuation when triggered by external stimuli. This article reviews some recent exciting developments in the field of LCEs materials with an emphasis on their utilization in actuator applications. Such applications include artificial muscles, industrial manufacturing, health and microelectromechanical systems (MEMS). With suitable synthetic and preparation pathways and well-controlled actuation stimuli, such as heat, light, electric and magnetic field, excellent physical properties of LCE materials can be realized. By comparing the actuating properties of different systems, general relationships between the structure and the property of LCEs are discussed. How these materials can be turned into usable devices using interdisciplinary techniques is also described. PMID:23648966
Actuators based on liquid crystalline elastomer materials
NASA Astrophysics Data System (ADS)
Jiang, Hongrui; Li, Chensha; Huang, Xuezhen
2013-05-01
Liquid crystalline elastomers (LCEs) exhibit a number of remarkable physical effects, including the unique, high-stroke reversible mechanical actuation when triggered by external stimuli. This article reviews some recent exciting developments in the field of LCE materials with an emphasis on their utilization in actuator applications. Such applications include artificial muscles, industrial manufacturing, health and microelectromechanical systems (MEMS). With suitable synthetic and preparation pathways and well-controlled actuation stimuli, such as heat, light, electric and magnetic fields, excellent physical properties of LCE materials can be realized. By comparing the actuating properties of different systems, general relationships between the structure and the properties of LCEs are discussed. How these materials can be turned into usable devices using interdisciplinary techniques is also described.
Bio-inspired piezoelectric artificial hair cell sensor fabricated by powder injection molding
NASA Astrophysics Data System (ADS)
Han, Jun Sae; Oh, Keun Ha; Moon, Won Kyu; Kim, Kyungseop; Joh, Cheeyoung; Seo, Hee Seon; Bollina, Ravi; Park, Seong Jin
2015-12-01
A piezoelectric artificial hair cell sensor was fabricated by the powder injection molding process in order to make an acoustic vector hydrophone. The entire process of powder injection molding was developed and optimized for PMN-PZT ceramic powder. The artificial hair cell sensor, which consists of high aspect ratio hair cell and three rectangular mechanoreceptors, was precisely fabricated through the developed powder injection molding process. The density and the dielectric property of the fabricated sensor shows 98% of the theoretical density and 85% of reference dielectric property of PMN-PZT ceramic powder. With regard to homogeneity, three rectangular mechanoreceptors have the same dimensions, with 3 μm of tolerance with 8% of deviation of dielectric property. Packaged vector hydrophones measure the underwater acoustic signals from 500 to 800 Hz with -212 dB of sensitivity. Directivity of vector hydrophone was acquired at 600 Hz as analyzing phase differences of electric signals.
Rigidity-tuning conductive elastomer
NASA Astrophysics Data System (ADS)
Shan, Wanliang; Diller, Stuart; Tutcuoglu, Abbas; Majidi, Carmel
2015-06-01
We introduce a conductive propylene-based elastomer (cPBE) that rapidly and reversibly changes its mechanical rigidity when powered with electrical current. The elastomer is rigid in its natural state, with an elastic (Young’s) modulus of 175.5 MPa, and softens when electrically activated. By embedding the cPBE in an electrically insulating sheet of polydimethylsiloxane (PDMS), we create a cPBE-PDMS composite that can reversibly change its tensile modulus between 37 and 1.5 MPa. The rigidity change takes ˜6 s and is initiated when a 100 V voltage drop is applied across the two ends of the cPBE film. This magnitude of change in elastic rigidity is similar to that observed in natural skeletal muscle and catch connective tissue. We characterize the tunable load-bearing capability of the cPBE-PDMS composite with a motorized tensile test and deadweight experiment. Lastly, we demonstrate the ability to control the routing of internal forces by embedding several cPBE-PDMS ‘active tendons’ into a soft robotic pneumatic bending actuator. Selectively activating the artificial tendons controls the neutral axis and direction of bending during inflation.
Kinematics and control of redundant robotic arm based on dielectric elastomer actuators
NASA Astrophysics Data System (ADS)
Branz, Francesco; Antonello, Andrea; Carron, Andrea; Carli, Ruggero; Francesconi, Alessandro
2015-04-01
Soft robotics is a promising field and its application to space mechanisms could represent a breakthrough in space technologies by enabling new operative scenarios (e.g. soft manipulators, capture systems). Dielectric Elastomers Actuators have been under deep study for a number of years and have shown several advantages that could be of key importance for space applications. Among such advantages the most notable are high conversion efficiency, distributed actuation, self-sensing capability, multi-degree-of-freedom design, light weight and low cost. The big potentialities of double cone actuators have been proven in terms of good performances (i.e. stroke and force/torque), ease of manufacturing and durability. In this work the kinematic, dynamic and control design of a two-joint redundant robotic arm is presented. Two double cone actuators are assembled in series to form a two-link design. Each joint has two degrees of freedom (one rotational and one translational) for a total of four. The arm is designed to move in a 2-D environment (i.e. the horizontal plane) with 4 DoF, consequently having two degrees of redundancy. The redundancy is exploited in order to minimize the joint loads. The kinematic design with redundant Jacobian inversion is presented. The selected control algorithm is described along with the results of a number of dynamic simulations that have been executed for performance verification. Finally, an experimental setup is presented based on a flexible structure that counteracts gravity during testing in order to better emulate future zero-gravity applications.
NASA Astrophysics Data System (ADS)
Ankit, Ankit; Nguyen, Anh Chien; Mathews, Nripan
2017-04-01
Tactile feedback devices and microfluidic devices have huge significance in strengthening the area of robotics, human machine interaction and low cost healthcare. Dielectric Elastomer Actuators (DEAs) are an attractive alternative for both the areas; offering the advantage of low cost and simplistic fabrication in addition to the high actuation strains. The inplane deformations produced by the DEAs can be used to produce out-of-plane deformations by what is known as the thickness mode actuation of DEAs. The thickness mode actuation is achieved by adhering a soft passive layer to the DEA. This enables a wide area of applications in tactile applications without the need of complex systems and multiple actuators. But the thickness mode actuation has not been explored enough to understand how the deformations can be improved without altering the material properties; which is often accompanied with increased cost and a trade off with other closely associated material properties. We have shown the effect of dimensions of active region and non-active region in manipulating the out-of-plane deformation. Making use of this, we have been able to demonstrate large area devices and complex patterns on the passive top layer for the surface texture change on-demand applications. We have also been able to demonstrate on-demand microfluidic channels and micro-chambers without the need of actually fabricating the channels; which is a cost incurring and cumbersome process.
DC dynamic pull-in instability of a dielectric elastomer balloon: an energy-based approach
NASA Astrophysics Data System (ADS)
Sharma, Atul Kumar; Arora, Nitesh; Joglekar, M. M.
2018-03-01
This paper reports an energy-based method for the dynamic pull-in instability analysis of a spherical dielectric elastomer (DE) balloon subjected to a quasi-statically applied inflation pressure and a Heaviside step voltage across the balloon wall. The proposed technique relies on establishing the energy balance at the point of maximum stretch in an oscillation cycle, followed by the imposition of an instability condition for extracting the threshold parameters. The material models of the Ogden family are employed for describing the hyperelasticity of the balloon. The accuracy of the critical dynamic pull-in parameters is established by examining the saddle-node bifurcation in the transient response of the balloon obtained by integrating numerically the equation of motion, derived using the Euler-Lagrange equation. The parametric study brings out the effect of inflation pressure on the onset of the pull-in instability in the DE balloon. A quantitative comparison between the static and dynamic pull-in parameters at four different levels of the inflation pressure is presented. The results indicate that the dynamic pull-in instability gets triggered at electric fields that are lower than those corresponding to the static instability. The results of the present investigation can find potential use in the design and development of the balloon actuators subjected to transient loading. The method developed is versatile and can be used in the dynamic instability analysis of other conservative systems of interest.
DC dynamic pull-in instability of a dielectric elastomer balloon: an energy-based approach.
Sharma, Atul Kumar; Arora, Nitesh; Joglekar, M M
2018-03-01
This paper reports an energy-based method for the dynamic pull-in instability analysis of a spherical dielectric elastomer (DE) balloon subjected to a quasi-statically applied inflation pressure and a Heaviside step voltage across the balloon wall. The proposed technique relies on establishing the energy balance at the point of maximum stretch in an oscillation cycle, followed by the imposition of an instability condition for extracting the threshold parameters. The material models of the Ogden family are employed for describing the hyperelasticity of the balloon. The accuracy of the critical dynamic pull-in parameters is established by examining the saddle-node bifurcation in the transient response of the balloon obtained by integrating numerically the equation of motion, derived using the Euler-Lagrange equation. The parametric study brings out the effect of inflation pressure on the onset of the pull-in instability in the DE balloon. A quantitative comparison between the static and dynamic pull-in parameters at four different levels of the inflation pressure is presented. The results indicate that the dynamic pull-in instability gets triggered at electric fields that are lower than those corresponding to the static instability. The results of the present investigation can find potential use in the design and development of the balloon actuators subjected to transient loading. The method developed is versatile and can be used in the dynamic instability analysis of other conservative systems of interest.
Soft Biomimetic Fish Robot Made of Dielectric Elastomer Actuators.
Shintake, Jun; Cacucciolo, Vito; Shea, Herbert; Floreano, Dario
2018-06-29
This article presents the design, fabrication, and characterization of a soft biomimetic robotic fish based on dielectric elastomer actuators (DEAs) that swims by body and/or caudal fin (BCF) propulsion. BCF is a promising locomotion mechanism that potentially offers swimming at higher speeds and acceleration rates, and efficient locomotion. The robot consists of laminated silicone layers wherein two DEAs are used in an antagonistic configuration, generating undulating fish-like motion. The design of the robot is guided by a mathematical model based on the Euler-Bernoulli beam theory and takes account of the nonuniform geometry of the robot and of the hydrodynamic effect of water. The modeling results were compared with the experimental results obtained from the fish robot with a total length of 150 mm, a thickness of 0.75 mm, and weight of 4.4 g. We observed that the frequency peaks in the measured thrust force produced by the robot are similar to the natural frequencies computed by the model. The peak swimming speed of the robot was 37.2 mm/s (0.25 body length/s) at 0.75 Hz. We also observed that the modal shape of the robot at this frequency corresponds to the first natural mode. The swimming of the robot resembles real fish and displays a Strouhal number very close to those of living fish. These results suggest the high potential of DEA-based underwater robots relying on BCF propulsion, and applicability of our design and fabrication methods.
Actuator model of electrostrictive polymers (EPs) for microactuators
NASA Astrophysics Data System (ADS)
Kim, Hunmo; Oh, Sinjong; Hwang, Kyoil; Choi, Hyoukryeol; Jeon, Jaewook; Nam, Jaedo
2001-07-01
Recently, Electrostrictive polymers (EPs) are studied for micro-actuator, because of similarity of body tissue. Electrostrictive polymers (EPs) are based on the deformation of dielectric elastomer polymer in the presence of an electric field. Modeling of electrostrictive polymer has been studied, which is about voltage and displacement. And there are many parameters such as Young's modulus, voltage, thickness of EPs, pre-strain, dielectric, frequency and temperature which effect to movement of EPs. To do exact modeling, all parameters are included. In order to use as actuator, we accurately understood about the parameter that we refer above. And we have to execute modeling which parameters are considered. We used FEM in order to understand effects of parameters. Specially, because of pre-strain effects are very important, we derive the relations of stress and strain by using elastic strain energy.
Color stability of pigmented maxillofacial silicone elastomer: effects of nano-oxides as opacifiers.
Han, Ying; Zhao, Yimin; Xie, Chao; Powers, John M; Kiat-amnuay, Sudarat
2010-01-01
This study evaluated the effects of nano-oxides on the color stability of pigmented silicone A-2186 maxillofacial prosthetic elastomers before and after artificial aging. Each of three widely used UV-shielding nano-sized particle oxides (TiO(2), ZnO, CeO(2)), based on recent survey of the industry at 1%, 2%, 2.5% concentrations were combined with each of five intrinsic silicone pigment types (no pigments, red, yellow, blue, and a mixture of the three pigments). Silicone A-2186 without nano-oxides or pigments served as control, for a total of 46 experimental groups of elastomers. In each group of the study, all specimens were aged in an artificial aging chamber for an energy exposure of 450kJ/m(2). CIE L*a*b* values were measured by a spectrophotometer. The 50:50% perceptibility (ΔE*=1.1) and acceptability threshold (ΔE*=3.0) were used in interpretation of recorded color differences. Color differences after aging were subjected to three-way analysis of variance. Means were compared by Fisher's PLSD intervals at the 0.05 level of significance. Yellow pigments mixed with all three nano-oxides at all intervals increased ΔE* values significantly from 3.7 up to 8.4. When mixed pigment groups were considered, TiO(2) at 2%, and 2.5% exhibited the smallest color changes, followed by ZnO and CeO(2), respectively (p<0.001). At 1%, CeO(2) exhibited the smallest color changes, followed by TiO(2) and ZnO, respectively (p<0.001). The smallest color differences, observed for nano-oxides groups, were recorded for CeO(2) at 1%, and TiO(2) at 2% and 2.5%. When the nano-oxides were tested at all concentrations, CeO(2) groups overall had the most color changes, and TiO(2) groups had the least. All ΔE* values of the mixed pigment groups were below the 50:50% acceptability threshold (ΔE*=1.2-2.3, below 3.0) except 2% CeO(2) (ΔE*=4.2). 1% nano-CeO(2) and 2% and 2.5% nano-TiO(2) used as opacifiers for silicone A-2186 maxillofacial prostheses with mixed pigments exhibited the least color changes when subjected to artificial aging at 450kJ/m(2). Yellow silicone pigment mixed with all three nano-oxides significantly affected color stability of A-2186 silicone elastomer. Copyright © 2010 Elsevier Ltd. All rights reserved.
3D Printed Prisms with Tunable Dispersion for the THz Frequency Range
NASA Astrophysics Data System (ADS)
Busch, Stefan F.; Castro-Camus, Enrique; Beltran-Mejia, Felipe; Balzer, Jan C.; Koch, Martin
2018-04-01
Here, we present a 3D printed prism for THz waves made out of an artificial dielectric material in which the dispersion can be tuned by external compression. The artificial material consists of thin dielectric layers with variable air spacings which has been produced using a fused deposition molding process. The material properties are carefully characterized and the functionality of the prisms is in a good agreement with the underlying theory. These prisms are durable, lightweight, inexpensive, and easy to produce.
3D Printed Prisms with Tunable Dispersion for the THz Frequency Range
NASA Astrophysics Data System (ADS)
Busch, Stefan F.; Castro-Camus, Enrique; Beltran-Mejia, Felipe; Balzer, Jan C.; Koch, Martin
2018-06-01
Here, we present a 3D printed prism for THz waves made out of an artificial dielectric material in which the dispersion can be tuned by external compression. The artificial material consists of thin dielectric layers with variable air spacings which has been produced using a fused deposition molding process. The material properties are carefully characterized and the functionality of the prisms is in a good agreement with the underlying theory. These prisms are durable, lightweight, inexpensive, and easy to produce.
Micromixer based on dielectric stack actuators for medical applications
NASA Astrophysics Data System (ADS)
Solano-Arana, Susana; Klug, Florian; Mößinger, Holger; Förster-Zügel, Florentine; Schlaak, Helmut F.
2017-04-01
Based on a previously developed microperistaltic pump, a micromixer made out of dielectric elastomer stack actuators (DESA) is proposed. The micromixer will be able to mix two fluids at the microscale, pumping both fluids in and out of the device. The device consists of three chambers. In the first and second chambers, fluids A and B are hosted, while in the third chamber, fluids A and B are mixed. The fluid flow regime is laminar. The application of voltage leads to an increase of the size of a gap in the z-axis direction, due to the actuators area expansion. This makes a channel open through which the fluid flows. The frequency of the actuation of the different actuators allows an increase of the flow rate. The micromixer can be used for applications such as drug delivery and synthesis of nucleic acids, the proposed device will be made of Polydimethylsiloxane (PDMS) as dielectric and graphite powder as electrode material. PDMS is a biocompatible material, widely used in the prosthesis field. Mixing fluids at a microscale is also in need in the lab-on-achip technology for complex chemical reactions.
Iron oxide nanoparticles as dielectric and piezoelectric enhancers for silicone elastomers
NASA Astrophysics Data System (ADS)
Iacob, Mihail; Tugui, Codrin; Tiron, Vasile; Bele, Adrian; Vlad, Stelian; Vasiliu, Tudor; Cazacu, Maria; Vasiliu, Ana-Lavinia; Racles, Carmen
2017-10-01
Iron oxide nanoparticles were prepared using an alkaline precipitation method to tune the reaction time so as to afford ferrihydrite with spherical morphology or goethite nanorods. These two nanoparticle types, surface-treated with a surfactant (Pluronic L81), were each incorporated in 10, 20 and 30 wt% within a polydimethylsiloxane-α,ω-diol (Mn = 60 000 g mol-1). The mixtures were processed as films and crosslinked by condensation with tetraethoxysilane at room temperature. The aged films were investigated concerning filler distribution (by SEM coupled with an energy-dispersive x-ray spectroscopy module), mechanical (tensile strength, elongation and Young’s modulus), and dielectric properties (permittivity, loss, conductivity and strength). The results show that the fillers have a relatively homogeneous distribution within the matrix and, dependent on the filler nature and amount, generally manifest a mechanical reinforcing effect and act as dielectric permittivity and strength enhancers. In addition, it has been found that the crystalline nanoparticles induce a piezoelectric response, emphasized by piezoelectric force microscopy. The improved properties of the composites make them suitable for applications in mechanical/electrical energy conversion, as theoretical estimates showed.
Wang, Chao; Lee, Wen-Ya; Kong, Desheng; Pfattner, Raphael; Schweicher, Guillaume; Nakajima, Reina; Lu, Chien; Mei, Jianguo; Lee, Tae Hoon; Wu, Hung-Chin; Lopez, Jeffery; Diao, Ying; Gu, Xiaodan; Himmelberger, Scott; Niu, Weijun; Matthews, James R; He, Mingqian; Salleo, Alberto; Nishi, Yoshio; Bao, Zhenan
2015-12-14
Both high gain and transconductance at low operating voltages are essential for practical applications of organic field-effect transistors (OFETs). Here, we describe the significance of the double-layer capacitance effect in polar rubbery dielectrics, even when present in a very low ion concentration and conductivity. We observed that this effect can greatly enhance the OFET transconductance when driven at low voltages. Specifically, when the polar elastomer poly(vinylidene fluoride-co-hexafluoropropylene) (e-PVDF-HFP) was used as the dielectric layer, despite a thickness of several micrometers, we obtained a transconductance per channel width 30 times higher than that measured for the same organic semiconductors fabricated on a semicrystalline PVDF-HFP with a similar thickness. After a series of detailed experimental investigations, we attribute the above observation to the double-layer capacitance effect, even though the ionic conductivity is as low as 10(-10) S/cm. Different from previously reported OFETs with double-layer capacitance effects, our devices showed unprecedented high bias-stress stability in air and even in water.
Wang, Chao; Lee, Wen-Ya; Kong, Desheng; Pfattner, Raphael; Schweicher, Guillaume; Nakajima, Reina; Lu, Chien; Mei, Jianguo; Lee, Tae Hoon; Wu, Hung-Chin; Lopez, Jeffery; Diao, Ying; Gu, Xiaodan; Himmelberger, Scott; Niu, Weijun; Matthews, James R.; He, Mingqian; Salleo, Alberto; Nishi, Yoshio; Bao, Zhenan
2015-01-01
Both high gain and transconductance at low operating voltages are essential for practical applications of organic field-effect transistors (OFETs). Here, we describe the significance of the double-layer capacitance effect in polar rubbery dielectrics, even when present in a very low ion concentration and conductivity. We observed that this effect can greatly enhance the OFET transconductance when driven at low voltages. Specifically, when the polar elastomer poly(vinylidene fluoride-co-hexafluoropropylene) (e-PVDF-HFP) was used as the dielectric layer, despite a thickness of several micrometers, we obtained a transconductance per channel width 30 times higher than that measured for the same organic semiconductors fabricated on a semicrystalline PVDF-HFP with a similar thickness. After a series of detailed experimental investigations, we attribute the above observation to the double-layer capacitance effect, even though the ionic conductivity is as low as 10–10 S/cm. Different from previously reported OFETs with double-layer capacitance effects, our devices showed unprecedented high bias-stress stability in air and even in water. PMID:26658331
High thermal conductivity in soft elastomers with elongated liquid metal inclusions.
Bartlett, Michael D; Kazem, Navid; Powell-Palm, Matthew J; Huang, Xiaonan; Sun, Wenhuan; Malen, Jonathan A; Majidi, Carmel
2017-02-28
Soft dielectric materials typically exhibit poor heat transfer properties due to the dynamics of phonon transport, which constrain thermal conductivity ( k ) to decrease monotonically with decreasing elastic modulus ( E ). This thermal-mechanical trade-off is limiting for wearable computing, soft robotics, and other emerging applications that require materials with both high thermal conductivity and low mechanical stiffness. Here, we overcome this constraint with an electrically insulating composite that exhibits an unprecedented combination of metal-like thermal conductivity, an elastic compliance similar to soft biological tissue (Young's modulus < 100 kPa), and the capability to undergo extreme deformations (>600% strain). By incorporating liquid metal (LM) microdroplets into a soft elastomer, we achieve a ∼25× increase in thermal conductivity (4.7 ± 0.2 W⋅m -1 ⋅K -1 ) over the base polymer (0.20 ± 0.01 W⋅m -1 ·K -1 ) under stress-free conditions and a ∼50× increase (9.8 ± 0.8 W⋅m -1 ·K -1 ) when strained. This exceptional combination of thermal and mechanical properties is enabled by a unique thermal-mechanical coupling that exploits the deformability of the LM inclusions to create thermally conductive pathways in situ. Moreover, these materials offer possibilities for passive heat exchange in stretchable electronics and bioinspired robotics, which we demonstrate through the rapid heat dissipation of an elastomer-mounted extreme high-power LED lamp and a swimming soft robot.
Evaluation and prediction of long term space environmental effects on non-metallic materials
NASA Technical Reports Server (NTRS)
Shepic, J. A.
1980-01-01
The effects of prolonged spacecraft materials were determined and the results compared with predicted behavior. The adhesion and dielectric properties of poly-thermaleze and therm-amid magnet wire insulation were studied. The tensile properties of Lexan, polyurethane, polyethelyne, lucite, and nylon were studied well as the flexure and tensile characteristic of Adlock 851, a phenolic laminate. The volume resistivity of Cho-seal, a conductive elastomer was also a examined. Tables show the time exposed at thermal vacuum, and the high, low, and average MPA and KSI.
Bistable electroactive polymer for refreshable Braille display with improved actuation stability
NASA Astrophysics Data System (ADS)
Niu, Xiaofan; Brochu, Paul; Stoyanov, Hristiyan; Yun, Sung Ryul; Pei, Qibing
2012-04-01
Poly(t-butyl acrylate) is a bistable electroactive polymer (BSEP) capable of rigid-to-rigid actuation. The BSEP combines the large-strain actuation of dielectric elastomers with shape memory property. We have introduced a material approach to overcome pull-in instability in poly(t-butyl acrylate) that significantly improves the actuation lifetime at strains greater than 100%. Refreshable Braille display devices with size of a smartphone screen have been fabricated to manifest a potential application of the BSEP. We will report the testing results of the devices by a Braille user.
Computational Model of Hydrostatically Coupled Dielectric Elastomer Actuators (Preprint)
2011-01-01
gaming [6] and Braille displays [15]. Within this context, the HCDE actuators offer two attractive features [12-14]. First, one can touch the passive...AHp // , the voltage as // H , and the force as AHF / . When the HCDE actuators are developed as Braille displays, it is desirable to...permittivity, along with our fitted parameter 71 07 3.1 V/m , gives the shear modulus kPa5.1 2 . When the HCDE actuators are developed as Braille
Development of compact slip detection sensor using dielectric elastomer
NASA Astrophysics Data System (ADS)
Choi, Jae-young; Hwang, Do-Yeon; Kim, Baek-chul; Moon, Hyungpil; Choi, Hyouk Ryeol; Koo, Ja Choon
2015-04-01
In this paper, we developed a resistance tactile sensor that can detect a slip on the surface of sensor structure. The presented sensor device has fingerprint-like structures that are similar with the role of the humans finger print. The resistance slip sensor that the novel developed uses acrylo-nitrile butadiene rubber (NBR) as a dielectric substrate and graphene as an electrode material. We can measure the slip as the structure of sensor makes a deformation and it changes the resistance through forming a new conductive route. To manufacture our sensor, we developed a new imprint process. By using this process, we can produce sensor with micro unit structure. To verify effectiveness of the proposed slip detection, experiment using prototype of resistance slip sensor is conducted with an algorithm to detect slip and slip is successfully detected. We will discuss the slip detection properties.
Haptic interfaces using dielectric electroactive polymers
NASA Astrophysics Data System (ADS)
Ozsecen, Muzaffer Y.; Sivak, Mark; Mavroidis, Constantinos
2010-04-01
Quality, amplitude and frequency of the interaction forces between a human and an actuator are essential traits for haptic applications. A variety of Electro-Active Polymer (EAP) based actuators can provide these characteristics simultaneously with quiet operation, low weight, high power density and fast response. This paper demonstrates a rolled Dielectric Elastomer Actuator (DEA) being used as a telepresence device in a heart beat measurement application. In the this testing, heart signals were acquired from a remote location using a wireless heart rate sensor, sent through a network and DEA was used to haptically reproduce the heart beats at the medical expert's location. A series of preliminary human subject tests were conducted that demonstrated that a) DE based haptic feeling can be used in heart beat measurement tests and b) through subjective testing the stiffness and actuator properties of the EAP can be tuned for a variety of applications.
Contractive tension force stack actuator based on soft dielectric EAP
NASA Astrophysics Data System (ADS)
Kovacs, Gabor; Düring, Lukas
2009-03-01
Among the electronic polymers EAPs especially the dielectric elastomers are functional materials that have promising potential as muscle-like actuators due to their inherent compliancy and good overall performance. The combination of huge active deformations, high energy densities, good efficiencies and fast response is unique to dielectric elastomers. Furthermore, they are lightweight, have a simple structure and can be easily tailored to various applications. Up to now most scientific research work has been focused on the planar expanding actuation mode due to the fact that the commercially available acrylic material VHB 4910 (3M) can easily be processed to planar actuators and has demonstrated very high actuation performance when pre-strained. Many different actuator designs have been developed and tested which expands in plane when voltage is applied and shrinks back as soon as the applied charges are removed from the electrodes. Obviously the contractive operation mode at activation is required for a wide range of application. Due to the principle of operation of soft DE EAP, mainly two directions to performed work against external loads are possible. Beside of the commonly used expanding actuation in planar direction the contractile actuation in thickness direction of the DE film represents a very promising option in the multilayer configuration. First approaches have been presented by the folded actuator design and by the multilayer tactile display device. In this study a novel approach for active structures driven by soft dielectric EAP is presented, which can perform contractive displacements at external tensile load. The device is composed of an array of equal segments, where the dielectric films are arranged in a pile-up configuration. In order to maintain satisfying structural integrity when external tension load is applied special attention was paid to the compliant electrode design which takes a central importance concerning the force transmission capability between each layer of the actuator. Due to the stack configuration of the actuator the commonly used and pre-strained acrylic film was replaced by the stress-free IPN modified acrylic film in order to eliminate the need for external pre-strain-supporting structures. Introductorily, the specific problems on conventional expanding actuators are discussed and the aims for contractive tension force actuators are specified. Then some structural design parameters are addressed in order to achieve a high rate of yield and reliable working principle. In the main part of the study the manufacturing process of the actuators and some measurement results and experiences are discussed in detail.
Modeling liquid crystal polymeric devices
NASA Astrophysics Data System (ADS)
Gimenez Pinto, Vianney Karina
The main focus of this work is the theoretical and numerical study of materials that combine liquid crystal and polymer. Liquid crystal elastomers are polymeric materials that exhibit both the ordered properties of the liquid crystals and the elastic properties of rubbers. Changing the order of the liquid crystal molecules within the polymer network can induce shape change. These materials are very valuable for applications such as actuators, sensors, artificial muscles, haptic displays, etc. In this work we apply finite element elastodynamics simulations to study the temperature induced shape deformation in nematic elastomers with complex director microstructure. In another topic, we propose a novel numerical method to model the director dynamics and microstructural evolution of three dimensional nematic and cholesteric liquid crystals. Numerical studies presented in this work are in agreement with experimental observations and provide insight into the design of application devices.
NASA Astrophysics Data System (ADS)
Akbari, S.; Shea, H. R.
2012-04-01
Cells regulate their behavior in response to mechanical strains. Cell cultures to study mechanotransuction are typically cm2 in area, far too large to monitor single cell response. We have developed an array of dielectric elastomer microactuators as a tool to study mechanotransduction of individual cells. The array consists of 72 100 µm × 200 µm electroactive polymer actuators which expand uniaxially when a voltage is applied. Single cells will be attached on each actuator to study their response to periodic mechanical strains. The device is fabricated by patterning compliant microelectrodes on both sides of a 30 µm thick polydimethylsiloxane membrane, which is bonded to a Pyrex chip with 200 µm wide trenches. Low-energy metal ion implantation is used to make stretchable electrodes and we demonstrate here the successful miniaturization of such ion-implanted electrodes. The top electrode covers the full membrane area, while the bottom electrodes are 100 µm wide parallel lines, perpendicular to the trenches. Applying a voltage between the top and bottom electrodes leads to uniaxial expansion of the membrane at the intersection of the bottom electrodes and the trenches. To characterize the in-plane strain, an array of 4 µm diameter aluminum dots is deposited on each actuator. The position of each dot is tracked, allowing displacement and strain profiles to be measured as a function of voltage. The uniaxial strain reaches 4.7% at 2.9 kV with a 0.2 s response time, sufficient to stimulate most cells with relevant biological strains and frequencies.
NASA Astrophysics Data System (ADS)
Rosset, Samuel; Poulin, Alexandre; Zollinger, Alicia; Smith, Michael; Shea, Herbert
2017-04-01
We report on the use of dielectric elastomer actuators (DEAs) to measure the traction force field of cells with subcellular resolution. The study of cellular electrochemical and mechanical response to deformation is an important area of research, as mechanotransduction has been shown to be linked with fundamental cell functions, or the progression of diseases such as cancer or atherosclerosis. Experimental cell mechanics is based on two fundamental concepts: the ability to measure cell stiffness, and to apply controlled strains to small clusters of cells. However, there is a lack of tools capable of applying precise deformation to a small cell population while being compatible with an inverted microscope (stable focal plane, transparency, compactness, etc.). Here, we use an anisotropically prestretched silicone-based DEA to deform a soft (7.6kPa) polyacrylamide gel on which the cells are cultured. An array of micro-dots of fluorescent fibronectin is transferred on the gel by micro-contact printing and serves as attachment points for the cells. In addition, the fluorescent dots (which have a diameter of 2 μm with a spacing of 6 μm) are used during the experiment to monitor the traction forces of a single cell (or small cluster of cells). The cell locally exerts traction on the gel, thus deforming the matrix of dots. The position of dots versus time is monitored live when the cells are submitted to a uniaxial strain step. Our deformable bioreactor enables the measurement of the local stiffness of cells submitted to mechanical strain, and is fully compatible with an inverted microscope set-up.
Inkjet printing of carbon black electrodes for dielectric elastomer actuators
NASA Astrophysics Data System (ADS)
Schlatter, Samuel; Rosset, Samuel; Shea, Herbert
2017-04-01
Inkjet printing is an appealing technique to print electrodes for Dielectric Elastomer Actuators (DEAs). Here we present the preparation and ink-jet printing of a carbon black electrode mixture and characterise its properties. Carbon black has been used extensively in the past because it is very compliant; however, it has a high resistance and can be very dirty to work with. In this paper we show that carbon black remains an appropriate electrode material, and when inkjet printed can be used to fabricate devices meeting today's demanding requirements. DEAs are becoming thinner to decrease actuation voltages and are shrinking in size to match the scale of the devices in the biomedical field, tuneable optics, and microfluidics. Inkjet printing addresses both of these problems. Firstly, Inkjet printing is a non-contact technique and can print on very thin freestanding membranes. Secondly, the high precision of inkjet printers makes it possible to print complex electrode geometries in the millimetre scale. We demonstrate the advantages of inkjet printing and carbon black electrodes by conducting a full characterisation of the printed electrodes. The printed carbon black electrodes have resistances as low as 13kΩ/□, an elastic modulus of approximately 1MPa, and a cyclic resistance swing which increases by 7% over 1500 cycles at 50% stretch. We also demonstrate a DEA with printed carbon black electrodes with a diametral stretch of 8.8% at an electric field of approximately 94V/μm. Finally a qualitative test is conducted to show that the printed carbon black electrode is extremely hardwearing.
Dielectric elastomer actuator for mechanical loading of 2D cell cultures.
Poulin, Alexandre; Saygili Demir, Cansaran; Rosset, Samuel; Petrova, Tatiana V; Shea, Herbert
2016-09-21
We demonstrate the use of dielectric elastomer actuators (DEAs) for mechanical stimulation of cells in vitro. The development of living tissues is regulated by their mechanical environment through the modification of fundamental cellular functions such as proliferation, differentiation and gene expression. Mechanical cues have been linked to numerous pathological conditions, and progress in cellular mechanobiology could lead to better diagnosis and treatments of diseases such as atherosclerosis and cancers. Research in this field heavily relies on in vitro models due to the high complexity of the in vivo environment. Current in vitro models however build on bulky and often complex sets of mechanical motors or pneumatic systems. In this work we present an alternative approach based on DEAs, a class of soft actuators capable of large deformation (>100%) and fast response time (<1 ms). The key advantage of DEAs is that they can be integrated within the culture substrate, therefore providing a very compact solution. Here we present a DEA-based deformable bioreactor which can generate up to 35% uniaxial tensile strain, and is compatible with standard cell culture protocols. Our transparent device also includes a static control area, and enables real-time optical monitoring of both the stimulated and control cell populations. As a proof of concept we cycled a population of lymphatic endothelial cells (LECs) between 0% and 10% strain at a 0.1 Hz frequency for 24 h. We observe stretch-induced alignment and elongation of LECs, providing the first demonstration that DEAs can be interfaced with living cells and used to control their mechanical environment.
Fabrication and electromechanical examination of a spherical dielectric elastomer actuator
NASA Astrophysics Data System (ADS)
Ahmadi, S.; Gooyers, M.; Soleimani, M.; Menon, C.
2013-11-01
In this paper, a procedure for fabricating and testing a seamless spherical dielectric elastomer actuator (DEA) is presented. In previously developed spherical prototypes, the DEA material is pre-strained by a rigid frame to improve the actuator’s output force; however, it is possible to pre-strain a spherical DEA by inflating the sample with a liquid or gas as long as the sample contains the pressure. In this work, a very compliant silicone-based material was used to fabricate a nearly spherical balloon-shaped prototype. The DEA sample was inflated by air and various electrical-actuation regimes were considered. The performance of the DEA sample was studied using an analytical and a finite element-based model. An Ogden hyperelastic model was used in formulation of the analytical model to include nonlinear behavior of the silicone material. Full statistical analysis of the experimental and numerical results was carried out using the root-mean-square (RMS) error and the normalized RMS error. The analytical and FEM results were in good agreement with the experimental data. According to modeling results, it was found that the DEA’s actuation force can be mainly improved by increasing the voltage, reducing the thickness, lowering the stiffness, and/or increasing the initial pressure. As an example, a three-fold increase of the actuation force was found when the thickness was reduced to half of its initial value. This improvement of the efficiency suggests that the spherical DEA is suitable for use in several applications if an appropriate design with optimal governing parameters is developed.
Counteracting Gravitation In Dielectric Liquids
NASA Technical Reports Server (NTRS)
Israelsson, Ulf E.; Jackson, Henry W.; Strayer, Donald M.
1993-01-01
Force of gravity in variety of dielectric liquids counteracted by imposing suitably contoured electric fields. Technique makes possible to perform, on Earth, variety of experiments previously performed only in outer space and at great cost. Also used similarly in outer space to generate sort of artificial gravitation.
Feasibility Study of Improved Methods for Riverbank Stabilization
1964-11-01
hose materials which appear to be technically feasible for such applications are listed in Tables I - 1 and I - 2. I-9 Artificial Riprap...the uncompacted asphalt pavement. Those which 1-11 show the most potential for further study are soil cement, synthetic elastomer sheeting, and...uncompated asphalt pavement. Chemical soil stabilization and metal sheeting are too exp~nsive, and the quality of chemically stabilized soil protection is
Artificial dielectric stepped-refractive-index lens for the terahertz region.
Hernandez-Serrano, A I; Mendis, Rajind; Reichel, Kimberly S; Zhang, Wei; Castro-Camus, E; Mittleman, Daniel M
2018-02-05
In this paper we theoretically and experimentally demonstrate a stepped-refractive-index convergent lens made of a parallel stack of metallic plates for terahertz frequencies based on artificial dielectrics. The lens consist of a non-uniformly spaced stack of metallic plates, forming a mirror-symmetric array of parallel-plate waveguides (PPWGs). The operation of the device is based on the TE 1 mode of the PPWG. The effective refractive index of the TE 1 mode is a function of the frequency of operation and the spacing between the plates of the PPWG. By varying the spacing between the plates, we can modify the local refractive index of the structure in every individual PPWG that constitutes the lens producing a stepped refractive index profile across the multi stack structure. The theoretical and experimental results show that this structure is capable of focusing a 1 cm diameter beam to a line focus of less than 4 mm for the design frequency of 0.18 THz. This structure shows that this artificial-dielectric concept is an important technology for the fabrication of next generation terahertz devices.
NASA Astrophysics Data System (ADS)
Al-Sehemi, Abdullah G.; Al-Ghamdi, Ahmed A.; Dishovsky, Nikolay T.; Malinova, Petrunka A.; Atanasov, Nikolay T.; Atanasova, Gabriela L.
2017-07-01
The aim of the research is to obtain conductive elastomer based composites with different degree of filling and specific properties that are applicable for manufacturing of small flexible wearable antennas. The mechanical, electrical and magnetic properties of the composites based on butadiene-acrylonitrile rubber and conductive carbon black have been determined and the possibilities for their use have been analyzed. It has been found that regarding the requirements for elastomer composites application as substrates in such kind of antennas for the 2.4-2.5 GHz frequency range (in respect to the tensile strength, elasticity, volume resistivity, real part of permittivity and permeability, tangent of dielectric and magnetic losses), the most suitable composites are those containing conductive carbon black at 5-10 phr. The prepared composites have been used as monolayered or multilayered substrates for manufacturing prototypes of small flexible wearable antennas for medical, sport and military applications for the 2.4-2.5 GHz frequency range, which demonstrate reliable performance and meet the requirements of the Federal Communication Commission.
Energy harvesting from a DE-based dynamic vibro-impact system
NASA Astrophysics Data System (ADS)
Yurchenko, D.; Val, D. V.; Lai, Z. H.; Gu, G.; Thomson, G.
2017-10-01
Dielectric elastomer (DE) generators may be used in harvesting energy from ambient vibrations. Based on existing research on the mechanical properties of a circular DE membrane, a DE-based dynamic vibro-impact system is proposed in this paper to convert vibrational energy into electrical one. The dimensional, electrical and dynamic parameters of the DE membrane are analysed and then used to numerically estimate the output voltage of the proposed system. The system output performances under harmonic excitation are further discussed. At last, the comparison study has been conducted with an electromagnetic energy harvesting system, served as a ‘shaking’ flashlight.
A passive autofocus system by using standard deviation of the image on a liquid lens
NASA Astrophysics Data System (ADS)
Rasti, Pejman; Kesküla, Arko; Haus, Henry; Schlaak, Helmut F.; Anbarjafari, Gholamreza; Aabloo, Alvo; Kiefer, Rudolf
2015-04-01
Today most of applications have a small camera such as cell phones, tablets and medical devices. A micro lens is required in order to reduce the size of the devices. In this paper an auto focus system is used in order to find the best position of a liquid lens without any active components such as ultrasonic or infrared. In fact a passive auto focus system by using standard deviation of the images on a liquid lens which consist of a Dielectric Elastomer Actuator (DEA) membrane between oil and water is proposed.
Adjusting Permittivity by Blending Varying Ratios of SWNTs
NASA Technical Reports Server (NTRS)
Tour, James M.; Stephenson, Jason J.; Higginbotham, Amanda
2012-01-01
A new composite material of singlewalled carbon nanotubes (SWNTs) displays radio frequency (0 to 1 GHz) permittivity properties that can be adjusted based upon the nanotube composition. When varying ratios of raw to functionalized SWNTs are blended into the silicone elastomer matrix at a total loading of 0.5 percent by weight, a target real permittivity value can be obtained between 70 and 3. This has particular use for designing materials for microwave lenses, microstrips, filters, resonators, high-strength/low-weight electromagnetic interference (EMI) shielding, antennas, waveguides, and low-loss magneto-dielectric products for applications like radome construction.
High thermal conductivity in soft elastomers with elongated liquid metal inclusions
Bartlett, Michael D.; Powell-Palm, Matthew J.; Huang, Xiaonan; Sun, Wenhuan; Malen, Jonathan A.; Majidi, Carmel
2017-01-01
Soft dielectric materials typically exhibit poor heat transfer properties due to the dynamics of phonon transport, which constrain thermal conductivity (k) to decrease monotonically with decreasing elastic modulus (E). This thermal−mechanical trade-off is limiting for wearable computing, soft robotics, and other emerging applications that require materials with both high thermal conductivity and low mechanical stiffness. Here, we overcome this constraint with an electrically insulating composite that exhibits an unprecedented combination of metal-like thermal conductivity, an elastic compliance similar to soft biological tissue (Young’s modulus < 100 kPa), and the capability to undergo extreme deformations (>600% strain). By incorporating liquid metal (LM) microdroplets into a soft elastomer, we achieve a ∼25× increase in thermal conductivity (4.7 ± 0.2 W⋅m−1⋅K−1) over the base polymer (0.20 ± 0.01 W⋅m−1·K−1) under stress-free conditions and a ∼50× increase (9.8 ± 0.8 W⋅m−1·K−1) when strained. This exceptional combination of thermal and mechanical properties is enabled by a unique thermal−mechanical coupling that exploits the deformability of the LM inclusions to create thermally conductive pathways in situ. Moreover, these materials offer possibilities for passive heat exchange in stretchable electronics and bioinspired robotics, which we demonstrate through the rapid heat dissipation of an elastomer-mounted extreme high-power LED lamp and a swimming soft robot. PMID:28193902
Biologically inspired artificial compound eyes.
Jeong, Ki-Hun; Kim, Jaeyoun; Lee, Luke P
2006-04-28
This work presents the fabrication of biologically inspired artificial compound eyes. The artificial ommatidium, like that of an insect's compound eyes, consists of a refractive polymer microlens, a light-guiding polymer cone, and a self-aligned waveguide to collect light with a small angular acceptance. The ommatidia are omnidirectionally arranged along a hemispherical polymer dome such that they provide a wide field of view similar to that of a natural compound eye. The spherical configuration of the microlenses is accomplished by reconfigurable microtemplating, that is, polymer replication using the deformed elastomer membrane with microlens patterns. The formation of polymer waveguides self-aligned with microlenses is also realized by a self-writing process in a photosensitive polymer resin. The angular acceptance is directly measured by three-dimensional optical sectioning with a confocal microscope, and the detailed optical characteristics are studied in comparison with a natural compound eye.
NASA Astrophysics Data System (ADS)
Wu, Yi-Bo; Li, Kang; Xiang, Dong; Zhang, Min; Yang, Dan; Zhang, Jin-Han; Mao, Jing; Wang, Hao; Guo, Wen-Li
2018-07-01
Polyisobutylene-based thermoplastic elastomer (TPE) is a new soft biomaterial. Hydroxyl functional dendritic polyisobutylene-based TPEs (arb-SIBS-OH), which satisfy the design requirements for small-diameter vascular substitutes, were synthesized by controlled carbocationic polymerization. Creep property, which is the destructive weakness of polyisobutylene-based TPEs, was significantly improved with the formation of a "double network" promoted by branched structure and microphase separation. Compatibility of arb-SIBS-OH with rabbit blood was markedly enhanced by modifying heparin grafted from these hydroxyl functional groups. Application of "click chemistry" to immobilize heparin on arb-SIBS-OH surface was apparently effective in enhancing the bioactivity of heparin. Immobilized heparin, which directly bonded by ester bonds, was more likely to form multi-point binding on arb-SIBS-OH surface. This process hindered the accessibility of the heparin active sequence to antithrombin.
Stretchable biocompatible electronics by embedding electrical circuitry in biocompatible elastomers.
Jahanshahi, Amir; Salvo, Pietro; Vanfleteren, Jan
2012-01-01
Stretchable and curvilinear electronics has been used recently for the fabrication of micro systems interacting with the human body. The applications range from different kinds of implantable sensors inside the body to conformable electrodes and artificial skins. One of the key parameters in biocompatible stretchable electronics is the fabrication of reliable electrical interconnects. Although very recent literature has reported on the reliability of stretchable interconnects by cyclic loading, work still needs to be done on the integration of electrical circuitry composed of rigid components and stretchable interconnects in a biological environment. In this work, the feasibility of a developed technology to fabricate simple electrical circuits with meander shaped stretchable interconnects is presented. Stretchable interconnects are 200 nm thin Au layer supported with polyimide (PI). A stretchable array of light emitting diodes (LEDs) is embedded in biocompatible elastomer using this technology platform and it features a 50% total elongation.
Photonic crystals, amorphous materials, and quasicrystals
Edagawa, Keiichi
2014-01-01
Photonic crystals consist of artificial periodic structures of dielectrics, which have attracted much attention because of their wide range of potential applications in the field of optics. We may also fabricate artificial amorphous or quasicrystalline structures of dielectrics, i.e. photonic amorphous materials or photonic quasicrystals. So far, both theoretical and experimental studies have been conducted to reveal the characteristic features of their optical properties, as compared with those of conventional photonic crystals. In this article, we review these studies and discuss various aspects of photonic amorphous materials and photonic quasicrystals, including photonic band gap formation, light propagation properties, and characteristic photonic states. PMID:27877676
Photonic crystals, amorphous materials, and quasicrystals.
Edagawa, Keiichi
2014-06-01
Photonic crystals consist of artificial periodic structures of dielectrics, which have attracted much attention because of their wide range of potential applications in the field of optics. We may also fabricate artificial amorphous or quasicrystalline structures of dielectrics, i.e. photonic amorphous materials or photonic quasicrystals. So far, both theoretical and experimental studies have been conducted to reveal the characteristic features of their optical properties, as compared with those of conventional photonic crystals. In this article, we review these studies and discuss various aspects of photonic amorphous materials and photonic quasicrystals, including photonic band gap formation, light propagation properties, and characteristic photonic states.
Negative Dielectric Constant Material Based on Ion Conducting Materials
NASA Technical Reports Server (NTRS)
Gordon, Keith L. (Inventor); Kang, Jin Ho (Inventor); Park, Cheol (Inventor); Lillehei, Peter T. (Inventor); Harrison, Joycelyn S. (Inventor)
2017-01-01
Metamaterials or artificial negative index materials (NIMs) have generated great attention due to their unique and exotic electromagnetic properties. One exemplary negative dielectric constant material, which is an essential key for creating the NIMs, was developed by doping ions into a polymer, a protonated poly (benzimidazole) (PBI). The doped PBI showed a negative dielectric constant at megahertz (MHz) frequencies due to its reduced plasma frequency and an induction effect. The magnitude of the negative dielectric constant and the resonance frequency were tunable by doping concentration. The highly doped PBI showed larger absolute magnitude of negative dielectric constant at just above its resonance frequency than the less doped PBI.
Negative Dielectric Constant Material Based on Ion Conducting Materials
NASA Technical Reports Server (NTRS)
Gordon, Keith L. (Inventor); Kang, Jin Ho (Inventor); Harrison, Joycelyn S. (Inventor); Park, Cheol (Inventor); Lillehei, Peter T. (Inventor)
2014-01-01
Metamaterials or artificial negative index materials (NIMs) have generated great attention due to their unique and exotic electromagnetic properties. One exemplary negative dielectric constant material, which is an essential key for creating the NIMs, was developed by doping ions into a polymer, a protonated poly(benzimidazole) (PBI). The doped PBI showed a negative dielectric constant at megahertz (MHz) frequencies due to its reduced plasma frequency and an induction effect. The magnitude of the negative dielectric constant and the resonance frequency were tunable by doping concentration. The highly doped PBI showed larger absolute magnitude of negative dielectric constant at just above its resonance frequency than the less doped PBI.
NASA Astrophysics Data System (ADS)
Avendaño, Carlos G.; Reyes, Arturo
2017-03-01
We theoretically study the dispersion relation for axially propagating electromagnetic waves throughout a one-dimensional helical structure whose pitch and dielectric and magnetic properties are spatial random functions with specific statistical characteristics. In the system of coordinates rotating with the helix, by using a matrix formalism, we write the set of differential equations that governs the expected value of the electromagnetic field amplitudes and we obtain the corresponding dispersion relation. We show that the dispersion relation depends strongly on the noise intensity introduced in the system and the autocorrelation length. When the autocorrelation length increases at fixed fluctuation and when the fluctuation augments at fixed autocorrelation length, the band gap widens and the attenuation coefficient of electromagnetic waves propagating in the random medium gets larger. By virtue of the degeneracy in the imaginary part of the eigenvalues associated with the propagating modes, the random medium acts as a filter for circularly polarized electromagnetic waves, in which only the propagating backward circularly polarized wave can propagate with no attenuation. Our results are valid for any kind of dielectric and magnetic structures which possess a helical-like symmetry such as cholesteric and chiral smectic-C liquid crystals, structurally chiral materials, and stressed cholesteric elastomers.
Preparation of Monodomain Liquid Crystal Elastomers and Liquid Crystal Elastomer Nanocomposites.
Kim, Hojin; Zhu, Bohan; Chen, Huiying; Adetiba, Oluwatomiyin; Agrawal, Aditya; Ajayan, Pulickel; Jacot, Jeffrey G; Verduzco, Rafael
2016-02-06
LCEs are shape-responsive materials with fully reversible shape change and potential applications in medicine, tissue engineering, artificial muscles, and as soft robots. Here, we demonstrate the preparation of shape-responsive liquid crystal elastomers (LCEs) and LCE nanocomposites along with characterization of their shape-responsiveness, mechanical properties, and microstructure. Two types of LCEs - polysiloxane-based and epoxy-based - are synthesized, aligned, and characterized. Polysiloxane-based LCEs are prepared through two crosslinking steps, the second under an applied load, resulting in monodomain LCEs. Polysiloxane LCE nanocomposites are prepared through the addition of conductive carbon black nanoparticles, both throughout the bulk of the LCE and to the LCE surface. Epoxy-based LCEs are prepared through a reversible esterification reaction. Epoxy-based LCEs are aligned through the application of a uniaxial load at elevated (160 °C) temperatures. Aligned LCEs and LCE nanocomposites are characterized with respect to reversible strain, mechanical stiffness, and liquid crystal ordering using a combination of imaging, two-dimensional X-ray diffraction measurements, differential scanning calorimetry, and dynamic mechanical analysis. LCEs and LCE nanocomposites can be stimulated with heat and/or electrical potential to controllably generate strains in cell culture media, and we demonstrate the application of LCEs as shape-responsive substrates for cell culture using a custom-made apparatus.
Dielectric Actuation of Polymers
NASA Astrophysics Data System (ADS)
Niu, Xiaofan
Dielectric polymers are widely used in a plurality of applications, such as electrical insulation, dielectric capacitors, and electromechanical actuators. Dielectric polymers with large strain deformations under an electric field are named dielectric elastomers (DE), because of their relative low modulus, high elongation at break, and outstanding resilience. Dielectric elastomer actuators (DEA) are superior to traditional transducers as a muscle-like technology: large strains, high energy densities, high coupling efficiency, quiet operation, and light weight. One focus of this dissertation is on the design of DE materials with high performance and easy processing. UV radiation curing of reactive species is studied as a generic synthesis methodology to provide a platform for material scientists to customize their own DE materials. Oligomers/monomers, crosslinkers, and other additives are mixed and cured at appropriate ratios to control the stress-strain response, suppress electromechanical instability of the resulting polymers, and provide stable actuation strains larger than 100% and energy densities higher than 1 J/g. The processing is largely simplified in the new material system by removal of the prestretching step. Multilayer stack actuators with 11% linear strain are demonstrated in a procedure fully compatible with industrial production. A multifunctional DE derivative material, bistable electroactive polymer (BSEP), is invented enabling repeatable rigid-to-rigid deformation without bulky external structures. Bistable actuation allows the polymer actuator to have two distinct states that can support external load without device failure. Plasticizers are used to lower the glass transition temperature to 45 °C. Interpenetrating polymer network structure is established inside the BSEP to suppress electromechanical instability, providing a breakdown field of 194 MV/m and a stable bistable strain as large as 228% with a 97% strain fixity. The application of BSEP in tactile display is investigated by the prototyping of a large scale refreshable Braille display device. Braille is a critical way for the vision impaired community to learn literacy and improve life quality. Current piezoelectrics-based refreshable Braille display technologies are limited to up to 1 line of Braille text, due to the bulky size of bimorph actuators. Based on the unique actuation feature of BSEP, refreshable Braille display devices up to smartphone-size have been demonstrated by polymer sheet laminates. Dots in the devices can be individually controlled via incorporated field-driven BSEP actuators and Joule heater units. A composite material consisting of silver nanowires (AgNW) embedded in a polymer substrate is brought up as a compliant electrode candidate for BSEP application. The AgNW composite is highly conductive (Rs: 10 Ω/sq) and remains conductive at strains as high as 140% (Rs: <10 3 Ω/sq). The baseline conductivity has only small changes up to 90% strain, which makes it low enough for both field driving and stretchable Joule heating. An out-of-plane bistable area strain up to 68% under Joule heating is achieved.
Electrical breakdown detection system for dielectric elastomer actuators
NASA Astrophysics Data System (ADS)
Ghilardi, Michele; Busfield, James J. C.; Carpi, Federico
2017-04-01
Electrical breakdown of dielectric elastomer actuators (DEAs) is an issue that has to be carefully addressed when designing systems based on this novel technology. Indeed, in some systems electrical breakdown might have serious consequences, not only in terms of interruption of the desired function but also in terms of safety of the overall system (e.g. overheating and even burning). The risk for electrical breakdown often cannot be completely avoided by simply reducing the driving voltages, either because completely safe voltages might not generate sufficient actuation or because internal or external factors might change some properties of the actuator whilst in operation (for example the aging or fatigue of the material, or an externally imposed deformation decreasing the distance between the compliant electrodes). So, there is the clear need for reliable, simple and cost-effective detection systems that are able to acknowledge the occurrence of a breakdown event, making DEA-based devices able to monitor their status and become safer and "selfaware". Here a simple solution for a portable detection system is reported that is based on a voltage-divider configuration that detects the voltage drop at the DEA terminals and assesses the occurrence of breakdown via a microcontroller (Beaglebone Black single-board computer) combined with a real-time, ultra-low-latency processing unit (Bela cape an open-source embedded platform developed at Queen Mary University of London). The system was used to both generate the control signal that drives the actuator and constantly monitor the functionality of the actuator, detecting any breakdown event and discontinuing the supplied voltage accordingly, so as to obtain a safer controlled actuation. This paper presents preliminary tests of the detection system in different scenarios in order to assess its reliability.
Iterative and variational homogenization methods for filled elastomers
NASA Astrophysics Data System (ADS)
Goudarzi, Taha
Elastomeric composites have increasingly proved invaluable in commercial technological applications due to their unique mechanical properties, especially their ability to undergo large reversible deformation in response to a variety of stimuli (e.g., mechanical forces, electric and magnetic fields, changes in temperature). Modern advances in organic materials science have revealed that elastomeric composites hold also tremendous potential to enable new high-end technologies, especially as the next generation of sensors and actuators featured by their low cost together with their biocompatibility, and processability into arbitrary shapes. This potential calls for an in-depth investigation of the macroscopic mechanical/physical behavior of elastomeric composites directly in terms of their microscopic behavior with the objective of creating the knowledge base needed to guide their bottom-up design. The purpose of this thesis is to generate a mathematical framework to describe, explain, and predict the macroscopic nonlinear elastic behavior of filled elastomers, arguably the most prominent class of elastomeric composites, directly in terms of the behavior of their constituents --- i.e., the elastomeric matrix and the filler particles --- and their microstructure --- i.e., the content, size, shape, and spatial distribution of the filler particles. This will be accomplished via a combination of novel iterative and variational homogenization techniques capable of accounting for interphasial phenomena and finite deformations. Exact and approximate analytical solutions for the fundamental nonlinear elastic response of dilute suspensions of rigid spherical particles (either firmly bonded or bonded through finite size interphases) in Gaussian rubber are first generated. These results are in turn utilized to construct approximate solutions for the nonlinear elastic response of non-Gaussian elastomers filled with a random distribution of rigid particles (again, either firmly bonded or bonded through finite size interphases) at finite concentrations. Three-dimensional finite element simulations are also carried out to gain further insight into the proposed theoretical solutions. Inter alia, we make use of these solutions to examine the effects of particle concentration, mono- and poly-dispersity of the filler particle size, and the presence of finite size interphases on the macroscopic response of filled elastomers. The solutions are found able to explain and describe experimental results that to date have been understood only in part. More generally, the solutions provide a robust tool to efficiently guide the design of filled elastomers with desired macroscopic properties. The homogenization techniques developed in this work are not limited to nonlinear elasticity, but can be readily utilized to study multi-functional properties as well. For demonstration purposes, we work out a novel exact solution for the macroscopic dielectric response of filled elastomers with interphasial space charges.
NASA Astrophysics Data System (ADS)
Chang, Mengzhou; Wang, Zhenqing; Tong, Liyong; Liang, Wenyan
2017-03-01
Dielectric polymers show complex mechanical behaviors with different boundary conditions, geometry size and pre-stress. A viscoelastic model suitable for inhomogeneous deformation is presented integrating the Kelvin-Voigt model in a new form in this work. For different types of uniaxial tensile test loading along the length direction of sample, single-step-relaxation tests, loading-unloading tests and tensile-creep-relaxation tests the improved model provides a quite favorable comparison with the experiment results. Moreover, The mechanical properties of test sample with several length-width ratios under different boundary conditions are also invested. The influences of the different boundary conditions are calculated with a stress applied on the boundary point and the result show that the fixed boundary will increase the stress compare with homogeneous deformation. In modeling the effect of pre-stress in the shear test, three pre-stressed mode are discussed. The model validation on the general mechanical behavior shows excellent predictive capability.
Hernández, M; Grande, A M; van der Zwaag, S; García, S J
2016-04-27
Broadband dielectric spectroscopy (BDS) is introduced as a new and powerful technique to monitor network and macroscale damage healing in an elastomer. For the proof of concept, a partially cured sulfur-cured natural rubber (NR) containing reversible disulfides as the healing moiety was employed. The forms of damage healed and monitored were an invisible damage in the rubber network due to multiple straining and an imposed macroscopic crack. The relaxation times of pristine, damaged, and healed samples were determined and fitted to the Havriliak-Negami equation to obtain the characteristic polymer parameters. It is shown that seemingly full mechanical healing occurred regardless the type of damage, while BDS demonstrates that the polymer architecture in the healed material differs from that in the original one. These results represent a step forward in the understanding of damage and healing processes in intrinsic self-healing polymer systems with prospective applications such as coatings, tires, seals, and gaskets.
Hatamleh, Muhanad M; Watts, David C
2010-07-01
The purpose of this study was to test the effect of different periods of accelerated artificial daylight aging on bond strength of glass fiber bundles embedded into maxillofacial silicone elastomer and on bending strength of the glass fiber bundles. Forty specimens were fabricated by embedding resin-impregnated fiber bundles (1.5-mm diameter, 20-mm long) into maxillofacial silicone elastomer. Specimens were randomly allocated into four groups, and each group was subjected to different periods of accelerated daylight aging as follows (in hours); 0, 200, 400, and 600. The aging cycle included continuous exposure to quartz-filtered visible daylight (irradiance 760 W/m(2)) under an alternating weathering cycle (wet for 18 minutes, dry for 102 minutes). Pull-out tests were performed to evaluate bond strength between fiber bundles and silicone using a universal testing machine at 1 mm/min crosshead speed. Also a three-point bending test was performed to evaluate bending strength of the fiber bundles. One-way ANOVA and Bonferroni post hoc tests were carried out to detect statistical significance (p < 0.05). Mean (SD) values of maximum pull-out forces (in N) for groups 1 to 4 were: 13.63 (7.45), 19.67 (1.37), 13.58 (2.61), and 10.37 (2.52). Group 2 exhibited the highest pull-out force that was statistically significant when compared to the other groups. Maximum bending strengths of fiber bundles were in the range of 917.72 MPa to 1124.06 MPa. Bending strength significantly increased after 200 and 400 hours of aging only. After 200 hours of exposure to artificial daylight and moisture conditions, bond strength between glass fibers and heat-cured silicones is optimal, and the bending strength of the glass fiber bundles is enhanced.
NASA Astrophysics Data System (ADS)
Sun, Wenjie; Liu, Fan; Ma, Ziqi; Li, Chenghai; Zhou, Jinxiong
2017-01-01
Combining synergistically the muscle-like actuation of soft materials and load-carrying and locomotive capability of hard mechanical components results in hybrid soft machines that can exhibit specific functions. Here, we describe the design, fabrication, modeling and experiment of a hybrid soft machine enabled by marrying unidirectionally actuated dielectric elastomer (DE) membrane-spring system and ratchet wheels. Subjected to an applied voltage 8.2 kV at ramping velocity 820 V/s, the hybrid machine prototype exhibits monotonic uniaxial locomotion with an averaged velocity 0.5mm/s. The underlying physics and working mechanisms of the soft machine are verified and elucidated by finite element simulation.
Large-strain, rigid-to-rigid deformation of bistable electroactive polymers
NASA Astrophysics Data System (ADS)
Yu, Zhibin; Yuan, Wei; Brochu, Paul; Chen, Bin; Liu, Zhitian; Pei, Qibing
2009-11-01
Thermoplastic poly(tert-butyl acrylate) (PTBA) is reported as an electroactive polymer that is rigid at ambient conditions and turns into a dielectric elastomer above a transition temperature. In the rubbery state, a PTBA thin film can be electrically actuated to strains up to 335% in area expansion. The calculated actuation pressure is 3.2 MPa. The actuation is made bistable by cooling to below glass transition temperature. The PTBA represents the bistable electroactive polymer (BSEP) that can be actuated to various largely strained, rigid shapes. The application of the BSEP for refreshable Braille display, an active tactile display, is also demonstrated.
Active skin as new haptic interface
NASA Astrophysics Data System (ADS)
Vuong, Nguyen Huu Lam; Kwon, Hyeok Yong; Chuc, Nguyen Huu; Kim, Duksang; An, Kuangjun; Phuc, Vuong Hong; Moon, Hyungpil; Koo, Jachoon; Lee, Youngkwan; Nam, Jae-Do; Choi, Hyouk Ryeol
2010-04-01
In this paper, we present a new haptic interface, called "active skin", which is configured with a tactile sensor and a tactile stimulator in single haptic cell, and multiple haptic cells are embedded in a dielectric elastomer. The active skin generates a wide variety of haptic feel in response to the touch by synchronizing the sensor and the stimulator. In this paper, the design of the haptic cell is derived via iterative analysis and design procedures. A fabrication method dedicated to the proposed device is investigated and a controller to drive multiple haptic cells is developed. In addition, several experiments are performed to evaluate the performance of the active skin.
Generation of tunable plasma photonic crystals in meshed dielectric barrier discharge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yongjie; Dong, Lifang, E-mail: donglfhbu@163.com; Liu, Weibo
2014-07-15
Tunable superlattice plasma photonic crystals are obtained in a meshed dielectric barrier discharge. These plasma photonic crystals are composed of thin artificial lattices and thick self-organized lattices, and can be tuned easily by adjusting the applied voltage. A plasma photonic crystal with self-organized hexagonal lattice coupled to artificial square lattice is first realized. The dispersion relations of the square sublattices with different radii, which are recorded by an intensified charge-coupled device camera, are calculated. The results show that the thick square sublattice has the higher band edge frequencies and wider band widths. Band gaps of superlattice plasma photonic crystals aremore » actually temporal integrations of those of transient sublattices.« less
Tough and Water-Insensitive Self-Healing Elastomer for Robust Electronic Skin.
Kang, Jiheong; Son, Donghee; Wang, Ging-Ji Nathan; Liu, Yuxin; Lopez, Jeffrey; Kim, Yeongin; Oh, Jin Young; Katsumata, Toru; Mun, Jaewan; Lee, Yeongjun; Jin, Lihua; Tok, Jeffrey B-H; Bao, Zhenan
2018-03-01
An electronic (e-) skin is expected to experience significant wear and tear over time. Therefore, self-healing stretchable materials that are simultaneously soft and with high fracture energy, that is high tolerance of damage or small cracks without propagating, are essential requirements for the realization of robust e-skin. However, previously reported elastomers and especially self-healing polymers are mostly viscoelastic and lack high mechanical toughness. Here, a new class of polymeric material crosslinked through rationally designed multistrength hydrogen bonding interactions is reported. The resultant supramolecular network in polymer film realizes exceptional mechanical properties such as notch-insensitive high stretchability (1200%), high toughness of 12 000 J m -2 , and autonomous self-healing even in artificial sweat. The tough self-healing materials enable the wafer-scale fabrication of robust and stretchable self-healing e-skin devices, which will provide new directions for future soft robotics and skin prosthetics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Kummert, C.; Josupeit, S.; Schmid, H.-J.
2018-03-01
The influence of selective laser sintering (SLS) parameters on PA12 part properties is well known, but research on other materials is rare. One alternative material is a thermoplastic elastomer (TPE) called PrimePart ST that is more elastic and shows a distinct SLS processing behavior. It undergoes a three-dimensional temperature distribution during the SLS process within the TPE part cake. To examine this further, a temperature measurement system that allows temperature measurements inside the part cake is applied to TPE in the present work. Position-dependent temperature histories are directly correlated with the color and mechanical properties of built parts and are in very good agreement with artificial heat treatment in a furnace. Furthermore, it is clearly shown that the yellowish discoloration of parts in different intensities is not only temperature dependent but also influenced by the residual oxygen content in the process atmosphere. Nevertheless, the discoloration has no influence on the mechanical part properties.
Terahertz Magnetic Mirror Realized with Dielectric Resonator Antennas.
Headland, Daniel; Nirantar, Shruti; Withayachumnankul, Withawat; Gutruf, Philipp; Abbott, Derek; Bhaskaran, Madhu; Fumeaux, Christophe; Sriram, Sharath
2015-11-25
Single-crystal silicon is bonded to a metal-coated substrate and etched in order to form an array of microcylinder passive terahertz dielectric resonator antennas (DRAs). The DRAs exhibit a magnetic response, and hence the array behaves as an efficient artificial magnetic conductor (AMC), with potential for terahertz antenna and sensing applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Yang, Canhui; Suo, Zhigang
2018-06-01
An ionotronic device functions by a hybrid circuit of mobile ions and mobile electrons. Hydrogels are stretchable, transparent, ionic conductors that can transmit electrical signals of high frequency over long distance, enabling ionotronic devices such as artificial muscles, skins and axons. Moreover, ionotronic luminescent devices, ionotronic liquid crystal devices, touchpads, triboelectric generators, artificial eels and gel-elastomer-oil devices can be designed based on hydrogels. In this Review, we discuss first-generation hydrogel ionotronic devices and the challenges associated with the mechanical properties and the chemistry of the materials. We examine how strong and stretchable adhesion between hydrophilic and hydrophobic polymer networks can be achieved, how water can be retained in hydrogels and how to design hydrogels that resist fatigue under cyclic loads. Finally, we highlight applications of hydrogel ionotronic devices and discuss the future of the field.
A light-driven artificial flytrap
Wani, Owies M.; Zeng, Hao; Priimagi, Arri
2017-01-01
The sophistication, complexity and intelligence of biological systems is a continuous source of inspiration for mankind. Mimicking the natural intelligence to devise tiny systems that are capable of self-regulated, autonomous action to, for example, distinguish different targets, remains among the grand challenges in biomimetic micro-robotics. Herein, we demonstrate an autonomous soft device, a light-driven flytrap, that uses optical feedback to trigger photomechanical actuation. The design is based on light-responsive liquid-crystal elastomer, fabricated onto the tip of an optical fibre, which acts as a power source and serves as a contactless probe that senses the environment. Mimicking natural flytraps, this artificial flytrap is capable of autonomous closure and object recognition. It enables self-regulated actuation within the fibre-sized architecture, thus opening up avenues towards soft, autonomous small-scale devices. PMID:28534872
An ultra-lightweight design for imperceptible plastic electronics.
Kaltenbrunner, Martin; Sekitani, Tsuyoshi; Reeder, Jonathan; Yokota, Tomoyuki; Kuribara, Kazunori; Tokuhara, Takeyoshi; Drack, Michael; Schwödiauer, Reinhard; Graz, Ingrid; Bauer-Gogonea, Simona; Bauer, Siegfried; Someya, Takao
2013-07-25
Electronic devices have advanced from their heavy, bulky origins to become smart, mobile appliances. Nevertheless, they remain rigid, which precludes their intimate integration into everyday life. Flexible, textile and stretchable electronics are emerging research areas and may yield mainstream technologies. Rollable and unbreakable backplanes with amorphous silicon field-effect transistors on steel substrates only 3 μm thick have been demonstrated. On polymer substrates, bending radii of 0.1 mm have been achieved in flexible electronic devices. Concurrently, the need for compliant electronics that can not only be flexed but also conform to three-dimensional shapes has emerged. Approaches include the transfer of ultrathin polyimide layers encapsulating silicon CMOS circuits onto pre-stretched elastomers, the use of conductive elastomers integrated with organic field-effect transistors (OFETs) on polyimide islands, and fabrication of OFETs and gold interconnects on elastic substrates to realize pressure, temperature and optical sensors. Here we present a platform that makes electronics both virtually unbreakable and imperceptible. Fabricated directly on ultrathin (1 μm) polymer foils, our electronic circuits are light (3 g m(-2)) and ultraflexible and conform to their ambient, dynamic environment. Organic transistors with an ultra-dense oxide gate dielectric a few nanometres thick formed at room temperature enable sophisticated large-area electronic foils with unprecedented mechanical and environmental stability: they withstand repeated bending to radii of 5 μm and less, can be crumpled like paper, accommodate stretching up to 230% on prestrained elastomers, and can be operated at high temperatures and in aqueous environments. Because manufacturing costs of organic electronics are potentially low, imperceptible electronic foils may be as common in the future as plastic wrap is today. Applications include matrix-addressed tactile sensor foils for health care and monitoring, thin-film heaters, temperature and infrared sensors, displays, and organic solar cells.
Electroactive polymers for gaining sea power
NASA Astrophysics Data System (ADS)
Scherber, Benedikt; Grauer, Matthias; Köllnberger, Andreas
2013-04-01
Target of this article will be the energy harvesting with dielectric elastomers for wave energy conversion. The main goal of this article is to introduce a new developed material profile enabling a specific amount of energy, making the harvesting process competitive against other existing offshore generation technologies. Electroactive polymers offer the chance to start with small wave energy converters to gain experiences and carry out a similar development as wind energy. Meanwhile there is a consortium being formed in Germany to develop such materials and processes for future products in this new business area. In order to demonstrate the applicability of the technological advancements, a scale demonstrator of a wave energy generator will be developed as well.
Approaches to 3D printing teeth from X-ray microtomography.
Cresswell-Boyes, A J; Barber, A H; Mills, D; Tatla, A; Davis, G R
2018-06-28
Artificial teeth have several advantages in preclinical training. The aim of this study is to three-dimensionally (3D) print accurate artificial teeth using scans from X-ray microtomography (XMT). Extracted and artificial teeth were imaged at 90 kV and 40 kV, respectively, to create detailed high contrast scans. The dataset was visualised to produce internal and external meshes subsequently exported to 3D modelling software for modification before finally sending to a slicing program for printing. After appropriate parameter setting, the printer deposited material in specific locations layer by layer, to create a 3D physical model. Scans were manipulated to ensure a clean model was imported into the slicing software, where layer height replicated the high spatial resolution that was observed in the XMT scans. The model was then printed in two different materials (polylactic acid and thermoplastic elastomer). A multimaterial print was created to show the different physical characteristics between enamel and dentine. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.
Liu, Yan; Guenneau, Sébastien; Gralak, Boris
2013-01-01
We investigate a high-order homogenization (HOH) algorithm for periodic multi-layered stacks. The mathematical tool of choice is a transfer matrix method. Expressions for effective permeability, permittivity and magnetoelectric coupling are explored by frequency power expansions. On the physical side, this HOH uncovers a magnetoelectric coupling effect (odd-order approximation) and artificial magnetism (even-order approximation) in moderate contrast photonic crystals. Comparing the effective parameters' expressions of a stack with three layers against that of a stack with two layers, we note that the magnetoelectric coupling effect vanishes while the artificial magnetism can still be achieved in a centre-symmetric periodic structure. Furthermore, we numerically check the effective parameters through the dispersion law and transmission property of a stack with two dielectric layers against that of an effective bianisotropic medium: they are in good agreement throughout the low-frequency (acoustic) band until the first stop band, where the analyticity of the logarithm function of the transfer matrix () breaks down. PMID:24101891
NASA Astrophysics Data System (ADS)
Zi, Jianchen; Xu, Quan; Wang, Qiu; Tian, Chunxiu; Li, Yanfeng; Zhang, Xixiang; Han, Jiaguang; Zhang, Weili
2018-06-01
Metamaterials have been widely applied in the polarization conversion of terahertz (THz) waves. However, common plasmonic metamaterials usually work as reflective devices and have low transmissions. All-dielectric metamaterials can overcome these shortcomings. An all-dielectric metamaterial based on silicon with elliptical air holes is reported to achieve high artificial birefringence at THz frequencies. Simulations show that with appropriate structural parameters the birefringence of the dielectric metamaterial can remain flat and is above 0.7 within a broad band. Moreover, the metamaterial can be designed as a broadband quarter wave plate. A sample metamaterial was fabricated and tested to prove the validity of the simulations, and the sample could work as a quarter wave plate at 1.76 THz. The all-dielectric metamaterial that we proposed is of great significance for high performance THz polarization converters.
NASA Astrophysics Data System (ADS)
Bouchitté, Guy; Bourel, Christophe; Felbacq, Didier
2017-09-01
It is now well established that the homogenization of a periodic array of parallel dielectric fibers with suitably scaled high permittivity can lead to a (possibly) negative frequency-dependent effective permeability. However this result based on a two-dimensional approach holds merely in the case of linearly polarized magnetic fields, reducing thus its applications to infinite cylindrical obstacles. In this paper we consider a dielectric structure placed in a bounded domain of R^3 and perform a full three dimensional asymptotic analysis. The main ingredient is a new averaging method for characterizing the bulk effective magnetic field in the vanishing-period limit. We give evidence of a vectorial spectral problem on the periodic cell which determines micro-resonances and encodes the oscillating behavior of the magnetic field from which artificial magnetism arises. At a macroscopic level we deduce an effective permeability tensor that we can make explicit as a function of the frequency. As far as sign-changing permeability is sought after, we may foresee that periodic bulk dielectric inclusions could be an efficient alternative to the very popular metallic split-ring structure proposed by Pendry. Part of these results have been announced in Bouchitté et al. (C R Math Acad Sci Paris 347(9-10):571-576, 2009).
Giant lateral electrostriction in ferroelectric liquid-crystalline elastomers
NASA Astrophysics Data System (ADS)
Lehmann, W.; Skupin, H.; Tolksdorf, C.; Gebhard, E.; Zentel, R.; Krüger, P.; Lösche, M.; Kremer, F.
2001-03-01
Mechanisms for converting electrical energy into mechanical energy are essential for the design of nanoscale transducers, sensors, actuators, motors, pumps, artificial muscles, and medical microrobots. Nanometre-scale actuation has to date been mainly achieved by using the (linear) piezoelectric effect in certain classes of crystals (for example, quartz), and `smart' ceramics such as lead zirconate titanate. But the strains achievable in these materials are small-less than 0.1 per cent-so several alternative materials and approaches have been considered. These include grafted polyglutamates (which have a performance comparable to quartz), silicone elastomers (passive material-the constriction results from the Coulomb attraction of the capacitor electrodes between which the material is sandwiched) and carbon nanotubes (which are slow). High and fast strains of up to 4 per cent within an electric field of 150MVm-1 have been achieved by electrostriction (this means that the strain is proportional to the square of the applied electric field) in an electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer. Here we report a material that shows a further increase in electrostriction by two orders of magnitude: ultrathin (less than 100nanometres) ferroelectric liquid-crystalline elastomer films that exhibit 4 per cent strain at only 1.5 MVm-1. This giant electrostriction was obtained by combining the properties of ferroelectric liquid crystals with those of a polymer network. We expect that these results, which can be completely understood on a molecular level, will open new perspectives for applications.
Microwave NDE of impact damaged fiberglass and elastomer layered composites
NASA Astrophysics Data System (ADS)
Greenawald, E. C.; Levenberry, L. J.; Qaddoumi, N.; McHardy, A.; Zoughi, R.; Poranski, C. F.
2000-05-01
Layered composites have been proposed as advanced materials for future use in large naval sonar domes. Unlike today's steel/rubber composite domes, such materials promise engineered acoustic properties and less costly resin-transfer fabrication methods. The development and deployment of these large and complex composite structures will result in challenging NDE requirements for both manufacturing quality assurance and in-service needs. Among the anticipated in-service requirements is the detection and characterization of the impact damage associated with striking a submerged object at sea. A one-sided inspection method is desired, preferably applicable in the underwater environment. In this paper, we present preliminary microwave NDE results from impact test coupons of a proposed thick FRP/elastomer/FRP "sandwich" composite. The coupons were scanned using a near-field microwave probe that responds to the composite's dielectric properties. The unprocessed scan data was displayed in an image format to reveal damaged areas. Results are compared with those from x-ray backscatter imaging and ultrasonic testing, and are verified by destructive analysis of the coupons. The difficulties posed by the application are discussed, as are the operating principles and advantages of the microwave methods. The importance of optimizing inspection parameters such as frequency and standoff distance is emphasized for future work.
Microstamped opto-mechanical actuator for tactile displays
NASA Astrophysics Data System (ADS)
Camargo, Carlos J.; Torras, Núria; Campanella, Humberto; Marshall, Jean E.; Zinoviev, Kirill; Campo, Eva M.; Terentjev, Eugene M.; Esteve, Jaume
2011-10-01
Over the last few years, several technologies have been adapted for use in tactile displays, such as thermo-pneumatic actuators, piezoelectric polymers and dielectric elastomers. None of these approaches offers high-performance for refreshable Braille display system (RBDS), due to considerations of weight, power efficiency and response speed. Optical actuation offers an attractive alternative to solve limitations of current-art technologies, allowing electromechanical decoupling, elimination of actuation circuits and remote controllability. Creating these opticallydriven devices requires liquid crystal - carbon nanotube (LC-CNT) composites that show a reversible shape change in response to an applied light. This work thus reports on novel opto-actuated Braille dots based on LC-CNT composite and silicon mold microstamping. The manufacturing approach succeeds on producing blisters according to the Braille standard for the visually impaired, by taking shear-aligned LC-CNT films and silicon stamps. For this application, we need to define specifically-shaped structures. Some technologies have succeeded on elastomer microstructuring. Nevertheless, they are not applicable for LC-CNT molding because they do not consider the stretching of the polymer which is required for LC-CNT fabrication. Our process demonstrates that composites micro-molding and their 3-D structuring is feasible by silicon-based stamping. Its work principle involves the mechanical stretching, allowing the LC mesogens alignment.
Filié Haddad, Marcela; Coelho Goiato, Marcelo; Micheline Dos Santos, Daniela; Moreno, Amália; Filipe D'almeida, Nuno; Alves Pesqueira, Aldiéris
2011-09-01
The purpose of this study was to evaluate the color stability of a maxillofacial elastomer with the addition of a nanoparticle pigment and∕or an opacifier submitted to chemical disinfection and artificial aging. Specimens were divided into four groups (n = 30): group I: silicone without pigment or opacifier, group II: ceramic powder pigment, group III: Barium sulfate (BaSO(4)) opacifier, and group IV: ceramic powder and BaSO(4) opacifier. Specimens of each group (n = 10) were disinfected with effervescent tablets, neutral soap, or 4% chlorhexidine gluconate. Disinfection was done three times a week during two months. Afterward, specimens were submitted to different periods of artificial aging. Color evaluation was initially done, after 60 days (disinfection period) and after 252, 504, and 1008 h of artificial aging with aid of a reflection spectrophotometer. Data were analyzed by three-way ANOVA and Tukey test (α = 0.05). The isolated factor disinfection did not statistically influence the values of color stability among groups. The association between pigment and BaSO(4) opacifier (GIV) was more stable in relationship to color change (△E). All values of △E obtained, independent of the disinfectant and the period of artificial aging, were considered acceptable in agreement with the norms presented in literature.
NASA Astrophysics Data System (ADS)
Sreekala, P. S.; Honey, John; Aanandan, C. K.
2018-05-01
In this communication, the broadband artificial dielectric plasma behavior of Camphor Sulphonic acid doped Polyaniline (PANI-CSA) film at microwave frequencies is experimentally verified. The fabricated PANI-CSA films have been experimentally characterized by rectangular wave guide measurements for a broad range of frequencies within the X band and the effective material parameters, skin depth and conductivity have been extracted from the scattering parameters. Since most of the artificial materials available today are set up by consolidating two structured materials which independently demonstrates negative permittivity and negative permeability, this open another strategy for creation of compact single negative materials for microwave applications. The proposed doping can shift the double positive material parameter of the sample to single negative in nature.
Ji, Yun-Yun; Fan, Fei; Chen, Meng; Yang, Lei; Chang, Sheng-Jiang
2017-05-15
A dielectric metasurface with line-square compound lattice structure has been fabricated and demonstrated in the terahertz (THz) regime by the THz time-domain spectroscopy and numerical simulation. A polarization dependent electromagnetically induced transparency (EIT) effect is achieved in this metasurface due to the mode coupling and interference between the resonance modes in line and square subunits of the metasurface. Accompany with the EIT effect, a large artificial birefringence effect between two orthogonal polarization states is also observed in this compound metasurface, of which birefringence is over 0.6. Furthermore, the liquid crystals are filled on the surface of this dielectric metasurface to fabricate an electrically tunable THz LC phase shifter. The experimental results show that its tunable phase shift under the biased electric field reaches 0.33π, 1.8 times higher than the bare silicon, which confirms the enhancement role of THz microstructure on the LC phase shift in the THz regime. The large birefringence phase shift of this compound metasurface and its LC tunable phase shifter will be of great significance for potential applications in THz polarization and phase devices.
Guiotti, Aimée Maria; Goiato, Marcelo Coelho; Dos Santos, Daniela Micheline; Vechiato-Filho, Aljomar José; Cunha, Bruno Guandalini; Paulini, Marcela Borghi; Moreno, Amália; de Almeida, Margarete Teresa Gottardo
2016-04-01
Silicone elastomers undergo physical and chemical degradation with disinfecting solutions. Phytotherapy may be a suitable solution for disinfection. However, its effect on the properties of the silicone material is unknown. The purpose of this in vitro study was to evaluate the effect of disinfection with conventional and plant-extract solutions and of artificial aging on the hardness and color stability of a facial silicone associated with pigments and an opacifier. Four hundred specimens of silicone (MDX4-4210) were fabricated (5×6 mm). Two pigment shades and 1 dry opacifier were combined in the tested material, and 4 groups (n=10) were obtained: colorless (GI), colorless with opacifier (GII), medium pigment with opacifier (GIII), and black pigment with opacifier (GIV). Specimens were subjected to disinfection (30 days) using saline solution, water, and neutral soap (digital friction, 30 seconds), chlorhexidine 4%, Hydrastis canadensis, and Cymbopogon nardus extracts (immersion, 10 minutes). Shore A hardness (ASTM D2240) and color analyses were performed before and after disinfection. Specimens were then exposed to 1008 hours of artificial aging (ASTM 53) and subjected to final hardness and color readings. The results were analyzed with ANOVA and the Tukey significant difference test (α=.05). The opacifier increased the hardness (GII). For GII, the H. canadensis solution and the friction with water and soap promoted significantly reduced hardness; the friction also promoted a reduction in this property for GIV. The GIII was not affected after disinfection. A significant difference was found between the ΔE values of the specimens disinfected with H. canadensis, C. nardus, and chlorhexidine, and specimens subjected to saline solution and neutral soap. The hardness of MDX4-4210 after the experimental procedure was considered clinically acceptable for facial prostheses. All groups showed clinically unacceptable color alterations regardless of the disinfecting solution. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Fabrication and characterization of bending and pressure sensors for a soft prosthetic hand
NASA Astrophysics Data System (ADS)
Rocha, Rui Pedro; Alhais Lopes, Pedro; de Almeida, Anibal T.; Tavakoli, Mahmoud; Majidi, Carmel
2018-03-01
We demonstrate fabrication, characterization, and implementation of ‘soft-matter’ pressure and bending sensors for a soft robotic hand. The elastomer-based sensors are embedded in a robot finger composed of a 3D printed endoskeleton and covered by an elastomeric skin. Two types of sensors are evaluated, resistive pressure sensors and capacitive pressure sensors. The sensor is fabricated entirely out of insulating and conductive rubber, the latter composed of polydimethylsiloxane (PDMS) elastomer embedded with a percolating network of structured carbon black (CB). The sensor-integrated fingers have a simple materials architecture, can be fabricated with standard rapid prototyping methods, and are inexpensive to produce. When incorporated into a robotic hand, the CB-PDMS sensors and PDMS carrier medium function as an ‘artificial skin’ for touch and bend detection. Results show improved response with a capacitive sensor architecture, which, unlike a resistive sensor, is robust to electromechanical hysteresis, creep, and drift in the CB-PDMS composite. The sensorized fingers are integrated in an anthropomorphic hand and results for a variety of grasping tasks are presented.
High Performance Artificial Muscles Using Nanofiber and Hybrid Yarns
2015-07-14
provide 3.2% energy conversion efficiency (twice that of our CNT fiber muscles and 10X that of conducting polymer muscles ). They maintain stroke without...rubber dielectric muscle layer in twisted fiber drives torsional actuation. (2) One hundred times higher torsional stroke per muscle length...artificial muscles that provide giant stroke, fast response, high force generation, and long cycle life while optimizing energy conversion efficiencies
Improved actuation strain of PDMS-based DEA materials chemically modified with softening agents
NASA Astrophysics Data System (ADS)
Biedermann, Miriam; Blümke, Martin; Wegener, Michael; Krüger, Hartmut
2015-04-01
Dielectric elastomer actuators (DEAs) are smart materials that gained much in interest particularly in recent years. One active field of research is the improvement of their properties by modification of their structural framework. The object of this work is to improve the actuation properties of polydimethylsiloxane (PDMS)-based DEAs by covalent incorporation of mono-vinyl-terminated low-molecular PDMS chains into the PDMS network. These low-molecular units act as a kind of softener within the PDMS network. The loose chain ends interfere with the network formation and lower the network's density. PDMS films with up to 50wt% of low-molecular PDMS additives were manufactured and the chemical, mechanical, electrical, and electromechanical properties of these novel materials were investigated.
Scalable sensing electronics towards a motion capture suit
NASA Astrophysics Data System (ADS)
Xu, Daniel; Gisby, Todd A.; Xie, Shane; Anderson, Iain A.
2013-04-01
Being able to accurately record body motion allows complex movements to be characterised and studied. This is especially important in the film or sport coaching industry. Unfortunately, the human body has over 600 skeletal muscles, giving rise to multiple degrees of freedom. In order to accurately capture motion such as hand gestures, elbow or knee flexion and extension, vast numbers of sensors are required. Dielectric elastomer (DE) sensors are an emerging class of electroactive polymer (EAP) that is soft, lightweight and compliant. These characteristics are ideal for a motion capture suit. One challenge is to design sensing electronics that can simultaneously measure multiple sensors. This paper describes a scalable capacitive sensing device that can measure up to 8 different sensors with an update rate of 20Hz.
NASA Astrophysics Data System (ADS)
Rinkevich, A. B.; Nemytova, O. V.; Perov, D. V.; Samoylovich, M. I.; Kuznetsov, E. A.
2018-04-01
High-temperature heat treatment has valuable impact on the structure and physical properties of artificial crystals with 3d metal and palladium particles. Artificial crystals are obtained by means of introduction of particles into the interspherical voids of opal matrices. The magnetic properties are studied at the temperatures ranging from 2 to 300 K and in fields up to 350 kOe. Microwave properties are investigated in the millimeter frequency range. The complex dielectric permittivity of several nanocomposites is measured. The influence of heat treatment up to 960 °C on the structure of artificial crystals is clarified.
NASA Technical Reports Server (NTRS)
Darlow, M.; Zorzi, E.
1981-01-01
A comprehensive guide for the design of elastomer dampers for application in rotating machinery is presented. Theoretical discussions, a step by step procedure for the design of elastomer dampers, and detailed examples of actual elastomer damper applications are included. Dynamic and general physical properties of elastomers are discussed along with measurement techniques.
Link between the dielectric properties of mesomorphic and biological materials
NASA Astrophysics Data System (ADS)
Szwajczak, Elzbieta; Szymanski, Aleksander B.
2002-06-01
An application of liquid crystalline materials as a model materials for the use in dielectric spectroscopy of the artificial biological materials and the tissues is discussed. It is shown that an application of the standard electrochemical concepts may break in the case of liquid crystalline materials as well as biological materials. The presence of space charge regions as well as electrical non- linearities of the sample may suggest some special possibility of the time domain technique application.
Kosor, Begüm Yerci; Artunç, Celal; Şahan, Heval
2015-07-01
A key factor of an implant-retained facial prosthesis is the success of the bonding between the substructure and the silicone elastomer. Little has been reported on the bonding of fiber reinforced composite (FRC) to silicone elastomers. Experimental FRC could be a solution for facial prostheses supported by light-activated aliphatic urethane acrylate, orthodontic acrylic resin, or commercially available FRCs. The purpose of this study was to evaluate the bonding of the experimental FRC, orthodontic acrylic resin, and light-activated aliphatic urethane acrylate to a commercially available high-temperature vulcanizing silicone elastomer. Shear and 180-degree peel bond strengths of 3 different substructures (experimental FRC, orthodontic acrylic resin, light-activated aliphatic urethane acrylate) (n=15) to a high-temperature vulcanizing maxillofacial silicone elastomer (M511) with a primer (G611) were assessed after 200 hours of accelerated artificial light-aging. The specimens were tested in a universal testing machine at a cross-head speed of 10 mm/min. Data were collected and statistically analyzed by 1-way ANOVA, followed by the Bonferroni correction and the Dunnett post hoc test (α=.05). Modes of failure were visually determined and categorized as adhesive, cohesive, or mixed and were statistically analyzed with the chi-squared goodness-of-fit test (α=.05). As the mean shear bond strength values were evaluated statistically, no difference was found among the experimental FRC, aliphatic urethane acrylate, and orthodontic acrylic resin subgroups (P>.05). The mean peel bond strengths of experimental fiber reinforced composite and aliphatic urethane acrylate were not found to be statistically different (P>.05). The mean value of the orthodontic acrylic resin subgroup peel bond strength was found to be statistically lower (P<.05). Shear test failure types were found to be statistically different (P<.05), whereas 180-degree peel test failure types were not found to be statistically significant (P>.05). Shear forces predominantly exhibited cohesive failure (64.4%), whereas peel forces predominantly exhibited adhesive failure (93.3%). The mean shear bond strengths of the experimental FRC and aliphatic urethane acrylate groups were not found to be statistically different (P>.05). The mean value of the 180-degree peel strength of the orthodontic acrylic resin group was found to be lower (P<.05). Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Temnikov, A. G.; Chernensky, L. L.; Orlov, A. V.; Lysov, N. Y.; Zhuravkova, D. S.; Belova, O. S.; Gerastenok, T. K.
2017-12-01
The results of the experimental application of artificial thunderstorm cells of negative and positive polarities for the investigation of the lightning initiation problems between the thundercloud and the ground using model hydrometeor arrays are presented. Possible options of the initiation and development of a discharge between the charged cloud and the ground in the presence of model hydrometeors are established. It is experimentally shown that groups of large hydrometeors of various shapes significantly increase the probability of channel discharge initiation between the artificial thunderstorm cell and the ground, especially in the case of positive polarity of the cloud. The authors assume that large hail arrays in the thundercloud can initiate the preliminary breakdown stage in the lower part of the thundercloud or initiate and stimulate the propagation of positive lightning from its upper part. A significant effect of the shape of model hydrometeors and the way they are grouped on the processes of initiation and stimulation of the channel discharge propagation in the artificial thunderstorm cell of negative or positive polarity-ground gap is experimentally established. It is found that, in the case of negative polarity of a charged cloud, the group of conductive cylindrical hydrometeors connected by a dielectric string more effectively initiates the channel discharge between the artificial thunderstorm cell and the ground. In the case of positive polarity of the artificial thunderstorm cell, the best effect of the channel discharge initiation is achieved for model hydrometeors grouped together by the dielectric tape. The obtained results can be used in the development of the method for the directed artificial lightning initiation between the thundercloud and the ground.
NASA Astrophysics Data System (ADS)
Palagi, Stefano; Mark, Andrew G.; Reigh, Shang Yik; Melde, Kai; Qiu, Tian; Zeng, Hao; Parmeggiani, Camilla; Martella, Daniele; Sanchez-Castillo, Alberto; Kapernaum, Nadia; Giesselmann, Frank; Wiersma, Diederik S.; Lauga, Eric; Fischer, Peer
2016-06-01
Microorganisms move in challenging environments by periodic changes in body shape. In contrast, current artificial microrobots cannot actively deform, exhibiting at best passive bending under external fields. Here, by taking advantage of the wireless, scalable and spatiotemporally selective capabilities that light allows, we show that soft microrobots consisting of photoactive liquid-crystal elastomers can be driven by structured monochromatic light to perform sophisticated biomimetic motions. We realize continuum yet selectively addressable artificial microswimmers that generate travelling-wave motions to self-propel without external forces or torques, as well as microrobots capable of versatile locomotion behaviours on demand. Both theoretical predictions and experimental results confirm that multiple gaits, mimicking either symplectic or antiplectic metachrony of ciliate protozoa, can be achieved with single microswimmers. The principle of using structured light can be extended to other applications that require microscale actuation with sophisticated spatiotemporal coordination for advanced microrobotic technologies.
Optomechanics of two- and three-dimensional soft photonic crystals
NASA Astrophysics Data System (ADS)
Krishnan, Dwarak
Soft photonic crystals are a class of periodic dielectric structures that undergo highly nonlinear deformation due to strain or other external stimulus such as temperature, pH etc. This can in turn dramatically affect optical properties such as light transmittance. Moreover certain classes of lithographically fabricated structures undergo some structural distortion due to the effects of processing, eventually affecting the optical properties of the final photonic crystal. In this work, we study the deformation mechanics of soft photonic crystal structures using realistic physics-based models and leverage that understanding to explain the optomechanics of actual 2-D and 3-D soft photonic crystals undergoing similar symmetry breaking nonlinear deformations. We first study the optomechanics of two classes of 3-D soft photonic crystals: (1) hydrogel and (2) elastomer based material systems. The hydrogel based inverse face-centered-cubic structure undergoes swelling with change in pH of the surrounding fluid. The inverse structure is a network of bulky domains with thin ligament-like connections, and it undergoes a pattern transformation from FCC to L11 as a result of swelling. A continuum scale poroelasticity based coupled fluid-diffusion FEM model is developed to accurately predict this mechanical behavior. Light transmittance simulation results qualitatively explain the experimentally observed trends in the optical behavior with pH change. The elastomer based, lithographically fabricated material experiences shrinkage induced distortion upon processing. This behavior is modeled using FEM with the material represented by a neo-Hookean constitutive law. The light transmittance calculations for normal incidence are carried out using the transfer matrix method and a good comparison is obtained for the positions of first and second order reflectance peaks. A unit cell based approach is taken to compute the photonic bandstructure to estimate light propagation through the structure for other angles of light incidence. To obtain a detailed picture of the change in optical properties due to a pattern transformation, we study simple 2-D elastomer photonic crystals which undergo an interesting structural pattern transformation from simple circular holes to alternately oriented ellipses in a square lattice due to uniaxial compression. The incident light does not have any effect on the properties of the elastomer material. A decomposition of the deformation gradient quickly shows that the pattern transformation is induced by alternating rotations of the interstitial regions and the bending of interconnecting ligaments. Numerical simulations of light transmittance using vector element based FEM analysis of Maxwells equations shows changes in the light energy localization within the material especially in the high energy/low wavelength regions of the spectra. Additionally, with bandstructure calculations on a unit cell of the structure, the optomechanical behavior is completely explained. Finally, computational evidence is provided for a hypothetical 2-D photonic crystal made of a light-sensitive material, which undergoes a structural pattern transformation primarily due to the effect of incident light. The model takes into account the order kinetics of optically induced isomerization (of trans to cis configuration) in the azobenzene-liquid crystal elastomer to compute the transformational strain. This strain, in turn, deforms the structure and hence changes its periodicity and dielectric properties and thus affects the manner in which light gets localized within the material system. This consequently changes the profile of the imposed transformational strain on the deformed structure. The macroscopic strain history shows that prior to the mechanical instability that causes the pattern transformation, there is a period of structural relaxation which initiates the pattern transformation. After the symmetry breaking pattern transformation, the photonic bandstructure is altered significantly. Light does not get localized in the spot regions anymore and stress relaxation dominates. Due to this, the compressive macroscopic strain of the pattern transformed structure starts to decrease indicating a possible cyclical behavior.
Development of microsized slip sensors using dielectric elastomer for incipient slippage
NASA Astrophysics Data System (ADS)
Hwang, Do-Yeon; Kim, Baek-chul; Cho, Han-Jeong; Li, Zhengyuan; Lee, Youngkwan; Nam, Jae-Do; Moon, Hyungpil; Choi, Hyouk Ryeol; Koo, J. C.
2014-04-01
A humanoid robot hand has received significant attention in various fields of study. In terms of dexterous robot hand, slip detecting tactile sensor is essential to grasping objects safely. Moreover, slip sensor is useful in robotics and prosthetics to improve precise control during manipulation tasks. In this paper, sensor based-human biomimetic structure is fabricated. We reported a resistance tactile sensor that enables to detect a slip on the surface of sensor structure. The resistance slip sensor that the novel developed uses acrylonitrile-butadiene rubber (NBR) as a dielectric substrate and carbon particle as an electrode material. The presented sensor device in this paper has fingerprint-like structures that are similar with the role of the human's finger print. It is possible to measure the slip as the structure of sensor makes a deformation and it changes the resistance through forming a new conductive route. To verify effectiveness of the proposed slip detection, experiment using prototype of resistance slip sensor is conducted with an algorithm to detect slip and slip was successfully detected. In this paper, we will discuss the slip detection properties so four sensor and detection principle.
River Devices to Recover Energy with Advanced Materials (River DREAM)
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMahon, Daniel P.
2013-07-03
The purpose of this project is to develop a generator called a Galloping Hydroelectric Energy Extraction Device (GHEED). It uses a galloping prism to convert water flow into linear motion. This motion is converted into electricity via a dielectric elastomer generator (DEG). The galloping mechanism and the DEG are combined to create a system to effectively generate electricity. This project has three research objectives: 1. Oscillator development and design a. Characterize galloping behavior, evaluate control surface shape change on oscillator performance and demonstrate shape change with water flow change. 2. Dielectric Energy Generator (DEG) characterization and modeling a. Characterize andmore » model the performance of the DEG based on oscillator design 3. Galloping Hydroelectric Energy Extraction Device (GHEED) system modeling and integration a. Create numerical models for construction of a system performance model and define operating capabilities for this approach Accomplishing these three objectives will result in the creation of a model that can be used to fully define the operating parameters and performance capabilities of a generator based on the GHEED design. This information will be used in the next phase of product development, the creation of an integrated laboratory scale generator to confirm model predictions.« less
Finite element analysis of multilayer DEAP stack-actuators
NASA Astrophysics Data System (ADS)
Kuhring, Stefan; Uhlenbusch, Dominik; Hoffstadt, Thorben; Maas, Jürgen
2015-04-01
Dielectric elastomers (DE) are thin polymer films belonging to the class of electroactive polymers (EAP). They are coated with compliant and conductive electrodes on each side, which make them performing a relative high amount of deformation with considerable force generation under the influence of an electric field. Because the realization of high electric fields with a limited voltage level requests single layer polymer films to be very thin, novel multilayer actuators are utilized to increase the absolute displacement and force. In case of a multilayer stack-actuator, many actuator films are mechanically stacked in series and electrically connected in parallel. Because there are different ways to design such a stack-actuator, this contribution considers an optimization of some design parameters using the finite element analysis (FEA), whereby the behavior and the actuation of a multilayer dielectric electroactive polymer (DEAP) stack-actuator can be improved. To describe the material behavior, first different material models are compared and necessary material parameters are identified by experiments. Furthermore, a FEA model of a DEAP film is presented, which is expanded to a multilayer DEAP stack-actuator model. Finally, the results of the FEA are discussed and conclusions for design rules of optimized stack-actuators are outlined.
Towards the development of active compression bandages using dielectric elastomer actuators
NASA Astrophysics Data System (ADS)
Pourazadi, S.; Ahmadi, S.; Menon, C.
2014-06-01
Disorders associated with the lower extremity venous system are common and significantly affect the quality of life of a large number of individuals. These disorders include orthostatic hypotension, oedema, deep vein thrombosis and a number of other conditions related to insufficient venous blood return. The common recommended treatment for these disorders is the use of hosiery compression stockings. In this research, an active compression bandage (ACB) based on the technology of dielectric elastomeric actuators (DEA) was designed, prototyped and tested. A customized calf prototype (CP) was developed to measure the pressure applied by the ACB. Experimental results performed with the CP showed that the pressure applied by the ACB could be electrically controlled to be either below or above the pressure exerted by commercially available compression stockings. An analytical model was used to provide the design criteria. A finite element model (FEM) was also developed to simulate the electromechanical behaviour of the DEA. Comparison of the experimental results with the FEM and analytical models showed that the modelling could accurately predict the behaviour of the ACB. The FEM was subsequently used to study how to improve the ACB performance by varying geometrical parameters such as the ACB thickness.
Excellent microwave response derived from the construction of dielectric-loss 1D nanostructure.
Dai, Sisi; Quan, Bin; Liang, Xiaohui; Lv, Jing; Yang, Zhihong; Ji, Guangbin; Du, Youwei
2018-05-11
Increasing efforts have recently been devoted to the artificial design and function of nanostructures for their application prospects in catalysis, drug delivery, energy storage, and microwave absorption. With the advantages of natural abundance, low cost, and environment friendliness, a one-dimensional (1D) MnO 2 nanowire (MW) is the representative dielectric-loss absorber for its special morphology and crystalline structure. However, its low reflection loss (RL) value due to its thin thickness limits its wide development and application in the microwave absorption field. In this work, artificially designed MnO 2 @AIR@C (MCs), namely, 1D hollow carbon nanotubes filled with nano-MnO 2 , were designed and synthesized. It is found that the RL value of the MC is almost lower than -10 dB. Furthermore, the RL value was able to achieve -18.9 dB with an effective bandwidth (-10 dB) of 5.84 GHz at 2.25 mm. Simultaneously, the dielectric and interfacial polarization became stronger while the impedance matching was much better than in the single MWs. Hence, the rational design and fabrication of micro-architecture are essential and MC has great potential to be an outstanding microwave absorber.
Excellent microwave response derived from the construction of dielectric-loss 1D nanostructure
NASA Astrophysics Data System (ADS)
Dai, Sisi; Quan, Bin; Liang, Xiaohui; Lv, Jing; Yang, Zhihong; Ji, Guangbin; Du, Youwei
2018-05-01
Increasing efforts have recently been devoted to the artificial design and function of nanostructures for their application prospects in catalysis, drug delivery, energy storage, and microwave absorption. With the advantages of natural abundance, low cost, and environment friendliness, a one-dimensional (1D) MnO2 nanowire (MW) is the representative dielectric-loss absorber for its special morphology and crystalline structure. However, its low reflection loss (RL) value due to its thin thickness limits its wide development and application in the microwave absorption field. In this work, artificially designed MnO2@AIR@C (MCs), namely, 1D hollow carbon nanotubes filled with nano-MnO2, were designed and synthesized. It is found that the RL value of the MC is almost lower than -10 dB. Furthermore, the RL value was able to achieve -18.9 dB with an effective bandwidth (-10 dB) of 5.84 GHz at 2.25 mm. Simultaneously, the dielectric and interfacial polarization became stronger while the impedance matching was much better than in the single MWs. Hence, the rational design and fabrication of micro-architecture are essential and MC has great potential to be an outstanding microwave absorber.
Skin-inspired hydrogel-elastomer hybrids with robust interfaces and functional microstructures
NASA Astrophysics Data System (ADS)
Yuk, Hyunwoo; Zhang, Teng; Parada, German Alberto; Liu, Xinyue; Zhao, Xuanhe
2016-06-01
Inspired by mammalian skins, soft hybrids integrating the merits of elastomers and hydrogels have potential applications in diverse areas including stretchable and bio-integrated electronics, microfluidics, tissue engineering, soft robotics and biomedical devices. However, existing hydrogel-elastomer hybrids have limitations such as weak interfacial bonding, low robustness and difficulties in patterning microstructures. Here, we report a simple yet versatile method to assemble hydrogels and elastomers into hybrids with extremely robust interfaces (interfacial toughness over 1,000 Jm-2) and functional microstructures such as microfluidic channels and electrical circuits. The proposed method is generally applicable to various types of tough hydrogels and diverse commonly used elastomers including polydimethylsiloxane Sylgard 184, polyurethane, latex, VHB and Ecoflex. We further demonstrate applications enabled by the robust and microstructured hydrogel-elastomer hybrids including anti-dehydration hydrogel-elastomer hybrids, stretchable and reactive hydrogel-elastomer microfluidics, and stretchable hydrogel circuit boards patterned on elastomer.
Timbart, Laurianne; Tse, Man Yat; Pang, Stephen C.; Amsden, Brian G.
2010-01-01
Cylindrical elastomers were prepared through the UV-initiated crosslinking of terminally acrylated, 8,000 Da star-poly(trimethylene carbonate-co-ε-caprolactone) and star-poly(trimethylene carbonate-co-d,l-lactide). These elastomers were implanted intramuscularly into the hind legs of male Wistar rats to determine the influence of the comonomer on the weight loss, tissue response, and change in mechanical properties of the elastomer. The elastomers exhibited only a mild inflammatory response that subsided after the first week; the response was greater for the stiffer d,l-lactide-containing elastomers. The elastomers exhibited weight loss and sol content changes consistent with a bulk degradation mechanism. The d,l-lactide-containing elastomers displayed a nearly zero-order change in Young’s modulus and stress at break over the 30 week degradation time, while the ε-caprolactone-containing elastomers exhibited little change in modulus or stress at break.
Three-dimensional magnetophotonic crystals based on artificial opals
NASA Astrophysics Data System (ADS)
Baryshev, A. V.; Kodama, T.; Nishimura, K.; Uchida, H.; Inoue, M.
2004-06-01
We fabricated and experimentally investigated three-dimensional magnetophotonic crystals (3D MPCs) based on artificial opals. Opal samples with three-dimensional dielectric lattices were impregnated with different types of magnetic material. Magnetic and structural properties of 3D MPCs were studied by field emission scanning electron microscopy, x-ray diffraction analysis, and vibrating sample magnetometer. We have shown that magnetic materials synthesized in voids of opal lattices and the composites obtained have typical magnetic properties.
NASA Astrophysics Data System (ADS)
Roman, Michael
In this work, molecular motion, and in particular, glassy relaxations are studied in two novel experimental systems. Both experimental systems offer a significant degree of control over molecule-molecule, or group-group (where group refers to a portion of a molecule), interactions by controlling density and the type of inter-molecular interaction. Both systems have rigid elements that decrease the tendency of bulk materials to spontaneously change their density with temperature. Thus, density can be maintained and controlled and the effect of density and temperature can be (at least in part) de-convolved. The goal of this work is to experimentally observe the transition from simple, local relaxations to glassy dynamics as density is increased and to understand how this transition differs as the inter-molecular interactions are altered. In both approaches, the system is fabricated from individual parts where the nature, spacing, and particular arrangement of the parts can be controlled and the resultant changes in molecular motion can be observed. Building up a custom system from parts enables fundamental investigation into the glass transition (as discussed above) and also makes possible the development of materials that have engineered responses as a function of temperature. As a short-hand, we refer to the two systems as the monolayer or SAM (short for Self-Assembled Monolayer) and elastomer approaches. In Chapters 4-7 we discuss results from the monolayer approach. Chapter 8 summarizes results from the elastomer approach. In particular, Chapter 4 introduces you to dielectric spectroscopy and briefly summarizes the previous work by former students in the Clarke group which identified the local and glass relaxations in silane monolayers of substituted alkyl chains as analogous to the local and glassy relaxations in polymeric systems containing phase segregated alkyl chains, and similar to the local and glass modes in poly(ethylene). The remainder of Chapter 4 summarizes my own work to clearly delineate the transition from non-interacting behavior at low density (a partially-filled monolayer) to glassy behavior (with or without the presence of a local mode) as density is increased. In Chapter 5, I determined that this transition is highly robust to sample preparation technique. In Chapter 6, the effect of different inter-molecular interactions (dipole strength) on this transition and the resultant glassy state is discussed. Chapter 7 discusses changes in the local modes and the distribution of local and glass modes in the system as a function of terminal dipole strength. In chapter 8, elastomers are studied and the effect of backbone composition and distance between crosslinks is shown. This elastomer system can serve as a new substrate on which similar experiments as conducted with mono layers can be undertaken.
Mechanical Design Handbook for Elastomers
NASA Technical Reports Server (NTRS)
Darlow, M.; Zorzi, E.
1986-01-01
Mechanical Design Handbook for Elastomers reviews state of art in elastomer-damper technology with particular emphasis on applications of highspeed rotor dampers. Self-contained reference but includes some theoretical discussion to help reader understand how and why dampers used for rotating machines. Handbook presents step-by-step procedure for design of elastomer dampers and detailed examples of actual elastomer damper applications.
Feasibility of microelectrode array (MEA) based on silicone-polyimide hybrid for retina prosthesis.
Kim, Eui Tae; Kim, Cinoo; Lee, Seung Woo; Seo, Jong-Mo; Chung, Hum; Kim, Sung June
2009-09-01
To adopt micropatterning technology in manufacturing silicone elastomer-based microelectrode arrays for retinal stimulation, a silicone-polyimide hybrid microelectrode array was proposed and tested in vivo. Gold microelectrodes were created by semiconductor manufacturing technology based on polyimide and were hybridized with silicone elastomer by spin coating. The stability of the hybrid between the two materials was flex and blister tested. The feasibility of the hybrid electrode was evaluated in the rabbit eye by reviewing optical coherence tomography (OCT) findings after suprachoroidal implantation. The flex test showed no dehiscence between the two materials for 24 hours of alternative flexion and extension from -45.0 degrees to +45.0 degrees . During the blister test, delamination was observed at 8.33 +/- 1.36 psi of pressure stress; however, this property was improved to 11.50 +/- 1.04 psi by oxygen plasma treatment before hybridization. OCT examination revealed that the implanted electrodes were safely located in the suprachoroidal space during the 4-week follow-up period. The silicone-polyimide hybrid microelectrode array showed moderate physical properties, which are suitable for in vivo application. Appropriate pretreatment before hybridization improved electrode stability. In vivo testing indicated that this electrode is suitable as a stimulation electrode in artificial retina.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maiti, A; Weisgraber, T. H.; Dinh, L. N.
Filled and cross-linked elastomeric rubbers are versatile network materials with a multitude of applications ranging from artificial organs and biomedical devices to cushions, coatings, adhesives, interconnects, and seismic-isolation-, thermal-, and electrical barriers. External factors like mechanical stress, temperature fluctuations, or radiation are known to create chemical changes in such materials that can directly affect the molecular weight distribution (MWD) of the polymer between cross-links and alter the structural and mechanical properties. From a Materials Science point of view it is highly desirable to understand, effect, and manipulate such property changes in a controlled manner. In this report we summarize ourmore » modeling efforts on a polysiloxane elastomer TR-55, which is an important component in several of our systems, and representative of a wide class of filled rubber materials. The primary aging driver in this work has been γ-radiation, and a variety of modeling approaches have been employed, including constitutive, mesoscale, and population-based models. The work utilizes diverse experimental data, including mechanical stress-strain and compression set measurements, as well as MWD measurements using multiquantum NMR.« less
NASA Astrophysics Data System (ADS)
Choi, Chulmin; Hong, Soonkook; Chen, Li-Han; Liu, Chin-Hung; Choi, Duyoung; Kuru, Cihan; Jin, Sungho
2014-05-01
Vertically anisotropically conductive composites with aligned chain-of-spheres of 20-75 mm Ni particles in an elastomer matrix have been prepared by curing the mixture at 100°C-150°C under an applied magnetic field of ˜300-1000 Oe. The particles are coated with a ˜120 nm thick Au layer for enhanced electrical conductivity. The resultant vertically aligned but laterally isolated columns of conductive particles extend through the whole composite thickness and the end of the Ni columns protrude from the surface, contributing to enhanced electrical contact on the composite surface. The stress-strain curve on compressive deformation exhibits a nonlinear behavior with a rapidly increasing Young's modulus with stress (or pressure). The electrical contact resistance Rc decreases rapidly when the applied pressure is small and then more gradually after the applied pressure reaches 500 psi (˜3.4 MPa), corresponding to a 30% deformation. The directionally conductive elastomer composite material with metal pads and conductive electrodes on the substrate surface can be used as a convenient tactile shear sensor for applications involving artificial limbs, robotic devices, and other visual communication devices such as touch sensitive screens.
NASA Astrophysics Data System (ADS)
Pyo, Jun Beom; Kim, Byoung Soo; Park, Hyunchul; Kim, Tae Ann; Koo, Chong Min; Lee, Jonghwi; Son, Jeong Gon; Lee, Sang-Soo; Park, Jong Hyuk
2015-10-01
Manipulation of the configuration of Ag nanowire (NW) networks has been pursued to enhance the performance of stretchable transparent electrodes. However, it has remained challenging due to the high Young's modulus and low yield strain of Ag NWs, which lead to their mechanical failure when subjected to structural deformation. We demonstrate that floating a Ag NW network on water and subsequent in-plane compression allows convenient development of a wavy configuration in the Ag NW network, which can release the applied strain. A greatly enhanced electromechanical stability of Ag NW networks can be achieved due to their wavy configuration, while the NW networks maintain the desirable optical and electrical properties. Moreover, the produced NW networks can be transferred to a variety of substrates, offering flexibility for device fabrication. The Ag NW networks with wavy configurations are used as compliant electrodes for dielectric elastomer actuators. The study demonstrates their promising potential to provide improved performance for soft electronic devices.Manipulation of the configuration of Ag nanowire (NW) networks has been pursued to enhance the performance of stretchable transparent electrodes. However, it has remained challenging due to the high Young's modulus and low yield strain of Ag NWs, which lead to their mechanical failure when subjected to structural deformation. We demonstrate that floating a Ag NW network on water and subsequent in-plane compression allows convenient development of a wavy configuration in the Ag NW network, which can release the applied strain. A greatly enhanced electromechanical stability of Ag NW networks can be achieved due to their wavy configuration, while the NW networks maintain the desirable optical and electrical properties. Moreover, the produced NW networks can be transferred to a variety of substrates, offering flexibility for device fabrication. The Ag NW networks with wavy configurations are used as compliant electrodes for dielectric elastomer actuators. The study demonstrates their promising potential to provide improved performance for soft electronic devices. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03814f
Measuring the bending of asymmetric planar EAP structures
NASA Astrophysics Data System (ADS)
Weiss, Florian M.; Zhao, Xue; Thalmann, Peter; Deyhle, Hans; Urwyler, Prabitha; Kovacs, Gabor; Müller, Bert
2013-04-01
The geometric characterization of low-voltage dielectric electro-active polymer (EAP) structures, comprised of nanometer thickness but areas of square centimeters, for applications such as artificial sphincters requires methods with nanometer precision. Direct optical detection is usually restricted to sub-micrometer resolution because of the wavelength of the light applied. Therefore, we propose to take advantage of the cantilever bending system with optical readout revealing a sub-micrometer resolution at the deflection of the free end. It is demonstrated that this approach allows us to detect bending of rather conventional planar asymmetric, dielectric EAP-structures applying voltages well below 10 V. For this purpose, we built 100 μm-thin silicone films between 50 nm-thin silver layers on a 25 μm-thin polyetheretherketone (PEEK) substrate. The increase of the applied voltage in steps of 50 V until 1 kV resulted in a cantilever bending that exhibits only in restricted ranges the expected square dependence. The mean laser beam displacement on the detector corresponded to 6 nm per volt. The apparatus will therefore become a powerful mean to analyze and thereby improve low-voltage dielectric EAP-structures to realize nanometer-thin layers for stack actuators to be incorporated into artificial sphincter systems for treating severe urinary and fecal incontinence.
Structure and mechanical properties of Octopus vulgaris suckers.
Tramacere, Francesca; Kovalev, Alexander; Kleinteich, Thomas; Gorb, Stanislav N; Mazzolai, Barbara
2014-02-06
In this study, we investigate the morphology and mechanical features of Octopus vulgaris suckers, which may serve as a model for the creation of a new generation of attachment devices. Octopus suckers attach to a wide range of substrates in wet conditions, including rough surfaces. This amazing feature is made possible by the sucker's tissues, which are pliable to the substrate profile. Previous studies have described a peculiar internal structure that plays a fundamental role in the attachment and detachment processes of the sucker. In this work, we present a mechanical characterization of the tissues involved in the attachment process, which was performed using microindentation tests. We evaluated the elasticity modulus and viscoelastic parameters of the natural tissues (E ∼ 10 kPa) and measured the mechanical properties of some artificial materials that have previously been used in soft robotics. Such a comparison of biological prototypes and artificial material that mimics octopus-sucker tissue is crucial for the design of innovative artificial suction cups for use in wet environments. We conclude that the properties of the common elastomers that are generally used in soft robotics are quite dissimilar to the properties of biological suckers.
Structure and mechanical properties of Octopus vulgaris suckers
Tramacere, Francesca; Kovalev, Alexander; Kleinteich, Thomas; Gorb, Stanislav N.; Mazzolai, Barbara
2014-01-01
In this study, we investigate the morphology and mechanical features of Octopus vulgaris suckers, which may serve as a model for the creation of a new generation of attachment devices. Octopus suckers attach to a wide range of substrates in wet conditions, including rough surfaces. This amazing feature is made possible by the sucker's tissues, which are pliable to the substrate profile. Previous studies have described a peculiar internal structure that plays a fundamental role in the attachment and detachment processes of the sucker. In this work, we present a mechanical characterization of the tissues involved in the attachment process, which was performed using microindentation tests. We evaluated the elasticity modulus and viscoelastic parameters of the natural tissues (E ∼ 10 kPa) and measured the mechanical properties of some artificial materials that have previously been used in soft robotics. Such a comparison of biological prototypes and artificial material that mimics octopus-sucker tissue is crucial for the design of innovative artificial suction cups for use in wet environments. We conclude that the properties of the common elastomers that are generally used in soft robotics are quite dissimilar to the properties of biological suckers. PMID:24284894
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-12
... Status Materials Science Technology, Inc. (Specialty Elastomers and Fire Retardant Chemicals) Conroe... specialty elastomer manufacturing and distribution facility of Materials Science Technology, Inc., located... and distribution of specialty elastomers and fire retardant chemicals at the facility of Materials...
The effect of elastomer chain length on properties of silicone-modified polyimide adhesives
NASA Technical Reports Server (NTRS)
St.clair, A. K.; St.clair, T. L.; Ezzell, S.
1981-01-01
A series of polyimides containing silicone elastomers was synthesized in order to study the effects of the elastomer chain length on polymer properties. The elastomer with repeat units varying from n=10 to 105 was chemically reacted into the backbone of an addition polyimide oligomer via reactive aromatic amine groups. Glass transition temperatures of the elastomer and polyimide phases were observed by torsional braid analysis. The elastomer-modified polyimides were tested as adhesives for bonding titanium in order to determine their potential for aerospace applications. Adhesive lap shear tests were performed before and after aging bonded specimens at elevated temperatures.
Synthesis, characterization and applications of new photocurable and biodegradable elastomers
NASA Astrophysics Data System (ADS)
Liu, Jinrong
Biodegradable elastomers have attracted a great deal of interest due to their potential applications in the biomedical field. Based on the advantages of the photocuring method, a new series of photocurable and biodegradable elastomers were designed. By using step growth polymerization, polyester liquids with different composition and molecular weights were synthesized. After endcapping with methacrylate groups, these liquids can be easily fabricated into completely amorphous elastomers by UV exposure for 1 min at room conditions. The prepared elastomers presented a wide range of mechanical properties (G = 0.1-10 MPa) and a fast degradation rate (16% after 5 week incubation in PBS). The in vitro and in vivo biocompatibility studies of the elastomers indicated that these elastomers were good candidates as tissue engineering scaffolds. Meanwhile, the functionality of these photocurable elastomers was expanded by incorporation of amine containing monomers, and new elastomers were prepared to explore their potential as drug carrier systems. Monodispersed elastomeric particles were fabricated out of these amine containing materials by PRINT(TM) technology. These particles showed pH sensitive drug release of Doxorubicin (a hydrophobic drug model) and Minocycline chloride (a hydrophilic drug model), and the release profiles can be further tuned by the incorporation of a disulfide crosslinker.
Direct Printing of Stretchable Elastomers for Highly Sensitive Capillary Pressure Sensors.
Liu, Wenguang; Yan, Chaoyi
2018-03-28
We demonstrate the successful fabrication of highly sensitive capillary pressure sensors using an innovative 3D printing method. Unlike conventional capacitive pressure sensors where the capacitance changes were due to the pressure-induced interspace variations between the parallel plate electrodes, in our capillary sensors the capacitance was determined by the extrusion and extraction of liquid medium and consequent changes of dielectric constants. Significant pressure sensitivity advances up to 547.9 KPa -1 were achieved. Moreover, we suggest that our innovative capillary pressure sensors can adopt a wide range of liquid mediums, such as ethanol, deionized water, and their mixtures. The devices also showed stable performances upon repeated pressing cycles. The direct and versatile printing method combined with the significant performance advances are expected to find important applications in future stretchable and wearable electronics.
Highly stretchable electroluminescent skin for optical signaling and tactile sensing.
Larson, C; Peele, B; Li, S; Robinson, S; Totaro, M; Beccai, L; Mazzolai, B; Shepherd, R
2016-03-04
Cephalopods such as octopuses have a combination of a stretchable skin and color-tuning organs to control both posture and color for visual communication and disguise. We present an electroluminescent material that is capable of large uniaxial stretching and surface area changes while actively emitting light. Layers of transparent hydrogel electrodes sandwich a ZnS phosphor-doped dielectric elastomer layer, creating thin rubber sheets that change illuminance and capacitance under deformation. Arrays of individually controllable pixels in thin rubber sheets were fabricated using replica molding and were subjected to stretching, folding, and rolling to demonstrate their use as stretchable displays. These sheets were then integrated into the skin of a soft robot, providing it with dynamic coloration and sensory feedback from external and internal stimuli. Copyright © 2016, American Association for the Advancement of Science.
21 CFR 177.1590 - Polyester elastomers.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyester elastomers. 177.1590 Section 177.1590... Components of Single and Repeated Use Food Contact Surfaces § 177.1590 Polyester elastomers. The polyester...) For the purpose of this section, polyester elastomers are those produced by the ester exchange...
21 CFR 177.1590 - Polyester elastomers.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Polyester elastomers. 177.1590 Section 177.1590... Components of Single and Repeated Use Food Contact Surfaces § 177.1590 Polyester elastomers. The polyester...) For the purpose of this section, polyester elastomers are those produced by the ester exchange...
Soft Polydimethylsiloxane Elastomers from Architecture-driven Entanglement Free Design
Cai, Li-Heng; Kodger, Thomas E.; Guerra, Rodrigo E.; Pegoraro, Adrian F.; Rubinstein, Michael; Weitz, David A.
2015-01-01
We fabricate soft, solvent-free polydimethylsiloxane (PDMS) elastomers by crosslinking bottlebrush polymers rather than linear polymers. We design the chemistry to allow commercially available linear PDMS precursors to deterministically form bottlebrush polymers, which are simultaneously crosslinked, enabling a one-step synthesis. The bottlebrush architecture prevents the formation of entanglements, resulting in elastomers with precisely controllable elastic moduli from ~1 to ~100 kPa, below the intrinsic lower limit of traditional elastomers. Moreover, the solvent-free nature of the soft PDMS elastomers enables a negligible contact adhesion compared to commercially available silicone products of similar stiffness. The exceptional combination of softness and negligible adhesiveness may greatly broaden the applications of PDMS elastomers in both industry and research. PMID:26259975
Phase Behavior of Three PBX Elastomers in High-Pressure Chlorodifluoromethane
NASA Astrophysics Data System (ADS)
Lee, Byung-Chul
2017-10-01
The phase equilibrium behavior data are presented for three kinds of commercial polymer-bonded explosive (PBX) elastomers in chlorodifluoromethane (HCFC22). Levapren^{{registered }} ethylene- co-vinyl acetate (LP-EVA), HyTemp^{{registered }} alkyl acrylate copolymer (HT-ACM), and Viton^{{registered }} fluoroelastomer (VT-FE) were used as the PBX elastomers. For each elastomer + HCFC22 system, the cloud point (CP) and/or bubble point (BP) pressures were measured while varying the temperature and elastomer composition using a phase equilibrium apparatus fitted with a variable-volume view cell. The elastomers examined in this study indicated a lower critical solution temperature phase behavior in the HCFC22 solvent. LP-EVA showed the CPs at temperatures of 323 K to 343 K and at pressures of 3 MPa to 10 MPa, whereas HT-ACM showed the CPs at conditions between 338 K and 363 K and between 4 MPa and 12 MPa. For the LP-EVA and HT-ACM elastomers, the BP behavior was observed at temperatures below about 323 K. For the VT-FE + HCFC22 system, only the CP behavior was observed at temperatures between 323 K and 353 K and at pressures between 6 MPa and 21 MPa. As the elastomer composition increased, the CP pressure increased, reached a maximum value at a specific elastomer composition, and then remained almost constant.
Stretchable, adhesive and ultra-conformable elastomer thin films.
Sato, Nobutaka; Murata, Atsushi; Fujie, Toshinori; Takeoka, Shinji
2016-11-16
Thermoplastic elastomers are attractive materials because of the drastic changes in their physical properties above and below the glass transition temperature (T g ). In this paper, we report that free-standing polystyrene (PS, T g : 100 °C) and polystyrene-polybutadiene-polystyrene triblock copolymer (SBS, T g : -70 °C) thin films with a thickness of hundreds of nanometers were prepared by a gravure coating method. Among the mechanical properties of these thin films determined by bulge testing and tensile testing, the SBS thin films exhibited a much lower elastic modulus (ca. 0.045 GPa, 212 nm thickness) in comparison with the PS thin films (ca. 1.19 GPa, 217 nm thickness). The lower elastic modulus and lower thickness of the SBS thin films resulted in higher conformability and thus higher strength of adhesion to an uneven surface such as an artificial skin model with roughness (R a = 10.6 μm), even though they both have similar surface energies. By analyzing the mechanical properties of the SBS thin films, the elastic modulus and thickness of the thin films were strongly correlated with their conformability to a rough surface, which thus led to a high adhesive strength. Therefore, the SBS thin films will be useful as coating layers for a variety of materials.
Dandeniyage, Loshini S; Gunatillake, Pathiraja A; Adhikari, Raju; Bown, Mark; Shanks, Robert; Adhikari, Benu
2017-08-31
Mixed macrodiol based siloxane poly(urethane-urea)s (SiPUU) having number average molecular weights in the range 87-129 kDa/mol were synthesized to give elastomers with high tensile and tear strengths required to fabricate artificial heart valves. Polar functional groups were introduced into the soft segment to improve the poor segmental compatibility of siloxane polyurethanes. This was achieved by linking α,ω-bis(6-hydroxyethoxypropyl) poly(dimethylsiloxane) (PDMS) or poly(hexamethylene oxide) (PHMO) macrodiols with either 4,4'-methylenediphenyl diisocyanate (MDI), hexamethylene diisocyanate (HDI) or isophorone diisocyanate (IPDI) prior to polyurethane synthesis. The hard segment was composed of MDI, and a 1:1 mixture of 1,3-bis(4-hydroxybutyl)-1,1,3,3-tetramethyldisiloxane and 1,2-ethylene diamine. We report the effect of urethane linkers in soft segments on properties of the SiPUU. PHMO linked with either MDI or IPDI produced SiPUU with the highest tensile and tear strengths. Linking PDMS hardly affected the tensile strength; however, the tear strength was improved. The stress-strain curves showed no plastic deformation region typically observed for conventional polyurethanes indicating good creep resistance. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017. © 2017 Wiley Periodicals, Inc.
Experimental Characterization of Nonlinear Viscoelastic and Adhesive Properties of Elastomers
2006-07-27
Final report to the Office of Naval Research on the Experimental Characterization of Nonlinear Viscoelastic and Adhesive Properties of Elastomers ...Experimental Characterization of Nonlinear Viscoelastic and Adhesive Properties of Elastomers 5b. GRANT NUMBER N000 14-1-0400 5c. PROGRAM ELEMENT...Experimental Characterization of Nonlinear Viscoelastic and Adhesive Properties of Elastomers Principal Investigator K. Ravi-Chandar Organization The University
Effect of tulle on the mechanical properties of a maxillofacial silicone elastomer.
Gunay, Yumushan; Kurtoglu, Cem; Atay, Arzu; Karayazgan, Banu; Gurbuz, Cihan Cem
2008-11-01
The purpose of this research was to investigate if physical properties could be improved by incorporating a tulle reinforcement material into a maxillofacial silicone elastomer. A-2186 silicone elastomer was used in this study. The study group consisted of 20 elastomer specimens incorporated with tulle and fabricated in dumbbell-shaped silicone patterns using ASTM D412 and D624 standards. The control group consisted of 20 elastomer specimens fabricated without tulle. Tensile strength, ultimate elongation, and tear strength of all specimens were measured and analyzed. Statistical analyses were performed using Mann-Whitney U test with a statistical significance at 95% confidence level. It was found that the tensile and tear strengths of tulle-incorporated maxillofacial silicone elastomer were higher than those without tulle incorporation (p < 0.05). Therefore, findings of this study suggested that tulle successfully reinforced a maxillofacial silicone elastomer by providing it with better mechanical properties and augmented strength--especially for the delicate edges of maxillofacial prostheses.
Preparation and properties of adjacency crosslinked polyurethane-urea elastomers
NASA Astrophysics Data System (ADS)
Wu, Yuan; Cao, Yu-Yang; Wu, Shou-Peng; Li, Zai-Feng
2012-12-01
Adjacency crosslinked polyurethane-urea (PUU) elastomers with different crosslinking density were prepared by using hydroxyl-terminated liquid butadiene-nitrile (HTBN), toluene diisocyanate (TDI) and chain extender 3,5-dimethyl thio-toluene diamine (DMTDA) as raw materials, dicumyl peroxide (DCP) as initiator, and N,N'-m-phenylene dimaleimide (HVA-2) as the crosslinking agent. The influences of the crosslinking density and temperature on the structure and properties of such elastomers were investigated. The crosslinking density of PUU elastomer was tested by the NMR method. It is found that when the content of HVA-2 is 1.5%, the mechanical properties of polyurethane elastomer achieve optimal performance. By testing thermal performance of PUU, compared with linear PUU, the thermal stability of the elastomers has a marked improvement. With the addition of HVA-2, the loss factor tan δ decreases. FT-IR spectral studies of PUU elastomer at various temperatures were performed. From this study, heat-resistance polyurethane could be prepared, and the properties of PUU at high temperature could be improved obviously.
Indentation of a stretched elastomer
NASA Astrophysics Data System (ADS)
Zheng, Yue; Crosby, Alfred J.; Cai, Shengqiang
2017-10-01
Indentation has been intensively used to characterize mechanical properties of soft materials such as elastomers, gels, and soft biological tissues. In most indentation measurements, residual stress or stretch which can be commonly found in soft materials is ignored. In this article, we aim to quantitatively understand the effects of prestretches of an elastomer on its indentation measurement. Based on surface Green's function, we analytically derive the relationship between indentation force and indentation depth for a prestretched Neo-Hookean solid with a flat-ended cylindrical indenter as well as a spherical indenter. In addition, for a non-equal biaxially stretched elastomer, we obtain the equation determining the eccentricity of the elliptical contacting area between a spherical indenter and the elastomer. Our results clearly demonstrate that the effects of prestretches of an elastomer on its indentation measurement can be significant. To validate our analytical results, we further conduct correspondent finite element simulations of indentation of prestretched elastomers. The numerical results agree well with our analytical predictions.
Elastomers in mud motors for oil field applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendrik, J.
1997-08-01
Mud motors, the most frequently used downhole drilling motors in modern drilling systems, are described in their application and function. The elastomeric liner in a mud motor acts as a huge continuous seal. Important properties of elastomers such as chemical resistance, fatigue resistance, mechanical strength, abrasion resistance, bonding to steel and processability are discussed. Advantages and disadvantages of NBR, HNBR, FKM, TFEP, and EPDM elastomers for mud motor applications are briefly described. The importance of drilling fluids and their physical and chemical impact on motor elastomers are described. Drilling fluids are categorized in: oil based-, synthetic-, and water based. Resultsmore » of compatibility tests in the different drilling muds of the presented categories demonstrate the complexity of elastomer development. Elastomers with an equally good performance in all drilling muds are not available. Future developments and improvements are directed towards higher chemical resistance at higher service temperatures. This will be possible only with improved elastomer-to-metal bonding, increased mechanical and better dynamic properties.« less
Magnetic properties of hybrid elastomers with magnetically hard fillers: rotation of particles
NASA Astrophysics Data System (ADS)
Stepanov, G. V.; Borin, D. Yu; Bakhtiiarov, A. V.; Storozhenko, P. A.
2017-03-01
Hybrid magnetic elastomers belonging to the family of magnetorheological elastomers contain magnetically hard components and are of the utmost interest for the development of semiactive and active damping devices as well as actuators and sensors. The processes of magnetizing of such elastomers are accompanied by structural rearrangements inside the material. When magnetized, the elastomer gains its own magnetic moment resulting in changes of its magneto-mechanical properties, which remain permanent, even in the absence of external magnetic fields. Influenced by the magnetic field, magnetized particles move inside the matrix forming chain-like structures. In addition, the magnetically hard particles can rotate to align their magnetic moments with the new direction of the external field. Such an elastomer cannot be demagnetized by the application of a reverse field.
Co-extruded mechanically tunable multilayer elastomer laser
NASA Astrophysics Data System (ADS)
Crescimanno, Michael; Mao, Guilin; Andrews, James; Singer, Kenneth; Baer, Eric; Hiltner, Anne; Song, Hyunmin; Shakya, Bijayandra
2011-04-01
We have fabricated and studied mechanically tunable elastomer dye lasers constructed in large area sheets by a single-step layer-multiplying co-extrusion process. The laser films consist of a central dye-doped (Rhodamine-6G) elastomer layer between two 128-layer distributed Bragg reflector (DBR) films comprised of alternating elastomer layers with different refractive indices. The central gain layer is formed by folding the coextruded DBR film to enclose a dye-doped skin layer. By mechanically stretching the elastomer laser film from 0% to 19%, a tunable miniature laser source was obtained with ˜50 nm continuous tunability from red to green.
Modification of the erythrocyte membrane dielectric constant by alcohols.
Orme, F W; Moronne, M M; Macey, R I
1988-08-01
Aliphatic alcohols are found to stimulate the transmembrane fluxes of a hydrophobic cation (tetraphenylarsonium, TPA) and anion (AN-12) 5-20 times in red blood cells. The results are analyzed using the Born-Parsegian equation (Parsegian, A., 1969, Nature (London) 221:844-846), together with the Clausius-Mossotti equation to calculate membrane dielectric energy barriers. Using established literature values of membrane thickness, native membrane dielectric constant, TPA ionic radius, and alcohol properties (partition coefficient, molar volume, dielectric constant), the TPA permeability data is predicted remarkably well by theory. If the radius of AN-12 is taken as 1.9 A, its permeability in the presence of butanol is also described by our analysis. Further, the theory quantitatively accounts for the data of Gutknecht and Tosteson (Gutknecht, J., Tosteson, D.C., 1970, J. Gen. Physiol. 55:359-374) covering alcohol-induced conductivity changes of 3 orders of magnitude in artificial bilayers. Other explanations including perturbations of membrane fluidity, surface charge, membrane thickness, and dipole potential are discussed. However, the large magnitude of the stimulation, the more pronounced effect on smaller ions, and the acceleration of both anions and cations suggest membrane dielectric constant change as the primary basis of alcohol effects.
Using AFM Force Curves to Explore Properties of Elastomers
ERIC Educational Resources Information Center
Ferguson, Megan A.; Kozlowski, Joseph J.
2013-01-01
polydimethylsiloxane (PDMS) elastomers. Force curves are used to quantify the stiffness of elastomers prepared with different base-to-curing agent ratios. Trends in observed spring constants of the…
Synthesis of perfluoroalkylether triazine elastomers
NASA Technical Reports Server (NTRS)
Rosser, R. W.; Korus, R. A.
1980-01-01
A method of perfluoroalkylether triazine elastomer synthesis is described. To form an elastomer, the resultant polymer is heated in a closed oven at slightly reduced pressures for 1-day periods at 100, 130 and 150 C. A high-molecular-weight perfluoroalkylether triazine elastomer is produced that exhibits thermal and oxidative stability. This material is potentially useful in applications such as high-temperature seals, 'O' rings, and wire enamels.
Electroactive polymers for sensing
2016-01-01
Electromechanical coupling in electroactive polymers (EAPs) has been widely applied for actuation and is also being increasingly investigated for sensing chemical and mechanical stimuli. EAPs are a unique class of materials, with low-moduli high-strain capabilities and the ability to conform to surfaces of different shapes. These features make them attractive for applications such as wearable sensors and interfacing with soft tissues. Here, we review the major types of EAPs and their sensing mechanisms. These are divided into two classes depending on the main type of charge carrier: ionic EAPs (such as conducting polymers and ionic polymer–metal composites) and electronic EAPs (such as dielectric elastomers, liquid-crystal polymers and piezoelectric polymers). This review is intended to serve as an introduction to the mechanisms of these materials and as a first step in material selection for both researchers and designers of flexible/bendable devices, biocompatible sensors or even robotic tactile sensing units. PMID:27499846
Biomimetic small scale variable focal length lens unit using synthetic elastomer actuators
NASA Astrophysics Data System (ADS)
Kim, Baek-chul; Chung, Jinah; Lee, Y.; Nam, Jae-Do; Moon, Hyungpil; Choi, Hyouk Ryeol; Koo, J. C.
2011-04-01
Having a combination of a gel-like soft lens, ligaments, and the Ciliary muscles, the human eyes are effectively working for various focal lengths without a complicated group of lens. The simple and compact but effective optical system should deserve numerous attentions from various technical field especially portable information technology device industry. Noting the limited physical space of those deivces, demanding shock durability, and massive volume productivity, the present paper proposes a biomimetic optical lens unit that is organized with a circular silicone lens and an annular dielectric polymer actuator. Unlike the traditional optical lens mechanism that normally acquires a focus by changing its focal distance with moving lens or focal plane. the proposed optical system changes its lens thickness using a annulary connected polymer actuator in order to get image focuses. The proposed biomimetic lens system ensures high shock durability, compact physical dimensions, fast actuations, simple manufacturing process, and low production cost.
Bistable electroactive polymers (BSEP): large-strain actuation of rigid polymers
NASA Astrophysics Data System (ADS)
Yu, Zhibin; Niu, Xiaofan; Brochu, Paul; Yuan, Wei; Li, Huafeng; Chen, Bin; Pei, Qibing
2010-04-01
Reversible, large-strain, bistable actuation has been a lasting puzzle in the pursuit of smart materials and structures. Conducting polymers are bistable, but the achievable strain is small. Large deformations have been achieved in dielectric elastomers at the expense of mechanical strength. The gel or gel-like soft polymers generally have elastic moduli around or less than 10 MPa. The deformed polymer relaxes to its original shape once the applied electric field is removed. We report new, bistable electroactive polymers (BSEP) that are capable of electrically actuated strains as high as 335% area strain. The BSEP could be useful for constructing rigid structures. The structures can support high mechanical loads, and be actuated to large-strain deformations. We will present one unique application of the BSEP for Braille displays that can be quickly refreshed and maintain the displayed contents without a bias voltage.
The effect of thermal annealing on pentacene thin film transistor with micro contact printing.
Shin, Hong-Sik; Yun, Ho-Jin; Baek, Kyu-Ha; Ham, Yong-Hyun; Park, Kun-Sik; Kim, Dong-Pyo; Lee, Ga-Won; Lee, Hi-Deok; Lee, Kijun; Do, Lee-Mi
2012-07-01
We used micro contact printing (micro-CP) to fabricate inverted coplanar pentacene thin film transistors (TFTs) with 1-microm channels. The patterning of micro-scale source/drain electrodes without etch process was successfully achieved using Polydimethylsiloxane (PDMS) elastomer stamp. We used the Ag nano particle ink as an electrode material, and the sheet resistance and surface roughness of the Ag electrodes were effectively reduced with the 2-step thermal annealing on a hotplate, which improved the mobility, the on-off ratio, and the subthreshold slope (SS) of the pentacene TFTs. In addition, the device annealing on a hotplate in a N2 atmosphere for 30 sec can enhance the off-current and the mobility properties of OTFTs without damaging the pentacene thin films and increase the adhesion between pentacene and dielectric layer (SiO2), which was investigated with the pentacene films phase change of the XRD spectrum after device annealing.
Khalaf, Salah; Ariffin, Zaihan; Husein, Adam; Reza, Fazal
2015-07-01
This study aimed to compare the surface roughness of maxillofacial silicone elastomers fabricated in noncoated and coated gypsum materials. This study was also conducted to characterize the silicone elastomer specimens after surfaces were modified. A gypsum mold was coated with clear acrylic spray. The coated mold was then used to produce modified silicone experimental specimens (n = 35). The surface roughness of the modified silicone elastomers was compared with that of the control specimens, which were prepared by conventional flasking methods (n = 35). An atomic force microscope (AFM) was used for surface roughness measurement of silicone elastomer (unmodified and modified), and a scanning electron microscope (SEM) was used to evaluate the topographic conditions of coated and noncoated gypsum and silicone elastomer specimens (unmodified and modified) groups. After the gypsum molds were characterized, the fabricated silicone elastomers molded on noncoated and coated gypsum materials were evaluated further. Energy-dispersive X-ray spectroscopy (EDX) analysis of gypsum materials (noncoated and coated) and silicone elastomer specimens (unmodified and modified) was performed to evaluate the elemental changes after coating was conducted. Independent t test was used to analyze the differences in the surface roughness of unmodified and modified silicone at a significance level of p < 0.05. Roughness was significantly reduced in the silicone elastomers processed against coated gypsum materials (p < 0.001). The AFM and SEM analysis results showed evident differences in surface smoothness. EDX data further revealed the presence of the desired chemical components on the surface layer of unmodified and modified silicone elastomers. Silicone elastomers with lower surface roughness of maxillofacial prostheses can be obtained simply by coating a gypsum mold. © 2014 by the American College of Prosthodontists.
Synthesis and Characterization of Ionically Crosslinked Elastomers
2015-05-12
SECURITY CLASSIFICATION OF: In this research poly(n-butyl acrylate) (PBA) elastomers were investigated as model systems to study the thermomechanical...subject to any oenalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO...Ionically Crosslinked Elastomers Report Title In this research poly(n-butyl acrylate) (PBA) elastomers were investigated as model systems to study the
Replication of the nano-scale mold fabricated with focused ion beam
NASA Astrophysics Data System (ADS)
Gao, J. X.; Chan-Park, M. B.; Xie, D. Z.; Ngoi, Bryan K. A.
2004-12-01
Silicon mold fabricated with Focused Ion Beam lithography (FIB) was used to make silicone elastomer molds. The silicon mold is composed of lattice of holes which the diameter and depth are about 200 nm and 60 nm, respectively. The silicone elastomer material was then used to replicate slavery mold. Our study show the replication process with the elastomer mold had been performed successfully and the diameter of humps on the elastomer mold is near to that of holes on the master mold. But the height of humps in the elastomer mold is only 42 nm and it is different from the depth of holes in the master mold.
NASA Astrophysics Data System (ADS)
Shahinpoor, Mohsen
2011-12-01
The 5th World Congress on Biomimetics, Artificial Muscles and Nano-Bio and the 4th International Conference on Artificial Muscles were held in Osaka, Japan, 23-27 November 2009. This special section of Smart Materials and Structures is devoted to a selected number of research papers presented at this international conference and congress. Of the 76 or so papers presented at the conference, only 10 papers were finally selected, reviewed and accepted for this special section, following the regular reviewing procedures of the journal. This special section is focused on polymeric artificial muscles, electroactive polymers, multifunctional nanocomposites and their applications. In particular, an electromechanical model for self-sensing ionic polymer-metal composite actuating devices with patterned surface electrodes is presented which discusses the concept of creating self-sensing ionic polymer-metal composite (IPMC) actuating devices with patterned surface electrodes where actuator and sensor elements are separated by a grounded shielding electrode. Eventually, an electromechanical model of the device is also proposed and validated. Following that, there is broad coverage of polytetrahydrofurane-polyethylene oxide-PEDOT conducting interpenetrating polymer networks (IPNs) for high speed actuators. The conducting polymer (poly(3,4-ethylenedioxythiophene)) is incorporated within the IPNs, which are synthesized from polyethylene oxide (PEO)/polytetrahydrofurane (PTHF) networks. PEO/PTHF IPNs are prepared using poly(ethylene glycol) methacrylate and dimethacrylate and hydroxythelechelic PTHF as starting materials. The conducting IPN actuators are prepared by oxidative polymerization of 3,4-ethylenedioxithiophene (EDOT) using FeCl3 as an oxidizing agent within the PEO/PTHF IPN host matrix. Subsequently, giant and reversible magnetorheology of carrageenan/iron oxide magnetic gels are discussed and the effect of magnetic fields on the viscoelastic properties, magnetorheological effect of carrageenan gel containing iron oxide particles are investigated using dynamic viscoelastic measurements under magnetic fields. Furthermore, the relationship between the magnetorheology and the elasticity of magnetic gel is discussed. This special section then covers the characteristics of ionic polymer-metal composite with chemically-doped TiO2 particles to improve the bending performance of ionic polymer-metal composite (IPMC) actuators. This study is mainly focused on the characterization of the physical, electrochemical, and electromechanical properties of TiO2-doped ionic polymer membranes, and IPMCs prepared by the sol-gel method, which results in a uniform distribution of the particles inside the polymer membrane. It was determined that the lifetime of IPMC is strongly dependent on the level of water uptake. This paper is then followed by a presentation on training and shape retention in conducting polymer artificial muscles. Electrochemomechanical deformation (ECMD) of the conducting polymer, polyaniline film, is studied to investigate the behavior of actuation under tensile loads. The ECMD is induced by strains due to insertion of ionic species (cyclic strain) and a creep due to applied loads during the redox cycle. The cyclic strain is enhanced by the experience of high tensile loads, indicating a training effect. The training effect is explained by the enhanced electrochemical activity of the film. The special section then presents a paper on the current status and future prospects of power generators using dielectric elastomers. Electroactive polymer artificial muscle (EPAM), known as 'dielectric elastomer', appears to offer unique capabilities as an actuator and electrical power generator. However, the power output levels of such generators are small and the efficiencies are rather high. For example, electrical energy conversion efficiency of over 70% has been achieved. The ability of EPAM to produce hydrogen fuel for energy storage was also demonstrated. Because the energy conversion principle of EPAM is capacitive in nature, the performance is largely size-independent. Formation of motile assembly of microtubules driven by kinesins is presented next. Microtubule (MT) and kinesin are rail and motor proteins that are involved in various moving events of eukaryotic cells in natural systems. In vitro, the sliding motion of microtubules (rail) can be reproduced on a kinesin (motor protein)-coated surface coupled with adenosine triphosphate (ATP) hydrolysis, which is called a 'motility assay'. Based on this technique, a method is reported for forming MT assemblies by an active self-assembly (AcSA) process, in which MTs are crosslinked during a sliding motion on a kinesin-coated surface. Streptavidin (ST) is employed as glue to crosslink biotin-labeled MTs. This discussion is then followed by a paper on the performances of fast-moving low-voltage electromechanical actuators based on single-walled carbon nanotubes and ionic liquids. Here the mechanical and electrical properties of the polymer-free single-walled carbon nanotube (SWNT) sheets containing different contents of ionic liquids (ILs) are reported. The polymer-free SWNT sheets are prepared with the knowledge that millimeter-long 'super growth' carbon nanotubes (SG-SWNTs), produced by a water-assisted modified CVD method, associate together tightly with ILs. The molecular mechanism of electroactive polymer actuators is then discussed in the next paper. Movement of ionic electroactive polymer actuators utilizes their anisotropic volume change, which is induced by the applied voltage. The mechanism of the volume change is, however, not well understood, especially at the molecular level. The current understanding of the mechanism of the volume change at the molecular level is reviewed, focusing on the actuators made with carbon materials. Then, the pressure generated in the actuators in response to the applied voltage based on the results of the Monte Carlo simulation is discussed. It is shown that the mechanism of the actuators can be analyzed at the molecular level in terms of the balance between the electrostatic and volume exclusion interactions that act among the electrode materials and the electrolyte ions. The special section then presents a master curve for analyzing the electrochemical aging and memory effects of poly(3,4-ethylenedioxythiophene). The memory effect of conducting polymers in an electrochemical environment is investigated. This memory effect is related to the electromechanical responses of the conducting polymer. Poly(3,4-ethylenedioxythiophene) is chosen because of its interesting properties—mainly its chemical and electrochemical stabilities. By means of cyclic voltammetry, the influence of the waiting time tw at a holding potential Ew in relation to the conformational relaxation process occurring in the conducting polymer is analyzed. The effect of electrochemical aging on the electrical properties is also explained from the viewpoint of the rearrangement of polymer chains. This completes a brief report on the content of the special section on artificial muscles. I would like to thank the contributing authors of this collection of papers on artificial muscles for their outstanding and unique contributions. I am also indebted to all of the reviewers, editors and editorial staff who handled the reviews of all the papers for their time and effort. I would like to express my sincere thanks and appreciation to Professor E Garcia, Editor-in-Chief, for his encouragement and support, and for providing the opportunity to publish this special section of Smart Materials and Structures. I am also grateful to the IOP Publishing team for their support. In particular, I am greatly indebted to publisher Natasha Leeper, for her help and excellent management in the preparation of this special section on artificial muscles.
Adjustable Membrane Mirrors Incorporating G-Elastomers
NASA Technical Reports Server (NTRS)
Chang, Zensheu; Morgan, Rhonda M.; Xu, Tian-Bing; Su, Ji; Hishinuma, Yoshikazu; Yang, Eui-Hyeok
2008-01-01
Lightweight, flexible, large-aperture mirrors of a type being developed for use in outer space have unimorph structures that enable precise adjustment of their surface figures. A mirror of this type includes a reflective membrane layer bonded with an electrostrictive grafted elastomer (G-elastomer) layer, plus electrodes suitably positioned with respect to these layers. By virtue of the electrostrictive effect, an electric field applied to the G-elastomer membrane induces a strain along the membrane and thus causes a deflection of the mirror surface. Utilizing this effect, the mirror surface figure can be adjusted locally by individually addressing pairs of electrodes. G-elastomers, which were developed at NASA Langley Research Center, were chosen for this development in preference to other electroactive polymers partly because they offer superior electromechanical performance. Whereas other electroactive polymers offer, variously, large strains with low moduli of elasticity or small strains with high moduli of elasticity, G-elastomers offer both large strains (as large as 4 percent) and high moduli of elasticity (about 580 MPa). In addition, G-elastomer layers can be made by standard melt pressing or room-temperature solution casting.
Starch-based bio-elastomers functionalized with red beetroot natural antioxidant.
Tran, Thi Nga; Athanassiou, Athanassia; Basit, Abdul; Bayer, Ilker S
2017-02-01
Red beetroot (RB) powder was incorporated into starch-based bio-elastomers to obtain flexible biocomposites with tunable antioxidant properties. Starch granules within the bio-elastomers affected the release of the antioxidant molecule betanin in the RB powder. The bio-elastomers were hydrophobic and resisted dissolution in water, hence the release of betanin was due to diffusion rather than polymer matrix disintegration. Hydrophobicity was maintained even after water immersion. Released betanin demonstrated highly efficient antioxidant scavenging activity against 2,2-diphenyl-1-picrylhydrazyl free radical (DPPH) and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation (ABTS(+)). RB powder was also found to increase the Young's modulus of the bio-elastomers without compromising their elongation ability. Infrared spectral analysis indicated weak interactions through hydrogen bonding among starch granules, RB powder and PDMS polymer within the bio-elastomers. Hence, as a simple but intelligent biomaterial consisting of mainly edible starch and RB powder the present bio-elastomers can be used in active packaging for a variety of pharmaceutical, medical, and food applications. Copyright © 2016 Elsevier Ltd. All rights reserved.
Swellable elastomers under constraint
NASA Astrophysics Data System (ADS)
Lou, Yucun; Robisson, Agathe; Cai, Shengqiang; Suo, Zhigang
2012-08-01
Swellable elastomers are widely used in the oilfield to seal the flow of downhole fluids. For example, when a crack appears in self-healing cement, the liquid in the surroundings flows into the crack and permeates into the cement, causing small particles of elastomers in the cement to swell, resulting in the blocking of the flow. Elastomers are also used as large components in swellable packers, which can swell and seal zones in the borehole. In these applications, the elastomers swell against the constraint of stiff materials, such as cement, metal, and rock. The pressure generated by the elastomer against the confinement is a key factor that affects the quality of the sealing. This work develops a systematic approach to predict the magnitude of the pressure in such components. Experiments are carried out to determine the stress-stretch curve, free swelling ratio, and confining pressure. The data are interpreted in terms of a modified Flory-Rehner model.
Jain, Aditya; Moitra, Parikshit; Koschny, Thomas; ...
2015-07-14
Artificially created surfaces or metasurfaces, composed of appropriately shaped subwavelength structures, namely, meta-atoms, control light at subwavelength scales. Historically, metasurfaces have used radiating metallic resonators as subwavelength inclusions. However, while resonant optical metasurfaces made from metal have been sufficiently subwavelength in the propagation direction, they are too lossy for many applications. Metasurfaces made out of radiating dielectric resonators have been proposed to solve the loss problem, but are marginally subwavelength at optical frequencies. We designed subwavelength resonators made out of nonradiating dielectrics. The resonators are decorated with appropriately placed scatterers, resulting in a meta-atom with an engineered electromagnetic response. Amore » metasurface that yields an electric response is fabricated, experimentally characterized, and a method to obtain a magnetic response at optical frequencies is theoretically demonstrated. In conclusion, this design methodology paves the way for metasurfaces that are simultaneously subwavelength and low loss.« less
Sustainable Elastomers from Renewable Biomass.
Wang, Zhongkai; Yuan, Liang; Tang, Chuanbing
2017-07-18
Sustainable elastomers have undergone explosive growth in recent years, partly due to the resurgence of biobased materials prepared from renewable natural resources. However, mounting challenges still prevail: How can the chemical compositions and macromolecular architectures of sustainable polymers be controlled and broadened? How can their processability and recyclability be enabled? How can they compete with petroleum-based counterparts in both cost and performance? Molecular-biomass-derived polymers, such as polymyrcene, polymenthide, and poly(ε-decalactone), have been employed for constructing thermoplastic elastomers (TPEs). Plant oils are widely used for fabricating thermoset elastomers. We use abundant biomass, such as plant oils, cellulose, rosin acids, and lignin, to develop elastomers covering a wide range of structure-property relationships in the hope of delivering better performance. In this Account, recent progress in preparing monomers and TPEs from biomass is first reviewed. ABA triblock copolymer TPEs were obtained with a soft middle block containing a soybean-oil-based monomer and hard outer blocks containing styrene. In addition, a combination of biobased monomers from rosin acids and soybean oil was formulated to prepare triblock copolymer TPEs. Together with the above-mentioned approaches based on block copolymers, multigraft copolymers with a soft backbone and rigid side chains are recognized as the first-generation and second-generation TPEs, respectively. It has been recently demonstrated that multigraft copolymers with a rigid backbone and elastic side chains can also be used as a novel architecture of TPEs. Natural polymers, such as cellulose and lignin, are utilized as a stiff, macromolecular backbone. Cellulose/lignin graft copolymers with side chains containing a copolymer of methyl methacrylate and butyl acrylate exhibited excellent elastic properties. Cellulose graft copolymers with biomass-derived polymers as side chains were further explored to enhance the overall sustainability. Isoprene polymers were grafted from a cellulosic backbone to afford Cell-g-polyisoprene copolymers. Via cross-linking of these graft copolymers, human-skin-mimic elastomers and high resilient elastomers with a well-defined network structure were achieved. The mechanical properties of these resilient elastomers could be finely controlled by tuning the cellulose content. As isoprene can be produced by engineering of microorganisms, these elastomers could be a renewable alternative to petroleum products. In summary, triblock copolymer and graft copolymer TPEs with biomass components, skin-mimic elastomers, high resilient biobased elastomers, and engineering of macromolecular architectures for elastomers are discussed. These approaches and design provide us knowledge on the potential to make sustainable elastomers for various applications to compete with petroleum-based counterparts.
Takei, Atsushi; Jin, Lihua; Fujita, Hiroyuki; Takei, A; Fujita, H; Jin, Lihua
2016-09-14
Wrinkles on thin film/elastomer bilayer systems provide functional surfaces. The aspect ratio of these wrinkles is critical to their functionality. Much effort has been dedicated to creating high-aspect-ratio structures on the surface of bilayer systems. A highly prestretched elastomer attached to a thin film has recently been shown to form a high-aspect-ratio structure, called a ridge structure, due to a large strain induced in the elastomer. However, the prestretch requirements of the elastomer during thin film attachment are not compatible with conventional thin film deposition methods, such as spin coating, dip coating, and chemical vapor deposition (CVD). Thus, the fabrication method is complex, and ridge structure formation is limited to planar surfaces. This paper presents a new and simple method for constructing ridge structures on a nonplanar surface using a plastic thin film/elastomer bilayer system. A plastic thin film is attached to a stress-free elastomer, and the resulting bilayer system is highly stretched one- or two-dimensionally. Upon the release of the stretch load, the deformation of the elastomer is reversible, while the plastically deformed thin film stays elongated. The combination of the length mismatch and the large strain induced in the elastomer generates ridge structures. The morphology of the plastic thin film/elastomer bilayer system is experimentally studied by varying the physical parameters, and the functionality and the applicability to a nonplanar surface are demonstrated. Finally, we simulate the effect of plasticity on morphology. This study presents a new technique for generating microscale high-aspect-ratio structures and its potential for functional surfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jégou, C.; Maroutian, T.; Pillard, V.
We describe a vector network analyzer-based method to study the electromagnetic properties of nanoscale dielectrics at microwave frequencies (1 MHz–40 GHz). The complex permittivity spectrum of a given dielectric can be determined by placing it in a capacitor accessed on its both electrodes by coplanar waveguides. However, inherent propagation delays along the signal paths together with frequency-dependent effective surface of the capacitor at microwave frequencies can lead to significant distortion in the measured permittivity, which in turn can give rise to artificial frequency variations of the complex permittivity. We detail a fully analytical rigorous correction sequence with neither recourse tomore » extrinsic loss mechanisms nor to arbitrary parasitic signal paths. We illustrate our method on 3 emblematic dielectrics: ferroelectric morphotropic lead zirconate titanate, its paraelectric pyrochlore counterpart, and strontium titanate. Permittivity spectra taken at various points along the hysteresis loop help shedding light onto the nature of the different dielectric energy loss mechanisms. Thanks to the analytical character of our method, we can discuss routes to extend it to higher frequencies and we can identify unambiguously the sources of potential artifacts.« less
Electrostrictive Graft Elastomers
NASA Technical Reports Server (NTRS)
Su, Ji (Inventor); Harrison, Joycelyn S. (Inventor); St.Clair, Terry L. (Inventor)
2003-01-01
An electrostrictive graft elastomer has a backbone molecule which is a non-crystallizable, flexible macromolecular chain and a grafted polymer forming polar graft moieties with backbone molecules. The polar graft moieties have been rotated by an applied electric field, e.g., into substantial polar alignment. The rotation is sustained until the electric field is removed. In another embodiment, a process for producing strain in an elastomer includes: (a) providing a graft elastomer having a backbone molecule which is a non-crystallizable, flexible macromolecular chain and a grafted polymer forming polar graft moieties with backbone molecules; and (b) applying an electric field to the graft elastomer to rotate the polar graft moieties, e.g., into substantial polar alignment.
Ch’ng, Shiau Ying; Andriyana, Andri; Tee, Yun Lu; Verron, Erwan
2015-01-01
The effect of carbon black on the mechanical properties of elastomers is of great interest, because the filler is one of principal ingredients for the manufacturing of rubber products. While fillers can be used to enhance the properties of elastomers, including stress-free swelling resistance in solvent, it is widely known that the introduction of fillers yields significant inelastic responses of elastomers under cyclic mechanical loading, such as stress-softening, hysteresis and permanent set. When a filled elastomer is under mechanical deformation, the filler acts as a strain amplifier in the rubber matrix. Since the matrix local strain has a profound effect on the material’s ability to absorb solvent, the study of the effect of carbon black content on the swelling characteristics of elastomeric components exposed to solvent in the presence of mechanical deformation is a prerequisite for durability analysis. The aim of this study is to investigate the effect of carbon black content on the swelling of elastomers in solvent in the presence of static mechanical strains: simple extension and simple torsion. Three different types of elastomers are considered: unfilled, filled with 33 phr (parts per hundred) and 66 phr of carbon black. The peculiar role of carbon black on the swelling characteristics of elastomers in solvent in the presence of mechanical strain is explored. PMID:28787977
NASA Astrophysics Data System (ADS)
Sharudin, R. W.; AbdulBari Ali, S.; Zulkarnain, M.; Shukri, M. A.
2018-05-01
This study reports on the integration of Artificial Neural Network (ANNs) with experimental data in predicting the solubility of carbon dioxide (CO2) blowing agent in SEBS by generating highest possible value for Regression coefficient (R2). Basically, foaming of thermoplastic elastomer with CO2 is highly affected by the CO2 solubility. The ability of ANN in predicting interpolated data of CO2 solubility was investigated by comparing training results via different method of network training. Regards to the final prediction result for CO2 solubility by ANN, the prediction trend (output generate) was corroborated with the experimental results. The obtained result of different method of training showed the trend of output generated by Gradient Descent with Momentum & Adaptive LR (traingdx) required longer training time and required more accurate input to produce better output with final Regression Value of 0.88. However, it goes vice versa with Levenberg-Marquardt (trainlm) technique as it produced better output in quick detention time with final Regression Value of 0.91.
NASA Astrophysics Data System (ADS)
Zhao, Shujun; Wen, Yingying; Wang, Zhong; Kang, Haijiao; Li, Jianzhang; Zhang, Shifeng; Ji, Yong
2018-06-01
Nanophase modification is an effective path to improve composite properties, however, it remains a great challenge to increase the mechanical strength of the modified materials without sacrificing elongation and toughness. This study presents a novel and efficient design for interface anchoring of a waterborne polyurethane (WPU) elastomer with attapulgite (ATP) triggered by poly(dopamine) (PDA) formation due to self-polymerization of the dopamine moieties. The WPU-PDA-ATP (WDA) rod-like elastomer served as an active enhancer for a soy protein isolate (SPI)-based composite to facilitate multiple interactions between SPI and the elastomer. As expected, the PDA layer was coated onto ATP, inducing the nanofiller to successfully anchor onto the WPU elastomer, as confirmed by solid-state 13C NMR, XPS, and ATR-FTIR results. Compared with the control SPI-based film, the tensile strength and toughness increased by 145.6% and 118.3% respectively by introducing WDA rod-like elastomer. The water resistance and thermal stability of the prepared SPI composites were also favorable. The proposed approach represents an efficient way to utilize high-performance elastomer in biobased materials to concurrently enhance strength and toughness.
NASA Astrophysics Data System (ADS)
Tetsu, Yuma; Yamagishi, Kento; Kato, Akira; Matsumoto, Yuya; Tsukune, Mariko; Kobayashi, Yo; Fujie, Masakatsu G.; Takeoka, Shinji; Fujie, Toshinori
2017-08-01
To minimize the interference that skin-contact strain sensors cause natural skin deformation, physical conformability to the epidermal structure is critical. Here, we developed an ultrathin strain sensor made from poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) inkjet-printed on a polystyrene-polybutadiene-polystyrene (SBS) nanosheet. The sensor, whose total thickness and gauge factor were ˜1 µm and 0.73 ± 0.10, respectively, deeply conformed to the epidermal structure and successfully detected the small skin strain (˜2%) while interfering minimally with the natural deformation of the skin. Such an epidermal strain sensor will open a new avenue for precisely detecting the motion of human skin and artificial soft-robotic skin.
NASA Technical Reports Server (NTRS)
Rieger, A.; Zorzi, E.
1980-01-01
An elastomer shear damper was designed, tested, and compared with the performance of the T 55 power turbine supported on the production engine roller bearing support. The Viton 70 shear damper was designed so that the elastomer damper could be interchanged with the production T 55 power turbine roller bearing support. The results show that the elastomer sheer dampener permitted stable operation of the power turbine to the maximum operating speed of 16,000 rpm.
Leclercq, S; Saulnier, H
2001-01-01
Slips contribute to 12% of occupational accidents. A slip resistant floor is a mean to prevent slipping accidents occurring in workshops. Floor slip resistance is often evaluated by measuring a friction index, proportional to the force opposing slipping of a reference elastomer on the floor surface under test. When implementing a portable appliance, slip resistance measurements carried out on lubricated floors were not stabilized. The authors advanced the hypothesis of oil impregnating the elastomer. A new elastomer suited to in-situ measurement has been developed to achieve stable measuring conditions. This study highlights the fact that the nature and characteristics of a reference elastomer must be specified when slip resistance measurements are carried out.
Converging the capabilities of EAP artificial muscles and the requirements of bio-inspired robotics
NASA Astrophysics Data System (ADS)
Hanson, David F.; White, Victor
2004-07-01
The characteristics of Electro-actuated polymers (EAP) are typically considered inadequate for applications in robotics. But in recent years, there has been both dramatic increases in EAP technological capbilities and reductions in power requirements for actuating bio-inspired robotics. As the two trends continue to converge, one may anticipate that dramatic breakthroughs in biologically inspired robotic actuation will result due to the marraige of these technologies. This talk will provide a snapshot of how EAP actuator scientists and roboticists may work together on a common platform to accelerate the growth of both technologies. To demonstrate this concept of a platform to accelerate this convergence, the authors will discuss their work in the niche application of robotic facial expression. In particular, expressive robots appear to be within the range of EAP actuation, thanks to their low force requirements. Several robots will be shown that demonstrate realistic expressions with dramatically decreased force requirements. Also, detailed descriptions will be given of the engineering innovations that have enabled these robotics advancements-most notably, Structured-Porosity Elastomer Materials (SPEMs). SPEM manufacturing techniques create delicate cell-structures in a variety of elastomers that maintain the high elongation characteristics of the mother material, but because of the porisity, behave as sponge-materials, thus lower the force required to emulate facial expressions to levels output by several extant EAP actuators.
Control of elasticity in cast elastomeric shock/vibration isolators
NASA Technical Reports Server (NTRS)
Owens, L.; Bright, C.
1974-01-01
Elasticity is determined by isolators physical dimensions and by type of elastomer used. Once elastomer is selected and cast between two concentric tubes of device, isolator elasticity will remain fixed. Isolators having same dimensions can be built to different elasticity requirements using same elastomer.
Performance of Subscale Docking Seals Under Simulated Temperature Conditions
NASA Technical Reports Server (NTRS)
Smith, Ian M.; Daniels, Christopher C.
2008-01-01
A universal docking system is being developed by the National Aeronautics and Space Administration (NASA) to support future space exploration missions to low Earth orbit (LEO), to the moon, and to Mars. The candidate docking seals for the system are a composite design consisting of elastomer seal bulbs molded into the front and rear sides of a metal ring. The test specimens were subscale seals with two different elastomer cross-sections and a 12-in. outside diameter. The seal assemblies were mated in elastomer seal-on-metal plate and elastomer seal-on-elastomer seal configurations. The seals were manufactured from S0383-70 silicone elastomer compound. Nominal and off-nominal joint configurations were examined. Both the compression load required to mate the seals and the leak rate observed were recorded while the assemblies were subjected to representative docking system operating temperatures of -58, 73, and 122 F (-50, 23, and 50 C). Both the loads required to fully compress the seals and their leak rates were directly proportional to the test temperature.
Elastomer mounted rotors - An alternative for smoother running turbomachinery
NASA Technical Reports Server (NTRS)
Tecza, J. A.; Jones, S. W.; Smalley, A. J.; Cunningham, R. E.; Darlow, M. S.
1979-01-01
This paper describes the design of elastomeric bearing supports for a rotor built to simulate the power turbine of an advanced gas turbine engine which traverses two bending critical speeds. The elastomer dampers were constructed so as to minimize rotor dynamic response at the critical speeds. Results are presented of unbalance response tests performed with two different elastomer materials. These results showed that the resonances on the elastomer-mounted rotor were well damped for both elastomer materials and showed linear response to the unbalance weights used for response testing. Additional tests were performed using solid steel supports at either end (hand-mounted), which resulted in drastically increased sensitivity and nonlinear response, and with steel supports in one end of the rotor and the elastomer at the other, which yielded results which were between the soft- and hard-mounted cases. It is concluded that elastomeric supports are a viable alternative to other methods of mounting flexible rotors, that damping was well in excess of predictions and that elastomeric supports are tolerant of small rotor misalignments.
Equilibrium swelling of elastomeric materials in solvent environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, P.F.
1990-03-01
The equilibrium swelling of silicones, fluorosilicones, VITON and ethylene-propylene-diene (EPDM) elastomers in an environment of the jet fuel JP4 was investigated. The volume of silicone and DPDM elastomers increased by approximately 100% when they were placed in a saturated environment of JP4. Conversely, the volume of the fluorosilicone elastomer increased by approximately 15% and that of VITON less than 1%. In acetone, a commonly used solvent, the equilibrium swelling of VITON and the fluorosilicone elastomer was excessive, on the order of 100%, wheras the silicone and EPDM elastomers exhibited small changes in dimensions. Reasons for these observations are discussed inmore » detail. We also present a simple scheme by which one may, qualitatively, determine the dimensional stability of these elastomers in different solvents if the cohesive energy density of the solvent, which is readily available in a number of handbooks, is known. We also evaluated the vulnerability of some commonly used engineering thermoplastics to JP4. The results are tabulated. 13 refs., 6 figs., 3 tab.« less
NASA Astrophysics Data System (ADS)
Vargantwar, Pruthesh Hariharrao
Block copolymers (BCs) have remained at the forefront of materials research due to their versatility in applications ranging from hot-melt/pressure-sensitive adhesives and impact modifiers to compatibilizing agents and vibration-dampening/nanotemplating media. Of particular interest are macromolecules composed of two or more chemically dissimilar blocks covalently linked together to form triblock or pentablock copolymers. If the blocks are sufficiently incompatible and the copolymer behaves as a thermoplastic elastomer, the molecules can spontaneously self-assemble to form nanostructured materials that exhibit shape memory due to the formation of a supramolecular network. The BCs of these types are termed as conventional. When BCs contain blocks having ionic moieties such as sulfonic acid groups, they are termed as block ionomers. Designing new systems based on either conventional or ionic BCs, characterizing their structure-property relationships and later using them as electroacive polymers form the essential objectives of this work. Electroactive polymers (EAPs) exhibit electromechanical actuation when stimulated by an external electric field. In the first part of this work, it is shown that BCs resolve some of the outstanding problems presently encountered in the design of two different classes of EAP actuators: dielectric elastomers (DEs) and ionic polymer metal composites (IPMCs). All-acrylic triblock copolymer gels used as DEs actuate with high efficacy without any requirement of mechanical prestrain and, thus, eliminate the need for bulky and heavy hardware essential with prestrained dielectric actuators, as well as material problems associated with stress relaxation. The dependence of actuation behavior on gel morphology as evaluated from mechanical and microstructure studies is observed. In the case of IPMCs, ionic BCs employed in this study greatly facilitate processing compared to other contenders such as NafionRTM, which is commonly used in this class of EAPs. The unique copolymer investigated here (i) retains its mechanical integrity when highly solvated by polar solvents, (ii) demonstrates a high degree of actuation when tested in a cantilever configuration, and (iii) avoids the shortcomings of back-relaxation/overshoot within the testing conditions when used in combination with an appropriate solvent. In the second part of this work, two chemical strategies to design midblock sulfonated block ionomers are explored. In one case, selective sulfonation of the midblocks in triblock copolymers is achieved via a dioxane:sulfur trioxide chemistry, while in the other acetyl sulfate is used for the same purpose. Excellent control on the degree of sulfonation (DOS) is achieved. The block ionomers swell in different solvents while retaining their mechanical integrity. They show disorder-order, order-order, and order-reduced order morphological transitions as DOS varies. These transitions in morphologies are reflected in their thermal behavior as well. The microstructures show periodicity, which is, again, a function of DOS. The transitions are explained in terms of the molar volume expansion and volume densification of the blocks on sulfonation. The ionic levels, morphology and periodicity in microstructure are important for applications such as actuators, sensors and fuel cell membranes. The ability to tune these aspects in the ionomers designed in this work make them potential candidates for these applications.
21 CFR 177.2400 - Perfluorocarbon cured elastomers.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Perfluorocarbon cured elastomers. 177.2400 Section 177.2400 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... as Components of Articles Intended for Repeated Use § 177.2400 Perfluorocarbon cured elastomers...
21 CFR 177.2400 - Perfluorocarbon cured elastomers.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Perfluorocarbon cured elastomers. 177.2400 Section 177.2400 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... as Components of Articles Intended for Repeated Use § 177.2400 Perfluorocarbon cured elastomers...
NASA Technical Reports Server (NTRS)
Darlow, M. S.; Smalley, A. J.
1977-01-01
A test rig designed to measure stiffness and damping of elastomer cartridges under a rotating load excitation is described. The test rig employs rotating unbalance in a rotor which runs to 60,000 RPM as the excitation mechanism. A variable resonant mass is supported on elastomer elements and the dynamic characteristics are determined from measurements of input and output acceleration. Five different cartridges are considered: three of these are buttons cartridges having buttons located in pairs, with 120 between each pair. Two of the cartridges consist of 360 elastomer rings with rectangular cross-sections. Dynamic stiffness and damping are measured for each cartridge and compared with predictions at different frequencies and different strains.
Comparison of Adhesion and Retention Forces for Two Candidate Docking Seal Elastomers
NASA Technical Reports Server (NTRS)
Hartzler, Brad D.; Panickar, Marta B.; Wasowski, Janice L.; Daniels, Christopher C.
2011-01-01
To successfully mate two pressurized vehicles or structures in space, advanced seals are required at the interface to prevent the loss of breathable air to the vacuum of space. A critical part of the development testing of candidate seal designs was a verification of the integrity of the retaining mechanism that holds the silicone seal component to the structure. Failure to retain the elastomer seal during flight could liberate seal material in the event of high adhesive loads during undocking. This work presents an investigation of the force required to separate the elastomer from its metal counter-face surface during simulated undocking as well as a comparison to that force which was necessary to destructively remove the elastomer from its retaining device. Two silicone elastomers, Wacker 007-49524 and Esterline ELASA-401, were evaluated. During the course of the investigation, modifications were made to the retaining devices to determine if the modifications improved the force needed to destructively remove the seal. The tests were completed at the expected operating temperatures of -50, +23, and +75 C. Under the conditions investigated, the comparison indicated that the adhesion between the elastomer and the metal counter-face was significantly less than the force needed to forcibly remove the elastomer seal from its retainer, and no failure would be expected.
NASA Astrophysics Data System (ADS)
Swarner, Benjamin R.
Sound Transit plans to extend its current light rail system, which runs along the I-5 corridor in Seattle, Washington, across the I-90 Homer Hadley floating bridge as part of a project to connect the major city centers in the region. But, no light rail has ever crossed a floating bridge due to several unique engineering challenges. One of these challenges is attaching the rails to the existing bridge deck without drilling into the bridge pontoons. This research program was developed to test and analyze a direct fixation method that uses lightweight concrete plinths and an elastomer-epoxy system to attach the rails to the bridge deck. The elastomer used was a two-part, pourable elastomer with cork particles intermixed to alter the mechanical properties of the material. A lightweight concrete mixture was analyzed for use in the plinths, and system tests investigated the system response under tensile, compressive and shear loading. The shear response of the system was examined further under varying loading conditions including different surface preparations, elastomer thicknesses, strain-rates and after freeze-thaw conditioning. Experimental data was examined for trends based on these parameters to best characterize the system, and the elastomer was evaluated in the context of modern elastomer research.
NASA Astrophysics Data System (ADS)
Oguro, Tsubasa; Endo, Hiroyuki; Kawai, Mika; Mitsumata, Tetsu
2017-12-01
A device consisting of a phase of magnetic elastomer, a phase of polyurethane foam (PUF), and permanent magnet was fabricated and the stress-strain curves for the two-phase magnetic elastomer were measured by a uniaxial compression measurement. A disk of magnetic elastomer was adhered on a disk of PUF by an adhesive agent. The PUF thickness was varied from 1 mm to 5 mm while the thickness of magnetic elastomers was constant at 5 mm. The stress at a strain of 0.15 for the two-phase magnetic elastomers was evaluated in the absence and in the presence of a magnetic field of 410 mT. The stress at 0 mT decreased remarkably with the PUF thickness due to the deformation of the PUF phase. On the other hand, the stress at 410 mT slightly decreased with the thickness; however, it kept high values even at high thickness. When the PUF thickness was 5 mm, the maximum stress increment with 45 times to the off-field stress was observed. An experiment using ping-pong balls demonstrated that the coefficient of restitution for the two-phase magnetic elastomers can be dramatically altered by the magnetic field.
Theory Of Dewetting In A Filled Elastomer Under Stress
NASA Technical Reports Server (NTRS)
Peng, Steven T. J.
1993-01-01
Report presents theoretical study of dewetting between elastomeric binder and filler particles of highly filled elastomer under multiaxial tension and resulting dilatation of elastomer. Study directed toward understanding and predicting nonlinear stress-vs.-strain behavior of filled elastomeric rocket propellant, also applicable to rubber in highly loaded tire or in damping pad.
Fabrication and viscoelastic characteristics of waste tire rubber based magnetorheological elastomer
NASA Astrophysics Data System (ADS)
Ubaidillah; Choi, H. J.; Mazlan, S. A.; Imaduddin, F.; Harjana
2016-11-01
In this study, waste tire rubber (WTR) was successfully converted into magnetorheological (MR) elastomer via high-pressure and high-temperature reclamation. The physical and rheological properties of WTR based MR elastomers were assessed for performance. The revulcanization process was at the absence of magnetic fields. Thus, the magnetizable particles were allowed to distribute randomly. To confirm the particle dispersion in the MR elastomer matrix, an observation by scanning electron microscopy was used. The magnetization saturation and other magnetic properties were obtained through vibrating sample magnetometer. Rheological properties including MR effect were examined under oscillatory loadings in the absence and presence of magnetic fields using rotational rheometer. The WTR based MR elastomer exhibited tunable intrinsic properties under presentation of magnetic fields. The storage and loss modulus, along with the loss factor, changed with increases in frequency and during magnetization. Interestingly, a Payne effect phenomenon was seen in all samples during dynamic swept strain testing. The Payne effect was significantly increased with incremental increases in the magnetic field. This phenomenon was interpreted as the process of formation-destruction-reformation undergone by the internal network chains in the MR elastomers.
Semi-active control of a sandwich beam partially filled with magnetorheological elastomer
NASA Astrophysics Data System (ADS)
Dyniewicz, Bartłomiej; Bajkowski, Jacek M.; Bajer, Czesław I.
2015-08-01
The paper deals with the semi-active control of vibrations of structural elements. Elastomer composites with ferromagnetic particles that act as magnetorheological fluids are used. The damping coefficient and the shear modulus of the elastomer increases when it is exposed to an electro-magnetic field. The control of this process in time allows us to reduce vibrations more effectively than if the elastomer is permanently exposed to a magnetic field. First the analytical solution for the vibrations of a sandwich beam filled with an elastomer is given. Then the control problem is defined and applied to the analytical formula. The numerical solution of the minimization problem results in a periodic, perfectly rectangular control function if free vibrations are considered. Such a temporarily acting magnetic field is more efficient than a constantly acting one. The surplus reaches 20-50% or more, depending on the filling ratio of the elastomer. The resulting control was verified experimentally in the vibrations of a cantilever sandwich beam. The proposed semi-active control can be directly applied to engineering vibrating structural elements, for example helicopter rotors, aircraft wings, pads under machines, and vehicles.
A Soft Total Artificial Heart-First Concept Evaluation on a Hybrid Mock Circulation.
Cohrs, Nicholas H; Petrou, Anastasios; Loepfe, Michael; Yliruka, Maria; Schumacher, Christoph M; Kohll, A Xavier; Starck, Christoph T; Schmid Daners, Marianne; Meboldt, Mirko; Falk, Volkmar; Stark, Wendelin J
2017-10-01
The technology of 3D-printing has allowed the production of entirely soft pumps with complex chamber geometries. We used this technique to develop a completely soft pneumatically driven total artificial heart from silicone elastomers and evaluated its performance on a hybrid mock circulation. The goal of this study is to present an innovative concept of a soft total artificial heart (sTAH). Using the form of a human heart, we designed a sTAH, which consists of only two ventricles and produced it using a 3D-printing, lost-wax casting technique. The diastolic properties of the sTAH were defined and the performance of the sTAH was evaluated on a hybrid mock circulation under various physiological conditions. The sTAH achieved a blood flow of 2.2 L/min against a systemic vascular resistance of 1.11 mm Hg s/mL (afterload), when operated at 80 bpm. At the same time, the mean pulmonary venous pressure (preload) was fixed at 10 mm Hg. Furthermore, an aortic pulse pressure of 35 mm Hg was measured, with a mean aortic pressure of 48 mm Hg. The sTAH generated physiologically shaped signals of blood flow and pressures by mimicking the movement of a real heart. The preliminary results of this study show a promising potential of the soft pumps in heart replacements. Further work, focused on increasing blood flow and in turn aortic pressure is required. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Toughening elastomers with sacrificial bonds and watching them break.
Ducrot, Etienne; Chen, Yulan; Bulters, Markus; Sijbesma, Rint P; Creton, Costantino
2014-04-11
Elastomers are widely used because of their large-strain reversible deformability. Most unfilled elastomers suffer from a poor mechanical strength, which limits their use. Using sacrificial bonds, we show how brittle, unfilled elastomers can be strongly reinforced in stiffness and toughness (up to 4 megapascals and 9 kilojoules per square meter) by introducing a variable proportion of isotropically prestretched chains that can break and dissipate energy before the material fails. Chemoluminescent cross-linking molecules, which emit light as they break, map in real time where and when many of these internal bonds break ahead of a propagating crack. The simple methodology that we use to introduce sacrificial bonds, combined with the mapping of where bonds break, has the potential to stimulate the development of new classes of unfilled tough elastomers and better molecular models of the fracture of soft materials.
Hencky's model for elastomer forming process
NASA Astrophysics Data System (ADS)
Oleinikov, A. A.; Oleinikov, A. I.
2016-08-01
In the numerical simulation of elastomer forming process, Henckys isotropic hyperelastic material model can guarantee relatively accurate prediction of strain range in terms of large deformations. It is shown, that this material model prolongate Hooke's law from the area of infinitesimal strains to the area of moderate ones. New representation of the fourth-order elasticity tensor for Hencky's hyperelastic isotropic material is obtained, it possesses both minor symmetries, and the major symmetry. Constitutive relations of considered model is implemented into MSC.Marc code. By calculating and fitting curves, the polyurethane elastomer material constants are selected. Simulation of equipment for elastomer sheet forming are considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harwood, H.J.
1983-07-01
Thermal and hydrolytic processes that are likely to occur when hydrocarbon and fluorocarbon elastomers are subjected to geothermal conditions are discussed. Polyhydrocarbon backbones have good chemical resistance, but many cross-links present in cured polyhydrocarbons can be hydrolyzed under geothermal conditions. Perfluorinated elastomers have excellent thermal and hydrolytic stability, although they are potentially susceptible to hydrolytic degradation. The cross-links present in cured perfluorocarbon elastomers are probably also susceptible to hydrolysis under severe conditions. It seems that improvements can be made in geothermal seals if they can be cured by processes that yield chemically stable cross-links.
Treatment to Control Adhesion of Silicone-Based Elastomers
NASA Technical Reports Server (NTRS)
deGroh, Henry C., III; Puleo, Bernadette J.; Waters, Deborah L.
2013-01-01
Seals are used to facilitate the joining of two items, usually temporarily. At some point in the future, it is expected that the items will need to be separated. This innovation enables control of the adhesive properties of silicone-based elastomers. The innovation may also be effective on elastomers other than the silicone-based ones. A technique has been discovered that decreases the level of adhesion of silicone- based elastomers to negligible levels. The new technique causes less damage to the material compared to alternative adhesion mitigation techniques. Silicone-based elastomers are the only class of rubber-like materials that currently meet NASA s needs for various seal applications. However, silicone-based elastomers have natural inherent adhesive properties. This stickiness can be helpful, but it can frequently cause problems as well, such as when trying to get items apart. In the past, seal adhesion was not always adequately addressed, and has caused in-flight failures where seals were actually pulled from their grooves, preventing subsequent spacecraft docking until the seal was physically removed from the flange via an extravehicular activity (EVA). The primary method used in the past to lower elastomer seal adhesion has been the application of some type of lubricant or grease to the surface of the seal. A newer method uses ultraviolet (UV) radiation a mixture of UV wavelengths in the range of near ultraviolet (NUV) and vacuum ultraviolet (VUV) wavelengths.
Polarizing Beam Splitter: A New Approach Based on Transformation Optics
NASA Astrophysics Data System (ADS)
Mueller, Jonhatan; Wegener, Martin
Standard optical elements (e.g. lenses, prisms) are mostly designed of piecewise homogeneous and isotropic dielectrics. However, in theory one has far more possibilities to influence electromagnetic waves, namely all the components of the permittivity and permeability tensors. In the past few years, on the one hand, new micro fabrication methods allowed for new freedom in controlling of the optical parameters using so called artificial metamaterials. On the other hand, the theory of transformation optics has given a somewhat intuitive approach for the design of such structures. The most popular feature of this kind is certainly optical cloaking (i.e. [1,2]). However, the full capabilities of other transformation optical devices are far from being fully explored. In my work, I focused on pure dielectric structures in a non-resonant and therefore non-lossy regime. Although the relative permittivity one can achieve this way is limited by the available natural dielectrics, a broad spectrum of features can be realized.
Elastomer Filled With Single-Wall Carbon Nanotubes
NASA Technical Reports Server (NTRS)
Files, Bradley S.; Forest, Craig R.
2004-01-01
Experiments have shown that composites of a silicone elastomer with single-wall carbon nanotubes (SWNTs) are significantly stronger and stiffer than is the unfilled elastomer. The large strengthening and stiffening effect observed in these experiments stands in contrast to the much smaller strengthening effect observed in related prior efforts to reinforce epoxies with SWNTs and to reinforce a variety of polymers with multiple-wall carbon nanotubes (MWNTs). The relative largeness of the effect in the case of the silicone-elastomer/SWNT composites appears to be attributable to (1) a better match between the ductility of the fibers and the elasticity of the matrix and (2) the greater tensile strengths of SWNTs, relative to MWNTs. For the experiments, several composites were formulated by mixing various proportions of SWNTs and other filling materials into uncured RTV-560, which is a silicone adhesive commonly used in aerospace applications. Specimens of a standard "dog-bone" size and shape for tensile testing were made by casting the uncured elastomer/filler mixtures into molds, curing the elastomer, then pressing the specimens from a "cookie-cutter" die. The results of tensile tests of the specimens showed that small percentages of SWNT filler led to large increases in stiffness and tensile strength, and that these increases were greater than those afforded by other fillers. For example, the incorporation of SWNTs in a proportion of 1 percent increased the tensile strength by 44 percent and the modulus of elasticity (see figure) by 75 percent. However, the relative magnitudes of the increases decreased with increasing nanotube percentages because more nanotubes made the elastomer/nanotube composites more brittle. At an SWNT content of 10 percent, the tensile strength and modulus of elasticity were 125 percent and 562 percent, respectively, greater than the corresponding values for the unfilled elastomer.
Jeong, Seung Hee; Chen, Si; Huo, Jinxing; Gamstedt, Erik Kristofer; Liu, Johan; Zhang, Shi-Li; Zhang, Zhi-Bin; Hjort, Klas; Wu, Zhigang
2015-12-16
Stretchable electronics and soft robotics have shown unsurpassed features, inheriting remarkable functions from stretchable and soft materials. Electrically conductive and mechanically stretchable materials based on composites have been widely studied for stretchable electronics as electrical conductors using various combinations of materials. However, thermally tunable and stretchable materials, which have high potential in soft and stretchable thermal devices as interface or packaging materials, have not been sufficiently studied. Here, a mechanically stretchable and electrically insulating thermal elastomer composite is demonstrated, which can be easily processed for device fabrication. A liquid alloy is embedded as liquid droplet fillers in an elastomer matrix to achieve softness and stretchability. This new elastomer composite is expected useful to enhance thermal response or efficiency of soft and stretchable thermal devices or systems. The thermal elastomer composites demonstrate advantages such as thermal interface and packaging layers with thermal shrink films in transient and steady-state cases and a stretchable temperature sensor.
Elastomer Reinforced with Carbon Nanotubes
NASA Technical Reports Server (NTRS)
Hudson, Jared L.; Krishnamoorti, Ramanan
2009-01-01
Elastomers are reinforced with functionalized, single-walled carbon nanotubes (SWNTs) giving them high-breaking strain levels and low densities. Cross-linked elastomers are prepared using amine-terminated, poly(dimethylsiloxane) (PDMS), with an average molecular weight of 5,000 daltons, and a functionalized SWNT. Cross-link densities, estimated on the basis of swelling data in toluene (a dispersing solvent) indicated that the polymer underwent cross-linking at the ends of the chains. This thermally initiated cross-linking was found to occur only in the presence of the aryl alcohol functionalized SWNTs. The cross-link could have been via a hydrogen-bonding mechanism between the amine and the free hydroxyl group, or via attack of the amine on the ester linage to form an amide. Tensile properties examined at room temperature indicate a three-fold increase in the tensile modulus of the elastomer, with rupture and failure of the elastomer occurring at a strain of 6.5.
Volume phase transitions of cholesteric liquid crystalline gels.
Matsuyama, Akihiko
2015-05-07
We present a mean field theory to describe anisotropic deformations of a cholesteric elastomer without solvent molecules and a cholesteric liquid crystalline gel immersed in isotropic solvents at a thermal equilibrium state. Based on the neoclassical rubber theory of nematic elastomers, we derive an elastic energy and a twist distortion energy, which are important to determine the shape of a cholesteric elastomer (or gel). We demonstrate that when the elastic energy dominates in the free energy, the cholesteric elastomer causes a spontaneous compression in the pitch axis and elongates along the director on the plane perpendicular to the pitch axis. Our theory can qualitatively describe the experimental results of a cholesteric elastomer. We also predict the first-order volume phase transitions and anisotropic deformations of a gel at the cholesteric-isotropic phase transition temperature. Depending on a chirality of a gel, we find a prolate or oblate shape of cholesteric gels.
Polymer-dispersed liquid crystal elastomers
NASA Astrophysics Data System (ADS)
Rešetič, Andraž; Milavec, Jerneja; Zupančič, Blaž; Domenici, Valentina; Zalar, Boštjan
2016-10-01
The need for mechanical manipulation during the curing of conventional liquid crystal elastomers diminishes their applicability in the field of shape-programmable soft materials and future applications in additive manufacturing. Here we report on polymer-dispersed liquid crystal elastomers, novel composite materials that eliminate this difficulty. Their thermal shape memory anisotropy is imprinted by curing in external magnetic field, providing for conventional moulding of macroscopically sized soft, thermomechanically active elastic objects of general shapes. The binary soft-soft composition of isotropic elastomer matrix, filled with freeze-fracture-fabricated, oriented liquid crystal elastomer microparticles as colloidal inclusions, allows for fine-tuning of thermal morphing behaviour. This is accomplished by adjusting the concentration, spatial distribution and orientation of microparticles or using blends of microparticles with different thermomechanical characteristics. We demonstrate that any Gaussian thermomechanical deformation mode (bend, cup, saddle, left and right twist) of a planar sample, as well as beat-like actuation, is attainable with bilayer microparticle configurations.
An in-vitro evaluation of silicone elastomer latex for topical drug delivery.
Li, L C; Vu, N T
1995-06-01
A silicone elastomer latex was evaluated as a topical drug-delivery system. With the addition of a fumed silica and the removal of water, the latex produced elastomeric solid films. The water vapour permeability of the solid film was found to be a function of the film composition. An increase in silica content and the incorporation of a water-soluble component, PEG 3350, rendered the silicone elastomer-free film even more permeable to water vapour. The release of hydrocortisone from the elastomer film can be described by a matrix-diffusion-controlled mechanism. Drug diffusion is thought to occur through the hydrophobic silicone polymer network and the hydrated hydrophilic silica region in the film matrix. Silicone elastomer film with a higher silica content exhibited a faster drug-release rate. The addition of PEG 3350 to the film further enhanced the drug-release rate.
NASA Technical Reports Server (NTRS)
Tecza, J. A.; Darlow, M. S.; Smalley, A. J.
1979-01-01
Tests were performed on elastomer specimens of the material polybutadiene to determine the performance limitations imposed by strain, temperature, and frequency. Three specimens were tested: a shear specimen, a compression specimen, and a second compression specimen in which thermocouples were embedded in the elastomer buttons. Stiffness and damping were determined from all tests, and internal temperatures were recorded for the instrumented compression specimen. Measured results are presented together with comparisons between predictions of a thermo-viscoelastic analysis and the measured results. Dampers of polybutadiene and Viton were designed, built, and tested. Vibration measurements were made and sensitivity of vibration to change in unbalance was also determined. Values for log decrement were extracted from the synchronous response curves. Comparisons were made between measured sensitivity to unbalance and log decrement and predicted values for these quantities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skena, C.C.; Keiser, J.R.
1986-08-01
Previous laboratory tests of elastomer O-rings in coal liquefaction solvents conducted at L'Garde, Inc., indicated that certain ethylenepropylenediene monomer (EPDM) compounds provided the best performance when a backup ring was used to limit swelling. Before service testing in a pump at the Wilsonville, Alabama, Advanced Coal Liquefaction Research and Development Facility, tests of six selected elastomers in the appropriate Wilsonville-produced solvent were conducted at Oak Ridge National Laboratory (ORNL). The ORNL tests measured the elastomers' changes in cross section, weight, density, and relative flexibility. Although two perfluoroelastomers showed less degradation of most properties during these tests, it was decided tomore » proceed with service testing of two EPDM elastomers because of their much lower cost. 5 refs., 14 figs., 7 tabs.« less
Adaptive lenses using transparent dielectric elastomer actuators
NASA Astrophysics Data System (ADS)
Shian, Samuel; Diebold, Roger; Clarke, David
2013-03-01
Variable focal lenses, used in a vast number of applications such as endoscope, digital camera, binoculars, information storage, communication, and machine vision, are traditionally constructed as a lens system consisting of solid lenses and actuating mechanisms. However, such lens system is complex, bulky, inefficient, and costly. Each of these shortcomings can be addressed using an adaptive lens that performs as a lens system. In this presentation, we will show how we push the boundary of adaptive lens technology through the use of a transparent electroactive polymer actuator that is integral to the optics. Detail of our concepts and lens construction will be described as well as electromechanical and optical performances. Preliminary data indicate that our adaptive lens prototype is capable of varying its focus by more than 100%, which is higher than that of human eyes. Furthermore, we will show how our approach can be used to achieve certain controls over the lens characteristics such as adaptive aberration and optical axis, which are difficult or impossible to achieve in other adaptive lens configurations.
A highly stretchable autonomous self-healing elastomer
NASA Astrophysics Data System (ADS)
Li, Cheng-Hui; Wang, Chao; Keplinger, Christoph; Zuo, Jing-Lin; Jin, Lihua; Sun, Yang; Zheng, Peng; Cao, Yi; Lissel, Franziska; Linder, Christian; You, Xiao-Zeng; Bao, Zhenan
2016-06-01
It is a challenge to synthesize materials that possess the properties of biological muscles—strong, elastic and capable of self-healing. Herein we report a network of poly(dimethylsiloxane) polymer chains crosslinked by coordination complexes that combines high stretchability, high dielectric strength, autonomous self-healing and mechanical actuation. The healing process can take place at a temperature as low as -20 °C and is not significantly affected by surface ageing and moisture. The crosslinking complexes used consist of 2,6-pyridinedicarboxamide ligands that coordinate to Fe(III) centres through three different interactions: a strong pyridyl-iron one, and two weaker carboxamido-iron ones through both the nitrogen and oxygen atoms of the carboxamide groups. As a result, the iron-ligand bonds can readily break and re-form while the iron centres still remain attached to the ligands through the stronger interaction with the pyridyl ring, which enables reversible unfolding and refolding of the chains. We hypothesize that this behaviour supports the high stretchability and self-healing capability of the material.
NASA Astrophysics Data System (ADS)
Illenberger, Patrin K.; Madawala, Udaya K.; Anderson, Iain A.
2016-04-01
Dielectric Elastomer Generators (DEG) offer an opportunity to capture the energy otherwise wasted from human motion. By integrating a DEG into the heel of standard footwear, it is possible to harness this energy to power portable devices. DEGs require substantial auxiliary systems which are commonly large, heavy and inefficient. A unique challenge for these low power generators is the combination of high voltage and low current. A void exists in the semiconductor market for devices that can meet these requirements. Until these become available, existing devices must be used in an innovative way to produce an effective DEG system. Existing systems such as the Bi-Directional Flyback (BDFB) and Self Priming Circuit (SPC) are an excellent example of this. The BDFB allows full charging and discharging of the DEG, improving power gained. The SPC allows fully passive voltage boosting, removing the priming source and simplifying the electronics. This paper outlines the drawbacks and benefits of active and passive electronic solutions for maximizing power from walking.
Application of EAP materials toward a refreshable Braille display
NASA Astrophysics Data System (ADS)
Di Spigna, N.; Chakraborti, P.; Yang, P.; Ghosh, T.; Franzon, P.
2009-03-01
The development of a multiline, refreshable Braille display will assist with the full inclusion and integration of blind people into society. The use of both polyvinylidene fluoride (PVDF) film planar bending mode actuators and silicone dielectric elastomer cylindrical tube actuators have been investigated for their potential use in a Braille cell. A liftoff process that allows for aggressive scaling of miniature bimorph actuators has been developed using standard semiconductor lithography techniques. The PVDF bimorphs have been demonstrated to provide enough displacement to raise a Braille dot using biases less than 1000V and operating at 10Hz. In addition, silicone tube actuators have also been demonstrated to achieve the necessary displacement, though requiring higher voltages. The choice of electrodes and prestrain conditions aimed at maximizing axial strain in tube actuators are discussed. Characterization techniques measuring actuation displacement and blocking forces appropriate for standard Braille cell specifications are presented. Finally, the integration of these materials into novel cell designs and the fabrication of a prototype Braille cell are discussed.
Liang, Jiajie; Li, Lu; Chen, Dustin; Hajagos, Tibor; Ren, Zhi; Chou, Shu-Yu; Hu, Wei; Pei, Qibing
2015-01-01
Thin-film field-effect transistor is a fundamental component behind various mordern electronics. The development of stretchable electronics poses fundamental challenges in developing new electronic materials for stretchable thin-film transistors that are mechanically compliant and solution processable. Here we report the fabrication of transparent thin-film transistors that behave like an elastomer film. The entire fabrication is carried out by solution-based techniques, and the resulting devices exhibit a mobility of ∼30 cm2 V−1 s−1, on/off ratio of 103–104, switching current >100 μA, transconductance >50 μS and relative low operating voltages. The devices can be stretched by up to 50% strain and subjected to 500 cycles of repeated stretching to 20% strain without significant loss in electrical property. The thin-film transistors are also used to drive organic light-emitting diodes. The approach and results represent an important progress toward the development of stretchable active-matrix displays. PMID:26173436
Fabrication and performance analysis of a DEA cuff designed for dry-suit applications
NASA Astrophysics Data System (ADS)
Ahmadi, S.; Camacho Mattos, A.; Barbazza, A.; Soleimani, M.; Boscariol, P.; Menon, C.
2013-03-01
A method for manufacturing a cylindrical dielectric elastomer actuator (DEA) is presented. The cylindrical DEA can be used in fabricating the cuff area of dry-suits where the garment is very tight and wearing the suit is difficult. When electrically actuated, the DEA expands radially and the suit can be worn more comfortably. In order to study the performance of the DEA, a customized testing setup was designed, and silicone-made cuff samples with different material stiffnesses were tested. Analytical and FEM modeling were considered to evaluate the experimental output. The results revealed that although the stiffness of the DEA material has a direct relationship with the radial constrictive pressure caused by mechanically stretching the DEA, it has a minor effect on the actuation pressure. It was also found that stacking multiple layers of the DEA to fabricate a laminated structure enabled the attainment of a desired variation of pressure required for the implementation of an electrically tunable cuff.
Sulfur Mustard Penetration of Thermoplastic Elastomers
2008-10-01
blend of polypropylene and finely dispersed, highly vulcanised EPDM rubber [4]. However its exact composition is a trade secret. The Santoprene grade... rubber or silicone rubber . Compared to thermoplastic elastomers, these thermosetting elastomers are expensive and difficult to process. Therefore a...the last few decades, CBR respirators have generally been manufactured from either butyl rubber (as in the British and Australian S10), or silicone
Serrano, M Concepción; Gutiérrez, María C; Jiménez, Ricardo; Ferrer, M Luisa; del Monte, Francisco
2012-01-14
Poly(octanediol-co-citrate) elastomers containing high loading of lidocaine were synthesized at temperatures below 100 °C by means of using deep eutectic mixtures of 1,8-octanediol and lidocaine. The preservation of lidocaine integrity resulted in high-capacity drug-eluting elastomers. This journal is © The Royal Society of Chemistry 2012
Self-healing of optical functions by molecular metabolism in a swollen elastomer
NASA Astrophysics Data System (ADS)
Saito, Mitsunori; Nishimura, Tatsuya; Sakiyama, Kohei; Inagaki, Sota
2012-12-01
Optical functions of organic dyes, e.g., fluorescence or photochromism, tend to degrade by light irradiation, which causes a short lifetime of photonic devices. Self-healing of optical functions is attainable by metabolizing bleached molecules with nonirradiated ones. A polydimethylsiloxane elastomer provides a useful matrix for dye molecules, since its flexible structure with nano-sized intermolecular spaces allows dye diffusion from a reservoir to an operation region. Swelling the elastomer with a suitable solvent promotes both dissolution and diffusion of dye molecules. This self-healing function was demonstrated by an experiment in which a photochromic elastomer exhibited improved durability against a repeated coloring-decoloring process.
NASA Astrophysics Data System (ADS)
Huang, Cheng
High performance soft electronic materials are key elements in advanced electronic devices for broad range applications including capacitors, actuators, artificial muscles and organs, smart materials and structures, microelectromechanical (MEMS) and microfluidic devices, acoustic devices and sensors. This thesis exploits new approaches to improve the electromechanical response and dielectric response of these materials. By making use of novel material phenomena such as large anisotropy in dipolar response in liquid crystals (LCs) and all-organic composites in which high dielectric constant organic solids and conductive polymers are either physically blended into or chemically grafted to a polymer matrix, we demonstrate that high dielectric constant and high electromechanical conversion efficiency comparable to that in ceramic materials can be achieved. Nano-composite approach can also be utilized to improve the performance of the electronic electroactive polymers (EAPs) and composites, for example, exchange coupling between the fillers and matrix with very large dielectric contrast can lead to significantly enhance the dielectric response as well as electromechanical response when the heterogeneity size of the composite is comparable to the exchange length. In addition to the dielectric composites, in which high dielectric constant fillers raise the dielectric constant of composites, conductive percolation can also lead to high dielectric constant in polymeric materials. An all-polymer percolative composite is introduced which exhibits very high dielectric constant (>7,000). The flexible all-polymer composites with a high dielectric constant make it possible to induce a high electromechanical response under a much reduced electric field in the field effect electroactive polymer (EAP) actuators (a strain of 2.65% with an elastic energy density of 0.18 J/cm3 can be achieved under a field of 16 V/mum). Agglomeration of the particles can also be effectively prevented by in situ preparation. High dielectric constant copper phthalocyanine oligomer and conductive polyaniline oligomer were successfully bonded to polyurethane backbone to form fully functionalized nano-phase polymers. Improvement of dispersibility of oligomers in polymer matrix makes the system self-organize the nanocomposites possessing oligomer nanophase (below 30nm) within the fully functionalized polymers. The resulting nanophase polymers significantly enhance the interface effect, which through the exchange coupling raises the dielectric response markedly above that expected from simple mixing rules for dielectric composites. Consequently, these nano-phase polymers offer a high dielectric constant (a dielectric constant near 1,000 at 20 Hz), improve the breakdown field and mechanical properties, and exhibit high electromechanical response. A longitudinal strain of more than -14% can be induced under a much reduced field, 23 V/mum, with an elastic energy density of higher than 1 J/cm3. The elastic modulus is as high as 100MPa, and a transverse strain is 7% under the same field. (Abstract shortened by UMI.)
Brood Year 2004: Johnson Creek Chinook Salmon Supplementation Report, June 2004 through March 2006.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gebhards, John S.; Hill, Robert; Daniel, Mitch
The Nez Perce Tribe, through funding provided by the Bonneville Power Administration, has implemented a small scale chinook salmon supplementation program on Johnson Creek, a tributary in the South Fork of the Salmon River, Idaho. The Johnson Creek Artificial Propagation Enhancement project was established to enhance the number of threatened Snake River spring/summer chinook salmon (Oncorhynchus tshawytscha) returning to Johnson Creek to spawn through artificial propagation. This was the sixth season of adult chinook broodstock collection in Johnson Creek following collections in 1998, 2000, 2001, 2002, and 2003. Weir installation was completed on June 21, 2004 with the first chinookmore » captured on June 22, 2004 and the last fish captured on September 6, 2004. The weir was removed on September 18, 2004. A total of 338 adult chinook, including jacks, were captured during the season. Of these, 211 were of natural origin, 111 were hatchery origin Johnson Creek supplementation fish, and 16 were adipose fin clipped fish from other hatchery operations and therefore strays into Johnson Creek. Over the course of the run, 57 natural origin Johnson Creek adult chinook were retained for broodstock, transported to the South Fork Salmon River adult holding and spawning facility and held until spawned. The remaining natural origin Johnson Creek fish along with all the Johnson Creek supplementation fish were released upstream of the weir to spawn naturally. Twenty-seven Johnson Creek females were artificially spawned with 25 Johnson Creek males. Four females were diagnosed with high bacterial kidney disease levels resulting in their eggs being culled. The 27 females produced 116,598 green eggs, 16,531 green eggs were culled, with an average eye-up rate of 90.6% resulting in 90,647 eyed eggs. Juvenile fish were reared indoors at the McCall Fish Hatchery until November 2005 and then transferred to the outdoor rearing facilities during the Visual Implant Elastomer tagging operation. These fish continued rearing in the outdoor collection basin until release in March 2006. All of these fish were marked with Coded Wire Tags and Visual Implant Elastomer tags. In addition 12,056 of the smolts released were also tagged with Passive Integrated Transponder tags. Hand counts provided by marking crews were used to amend the number of juvenile salmon released from the original egg count. A total of 90,450 smolts were released directly into Johnson Creek on March 13 through 15, 2006.« less
Mechanical Response of Elastomers to Magnetic Fields
NASA Technical Reports Server (NTRS)
Munoz, B. C.; Jolly, M. R.
1996-01-01
Elastomeric materials represent an important class of engineering materials, which are widely used to make components of structures, machinery, and devices for vibration and noise control. Elastomeric material possessing conductive or magnetic properties have been widely used in applications such as conductive and magnetic tapes, sensors, flexible permanent magnets, etc. Our interest in these materials has focussed on understanding and controlling the magnitude and directionality of their response to applied magnetic fields. The effect of magnetic fields on the mechanical properties of these materials has not been the subject of many published studies. Our interest and expertise in controllable fluids have given us the foundation to make a transition to controllable elastomers. Controllable elastomers are materials that exhibit a change in mechanical properties upon application of an external stimuli, in this case a magnetic field. Controllable elastomers promise to have more functionality than conventional elastomers and therefore could share the broad industrial application base with conventional elastomers. As such, these materials represent an attractive class of smart materials, and may well be a link that brings the applications of modern control technologies, intelligent structures and smart materials to a very broad industrial area. This presentation will cover our research work in the area of controllable elastomers at the Thomas Lord Research Center. More specifically, the presentation will discuss the control of mechanical properties and mathematical modeling of the new materials prepared in our laboratories along with experiments to achieve adaptive vibration control using the new materials.
Tuned, driven, and active soft matter
NASA Astrophysics Data System (ADS)
Menzel, Andreas M.
2015-02-01
One characteristic feature of soft matter systems is their strong response to external stimuli. As a consequence they are comparatively easily driven out of their ground state and out of equilibrium, which leads to many of their fascinating properties. Here, we review illustrative examples. This review is structured by an increasing distance from the equilibrium ground state. On each level, examples of increasing degree of complexity are considered. In detail, we first consider systems that are quasi-statically tuned or switched to a new state by applying external fields. These are common liquid crystals, liquid crystalline elastomers, or ferrogels and magnetic elastomers. Next, we concentrate on systems steadily driven from outside e.g. by an imposed flow field. In our case, we review the reaction of nematic liquid crystals, of bulk-filling periodically modulated structures such as block copolymers, and of localized vesicular objects to an imposed shear flow. Finally, we focus on systems that are "active" and "self-driven". Here our range spans from idealized self-propelled point particles, via sterically interacting particles like granular hoppers, via microswimmers such as self-phoretically driven artificial Janus particles or biological microorganisms, via deformable self-propelled particles like droplets, up to the collective behavior of insects, fish, and birds. As we emphasize, similarities emerge in the features and behavior of systems that at first glance may not necessarily appear related. We thus hope that our overview will further stimulate the search for basic unifying principles underlying the physics of these soft materials out of their equilibrium ground state.
Soft Ultrathin Electronics Innervated Adaptive Fully Soft Robots.
Wang, Chengjun; Sim, Kyoseung; Chen, Jin; Kim, Hojin; Rao, Zhoulyu; Li, Yuhang; Chen, Weiqiu; Song, Jizhou; Verduzco, Rafael; Yu, Cunjiang
2018-03-01
Soft robots outperform the conventional hard robots on significantly enhanced safety, adaptability, and complex motions. The development of fully soft robots, especially fully from smart soft materials to mimic soft animals, is still nascent. In addition, to date, existing soft robots cannot adapt themselves to the surrounding environment, i.e., sensing and adaptive motion or response, like animals. Here, compliant ultrathin sensing and actuating electronics innervated fully soft robots that can sense the environment and perform soft bodied crawling adaptively, mimicking an inchworm, are reported. The soft robots are constructed with actuators of open-mesh shaped ultrathin deformable heaters, sensors of single-crystal Si optoelectronic photodetectors, and thermally responsive artificial muscle of carbon-black-doped liquid-crystal elastomer (LCE-CB) nanocomposite. The results demonstrate that adaptive crawling locomotion can be realized through the conjugation of sensing and actuation, where the sensors sense the environment and actuators respond correspondingly to control the locomotion autonomously through regulating the deformation of LCE-CB bimorphs and the locomotion of the robots. The strategy of innervating soft sensing and actuating electronics with artificial muscles paves the way for the development of smart autonomous soft robots. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Han, Ying; Powers, John M; Kiat-Amnuay, Sudarat
2013-06-01
Much dissatisfaction with the color instability and reduced lifetime of extraoral maxillofacial prostheses due to degradation has been reported. The purpose of this study was to compare the effect of a UV mineral-based light protecting agent (LP) on the color stability of pigmented maxillofacial silicone elastomer MDX-4210/Type A after artificial aging to 2 widely used opacifiers. Forty-five groups were established (n=225 total). Three different types of opacifiers (LP, titanium white dry pigment [TW], or silicone intrinsic white [SW]) were added to silicone MDX-4210/type A at 3 concentrations (5%, 10%, or 15%) and subsequently combined with each of 5 colors (no pigments [control], red, blue, yellow, or mixed pigments). Artists' oil pigment was used with LP and TW, while intrinsic silicone pigment was used to color SW. Before and after an energy exposure of 450 kJ/m(2), CIE L*a*b* values were measured with a spectrophotometer. The CIELAB 50:50% perceptibility (ΔE*=1.1) and acceptability threshold (ΔE*=3.0) were used to interpret color changes (ΔE*). Color differences after aging were subjected to 3-way ANOVA. Means were compared by the Fisher PLSD intervals at α=.05. The ΔE* values of all groups were below the acceptability threshold of ΔE*=3.0, except for the control group of SW at 10%, which showed the greatest color change (ΔE*=3.1). When mixed pigment groups were considered, at 5% concentration, LP showed the smallest color change, followed by SW and TW (P<.05); at 10%, no significant differences among the 3 opacifiers were noted (P>.05); at 15%, LP showed the smallest color change, followed by TW and SW (P<.05). All 3 opacifiers at all concentrations protected pigmented silicone MDX4-4210/Type A from color degradation. The LP group showed the smallest color changes. Copyright © 2013 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kuang, Jun; Dai, Zhaohe; Liu, Luqi; Yang, Zhou; Jin, Ming; Zhang, Zhong
2015-05-01
Nanostructured carbon material based three-dimensional porous architectures have been increasingly developed for various applications, e.g. sensors, elastomer conductors, and energy storage devices. Maintaining architectures with good mechanical performance, including elasticity, load-bearing capacity, fatigue resistance and mechanical stability, is prerequisite for realizing these functions. Though graphene and CNT offer opportunities as nanoscale building blocks, it still remains a great challenge to achieve good mechanical performance in their microarchitectures because of the need to precisely control the structure at different scales. Herein, we fabricate a hierarchical honeycomb-like structured hybrid foam based on both graphene and CNT. The resulting materials possess excellent properties of combined high specific strength, elasticity and mechanical stability, which cannot be achieved in neat CNT and graphene foams. The improved mechanical properties are attributed to the synergistic-effect-induced highly organized, multi-scaled hierarchical architectures. Moreover, with their excellent electrical conductivity, we demonstrated that the hybrid foams could be used as pressure sensors in the fields related to artificial skin.Nanostructured carbon material based three-dimensional porous architectures have been increasingly developed for various applications, e.g. sensors, elastomer conductors, and energy storage devices. Maintaining architectures with good mechanical performance, including elasticity, load-bearing capacity, fatigue resistance and mechanical stability, is prerequisite for realizing these functions. Though graphene and CNT offer opportunities as nanoscale building blocks, it still remains a great challenge to achieve good mechanical performance in their microarchitectures because of the need to precisely control the structure at different scales. Herein, we fabricate a hierarchical honeycomb-like structured hybrid foam based on both graphene and CNT. The resulting materials possess excellent properties of combined high specific strength, elasticity and mechanical stability, which cannot be achieved in neat CNT and graphene foams. The improved mechanical properties are attributed to the synergistic-effect-induced highly organized, multi-scaled hierarchical architectures. Moreover, with their excellent electrical conductivity, we demonstrated that the hybrid foams could be used as pressure sensors in the fields related to artificial skin. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00841g
NASA Astrophysics Data System (ADS)
Liu, Liping; Sharma, Pradeep
2018-03-01
Soft robotics, energy harvesting, large-deformation sensing and actuation, are just some of the applications that can be enabled by soft dielectrics that demonstrate substantive electromechanical coupling. Most soft dielectrics including elastomers, however, are not piezoelectric and rely on the universally present electrostriction and the Maxwell stress effect to enable the aforementioned applications. Electrostriction is a one-way electromechanical coupling and the induced elastic strain scales as (∝E2) upon the application of an electric field, E. The quadratic dependence of electrostriction on the electric field and the one-way coupling imply that, (i) A rather high voltage is required to induce appreciable strain, (ii) reversal of an applied bias will not reverse the sign of the deformation, and (iii) since it is a one-way coupling i.e. electrical stimuli may cause mechanical deformation but electricity cannot be generated by mechanical deformation, prospects for energy harvesting are rather difficult. An interesting approach for realizing an apparent piezoelectric-like behavior is to dope soft dielectrics with immobile charges and dipoles. Such materials, called electrets, are rather unique composites where a secondary material (in principle) is not necessary. Both experiments and supporting theoretical work have shown that soft electrets can exhibit a very large electromechanical coupling including a piezoelectric-like response. In this work, we present a homogenization theory for electret materials and provide, in addition to several general results, variational bounds and closed-form expressions for specific microstructures such as laminates and ellipsoidal inclusions. While we consider the nonlinear coupled problem, to make analytical progress, we work within the small-deformation setting. The specific conditions necessary to obtain a piezoelectric-like response and enhanced electrostriction are highlighted. There are very few universal, microstructure-independent exact results in the theory of composites. We succeed in establishing several such relations in the context of electrets.
NASA Astrophysics Data System (ADS)
Seurer, Bradley
Polyhedral oligomeric silsesquioxanes (POSS) are molecularly precise isotropic particles with average diameters of 1-2 nm. A typical T 8 POSS nanoparticle has an inorganic Si8O12 core surrounded by eight aliphatic or aromatic groups attached to the silicon vertices of the polyhedron promoting solubility in conventional solvents. Previously, efficient synthetic methods have been developed whereby one of the aliphatic groups on the periphery is substituted by a functional group capable of undergoing either homo- or copolymerization. In the current investigations, preparative methods for the chemical incorporation of POSS macromonomers in a series elastomers have been developed. Analysis of the copolymers using WAXD reveals that pendant POSS groups off the polymer backbones aggregate, and can crystallize as nanocrystals. From both line-broadening of the diffraction maxima, and also the oriented diffraction in a drawn material, the individual POSS sub-units are crystallizing as anisotropically shaped crystallites. The formation of POSS particle aggregation is strongly dependent on the nature of the polymeric matrix and the POSS peripheral group. X-ray studies show aggregation of POSS in ethylene-propylene elastomers occurred only with a phenyl periphery, whereas POSS particles with isobutyl and ethyl peripheries disperse within the polymer matrix. By altering the polymer matrix to one containing chain repulsive fluorine units, aggregation is observed with both the phenyl and isobutyl peripheries. Altering the polymer chain to poly(dimethylcyclooctadiene), POSS aggregates with isobutyl, ethyl, cyclopentyl, and phenyl peripheries. The formation of POSS nanocrystals increases the mechanical properties of these novel thermoplastic elastomers, including an increase in the tensile storage modulus and formation of a rubbery plateau region. Tensile tests of these elastomers show an increase in elastic modulus with increasing POSS loading. The elongation at break was as high as 720%. Cyclic tensile test show some hysteresis of the elastomers. However, the curves show Mullins effect behavior, commonly seen in elastomers. Elastomers with POSS dispersion, however, show poor mechanical properties. These results demonstrate the novel material property gains by the incorporation and aggregation of POSS in thermoplastic elastomers, as well as the influence of the POSS periphery.
WATER STABILITY OF FILLED ELASTOMERS,
ELECTRICAL INSULATION, *BUTYL RUBBER , ELASTOMERS, STABILITY, STABILITY, HYDROLYSIS, CURING AGENTS, ADDITIVES, WATER, ABSORPTION, THICKNESS, ELECTRICAL RESISTANCE, LEAKAGE(ELECTRICAL), DIFFUSION, TALC, ELECTRIC CABLES.
Controllable Liquid Artificial Dielectric S-Band Phase Shifters
1975-02-01
RVOS’TAT 114 Ih 1,0. IE F LONT TUBIOG SYSTEM uo Figure 4-1. Flow Sytem Schematic for Ku-Bland Cell 35 investigations of the effects of fMow on permitviity...of the effort spent *a the pb&*-i abithir bIa been deted to this facet of Pbhe fovestignton uslig the sep abm in nFigure 7-10. bumina!tios were made
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Li Qiang, E-mail: guoliqiang@ujs.edu.cn; Ding, Jian Ning; Huang, Yu Kai
2015-08-15
Neuromorphic devices with paired pulse facilitation emulating that of biological synapses are the key to develop artificial neural networks. Here, phosphorus-doped nanogranular SiO{sub 2} electrolyte is used as gate dielectric for protonic/electronic hybrid indium gallium zinc oxide (IGZO) synaptic transistor. In such synaptic transistors, protons within the SiO{sub 2} electrolyte are deemed as neurotransmitters of biological synapses. Paired-pulse facilitation (PPF) behaviors for the analogous information were mimicked. The temperature dependent PPF behaviors were also investigated systematically. The results indicate that the protonic/electronic hybrid IGZO synaptic transistors would be promising candidates for inorganic synapses in artificial neural network applications.
NASA Technical Reports Server (NTRS)
Rieger, A.; Burgess, G.; Zorzi, E.
1980-01-01
An elastomer damper was designed, tested, and compared with the performance of a hydraulic damper for a power transmission shaft. The six button Viton-70 damper was designed so that the elastomer damper or the hydraulic damper could be activated without upsetting the imbalance condition of the assembly. This permitted a direct comparison of damper effectiveness. The elastomer damper consistently performed better than the hydraulic mount and permitted stable operation of the power transmission shaft to speeds higher than obtained with the squeeze film damper. Tests were performed on shear specimens of Viton-79, Buna-N, EPDM, and Neoprene to determine performance limitations imposed by strain, temperature, and frequency. Frequencies of between 110 Hz and 1100 Hz were surveyed with imposed strains between 0.0005 and 0.08 at temperatures of 32 C, 66 C, and 80 C. A set of design curves was generated in a unified format for each of the elastomer materials.
Jeong, Seung Hee; Chen, Si; Huo, Jinxing; Gamstedt, Erik Kristofer; Liu, Johan; Zhang, Shi-Li; Zhang, Zhi-Bin; Hjort, Klas; Wu, Zhigang
2015-01-01
Stretchable electronics and soft robotics have shown unsurpassed features, inheriting remarkable functions from stretchable and soft materials. Electrically conductive and mechanically stretchable materials based on composites have been widely studied for stretchable electronics as electrical conductors using various combinations of materials. However, thermally tunable and stretchable materials, which have high potential in soft and stretchable thermal devices as interface or packaging materials, have not been sufficiently studied. Here, a mechanically stretchable and electrically insulating thermal elastomer composite is demonstrated, which can be easily processed for device fabrication. A liquid alloy is embedded as liquid droplet fillers in an elastomer matrix to achieve softness and stretchability. This new elastomer composite is expected useful to enhance thermal response or efficiency of soft and stretchable thermal devices or systems. The thermal elastomer composites demonstrate advantages such as thermal interface and packaging layers with thermal shrink films in transient and steady-state cases and a stretchable temperature sensor. PMID:26671673
NASA Astrophysics Data System (ADS)
Wang, Qiming; Gossweiler, Gregory R.; Craig, Stephen L.; Zhao, Xuanhe
2014-09-01
Cephalopods can display dazzling patterns of colours by selectively contracting muscles to reversibly activate chromatophores - pigment-containing cells under their skins. Inspired by this novel colouring strategy found in nature, we design an electro-mechano-chemically responsive elastomer system that can exhibit a wide variety of fluorescent patterns under the control of electric fields. We covalently couple a stretchable elastomer with mechanochromic molecules, which emit strong fluorescent signals if sufficiently deformed. We then use electric fields to induce various patterns of large deformation on the elastomer surface, which displays versatile fluorescent patterns including lines, circles and letters on demand. Theoretical models are further constructed to predict the electrically induced fluorescent patterns and to guide the design of this class of elastomers and devices. The material and method open promising avenues for creating flexible devices in soft/wet environments that combine deformation, colorimetric and fluorescent response with topological and chemical changes in response to a single remote signal.
Blended Polyurethane and Tropoelastin as a Novel Class of Biologically Interactive Elastomer
Wise, Steven G.; Liu, Hongjuan; Yeo, Giselle C.; Michael, Praveesuda L.; Chan, Alex H.P.; Ngo, Alan K.Y.; Bilek, Marcela M.M.; Bao, Shisan
2016-01-01
Polyurethanes are versatile elastomers but suffer from biological limitations such as poor control over cell attachment and the associated disadvantages of increased fibrosis. We address this problem by presenting a novel strategy that retains elasticity while modulating biological performance. We describe a new biomaterial that comprises a blend of synthetic and natural elastomers: the biostable polyurethane Elast-Eon and the recombinant human tropoelastin protein. We demonstrate that the hybrid constructs yield a class of coblended elastomers with unique physical properties. Hybrid constructs displayed higher elasticity and linear stress–strain responses over more than threefold strain. The hybrid materials showed increased overall porosity and swelling in comparison to polyurethane alone, facilitating enhanced cellular interactions. In vitro, human dermal fibroblasts showed enhanced proliferation, while in vivo, following subcutaneous implantation in mice, hybrid scaffolds displayed a reduced fibrotic response and tunable degradation rate. To our knowledge, this is the first example of a blend of synthetic and natural elastomers and is a promising approach for generating tailored bioactive scaffolds for tissue repair. PMID:26857114
Highly Stretchable and UV Curable Elastomers for Digital Light Processing Based 3D Printing.
Patel, Dinesh K; Sakhaei, Amir Hosein; Layani, Michael; Zhang, Biao; Ge, Qi; Magdassi, Shlomo
2017-04-01
Stretchable UV-curable (SUV) elastomers can be stretched by up to 1100% and are suitable for digital-light-processing (DLP)-based 3D-printing technology. DLP printing of these SUV elastomers enables the direct creation of highly deformable complex 3D hollow structures such as balloons, soft actuators, grippers, and buckyball electronical switches. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Energy conversion in magneto-rheological elastomers
NASA Astrophysics Data System (ADS)
Sebald, Gael; Nakano, Masami; Lallart, Mickaël; Tian, Tongfei; Diguet, Gildas; Cavaille, Jean-Yves
2017-12-01
Magneto-rheological (MR) elastomers contain micro-/nano-sized ferromagnetic particles dispersed in a soft elastomer matrix, and their rheological properties (storage and loss moduli) exhibit a significant dependence on the application of a magnetic field (namely MR effect). Conversely, it is reported in this work that this multiphysics coupling is associated with an inverse effect (i.e. the dependence of the magnetic properties on mechanical strain), denoted as the pseudo-Villari effect. MR elastomers based on soft and hard silicone rubber matrices and carbonyl iron particles were fabricated and characterized. The pseudo-Villari effect was experimentally quantified: a shear strain of 50 % induces magnetic induction field variations up to 10 mT on anisotropic MR elastomer samples, when placed in a 0.2 T applied field, which might theoretically lead to potential energy conversion density in the mJ cm-3 order of magnitude. In case of anisotropic MR elastomers, the absolute variation of stiffness as a function of applied magnetic field is rather independent of matrix properties. Similarly, the pseudo-Villari effect is found to be independent to the stiffness, thus broadening the adaptability of the materials to sensing and energy harvesting target applications. The potential of the pseudo-Villari effect for energy harvesting applications is finally briefly discussed.
NASA Technical Reports Server (NTRS)
Chiang, T.; Tessarzik, J. M.; Badgley, R. H.
1972-01-01
The primary aim of this investigation was verification of basic methods which are to be used in cataloging elastomer dynamic properties (stiffness and damping) in terms of viscoelastic model constants. These constants may then be used to predict dynamic properties for general elastomer shapes and operating conditions, thereby permitting optimum application of elastomers as energy absorption and/or energy storage devices in the control of vibrations in a broad variety of applications. The efforts reported involved: (1) literature search; (2) the design, fabrication and use of a test rig for obtaining elastomer dynamic test data over a wide range of frequencies, amplitudes, and preloads; and (3) the reduction of the test data, by means of a selected three-element elastomer model and specialized curve fitting techniques, to material properties. Material constants thus obtained have been used to calculate stiffness and damping for comparison with measured test data. These comparisons are excellent for a number of test conditions and only fair to poor for others. The results confirm the validity of the basic approach of the overall program and the mechanics of the cataloging procedure, and at the same time suggest areas in which refinements should be made.
Energy conversion in magneto-rheological elastomers
Sebald, Gael; Nakano, Masami; Lallart, Mickaël; Tian, Tongfei; Diguet, Gildas; Cavaille, Jean-Yves
2017-01-01
Abstract Magneto-rheological (MR) elastomers contain micro-/nano-sized ferromagnetic particles dispersed in a soft elastomer matrix, and their rheological properties (storage and loss moduli) exhibit a significant dependence on the application of a magnetic field (namely MR effect). Conversely, it is reported in this work that this multiphysics coupling is associated with an inverse effect (i.e. the dependence of the magnetic properties on mechanical strain), denoted as the pseudo-Villari effect. MR elastomers based on soft and hard silicone rubber matrices and carbonyl iron particles were fabricated and characterized. The pseudo-Villari effect was experimentally quantified: a shear strain of 50 % induces magnetic induction field variations up to 10 mT on anisotropic MR elastomer samples, when placed in a 0.2 T applied field, which might theoretically lead to potential energy conversion density in the mJ cm-3 order of magnitude. In case of anisotropic MR elastomers, the absolute variation of stiffness as a function of applied magnetic field is rather independent of matrix properties. Similarly, the pseudo-Villari effect is found to be independent to the stiffness, thus broadening the adaptability of the materials to sensing and energy harvesting target applications. The potential of the pseudo-Villari effect for energy harvesting applications is finally briefly discussed. PMID:29152013
Thermal Degradation Studies of Polyurethane/POSS Nanohybrid Elastomers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewicki, J P; Pielichowski, K; TremblotDeLaCroix, P
2010-03-05
Reported here is the synthesis of a series of Polyurethane/POSS nanohybrid elastomers, the characterization of their thermal stability and degradation behavior at elevated temperatures using a combination of Thermal Gravimetric Analysis (TGA) and Thermal Volatilization Analysis (TVA). A series of PU elastomers systems have been formulated incorporating varying levels of 1,2-propanediol-heptaisobutyl-POSS (PHIPOSS) as a chain extender unit, replacing butane diol. The bulk thermal stability of the nanohybrid systems has been characterized using TGA. Results indicate that covalent incorporation of POSS into the PU elastomer network increase the non-oxidative thermal stability of the systems. TVA analysis of the thermal degradation ofmore » the POSS/PU hybrid elastomers have demonstrated that the hybrid systems are indeed more thermally stable when compared to the unmodified PU matrix; evolving significantly reduced levels of volatile degradation products and exhibiting a {approx}30 C increase in onset degradation temperature. Furthermore, characterization of the distribution of degradation products from both unmodified and hybrid systems indicate that the inclusion of POSS in the PU network is directly influencing the degradation pathways of both the soft and hard block components of the elastomers: The POSS/PU hybrid systems show reduced levels of CO, CO2, water and increased levels of THF as products of thermal degradation.« less
Fluoridated elastomers: effect on the microbiology of plaque.
Benson, Philip E; Douglas, C W Ian; Martin, Michael V
2004-09-01
The objective of this study was to investigate the effect of fluoridated elastomeric ligatures on the microbiology of local dental plaque in vivo. This randomized, prospective, longitudinal, clinical trial had a split-mouth crossover design. The subjects were 30 patients at the beginning of their treatment with fixed orthodontic appliances in the orthodontic departments of the Liverpool and the Sheffield dental hospitals in the United Kingdom. The study consisted of 2 experimental periods of 6 weeks with a washout period between. Fluoridated elastomers were randomly allocated at the first visit to be placed around brackets on tooth numbers 12, 11, 33 or 22, 21, 43. Nonfluoridated elastomers were placed on the contralateral teeth. Standard nonantibacterial fluoridated toothpaste and mouthwash were supplied. After 6 weeks (visit 2), the elastomers were removed, placed in transport media, and plated on agar within 2 hours. Nonfluoridated elastomers were placed on all brackets for 1 visit to allow for a washout period. At visit 3, fluoridated elastomers were placed on the teeth contralateral to those that received them at visit 1. At visit 4, the procedures at visit 2 were repeated. Samples were collected on visits 2 and 4. A logistic regression was performed, with the presence or absence of streptococcal or anaerobic growth as the dependent variable. A mixed-effects analysis of variance was carried out with the percentage of streptococcal or anaerobic bacterial count as the dependent variable. The only significant independent variables were the subject variable (P =<.001) for the percentage of streptococcal and anaerobic bacterial count and the visit variable for the percentage of streptococcal count (P =<.001). The use of fluoridated or nonfluoridated elastomers was not significant for percentage of either streptococcal (P =.288) or anaerobic count (P =.230). Fluoridated elastomers are not effective at reducing local streptococcal or anaerobic bacterial growth after a clinically relevant time in the mouth.
NASA Astrophysics Data System (ADS)
Jahani, Saman; Jacob, Zubin
2016-01-01
The ideal material for nanophotonic applications will have a large refractive index at optical frequencies, respond to both the electric and magnetic fields of light, support large optical chirality and anisotropy, confine and guide light at the nanoscale, and be able to modify the phase and amplitude of incoming radiation in a fraction of a wavelength. Artificial electromagnetic media, or metamaterials, based on metallic or polar dielectric nanostructures can provide many of these properties by coupling light to free electrons (plasmons) or phonons (phonon polaritons), respectively, but at the inevitable cost of significant energy dissipation and reduced device efficiency. Recently, however, there has been a shift in the approach to nanophotonics. Low-loss electromagnetic responses covering all four quadrants of possible permittivities and permeabilities have been achieved using completely transparent and high-refractive-index dielectric building blocks. Moreover, an emerging class of all-dielectric metamaterials consisting of anisotropic crystals has been shown to support large refractive index contrast between orthogonal polarizations of light. These advances have revived the exciting prospect of integrating exotic electromagnetic effects in practical photonic devices, to achieve, for example, ultrathin and efficient optical elements, and realize the long-standing goal of subdiffraction confinement and guiding of light without metals. In this Review, we present a broad outline of the whole range of electromagnetic effects observed using all-dielectric metamaterials: high-refractive-index nanoresonators, metasurfaces, zero-index metamaterials and anisotropic metamaterials. Finally, we discuss current challenges and future goals for the field at the intersection with quantum, thermal and silicon photonics, as well as biomimetic metasurfaces.
NASA Astrophysics Data System (ADS)
Jafari, Fereshteh Sadat; Ahmadi-Shokouh, Javad
2018-02-01
A frequency-selective surface (FSS) structure is proposed for characterization of the permittivity of industrial oil using a transmission/reflection (TR) measurement scheme in the X-band. Moreover, a parameter study is presented to distinguish the dielectric constant and loss characteristics of test materials. To model the loss empirically, we used CuO nanoparticles artificially mixed with an industrial oil. In this study, the resonant frequency of the FSS is the basic parameter used to determine the material characteristics, including resonance properties such as the magnitude of transmission ( S 21), bandwidth, and frequency shift. The results reveal that the proposed FSS structure and setup can act well as a sensor for characterization of the dielectric properties of industrial oil.
Dielectric coagulometry: a new approach to estimate venous thrombosis risk.
Hayashi, Yoshihito; Katsumoto, Yoichi; Omori, Shinji; Yasuda, Akio; Asami, Koji; Kaibara, Makoto; Uchimura, Isao
2010-12-01
We present dielectric coagulometry as a new technique to estimate the risk of venous thrombosis by measuring the permittivity change associated with the blood coagulation process. The method was first tested for a simple system of animal erythrocytes suspended in fibrinogen solution, where the coagulation rate was controlled by changing the amount of thrombin added to the suspension. Second, the method was applied to a more realistic system of human whole blood, and the inherent coagulation process was monitored without artificial acceleration by a coagulation initiator. The time dependence of the permittivity at a frequency around 1 MHz showed a distinct peak at a time that corresponds to the clotting time. Our theoretical modeling revealed that the evolution of heterogeneity and the sedimentation in the system cause the peak of the permittivity.
3D printing antagonistic systems of artificial muscle using projection stereolithography.
Peele, Bryan N; Wallin, Thomas J; Zhao, Huichan; Shepherd, Robert F
2015-09-09
The detailed mechanical design of a digital mask projection stereolithgraphy system is described for the 3D printing of soft actuators. A commercially available, photopolymerizable elastomeric material is identified and characterized in its liquid and solid form using rheological and tensile testing. Its capabilities for use in directly printing high degree of freedom (DOF), soft actuators is assessed. An outcome is the ∼40% strain to failure of the printed elastomer structures. Using the resulting material properties, numerical simulations of pleated actuator architectures are analyzed to reduce stress concentration and increase actuation amplitudes. Antagonistic pairs of pleated actuators are then fabricated and tested for four-DOF, tentacle-like motion. These antagonistic pairs are shown to sweep through their full range of motion (∼180°) with a period of less than 70 ms.
NITRILE ELASTOMER-NYLON LAMINATES INCLUDING BARRIER FILMS.
ADHESIVES, *NYLON, *NITRILE RUBBER , LAMINATES, LAMINATES, FILMS, TEXTILES, RUBBER COATINGS, BUTADIENES, ACRYLONITRILE POLYMERS, BONDING, ADHESION... DEGRADATION , MOISTUREPROOFING, PHENOLIC PLASTICS, HALOGENATED HYDROCARBONS, ISOCYANATES, CURING AGENTS, ELASTOMERS.
NASA Astrophysics Data System (ADS)
Gao, Lingxiang; Zhao, Xiaopeng
The aqueous ER elastomers, containing crude organic starch particles which dispersed in gelatin/glycerin/water matrix, were prepared with or without the applied DC electric field. The responses of the composite systems to the electric field were tested by the compression modulus and resistance of the elastomers. The result shows that they are enhanced and controlled evidently under an applied DC electric field. The strongest responses appear at 25% weight fraction of starch. In addition, the increment modulus of the elastomer increases with the strength of the applied field within 0.5~1.5 kV/mm, while after the field is stronger than 1.5 kV/mm it doesn't increase with field, appearing "saturation".
Long-term aging of elastomers: Chemical stress relaxation of fluorosilicone rubber and other studies
NASA Technical Reports Server (NTRS)
Kalfayan, S. H.; Mazzeo, A. A.; Silver, R. H.
1971-01-01
Aerospace applications of elastomers are considered, including: propellant binders, bladder materials for liquid propellant expulsion systems, and fuel tank sealants for high-speed aircraft. A comprehensive molecular theory for mechanical properties of these materials has been developed but has only been tested experimentally in cases where chemical degradation processes are excluded. Hence, a study is being conducted to ascertain the nature, extent, and rate of chemical changes that take place in some elastomers of interest. Chemical changes that may take place in the fluorosilicone elastomer, LS 420, which is regarded as a fuel and high-temperature-resistant rubber are investigated. The kinetic analysis of the chemical stress relaxation and gel permeation chromatography studies comprise the major portion of the report.
Development of energy-harvesting system using deformation of magnetic elastomer
NASA Astrophysics Data System (ADS)
Shinoda, Hayato; Tsumori, Fujio
2018-06-01
In this paper, we propose a power generation method using the deformation of a magnetic elastomer for vibration energy harvesting. The magnetic flux lines in the structure of the magnetic elastomer could be markedly changed if the properly designed structure was expanded and contracted in a static magnetic field. We set a coil on the magnetic elastomer to generate electricity by capturing this change in magnetic flux flow. We fabricated a centimeter-scale device and demonstrated that it generated 10.5 mV of maximum voltage by 10 Hz vibration. We also simulated the change in the magnetic flux flow using finite element analysis, and compared the result with the experimental data. Furthermore, we evaluated the power generation of a miniaturized device.
Toxicity of Pyrolysis Gases from Elastomers
NASA Technical Reports Server (NTRS)
Hilado, Carlos J.; Kosola, Kay L.; Solis, Alida N.; Kourtides, Demetrius A.; Parker, John A.
1977-01-01
The toxicity of the pyrolysis gases from six elastomers was investigated. The elastomers were polyisoprene (natural rubber), styrene-butadiene rubber (SBR), ethylene propylene diene terpolymer (EPDM), acrylonitrile rubber, chlorosulfonated polyethylene rubber, and polychloroprene. The rising temperature and fixed temperature programs produced exactly the same rank order of materials based on time to death. Acryltonitrile rubber exhibited the greatest toxicity under these test conditions; carbon monoxide was not found in sufficient concentrations to be the primary cause of death.
2015-06-01
10. Vanderbilt RT. The Vanderbilt rubber handbook . Babbit RO, editor. Norwalk (CT): RT Vanderbilt Company; 1990. 11. Loo CT. High temperature...Elastomers for Tracked Vehicles: 1980–1997 Program to Improve Durability of Rubber Tank Pads for Army Tracked Vehicles by David P Flanagan...Proving Ground, MD 21005-5069 ARL-TR-7331 June 2015 Elastomers for Tracked Vehicles: 1980–1997 Program to Improve Durability of Rubber
Nonlinear viscoelastic response of highly filled elastomers under multiaxial finite deformation
NASA Technical Reports Server (NTRS)
Peng, Steven T. J.; Landel, Robert F.
1990-01-01
A biaxial tester was used to obtain precise biaxial stress responses of highly filled, high strain capability elastomers. Stress-relaxation experiments show that the time-dependent part of the relaxation response can be reasonably approximated by a function which is strain and biaxiality independent. Thus, isochronal data from the stress-relaxation curves can be used to determine the stored energy density function. The complex behavior of the elastomers under biaxial deformation may be caused by dewetting.
NASA Technical Reports Server (NTRS)
Sottos, Nancy R. (Inventor); Keller, Michael W. (Inventor); White, Scott R. (Inventor)
2009-01-01
A composite material includes an elastomer matrix, a set of first capsules containing a polymerizer, and a set of second capsules containing a corresponding activator for the polymerizer. The polymerizer may be a polymerizer for an elastomer. The composite material may be prepared by combining a first set of capsules containing a polymerizer, a second set of capsules containing a corresponding activator for the polymerizer, and a matrix precursor, and then solidifying the matrix precursor to form an elastomeric matrix.
Deformable silicone grating fabricated with a photo-imprinted polymer mold
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamada, Itsunari, E-mail: yamada.i@e.usp.ac.jp; Nishii, Junji; Saito, Mitsunori
A tunable transmission grating was fabricated by molding a silicone elastomer (polydimethylsiloxane). Its optical characteristics were then evaluated during compression. For fabrication, a glass plate with a photoimprinted polymer grating film was used as a mold. Both the grating period and diffraction transmittance of the molded elastomer were functions of the compressive stress. The grating period changed from 3.02 to 2.86 μm during compressing the elastomer in the direction perpendicular to the grooves.
Molecular Dynamics and Morphology of High Performance Elastomers and Fibers by Solid State NMR
2016-06-30
Distribution Unlimited UU UU UU UU 30-06-2016 1-Sep-2015 31-May-2016 Final Report: Molecular Dynamics and Morphology of High - Performance Elastomers and...non peer-reviewed journals: Final Report: Molecular Dynamics and Morphology of High -Performance Elastomers and Fibers by Solid-State NMR Report Title...Kanbargi 0.50 0.50 1 PERCENT_SUPPORTEDNAME FTE Equivalent: Total Number: Sub Contractors (DD882) Names of Faculty Supported Names of Under Graduate
Localized soft elasticity in liquid crystal elastomers (POSTPRINT)
2016-02-23
AFRL-RX-WP-JA-2016-0280 LOCALIZED SOFT ELASTICITY IN LIQUID CRYSTAL ELASTOMER (POSTPRINT) Taylor H. Ware, Andreas F. Shick, and...MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To) 11 August 2015 Interim 31 January 2014 – 11 July 2015 4. TITLE AND SUBTITLE LOCALIZED SOFT ...2016 Localized soft elasticity in liquid crystal elastomers Taylor H. Ware1,2, John S. Biggins3, Andreas F. Shick1, Mark Warner3 & Timothy J. White1
Mechanical Behavior and Fatigue Studies of Rubber Components in Army Tracked Vehicles
2010-08-13
strategy moved to glassy polymers (Bouvard et al., 2010) – Current efforts to apply ISV modeling strategy to elastomers • Fatigue approach – Researchers...metals at CAVS – Researchers have typically only investigated long crack for elastomers (Mars and Fatemi, 2003; Busfield et al., 2002; Chou et al...2007) – Current efforts are to add MSC/PSC, INC to fatigue modeling of elastomers and incorporate microstructure 13 August 2010 2 Overview 8/13/2010 3
NASA Astrophysics Data System (ADS)
Zhou, Jianyou; Jiang, Liying; Khayat, Roger E.
2018-01-01
Elastomers are known to exhibit viscoelastic behavior under deformation, which is linked to the diffusion processes of the highly mobile and flexible polymer chains. Inspired by the theories of polymer dynamics, a micro-macro constitutive model is developed to study the viscoelastic behaviors and the relaxation process of elastomeric materials under large deformation, in which the material parameters all have a microscopic foundation or a microstructural justification. The proposed model incorporates the nonlinear material viscosity into the continuum finite-deformation viscoelasticity theories which represent the polymer networks of elastomers with an elastic ground network and a few viscous subnetworks. The developed modeling framework is capable of adopting most of strain energy density functions for hyperelastic materials and thermodynamics evolution laws of viscoelastic solids. The modeling capacity of the framework is outlined by comparing the simulation results with the experimental data of three commonly used elastomeric materials, namely, VHB4910, HNBR50 and carbon black (CB) filled elastomers. The comparison shows that the stress responses and some typical behaviors of filled and unfilled elastomers can be quantitatively predicted by the model with suitable strain energy density functions. Particularly, the strain-softening effect of elastomers could be explained by the deformation-dependent (nonlinear) viscosity of the polymer chains. The presented modeling framework is expected to be useful as a modeling platform for further study on the performance of different type of elastomeric materials.
Rubber contact mechanics: adhesion, friction and leakage of seals.
Tiwari, A; Dorogin, L; Tahir, M; Stöckelhuber, K W; Heinrich, G; Espallargas, N; Persson, B N J
2017-12-13
We study the adhesion, friction and leak rate of seals for four different elastomers: Acrylonitrile Butadiene Rubber (NBR), Ethylene Propylene Diene (EPDM), Polyepichlorohydrin (GECO) and Polydimethylsiloxane (PDMS). Adhesion between smooth clean glass balls and all the elastomers is studied both in the dry state and in water. In water, adhesion is observed for the NBR and PDMS elastomers, but not for the EPDM and GECO elastomers, which we attribute to the differences in surface energy and dewetting. The leakage of water is studied with rubber square-ring seals squeezed against sandblasted glass surfaces. Here we observe a strongly non-linear dependence of the leak rate on the water pressure ΔP for the elastomers exhibiting adhesion in water, while the leak rate depends nearly linearly on ΔP for the other elastomers. We attribute the non-linearity to some adhesion-related phenomena, such as dewetting or the (time-dependent) formation of gas bubbles, which blocks fluid flow channels. Finally, rubber friction is studied at low sliding speeds using smooth glass and sandblasted glass as substrates, both in the dry state and in water. The measured friction coefficients are compared to theory, and the origin of the frictional shear stress acting in the area of real contact is discussed. The NBR rubber, which exhibits the strongest adhesion both in the dry state and in water, also shows the highest friction both in the dry state and in water.
Toughening elastomers with sacrificial bonds and watching them break
NASA Astrophysics Data System (ADS)
Creton, Costantino
2014-03-01
Most unfilled elastomers are relatively brittle, in particular when the average molecular weight between crosslinks is lower than the average molecular weight between entanglements. We created a new class of tough elastomers by introducing isotropically prestretched chains inside ordinary acrylic elastomers by successive swelling and polymerization steps. These new materials combine a high entanglement density with a densely crosslinked structure reaching elastic moduli of 4 MPa and fracture strength of 25 MPa. The highly prestretched chains are the minority in the material and can break in the bulk of the material before catastrophic failure occurs, increasing the toughness of the material by two orders of magnitude up to 5 kJ/m2. To investigate the details of the toughening mechanism we introduced specific sacrificial dioxetane bonds in the prestretched chains that emit light when they break. In uniaxial extension cyclic experiments, we checked that the light emission corresponded exactly and quantitatively to the energy dissipation in each cycle demonstrating that short chains break first and long chains later. We then watched crack propagation in notched samples and mapped spatially the location of bond breakage ahead of the crack tip before and during propagation. This new toughening mechanism for elastomers creates superentangled rubbers and is ideally suited to overcome the trade-off between toughness and stiffness of ordinary elastomers. We gratefully acknowledge funding from DSM Ahead
Contact lines on silicone elastomers promote contamination
NASA Astrophysics Data System (ADS)
Hourlier-Fargette, Aurelie; Antkowiak, Arnaud; Neukirch, Sebastien
2017-11-01
Silicone elastomers are used in contact with aqueous liquids in a large range of applications. Due to numerous advantages such as its flexibility, optical transparency, or gas permeability, polydimethylsiloxane is widely spread in rapid prototyping for microfluidics or elastocapillarity experiments. However, silicone elastomers are known to contain a small fraction of uncrosslinked low-molecular-weight oligomers, the effects of which are not completely understood. We show that in various setups involving an air-water-silicone elastomer contact line, a capillarity-induced extraction of uncrosslinked oligomers occurs, leading to a contamination of water-air interfaces. We investigate the case of a static air-water-PDMS contact line, before focusing on moving contact lines. A water droplet sliding down on a PDMS inclined plane or an air bubble rising on an immersed PDMS plane exhibits two successive speed regimes: the second regime is reached only when a monolayer of oligomers completely covers the water-air interface. These experiments involve processes occurring at the polymer network scale that have significant macroscopic consequences, and therefore provide a simple test to evaluate the presence of uncrosslinked oligomers in an elastomer sample.
Patterning nonisometric origami in nematic elastomer sheets
NASA Astrophysics Data System (ADS)
Plucinsky, Paul; Kowalski, Benjamin A.; White, Timothy J.; Bhattacharya, Kaushik
Nematic elastomers dramatically change their shape in response to diverse stimuli including light and heat. In this paper, we provide a systematic framework for the design of complex three dimensional shapes through the actuation of heterogeneously patterned nematic elastomer sheets. These sheets are composed of \\textit{nonisometric origami} building blocks which, when appropriately linked together, can actuate into a diverse array of three dimensional faceted shapes. We demonstrate both theoretically and experimentally that: 1) the nonisometric origami building blocks actuate in the predicted manner, 2) the integration of multiple building blocks leads to complex multi-stable, yet predictable, shapes, 3) we can bias the actuation experimentally to obtain a desired complex shape amongst the multi-stable shapes. We then show that this experimentally realized functionality enables a rich possible design landscape for actuation using nematic elastomers. We highlight this landscape through theoretical examples, which utilize large arrays of these building blocks to realize a desired three dimensional origami shape. In combination, these results amount to an engineering design principle, which we hope will provide a template for the application of nematic elastomers to emerging technologies.
Citric-Acid-Derived Photo-cross-Linked Biodegradable Elastomers
Gyawali, Dipendra; Tran, Richard T.; Guleserian, Kristine J.; Tang, Liping; Yang, Jian
2010-01-01
Citric-acid-derived thermally cross-linked biodegradable elastomers (CABEs) have recently received significant attention in various biomedical applications, including tissue-engineering orthopedic devices, bioimaging and implant coatings. However, citric-acid-derived photo-cross-linked biodegradable elastomers are rarely reported. Herein, we report a novel photo-cross-linked biodegradable elastomer, referred to as poly(octamethylene maleate citrate) (POMC), which preserves pendant hydroxyl and carboxylic functionalities after cross-linking for the potential conjugation of biologically active molecules. POMC is a low-molecular-mass pre-polymer with a molecular mass average between 701 and 1291 Da. POMC networks are soft and elastic with an initial modulus of 0.07 to 1.3 MPa and an elongation at break between 38 and 382%. FT-IR–ATR results confirmed the successful surface immobilization of type-I collagen onto POMC films, which enhanced in vitro cellular attachment and proliferation. Photo-polymerized POMC films implanted subcutaneously into Sprague–Dawley rats demonstrated minimal in vivo inflammatory responses. The development of POMC enriches the family of citric-acid-derived biodegradable elastomers and expands the available biodegradable polymers for versatile needs in biomedical applications. PMID:20557687
Life prediction of expulsion bladders through fatigue test and fold strain analysis
NASA Technical Reports Server (NTRS)
Chu, H. N.; Unterberg, W.
1972-01-01
Cycle life data are presented in terms of true maximum strain for four metals, two plastics, and two elastomers. The Coffin-Manson fatigue theory was applied for metals and plastics, and cut-growth fatigue theory for elastomers. The data are based on measurements made at room and elevated temperatures. It was found that double folds give rise to far severer folding strains than do simple folds. It was also found that, except for the elastomers, all the bladder materials develop surface cracks due to double folds after only one cycle. The findings indicate that metals, which are bets for premeation resistance, are worst for fatigue resistance, and vice versa for elastomers. The intermediate plastics were found to be unsatisfactory for both permeation and fatigue resistance for missions of extended duration.
Shivapooja, Phanindhar; Yu, Qian; Orihuela, Beatriz; Mays, Robin; Rittschof, Daniel; Genzer, Jan; López, Gabriel P
2015-11-25
We present a method for dual-mode-management of biofouling by modifying surface of silicone elastomers with zwitterionic polymeric grafts. Poly(sulfobetaine methacrylate) was grafted from poly(vinylmethylsiloxane) elastomer substrates using thiol-ene click chemistry and surface-initiated, controlled radical polymerization. These surfaces exhibited both fouling resistance and triggered fouling-release functionality. The zwitterionic polymers exhibited fouling resistance over short-term (∼hours) exposure to bacteria and barnacle cyprids. The biofilms that eventually accumulated over prolonged-exposure (∼days) were easily detached by applying mechanical strain to the elastomer substrate. Such dual-functional surfaces may be useful in developing environmentally and biologically friendly coatings for biofouling management on marine, industrial, and biomedical equipment because they can obviate the use of toxic compounds.
Photonic gaps in cholesteric elastomers under deformation
NASA Astrophysics Data System (ADS)
Cicuta, P.; Tajbakhsh, A. R.; Terentjev, E. M.
2004-07-01
Cholesteric liquid crystal elastomers have interesting and potentially very useful photonic properties. In an ideal monodomain configuration of these materials, one finds a Bragg reflection of light in a narrow wavelength range and a particular circular polarization. This is due to the periodic structure of the material along one dimension. In many practical cases, the cholesteric rubber possesses a sufficient degree of quenched disorder, which makes the selective reflection broadband. We investigate experimentally the problem of how the transmittance of light is affected by mechanical deformation of the elastomer, and the relation to changes in liquid crystalline structure. We explore a series of samples which have been synthesized with photonic stop gaps across the visible range. This allows us to compare results with detailed theoretical predictions regarding the evolution of stop gaps in cholesteric elastomers.
NASA Astrophysics Data System (ADS)
Bochmann, Helge; von Heckel, Benedikt; Maas, Jürgen
2017-04-01
Transducers made of dielectric elastomers (DE) offer versatile opportunities for many different applications. To gain large strains and forces a multilayer topology is commonly used. DE stack-transducers represent one multilayer topology and can be operated as a sensor, a generator or an actuator simultaneously. They are made of many layers of DE films, like silicone (PDMS) and polyurethane (PUR), stacked on top of each other. The single layers are several micrometers thin and coated with a compliant electrode on both sides. Depending on the application a DE transducer has to withstand tensile forces, which may lead to a delamination of the layers and a ripping of the stack-transducer. This can be prevented by enhancing the adhesion among the layers. Within this contribution a surface plasma jet treatment with an atmospheric plasma beam as well as an adhesive utilized as electrode material was investigated to obtain an adhesion enhancement. The effects of these methods to enhance the adhesion are introduced briefly. Furthermore, various investigations were made to determine the benefits of the enhancement methods with respect to the electromechanical properties of the electrode. Therefore, certain tests regarding the surface resistance of the electrode and the dielectric breakdown strength (DBS) of the DE film were conducted. The tests indicate that the influences are strongly dependent on the composition of the electrode and the used DE material. Finally, improvements for a dry deposition roll-to-sheet manufacturing process for DE stack-transducers are derived from the obtained results.
Polyimide Film of Increased Tear Strength
NASA Technical Reports Server (NTRS)
St. Clair, A. K.; Hinkley, J. A.; Ezzell, S. A.
1986-01-01
High-temperature linear aromatic polyimide with improved resistance to tearing made by new process that incorporates elastomer into polyimide. Linear aromatic condensation polyimides are materials of prime choice for use as films and coatings on advanced spacecraft and aircraft where durability at temperatures in range of 200 to 300 degree C required. Elastomer-containing polyimide film with improved toughness proves useful for applications where resistance to tearing and long-term thermal stability necessary. Desired resistance to tearing achieved by careful control of amount and chemical composition of added elastomer.
The Design, Development, and Evaluation of a Differential Pressure Gauge Directional Wave Monitor.
1982-10-01
Figure III-4). The isolation diaphragms are made of 13 mil DuPont Fairprene elastomer mounted on an acrylic housing. Fairpreneo is a durable nylon...material, coated with neoprene, that is flexible perpendicular to the plane of the fabric. The elastomer is sealed to its acrylic housing 4 by a 90-10...copper-nickel alloy ring. The 90-10 alloy was picked for its anti-fouling properties. Bio-fouling across the diaphragm ring could puncture the elastomer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kass, Michael D; Pawel, Steven J; Theiss, Timothy J
In 2008 Oak Ridge National Laboratory began a series of experiments to evaluate the compatibility of fueling infrastructure materials with intermediate levels of ethanol-blended gasoline. Initially, the focus was elastomers, metals, and sealants, and the test fuels were Fuel C, CE10a, CE17a and CE25a. The results of these studies were published in 2010. Follow-on studies were performed with an emphasis on plastic (thermoplastic and thermoset) materials used in underground storage and dispenser systems. These materials were exposed to test fuels of Fuel C and CE25a. Upon completion of this effort, it was felt that additional compatibility data with higher ethanolmore » blends was needed and another round of experimentation was performed on elastomers, metals, and plastics with CE50a and CE85a test fuels. Compatibility of polymers typically relates to the solubility of the solid polymer with a solvent. It can also mean susceptibility to chemical attack, but the polymers and test fuels evaluated in this study are not considered to be chemically reactive with each other. Solubility in polymers is typically assessed by measuring the volume swell of the polymer exposed to the solvent of interest. Elastomers are a class of polymers that are predominantly used as seals, and most o-ring and seal manufacturers provide compatibility tables of their products with various solvents including ethanol, toluene, and isooctane, which are components of aggressive oxygenated gasoline as described by the Society of Automotive Engineers (SAE) J1681. These tables include a ranking based on the level of volume swell in the elastomer associated with exposure to a particular solvent. Swell is usually accompanied by a decrease in hardness (softening) that also affects performance. For seal applications, shrinkage of the elastomer upon drying is also a critical parameter since a contraction of volume can conceivably enable leakage to occur. Shrinkage is also indicative of the removal of one or more components of the elastomers (by the solvent). This extraction of additives can negatively change the properties of the elastomer, leading to reduced performance and durability. For a seal application, some level of volume swell is acceptable, since the expansion will serve to maintain a seal. However, the acceptable level of swell is dependent on the particular application of the elastomer product. It is known that excessive swell can lead to unacceptable extrusion of the elastomer beyond the sealed interface, where it becomes susceptible to damage. Also, since high swell is indicative of high solubility, there is a heightened potential for fluid to seep through the seal and into the environment. Plastics, on the other hand, are used primarily in structural applications, such as solid components, including piping and fluid containment. Volume change, especially in a rigid system, will create internal stresses that may negatively affect performance. In order to better understand and predict the compatibility for a given polymer type and fuel composition, an analysis based on Hansen solubility theory was performed for each plastic and elastomer material. From this study, the solubility distance was calculated for each polymer material and test fuel combination. Using the calculated solubility distance, the ethanol concentration associated with peak swell and overall extent of swell can be predicted for each polymer. The bulk of the material discussion centers on the plastic materials, and their compatibility with Fuel C, CE25a, CE50a, and CE85a. The next section of this paper focuses on the elastomer compatibility with the higher ethanol concentrations with comparison to results obtained previously for the lower ethanol levels. The elastomers were identical to those used in the earlier study. Hansen solubility theory is also applied to the elastomers to provide added interpretation of the results. The final section summarizes the performance of the metal coupons.« less
(HEL MRI) 3D Meta Optics for High Energy Lasers
2016-09-13
based metal-oxide nano- hair structures for optical vortex generation," Opt. Express 23, 19056-19065 (2015) 15. Li, Yuan, Zeyu Zhang, Wenzhe Li, Jerome...Indumathi Raghu Srimathi, Aaron J. Pung, Yuan Li, Raymond C. Rumpf, and Eric G. Johnson, "Fabrication of metal-oxide nano- hairs for effective index...Grating Based Optical Nano- Hairs Using ALD Nano- Patterning Subwavelength gratings (SWGs) based artificial dielectric elements are used to obtain the
NASA Astrophysics Data System (ADS)
Lei, Xinrui; Mao, Lei; Lu, Yonghua; Wang, Pei
2017-07-01
Here, we present a comprehensive analysis of the effective medium approximation (EMA) breakdown in all-dielectric deep-subwavelength multilayers made of alternating layers by means of the transfer matrix method. We demonstrated that the approximation is invalid at the vicinity of the effective medium's critical angle for total internal reflection and obtained an analytical criterion for the breakdown of the EMA, which depends on the layer thickness, the incident angle, and the permittivity difference between the alternate layers. We rebuilt the EMA by adding higher-order correction onto the traditional effective permittivity. Furthermore, we found that the EMA breakdown that arises from the boundary effect cannot be repaired in the traditional homogenization strategy with only one layer of effective medium. By adding an artificial matched layer after the conventional effective layer, the boundary effect breakdown was neatly removed.
Graphene and water-based elastomers thin-film composites by dip-moulding.
Iliut, Maria; Silva, Claudio; Herrick, Scott; McGlothlin, Mark; Vijayaraghavan, Aravind
2016-09-01
Thin-film elastomers (elastic polymers) have a number of technologically significant applications ranging from sportswear to medical devices. In this work, we demonstrate that graphene can be used to reinforce 20 micron thin elastomer films, resulting in over 50% increase in elastic modulus at a very low loading of 0.1 wt%, while also increasing the elongation to failure. This loading is below the percolation threshold for electrical conductivity. We demonstrate composites with both graphene oxide and reduced graphene oxide, the reduction being undertaken in-situ or ex-situ using a biocompatible reducing agent in ascorbic acid. The ultrathin films were cast by dip moulding. The transparency of the elastomer films allows us to use optical microscopy image and confirm the uniform distribution as well as the conformation of the graphene flakes within the composite.
Poly (ricinoleic acid) based novel thermosetting elastomer.
Ebata, Hiroki; Yasuda, Mayumi; Toshima, Kazunobu; Matsumura, Shuichi
2008-01-01
A novel bio-based thermosetting elastomer was prepared by the lipase-catalyzed polymerization of methyl ricinoleate with subsequent vulcanization. Some mechanical properties of the cured carbon black-filled polyricinoleate compounds were evaluated as a thermosetting elastomer. It was found that the carbon black-filled polyricinoleate compounds were readily cured by sulfur curatives to produce a thermosetting elastomer that formed a rubber-like sheet with a smooth and non-sticky surface. The curing behaviors and mechanical properties were dependent on both the molecular weight of the polyricinoleate and the amount of the sulfur curatives. Cured compounds consisting of polyricinoleate with a molecular weight of 100,800 showed good mechanical properties, such as a hardness of 48 A based on the durometer A measurements, a tensile strength at break of 6.91 MPa and an elongation at break of 350%.
Comparison of batch and column tests for the elution of artificial turf system components.
Krüger, O; Kalbe, U; Berger, W; Nordhauβ, K; Christoph, G; Walzel, H-P
2012-12-18
Synthetic athletic tracks and turf areas for outdoor sporting grounds may release contaminants due to the chemical composition of some components. A primary example is that of zinc from reused scrap tires (main constituent, styrene butadiene rubber, SBR), which might be harmful to the environment. Thus, methods for the risk assessment of those materials are required. Laboratory leaching methods like batch and column tests are widely used to examine the soil-groundwater pathway. We tested several components for artificial sporting grounds with batch tests at a liquid to solid (LS) ratio of 2 L/kg and column tests with an LS up to 26.5 L/kg. We found a higher zinc release in the batch test eluates for all granules, ranging from 15% higher to 687% higher versus data from column tests for SBR granules. Accompanying parameters, especially the very high turbidity of one ethylene propylene diene monomer rubber (EPDM) or thermoplastic elastomer (TPE) eluates, reflect the stronger mechanical stress of batch testing. This indicates that batch test procedures might not be suitable for the risk assessment of synthetic sporting ground components. Column tests, on the other hand, represent field conditions more closely and allow for determination of time-dependent contaminants release.
NASA Astrophysics Data System (ADS)
Sainz-García, Elisa; Alba-Elías, Fernando; Múgica-Vidal, Rodolfo; Pantoja-Ruiz, Mariola
2016-05-01
Thermoplastic elastomers (TPE) are used in the automotive sealing industry with the objective of producing anti-friction and hydrophobic components. At present, the anti-friction property is achieved by the electrostatic flocking, which sometimes produces an irregular coating. Therefore, this paper's objective is the promotion of adhesion of an anti-friction (based on the silane aminopropyltriethoxysilane-APTES-) and hydrophobic (based on the fluorinated precursor 1-perfluorohexene-PFH-) coating by the adhesion promoter, APTES. Different mixtures of APTES and PFH have been applied to a TPE substrate by an Atmospheric Pressure Plasma Jet (APPJ) system with Dielectric Barrier Discharge (DBD) in order to determine the optimal mixture of precursors. The main difficulty in this work lies in the hydrophilic character of APTES and the low adhesion of the fluorinated coatings. The sample coated with a mixture of 50% APTES and 50% PFH (A50P50) was found to be the best one to satisfy both properties at the same time, despite not having the highest dynamic water contact angle (WCA) or the lowest friction coefficient.
Energy Harvesters for Wearable and Stretchable Electronics: From Flexibility to Stretchability.
Wu, Hao; Huang, YongAn; Xu, Feng; Duan, Yongqing; Yin, Zhouping
2016-12-01
The rapid advancements of wearable electronics have caused a paradigm shift in consumer electronics, and the emerging development of stretchable electronics opens a new spectrum of applications for electronic systems. Playing a critical role as the power sources for independent electronic systems, energy harvesters with high flexibility or stretchability have been the focus of research efforts over the past decade. A large number of the flexible energy harvesters developed can only operate at very low strain level (≈0.1%), and their limited flexibility impedes their application in wearable or stretchable electronics. Here, the development of highly flexible and stretchable (stretchability >15% strain) energy harvesters is reviewed with emphasis on strategies of materials synthesis, device fabrication, and integration schemes for enhanced flexibility and stretchability. Due to their particular potential applications in wearable and stretchable electronics, energy-harvesting devices based on piezoelectricity, triboelectricity, thermoelectricity, and dielectric elastomers have been largely developed and the progress is summarized. The challenges and opportunities of assembly and integration of energy harvesters into stretchable systems are also discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.