Sample records for dielectric function absorption

  1. Far-infrared response of spherical quantum dots: Dielectric effects and the generalized Kohn's theorem

    NASA Astrophysics Data System (ADS)

    Movilla, J. L.; Planelles, J.

    2007-05-01

    The influence of the dielectric environment on the far-infrared (FIR) absorption spectra of two-electron spherical quantum dots is theoretically studied. Effective mass and envelope function approaches with realistic steplike confining potentials are used. Special attention is paid to absorptions that are induced by the electron-electron interaction. High confining barriers make the FIR absorption coefficients almost independent of the quantum dot dielectric environment. Low barrier heights and strong dielectric mismatches preserve the strong fundamental (Kohn) mode but yield the cancellation of excited absorptions, thus monitoring dielectrically induced phase transitions from volume to surface states.

  2. Identifying the perfect absorption of metamaterial absorbers

    NASA Astrophysics Data System (ADS)

    Duan, G.; Schalch, J.; Zhao, X.; Zhang, J.; Averitt, R. D.; Zhang, X.

    2018-01-01

    We present a detailed analysis of the conditions that result in unity absorption in metamaterial absorbers to guide the design and optimization of this important class of functional electromagnetic composites. Multilayer absorbers consisting of a metamaterial layer, dielectric spacer, and ground plane are specifically considered. Using interference theory, the dielectric spacer thickness and resonant frequency for unity absorption can be numerically determined from the functional dependence of the relative phase shift of the total reflection. Further, using transmission line theory in combination with interference theory we obtain analytical expressions for the unity absorption resonance frequency and corresponding spacer layer thickness in terms of the bare resonant frequency of the metamaterial layer and metallic and dielectric losses within the absorber structure. These simple expressions reveal a redshift of the unity absorption frequency with increasing loss that, in turn, necessitates an increase in the thickness of the dielectric spacer. The results of our analysis are experimentally confirmed by performing reflection-based terahertz time-domain spectroscopy on fabricated absorber structures covering a range of dielectric spacer thicknesses with careful control of the loss accomplished through water absorption in a semiporous polyimide dielectric spacer. Our findings can be widely applied to guide the design and optimization of the metamaterial absorbers and sensors.

  3. Complex dielectric properties of anhydrous polycrystalline glucose in the terahertz region

    NASA Astrophysics Data System (ADS)

    Sun, P.; Liu, W.; Zou, Y.; Jia, Qiong Z.; Li, Jia Y.

    2015-03-01

    We utilized terahertz time-domain spectroscopy (THz-TDS) to investigate the complex dielectric properties of solid polycrystalline material of anhydrous glucose (D-(+)-glucose with purity >99.9%). THz transmission spectra of samples were measured from 0.2 to 2.2 THz. The samples were prepared into tablets with thicknesses of 0.362, 0.447, 0.504, 0.522 and 0.626 mm, respectively. The imaginary part of the complex dielectric function of polycrystalline glucose showed that there were multiple characteristic absorption peaks at 1.232, 1.445, 1.522, 1.608, 1.811 and 1.987 THz, respectively. Moreover, for a given characteristic absorption peak, the real part of the complex dielectric function showed anomalous dispersion within the full width half maximum (FWHM) of the absorption peak. Both finite difference time-domain (FDTD) numerical simulations and experimental results showed that the complex dielectric function of anhydrous polycrystalline glucose fits well with the Lorentz dielectric mode. The plasma oscillation frequency was below the frequency of the light waves suggesting that the light waves passed through the polycrystalline glucose tablets. Calculations based on density functional theory (DFT) showed that the characteristic absorption peaks of polycrystalline glucose originated mainly from collective intermolecular vibrations such as hydrogen bonds and crystal phonon modes. The THz radiation can excite the vibrational or rotational energy levels of the biological macromolecules. This leads to changes in their spatial configuration or interactions. This study showed that THz-TDS has potential applications in biological and pharmaceutical research and food industry.

  4. Numerical and theoretical analysis on the absorption properties of metasurface-based terahertz absorbers with different thicknesses.

    PubMed

    Wu, Kaimin; Huang, Yongjun; Wanghuang, Tenglong; Chen, Weijian; Wen, Guangjun

    2015-01-10

    In this paper, we numerically and theoretically discuss the novel absorption properties of a conventional metasurface-based terahertz (THz) electromagnetic (EM) absorber with different dielectric thicknesses. Two absorption modes are presented in the considered frequency band due to the increased dielectric thickness, and both modes can achieve near-unity absorptions when the dielectric layers reach additional nλ(d)/2 (n=1, 2) thicknesses, where λ(d) is the operating wavelength at the peak absorption in the dielectric slabs. The surface currents between the metasurface resonators and ground plane are not associated any longer, different from the conventional thin absorbers. Moreover, the EM wave energies are completely absorbed by the metasurface resonators and dielectric layer, and the main function of ground plane is to reflect the incident EM waves back to the resonators. The discussed novel absorption properties are analyzed and explained by classical EM theory and interference theory after numerical demonstrations. These findings can broaden the potential applications of the metasurface-based absorbers in the THz frequency range for different requirements.

  5. Designing graphene absorption in a multispectral plasmon-enhanced infrared detector

    DOE PAGES

    Goldflam, Michael D.; Fei, Zhe; Ruiz, Isaac; ...

    2017-05-18

    Here, we have examined graphene absorption in a range of graphene-based infrared devices that combine either monolayer or bilayer graphene with three different gate dielectrics. Electromagnetic simulations show that the optical absorption in graphene in these devices, an important factor in a functional graphene-based detector, is strongly dielectric-dependent. Our simulations reveal that plasmonic excitation in graphene can significantly influence the percentage of light absorbed in the entire device, as well as the graphene layer itself, with graphene absorption exceeding 25% in regions where plasmonic excitation occurs. Notably, the dielectric environment of graphene has a dramatic influence on the strength andmore » wavelength range over which the plasmons can be excited, making dielectric choice paramount to final detector tunability and sensitivity.« less

  6. Designing graphene absorption in a multispectral plasmon-enhanced infrared detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldflam, Michael D.; Fei, Zhe; Ruiz, Isaac

    Here, we have examined graphene absorption in a range of graphene-based infrared devices that combine either monolayer or bilayer graphene with three different gate dielectrics. Electromagnetic simulations show that the optical absorption in graphene in these devices, an important factor in a functional graphene-based detector, is strongly dielectric-dependent. Our simulations reveal that plasmonic excitation in graphene can significantly influence the percentage of light absorbed in the entire device, as well as the graphene layer itself, with graphene absorption exceeding 25% in regions where plasmonic excitation occurs. Notably, the dielectric environment of graphene has a dramatic influence on the strength andmore » wavelength range over which the plasmons can be excited, making dielectric choice paramount to final detector tunability and sensitivity.« less

  7. Effects of interlayer screening and temperature on dielectric functions of graphene by first-principles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, J. Y.; Liu, L. H., E-mail: lhliu@hit.edu.cn; Department of Physics, Harbin Institute of Technology, Harbin 150001

    2016-07-21

    The dielectric functions of few-layer graphene and the related temperature dependence are investigated from the atomic scale using first-principles calculations. Compared with ellipsometry experiments in the spectral range of 190–2500 nm, the normalized optical constants of mono-layer graphene demonstrate good agreement and further validate first-principles calculations. To interpret dielectric function of mono-layer graphene, the electronic band structure and density of states are analyzed. By comparing dielectric functions of mono-, bi-, and tri-layer graphene, it shows that interlayer screening strengthens intraband transition and greatly enhances the absorption peak located around 1 eV. The strengthened optical absorption is intrinsically caused by the increasing electronmore » states near the Fermi level. To investigate temperature effect, the first-principles calculations and lattice dynamics are combined. The lattice vibration enhances parallel optical absorption peak around 1 eV and induces redshift. Moreover, it is observed that the van der Waals force plays a key role in keeping the interlayer distance stable during dynamics simulations.« less

  8. Submillimeter and far-infrared dielectric properties of thin films

    NASA Astrophysics Data System (ADS)

    Cataldo, Giuseppe; Wollack, Edward J.

    2016-07-01

    The complex dielectric function enables the study of a material's refractive and absorptive properties and provides information on a material's potential for practical application. Commonly employed line shape profile functions from the literature are briefly surveyed and their suitability for representation of dielectric material properties are discussed. An analysis approach to derive a material's complex dielectric function from observed transmittance spectra in the far-infrared and submillimeter regimes is presented. The underlying model employed satisfies the requirements set by the Kramers-Kronig relations. The dielectric function parameters derived from this approachtypically reproduce the observed transmittance spectra with an accuracy of < 4%.

  9. Submillimeter and Far-Infrared Dielectric Properties of Thin Films

    NASA Technical Reports Server (NTRS)

    Cataldo, Giuseppe; Wollack, Edward J.

    2016-01-01

    The complex dielectric function enables the study of a material's refractive and absorptive properties and provides information on a material's potential for practical application. Commonly employed line shape profile functions from the literature are briefly surveyed and their suitability for representation of dielectric material properties are discussed. An analysis approach to derive a material's complex dielectric function from observed transmittance spectra in the far-infrared and submillimeter regimes is presented. The underlying model employed satisfies the requirements set by the Kramers-Kronig relations. The dielectric function parameters derived from this approach typically reproduce the observed transmittance spectra with an accuracy of less than 4%.

  10. Terahertz response of dipolar impurities in polar liquids: On anomalous dielectric absorption of protein solutions

    NASA Astrophysics Data System (ADS)

    Matyushov, Dmitry V.

    2010-02-01

    A theory of radiation absorption by dielectric mixtures is presented. The coarse-grained formulation is based on the wave-vector-dependent correlation functions of molecular dipoles of the host polar liquid and a density structure factor of the solutes. A nonlinear dependence of the dielectric absorption coefficient on the solute concentration is predicted and originates from the mutual polarization of the liquid surrounding the solutes by the collective field of the solute dipoles aligned along the radiation field. The theory is applied to terahertz absorption of hydrated saccharides and proteins. While the theory gives an excellent account of the observations for saccharides, without additional assumptions and fitting parameters, experimental absorption coefficient of protein solutions significantly exceeds theoretical calculations with dipole moment of the bare protein assigned to the solute and shows a peak against the protein concentration. A substantial polarization of protein’s hydration shell, resulting in a net dipole moment, is required to explain the disagreement between theory and experiment. When the correlation function of the total dipole moment of the protein with its hydration shell from numerical simulations is used in the analytical model, an absorption peak, qualitatively similar to that seen in experiment, is obtained. The existence and position of the peak are sensitive to the specifics of the protein-protein interactions. Numerical testing of the theory requires the combination of dielectric and small-angle scattering measurements. The calculations confirm that “elastic ferroelectric bag” of water shells observed in previous numerical simulations is required to explain terahertz dielectric measurements.

  11. Parametric presentation of dielectric function of laser pumped wide-zone semiconductor material: Does this function satisfy the Kramers-Kronig relations?

    NASA Astrophysics Data System (ADS)

    Zimnyakov, D. A.; Yuvchenko, S. A.; Volchkov, S. S.; Samorodina, T. V.

    2018-04-01

    Dielectric function of wide-zone semiconductor nanoparticles (titanium dioxide) was studied under the condition of laser pumping at various wavelengths. A closed-aperture z-scan method with simultaneous measurements of the right-anglescattered intensity was used to retrieve the real and imaginary parts of dielectric function in the dependence on the pump intensity. It was found that the efficiency of dielectric function modulation by pumping light strongly depends on detuning of the wavelength of pumping light with respect to the fundamental absorption band of nanoparticles. The ColeCole diagrammatic technique was applied for interpretation of the pump-induced changes of the dielectric function in the optical range. Applicability of the Kramers-Kronig relations for description of the observed behavior of the dielectric function is discussed.

  12. Geometrical-optics code for computing the optical properties of large dielectric spheres.

    PubMed

    Zhou, Xiaobing; Li, Shusun; Stamnes, Knut

    2003-07-20

    Absorption of electromagnetic radiation by absorptive dielectric spheres such as snow grains in the near-infrared part of the solar spectrum cannot be neglected when radiative properties of snow are computed. Thus a new, to our knowledge, geometrical-optics code is developed to compute scattering and absorption cross sections of large dielectric particles of arbitrary complex refractive index. The number of internal reflections and transmissions are truncated on the basis of the ratio of the irradiance incident at the nth interface to the irradiance incident at the first interface for a specific optical ray. Thus the truncation number is a function of the angle of incidence. Phase functions for both near- and far-field absorption and scattering of electromagnetic radiation are calculated directly at any desired scattering angle by using a hybrid algorithm based on the bisection and Newton-Raphson methods. With these methods a large sphere's absorption and scattering properties of light can be calculated for any wavelength from the ultraviolet to the microwave regions. Assuming that large snow meltclusters (1-cm order), observed ubiquitously in the snow cover during summer, can be characterized as spheres, one may compute absorption and scattering efficiencies and the scattering phase function on the basis of this geometrical-optics method. A geometrical-optics method for sphere (GOMsphere) code is developed and tested against Wiscombe's Mie scattering code (MIE0) and a Monte Carlo code for a range of size parameters. GOMsphere can be combined with MIE0 to calculate the single-scattering properties of dielectric spheres of any size.

  13. Quantitative Measurement of Local Infrared Absorption and Dielectric Function with Tip-Enhanced Near-Field Microscopy.

    PubMed

    Govyadinov, Alexander A; Amenabar, Iban; Huth, Florian; Carney, P Scott; Hillenbrand, Rainer

    2013-05-02

    Scattering-type scanning near-field optical microscopy (s-SNOM) and Fourier transform infrared nanospectroscopy (nano-FTIR) are emerging tools for nanoscale chemical material identification. Here, we push s-SNOM and nano-FTIR one important step further by enabling them to quantitatively measure local dielectric constants and infrared absorption. Our technique is based on an analytical model, which allows for a simple inversion of the near-field scattering problem. It yields the dielectric permittivity and absorption of samples with 2 orders of magnitude improved spatial resolution compared to far-field measurements and is applicable to a large class of samples including polymers and biological matter. We verify the capabilities by determining the local dielectric permittivity of a PMMA film from nano-FTIR measurements, which is in excellent agreement with far-field ellipsometric data. We further obtain local infrared absorption spectra with unprecedented accuracy in peak position and shape, which is the key to quantitative chemometrics on the nanometer scale.

  14. Terahertz absorption of lysozyme in solution

    NASA Astrophysics Data System (ADS)

    Martin, Daniel R.; Matyushov, Dmitry V.

    2017-08-01

    Absorption of radiation by solution is described by its frequency-dependent dielectric function and can be viewed as a specific application of the dielectric theory of solutions. For ideal solutions, the dielectric boundary-value problem separates the polar response into the polarization of the void in the liquid, created by the solute, and the response of the solute dipole. In the case of a protein as a solute, protein nuclear dynamics do not project on significant fluctuations of the dipole moment in the terahertz domain of frequencies and the protein dipole can be viewed as dynamically frozen. Absorption of radiation then reflects the interfacial polarization. Here we apply an analytical theory and computer simulations to absorption of radiation by an ideal solution of lysozyme. Comparison with the experiment shows that Maxwell electrostatics fails to describe the polarization of the protein-water interface and the "Lorentz void," which does not anticipate polarization of the interface by the external field (no surface charges), better represents the data. An analytical theory for the slope of the solution absorption against the volume fraction of the solute is formulated in terms of the cavity field response function. It is calculated from molecular dynamics simulations in good agreement with the experiment. The protein hydration shell emerges as a separate sub-ensemble, which, collectively, is not described by the standard electrostatics of dielectrics.

  15. Depolarisation of light scattered by disperse systems of low-dimensional potassium polytitanate nanoparticles in the fundamental absorption band

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zimnyakov, D A; Yuvchenko, S A; Pravdin, A B

    2014-07-31

    The results of experimental studies of depolarising properties of disperse systems on the basis of potassium polytitanate nanoplatelets and nanoribbons in the visible and near-UV spectral regions are presented. It is shown that in the fundamental absorption band of the nanoparticle material the increase in the depolarisation factor takes place for the radiation scattered perpendicularly to the direction of the probing beam. For nanoribbons a pronounced peak of depolarisation is observed, which is caused by the essential anisotropy of the particles shape and the peculiarities of the behaviour of the material dielectric function. The empirical data are compared with themore » theoretical results for 'nanodiscs' and 'nanoneedles' with the model dielectric function, corresponding to that obtained from optical constants of the titanium dioxide dielectric function. (laser biophotonics)« less

  16. Optical properties of group-3 metal hexaboride nanoparticles by first-principles calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshio, Satoshi; Maki, Koichiro; Adachi, Kenji, E-mail: kenji-adachi@ni.smm.co.jp

    2016-06-21

    LaB{sub 6} nanoparticles are widely used as solar control materials for strong near-infrared absorption and high visible transparency. In order to elucidate the origin of this unique optical property, first-principles calculations have been made for the energy-band structure and dielectric functions of R{sup III}B{sub 6} (R{sup III} = Sc, Y, La, Ac). On account of the precise assessment of the energy eigenvalues of vacant states in conduction band by employing the screened exchange method, as well as to the incorporation of the Drude term, dielectric functions and various physical properties of LaB{sub 6} have been reproduced in excellent agreement withmore » experimental values. Systematic examinations of dielectric functions and electronic structures of the trivalent metal hexaborides have clarified the origin of the visible transparency and the near-infrared plasmon absorption of R{sup III}B{sub 6} nanoparticles.« less

  17. Evolution of dielectric function of Al-doped ZnO thin films with thermal annealing: effect of band gap expansion and free-electron absorption.

    PubMed

    Li, X D; Chen, T P; Liu, Y; Leong, K C

    2014-09-22

    Evolution of dielectric function of Al-doped ZnO (AZO) thin films with annealing temperature is observed. It is shown that the evolution is due to the changes in both the band gap and the free-electron absorption as a result of the change of free-electron concentration of the AZO thin films. The change of the electron concentration could be attributed to the activation of Al dopant and the creation/annihilation of the donor-like defects like oxygen vacancy in the thin films caused by annealing.

  18. Optical properties of C28 fullerene cage: A DFT study

    NASA Astrophysics Data System (ADS)

    Paul, Debolina; Bhattacharya, Barnali; Deb, Jyotirmoy; Sarkar, Utpal

    2018-05-01

    Density functional theory methodology have been used to study the optical properties of fullerene C28 with the application of average electric field. The static dielectric constant of C28 is recorded a low value of 1.4. It is observed that the fullerene shows a wide range of absorption in the UV region of the electromagnetic spectrum. The presence of the optical gap in the system as can be observed from the imaginary part of the dielectric function. The observation of small reflectivity suggests its possible uses in hybrid solar cell applications. In addition, due to strong absorption taking place in the UV region, the system could be used in the UV light protection devices.

  19. The study of electrical conduction mechanisms. [dielectric response of lunar fines

    NASA Technical Reports Server (NTRS)

    Morrison, H. F.

    1974-01-01

    The dielectric response of lunar fines 74241,2 is presented in the audio-frequency range and under lunarlike conditions. Results suggest that volatiles are released during storage and transport of the lunar sample. Apparently, subsequent absorption of volatiles on the sample surface alter its dielectric response. The assumed volatile influence disappear after evacuation. A comparison of the dielectric properties of lunar and terrestrial materials as a function of density, temperature, and frequency indicates that if the lunar simulator analyzed were completely devoid of atmospheric moisture it would present dielectric losses smaller than those of the lunar sample. It is concluded that density prevails over temperature as the controlling factor of dielectric permittivity in the lunar regolith and that dielectric losses vary slowly with depth.

  20. Experimental realization of a terahertz all-dielectric metasurface absorber.

    PubMed

    Liu, Xinyu; Fan, Kebin; Shadrivov, Ilya V; Padilla, Willie J

    2017-01-09

    Metamaterial absorbers consisting of metal, metal-dielectric, or dielectric materials have been realized across much of the electromagnetic spectrum and have demonstrated novel properties and applications. However, most absorbers utilize metals and thus are limited in applicability due to their low melting point, high Ohmic loss and high thermal conductivity. Other approaches rely on large dielectric structures and / or a supporting dielectric substrate as a loss mechanism, thereby realizing large absorption volumes. Here we present a terahertz (THz) all dielectric metasurface absorber based on hybrid dielectric waveguide resonances. We tune the metasurface geometry in order to overlap electric and magnetic dipole resonances at the same frequency, thus achieving an experimental absorption of 97.5%. A simulated dielectric metasurface achieves a total absorption coefficient enhancement factor of FT=140, with a small absorption volume. Our experimental results are well described by theory and simulations and not limited to the THz range, but may be extended to microwave, infrared and optical frequencies. The concept of an all-dielectric metasurface absorber offers a new route for control of the emission and absorption of electromagnetic radiation from surfaces with potential applications in energy harvesting, imaging, and sensing.

  1. Dielectric response of crystalline tris(acetylacetonato)cobalt(III) films grown on Si substrate for low- k dielectric applications

    NASA Astrophysics Data System (ADS)

    Dakhel, A. A.; Ali-Mohamed, A. Y.

    2008-01-01

    Thin films of the complex tris(acetylacetonato)cobalt(III) [abb. Co(acac) 3] were deposited in vacuum on glass and p-Si substrates for optical and dielectric studies. The samples were characterised by X-ray diffraction and fluorescence methods as well as optical absorption spectroscopy. The prepared films show a polycrystalline of monoclinic P2 1/ c structure. The optical absorption spectrum of the prepared film was not exactly fit to that of the molecular one. The energy of the optical absorption onset of the Co(acac) 3 film was calculated by using usual solid-state methods. For electrical measurements on the complex as insulator, samples in the form of metal-insulator-semiconductor (MIS) structure were prepared and characterised by measurement of the capacitance as a function of gate voltage at 1 MHz. The frequency dependence of the complex dielectric constant of the complex was studied in the frequency range (1-1000 kHz) in the temperature range (294-323 K). The experimental results were analysed in the framework of Debye single relaxation model. Generally, the present study shows that a film of complex Co(acac) 3 grown on Si substrate is a promising candidate for low- k dielectric applications, it displays low- k value around 1.7 at high frequencies.

  2. Characterization of micron-sized, optical coating defects by photothermal deflection microscopy

    NASA Astrophysics Data System (ADS)

    Abate, J. A.; Schmid, A. W.; Guardalben, M. G.; Smith, D. J.; Jacobs, S. D.

    1984-04-01

    Information about the localized absorbing defects in optical thin films is required for a better understanding of laser induced damage. Photothermal deflection microscopy offers a nondestructive optical diagnostic which yields spatially resolved absorption data on simple and multiple layer AR and HR dielectric coatings. The computer controlled apparatus used to generate absorption maps of dielectric thin films and an experiment in which a partial correlation between localized absorption sites and damage caused by nanosecond laser irradiation at 351 nm is established are described. An absolute calibration of absorption for our measurement technique is presented here. Micron sized absorbtive defects of Cu were introduced into our coatings to provide a means of calibration. Also presented here are some preliminary data on the modification of the absorption signatures measured by photothermal deflection as a function of the location of the defect within the coating layers.

  3. Dielectric relaxation spectroscopy of aqueous solutions of diclofenac potassium over the frequency range of 20 Hz to 2 MHz at 303.15 K temperature

    NASA Astrophysics Data System (ADS)

    Karakthala, J. B.; Vankar, H. P.; Rana, V. A.

    2018-05-01

    The complex relative dielectric function ɛ*(ω) = ɛ' - jɛ″ of aqueous solutions of diclofenac potassium (DK) in the frequency range 20 Hz to 2 MHz at 303.15 K was measured using a precision LCR meter. The electrical/dielectric properties of the solutions samples were represented in terms of complex relative dielectric function ɛ*(ω) real part σ'(ω) of complex ac conductivity and dc conductivity. These types of studies can be used to explore various mechanism contributed in the absorption, transportation of drug through tissues and membranes of body as well as interactions of drug with body fluid and blood plasma.

  4. Electrical and optical properties of Si-doped Ga2O3

    NASA Astrophysics Data System (ADS)

    Li, Yin; Yang, Chuanghua; Wu, Liyuan; Zhang, Ru

    2017-05-01

    The charge densities, band structure, density of states, dielectric functions of Si-doped β-Ga2O3 have been investigated based on the density functional theory (DFT) within the hybrid functional HSE06. The heavy doping makes conduction band split out more bands and further influences the band structure. It decreases the band gap and changes from a direct gap to an indirect gap. After doping, the top of the valence bands is mainly composed by the O-2p states, Si-3p states and Ga-4p states and the bottom of the conduction bands is almost formed by the Si-3s, Si-3p and Ga-4s orbits. The anisotropic optical properties have been investigated by means of the complex dielectric function. After the heavy Si doping, the position of absorption band edges did not change much. The slope of the absorption curve descends and indicates that the absorption became more slow for Si-doped β-Ga2O3 than undoped one due to the indirect gap of Si-doped β-Ga2O3.

  5. First-Principle Calculation of Quasiparticle Excitations and Optical Absorption in NiO

    NASA Astrophysics Data System (ADS)

    Li, Je-Luen; Rignanese, Gian-Marco; Louie, Steven G.

    2001-03-01

    We present a first-principle study of the quasiparticle excitations and optical absorption spectrum in NiO. The ground state electronic structure is calculated with the generalized gradient approximation in density functional theory and ab initio pseudopotential. The quasiparticle energies are then computed employing the GW approximation. In addition to comparing to photoemisson result, comparison between the measured and calculated complex dielectric function helps to identify the onset of excitations in this system. We illustrate some subtleties of pseudopotential calculations: the effect of including 3 s and 3p electrons in Ni pseudopotential; the difference between using velocity and momentum operators in the RPA dielectric function. Finally, we discuss a recent effort to solve the Bethe-Salpeter equation for the optical spectrum in this spin polarized system to address the remaining discrepancy between theory and experiment.

  6. Optical properties of graphene, silicene, germanene, and stanene from IR to far UV - A first principles study

    NASA Astrophysics Data System (ADS)

    John, Rita; Merlin, Benita

    2017-11-01

    This study offers an analysis of optical properties of Graphene and its 2D analogues: Silicene, Germanene, and Stanene with the help of band structures based on Density Functional Theory. The complex dielectric function and complex refractive index are calculated in both parallel (||) and perpendicular (⊥) polarization directions of the electromagnetic field. From these calculated values, optical observables like absorption, reflection, optical conductivity, and electron loss function have been studied. The optical response of all materials is shifted from ultraviolet (UV) to infrared (IR) from graphene to stanene; Graphene is more into UV region and other materials in the IR and visible regions. The intensity of absorption is maximum for stanene. The real part of dielectric function reveals the existence of plasma frequency in the || polarization direction indicating the metal to dielectric transition except for graphene. Study on refractive index clearly displays the birefringence characteristics of all materials. Reflectivity is enhanced in the mid IR and visible regions when light is polarized in the || direction. The in-depth investigations arrive at fine results which would enable the prediction of their potential applications in the optical and optoelectronic industries.

  7. First principles study of electronic properties, interband transitions and electron energy loss of α-graphyne

    NASA Astrophysics Data System (ADS)

    Behzad, Somayeh

    2016-04-01

    The electronic and optical properties of α-graphyne sheet are investigated by using density functional theory. The results confirm that α-graphyne sheet is a zero-gap semimetal. The optical properties of the α-graphyne sheet such as dielectric function, refraction index, electron energy loss function, reflectivity, absorption coefficient and extinction index are calculated for both parallel and perpendicular electric field polarizations. The optical spectra are strongly anisotropic along these two polarizations. For (E ∥ x), absorption edge is at 0 eV, while there is no absorption below 8 eV for (E ∥ z).

  8. Tunable optical and excitonic properties of phosphorene via oxidation

    NASA Astrophysics Data System (ADS)

    Sadki, S.; Drissi, L. B.

    2018-06-01

    The optical properties and excitonic wave function of phosphorene oxides (PO) are studied using the first principle many-body Green function and the Bethe–Salpeter equation formalism. In this work, the optical properties are determined using ab initio calculations of the dielectric function. At the long wavelength limit q of EM wave (i.e. ), the dielectric function, the absorption spectrum, the lectivity, the electron energy loss spectra (EELS) and the wave function are calculated. The results show an excitonic binding energy of 818 meV with a bright exciton located in the armchair direction in pristine phosphorene. For PO, the arrangement of the oxygen atoms significantly influences the optical properties. In particular, the absorption spectrum is extended along the solar spectrum, with a high absorption coefficient observed in the dangling structures. The maximum lectivity values are observed for the high energies of the light spectrum. Moreover, the first EELS peak is located in the visible region in all the structures except for one configuration that exhibits the same behavior as pure phosphorene. Finally, the exciton effect reveals that all PO conformers have a dark exciton state, which is suitable for long-lived applications.

  9. Direct measurement of the effective infrared dielectric response of a highly doped semiconductor metamaterial.

    PubMed

    Al Mohtar, Abeer; Kazan, Michel; Taliercio, Thierry; Cerutti, Laurent; Blaize, Sylvain; Bruyant, Aurélien

    2017-03-24

    We have investigated the effective dielectric response of a subwavelength grating made of highly doped semiconductors (HDS) excited in reflection, using numerical simulations and spectroscopic measurement. The studied system can exhibit strong localized surface resonances and has, therefore, a great potential for surface-enhanced infrared absorption (SEIRA) spectroscopy application. It consists of a highly doped InAsSb grating deposited on lattice-matched GaSb. The numerical analysis demonstrated that the resonance frequencies can be inferred from the dielectric function of an equivalent homogeneous slab by accounting for the complex reflectivity of the composite layer. Fourier transform infrared reflectivity (FTIR) measurements, analyzed with the Kramers-Kronig conversion technique, were used to deduce the effective response in reflection of the investigated system. From the knowledge of this phenomenological dielectric function, transversal and longitudinal energy-loss functions were extracted and attributed to transverse and longitudinal resonance modes frequencies.

  10. Enhancement of specific absorption rate in lossy dielectric objects using a slab of left-handed material.

    PubMed

    Zhao, Lei; Cui, Tie Jun

    2005-12-01

    An enhancement of the specific absorption rate (SAR) inside a lossy dielectric object has been investigated theoretically based on a slab of left-handed medium (LHM). In order to make an accurate analysis of SAR distribution, a proper Green's function involved in the LHM slab is proposed, from which an integral equation for the electric field inside the dielectric object is derived. Such an integral equation has been solved accurately and efficiently using the conjugate gradient method and the fast Fourier transform. We have made a lot of numerical experiments on the SAR distributions inside the dielectric object excited by a line source with and without the LHM slab. Numerical experiments show that SAR can be enhanced tremendously when the LHM slab is involved due to the proper usage of strong surface waves, which will be helpful in the potential biomedical applications for hyperthermia. The physical insight for such a phenomenon has also been discussed.

  11. Measurement of the vacuum-ultraviolet absorption spectrum of low-k dielectrics using X-ray reflectivity

    NASA Astrophysics Data System (ADS)

    Choudhury, F. A.; Nguyen, H. M.; King, S. W.; Lee, C. H.; Lin, Y. H.; Fung, H. S.; Chen, C. C.; Li, W.; Benjamin, D.; Blatz, J. M.; Nishi, Y.; Shohet, J. L.

    2018-02-01

    During plasma processing, low-k dielectrics are exposed to high levels of vacuum ultraviolet (VUV) radiation that can cause severe damage to dielectric materials. The degree and nature of VUV-induced damage depend on the VUV photon energies and fluence. In this work, we examine the VUV-absorption spectrum of low-k organosilicate glass using specular X-ray reflectivity (XRR). Low-k SiCOH films were exposed to synchrotron VUV radiation with energies ranging from 7 to 21 eV, and the density vs. depth profile of the VUV-irradiated films was extracted from fitting the XRR experimental data. The results show that the depth of the VUV-induced damage layer is a function of the photon energy. Between 7 and 11 eV, the depth of the damaged layer decreases sharply from 110 nm to 60 nm and then gradually increases to 85 nm at 21 eV. The maximum VUV absorption in low-k films occurs between 11 and 15 eV. The depth of the damaged layer was found to increase with film porosity.

  12. Computational screening of organic polymer dielectrics for novel accelerator technologies

    DOE PAGES

    Pilania, Ghanshyam; Weis, Eric; Walker, Ethan M.; ...

    2018-06-18

    The use of infrared lasers to power accelerating dielectric structures is a developing area of research. Within this technology, the choice of the dielectric material forming the accelerating structures, such as the photonic band gap (PBG) structures, is dictated by a range of interrelated factors including their dielectric and optical properties, amenability to photo-polymerization, thermochemical stability and other target performance metrics of the particle accelerator. In this direction, electronic structure theory aided computational screening and design of dielectric materials can play a key role in identifying potential candidate materials with the targeted functionalities to guide experimental synthetic efforts. In anmore » attempt to systematically understand the role of chemistry in controlling the electronic structure and dielectric properties of organic polymeric materials, here we employ empirical screening and density functional theory (DFT) computations, as a part of our multi-step hierarchal screening strategy. Our DFT based analysis focused on the bandgap, dielectric permittivity, and frequency-dependent dielectric losses due to lattice absorption as key properties to down-select promising polymer motifs. In addition to the specific application of dielectric laser acceleration, the general methodology presented here is deemed to be valuable in the design of new insulators with an attractive combination of dielectric properties.« less

  13. Dual-band absorption of mid-infrared metamaterial absorber based on distinct dielectric spacing layers.

    PubMed

    Zhang, Nan; Zhou, Peiheng; Cheng, Dengmu; Weng, Xiaolong; Xie, Jianliang; Deng, Longjiang

    2013-04-01

    We present the simulation, fabrication, and characterization of a dual-band metamaterial absorber in the mid-infrared regime. Two pairs of circular-patterned metal-dielectric stacks are employed to excite the dual-band absorption peaks. Dielectric characteristics of the dielectric spacing layer determine energy dissipation in each resonant stack, i.e., dielectric or ohmic loss. By controlling material parameters, both two mechanisms are introduced into our structure. Up to 98% absorption is obtained at 9.03 and 13.32 μm in the simulation, which is in reasonable agreement with experimental results. The proposed structure holds promise for various applications, e.g., thermal radiation modulators and multicolor infrared focal plane arrays.

  14. Preparation and characterisation of crystalline tris(acetylacetonato)Fe(III) films grown on p-Si substrate for dielectric applications

    NASA Astrophysics Data System (ADS)

    Dakhel, A. A.; Ali-Mohamed, A. Y.

    2007-02-01

    Thin tris(acetylacetonato)iron(III) films were prepared by sublimation in vacuum on glass and p-Si substrates. Then comprehensive studies of X-ray fluorescence (XRF), X-ray diffraction (XRD), optical absorption spectroscopy, AC-conductivity, and dielectric permittivity as a function of frequency and temperature have been performed. The prepared films show a polycrystalline of orthorhombic structure. The optical absorption spectrum of the film was identical with that of the bulk powder layer. For electrical measurements of the complex as insulator, sample in form of metal insulator semiconductor (MIS) structure was prepared and characterised by the measurement of the capacitance and AC-conductance as a function of gate voltage. From those measurements, the state density Dit at insulator/semiconductor interface and the density of the fixed charges in the complex film were determined. It was found that Dit was of order 1010 eV-1/cm2 and the surface charge density in the insulator film was of order 1010 cm-2. The frequency dependence of the electrical conductivity and dielectric properties of MIS structures were studied at room temperature. It was observed that the experimental data follow the correlated barrier-hopping (CBH) model, from which the fundamental absorption edge, the cut off hopping distance, and other parameters of the model were determined. It was found that the capacitance of the complex increases as temperature increases. Generally, the present study shows that the tris(acetylacetonato)iron(III) films grown on p-Si is a promising candidate for low-k dielectric applications, it displays low-k value around 2.0.

  15. Enhanced dielectric properties of Fe-substituted TiO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Ali, T.; Ahmed, Ateeq; Naseem siddique, M.; Tripathi, P.

    2018-04-01

    We report the structural and dielectric properties Ti1-xFexO2 (0.00 < x < 0.10) nanoparticles (NPs) synthesized by sol-gel method. The synthesized material has been characterized by soft X-ray absorption spectroscopy (SXAS) in order to investigate the fine structure and electronic valence state. SXAS analysis reveals that Fe-ions exist only in 3+ valance state in all the samples. The dielectric properties were studied by the use of LCR impedance spectroscopy. The dielectric constants, dielectric loss and A.C. conductivity have been determined as a function of frequency and composition of iron. At higher frequencies, the materials exhibited high AC Conductivity and low dielectric constant. The above theory could be explained by 'Maxwell Wagner Model' and may provide a new insight to fabricate nanomaterials having possible electrical application.

  16. Water-injected all-dielectric ultra-wideband and prominent oblique incidence metamaterial absorber in microwave regime

    NASA Astrophysics Data System (ADS)

    Huang, Xiaojun; Yang, Helin; Shen, Zhaoyang; Chen, Jiao; Lin, Hail; Yu, Zetai

    2017-09-01

    We present a water-injected all-dielectric metamaterial that can offer an extremely wide bandwidth of electromagnetic absorption and prominent wide incident angle range. Different from conventional metal-dielectric based metamaterial absorbers, the absorption mechanism of the proposed all-dielectric metamaterial absorber is to take advantage of the dispersion of water, rather than electric or/and magnetic resonance, which thoroughly overcomes the defects of narrow bandwidth and oblique incidence from metal-dielectric based metamaterial absorber. The simulated absorption was over 90% in 8.1-22.9 GHz with the relative bandwidth of 95.5% when the incident angle reaches 60°, and the corresponding microwave experiment is performed to support the simulations. The obtained excellent absorption performance reveals a possible application of the proposed absorber, which can be exploited for electromagnetic stealth purposes, especially for electromagnetic stealth of sea targets.

  17. A naked eye refractive index sensor with a visible multiple peak metamaterial absorber.

    PubMed

    Ma, Heli; Song, Kun; Zhou, Liang; Zhao, Xiaopeng

    2015-03-26

    We report a naked eye refractive index sensor with a visible metamaterial absorber. The visible metamaterial absorber consisting of a silver dendritic/dielectric/metal structure shows multiple absorption peaks. By incorporating a gain material (rhodamine B) into the dielectric layer, the maximal magnitude of the absorption peak can be improved by about 30%. As the metamaterial absorber is sensitive to the refractive index of glucose solutions, it can function as a sensor that quickly responds to variations of the refractive index of the liquid. Meanwhile, since the response is presented via color changes, it can be clearly observed by the naked eyes. Further experiments have confirmed that the sensor can be used repeatedly.

  18. Organic solar cells based on high dielectric constant materials: An approach to increase efficiency

    NASA Astrophysics Data System (ADS)

    Hamam, Khalil Jumah Tawfiq

    The efficiency of organic solar cells still lags behind inorganic solar cells due to their low dielectric constant which results in a weakly screened columbic attraction between the photogenerated electron-hole system, therefore the probability of charge separating is low. Having an organic material with a high dielectric constant could be the solution to get separated charges or at least weakly bounded electron-hole pairs. Therefore, high dielectric constant materials have been investigated and studied by measuring modified metal-phthalocyanine (MePc) and polyaniline in pellets and thin films. The dielectric constant was investigated as a function of temperature and frequency in the range of 20Hz to1MHz. For MePc we found that the high dielectric constant was an extrinsic property due to water absorption and the formation of hydronuim ion allowed by the ionization of the functional groups such as sulphonated and carboxylic groups. The dielectric constant was high at low frequencies and decreasing as the frequency increase. Investigated materials were applied in fabricated bilayer heterojunction organic solar cells. The application of these materials in an organic solar cells show a significant stability under room conditions rather than improvement in their efficiency.

  19. A newly-designed magnetic/dielectric [Fe3O4/BaTiO3@MWCNT] nanocomposite system for modern electromagnetic absorption applications

    NASA Astrophysics Data System (ADS)

    Sardarian, Pouria; Naffakh-Moosavy, Homam; Afghahi, Seyyed Salman Seyyed

    2017-11-01

    Developments in electronic industries for telecommunications and demands for decreasing electromagnetic radiation pollution result in developing researches on microwave absorption materials. The target of the present study is to design materials with high absorption properties for electromagnetic waves in the 12-18 GHz range. Thus, Fe3O4 magnetic nanoparticles were syntheses through chemical co-precipitation reinforced by ultrasonic. Then, BaTiO3 nanocrystalline powder was synthesized by the hydrothermal sol-gel method under atmospheric oxygen. Next, nano-particles of barium titanate were deposited on the multi-walled carbon nanotubes (BaTiO3@CNT). It was concluded that a magnetic-dielectric nanocomposite has superior microwave absorption properties in comparison to individual magnetic or dielectric absorbers. Also, in order to obtain an optimum absorption in a wide frequency band, dielectric-CNT nanocomposites represents higher properties than magnetic-CNT composites. It is concluded that composites with more magnetic percentage showed better absorption in low frequency band (12 GHz), whereas composites with more dielectric percentage exhibited superior absorption for high frequency band (18 GHz). 80-93% absorption was obtained in the frequency range of 16.7-18 GHz by composite 40M.20F.40C (40% paraffin, 20% magnetite, 40% multi-walled carbon nanotubes). Also, composite 40M.20B.40B@C (40% paraffin, 20% barium titanate, 40% barium titanate deposited on multi-walled carbon nanotubes) showed the absorption of 80-90%.

  20. Giant optical field enhancement in multi-dielectric stacks by photon scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Ndiaye, C.; Zerrad, M.; Lereu, A. L.; Roche, R.; Dumas, Ph.; Lemarchand, F.; Amra, C.

    2013-09-01

    Dielectric optical thin films, as opposed to metallic, have been very sparsely explored as good candidates for absorption-based optical field enhancement. In such materials, the low imaginary part of the refractive index implies that absorption processes are usually not predominant. This leads to dielectric-based optical resonances mainly via waveguiding modes. We show here that when properly designed, a multi-layered dielectric thin films stack can give rise to optical resonances linked to total absorption. We report here, on such dielectric stack designed to possess a theoretical optical field enhancement above 1000. Using photon scanning tunneling microscopy, we experimentally evaluate the resulting field enhancement of the stack as well as the associated penetration depth. We thus demonstrate the capability of multi-dielectric stacks in generating giant optical field with tunable penetration depth (down to few dozens of nm).

  1. Understanding the optical properties of ZnO1-xSx and ZnO1-xSex alloys

    NASA Astrophysics Data System (ADS)

    Baldissera, Gustavo; Persson, Clas

    2016-01-01

    ZnO1-xYx with chalcogen element Y exhibits intriguing optoelectronic properties as the alloying strongly impacts the band-gap energy Eg(x). In this work, we analyze and compare the electronic structures and the dielectric responses of Zn(O,S) and Zn(O,Se) alloys by means of the density functional theory and the partially self-consistent GW approach. We model the crystalline stability from the total energies, and the results indicate that Zn(O,S) is more stable as alloy than Zn(O,Se). We demonstrate also that ion relaxation strongly affects total energies, and that the band-gap bowing depends primarily on local relaxation of the bonds. Moreover, we show that the composition dependent band-gap needs to be analyzed by the band anti-crossing model for small alloying concentration, while the alloying band-bowing model is accurate for strong alloying. We find that the Se-based alloys have a stronger change in the band-gap energy (for instance, ΔEg(0.50) = Eg(ZnO) - Eg(x = 0.50) ≈ 2.2 eV) compared with that of the S-based alloy (ΔEg(0.50) = 1.2 eV), mainly due to a stronger relaxation of the Zn-anion bonds that affects the electronic structure near the band edges. The optical properties of the alloys are discussed in terms of the complex dielectric function ɛ(ω) = ɛ1(ω) + iɛ2(ω) and the absorption coefficient α(ω). While the large band-gap bowing directly impacts the low-energy absorption spectra, the high-frequency dielectric constant ɛ∞ is correlated to the intensity of the dielectric response at energies above 4 eV. Therefore, the dielectric constant is only weakly affected by the non-linear band-gap variation. Despite strong structural relaxation, the high absorption coefficients of the alloys demonstrate that the alloys have well-behaved optoelectronic properties.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiaoming; Lan, Chuwen; Li, Bo

    We numerically and experimentally demonstrated a polarization insensitive dual-band metamaterial perfect absorber working in wide incident angles based on the two magnetic Mie resonances of a single dielectric “atom” with simple structure. Two absorption bands with simulated absorptivity of 99% and 96%, experimental absorptivity of 97% and 94% at 8.45 and 11.97 GHz were achieved due to the simultaneous magnetic and electric resonances in dielectric “atom” and copper plate. Mie resonances of dielectric “atom” provide a simple way to design metamaterial perfect absorbers with high symmetry.

  3. Dual band metamaterial perfect absorber based on artificial dielectric "molecules".

    PubMed

    Liu, Xiaoming; Lan, Chuwen; Li, Bo; Zhao, Qian; Zhou, Ji

    2016-07-13

    Dual band metamaterial perfect absorbers with two absorption bands are highly desirable because of their potential application areas such as detectors, transceiver system, and spectroscopic imagers. However, most of these dual band metamaterial absorbers proposed were based on resonances of metal patterns. Here, we numerically and experimentally demonstrate a dual band metamaterial perfect absorber composed of artificial dielectric "molecules" with high symmetry. The artificial dielectric "molecule" consists of four "atoms" of two different sizes corresponding to two absorption bands with near unity absorptivity. Numerical and experimental absorptivity verify that the dual-band metamaterial absorber is polarization insensitive and can operate in wide-angle incidence.

  4. Ultra-broadband THz time-domain spectroscopy of common polymers using THz air photonics.

    PubMed

    D'Angelo, Francesco; Mics, Zoltán; Bonn, Mischa; Turchinovich, Dmitry

    2014-05-19

    Terahertz-range dielectric properties of the common polymers low-density polyethylene (LDPE), cyclic olefin/ethylene copolymer (TOPAS®), polyamide-6 (PA6), and polytetrafluoroethylene (PTFE or Teflon®) are characterized in the ultra-broadband frequency window 2-15 THz, using a THz time-domain spectrometer employing air-photonics for the generation and detection of single-cycle sub-50 fs THz transients. The time domain measurements provide direct access to both the absorption and refractive index spectra. The polymers LDPE and TOPAS® demonstrate negligible absorption and spectrally-flat refractive index across the entire spectroscopy window, revealing the high potential of these polymers for applications in THz photonics such as ultra-broadband polymer-based dielectric mirrors, waveguides, and fibers. Resonant high-frequency polar vibrational modes are observed and assigned in polymers PA6 and PTFE, and their dielectric functions in the complete frequency window 2-15 THz are theoretically reproduced. Our results demonstrate the potential of ultra-broadband air-photonics-based THz time domain spectroscopy as a valuable analytic tool for materials science.

  5. A fully functionalized metamaterial perfect absorber with simple design and implementation.

    PubMed

    Fu, Sze Ming; Zhong, Yan Kai; Tu, Ming Hsiang; Chen, Bo Ruei; Lin, Albert

    2016-10-26

    Broadband perfect metamaterial absorbers have been drawing significant attention in recent years. A close-to-unity absorption over a broad spectral range is established and this facilitates many photonic applications. A more challenging goal is to construct a broadband absorber with a tailored spectral absorption. The spectral absorption control and spectral shaping are very critical in many applications, such as thermal-photovoltaic, thermal emitters, spectrum imaging system, biomedical and extraterrestrial sensing, and refractive index sensor. In this work, one-dimensional (1D) planar stacking structure is designed to achieve the ultimate goal of a functionalized absorber with a fully tailorable spectral absorption. The lithography and etching process are totally eliminated in this proposed structure, and the fabrication is fully compatible with the regular silicon IC processing. By using ~2 nm ultra-thin metallic layers with a 10-pair (10X) SiO 2 /Si 3 N 4 integrated dielectric filter, we can achieve decent spectral response shaping. The planar configuration of the ultra-thin-metal metamaterial perfect absorber (MPA) is the key to the easy design/integration of the dielectric filters on top of the MPA. Specifically, band-rejected, high-pass, low-pass and band-pass structure are constructed successfully. Finally, experimental evidence to support our simulation result is also provided, which proves the feasibility of our proposal.

  6. Infrared Reflectance Spectroscopy of Porous Silicas

    NASA Astrophysics Data System (ADS)

    Guiton, Theresa Anne

    Fourier transform infrared (FTIR) specular reflectance spectroscopy was used to examine the fundamental phonon behavior of a series of porous silicas including porous Vycor, xerogels, aerogels, and colloidal solids. The spectra were deconvoluted using Kramers-Kronig analysis techniques, and the corresponding optical constants were determined via the Fresnel equations. The resulting spectra represent the first compilation of such data for low density silicas. The porous silicas revealed unique resonance modes for the imaginary dielectric function and energy loss function. A key distinction amongst the spectra was the change in the band shape of the antisymmetric Si-O-Si stretching modes. For instance, as the porosity level of the particulate systems increased, the peak maxima of the imaginary dielectric functions shifted to higher frequencies while the peak maxima of the associated energy loss function shifted to lower frequencies. In essence, with increasing porosity, the peak maxima of the imaginary dielectric functions and the energy loss functions were converging towards frequencies intermediate to the transverse optical and longitudinal optical modes of fused silica. A similar trend was not observed for the semi-continuous silica matrices. Maxwell Garnett effective medium modeling verified that these modes were a function of the porous microstructure and can be attributed to surface phonon modes. The effect of surface phonon modes was also evident in the absorption coefficient data. However, contrary to the traditional view that changes in the absorption spectra of porous silicas are strictly due to molecular structure, this study has demonstrated that variations can be attributed--both qualitatively and quantitatively--to electrostatic screening effects of finite particles.

  7. Electrical and absorption properties of fresh cassava tubers and cassava starch

    NASA Astrophysics Data System (ADS)

    Harnsoongnoen, S.; Siritaratiwat, A.

    2015-09-01

    The objective of this study was to analyze the electrical and absorption properties of fresh cassava tubers and cassava starch at various frequencies using electric impedance spectroscopy and near-infrared spectroscopy, as well as determine the classification of the electrical parameters of both materials using the principle component analysis (PCA) method. All samples were measured at room temperature. The electrical and absorption parameters consisted of dielectric constant, dissipation factor, parallel capacitance, resistance, reactance, impedance and absorbance. It was found that the electrical and absorption properties of fresh cassava tubers and cassava starch were a function of frequency, and there were significant differences between the materials. The dielectric constant, parallel capacitance, resistance and impedance of fresh cassava tubers and cassava starch had similar dramatic decreases with increasing frequency. However, the reactance of both materials increased with an increasing frequency. The electrical parameters of both materials could be classified into two groups. Moreover, the dissipation factor and phase of impedance were the parameters that could be used in the separation of both materials. According to the absorbance patterns of the fresh cassava tubers and cassava starch, there were significant differences.

  8. Dielectric function in the spectral range (0.5–8.5)eV of an (Al{sub x}Ga{sub 1−x}){sub 2}O{sub 3} thin film with continuous composition spread

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt-Grund, R., E-mail: Schmidt-Grund@physik.uni-leipzig.de; Kranert, C.; Wenckstern, H. von

    2015-04-28

    We determined the dielectric function of the alloy system (Al{sub x}Ga{sub 1−x}){sub 2}O{sub 3} by spectroscopic ellipsometry in the wide spectral range from 0.5 eV to 8.5 eV and for Al contents ranging from x = 0.11 to x = 0.55. For the composition range x < 0.4, we observe single phase material in the β-modification and for larger Al content also the occurrence of γ-(Al,Ga){sub 2}O{sub 3}. We derived spectra of the refractive index and the absorption coefficient as well as energy parameters of electronic band-band transitions by model analysis of the dielectric function. The dependence of the dielectric functions lineshape and the energy parameters on xmore » is highly continuous, reflecting theoretical expectations. The data presented here provide a basis for a deeper understanding of the electronic properties of this material system and may be useful for device engineering.« less

  9. Reversible dielectric property degradation in moisture-contaminated fiber-reinforced laminates

    NASA Astrophysics Data System (ADS)

    Rodriguez, Luis A.; García, Carla; Fittipaldi, Mauro; Grace, Landon R.

    2016-03-01

    The potential for recovery of dielectric properties of three water-contaminated fiber-reinforced laminates is investigated using a split-post dielectric resonant technique at X-band (10 GHz). The three material systems investigated are bismaleimide (BMI) reinforced with an eight-harness satin weave quartz fabric, an epoxy resin reinforced with an eight- harness satin weave glass fabric (style 7781), and the same epoxy reinforced with a four-harness woven glass fabric (style 4180). A direct correlation between moisture content, dielectric constant, and loss tangent was observed during moisture absorption by immersion in distilled water at 25 °C for five equivalent samples of each material system. This trend is observed through at least 0.72% water content by weight for all three systems. The absorption of water into the BMI, 7781 epoxy, and 4180 epoxy laminates resulted in a 4.66%, 3.35%, and 4.01% increase in dielectric constant for a 0.679%, 0.608%, and 0.719% increase in water content by weight, respectively. Likewise, a significant increase was noticed in loss tangent for each material. The same water content is responsible for a 228%, 71.4%, and 64.1% increase in loss tangent, respectively. Subsequent to full desorption through drying at elevated temperature, the dielectric constant and loss tangent of each laminate exhibited minimal change from the dry, pre-absorption state. The dielectric constant and loss tangent change after the absorption and desorption cycle, relative to the initial state, was 0.144 % and 2.63% in the BMI, 0.084% and 1.71% in the style 7781 epoxy, and 0.003% and 4.51% in the style 4180 epoxy at near-zero moisture content. The similarity of dielectric constant and loss tangent in samples prior to absorption and after desorption suggests that any chemical or morphological changes induced by the presence of water have not caused irreversible changes in the dielectric properties of the laminates.

  10. Characterizing the absorption and aging behavior of DUV optical material by high-resolution excimer laser calorimetry

    NASA Astrophysics Data System (ADS)

    Mann, Klaus R.; Eva, Eric

    1998-06-01

    Absorption loss in DUV optics during 193 nm irradiation is investigated by employing a high-resolution calorimetric technique which allows determining both single and two photon absorption coefficients at energy densities of several 10 mJ/cm2, avoiding a significant thermal load on the samples. UV calorimetry is also employed to investigate laser induced aging phenomena, e.g. color center formation in fused silica or CaF2. A separation of transient and cumulative effects as a function of intensity can be achieved, giving insight into various loss mechanisms. Moreover, the influence of dielectric coatings on the absorption characteristics is discussed.

  11. A fully functionalized metamaterial perfect absorber with simple design and implementation

    PubMed Central

    Fu, Sze Ming; Zhong, Yan Kai; Tu, Ming Hsiang; Chen, Bo Ruei; Lin, Albert

    2016-01-01

    Broadband perfect metamaterial absorbers have been drawing significant attention in recent years. A close-to-unity absorption over a broad spectral range is established and this facilitates many photonic applications. A more challenging goal is to construct a broadband absorber with a tailored spectral absorption. The spectral absorption control and spectral shaping are very critical in many applications, such as thermal-photovoltaic, thermal emitters, spectrum imaging system, biomedical and extraterrestrial sensing, and refractive index sensor. In this work, one-dimensional (1D) planar stacking structure is designed to achieve the ultimate goal of a functionalized absorber with a fully tailorable spectral absorption. The lithography and etching process are totally eliminated in this proposed structure, and the fabrication is fully compatible with the regular silicon IC processing. By using ~2 nm ultra-thin metallic layers with a 10-pair (10X) SiO2/Si3N4 integrated dielectric filter, we can achieve decent spectral response shaping. The planar configuration of the ultra-thin-metal metamaterial perfect absorber (MPA) is the key to the easy design/integration of the dielectric filters on top of the MPA. Specifically, band-rejected, high-pass, low-pass and band-pass structure are constructed successfully. Finally, experimental evidence to support our simulation result is also provided, which proves the feasibility of our proposal. PMID:27782181

  12. Modeling of absorption and scattering properties of core -shell nanoparticles for application as nanoantenna in optical domain

    NASA Astrophysics Data System (ADS)

    Devi, Jutika; Saikia, Rashmi; Datta, Pranayee

    2016-10-01

    The present paper describes the study of core-shell nanoparticles for application as nanoantenna in the optical domain. To obtain the absorption and extinction efficiencies as well as the angular distribution of the far field radiation pattern and the resonance wavelengths for these metal-dielectric, dielectric-metal and metal-metal core-shell nanoparticles in optical domain, we have used Finite Element Method based COMSOL Multiphysics Software and Mie Theory. From the comparative study of the extinction efficiencies of core-shell nanoparticles of different materials, it is found that for silica - gold core - shell nanoparticles, the resonant wavelength is greater than that of the gold - silver, silver-gold and gold-silica core - shell nanoparticles and also the radiation pattern of the silica-gold core-shell nanoparticle is the most suitable one from the point of view of directivity. The dielectric functions of the core and shell material as well as of the embedded matrix are extremely important and plays a very major role to tune the directivity and resonance wavelength. Such highly controllable parameters of the dielectric - metal core - shell nanoparticles make them suitable for efficient coupling of optical radiation into nanoscale structures for a broad range of applications in the field of communications.

  13. High-efficient light absorption of monolayer graphene via cylindrical dielectric arrays and the sensing application

    NASA Astrophysics Data System (ADS)

    Zhou, Peng; Zheng, Gaige

    2018-04-01

    The efficiency of graphene-based optoelectronic devices is typically limited by the poor absolute absorption of light. A hybrid structure of monolayer graphene with cylindrical titanium dioxide (TiO2) array and aluminum oxide (Al2O3) spacer layer on aluminum (Al) substrate has been proposed to enhance the absorption for two-dimensional (2D) materials. By combining dielectric array with metal substrate, the structure achieves multiple absorption peaks with near unity absorbance at near-infrared wavelengths due to the resonant effect of dielectric array. Completed monolayer graphene is utilized in the design without any demand of manufacture process to form the periodic patterns. Further analysis indicates that the near-field enhancement induced by surface modes gives rise to the high absorption. This favorable field enhancement and tunability of absorption not only open up new approaches to accelerate the light-graphene interaction, but also show great potential for practical applications in high-performance optoelectronic devices, such as modulators and sensors.

  14. Molding of Plasmonic Resonances in Metallic Nanostructures: Dependence of the Non-Linear Electric Permittivity on System Size and Temperature

    PubMed Central

    Alabastri, Alessandro; Tuccio, Salvatore; Giugni, Andrea; Toma, Andrea; Liberale, Carlo; Das, Gobind; De Angelis, Francesco; Di Fabrizio, Enzo; Zaccaria, Remo Proietti

    2013-01-01

    In this paper, we review the principal theoretical models through which the dielectric function of metals can be described. Starting from the Drude assumptions for intraband transitions, we show how this model can be improved by including interband absorption and temperature effect in the damping coefficients. Electronic scattering processes are described and included in the dielectric function, showing their role in determining plasmon lifetime at resonance. Relationships among permittivity, electric conductivity and refractive index are examined. Finally, a temperature dependent permittivity model is presented and is employed to predict temperature and non-linear field intensity dependence on commonly used plasmonic geometries, such as nanospheres. PMID:28788366

  15. Structural, optoelectronic, infrared and Raman spectra of orthorhombic SrSnO{sub 3} from DFT calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreira, E.; Henriques, J.M.; Azevedo, D.L.

    2011-04-15

    Orthorhombic SrSnO{sub 3} was investigated using density functional theory (DFT) considering both the local density and generalized gradient approximations, LDA and GGA, respectively. The electronic band structure, density of states, complex dielectric function, optical absorption, and the infrared and Raman spectra were computed. Calculated lattice parameters are close to the experimental measurements, and an indirect band gap E(S{yields}{Gamma})=1.97eV (2.27 eV) was obtained within the GGA (LDA) level of calculation. Effective masses for holes and electrons were estimated, being very anisotropic in comparison with similar results for orthorhombic CaSnO{sub 3}. The complex dielectric function and the optical absorption of SrSnO{sub 3}more » were shown to be sensitive to the plane of polarization of the incident light. The infrared spectrum between 100 and 600 cm{sup -1} was obtained, with its main peaks being assigned, and a nice agreement between experimental and theoretical peaks of the Raman spectrum of orthorhombic SrSnO{sub 3} was achieved. -- Graphical abstract: Orthorhombic SrSnO{sub 3}: a view of the unit cell (left) and plots showing the calculated and experimental Raman spectra (right). Display Omitted Research highlights: {yields} We have performed DFT calculations on orthorhombic SrSnO{sub 3} crystals, obtaining their structural, electronical and optical properties. {yields} An indirect band gap was obtained, and anisotropic effective masses were found for both electrons and holes. {yields} The complex dielectric function and the optical absorption of SrSnO{sub 3} were shown to be very sensitive to the plane of polarization of the incident light. {yields} The infrared spectrum between 100 and 600 cm{sup -1} was obtained, with its main peaks being assigned, and a nice agreement between experimental and theoretical peaks of the Raman spectrum was achieved.« less

  16. Influence of defects on the absorption edge of InN thin films: The band gap value

    NASA Astrophysics Data System (ADS)

    Thakur, J. S.; Danylyuk, Y. V.; Haddad, D.; Naik, V. M.; Naik, R.; Auner, G. W.

    2007-07-01

    We investigate the optical-absorption spectra of InN thin films whose electron density varies from ˜1017tõ1021cm-3 . The low-density films are grown by molecular-beam-epitaxy deposition while highly degenerate films are grown by plasma-source molecular-beam epitaxy. The optical-absorption edge is found to increase from 0.61to1.90eV as the carrier density of the films is increased from low to high density. Since films are polycrystalline and contain various types of defects, we discuss the band gap values by studying the influence of electron degeneracy, electron-electron, electron-ionized impurities, and electron-LO-phonon interaction self-energies on the spectral absorption coefficients of these films. The quasiparticle self-energies of the valence and conduction bands are calculated using dielectric screening within the random-phase approximation. Using one-particle Green’s function analysis, we self-consistently determine the chemical potential for films by coupling equations for the chemical potential and the single-particle scattering rate calculated within the effective-mass approximation for the electron scatterings from ionized impurities and LO phonons. By subtracting the influence of self-energies and chemical potential from the optical-absorption edge energy, we estimate the intrinsic band gap values for the films. We also determine the variations in the calculated band gap values due to the variations in the electron effective mass and static dielectric constant. For the lowest-density film, the estimated band gap energy is ˜0.59eV , while for the highest-density film, it varies from ˜0.60tõ0.68eV depending on the values of electron effective mass and dielectric constant.

  17. Structural, electronic and optical properties of LiNbO3 using GGA-PBE and TB-mBJ functionals: A DFT study

    NASA Astrophysics Data System (ADS)

    Arshad Javid, M.; Khan, Zafar Ullah; Mehmood, Zahid; Nabi, Azeem; Hussain, Fayyaz; Imran, M.; Nadeem, Muhammad; Anjum, Naeem

    2018-06-01

    In the present work, first-principles calculations were performed to obtain the structural, electronic and optical properties of lithium niobate crystal using two exchange-correlation functionals (GGA-PBE and TB-mBJ). The calculated structural parameters were very close to the experimental values. TB-mBJ functional was found to be good when compared to LDA and GGA functionals in case of bandgap energy of 3.715 eV of lithium niobate. It was observed that the upper valence and lower conduction bands consist mainly the O-2p and Nb-4d states, respectively. Furthermore, calculations for real and imaginary parts of frequency-dependent dielectric function 𝜀(ω) of lithium niobate crystal were performed using TD-DFT method. The ordinary refractive index no(ω), extraordinary refractive index ne(ω), its birefringence and absorption peaks in imaginary dielectric function 𝜀2(ω) were also calculated.

  18. Study of multi-functionality of lanthanum ferrite (LaFeO{sub 3})

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaikwad, Vishwajit M.; Uikey, Pankaj; Acharya, Smita A., E-mail: saha275@yahoo.com

    2015-06-24

    In the present work, multifunctional behaviors of LaFeO{sub 3} (LFO) are investigated by studying its dielectric and photocatalytic properties, respectively. LFO is synthesized by microwave-assisted co-precipitation route. Orthorhombic structure is confirmed by X-ray diffraction (XRD) and data is well fitted using Rietveld refinement by Full-Prof suite. Frequency and Temperature dependence dielectric behavior are systematically studied. The dielectric constant of LFO was found to be 2500 – 3000 with dissipation factor less than 5%. Photodegradation of toxic dye (Methylene Blue) using as-prepared LFO is also investigated. UV-visible absorption spectra are used to study the photodegradation behaviour. Photodegradation of methylene blue (MB)more » taken from textile industries by LFO are reported. The colossal value of dielectric constant of LFO exhibits high potential to use as room temperature capacitive component for device miniaturization in microelectronics as well as photodegradation ability shows good photocatalyst.« less

  19. Terahertz dielectric analysis and spin-phonon coupling in multiferroic GeV 4 S 8

    DOE PAGES

    Warren, Matthew T.; Pokharel, G.; Christianson, A. D.; ...

    2017-08-23

    We present an investigation of the multiferroic lacunar spinel compound GeV 4S 8 using time-domain terahertz spectroscopy. We find three absorptions which either appear or shift at the antiferromagnetic transition temperature, T N=17K, as S=1 magnetic moments develop on vanadium tetrahedra. Two of these absorptions are coupled to the magnetic state and one only appears below the Néel temperature, and is interpreted as a magnon. We also observe isosbestic points in the dielectric constant in both the temperature and frequency domains. Further, we perform an analysis on the isosbestic features to reveal an interesting collapse into a single curve asmore » a function of both frequency and temperature, behavior which exists throughout the phase transitions. This analysis suggests the importance of spectral changes in the terahertz range which are linear in frequency and temperature.« less

  20. The effect of water absorption on the dielectric properties of polyethylene hexagonal boron nitride nanocomposites

    NASA Astrophysics Data System (ADS)

    Ayoob, Raed; Alhabill, Fuad N.; Andritsch, Thomas; Vaughan, Alun S.

    2018-02-01

    The effect of water absorption on the dielectric response of polyethylene/hexagonal boron nitride nanocomposites has been studied by dielectric spectroscopy. The nanocomposites have been prepared with hBN concentrations ranging from 2 wt% to 30 wt%. Fourier transform infrared spectroscopy and thermogravimetric analysis revealed a very small amount of hydroxyl groups on the surface of hBN. Mass loss measurements showed that the nanocomposites did not absorb any water under ambient and dry conditions while there was some water absorption under wet conditions. The dielectric spectroscopy results showed a broad relaxation peak, indicative of different states of water with water shells of different thickness, which moved to higher frequencies with increasing water content. However, the dielectric losses were significantly lower than the losses reported in the literature of nanocomposites under wet conditions. In addition, all the absorbed water was successfully removed under vacuum conditions which demonstrated that the interactions between the water and the nanocomposites were very weak, due to the hydrophobic nature of the hBN surface. This is a highly useful property, when considering these materials for applications in electrical insulation.

  1. The improved z-scan technique: potentialities of the additional right-angle scattering channel and the input polarization control

    NASA Astrophysics Data System (ADS)

    Volchkov, S. S.; Yuvchenko, S. A.; Zimnyakov, D. A.

    2018-04-01

    The theoretical possibility of retrieving the additional information on the dielectric properties of the nanoparticles material by single scattering in suspensions was studied. We have demonstrated a method of recreating the dielectric function of the material in the fundamental absorption band using the closed aperture z-scanning with the simultaneous Rayleigh scattering intensity measurements and the polarization control of an input laser beam. A possibility to recreate the form factor of the non-spherical particles or anisotropic nonlinear sensitivity for the sphere-like particles was also observed.

  2. Embedded dielectric water "atom" array for broadband microwave absorber based on Mie resonance

    NASA Astrophysics Data System (ADS)

    Gogoi, Dhruba Jyoti; Bhattacharyya, Nidhi Saxena

    2017-11-01

    A wide band microwave absorber at X-band frequency range is demonstrated numerically and experimentally by embedding a simple rectangular structured dielectric water "atom" in flexible silicone substrate. The absorption peak of the absorber is tuned by manipulating the size of the dielectric water "atom." The frequency dispersive permittivity property of the water "atom" shows broadband absorption covering the entire X-band above 90% efficiency with varying the size of the water "atom." Mie resonance of the proposed absorber provides the desired impedance matching condition at the air-absorber interface across a wide frequency range in terms of electric and magnetic resonances. Multipole decomposition of induced current densities is used to identify the nature of observed resonances. Numerical absorptivity verifies that the designed absorber is polarization insensitive for normal incidence and can maintain an absorption bandwidth of more than 2 GHz in a wide-angle incidence. Additionally, the tunability of absorption property with temperature is shown experimentally.

  3. Dielectric Characteristics and Microwave Absorption of Graphene Composite Materials

    PubMed Central

    Rubrice, Kevin; Castel, Xavier; Himdi, Mohamed; Parneix, Patrick

    2016-01-01

    Nowadays, many types of materials are elaborated for microwave absorption applications. Carbon-based nanoparticles belong to these types of materials. Among these, graphene presents some distinctive features for electromagnetic radiation absorption and thus microwave isolation applications. In this paper, the dielectric characteristics and microwave absorption properties of epoxy resin loaded with graphene particles are presented from 2 GHz to 18 GHz. The influence of various parameters such as particle size (3 µm, 6–8 µm, and 15 µm) and weight ratio (from 5% to 25%) are presented, studied, and discussed. The sample loaded with the smallest graphene size (3 µm) and the highest weight ratio (25%) exhibits high loss tangent (tanδ = 0.36) and a middle dielectric constant ε′ = 12–14 in the 8–10 GHz frequency range. As expected, this sample also provides the highest absorption level: from 5 dB/cm at 4 GHz to 16 dB/cm at 18 GHz. PMID:28773948

  4. First Principles Optical Absorption Spectra of Organic Molecules Adsorbed on Titania Nanoparticles

    NASA Astrophysics Data System (ADS)

    Baishya, Kopinjol; Ogut, Serdar; Mete, Ersen; Gulseren, Oguz; Ellialtioglu, Sinasi

    2012-02-01

    We present results from first principles computations on passivated rutile TiO2 nanoparticles in both free-standing and dye-sensitized configurations to investigate the size dependence of their optical absorption spectra. The computations are performed using time-dependent density functional theory (TDDFT) as well as GW-Bethe-Salpeter-Equation (GWBSE) methods and compared with each other. We interpret the first principles spectra for free-standing TiO2 nanoparticles within the framework of the classical Mie-Gans theory using the bulk dielectric function of TiO2. We investigate the effects of the titania support on the absorption spectra of a particular set of perylene-diimide (PDI) derived dye molecules, namely brominated PDI (Br2C24H8N2O4) and its glycine and aspartine derivatives.

  5. The effect of in-service aerospace contaminants on X-band dielectric properties of a bismaleimide/quartz composite

    NASA Astrophysics Data System (ADS)

    Rodriguez, Luis A.; García, Carla; Grace, Landon R.

    2015-05-01

    The impact of three common aerospace in-service liquid contaminants on the X-band dielectric properties of a polymer composite radar protecting structure (radome) is investigated and quantified. The dielectric properties of the composite laminate are critical to radar transparency, and thus performance, of the radome structure. Further, polymer composites are highly susceptible to absorption of liquids. As such, the effect of common aerospace contaminants on the dielectric properties of composite laminates is crucial. Measurement of relative permittivity and loss tangent via a split-post dielectric resonant technique at 10 GHz is used to determine the effect of water, deicing fluid, and propylene glycol absorption in a three-ply quartz-reinforced bismaleimide laminate. Additionally, fluid uptake kinetics are investigated as a function of liquid type. An approximately linear relationship between fluid content and relative permittivity is observed for all three contaminant types. A 1% increase in contaminant content by weight results in a 7.8%, 4.5%, and 2.5% increase in relative permittivity of the material due to water, deicing fluid, and propylene glycol, respectively. A more significant impact is seen in material loss tangent, where a 1% increase in contaminant content by weight is responsible for a 378.5%, 593.0%, and 441.5% increase in loss tangent due to the aforementioned fluids, respectively. A fluid uptake weight content of 1.31%, 3.41%, and 4.28% is achieved for water, deicing fluid, and propylene glycol respectively, at approximately 1300 hours exposure. Based on the reported observations, the dielectric property degradation of composite laminates due to these commonly used fluids is of significant concern for in-service aircraft radar systems routinely exposed to these contaminants.

  6. Dielectric properties of semi-insulating Fe-doped InP in the terahertz spectral region.

    PubMed

    Alyabyeva, L N; Zhukova, E S; Belkin, M A; Gorshunov, B P

    2017-08-04

    We report the values and the spectral dependence of the real and imaginary parts of the dielectric permittivity of semi-insulating Fe-doped InP crystalline wafers in the 2-700 cm -1 (0.06-21 THz) spectral region at room temperature. The data shows a number of absorption bands that are assigned to one- and two-phonon and impurity-related absorption processes. Unlike the previous studies of undoped or low-doped InP material, our data unveil the dielectric properties of InP that are not screened by strong free-carrier absorption and will be useful for designing a wide variety of InP-based electronic and photonic devices operating in the terahertz spectral range.

  7. Acoustic and relaxation behaviors of polydimethylsiloxane studied by using brillouin and dielectric spectroscopies

    NASA Astrophysics Data System (ADS)

    Lee, Byoung Wan; Ko, Jae-Hyeon; Park, Jaehoon; Shin, Dong-Myeong; Hwang, Yoon-Hwae

    2016-04-01

    The temperature dependences of the acoustic properties and the dielectric relaxation times of polydimethylsiloxane were investigated by using high-resolution Brillouin and broadband dielectric spectroscopies. The longitudinal sound velocity showed a large increase upon approaching the glass transition temperature while the acoustic absorption coefficient exhibited a maximum at ~263 K. Comparison of these results with previous ultrasonic data revealed a substantial frequency dispersion of the acoustic properties of this silicone-based elastomer. The relaxation times derived from the acoustic absorption peaks were consistent with the temperature dependence of the dielectric relaxation time of the structural a process, indicating a strong coupling between the acoustic waves and the segmental motions of the main chains.

  8. Design and manufacture of high absorption metal dielectric coatings for the reduction of straylight

    NASA Astrophysics Data System (ADS)

    Cathelinaud, Michel; Lemarquis, Frédéric; Torchio, Philippe; Amra, Claude

    2017-11-01

    This paper describes the design and manufacture of broadband metal dielectric absorbers. First, we give some design principles to obtain achromatic absorption properties. Then, we describe a new method to determine the complex refractive index of metallic layers. A graded index model is developed to take account of the evolution of the film packing density. Manufacturing is detailed in the last section. Absorption levels higher than 99.9% have been measured over the visible range.

  9. Optical Properties of a Single Carbon Chain-Doped Silicene Nanoribbon

    NASA Astrophysics Data System (ADS)

    Lu, Dao-Bang; Song, Yu-Ling; Huang, Xiao-yu; Wang, Chong

    2018-05-01

    Using first-principles spin polarization density function theory calculations, we have studied the electronic and optical properties of zigzag-edge silicene nanoribbons (ZSiNRs) doped with a single carbon chain. Because of the doped carbon chain, there are several defect states in the band structures of ZSiNRs across the Fermi level, and the ferromagnetic ground state is metallic. The dielectric functions in all three dimensions are completely different from each other, and thus the system exhibits strong optical anisotropism. The carbon chain influenced the dielectric functions most at low energy. The first peak in the E//x direction of the dielectric spectrum exhibits a significant blueshift, and its value has changed as well. The main absorption wavelength depends on the polarization direction of the incident light, but occurs within the UV region for all polarization directions. The peaks of the energy loss spectra correspond to the trailing edges in the reflectivity spectrum, and the highest peak corresponds to a plasmon frequency. Our results could be useful for investigating nanodevices based on silicene nanoribbons.

  10. Excellent microwave response derived from the construction of dielectric-loss 1D nanostructure.

    PubMed

    Dai, Sisi; Quan, Bin; Liang, Xiaohui; Lv, Jing; Yang, Zhihong; Ji, Guangbin; Du, Youwei

    2018-05-11

    Increasing efforts have recently been devoted to the artificial design and function of nanostructures for their application prospects in catalysis, drug delivery, energy storage, and microwave absorption. With the advantages of natural abundance, low cost, and environment friendliness, a one-dimensional (1D) MnO 2 nanowire (MW) is the representative dielectric-loss absorber for its special morphology and crystalline structure. However, its low reflection loss (RL) value due to its thin thickness limits its wide development and application in the microwave absorption field. In this work, artificially designed MnO 2 @AIR@C (MCs), namely, 1D hollow carbon nanotubes filled with nano-MnO 2 , were designed and synthesized. It is found that the RL value of the MC is almost lower than -10 dB. Furthermore, the RL value was able to achieve -18.9 dB with an effective bandwidth (-10 dB) of 5.84 GHz at 2.25 mm. Simultaneously, the dielectric and interfacial polarization became stronger while the impedance matching was much better than in the single MWs. Hence, the rational design and fabrication of micro-architecture are essential and MC has great potential to be an outstanding microwave absorber.

  11. Excellent microwave response derived from the construction of dielectric-loss 1D nanostructure

    NASA Astrophysics Data System (ADS)

    Dai, Sisi; Quan, Bin; Liang, Xiaohui; Lv, Jing; Yang, Zhihong; Ji, Guangbin; Du, Youwei

    2018-05-01

    Increasing efforts have recently been devoted to the artificial design and function of nanostructures for their application prospects in catalysis, drug delivery, energy storage, and microwave absorption. With the advantages of natural abundance, low cost, and environment friendliness, a one-dimensional (1D) MnO2 nanowire (MW) is the representative dielectric-loss absorber for its special morphology and crystalline structure. However, its low reflection loss (RL) value due to its thin thickness limits its wide development and application in the microwave absorption field. In this work, artificially designed MnO2@AIR@C (MCs), namely, 1D hollow carbon nanotubes filled with nano-MnO2, were designed and synthesized. It is found that the RL value of the MC is almost lower than -10 dB. Furthermore, the RL value was able to achieve -18.9 dB with an effective bandwidth (-10 dB) of 5.84 GHz at 2.25 mm. Simultaneously, the dielectric and interfacial polarization became stronger while the impedance matching was much better than in the single MWs. Hence, the rational design and fabrication of micro-architecture are essential and MC has great potential to be an outstanding microwave absorber.

  12. Ab-initio calculations of structural, electronic, and optical properties of Zn3(VO4)2

    NASA Astrophysics Data System (ADS)

    Ahmed, Nisar; Mukhtar, S.; Gao, Wei; Zafar Ilyas, Syed

    2018-03-01

    The structural, electronic, and optical properties of Zn3(VO4)2 are investigated using full potential linearized augmented plane wave (FP-LAPW) method within the framework of density functional theory (DFT). Various approaches are adopted to treat the exchange and correlation potential energy such as generalized gradient approximation (GGA), GGA+U, and the Tran–Blaha modified Becke–Johnson (TB-mBJ) potential. The calculated band gap of 3.424 eV by TB-mBJ is found to be close to the experimental result (3.3 eV). The optical anisotropy is analyzed through optical constants, such as dielectric function and absorption coefficient along parallel and perpendicular crystal orientations. The absorption coefficient reveals high absorption (1.5× {10}6 {cm}}-1) of photons in the ultraviolet region.

  13. Precise dielectric property measurements and E-field probe calibration for specific absorption rate measurements using a rectangular waveguide

    PubMed Central

    Hakim, B M; Beard, B B; Davis, C C

    2018-01-01

    Specific absorption rate (SAR) measurements require accurate calculations of the dielectric properties of tissue-equivalent liquids and associated calibration of E-field probes. We developed a precise tissue-equivalent dielectric measurement and E-field probe calibration system. The system consists of a rectangular waveguide, electric field probe, and data control and acquisition system. Dielectric properties are calculated using the field attenuation factor inside the tissue-equivalent liquid and power reflectance inside the waveguide at the air/dielectric-slab interface. Calibration factors were calculated using isotropicity measurements of the E-field probe. The frequencies used are 900 MHz and 1800 MHz. The uncertainties of the measured values are within ±3%, at the 95% confidence level. Using the same waveguide for dielectric measurements as well as calibrating E-field probes used in SAR assessments eliminates a source of uncertainty. Moreover, we clearly identified the system parameters that affect the overall uncertainty of the measurement system. PMID:29520129

  14. Identification of structural relaxation in the dielectric response of water

    DOE PAGES

    Hansen, Jesper S.; Kisliuk, Alexander; Sokolov, Alexei P.; ...

    2016-06-09

    One century ago pioneering dielectric results obtained for water and n-alcohols triggered the advent of molecular rotation diffusion theory considered by Debye to describe the primary dielectric absorption in these liquids. Here, comparing dielectric, viscoelastic, and light scattering results, we unambiguously demonstrate that the structural relaxation appears only as a high-frequency shoulder in the dielectric spectra of water. In contrast, the main dielectric peak is related to a supramolecular structure, analogous to the Debye-like peak observed in monoalcohols.

  15. Electromagnetic scattering and absorption by thin walled dielectric cylinders with application to ice crystals

    NASA Technical Reports Server (NTRS)

    Senior, T. B. A.; Weil, H.

    1977-01-01

    Important in the atmospheric heat balance are the reflection, transmission, and absorption of visible and infrared radiation by clouds and polluted atmospheres. Integral equations are derived to evaluate the scattering and absorption of electromagnetic radiation from thin cylindrical dielectric shells of arbitrary cross section when irradiated by a plane wave of any polarization incident in a plane perpendicular to the generators. Application of the method to infinitely long hexagonal cylinders has yielded numerical scattering and absorption data which simulate columnar sheath ice crystals. It is found that the numerical procedures are economical for cylinders having perimeters less than approximately fifteen free-space wavelengths.

  16. An advanced plasmonic cermet solar absorber for high temperature solar energy conversion applications

    NASA Astrophysics Data System (ADS)

    Bilokur, M.; Gentle, A.; Arnold, M.; Cortie, M.; Smith, G.

    2017-08-01

    Cermet coatings based on nanoparticles of Au or Ag in a stable dielectric matrix provide a combination of spectral-selectivity and microstructural stability at elevated temperatures. The nanoparticles provide an absorption peak due to their localized surface plasmon resonance and the dielectric matrix provides red-shifting and intrinsic absorption from defects. The matrix and two separated cermet layers combined add mechanical support, greater thermal stability and extra absorptance. The coatings may be prepared by magnetron sputtering. They have solar absorptance ranging between 91% and 97% with low thermal emittance making them suitable for application in solar thermal conversion installations.

  17. Optical properties of armchair (7, 7) single walled carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gharbavi, K.; Badehian, H., E-mail: hojatbadehian@gmail.com

    2015-07-15

    Full potential linearized augmented plane waves method with the generalized gradient approximation for the exchange-correlation potential was applied to calculate the optical properties of (7, 7) single walled carbon nanotubes. The both x and z directions of the incident photons were applied to estimate optical gaps, dielectric function, electron energy loss spectroscopies, optical conductivity, optical extinction, optical refractive index and optical absorption coefficient. The results predict that dielectric function, ε (ω), is anisotropic since it has higher peaks along z-direction than x-direction. The static optical refractive constant were calculated about 1.4 (z-direction) and 1.1 (x- direction). Moreover, the electron energymore » loss spectroscopy showed a sharp π electron plasmon peaks at about 6 eV and 5 eV for z and x-directions respectively. The calculated reflection spectra show that directions perpendicular to the tube axis have further optical reflection. Moreover, z-direction indicates higher peaks at absorption spectra in low range energies. Totally, increasing the diameter of armchair carbon nanotubes cause the optical band gap, static optical refractive constant and optical reflectivity to decrease. On the other hand, increasing the diameter cause the optical absorption and the optical conductivity to increase. Moreover, the sharp peaks being illustrated at optical spectrum are related to the 1D structure of CNTs which confirm the accuracy of the calculations.« less

  18. Analysis of single-layer metamaterial absorber with reflection theory

    NASA Astrophysics Data System (ADS)

    Xiong, Han; Tang, Ming-Chun; Hong, Jing-Song

    2015-04-01

    A reflection theory is employed to analyze a single-layered metamaterial absorber. With the necessary conditions for zero reflection, the permittivity and permeability as functions of absorptivity were obtained, which are suitable for analyzing the absorption properties of single-layered metamaterial absorber at both normal and oblique incidence cases. With the obtained expressions, it not only can explain why the absorption peaks monotonously decrease with increasing of the incident angles but also can explore the relationship between the absorptivity and spacer thickness of the dielectric slab. A Jerusalem cross metamaterial absorber was simulated and verified the validity of this proposed reflection theory. The main contribution of our work is that it can explain the physical mechanism of the various absorption peaks by using the analytical formula and highlights its potential guidance for designing and analyzing metamaterial absorbers in the future.

  19. Graphene-based perfect optical absorbers harnessing guided mode resonances.

    PubMed

    Grande, M; Vincenti, M A; Stomeo, T; Bianco, G V; de Ceglia, D; Aközbek, N; Petruzzelli, V; Bruno, G; De Vittorio, M; Scalora, M; D'Orazio, A

    2015-08-10

    We investigate graphene-based optical absorbers that exploit guided mode resonances (GMRs) attaining theoretically perfect absorption over a bandwidth of few nanometers (over the visible and near-infrared ranges) with a 40-fold increase of the monolayer graphene absorption. We analyze the influence of the geometrical parameters on the absorption rate and the angular response for oblique incidence. Finally, we experimentally verify the theoretical predictions in a one-dimensional, dielectric grating by placing it near either a metallic or a dielectric mirror, thus achieving very good agreement between numerical predictions and experimental results.

  20. Ponderomotive and weakly relativistic self-focusing of Gaussian laser beam in plasma: Effect of light absorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patil, S. D., E-mail: sdpatilphy@gmail.com; Takale, M. V.

    2016-05-06

    This paper presents an influence of light absorption on self-focusing of laser beam propagation in plasma. The differential equation for beam-width parameter is obtained using the Wentzel-Kramers-Brillouin and paraxial approximations through parabolic equation approach. The nonlinearity in dielectric function is assumed to be aroused due to the combined effect of weakly relativistic and ponderomotive regime. To highlight the nature of propagation, behavior of beam-width parameter with dimensionless distance of propagation is presented graphically and discussed. The present work is helpful to understand issues related to the beam propagation in laser plasma interaction experiments where light absorption plays a vital role.

  1. Achieving a multi-band metamaterial perfect absorber via a hexagonal ring dielectric resonator

    NASA Astrophysics Data System (ADS)

    Li, Li-Yang; Wang, Jun; Du, Hong-Liang; Wang, Jia-Fu; Qu, Shao-Bo

    2015-06-01

    A multi-band absorber composed of high-permittivity hexagonal ring dielectric resonators and a metallic ground plate is designed in the microwave band. Near-unity absorptions around 9.785 GHz, 11.525 GHz, and 12.37 GHz are observed for this metamaterial absorber. The dielectric hexagonal ring resonator is made of microwave ceramics with high permittivity and low loss. The mechanism for the near-unity absorption is investigated via the dielectric resonator theory. It is found that the absorption results from electric and magnetic resonances where enhanced electromagnetic fields are excited inside the dielectric resonator. In addition, the resonance modes of the hexagonal resonator are similar to those of standard rectangle resonators and can be used for analyzing hexagonal absorbers. Our work provides a new research method as well as a solid foundation for designing and analyzing dielectric metamaterial absorbers with complex shapes. Project supported by the National Natural Science Foundation of China (Grant Nos. 61331005, 11204378, 11274389, 11304393, and 61302023), the Aviation Science Foundation of China (Grant Nos. 20132796018 and 20123196015), the Natural Science Foundation for Post-Doctoral Scientists of China (Grant Nos. 2013M532131 and 2013M532221), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2013JM6005), and the Special Funds for Authors of Annual Excellent Doctoral Degree Dissertations of China (Grant No. 201242).

  2. Spectroscopic and dielectric response of zinc bismuth phosphate glasses as a function of chromium content

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, P. Srinivasa; Babu, P. Ramesh; Vijay, R.

    2014-09-15

    Graphical abstract: 20ZnF{sub 2}–(20 − x)Bi{sub 2}O{sub 3}–60P{sub 2}O{sub 5}:xCr{sub 2}O{sub 3} (0 ≤ x ≤2 mol%) glasses are prepared by melt quenching technique. The optical absorption spectra of present glasses are analyzed as a function of chromium content. The absorption bands are assigned to {sup 4}A{sub 2g}(F) ⟶ {sup 4}T{sub 1g}(F), {sup 4}A{sub 2g}(F) ⟶ {sup 4}T{sub 2g}(F), {sup 4}A{sub 2g}(F) ⟶ {sup 2}T{sub 1g}(G) and {sup 4}A{sub 2g}(F) ⟶ {sup 2}E{sub g}(G) transitions of Cr{sup 3+} ions. - Highlights: • ZnF{sub 2}–Bi{sub 2}O{sub 3}–P{sub 2}O{sub 5}:Cr{sub 2}O{sub 3} glasses were prepared by melt quenching and annealing. • Spectroscopicmore » and dielectric properties of chromium ions were investigated. • ESR and optical absorption spectra indicate the co-existence of Cr{sup 6+} ions with Cr{sup 5+} ions and Cr{sup 3+} ions. • Cr{sup 3+} ions act as modifiers and influence the semiconducting nature of the glass system. - Abstract: 20ZnF{sub 2}–(20 − x)Bi{sub 2}O{sub 3}–60P{sub 2}O{sub 5}:xCr{sub 2}O{sub 3} (0 ≤ x ≤2 mol%) glasses are prepared by melt quenching technique. Amorphous nature of these samples is confirmed by X-ray diffraction (XRD) analysis. FTIR study reveals bands due to CrO{sub 6}(o{sub d}) and CrO{sub 4}{sup 2−}(T{sub d}) units along with conventional phosphate groups. The optical absorption and ESR studies of present glasses are analyzed as a function of chromium content. The absorption bands are assigned to {sup 4}A{sub 2g}(F) ⟶ {sup 4}T{sub 1g}(F), {sup 4}A{sub 2g}(F) ⟶ {sup 4}T{sub 2g}(F), {sup 4}A{sub 2g}(F) ⟶ {sup 2}T{sub 1g}(G) and {sup 4}A{sub 2g}(F) ⟶ {sup 2}E{sub g}(G) transitions of Cr{sup 3+} ions. The highest concentration of Cr{sup 3+} ions (in octahedral sites, with network modifying positions) is found in the sample with 2.0 mol% of Cr{sub 2}O{sub 3}. The analysis of dielectric properties indicates a gradual increase in semiconducting character with increase in the concentration of Cr{sub 2}O{sub 3} from 0.2 to 2.0 mol%. The studies on dielectric breakdown strength identify the highest insulating strength for lowest mol% of Cr{sub 2}O{sub 3} in the present samples.« less

  3. Electronic and optical properties of graphene-like InAs: An ab initio study

    NASA Astrophysics Data System (ADS)

    Sohrabi, Leila; Boochani, Arash; Ali Sebt, S.; Mohammad Elahi, S.

    2018-03-01

    The present work initially investigates structural, optical, and electronic properties of graphene-like InAs by using the full potential linear augmented plane wave method in the framework of density functional theory and is then compared with the bulk Indium Arsenide in the wurtzite phase. The lattice parameters are optimized with GGA-PBE and LDA approximations for both 2D- and 3D-InAs. In order to study the electronic properties of graphene-like InAs and bulk InAs in the wurtzite phase, the band gap is calculated by GGA-PBG and GGA-EV approximations. Moreover, optical parameters of graphene-like InAs and bulk InAs such as the real and imaginary parts of dielectric function, electron energy loss function, refractivity, extinction and absorption coefficients, and optical conductivity are investigated. Plasmonic frequencies of 2D- and 3D-InAs are also calculated by using maximum electron energy loss function and the roots of the real part of the dielectric function.

  4. Cavity-enhanced measurements for determining dielectric-membrane thickness and complex index of refraction.

    PubMed

    Stambaugh, Corey; Durand, Mathieu; Kemiktarak, Utku; Lawall, John

    2014-08-01

    The material properties of silicon nitride (SiN) play an important role in the performance of SiN membranes used in optomechanical applications. An optimum design of a subwavelength high-contrast grating requires accurate knowledge of the membrane thickness and index of refraction, and its performance is ultimately limited by material absorption. Here we describe a cavity-enhanced method to measure the thickness and complex index of refraction of dielectric membranes with small, but nonzero, absorption coefficients. By determining Brewster's angle and an angle at which reflection is minimized by means of destructive interference, both the real part of the index of refraction and the sample thickness can be measured. A comparison of the losses in the empty cavity and the cavity containing the dielectric sample provides a measurement of the absorption.

  5. Measurement of the complex refractive index and complex dielectric permittivity of T.P.S. Space Shuttle tile materials at millimeter wavelengths

    NASA Technical Reports Server (NTRS)

    Afsar, Mohammed Nurul; Chi, Hua; Li, Xiaohui

    1990-01-01

    Complex refractive index and dielectric permittivity studies of presently used Space Shuttle tile materials at millimeter wavelengths reveal these tiles to exhibit similar absorption characteristics to those of fused silica materials. This absorption is mainly related to the water content in the specimen. A strong birefringence is observed at least in one of these fibrous refractory composite materials.

  6. Optical design of nanowire absorbers for wavelength selective photodetectors

    PubMed Central

    Mokkapati, S.; Saxena, D.; Tan, H. H.; Jagadish, C.

    2015-01-01

    We propose the optical design for the absorptive element of photodetectors to achieve wavelength selective photo response based on resonant guided modes supported in semiconductor nanowires. We show that the waveguiding properties of nanowires result in very high absorption efficiency that can be exploited to reduce the volume of active semiconductor compared to planar photodetectors, without compromising the photocurrent. We present a design based on a group of nanowires with varying diameter for multi-color photodetectors with small footprint. We discuss the effect of a dielectric shell around the nanowires on the absorption efficiency and present a simple approach to optimize the nanowire diameter-dielectric shell thickness for maximizing the absorption efficiency. PMID:26469227

  7. Self-Healable Electrical Insulation for High Voltage Applications

    NASA Technical Reports Server (NTRS)

    Williams, Tiffany S.

    2017-01-01

    Polymeric aircraft electrical insulation normally degrades by partial discharge with increasing voltage, which causes excessive localized Joule heating in the material and ultimately leads to dielectric failure of the insulator through thermal breakdown. Developing self-healing insulation could be a viable option to mitigate permanent mechanical degradation, thus increasing the longevity of the insulation. Instead of relying on catalyst and monomer-filled microcapsules to crack, flow, and cure at the damaged sites described in well-published mechanisms, establishment of ionic crosslinks could allow for multiple healing events to occur with the added benefit of achieving full recovery strength under certain thermal environments. This could be possible if the operating temperature of the insulator is the same as or close to the temperature where ionic crosslinks are formed. Surlyn, a commercial material with ionic crosslinks, was investigated as a candidate self-healing insulator based off prior demonstrations of self-healing behavior. Thin films of varying thicknesses were investigated and the effects of thickness on the dielectric strength were evaluated and compared to representative polymer insulators. The effects of thermal conditioning on the recovery strength and healing were observed as a function of time following dielectric breakdown. Moisture absorption was also studied to determine if moisture absorption rates in Surlyn were lower than that of common polyimides.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vidmer, Alexandre, E-mail: alexandre@vidmer.com; Sclauzero, Gabriele; Pasquarello, Alfredo

    The infrared absorption spectra of jennite, tobermorite 14 Å, anomalous tobermorite 11 Å, and normal tobermorite 11 Å are simulated within a density-functional-theory scheme. The atomic coordinates and the cell parameters are optimized resulting in structures which agree with previous studies. The vibrational frequencies and modes are obtained for each mineral. The vibrational density of states is analyzed through extensive projections on silicon tetrahedra, oxygen atoms, OH groups, and water molecules. The coupling with the electric field is achieved through the use of density functional perturbation theory, which yields Born effective charges and dielectric constants. The simulated absorption spectra reproducemore » well the experimental spectra, thereby allowing for a detailed interpretation of the spectral features in terms of the underlying vibrational modes. In the far-infrared part of the absorption spectra, the interplay between Ca and Si related vibrations leads to differences which are sensitive to the calcium/silicon ratio of the mineral.« less

  9. The effect of increase in dielectric values on specific absorption rate (SAR) in eye and head tissues following 900, 1800 and 2450 MHz radio frequency (RF) exposure

    NASA Astrophysics Data System (ADS)

    Keshvari, Jafar; Keshvari, Rahim; Lang, Sakari

    2006-03-01

    Numerous studies have attempted to address the question of the RF energy absorption difference between children and adults using computational methods. They have assumed the same dielectric parameters for child and adult head models in SAR calculations. This has been criticized by many researchers who have stated that child organs are not fully developed, their anatomy is different and also their tissue composition is slightly different with higher water content. Higher water content would affect dielectric values, which in turn would have an effect on RF energy absorption. The objective of this study was to investigate possible variation in specific absorption rate (SAR) in the head region of children and adults by applying the finite-difference time-domain (FDTD) method and using anatomically correct child and adult head models. In the calculations, the conductivity and permittivity of all tissues were increased from 5 to 20% but using otherwise the same exposure conditions. A half-wave dipole antenna was used as an exposure source to minimize the uncertainties of the positioning of a real mobile device and making the simulations easily replicable. Common mobile telephony frequencies of 900, 1800 and 2450 MHz were used in this study. The exposures of ear and eye regions were investigated. The SARs of models with increased dielectric values were compared to the SARs of the models where dielectric values were unchanged. The analyses suggest that increasing the value of dielectric parameters does not necessarily mean that volume-averaged SAR would increase. Under many exposure conditions, specifically at higher frequencies in eye exposure, volume-averaged SAR decreases. An increase of up to 20% in dielectric conductivity or both conductivity and permittivity always caused a SAR variation of less than 20%, usually about 5%, when it was averaged over 1, 5 or 10 g of cubic mass for all models. The thickness and composition of different tissue layers in the exposed regions within the human head play a more significant role in SAR variation compared to the variations (5-20%) of the tissue dielectric parameters.

  10. Band gap of corundumlike α -Ga2O3 determined by absorption and ellipsometry

    NASA Astrophysics Data System (ADS)

    Segura, A.; Artús, L.; Cuscó, R.; Goldhahn, R.; Feneberg, M.

    2017-07-01

    The electronic structure near the band gap of the corundumlike α phase of Ga2O3 has been investigated by means of optical absorption and spectroscopic ellipsometry measurements in the ultraviolet (UV) range (400-190 nm). The absorption coefficient in the UV region and the imaginary part of the dielectric function exhibit two prominent absorption thresholds with wide but well-defined structures at 5.6 and 6.3 eV which have been ascribed to allowed direct transitions from crystal-field split valence bands to the conduction band. Excitonic effects with large Gaussian broadening are taken into account through the Elliott-Toyozawa model, which yields an exciton binding energy of 110 meV and direct band gaps of 5.61 and 6.44 eV. The large broadening of the absorption onset is related to the slightly indirect character of the material.

  11. Unusual continuous dual absorption peaks in Ca-doped BiFeO3 nanostructures for broadened microwave absorption

    NASA Astrophysics Data System (ADS)

    Li, Zhong-Jun; Hou, Zhi-Ling; Song, Wei-Li; Liu, Xing-Da; Cao, Wen-Qiang; Shao, Xiao-Hong; Cao, Mao-Sheng

    2016-05-01

    Electromagnetic absorption materials have received increasing attention owing to their wide applications in aerospace, communication and the electronics industry, and multiferroic materials with both polarization and magnetic properties are considered promising ceramics for microwave absorption application. However, the insufficient absorption intensity coupled with the narrow effective absorption bandwidth has limited the development of high-performance multiferroic materials for practical microwave absorption. To address such issues, in the present work, we utilize interfacial engineering in BiFeO3 nanoparticles via Ca doping, with the purpose of tailoring the phase boundary. Upon Ca-substitution, the co-existence of both R3c and P4mm phases has been confirmed to massively enhance both dielectric and magnetic properties via manipulating the phase boundary and the destruction of the spiral spin structure. Unlike the commonly reported magnetic/dielectric hybrid microwave absorption composites, Bi0.95Ca0.05FeO3 has been found to deliver unusual continuous dual absorption peaks at a small thickness (1.56 mm), which has remarkably broadened the effective absorption bandwidth (8.7-12.1 GHz). The fundamental mechanisms based on the phase boundary engineering have been discussed, suggesting a novel platform for designing advanced multiferroic materials with wide applications.Electromagnetic absorption materials have received increasing attention owing to their wide applications in aerospace, communication and the electronics industry, and multiferroic materials with both polarization and magnetic properties are considered promising ceramics for microwave absorption application. However, the insufficient absorption intensity coupled with the narrow effective absorption bandwidth has limited the development of high-performance multiferroic materials for practical microwave absorption. To address such issues, in the present work, we utilize interfacial engineering in BiFeO3 nanoparticles via Ca doping, with the purpose of tailoring the phase boundary. Upon Ca-substitution, the co-existence of both R3c and P4mm phases has been confirmed to massively enhance both dielectric and magnetic properties via manipulating the phase boundary and the destruction of the spiral spin structure. Unlike the commonly reported magnetic/dielectric hybrid microwave absorption composites, Bi0.95Ca0.05FeO3 has been found to deliver unusual continuous dual absorption peaks at a small thickness (1.56 mm), which has remarkably broadened the effective absorption bandwidth (8.7-12.1 GHz). The fundamental mechanisms based on the phase boundary engineering have been discussed, suggesting a novel platform for designing advanced multiferroic materials with wide applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00223d

  12. Rational Construction of Uniform CoNi-Based Core-Shell Microspheres with Tunable Electromagnetic Wave Absorption Properties.

    PubMed

    Chen, Na; Jiang, Jian-Tang; Xu, Cheng-Yan; Yan, Shao-Jiu; Zhen, Liang

    2018-02-16

    Core-shell particles with integration of ferromagnetic core and dielectric shell are attracting extensive attention for promising microwave absorption applications. In this work, CoNi microspheres with conical bulges were synthesized by a simple and scalable liquid-phase reduction method. Subsequent coating of dielectric materials was conducted to acquire core-shell structured CoNi@TiO 2 composite particles, in which the thickness of TiO 2 is about 40 nm. The coating of TiO 2 enables the absorption band of CoNi to effectively shift from K u to S band, and endows CoNi@TiO 2 microspheres with outstanding electromagnetic wave absorption performance along with a maximum reflection loss of 76.6 dB at 3.3 GHz, much better than that of bare CoNi microspheres (54.4 dB at 17.8 GHz). The enhanced EMA performance is attributed to the unique core-shell structures, which can induce dipole polarization and interfacial polarization, and tune the dielectric properties to achieve good impedance matching. Impressively, TiO 2 coating endows the composites with better microwave absorption capability than CoNi@SiO 2 microspheres. Compared with SiO 2 , TiO 2 dielectric shells could protect CoNi microspheres from merger and agglomeration during annealed. These results indicate that CoNi@TiO 2 core-shell microspheres can serve as high-performance absorbers for electromagnetic wave absorbing application.

  13. Multi-functional metal-dielectric photonic structures

    NASA Astrophysics Data System (ADS)

    Smith, Kyle J.

    In RF circuits and integrated photonics, it is important to effectively control an electromagnetic signal. This includes protecting of the network from high power and/or undesired signal flow, which is achieved with device functionalities such as isolation, circulation, switching, and limiting. In an attempt to develop light-weight, small-footprint, better protection devices, new designs have been sought utilizing materials that have been otherwise avoided due to some primary downside. For example, ferromagnetic metals like Iron and Cobalt, despite being powerful magnets, have been completely shunned for uses in nonreciprocal devices due to their overwhelming electric losses and high reflectivity. How could we utilize lossy materials in electromagnetic applications? In this thesis research, we design and fabricate metal-dielectric photonic structures in which metal can be highly transmissive, while the desired response (e.g., magneto-photonic response) is strongly enhanced. Moreover, the metal-dielectric structures can be designed to exhibit a sharp transition from the induced transmission to broadband opacity for oblique incidence and/or due to a tiny alteration of the photonic structure (e.g., because of nonlinearity). Thus, the photonic structures can be tailored to produce collimation and power-limiting effects. In the case of ferromagnetic metals, the metal-dielectric structure can be realized as an omnidirectional isolator passing radiation in a single direction and for a single frequency. The effectiveness of such structures will be verified in microwave measurements. Additionally, metal-dielectric structures including a nonlinear component will be shown to function as a reflective power limiter, thus providing a far superior alternative to absorptive, and often sacrificial, limiters.

  14. Extreme absorption enhancement in ZnTe:O/ZnO intermediate band core-shell nanowires by interplay of dielectric resonance and plasmonic bowtie nanoantennas.

    PubMed

    Nie, Kui-Ying; Li, Jing; Chen, Xuanhu; Xu, Yang; Tu, Xuecou; Ren, Fang-Fang; Du, Qingguo; Fu, Lan; Kang, Lin; Tang, Kun; Gu, Shulin; Zhang, Rong; Wu, Peiheng; Zheng, Youdou; Tan, Hark Hoe; Jagadish, Chennupati; Ye, Jiandong

    2017-08-08

    Intermediate band solar cells (IBSCs) are conceptual and promising for next generation high efficiency photovoltaic devices, whereas, IB impact on the cell performance is still marginal due to the weak absorption of IB states. Here a rational design of a hybrid structure composed of ZnTe:O/ZnO core-shell nanowires (NWs) with Al bowtie nanoantennas is demonstrated to exhibit strong ability in tuning and enhancing broadband light response. The optimized nanowire dimensions enable absorption enhancement by engineering leaky-mode dielectric resonances. It maximizes the overlap of the absorption spectrum and the optical transitions in ZnTe:O intermediate-band (IB) photovoltaic materials, as verified by the enhanced photoresponse especially for IB states in an individual nanowire device. Furthermore, by integrating Al bowtie antennas, the enhanced exciton-plasmon coupling enables the notable improvement in the absorption of ZnTe:O/ZnO core-shell single NW, which was demonstrated by the profound enhancement of photoluminescence and resonant Raman scattering. The marriage of dielectric and metallic resonance effects in subwavelength-scale nanowires opens up new avenues for overcoming the poor absorption of sub-gap photons by IB states in ZnTe:O to achieve high-efficiency IBSCs.

  15. One-step fabrication of N-doped CNTs encapsulating M nanoparticles (M = Fe, Co, Ni) for efficient microwave absorption

    NASA Astrophysics Data System (ADS)

    Ning, Mingqiang; Li, Jingbo; Kuang, Boya; Wang, Chengzhi; Su, Dezhi; Zhao, Yongjie; Jin, Haibo; Cao, Maosheng

    2018-07-01

    By using a modified non-toxic pyrolysis method, M@NCNTs comprising in-situ formed M nanoparticles encapsulated in nitrogen-doped carbon nanotubes (NCNTs) have been synthesized. Compared to traditional preparation process of M@CNTs (eg: acid-aid treatment to CNTs then decorating M particles onto), this method holds the advantage of free of complicated treatment processes. The M@NCNTs exhibit tightly connected interfaces of M/NCNTs and contain abundant N dopants, which could contribute interfacial polarization and defect-dipole polarization to improving the microwave absorption performance. An intense dielectric relaxation is observed in Fe@NCNTs samples, which further enhances the dielectric loss. As expected, the as-synthesized M@NCNTs composites demonstrate promising candidates in microwave absorption (MWA) application. The minimum reflection loss (RL) of Fe@NCNTs (with 10 wt% loading) is up to -30.43 dB at 3.2 mm, and the effective absorption bandwidth (RL < -10 dB) is as wide as 5.7 GHz which benefits from the neighboring dual absorption peaks induced by the intense dielectric relaxation. Co@NCNTs and Ni@NCNTs also have satisfactory effective absorption bandwidth ∼4.08 and ∼4.72 GHz, respectively. The modified pyrolysis method is low-cost and non-toxic, which could become an industrial technique to synthesize carbonaceous composites for microwave absorption.

  16. Electronic and optical properties of antiferromagnetic iron doped NiO - A first principles study

    NASA Astrophysics Data System (ADS)

    Petersen, John E.; Twagirayezu, Fidele; Scolfaro, Luisa M.; Borges, Pablo D.; Geerts, Wilhelmus J.

    2017-05-01

    Antiferromagnetic NiO is a candidate for next generation high-speed and scaled RRAM devices. Here, electronic and optical properties of antiferromagnetic NiO: Fe 25% in the rock salt structure are studied and compared to intrinsic NiO. From density of states and complex dielectric function analysis, the first optical transition is found to be at lower frequency than intrinsic NiO due to an Fe impurity level being the valence band maximum. The resulting effects on refractive index, reflectivity, absorption, optical conductivity and loss function for Fe-doped NiO are compared to those of intrinsic NiO, and notable differences are analyzed. The electronic component of the static dielectric constant of NiO: Fe 25% is calculated to be about 2% less than that of intrinsic NiO.

  17. Modulation of electromagnetic and absorption properties in 18-26.5 GHz frequency range of strontium hexaferrites with doping of cobalt-zirconium

    NASA Astrophysics Data System (ADS)

    Pubby, Kunal; Narang, Sukhleen Bindra; Kaur, Prabhjyot; Chawla, S. K.

    2017-05-01

    Hexaferrite nano-particles of stoichiometric composition {{Sr}}{({{CoZr}})_x}{{F}}{{{e}}_{12 - 2x}}{{{O}}_{19}}, with x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0 were prepared using sol-gel auto-combustion route owing to its advantages such as low sintering temperature requirement, homogeneity and uniformity of grains. Tartaric acid as a fuel was utilized to complete the chemical reaction. The goal of this study is to analyse the effect of co-substitution of cobalt and zirconium on the electromagnetic and absorption properties of pure {{SrF}}{{{e}}_{12}}{{{O}}_{19}} hexaferrite. The properties were measured on the rectangular pellets of thickness 2.5 mm for K-frequency band using Vector Network Analyzer. The doping of Co-Zr has resulted in increase in real as well as imaginary parts of permittivity. The values of real permittivity lie in the range 3.6-7.0 for all the composition. The real part of permeability remains in range 0.7-1.6 in the studied frequency band for all the samples and shows slightly increasing trend with frequency. The maximum values of dielectric loss tangent peak (3.04) and magnetic loss tangent peak (2.34), among all the prepared compositions, have been observed for composition x = 0.2. Compositions with x = 0.6 and x = 0.0 also have high dielectric and magnetic loss peaks. Dielectric loss peaks are attributed to dielectric resonance and magnetic loss peaks are attributed to natural resonance. Experimentally determined reflection loss results show that all six compositions of prepared series have high values of absorption to propose them as single-layer absorbers in 18-26.5 GHz frequency range. The composition with x = 0.2 has maximum absorption capacity with reflection loss peak of -37.2 dB at 24.3 GHz frequency. The undoped composition also has high absorption peak (-25.46 dB), but -10 dB absorption bandwidth is minimum (2.2 GHz) out of the present series. Maximum absorption bandwidth is obtained for x = 1.0 (4.1 GHz). Other doped compositions also have high absorption bandwidth in range 3.4-3.9 GHz. The results of absorption were related to the dielectric phase angle to conclude that high electro-magnetic losses are dominant factor in deciding absorption properties of ferrites in comparison to impedance matching.

  18. Structural and opto-electronic properties of 2D AlSb monolayer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Deobrat, E-mail: deobratsingh9@gmail.com; Sonvane, Yogesh; Gupta, Sanjeev K.

    2016-05-23

    We have investigated dielectric function related optical properties such as refractive index, absorption coefficient of two-dimensional hexagonal system of aluminum antimony (AlSb). We have also find structural and electronic properties of AlSb which show direct/indirect band gap with planar structure, employing the density functional theory using the generalized gradient approximation (GGA) given by Perdew-Burke-Ernzerhof (PBE) functional for exchange-correlation potential. The refractive index n(ω) increases with frequency in the near infrared region but in visible region n(ω) increasing after decrease.

  19. Thermal, mechanical, optical and dielectric properties of piperazinium hydrogen phosphite monohydrate NLO single crystal

    NASA Astrophysics Data System (ADS)

    Rajkumar, R.; Praveen Kumar, P.

    2018-05-01

    Optical transparent crystal of piperazinium hydrogen phosphite monohydrate (PHPM) was grown by slow evaporation method. The grown crystal was characterized by single crystal X-ray diffraction analysis and the crystal belongs to monoclinic system. The functional groups present in PHPM crystal were confirmed by FTIR analysis. UV-Visible spectrum shows that the PHPM crystal is transparent in the visible region. The mechanical behavior of PHPM crystal was characterized by Vickers hardness test. Thermal stability of PHPM crystal was analyzed by thermogravimetric analysis. Dielectric studies were also carried out for the grown crystal. The third-order nonlinear parameters such as nonlinear refractive index and nonlinear absorption coefficient have been calculated using Z scan technique.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raj, C. Justin, E-mail: cjustinraj@gmail.com; Paramesh, G.; Prakash, B. Shri

    Highlights: • Mg doped zinc oxide ceramics were fabricated by co-precipitation/solid state reaction. • MZO ceramics shown a Debye type and colossal dielectric response. • Physical absorption of atmospheric water vapor contributes these high permittivity. • The fabricated ceramic shows Maxwell–Wagner type of relaxation. - Abstract: Zn{sub 1−x}Mg{sub x}O ( ≤ x ≤ 0.1) ceramics were fabricated by conventional solid-state reaction of co-precipitated zinc oxide and magnesium hydroxide nanoparticles. Structural and morphological properties of the fabricated ceramics were studied using X-ray diffraction and scanning electron microscopic analysis. The dielectric measurements of the ceramics were carried out as a function ofmore » frequency and temperature respectively. Interestingly, Mg doped ZnO (MZO) samples exhibited colossal dielectric response (∼1 × 10{sup 4} at 1 kHz) with Debye like relaxation. The detailed dielectric studies and thermal analyses showed that the unusual dielectric response of the samples were originated from the defected grain and grain boundary (GB) conductivity relaxations due to the absorbed atmospheric water vapor (moisture). Impedance spectroscopy was employed to determine the defected grain and GB resistances, capacitances and which supported Maxwell–Wagner type relaxation phenomena.« less

  1. Reflectance properties of one-dimensional metal-dielectric ternary photonic crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandey, G. N., E-mail: gnpandey2009@gmail.com; Kumar, Narendra; Thapa, Khem B.

    2016-05-06

    Metallic photonic crystal has a very important application in absorption enhancement in solar cells. It has been found that an ultra-thin metallic layer becomes transparent due to internal scattering of light through the each interface of the dielectric and metal surfaces. The metal has absorption due to their surface plasmon and the plasmon has important parameters for changing optical properties of the metal. We consider ternary metallic-dielectric photonic crystal (MDPC) for having large probabilities to change the optical properties of the MDPC and the photonic crystals may be changed by changing dimensionality, symmetry, lattice parameters, Filling fraction and effective refractivemore » index refractive index contrast. In this present communication, we try to show that the photonic band gap in ternary metal-dielectric photonic crystal can be significantly enlarged when air dielectric constant is considered. All the theoretical analyses are made based on the transfer matrix method together with the Drude model of metal.« less

  2. Tunable ultranarrow spectrum selective absorption in a graphene monolayer at terahertz frequency

    NASA Astrophysics Data System (ADS)

    Wu, Jun

    2016-06-01

    Complete absorption in a graphene monolayer at terahertz frequency through the critical coupling effect is investigated. It is achieved by sandwiching the graphene monolayer between a dielectric grating and a Bragg grating. The designed graphene absorber exhibits near-unity absorption at resonance but with an ultranarrow spectrum and antenna-like response, which is attributed to the combined effects of guided mode resonance with dielectric grating and the photonic band gap with Bragg grating. In addition to numerical simulation, the electric field distributions are also illustrated to provide a physical understanding of the perfect absorption effect. Furthermore, the absorption performance can be tuned by only changing the Fermi level of graphene, which is beneficial for real application. It is believed that this study may be useful for designing next-generation graphene-based optoelectronic devices.

  3. Polarization-independent dual-band terahertz metamaterial absorbers based on gold/parylene-C/silicide structure.

    PubMed

    Wen, Yongzheng; Ma, Wei; Bailey, Joe; Matmon, Guy; Yu, Xiaomei; Aeppli, Gabriel

    2013-07-01

    We design, fabricate, and characterize dual-band terahertz (THz) metamaterial absorbers with high absorption based on structures consisting of a cobalt silicide (Co-Si) ground plane, a parylene-C dielectric spacer, and a metal top layer. By combining two periodic metal resonators that couple separately within a single unit cell, a polarization-independent absorber with two distinct absorption peaks was obtained. By varying the thickness of the dielectric layer, we obtain absorptivity of 0.76 at 0.76 THz and 0.97 at 2.30 THz, which indicates the Co-Si ground plane absorbers present good performance.

  4. Optical Properties of Free and Embedded Small Nanoparticles

    NASA Astrophysics Data System (ADS)

    Idrobo, Juan

    2008-03-01

    It is well known that the absorption spectra, as well as the effective dielectric function, of nanoparticles in vacuum or surrounded by a dielectric medium can be obtained by classical Mie and Maxwell-Garnett theories. A limit as to how the particles can be for the theory to apply has not been established. Here I present theoretical results on the optical properties of small Ag, Au, and Si and Ge nanoparticles with tens of atoms in vacuum and in an embedded dielectric medium obtained from first-principles density-functional calculations. In particular, I will discuss the role that d-electron play on the optical properties of Ag and Au nanoparticles, and the cases when classical Mie and Maxwell-Garnett theories can be applied for nanoparticles of just few atoms in size and whose atoms are in bulk-like and not bulk-like positions. Comparison will be made for nanoparticles in vacuum and embedded in an alumina matrix. The quantum-mechanical results indicate that small nanoparticles in alumina can have an imprint on the effective dielectric function that is several times larger than would be predicted by Maxwell-Garnett theory for same-size particles. This work was supported by a GOALI NSF grant, DOE, the Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, and Alcoa Inc. Collaborators: S. ögüt, K. Jackson, J. Jellinek, A. Halabica. R. F. Haglund, R. Magruder, S.J. Pennycook and S.T. Pantelides.

  5. Detection of Ionic liquid using terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Cuicui; Zhao, Xiaojing; Liu, Shangjian; Zuo, Jian; Zhang, Cunlin

    2018-01-01

    Terahertz (THz, THz+1012Hz) spectroscopy is a far-infrared analytical technology with spectral bands locating between microware and infrared ranges. Being of excellent transmission, non-destruction and high discrimination, this technology has been applied in various fields such as physics, chemistry, nondestructive detection, communication, biomedicine public security. Terahertz spectrum is corresponding with vibration and rotation of liquid molecules, which is suitable to identify and study the liquid molecular dynamics. It is as a powerful spectral detection technology, terahertz time-domain spectroscopy is widely used in solution detection. can enable us to extract the material parameters or dielectric spectrum that show material micro-structure and dynamics by measuring amplitude and phase from coherent terahertz pulses. Ionic liquid exists in most biological tissues, and it is very important for life. It has recently been suggested that near-fired terahertz ionic contrast microscopy can be employed to image subtle changes in ionic concentrations arising from neuronal activity. In this paper, we detected Ionic liquid with different concentrations at room temperature by THz-TDS technique in the range of 0.2-1.5 THz. The liquid cell with a thickness of 0.2mm is made of quartz. The absorption coefficient, refractive index and dielectric function of solutions can be extracted based on THz-TDS. We use an expanded model for fitting the dielectric function based on a combination of a Debye relation for the anions and cations. We find A linear increase of the real and imaginary part of the dielectric function compared with pure water with increasing ion concentrations. A good agreement between the model and the experimental results is obtained. By means of dielectric relaxation process, it was found that the characteristic time of molecular movement and the information related to the liquid molecular structure and movement was obtained.

  6. Enhanced light absorption of silicon solar cells with dielectric nanostructured back reflector

    NASA Astrophysics Data System (ADS)

    Ren, Rui; Zhong, Zheng

    2018-06-01

    This paper investigates the light absorption property of nanostructured dielectric reflectors in silicon thin film solar cells using numerical simulation. Flat thin film solar cell with ZnO nanostructured back reflector can produce comparable photocurrent to the control model with Ag nanostructured back reflector. Furthermore, when it is integrated with nano-pillar surface decoration, a photocurrent density of 29.5 mA/cm2 can be achieved, demonstrating a photocurrent enhancement of 5% as compared to the model with Ag nanostructured back reflector.

  7. Electrical properties of Apollo 17 rock and soil samples and a summary of the electrical properties of lunar material at 450 MHz frequency

    NASA Technical Reports Server (NTRS)

    Gold, T.; Bilson, E.; Baron, R. L.

    1976-01-01

    The dielectric constant and the voltage absorption length was measured for four Apollo 17 soil samples (73241, 74220, 75061, 76501) and for two Apollo 17 rock samples (76315 and 79135) at 450 MHz frequency. The dielectric constant and absorption length measurements made on the lunar samples are reviewed and related to the transition element concentration in these samples. The significance of the laboratory measurements for radar observations is discussed.

  8. Absorption Voltages and Insulation Resistance in Ceramic Capacitors with Cracks

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2016-01-01

    Time dependence of absorption voltages (Vabs) in different types of low-voltage X5R and X7R ceramic capacitors was monitored for a maximum duration of hundred hours after polarization. To evaluate the effect of mechanical defects on Vabs, cracks in the dielectric were introduced either mechanically or by thermal shock. The maximum absorption voltage, time to roll-off, and the rate of voltage decrease are shown to depend on the crack-related leakage currents and insulation resistance in the parts. A simple model that is based on the Dow equivalent circuit for capacitors with absorption has been developed to assess the insulation resistance of capacitors. Standard measurements of the insulation resistance, contrary to the measurements based on Vabs, are not sensitive to the presence of mechanical defects and fail to reveal capacitors with cracks. Index Terms: Ceramic capacitor, insulation resistance, dielectric absorption, cracking.

  9. Critical coupling using the hexagonal boron nitride crystals in the mid-infrared range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Jipeng; Wang, Hengliang; Wen, Shuangchun

    2016-05-28

    We theoretically demonstrate the perfect absorption phenomena in the hexagonal boron nitride (hBN) crystals in the mid-infrared wavelength ranges by means of critical coupling with a one-dimensional photonic crystal spaced by the air. Different from the polymer absorbing layer composed by a metal-dielectric composite film, the hyperbolic dispersion characteristics of hBN can meet the condition of critical coupling and achieve the total absorption in the mid-infrared wavelength ranges. However, the critical coupling phenomenon can only appear in the hBN crystals with the type II dispersion. Moreover, we discuss the influence of the thickness of hBN, the incident angle, and themore » thickness and permittivity of the space dielectric on the total absorption. Ultimately, the conditions for absorption enhancement and the optimization methods of perfect absorption are proposed, and the design rules for a totally absorbing system under the different conditions are achieved.« less

  10. Polarization-independent absorption enhancement in a graphene square array with a cascaded grating structure.

    PubMed

    Wu, Jun

    2018-03-01

    The polarization-independent enhanced absorption effect of graphene in the near-infrared range is investigated. This is achieved by placing a graphene square array on top of a dielectric square array backed by a two-dimensional multilayer grating. Total optical absorption in graphene can be attributed to critical coupling, which is achieved through the combined effect of guided-mode resonance with the dielectric square array and the photonic band gap with the two-dimensional multilayer grating. To reveal the physical origin of such a phenomenon, the electromagnetic field distributions for both polarizations are illustrated. The designed graphene absorber exhibits near-unity polarization-independent absorption at resonance with an ultra-narrow spectrum. Moreover, the polarization-independent absorption can be tuned simply by changing the geometric parameters. The results may have promising potential for the design of graphene-based optoelectronic devices.

  11. Tunable multi-band absorption in metasurface of graphene ribbons based on composite structure

    NASA Astrophysics Data System (ADS)

    Ning, Renxia; Jiao, Zheng; Bao, Jie

    2017-05-01

    A tunable multiband absorption based on a graphene metasurface of composite structure at mid-infrared frequency was investigated by the finite difference time domain method. The composite structure were composed of graphene ribbons and a gold-MgF2 layer which was sandwiched in between two dielectric slabs. The permittivity of graphene is discussed with different chemical potential to obtain tunable absorption. And the absorption of the composite structure can be tuned by the chemical potential of graphene at certain frequencies. The impedance matching was used to study the perfect absorption of the structure in our paper. The results show that multi-band absorption can be obtained and some absorption peaks of the composite structure can be tuned through the changing not only of the width of graphene ribbons and gaps, but also the dielectric and the chemical potential of graphene. However, another peak was hardly changed by parameters due to a different resonant mechanism in proposed structure. This flexibily tunable multiband absorption may be applied to optical communications such as optical absorbers, mid infrared stealth devices and filters.

  12. Optical absorption in disordered monolayer molybdenum disulfide

    NASA Astrophysics Data System (ADS)

    Ekuma, C. E.; Gunlycke, D.

    2018-05-01

    We explore the combined impact of sulfur vacancies and electronic interactions on the optical properties of monolayer MoS2. First, we present a generalized Anderson-Hubbard Hamiltonian that accounts for both randomly distributed sulfur vacancies and the presence of dielectric screening within the material. Second, we parametrize this energy-dependent Hamiltonian from first-principles calculations based on density functional theory and the Green's function and screened Coulomb (GW) method. Third, we apply a first-principles-based many-body typical medium method to determine the single-particle electronic structure. Fourth, we solve the Bethe-Salpeter equation to obtain the charge susceptibility χ with its imaginary part being related to the absorbance A . Our results show that an increased vacancy concentration leads to decreased absorption both in the band continuum and from exciton states within the band gap. We also observe increased absorption below the band-gap threshold and present an expression, which describes Lifshitz tails, in excellent qualitative agreement with our numerical calculations. This latter increased absorption in the 1.0 -2.5 eV range makes defect engineering of potential interest for solar cell applications.

  13. Structural and optical properties of furfurylidenemalononitrile thin films

    NASA Astrophysics Data System (ADS)

    Ali, H. A. M.

    2013-03-01

    Thin films of furfurylidenemalononitrile (FMN) were deposited on different substrates at room temperature by thermal evaporation technique under a high vacuum. The structure of the powder was confirmed by Fourier transformation infrared (FTIR) technique. The unit cell dimensions were determined from X-ray diffraction (XRD) studies. The optical properties were investigated using spectrophotometric measurements of the transmittance and reflectance at normal incidence of light in the wavelength range from 200 to 2500 nm. The refractive index (n), the absorption index (k) and the absorption coefficient (α) were calculated. The analysis of the spectral behavior of the absorption coefficient in the absorption region revealed an indirect allowed transition. The refractive index dispersion was analyzed using the single oscillator model. Some dispersion parameters were estimated. Complex dielectric function and optical conductivity were determined. The influence of the irradiation with high-energy X-rays (6 MeV) on the studied properties was also investigated.

  14. Optical properties of Sulfur doped InP single crystals

    NASA Astrophysics Data System (ADS)

    El-Nahass, M. M.; Youssef, S. B.; Ali, H. A. M.

    2014-05-01

    Optical properties of InP:S single crystals were investigated using spectrophotometric measurements in the spectral range of 200-2500 nm. The absorption coefficient and refractive index were calculated. It was found that InP:S crystals exhibit allowed and forbidden direct transitions with energy gaps of 1.578 and 1.528 eV, respectively. Analysis of the refractive index in the normal dispersion region was discussed in terms of the single oscillator model. Some optical dispersion parameters namely: the dispersion energy (Ed), single oscillator energy (Eo), high frequency dielectric constant (ɛ∞), and lattice dielectric constant (ɛL) were determined. The volume and the surface energy loss functions (VELF & SELF) were estimated. Also, the real and imaginary parts of the complex conductivity were calculated.

  15. Enhanced absorption of microwave radiations through flexible polyvinyl alcohol-carbon black/barium hexaferrite composite films

    NASA Astrophysics Data System (ADS)

    Kumar, Sushil; Datt, Gopal; Santhosh Kumar, A.; Abhyankar, A. C.

    2016-10-01

    Flexible microwave absorber composite films of carbon black (CB)/barium hexaferrite nano-discs (BaF) in polyvinyl alcohol (PVA) matrix, fabricated by gel casting, exhibit ˜99.5% attenuation of electromagnetic waves in the entire 8-18 GHz (X and Ku-band) range. The X-ray diffraction and Raman spectroscopy studies confirm the formation of CB-BaF-PVA composite films. The electromagnetic absorption properties of composite films are found to be enhanced with CB content due to the synergetic effect of multiple dielectric and magnetic losses. The 25 wt. % CB grafted PVA-BaF flexible composite films with a thickness of ˜ 2 mm exhibit effective electromagnetic shielding of 23.6 dB with a dominant contribution from absorption mechanism (SEA ˜ 21 dB). The dielectric properties of composite films are further discussed by using the Debye model. The detailed analysis reveals that major contribution to dielectric losses is from dipolar and interfacial polarizations, whereas magnetic losses are predominantly from domain wall displacement.

  16. Abnormal blueshift of the absorption edge in graphene nanodots

    NASA Astrophysics Data System (ADS)

    Sheng, Weidong

    2018-06-01

    In a conventional semiconductor, when the dielectric screening effect is suppressed, the exciton binding energy increases and the corresponding excitonic transition would exhibit a redshift in the spectrum. In this work, I study the optical properties of hexagonal graphene nanodots by using a configuration interaction approach and reveal that the edge of the absorption spectrum shows an abnormal blueshift as the environmental dielectric constant ɛr decreases. The two dominant many-body effects in the nanodot: the quasiparticle and excitonic effects are both found to scale almost linearly with ɛr-1. The former is shown to have a larger proportionality constant and thus accounts for the blueshift of the absorption edge. In contrast to the long-range Coulomb interaction, the on-site Coulomb energy is found to have a negative impact on the bright excitonic states. In the presence of a strong dielectric screening effect, a strong short-range Coulomb interaction is revealed to be responsible for the disintegration of the bright exciton.

  17. Optical response of mixed methylammonium lead iodide and formamidinium tin iodide perovskite thin films

    DOE PAGES

    Ghimire, Kiran; Zhao, Dewei; Yan, Yanfa; ...

    2017-07-13

    Here, mixed tin (Sn) and lead (Pb) based perovskite thin films have been prepared by solution processing combining methylammonium lead iodide (MAPbI 3) and formamidinium tin iodide (FASnI 3) precursors. Optical response in the form of complex dielectric function (ε = ε 1 + iε 2) spectra and absorption coefficient (α) spectra of (FASnI 3) 1-x(MAPbI 3) x based perovskite films have been extracted over a spectral range 0.74 to 5.89 eV using spectroscopic ellipsometry. Absorption band edge energy changes as a function of composition for films including FASnI 3, MAPbI 3, and mixed x = 0.20, 0.35, 0.40, andmore » 0.6 (FASnI 3) 1-x(MAPbI 3) x perovskites. (FASnI 3) 0.60(MAPbI 3) 0.4 is found to have the minimum absorption band edge energy near ~1.2 eV.« less

  18. Ellipsometric study of YBa2Cu3O(7-x) laser ablated and co-evaporated films

    NASA Technical Reports Server (NTRS)

    Alterovitz, S. A.; Sieg, R. E.; Warner, J. D.; Stan, M. A.; Vitta, S.

    1990-01-01

    High temperature superconducting films of YBa2Cu3O(7-x) (YBCO were grown on SrTiO3, LaA1O3, and YSZ substrates using two techniques: excimer laser ablation with in situ annealing and co-evaporation of Y, Cu, and BaF2 with ex-situ annealing. Film thicknesses were typically 5000 A, with predominant c-axis alignment perpendicular to the substrate. Critical temperatures up to Tc(R=O)=90 K were achieved by both techniques. Ellipsometric measurements were taken in the range 1.6 to 4.3 eV using a variable angle spectroscopic ellipsometer. The complex dielectric function of the laser ablated films was reproducible from run to run, and was found to be within 10 percent of that previously reported for (001) oriented single crystals. A dielectric overlayer was observed in these films, with an index of refraction of approximately 1.55 and nearly zero absorption. For the laser ablated films the optical properties were essentially independent of substrate material. The magnitude of the dielectric function obtained for the co-evaported films was much lower than the value reported for single crystals, and was sample dependent.

  19. Absorption properties of metal-semiconductor hybrid nanoparticles.

    PubMed

    Shaviv, Ehud; Schubert, Olaf; Alves-Santos, Marcelo; Goldoni, Guido; Di Felice, Rosa; Vallée, Fabrice; Del Fatti, Natalia; Banin, Uri; Sönnichsen, Carsten

    2011-06-28

    The optical response of hybrid metal-semiconductor nanoparticles exhibits different behaviors due to the proximity between the disparate materials. For some hybrid systems, such as CdS-Au matchstick-shaped hybrids, the particles essentially retain the optical properties of their original components, with minor changes. Other systems, such as CdSe-Au dumbbell-shaped nanoparticles, exhibit significant change in the optical properties due to strong coupling between the two materials. Here, we study the absorption of these hybrids by comparing experimental results with simulations using the discrete dipole approximation method (DDA) employing dielectric functions of the bare components as inputs. For CdS-Au nanoparticles, the DDA simulation provides insights on the gold tip shape and its interface with the semiconductor, information that is difficult to acquire by experimental means alone. Furthermore, the qualitative agreement between DDA simulations and experimental data for CdS-Au implies that most effects influencing the absorption of this hybrid system are well described by local dielectric functions obtained separately for bare gold and CdS nanoparticles. For dumbbell shaped CdSe-Au, we find a shortcoming of the electrodynamic model, as it does not predict the "washing out" of the optical features of the semiconductor and the metal observed experimentally. The difference between experiment and theory is ascribed to strong interaction of the metal and semiconductor excitations, which spectrally overlap in the CdSe case. The present study exemplifies the employment of theoretical approaches used to describe the optical properties of semiconductors and metal nanoparticles, to achieve better understanding of the behavior of metal-semiconductor hybrid nanoparticles.

  20. FIRST PRINCIPLES STUDY ON ELECTRONIC AND OPTICAL PROPERTIES OF Al-DOPED γ-Ge3N4

    NASA Astrophysics Data System (ADS)

    Ding, Y. C.; Xiang, A. P.; Zhu, X. H.; Luo, J.; Hu, X. F.

    2012-12-01

    First principles study of the structural, electronic and optical properties of Al-doped γ-Ge3N4 with different concentration has been reported using the pseudo-potential plane wave method within the generalized gradient approximation (GGA). The binding energy and the formation energy suggest that Aluminum (Al) impurities prefer to substitute Ge at octahedral sites. Different doping concentrations are considered and the corresponding density of states (DOS) are analyzed. Calculated DOS indicates that there are holes in the top of the valance band after doping, meaning a p-type doping. We study the complex dielectric function, the absorption coefficient, and the electron energy loss spectra. It is demonstrated that for the low Al concentration, the material exhibits the dielectric behavior and for the high Al concentration, the material has possibilities to exhibit some metallic behavior. The γ-Ge3N4 doped with Al has a much higher static dielectric constant than undoped γ-Ge3N4, implying its potential applications in electronics and optics.

  1. Quantum cascade laser based monitoring of CF{sub 2} radical concentration as a diagnostic tool of dielectric etching plasma processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hübner, M.; Lang, N.; Röpcke, J.

    2015-01-19

    Dielectric etching plasma processes for modern interlevel dielectrics become more and more complex by the introduction of new ultra low-k dielectrics. One challenge is the minimization of sidewall damage, while etching ultra low-k porous SiCOH by fluorocarbon plasmas. The optimization of this process requires a deeper understanding of the concentration of the CF{sub 2} radical, which acts as precursor in the polymerization of the etch sample surfaces. In an industrial dielectric etching plasma reactor, the CF{sub 2} radical was measured in situ using a continuous wave quantum cascade laser (cw-QCL) around 1106.2 cm{sup −1}. We measured Doppler-resolved ro-vibrational absorption lines andmore » determined absolute densities using transitions in the ν{sub 3} fundamental band of CF{sub 2} with the aid of an improved simulation of the line strengths. We found that the CF{sub 2} radical concentration during the etching plasma process directly correlates to the layer structure of the etched wafer. Hence, this correlation can serve as a diagnostic tool of dielectric etching plasma processes. Applying QCL based absorption spectroscopy opens up the way for advanced process monitoring and etching controlling in semiconductor manufacturing.« less

  2. Structural investigation of vanadium ions doped Li2Osbnd PbOsbnd B2O3sbnd P2O5 glasses by means of spectroscopic and dielectric studies

    NASA Astrophysics Data System (ADS)

    Yusub, S.; Narendrudu, T.; Suresh, S.; Krishna Rao, D.

    2014-11-01

    In the present investigation we report the synthesis of a series of transparent glasses of composition 20Li2Osbnd 20PbOsbnd 45B2O3sbnd (15-x) P2O5: xV2O5 with eight values of x ranging from 0 to 2.5 mol%, and their characterization. X-ray diffraction (XRD) spectra reflected the amorphous nature of the glasses. Optical absorption, electron paramagnetic resonance (EPR) spectra and FTIR study of vanadyl ions in the present glass network have been analyzed. The optical absorption and EPR investigations have revealed that vanadium ions do exist in both V4+ and V5+ states and the redox ratio (V4+/V5+) is observed to increase with the increase in concentration of V2O5. Dielectric properties viz., dielectric constant ε‧(ω), loss tan δ, electrical moduli M‧(ω), M″(ω), a.c. conductivity σac over an extensive scale of frequency and temperature have been investigated as a function of V2O5 concentration. The dispersion of dielectric constant ε‧(ω) with temperature has been interpreted by space charge polarization model. The dielectric loss and electrical moduli variation with frequency and temperature exhibited relaxation effects. These effects are ascribed to V4+ ions. The a.c. conductivity of the prepared glasses is perceived to escalate with the hike in V2O5 concentration whereas the activation energy for conduction exhibits a reverse trend. The conductivity mechanism is explained on the basis of polaronic transfer between V4+ and V5+ ions. The low temperature a.c. conductivity mechanism is elucidated by the quantum mechanical tunneling model. The growth in the values of dielectric parameters with raise in the concentration of V2O5 is due to V4+ ions which act as modifiers. The investigation of these results has indicated that at higher concentrations of V2O5, the VO2+ ions in the glasses were present in octahedral sites with tetragonal compression and belong to C4v symmetry.

  3. Resonant laser printing of structural colors on high-index dielectric metasurfaces

    PubMed Central

    Zhu, Xiaolong; Yan, Wei; Levy, Uriel; Mortensen, N. Asger; Kristensen, Anders

    2017-01-01

    Man-made structural colors, which originate from resonant interactions between visible light and manufactured nanostructures, are emerging as a solution for ink-free color printing. We show that non-iridescent structural colors can be conveniently produced by nanostructures made from high-index dielectric materials. Compared to plasmonic analogs, color surfaces with high-index dielectrics, such as germanium (Ge), have a lower reflectance, yielding a superior color contrast. Taking advantage of band-to-band absorption in Ge, we laser-postprocess Ge color metasurfaces with morphology-dependent resonances. Strong on-resonance energy absorption under pulsed laser irradiation locally elevates the lattice temperature (exceeding 1200 K) in an ultrashort time scale (1 ns). This forms the basis for resonant laser printing, where rapid melting allows for surface energy–driven morphology changes with associated modification of color appearance. Laser-printable high-index dielectric color metasurfaces are scalable to a large area and open a new paradigm for printing and decoration with nonfading and vibrant colors. PMID:28508062

  4. Dielectric Study of Alcohols Using Broadband Terahertz Time Domain Spectroscopy (THz-TDS).

    NASA Astrophysics Data System (ADS)

    Sarkar, Sohini; Saha, Debasis; Banerjee, Sneha; Mukherjee, Arnab; Mandal, Pankaj

    2016-06-01

    Broadband Terahertz-Time Domain Spectroscopy (THz-TDS) (1-10 THz) has been utilized to study the complex dielectric properties of methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, and 1-octanol. Previous reports on dielectric study of alcohols were limited to 5 THz. At THz (1 THz = 33.33 wn = 4 meV) frequency range (0.1 to 15 THz), the molecular reorientation and several intermolecular vibrations (local oscillation of dipoles) may coexist and contribute to the overall liquid dynamics. We find that the Debye type relaxations barely contribute beyond 1 THz, rather three harmonic oscillators dominate the entire spectral range. To get insights on the modes responsible for the observed absorption in THz frequency range, we performed all atom molecular dynamics (MD) using OPLS force field and ab initio quantum calculations. Combined experimental and theoretical study reveal that the complex dielectric functions of alcohols have contribution from a) alkyl group oscillation within H-bonded network ( 1 THz), b) intermolecular H-bond stretching ( 5 THz) , and c) librational motions in alcohols. The present work, therefore, complements all previous studies on alcohols at lower frequencies and provides a clear picture on them in a broad spectral range from microwave to 10 THz.

  5. Unusual continuous dual absorption peaks in Ca-doped BiFeO3 nanostructures for broadened microwave absorption.

    PubMed

    Li, Zhong-Jun; Hou, Zhi-Ling; Song, Wei-Li; Liu, Xing-Da; Cao, Wen-Qiang; Shao, Xiao-Hong; Cao, Mao-Sheng

    2016-05-21

    Electromagnetic absorption materials have received increasing attention owing to their wide applications in aerospace, communication and the electronics industry, and multiferroic materials with both polarization and magnetic properties are considered promising ceramics for microwave absorption application. However, the insufficient absorption intensity coupled with the narrow effective absorption bandwidth has limited the development of high-performance multiferroic materials for practical microwave absorption. To address such issues, in the present work, we utilize interfacial engineering in BiFeO3 nanoparticles via Ca doping, with the purpose of tailoring the phase boundary. Upon Ca-substitution, the co-existence of both R3c and P4mm phases has been confirmed to massively enhance both dielectric and magnetic properties via manipulating the phase boundary and the destruction of the spiral spin structure. Unlike the commonly reported magnetic/dielectric hybrid microwave absorption composites, Bi0.95Ca0.05FeO3 has been found to deliver unusual continuous dual absorption peaks at a small thickness (1.56 mm), which has remarkably broadened the effective absorption bandwidth (8.7-12.1 GHz). The fundamental mechanisms based on the phase boundary engineering have been discussed, suggesting a novel platform for designing advanced multiferroic materials with wide applications.

  6. Microstructural and optical properties of Co doped NiO nanoparticles synthesized by auto combustion using NaOH as fuel

    NASA Astrophysics Data System (ADS)

    Parveen, Azra; Agrawal, Shraddha; Azam, Ameer

    2018-05-01

    The nanoparticles of 5% Co doped NiO were synthesized by auto-combustion method in aqueous medium using NaOH as a fuel. The obtained particles were characterized using X-ray diffraction studies XRD. The results of structural characterization shows the formation of Co doped Nickel oxide nanoparticles in single phase without any impurity. The optical absorption spectra of Co doped NiO sample recorded by UV-VIS spectrophotometer in the range of 200 to 800 nm have been presented. The variation of dielectric constant and dielectric loss has been studied as function of frequency. Co doping affects the optical properties and band gap. NiO can potentially be used in optical, electronic, catalytic materials, antimicrobial agent and super-paramagnetic devices.

  7. From nanoscale to macroscale: Engineering biomass derivatives with nitrogen doping for tailoring dielectric properties and electromagnetic absorption

    NASA Astrophysics Data System (ADS)

    Wang, Yana; Zhou, Zhili; Chen, Mingji; Huang, Yixing; Wang, Changxian; Song, Wei-Li

    2018-05-01

    Since achievement in electromagnetic (EM) technology dramatically promotes the critical requirement in developing advanced EM response materials, which are required to hold various advantageous features in light weight, small thickness, strong reflection loss and broadband absorption, the most important requirements, i.e. strong reflection loss and broadband absorption, are still highly pursued because of the intrinsic shortage in conventional EM absorbers. For addressing such critical problems, a unique three-dimensional nitrogen doped carbon monolith was demonstrated to understand the effects of the nitrogen doping on the dielectric and microwave absorption performance. The chemical components of the nitrogen doped carbon monoliths have been quantitatively determined for fully understanding the effects of nanoscale structures on the macroscopic composites. A modified Cole-Cole plot is plotted for guiding the chemical doping and material process, aiming to realizing the best matching conditions. The results have promised a universal route for achieving advanced materials with strong and broadband EM absorption.

  8. Terahertz gas sensing based on time-domain-spectroscopy using a hollow-optical fiber gas cell

    NASA Astrophysics Data System (ADS)

    Suzuki, T.; Katagiri, T.; Matsuura, Y.

    2018-02-01

    Terahertz gas sensing system based on time-domain spectroscopy (THz-TDS) using a hollow-optical fiber gas cell is proposed. A hollow optical fiber functions as a long-path and low-volume gas cell and loading a dielectric layer on the inside of the fiber reduces the transmission loss and the dielectric layer also protects the metal layer of the fiber from deterioration. In the fabrication process, a polyethylene tube with a thin wall is drawn from a thick preform and a metal layer is formed on the outside of the tube. By using a 34-cm long fiber gas cell, NH3 gas with a concentration of 8.5 % is detected with a good SN ratio. However, the absorption peaks of NH3 and water vapor appeared at around 1.2 THz are not separated. To improve the frequency resolution in Fourier transformation, the time scan width that is decided by the scanning length of linear stage giving a time delay in the probing THz beam is enlarged. As a result, the absorption peaks at around 1.2 THz are successfully separated. In addition, by introducing a longer fiber gas cell of 60-cm length, the measurement sensitivity is improved and an absorption spectrum of NH3 gas with a concentration of 0.5 % is successfully detected.

  9. Secondary and primary relaxations in hyperbranched polyglycerol: a comparative study in the frequency and time domains.

    PubMed

    Garcia-Bernabé, Abel; Dominguez-Espinosa, Gustavo; Diaz-Calleja, Ricardo; Riande, Evaristo; Haag, Rainer

    2007-09-28

    The non-Debye relaxation behavior of hyperbranched polyglycerol was investigated by broadband dielectric spectroscopy. A thorough study of the relaxations was carried out paying special attention to truncation effects on deconvolutions of overlapping processes. Hyperbranched polyglycerol exhibits two relaxations in the glassy state named in increasing order of frequency beta and gamma processes. The study of the evolution of these two fast processes with temperature in the time retardation spectra shows that the beta absorption is swallowed by the alpha in the glass-liquid transition, the gamma absorption being the only relaxation that remains operative in the liquid state. In heating, a temperature is reached at which the alpha absorption vanishes appearing the alphagamma relaxation. Two characteristics of alpha absorptions, decrease of the dielectric strength with increasing temperature and rather high activation energy, are displayed by the alphagamma process. Williams' ansatz seems to hold for these topologically complex macromolecules.

  10. Ultrathin microwave absorber based on metamaterial

    NASA Astrophysics Data System (ADS)

    Kim, Y. J.; Yoo, Y. J.; Hwang, J. S.; Lee, Y. P.

    2016-11-01

    We suggest that ultrathin broadband metamaterial is a perfect absorber in the microwave regime by utilizing the properties of a resistive sheet and metamaterial. Meta-atoms are composed of four-leaf clover-shape metallic patterns and a metal plane separated by three intermediate resistive sheet layers between four dielectric layers. We interpret the absorption mechanism of the broadband by using the distribution of surface currents at specific frequencies. The simulated absorption was over 99% in 1.8-4.2 GHz. The corresponding experimental absorption was also over 99% in 2.62-4.2 GHz; however, the absorption was slightly lower than 99% in 1.8-2.62 GHz because of the sheet resistance and the changed values for the dielectric constant. Furthermore, it is independent of incident angle. The results of this research indicate the possibility of applications, due to the suppression of noxious exposure, in cell phones, computers and microwave equipments.

  11. Effect of tumor properties on energy absorption, temperature mapping, and thermal dose in 13.56-MHz radiofrequency hyperthermia.

    PubMed

    Prasad, Bibin; Kim, Subin; Cho, Woong; Kim, Suzy; Kim, Jung Kyung

    2018-05-01

    Computational techniques can enhance personalized hyperthermia-treatment planning by calculating tissue energy absorption and temperature distribution. This study determined the effect of tumor properties on energy absorption, temperature mapping, and thermal dose distribution in mild radiofrequency hyperthermia using a mouse xenograft model. We used a capacitive-heating radiofrequency hyperthermia system with an operating frequency of 13.56 MHz for in vivo mouse experiments and performed simulations on a computed tomography mouse model. Additionally, we measured the dielectric properties of the tumors and considered temperature dependence for thermal properties, metabolic heat generation, and perfusion. Our results showed that dielectric property variations were more dominant than thermal properties and other parameters, and that the measured dielectric properties provided improved temperature-mapping results relative to the property values taken from previous study. Furthermore, consideration of temperature dependency in the bio heat-transfer model allowed elucidation of precise thermal-dose calculations. These results suggested that this method might contribute to effective thermoradiotherapy planning in clinics. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Terahertz and infrared spectroscopic evidence of phonon-paramagnon coupling in hexagonal piezomagnetic YMnO3

    NASA Astrophysics Data System (ADS)

    Kadlec, C.; Goian, V.; Rushchanskii, K. Z.; Kužel, P.; Ležaić, M.; Kohn, K.; Pisarev, R. V.; Kamba, S.

    2011-11-01

    Terahertz and far-infrared electric and magnetic responses of hexagonal piezomagnetic YMnO3 single crystals are investigated. Antiferromagnetic resonance is observed in the spectra of magnetic permeability μa [H(ω) oriented within the hexagonal plane] below the Néel temperature TN. This excitation softens from 41 to 32 cm-1 upon heating and finally disappears above TN. An additional weak and heavily-damped excitation is seen in the spectra of complex dielectric permittivity ɛc within the same frequency range. This excitation contributes to the dielectric spectra in both antiferromagnetic and paramagnetic phases. Its oscillator strength significantly increases upon heating toward room temperature, thus providing evidence of piezomagnetic or higher-order couplings to polar phonons. Other heavily-damped dielectric excitations are detected near 100 cm-1 in the paramagnetic phase in both ɛc and ɛa spectra, and they exhibit similar temperature behavior. These excitations appearing in the frequency range of magnon branches well below polar phonons could remind electromagnons, however their temperature dependence is quite different. We have used density functional theory for calculating phonon dispersion branches in the whole Brillouin zone. A detailed analysis of these results and of previously published magnon dispersion branches brought us to the conclusion that the observed absorption bands stem from phonon-phonon and phonon-paramagnon differential absorption processes. The latter is enabled by strong short-range in-plane spin correlations in the paramagnetic phase.

  13. Cryogenic measurements of mechanical loss of high-reflectivity coating and estimation of thermal noise.

    PubMed

    Granata, Massimo; Craig, Kieran; Cagnoli, Gianpietro; Carcy, Cécile; Cunningham, William; Degallaix, Jérôme; Flaminio, Raffaele; Forest, Danièle; Hart, Martin; Hennig, Jan-Simon; Hough, James; MacLaren, Ian; Martin, Iain William; Michel, Christophe; Morgado, Nazario; Otmani, Salim; Pinard, Laurent; Rowan, Sheila

    2013-12-15

    We report on low-frequency measurements of the mechanical loss of a high-quality (transmissivity T<5 ppm at λ(0)=1064 nm, absorption loss <0.5 ppm) multilayer dielectric coating of ion-beam-sputtered fused silica and titanium-doped tantala in the 10-300 K temperature range. A useful parameter for the computation of coating thermal noise on different substrates is derived as a function of temperature and frequency.

  14. Electronic and optical properties of GaN under pressure: DFT calculations

    NASA Astrophysics Data System (ADS)

    Javaheri, Sahar; Boochani, Arash; Babaeipour, Manuchehr; Naderi, Sirvan

    2017-12-01

    Optical and electronic properties of ZB, RS and WZ structures of gallium nitride (GaN) are studied in equilibrium and under pressure using the first-principles calculation in the density functional theory (DFT) framework to obtain quantities like dielectric function, loss function, reflectance and absorption spectra, refractive index and their relation parameters. The electronic properties are studied using EV-GGA and GGA approximations and the results calculated by EV-GGA approximation were found to be much closer to the experimental results. The interband electron transitions are studied using the band structure and electron transition peaks in the imaginary part of the dielectric function; these transitions occur in three structures from N-2p orbital to Ga-4s and Ga-4p orbitals in the conduction band. Different optical properties of WZ structure were calculated in two polarization directions of (100) and (001) and the results were close to each other. Plasmon energy corresponding to the main peak of the energy-loss function in RS with the value of 26 eV was the highest one, which increased under pressure. In general, RS shows more different properties than WZ and ZB.

  15. Characterization and Properties of Electroless Nickel Plated Poly (ethylene terephthalate) Nonwoven Fabric Enhanced by Dielectric Barrier Discharge Plasma Pretreatment

    NASA Astrophysics Data System (ADS)

    Geng, Yamin; Lu, Canhui; Liang, Mei; Zhang, Wei

    2010-12-01

    In order to develop a more economical pretreatment method for electroless nickel plating, a dielectric barrier discharge (DBD) plasma at atmospheric pressure was used to improve the hydrophilicity and adhesion of poly (ethylene terephthalate) (PET) nonwoven fabric. The properties of the PET nonwoven fabric including its liquid absorptive capacity (WA), aging behavior, surface chemical composition, morphology of the surface, adhesion strength, surface electrical resistivity and electromagnetic interference (EMI)- shielding effectiveness (SE) were studied. The liquid absorptive capacity (WA) increased due to the incorporation of oxygen-containing and nitrogen-containing functional groups on the surface of PET nonwoven fabric after DBD air-plasma treatment. The surface morphology of the nonwoven fibers became rougher after plasma treatment. Therefore, the surface was more prone to absorb tin sensitizer and palladium catalyst to form an active layer for the deposition of electroless nickel. SEM and X-ray diffraction (XRD) measurements indicated that a uniform coating of nickel was formed on the PET nonwoven fabric. The average EMI-SE of Ni-plating of PET nonwoven fabric maintained a relatively stable value (38.2 dB to 37.3 dB) in a frequency range of 50 MHz to 1500 MHz. It is concluded that DBD is feasible for pretreatment of nonwoven fabric for electroless nickel plating to prepare functional material with good EMI-SE properties.

  16. Magnetic graphene enabled tunable microwave absorber via thermal control.

    PubMed

    Quan, L; Qin, F X; Li, Y H; Estevez, D; Fu, G J; Wang, H; Peng, H-X

    2018-06-15

    By synthesizing nitrogen-doped graphene (NG) via a facile thermal annealing method, a fine control of the amount and location of doped nitrogen as well as the oxygen-containing functional groups is achieved with varying annealing temperature. The favorable magnetic properties have been achieved for N-doped rGO samples obtained at two temperatures of all NG samples, i.e., 500 °C and 900 °C with saturation magnetization of 0.63 emu g -1 and 0.67 emu g -1 at 2 K, respectively. This is attributed to the optimized competition of the N-doping and reduction process at 500 °C and the dominated reduction process at 900 °C. NG obtained at 300 °C affords the best overall absorbing performance: when the absorber thickness is 3.0 mm, the maximum absorption was -24.6 dB at 8.51 GHz, and the absorption bandwidth was 4.89 GHz (7.55-12.44 GHz) below -10 dB. It owes its large absorbing intensity to the good impedance match and significant dielectric loss. The broad absorption bandwidth benefits from local fluctuations of dielectric responses contributed by competing mechanisms. Despite the significant contribution from materials loss to the absorption, the one quarter-wavelength model is found to be responsible for the reflection loss peak positions. Of particular significance is that an appropriate set of electromagnetic parameters associated with reasonable reduction is readily accessible by convenient control of annealing temperature to modulate the microwave absorbing features of graphene. Thus, NG prepared by thermal annealing promises to be a highly efficient microwave absorbent.

  17. Magnetic graphene enabled tunable microwave absorber via thermal control

    NASA Astrophysics Data System (ADS)

    Quan, L.; Qin, F. X.; Li, Y. H.; Estevez, D.; Fu, G. J.; Wang, H.; Peng, H.-X.

    2018-06-01

    By synthesizing nitrogen-doped graphene (NG) via a facile thermal annealing method, a fine control of the amount and location of doped nitrogen as well as the oxygen-containing functional groups is achieved with varying annealing temperature. The favorable magnetic properties have been achieved for N-doped rGO samples obtained at two temperatures of all NG samples, i.e., 500 °C and 900 °C with saturation magnetization of 0.63 emu g‑1 and 0.67 emu g‑1 at 2 K, respectively. This is attributed to the optimized competition of the N-doping and reduction process at 500 °C and the dominated reduction process at 900 °C. NG obtained at 300 °C affords the best overall absorbing performance: when the absorber thickness is 3.0 mm, the maximum absorption was ‑24.6 dB at 8.51 GHz, and the absorption bandwidth was 4.89 GHz (7.55–12.44 GHz) below ‑10 dB. It owes its large absorbing intensity to the good impedance match and significant dielectric loss. The broad absorption bandwidth benefits from local fluctuations of dielectric responses contributed by competing mechanisms. Despite the significant contribution from materials loss to the absorption, the one quarter-wavelength model is found to be responsible for the reflection loss peak positions. Of particular significance is that an appropriate set of electromagnetic parameters associated with reasonable reduction is readily accessible by convenient control of annealing temperature to modulate the microwave absorbing features of graphene. Thus, NG prepared by thermal annealing promises to be a highly efficient microwave absorbent.

  18. Solution processed lanthanum aluminate gate dielectrics for use in metal oxide-based thin film transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esro, M.; Adamopoulos, G., E-mail: g.adamopoulos@lancaster.ac.uk; Mazzocco, R.

    2015-05-18

    We report on ZnO-based thin-film transistors (TFTs) employing lanthanum aluminate gate dielectrics (La{sub x}Al{sub 1−x}O{sub y}) grown by spray pyrolysis in ambient atmosphere at 440 °C. The structural, electronic, optical, morphological, and electrical properties of the La{sub x}Al{sub 1−x}O{sub y} films and devices as a function of the lanthanum to aluminium atomic ratio were investigated using a wide range of characterization techniques such as UV-visible absorption spectroscopy, impedance spectroscopy, spectroscopic ellipsometry, atomic force microscopy, x-ray diffraction, and field-effect measurements. As-deposited LaAlO{sub y} dielectrics exhibit a wide band gap (∼6.18 eV), high dielectric constant (k ∼ 16), low roughness (∼1.9 nm), and very low leakage currentsmore » (<3 nA/cm{sup 2}). TFTs employing solution processed LaAlO{sub y} gate dielectrics and ZnO semiconducting channels exhibit excellent electron transport characteristics with hysteresis-free operation, low operation voltages (∼10 V), high on/off current modulation ratio of >10{sup 6}, subthreshold swing of ∼650 mV dec{sup −1}, and electron mobility of ∼12 cm{sup 2} V{sup −1} s{sup −1}.« less

  19. Relaxation phenomena in AOT-water-decane critical and dense microemulsions

    NASA Astrophysics Data System (ADS)

    Letamendia, L.; Pru-Lestret, E.; Panizza, P.; Rouch, J.; Sciortino, F.; Tartaglia, P.; Hashimoto, C.; Ushiki, H.; Risso, D.

    2001-11-01

    We report on extensive measurements of the low and high frequencies sound velocity and sound absorption in AOT-water-decane microemulsions deduced from ultrasonic and, for the first time as far as the absorption is concerned, from Brillouin scattering experiments. New experimental results on dielectric relaxation are also reported. Our results, which include data taken for critical as well as dense microemulsions, show new interesting relaxation phenomena. The relaxation frequencies deduced from very high frequency acoustical measurements are in good agreement with new high frequency dielectric relaxation measurements. We show that along the critical isochore, sound dispersion, relaxation frequency, and static dielectric permittivity can be accurately fitted to power laws. The absolute values of the new exponents we derived from experimental data are nearly equal, and they are very close to β=0.33 characterising the shape of the coexistence curve. The exponent characterising the infinite frequency permittivity is very close to 0.04 relevant to the diverging shear viscosity. For dense microemulsions, two well defined relaxation domains have been identified and the temperature variations of the sound absorption and the zero frequency dielectric permittivity bear striking similarities. We also show that the relaxation frequency of the slow relaxation process is almost independent of temperature and volume fraction and so cannot be attributed to percolation phenomena, whereas it can more likely be attributed to an intrinsic relaxation process probably connected to membrane fluctuations.

  20. MgF2 monolayer as an anti-reflecting material

    NASA Astrophysics Data System (ADS)

    Mahida, H. R.; Singh, Deobrat; Sonvane, Yogesh; Gupta, Sanjeev K.; Thakor, P. B.

    2017-02-01

    The single-layer atomic sheet of magnesium fluoride (MgF2) having 1H and 1T phase structure (hexagonal and tetragonal phase) has been calculated by density functional theory (DFT). Further, we have investigated the structural, electronic and optical properties such as frequency dependent dielectric function, absorption spectra, energy loss spectra, reflectivity, refractive index and optical conductivity of monolayer MgF2 for the direction of parallel and perpendicular electric field polarizations. Our results suggest that monolayer MgF2 provides promising applications in anti-reflection coatings, high-reflective systems and in opto-electronic materials.

  1. Improving the Electromagnetic Wave Absorption Properties of the Layered MoS2 by Cladding with Ni Nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhang, Zilong; Wang, Zilin; Heng, Liuyang; Wang, Shuai; Chen, Xiqiao; Fu, Xiquan; Zou, Yanhong; Tang, Zhixiang

    2018-05-01

    MoS2 is a promising material with microwave absorption performance due to its high dielectric properties and low density. However, pure MoS2 is non-magnetic and has a bad impedance matching characteristic. In this study we prepared the Ni/MoS2 nanocomposites by cladding the MoS2 micrometer slices with magnetic Ni nanoparticles. Our results show that the microwave absorption properties of Ni/MoS2 nanocomposites have been improved obviously compared with the pure MoS2. Because of the introduction of Ni particles, the permeability of the nanocomposites has been turned from one to a complex, indicating a newly added magnetic loss. Meanwhile, the big gap between the permittivity and permeability of the Ni/MoS2 nanocomposites has been properly narrowed, which suggests an improved impedance matching. Moreover, the dielectric Cole-Cole semicircle shows that there are more Debye relaxation processes for the Ni/MoS2 nanocomposites, which further enhances the dielectric loss. Due to its improved electromagnetic properties, the minimum reflection loss (RL) value of the Ni/MoS2 nanocomposites with 60 wt % loading reaches -55 dB and the absorption bandwidth (<-10 dB) is up to 4.0 GHz (10.8-14.8 GHz) with a matching thickness of 1.5 mm. The results provide an excellent candidate for microwave absorbing materials with a broad effective absorption bandwidth at thin thicknesses.

  2. Dual-band polarization-/angle-insensitive metamaterial absorber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, Han; Chongqing University, College of Communication Engineering, Chongqing, 400044; Zhong, Lin-Lin

    A dual-band metamaterial absorber (MA) based on triangular resonators is designed and investigated in this paper. It is composed of a two-dimensional periodic metal-dielectric-metal sandwiches array on a dielectric substrate. The simulation results clearly show that this absorber has two absorption peaks at 14.9 and 18.9 GHz, respectively, and experiments are conducted to verify the proposed designs effectively. For each polarization, the dual-band absorber is insensitive to the incident angle (up to 60°) and the absorption peaks remain high for both transverse electric (TE) and transverse magnetic (TM) radiation. To study the physical mechanism of power loss, the current distributionmore » at the dual absorption peaks is given. The MA proposed in this paper has potential applications in many scientific and martial fields.« less

  3. Influence of the aggregate state on band structure and optical properties of C60 computed with different methods

    NASA Astrophysics Data System (ADS)

    Pal, Amrita; Arabnejad, Saeid; Yamashita, Koichi; Manzhos, Sergei

    2018-05-01

    C60 and C60 based molecules are efficient acceptors and electron transport layers for planar perovskite solar cells. While properties of these molecules are well studied by ab initio methods, those of solid C60, specifically its optical absorption properties, are not. We present a combined density functional theory-Density Functional Tight Binding (DFTB) study of the effect of solid state packing on the band structure and optical absorption of C60. The valence and conduction band edge energies of solid C60 differ on the order of 0.1 eV from single molecule frontier orbital energies. We show that calculations of optical properties using linear response time dependent-DFT(B) or the imaginary part of the dielectric constant (dipole approximation) can result in unrealistically large redshifts in the presence of intermolecular interactions compared to available experimental data. We show that optical spectra computed from the frequency-dependent real polarizability can better reproduce the effect of C60 aggregation on optical absorption, specifically with a generalized gradient approximation functional, and may be more suited to study effects of molecular aggregation.

  4. Nonequilibrium quantum solvation with a time-dependent Onsager cavity

    NASA Astrophysics Data System (ADS)

    Kirchberg, H.; Nalbach, P.; Thorwart, M.

    2018-04-01

    We formulate a theory of nonequilibrium quantum solvation in which parameters of the solvent are explicitly depending on time. We assume in a simplest approach a spherical molecular Onsager cavity with a time-dependent radius. We analyze the relaxation properties of a test molecular point dipole in a dielectric solvent and consider two cases: (i) a shrinking Onsager sphere and (ii) a breathing Onsager sphere. Due to the time-dependent solvent, the frequency-dependent response function of the dipole becomes time-dependent. For a shrinking Onsager sphere, the dipole relaxation is in general enhanced. This is reflected in a temporally increasing linewidth of the absorptive part of the response. Furthermore, the effective frequency-dependent response function shows two peaks in the absorptive part which are symmetrically shifted around the eigenfrequency. By contrast, a breathing sphere reduces damping as compared to the static sphere. Interestingly, we find a non-monotonous dependence of the relaxation rate on the breathing rate and a resonant suppression of damping when both rates are comparable. Moreover, the linewidth of the absorptive part of the response function is strongly reduced for times when the breathing sphere reaches its maximal extension.

  5. Nonequilibrium quantum solvation with a time-dependent Onsager cavity.

    PubMed

    Kirchberg, H; Nalbach, P; Thorwart, M

    2018-04-28

    We formulate a theory of nonequilibrium quantum solvation in which parameters of the solvent are explicitly depending on time. We assume in a simplest approach a spherical molecular Onsager cavity with a time-dependent radius. We analyze the relaxation properties of a test molecular point dipole in a dielectric solvent and consider two cases: (i) a shrinking Onsager sphere and (ii) a breathing Onsager sphere. Due to the time-dependent solvent, the frequency-dependent response function of the dipole becomes time-dependent. For a shrinking Onsager sphere, the dipole relaxation is in general enhanced. This is reflected in a temporally increasing linewidth of the absorptive part of the response. Furthermore, the effective frequency-dependent response function shows two peaks in the absorptive part which are symmetrically shifted around the eigenfrequency. By contrast, a breathing sphere reduces damping as compared to the static sphere. Interestingly, we find a non-monotonous dependence of the relaxation rate on the breathing rate and a resonant suppression of damping when both rates are comparable. Moreover, the linewidth of the absorptive part of the response function is strongly reduced for times when the breathing sphere reaches its maximal extension.

  6. On the dielectric dispersion and absorption in nanosized manganese zinc mixed ferrites.

    PubMed

    Veena Gopalan, E; Malini, K A; Sakthi Kumar, D; Yoshida, Yasuhiko; Al-Omari, I A; Saravanan, S; Anantharaman, M R

    2009-04-08

    The temperature and frequency dependence of dielectric permittivity and dielectric loss of nanosized Mn(1-x)Zn(x)Fe(2)O(4) (for x = 0, 0.2, 0.4, 0.6, 0.8, 1) were investigated. The impact of zinc substitution on the dielectric properties of the mixed ferrite is elucidated. Strong dielectric dispersion and broad relaxation were exhibited by Mn(1-x)Zn(x)Fe(2)O(4). The variation of dielectric relaxation time with temperature suggests the involvement of multiple relaxation processes. Cole-Cole plots were employed as an effective tool for studying the observed phenomenon. The activation energies were calculated from relaxation peaks and Cole-Cole plots and found to be consistent with each other and indicative of a polaron conduction.

  7. Measurement of dielectric properties of whole and ground chicken breast meat over the frequency range from 500 MHz to 50 GHz

    USDA-ARS?s Scientific Manuscript database

    The dielectric properties of food greatly influence its interaction with RF and MW electromagnetic fields and subsequently determine the absorption of microwave energy and consequent heating behavior of food materials in microwave heating and processing applications. Microwave heating is usually re...

  8. Effect of N2 Plasma Annealing on Properties of Fluorine Doped Silicon Dioxide Films with Low Dielectric Constant for Ultra-Large-Scale Integrated Circuits

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Wang, Peng-Fei; Ding, Shi-Jin; Wang, Ji-Tao; William, Wei Lee

    2002-06-01

    The influence of N2 plasma annealing on the properties of fluorine doped silicon oxide (SiOF) films is investigated. The stability of the dielectric constant of SiOF film is remarkably improved by the N2 plasma annealing. After enduring a moisture absorption test for six hours in a chamber with 60% humidity at 50°C, the dielectric constant variation of the annealed SiOF films is only 1.5%, while the variation for those SiOF films without annealing is 15.5%. Fourier transform infrared spectroscopic results show that the absorption peaks of Si-OH and H-OH of SiOF films are reduced after the N2 plasma annealing because the annealing can wipe off some unstable Si-F2 bonds in SiOF films. These unstable Si-F2 bonds are suitable to react with water, resulting in the degradation of SiOF film properties. Therefore, the N2 plasma annealing meliorates the properties of SiOF films with low dielectric constant.

  9. Measurements of water molecule density by tunable diode laser absorption spectroscopy in dielectric barrier discharges with gas-water interface

    NASA Astrophysics Data System (ADS)

    Tachibana, Kunihide; Nakamura, Toshihiro; Kawasaki, Mitsuo; Morita, Tatsuo; Umekawa, Toyofumi; Kawasaki, Masahiro

    2018-01-01

    We measured water molecule (H2O) density by tunable diode-laser absorption spectroscopy (TDLAS) for applications in dielectric barrier discharges (DBDs) with a gas-water interface. First, the effects of water temperature and presence of gas flow were tested using a Petri dish filled with water and a gas injection nozzle. Second, the TDLAS system was applied to the measurements of H2O density in two types of DBDs; one was a normal (non-inverted) type with a dielectric-covered electrode above a water-filled counter electrode and the other was an inverted type with a water-suspending mesh electrode above a dielectric-covered counter electrode. The H2O density in the normal DBD was close to the density estimated from the saturated vapor pressure, whereas the density in the inverted DBD was about half of that in the former type. The difference is attributed to the upward gas flow in the latter type, that pushes the water molecules up towards the gas-water interface.

  10. Fluorescence and Nonlinear Optical Properties of Alizarin Red S in Solvents and Droplet.

    PubMed

    Sangsefedi, Seyed Ahmad; Sharifi, Soheil; Rezaion, Hadi Rastegar Moghaddam; Azarpour, Afshin

    2018-05-28

    The enhancement of the nonlinear properties of materials is an interesting topic since it has many applications in optical devices and medicines. The Z-scan technique was used to study the values of the two-photon absorption (β), second-order molecular hyperpolarizability (γ R ), third-order susceptibility (χ R ), and nonlinear refractive index (n 2 ) of Alizarin Red S in different media using a continuous-wave diode-pump laser radiation at 532 nm. For Alizarin Red S in a droplet, the β, n 2 , χ R, and γ R were estimated at the order of 10 -7  cm 2 /W and 10 -12  cm/W, 10 -3  m 3  W -1  s -1 and 10 -24  m 6  W -1  s -1 , respectively. The results indicated that the values of β and n 2 reduced, whereas the values of χ R and γ R were enhanced when the solvent was changed from droplet to water, DMF, and dimethyl sulfoxide due to the change in the solvent's dielectric constant (ε). Moreover, the values of β were enhanced by an increase in the concentration of the surfactant in the aqueous solution. The absorption spectra of Alizarin Red S in the aqueous solution was observed at 428 nm, and a few red shifts in the absorption spectra were observed with a reduction in the dielectric constant of the medium. The same effect was observed in the absorption spectra of Alizarin Red S in the droplet when the bulk dielectric constant reduced. The dielectric constant can affect the fluorescence spectra of Alizarin Red S when the solution is changed from water to dimethyl sulfoxide. The dipole moments of Alizarin Red S in the different media were studied using the quantum perturbation theory.

  11. Effect of boron and phosphorus codoping on the electronic and optical properties of graphitic carbon nitride monolayers: First-principle simulations

    NASA Astrophysics Data System (ADS)

    Yousefi, Mahdieh; Faraji, Monireh; Asgari, Reza; Moshfegh, Alireza Z.

    2018-05-01

    We study the effect of boron (B) and phosphorous (P) doping and B/P codoping on electronic and optical properties of graphitic carbon nitride (g-C3N4 or GCN) monolayers using density functional simulations. The energy band structure indicates that the incorporation of both B and P into a hexagonal lattice of GCN reduces the energy band gap from 3.1 for pristine GCN to 1.9 eV, thus extending light absorption toward the visible region. Moreover, on the basis of calculating absorption spectra and dielectric function, the codoped system exhibits an improved absorption intensity in the visible region and more electronic transitions, which named π* electronic transitions that occurred and were prohibited in the pristine GCN. These transitions can be attributed to charge redistribution upon doping, caused by distorted configurable B/P-codoped GCN confirmed by both electron density and Mulliken charge population. Therefore, B/P-codoped GCN is expected to be an auspicious candidate to be used as a promising photoelectrode in photoelectrochemical water splitting reactions leading to efficient solar H2 production.

  12. Structural control of nonlinear optical absorption and refraction in dense metal nanoparticle arrays.

    PubMed

    Kohlgraf-Owens, Dana C; Kik, Pieter G

    2009-08-17

    The linear and nonlinear optical properties of a composite containing interacting spherical silver nanoparticles embedded in a dielectric host are studied as a function of interparticle separation using three dimensional frequency domain simulations. It is shown that for a fixed amount of metal, the effective third-order nonlinear susceptibility of the composite chi((3))(omega) can be significantly enhanced with respect to the linear optical properties, due to a combination of resonant surface plasmon excitation and local field redistribution. It is shown that this geometry-dependent susceptibility enhancement can lead to an improved figure of merit for nonlinear absorption. Enhancement factors for the nonlinear susceptibility of the composite are calculated, and the complex nature of the enhancement factors is discussed.

  13. Current Thermal Emission from Photonic Nanostructures Composed of TA, W, GE, and HFO2 Thin Films

    DTIC Science & Technology

    2015-03-01

    absorptive wavelength bands in the SWIR to LWIR range. Ellipsometric measurements and models were used in order to extract the optical constants of thin...parts of the complex dielectric function of tungsten at 294 K (room temperature) , 1100 K, 1600 K as calculated from the Drude model , Eq (25...real part and k is the imaginary. Values were obtained using the Drude model , Eq (25), with the measured optical parameters in Table 1 from [67] at

  14. Searching for high-k RE2O3 nanoparticles embedded in SiO2 glass matrix

    NASA Astrophysics Data System (ADS)

    Mukherjee, S.; Lin, Y. H.; Kao, T. H.; Chou, C. C.; Yang, H. D.

    2012-03-01

    Significant experimental effort has been explored to search and characterize high-k materials with magnetodielectric effect (MDE) of series of rare earth (RE) oxide (RE2O3) nanoparticles (NPs) embedded in SiO2 glass matrix by a sol-gel route. Properly annealed sol-gel glass (in which RE = Sm, Gd, and Er) shows colossal response of dielectric constant along with diffuse phase transition and MDE around room temperature. The radial distribution functions, reconstructed from extended x-ray absorption fine structure, show the shortening of RE3 + -O depending on the RE2O3 NP size, which is consistent with oxygen vacancy induced dielectric anomaly. The magnetoresistive MDE is very much conditioned by magnetic property of RE2O3 NP grain, the degree of deformation of the lattice and constituent host.

  15. VUV thin films, chapter 7

    NASA Technical Reports Server (NTRS)

    Zukic, Muamer; Torr, Douglas G.

    1993-01-01

    The application of thin film technology to the vacuum ultraviolet (VUV) wavelength region from 120 nm to 230 nm has not been fully exploited in the past because of absorption effects which complicate the accurate determination of the optical functions of dielectric materials. The problem therefore reduces to that of determining the real and imaginary parts of a complex optical function, namely the frequency dependent refractive index n and extinction coefficient k. We discuss techniques for the inverse retrieval of n and k for dielectric materials at VUV wavelengths from measurements of their reflectance and transmittance. Suitable substrate and film materials are identified for application in the VUV. Such applications include coatings for the fabrication of narrow and broadband filters and beamsplitters. The availability of such devices open the VUV regime to high resolution photometry, interferometry and polarimetry both for space based and laboratory applications. This chapter deals with the optics of absorbing multilayers, the determination of the optical functions for several useful materials, and the design of VUV multilayer stacks as applied to the design of narrow and broadband reflection and transmission filters and beamsplitters. Experimental techniques are discussed briefly, and several examples of the optical functions derived for selected materials are presented.

  16. Optical characteristics of Tl0.995Cu0.005InS2 single crystals

    NASA Astrophysics Data System (ADS)

    El-Nahass, M. M.; Ali, H. A. M.; Abu-Samaha, F. S. H.

    2013-04-01

    Optical properties of Tl0.995Cu0.005InS2 single crystals were studied using transmittance and reflectance measurements in the spectral wavelength range of 300-2500 nm. The optical constants (n and k) were calculated at room temperature. The analysis of the spectral behavior of the absorption coefficient in the absorption region revealed indirect transition. The refractive index dispersion data were analyzed in terms of the single oscillator model. Dispersion parameters such as the single oscillator energy (Eo), the dispersion energy (Ed), the high frequency dielectric constant (ε∞), the lattice dielectric constant (εL) and the ratio of free charge carrier concentration to the effective mass (N/m*) were estimated. The third order nonlinear susceptibility (χ(3)) was calculated according to the generalized Miller's rule. Also, the real and imaginary parts of the complex dielectric constant were determined.

  17. Electron beam irradiation induced changes in liquid-crystal compound 5CB

    NASA Astrophysics Data System (ADS)

    Rath, M. C.; Sarkar, S. K.; Wadhawan, V. K.; Verma, R.; Das, I. M. L.; Dąbrowski, R.; Tykarska, M.; Dhar, R.

    2008-12-01

    Electron beam irradiation studies on liquid crystal material 5CB have been carried out at a temperature where the compound exists in the isotropic liquid phase. In situ time-resolved spectroscopic characterization was carried out during the irradiation. Three different transients were observed during the 2-μs electron pulse. After about 50 μs, only one transient species was found to be present, which has an absorption peak at 360 nm. Radiolysed sample exhibits a broad absorption at ˜400 nm. The dielectric measurements show that even a low level of irradiation results in a dramatic increase in the component of dielectric permittivity normal to the long axes of the molecules ɛ⊥', and a corresponding decrease in the dielectric anisotropy (Δɛ'=ɛ∥'-ɛ⊥' ). These studies show that 5CB is prone to substantial radiation damage on exposure to the beam of high-energy electrons.

  18. Dielectric, thermal and mechanical properties of zirconium silicate reinforced high density polyethylene composites for antenna applications.

    PubMed

    Varghese, Jobin; Nair, Dinesh Raghavan; Mohanan, Pezholil; Sebastian, Mailadil Thomas

    2015-06-14

    A low cost and low dielectric loss zirconium silicate (ZrSiO4) reinforced HDPE (high-density polyethylene) composite has been developed for antenna applications. The 0-3 type composite is prepared by dispersing ZrSiO4 fillers for various volume fractions (0.1 to 0.5) in the HDPE matrix by the melt mixing process. The composite shows good microwave dielectric properties with a relative permittivity of 5.6 and a dielectric loss of 0.003 at 5 GHz at the maximum filler loading of 0.5 volume fraction. The composite exhibits low water absorption, excellent thermal and mechanical properties. It shows a water absorption of 0.03 wt%, a coefficient of thermal expansion of 70 ppm per °C and a room temperature thermal conductivity of 2.4 W mK(-1). The composite shows a tensile strength of 22 MPa and a microhardness of 13.9 kg mm(-2) for the filler loading of 0.5 volume fraction. The HDPE-ZrSiO4 composites show good dielectric, thermal and mechanical properties suitable for microwave soft substrate applications. A microstrip patch antenna is designed and fabricated using the HDPE-0.5 volume fraction ZrSiO4 substrate and the antenna parameters are investigated.

  19. Optical and dielectric studies of KH2PO4 crystal influenced by organic ligand of citric acid and L-valine: A single crystal growth and comparative study

    NASA Astrophysics Data System (ADS)

    Anis, Mohd; Hakeem, D. A.; Muley, G. G.

    In the present study pure, citric acid (CA) and L-valine (LV) doped potassium dihydrogen phosphate (KDP) crystals have been grown with the aim to investigate the nonlinear optical applications facilitated by UV-visible, third order nonlinear optical (TONLO) and dielectric properties. The structural parameters of grown crystals have been confirmed by single crystal X-ray diffraction analysis. The enhancement in optical transparency of KDP crystal due to addition of CA and LV has been examined within 200-900 nm by means of UV-visible spectral analysis. In addition, the transmittance data have been used to evaluate the effect of dopants on reflectance, refractive index and extinction coefficient of grown crystals in the visible region. The Z-scan analysis has been performed at 632.8 nm to identify the nature of photoinduced nonlinear refraction and nonlinear absorption in doped KDP crystals. The influence of π-bonded ligand of dopant CA and LV on TONLO susceptibility (χ3), refractive index (n2) and absorption coefficient (β) of KDP crystals has been evaluated to discuss laser assisted device applications. The decrease in dielectric constant and dielectric loss of KDP crystal due to addition of CA and LV has been explored using the temperature dependent dielectric studies.

  20. Growth, structural, thermal, dielectric and optical studies on HBST crystal: A potential THz emitter

    NASA Astrophysics Data System (ADS)

    Ma, Yuzhe; Teng, Bing; Cao, Lifeng; Zhong, Degao; Ji, Shaohua; Teng, Fei; Liu, Jiaojiao; Yao, Yuan; Tang, Jie; Tong, Jiaming

    2018-02-01

    The efficient organic nonlinear optical material 4-hydroxy benzaldehyde-N-methyl 4-stilbazolium tosylate (HBST) was grown from methanol by slope nucleation method combined with slow cooling (SNM-SC) for the first time. The optimum growth conditions based on the cooling rate was further investigated. The single crystal X-ray diffraction (XRD) revealed that the chromophores of HBST crystal make an angle of about 33° with respect to the a-axis, which is close to the optimum of Terahertz (THz)-wave generation and electro-optics applications. NMR and FT-IR spectral studies have been performed to ascertain various functional groups present in the sample. Futhermore, the thermal stability and decomposition stages were analyzed through TG-DTA and DSC techniques. The dielectric constant and dielectric loss of HBST crystal have been studied. Critical optical properties like the absorption coefficient, refractive index, cut-off wavelength and band gap energy were calculated. Photoluminescence (PL) exication studies indicated green emission occured at 507 nm. All the results of HBST crystal make it a promising candidate in the fields of optoelectronic and the generation of THz.

  1. Solid-State Densification of Spun-Cast Self-Assembled Monolayers for Use in Ultra-Thin Hybrid Dielectrics.

    PubMed

    Hutchins, Daniel O; Acton, Orb; Weidner, Tobias; Cernetic, Nathan; Baio, Joe E; Castner, David G; Ma, Hong; Jen, Alex K-Y

    2012-11-15

    Ultra-thin self-assembled monolayer (SAM)-oxide hybrid dielectrics have gained significant interest for their application in low-voltage organic thin film transistors (OTFTs). A [8-(11-phenoxy-undecyloxy)-octyl]phosphonic acid (PhO-19-PA) SAM on ultrathin AlO x (2.5 nm) has been developed to significantly enhance the dielectric performance of inorganic oxides through reduction of leakage current while maintaining similar capacitance to the underlying oxide structure. Rapid processing of this SAM in ambient conditions is achieved by spin coating, however, as-cast monolayer density is not sufficient for dielectric applications. Thermal annealing of a bulk spun-cast PhO-19-PA molecular film is explored as a mechanism for SAM densification. SAM density, or surface coverage, and order are examined as a function of annealing temperature. These SAM characteristics are probed through atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and near edge X-ray absorption fine structure spectroscopy (NEXAFS). It is found that at temperatures sufficient to melt the as-cast bulk molecular film, SAM densification is achieved; leading to a rapid processing technique for high performance SAM-oxide hybrid dielectric systems utilizing a single wet processing step. To demonstrate low-voltage devices based on this hybrid dielectric (with leakage current density of 7.7×10 -8 A cm -2 and capacitance density of 0.62 µF cm -2 at 3 V), pentacene thin-film transistors (OTFTs) are fabricated and yield sub 2 V operation and charge carrier mobilites of up to 1.1 cm 2 V -1 s -1 .

  2. Solid-State Densification of Spun-Cast Self-Assembled Monolayers for Use in Ultra-Thin Hybrid Dielectrics

    PubMed Central

    Hutchins, Daniel O.; Acton, Orb; Weidner, Tobias; Cernetic, Nathan; Baio, Joe E.; Castner, David G.; Ma, Hong; Jen, Alex K.-Y.

    2013-01-01

    Ultra-thin self-assembled monolayer (SAM)-oxide hybrid dielectrics have gained significant interest for their application in low-voltage organic thin film transistors (OTFTs). A [8-(11-phenoxy-undecyloxy)-octyl]phosphonic acid (PhO-19-PA) SAM on ultrathin AlOx (2.5 nm) has been developed to significantly enhance the dielectric performance of inorganic oxides through reduction of leakage current while maintaining similar capacitance to the underlying oxide structure. Rapid processing of this SAM in ambient conditions is achieved by spin coating, however, as-cast monolayer density is not sufficient for dielectric applications. Thermal annealing of a bulk spun-cast PhO-19-PA molecular film is explored as a mechanism for SAM densification. SAM density, or surface coverage, and order are examined as a function of annealing temperature. These SAM characteristics are probed through atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and near edge X-ray absorption fine structure spectroscopy (NEXAFS). It is found that at temperatures sufficient to melt the as-cast bulk molecular film, SAM densification is achieved; leading to a rapid processing technique for high performance SAM-oxide hybrid dielectric systems utilizing a single wet processing step. To demonstrate low-voltage devices based on this hybrid dielectric (with leakage current density of 7.7×10−8 A cm−2 and capacitance density of 0.62 µF cm−2 at 3 V), pentacene thin-film transistors (OTFTs) are fabricated and yield sub 2 V operation and charge carrier mobilites of up to 1.1 cm2 V−1 s−1. PMID:24288423

  3. Quenching Mo optical losses in CIGS solar cells by a point contacted dual-layer dielectric spacer: a 3-D optical study.

    PubMed

    Rezaei, Nasim; Isabella, Olindo; Vroon, Zeger; Zeman, Miro

    2018-01-22

    A 3-D optical modelling was calibrated to calculate the light absorption and the total reflection of fabricated CIGS solar cells. Absorption losses at molybdenum (Mo) / CIGS interface were explained in terms of plasmonic waves. To quench these losses, we assumed the insertion of a lossless dielectric spacer between Mo and CIGS, whose optical properties were varied. We show that such a spacer with low refractive index and proper thickness can significantly reduce absorption in Mo in the long wavelength regime and improve the device's rear reflectance, thus leading to enhanced light absorption in the CIGS layer. Therefore, we optimized a realistic two-layer MgF 2 / Al 2 O 3 dielectric spacer to exploit (i) the passivation properties of ultra-thin Al 2 O 3 on the CIGS side for potential high open-circuit voltage and (ii) the low refractive index of MgF 2 on the Mo side to reduce its optical losses. Combining our realistic spacer with optically-optimized point contacts increases the implied photocurrent density of a 750 nm-thick CIGS layer by 10% for the wavelengths between 700 and 1150 nm with respect to the reference cell. The elimination of plasmonic resonances in the new structure leads to a higher electric field magnitude at the bottom of CIGS layer and justifies the improved optical performance.

  4. Design and characterization of terahertz-absorbing nano-laminates of dielectric and metal thin films.

    PubMed

    Bolakis, C; Grbovic, D; Lavrik, N V; Karunasiri, G

    2010-07-05

    A terahertz-absorbing thin-film stack, containing a dielectric Bragg reflector and a thin chromium metal film, was fabricated on a silicon substrate for applications in bi-material terahertz (THz) sensors. The Bragg reflector is to be used for optical readout of sensor deformation under THz illumination. The THz absorption characteristics of the thin-film composite were measured using Fourier transform infrared spectroscopy. The absorption of the structure was calculated both analytically and by finite element modeling and the two approaches agreed well. Finite element modeling provides a convenient way to extract the amount of power dissipation in each layer and is used to quantify the THz absorption in the multi-layer stack. The calculation and the model were verified by experimentally characterizing the multi-layer stack in the 3-5 THz range. The measured and simulated absorption characteristics show a reasonably good agreement. It was found that the composite film absorbed about 20% of the incident THz power. The model was used to optimize the thickness of the chromium film for achieving high THz absorption and found that about 50% absorption can be achieved when film thickness is around 9 nm.

  5. Spectroscopic thermoacoustic imaging of water and fat composition

    NASA Astrophysics Data System (ADS)

    Bauer, Daniel R.; Wang, Xiong; Vollin, Jeff; Xin, Hao; Witte, Russell S.

    2012-07-01

    During clinical studies, thermoacoustic imaging (TAI) failed to reliably identify malignant breast tissue. To increase detection capability, we propose spectroscopic TAI to differentiate samples based on the slope of their dielectric absorption. Phantoms composed of different ratios of water and fat were imaged using excitation frequencies between 2.7 and 3.1 GHz. The frequency-dependent slope of the TA signal was highly correlated with that of its absorption coefficient (R2 = 0.98 and p < 0.01), indicating spectroscopic TAI can distinguish materials based on their intrinsic dielectric properties. This approach potentially enhances cancer detection due to the increased water content of many tumors.

  6. Full-time response of starch subjected to microwave heating.

    PubMed

    Fan, Daming; Wang, Liyun; Zhang, Nana; Xiong, Lei; Huang, Luelue; Zhao, Jianxin; Wang, Mingfu; Zhang, Hao

    2017-06-21

    The effect of non-ionizing microwave radiation on starch is due to a gelatinization temperature range that changes starch structure and properties. However, the changes in starch upon microwave heating are observable throughout the heating process. We compared the effects on starch heating by microwaves to the effects by rapid and regular conventional heating. Our results show that microwave heating promotes the rapid rearrangement of starch molecules at low temperatures; starch showed a stable dielectric response and a high dielectric constant. Microwave heating changed the Cole-Cole curve and the polarization of starch suspension at low temperatures. A marked transition at 2.45 GHz resulted in a double-polarization phenomenon. At temperatures below gelatinization, microwave-induced dielectric rearrangement and changes in the polarization characteristics of starch suspensions reduced the absorption properties; at temperatures above gelatinization, these characteristics became consistent with conventional heating. Throughout the heating process, microwaves change the electrical response and polarization characteristics of the starch at low temperatures, but on the macro level, there is no enhancement of the material's microwave absorption properties. In contrast, with the warming process, the starch exhibited a "blocking effect", and the absorption properties of the starch quickly returned to the level observed in conductive heating after gelatinization.

  7. Tunable dielectric properties of mesoporous carbon hollow microspheres via textural properties.

    PubMed

    Xu, Hailong; Yin, Xiaowei; Li, Zhaochen; Liu, Chenglong; Wang, Zeyu; Li, Minghang; Zhang, Litong; Cheng, Laifei

    2018-05-04

    In this study, mesoporous carbon hollow microspheres (PCHMs) with tunable textural properties have been prepared through a facile hard template etching method. The PCHMs were characterized by scanning electron microscopy, transmission electron microscopy, x-ray diffraction, Raman spectra, and nitrogen adsorption and desorption systems. Uniform PCHMs with shell thickness ranging from 23 nm to 55 nm are realized. PCHMs with different textural properties can regulate dielectric and electromagnetic (EM) wave absorption effectively. The composite of paraffin wax mixed with 10 wt% PCHMs (the shell thickness of PCHMs is 35 nm) exhibits a minimum coefficient value of -53.8 dB at 8.8 GHz, with a thickness of 3.4 mm. Besides, it is remarkable that the effective absorption bandwidth covers all the X band with as low as a 10 wt% filler ratio, compared with other spherical EM wave absorbers. The excellent EM wave absorption capability of PCHMs can be ascribed to the better impendence matching and strong EM wave attenuation constant based on tunable textural properties. Our results provide a facile strategy to tune dielectric properties of spherical carbon absorbers based on textural properties, and can be extended to other spherical absorbers.

  8. Tunable dielectric properties of mesoporous carbon hollow microspheres via textural properties

    NASA Astrophysics Data System (ADS)

    Xu, Hailong; Yin, Xiaowei; Li, Zhaochen; Liu, Chenglong; Wang, Zeyu; Li, Minghang; Zhang, Litong; Cheng, Laifei

    2018-05-01

    In this study, mesoporous carbon hollow microspheres (PCHMs) with tunable textural properties have been prepared through a facile hard template etching method. The PCHMs were characterized by scanning electron microscopy, transmission electron microscopy, x-ray diffraction, Raman spectra, and nitrogen adsorption and desorption systems. Uniform PCHMs with shell thickness ranging from 23 nm to 55 nm are realized. PCHMs with different textural properties can regulate dielectric and electromagnetic (EM) wave absorption effectively. The composite of paraffin wax mixed with 10 wt% PCHMs (the shell thickness of PCHMs is 35 nm) exhibits a minimum coefficient value of -53.8 dB at 8.8 GHz, with a thickness of 3.4 mm. Besides, it is remarkable that the effective absorption bandwidth covers all the X band with as low as a 10 wt% filler ratio, compared with other spherical EM wave absorbers. The excellent EM wave absorption capability of PCHMs can be ascribed to the better impendence matching and strong EM wave attenuation constant based on tunable textural properties. Our results provide a facile strategy to tune dielectric properties of spherical carbon absorbers based on textural properties, and can be extended to other spherical absorbers.

  9. Imaging-based molecular barcoding with pixelated dielectric metasurfaces

    NASA Astrophysics Data System (ADS)

    Tittl, Andreas; Leitis, Aleksandrs; Liu, Mingkai; Yesilkoy, Filiz; Choi, Duk-Yong; Neshev, Dragomir N.; Kivshar, Yuri S.; Altug, Hatice

    2018-06-01

    Metasurfaces provide opportunities for wavefront control, flat optics, and subwavelength light focusing. We developed an imaging-based nanophotonic method for detecting mid-infrared molecular fingerprints and implemented it for the chemical identification and compositional analysis of surface-bound analytes. Our technique features a two-dimensional pixelated dielectric metasurface with a range of ultrasharp resonances, each tuned to a discrete frequency; this enables molecular absorption signatures to be read out at multiple spectral points, and the resulting information is then translated into a barcode-like spatial absorption map for imaging. The signatures of biological, polymer, and pesticide molecules can be detected with high sensitivity, covering applications such as biosensing and environmental monitoring. Our chemically specific technique can resolve absorption fingerprints without the need for spectrometry, frequency scanning, or moving mechanical parts, thereby paving the way toward sensitive and versatile miniaturized mid-infrared spectroscopy devices.

  10. Thin film absorption characterization by focus error thermal lensing

    NASA Astrophysics Data System (ADS)

    Domené, Esteban A.; Schiltz, Drew; Patel, Dinesh; Day, Travis; Jankowska, E.; Martínez, Oscar E.; Rocca, Jorge J.; Menoni, Carmen S.

    2017-12-01

    A simple, highly sensitive technique for measuring absorbed power in thin film dielectrics based on thermal lensing is demonstrated. Absorption of an amplitude modulated or pulsed incident pump beam by a thin film acts as a heat source that induces thermal lensing in the substrate. A second continuous wave collimated probe beam defocuses after passing through the sample. Determination of absorption is achieved by quantifying the change of the probe beam profile at the focal plane using a four-quadrant detector and cylindrical lenses to generate a focus error signal. This signal is inherently insensitive to deflection, which removes noise contribution from point beam stability. A linear dependence of the focus error signal on the absorbed power is shown for a dynamic range of over 105. This technique was used to measure absorption loss in dielectric thin films deposited on fused silica substrates. In pulsed configuration, a single shot sensitivity of about 20 ppm is demonstrated, providing a unique technique for the characterization of moving targets as found in thin film growth instrumentation.

  11. Differences in RF energy absorption in the heads of adults and children.

    PubMed

    Christ, Andreas; Kuster, Niels

    2005-01-01

    There has been a long and controversial debate on possible differences in electromagnetic (EM) energy absorption between adults and children during cell phone usage. Some published studies report higher specific absorption rate (SAR) in children and explain this based on smaller head size. More recently, age dependent changes of the dielectric tissue parameters have again ignited the discussion. This study intends to give a comprehensive review of the current state of knowledge about the parameters and mechanisms affecting the exposure of the mobile phone user with special focus on the exposure of children. Discussed are the absorption mechanism, tissue parameters, the effect of the pinna, and the uncertainties associated with head models based on spheroids, scaled adult heads, and magnetic resonance imaging (MRI) data of children. The conclusions of the review do not support the assumption that the energy exposure increases due to smaller heads, but identifies open issues regarding the dielectric tissue parameters and the thickness of the pinna. Copyright 2005 Wiley-Liss, Inc

  12. Observations of non-linear plasmon damping in dense plasmas

    NASA Astrophysics Data System (ADS)

    Witte, B. B. L.; Sperling, P.; French, M.; Recoules, V.; Glenzer, S. H.; Redmer, R.

    2018-05-01

    We present simulations using finite-temperature density-functional-theory molecular-dynamics to calculate dynamic dielectric properties in warm dense aluminum. The comparison between exchange-correlation functionals in the Perdew, Burke, Ernzerhof approximation, Strongly Constrained and Appropriately Normed Semilocal Density Functional, and Heyd, Scuseria, Ernzerhof (HSE) approximation indicates evident differences in the electron transition energies, dc conductivity, and Lorenz number. The HSE calculations show excellent agreement with x-ray scattering data [Witte et al., Phys. Rev. Lett. 118, 225001 (2017)] as well as dc conductivity and absorption measurements. These findings demonstrate non-Drude behavior of the dynamic conductivity above the Cooper minimum that needs to be taken into account to determine optical properties in the warm dense matter regime.

  13. Absorption Spectra of Gold Nanoparticle Suspensions

    NASA Astrophysics Data System (ADS)

    Anan'eva, M. V.; Nurmukhametov, D. R.; Zverev, A. S.; Nelyubina, N. V.; Zvekov, A. A.; Russakov, D. M.; Kalenskii, A. V.; Eremenko, A. N.

    2018-02-01

    Three gold nanoparticle suspensions are obtained, and mean radii in distributions - (6.1 ± 0.2), (11.9 ± 0.3), and (17.3 ± 0.7) nm - are determined by the transmission electron microscopy method. The optical absorption spectra of suspensions are obtained and studied. Calculation of spectral dependences of the absorption index of suspensions at values of the gold complex refractive index taken from the literature showed a significant deviation of experimental and calculated data in the region of 450-800 nm. Spectral dependences of the absorption of suspensions are simulated within the framework of the Mie-Drude theory taking into account the interband absorption in the form of an additional term in the imaginary part of the dielectric permittivity of the Gaussian type. It is shown that to quantify the spectral dependences in the region of the plasmon absorption band of nanoparticles, correction of the parameters of the interband absorption is necessary in addition to the increase of the relaxation parameter of the Drude theory. Spectral dependences of the dielectric permittivity of gold in nanodimensional state are refined from the solution of the inverse problem. The results of the present work are important for predicting the special features of operation of photonic devices and optical detonators based on gold nanoparticles.

  14. The influence of magnetic and dielectric loss on the noise absorption of iron particles-rubber composites attached to a microstrip line

    NASA Astrophysics Data System (ADS)

    Kim, Sun-Tae; Park, Yong-Gwon; Kim, Sung-Soo

    2008-04-01

    Magnetic and dielectric loss are systematically controlled by using iron flake powders with various initial sizes (7 μm and 70 μm) as the absorbent fillers in the rubber matrix, and their noise absorbing characteristics have been investigated as a function of frequency and sheet thickness. Flake iron particles were prepared by the mechanical forging of spherical powders using an attrition mill. Composite sheets (thickness=0.2 mm-1.0 mm) were prepared with a mixture of iron particles and silicone rubber. Attaching the composite sheets to a microstrip line of 50 Ω, a network analyzer was used to measure the reflection and transmission parameters (S11 and S21, respectively). A nearly constant value of S11 (about -10 dB) was observed, irrespective of particle size. However, S21 is strongly dependent upon initial particle size. For the composites of 7 μm particles (with high magnetic loss), S21 is reduced below -20 dB in the frequency range of 1 GHz to 10 GHz, and the corresponding bandwidth of noise absorption is not so greatly diminished by reducing the sheet thickness as low as 0.2 mm. For the composites of 70 μm particles (with high dielectric loss), however, the bandwidth is greatly reduced with a decrease in sheet thickness. It is concluded that the attenuation of conduction noise through the microstrip line is primarily controlled by the magnetic loss of the iron particles due to strong magnetic field around the microstrip line.

  15. Changes in the dielectric properties of ex vivo bovine liver during microwave thermal ablation at 2.45 GHz

    NASA Astrophysics Data System (ADS)

    Lopresto, Vanni; Pinto, Rosanna; Lovisolo, Giorgio A.; Cavagnaro, Marta

    2012-04-01

    In microwave thermal ablation (MTA) therapy, the dielectric properties of the target tissue play an important role in determining the radiation properties of the microwave ablation antenna. In this work, the ex vivo dielectric properties of bovine liver were experimentally characterized as a function of the temperature during MTA at the frequency of 2.45 GHz. The obtained data were compared with measurements performed at the end of the MTA treatment, and considering the heating achieved with a temperature-controlled water bath. Finally, measured data were used to perform a numerical study evaluating the effects of changes in tissue's dielectric properties during the MTA treatment on the radiation properties of a microwave interstitial ablation antenna, as well as on the obtained thermal lesion. Results evidenced a significant decrease of both relative permittivity (about 38%) and electric conductivity (about 33%) in the tissue during treatment as the temperature increased to over 60 °C, with a dramatic drop when the temperature approached 100 °C. Moreover, the numerical study evidenced that changes in tissue's dielectric properties during the MTA treatment affect the distribution of the power absorbed by the tissue (specific absorption rate—SAR, W kg-1) surrounding the microwave interstitial ablation antenna, leading to a peak SAR up to 20% lower, as well as to a thermal lesion up to 8% longer. This work may represent a preliminary step towards the future development of a procedure for MTA treatment planning.

  16. Microporous Co@C Nanoparticles Prepared by Dealloying CoAl@C Precursors: Achieving Strong Wideband Microwave Absorption via Controlling Carbon Shell Thickness.

    PubMed

    Li, Da; Liao, Haoyan; Kikuchi, Hiroaki; Liu, Tong

    2017-12-27

    Excellent magnetic features make Co-based materials promising candidates as high-performance microwave absorbers. However, it is still a significant challenge for Co-based absorbers to possess high-intensity and broadband absorption simultaneously, owing to the lack of dielectric loss and impedance matching. Herein, microporous Co@C nanoparticles (NPs) with carbon shell thicknesses ranging from 1.8-4.9 nm have been successfully synthesized by dealloying CoAl@C precursors. All of the samples exhibit high microwave absorption performance. The microporous Co@C sample possessing a carbon shell of 1.8 nm exhibits the highest absorption intensity among these samples with a minimum reflection loss (RL) of -141.1 dB, whose absorption bandwidth for RL ≤ -10 dB is 7.3 GHz. As the thickness of the carbon shell increases, the absorption bandwidth of the NPs becomes wider. For the sample with the carbon shell thickness of 4.9 nm, the absorption bandwidth for RL ≤ -10 dB reaches a record high of 13.2 GHz. The outstanding microwave attenuation properties are attributed to the dielectric loss of the carbon shell, the magnetic loss of the Co core, and the cooperation of the core-shell structure and microporous morphology. The strong wideband microwave absorption of the carbon-coated microporous Co NPs highlights their potential applications in microwave absorbing systems.

  17. Simple model dielectric functions for insulators

    NASA Astrophysics Data System (ADS)

    Vos, Maarten; Grande, Pedro L.

    2017-05-01

    The Drude dielectric function is a simple way of describing the dielectric function of free electron materials, which have an uniform electron density, in a classical way. The Mermin dielectric function describes a free electron gas, but is based on quantum physics. More complex metals have varying electron densities and are often described by a sum of Drude dielectric functions, the weight of each function being taken proportional to the volume with the corresponding density. Here we describe a slight variation on the Drude dielectric functions that describes insulators in a semi-classical way and a form of the Levine-Louie dielectric function including a relaxation time that does the same within the framework of quantum physics. In the optical limit the semi-classical description of an insulator and the quantum physics description coincide, in the same way as the Drude and Mermin dielectric function coincide in the optical limit for metals. There is a simple relation between the coefficients used in the classical and quantum approaches, a relation that ensures that the obtained dielectric function corresponds to the right static refractive index. For water we give a comparison of the model dielectric function at non-zero momentum with inelastic X-ray measurements, both at relative small momenta and in the Compton limit. The Levine-Louie dielectric function including a relaxation time describes the spectra at small momentum quite well, but in the Compton limit there are significant deviations.

  18. Optical Properties of Metal-Dielectric Structures Based on Photon-Crystal Opal Matrices

    NASA Astrophysics Data System (ADS)

    Vanin, A. I.; Lukin, A. E.; Romanov, S. G.; Solovyev, V. G.; Khanin, S. D.; Yanikov, M. V.

    2018-04-01

    Optical properties of novel metal-dielectric nanocomposite materials based on opal matrices have been investigated. The position of optical resonances of nanocomposites, obtained by embedding of silver into the opal matrix by the electrothermodiffusion method, is explained by the Bragg diffraction, and an asymmetric form of resonance curves is attributed to the Fano resonance. An anomalous transmission and absorption of light by hybrid plasmon-photonic layered heterostructures, which is apparently associated with excitation of surface plasmon-polaritons, propagating along "metal-dielectric" interfaces, was revealed.

  19. Broadband high-efficiency dielectric metasurfaces for the visible spectrum

    PubMed Central

    Devlin, Robert C.; Khorasaninejad, Mohammadreza; Chen, Wei Ting; Oh, Jaewon; Capasso, Federico

    2016-01-01

    Metasurfaces are planar optical elements that hold promise for overcoming the limitations of refractive and conventional diffractive optics. Original dielectric metasurfaces are limited to transparency windows at infrared wavelengths because of significant optical absorption and loss at visible wavelengths. Thus, it is critical that new materials and nanofabrication techniques be developed to extend dielectric metasurfaces across the visible spectrum and to enable applications such as high numerical aperture lenses, color holograms, and wearable optics. Here, we demonstrate high performance dielectric metasurfaces in the form of holograms for red, green, and blue wavelengths with record absolute efficiency (>78%). We use atomic layer deposition of amorphous titanium dioxide with surface roughness less than 1 nm and negligible optical loss. We use a process for fabricating dielectric metasurfaces that allows us to produce anisotropic, subwavelength-spaced dielectric nanostructures with shape birefringence. This process is capable of realizing any high-efficiency metasurface optical element, e.g., metalenses and axicons. PMID:27601634

  20. An unobtrusive liquid sensor utilizing a micromilled RF spark gap transmitter and resonant cavity

    NASA Astrophysics Data System (ADS)

    Berry, H.; Wilson, C.

    2009-09-01

    This paper reports on a new dielectric liquid sensor that utilizes an RF sparkgap transmitter coupled with an aluminum microwave resonant cavity. The transmitter is a micromilled polymer transmitter housing with patterned copper electrodes that generate micro-arcs. This transmitter which operates outside the measured liquid generates a directed ultrawideband signal which is received by the aluminum waveguide. Absorption resonances in the microwave cavity, measured with a spectrum analyzer are a function of the liquids' dielectric constant at lower frequencies, as well as from molecular vibrations/rotations at higher frequencies. In many chemical manufacturing processes, liquids being manufactured are removed, tested in a lab, and then disposed of, or else they will contaminate the full batch. In beer brewing, for instance, samples are removed, density tested for alcohol content, then disposed of. Using this sensor, the chemical process could be continuously monitored by a computerized system without risk of contamination.

  1. The structural, electronic and optical properties of CuGa (SexS1-x)2 compounds from first-principle calculations

    NASA Astrophysics Data System (ADS)

    Shen, Ke-Sheng; Jiao, Zhao-Yong; Zhang, Xian-Zhou; Huang, Xiao-Fen

    2013-11-01

    The structural, electronic and optical properties of the CuGa (Se x S1- x )2 alloy system have been performed systematic within generalized gradient approximation (GGA) of Perdew-Burke-Ernzerhof (PBE) implemented in the Cambridge serial total energy package (CASTEP) code. We calculate the lattice parameters and axial ratio, which agree with the experimental values quite well. The anion position parameters u are also predicted using the model of Abrahams and Bernstein and the results seem to be trustworthy as compared to the experimental and theoretical values. The total and part density of states are discussed which follow the common rule of the conventional semiconductors. The static dielectric tenser and refractive index are summarized compared with available experimental and theoretical values. Also the spectra of the dielectric functions, refractive index, reflectance, absorption coefficient and real parts of photoconductivity are discussed in details.

  2. Time domain simulation of novel photovoltaic materials

    NASA Astrophysics Data System (ADS)

    Chung, Haejun

    Thin-film silicon-based solar cells have operated far from the Shockley- Queisser limit in all experiments to date. Novel light-trapping structures, however, may help address this limitation. Finite-difference time domain simulation methods offer the potential to accurately determine the light-trapping potential of arbitrary dielectric structures, but suffer from materials modeling problems. In this thesis, existing dispersion models for novel photovoltaic materials will be reviewed, and a novel dispersion model, known as the quadratic complex rational function (QCRF), will be proposed. It has the advantage of accurately fitting experimental semiconductor dielectric values over a wide bandwidth in a numerically stable fashion. Applying the proposed dispersion model, a statistically correlated surface texturing method will be suggested, and light absorption rates of it will be explained. In future work, these designs will be combined with other structures and optimized to help guide future experiments.

  3. Terahertz absorption in graphite nanoplatelets/polylactic acid composites

    NASA Astrophysics Data System (ADS)

    Bychanok, D.; Angelova, P.; Paddubskaya, A.; Meisak, D.; Shashkova, L.; Demidenko, M.; Plyushch, A.; Ivanov, E.; Krastev, R.; Kotsilkova, R.; Ogrin, F. Y.; Kuzhir, P.

    2018-04-01

    The electromagnetic properties of composite materials based on poly(lactic) acid (PLA) filled with graphite nanoplatelets (GNP) were investigated in the microwave (26–37 GHz) and terahertz (0.2–1 THz) frequency ranges. The maximum of the imaginary part of the dielectric permittivity was observed close to 0.6 THz for composites with 1.5 and 3 wt.% of GNP. The experimental data of complex dielectric permittivity of GNP/PLA composites was modelled using the Maxwell-Garnett theory. The effects of fine dispersion, agglomeration, and percolation in GNP-based composites on its electromagnetic constitutive parameters, presence, and position of THz absorption peak are discussed on the basis of the modeling results and experimental data. The unique combination of conductive and geometrical parameters of GNP embedded into the PLA matrix below the percolation threshold allow us to obtain the THz-absorptive material, which may be effectively used as a 3D-printing filament.

  4. Effect of heat treatment on morphological, structural and optical properties of CoMTPP thin films

    NASA Astrophysics Data System (ADS)

    El-Nahass, M. M.; Ammar, A. H.; Farag, A. A. M.; Atta, A. A.; El-Zaidia, E. F. M.

    2011-03-01

    The morphologies and crystal structures of 5,10,15,20-tetrakis(4-methoxyphenyl)-21 H,23 H-porphine cobalt(II), CoMTPP, thin films were investigated by scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. Optical constants namely the refractive index, n, and the absorption index, k, of CoMTPP were estimated by using spectrophotometric measurements of transmittance and reflectance in the spectral range from 200 to 2500 nm. The dispersion of the refractive index in terms of the single oscillator in the transparent region is discussed. The single oscillator energy ( E0), the dispersion energy ( E d), the high frequency dielectric constant ( ɛ∞) and the lattice dielectric constant ( ɛ L) were calculated. The analysis of the spectral behavior of the absorption coefficient in the intrinsic absorption region reveals two indirect allowed transitions for as-deposited and annealed films.

  5. Multi-layer coating of SiO2 nanoparticles to enhance light absorption by Si solar cells

    NASA Astrophysics Data System (ADS)

    Nam, Yoon-Ho; Um, Han-Don; Park, Kwang-Tae; Shin, Sun-Mi; Baek, Jong-Wook; Park, Min-Joon; Jung, Jin-Young; Zhou, Keya; Jee, Sang-Won; Guo, Zhongyi; Lee, Jung-Ho

    2012-06-01

    We found that multi-layer coating of a Si substrate with SiO2 dielectric nanoparticles (NPs) was an effective method to suppress light reflection by silicon solar cells. To suppress light reflection, two conditions are required for the coating: 1) The difference of refractive indexes between air and Si should be alleviated, and 2) the quarter-wavelength antireflection condition should be satisfied while avoiding intrinsic absorption loss. Light reflection was reduced due to destructive interference at certain wavelengths that depended on the layer thickness. For the same thickness dielectric layer, smaller NPs enhanced antireflectance more than larger NPs due to a decrease in scattering loss by the smaller NPs.

  6. Direct Observation of Electron-Phonon Coupling and Slow Vibrational Relaxation in Organic-Inorganic Hybrid Perovskites.

    PubMed

    Straus, Daniel B; Hurtado Parra, Sebastian; Iotov, Natasha; Gebhardt, Julian; Rappe, Andrew M; Subotnik, Joseph E; Kikkawa, James M; Kagan, Cherie R

    2016-10-05

    Quantum and dielectric confinement effects in 2D hybrid perovskites create excitons with a binding energy exceeding 150 meV. We exploit the large exciton binding energy to study exciton and carrier dynamics as well as electron-phonon coupling in hybrid perovskites using absorption and photoluminescence (PL) spectroscopies. At temperatures below 75 K, we resolve splitting of the excitonic absorption and PL into multiple regularly-spaced resonances every 40-46 meV, consistent with electron-phonon coupling to phonons located on the organic cation. We also resolve resonances with a 14 meV spacing, in accord with coupling to phonons with mixed organic and inorganic character, and these assignments are supported by density-functional theory calculations. Hot exciton PL and time-resolved PL measurements show that vibrational relaxation occurs on a picosecond timescale competitive with that for PL. At temperatures above 75 K, excitonic absorption and PL exhibit homogeneous broadening. While absorption remains homogeneous, PL becomes inhomogeneous below 75K, which we speculate is caused by the formation and subsequent dynamics of a polaronic exciton.

  7. Ordinary and extraordinary dielectric functions of rutile SnO{sub 2} up to 20 eV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feneberg, Martin, E-mail: martin.feneberg@ovgu.de; Lidig, Christian; Lange, Karsten

    2014-06-09

    Spectroscopic ellipsometry at room temperature is applied in order to determine the ordinary (ε{sub ⊥}) and extraordinary (ε{sub ∥}) dielectric functions (DFs) of rutile SnO{sub 2} corresponding to electric field (E) polarization perpendicular (E⊥c) and parallel (E∥c) to the optical axis (c), respectively. Strong anisotropic behavior is found for the full spectral range from 0.5 up to 20 eV. The onsets of strong absorption are found at 4.28 eV and 5.42 eV for E⊥c and E∥c, respectively. A dipole-forbidden band gap at (3.59 ± 0.2) eV at room temperature is found by line shape fits to the imaginary parts of the DFs. Further high-energy transitionsmore » are resolved. Their accurate energy values are obtained by fitting the second derivatives of the DFs. Comparison to published DFs calculated by ab-initio theory demonstrates that the electron-hole interaction in SnO{sub 2} is strong and has to be included for interpretation.« less

  8. Effect of strain on the electronic structure and optical properties of germanium

    NASA Astrophysics Data System (ADS)

    Wen, Shumin; Zhao, Chunwang; Li, Jijun; Hou, Qingyu

    2018-05-01

    The effects of biaxial strain parallel to the (001) plane on the electronic structures and optical properties of Ge are calculated using the first-principles plane-wave pseudopotential method based on density functional theory. The screened-exchange local-density approximation function was used to obtain more reliable band structures, while strain was changed from ‑4% to +4%. The results show that the bandgap of Ge decreases with the increase of strain. Ge becomes a direct-bandgap semiconductor when the tensile strain reaches to 2%, which is in good agreement with the experimental results. The density of electron states of strained Ge becomes more localized. The tensile strain can increase the static dielectric constant distinctly, whereas the compressive strain can decrease the static dielectric constant slightly. The strain makes the absorption band edge move toward low energy. Both the tensile strain and compressive strain can significantly increase the reflectivity in the range from 7 eV to 14 eV. The tensile strain can decrease the optical conductivity, but the compressive strain can increase the optical conductivity significantly.

  9. Comparison of high-voltage ac and pulsed operation of a surface dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Williamson, James M.; Trump, Darryl D.; Bletzinger, Peter; Ganguly, Biswa N.

    2006-10-01

    A surface dielectric barrier discharge (DBD) in atmospheric pressure air was excited either by low frequency (0.3-2 kHz) high-voltage ac or by short, high-voltage pulses at repetition rates from 50 to 600 pulses s-1. The short-pulse excited discharge was more diffuse and did not have the pronounced bright multiple cathode spots observed in the ac excited discharge. The discharge voltage, current and average power deposited into the discharge were calculated for both types of excitation. As a measure of plasma-chemical efficiency, the ozone number density was measured by UV absorption as a function of average deposited power. The density of ozone produced by ac excitation did not increase so rapidly as that produced by short-pulse excitation as a function of average power, with a maximum measured density of ~3 × 1015 cm-3 at 25 W. The maximum ozone production achieved by short-pulse excitation was ~8.5 × 1015 cm-3 at 20 W, which was four times greater than that achieved by ac excitation at the same power level.

  10. Study on electrostatic and electromagnetic probes operated in ceramic and metallic depositing plasmas

    NASA Astrophysics Data System (ADS)

    Styrnoll, T.; Bienholz, S.; Lapke, M.; Awakowicz, P.

    2014-04-01

    This paper discusses plasma probe diagnostics, namely the multipole resonance probe (MRP) and Langmuir probe (LP), operated in depositing plasmas. The aim of this work is to show that the combination of both probes provides stable and robust measurements and clear determination of plasma parameters for metallic and ceramic coating processes. The probes use different approaches to determine plasma parameters, e.g. electron density ne and electron temperature Te. The LP is a well-established plasma diagnostic, and its applicability in technological plasmas is well documented. The LP is a dc probe that performs a voltage sweep and analyses the measured current, which makes it insensitive against conductive metallic coating. However, once the LP is dielectrically coated with a ceramic film, its functionality is constricted. In contrast, the MRP was recently presented as a monitoring tool, which is insensitive to coating with dielectric ceramics. It is a new plasma diagnostic based on the concept of active plasma resonance spectroscopy, which uses the universal characteristic of all plasmas to resonate on or near the electron plasma frequency. The MRP emits a frequency sweep and the absorption of the signal, the |S11| parameter, is analysed. Since the MRP concept is based on electromagnetic waves, which are able to transmit dielectrics, it is insensitive to dielectric coatings. But once the MRP is metallized with a thin conductive film, no undisturbed RF-signal can be emitted into the plasma, which leads to falsified plasma parameter. In order to compare both systems, during metallic or dielectric coating, the probes are operated in a magnetron CCP, which is equipped with a titanium target. We present measurements in metallic and dielectric coating processes with both probes and elaborate advantages and problems of each probe operated in each coating environment.

  11. Role of electron-phonon coupling in finite-temperature dielectric functions of Au, Ag, and Cu

    NASA Astrophysics Data System (ADS)

    Xu, Meng; Yang, Jia-Yue; Zhang, Shangyu; Liu, Linhua

    2017-09-01

    Realistic representation of finite temperature dielectric functions of noble metals is crucial in describing the optical properties of advancing applications in plasmonics and optical metamaterials. However, the atomistic origins of the temperature dependence of noble metals' dielectric functions still lack full explanation. In this paper, we implement electronic structure calculations as well as ellipsometry experiments to study the finite temperature dielectric functions of noble metals Au, Ag, and Cu. Theoretically, the intraband dielectric function is described by the Drude model, of which the important quantity electron lifetime is obtained by considering the electron-phonon, electron-electron, and electron-surface scattering mechanism. The electron-phonon coupling is key to determining the temperature dependence of electron lifetime and intraband dielectric function. For the interband dielectric function, it arises from the electronic interband transition. Due to the limitation of incorporating electron-phonon coupling into the interband transition scheme, the temperature dependence of the interband dielectric function is mainly determined by the thermal expansion effect. Experimentally, variable angle spectroscopic ellipsometry measures the dielectric functions of Au and Ag over the temperature range of 300-700 K and spectral range of 2-20 µm. Those experimental measurements are consistent with theoretical results and thus verify the theoretical models for the finite temperature dielectric function.

  12. Thermal denaturation of protein studied by terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Fu, Xiuhua; Li, Xiangjun; Liu, Jianjun; Du, Yong; Hong, Zhi

    2012-12-01

    In this study, the absorption spectra of native or thermal protein were measured in 0.2-1.4THz using terahertz time-domain spectroscopy (THz-TDS) system at room temperature, their absorption spectra and the refractive spectra were obtained. Experimental results indicate that protein both has strong absorption but their characteristics were not distinct in the THz region, and the absorption decreased during thermal denatured state. In order to prove protein had been denatured, we used Differential scanning calorimeter (DSC) measured their denatured temperature, from their DSC heating traces, collagen Td=101℃, Bovine serum albumin Td=97℃. While we also combined the Fourier transform infrared spectrometer (FTIR) to investigate their secondary and tertiary structure before and after denatuation, but the results did not have the distinct changes. We turned the absorption spectra and the refractive spectra to the dielectric spectra, and used the one-stage Debye model simulated the terahertz dielectric spectra of protein before and after denaturation. This research proved that the terahertz spectrum technology is feasible in testing protein that were affected by temperature or other factors which can provide theoretical foundation in the further study about the THz spectrum of protein and peptide temperature stability.

  13. Degenerate critical coupling in all-dielectric metasurface absorbers

    DOE PAGES

    Ming, Xianshun; Liu, Xinyu; Sun, Liqun; ...

    2017-09-27

    We develop the theory of all-dielectric absorbers based on temporal coupled mode theory (TCMT), with parameters extracted from eigenfrequency simulations. An infinite square array of cylindrical resonators embedded in air is investigated, and we find that it supports two eigenmodes of opposite symmetry that are each responsible for half of the total absorption. The even and odd eigenmodes are found to be the hybrid electric (EH111) and hybrid magnetic (HE111) waveguide modes of a dielectric wire of circular cross section, respectively. The geometry of the cylindrical array is shown to be useful for individual tuning of the radiative loss ratesmore » of the eigenmodes, thus permitting frequency degeneracy. Further, by specifying the resonators’ loss tangent, the material loss rate can be made to equal the radiative loss rate, thus achieving a state of degenerate critical coupling and perfect absorption. Our results are supported by S-parameter simulations, and agree well with waveguide theory.« less

  14. Efficiency enhancement of semitransparent organic solar cells by using printed dielectric mirrors (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Bronnbauer, Carina; Forberich, Karen K.; Guo, Fei; Gasparini, Nicola; Brabec, Christoph J.

    2015-09-01

    Building integrated thin film solar cells are a strategy for future eco-friendly power generation. Such solar cells have to be semi-transparent, long-term stable and show the potential to be fabricated by a low-cost production process. Organic photovoltaics are a potential candidate because an absorber material with its main absorption in the infrared spectral region where the human eye is not sensitive can be chosen. We can increase the number of absorbed photons, at the same time, keep the transparency almost constant by using a dielectric, wavelength-selective mirror. The mirror reflects only in the absorption regime of the active layer material and shows high transparencies in the spectral region around 550 nm where the human eye is most sensitive. We doctor bladed a fully solution processed dielectric mirror at low temperatures below 80 °C. Both inks, which are printed alternatingly are based on nanoparticles and have a refractive index of 1.29 or 1.98, respectively, at 500 nm. The position and the intensity of the main reflection peak can be easily shifted and thus adjusted to the solar cell absorption spectrum. Eventually, the dielectric mirror was combined with different organic solar cells. For instance, the current increases by 20.6 % while the transparency decreases by 23.7 % for the low band gap absorber DPP and silver nanowires as top electrode. Moreover we proved via experiment and optical simulations, that a variation of the active layer thickness and the position of the main reflection peak affect the transparency and the increase in current.

  15. Dispersion of carbon nanotubes in melt compounded polypropylene based composites investigated by THz spectroscopy.

    PubMed

    Casini, R; Papari, G; Andreone, A; Marrazzo, D; Patti, A; Russo, P

    2015-07-13

    We investigate the use of Terahertz (THz) Time Domain Spectroscopy (TDS) as a tool for the measurement of the index dispersion of multi-walled carbon nanotubes (MWCNT) in polypropylene (PP) based composites. Samples containing 0.5% by volume concentration of non-functionalized and functionalized carbon nanotubes are prepared by melt compounding technology. Results indicate that the THz response of the investigated nanocomposites is strongly dependent on the kind of nanotube functionalization, which in turn impacts on the level of dispersion inside the polymer matrix. We show that specific dielectric parameters such as the refractive index and the absorption coefficient measured by THz spectroscopy can be both correlated to the index of dispersion as estimated using conventional optical microscopy.

  16. Structure and phase formation behavior and dielectric and magnetic properties of lead iron tantalate-lead zirconate titanate multiferroic ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wongmaneerung, R., E-mail: re_nok@yahoo.com; Tipakontitikul, R.; Jantaratana, P.

    2016-03-15

    Highlights: • The multiferroic ceramics consisted of PFT and PZT. • Crystal structure changed from cubic to mixedcubic and tetragonal with increasing PZT content. • Dielectric showed the samples underwent a typical relaxor ferroelectric behavior. • Magnetic properties showed very interesting behavior with square saturated magnetic hysteresis loops. - Abstract: Multiferroic (1 − x)Pb(Fe{sub 0.5}Ta{sub 0.5})O{sub 3}–xPb(Zr{sub 0.53}Ti{sub 0.47})O{sub 3} (or PFT–PZT) ceramics were synthesized by solid-state reaction method. The crystal structure and phase formation of the ceramics were examined by X-ray diffraction (XRD). The local structure surrounding Fe and Ti absorbing atoms was investigated by synchrotron X-ray Absorption Near-Edgemore » Structure (XANES) measurement. Dielectric properties were studied as a function of frequency and temperature using a LCR meter. A vibrating sample magnetometer (VSM) was used to determine the magnetic hysteresis loops. XRD study indicated that the crystal structure of the sample changed from pure cubic to mixed cubic and tetragonal with increasing PZT content. XANES measurements showed that the local structure surrounding Fe and Ti ions was similar. Dielectric study showed that the samples underwent a typical relaxor ferroelectric behavior while the magnetic properties showed very interesting behavior with square saturated magnetic hysteresis loops.« less

  17. Resonance of electromagnetic absorption in a dielectric composite based on a high temperature superconductor

    NASA Astrophysics Data System (ADS)

    Grishin, A. M.; D'Iakonov, V. P.; Mezin, N. I.; Shapovalov, V. A.; Starostiuk, N. Iu.; Iarosh, G. S.

    1992-10-01

    A dielectric composite has been produced which is characterized by a sufficiently strong dependence of its microwave properties on weak magnetic fields. The composite is based on highly dispersed YBa2Cu3O(7-x) superconducting powder, with paraffin used as the matrix material. Results of a study of the magnetic and microwave properties of the composite are presented.

  18. Superconducting nanowire single-photon detectors with non-periodic dielectric multilayers.

    PubMed

    Yamashita, Taro; Waki, Kentaro; Miki, Shigehito; Kirkwood, Robert A; Hadfield, Robert H; Terai, Hirotaka

    2016-10-24

    We present superconducting nanowire single-photon detectors (SSPDs) on non-periodic dielectric multilayers, which enable us to design a variety of wavelength dependences of optical absorptance by optimizing the dielectric multilayer. By adopting a robust simulation to optimize the dielectric multilayer, we designed three types of SSPDs with target wavelengths of 500 nm, 800 nm, and telecom range respectively. We fabricated SSPDs based on the optimized designs for 500 and 800 nm, and evaluated the system detection efficiency at various wavelengths. The results obtained confirm that the designed SSPDs with non-periodic dielectric multilayers worked well. This versatile device structure can be effective for multidisciplinary applications in fields such as the life sciences and remote sensing that require high efficiency over a precise spectral range and strong signal rejection at other wavelengths.

  19. Design of Multi-Resonant Cavities Based on Metal-Coated Dielectric Nanocylinders

    NASA Astrophysics Data System (ADS)

    Dong, Junyuan; Yu, Guanxia; Fu, Jingjing; Luo, Min; Du, Wenwen

    2018-06-01

    In this paper, the light scattering properties for multiple silver-coated dielectric nanocylinders with the symmetrical distribution were investigated. Based on the transfer matrix method, we derive the general transmission and reflection coefficient matrices for multiple dielectric nanocylinders. When the incident light frequencies are less than the plasma frequencies, the surface plasmons (SPs) appear in the interface between the silver and dielectrics. Numerical simulations show that there are three peaks of absorption cross-section (ACS) in the relationship between the ACS and the frequencies of the incident light, when the distance between the silver-coated dielectric nanocylinders is chosen properly. These SPs resonance peaks are characterised as resonances intrinsic to the cylindrically periodic system corresponding to different inner cavity structures. These multi-resonant cavities may have potential applications in integrated devices, optical sensors and optical storage devices.

  20. Optical and dielectric properties of isothermally crystallized nano-KNbO3 in Er3+-doped K2O-Nb2O5-SiO2 glasses.

    PubMed

    Chaliha, Reenamoni Saikia; Annapurna, K; Tarafder, Anal; Tiwari, V S; Gupta, P K; Karmakar, Basudeb

    2010-01-01

    Precursor glass of composition 25K(2)O-25Nb(2)O(5)-50SiO(2) (mol%) doped with Er(2)O(3) (0.5 wt% in excess) was isothermally crystallized at 800 degrees C for 0-100 h to obtain transparent KNbO(3) nanostructured glass-ceramics. XRD, FESEM, TEM, FTIRRS, dielectric constant, refractive index, absorption and fluorescence measurements were carried out to analyze the morphology, dielectric, structure and optical properties of the glass-ceramics. The crystallite size of KNbO(3) estimated from XRD and TEM is found to vary in the range 7-23 nm. A steep rise in the dielectric constant of glass-ceramics with heat-treatment time reveals the formation of ferroelectric nanocrystalline KNbO(3) phase. The measured visible photoluminescence spectra have exhibited green emission transitions of (2)H(11/2), (4)S(3/2)-->(4)I(15/2) upon excitation at 377 nm ((4)I(15/2)-->(4)G(11/2)) absorption band of Er(3+) ions. The near infrared (NIR) emission transition (4)I(13/2)-->(4)I(15/2) is detected around 1550 nm on excitation at 980 nm ((4)I(15/2)-->(4)I(11/2)) of absorption bands of Er(3+) ions. It is observed that photoluminescent intensity at 526 nm ((2)H(11/2)-->(4)I(15/2)), 550 nm ((4)S(3/2)-->(4)I(15/2)) and 1550 nm ((4)I(13/2)-->(4)I(15/2)) initially decrease and then gradually increase with increase in heat-treatment time. The measured lifetime (tau(f)) of the (4)I(13/2)-->(4)I(15/2) transition also possesses a similar trend. The measured absorption and fluorescence spectra reveal that the Er(3+) ions gradually enter into the KNbO(3) nanocrystals. Copyright 2009 Elsevier B.V. All rights reserved.

  1. An approach to the interpretation of Cole-Davidson and Cole-Cole dielectric functions

    NASA Astrophysics Data System (ADS)

    Iglesias, T. P.; Vilão, G.; Reis, João Carlos R.

    2017-08-01

    Assuming that a dielectric sample can be described by Debye's model at each frequency, a method based on Cole's treatment is proposed for the direct estimation at experimental frequencies of relaxation times and the corresponding static and infinite-frequency permittivities. These quantities and the link between dielectric strength and mean molecular dipole moment at each frequency could be useful to analyze dielectric relaxation processes. The method is applied to samples that follow a Cole-Cole or a Cole-Davidson dielectric function. A physical interpretation of these dielectric functions is proposed. The behavior of relaxation time with frequency can be distinguished between the two dielectric functions. The proposed method can also be applied to samples following a Navriliak-Negami or any other dielectric function. The dielectric relaxation of a nanofluid consisting of graphene nanoparticles dispersed in the oil squalane is reported and discussed within the novel framework.

  2. Influence of Reduced Graphene Oxide on Effective Absorption Bandwidth Shift of Hybrid Absorbers.

    PubMed

    Ameer, Shahid; Gul, Iftikhar Hussain

    2016-01-01

    The magnetic nanoparticle composite NiFe2O4 has traditionally been studied for high-frequency microwave absorption with marginal performance towards low-frequency radar bands (particularly L and S bands). Here, NiFe2O4 nanoparticles and nanohybrids using large-diameter graphene oxide (GO) sheets are prepared via solvothermal synthesis for low-frequency wide bandwidth shielding (L and S radar bands). The synthesized materials were characterized using XRD, SEM, FTIR and microwave magneto dielectric spectroscopy. The dimension of these solvothermally synthesized pristine particles and hybrids lies within 30-58 nm. Microwave magneto-dielectric spectroscopy was performed in the low-frequency region in the 1 MHz-3 GHz spectrum. The as-synthesized pristine nanoparticles and hybrids were found to be highly absorbing for microwaves throughout the L and S radar bands (< -10 dB from 1 MHz to 3 GHz). This excellent microwave absorbing property induced by graphene sheet coupling shows application of these materials with absorption bandwidth which is tailored such that these could be used for low frequency. Previously, these were used for high frequency absorptions (typically > 4 GHz) with limited selective bandwidth.

  3. Fabrication of metasurface-based infrared absorber structures using direct laser write lithography

    NASA Astrophysics Data System (ADS)

    Fanyaeu, Ihar; Mizeikis, Vygantas

    2016-03-01

    We report fabrication and optical properties of ultra-thin polarization-invariant electromagnetic absorber metasurface for infra-red spectral. The absorber structure, which uses three-dimensional architecture is based on single-turn metallic helices arranged into a periodic square lattice on a metallic substrate, is expected to exhibit total resonant absorption due to balanced coupling between resonances of the helices. The structure was designed using numerical simulations aiming to tune the total absorption resonance to infra-red wavelength range by appropriately downscaling the unit cell of the structure, and taking into account dielectric dispersion and losses of the metal. The designed structures were subsequently fabricated using femtosecond direct laser write technique in a dielectric photoresist, and subsequent metallisation by gold sputtering. In accordance with the expectations, the structure was found to exhibit resonant absorption centred near the wavelength of 6 - 9 µm, with peak absorption in excess of 82%. The absorber metasurface may be applied in various areas of science and technology, such as harvesting infra-red radiation in thermal detectors and energy converters.

  4. Optical, structural, thermal and dielectric spectroscopy characterizations of seeded melt grown 2-hydroxy biphenyl single crystal.

    PubMed

    Sadhasivam, S; Rajesh, Narayana Perumal

    2014-09-15

    Organic single crystal of 2-hydroxy biphenyl (2-HB) was grown by top seeded melt growth method. Scanning electron microscopy studies has been carried out on the surface of the grown crystals to investigate the nature of growth and defects. The crystalline perfection and lattice parameters of 2-HB has been determined by single crystal XRD analysis and it belongs to orthorhombic crystal system with space group Fdd2. The functional groups and molecular associations were confirmed by FT-IR. The optical characteristics such as cut-off and transmittance were carried out using UV-Vis-NIR spectra. Absence of absorption in the region between 320 and 1100 nm makes the grown crystal desirable to optical applications. Thermal stability of grown crystals was characterized by thermogravimetric (TGA), differential thermal analysis (DTA) and differential scanning calorimetric (DSC) analyses. Broadband dielectric studies reveals that dielectric constant of grown crystal is low. The resistivity of grown crystal was studied by impedance analysis. The second harmonic generation intensity of 3.8 mJ was studied. The grown crystal belongs to soft material studied by hardness test. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Growth, structural, thermal, dielectric and optical studies on HBST crystal: A potential THz emitter.

    PubMed

    Ma, Yuzhe; Teng, Bing; Cao, Lifeng; Zhong, Degao; Ji, Shaohua; Teng, Fei; Liu, Jiaojiao; Yao, Yuan; Tang, Jie; Tong, Jiaming

    2018-02-05

    The efficient organic nonlinear optical material 4-hydroxy benzaldehyde-N-methyl 4-stilbazolium tosylate (HBST) was grown from methanol by slope nucleation method combined with slow cooling (SNM-SC) for the first time. The optimum growth conditions based on the cooling rate was further investigated. The single crystal X-ray diffraction (XRD) revealed that the chromophores of HBST crystal make an angle of about 33° with respect to the a-axis, which is close to the optimum of Terahertz (THz)-wave generation and electro-optics applications. NMR and FT-IR spectral studies have been performed to ascertain various functional groups present in the sample. Futhermore, the thermal stability and decomposition stages were analyzed through TG-DTA and DSC techniques. The dielectric constant and dielectric loss of HBST crystal have been studied. Critical optical properties like the absorption coefficient, refractive index, cut-off wavelength and band gap energy were calculated. Photoluminescence (PL) exication studies indicated green emission occured at 507nm. All the results of HBST crystal make it a promising candidate in the fields of optoelectronic and the generation of THz. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Preparation of Oxidation-Resistant Ultra High Melting Temperature Materials and Structures Using Laser Method

    DTIC Science & Technology

    2009-06-06

    sample within a small ceramic muffle. The microwave absorption coefficient of most ceramics is low, but increases with temperature. Thus, as the...increased using additives with higher absorption 7 coefficients . Silicon carbide has a higher loss tangent at 2.4 GHz than most ceramics, and thus...electron beam sintering. Microwave heating works well for large volumes, but ceramics normally have a low dielectric absorption constant at room

  7. Wideband absorption in one dimensional photonic crystal with graphene-based hyperbolic metamaterials

    NASA Astrophysics Data System (ADS)

    Kang, Yongqiang; Liu, Hongmei

    2018-02-01

    A broadband absorber which was proposed by one dimensional photonic crystal (1DPC) containing graphene-based hyperbolic metamaterials (GHMM) is theoretically investigated. For TM mode, it was demonstrated to absorb roughly 90% of all available electromagnetic waves at a 14 THz absorption bandwidth at normal incidence. The absorption bandwidth was affected by Fermi energy and thickness of dielectric layer. When the incident angle was increased, the absorption value decreased, and the absorption band had a gradual blue shift. These findings have potential applications for designing broadband optoelectronic devices at mid-infrared and THz frequency range.

  8. A DFT study on structural, vibrational properties, and quasiparticle band structure of solid nitromethane.

    PubMed

    Appalakondaiah, S; Vaitheeswaran, G; Lebègue, S

    2013-05-14

    We report a detailed theoretical study of the structural and vibrational properties of solid nitromethane using first principles density functional calculations. The ground state properties were calculated using a plane wave pseudopotential code with either the local density approximation, the generalized gradient approximation, or with a correction to include van der Waals interactions. Our calculated equilibrium lattice parameters and volume using a dispersion correction are found to be in reasonable agreement with the experimental results. Also, our calculations reproduce the experimental trends in the structural properties at high pressure. We found a discontinuity in the bond length, bond angles, and also a weakening of hydrogen bond strength in the pressure range from 10 to 12 GPa, picturing the structural transition from phase I to phase II. Moreover, we predict the elastic constants of solid nitromethane and find that the corresponding bulk modulus is in good agreement with experiments. The calculated elastic constants show an order of C11> C22 > C33, indicating that the material is more compressible along the c-axis. We also calculated the zone center vibrational frequencies and discuss the internal and external modes of this material under pressure. From this, we found the softening of lattice modes around 8-11 GPa. We have also attempted the quasiparticle band structure of solid nitromethane with the G0W0 approximation and found that nitromethane is an indirect band gap insulator with a value of the band gap of about 7.8 eV with G0W0 approximation. Finally, the optical properties of this material, namely the absorptive and dispersive part of the dielectric function, and the refractive index and absorption spectra are calculated and the contribution of different transition peaks of the absorption spectra are analyzed. The static dielectric constant and refractive indices along the three inequivalent crystallographic directions indicate that this material has a considerable optical anisotropy.

  9. A Comparative Study of Structural Stability and Mechanical and Optical Properties of Fluorapatite (Ca5(PO4)3F) and Lithium Disilicate (Li2Si2O5) Components Forming Dental Glass-Ceramics: First Principles Study

    NASA Astrophysics Data System (ADS)

    Biskri, Z. E.; Rached, H.; Bouchear, M.; Rached, D.; Aida, M. S.

    2016-10-01

    The aim of this paper is a comparative study of structural stability and mechanical and optical properties of fluorapatite (FA) (Ca5(PO4)3F) and lithium disilicate (LD) (Li2Si2O5), using the first principles pseudopotential method based on density functional theory (DFT) within the generalized gradient approximation (GGA). The stability of fluorapatite and lithium disilicate compounds has been evaluated on the basis of their formation enthalpies. The results show that fluorapatite is more energetically stable than lithium disilicate. The independent elastic constants and related mechanical properties, including bulk modulus ( B), shear modulus ( G), Young's modulus ( E) and Poisson's ratio ( ν) as well as the Vickers hardness ( H v), have been calculated for fluorapatite compound and compared with other theoretical and experimental results. The obtained values of the shear modulus, Young's modulus and Vickers hardness are smaller in comparison with those of lithium disilicate compound, implying that lithium disilicate is more rigid than fluorapatite. The brittle and ductile properties were also discussed using B/ G ratio and Poisson's ratio. Optical properties such as refractive index n( ω), extinction coefficient k( ω), absorption coefficient α( ω) and optical reflectivity R( ω) have been determined from the calculations of the complex dielectric function ɛ( ω), and interpreted on the basis of the electronic structures of both compounds. The calculated values of static dielectric constant ɛ 1(0) and static refractive index n(0) show that the Li2Si2O5 compound has larger values compared to those of the Ca5(PO4)3F compound. The results of the extinction coefficient show that Li2Si2O5 compound exhibits a much stronger ultraviolet absorption. According to the absorption and reflectivity spectra, we inferred that both compounds are theoretically the best visible and infrared transparent materials.

  10. Thermally induced nonlinear optical absorption in metamaterial perfect absorbers

    NASA Astrophysics Data System (ADS)

    Guddala, Sriram; Kumar, Raghwendra; Ramakrishna, S. Anantha

    2015-03-01

    A metamaterial perfect absorber consisting of a tri-layer (Al/ZnS/Al) metal-dielectric-metal system with top aluminium nano-disks was fabricated by laser-interference lithography and lift-off processing. The metamaterial absorber had peak resonant absorbance at 1090 nm and showed nonlinear absorption for 600ps laser pulses at 1064 nm wavelength. A nonlinear saturation of reflectance was measured to be dependent on the average laser power incident and not the peak laser intensity. The nonlinear behaviour is shown to arise from the heating due to the absorbed radiation and photo-thermal changes in the dielectric properties of aluminium. The metamaterial absorber is seen to be damage resistant at large laser intensities of 25 MW/cm2.

  11. Resonant Raman spectra of diindenoperylene thin films

    NASA Astrophysics Data System (ADS)

    Scholz, R.; Gisslén, L.; Schuster, B.-E.; Casu, M. B.; Chassé, T.; Heinemeyer, U.; Schreiber, F.

    2011-01-01

    Resonant and preresonant Raman spectra obtained on diindenoperylene (DIP) thin films are interpreted with calculations of the deformation of a relaxed excited molecule with density functional theory (DFT). The comparison of excited state geometries based on time-dependent DFT or on a constrained DFT scheme with observed absorption spectra of dissolved DIP reveals that the deformation pattern deduced from constrained DFT is more reliable. Most observed Raman peaks can be assigned to calculated A_g-symmetric breathing modes of DIP or their combinations. As the position of one of the laser lines used falls into a highly structured absorption band, we have carefully analyzed the Raman excitation profile arising from the frequency dependence of the dielectric tensor. This procedure gives Raman cross sections in good agreement with the observed relative intensities, both in the fully resonant and in the preresonant case.

  12. Resonant Raman spectra of diindenoperylene thin films.

    PubMed

    Scholz, R; Gisslén, L; Schuster, B-E; Casu, M B; Chassé, T; Heinemeyer, U; Schreiber, F

    2011-01-07

    Resonant and preresonant Raman spectra obtained on diindenoperylene (DIP) thin films are interpreted with calculations of the deformation of a relaxed excited molecule with density functional theory (DFT). The comparison of excited state geometries based on time-dependent DFT or on a constrained DFT scheme with observed absorption spectra of dissolved DIP reveals that the deformation pattern deduced from constrained DFT is more reliable. Most observed Raman peaks can be assigned to calculated A(g)-symmetric breathing modes of DIP or their combinations. As the position of one of the laser lines used falls into a highly structured absorption band, we have carefully analyzed the Raman excitation profile arising from the frequency dependence of the dielectric tensor. This procedure gives Raman cross sections in good agreement with the observed relative intensities, both in the fully resonant and in the preresonant case.

  13. Ellipsometry study of optical parameters of AgIn5S8 crystals

    NASA Astrophysics Data System (ADS)

    Isik, Mehmet; Gasanly, Nizami

    2015-12-01

    AgIn5S8 crystals grown by Bridgman method were characterized for optical properties by ellipsometry measurements. Spectral dependence of optical parameters; real and imaginary parts of the pseudodielectric function, pseudorefractive index, pseudoextinction coefficient, reflectivity and absorption coefficient were obtained from ellipsometry experiments carried out in the 1.2-6.2 eV range. Direct band gap energy of 1.84 eV was found from the analysis of absorption coefficient vs. photon energy. The oscillator energy, dispersion energy and zero-frequency refractive index, high-frequency dielectric constant values were found from the analysis of the experimental data using Wemple-DiDomenico and Spitzer-Fan models. Crystal structure and atomic composition ratio of the constituent elements in the AgIn5S8 crystal were revealed from structural characterization techniques of X-ray diffraction and energy dispersive spectroscopy.

  14. Engineering Design Handbook: Environmental Series. Part Five. Glossary of Environmental Terms

    DTIC Science & Technology

    1975-07-31

    temperature, surface. shield. In cables, the metallic layer applied over the dielectric, or group of dielectrics, composed of woven, braided , or served...greases, thereby reducing corrosion of metals and hardening of seals. active vibration isolation and absorption systems. Servomechanism-type systems...Usually refers to grav- AMCP708119 el or crashed rock. Sometimes called road metal (in England) (Ref. 1). aging. A gradual process involving physical

  15. The role of relativity in the optical response of gold within the time-dependent current-density-functional theory.

    PubMed

    Romaniello, P; de Boeij, P L

    2005-04-22

    We included relativistic effects in the formulation of the time-dependent current-density-functional theory for the calculation of linear response properties of metals [P. Romaniello and P. L. de Boeij, Phys. Rev. B (to be published)]. We treat the dominant scalar-relativistic effects using the zeroth-order regular approximation in the ground-state density-functional theory calculations, as well as in the time-dependent response calculations. The results for the dielectric function of gold calculated in the spectral range of 0-10 eV are compared with experimental data reported in literature and recent ellipsometric measurements. As well known, relativistic effects strongly influence the color of gold. We find that the onset of interband transitions is shifted from around 3.5 eV, obtained in a nonrelativistic calculation, to around 1.9 eV when relativity is included. With the inclusion of the scalar-relativistic effects there is an overall improvement of both real and imaginary parts of the dielectric function over the nonrelativistic ones. Nevertheless some important features in the absorption spectrum are not well reproduced, but can be explained in terms of spin-orbit coupling effects. The remaining deviations are attributed to the underestimation of the interband gap (5d-6sp band gap) in the local-density approximation and to the use of the adiabatic local-density approximation in the response calculation.

  16. Surface Plasmon Absorption in MoS2 and Graphene-MoS2 Micro-Gratings and the Impact of a Liquid Crystal Substrate (Postprint)

    DTIC Science & Technology

    2018-04-27

    ABSTRACT (Maximum 200 words) The absorption coefficients of a far-infrared wave are calculated at normal incidence for MoS2 and graphene-MoS2 micro...ribbon gratings placed between a nematic LC and an isotropic dielectric medium. Maxima in the absorption spectra, which are related to the...excitation of the surface plasmons in micro-ribbons of these gratings, are observed. The spectral position of absorption maxima depends on the grating spacing

  17. Sensitive singular-phase optical detection without phase measurements with Tamm plasmons.

    PubMed

    Boriskina, Svetlana V; Tsurimaki, Yoichiro

    2018-06-06

    Spectrally-tailored interactions of light with material interfaces offer many exciting applications in sensing, photo-detection, and optical energy conversion. In particular, complete suppression of light reflectance at select frequencies accompanied by sharp phase variations in the reflected signal forms the basis for the development of ultra-sensitive singular-phase optical detection schemes such as Brewster and surface plasmon interferometry. However, both the Brewster effect and surface-plasmon-mediated absorption on planar interfaces are limited to one polarization of the incident light and oblique excitation angles, and may have limited bandwidth dictated by the material dielectric index and plasma frequency. To alleviate these limitations, we design narrow-band super-absorbers composed of plasmonic materials embedded into dielectric photonic nanostructures with topologically-protected interfacial Tamm plasmon states. These structures have planar geometry and do not require nanopatterning to achieve perfect absorption of both polarizations of the incident light in a wide range of incident angles, including the normal incidence. Their absorption lines are tunable across a very broad spectral range via engineering of the photon bandstructure of the dielectric photonic nanostructures to achieve reversal of the geometrical phase across the interface with the plasmonic absorber. We outline the design strategy to achieve perfect absorptance in Tamm structures with dissipative losses via conjugate impedance matching. We further demonstrate via modeling how these structures can be engineered to support sharp asymmetric amplitude resonances, which can be used to improve the sensitivity of optical sensors in the amplitude-only detection scheme that does not require use of bulky and expensive ellipsometry equipment.

  18. Sensitive singular-phase optical detection without phase measurements with Tamm plasmons

    NASA Astrophysics Data System (ADS)

    Boriskina, Svetlana V.; Tsurimaki, Yoichiro

    2018-06-01

    Spectrally-tailored interactions of light with material interfaces offer many exciting applications in sensing, photo-detection, and optical energy conversion. In particular, complete suppression of light reflectance at select frequencies accompanied by sharp phase variations in the reflected signal forms the basis for the development of ultra-sensitive singular-phase optical detection schemes such as Brewster and surface plasmon interferometry. However, both the Brewster effect and surface-plasmon-mediated absorption on planar interfaces are limited to one polarization of the incident light and oblique excitation angles, and may have limited bandwidth dictated by the material dielectric index and plasma frequency. To alleviate these limitations, we design narrow-band super-absorbers composed of plasmonic materials embedded into dielectric photonic nanostructures with topologically-protected interfacial Tamm plasmon states. These structures have planar geometry and do not require nanopatterning to achieve perfect absorption of both polarizations of the incident light in a wide range of incident angles, including the normal incidence. Their absorption lines are tunable across a very broad spectral range via engineering of the photon bandstructure of the dielectric photonic nanostructures to achieve reversal of the geometrical phase across the interface with the plasmonic absorber. We outline the design strategy to achieve perfect absorptance in Tamm structures with dissipative losses via conjugate impedance matching. We further demonstrate via modeling how these structures can be engineered to support sharp asymmetric amplitude resonances, which can be used to improve the sensitivity of optical sensors in the amplitude-only detection scheme that does not require use of bulky and expensive ellipsometry equipment.

  19. Yb:Lu2SiO5 crystal : characterization of the laser emission along the three dielectric axes

    NASA Astrophysics Data System (ADS)

    Toci, Guido; Pirri, Angela; Beitlerova, Alena; Shoji, Yasuhiro; Yoshikawa, Akira; Hybler, Jiri; Nikl, Martin; Vannini, Matteo

    2015-05-01

    Yb:doped Lu2SiO5 (Lutetium orthosilicate, LSO) is an optically biaxial crystal with laser emission in the range 1000- 1100 nm. It features different absorption and emission spectra for polarization along its three dielectric axes. In this work we have characterized the laser emission properties of Yb:LSO along all the three dielectric axis, evidencing differences that can be exploited in the design of ultrafast laser sources. The material was tested in a longitudinally pumped laser cavity. The laser emission efficiency was found similar along all the three dielectric axes, with slope efficiencies around 90% in most cases. Regarding the tuning range, for the most favourable polarization direction we obtained a continuously tunable emission between 993 and 1088 nm (i. e. 95 nm) peaked at 1040 nm. The tuning curves along the three dielectric axes spanned similar ranges but with relevant differences in the shape.

  20. Controlled thermal expansion printed wiring boards based on liquid crystal polymer dielectrics

    NASA Technical Reports Server (NTRS)

    Knoll, Thomas E.; Blizard, Kent; Jayaraj, K.; Rubin, Leslie S.

    1994-01-01

    Dielectric materials based on innovative Liquid Crystal Polymers (LCP's) have been used to fabricate surface mount printed wiring boards (PWB's) with a coefficient of thermal expansion matched to leadless ceramic chip carriers. Proprietary and patented polymer processing technology has resulted in self reinforcing material with balanced in-plane mechanical properties. In addition, LCP's possess excellent electrical properties, including a low dielectric constant (less than 2.9) and very low moisture absorption (less than 0.02%). LCP-based multilayer boards processed with conventional drilling and plating processes show improved performance over other materials because they eliminate the surface flatness problems of glass or aramid reinforcements. Laser drilling of blind vias in the LCP dielectric provides a very high density for use in direct chip attach and area array packages. The material is ideally suited for MCM-L and PCMCIA applications fabricated with very thin dielectric layers of the liquid crystal polymer.

  1. Broadband absorption with gradient metasurfaces

    NASA Astrophysics Data System (ADS)

    Kwon, Hoyeong; Chalabi, Hamidreza; Alù, Andrea

    2018-03-01

    A metasurface with appropriately designed transverse spatial inhomogeneities can provide the desired phase redistribution in response to an incident wave with arbitrary incident angle. This property of gradient metasurfaces has been used to modify light propagation in unusual manners, to transform the impinging optical wavefront with large flexibility. In this work, we show how gradient metasurfaces can be tailored to offer high absorption in thin absorptive layers, and how to design realistic metasurfaces for this purpose using dielectric materials.

  2. An ultrathin wide-band planar metamaterial absorber based on a fractal frequency selective surface and resistive film

    NASA Astrophysics Data System (ADS)

    Fan, Yue-Nong; Cheng, Yong-Zhi; Nie, Yan; Wang, Xian; Gong, Rong-Zhou

    2013-06-01

    We propose an ultrathin wide-band metamaterial absorber (MA) based on a Minkowski (MIK) fractal frequency selective surface and resistive film. This absorber consists of a periodic arrangement of dielectric substrates sandwiched with an MIK fractal loop structure electric resonator and a resistive film. The finite element method is used to simulate and analyze the absorption of the MA. Compared with the MA-backed copper film, the designed MA-backed resistive film exhibits an absorption of 90% at a frequency region of 2 GHz-20 GHz. The power loss density distribution of the MA is further illustrated to explain the mechanism of the proposed MA. Simulated absorptions at different incidence cases indicate that this absorber is polarization-insensitive and wide-angled. Finally, further simulated results indicate that the surface resistance of the resistive film and the dielectric constant of the substrate can affect the absorbing property of the MA. This absorber may be used in many military fields.

  3. Imaging-based molecular barcoding with pixelated dielectric metasurfaces.

    PubMed

    Tittl, Andreas; Leitis, Aleksandrs; Liu, Mingkai; Yesilkoy, Filiz; Choi, Duk-Yong; Neshev, Dragomir N; Kivshar, Yuri S; Altug, Hatice

    2018-06-08

    Metasurfaces provide opportunities for wavefront control, flat optics, and subwavelength light focusing. We developed an imaging-based nanophotonic method for detecting mid-infrared molecular fingerprints and implemented it for the chemical identification and compositional analysis of surface-bound analytes. Our technique features a two-dimensional pixelated dielectric metasurface with a range of ultrasharp resonances, each tuned to a discrete frequency; this enables molecular absorption signatures to be read out at multiple spectral points, and the resulting information is then translated into a barcode-like spatial absorption map for imaging. The signatures of biological, polymer, and pesticide molecules can be detected with high sensitivity, covering applications such as biosensing and environmental monitoring. Our chemically specific technique can resolve absorption fingerprints without the need for spectrometry, frequency scanning, or moving mechanical parts, thereby paving the way toward sensitive and versatile miniaturized mid-infrared spectroscopy devices. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  4. CMOS compatible metamaterial absorbers for hyperspectral medium wave infrared imaging and sensing applications.

    PubMed

    Grant, James; Kenney, Mitchell; Shah, Yash D; Escorcia-Carranza, Ivonne; Cumming, David R S

    2018-04-16

    We experimentally demonstrate a CMOS compatible medium wave infrared metal-insulator-metal (MIM) metamaterial absorber structure where for a single dielectric spacer thickness at least 93% absorption is attained for 10 separate bands centred at 3.08, 3.30, 3.53, 3.78, 4.14, 4.40, 4.72, 4.94, 5.33, 5.60 μm. Previous hyperspectral MIM metamaterial absorber designs required that the thickness of the dielectric spacer layer be adjusted in order to attain selective unity absorption across the band of interest thereby increasing complexity and cost. We show that the absorption characteristics of the hyperspectral metamaterial structures are polarization insensitive and invariant for oblique incident angles up to 25° making them suitable for practical implementation in an imaging system. Finally, we also reveal that under TM illumination and at certain oblique incident angles there is an extremely narrowband Fano resonance (Q > 50) between the MIM absorber mode and the surface plasmon polariton mode that could have applications in hazardous/toxic gas identification and biosensing.

  5. Dynamical tuning between nearly perfect reflection, absorption, and transmission of light via graphene/dielectric structures

    PubMed Central

    Linder, Jacob; Halterman, Klaus

    2016-01-01

    Exerting well-defined control over the reflection (R), absorption (A), and transmission (T) of electromagnetic waves is a key objective in quantum optics. To this end, one often utilizes hybrid structures comprised of elements with different optical properties in order to achieve features such as high R or high A for incident light. A desirable goal would be the possibility to tune between all three regimes of nearly perfect reflection, absorption, and transmission within the same device, thus swapping between the cases R → 1, A → 1, and T → 1 dynamically. We here show that a dielectric interfaced with a graphene layer on each side allows for precisely this: by tuning only the Fermi level of graphene, all three regimes can be reached in the THz regime and below. Moreover, we show that the inclusion of cylindrical defects in the system offers a different type of control of the scattering of electromagnetic waves by means of the graphene layers. PMID:27917886

  6. Electrically tunable coherent optical absorption in graphene with ion gel.

    PubMed

    Thareja, Vrinda; Kang, Ju-Hyung; Yuan, Hongtao; Milaninia, Kaveh M; Hwang, Harold Y; Cui, Yi; Kik, Pieter G; Brongersma, Mark L

    2015-03-11

    We demonstrate electrical control over coherent optical absorption in a graphene-based Salisbury screen consisting of a single layer of graphene placed in close proximity to a gold back reflector. The screen was designed to enhance light absorption at a target wavelength of 3.2 μm by using a 600 nm-thick, nonabsorbing silica spacer layer. An ionic gel layer placed on top of the screen was used to electrically gate the charge density in the graphene layer. Spectroscopic reflectance measurements were performed in situ as a function of gate bias. The changes in the reflectance spectra were analyzed using a Fresnel based transfer matrix model in which graphene was treated as an infinitesimally thin sheet with a conductivity given by the Kubo formula. The analysis reveals that a careful choice of the ionic gel layer thickness can lead to optical absorption enhancements of up to 5.5 times for the Salisbury screen compared to a suspended sheet of graphene. In addition to these absorption enhancements, we demonstrate very large electrically induced changes in the optical absorption of graphene of ∼3.3% per volt, the highest attained so far in a device that features an atomically thick active layer. This is attributable in part to the more effective gating achieved with the ion gel over the conventional dielectric back gates and partially by achieving a desirable coherent absorption effect linked to the presence of the thin ion gel that boosts the absorption by 40%.

  7. Metallic dielectric photonic crystals and methods of fabrication

    DOEpatents

    Chou, Jeffrey Brian; Kim, Sang-Gook

    2017-12-05

    A metallic-dielectric photonic crystal is formed with a periodic structure defining a plurality of resonant cavities to selectively absorb incident radiation. A metal layer is deposited on the inner surfaces of the resonant cavities and a dielectric material fills inside the resonant cavities. This photonic crystal can be used to selectively absorb broadband solar radiation and then reemit absorbed radiation in a wavelength band that matches the absorption band of a photovoltaic cell. The photonic crystal can be fabricated by patterning a sacrificial layer with a plurality of holes, into which is deposited a supporting material. Removing the rest of the sacrificial layer creates a supporting structure, on which a layer of metal is deposited to define resonant cavities. A dielectric material then fills the cavities to form the photonic crystal.

  8. Metallic dielectric photonic crystals and methods of fabrication

    DOEpatents

    Chou, Jeffrey Brian; Kim, Sang-Gook

    2016-12-20

    A metallic-dielectric photonic crystal is formed with a periodic structure defining a plurality of resonant cavities to selectively absorb incident radiation. A metal layer is deposited on the inner surfaces of the resonant cavities and a dielectric material fills inside the resonant cavities. This photonic crystal can be used to selectively absorb broadband solar radiation and then reemit absorbed radiation in a wavelength band that matches the absorption band of a photovoltaic cell. The photonic crystal can be fabricated by patterning a sacrificial layer with a plurality of holes, into which is deposited a supporting material. Removing the rest of the sacrificial layer creates a supporting structure, on which a layer of metal is deposited to define resonant cavities. A dielectric material then fills the cavities to form the photonic crystal.

  9. Bessel Plasmon-Polaritons at the Boundaries of Metamaterials with Near-Zero Dielectric Constants

    NASA Astrophysics Data System (ADS)

    Kurilkina, S. N.; Belyi, V. N.; Kazak, N. S.; Binhussain, M. A.

    2015-07-01

    The conditions for and features of the excitation of Bessel plasmon-polaritons (BPP) are examined at the boundary of a hyperbolic metamaterial with a near-zero dielectric constant made of a dielectric matrix with metal nanorods embedded in it normal to its surface. This material is compared with BPP that have traditional surface plasmons. The effect of the absorption of the metamaterial on the excitation of BPP is studied. The possibility of changes in the direction of the radial energy fl ows in BPP excited at the surface of an isotropic medium, a hyperbolic metamaterial, is demonstrated and the conditions for these changes are determined.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bissa, Shivangi; Naruka, Preeti; Bishnoi, Nidhi

    In the present study the dielectric optical response of various nanostructures of ZnO deposited on silica substrate has been studied using Maxwell-Garnett Effective Medium Theory. Using the volume filling factors for different nanostructures of ZnO the effective dielectric constant has been evaluated. The variation of this effective dielectric constant with the frequency of applied signal has been investigated. Moreover, the reflectance of the film, power absorption and variation of refractive index with frequency has been studied. The results obtained show that the quantum confinement effects in ZnO nano-structural films deposited on silica substrate give rise to distinct optical properties makingmore » it an ideal choice for high power THz generation.« less

  11. Linear and nonlinear magneto-optical properties of an off-center single dopant in a spherical core/shell quantum dot

    NASA Astrophysics Data System (ADS)

    Feddi, E.; Talbi, A.; Mora-Ramos, M. E.; El Haouari, M.; Dujardin, F.; Duque, C. A.

    2017-11-01

    Using the effective mass approximation and a variational procedure, we have investigated the nonlinear optical absorption coefficient and the relative refractive index changes associated to a single dopant confined in core/shell quantum dots considering the influences of the core/shell dimensions, externally applied magnetic field, and dielectric mismatch. The results show that the optical absorption coefficient and the coefficients of relative refractive index change depend strongly on the core/shell sizes and they are blue shifted when the spatial confinement increases so this effect is magnified by higher structural dimensions. Additionally, it is obtained that both studied optical properties are sensitive to the dielectric environment in such a way that their amplitudes are very affected by the local field corrections.

  12. Nanopillar Optical Antenna Avalanche Detectors

    DTIC Science & Technology

    2014-08-30

    tuning and hybridization of the optical absorption via Surface Plasmon Polariton Bloch Waves (SPP-BWs) and Localized Surface Plasmon Resonances (LSPRs...of the optical absorption via Surface Plasmon Polariton Bloch Waves (SPP-BWs) and Localized Surface Plasmon Resonances (LSPRs) will be discussed...Surface Plasmon Polariton Bloch wave (SPP-BW) 36, 40. Also, resonant-field enhancement occurs in bounded metallic/dielectric structures that support

  13. One-way quasiplanar terahertz absorbers using nonstructured polar dielectric layers

    NASA Astrophysics Data System (ADS)

    Rodríguez-Ulibarri, P.; Beruete, M.; Serebryannikov, A. E.

    2017-10-01

    A concept of quasiplanar one-way transparent terahertz absorbers made of linear isotropic materials is presented. The resulting structure consists of a homogeneous absorbing layer of polar dielectric, GaAs, a dispersion-free substrate, and an ultrathin frequency-selective reflector. It is demonstrated that perfect absorption can be obtained for forward illumination, along with total reflection at backward illumination and transparency windows in the adjacent bands. The design is particularized for the polaritonic gap range where permittivity of GaAs varies in a wide range and includes epsilon-near-zero and transparency regimes. The underlying physics can be explained with the aid of a unified equivalent-circuit (EC) analytical model. Perfect matching of input impedance in forward operation and, simultaneously, strong mismatch in the backward case are the universal criteria of one-way absorption. It is shown that perfect one-way absorption can be achieved at rather arbitrary permittivity values, provided these criteria are fulfilled. The EC results are in good agreement with full-wave simulations in a wide range of material and geometrical parameters. The resulting one-way absorbers are very compact and geometrically simple, and enable transparency in the neighboring frequency ranges and, hence, multifunctionality that utilizes both absorption- and transmission-related regimes.

  14. Effects of surface roughness and absorption on light propagation in graded-profile waveguides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danilenko, S S; Osovitskii, A N

    2011-06-30

    This paper examines the effects of surface roughness and absorption on laser light propagation in graded-profile waveguiding structures. We derive analytical expressions for the scattering and absorption coefficients of guided waves and analyse these coefficients in relation to parameters of the waveguiding structure and the roughness of its boundary. A new approach is proposed to measuring roughness parameters of precision dielectric surfaces. Experimental evidence is presented which supports the main conclusions of the theory. (integraled-optical waweguides)

  15. Morphological and chemical changes of aerosolized E. coli treated with a dielectric barrier discharge

    DOE PAGES

    Romero-Mangado, Jaione; Nordlund, Dennis; Soberon, Felipe; ...

    2016-02-12

    This paper presents the morphological and chemical modification of the cell structure of aerosolized Escherichia coli treated with a dielectric barrier discharge (DBD). Exposure to DBD results in severe oxidation of the bacteria, leading to the formation of hydroxyl groups and carbonyl groups and a significant reduction in amine functionalities and phosphate groups. Near edge x-ray absorption fine structure(NEXAFS) measurements confirm the presence of additional oxide bonds upon DBD treatment, suggesting oxidation of the outer layer of the cell wall. Electron microscopy images show that the bacteria undergo physical distortion to varying degrees, resulting in deformation of the bacterial structure.more » The electromagnetic field around the DBD coil causes severe damage to the cell structure, possibly resulting in leakage of vital cellular materials. The oxidation and chemical modification of the bacterial components are evident from the Fourier transform infrared spectroscopy and NEXAFS results. The bacterial reculture experiments confirm inactivation of airborne E. coli upon treating with DBD.« less

  16. Controlled Terahertz Birefringence in Stretched Poly(lactic acid) Films Investigated by Terahertz Time-Domain Spectroscopy and Wide-Angle X-ray Scattering.

    PubMed

    Iwasaki, Hotsumi; Nakamura, Madoka; Komatsubara, Nozomu; Okano, Makoto; Nakasako, Masayoshi; Sato, Harumi; Watanabe, Shinichi

    2017-07-20

    We report a correlation between the dielectric property and structure of stretched poly(lactic acid) (PLA) films, revealed by polarization-sensitive terahertz time-domain spectroscopy and two-dimensional (2D) wide-angle X-ray scattering (WAXS). The experiments evidence that the dielectric function of the PLA film becomes more anisotropic with increasing draw ratio (DR). This behavior is explained by a classical Lorentz oscillator model assuming polarization-dependent absorption. The birefringence can be systematically altered from 0 to 0.13 by controlling DR. The combination of terahertz spectroscopy and 2D WAXS measurement reveals a clear correlation between the birefringence in the terahertz frequency domain and the degree of orientation of the PLA molecular chains. These findings imply that the birefringence is a result of the orientation of the PLA chains with anisotropic macromolecular vibration modes. Because of a good controllability of the birefringence, polymer-based materials will provide an attractive materials system for phase retarders in the terahertz frequency range.

  17. Monolithically integrated mid-infrared lab-on-a-chip using plasmonics and quantum cascade structures

    PubMed Central

    Schwarz, Benedikt; Reininger, Peter; Ristanić, Daniela; Detz, Hermann; Andrews, Aaron Maxwell; Schrenk, Werner; Strasser, Gottfried

    2014-01-01

    The increasing demand of rapid sensing and diagnosis in remote areas requires the development of compact and cost-effective mid-infrared sensing devices. So far, all miniaturization concepts have been demonstrated with discrete optical components. Here we present a monolithically integrated sensor based on mid-infrared absorption spectroscopy. A bi-functional quantum cascade laser/detector is used, where, by changing the applied bias, the device switches between laser and detector operation. The interaction with chemicals in a liquid is resolved via a dielectric-loaded surface plasmon polariton waveguide. The thin dielectric layer enhances the confinement and enables efficient end-fire coupling from and to the laser and detector. The unamplified detector signal shows a slope of 1.8–7 μV per p.p.m., which demonstrates the capability to reach p.p.m. accuracy over a wide range of concentrations (0–60%). Without any hybrid integration or subwavelength patterning, our approach allows a straightforward and cost-saving fabrication. PMID:24905443

  18. Mars - VLA observations of the northern hemisphere and the north polar region at wavelengths of 2 and 6 cm

    NASA Technical Reports Server (NTRS)

    Rudy, Donald J.; Muhleman, Duane O.; Berge, Glenn L.; Jakosky, Bruce M.; Christensen, Philip R.

    1987-01-01

    Calculations based on 2- and 6-cm observations of Mars with the A configuration of the VLA have yielded a whole-disk effective dielectric constant of 2.34 + or - 0.05, implying a subsurface density of 1.24 + or - 0.11 g/cu cm at 2 cm, as well as 1.45 + or - 0.10 g/cu cm effective density and 2.70 + or - 0.10 dielectric constant at 6 cm. These parameters have also been estimated as a function of latitude over the 15 deg S - 60 deg N range; subsurface radio absorption length was estimated to be about 15 wavelengths at most of these latitudes. Most of the subsurface density calculations yielded results in the 1-2-g/cu cm range, implying that the subsurface is not very different from the surface observed by Viking and Mariner spacecraft; the decrease in correlation with depth is in keeping with slow variation of the subsurface in the near-subsurface region.

  19. Ultra-thin, conformal, and hydratable color-absorbers using silk protein hydrogel

    NASA Astrophysics Data System (ADS)

    Umar, Muhammad; Min, Kyungtaek; Jo, Minsik; Kim, Sunghwan

    2018-06-01

    Planar and multilayered photonic devices offer unprecedented opportunities in biological and chemical sensing due to strong light-matter interactions. However, uses of rigid substances such as semiconductors and dielectrics confront photonic devices with issues of biocompatibility and a mechanical mismatch for their application on humid, uneven, and soft biological surfaces. Here, we report that favorable material traits of natural silk protein led to the fabrication of an ultra-thin, conformal, and water-permeable (hydratable) metal-insulator-metal (MIM) color absorber that was mapped on soft, curved, and hydrated biological interfaces. Strong absorption was induced in the MIM structure and could be tuned by hydration and tilting of the sample. The transferred MIM color absorbers reached the exhibition of a very strong resonant absorption in the visible and near infra-red ranges. In addition, we demonstrated that the conformal resonator could function as a refractometric glucose sensor applied on a contact lens.

  20. Ultraviolet absorption spectrum of the half-filled bilayer graphene

    NASA Astrophysics Data System (ADS)

    Apinyan, V.; Kopeć, T. K.

    2018-07-01

    We consider the optical properties of the half-filled AB-stacked bilayer graphene with the excitonic pairing and condensation between the layers. Both intra and interlayer local Coulomb interaction effects have been taken into account and the role of the exact Fermi energy has been discussed in details. We have calculated the absorption coefficient, refractive index, dielectric response functions and the electron energy loss spectrum for different interlayer Coulomb interaction regimes and for different temperatures. Considering the full four-band model for the interacting AB bilayer graphene, a good agreement is achieved with other theoretical and experimental works on the subject, in particular, limiting cases of the theory. The calculations, presented here, permit to estimate accurately the effects of excitonic pairing and condensation on the optical properties of the bilayer graphene. The modifications of the plasmon excitation spectrum are discussed in details for a very large interval of the interlayer interaction parameter.

  1. Electric field effects on the optical properties of buckled GaAs monolayer

    NASA Astrophysics Data System (ADS)

    Bahuguna, Bhagwati Prasad; Saini, L. K.; Sharma, Rajesh O.

    2018-04-01

    Buckled GaAs monolayer has a direct band gap semiconductor with energy gap of 1.31 eV in the absence of electric field. When we applied transverse electric field, the value of band gap decreases with increasing of electric field strength. In our previous work [1], it is observed that the buckled GaAs monolayer becomes metallic at 1.3 V/Å. In the present work, we investigate the optical properties such as photon energy-dependent dielectric functions, extinction coefficient, refractive index, absorption spectrum and reflectivity of buckled GaAs monolayer in the semiconducting phase i.e. absence of external electric field and metallic phase i.e. presence of external electric field using density functional theory.

  2. Lusters of renaissance pottery: Experimental and theoretical optical properties using inhomogeneous theories

    NASA Astrophysics Data System (ADS)

    Berthier, S.; Padeletti, G.; Fermo, P.; Bouquillon, A.; Aucouturier, M.; Charron, E.; Reillon, V.

    2006-06-01

    Luster decoration of medieval and renaissance potteries constitutes one of the most important and sophisticated decoration techniques of the Mediterranean basin. Lusters consist in a thin layer of silver and copper nanocrystals immersed in a dielectric matrix. Different physical phenomena are responsible for the very brilliant and complex colored effect produced by the lusters. On one hand, according to the thickness of the thin layer, interferential effects occur giving rise to a classical iridescent effect. On the other hand, the nanostructure of the metallic compound leads to extra absorption, generally observed in the visible or near infrared, due to an external resonance associated with the excitation of a surface plasmon in the metallic particles. The position of this resonance, and so the color of the film, depends from many parameters, mainly: (1) the relative volume fraction p of the metal inclusions. (2) The mean size of the metal particle. (3) The shape of the particles and (4) the dielectric functions of the constituents. These two phenomena are not independent as the second one greatly affects the dielectric function of the film and, thus, its optical thickness. In this paper, the physical and optical properties of various lusters from Deruta and Gubbio (Italy) of the XVI century are presented. The structure and the composition of the different films have been determined by scanning electron microscope (SEM), ion beam analyses (PIXE and RBS) and low incidence X-ray diffraction. The optical properties have been determined by two different techniques: (a) hemispherical spectroscopic measurements under near-normal incidence; (b) gonioscopic measurements for a given angle of incidence and wavelength. The first one allows the determination of the effective index of refraction of the inhomogeneous layer, and the second one the determination of the bidirectional reflectance distribution function (BRDF) of the material.

  3. Scattering-Type Surface-Plasmon-Resonance Biosensors

    NASA Technical Reports Server (NTRS)

    Wang, Yu; Pain, Bedabrata; Cunningham, Thomas; Seshadri, Suresh

    2005-01-01

    Biosensors of a proposed type would exploit scattering of light by surface plasmon resonance (SPR). Related prior biosensors exploit absorption of light by SPR. Relative to the prior SPR biosensors, the proposed SPR biosensors would offer greater sensitivity in some cases, enough sensitivity to detect bioparticles having dimensions as small as nanometers. A surface plasmon wave can be described as a light-induced collective oscillation in electron density at the interface between a metal and a dielectric. At SPR, most incident photons are either absorbed or scattered at the metal/dielectric interface and, consequently, reflected light is greatly attenuated. The resonance wavelength and angle of incidence depend upon the permittivities of the metal and dielectric. An SPR sensor of the type most widely used heretofore includes a gold film coated with a ligand a substance that binds analyte molecules. The gold film is thin enough to support evanescent-wave coupling through its thickness. The change in the effective index of refraction at the surface, and thus the change in the SPR response, increases with the number of bound analyte molecules. The device is illuminated at a fixed wavelength, and the intensity of light reflected from the gold surface opposite the ligand-coated surface is measured as a function of the angle of incidence. From these measurements, the angle of minimum reflection intensity is determined

  4. Numerical analysis for infant's unintentional exposure to 3.5 GHz plane wave radiofrequency electromagnetic fields by field test of fifth generation wireless technologies

    NASA Astrophysics Data System (ADS)

    Liu, Dan; Li, Congsheng; Kang, Yangyang; Zhou, Zhou; Xie, Yi; Wu, Tongning

    2017-09-01

    In this study, the plane wave exposure of an infant to radiofrequency electromagnetic fields of 3.5 GHz was numerically analyzed to investigate the unintentional electromagnetic field (EMF) exposure of fifth generation (5G) signals during field test. The dosimetric influence of age-dependent dielectric properties and the influence of an adult body were evaluated using an infant model of 12 month old and an adult female model. The results demonstrated that the whole body-averaged specific absorption rate (WBASAR) was not significantly affected by age-dependent dielectric properties and the influence of the adult body did not enhance WBASAR. Taking the magnitude of the in situ E field strength into consideration, realistic WBASAR was far below the basic restriction. Age-dependent dielectric properties could significantly change the tissue specified specific absorption rate (TSSAR) of internal organs. However, the variation was not significant because the absolute values were marginal. Among the factors that influenced TSSAR variation, change in dielectric properties demonstrated a close correlation. In general, at 3.5 GHz, the infant did not absorb more power than the case of EMF exposure to third generation (3G) and fourth generation (4G) signals. The work was helpful for network operators and device manufactures to estimate the potential exposure risk during the field test, especially for the infant.

  5. Dielectric platforms for surface-enhanced spectroscopies (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Maier, Stefan A.

    2016-03-01

    Plasmonic nanostructures serve as the main backbone of surface enhanced sensing methodologies, yet the associated optical losses lead to localized heating as well as quenching of molecules, complicating their use for enhancement of fluorescent emission. Additionally, conventional plasmonic materials are limited to operation in the visible part of the spectrum. We will elucidate how nanostructures consisting of conventional and polar dielectrics can be employed as a highly promising alternative platform. Dielectric nanostructures can sustain scattering resonances due to both electric and magnetic Mie modes. We have recently predicted high enhanced local electromagnetic field hot spots in dielectric nanoantenna dimers, with the hallmark of spot sizes comparable to those achievable with plasmonic antennas, but with lower optical losses. Here, we will present first experimental evidence for both fluorescence and Raman enhancement in dielectric nanoantennas, including a direct determination of localized heating, and compare to conventional Au dimer antennas. The second part of the talk will focus on the mid-infrared regime of the electromagnetic spectrum, outlining possibilities for surface enhanced infrared absorption spectroscopy based on polar and hyperbolic dielectrics.

  6. Lightweight and efficient microwave absorbing materials based on walnut shell-derived nano-porous carbon.

    PubMed

    Qiu, Xu; Wang, Lixi; Zhu, Hongli; Guan, Yongkang; Zhang, Qitu

    2017-06-08

    Lightweight microwave absorbing materials have drawn tremendous attention. Herein, nano-porous biomass carbon materials have been prepared by carbonization with a subsequent potassium hydroxide activation of walnut shells and the microwave absorption properties have also been investigated. The obtained samples have large specific surface areas with numerous micropores and nanopores. The sample activated at 600 °C with a specific surface area of 736.2 m 2 g -1 exhibits the most enhanced microwave absorption performance. It has the maximum reflection loss of -42.4 dB at 8.88 GHz and the effective absorption bandwidth (reflection loss below -10 dB) is 1.76 GHz (from 8.08 GHz to 9.84 GHz), corresponding to a thickness of 2 mm. Additionally, the effective absorption bandwidth can reach 2.24 GHz (from 10.48 GHz to 12.72 GHz) when the absorber thickness is 1.5 mm. Three-dimensional porous architecture, interfacial polarization relaxation loss, and the dipolar relaxation loss make a great contribution to the excellent microwave absorption performance. In contrast, the non-activated sample with lower specific surface area (435.3 m 2 g -1 ) has poor microwave absorption performance due to a poor dielectric loss capacity. This comparison highlights the role of micropores and nanopores in improving the dielectric loss property of porous carbon materials. To sum up, porous biomass carbon has great potential to become lightweight microwave absorbers. Moreover, KOH is an efficient activation agent in the fabrication of carbonaceous materials.

  7. Optical properties of MgF2 nano-composite films dispersed with noble metal nanoparticles synthesized by sol-gel method

    NASA Astrophysics Data System (ADS)

    Wakaki, Moriaki; Soujima, Nobuaki; Shibuya, Takehisa

    2015-03-01

    Porous MgF2 films synthesized by a sol-gel method exhibit the lowest refractive index among the dielectric optical materials and are the most useful materials for the anti-reflection coatings. On the other hand, surface plasmon resonance (SPR) absorptions of noble metal nanoparticles in various solid matrices have been extensively studied. New functional materials like a SERS (Surface Enhanced Raman Spectroscopy) tips are expected by synthesizing composite materials between porous MgF2 films featured by the network of MgF2 nanoparticles and noble metal nanoparticles introduced within the network. In this study, fundamental physical properties including morphology and optical properties are characterized for these materials to make clear the potential of the composite system. Composite materials of MgF2 films dispersed with noble metal (Ag, Au) nanoparticles were prepared using the sol-gel technique with various annealing temperatures and densities of noble metal nanoparticles. The structural morphology was analyzed by an X-ray diffractometer (XRD) and a scanning electron microscope (SEM). The size and shape distributions of the metal nanoparticles were observed using a transmission electron microscope (TEM). The optical properties of fabricated composite films were characterized by UV-Vis-NIR and FT-IR spectrophotometers. The absorption spectra due to the surface plasmon resonance (SPR) of the metal nanoparticles were analyzed using the dielectric function considering the effective medium approximation, typically Maxwell-Garnett model. The Raman scattering spectra were also studied to check the enhancement effect of specimen dropped on the MgF2: Ag nano-composite films deposited on Si substrate. Enhancement of the Raman intensity of pyridine solution specimen was observed.

  8. Improved dielectric functions in metallic films obtained via template stripping

    NASA Astrophysics Data System (ADS)

    Hyuk Park, Jong; Nagpal, Prashant; Oh, Sang-Hyun; Norris, David J.

    2012-02-01

    We compare the dielectric functions of silver interfaces obtained via thermal evaporation with those obtained with template stripping. Ellipsometry measurements show that the smoother template-stripped surfaces exhibit effective dielectric functions with a more negative real component and a smaller imaginary component, implying higher conductivity and less energy loss, respectively. These results agree with the relation between dielectric function and surface roughness derived from combining the effective-medium model and the Drude-Lorentz model. The improvement in the effective dielectric properties shows that metallic films prepared via template stripping can be favorable for applications in electronics, nanophotonics, and plasmonics.

  9. Dielectric magnetic microparticles as photomagnonic cavities: Enhancing the modulation of near-infrared light by spin waves

    NASA Astrophysics Data System (ADS)

    Almpanis, Evangelos

    2018-05-01

    The coupling between spin waves and optical Mie resonances inside a dielectric magnetic spherical particle, which acts simultaneously as a photonic and magnonic (photomagnonic) cavity, is investigated by means of numerical calculations accurate to arbitrary order in the magnetooptical coupling coefficient. Isolated dielectric magnetic particles with diameters of just a few microns support high-Q optical Mie resonances at near-infrared frequencies and localized spin waves, providing an ultrasmall and compact platform in the emerging field of cavity optomagnonics. Our results predict the occurrence of strong interaction effects, beyond the linear-response approximation, which lead to enhanced modulation of near-infrared light by spin waves through multimagnon absorption and emission mechanisms.

  10. Protection layers on a superconducting microwave resonator toward a hybrid quantum system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jongmin, E-mail: jongmin.lee@sandia.gov; Sandia National Laboratories, Albuquerque, New Mexico 87123; Park, Dong Hun, E-mail: leomac@umd.edu

    2015-10-07

    We propose a protection scheme of a superconducting microwave resonator to realize a hybrid quantum system, where cold neutral atoms are coupled with a single microwave photon through magnetic dipole interaction at an interface inductor. The evanescent field atom trap, such as a waveguide/nanofiber atom trap, brings both surface-scattered photons and absorption-induced broadband blackbody radiation which result in quasiparticles and a low quality factor at the resonator. A proposed multiband protection layer consists of pairs of two dielectric layers and a thin nanogrid conductive dielectric layer above the interface inductor. We show numerical simulations of quality factors and reflection/absorption spectra,more » indicating that the proposed multilayer structure can protect a lumped-element microwave resonator from optical photons and blackbody radiation while maintaining a reasonably high quality factor.« less

  11. Dual interface gratings design for absorption enhancement in thin crystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    Zhang, Jinqiannan; Yu, Zhongyuan; Liu, Yumin; Chai, Hongyu; Hao, Jing; Ye, Han

    2017-09-01

    We numerically study and analyze the light absorption enhancement in thin crystalline silicon solar cell with dual interface gratings. The structure combines the front dielectric nanowalls and the sinusoidal plasmonic grating at back reflector. We show that having specific interfaces with well-chosen period, fill factor and height can allow more efficient dielectric and plasmonic modes coupling into active layer and can improve the solar cell performance. For 1 μm active layer case, the optimal result for the proposed structure achieves short-circuit current of 23.6 mA/cm2, which performs over 50% better than flat solar cell structure, the short-circuit current of which is 15.5 mA/cm2. In addition, the active layer thickness and angular analysis show that the proposed structure maintains its advantage over flat structure.

  12. Microstructural, optical and electrical properties of LaFe0.5Cr0.5O3 perovskite nanostructures

    NASA Astrophysics Data System (ADS)

    Ali, S. Asad; Naseem, Swaleha; Khan, Wasi; Sharma, A.; Naqvi, A. H.

    2016-05-01

    Perovskite nanocrystalline powder of LaFe0.5Cr0.5O3 was synthesized by sol-gel combustion route and characterized by x-ray diffractometer (XRD), scanning electron microscopy (SEM) equipped with EDS, UV-visible and LCR meter at room temperature Rietveld refinement of the XRD data confirms that the sample is in single phase-rhombohedral structure with space group R-3C. SEM micrograph shows clear nanostructure of the sample and EDS ensures the presence of all elements in good stoichiometric. The optical absorption indicates the maximum absorption at 315 nm and optical band gap of 2.94 eV was estimated using Tauc's relation. Dielectric constant (ɛ') and loss were found to decrease with increase in frequencies. The dielectric behavior was explained on the basis of Maxwell-Wagner's two layer model.

  13. Optical spectra obtained from amorphous films of rubrene: Evidence for predominance of twisted isomer

    NASA Astrophysics Data System (ADS)

    Kytka, M.; Gisslen, L.; Gerlach, A.; Heinemeyer, U.; Kováč, J.; Scholz, R.; Schreiber, F.

    2009-06-01

    In order to investigate the optical properties of rubrene we study the vibronic progression of the first absorption band (lowest π →π∗ transition). We analyze the dielectric function ɛ2 of rubrene in solution and thin films using the displaced harmonic oscillator model and derive all relevant parameters of the vibronic progression. The findings are supplemented by density functional calculations using B3LYP hybrid functionals. Our theoretical results for the molecule in two different conformations, i.e., with a twisted or planar tetracene backbone, are in very good agreement with the experimental data obtained for rubrene in solution and thin films. Moreover, a simulation based on the monomer spectrum and the calculated transition energies of the two conformations indicates that the thin film spectrum of rubrene is dominated by the twisted isomer.

  14. Vanadium impurity effects on optical properties of Ti3N2 mono-layer: An ab-initio study

    NASA Astrophysics Data System (ADS)

    Babaeipour, Manuchehr; Eslam, Farzaneh Ghafari; Boochani, Arash; Nezafat, Negin Beryani

    2018-06-01

    The present work is investigated the effect of vanadium impurity on electronic and optical properties of Ti3N2 monolayer by using density function theory (DFT) implemented in Wien2k code. In order to study optical properties in two polarization directions of photons, namely E||x and E||z, dielectric function, absorption coefficient, optical conductivity, refraction index, extinction index, reflectivity, and energy loss function of Ti3N2 and Ti3N2-V monolayer have been evaluated within GGA (PBE) approximation. Although, Ti3N2 monolayer is a good infrared reflector and can be used as an infrared mirror, introducing V atom in the infrared area will decrease optical conductivity because optical conductivity of a pure form of a material is higher than its doped form.

  15. Optical spectra obtained from amorphous films of rubrene: Evidence for predominance of twisted isomer.

    PubMed

    Kytka, M; Gisslen, L; Gerlach, A; Heinemeyer, U; Kovác, J; Scholz, R; Schreiber, F

    2009-06-07

    In order to investigate the optical properties of rubrene we study the vibronic progression of the first absorption band (lowest pi-->pi( *) transition). We analyze the dielectric function epsilon(2) of rubrene in solution and thin films using the displaced harmonic oscillator model and derive all relevant parameters of the vibronic progression. The findings are supplemented by density functional calculations using B3LYP hybrid functionals. Our theoretical results for the molecule in two different conformations, i.e., with a twisted or planar tetracene backbone, are in very good agreement with the experimental data obtained for rubrene in solution and thin films. Moreover, a simulation based on the monomer spectrum and the calculated transition energies of the two conformations indicates that the thin film spectrum of rubrene is dominated by the twisted isomer.

  16. First Principles Studies of Electronic and Optical Excitations in Noble Metal and Titania Clusters

    NASA Astrophysics Data System (ADS)

    Baishya, Kopinjol

    Clusters are metastable structures that form a bridge between the atomic and the bulk phase. Due to their small size, quantum confinement effects are very important in clusters. They also have large surface to volume ratio, and as such, surface effects are also important. Due to these effects the properties of clusters are quite different from those of the bulk. When the size of a cluster is increased, its properties change from atomic to bulk values usually in nontrivial ways, often displaying interesting effects. By studying the evolution of cluster properties as a function of size one can try to understand the evolution and origin of bulk properties. This thesis concentrates on two main topics, noble-metal clusters of Ag and Cu, and TiO2 nanocrystals. I present my study of the optical properties of these systems calculated using first principles methods. Noble metal clusters have intriguing physical and chemical properties due to their electronic structure that contains a fully filled and localized d orbital energetically and spatially very close to the half filled s orbital. In Chapters 3 and 4 of this thesis, I present a detailed study of the role of d electrons on the optical properties of Ag and Cu clusters. I also show that the optical spectra of these clusters can be explained remarkably well by the classical Mie-Gans theory which uses the bulk dielectric constant of the material to predict their optical absorption spectra. The fact that the concept of the bulk dielectric constant survives up to the sub-nanometer size range is one of the main findings of this thesis. TiO2 is arguably the most studied single-crystalline material in the field of surface science of metal oxides. In chapter 5 of this thesis I present results and analyses on the electronic and optical excitations in rutile TiO2 nanocrystals. The motivation for this study stems from the following observation: In modeling optical prooperties of DSSC configurations with various organic molecules, a typical approach has been to use a finite, appropriately passivated TiO2 nanocrystal in order to limit the computational demand. In real systems on the other hand, the size of nanocrystalline TiO2 is of the order of several hundreds of nanometers, and hence, they can be considered to be essentially bulk-like. The question is then, whether finite TiO2 nanoparticles can accurately model the optical properties of bulk TiO2. I show in my thesis that the optical absorption absorption spectra of such TiO2 nanocrystals do not have the particular features seen in the imaginary part of the bulk dielectric function of TiO 2 associated with the van Hove singularities in the electronic density of states. Instead, the absorption spectra of bulk-terminated TiO2 nanocrystals can be reproduced quite well by the Mie-Gans theory.

  17. Strong-interaction-mediated critical coupling at two distinct frequencies.

    PubMed

    Gupta, S Dutta

    2007-06-01

    I study a multilayered medium consisting of a metal-dielectric composite film, a spacer layer, and a dielectric Bragg reflector. I demonstrate a greater flexibility over the critical coupling phenomenon [Tischler et al., Opt. Lett. 31, 2045 (2006)], whereby nearly all the incident light energy is absorbed by the composite film through suppression of both transmission and reflection from the structure. For a larger volume fraction of the metal inclusions, strong light-matter coupling is shown to lead to almost total absorption at two distinct frequencies.

  18. Dielectric cure monitoring: Preliminary studies

    NASA Technical Reports Server (NTRS)

    Goldberg, B. E.; Semmel, M. L.

    1984-01-01

    Preliminary studies have been conducted on two types of dielectric cure monitoring systems employing both epoxy resins and phenolic composites. An Audrey System was used for 23 cure monitoring runs with very limited success. Nine complete cure monitoring runs have been investigated using a Micromet System. Two additional measurements were performed to investigate the Micromet's sensitivity to water absorption in a post-cure carbon-phenolic material. While further work is needed to determine data significance, the Micromet system appears to show promise as a feedback control device during processing.

  19. Wide-aperture total absorption of a terahertz wave in a nanoperiodic graphene-based plasmon structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polischuk, O. V., E-mail: polischuk.sfire@mail.ru; Melnikova, V. S.; Popov, V. V., E-mail: popov-slava@yahoo.co.uk

    2016-11-15

    The terahertz absorption spectrum in a periodic array of graphene nanoribbons located on the surface of a dielectric substrate with a high refractive index (terahertz prism) is studied theoretically. The total absorption of terahertz radiation is shown to occur in the regime of total internal reflection of the terahertz wave from the periodic array of graphene nanoribbons, at the frequencies of plasma oscillations in graphene, in a wide range of incidence angles of the external terahertz wave even at room temperature.

  20. Application of the Tauc-Lorentz formulation to the interband absorption of optical coating materials

    NASA Astrophysics Data System (ADS)

    von Blanckenhagen, Bernhard; Tonova, Diana; Ullmann, Jens

    2002-06-01

    Recent progress in ellipsometry instrumentation permits precise measurement and characterization of optical coating materials in the deep-UV wavelength range. Dielectric coating materials exhibit their first electronic interband transition in this spectral range. The Tauc-Lorentz model is a powerful tool with which to parameterize interband absorption above the band edge. The application of this model for the parameterization of the optical absorption of TiO2, Ta2O5, HfO2, Al2O3, and LaF3 thin-film materials is described.

  1. Energy considerations for a superlens based on metal/dielectric multilayers.

    PubMed

    Bloemer, Mark J; D'Aguanno, Giuseppe; Scalora, Michael; Mattiucci, Nadia; de Ceglia, Domenico

    2008-11-10

    We investigate the resolution and absorption losses of a Ag/GaP multilayer superlens. For a fixed source to image distance the resolution is independent of the position of the lens but the losses depend strongly on the lens placement. The absorption losses associated with the evanescent waves can be significantly larger than losses associated with the propagating waves especially when the superlens is close to the source. The interpretation of transmittance values greater than unity for evanescent waves is clarified with respect to the associated absorption losses.

  2. Photothermal measurement of absorption and scattering losses in thin films excited by surface plasmons.

    PubMed

    Domené, Esteban A; Balzarotti, Francisco; Bragas, Andrea V; Martínez, Oscar E

    2009-12-15

    We present a novel noncontact, photothermal technique, based on the focus error signal of a commercial CD pickup head that allows direct determination of absorption in thin films. Combined with extinction methods, this technique yields the scattering contribution to the losses. Surface plasmon polaritons are excited using the Kretschmann configuration in thin Au films of varying thickness. By measuring the extinction and absorption simultaneously, it is shown that dielectric constants and thickness retrieval leads to inconsistencies if the model does not account for scattering.

  3. Device and method for luminescence enhancement by resonant energy transfer from an absorptive thin film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akselrod, Gleb M.; Bawendi, Moungi G.; Bulovic, Vladimir

    Disclosed are a device and a method for the design and fabrication of the device for enhancing the brightness of luminescent molecules, nanostructures, and thin films. The device includes a mirror, a dielectric medium or spacer, an absorptive layer, and a luminescent layer. The absorptive layer is a continuous thin film of a strongly absorbing organic or inorganic material. The luminescent layer may be a continuous luminescent thin film or an arrangement of isolated luminescent species, e.g., organic or metal-organic dye molecules, semiconductor quantum dots, or other semiconductor nanostructures, supported on top of the absorptive layer.

  4. Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition.

    PubMed

    Wang, Guizhen; Gao, Zhe; Tang, Shiwei; Chen, Chaoqiu; Duan, Feifei; Zhao, Shichao; Lin, Shiwei; Feng, Yuhong; Zhou, Lei; Qin, Yong

    2012-12-21

    In this work, atomic layer deposition is applied to coat carbon nanocoils with magnetic Fe(3)O(4) or Ni. The coatings have a uniform and highly controlled thickness. The coated nanocoils with coaxial multilayer nanostructures exhibit remarkably improved microwave absorption properties compared to the pristine carbon nanocoils. The enhanced absorption ability arises from the efficient complementarity between complex permittivity and permeability, chiral morphology, and multilayer structure of the products. This method can be extended to exploit other composite materials benefiting from its convenient control of the impedance matching and combination of dielectric-magnetic multiple loss mechanisms for microwave absorption applications.

  5. Local representation of the electronic dielectric response function

    DOE PAGES

    Lu, Deyu; Ge, Xiaochuan

    2015-12-11

    We present a local representation of the electronic dielectric response function, based on a spatial partition of the dielectric response into contributions from each occupied Wannier orbital using a generalized density functional perturbation theory. This procedure is fully ab initio, and therefore allows us to rigorously define local metrics, such as “bond polarizability,” on Wannier centers. We show that the locality of the bare response function is determined by the locality of three quantities: Wannier functions of the occupied manifold, the density matrix, and the Hamiltonian matrix. Furthermore, in systems with a gap, the bare dielectric response is exponentially localized,more » which supports the physical picture of the dielectric response function as a collection of interacting local responses that can be captured by a tight-binding model.« less

  6. Influence of non-collisional laser heating on the electron dynamics in dielectric materials

    NASA Astrophysics Data System (ADS)

    Barilleau, L.; Duchateau, G.; Chimier, B.; Geoffroy, G.; Tikhonchuk, V.

    2016-12-01

    The electron dynamics in dielectric materials induced by intense femtosecond laser pulses is theoretically addressed. The laser driven temporal evolution of the energy distribution of electrons in the conduction band is described by a kinetic Boltzmann equation. In addition to the collisional processes for energy transfer such as electron-phonon-photon and electron-electron interactions, a non-collisional process for photon absorption in the conduction band is included. It relies on direct transitions between sub-bands of the conduction band through multiphoton absorption. This mechanism is shown to significantly contribute to the laser heating of conduction electrons for large enough laser intensities. It also increases the time required for the electron distribution to reach the equilibrium state as described by the Fermi-Dirac statistics. Quantitative results are provided for quartz irradiated by a femtosecond laser pulse with a wavelength of 800 nm and for intensities in the range of tens of TW cm-2, lower than the ablation threshold. The change in the energy deposition induced by this non-collisional heating process is expected to have a significant influence on the laser processing of dielectric materials.

  7. Influence of SiO2 Addition on Properties of PTFE/TiO2 Microwave Composites

    NASA Astrophysics Data System (ADS)

    Yuan, Ying; Wang, Jie; Yao, Minghao; Tang, Bin; Li, Enzhu; Zhang, Shuren

    2018-01-01

    Composite substrates for microwave circuit applications have been fabricated by filling polytetrafluoroethylene (PTFE) polymer matrix with ceramic powder consisting of rutile TiO2 ( D 50 ≈ 5 μm) partially substituted with fused amorphous SiO2 ( D 50 ≈ 8 μm) with composition x vol.% SiO2 + (50 - x) vol.% TiO2 ( x = 0, 3, 6, 9, 12), and the effects of SiO2 addition on characteristics such as the density, moisture absorption, microwave dielectric properties, and thermal properties systematically investigated. The results show that the filler was well distributed throughout the matrix. High dielectric constant ( ɛ r > 7.19) and extremely low moisture absorption (<0.02%) were obtained, resulting from the relatively high density of the composites. The ceramic particles served as barriers and improved the thermal stability of the PTFE polymer, retarding its decomposition. The temperature coefficient of dielectric constant ( τ ɛ ) of the composites shifted toward the positive direction (from - 309 ppm/°C to - 179 ppm/°C) as the SiO2 content was increased, while the coefficient of thermal expansion remained almost unchanged (˜ 35 ppm/°C).

  8. Porous Materials with Ultralow Optical Constants for Integrated Optical Device Applications

    NASA Astrophysics Data System (ADS)

    Chen, Hsuen-Li; Hsieh, Chung-I; Cheng, Chao-Chia; Chang, Chia-Pin; Hsu, Wen-Hau; Wang, Way-Seen; Liu, Po-Tsun

    2005-07-01

    Ultralow dielectric constant (<2.0) porous materials have received much attention as next-generation dielectric materials. In this study, optical properties of porous-methyl-silsesquioxane(MSQ)-like films (porous polysilazane, PPSZ) were characterized for optical waveguide devices applications. Measured results indicate that the refractive index is decreased to approximately 1.320 as the hydration time exceeds 24 h. The measured refractive index is about 1.163 at a wavelength of 1550 nm. PPSZ films have low absorption in the 500 to 2000 nm wavelength regime. Because of their relatively low refractive index and low absorption over a large spectral regime, PPSZ films can be good cladding materials for use in optically integrated devices with many high-refractive-index materials such as silicon oxide, silicon nitride, silicon, and polymers. We demonstrate two structures, ridge waveguides and large-angle Y-branch power splitters, composed of PPSZ and SU8 films to illustrate the use of low dielectric constant (K) cladding materials. The simulation results indicate that the PPSZ films provide better confinement of light. Experimentally, a large-angle Y-branch power splitter with PPSZ cladding can be used to guide waves with the large branching angle of 33.58°.

  9. Vacuum ultra-violet damage and damage mitigation for plasma processing of highly porous organosilicate glass dielectrics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marneffe, J.-F. de, E-mail: marneffe@imec.be; Lukaszewicz, M.; Porter, S. B.

    2015-10-07

    Porous organosilicate glass thin films, with k-value 2.0, were exposed to 147 nm vacuum ultra-violet (VUV) photons emitted in a Xenon capacitive coupled plasma discharge. Strong methyl bond depletion was observed, concomitant with a significant increase of the bulk dielectric constant. This indicates that, besides reactive radical diffusion, photons emitted during plasma processing do impede dielectric properties and therefore need to be tackled appropriately during patterning and integration. The detrimental effect of VUV irradiation can be partly suppressed by stuffing the low-k porous matrix with proper sacrificial polymers showing high VUV absorption together with good thermal and VUV stability. In addition,more » the choice of an appropriate hard-mask, showing high VUV absorption, can minimize VUV damage. Particular processing conditions allow to minimize the fluence of photons to the substrate and lead to negligible VUV damage. For patterned structures, in order to reduce VUV damage in the bulk and on feature sidewalls, the combination of both pore stuffing/material densification and absorbing hard-mask is recommended, and/or the use of low VUV-emitting plasma discharge.« less

  10. Effect of Co-60 gamma radiation on optical, dielectric and mechanical properties of strontium L-ascorbate hexahydrate NLO crystal

    NASA Astrophysics Data System (ADS)

    Dileep, M. S.; Suresh Kumar, H. M.

    2018-04-01

    A potentially useful nonlinear optical semi-organic single crystal of strontium L-ascorbate hexahydrate (SLAH) was grown by solution growth slow evaporation technique at room temperature. The grown crystal is semi transparent, yellowish in color with monoclinic crystal system having space group P21 and is stable up to 198 °C. Further, SLAH crystals were irradiated with gamma rays produced by 60Co with different doses of 10 KGy, 30 KGy and 50 KGy at room temperature and then studied the effect of gamma-rays on dielectric properties, optical absorption, microhardness and SHG efficiency. The absorption study reveals that the absorbance of the grown crystal is appeared to be low throughout the visible region with a lower cutoff wavelength of 277 nm and these parameters are not affected upon gamma irradiation. The luminescence intensity of the crystal is also not affected by the irradiation. There is noticeable changes were observed in dielectric properties and hardness of the materials for different doses of gamma irradiation. The second harmonic generation (SHG) efficiency of the grown crystal is 0.54 times that of the KDP crystal and is decreased moderately by increasing the dosage of gamma irradiation.

  11. Disappearance of dielectric anomaly in spite of presence of structural phase transition in reduced BaTiO3: Effect of defect states within the bandgap

    NASA Astrophysics Data System (ADS)

    Sagdeo, Archna; Nagwanshi, Anjali; Pokhriyal, Preeti; Sinha, A. K.; Rajput, Parasmani; Mishra, Vikash; Sagdeo, P. R.

    2018-04-01

    We report the structural, optical, ferroelectric, and dielectric properties of reduced BaTiO3 samples. For this purpose, oxygen vacancies in BaTiO3 are created by heating these samples with a Ti metal in a vacuum environment at different temperatures. It is observed that with an increase in oxygen deficiencies, the c/a ratio decreases as compared to that of the oxygen treated sample. The ferroelectric properties of the oxygen deficient samples are visibly different as compared to those of the oxygen treated sample. The disappearance of the P-E loop and the anomaly in the temperature variation of the dielectric constant have been observed; however, the structural phase transition corresponding to ferroelectric phase transitions still persists. Thus, it appears that the anomaly in dielectric data and the presence of the P-E loop are getting masked possibly by the Maxwell-Wagner effect. The presence of Ti+3 states in the prepared samples has been confirmed by X-ray absorption near edge structure measurements. The Kubelka-Munk optical absorption shows the presence of extra states below fundamental transition, indicating the emergence of new electronic states within the bandgap, which might be due to Ti+3 states. These new states appear at different energy positions, and with different intensities for different samples, which are reduced in the presence of Ti. These new states within the bandgap appear to modify the electronic structure, thereby reducing the overall bandgap, and hence, they seem to modify the ferroelectric and dielectric properties of the samples. Our results may be treated as experimental evidence for theoretically proposed defect states in oxygen deficient or reduced BaTiO3.

  12. An investigation of the forward scattering theorem

    NASA Technical Reports Server (NTRS)

    Karam, M. A.; Fung, A. K.

    1987-01-01

    The calculation of an EM wave's extinction loss during propagation within an inhomogeneous medium, as in active and passive remote sensing modeling, can be undertaken either through the summation of the scattering and absorption losses or through the use of the forward scattering theorem. Attention is presently given to the similarities and differences of these two approaches as a function of dielectric properties of a spherical scatterer and the incident frequency. Scattering loss is obtainable by integrating the magnitude-squared of the scattered field over a spherical surface surrounding the scatterer; the scattered field and the field within the scatterer are computed according to Mie theory.

  13. Studies on metal-dielectric plasmonic structures.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chettiar, Uday K.; Liu, Zhengtong; Thoreson, Mark D.

    2010-01-01

    The interaction of light with nanostructured metal leads to a number of fascinating phenomena, including plasmon oscillations that can be harnessed for a variety of cutting-edge applications. Plasmon oscillation modes are the collective oscillation of free electrons in metals under incident light. Previously, surface plasmon modes have been used for communication, sensing, nonlinear optics and novel physics studies. In this report, we describe the scientific research completed on metal-dielectric plasmonic films accomplished during a multi-year Purdue Excellence in Science and Engineering Graduate Fellowship sponsored by Sandia National Laboratories. A variety of plasmonic structures, from random 2D metal-dielectric films to 3Dmore » composite metal-dielectric films, have been studied in this research for applications such as surface-enhanced Raman sensing, tunable superlenses with resolutions beyond the diffraction limit, enhanced molecular absorption, infrared obscurants, and other real-world applications.« less

  14. Do dielectric nanostructures turn metallic in high-electric dc fields?

    PubMed

    Silaeva, E P; Arnoldi, L; Karahka, M L; Deconihout, B; Menand, A; Kreuzer, H J; Vella, A

    2014-11-12

    Three-dimensional dielectric nanostructures have been analyzed using field ion microscopy (FIM) to study the electric dc field penetration inside these structures. The field is proved to be screened within a few nanometers as theoretically calculated taking into account the high-field impact ionization process. Moreover, the strong dc field of the order of 0.1 V/Å at the surface inside a dielectric nanostructure modifies its band structure leading to a strong band gap shrinkage and thus to a strong metal-like optical absorption near the surface. This metal-like behavior was theoretically predicted using first-principle calculations and experimentally proved using laser-assisted atom probe tomography (APT). This work opens up interesting perspectives for the study of the performance of all field-effect nanodevices, such as nanotransistor or super capacitor, and for the understanding of the physical mechanisms of field evaporation of dielectric nanotips in APT.

  15. Improved model of activation energy absorption for different electrical breakdowns in semi-crystalline insulating polymers

    NASA Astrophysics Data System (ADS)

    Sima, Wenxia; Jiang, Xiongwei; Peng, Qingjun; Sun, Potao

    2018-05-01

    Electrical breakdown is an important physical phenomenon in electrical equipment and electronic devices. Many related models and theories of electrical breakdown have been proposed. However, a widely recognized understanding on the following phenomenon is still lacking: impulse breakdown strength which varies with waveform parameters, decrease in the breakdown strength of AC voltage with increasing frequency, and higher impulse breakdown strength than that of AC. In this work, an improved model of activation energy absorption for different electrical breakdowns in semi-crystalline insulating polymers is proposed based on the Harmonic oscillator model. Simulation and experimental results show that, the energy of trapped charges obtained from AC stress is higher than that of impulse voltage, and the absorbed activation energy increases with the increase in the electric field frequency. Meanwhile, the frequency-dependent relative dielectric constant ε r and dielectric loss tanδ also affect the absorption of activation energy. The absorbed activation energy and modified trap level synergistically determine the breakdown strength. The mechanism analysis of breakdown strength under various voltage waveforms is consistent with the experimental results. Therefore, the proposed model of activation energy absorption in the present work may provide a new possible method for analyzing and explaining the breakdown phenomenon in semi-crystalline insulating polymers.

  16. Thermally Tunable Ultra-wideband Metamaterial Absorbers based on Three-dimensional Water-substrate construction.

    PubMed

    Shen, Yang; Zhang, Jieqiu; Pang, Yongqiang; Zheng, Lin; Wang, Jiafu; Ma, Hua; Qu, Shaobo

    2018-03-13

    Distilled water has frequency dispersive characteristic and high value of imaginary part in permittivity, which can be seen as a good candidate of broadband metamaterial absorbers(MAs) in microwave. Here, an interesting idea based on the combination of water-substrate and metallic metamaterial in the three-dimensional construction is proposed, which can achieve outstanding broadband absorption. As a proof, the distilled water is filled into the dielectric reservoir as ultra-thin water-substrate, and then the water-substrates are arranged on the metal backplane periodically as three-dimensional water-substrate array(TWA). Simulation shows that the TWA achieves broadband absorption with the efficiency more than 90% from 8.3 to 21.0 GHz. Then, the trigonal metallic fishbone structure is introduced here between the water-substrate and the dielectric reservoir periodically as three-dimensional water-substrate metamaterial absorber(TWMA). The proposed TWMA could achieve ultra-broadband absorption from 2.6 to 16.8 GHz, which has increase by 64.8% in relative absorption bandwidth. Meanwhile, due to the participation of distilled water, the thermally tunable property also deserves to be discussed here. In view of the outstanding performance, it is worth to expect a wide range of applications to emerge inspired from the proposed construction.

  17. Calculation of the dielectric properties of semiconductors

    NASA Astrophysics Data System (ADS)

    Engel, G. E.; Farid, Behnam

    1992-12-01

    We report on numerical calculations of the dynamical dielectric function in silicon, using a continued-fraction expansion of the polarizability and a recently proposed representation of the inverse dielectric function in terms of plasmonlike excitations. A number of important technical refinements to further improve the computational efficiency of the method are introduced, making the ab initio calculation of the full energy dependence of the dielectric function comparable in cost to calculation of its static value. Physical results include the observation of previously unresolved features in the random-phase approximated dielectric function and its inverse within the framework of density-functional theory in the local-density approximation, which may be accessible to experiment. We discuss the dispersion of plasmon energies in silicon along the Λ and Δ directions and find improved agreement with experiment compared to earlier calculations. We also present quantitative evidence indicating the degree of violation of the Johnson f-sum rule for the dielectric function due to the nonlocality of the one-electron potential used in the underlying band-structure calculations.

  18. Polarimetric signatures of a canopy of dielectric cylinders based on first and second order vector radiative transfer theory

    NASA Technical Reports Server (NTRS)

    Tsang, Leung; Chan, Chi Hou; Kong, Jin AU; Joseph, James

    1992-01-01

    Complete polarimetric signatures of a canopy of dielectric cylinders overlying a homogeneous half space are studied with the first and second order solutions of the vector radiative transfer theory. The vector radiative transfer equations contain a general nondiagonal extinction matrix and a phase matrix. The energy conservation issue is addressed by calculating the elements of the extinction matrix and the elements of the phase matrix in a manner that is consistent with energy conservation. Two methods are used. In the first method, the surface fields and the internal fields of the dielectric cylinder are calculated by using the fields of an infinite cylinder. The phase matrix is calculated and the extinction matrix is calculated by summing the absorption and scattering to ensure energy conservation. In the second method, the method of moments is used to calculate the elements of the extinction and phase matrices. The Mueller matrix based on the first order and second order multiple scattering solutions of the vector radiative transfer equation are calculated. Results from the two methods are compared. The vector radiative transfer equations, combined with the solution based on method of moments, obey both energy conservation and reciprocity. The polarimetric signatures, copolarized and depolarized return, degree of polarization, and phase differences are studied as a function of the orientation, sizes, and dielectric properties of the cylinders. It is shown that second order scattering is generally important for vegetation canopy at C band and can be important at L band for some cases.

  19. Structural, electronic and optical properties of CO adsorbed on the defective anatase TiO2 (101) surface; a DFT study

    NASA Astrophysics Data System (ADS)

    Rafique, Muhammad; Shuai, Yong; Hassan, Muhammad

    2017-08-01

    This paper illustrates the study of stable structural, electronic and optical properties of carbon mono oxide (CO) molecule adsorbed on pure anatase TiO2 (101) surface and CO molecule adsorbed on defective anatase TiO2 (101) surface containing oxygen (O) atom subsurface vacancy using first-principles study calculations based on density functional theory (DFT) method. A foreign molecule CO was added in the interstitial space of anatase TiO2 (101) surface. It was observed that, adsorption of CO molecule is not favorable on pure anatase TiO2 (101) surface, however adsorption process is improved when subsurface contains O atom vacancy defect. In case of anatase TiO2 (101) surface containing subsurface vacancy, adsorption process is exothermic, resulting in stable structures. The adsorption energies calculated for CO molecules adsorbed at O2c site, at defect site and at Ti5c site of anatase surface containing subsurface O vacancy are 0.16 eV (at O2c), 0.32 eV (at defect site) and 0.43 eV (at Ti5c) site. DOS and PDOS plots are calculated for all the structures. Results indicated that CO molecule adsorption introduces surface states at the Fermi energy level (EF) as shown in partial density of states (PDOS) plots. The dielectric matrix and absorption coefficient (α) for defective anatase TiO2 (101) surface, CO adsorbed at O2c site, at defect site and at Ti5C site of anatase TiO2 (101) surface containing O atom subsurface vacancy has been calculated within the random phase approximation (RPA) using VASP (Vienna ab-initio simulation package) code. It was observed that upon CO adsorption at defective anatase surface, real and imaginary dielectric function peaks were shifted towards lower energy level and a small absorption peak was observed at 1.1 eV energy level which is not present in case of defective anatase (101) surface. CO adsorption produces a red shift in the absorption spectrum of anatase TiO2 (101) surface containing subsurface O atom vacancy.

  20. Ultrafast re-structuring of the electronic landscape of transparent dielectrics: new material states (Die-Met)

    NASA Astrophysics Data System (ADS)

    Gamaly, E. G.; Rode, A. V.

    2018-03-01

    Swift excitation of transparent dielectrics by ultrashort and highly intense laser pulse leads to ultra-fast re-structuring of the electronic landscape and generates many transient material states, which are continuously reshaped in accord with the changing pulse intensity. These unconventional transient material states, which exhibit simultaneously both dielectric and metallic properties, we termed here as the `Die-Met' states. The excited material is transparent and conductive at the same time. The real part of permittivity of the excited material changes from positive to negative values with the increase of excitation, which affects strongly the interaction process during the laser pulse. When the incident field has a component along the permittivity gradient, the amplitude of the field increases resonantly near the point of zero permittivity, which dramatically changes the interaction mode and increases absorption in a way that is similar to the resonant absorption in plasma. The complex 3D structure of the permittivity makes a transparent part of the excited dielectric (at ɛ 0 > ɛ re > 0) optically active. The electro-magnetic wave gets a twisted trajectory and accrues the geometric phase while passing through such a medium. Both the phase and the rotation of the polarisation plane depend on the 3D permittivity structure. Measuring the transmission, polarisation and the phase of the probe beam allows one to quantitatively identify these new transient states. We discuss the revelations of this effect in different experimental situations and their possible applications.

  1. Low dielectric constant and moisture-resistant polyimide aerogels containing trifluoromethyl pendent groups

    NASA Astrophysics Data System (ADS)

    Wu, Tingting; Dong, Jie; Gan, Feng; Fang, Yuting; Zhao, Xin; Zhang, Qinghua

    2018-05-01

    Conventional polyimide aerogels made from biphenyl-3,3‧,4,4‧-tetracarboxylic dianydride (BPDA) and 4,4‧-oxidianiline (ODA) exhibit poor resistance to moisture and mechanical properties. In this work, a versatile diamine, 2,2‧-bis-(trifluoromethyl)-4,4‧-diaminobiphenyl (TFMB), is introduced to BPDA/ODA backbone to modify the comprehensive performance of this aerogel. Among all formulations, the resulted polyimide aerogels exhibit the lowest shrinkage and density as well as highest porosity, at the ODA/TFMB molar ratio of 5/5. Dielectric constants and loss tangents of the aerogels fall in the range of 1.29-1.33 and 0.001-0.004, respectively, and more TFMB fractions results in a slightly decrease of dielectric constant and loss tangent. In addition, moisture-resistance of the aerogels are dramatically enhanced as the water absorption decreasing from 415% for BPDA/ODA to 13% for the polyimide aerogel at the ODA/TFMB molar ratio of 7/3, and even to 4% for the homo-BPDA/TFMB polyimide aerogel, showing a superhydrophobic characteristic, which is a great advantage for polyimide aerogels used as low dielectric materials. Meanwhile, all of formulations of aerogels exhibit high absorption capacities for oils and common organic solvents, indicating that these fluorinated polyimide aerogels are good candidates for the separation of oils/organic solvents and water. Mechanical properties and thermal stability of the polyimide aerogels are also raised to varying degrees due to the rigid-rod biphenyl structure introduced by TFMB.

  2. Direct Observation of Electron-Phonon Coupling and Slow Vibrational Relaxation in Organic-Inorganic Hybrid Perovskites

    NASA Astrophysics Data System (ADS)

    Hurtado Parra, Sebastian; Straus, Daniel; Iotov, Natasha; Fichera, Bryan; Gebhardt, Julian; Rappe, Andrew; Subotnik, Joseph; Kikkawa, James; Kagan, Cherie

    Quantum and dielectric confinement effects in Ruddlesden-Popper 2D hybrid perovskites create excitons with a binding energy exceeding 150 meV. We exploit the large exciton binding energy to study exciton and carrier dynamics as well as electron-phonon coupling (EPC) in hybrid perovskites using absorption and photoluminescence (PL) spectroscopies. At temperatures <75 K, we resolve splitting of the excitonic absorption and PL into multiple regularly spaced resonances every 40-46 meV, consistent with EPC to phonons located on the organic cation. We also resolve resonances with a 14 meV spacing, in accord with coupling to phonons with mixed organic and inorganic character. These assignments are supported by density-functional theory calculations. Hot exciton PL and time-resolved PL measurements show that vibrational relaxation occurs on a picosecond time scale competitive with that for PL. At temperatures >75 K, excitonic absorption and PL exhibit homogeneous broadening. While absorption remains homogeneous, PL becomes inhomogeneous at temperatures <75K, which we speculate is caused by the formation and subsequent dynamics of a polaronic exciton. This work is supported by the U.S. Department of Energy, Office of Basic Energy Sciences Grant DE-SC0002158 and the National Science Foundation Graduate Research Fellowship Grant DGE-1321851.

  3. The flaky porous Fe3O4 with tunable dimensions for enhanced microwave absorption performance in X and C bands

    NASA Astrophysics Data System (ADS)

    Zhao, Huanqin; Cheng, Yan; Liu, Wei; Yang, Zhihong; Zhang, Baoshan; Ji, Guangbin; Du, Youwei

    2018-07-01

    Special electric and magnetic characteristics make Fe3O4 widely applied in the electromagnetic (EM) wave absorption region. However, for pure Fe3O4, it is still a challenge to simultaneously obtain high absorption intensity and broadband absorption at a low thickness, owing to its low dielectric property. As we realized, flake configuration and the porous structure have obviously promote the EM wave absorption property. Because the former can lead to multi-reflection between flakes and the latter is conductive to interface polarization, flaky Fe3O4 with a porous and coarse surface was designed to overcome the deficiency of traditional Fe3O4 particles. The experimental results demonstrate that the flaky configuration is conductive to enhancing the dielectric coefficient and optimizing impedance matching. Moreover, the complex permittivity rises with the aspect ratio of the sheet. Under a suitable dimension, the flaky Fe3O4 could acquire targeted EM wave absorption capacity in the X band (8–12 GHz). In detail, the maximum reflection loss (RL) could reach a strong intensity of ‑49 dB at 2.05 mm. The effective absorption bandwidth (EAB) with RL below ‑10 dB is 4.32 (7.52–11.84) GHz, which is almost equivalent to the whole X band (8–12 GHz). Even more exciting, when regulating the thickness between 2.05 and 3.05 mm, the EAB could cover the entire C and X bands (4–12 GHz). This study provides a good reference for the future development of other ferromagnetic materials toward specific microwave bands.

  4. The flaky porous Fe3O4 with tunable dimensions for enhanced microwave absorption performance in X and C bands.

    PubMed

    Zhao, Huanqin; Cheng, Yan; Liu, Wei; Yang, Zhihong; Zhang, Baoshan; Ji, Guangbin; Du, Youwei

    2018-07-20

    Special electric and magnetic characteristics make Fe 3 O 4 widely applied in the electromagnetic (EM) wave absorption region. However, for pure Fe 3 O 4 , it is still a challenge to simultaneously obtain high absorption intensity and broadband absorption at a low thickness, owing to its low dielectric property. As we realized, flake configuration and the porous structure have obviously promote the EM wave absorption property. Because the former can lead to multi-reflection between flakes and the latter is conductive to interface polarization, flaky Fe 3 O 4 with a porous and coarse surface was designed to overcome the deficiency of traditional Fe 3 O 4 particles. The experimental results demonstrate that the flaky configuration is conductive to enhancing the dielectric coefficient and optimizing impedance matching. Moreover, the complex permittivity rises with the aspect ratio of the sheet. Under a suitable dimension, the flaky Fe 3 O 4 could acquire targeted EM wave absorption capacity in the X band (8-12 GHz). In detail, the maximum reflection loss (RL) could reach a strong intensity of -49 dB at 2.05 mm. The effective absorption bandwidth (EAB) with RL below -10 dB is 4.32 (7.52-11.84) GHz, which is almost equivalent to the whole X band (8-12 GHz). Even more exciting, when regulating the thickness between 2.05 and 3.05 mm, the EAB could cover the entire C and X bands (4-12 GHz). This study provides a good reference for the future development of other ferromagnetic materials toward specific microwave bands.

  5. Influence of Mn doping on structural, dielectric and optical properties of neodymium orthoferrite

    NASA Astrophysics Data System (ADS)

    Somvanshi, Anand; Manzoor, Samiya; Husain, Shahid

    2018-05-01

    We report the study of structural, dielectric and optical properties of nanocrystalline samples of NdFe1-xMnxO3 (x=0, 0.1 and 0.2) synthesized using solid state reaction route. X-ray diffraction (XRD) patterns are recorded to confirm phase purity. These samples conform in orthorhombic crystal symmetry with Pbnm space group. The lattice parameters are determined using Rietveld refinement. The crystallite size is calculated using Scherrer formula and that is found to lie in the range of 40-50 nm. The dielectric constant (ɛ') decreases with the increase in frequency as well as Mn doping concentration. Energy bandgap (Eg) as determined using UV-Vis. absorption spectra, is found to decrease with the increase in Mn doping.

  6. Effect of gamma radiation on low density polyethylene (LDPE) films: optical, dielectric and FTIR studies.

    PubMed

    Moez, A Abdel; Aly, S S; Elshaer, Y H

    2012-07-01

    The low density polyethylene (LDPE) films were irradiated with gamma radiation in the dose range varied from 20 to 400 kGy. The induced changes in the chemical structure and dielectric properties for the irradiated films were investigated. The structure modifications: crystallinity as well as possible molecular changes of the polymer were recognized using Fourier Transform Infrared Spectroscopy (FTIR). The optical results were determined from transmission, reflection and absorption spectra for these films. The dielectric properties of these films were calculated using optical methods. Result indicates small variation in crystallinity which could be increased or decreased depending on the relative importance of the structural and chemical changes. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Epoxy-based broadband antireflection coating for millimeter-wave optics.

    PubMed

    Rosen, Darin; Suzuki, Aritoki; Keating, Brian; Krantz, William; Lee, Adrian T; Quealy, Erin; Richards, Paul L; Siritanasak, Praween; Walker, William

    2013-11-20

    We have developed epoxy-based, broadband antireflection coatings for millimeter-wave astrophysics experiments with cryogenic optics. By using multiple-layer coatings where each layer steps in dielectric constant, we achieved low reflection over a wide bandwidth. We suppressed the reflection from an alumina disk to 10% over fractional bandwidths of 92% and 104% using two-layer and three-layer coatings, respectively. The dielectric constants of epoxies were tuned between 2.06 and 7.44 by mixing three types of epoxy and doping with strontium titanate powder required for the high dielectric mixtures. At 140 K, the band-integrated absorption loss in the coatings was suppressed to less than 1% for the two-layer coating, and below 10% for the three-layer coating.

  8. Synthesis and dielectric properties of zinc oxide nanoparticles using a biotemplate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P, Sharmila P, E-mail: sharmilavishram@gmail.com; Tharayil, Nisha J., E-mail: nishajohntharayil@gmail.com

    Zinc Oxide nanoparticles are synthesized using DNA as capping agent. Zinc oxide nanoparticles are synthesized using DNA as a capping agent. Structural and morphological characterizations are done using SEM, FTIR and XRD. The particle size and lattice parameters are calculated from the diffraction data. The optical properties are studied using UV-Vis absorption spectroscopy and bandgap variation with temperature is determined. The dielectric property of nanoparticles is studied by varying temperature and frequency. The dielectric constant and dispersion parameters are found out. Method of Cole-Cole analysis is used to study the high temperature dispersion of relaxation time. The variation of bothmore » AC and DC conductivity are studied and activation energy calculated.« less

  9. Cognitive training transfer using a personal computer-based game: A close quarters battle case study

    NASA Astrophysics Data System (ADS)

    Woodman, Michael D.

    In this dissertation, liquid crystal (LC) materials and devices are investigated in order to meet the challenges for photonics and displays applications. We have studied three kinds of liquid crystal materials: positive dielectric anisotropic LCs, negative dielectric anisotropic LCs, and dual-frequency LCs. For the positive dielectric anisotropic LCs, we have developed some high birefringence isothiocyanato tolane LC compounds with birefringence ˜0.4, and super high birefringence isothiocyanato biphenyl-bistolane LC compounds with birefringence as high as ˜0.7. Moreover, we have studied the photostability of several high birefringence LC compounds, mixtures, and LC alignment layers in order to determine the failure mechanism concerning the lifetime of LC devices. Although cyano and isothiocyanato LC compounds have similar absorption peaks, the isothiocyanato compounds are more stable than their cyano counterparts under the same illumination conditions. This ultraviolet-durable performance of isothiocyanato compounds originates from its molecular structure and the delocalized electron distribution. We have investigated the alignment performance of negative dielectric anisotropic LCs in homeotropic (vertical aligned, VA) LC cell. Some (2, 3) laterally difluorinated biphenyls, terphenyls and tolanes are selected for this study. Due to the strong repulsive force between LCs and alignment layer, (2,3) laterally difluorinated terphenyls and tolanes do not align well in a VA cell resulting in a poor contrast ratio for the LC panel. We have developed a novel method to suppress the light leakage at dark state. By doping positive Deltaepsilon or non-polar LC compounds or mixtures into the host negative LC mixtures, the repulsive force is reduced and the cell exhibits an excellent dark state. In addition, these dopants increase the birefringence and reduce the viscosity of the host LCs which leads to a faster response time. In this dissertation, we investigate the dielectric heating effect of dual-frequency LCs. Because the absorption peak of imaginary dielectric constant occurs at high frequency region (˜ MHz), there is a heat generated when the LC cell is operated at a high frequency voltage. We have formulated a new dual-frequency LC mixture which greatly reduces the dielectric heating effect while maintaining good physical properties. Another achievement in this thesis is that we have developed a polarization independent phase modulator by using a negative dielectric anisotropic LC gel. (Abstract shortened by UMI.)

  10. The role of long-range forces in the formation of thin liquid films on metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gyory, J.R.; Muller, R.H.

    1987-06-01

    White-light multiple beam interference is used to study the drainage of aqueous electrolytes from vertically optically smooth platinum and gold plates. Bulk liquid is in contact with the bottom of the metal plate. For short times following the lowering of the bulk liquid level, the change in the film profile agrees with that expected from viscous drainage. However, at long times, the film profile deviates from that expected and eventually becomes independent of time at a thickness between 0.08 and 0.25 micrometers. These profiles are best represented by a function dependent on the inverse cube root of height. The thicknessmore » of the equilibrium film profiles with increasing electrolyte concentration. A model based on long range van der Waals interactions resulting in a repulsive force between the interfaces of the film is shown to predict the correct profile shape, and for dilute electrolytes, the correct film thickness. This model also predicts increasing film thickness for increasing electrolyte concentration. The strength of this interaction is characterized by the Hamaker constant which can be calculated from the dielectric functions evaluated at imaginary frequencies of the film and substrate. For metals, this function is generated from spectral absorption data, limiting behavior for low and high frequencies, and by use of the Kramers-Kronig transformation. Hamaker constants calculated from the dielectric functions generated in this manner agree well with those derived from film profiles for dilute electrolytes.« less

  11. Sono-photocatalytic production of hydrogen by interface modified metal oxide insulators.

    PubMed

    Senevirathne, Rushdi D; Abeykoon, Lahiru K; De Silva, Nuwan L; Yan, Chang-Feng; Bandara, Jayasundera

    2018-07-01

    Dielectric oxide materials are well-known insulators that have many applications in catalysis as well as in device manufacturing industries. However, these dielectric materials cannot be employed directly in photochemical reactions that are initiated by the absorption of UV-Vis photons. Despite their insensitivity to solar energy, dielectric materials can be made sono-photoactive even for low energy IR photons by modifications of the interfacial properties of dielectric materials by noble metals and metal oxides. In this investigation, by way of interface modification of dielectric MgO nanoparticles by Ag metal and Ag 2 O nanoparticles, IR photon initiated sono-photocatalytic activity of MgO is reported. The observed photocatalytic activity is found to be the synergic action of both IR light and sonication effect and sonication assisted a multi-step, sub-bandgap excitation of electrons in the MgO is proposed for the observed catalytic activity of Ag/Ag 2 O coated MgO nanoparticles. Our investigation reveals that other dielectric materials such as silver coated SiO 2 and Al 2 O 3 also exhibit IR active sono-photocatalytic activity. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ming, Xianshun; Liu, Xinyu; Sun, Liqun

    We develop the theory of all-dielectric absorbers based on temporal coupled mode theory (TCMT), with parameters extracted from eigenfrequency simulations. An infinite square array of cylindrical resonators embedded in air is investigated, and we find that it supports two eigenmodes of opposite symmetry that are each responsible for half of the total absorption. The even and odd eigenmodes are found to be the hybrid electric (EH111) and hybrid magnetic (HE111) waveguide modes of a dielectric wire of circular cross section, respectively. The geometry of the cylindrical array is shown to be useful for individual tuning of the radiative loss ratesmore » of the eigenmodes, thus permitting frequency degeneracy. Further, by specifying the resonators’ loss tangent, the material loss rate can be made to equal the radiative loss rate, thus achieving a state of degenerate critical coupling and perfect absorption. Our results are supported by S-parameter simulations, and agree well with waveguide theory.« less

  13. Dielectric-based subwavelength metallic meanders for wide-angle band absorbers.

    PubMed

    Shen, Su; Qiao, Wen; Ye, Yan; Zhou, Yun; Chen, Linsen

    2015-01-26

    We propose nano-meanders that can achieve wide-angle band absorption in visible regime. The nano-meander consists of a subwavelength dielectric grating covered by continuous ultra-thin Aluminum film (less than one tenth of the incident wavelength). The excited photonic resonant modes, such as cavity mode, surface plasmonic mode and Rayleigh-Wood anomaly, are discussed in detail. Nearly total resonant absorption due to funneling mechanism in the air nano-groove is almost invariant with large incident angle in transverse magnetic polarization. From both the structural geometry and the nanofabrication point of view, the light absorber has a very simple geometrical structure and it is easy to be integrated into complex photonic devices. The highly efficient angle-robust light absorber can be potential candidate for a range of passive and active photonic applications, including solar-energy harvesting as well as producing artificial colors on a large scale substrate.

  14. Broadband and wide-angle light harvesting by ultra-thin silicon solar cells with partially embedded dielectric spheres.

    PubMed

    Yang, Zhenhai; Shang, Aixue; Qin, Linling; Zhan, Yaohui; Zhang, Cheng; Gao, Pingqi; Ye, Jichun; Li, Xiaofeng

    2016-04-01

    We propose a design of crystalline silicon thin-film solar cells (c-Si TFSCs, 2 μm-thick) configured with partially embedded dielectric spheres on the light-injecting side. The intrinsic light trapping and photoconversion are simulated by the complete optoelectronic simulation. It shows that the embedding depth of the spheres provides an effective way to modulate and significantly enhance the optical absorption. Compared to the conventional planar and front sphere systems, the optimized partially embedded sphere design enables a broadband, wide-angle, and strong optical absorption and efficient carrier transportation. Optoelectronic simulation predicts that a 2 μm-thick c-Si TFSC with half-embedded spheres shows an increment of more than 10  mA/cm2 in short-circuit current density and an enhancement ratio of more than 56% in light-conversion efficiency, compared to the conventional planar counterparts.

  15. In Vivo Evaluation and Proof of Radiofrequency Safety of a Novel Diagnostic MR-Electrophysiology Catheter

    PubMed Central

    Weiss, Steffen; Wirtz, Daniel; David, Bernd; Krueger, Sascha; Lips, Oliver; Caulfield, Dennis; Pedersen, Steen Fjord; Bostock, Julian; Razavi, Reza; Schaeffter, Tobias

    2013-01-01

    An MR-electrophysiology (EP) catheter is presented that provides full diagnostic EP functionality and a high level of radiofrequency safety achieved by custom-designed transmission lines. Highly resistive wires transmit intracardiac electrograms and currents for intracardiac pacing. A transformer cable transmits the localization signal of a tip coil. Specific absorption rate simulations and temperature measurements at 1.5 T demonstrate that a wire resistance > 3 kΩ/m limits dielectric heating to a physiologically irrelevant level. Additional wires do not increase tip specific absorption rate significantly, which is important because some clinical catheters require up to 20 electrodes. It is further demonstrated that radiofrequency-induced and pacing-induced resistive heating of the wires is negligible under clinical conditions. The MR-EP catheters provided uncompromised recording of electrograms and cardiac pacing in combination with a standard EP recorder in MR-guided in vivo EP studies, and the tip coil enabled fast and robust catheter localization. In vivo temperature measurements during such a study did not detect any device-related heating, which confirms the high level of safety of the catheter, whereas unacceptable heating was found with a standard EP catheter. The presented concept for the first time enables catheters with full diagnostic EP functionality and active tracking and at the same time a sufficient level of radiofrequency safety for MRI without specific absorption rate-related limitations. PMID:21337409

  16. In vivo evaluation and proof of radiofrequency safety of a novel diagnostic MR-electrophysiology catheter.

    PubMed

    Weiss, Steffen; Wirtz, Daniel; David, Bernd; Krueger, Sascha; Lips, Oliver; Caulfield, Dennis; Pedersen, Steen Fjord; Bostock, Julian; Razavi, Reza; Schaeffter, Tobias

    2011-03-01

    An MR-electrophysiology (EP) catheter is presented that provides full diagnostic EP functionality and a high level of radiofrequency safety achieved by custom-designed transmission lines. Highly resistive wires transmit intracardiac electrograms and currents for intracardiac pacing. A transformer cable transmits the localization signal of a tip coil. Specific absorption rate simulations and temperature measurements at 1.5 T demonstrate that a wire resistance > 3 kΩ/m limits dielectric heating to a physiologically irrelevant level. Additional wires do not increase tip specific absorption rate significantly, which is important because some clinical catheters require up to 20 electrodes. It is further demonstrated that radiofrequency-induced and pacing-induced resistive heating of the wires is negligible under clinical conditions. The MR-EP catheters provided uncompromised recording of electrograms and cardiac pacing in combination with a standard EP recorder in MR-guided in vivo EP studies, and the tip coil enabled fast and robust catheter localization. In vivo temperature measurements during such a study did not detect any device-related heating, which confirms the high level of safety of the catheter, whereas unacceptable heating was found with a standard EP catheter. The presented concept for the first time enables catheters with full diagnostic EP functionality and active tracking and at the same time a sufficient level of radiofrequency safety for MRI without specific absorption rate-related limitations. Copyright © 2010 Wiley-Liss, Inc.

  17. The structural and optical properties of Y (Y  =  Al, B, Si and Ti)-doped ZnO nano thin films from the first principles calculations

    NASA Astrophysics Data System (ADS)

    Zhang, Wenshu; Hu, Huijun; Zhang, Caili; Li, Jianguo; Li, Yuping; Ling, Lixia; Han, Peide

    2017-12-01

    Based on the density functional theory, the structural stability and optical properties of undoped and Y (Y  =  Al, B, Si and Ti)-doped ZnO nano thin films are investigated. The good stability of the films based on the ZnO (0 0 0 1) can be obtained when the layer is larger than 12. Moreover, the dielectric function, refractive index, absorption, and reflectivity of doped ZnO nano thin films have been analyzed in detail. In the visible light range, the values of ZnO films from 12 to 24 layers are all smaller than those of the bulk. And with the augment of the layers, the values keep increasing. All the results signify that the nano film of 12 layers possesses the lowest reflectivity and weakest absorption. In addition, there is an evident impact of some doped element on the properties of nano films. The absorption and reflectivity of Ti, Si-doped ZnO nano thin films are higher than those of the clean films, while Al, B-doped are lower, especially B-doped. Moreover, the conductivity of the doped structure is better than that of the bulk. Thus, the B-doped ZnO nano thin films could be potential candidate materials of transparent conductive films.

  18. Modeling RF Fields in Hot Plasmas with Parallel Full Wave Code

    NASA Astrophysics Data System (ADS)

    Spencer, Andrew; Svidzinski, Vladimir; Zhao, Liangji; Galkin, Sergei; Kim, Jin-Soo

    2016-10-01

    FAR-TECH, Inc. is developing a suite of full wave RF plasma codes. It is based on a meshless formulation in configuration space with adapted cloud of computational points (CCP) capability and using the hot plasma conductivity kernel to model the nonlocal plasma dielectric response. The conductivity kernel is calculated by numerically integrating the linearized Vlasov equation along unperturbed particle trajectories. Work has been done on the following calculations: 1) the conductivity kernel in hot plasmas, 2) a monitor function based on analytic solutions of the cold-plasma dispersion relation, 3) an adaptive CCP based on the monitor function, 4) stencils to approximate the wave equations on the CCP, 5) the solution to the full wave equations in the cold-plasma model in tokamak geometry for ECRH and ICRH range of frequencies, and 6) the solution to the wave equations using the calculated hot plasma conductivity kernel. We will present results on using a meshless formulation on adaptive CCP to solve the wave equations and on implementing the non-local hot plasma dielectric response to the wave equations. The presentation will include numerical results of wave propagation and absorption in the cold and hot tokamak plasma RF models, using DIII-D geometry and plasma parameters. Work is supported by the U.S. DOE SBIR program.

  19. Microscopic theoretical study of frequency dependent dielectric constant of heavy fermion systems

    NASA Astrophysics Data System (ADS)

    Shadangi, Keshab Chandra; Rout, G. C.

    2017-05-01

    The dielectric polarization and the dielectric constant plays a vital role in the deciding the properties of the Heavy Fermion Systems. In the present communication we consider the periodic Anderson's Model which consists of conduction electron kinetic energy, localized f-electron kinetic energy and the hybridization between the conduction and localized electrons, besides the Coulomb correlation energy. We calculate dielectric polarization which involves two particle Green's functions which are calculated by using Zubarev's Green's function technique. Using the equations of motion of the fermion electron operators. Finally, the temperature and frequency dependent dielectric constant is calculated from the dielectric polarization function. The charge susceptibility and dielectric constant are computed numerically for different physical parameters like the position (Ef) of the f-electron level with respect to fermi level, the strength of the hybridization (V) between the conduction and localized f-electrons, Coulomb correlation potential temperature and optical phonon wave vector (q). The results will be discussed in a reference to the experimental observations of the dielectric constants.

  20. Stabilization of solar films against hi temperature deactivation

    DOEpatents

    Jefferson, Clinton F.

    1984-03-20

    A multi-layer solar energy collector of improved stability comprising: (1) a solar absorptive film consisting essentially of copper oxide, cobalt oxide and manganese oxide; (2) a substrate of quartz, silicate glass or a stainless steel; and (3) an interlayer of platinum, plus a method for preparing a thermally stable multi-layered solar collector, in which the absorptive layer is undercoated with a thin film of platinum to obtain a stable conductor-dielectric tandem.

  1. First-principle calculations of crystal structures, electronic structures, and optical properties of RETaO4 (RE = Y, La, Sm, Eu, Dy, Er)

    NASA Astrophysics Data System (ADS)

    Ma, Zhuang; Zheng, Jiayi; Wang, Song; Gao, Lihong

    2018-01-01

    It is an effective method to protect components from high power laser damage using high reflective materials. The rare earth tantalates RETaO4 with high dielectric constant suggests that they may have very high reflectivity, according to the relationship between dielectric constant and reflectivity. The crystal structures, electronic structures, and optical properties of RETaO4 (RE=Y, La, Sm, Eu, Dy, Er) have been studied by first-principle calculations. With the increasing atomic number of RE (i.e., the number of 4f electrons), a 4f electron shell moves from the bottom of conduction band to the forbidden gap and then to the valence band. The relationship between the electronic structures and optical properties is explored. The electron transitions among O 2p states, RE 4f states, and Ta 5d states have a key effect on optical properties such as dielectric function, absorption coefficient, and reflectivity. For the series of RETaO4, the appearance of the 4f electronic states will obviously promote the improvement of reflectivity. When the 4f states appear at the middle of the forbidden gap, the reflectivity reaches the maximum. The reflectivity of EuTaO4 at 1064 nm is up to 93.47%, indicating that it has potential applications in the antilaser radiation area.

  2. Probing the influence of dielectric environment on excitons in monolayer WSe 2: Insight from high magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stier, Andreas V.; Wilson, Nathan P.; Clark, Genevieve

    Excitons in atomically thin semiconductors necessarily lie close to a surface, and therefore their properties are expected to be strongly influenced by the surrounding dielectric environment. However, systematic studies exploring this role are challenging, in part because the most readily accessible exciton parameter—the exciton’s optical transition energy—is largely unaffected by the surrounding medium. Here we show that the role of the dielectric environment is revealed through its systematic influence on the size of the exciton, which can be directly measured via the diamagnetic shift of the exciton transition in high magnetic fields. Using exfoliated WSe 2 monolayers affixed to single-modemore » optical fibers, we tune the surrounding dielectric environment by encapsulating the flakes with different materials and perform polarized low-temperature magneto-absorption studies to 65 T. The systematic increase of the exciton’s size with dielectric screening, and concurrent reduction in binding energy (also inferred from these measurements), is quantitatively compared with leading theoretical models. Furthermore, these results demonstrate how exciton properties can be tuned in future 2D optoelectronic devices.« less

  3. Effect of zinc substitution on the structural, electrical and magnetic properties of nano-structured Ni0.5Co0.5Fe2O4 ferrites

    NASA Astrophysics Data System (ADS)

    Babu, K. Vijaya; Sailaja, B.; Jalaiah, K.; Shibeshi, Paulos Taddesse; Ravi, M.

    2018-04-01

    A series of Ni0.5Co0.5-xZnxFe2O4 (x = 0, 0.02, 0.04 and 0.06) nanoferrites were synthesized by sol-gel method using citric acid as chelating reagent. The synthesized ferrite systems are characterized by XRD, SEM, FTIR, ESR and dielectric techniques. The formation of cubic spinel phase belonging to space group Fd3m is identified from the X-ray diffraction patterns. SEM showed the particles are in spherical shape with an average grain size 5-10 nm. FTIR spectra portrait the fundamental absorption bands in the range 400-600 cm-1 relating to octahedral and tetrahedral sites. Dielectric properties are investigated over the frequency range of 20 Hz to 1 MHz at room temperature. A difference in dielectric constant (εr) and dissipation factor (tanδ) of the ferrites has been observed. The dielectric constant and dielectric loss tangent decreases exponentially with increase in frequency. The obtained results are good agreeing with the reported values.

  4. Probing the influence of dielectric environment on excitons in monolayer WSe 2: Insight from high magnetic fields

    DOE PAGES

    Stier, Andreas V.; Wilson, Nathan P.; Clark, Genevieve; ...

    2016-11-09

    Excitons in atomically thin semiconductors necessarily lie close to a surface, and therefore their properties are expected to be strongly influenced by the surrounding dielectric environment. However, systematic studies exploring this role are challenging, in part because the most readily accessible exciton parameter—the exciton’s optical transition energy—is largely unaffected by the surrounding medium. Here we show that the role of the dielectric environment is revealed through its systematic influence on the size of the exciton, which can be directly measured via the diamagnetic shift of the exciton transition in high magnetic fields. Using exfoliated WSe 2 monolayers affixed to single-modemore » optical fibers, we tune the surrounding dielectric environment by encapsulating the flakes with different materials and perform polarized low-temperature magneto-absorption studies to 65 T. The systematic increase of the exciton’s size with dielectric screening, and concurrent reduction in binding energy (also inferred from these measurements), is quantitatively compared with leading theoretical models. Furthermore, these results demonstrate how exciton properties can be tuned in future 2D optoelectronic devices.« less

  5. Spectroscopic investigation of a dielectric barrier discharge in modified atmosphere packaging

    NASA Astrophysics Data System (ADS)

    Milosavljević, Vladimir; Cullen, Patrick J.

    2017-11-01

    Diagnostics of a dielectric barrier discharge (DBD), in a sealed package (with and without meat) filled with gas mixtures of oxygen and carbon-dioxide (O2-CO2), is reported. The generation and evaluation of the plasma chemistry induced within the confines of the sealed package is studied. The plasma discharges were analyzed by optical emission spectroscopy (OES) and optical absorption spectroscopy (OAS) over a range of plasma process parameters. The study includes a detailed experimental investigation of the spatial and temporal spectroscopic data and links them with plasma kinetics. The results from the spectral radiation from package provide information about the electron energy distribution function. The experimental data indicates that the humidity level in the package with and without meat is unchanged, and that the gas temperature was not significantly modified. Oxygen and nitrogen radicals (trapped gas atmosphere and modified atmosphere) are increased in the package containing meat; at the same time there is no evidence of the presence of carbon monoxide molecules. The role of the nitrogen molecule in the quenching of O2 and CO2 molecules is also evaluated.

  6. The Electrical Properties for Phenolic Isocyanate-Modified Bisphenol-Based Epoxy Resins Comprising Benzoate Group.

    PubMed

    Lee, Eun Yong; Chae, Il Seok; Park, Dongkyung; Suh, Hongsuk; Kang, Sang Wook

    2016-03-01

    Epoxy resin has been required to have a low dielectric constant (D(k)), low dissipation factor (Df), low coefficient of thermal expansion (CTE), low water absorption, high mechanical, and high adhesion properties for various applications. A series of novel phenolic isocyanate-modified bisphenol-based epoxy resins comprising benzoate group were prepared for practical electronic packaging applications. The developed epoxy resins showed highly reduced dielectric constants (D(k)-3.00 at 1 GHz) and low dissipation values (Df-0.014 at 1 GHz) as well as enhanced thermal properties.

  7. Simple approach for high-contrast optical imaging and characterization of graphene-based sheets.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, I.; Pelton, M.; Piner, R.

    2007-12-01

    A simple optical method is presented for identifying and measuring the effective optical properties of nanometer-thick, graphene-based materials, based on the use of substrates consisting of a thin dielectric layer on silicon. High contrast between the graphene-based materials and the substrate is obtained by choosing appropriate optical properties and thickness of the dielectric layer. The effective refractive index and optical absorption coefficient of graphene oxide, thermally reduced graphene oxide, and graphene are obtained by comparing the predicted and measured contrasts.

  8. Method and Apparatus for Monitoring the Integrity of a Geomembrane Liner using time Domain Reflectometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, John L.

    1998-11-09

    Leaks are detected in a multi-layered geomembrane liner by a two-dimensional time domain reflectometry (TDR) technique. The TDR geomembrane liner is constructed with an electrically conductive detection layer positioned between two electrically non-conductive dielectric layers, which are each positioned between the detection layer and an electrically conductive reference layer. The integrity of the TDR geomembrane liner is determined by generating electrical pulses within the detection layer and measuring the time delay for any reflected electrical energy caused by absorption of moisture by a dielectric layer.

  9. Ablation of film stacks in solar cell fabrication processes

    DOEpatents

    Harley, Gabriel; Kim, Taeseok; Cousins, Peter John

    2013-04-02

    A dielectric film stack of a solar cell is ablated using a laser. The dielectric film stack includes a layer that is absorptive in a wavelength of operation of the laser source. The laser source, which fires laser pulses at a pulse repetition rate, is configured to ablate the film stack to expose an underlying layer of material. The laser source may be configured to fire a burst of two laser pulses or a single temporally asymmetric laser pulse within a single pulse repetition to achieve complete ablation in a single step.

  10. Efficient color display using low-absorption in-pixel color filters

    NASA Technical Reports Server (NTRS)

    Wang, Yu (Inventor)

    2000-01-01

    A display system having a non-absorbing and reflective color filtering array and a reflector to improve light utilization efficiency. One implementation of the color filtering array uses a surface plasmon filter having two symmetric metal-dielectric interfaces coupled with each other to produce a transmission optical wave at a surface plasmon resonance wavelength at one interface from a p-polarized input beam on the other interface. Another implementation of the color filtering array uses a metal-film interference filter having two dielectric layers and three metallic films.

  11. Method and apparatus for monitoring the integrity of a geomembrane liner using time domain reflectometry

    DOEpatents

    Morrison, John L [Idaho Falls, ID

    2001-04-24

    Leaks are detected in a multi-layered geomembrane liner by a two-dimensional time domain reflectometry (TDR) technique. The TDR geomembrane liner is constructed with an electrically conductive detection layer positioned between two electrically non-conductive dielectric layers, which are each positioned between the detection layer and an electrically conductive reference layer. The integrity of the TDR geomembrane liner is determined by generating electrical pulses within the detection layer and measuring the time delay for any reflected electrical energy caused by absorption of moisture by a dielectric layer.

  12. A sextuple-band ultra-thin metamaterial absorber with perfect absorption

    NASA Astrophysics Data System (ADS)

    Yu, Dingwang; Liu, Peiguo; Dong, Yanfei; Zhou, Dongming; Zhou, Qihui

    2017-08-01

    This paper presents the design, simulation and measurement of a sextuple-band ultra-thin metamaterial absorber (MA). The unit cell of this proposed structure is composed of triangular spiral-shaped complementary structures imprinted on the dielectric substrate backed by a metal ground. The measured results are in good agreement with simulations with high absorptivities of more than 90% at all six absorption frequencies. In addition, this proposed absorber has good performances of ultra-thin, polarization insensitivity and a wide-angle oblique incidence, which can easily be used in many potential applications such as detection, imaging and sensing.

  13. 4-channels coherent perfect absorption (CPA)-type demultiplexer using plasmonic nano spheres

    NASA Astrophysics Data System (ADS)

    Soltani, Mohamadreza; Keshavarzi, Rasul

    2017-10-01

    The current research represents a nanoscale and compact 4-channels plasmonic demultiplexer. It includes eight coherent perfect absorption (CPA) - type filters. The operation principle is based on the absorbable formation of a conductive path in the dielectric layer of a plasmonic nano-spheres waveguide. Since the CPA efficiency depends strongly on the number of plasmonic nano-spheres and the nano spheres location, an efficient binary optimization method based on the Particle Swarm Optimization algorithm is used to design an optimized array of the plasmonic nano-sphere in order to achieve the maximum absorption coefficient in the 'off' state.

  14. Synthesis and investigation of various properties of a novel series of nonlinear optical (NLO) chromophores bearing dicyanovinyl (DCV) moiety

    NASA Astrophysics Data System (ADS)

    Seferoğlu, Nurgul; Bayrak, Yasmina; Yalçın, Ergin; Seferoğlu, Zeynel

    2017-12-01

    A series of new nonlinear optic (NLO) chromophores containing a dimethine (vinyl) as π-bridge and electron acceptor dicyanomethine and different electron-donating groups and heterocyclic rings were synthesized. The structures of synthesized dyes were characterized by Fourier Transform Infrared (FTIR), proton and carbon nuclear magnetic resonance (1H/13C NMR) and mass spectrometry. Their electronic absorption spectra were evaluated in MeOH, THF and DCM. The absorption maxima exhibited little bathochromic shifts for each dye with the increasing dielectric constants of the solvents. The synthesized dyes can absorb in the range of 354-506 nm. The analysis of the electronic spectra showed that the dyes having electron-donating groups or heterocyclic rings showed significant changes relative to the model dye which has no substituent on the phenyl ring. In addition, the absorption maxima moved to the longest wavelength for dye containing N,N-dibutylamino substituent. Experimental absorption wavelengths for the compounds were found to be in good agreement with those predicted using the Time-Dependent Density Functional Theory (TD-DFT) [B3LYP/6-311 + g(d,p)]. Furthermore, the second order NLO responses of the dyes were calculated using density functional theory (DFT) calculations. The study reveals that the synthesized chromophores have large first hyperpolarizability (β) values, hence they may have potential applications in the development of NLO materials. For determination of the thermal behaviors of the compounds, thermogravimetric analysis (TGA) were done. The result showed that all the chromophores exhibited good thermal stabilities with the decomposition temperatures (Td) greater than 260 °C.

  15. Varied absorption peaks of dual-band metamaterial absorber analysis by using reflection theory

    NASA Astrophysics Data System (ADS)

    Xiong, Han; Yu, Yan-Tao; Tang, Ming-Chun; Chen, Shi-Yong; Liu, Dan-Ping; Ou, Xiang; Zeng, Hao

    2016-03-01

    Cross-resonator metamaterial absorbers (MMA) have been widely investigated from microwave to optical frequencies. However, only part of the factors influencing the absorption properties were analyzed in previous works at the same time. In order to completely understand how the spacer thickness, dielectric parameter and incidence angle affect the absorption properties of the dual-band MMA, two sets of simulation were performed. It was found that with increasing incident angles, the low-frequency absorption peak showed a blue shift, while the high-frequency absorption peaks showed a red shift. However, with the increase in spacer thickness, both of the absorption peaks showed a red shift. By using the reflection theory expressions, the physical mechanism of the cross-resonator MMA was well explained. This method provides an effective way to analyze multi-band absorber in technology.

  16. Effect of in-material losses on terahertz absorption, transmission, and reflection in photonic crystals made of polar dielectrics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serebryannikov, Andriy E., E-mail: andser@amu.edu.pl; Nanotechnology Research Center—NANOTAM, Bilkent University, 06800 Ankara; Nojima, S.

    2015-10-07

    The effect of the material absorption factor on terahertz absorption (A), transmittance (T), and reflectance (R) for slabs of PhC that comprise rods made of GaAs, a polar dielectric, is studied. The main goal was to illustrate how critical a choice of the absorption factor for simulations is and to indicate the importance of the possible modification of the absorption ability by using either active or lossy impurities. The spectra of A, T, and R are strongly sensitive to the location of the polaritonic gap with respect to the photonic pass and stop bands connected with periodicity that enables themore » efficient combination of the effects of material and structural parameters. It will be shown that the spectra can strongly depend on the utilized value of the material absorption factor. In particular, both narrow and wide absorption bands may appear owing to a variation of the material parameters with a frequency in the vicinity of the polaritonic gap. The latter are often achieved at wideband suppression of transmission, so that an ultra-wide stop band can appear as a result of adjustment of the stop bands having different origin. The results obtained at simultaneous variation of the absorption factor and frequency, and angle of incidence and frequency, indicate the possibility of the existence of wide ranges of tolerance, in which the basic features do remain. This allows for mitigating the accuracy requirements for the absorption factor in simulations and promises the efficient absorption of nonmonochromatic waves and beams with a wide angular spectrum. Suppression of narrowband effects in transmission is demonstrated at rather large values of the absorption factor, when they appear due to either the defect modes related to structural defects or dispersion inspired variations of the material parameters in the vicinity of the polaritonic gap. Comparison with auxiliary structures helps one to detect the common features and differences of homogeneous slabs and slabs of a PhC, which are made of GaAs.« less

  17. Ab-initio study of thermodynamic stability, thermoelectric and optical properties of perovskites ATiO3 (A=Pb, Sn)

    NASA Astrophysics Data System (ADS)

    Noor, N. A.; Mahmood, Q.; Rashid, Muhammad; Ul Haq, Bakhtiar; Laref, A.; Ahmad, S. A.

    2018-07-01

    The physical behavior of perovskites ATiO3 (A=Pb, Sn) has been explored by using density functional theory based full-potential linearized-augmented-plane-wave plus local-orbital (FP-LAPW+lo) method. The lattice parameters calculated from the optimized structures by using Murnaghan equation of state and Chapin's method have been found in good agreement with the available literature that ensures the reliability of the adopted methodology. Moreover, the optoelectronic and thermoelectric properties have been elaborated by using modified Becke-Johnson exchange potential. The optical behavior has been explored in terms the dielectric constants, refractive indices, absorption spectra and optical loss factors. The absorption spectra of these materials reveal a large absorption in the visible and low ultraviolet part of incident light. The thermoelectric properties of ATiO3 are explained in terms of electrical conductivities, thermal conductivities, power factors, and the specific heat capacities. The ATiO3family of pervoskites has been found to exhibit the bandgaps falling in the visible region of solar spectrum and show high values of thermal efficiency that make them potential multifunctional candidates for optoelectronic and energy harvesting applications.

  18. Age-dependent tissue-specific exposure of cell phone users.

    PubMed

    Christ, Andreas; Gosselin, Marie-Christine; Christopoulou, Maria; Kühn, Sven; Kuster, Niels

    2010-04-07

    The peak spatial specific absorption rate (SAR) assessed with the standardized specific anthropometric mannequin head phantom has been shown to yield a conservative exposure estimate for both adults and children using mobile phones. There are, however, questions remaining concerning the impact of age-dependent dielectric tissue properties and age-dependent proportions of the skull, face and ear on the global and local absorption, in particular in the brain tissues. In this study, we compare the absorption in various parts of the cortex for different magnetic resonance imaging-based head phantoms of adults and children exposed to different models of mobile phones. The results show that the locally induced fields in children can be significantly higher (>3 dB) in subregions of the brain (cortex, hippocampus and hypothalamus) and the eye due to the closer proximity of the phone to these tissues. The increase is even larger for bone marrow (>10 dB) as a result of its significantly high conductivity. Tissues such as the pineal gland show no increase since their distances to the phone are not a function of age. This study, however, confirms previous findings saying that there are no age-dependent changes of the peak spatial SAR when averaged over the entire head.

  19. Age-dependent tissue-specific exposure of cell phone users

    NASA Astrophysics Data System (ADS)

    Christ, Andreas; Gosselin, Marie-Christine; Christopoulou, Maria; Kühn, Sven; Kuster, Niels

    2010-04-01

    The peak spatial specific absorption rate (SAR) assessed with the standardized specific anthropometric mannequin head phantom has been shown to yield a conservative exposure estimate for both adults and children using mobile phones. There are, however, questions remaining concerning the impact of age-dependent dielectric tissue properties and age-dependent proportions of the skull, face and ear on the global and local absorption, in particular in the brain tissues. In this study, we compare the absorption in various parts of the cortex for different magnetic resonance imaging-based head phantoms of adults and children exposed to different models of mobile phones. The results show that the locally induced fields in children can be significantly higher (>3 dB) in subregions of the brain (cortex, hippocampus and hypothalamus) and the eye due to the closer proximity of the phone to these tissues. The increase is even larger for bone marrow (>10 dB) as a result of its significantly high conductivity. Tissues such as the pineal gland show no increase since their distances to the phone are not a function of age. This study, however, confirms previous findings saying that there are no age-dependent changes of the peak spatial SAR when averaged over the entire head.

  20. Optical properties of ultrarough silver films on silicon

    NASA Astrophysics Data System (ADS)

    Neff, H.; Henkel, S.; Sass, J. K.; Steinbeiss, E.; Ratz, P.; Müller, J.; Michalke, W.

    1996-07-01

    The optical properties of inhomogeneously grown rough silver films have been analyzed on the basis of reflectance measurements. Data have been recorded within the wave number range 50 cm-1<λ-1<50 000 cm-1. The results are compared with compact and fairly smooth films, made from the same metal. Rough films reveal very low reflectance and high absorptivity values of nearly 1, at wave numbers ≳200 cm-1. The reflectance of these films is peaking at the bulk plasma resonance hvp of silver at 3.87 eV. Smooth compact films, in contrast, show a pronounced minimum at the same energy. Based on an effective medium approach and available literature data, the dielectric function (DF) and absorption coefficient have been calculated. For rough films, the real part of the DF remains positive within the whole spectral range, but is negative for compact films below hvp, in agreement with published data. The calculated DF of the inhomogeneously grown films fully resembles the experimental observations.

  1. The design of wideband metamaterial absorber at E band based on defect

    NASA Astrophysics Data System (ADS)

    Wang, L. S.; Xia, D. Y.; Ding, X. Y.; Wang, Y.

    2018-01-01

    A kind of wideband metamaterial absorber at E band is designed in this paper; it is composed of round metal cells with defect, dielectric substrate and metal film. The electromagnetic parameters of unit cell are calculated by using the finite element method. The results show that the wideband metamaterial absorber presents nearly perfect absorption above 90% with absorption ranging from 65.38GHz to 67.86GHz; the reason of wideband absorption is the overlap of different absorption frequency which is caused by electromagnetic resonance; the size parameters and position of defect has important effect on its absorption property. It has many advantages, such as simply, easy to preparation and so on. It has potential application on aerospace measurement and control, remote data communication, LTE wideband mobile communication and other fields.

  2. Core@shell@shell structured carbon-based magnetic ternary nanohybrids: Synthesis and their enhanced microwave absorption properties

    NASA Astrophysics Data System (ADS)

    Yang, Erqi; Qi, Xiaosi; Xie, Ren; Bai, Zhongchen; Jiang, Yang; Qin, Shuijie; Zhong, Wei; Du, Youwei

    2018-05-01

    High encapsulation efficiency of core@shell@shell structured carbon-based magnetic ternary nanohybrids have been synthesized in high yield by chemical vapor deposition of acetylene directly over octahedral-shaped Fe2O3 nanoparticles. By controlling the pyrolysis temperature, Fe3O4@Fe3C@carbon nanotubes (CNTs) and Fe@Fe3C@CNTs ternary nanohybrids could be selectively produced. The optimal RL values for the as-prepared ternary nanohybrids could reach up to ca. -46.7, -52.7 and -29.5 dB, respectively. The excellent microwave absorption properties of the obtaiend ternary nanohybrids were proved to ascribe to the quarter-wavelength matching model. Moreover, the as-prepared Fe@Fe3C@CNTs ternary nanohybrids displayed remarkably enhanced EM wave absorption capabilities compared to Fe3O4@Fe3C@CNTs due to their excellent dielectric loss abilities, good complementarities between the dielectric loss and the magnetic loss, and high attenuation constant. Generally, this strategy can be extended to explore other categories of core@shell or core@shell@shell structured carbon-based nanohybrids, which is very beneficial to accelerate the advancements of high performance MAMs.

  3. Resonant silicon nanoparticles for enhancement of light absorption and photoluminescence from hybrid perovskite films and metasurfaces.

    PubMed

    Tiguntseva, E; Chebykin, A; Ishteev, A; Haroldson, R; Balachandran, B; Ushakova, E; Komissarenko, F; Wang, H; Milichko, V; Tsypkin, A; Zuev, D; Hu, W; Makarov, S; Zakhidov, A

    2017-08-31

    Recently, hybrid halide perovskites have emerged as one of the most promising types of materials for thin-film photovoltaic and light-emitting devices because of their low-cost and potential for high efficiency. Further boosting their performance without detrimentally increasing the complexity of the architecture is critically important for commercialization. Despite a number of plasmonic nanoparticle based designs having been proposed for solar cell improvement, inherent optical losses of the nanoparticles reduce photoluminescence from perovskites. Here we use low-loss high-refractive-index dielectric (silicon) nanoparticles for improving the optical properties of organo-metallic perovskite (MAPbI 3 ) films and metasurfaces to achieve strong enhancement of photoluminescence as well as useful light absorption. As a result, we observed experimentally a 50% enhancement of photoluminescence intensity from a perovskite layer with silicon nanoparticles and 200% enhancement for a nanoimprinted metasurface with silicon nanoparticles on top. Strong increase in light absorption is also demonstrated and described by theoretical calculations. Since both silicon nanoparticle fabrication/deposition and metasurface nanoimprinting techniques are low-cost, we believe that the developed all-dielectric approach paves the way to novel scalable and highly effective designs of perovskite based metadevices.

  4. Enhancement of Light Absorption in Silicon Nanowire Photovoltaic Devices with Dielectric and Metallic Grating Structures.

    PubMed

    Park, Jin-Sung; Kim, Kyoung-Ho; Hwang, Min-Soo; Zhang, Xing; Lee, Jung Min; Kim, Jungkil; Song, Kyung-Deok; No, You-Shin; Jeong, Kwang-Yong; Cahoon, James F; Kim, Sun-Kyung; Park, Hong-Gyu

    2017-12-13

    We report the enhancement of light absorption in Si nanowire photovoltaic devices with one-dimensional dielectric or metallic gratings that are fabricated by a damage-free, precisely aligning, polymer-assisted transfer method. Incorporation of a Si 3 N 4 grating with a Si nanowire effectively enhances the photocurrents for transverse-electric polarized light. The wavelength at which a maximum photocurrent is generated is readily tuned by adjusting the grating pitch. Moreover, the electrical properties of the nanowire devices are preserved before and after transferring the Si 3 N 4 gratings onto Si nanowires, ensuring that the quality of pristine nanowires is not degraded during the transfer. Furthermore, we demonstrate Si nanowire photovoltaic devices with Ag gratings using the same transfer method. Measurements on the fabricated devices reveal approximately 27.1% enhancement in light absorption compared to that of the same devices without the Ag gratings without any degradation of electrical properties. We believe that our polymer-assisted transfer method is not limited to the fabrication of grating-incorporated nanowire photovoltaic devices but can also be generically applied for the implementation of complex nanoscale structures toward the development of multifunctional optoelectronic devices.

  5. Dielectric function of InGaAs in the visible

    NASA Technical Reports Server (NTRS)

    Alterovitz, S. A.; Sieg, R. E.; Yao, H. D.; Snyder, P. G.; Woollam, J. A.; Pamulapati, J.; Bhattacharya, P. K.; Sekula-Moise, P. A.

    1990-01-01

    Measurements are reported of the dielectric function of thermodynamically stable In(x)Ga(1-x)As in the composition range 0.3 equal to or less than X = to or less than 0.7. The optically thick samples of InGaAs were made by molecular beam epitaxy (MBE) in the range 0.4 = to or less than X = to or less than 0.7 and by metal-organic chemical vapor deposition (MOCVD) for X = 0.3. The MBE made samples, usually 1 micron thick, were grown on semi-insulating InP and included a strain release structure. The MOCVD sample was grown on GaAs and was 2 microns thick. The dielectric functions were measured by variable angle spectroscopic ellipsometry in the range 1.55 to 4.4 eV. The data was analyzed assuming an optically thick InGaAs material with an oxide layer on top. The thickness of this layer was estimated by comparing the results for the InP lattice matched material, i.e., X = 0.53, with results published in the literature. The top oxide layer mathematically for X = 0.3 and X = 0.53 was removed to get the dielectric function of the bare InGaAs. In addition, the dielectric function of GaAs in vacuum, after a protective arsenic layer was removed. The dielectric functions for X = 0, 0.3, and 0.53 together with the X = 1 result from the literature to evaluate an algorithm for calculating the dielectric function of InGaAs for an arbitrary value of X(0 = to or less than X = to or less than 1) were used. Results of the dielectric function calculated using the algorithm were compared with experimental data.

  6. Dielectric function of InGaAs in the visible

    NASA Technical Reports Server (NTRS)

    Alterovitz, S. A.; Yao, H. D.; Snyder, P. G.; Woolam, J. A.; Pamulapati, J.; Bhattacharya, P. K.; Sekula-Moise, P. A.; Sieg, R. E.

    1990-01-01

    Measurements are reported of the dielectric function of thermodynamically stable In(x)Ga(1-x)As in the composition range 0.3 equal to or less than X = to or less than 0.7. The optically thick samples of InGaAs were made by molecular beam epitaxy (MBE) in the range 0.4 = to or less than X = to or less than 0.7 and by metal-organic chemical vapor deposition (MOCVD) for X = 0.3. The MBE made samples, usually 1 micron thick, were grown on semi-insulating InP and included a strain release structure. The MOCVD sample was grown on GaAs and was 2 microns thick. The dielectric functions were measured by variable angle spectroscopic ellipsometry in the range 1.55 to 4.4 eV. The data was analyzed assuming an optically thick InGaAs material with an oxide layer on top. The thickness of this layer was estimated by comparing the results for the InP lattice matched material, i.e., X = 0.53, with results published in the literature. The top oxide layer mathematically for X = 0.3 and X = 0.53 was removed to get the dielectric function of the bare InGaAs. In addition, the dielectric function of GaAs in vacuum, after a protective arsenic layer was removed. The dielectric functions for X = 0, 0.3, and 0.53 together with the X = 1 result from the literature to evaluate an algorithm for calculating the dielectric function of InGaAs for an arbitrary value of X (0 = to or less than X = to or less than 1) were used. Results of the dielectric function calculated using the algorithm were compared with experimental data.

  7. Nonlinear optical response in a zincblende GaN cylindrical quantum dot with donor impurity center

    NASA Astrophysics Data System (ADS)

    Hoyos, Jaime H.; Correa, J. D.; Mora-Ramos, M. E.; Duque, C. A.

    2016-03-01

    We calculate the nonlinear optical absorption coefficient of a cylindrical zincblende GaN-based quantum dot. For this purpose, we consider Coulomb interactions between electrons and an impurity ionized donor atom. The electron-donor-impurity spectrum and the associated quantum states are calculated using the effective mass approximation with a parabolic potential energy model describing both the radial and axial electron confinement. We also include the effects of the hydrostatic pressure and external electrostatic fields. The energy spectrum is obtained through an expansion of the eigenstates as a linear combination of Gaussian-type functions which reduces the computational effort since all the matrix elements are obtained analytically. Therefore, the numerical problem is reduced to the direct diagonalization of the Hamiltonian. The obtained energies are used in the evaluation of the dielectric susceptibility and the nonlinear optical absorption coefficient within a modified two-level approach in a rotating wave approximation. This quantity is investigated as a function of the quantum dot dimensions, the impurity position, the external electric field intensity and the hydrostatic pressure. The results of this research could be important in the design and fabrication of zincblende GaN-quantum-dot-based electro-optical devices.

  8. Theoretical Study of the Transverse Dielectric Constant of Superlattices and Their Alloys. Ph.D Thesis

    NASA Technical Reports Server (NTRS)

    Kahen, K. B.

    1986-01-01

    The optical properties of III to V binary and ternary compounds and GaAs-Al(x)Ga(1-x)As superlattices are determined by calculating the real and imaginary parts of the transverse dielectric constant. Emphasis is given to determining the influence of different material and superlattice parameters on the values of the index of refraction and absorption coefficient. In order to calculate the optical properties of a material, it is necessary to compute its electronic band structure. This was accomplished by introducing a partition band structure approach based on a combination of the vector k x vector p and nonlocal pseudopotential techniques. The advantages of this approach are that it is accurate, computationally fast, analytical, and flexible. These last two properties enable incorporation of additional effects into the model, such as disorder scattering, which occurs for alloy materials and excitons. Furthermore, the model is easily extended to more complex structures, for example multiple quantum wells and superlattices. The results for the transverse dielectric constant and absorption coefficient of bulk III to V compounds compare well with other one-electron band structure models and the calculations show that for small frequencies, the index of refraction is determined mainly by the contibution of the outer regions of the Brillouin zone.

  9. High Temperature Microwave Dielectric Properties of JSC-1AC Lunar Simulant

    NASA Technical Reports Server (NTRS)

    Allan, Shawn M.; Merritt, Brandon J.; Griffin, Brittany F.; Hintze, Paul E.; Shulman, Holly S.

    2011-01-01

    Microwave heating has many potential lunar applications including sintering regolith for lunar surface stabilization and heating regolith for various oxygen production reactors. The microwave properties of lunar simulants must be understood so this technology can be applied to lunar operations. Dielectric properties at microwave frequencies for a common lunar simulant, JSC-1AC, were measured up to 1100 C, which is approximately the melting point. The experimentally determined dielectric properties included real and imaginary permittivity (epsilon', epsilon"), loss tangent (tan delta), and half-power depth, the di stance at which a material absorbs 50% of incident microwave energy. Measurements at 2.45 GHz revealed tan delta of JSC-1A increases from 0.02 at 25 C to 0.31 at 110 C. The corresponding half-power depth decreases from a peak of 286 mm at 110 C, to 13 mm at 1100 C. These data indicate that JSC-1AC becomes more absorbing, and thus a better microwave heater as temperature increases. A half-power depth maximum at 100-200 C presents a barrier to direct microwave heating at low temperatures. Microwave heating experiments confirm the sluggish heating effect of weak absorption below 200 C, and increasingly strong absorption above 200 C, leading to rapid heating and melting of JSC-1AC.

  10. Electromagnetic Spectroscopy of Normal Breast Tissue Specimens Obtained From Reduction Surgeries: Comparison of Optical and Microwave Properties

    PubMed Central

    Lazebnik, Mariya; Zhu, Changfang; Palmer, Gregory M.; Harter, Josephine; Sewall, Sarah; Ramanujam, Nirmala; Hagness, Susan C.

    2009-01-01

    Techniques utilizing electromagnetic energy at microwave and optical frequencies have been shown to be promising for breast cancer detection and diagnosis. Since different biophysical mechanisms are exploited at these frequencies to discriminate between healthy and diseased tissue, combining these two modalities may result in a more powerful approach for breast cancer detection and diagnosis. Toward this end, we performed microwave dielectric spectroscopy and optical diffuse reflectance spectroscopy measurements at the same sites on freshly-excised normal breast tissues obtained from reduction surgeries at the University of Wisconsin Hospital, using microwave and optical probes with very similar sensing volumes. We found that the microwave dielectric constant and effective conductivity are correlated with tissue composition across the entire measurement frequency range (|r|~0.5–0.6, p<0.01), and that the optical absorption coefficient at 460 nm and optical scattering coefficient are correlated with tissue composition (|r|~ 0.4–0.6, p<0.02). Finally, we found that the optical absorption coefficient at 460 nm is correlated with the microwave dielectric constant and effective conductivity (r=−0.55, p<0.01). Our results suggest that combining optical and microwave modalities for analyzing breast tissue samples may serve as a crosscheck and provide complementary information about tissue composition. PMID:18838370

  11. Electromagnetic spectroscopy of normal breast tissue specimens obtained from reduction surgeries: comparison of optical and microwave properties.

    PubMed

    Lazebnik, Mariya; Zhu, Changfang; Palmer, Gregory M; Harter, Josephine; Sewall, Sarah; Ramanujam, Nirmala; Hagness, Susan C

    2008-10-01

    Techniques utilizing electromagnetic energy at microwave and optical frequencies have been shown to be promising for breast cancer detection and diagnosis. Since different biophysical mechanisms are exploited at these frequencies to discriminate between healthy and diseased tissue, combining these two modalities may result in a more powerful approach for breast cancer detection and diagnosis. Toward this end, we performed microwave dielectric spectroscopy and optical diffuse reflectance spectroscopy measurements at the same sites on freshly excised normal breast tissues obtained from reduction surgeries at the University of Wisconsin Hospital, using microwave and optical probes with very similar sensing volumes. We found that the microwave dielectric constant and effective conductivity are correlated with tissue composition across the entire measurement frequency range (|r| approximately 0.5-0.6, p<0.01) and that the optical absorption coefficient at 460 nm and optical scattering coefficient are correlated with tissue composition (|r| approximately 0.4-0.6, p<0.02). Finally, we found that the optical absorption coefficient at 460 nm is correlated with the microwave dielectric constant and effective conductivity (r=-0.55, p<0.01). Our results suggest that combining optical and microwave modalities for analyzing breast tissue samples may serve as a crosscheck and provide complementary information about tissue composition.

  12. Light Coupling and Trapping in Ultrathin Cu(In,Ga)Se2 Solar Cells Using Dielectric Scattering Patterns.

    PubMed

    van Lare, Claire; Yin, Guanchao; Polman, Albert; Schmid, Martina

    2015-10-27

    We experimentally demonstrate photocurrent enhancement in ultrathin Cu(In,Ga)Se2 (CIGSe) solar cells with absorber layers of 460 nm by nanoscale dielectric light scattering patterns printed by substrate conformal imprint lithography. We show that patterning the front side of the device with TiO2 nanoparticle arrays results in a small photocurrent enhancement in almost the entire 400-1200 nm spectral range due to enhanced light coupling into the cell. Three-dimensional finite-difference time-domain simulations are in good agreement with external quantum efficiency measurements. Patterning the Mo/CIGSe back interface using SiO2 nanoparticles leads to strongly enhanced light trapping, increasing the efficiency from 11.1% for a flat to 12.3% for a patterned cell. Simulations show that optimizing the array geometry could further improve light trapping. Including nanoparticles at the Mo/CIGSe interface leads to substantially reduced parasitic absorption in the Mo back contact. Parasitic absorption in the back contact can be further reduced by fabricating CIGSe cells on top of a SiO2-patterned In2O3:Sn (ITO) back contact. Simulations show that these semitransparent cells have similar spectrally averaged reflection and absorption in the CIGSe active layer as a Mo-based patterned cell, demonstrating that the absorption losses in the Mo can be partially turned into transmission through the semitransparent geometry.

  13. Electromagnetic-radiation absorption by water

    NASA Astrophysics Data System (ADS)

    Lunkenheimer, P.; Emmert, S.; Gulich, R.; Köhler, M.; Wolf, M.; Schwab, M.; Loidl, A.

    2017-12-01

    Why does a microwave oven work? How does biological tissue absorb electromagnetic radiation? Astonishingly, we do not have a definite answer to these simple questions because the microscopic processes governing the absorption of electromagnetic waves by water are largely unclarified. This absorption can be quantified by dielectric loss spectra, which reveal a huge peak at a frequency of the exciting electric field of about 20 GHz and a gradual tailing off toward higher frequencies. The microscopic interpretation of such spectra is highly controversial and various superpositions of relaxation and resonance processes ascribed to single-molecule or molecule-cluster motions have been proposed for their analysis. By combining dielectric, microwave, THz, and far-infrared spectroscopy, here we provide nearly continuous temperature-dependent broadband spectra of water. Moreover, we find that corresponding spectra for aqueous solutions reveal the same features as pure water. However, in contrast to the latter, crystallization in these solutions can be avoided by supercooling. As different spectral contributions tend to disentangle at low temperatures, this enables us to deconvolute them when approaching the glass transition under cooling. We find that the overall spectral development, including the 20 GHz feature (employed for microwave heating), closely resembles the behavior known for common supercooled liquids. Thus water's absorption of electromagnetic waves at room temperature is not unusual but very similar to that of glass-forming liquids at elevated temperatures, deep in the low-viscosity liquid regime, and should be interpreted along similar lines.

  14. The formation of diffuse discharge by short-front nanosecond voltage pulses and the modification of dielectrics in this discharge

    NASA Astrophysics Data System (ADS)

    Orlovskii, V. M.; Panarin, V. A.; Shulepov, M. A.

    2014-07-01

    The dynamics of diffuse discharge formation under the action of nanosecond voltage pulses with short fronts (below 1 ns) in the absence of a source of additional preionization and the influence of a dielectric film on this process have been studied. It is established that the diffuse discharge is induced by the avalanche multiplication of charge initiated by high-energy electrons and then maintained due to secondary breakdowns propagating via ionized gas channels. If a dielectric film (polyethylene, Lavsan, etc.) is placed on the anode, then multiply repeated discharge will lead to surface and bulk modification of the film material. Discharge-treated polyethylene film exhibits a change in the optical absorption spectrum in the near-IR range.

  15. A Flexible Metamaterial Terahertz Perfect Absorber

    NASA Astrophysics Data System (ADS)

    Chen, X. R.; Zheng, Y. W.; Qin, L. M.; Wei, G. C.; Qin, Z. P.; Zhang, N. G.; Liu, K.; Li, S. Z.; Wang, S. X.

    2017-12-01

    We designed a THz matematerial absorber using metallic wires (MWs) and split resonant rings (SRRs). This matematerial absorber exhibits perfect absorption which up to 96% at 4.03 THz and is capable of wrapped around objects because of flexible polyimide dielectric substrate.

  16. Fiber-reinforced dielectric elastomer laminates with integrated function of actuating and sensing

    NASA Astrophysics Data System (ADS)

    Li, Tiefeng; Xie, Yuhan; Li, Chi; Yang, Xuxu; Jin, Yongbin; Liu, Junjie; Huang, Xiaoqiang

    2015-04-01

    The natural limbs of animals and insects integrate muscles, skins and neurons, providing both the actuating and sensing functions simultaneously. Inspired by the natural structure, we present a novel structure with integrated function of actuating and sensing with dielectric elastomer (DE) laminates. The structure can deform when subjected to high voltage loading and generate corresponding output signal in return. We investigate the basic physical phenomenon of dielectric elastomer experimentally. It is noted that when applying high voltage, the actuating dielectric elastomer membrane deforms and the sensing dielectric elastomer membrane changes the capacitance in return. Based on the concept, finite element method (FEM) simulation has been conducted to further investigate the electromechanical behavior of the structure.

  17. Polymer Composite and Nanocomposite Dielectric Materials for Pulse Power Energy Storage †

    PubMed Central

    Barber, Peter; Balasubramanian, Shiva; Anguchamy, Yogesh; Gong, Shushan; Wibowo, Arief; Gao, Hongsheng; Ploehn, Harry J.; zur Loye, Hans-Conrad

    2009-01-01

    This review summarizes the current state of polymer composites used as dielectric materials for energy storage. The particular focus is on materials: polymers serving as the matrix, inorganic fillers used to increase the effective dielectric constant, and various recent investigations of functionalization of metal oxide fillers to improve compatibility with polymers. We review the recent literature focused on the dielectric characterization of composites, specifically the measurement of dielectric permittivity and breakdown field strength. Special attention is given to the analysis of the energy density of polymer composite materials and how the functionalization of the inorganic filler affects the energy density of polymer composite dielectric materials.

  18. Structural, magnetic and spectral properties of Gd and Dy co-doped dielectrically modified Co-Ni (Ni0.4Co0.6Fe2O4) ferrites

    NASA Astrophysics Data System (ADS)

    Ditta, Allah; Khan, Muhammad Azhar; Junaid, Muhammad; Khalil, R. M. Arif; Warsi, Muhammad Farooq

    2017-02-01

    Gadolinium (Gd) and Dysprosium (Dy) co-doped Ni-Co (Ni0.4Co0.6Fe2O4) ferrites were prepared by micro-emulsion route. X-ray diffraction (XRD) analysis indicated the development of cubic spinel structure. The lattice parameter and X-ray density were found to increase from 8.24 to 8.31 Å and 5.57 to 5.91 (gm/cm3) respectively as the Gd-Dy contents increased in nickel-cobalt ferrites. The crystallite size calculated from the Scherrer's formula exhibited the formation of nanocrystalline ferrites (13-26 nm). Two foremost absorption bands observed in FTIR spectra within 400 cm-1 (υ2) to 600 cm-1 (υ1) which correspond to stretching vibrations of tetrahedral and octahedral complexes respectively. The dielectric constant (ε) and dielectric loss (tanδ) were decreased by the optimization of frequency and abrupt decrease in the low frequency region and higher values in the high frequency region were observed. The dielectric dispersion was due to rapid decrease of dielectric constant in the low frequency region. This variation of dielectric dispersion was explicated in the light of space charge polarization model of Maxwell-Wagner. The dielectric loss occurs in these ferrites due to electron hopping and defects in the dipoles. The electron hopping was possible at low frequency range but at higher frequency the dielectric loss was decreased with the decrease of electron hopping. Magnetic properties were observed by measuring M-H loops. Due to low dielectric loss and dielectric constant these materials were appropriate in the fabrication of switching and memory storage devices.

  19. Characterization and Modeling of Indium Gallium Antimonide Avalanche Photodiode and of Indium Gallium Arsenide Two-band Detector

    NASA Technical Reports Server (NTRS)

    2006-01-01

    A model of the optical properties of Al(x)Ga(1-x)As(y)Sb(1-y) and In(x)Ga(1-x)As(y)Sb(1-y) is presented, including the refractive, extinction, absorption and reflection coefficients in terms of the optical dielectric function of the materials. Energy levels and model parameters for each binary compound are interpolated to obtain the needed ternaries and quaternaries for various compositions. Bowing parameters are considered in the interpolation scheme to take into account the deviation of the calculated ternary and quaternary values from experimental data due to lattice disorders. The inclusion of temperature effects is currently being considered.

  20. The Effects of ph on Structural and Optical Characterization of Iron Oxide Thin Films

    NASA Astrophysics Data System (ADS)

    Tezel, Fatma Meydaneri; Özdemir, Osman; Kariper, I. Afşin

    In this study, the iron oxide thin films have been produced by chemical bath deposition (CBD) method as a function of pH onto amorphous glass substrates. The surface images of the films were investigated with scanning electron microscope (SEM). The crystal structures, orientation of crystallization, crystallite sizes, and dislocation density i.e. structural properties of the thin films were analyzed with X-ray diffraction (XRD). The optical band gap (Eg), optical transmission (T%), reflectivity (R%), absorption coefficient (α), refraction index (n), extinction coefficient (k) and dielectric constant (ɛ) of the thin films were investigated depending on pH, deposition time, solution temperature, substrate temperature, thickness of the films by UV-VIS spectrometer.

  1. Growth, structural, spectroscopic and optical characterization of barium doped calcium tartrate

    NASA Astrophysics Data System (ADS)

    Verma, Seema; Raina, Bindu; Gupta, Vandana; Bamzai, K. K.

    2018-05-01

    Barium doped calcium tartrates synthesized by controlled diffusion using silica gel technique at ambient temperature was characterized by single crystal X-ray diffraction which establishes monoclinic crystal system with volume of the unit cell 923.97(10) Ǻ3 and the space group being P21. UV - Vis characterization gives various linear optical constants like absorption, transmittance, reflectance, band gap, extinction coefficient, urbach energy, complex dielectric constant, optical and electrical conductivity. These constants are considered to be essential in characterizing materials that are used in various applications like fabrication of optoelectronic devices. FTIR spectrum establishes the presence of various bands of functional groups expected from metal tartrate with water of crystallization.

  2. Electrical and optical properties of NdAlO{sub 3} synthesized by an optimized combustion process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harilal, Midhun; Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, 26300 Kuantan, Pahang; Nair, V. Manikantan

    2014-04-01

    Nanocrystals of neodymium aluminate (NdAlO{sub 3}) are synthesized using an optimized single step auto-ignition citrate complex combustion process. The combustion product was characterized by X-ray diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy and Ultraviolet–visible reflection spectroscopy. The combustion product is single phase and composed of aggregates of nanocrystals of sizes in the range 20–40 nm. The NdAlO{sub 3} crystallized in rhombohedral perovskite structure with lattice parameters a = 5.3223 Å and c = 12.9292 Å. The absorption spectrum of the NdAlO{sub 3} nanocrystals shows characteristic absorption bands of the Nd atom. The polycrystalline fluffy combustion product ismore » sintered to high density (∼ 97%) at ∼ 1450 °C for 4 h and the microstructure was characterized by scanning electron microscopy. The electrical properties of the sintered product were studied using dielectric measurements. The sintered NdAlO{sub 3} has a dielectric constant (ε{sub r}) and a dielectric loss (tan δ) of 21.9 and ∼ 10{sup −3} at 5 MHz, respectively. - Highlights: • NdAlO{sub 3} nanocrystals were synthesized through a citrate combustion process. • The nanocrystals were sintered to ∼ 97% of theoretical density. • The materials were characterized using a number of analytical techniques. • Nanostructured NdAlO{sub 3} showed crystal field splitting of Nd ions. • Dielectric properties of the sintered NdAlO{sub 3} ceramics were studied.« less

  3. Effect of Pentacene-dielectric Affinity on Pentacene Thin Film Growth Morphology in Organic Field-effect Transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S Kim; M Jang; H Yang

    2011-12-31

    Organic field-effect transistors (OFETs) are fabricated by depositing a thin film of semiconductor on the functionalized surface of a SiO{sub 2} dielectric. The chemical and morphological structures of the interface between the semiconductor and the functionalized dielectric are critical for OFET performance. We have characterized the effect of the affinity between semiconductor and functionalized dielectric on the properties of the semiconductor-dielectric interface. The crystalline microstructure/nanostructure of the pentacene semiconductor layers, grown on a dielectric substrate that had been functionalized with either poly(4-vinyl pyridine) or polystyrene (to control hydrophobicity), and grown under a series of substrate temperatures and deposition rates, weremore » characterized by X-ray diffraction, photoemission spectroscopy, and atomic force microscopy. By comparing the morphological features of the semiconductor thin films with the device characteristics (field-effect mobility, threshold voltage, and hysteresis) of the OFET devices, the effect of affinity-driven properties on charge modulation, charge trapping, and charge carrier transport could be described.« less

  4. Study of Some Dielectric Properties of Suspensions of Magnesium Particles in Mineral Oil

    NASA Technical Reports Server (NTRS)

    Altshuller, Aubrey P

    1954-01-01

    The variation of dielectric constant has been measured as a function of the concentration of magnesium particles; the shape, size, and degree of oxidation of the particles; the temperature; and the frequency of oscillation. The variation of dielectric constant and settling rate was investigated as a function of time. Also investigated were the effects of particle concentration, shape and time on dielectric losses.

  5. Microwave dielectric study of an oligomeric electrolyte gelator by time domain reflectometry.

    PubMed

    Kundu, Shyamal Kumar; Yagihara, Shin; Yoshida, Masaru; Shibayama, Mitsuhiro

    2009-07-30

    The dynamics of water molecules in aqueous solutions of an oligomeric electrolyte gelator, poly[pyridinium-1,4-diyliminocarbonyl-1,4-phenylene-methylene chloride] (1-Cl) was characterized by microwave dielectric measurements using the time domain reflectometry method. The dielectric dispersion and absorption curves related to the orientational motion of water molecules were described by the Cole-Cole equation. Discontinuities were observed in the concentration dependence of the dielectric relaxation strength, Deltaepsilonh, as well as in the Cole-Cole parameter, betah. These discontinuities were observed between the samples with concentrations of 6 and 7 g/L 1-Cl/water, which correspond to a change in the transparency. Such a discontinuity corresponds to the observation of the critical concentration of gelation. The interaction between water and 1-Cl molecules was discussed from the tauh-betah diagram. As 1-Cl carries an amide group, it could be expected that 1-Cl may interact hydrophilically with water, but the present result suggests that 1-Cl interact hydrophobically with water.

  6. Nonlinear dielectric effects in liquids: a guided tour

    NASA Astrophysics Data System (ADS)

    Richert, Ranko

    2017-09-01

    Dielectric relaxation measurements probe how the polarization of a material responds to the application of an external electric field, providing information on structure and dynamics of the sample. In the limit of small fields and thus linear response, such experiments reveal the properties of the material in the same thermodynamic state it would have in the absence of the external field. At sufficiently high fields, reversible changes in enthalpy and entropy of the system occur even at constant temperature, and these will in turn alter the polarization responses. The resulting nonlinear dielectric effects feature field induced suppressions (saturation) and enhancements (chemical effect) of the amplitudes, as well as time constant shifts towards faster (energy absorption) and slower (entropy reduction) dynamics. This review focuses on the effects of high electric fields that are reversible and observed at constant temperature for single component glass-forming liquids. The experimental challenges involved in nonlinear dielectric experiments, the approaches to separating and identifying the different sources of nonlinear behavior, and the current understanding of how high electric fields affect dielectric materials will be discussed. Covering studies from Debye’s initial approach to the present state-of-the-art, it will be emphasized what insight can be gained from the nonlinear responses that are not available from dielectric relaxation results obtained in the linear regime.

  7. Direct electrical-to-optical conversion and light modulation in micro whispering-gallery-mode resonators

    NASA Technical Reports Server (NTRS)

    Maleki, Lute (Inventor); Levi, Anthony F. J. (Inventor)

    2005-01-01

    Techniques for directly converting an electrical signal into an optical signal by using a whispering gallery mode optical resonator formed of a dielectric material that allows for direct modulation of optical absorption by the electrical signal.

  8. Exciton-dominated dielectric function of atomically thin MoS 2 films

    DOE PAGES

    Yu, Yiling; Yu, Yifei; Cai, Yongqing; ...

    2015-11-24

    We systematically measure the dielectric function of atomically thin MoS 2 films with different layer numbers and demonstrate that excitonic effects play a dominant role in the dielectric function when the films are less than 5–7 layers thick. The dielectric function shows an anomalous dependence on the layer number. It decreases with the layer number increasing when the films are less than 5–7 layers thick but turns to increase with the layer number for thicker films. We show that this is because the excitonic effect is very strong in the thin MoS 2 films and its contribution to the dielectricmore » function may dominate over the contribution of the band structure. We also extract the value of layer-dependent exciton binding energy and Bohr radius in the films by fitting the experimental results with an intuitive model. The dominance of excitonic effects is in stark contrast with what reported at conventional materials whose dielectric functions are usually dictated by band structures. Lastly, the knowledge of the dielectric function may enable capabilities to engineer the light-matter interactions of atomically thin MoS 2 films for the development of novel photonic devices, such as metamaterials, waveguides, light absorbers, and light emitters.« less

  9. Intensity tunable infrared broadband absorbers based on VO2 phase transition using planar layered thin films

    PubMed Central

    Kocer, Hasan; Butun, Serkan; Palacios, Edgar; Liu, Zizhuo; Tongay, Sefaattin; Fu, Deyi; Wang, Kevin; Wu, Junqiao; Aydin, Koray

    2015-01-01

    Plasmonic and metamaterial based nano/micro-structured materials enable spectrally selective resonant absorption, where the resonant bandwidth and absorption intensity can be engineered by controlling the size and geometry of nanostructures. Here, we demonstrate a simple, lithography-free approach for obtaining a resonant and dynamically tunable broadband absorber based on vanadium dioxide (VO2) phase transition. Using planar layered thin film structures, where top layer is chosen to be an ultrathin (20 nm) VO2 film, we demonstrate broadband IR light absorption tuning (from ~90% to ~30% in measured absorption) over the entire mid-wavelength infrared spectrum. Our numerical and experimental results indicate that the bandwidth of the absorption bands can be controlled by changing the dielectric spacer layer thickness. Broadband tunable absorbers can find applications in absorption filters, thermal emitters, thermophotovoltaics and sensing. PMID:26294085

  10. Design of Quad-Band Terahertz Metamaterial Absorber Using a Perforated Rectangular Resonator for Sensing Applications.

    PubMed

    Xie, Qin; Dong, Guangxi; Wang, Ben-Xin; Huang, Wei-Qing

    2018-05-08

    Quad-band terahertz absorber with single-sized metamaterial design formed by a perforated rectangular resonator on a gold substrate with a dielectric gap in between is investigated. The designed metamaterial structure enables four absorption peaks, of which the first three peaks have large absorption coefficient while the last peak possesses a high Q (quality factor) value of 98.33. The underlying physical mechanisms of these peaks are explored; it is found that their near-field distributions are different. Moreover, the figure of merit (FOM) of the last absorption peak can reach 101.67, which is much higher than that of the first three absorption modes and even absorption bands of other works operated in the terahertz frequency. The designed device with multiple-band absorption and high FOM could provide numerous potential applications in terahertz technology-related fields.

  11. Cermet based metamaterials for multi band absorbers over NIR to LWIR frequencies

    NASA Astrophysics Data System (ADS)

    Pradhan, Jitendra K.; Behera, Gangadhar; Agarwal, Amit K.; Ghosh, Amitava; Ramakrishna, S. Anantha

    2017-06-01

    Cermets or ceramic-metals are known for their use in solar thermal technologies for their absorption across the solar band. Use of cermet layers in a metamaterial perfect absorber allows for flexible control of infra-red absorption over the short wave infra-red, to long wave infra-red bands, while keeping the visible/near infra-red absorption properties constant. We design multilayered metamaterials consisting of a conducting ground plane, a low metal volume fraction cermet/ZnS as dielectric spacer layers, and a top structured layer of an array of circular discs of metal/high volume metal fraction cermet that give rise to specified absorption bands in the near-infra-red (NIR) frequencies, as well as any specified band at SWIR-LWIR frequencies. Thus, a complete decoupling of the absorption at optical/NIR frequencies and the infra-red absorption behaviour of a structured metamaterial is demonstrated.

  12. Design of Quad-Band Terahertz Metamaterial Absorber Using a Perforated Rectangular Resonator for Sensing Applications

    NASA Astrophysics Data System (ADS)

    Xie, Qin; Dong, Guangxi; Wang, Ben-Xin; Huang, Wei-Qing

    2018-05-01

    Quad-band terahertz absorber with single-sized metamaterial design formed by a perforated rectangular resonator on a gold substrate with a dielectric gap in between is investigated. The designed metamaterial structure enables four absorption peaks, of which the first three peaks have large absorption coefficient while the last peak possesses a high Q (quality factor) value of 98.33. The underlying physical mechanisms of these peaks are explored; it is found that their near-field distributions are different. Moreover, the figure of merit (FOM) of the last absorption peak can reach 101.67, which is much higher than that of the first three absorption modes and even absorption bands of other works operated in the terahertz frequency. The designed device with multiple-band absorption and high FOM could provide numerous potential applications in terahertz technology-related fields.

  13. Simulation of Charged Systems in Heterogeneous Dielectric Media via a True Energy Functional

    NASA Astrophysics Data System (ADS)

    Jadhao, Vikram; Solis, Francisco J.; de la Cruz, Monica Olvera

    2012-11-01

    For charged systems in heterogeneous dielectric media, a key obstacle for molecular dynamics (MD) simulations is the need to solve the Poisson equation in the media. This obstacle can be bypassed using MD methods that treat the local polarization charge density as a dynamic variable, but such approaches require access to a true free energy functional, one that evaluates to the equilibrium electrostatic energy at its minimum. In this Letter, we derive the needed functional. As an application, we develop a Car-Parrinello MD method for the simulation of free charges present near a spherical emulsion droplet separating two immiscible liquids with different dielectric constants. Our results show the presence of nonmonotonic ionic profiles in the dielectric with a lower dielectric constant.

  14. Microwave absorption properties of reduced graphene oxide strontium hexaferrite/poly(methyl methacrylate) composites

    NASA Astrophysics Data System (ADS)

    Acharya, Sanghamitra; Ray, J.; Patro, T. U.; Alegaonkar, Prashant; Datar, Suwarna

    2018-03-01

    The key factors to consider when designing microwave absorber materials for eradication of electromagnetic (EM) pollution are absorption of incident EM waves and good impedance matching. By keeping these things in mind, flexible microwave absorber composite films can be fabricated by simple gel casting techniques using reduced graphene oxide (RGO) and strontium ferrite (SF) in a poly(methyl methacrylate) (PMMA) matrix. SF nanoparticles are synthesized by the well known sol-gel method. Subsequently, reduced graphene oxide (RGO) and SF nanocomposite (RGOSF) are prepared through a chemical reduction method using hydrazine. The structure, morphology, chemical composition, thermal stability and magnetic properties of the nanocomposite are characterized in detail by various techniques. The SF particles are found to be nearly 500 nm and decorated on RGO sheets as revealed by field emission scanning electron microscopy and transmission electron microscopy analysis. Fourier transform infrared and and Raman spectroscopy clearly show the presence of SF in the graphene sheet by the lower peak positions. Finally, ternary polymer composites of RGO/SF/PMMA are prepared by an in situ polymerization method. Magnetic and dielectric studies of the composite reveal that the presence of RGO/SF/PMMA lead to polarization effects contributing to dielectric loss. Also, RGO surrounding SF provides a conductive network in the polymer matrix which is in turn responsible for the magnetic loss in the composite. Thus, the permittivity as well as the permeability of the composite can be controlled by an appropriate combination of RGO and SF in PMMA. More than 99% absorption efficiency is achieved by a suitable combination of magneto-dielectric coupling in the X-band frequency range by incorporating 9 wt% of RGO and 1 wt% of SF in the polymer matrix.

  15. Dielectric properties of vertically aligned multi-walled carbon nanotubes in the terahertz and mid-infrared range

    NASA Astrophysics Data System (ADS)

    Thomson, Mark D.; Zouaghi, Wissem; Meng, Fanqi; Wiecha, Matthias M.; Rabia, Kaneez; Heinlein, Thorsten; Hussein, Laith; Babu, Deepu; Yadav, Sandeep; Engstler, Jörg; Schneider, Jörg J.; Nicoloso, Norbert; Rychetský, Ivan; Kužel, Petr; Roskos, Hartmut G.

    2018-01-01

    We investigate the broadband dielectric properties of vertically aligned, multi-wall carbon nanotubes (VACNT), over both the terahertz (THz) and mid-infrared spectral ranges. The nominally undoped, metallic VACNT samples are probed at normal incidence, i.e. the response is predominantly due to polarisation perpendicular to the CNT axis. A detailed comparison of various conductivity models and previously reported results is presented for the non-Drude behaviour we observe in the conventional THz range (up to 2.5 THz). Extension to the mid-infrared range reveals an absorption peak at \

  16. Paired Pulse Basis Functions for the Method of Moments EFIE Solution of Electromagnetic Problems Involving Arbitrarily-shaped, Three-dimensional Dielectric Scatterers

    NASA Technical Reports Server (NTRS)

    MacKenzie, Anne I.; Rao, Sadasiva M.; Baginski, Michael E.

    2007-01-01

    A pair of basis functions is presented for the surface integral, method of moment solution of scattering by arbitrarily-shaped, three-dimensional dielectric bodies. Equivalent surface currents are represented by orthogonal unit pulse vectors in conjunction with triangular patch modeling. The electric field integral equation is employed with closed geometries for dielectric bodies; the method may also be applied to conductors. Radar cross section results are shown for dielectric bodies having canonical spherical, cylindrical, and cubic shapes. Pulse basis function results are compared to results by other methods.

  17. Tunable angle absorption of hyperbolic metamaterials based on plasma photonic crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiao, Zheng; Ning, Renxia, E-mail: nrxxiner@hsu.edu.cn; Xu, Yuan

    2016-06-15

    We present the design of a multilayer structure of hyperbolic metamaterials based on plasma photonic crystals which composed of two kinds of traditional dielectric and plasma. The relative permittivity of hyperbolic metamaterials has been studied at certain frequency range. The absorption and reflection of the multilayer period structure at normal and oblique incident have been investigated by the transfer matrix method. We discussed that the absorption is affected by the thickness of material and the electron collision frequency γ of the plasma. The results show that an absorption band at the low frequency can be obtained at normal incident anglemore » and another absorption band at the high frequency can be found at a large incident angle. The results may be applied by logical gate, stealth, tunable angle absorber, and large angle filter.« less

  18. Performances and impedance spectroscopy of Small-molecule bulk heterojunction solar cells based on PtOEP: PCBM

    NASA Astrophysics Data System (ADS)

    Abuelwafa, A. A.; Dongol, M.; El-Nahass, M. M.; Soga, T.

    2018-03-01

    Small-molecule bulk heterojunction (SBHJ) solar cells based on platinum octaethylporphyrin (PtOEP) as donor material and phenyl-C61-butyric acid methyl ester (PCBM) as the acceptor were fabricated using spin coating techniques with weight ratios from 1:0.1 to 1:9. The formation of charge transfer complex CTC in the PtOEP: PCBM blend was specified from the redshift of the PtOEP absorption peak after blending with PCBM. The photovoltaic performance for PtOEP: PCBM blends were investigated using the external quantum efficiency (EQE) besides the current density-voltage (J-V) characteristics under illumination100 mW/cm2 (AM1.5G). The BHJ solar cell with PtOEP: PCBM ratio of 1:9 exhibited the best performance. The impedance spectroscopy (IS) was examined in the frequency range from 25 Hz to 1 MHz. The equivalent circuit model was evaluated in details to evaluate the impedance spectroscopy parameters. Dielectric constant {ɛ ^' }, dielectric loss {ɛ ^' ' }} and dielectric modulus were included and discussed in terms of dielectric polarization processes. Dielectric modulus displays the non-Debye relaxation in PtOEP: PCBM BHJ solar cells.

  19. A Melting Layer Model for Passive/Active Microwave Remote Sensing Applications. Part 1; Model Formulation and Comparison with Observations

    NASA Technical Reports Server (NTRS)

    Olson, William S.; Bauer, Peter; Viltard, Nicolas F.; Johnson, Daniel E.; Tao, Wei-Kuo

    2000-01-01

    In this study, a 1-D steady-state microphysical model which describes the vertical distribution of melting precipitation particles is developed. The model is driven by the ice-phase precipitation distributions just above the freezing level at applicable gridpoints of "parent" 3-D cloud-resolving model (CRM) simulations. It extends these simulations by providing the number density and meltwater fraction of each particle in finely separated size categories through the melting layer. The depth of the modeled melting layer is primarily determined by the initial material density of the ice-phase precipitation. The radiative properties of melting precipitation at microwave frequencies are calculated based upon different methods for describing the dielectric properties of mixed phase particles. Particle absorption and scattering efficiencies at the Tropical Rainfall Measuring Mission Microwave Imager frequencies (10.65 to 85.5 GHz) are enhanced greatly for relatively small (approx. 0.1) meltwater fractions. The relatively large number of partially-melted particles just below the freezing level in stratiform regions leads to significant microwave absorption, well-exceeding the absorption by rain at the base of the melting layer. Calculated precipitation backscatter efficiencies at the Precipitation Radar frequency (13.8 GHz) increase in proportion to the particle meltwater fraction, leading to a "bright-band" of enhanced radar reflectivities in agreement with previous studies. The radiative properties of the melting layer are determined by the choice of dielectric models and the initial water contents and material densities of the "seeding" ice-phase precipitation particles. Simulated melting layer profiles based upon snow described by the Fabry-Szyrmer core-shell dielectric model and graupel described by the Maxwell-Garnett water matrix dielectric model lead to reasonable agreement with radar-derived melting layer optical depth distributions. Moreover, control profiles that do not contain mixed-phase precipitation particles yield optical depths that are systematically lower than those observed. Therefore, the use of the melting layer model to extend 3-D CRM simulations appears justified, at least until more realistic spectral methods for describing melting precipitation in high-resolution, 3-D CRM's are implemented.

  20. Enhanced Fluoride Over-Coated Al Mirrors for FUV Astronomy

    NASA Technical Reports Server (NTRS)

    Quijada, Manuel A.; DelHoyo, Javier; Rice, Steve; Threat, Felix

    2014-01-01

    Astronomical observations in the Far Ultraviolet (FUV) spectral region are some of the more challenging due to the very distant and faint objects that are typically searched for in cosmic origin studies such as origin of large scale structure, the formation, evolution, and age of galaxies and the origin of stellar and planetary systems. These challenges are driving the need to improve the performance of optical coatings over a wide spectral range that would increase reflectance in mirrors and reduced absorption in dielectric filters used in optical telescope for FUV observations. This paper will present recent advances in reflectance performance for Al+MgF2 mirrors optimized for Lyman-alpha wavelength by performing the deposition of the MgF2 overcoat at elevated substrate temperatures. We will also present optical characterization of little studied rare-earth fluorides such as GdF3 and LuF3 that exhibit low-absorption over a wide wavelength range and could therefore be used as high refractive index alternatives for dielectric coatings at FUV wavelengths.

  1. Measurement of the dipole moments of excited states and photochemical transients by microwave dielectric absorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fessenden, R.W.; Carton, P.M.; Shimamori, H.

    1982-09-16

    Time-resolved changes in microwave dielectric absorption have been used to study transients formed by laser flash photolysis. Details of the method and apparatus are given. Applications both to the measurements of the dipole moments of transients and to decay kinetics are given. The dipole moments of the lowest triplet states of a number of aromatic compounds (mostly ketones) have been measured in benzene solution at room temperature. States of n..pi..* character generally possess smaller dipole moments than the corresponding ground states while states of ..pi pi..* character (for example, fluorenone) have larger values than the ground state. The triplets ofmore » 4-(dimethylamino)benzaldehyde and 4,4'-bis(dimethylamino)benzophenone have rather high values of dipole moment (10.5 and 8.4 D, respectively) showing their charge-transfer character. The triplet state of benzil was found to have zero or near-zero dipole moment, thus confirming that the triplet state is of a transstructure. 7 figures, 1 table.« less

  2. Synthesis and Study of Optical Properties of Graphene/TiO2 Composites Using UV-VIS Spectroscopy

    NASA Astrophysics Data System (ADS)

    Rathod, P. B.; Waghuley, S. A.

    2016-09-01

    Graphene and TiO2 were synthesized using electrochemical exfoliation and co-precipitation methods, respectively. An ex situ approach was adopted for the graphene/TiO2 composites. The conformation of graphene in the TiO2 samples was examined through X-ray diffraction. Optical properties of the as-synthesised composites such as optical absorption, extinction coefficient, refractive index, real dielectric constant, imaginary dielectric constant, dissipation factor, and optical conductivity were measured using UV-Vis spectroscopy. The varying concentration of graphene in TiO2 affects the optical properties which appear different for 10 wt.% as compared to 5 wt.% graphene/ TiO2 composite. The composites exhibit an absorption peak at 300 nm with a decrease in band gap for 10 wt.% as compared to 5 wt.% graphene/TiO2 composite. The maximum optical conductivity for the graphene/TiO2 composite of 10 wt.% was found to be 1.86·10-2 Ω-1·m-1 at 300 nm.

  3. Compact Radiative Control Structures for Millimeter Astronomy

    NASA Technical Reports Server (NTRS)

    Brown, Ari D.; Chuss, David T.; Chervenak, James A.; Henry, Ross M.; Moseley, s. Harvey; Wollack, Edward J.

    2010-01-01

    We have designed, fabricated, and tested compact radiative control structures, including antireflection coatings and resonant absorbers, for millimeter through submillimeter wave astronomy. The antireflection coatings consist of micromachined single crystal silicon dielectric sub-wavelength honeycombs. The effective dielectric constant of the structures is set by the honeycomb cell geometry. The resonant absorbers consist of pieces of solid single crystal silicon substrate and thin phosphorus implanted regions whose sheet resistance is tailored to maximize absorption by the structure. We present an implantation model that can be used to predict the ion energy and dose required for obtaining a target implant layer sheet resistance. A neutral density filter, a hybrid of a silicon dielectric honeycomb with an implanted region, has also been fabricated with this basic approach. These radiative control structures are scalable and compatible for use large focal plane detector arrays.

  4. Effect of ladder diagrams on optical absorption spectra in a quasiparticle self-consistent GW framework

    NASA Astrophysics Data System (ADS)

    Cunningham, Brian; Grüning, Myrta; Azarhoosh, Pooya; Pashov, Dimitar; van Schilfgaarde, Mark

    2018-03-01

    We present an approach to calculate the optical absorption spectra that combines the quasiparticle self-consistent GW method [Phys. Rev. B 76, 165106 (2007), 10.1103/PhysRevB.76.165106] for the electronic structure with the solution of the ladder approximation to the Bethe-Salpeter equation for the macroscopic dielectric function. The solution of the Bethe-Salpeter equation has been implemented within an all-electron framework, using a linear muffin-tin orbital basis set, with the contribution from the nonlocal self-energy to the transition dipole moments (in the optical limit) evaluated explicitly. This approach addresses those systems whose electronic structure is poorly described within the standard perturbative GW approaches with density-functional theory calculations as a starting point. The merits of this approach have been exemplified by calculating optical absorption spectra of a strongly correlated transition metal oxide, NiO, and a narrow gap semiconductor, Ge. In both cases, the calculated spectrum is in good agreement with the experiment. It is also shown that for systems whose electronic structure is well-described within the standard perturbative GW , such as Si, LiF, and h -BN , the performance of the present approach is in general comparable to the standard GW plus Bethe-Salpeter equation. It is argued that both vertex corrections to the electronic screening and the electron-phonon interaction are responsible for the observed systematic overestimation of the fundamental band gap and spectrum onset.

  5. Laser-induced periodic surface structures formation: investigation of the effect of nonlinear absorption of laser energy in different materials

    NASA Astrophysics Data System (ADS)

    Levy, Yoann; Bulgakova, Nadezhda M.; Mocek, Tomáš

    2017-05-01

    To get insight into laser-induced periodic surface structures (LIPSS) formation, the relaxation of a modulation in the temperature profile is investigated numerically on surfaces of two different kinds of materials (metals and dielectrics; gold and fused silica as examples) upon irradiation by ultrashort laser pulses. The temperature modulation is assumed to originate from the interference between the incoming laser pulse and the surface electromagnetic wave, which is considered as the main mechanism of LIPSS formation. For comparative studies of laser energy dissipation, a simplified 2D approach is used. It is based on the two-temperature model (TTM) and considers the mechanisms of nonlinear absorption of laser light (multiphoton ionization in fused silica; temperature-dependent thermophysical and optical properties in gold) and relaxation (electron trapping to excitonic states in fused silica). The TTM is coupled with the Drude model, considering the evolution of optical properties as a function of free-carrier density and/or temperature. The development and decay of the lattice temperature modulation, which can govern the LIPSS formation, is followed during electron-lattice thermalization time and beyond. It is shown that strong temperature gradients can form along the surfaces of both kinds of materials under study within the fluence range typical for LIPSS formation. Considerable changes in optical properties of these materials are found as a function of time, including metals, for which a constant reflectivity is usually assumed. Effects of nonlinear absorption on the surface temperature dynamics are reported.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Eester, D.; Lerche, E.

    Both at low and higher cyclotron harmonics, properly accounting for finite Larmor radius effects is crucial in many ion cyclotron resonance frequency heating scenarios creating high energy tails. The present paper discusses ongoing work to extend the 1D TOMCAT wave equation solver [D. Van Eester and R. Koch, Plasma Phys. Contr. Fusion 40 (1998) 1949] to arbitrary harmonics and arbitrary wavelengths. Rather than adopting the particle position, the guiding center position is used as the independent variable when writing down an expression for the dielectric response. Adopting a philosophy originally due to Kaufman [A.N. Kaufman, Phys. Fluids 15 (1972) 1063],more » the relevant dielectric response in the Galerkin formalism is written in a form where the electric field and the test function vector appear symmetrically, which yields a power balance equation that guarantees non-negative absorption for any wave type for Maxwellian plasmas. Moreover, this choice of independent variable yields intuitive expressions that can directly be linked to the corresponding expressions in the RF diffusion operator. It also guarantees that a positive definite power transfer from waves to particles is ensured for any of the wave modes in a plasma in which all populations have a Maxwellian distribution, as is expected from first principles. Rather than relying on a truncated Taylor series expansion of the dielectric response, an integro-differential approach that retains all finite Larmor radius effects [D. Van Eester and E. Lerche, Plasma Phys. Control. Fusion 55 (2013) 055008] is proposed.« less

  7. Integro-differential modeling of ICRH wave propagation and damping at arbitrary cyclotron harmonics and wavelengths in tokamaks

    NASA Astrophysics Data System (ADS)

    Van Eester, D.; Lerche, E.

    2014-02-01

    Both at low and higher cyclotron harmonics, properly accounting for finite Larmor radius effects is crucial in many ion cyclotron resonance frequency heating scenarios creating high energy tails. The present paper discusses ongoing work to extend the 1D TOMCAT wave equation solver [D. Van Eester & R. Koch, Plasma Phys. Contr. Fusion 40 (1998) 1949] to arbitrary harmonics and arbitrary wavelengths. Rather than adopting the particle position, the guiding center position is used as the independent variable when writing down an expression for the dielectric response. Adopting a philosophy originally due to Kaufman [A.N. Kaufman, Phys. Fluids 15 (1972) 1063], the relevant dielectric response in the Galerkin formalism is written in a form where the electric field and the test function vector appear symmetrically, which yields a power balance equation that guarantees non-negative absorption for any wave type for Maxwellian plasmas. Moreover, this choice of independent variable yields intuitive expressions that can directly be linked to the corresponding expressions in the RF diffusion operator. It also guarantees that a positive definite power transfer from waves to particles is ensured for any of the wave modes in a plasma in which all populations have a Maxwellian distribution, as is expected from first principles. Rather than relying on a truncated Taylor series expansion of the dielectric response, an integro-differential approach that retains all finite Larmor radius effects [D. Van Eester & E. Lerche, Plasma Phys. Control. Fusion 55 (2013) 055008] is proposed.

  8. Dielectric properties of soils as a function of moisture content

    NASA Technical Reports Server (NTRS)

    Cihlar, J.; Ulaby, F. T.

    1974-01-01

    Soil dielectric constant measurements are reviewed and the dependence of the dielectric constant on various soil parameters is determined. Moisture content is given special attention because of its practical significance in remote sensing and because it represents the single most influential parameter as far as soil dielectric properties are concerned. Relative complex dielectric constant curves are derived as a function of volumetric soil water content at three frequencies (1.3 GHz, 4.0 GHz, and 10.0 GHz) for each of three soil textures (sand, loam, and clay). These curves, presented in both tabular and graphical form, were chosen as representative of the reported experimental data. Calculations based on these curves showed that the power reflection coefficient and emissivity, unlike skin depth, vary only slightly as a function of frequency and soil texture.

  9. Three-dimensional function photonic crystals

    NASA Astrophysics Data System (ADS)

    Zhang, Hai-Feng

    2017-11-01

    In this paper, the properties of the photonic band gaps (PBGs) of three-dimensional (3D) function photonic crystals (PCs) are theoretically investigated by a modified plane wave expansion (PWE) method, whose equations for computations are deduced. The configuration of 3D function PCs is the dielectric spheres inserted in the air background with simple-cubic (SC) lattices whose dielectric constants are the functions of space coordinates, which can be realized by the electro-optical or optical Kerr effect in the practice. The influences of the parameter for 3D function PCs on the PBGs also are discussed. The calculated results show that the bandwidths and number of PBGs can be tuned with different distributions of function dielectrics. Compared with the conventional 3D dielectric PCs with SC lattices, the larger and more PBGs can be obtained in the 3D function PCs. Those results provide a new way to design the novel practical devices.

  10. Lattice Response Functions of Imperfect Crystals: Effects Due to a Local Change of Mass and Short-Range Interaction

    NASA Astrophysics Data System (ADS)

    Benedek, G.; Nardelli, G. F.

    1967-03-01

    Lattice response functions, such as the thermal conductivity and dielectric susceptibility of an imperfect crystal with rocksalt structure, are evaluated in terms of the irreducible T matrix accounting for the phonon scattering. It is shown that the effect of defects on thermal conductivity and dielectric susceptibility can be accounted for by expressions which have essentially the same structure. The T matrix for a defect which affects both the mass and the short-range interaction is analyzed according to the irreducible representations of the point group which pertains to the perturbation, and the resonance conditions for Γ1, Γ12, and Γ15 irreducible representations are considered in detail for any positive impurity in KBr crystals. Hardy's deformation-dipole (DD) model is employed for the description of the host-lattice dynamics. A comparison is made with simplified models, such as diatomic linear chains with nearest-neighbor interaction; it is shown that in polar crystals an effective-force constant has to be used in order to give a reliable description of the short-range interaction between the impurity and the host lattice. An attempt is made to define such effective force constants in the framework of the DD model. The numerical calculations concern positive monovalent impurities in KBr crystals. Γ1, Γ12, and Γ15 resonance frequencies are evaluated as a function of the change of mass and nearest-neighbor force constant. For KBr:Li+ and KBr:Ag+ we also evaluate the band shape of the absorption spectrum at infrared frequencies; good agreement is found between the theoretical prediction and the experimental data on KBr:Li+. It is shown that some structures actually observed in the spectrum are due to peaks in the projected density of states of the host lattice, and have nothing to do with resonance scattering. Good agreement is found between the impurity-host-lattice interaction as estimated from a priori calculations and as deduced by fitting the Γ15 resonance frequency to the experimental data. A simple explanation of the off-center position of small ions is also suggested. Finally, concentration and stress effects on the absorption coefficient are briefly discussed.

  11. Electromagnetic-radiation absorption by water.

    PubMed

    Lunkenheimer, P; Emmert, S; Gulich, R; Köhler, M; Wolf, M; Schwab, M; Loidl, A

    2017-12-01

    Why does a microwave oven work? How does biological tissue absorb electromagnetic radiation? Astonishingly, we do not have a definite answer to these simple questions because the microscopic processes governing the absorption of electromagnetic waves by water are largely unclarified. This absorption can be quantified by dielectric loss spectra, which reveal a huge peak at a frequency of the exciting electric field of about 20 GHz and a gradual tailing off toward higher frequencies. The microscopic interpretation of such spectra is highly controversial and various superpositions of relaxation and resonance processes ascribed to single-molecule or molecule-cluster motions have been proposed for their analysis. By combining dielectric, microwave, THz, and far-infrared spectroscopy, here we provide nearly continuous temperature-dependent broadband spectra of water. Moreover, we find that corresponding spectra for aqueous solutions reveal the same features as pure water. However, in contrast to the latter, crystallization in these solutions can be avoided by supercooling. As different spectral contributions tend to disentangle at low temperatures, this enables us to deconvolute them when approaching the glass transition under cooling. We find that the overall spectral development, including the 20 GHz feature (employed for microwave heating), closely resembles the behavior known for common supercooled liquids. Thus water's absorption of electromagnetic waves at room temperature is not unusual but very similar to that of glass-forming liquids at elevated temperatures, deep in the low-viscosity liquid regime, and should be interpreted along similar lines.

  12. Imaging performance of an isotropic negative dielectric constant slab.

    PubMed

    Shivanand; Liu, Huikan; Webb, Kevin J

    2008-11-01

    The influence of material and thickness on the subwavelength imaging performance of a negative dielectric constant slab is studied. Resonance in the plane-wave transfer function produces a high spatial frequency ripple that could be useful in fabricating periodic structures. A cost function based on the plane-wave transfer function provides a useful metric to evaluate the planar slab lens performance, and using this, the optimal slab dielectric constant can be determined.

  13. An efficient use of mixing model for computing the effective dielectric and thermal properties of the human head.

    PubMed

    Mishra, Varsha; Puthucheri, Smitha; Singh, Dharmendra

    2018-05-07

    As a preventive measure against the electromagnetic (EM) wave exposure to human body, EM radiation regulatory authorities such as ICNIRP and FCC defined the value of specific absorption rate (SAR) for the human head during EM wave exposure from mobile phone. SAR quantifies the absorption of EM waves in the human body and it mainly depends on the dielectric properties (ε', σ) of the corresponding tissues. The head part of the human body is more susceptible to EM wave exposure due to the usage of mobile phones. The human head is a complex structure made up of multiple tissues with intermixing of many layers; thus, the accurate measurement of permittivity (ε') and conductivity (σ) of the tissues of the human head is still a challenge. For computing the SAR, researchers are using multilayer model, which has some challenges for defining the boundary for layers. Therefore, in this paper, an attempt has been made to propose a method to compute effective complex permittivity of the human head in the range of 0.3 to 3.0 GHz by applying De-Loor mixing model. Similarly, for defining the thermal effect in the tissue, thermal properties of the human head have also been computed using the De-Loor mixing method. The effective dielectric and thermal properties of equivalent human head model are compared with the IEEE Std. 1528. Graphical abstract ᅟ.

  14. Concentrating light in Cu(In,Ga)Se2 solar cells

    NASA Astrophysics Data System (ADS)

    Schmid, M.; Yin, G.; Song, M.; Duan, S.; Heidmann, B.; Sancho-Martinez, D.; Kämmer, S.; Köhler, T.; Manley, P.; Lux-Steiner, M. Ch.

    2016-09-01

    Light concentration has proven beneficial for solar cells, most notably for highly efficient but expensive absorber materials using high concentrations and large scale optics. Here we investigate light concentration for cost efficient thinfilm solar cells which show nano- or microtextured absorbers. Our absorber material of choice is Cu(In,Ga)Se2 (CIGSe) which has a proven stabilized record efficiency of 22.6% and which - despite being a polycrystalline thin-film material - is very tolerant to environmental influences. Taking a nanoscale approach, we concentrate light in the CIGSe absorber layer by integrating photonic nanostructures made from dielectric materials. The dielectric nanostructures give rise to resonant modes and field localization in their vicinity. Thus when inserted inside or adjacent to the absorber layer, absorption and efficiency enhancement are observed. In contrast to this internal absorption enhancement, external enhancement is exploited in the microscale approach: mm-sized lenses can be used to concentrate light onto CIGSe solar cells with lateral dimensions reduced down to the micrometer range. These micro solar cells come with the benefit of improved heat dissipation compared to the large scale concentrators and promise compact high efficiency devices. Both approaches of light concentration allow for reduction in material consumption by restricting the absorber dimension either vertically (ultra-thin absorbers for dielectric nanostructures) or horizontally (micro absorbers for concentrating lenses) and have significant potential for efficiency enhancement.

  15. Concentrating light in Cu(In,Ga)Se2 solar cells

    NASA Astrophysics Data System (ADS)

    Schmid, Martina; Yin, Guanchao; Song, Min; Duan, Shengkai; Heidmann, Berit; Sancho-Martinez, Diego; Kämmer, Steven; Köhler, Tristan; Manley, Phillip; Lux-Steiner, Martha Ch.

    2017-01-01

    Light concentration has proven beneficial for solar cells, most notably for highly efficient but expensive absorber materials using high concentrations and large scale optics. Here, we investigate the light concentration for cost-efficient thin-film solar cells that show nano- or microtextured absorbers. Our absorber material of choice is Cu(In,Ga)Se2 (CIGSe), which has a proven stabilized record efficiency of 22.6% and which-despite being a polycrystalline thin-film material-is very tolerant to environmental influences. Taking a nanoscale approach, we concentrate light in the CIGSe absorber layer by integrating photonic nanostructures made from dielectric materials. The dielectric nanostructures give rise to resonant modes and field localization in their vicinity. Thus, when inserted inside or adjacent to the absorber layer, absorption and efficiency enhancement are observed. In contrast to this internal absorption enhancement, external enhancement is exploited in the microscaled approach: mm-sized lenses can be used to concentrate light onto CIGSe solar cells with lateral dimensions reduced down to the micrometer range. These micro solar cells come with the benefit of improved heat dissipation compared with the large scale concentrators and promise compact high-efficiency devices. Both approaches of light concentration allow for reduction in material consumption by restricting the absorber dimension either vertically (ultrathin absorbers for dielectric nanostructures) or horizontally (microabsorbers for concentrating lenses) and have significant potential for efficiency enhancement.

  16. Metasurfaces Leveraging Solar Energy for Icephobicity.

    PubMed

    Mitridis, Efstratios; Schutzius, Thomas M; Sicher, Alba; Hail, Claudio U; Eghlidi, Hadi; Poulikakos, Dimos

    2018-06-29

    Inhibiting ice accumulation on surfaces is an energy-intensive task and is of significant importance in nature and technology where it has found applications in windshields, automobiles, aviation, renewable energy generation, and infrastructure. Existing methods rely on on-site electrical heat generation, chemicals, or mechanical removal, with drawbacks ranging from financial costs to disruptive technical interventions and environmental incompatibility. Here we focus on applications where surface transparency is desirable and propose metasurfaces with embedded plasmonically enhanced light absorption heating, using ultrathin hybrid metal-dielectric coatings, as a passive, viable approach for de-icing and anti-icing, in which the sole heat source is renewable solar energy. The balancing of transparency and absorption is achieved with rationally nanoengineered coatings consisting of gold nanoparticle inclusions in a dielectric (titanium dioxide), concentrating broadband absorbed solar energy into a small volume. This causes a > 10 °C temperature increase with respect to ambient at the air-solid interface, where ice is most likely to form, delaying freezing, reducing ice adhesion, when it occurs, to negligible levels (de-icing) and inhibiting frost formation (anti-icing). Our results illustrate an effective unexplored pathway toward environmentally compatible, solar-energy-driven icephobicity, enabled by respectively tailored plasmonic metasurfaces, with the ability to design the balance of transparency and light absorption.

  17. Decrease and enhancement of third-order optical nonlinearity in metal-dielectric composite films

    NASA Astrophysics Data System (ADS)

    Ning, Tingyin; Lu, Heng; Zhou, Yueliang; Man, Baoyuan

    2018-04-01

    We investigate third-order optical nonlinearity in gold nanoparticles embedded in CaCu3Ti4O12 (CCTO) films using the Z-scan method. We observe that the effective third-order nonlinear optical susceptibilities in such composite films can not only be enhanced, in line with the conventional behavior, but also be decreased, depending on the volume concentration of gold. In particular, the nonlinear absorption behavior can be changed from saturable absorption in pure CCTO films to reversed saturable absorption in composite films, and theoretically, even zero nonlinear absorption could be obtained. These results indicate that it should be possible to tune the third-order optical nonlinearity in Au:CCTO composite films by altering the gold concentration, thus making them suitable for applications in photonic devices.

  18. Elastic, thermodynamic and optical behavior of V2AC (A = Al, Ga) MAX phases

    NASA Astrophysics Data System (ADS)

    Khatun, M. R.; Ali, M. A.; Parvin, F.; Islam, A. K. M. A.

    This article reports the first-principles calculations of yet unexplored Mulliken bond population, Vickers hardness, thermodynamic and optical properties of MAX phases V2AC (A = Al, Ga). We have also revisited the structural and elastic properties of these phases in order to assess the reliability of our calculations. The temperature and pressure dependence of bulk modulus, Debye temperature, specific heats, and thermal expansion coefficient have been successfully estimated through the quasi-harmonic Debye model in the temperature range from 0 to 1000 K and the pressure range from 0 to 50 GPa. The optical properties such as the dielectric function, refractive index, photoconductivity, absorption coefficients, reflectivity and loss function are also evaluated for the first time. The reflectivity is found to be high which indicates that V2AC (A = Al, Ga) having the same characteristics could be good candidate materials to reduce solar heating up to ∼15 eV.

  19. Optical properties of medium size noble and transition metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Idrobo, Juan C.; Pantelides, Sokrates T.

    2009-03-01

    Using first-principles methods within time dependent density functional theory and the local density approximation (TDLDA) the absorption spectra of medium size (˜20-80 atoms) silver, gold and copper nanoparticles have been calculated. The nanoparticles are fcc fragments with different aspect ratios. We find that in the case of Ag nanoparticles is well reproduced by classical electrodynamics theory based in Mie's formalism, using the dielectric function of bulk Ag and taking into account the nanoparticle shape. For the case of Cu and Au, there is a similarity in the overall features of the quantum mechanical and classical spectra, but no detailed agreement. We will discuss the role that the d-electrons among all the different elements and the surface states play in controlling the optical properties of the nanoparticles. This work was supported by GOALI NSF grant (DMR-0513048), DOE, the Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, and Alcoa Inc.

  20. Laser fabrication of perfect absorbers

    NASA Astrophysics Data System (ADS)

    Mizeikis, V.; Faniayeu, I.

    2018-01-01

    We describe design and characterization of electromagnetic metasurfaces consisting of sub-wavelength layers of artificially structured 3D metallic elements arranged into two-dimensional arrays. Such metasurfaces allow novel ways to control propagation, absorption, emission, and polarization state of electromagnetic waves, but their practical realization using traditional planar micro-/nano-fabrication techniques is extremely difficult at infra- red frequencies, where unit cell size must be reduced to few micrometers. We have addressed this challenge by using femtosecond direct laser write (DLW) technique as a high-resolution patterning tool for the fabrication of dielectric templates, followed by a simple metallization process. Functional metasurfaces consisting of metallic helices and vertical split-ring resonators that can be used as perfect absorbers and polarization converters at infra- red frequencies were obtained and characterized experimentally and theoretically. In the future they may find applications in narrow-band infra-red detectors and emitters, spectral filters, and combined into multi-functional, multi-layered structures.

  1. Optical properties of boron-group (V) hexagonal nanowires: DFT investigation

    NASA Astrophysics Data System (ADS)

    Santhibhushan, B.; Soni, Mahesh; Srivastava, Anurag

    2017-07-01

    The paper presents structural, electronic and optical properties of boron-group V hexagonal nanowires (h-NW) within the framework of density functional theory. The h-NW of boron-group V compounds with an analogous diameter of 12 Å have been designed in (1 1 1) plane. Stability analysis performed through formation energies reveal that, the stability of these structures decreases with increasing atomic number of the group V element. The band nature predicts that these nanowires are good electrical conductors. Optical behaviour of the nanowires has been analysed through absorption coefficient, reflectivity, refractive index, optical conductivity and electron energy loss spectrum (EELS), that are computed from the frequency-dependent complex dielectric function. The analysis reveals high reactivity of BP and BAs h-NWs to the incident light especially in the IR and visible ranges, and the optical transparency of BN h-NW in the visible and UV ranges.

  2. Radiative transfer modelling inside thermal protection system using hybrid homogenization method for a backward Monte Carlo method coupled with Mie theory

    NASA Astrophysics Data System (ADS)

    Le Foll, S.; André, F.; Delmas, A.; Bouilly, J. M.; Aspa, Y.

    2012-06-01

    A backward Monte Carlo method for modelling the spectral directional emittance of fibrous media has been developed. It uses Mie theory to calculate the radiative properties of single fibres, modelled as infinite cylinders, and the complex refractive index is computed by a Drude-Lorenz model for the dielectric function. The absorption and scattering coefficient are homogenised over several fibres, but the scattering phase function of a single one is used to determine the scattering direction of energy inside the medium. Sensitivity analysis based on several Monte Carlo results has been performed to estimate coefficients for a Multi-Linear Model (MLM) specifically developed for inverse analysis of experimental data. This model concurs with the Monte Carlo method and is highly computationally efficient. In contrast, the surface emissivity model, which assumes an opaque medium, shows poor agreement with the reference Monte Carlo calculations.

  3. Ti Impurity Effect on the Optical Coefficients in 2D Cu2Si: A DFT Study

    NASA Astrophysics Data System (ADS)

    Nourozi, Bromand; Boochani, Arash; Abdolmaleki, Ahmad; Sartpi, Elmira; Darabi, Pezhman; Naderi, Sirvan

    2018-01-01

    The electronic and optical properties of 2D Cu2Si and Cu2Si:Ti are investigated based on the density functional theory (DFT) using the FP-LAPW method and GGA approximation. The 2D Cu2Si has metallic and non magnetic properties, whereas adding Ti impurity to its structure changes the electronic behavior to the half-metallic with 3.256μB magnetic moment. The optical transition is not occurred in the infrared and visible area for the 2D Cu2Si in x-direction and by adding Ti atom, the real part of dielectric function in the x-direction, Re (ε(ω))x is reached to a Dirac peak at this energy range. Moreover, the absorption gap tends to zero in x-direction of the 2D Cu2Si:Ti. Supported by Islamic Azad University, Kermanshah branch, Kermanshah, Iran

  4. Electromagnetic properties of metal-dielectric media and their applications

    NASA Astrophysics Data System (ADS)

    Animilli, Shravan Rakesh

    The main objective of this dissertation is to investigate nano-structured random composite materials, which exhibit anomalous phenomena, such as the extraordinary enhancements of linear and non-linear optical processes due to excitation of collective electronic states, surface plasmons (SP). The main goal is to develop a time and memory efficient novel numerical method to study the properties of these random media in three dimensions (3D) by utilization of multi core processing and packages such as MPI for parallel execution. The developed numerical studies are then utilized to provide a comprehensive characterization and optimization of a surface plasmon enhanced solar cell (SPESC) and to serve as a test bed for enhanced bio and chemical sensing. In this context, this thesis work develops an efficient and exact numerical algorithm here referred to as Block Elimination Method (BE) which provides the unique capability of modeling extremely large scale composite materials (with up to 1 million strongly interacting metal or dielectric particles). This capability is crucial in order to study the electromagnetic response of large scale inhomogeneous (fractal) films and bulk composites at critical concentrations (percolation). The developed numerical method is used to accurately estimate parameters that describe the composite materials, including the effective conductivity and correlation length scaling exponents, as well as density of states and localization length exponents at the band center. This works reveals, for a first time, a unique de-localization mechanism that plays an important role in the excitation of charge-density waves, i.e. surface plasmons (SP), in metal-dielectric composites. It also shows that in 3D metal-dielectric percolation systems the local fields distribution function for frequencies close to the single particle plasmon resonance is log-normal which is a signature of a metal-dielectric phase transition manifested in the optical response of the composites. Based on the obtained numerical data a scaling theory for the higher order electric field moments is developed. A distinct evidence of singularities in the surface plasmon density of states and localization length is obtained, correlating with results previously obtained for two dimensional systems. This leads to the main finding of this work; i.e., the delocalization of surface plasmon states in percolating metal-dielectric composite materials is universally present regardless of the dimensionality of the problem. This dissertation also proposes a new approach toward developing highly efficient inorganic/organic solar cell, by presenting a method for enhancement in the optical absorption and overall cell efficiency. Specifically, the approach improves the operation characteristics of inorganic semiconductor (e.g. Si and a-Si) and organic (P3HT:PCBM) thin film solar cells by integrating a thin, inhomogeneous, metal-dielectric composite (MDC) electrode at the interface between the transparent electrode and active layer. Through numerical simulations, we show that under solar illumination, surface plasmons are excited within the fractal MDC electrode across an extremely broad range of optical frequencies, trapping the incoming light and ensuring an optimal absorption into the active layer of the solar cells. An analytical model is developed to study the I-V characteristics of the cells, providing a pathway toward achieving optimal efficiency and better understanding of the behavior of charge carriers. Using this model, it is shown that including gold MDC electrodes can lead to an enhancement in solar cell power conversion efficiency up to 33% higher compared to the benchmark device.

  5. Measuring the dielectric and optical response of millimeter-scale amorphous and hexagonal boron nitride films grown on epitaxial graphene.

    PubMed

    Rigosi, Albert F; Hill, Heather M; Glavin, Nicholas R; Pookpanratana, Sujitra J; Yang, Yanfei; Boosalis, Alexander G; Hu, Jiuning; Rice, Anthony; Allerman, Andrew A; Nguyen, Nhan V; Hacker, Christina A; Elmquist, Randolph E; Hight Walker, Angela R; Newell, David B

    2018-01-01

    Monolayer epitaxial graphene (EG), grown on the Si face of SiC, is an advantageous material for a variety of electronic and optical applications. EG forms as a single crystal over millimeter-scale areas and consequently, the large scale single crystal can be utilized as a template for growth of other materials. In this work, we present the use of EG as a template to form millimeter-scale amorphous and hexagonal boron nitride ( a -BN and h -BN) films. The a -BN is formed with pulsed laser deposition and the h -BN is grown with triethylboron (TEB) and NH 3 precursors, making it the first metal organic chemical vapor deposition (MOCVD) process of this growth type performed on epitaxial graphene. A variety of optical and non-optical characterization methods are used to determine the optical absorption and dielectric functions of the EG, a -BN, and h -BN within the energy range of 1 eV to 8.5 eV. Furthermore, we report the first ellipsometric observation of high-energy resonant excitons in EG from the 4H polytype of SiC and an analysis on the interactions within the EG and h -BN heterostructure.

  6. Optical properties of InN thin films

    NASA Astrophysics Data System (ADS)

    Malakhov, Vladislav Y.

    2000-04-01

    The basic optical properties of low temperature plasma enhanced chemical reactionary sputtered (PECRS) InN thin films are presented. Optical absorption and reflectance spectra of InN polycrystalline films at room temperature in visible and near infrared (NIR) regions were taken to determine direct band gap energy (2.03 eV), electron plasma resonances energy (0.6 eV), damping constant (0.18 eV), and optical effective mass of electrons (0.11). In addition the UV and visible reflectance spectra have been used to reproduce accurately dielectric function of wurtzite InN for assignments of the peak structures to interband transitions (1.5 - 12.0 eV) as well as to determine dielectric constant (9.3) and refractive index (>3.0). The revealed reflectance peaks at 485 and 590 cm-1 respectively in IR spectra are connected with TO and LO optical vibration modes of InN films. Some TO (485 cm-1) and LO (585 cm-1) phonon features of indium nitride polycrystalline films on ceramics were observed in Raman spectra and also discussed. The excellent possibilities of InN polycrystalline layers for potential application in optoelectronic devices such as LEDs based InGaAlN and high efficiency solar cells are confirmed.

  7. Optical properties of hybrid spherical nanoclusters containing quantum emitters and metallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Yannopapas, V.; Paspalakis, E.

    2018-05-01

    We study theoretically the optical response of a hybrid spherical cluster containing quantum emitters and metallic nanoparticles. The quantum emitters are modeled as two-level quantum systems whose dielectric function is obtained via a density matrix approach wherein the modified spontaneous emission decay rate at the position of each quantum emitter is calculated via the electromagnetic Green's tensor. The problem of light scattering off the hybrid cluster is solved by employing the coupled-dipole method. We find, in particular, that the presence of the quantum emitters in the cluster, even in small fractions, can significantly alter the absorption and extinction spectra of the sole cluster of the metallic nanoparticles, where the corresponding electromagnetic modes can have a weak plexcitonic character under suitable conditions.

  8. Ab-initio investigations for opto-electronic response of (Cd, Zn)Ga2Te4: Promising solar PV materials

    NASA Astrophysics Data System (ADS)

    Sahariya, Jagrati; Soni, Amit; Kumar, Pancham

    2018-04-01

    In this paper, the first principle calculations are performed to analyze the structural, electronic and optical behavior of promising solar materials (Cd,Zn)Ga2Te4. To perform these calculations we have used one of the most accurate Full Potential Linearized Augmented Plane Wave (FP-LAPW) method. The ground state properties of these compounds are confirmed over here after proper examination of energy and charge convergence using Perdew-Burke-Ernzerhof (PBE-sol) exchange correlation potential. The investigations performed such as energy band structure, Density of States (DOS), optical parameters like complex dielectric function and absorption co-efficient are discussed over here to understand the overall response of the chosen system.

  9. Numerical study of the defect adamantine compound CuGaGeSe4

    NASA Astrophysics Data System (ADS)

    Shen, Kesheng; Zhang, Xianzhou; Lu, Hai; Jiao, Zhaoyong

    2018-06-01

    The electronic structure, elastic and optical properties of the defect adamantine compound CuGaGeSe4 in ? structure are systematically investigated using first-principles calculations. Through detailed calculation and comparison, we obtain three independent atomic arrangements and predict the most stable atomic arrangement according to the lattice constants and enthalpy formation energies. The elastic constants are calculated, which can be used to predict the axial thermal expansion coefficients accurately. The optical properties of compound CuGaGeSe4, including the dielectric function, refractive index and absorption spectrum, are depicted for a more intuitive understanding. Our calculated zero-frequency limits ɛ1(0) and n(0) are very close to the other theoretical values, which proves that our calculations are reliable.

  10. Synthesis and evaluation of changes induced by solvent and substituent in electronic absorption spectra of some azo disperse dyes

    NASA Astrophysics Data System (ADS)

    Mohammadi, Asadollah; Yazdanbakhsh, Mohammad Reza; Farahnak, Lahya

    2012-04-01

    Five azo disperse dyes were prepared by diazotizing 4'-aminoacetophenone and p-anisidine and coupling with varies N-alkylated aromatic amines. Characterization of the dyes was carried out by using UV-vis, FTIR and 1H NMR spectroscopic techniques. The electronic absorption spectra of dyes are determined at room temperature in fifteen solvents with different polarities. The solvent dependent maximum absorption band shifts, were investigated using dielectric constant (ɛ), refractive index (n) and Kamlet-Taft polarity parameters (hydrogen bond donating ability (α), hydrogen bond accepting ability (β) and dipolarity/polarizability polarity scale (π*)). Acceptable agreement was found between the maximum absorption band of dyes and solvent polarity parameters especially with π*. The effect of substituents of coupler and/or diazo component on the color of dyes was investigated. The effects of acid and base on the visible absorption maxima of the dyes are also reported.

  11. Correlation of an infrared absorption with carriers in rare-earth monoantimonides

    NASA Astrophysics Data System (ADS)

    Kwon, Y. S.; Jung, M. H.; Lee, K. R.; Kimura, S.; Suzuki, T.

    1997-09-01

    Dielectric constants spectra were obtained in the single crystals LaSb, PrSb, GdSb and DySb at several temperatures. The spectra for these crystals except for LaSb show Drude's behavior with a hump due to an anomalous absorption lying at about 0.25 eV. The inverse of effective electron number ( NIA) of the absorption is linear in temperature, and the NIA at each temperature is dependent on the square of the effective Bohr magneton of each rare-earth ion. The sum of the number of effective electrons due to Drude adsorption and that due to infrared absorption agree well with the number of carriers obtained from their band calculations or their dHvAs. Therefore, this absorption seems to be due to the intraband transition induced by the scattering between the spin of carriers and the localized magnetic moments at each site of rare-earth ion.

  12. Calculation of Electronic and Optical Properties of AgGaO2 Polymorphs Using Many-Body Approaches

    NASA Astrophysics Data System (ADS)

    Dadsetani, Mehrdad; Nejatipour, Reihan

    2018-02-01

    Ab initio calculations based on many-body perturbation theory have been used to study the electronic and optical properties of AgGaO2 in rhombohedral, hexagonal, and orthorhombic phases. GW calculations showed that AgGaO2 is an indirect-bandgap semiconductor in all three phases with energy bandgap of 2.35 eV, 2.23 eV, and 2.07 eV, in good agreement with available experimental values. By solving the Bethe-Salpeter equation (BSE) using the full potential linearized augmented plane wave basis, optical properties of the AgGaO2 polymorphs were calculated and compared with those obtained using the GW-corrected random phase approximation (RPA) and with existing experimental data. Strong anisotropy in the optical absorption spectra was observed, and the excitonic structures which were absent in the RPA calculations were reproduced in GWBSE calculations, in good agreement with the optical absorption spectrum of the rhombohedral phase. While modifying peak positions and intensities of the absorption spectra, the GWBSE gave rise to the redistribution of oscillator strengths. In comparison with the z-polarized response, excitonic effects in the x-polarized response were dominant. In the x- (and y-) polarized responses of r- and h-AgGaO2, spectral features and excitonic effects occur at the lower energies, but in the case of o-AgGaO2, the spectral structures of the z-polarized response occur at lower energies. In addition, the low-energy loss functions of AgGaO2 were calculated and compared using the GWBSE approach. Spectral features in the energy loss function components near the bandgap region were attributed to corresponding excitonic structures in the imaginary part of the dielectric function.

  13. Spectroscopic ellipsometry characterization of ZnO:Sn thin films with various Sn composition deposited by remote-plasma reactive sputtering

    NASA Astrophysics Data System (ADS)

    Janicek, Petr; Niang, Kham M.; Mistrik, Jan; Palka, Karel; Flewitt, Andrew J.

    2017-11-01

    ZnO:Sn thin films were deposited onto thermally oxidized silicon substrates using a remote plasma reactive sputtering. Their optical constants (refractive index n and extinction coefficient k) were determined from ellipsometric data recorded over a wide spectral range (0.05-6 eV). Parametrization of ZnO:Sn complex dielectric permittivity consists of a parameterized semiconductor oscillator function describing the short wavelength absorption edge, a Drude oscillator describing free carrier absorption in near-infrared part of spectra and a Lorentz oscillator describing the long wavelength absorption edge and intra-band absorption in the ultra-violet part of the spectra. Using a Mott-Davis model, the increase in local disorder with increasing Sn doping is quantified from the short wavelength absorption edge onset. Using the Wemple-DiDomenico single oscillator model for the transparent part of the optical constants spectra, an increase in the centroid distance of the valence and conduction bands with increasing Sn doping is shown and only slight increase in intensity of the inter-band optical transition due to Sn doping occurs. The Drude model applied in the near-infrared part of the spectra revealed the free carrier concentration and mobility of ZnO:Sn. Results show that the range of transparency of prepared ZnO:Sn layers is not dramatically affected by Sn doping whereas electrical conductivity could be controlled by Sn doping. Refractive index in the transparent part is comparable with amorphous Indium Gallium Zinc Oxide allowing utilization of prepared ZnO:Sn layers as an indium-free alternative.

  14. Parallel LC circuit model for multi-band absorption and preliminary design of radiative cooling.

    PubMed

    Feng, Rui; Qiu, Jun; Liu, Linhua; Ding, Weiqiang; Chen, Lixue

    2014-12-15

    We perform a comprehensive analysis of multi-band absorption by exciting magnetic polaritons in the infrared region. According to the independent properties of the magnetic polaritons, we propose a parallel inductance and capacitance(PLC) circuit model to explain and predict the multi-band resonant absorption peaks, which is fully validated by using the multi-sized structure with identical dielectric spacing layer and the multilayer structure with the same strip width. More importantly, we present the application of the PLC circuit model to preliminarily design a radiative cooling structure realized by merging several close peaks together. This omnidirectional and polarization insensitive structure is a good candidate for radiative cooling application.

  15. Polarizability calculations on water, hydrogen, oxygen, and carbon dioxide

    NASA Technical Reports Server (NTRS)

    Nir, S.; Adams, S.; Rein, R.

    1973-01-01

    A semiclassical model of damped oscillators is used as a basis for the calculation of the dispersion of the refractive index, polarizability, and dielectric permeability in water, hydrogen, and oxygen in liquid and gaseous states, and in gaseous carbon dioxide. The absorption coefficient and the imaginary part of the refractive index are also calculated at corresponding wavelengths. A good agreement is obtained between the observed and calculated values of refractive indices, and between those of absorption coefficients in the region of absorption bands. The calculated values of oscillator strengths and damping factors are also discussed. The value of the polarizability of liquid water was about 2.8 times that of previous calculations.

  16. Flexible thin broadband microwave absorber based on a pyramidal periodic structure of lossy composite.

    PubMed

    Huang, Yixing; Yuan, Xujin; Wang, Changxian; Chen, Mingji; Tang, Liqun; Fang, Daining

    2018-06-15

    Microwave absorber with broadband absorption and thin thickness is one of the main research interests in this field. A flexible ultrathin and broadband microwave absorber comprising multiwall carbon nanotubes, spherical carbonyl iron, and silicone rubber is fabricated in a newly proposed pyramidal spatial periodic structure (SPS). The SPS with equivalent thickness of 3.73 mm covers the -10  dB and -15  dB absorption bandwidth in the frequency range 2-40 GHz and 10-40 GHz, respectively. The excellent absorption performance is achieved by concentration and dissipation of the electromagnetic field inside different parts of the magnetic-dielectric lossy protrusions in different frequency ranges.

  17. Perfect narrow band absorber for sensing applications.

    PubMed

    Luo, Shiwen; Zhao, Jun; Zuo, Duluo; Wang, Xinbing

    2016-05-02

    We design and numerically investigate a perfect narrow band absorber based on a metal-metal-dielectric-metal structure which consists of periodic metallic nanoribbon arrays. The absorber presents an ultra narrow absorption band of 1.11 nm with a nearly perfect absorption of over 99.9% in the infrared region. For oblique incidence, the absorber shows an absorption more than 95% for a wide range of incident angles from 0 to 50°. Structure parameters to the influence of the performance are investigated. The structure shows high sensing performance with a high sensitivity of 1170 nm/RIU and a large figure of merit of 1054. The proposed structure has great potential as a biosensor.

  18. Size and shape dependent optical properties of InAs quantum dots

    NASA Astrophysics Data System (ADS)

    Imran, Ali; Jiang, Jianliang; Eric, Deborah; Yousaf, Muhammad

    2018-01-01

    In this study Electronic states and optical properties of self assembled InAs quantum dots embedded in GaAs matrix have been investigated. Their carrier confinement energies for single quantum dot are calculated by time-independent Schrödinger equation in which hamiltonianian of the system is based on effective mass approximation and position dependent electron momentum. Transition energy, absorption coefficient, refractive index and high frequency dielectric constant for spherical, cylindrical and conical quantum dots with different sizes in different dimensions are calculated. Comparative studies have revealed that size and shape greatly affect the electronic transition energies and absorption coefficient. Peaks of absorption coefficients have been found to be highly shape dependent.

  19. Synthesis of nanocrystalline Gd2Ti2O7 by combustion process and its structural, optical and dielectric properties

    NASA Astrophysics Data System (ADS)

    Jeyasingh, T.; Saji, S. K.; Wariar, P. R. S.

    2017-07-01

    Nanosized pyrochlore material Gadolinium Titanate (Gd2Ti2O7) powder was prepared by modified single step auto-ignition combustion process. The phase formation has been investigated using X-Ray diffraction analysis (XRD). The crystalline pyrochlore phase is further confirmed by the presence of metal-oxygen bonds in the FT-IR spectra. XRD analysis revealed that Gd2Ti2O7 has a cubic structure with Fd3m space group. The combustion powder was sintered to high density (97% of theoretical density) at ˜13000 C for 4h and the surface morphology was examined by Scanning Electron Microscopy (SEM). The optical band gap of Gd2Ti2O7 determined from the absorption spectrum is found to be 4.2 eV, which corresponds to direct allowed transitions. The dielectric measurements were carried out using LCR meter in the radio frequency region at room temperature. The sintered Gd2Ti2O7 has a dielectric constant (Ɛr) = 40 and dielectric loss (tan δ) = 0.01 at 1MHz.

  20. Optical and Electrical Characteristics of Silver Ion Conducting Nanocomposite Solid Polymer Electrolytes Based on Chitosan

    NASA Astrophysics Data System (ADS)

    Aziz, Shujahadeen B.; Rasheed, Mariwan A.; Abidin, Zul H. Z.

    2017-10-01

    Optical and electrical properties of nanocomposite solid polymer electrolytes based on chitosan have been investigated. Incorporation of alumina nanoparticles into the chitosan:silver triflate (AgTf) system broadened the surface plasmon resonance peaks of the silver nanoparticles and shifted the absorption edge to lower photon energy. A clear decrease of the optical bandgap in nanocomposite samples containing alumina nanoparticles was observed. The variation of the direct-current (DC) conductivity and dielectric constant followed the same trend with alumina concentration. The DC conductivity increased by two orders of magnitude, which can be attributed to hindrance of silver ion reduction. Transmission electron microscopy was used to interpret the space-charge and blocking effects of alumina nanoparticles on the DC conductivity and dielectric constant. The ion conduction mechanism was interpreted based on the dependences of the electrical and dielectric parameters. The dependence of the DC conductivity on the dielectric constant is explained empirically. Relaxation processes associated with conductivity and viscoelasticity were distinguished based on the incomplete semicircular arcs in plots of the real and imaginary parts of the electric modulus.

  1. Control of resonant wavelength from organic light-emitting materials by use of a Fabry-Perot microcavity structure.

    PubMed

    Jung, Boo Young; Kim, Nam Young; Lee, Changhee; Hwangbo, Chang Kwon; Seoul, Chang

    2002-06-01

    We report the fabrication of Fabry-Perot microcavity structures with the organic light-emitting material tris-(8-hydroxyquinoline) aluminum (Alq3) and derive their optical properties by measuring their photoluminescence (PL) and absorption. Silver and a TiO2-SiO2 multilayer were used as metal and dielectric reflectors, respectively, in a Fabry-Perot microcavity structure. Three types of microcavity were prepared: type A consisted of [air[Ag[Alq3]Ag]glass]; type B, of [air[dielectric[Alq3]dielectric]glass]; and type C, of [air[Ag[Alq2]dielectric]glass]. A bare Alq3 film of [air[Alq3]glass] had its PL peak near 514 nm, and its full width at half-maximum (FWHM) was 80 nm. The broad FWHM of a bare Alq3 film was reduced to 15-27.5, 7-10.5, and 16-16.6 nm for microcavity types A, B, and C, respectively. Also, we could control the PL peak of the microcavity structure by changing the spacer thickness, the amount of phase change on reflection, and the angle of incidence.

  2. The preparation method of terahertz monolithic integrated device

    NASA Astrophysics Data System (ADS)

    Zhang, Cong; Su, Bo; He, Jingsuo; Zhang, Hongfei; Wu, Yaxiong; Zhang, Shengbo; Zhang, Cunlin

    2018-01-01

    The terahertz monolithic integrated device is to integrate the pumping area of the terahertz generation, the detection area of the terahertz receiving and the metal waveguide of terahertz transmission on the same substrate. The terahertz generation and detection device use a photoconductive antenna structure the metal waveguide use a microstrip line structure. The evanescent terahertz-bandwidth electric field extending above the terahertz transmission line interacts with, and is modified by, overlaid dielectric samples, thus enabling the characteristic vibrational absorption resonances in the sample to be probed. In this device structure, since the semiconductor substrate of the photoconductive antenna is located between the strip conductor and the dielectric layer of the microstrip line, and the semiconductor substrate cannot grow on the dielectric layer directly. So how to prepare the semiconductor substrate of the photoconductive antenna and how to bond the semiconductor substrate to the dielectric layer of the microstrip line is a key step in the terahertz monolithic integrated device. In order to solve this critical problem, the epitaxial wafer structure of the two semiconductor substrates is given and transferred to the desired substrate by two methods, respectively.

  3. Electromagnetic response of dielectric nanostructures in liquid crystals

    NASA Astrophysics Data System (ADS)

    Amanaganti, S.; Chowdhury, D. R.; Ravnik, M.; Dontabhaktuni, J.

    2018-02-01

    Sub-wavelength periodic metallic nanostructures give rise to very interesting optical phenomena like effective refractive index, perfect absorption, cloaking, etc. However, such metallic structures result in high dissipative losses and hence dielectric nanostructures are being considered increasingly to be an efficient alternative to plasmonic materials. High refractive index (RI) dielectric nanostructures exhibit magnetic and electric resonances simultaneously giving rise to interesting properties like perfect magnetic mirrors, etc. In the present work, we study light-matter interaction of cubic dielectric structures made of very high refractive index material Te in air. We observe a distinct band-like structure in both transmission and reflection spectra resulting from the interaction between magnetic and electric dipolar modes. FDTD simulations using CST software are performed to analyse the different modes excited at the band frequencies. The medium when replaced with liquid crystal gives rise to asymmetry in the band structure emphasizing one of the dominant magnetic modes at resonance frequencies. This will help in achieving a greater control on the excitation of the predominant magnetic dipolar modes at resonance frequencies with applications as perfect magnetic mirrors.

  4. Magnetodynamic properties of spatially distributed films based on a metal-dielectric composite

    NASA Astrophysics Data System (ADS)

    Tarasova, O. S.; Kalinin, Yu. E.; Sitnikov, A. V.; Yanchenko, L. I.

    2017-09-01

    The frequency dependences of the absorption coefficient of electromagnetic radiation and frequency dependences of the complex magnetic permeability of the fiberglass made of fiberglass cloth with a heterogeneous film deposited on the surface were investigated in the frequency range from 300 MHz to 10 GHz.

  5. Physics of the Microwave Oven

    ERIC Educational Resources Information Center

    Vollmer, Michael

    2004-01-01

    This is the first of two articles about the physics of microwave ovens. This article deals with the generation of microwaves in the oven and includes the operation of the magnetrons, waveguides and standing waves in resonant cavities. It then considers the absorption of microwaves by foods, discussing the dielectric relaxation of water,…

  6. Proton stopping using a full conserving dielectric function in plasmas at any degeneracy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barriga-Carrasco, Manuel D.

    2010-10-15

    In this work, we present a dielectric function including the three conservation laws (density, momentum and energy) when we take into account electron-electron collisions in a plasma at any degeneracy. This full conserving dielectric function (FCDF) reproduces the random phase approximation (RPA) and Mermin ones, which confirms this outcome. The FCDF is applied to the determination of the proton stopping power. Differences among diverse dielectric functions in the proton stopping calculation are minimal if the plasma electron collision frequency is not high enough. These discrepancies can rise up to 2% between RPA values and the FCDF ones, and to 8%more » between the Mermin ones and FCDF ones. The similarity between RPA and FCDF results is not surprising, as all conservation laws are also considered in RPA dielectric function. Even for plasmas with low collision frequencies, those discrepancies follow the same behavior as for plasmas with higher frequencies. Then, discrepancies do not depend on the plasma degeneracy but essentially do on the value of the plasma collision frequency.« less

  7. Thermal conductivity and dielectric functions of alkali chloride XCl (X = Li, Na, K and Rb): a first-principles study

    NASA Astrophysics Data System (ADS)

    Xu, M.; Yang, J. Y.; Liu, L. H.

    2016-07-01

    The macroscopic physical properties of solids are fundamentally determined by the interactions among microscopic electrons, phonons and photons. In this work, the thermal conductivity and infrared-visible-ultraviolet dielectric functions of alkali chlorides and their temperature dependence are fully investigated at the atomic level, seeking to unveil the microscopic quantum interactions beneath the macroscopic properties. The microscopic phonon-phonon interaction dominates the thermal conductivity which can be investigated by the anharmonic lattice dynamics in combination with Peierls-Boltzmann transport equation. The photon-phonon and electron-photon interaction intrinsically induce the infrared and visible-ultraviolet dielectric functions, respectively, and such microscopic processes can be simulated by first-principles molecular dynamics without empirical parameters. The temperature influence on dielectric functions can be effectively included by choosing the thermally equilibrated configurations as the basic input to calculate the total dipole moment and electronic band structure. The overall agreement between first-principles simulations and literature experiments enables us to interpret the macroscopic thermal conductivity and dielectric functions of solids in a comprehensive way.

  8. Metallic nanoshells with semiconductor cores: optical characteristics modified by core medium properties.

    PubMed

    Bardhan, Rizia; Grady, Nathaniel K; Ali, Tamer; Halas, Naomi J

    2010-10-26

    It is well-known that the geometry of a nanoshell controls the resonance frequencies of its plasmon modes; however, the properties of the core material also strongly influence its optical properties. Here we report the synthesis of Au nanoshells with semiconductor cores of cuprous oxide and examine their optical characteristics. This material system allows us to systematically examine the role of core material on nanoshell optical properties, comparing Cu(2)O core nanoshells (ε(c) ∼ 7) to lower core dielectric constant SiO(2) core nanoshells (ε(c) = 2) and higher dielectric constant mixed valency iron oxide nanoshells (ε(c) = 12). Increasing the core dielectric constant increases nanoparticle absorption efficiency, reduces plasmon line width, and modifies plasmon energies. Modifying the core medium provides an additional means of tailoring both the near- and far-field optical properties in this unique nanoparticle system.

  9. Microstructural, optical and electrical transport properties of Cd-doped SnO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Ahmad, Naseem; Khan, Shakeel; Mohsin Nizam Ansari, Mohd

    2018-03-01

    We have successfully investigated the structural, optical and dielectric properties of Cd assimilated SnO2 nanoparticles synthesized via very convenient precipitation route. The structural properties were studied by x-ray diffraction method (XRD) and Fourier Transform Infrared (FTIR) Spectroscopy. As-synthesized samples in the form of powder were examined for its morphology and average particle size by Transmission electron microscopy (TEM). The optical properties were studied by diffuse reflectance spectroscopy. Dielectric properties such that complex dielectric constant and ac conductivity were investigated by LCR meter. Average crystallite size calculated by XRD and average particle size obtained from TEM were found to be consistent and below 50 nm for all samples. The optical band gap of as-synthesized powder samples from absorption study was found in the range of 3.76 to 3.97 eV. The grain boundary parameters such that Rgb, Cgb and τ were evaluated using impedance spectroscopy.

  10. Structural, optical and dielectric properties of Sn0.97Ce0.03O2 nanostructures

    NASA Astrophysics Data System (ADS)

    Ahmed, Ateeq; Siddique, M. Naseem; Ali, Tinku; Tripathi, P.

    2018-05-01

    In present work, 3% cerium doped SnO2 (Sn0.97Ce0.03O2) nanoparticles (NPs) have been synthesized by sol-gel method. The prepared sample has been characterized by using various techniques such as XRD, UV-visible absorption spectroscopy and LCR meter measurements. Structural Rietveld refinement of XRD data reveals that (Sn0.97Ce0.03O2) sample has a pure single phase tetragonal structure with space group (P42/mnm) without creating any impurity phase such as cerium oxide. UV-visible spectroscopy determines band gap value 3.47 eV for (Sn0.97Ce0.03O2) NPs using Tauc's relation. Dielectric constant and loss decreased with increase in frequency while ac conductivity was found to increase with increase in frequency. The observed dielectric results has been explained in the light of Maxwell-Wagner model.

  11. Dielectric waveguide gas-filled stark shift modulator

    DOEpatents

    Hutchinson, Donald P.; Richards, Roger K.

    2003-07-22

    An optical modulator includes a dielectric waveguide for receiving an optical beam and coupling energy of the optical beam into the waveguide. At least one Stark material is provided in the waveguide. A bias circuit generates a bias signal to produce an electrical field across the Stark material to shift at least one of the Stark absorption frequencies towards the frequency of the optical beam. A circuit for producing a time varying electric field across the Stark material modulates the optical beam. At least a portion of the bias field can be generated by an alternating bias signal, such as a square wave. A method of modulating optical signals includes the steps of providing a dielectric waveguide for receiving an optical beam and coupling energy of the optical beam into the waveguide, the waveguide having at least one Stark material disposed therein, and varying an electric field imposed across the Stark material.

  12. Strong dipole and higher multi-pole Mie resonance modes with all-dielectric nanoring metasurfaces structure

    NASA Astrophysics Data System (ADS)

    Zhu, Huihui; Jing, Xufeng; Zhou, Pengwei

    2018-01-01

    Strong electric and magnetic dipole in infrared region and higher order multi-pole resonance at visible wavelengths are observed in all-dielectric nanoring metasurfaces. We discuss some of the parameters that influence the optical response of the dielectric nanoring. Adjustment of nanoring radius (inner radius and outer radius) and height can change the absorption intensity and the resonance peaks. Dipole, quadrupole, six-pole and ten-pole resonance modes can be found in the silicon nanoring at resonance wavelength. The transmission spectrum of nanoring with high Q-factor and contrast is achieved with appropriate parameters. Further the nanoring is used to application of sensing in which the sensitivity reaches 228 nm/RIU. This research is an important step to understand resonance in silicon nanoring and paves way for designing some optic devices such as sensor, nanoantennas, and photovoltaics.

  13. Large-Scale All-Dielectric Metamaterial Perfect Reflectors

    DOE PAGES

    Moitra, Parikshit; Slovick, Brian A.; li, Wei; ...

    2015-05-08

    All-dielectric metamaterials offer a potential low-loss alternative to plasmonic metamaterials at optical frequencies. In this paper, we take advantage of the low absorption loss as well as the simple unit cell geometry to demonstrate large-scale (centimeter-sized) all-dielectric metamaterial perfect reflectors made from silicon cylinder resonators. These perfect reflectors, operating in the telecommunications band, were fabricated using self-assembly based nanosphere lithography. In spite of the disorder originating from the self-assembly process, the average reflectance of the metamaterial perfect reflectors is 99.7% at 1530 nm, surpassing the reflectance of metallic mirrors. Moreover, the spectral separation of the electric and magnetic resonances canmore » be chosen to achieve the required reflection bandwidth while maintaining a high tolerance to disorder. Finally, the scalability of this design could lead to new avenues of manipulating light for low-loss and large-area photonic applications.« less

  14. Microstructural, Optical and Dielectric Properties of Al-Incorporated SnO2 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Ahmed, Ateeq; Tripathi, P.; Naseem Siddique, M.; Ali, Tinku

    2017-08-01

    In this work, Pure SnO2 and Al doped SnO2 nanoparticles with the composition Sn1-xAlxO2 (x = 0, and 0.05) have been successfully prepared using sol-gel technique. The effect of Al dopant on microstructural, optical and dielectric properties has been investigated by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Ultraviolet (UV-Visible) absorption spectroscopy andImpedance spectroscopy (LCR meter)respectively. The XRD patterns indicated tetragonal rutile structure with single phase without any detectable impurity for all samples and incorporation of Al ions into the SnO2 lattice. Crystalline size decreased with aluminum content. The results of SEM confirm nanoparticles size decreases with Al dopant. UV-Visible results showed that optical band also decreases when Al is doped into pure SnO2 lattice. Frequency dependent dielectric properties of pure and doped SnO2 nanoparticles have been also studied.

  15. Infrared Dielectric Properties of Low-Stress Silicon Oxide

    NASA Technical Reports Server (NTRS)

    Cataldo, Giuseppe; Wollack, Edward J.; Brown, Ari D.; Miller, Kevin H.

    2016-01-01

    Silicon oxide thin films play an important role in the realization of optical coatings and high-performance electrical circuits. Estimates of the dielectric function in the far- and mid-infrared regime are derived from the observed transmittance spectrum for a commonly employed low-stress silicon oxide formulation. The experimental, modeling, and numerical methods used to extract the dielectric function are presented.

  16. Anisotropy and phonon modes from analysis of the dielectric function tensor and the inverse dielectric function tensor of monoclinic yttrium orthosilicate

    NASA Astrophysics Data System (ADS)

    Mock, A.; Korlacki, R.; Knight, S.; Schubert, M.

    2018-04-01

    We determine the frequency dependence of the four independent Cartesian tensor elements of the dielectric function for monoclinic symmetry Y2SiO5 using generalized spectroscopic ellipsometry from 40-1200 cm-1. Three different crystal cuts, each perpendicular to a principle axis, are investigated. We apply our recently described augmentation of lattice anharmonicity onto the eigendielectric displacement vector summation approach [A. Mock et al., Phys. Rev. B 95, 165202 (2017), 10.1103/PhysRevB.95.165202], and we present and demonstrate the application of an eigendielectric displacement loss vector summation approach with anharmonic broadening. We obtain an excellent match between all measured and model-calculated dielectric function tensor elements and all dielectric loss function tensor elements. We obtain 23 Au and 22 Bu symmetry long-wavelength active transverse and longitudinal optical mode parameters including their eigenvector orientation within the monoclinic lattice. We perform density functional theory calculations and obtain 23 Au symmetry and 22 Bu transverse and longitudinal optical mode parameters and their orientation within the monoclinic lattice. We compare our results from ellipsometry and density functional theory and find excellent agreement. We also determine the static and above reststrahlen spectral range dielectric tensor values and find a recently derived generalization of the Lyddane-Sachs-Teller relation for polar phonons in monoclinic symmetry materials satisfied [M. Schubert, Phys Rev. Lett. 117, 215502 (2016), 10.1103/PhysRevLett.117.215502].

  17. Extreme IR absorption in group IV-SiGeSn core-shell nanowires

    NASA Astrophysics Data System (ADS)

    Attiaoui, Anis; Wirth, Stephan; Blanchard-Dionne, André-Pierre; Meunier, Michel; Hartmann, J. M.; Buca, Dan; Moutanabbir, Oussama

    2018-06-01

    Sn-containing Si and Ge (Ge1-y-xSixSny) alloys are an emerging family of semiconductors with the potential to impact group IV material-based devices. These semiconductors provide the ability to independently engineer both the lattice parameter and bandgap, which holds the premise to develop enhanced or novel photonic and electronic devices. With this perspective, we present detailed investigations of the influence of Ge1-y-xSixSny layers on the optical properties of Si and Ge based heterostructures and nanowires. We found that by adding a thin Ge1-y-xSixSny capping layer on Si or Ge greatly enhances light absorption especially in the near infrared range, leading to an increase in short-circuit current density. For the Ge1-y-xSixSny structure at thicknesses below 30 nm, a 14-fold increase in the short-circuit current is observed with respect to bare Si. This enhancement decreases by reducing the capping layer thickness. Conversely, decreasing the shell thickness was found to improve the short-circuit current in Si/Ge1-y-xSixSny and Ge/Ge1-y-xSixSny core/shell nanowires. The optical absorption becomes very important by increasing the Sn content. Moreover, by exploiting an optical antenna effect, these nanowires show extreme light absorption, reaching an enhancement factor, with respect to Si or Ge nanowires, on the order of 104 in Si/Ge0.84Si0.04Sn0.12 and 12 in Ge/Ge0.84Si0.04Sn0.12. Furthermore, we analyzed the optical response after the addition of a dielectric layer of Si3N4 to the Si/Ge1-y-xSixSny core-shell nanowire and found approximatively a 50% increase in the short-circuit current density for a dielectric layer of thickness equal to 45 nm and both a core radius and a shell thickness greater than 40 nm. The core-shell optical antenna benefits from a multiplication of enhancements contributed by leaky mode resonances in the semiconductor part and antireflection effects in the dielectric part.

  18. Doping mechanism of antinomy in PbWO4

    NASA Astrophysics Data System (ADS)

    Li, Wensheng; Tang, Tong B.; Feng, Xiqi

    2002-01-01

    Sb doped PbWO4 (Sb:PWO) shows unique features in its dielectric and visible spectra. We propose that, in low concentration, the dopant enters the lattice as interstitial ions, and at high level it also substitute for W6+ sties. The existence of interstitial ions with relatively high mobility leads to non-negligible dc conductivity, whereas the substitutional impurity produces O23- color centers, which results in absorption at 420 nm, as well as holes hopping among oxygen ions in the Sb-O tetrahedra, that is the origin for the observed dielectric relaxation with an unusually low activation energy of 30±2 meV.

  19. A nonviral transfection approach in vitro: the design of a gold nanoparticle vector joint with microelectromechanical systems.

    PubMed

    Jen, Chun-Ping; Chen, Yu-Hung; Fan, Chun-sheng; Yeh, Chen-Sheng; Lin, Yu-Cheng; Shieh, Dar-Bin; Wu, Chao-Ling; Chen, Dong-Hwang; Chou, Chen-Hsi

    2004-02-17

    Au nanoparticles modified with 21-base thiolated-oligonucleotides have been evaluated as delivery vehicles for the development of a nonviral transfection platform. The electromigration combined with electroporation for DNA delivery in an osteoblast like cell was employed to test on microchips. Electroporation introduces foreign materials into cells by applying impulses of electric field to induce multiple transient pores on the cell membrane through dielectric breakdown of the cell membrane. On the basis of the characteristic surface plasmon of the Au particles, UV-vis absorption was utilized to qualitatively judge the efficiency of delivery. Transmission electron microscopy images and atomic absorption measurements (quantitative analysis) provided evidence of the bare Au and Au/oligonucleotide nanoparticles before and after electroporation and electromigration function. The experiments demonstrated that electrophoretic migration followed by electroporation significantly enhanced the transportation efficiency of the nanoparticle-oligonucleotide complexes as compared with electroporation alone. Most interestingly, Au capped with oligonucleotides led to optimal performance. On the other hand, the bare Au colloidal suspensions resulted in aggregation, which might be an obstacle to the internalization process. In addition, analytical results demonstrated an increase in the local particle concentrations on the cell surface that provided additional support for the mechanism underlying the improved Au nanoparticle transportation into cells in the presence of electromigration function.

  20. The theory of the anti-maser: coherent perfect absorption of RF

    NASA Astrophysics Data System (ADS)

    Aviles, Michael; Mazzocco, Anthony; Andrews, Jim; Dawson, Nathan; Crescimanno, Michael

    2012-10-01

    The radio frequency (RF)-analogue of the anti-laser is developed using four terminal network theory combined with the telegrapher's equation. We describe solutions of the Coherent Perfect Absorption (CPA) condition that are interpretable as the slab dielectric anti-laser. We find a host of other solutions, some of which have no simple optical analogue. Broadband solutions are found which hint at the possibility of a new type of asymmetric transient CPA phenomenon, and point out that this study suggests a potentially new low loss, reversible RF devices.

  1. Thin film solar energy collector

    DOEpatents

    Aykan, Kamran; Farrauto, Robert J.; Jefferson, Clinton F.; Lanam, Richard D.

    1983-11-22

    A multi-layer solar energy collector of improved stability comprising: (1) a substrate of quartz, silicate glass, stainless steel or aluminum-containing ferritic alloy; (2) a solar absorptive layer comprising silver, copper oxide, rhodium/rhodium oxide and 0-15% by weight of platinum; (3) an interlayer comprising silver or silver/platinum; and (4) an optional external anti-reflective coating, plus a method for preparing a thermally stable multi-layered solar collector, in which the absorptive layer is undercoated with a thin film of silver or silver/platinum to obtain an improved conductor-dielectric tandem.

  2. Quasiparticle energies, excitonic effects, and dielectric screening in transparent conducting oxides

    NASA Astrophysics Data System (ADS)

    Schleife, André

    Using the power of high-performance super computers, computational materials scientists nowadays employ highly accurate quantum-mechanical approaches to reliably predict materials properties. In particular, many-body perturbation theory is an excellent framework for performing theoretical spectroscopy on novel materials including transparent conducting oxides, since this framework accurately describes quasiparticle and excitonic effects.We recently used hybrid exchange-correlation functionals and an efficient implementation of the Bethe-Salpeter approach to investigate several important transparent conducting oxides. Despite their exceptional potential for applications in photovoltaics and optoelectronics their optical properties oftentimes remain poorly understood: Our calculations explain the optical spectrum of bixbyite indium oxide over a very large photon energy range, which allows us to discuss the importance of quasiparticle and excitonic effects at low photon energies around the absorption onset, but also for excitations up to 40 eV. We show that in this regime the energy dependence of the electronic self energy cannot be neglected. Furthermore, we investigated the influence of excitonic effects on optical absorption for lanthanum-aluminum oxide and hafnium oxide. Their complicated conduction band structures require an accurate description of quasiparticle energies and we find that for these strongly polar materials, a contribution of the lattice polarizability to dielectric screening needs to be taken into account. We discuss how this affects the electron-hole interaction and find a strong influence on excitonic effects.The deep understanding of electronic excitations that can be obtained using these modern first-principles techniques, eventually will allow for computational materials design, e.g. of band gaps, densities of states, and optical properties of transparent conducting oxides and other materials with societally important applications.

  3. Photon dispersion associated with optic-vibrations

    NASA Astrophysics Data System (ADS)

    Feng, P. X.

    1999-05-01

    In this communication, an effect of the damping coefficient on the dielectric function and dispersion is discussed. We recalculate Li's result [Li Xin-Qi, Yasuhiko Arakawa, Solid State Commun., 108 (1998) 211] and present a more general dielectric function associated with optic-vibrations. The relation between the phonon wavevector and the dispersion has also been obtained. The theoretical results show that the wavevector will obviously affect the profile of the dielectric function and result in the peak of the profile shift and increasing.

  4. Transmission of Free Radicals through and Damage to Freestanding Single and Multilayer Dielectric Film

    NASA Astrophysics Data System (ADS)

    Choudhury, Faraz Anwar

    A high concentration of free radicals is present in many processing plasmas, which affects the processing conditions and the properties of materials exposed to the plasma. Measuring the types and concentrations of free radicals present in the plasma is critical in order to determine their effects on the materials being processed. Current methods for detecting free radicals in a plasma require multiple expensive and bulky instruments, complex setups and often modifications to the plasma reactor. In this work, we present a simple technique that detects reactive-oxygen radicals incident on a surface from a plasma. The measurements are made using a fluorophore dye that is commonly used in biological and cellular systems for assay labeling in liquids. Using fluorometric analysis, it was found that the fluorophore reacts with oxygen radicals incident from the plasma, which is indicated by degradation of its fluorescence. As plasma power was increased, the quenching of the fluorescence significantly increased. Both immobilized and non-immobilized fluorophore dyes were used and the results indicate that both states function effectively under vacuum conditions. Using radical-sensitive dyes and free-standing films, the transmission of oxygen radicals through silicon nitride and silicon dioxide dielectric films is measured and their absorption lengths are determined. The absorption lengths were found to be 33, 37 and 40 nm for 15, 30 and 45-minute oxygen plasma exposures respectively. FTIR and XRR measurements show that a silicon oxynitride-like layer forms on the surface of the film which has a lower density than silicon nitride. The increase in absorption length with plasma-exposure time is attributed to the formation of the surface layer. In silicon dioxide films, the absorption length of oxygen radicals was found to be 70 nm after 20 minutes of plasma exposure. After 30 minutes of plasma exposure under the same conditions, the absorption length was reduced to 66 nm. XRR and FTIR measurements both reveal that the oxygen plasma exposure leads to surface oxidation of the silicon dioxide film and the formation of a denser surface layer which restricts the transmission of the radicals through the film. It was found that the extent of modification of the film partially depends on the radical dose. The calculated enthalpies of the reactions show that they are all exothermic reactions, however, the radicals need enough energy to overcome the activation energy for the reaction to take place.

  5. Thermal, mechanical, optical and conductivity studies of a novel NLO active L-phenylalanine L-phenylalaninium dihydrogenphosphate single crystal

    NASA Astrophysics Data System (ADS)

    Sujatha, T.; Cyrac Peter, A.; Vimalan, M.; Merline Shyla, J.; Madhavan, J.

    2010-08-01

    An efficient, novel, semi-organic, nonlinear optical (NLO) material L-phenylalanine L-phenylalaninium dihydrogenphosphate (LPADHP), single crystal of dimension 11×5×2 mm 3, has been grown by the slow evaporation solution growth technique. Single crystal X-ray diffraction studies confirm that the grown crystal belongs to monoclinic system with the space group P2 1. The functional groups present in the crystal were confirmed by the Fourier transform infrared technique. Optical absorption spectrum shows that the material possesses very low absorption in the entire visible region. Thermal analysis confirmed that the crystal is thermally stable up to 161 °C. The frequency dependent dielectric properties of the grown crystal were studied for various temperatures. The second harmonic generation (SHG) efficiency of the grown crystal is 1.2 times greater than that of the potassium dihydrogenphosphate (KDP) single crystal. The laser induced surface damage threshold for the grown crystal was found to be 6.3 GW cm -2 with Nd:YAG laser assembly AC and DC conductivity and photoconductivity experiments are also carried out and the results are discussed.

  6. Measurement of sugar content of watermelon using near-infrared reflectance spectroscopy in comparison with dielectric property

    NASA Astrophysics Data System (ADS)

    Tao, Xuemei; Bao, Yidan

    2006-09-01

    The sugar content of watermelon is important to its taste thus influences the market. It's difficult to know whether the melon is sweet or not for consumers. We tried to develop a convenient meter to determine the sugar of watermelon. The first objective of this paper was to demonstrate the feasibility of using a near-infrared reflectance spectrometer (NIRS) to investigate the relationship between sugar content of watermelon and absorption spectra. The NIRS reflectance of nondestructive watermelon was measured with a Visible/NIR spectrophotometer in 325-1075nm range. The sugar content of watermelon was obtained with a handhold sugar content meter. The second objective was to measure the watermelon's dielectric property, such as dielectric resistance, capacitance, quality factor and dielectric loss. A digital electric bridge instrument was used to get the dielectric property. The experimental results show that they were related to watermelon's sugar content. A comparison between the two methods was made in the paper. The model derived from NIRS reflection is useful for class identification of Zaochun Hongyu watermelon though it's not quite accurate in sweetness prediction (the max. deviation is 0.7). Electric property bears little relation to sugar content of watermelon at this experiment and it couldn't be used as non-destructive inspection method.

  7. Surface Plasmon Resonance Evaluation of Colloidal Metal Aerogel Filters

    NASA Technical Reports Server (NTRS)

    Smith, David D.; Sibille, Laurent; Cronise, Raymond J.; Noever, David A.

    1997-01-01

    Surface plasmon resonance imaging has in the past been applied to the characterization of thin films. In this study we apply the surface plasmon technique not to determine macroscopic spatial variations but rather to determine average microscopic information. Specifically, we deduce the dielectric properties of the surrounding gel matrix and information concerning the dynamics of the gelation process from the visible absorption characteristics of colloidal metal nanoparticles contained in aerogel pores. We have fabricated aerogels containing gold and silver nanoparticles. Because the dielectric constant of the metal particles is linked to that of the host matrix at the surface plasmon resonance, any change 'in the dielectric constant of the material surrounding the metal nanoparticles results in a shift in the surface plasmon wavelength. During gelation the surface plasmon resonance shifts to the red as the average or effective dielectric constant of the matrix increases. Conversely, formation of an aerogel or xerogel through supercritical extraction or evaporation of the solvent produces a blue shift in the resonance indicating a decrease in the dielectric constant of the matrix. From the magnitude of this shift we deduce the average fraction of air and of silica in contact with the metal particles. The surface area of metal available for catalytic gas reaction may thus be determined.

  8. Artificial muscles of dielectric elastomers attached to artificial tendons of functionalized carbon fibers

    NASA Astrophysics Data System (ADS)

    Ye, Zhihang; Faisal, Md. Shahnewaz Sabit; Asmatulu, Ramazan; Chen, Zheng

    2014-03-01

    Dielectric elastomers are soft actuation materials with promising applications in robotics and biomedical de- vices. In this paper, a bio-inspired artificial muscle actuator with artificial tendons is developed for robotic arm applications. The actuator uses dielectric elastomer as artificial muscle and functionalized carbon fibers as artificial tendons. A VHB 4910 tape is used as the dielectric elastomer and PDMS is used as the bonding material to mechanically connect the carbon fibers to the elastomer. Carbon fibers are highly popular for their high electrical conductivities, mechanical strengths, and bio-compatibilities. After the acid treatments for the functionalization of carbon fibers (500 nm - 10 μm), one end of carbon fibers is spread into the PDMS material, which provides enough bonding strength with other dielectric elastomers, while the other end is connected to a DC power supply. To characterize the actuation capability of the dielectric elastomer and electrical conductivity of carbon fibers, a diaphragm actuator is fabricated, where the carbon fibers are connected to the actuator. To test the mechanical bonding between PDMS and carbon fibers, specimens of PDMS bonded with carbon fibers are fabricated. Experiments have been conducted to verify the actuation capability of the dielectric elastomer and mechanical bonding of PDMS with carbon fibers. The energy efficiency of the dielectric elastomer increases as the load increases, which can reach above 50%. The mechanical bonding is strong enough for robotic arm applications.

  9. FINAL REPORT: Adopting Biophysics Methods in Pursuit of Biogeophysical Research: Advancing the Measurement and Modeling of Electrical Signatures of Microbe-Mineral Transformations Impacting Contaminant Transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PRODAN, CAMELIA; SLATER, LEE; NTARLAGIANNIS, DIMITRIOS

    2012-09-01

    This exploratory project involved laboratory experiments to investigate three hypotheses: (H1) Physics-based modeling of low-frequency dispersions (henceforth referred to as alpha) measured in broadband dielectric spectroscopy (DS) data can quantify pore-scale geometric changes impacting contaminant transport resulting from biomineralization; (H2) Physics-based modeling of high-frequency dispersions (henceforth referred to as beta) measured in broadband dielectric spectroscopy data can quantify rates of mineral growth in/on the cell wall; (H3) Application of this measurement and modeling approach can enhance geophysical interpretation of bioremediation experiments conducted at the RIFLE IFC by providing constraints on bioremediation efficiency (biomass concentration, mineral uptake within the cell wall,more » biomineralization rate). We tested H1 by performing DS measurements (alpha and beta range) on iron (Fe) particles of dimensions similar to microbial cells, dispersed within agar gels over a range of Fe concentrations. We have tested the ability of the physics-based modeling to predict volume concentrations of the Fe particles by assuming that the Fe particles are polarizable inclusions within an otherwise nonpolarizable medium. We evaluated the smallest volume concentration that can be detected with the DS method. Similar experiments and modeling have been performed on the sulfate-reducing bacteria D. vulgaris. Synchrotron x-ray absorption measurements were conducted to determine the local structure of biominerals coatings on D. vulgaris which were grown in the presence of different Fe concentrations. We imaged the mineral growth on cell wall using SEM. We used dielectric spectroscopy to differentiate between iron sulfide precipitates of biotic and abiotic nature. Biotic measurements were made on D. vulgaris bacteria grown in the presence of different concentrations of iron to form different thicknesses of iron sulfide precipitates around themselves and abiotic measurements were made on different concentrations of pyrrhotite particles suspended in agar. Results show a decrease in dielectric permittivity as a function of frequency for biotic minerals and an opposite trend is observed for abiotic minerals. Our results suggest that dielectric spectroscopy offers a noninvasive and fast approach for distinguishing between abiotic and biotic mineral precipitates.« less

  10. Adopting Biophysics Methods in Pursuit of Biogeophysical Research: Advancing the measurement and modeling of electrical signatures of microbe-mineral transformations impacting contaminant transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prodan, Camelia

    2013-06-14

    This exploratory project involved laboratory experiments to investigate three hypotheses: (H1) Physics-based modeling of low-frequency dispersions (henceforth referred to as alpha) measured in broadband dielectric spectroscopy (DS) data can quantify pore-scale geometric changes impacting contaminant transport resulting from biomineralization; (H2) Physics-based modeling of high-frequency dispersions (henceforth referred to as beta) measured in broadband dielectric spectroscopy data can quantify rates of mineral growth in/on the cell wall; (H3) Application of this measurement and modeling approach can enhance geophysical interpretation of bioremediation experiments conducted at the RIFLE IFC by providing constraints on bioremediation efficiency (biomass concentration, mineral uptake within the cell wall,more » biomineralization rate). We tested H1 by performing DS measurements (alpha and beta range) on iron (Fe) particles of dimensions similar to microbial cells, dispersed within agar gels over a range of Fe concentrations. We have tested the ability of the physics-based modeling to predict volume concentrations of the Fe particles by assuming that the Fe particles are polarizable inclusions within an otherwise nonpolarizable medium. We evaluated the smallest volume concentration that can be detected with the DS method. Similar experiments and modeling have been performed on the sulfate-reducing bacteria D. vulgaris. Synchrotron x-ray absorption measurements were conducted to determine the local structure of biominerals coatings on D. vulgaris which were grown in the presence of different Fe concentrations. We imaged the mineral growth on cell wall using SEM. We used dielectric spectroscopy to differentiate between iron sulfide precipitates of biotic and abiotic nature. Biotic measurements were made on D. vulgaris bacteria grown in the presence of different concentrations of iron to form different thicknesses of iron sulfide precipitates around themselves and abiotic measurements were made on different concentrations of pyrrhotite particles suspended in agar. Results show a decrease in dielectric permittivity as a function of frequency for biotic minerals and an opposite trend is observed for abiotic minerals. Our results suggest that dielectric spectroscopy offers a noninvasive and fast approach for distinguishing between abiotic and biotic mineral precipitates.« less

  11. Kinetic analysis of spin current contribution to spectrum of electromagnetic waves in spin-1/2 plasma. I. Dielectric permeability tensor for magnetized plasmas

    NASA Astrophysics Data System (ADS)

    Andreev, Pavel A.

    2017-02-01

    The dielectric permeability tensor for spin polarized plasmas is derived in terms of the spin-1/2 quantum kinetic model in six-dimensional phase space. Expressions for the distribution function and spin distribution function are derived in linear approximations on the path of dielectric permeability tensor derivation. The dielectric permeability tensor is derived for the spin-polarized degenerate electron gas. It is also discussed at the finite temperature regime, where the equilibrium distribution function is presented by the spin-polarized Fermi-Dirac distribution. Consideration of the spin-polarized equilibrium states opens possibilities for the kinetic modeling of the thermal spin current contribution in the plasma dynamics.

  12. Polarized pressure dependence of the anisotropic dielectric functions of highly oriented poly(p-phenylene vinylene)

    NASA Astrophysics Data System (ADS)

    Morandi, V.; Galli, M.; Marabelli, F.; Comoretto, D.

    2010-04-01

    In this work, we combined an experimental technique and a detailed data analysis to investigate the influence of an applied pressure on the anisotropic dielectric functions of highly oriented poly(p-phenylene vinylene) (PPV). The dielectric constants were derived from polarized reflectance spectra recorded through a diamond anvil cell up to 50 kbar. The presence of the diamond anvils strongly affects measured spectra requiring the development in an optical model able to take all spurious effects into account. A parametric procedure was then applied to derive the complex dielectric constants for both polarizations as a function of pressure. A detailed analysis of their pressure dependence allows addressing the role of intermolecular interactions and electron-phonon coupling in highly oriented PPV.

  13. Computational screening of high-performance optoelectronic materials using OptB88vdW and TB-mBJ formalisms.

    PubMed

    Choudhary, Kamal; Zhang, Qin; Reid, Andrew C E; Chowdhury, Sugata; Van Nguyen, Nhan; Trautt, Zachary; Newrock, Marcus W; Congo, Faical Yannick; Tavazza, Francesca

    2018-05-08

    We perform high-throughput density functional theory (DFT) calculations for optoelectronic properties (electronic bandgap and frequency dependent dielectric function) using the OptB88vdW functional (OPT) and the Tran-Blaha modified Becke Johnson potential (MBJ). This data is distributed publicly through JARVIS-DFT database. We used this data to evaluate the differences between these two formalisms and quantify their accuracy, comparing to experimental data whenever applicable. At present, we have 17,805 OPT and 7,358 MBJ bandgaps and dielectric functions. MBJ is found to predict better bandgaps and dielectric functions than OPT, so it can be used to improve the well-known bandgap problem of DFT in a relatively inexpensive way. The peak positions in dielectric functions obtained with OPT and MBJ are in comparable agreement with experiments. The data is available on our websites http://www.ctcms.nist.gov/~knc6/JVASP.html and https://jarvis.nist.gov.

  14. Thermal emission and absorption of radiation in finite inverted-opal photonic crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Florescu, Marian; Stimpson, Andrew J.; Lee, Hwang

    We study theoretically the optical properties of a finite inverted-opal photonic crystal. The light-matter interaction is strongly affected by the presence of the three-dimensional photonic crystal and the alterations of the light emission and absorption processes can be used to suppress or enhance the thermal emissivity and absorptivity of the dielectric structure. We investigate the influence of the absorption present in the system on the relevant band edge frequencies that control the optical response of the photonic crystal. Our study reveals that the absorption processes cause spectral broadening and shifting of the band edge optical resonances, and determine a strongmore » reduction of the photonic band gap spectral range. Using the angular and spectral dependence of the band edge frequencies for stop bands along different directions, we argue that by matching the blackbody emission spectrum peak with a prescribed maximum of the absorption coefficient, it is possible to achieve an angle-sensitive enhancement of the thermal emission/absorption of radiation. This result opens a way to realize a frequency-sensitive and angle-sensitive photonic crystal absorbers/emitters.« less

  15. Effect of Variable Oxidation States of Vanadium on the Structural, Optical, and Dielectric Properties of B2O3-Li2O-ZnO-V2O5 Glasses.

    PubMed

    Arya, S K; Danewalia, S S; Arora, Manju; Singh, K

    2016-12-01

    In the present study, the effect of variable vanadium oxidation states on the structural, optical, and dielectric properties of vanadium oxide containing lithium borate glasses has been investigated. Electron paramagnetic resonance studies indicate that vanadium in these glasses is mostly in the V 4+ state, having a tetragonal symmetry. As the glass composition of V 2 O 5 increases, tetragonality also increases at the cost of octahedral symmetry. The photoluminescence (PL) spectra of these glasses are dominated by zinc oxide transition, whereas the peaks pertaining to the vanadyl group are not visible in the PL spectra. The optical absorption spectra show a single wide absorption band, which is attributed to V 4+ ions in these glasses. The ac conductivity of the glasses increases with an increase in vanadium content. The highest electrical conductivity observed is ∼10 -5 S cm -1 at 250 °C for the glass with 2.5 mol % V 2 O 5 . Electrical conductivity is dominated by electron conduction, as indicated by the activation energy calculation.

  16. Investigations on structural, optical, electrical, mechanical and third-order nonlinear behaviour of 3-aminopyridinium 2,4-dinitrophenolate single crystal

    NASA Astrophysics Data System (ADS)

    Mohanbabu, B.; Bharathikannan, R.; Siva, G.

    2017-10-01

    The single crystals of 3-aminopyridinium 2,4-dinitrophenolate (APDP) have been synthesized and grown by slow evaporation technique at room temperature. The crystal system was identified and lattice dimensions were measured from the single-crystal X-ray diffraction (SXRD) analysis. UV-visible absorption and transmittance spectra have been recorded in the region between 250 and 1100 nm. The different vibrational modes of the molecule were studied by Fourier transform infrared (FTIR) spectroscopic analysis. The decreasing tendency of dielectric constant with increasing frequency was analysed in dielectric study. The polarizability value calculated using Penn analysis well agrees with the value calculated using Clausius-Mossotti equation. The photoconductivity and photoluminescence behaviour were also studied on grown APDP crystal. The mechanical strength of the crystal has been studied using a Vickers' microhardness test. The stiffness constant and yield strength of the crystal were also calculated from the microhardness test. The third-order nonlinear optical parameters such as refractive index, absorption coefficient and third-order susceptibility were estimated by Z-scan studies.

  17. Electromagnetic interference shielding effectiveness of polypropylene/conducting fiber composites

    NASA Astrophysics Data System (ADS)

    Lee, Pyoung-Chan; Kim, Bo-Ram; Jeoung, Sun Kyoung; Kim, Yeung Keun

    2016-03-01

    Electromagnetic released from the automotive electronic parts is harmful to human body. Electromagnetic interference (EMT) shielding refers to the reflection and/or adsorption of electromagnetic radiation by a material, which thereby acts as a shield against the penetration of the radiation through the shield. Polypropylene (PP)/conductive micro fiber composites containing various fiber contents and fiber length were injection-molded. The effect of fiber content and length on electrical properties of the composites was studied by electrical resistivity and EMT shielding measurements. The through-plane electrical conductivity and dielectric permittivity were obtained by measuring dielectric properties. The EMT shielding effectiveness (SE) was investigated by using S-parameter in the range of 100 ~ 1500 MHz. Reflection, absorption and multiple-reflection are the EMT attenuation mechanisms. From the measurement of S-Parameters, the absorption coefficient, reflection coefficient, and the shielding efficiency of the materials were calculated. The EMT SE of PP/conducing fiber composites is 40 dB over a wide frequency range up to 1.5 GHz, which is higher than that of PP/talc composite used automotive parts, viz. 0 dB.

  18. Trace determination of antimony by hydride generation atomic absorption spectrometry with analyte preconcentration/atomization in a dielectric barrier discharge atomizer.

    PubMed

    Zurynková, Pavla; Dědina, Jiří; Kratzer, Jan

    2018-06-20

    Atomization conditions for antimony hydride in the plasma atomizer based on a dielectric barrier discharge (DBD) with atomic absorption spectrometric detection were optimized. Argon was found as the best discharge gas under a flow rate of 50 mL min - 1 while the DBD power was optimum at 30 W. Analytical figures of merit including interference study of As, Se and Bi have been subsequently investigated and the results compared to those found in an externally heated quartz tube atomizer (QTA). The limit of detection (LOD) reached in DBD (0.15 ng mL -1  Sb) is comparable to that observed in QTA (0.14 ng mL -1  Sb). Finally, possibility of Sb preconcentration by stibane in situ trapping in a DBD atomizer was studied. For trapping time of 300 s, the preconcentration efficiency and LOD, respectively, were 103 ± 2% and 0.02 ng mL -1 . Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Structural and optical characterization of PVA:KMnO4 based solid polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Abdullah, Omed Gh.; Aziz, Shujahadeen B.; Rasheed, Mariwan A.

    Solid polymer electrolyte films of polyvinyl alcohol (PVA) doped with a different weight percent of potassium permanganate (KMnO4) were prepared by standard solution cast method. XRD and FTIR techniques were performed for structural study. Complex formation between the PVA polymer and KMnO4 salt was confirmed by Fourier transform infrared (FTIR) spectroscopy. The description of crystalline nature of the solid polymer electrolyte films has been confirmed by XRD analysis. The UV-Visible absorption spectra were analyzed in terms of absorption formula for non-crystalline materials. The fundamental optical parameters such as optical band gap energy, refractive index, optical conductivity, and dielectric constants have been investigated and showed a clear dependence on the KMnO4 concentration. The observed value of optical band gap energy for pure PVA is about 6.27 eV and decreases to a value 3.12 eV for the film sample formed with 4 wt% KMnO4 salt. The calculated values of refractive index and the dielectric constants of the polymer electrolyte films increase with increasing KMnO4 content.

  20. New method of measuring low values of dielectric loss in the near millimetre wavelength region using untuned cavities

    NASA Astrophysics Data System (ADS)

    Llewellyn-Jones, D. T.; Knight, R. J.; Moffat, P. H.; Gebbie, H. A.

    1980-11-01

    In the near millimeter-wavelength region, low values of dielectric loss in a material can be readily measured by inserting a sample into an untuned cavity resonator. The high-Q values of the cavities give the technique great sensitivity to low values of loss tangent and, in contrast to other techniques, place very few restrictions on the shape, size, and position of the sample. The technique is demonstrated by measurements at 156 GHz on several polymer materials whose low loss factors are of practical interest. It is shown that the loading of an untuned cavity by a solid sample of low loss is proportional to its absorption cross section, which is the product of its volume and its linear absorption coefficient in the trivial case of n = 1. In the usual case of n greater than 1, reflection at the boundaries will affect the measured cross section in a way that has been investigated experimentally for a number of shapes, both simple and complex, and theoretically for the specific cases of slabs and cubes.

  1. Carbon-coated CoFe–CoFe2O4 composite particles with high and dual-band electromagnetic wave absorbing properties

    NASA Astrophysics Data System (ADS)

    Guan, Zhen-Jie; Jiang, Jian-Tang; Chen, Na; Gong, Yuan-Xun; Zhen, Liang

    2018-07-01

    SiO2 and TiO2, as conventional dielectric shells of ferromagnetic/dielectric composite particles, can protect ferromagnetic particles from aggregation and oxidation, but contribute little to electromagnetic loss. In this work, we designed nano-assembled CoFe–CoFe2O4@C composite particles, in which ferrites with high permeability were dielectric elements and carbon was introduced as protective layers, aiming for high-efficiency microwave absorption. These assembled particles with different CoFe contents were prepared through solvothermal methods and subsequent hydrogen-thermal reduction. CoFe nanoparticles were dispersed on a CoFe2O4 matrix via an in situ reduction transformation from CoFe2O4 to CoFe. The microstructure evolution of composite particles and corresponding electromagnetic properties tailoring were investigated. The content and size of CoFe as well as the porosity of composite particles increase gradually as the annealing temperature increases. A maximum reflection loss (RL max) of –71.73 dB is observed at 4.78 GHz in 3.4 mm thick coating using particles annealed at 500 °C as fillers. The coating presents double-band absorbing characteristics, as broad effective absorption bandwidth with RL > 5 (ERL 5) and high RL max are observed in both S-C and X-Ku bands. The tunability as well as the assembled characteristic of the electromagnetic property that endued from the composite structure contributes to the excellent electromagnetic wave absorbing performances.

  2. Carbon-coated CoFe-CoFe2O4 composite particles with high and dual-band electromagnetic wave absorbing properties.

    PubMed

    Guan, Zhen-Jie; Jiang, Jian-Tang; Chen, Na; Gong, Yuan-Xun; Zhen, Liang

    2018-07-27

    SiO 2 and TiO 2 , as conventional dielectric shells of ferromagnetic/dielectric composite particles, can protect ferromagnetic particles from aggregation and oxidation, but contribute little to electromagnetic loss. In this work, we designed nano-assembled CoFe-CoFe 2 O 4 @C composite particles, in which ferrites with high permeability were dielectric elements and carbon was introduced as protective layers, aiming for high-efficiency microwave absorption. These assembled particles with different CoFe contents were prepared through solvothermal methods and subsequent hydrogen-thermal reduction. CoFe nanoparticles were dispersed on a CoFe 2 O 4 matrix via an in situ reduction transformation from CoFe 2 O 4 to CoFe. The microstructure evolution of composite particles and corresponding electromagnetic properties tailoring were investigated. The content and size of CoFe as well as the porosity of composite particles increase gradually as the annealing temperature increases. A maximum reflection loss (RL max ) of -71.73 dB is observed at 4.78 GHz in 3.4 mm thick coating using particles annealed at 500 °C as fillers. The coating presents double-band absorbing characteristics, as broad effective absorption bandwidth with RL > 5 (ERL 5 ) and high RL max are observed in both S-C and X-K u bands. The tunability as well as the assembled characteristic of the electromagnetic property that endued from the composite structure contributes to the excellent electromagnetic wave absorbing performances.

  3. Morphological and Optical Characteristics of Chitosan(1-x):Cuox (4 ≤ x ≤ 12) Based Polymer Nano-Composites: Optical Dielectric Loss as an Alternative Method for Tauc's Model.

    PubMed

    Aziz, Shujahadeen B

    2017-12-13

    In this work, copper (Cu) nanoparticles with observable surface plasmonic resonance (SPR) peaks were synthesized by an in-situ method. Chitosan host polymer was used as a reduction medium and a capping agent for the Cu nanoparticles. The surface morphology of the samples was investigated through the use of scanning electron micrograph (SEM) technique. Copper nanoparticles appeared as chains and white specks in the SEM images. The strong peaks due to the Cu element observed in the spectrum of energy dispersive analysis of X-rays. For the nanocomposite samples, obvious peaks due to the SPR phenomena were obtained in the Ultraviolet-visible (UV-vis) spectra. The effect of Cu nanoparticles on the host band gap was understood from absorption edges shifting of absorption edges to lower photon energy. The optical dielectric loss parameter obtained from the measurable quantities was used as an alternative method to study the band structure of the samples. Quantum mechanical models drawbacks, in the study of band gap, were explained based on the optical dielectric loss. A clear dispersion region was able to be observed in refractive indices spectra of the composite samples. A linear relationship with a regression value of 0.99 was achieved between the refractive index and volume fractions of CuI content. Cu nanoparticles with various sizes and homogenous dispersions were also determined from transmission electron microscope (TEM) images.

  4. Morphological and Optical Characteristics of Chitosan(1−x):Cuox (4 ≤ x ≤ 12) Based Polymer Nano-Composites: Optical Dielectric Loss as an Alternative Method for Tauc’s Model

    PubMed Central

    2017-01-01

    In this work, copper (Cu) nanoparticles with observable surface plasmonic resonance (SPR) peaks were synthesized by an in-situ method. Chitosan host polymer was used as a reduction medium and a capping agent for the Cu nanoparticles. The surface morphology of the samples was investigated through the use of scanning electron micrograph (SEM) technique. Copper nanoparticles appeared as chains and white specks in the SEM images. The strong peaks due to the Cu element observed in the spectrum of energy dispersive analysis of X-rays. For the nanocomposite samples, obvious peaks due to the SPR phenomena were obtained in the Ultraviolet-visible (UV-vis) spectra. The effect of Cu nanoparticles on the host band gap was understood from absorption edges shifting of absorption edges to lower photon energy. The optical dielectric loss parameter obtained from the measurable quantities was used as an alternative method to study the band structure of the samples. Quantum mechanical models drawbacks, in the study of band gap, were explained based on the optical dielectric loss. A clear dispersion region was able to be observed in refractive indices spectra of the composite samples. A linear relationship with a regression value of 0.99 was achieved between the refractive index and volume fractions of CuI content. Cu nanoparticles with various sizes and homogenous dispersions were also determined from transmission electron microscope (TEM) images. PMID:29236074

  5. Design and measure of a tunable double-band metamaterial absorber in the THz spectrum

    NASA Astrophysics Data System (ADS)

    Guiming, Han

    2018-04-01

    We demonstrate and measure a hybrid double-band tunable metamaterial absorber in the terahertz region. The measured metamaterial absorber contains of a hybrid dielectric layer structure: a SU-8 layer and a VO2 layer. Near perfect double-band absorption performances are achieved by optimizing the SU-8 layer thickness at room temperature 25 °C. Measured results show that the phase transition can be observed when the measured temperature reaches 68 °C. Further measured results indicate that the resonance frequency and absorption amplitude of the proposed metamaterial absorber are tunable through increasing the measured temperature, while structural parameters unchanged. The proposed hybrid metamaterial absorber shows many advantages, such as frequency agility, absorption amplitude tunable, and simple fabrication.

  6. Design and measuring of a tunable hybrid metamaterial absorber for terahertz frequencies

    NASA Astrophysics Data System (ADS)

    Zhong, Min; Liu, Shui Jie; Xu, Bang Li; Wang, Jie; Huang, Hua Qing

    2018-04-01

    A tunable hybrid metamaterial absorber is designed and experimentally produced in THz band. The hybrid metamaterial absorber contains two dielectric layers: SU-8 and VO2 layers. An absorption peak reaching to 83.5% is achieved at 1.04 THz. The hybrid metamaterial absorber exhibits high absorption when the incident angle reaches to 45°. Measured results indicate that the absorption amplitude and peak frequency of the hybrid metamaterial absorber is tunable in experiments. It is due to the insulator-to-metal phase transition is achieved when the measured temperature reaches to 68 °C. Moreover, the hybrid metamaterial absorber reveals high figure of merit (FOM) value when the measured temperature reaches to 68 °C.

  7. Design of a five-band terahertz perfect metamaterial absorber using two resonators

    NASA Astrophysics Data System (ADS)

    Meng, Tianhua; Hu, Dan; Zhu, Qiaofen

    2018-05-01

    We present a polarization-insensitive five-band terahertz perfect metamaterial absorber composed of two metallic circular rings and a metallic ground film separated by a dielectric layer. The calculated results show that the absorber has five distinctive absorption bands whose peaks are greater than 99% on average. The physical origin of the absorber originates from the combination of dipolar, hexapolar, and surface plasmon resonance of the patterned metallic structure, which is different from the work mechanism of previously reported absorbers. In addition, the influence of the structural parameters on the absorption spectra is analyzed to further confirm the origin of the five-band absorption peaks. The proposed absorber has potential applications in terahertz imaging, refractive index sensing, and material detecting.

  8. A dual-band THz absorber based on graphene sheet and ribbons

    NASA Astrophysics Data System (ADS)

    Xing, Rui; Jian, Shuisheng

    2018-03-01

    A dual-band graphene absorber is proposed and investigated in this paper. The absorber consists of the gold substrate, the graphene sheet sandwiched by dielectric layers and the array of graphene ribbon placed on the top. The two absorption peaks of the dual-band are 99.8% at 4.95 THz and 99.6% at 9.2 THz, respectively. Due to the characteristic of tunable surface conductivity of graphene, the absorption can be controlled by adjusting the chemical potential of graphene. We also investigate the dependence of the absorption curve of the proposed absorber on the structure parameters. In addition, the structure of the absorber is very simple and it can be manufactured by chemical vapor deposition (CVD).

  9. Electronic structure of barium strontium titanate by soft-x-ray absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uehara, Y.; Underwood, J.H.; Gullikson, E.M.

    1997-04-01

    Perovskite-type titanates, such as Strontium Titanate (STO), Barium Titanate (BTO), and Lead Titanate (PTO) have been widely studied because they show good electric and optical properties. In recent years, thin films of Barium Strontium Titanate (BST) have been paid much attention as dielectrics of dynamic random access memory (DRAM) capacitors. BST is a better insulator with a higher dielectric constant than STO and can be controlled in a paraelectric phase with an appropriate ratio of Ba/Sr composition, however, few studies have been done on the electronic structure of the material. Studies of the electronic structure of such materials can bemore » beneficial, both for fundamental physics research and for improving technological applications. BTO is a famous ferroelectric material with a tetragonal structure, in which Ti and Ba atoms are slightly displaced from the lattice points. On the other hand, BST keeps a paraelectric phase, which means that the atoms are still at the cubic lattice points. It should be of great interest to see how this difference of the local structure around Ti atoms between BTO and BST effects the electronic structure of these two materials. In this report, the authors present the Ti L{sub 2,3} absorption spectra of STO, BTO, and BST measured with very high accuracy in energy of the absorption features.« less

  10. Nano-Photonic Structures for Light Trapping in Ultra-Thin Crystalline Silicon Solar Cells

    PubMed Central

    Pathi, Prathap; Peer, Akshit; Biswas, Rana

    2017-01-01

    Thick wafer-silicon is the dominant solar cell technology. It is of great interest to develop ultra-thin solar cells that can reduce materials usage, but still achieve acceptable performance and high solar absorption. Accordingly, we developed a highly absorbing ultra-thin crystalline Si based solar cell architecture using periodically patterned front and rear dielectric nanocone arrays which provide enhanced light trapping. The rear nanocones are embedded in a silver back reflector. In contrast to previous approaches, we utilize dielectric photonic crystals with a completely flat silicon absorber layer, providing expected high electronic quality and low carrier recombination. This architecture creates a dense mesh of wave-guided modes at near-infrared wavelengths in the absorber layer, generating enhanced absorption. For thin silicon (<2 μm) and 750 nm pitch arrays, scattering matrix simulations predict enhancements exceeding 90%. Absorption approaches the Lambertian limit at small thicknesses (<10 μm) and is slightly lower (by ~5%) at wafer-scale thicknesses. Parasitic losses are ~25% for ultra-thin (2 μm) silicon and just 1%–2% for thicker (>100 μm) cells. There is potential for 20 μm thick cells to provide 30 mA/cm2 photo-current and >20% efficiency. This architecture has great promise for ultra-thin silicon solar panels with reduced material utilization and enhanced light-trapping. PMID:28336851

  11. Assessment of exposure to radio frequency electromagnetic fields from smart utility meters in GB; part II) numerical assessment of induced SAR within the human body.

    PubMed

    Qureshi, Muhammad R A; Alfadhl, Yasir; Chen, Xiaodong; Peyman, Azadeh; Maslanyj, Myron; Mann, Simon

    2018-04-01

    Human body exposure to radiofrequency electromagnetic waves emitted from smart meters was assessed using various exposure configurations. Specific energy absorption rate distributions were determined using three anatomically realistic human models. Each model was assigned with age- and frequency-dependent dielectric properties representing a collection of age groups. Generalized exposure conditions involving standing and sleeping postures were assessed for a home area network operating at 868 and 2,450 MHz. The smart meter antenna was fed with 1 W power input which is an overestimation of what real devices typically emit (15 mW max limit). The highest observed whole body specific energy absorption rate value was 1.87 mW kg -1 , within the child model at a distance of 15 cm from a 2,450 MHz device. The higher values were attributed to differences in dimension and dielectric properties within the model. Specific absorption rate (SAR) values were also estimated based on power density levels derived from electric field strength measurements made at various distances from smart meter devices. All the calculated SAR values were found to be very small in comparison to International Commission on Non-Ionizing Radiation Protection limits for public exposure. Bioelectromagnetics. 39:200-216, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. Nano-photonic structures for light trapping in ultra-thin crystalline silicon solar cells

    DOE PAGES

    Pathi, Prathap; Peer, Akshit; Biswas, Rana

    2017-01-13

    Thick wafer-silicon is the dominant solar cell technology. It is of great interest to develop ultra-thin solar cells that can reduce materials usage, but still achieve acceptable performance and high solar absorption. Accordingly, we developed a highly absorbing ultra-thin crystalline Si based solar cell architecture using periodically patterned front and rear dielectric nanocone arrays which provide enhanced light trapping. The rear nanocones are embedded in a silver back reflector. In contrast to previous approaches, we utilize dielectric photonic crystals with a completely flat silicon absorber layer, providing expected high electronic quality and low carrier recombination. This architecture creates a densemore » mesh of wave-guided modes at near-infrared wavelengths in the absorber layer, generating enhanced absorption. For thin silicon (<2 μm) and 750 nm pitch arrays, scattering matrix simulations predict enhancements exceeding 90%. Absorption approaches the Lambertian limit at small thicknesses (<10 μm) and is slightly lower (by ~5%) at wafer-scale thicknesses. Parasitic losses are ~25% for ultra-thin (2 μm) silicon and just 1%–2% for thicker (>100 μm) cells. There is potential for 20 μm thick cells to provide 30 mA/cm2 photo-current and >20% efficiency. Furthermore, this architecture has great promise for ultra-thin silicon solar panels with reduced material utilization and enhanced light-trapping.« less

  13. Nano-photonic structures for light trapping in ultra-thin crystalline silicon solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pathi, Prathap; Peer, Akshit; Biswas, Rana

    Thick wafer-silicon is the dominant solar cell technology. It is of great interest to develop ultra-thin solar cells that can reduce materials usage, but still achieve acceptable performance and high solar absorption. Accordingly, we developed a highly absorbing ultra-thin crystalline Si based solar cell architecture using periodically patterned front and rear dielectric nanocone arrays which provide enhanced light trapping. The rear nanocones are embedded in a silver back reflector. In contrast to previous approaches, we utilize dielectric photonic crystals with a completely flat silicon absorber layer, providing expected high electronic quality and low carrier recombination. This architecture creates a densemore » mesh of wave-guided modes at near-infrared wavelengths in the absorber layer, generating enhanced absorption. For thin silicon (<2 μm) and 750 nm pitch arrays, scattering matrix simulations predict enhancements exceeding 90%. Absorption approaches the Lambertian limit at small thicknesses (<10 μm) and is slightly lower (by ~5%) at wafer-scale thicknesses. Parasitic losses are ~25% for ultra-thin (2 μm) silicon and just 1%–2% for thicker (>100 μm) cells. There is potential for 20 μm thick cells to provide 30 mA/cm2 photo-current and >20% efficiency. Furthermore, this architecture has great promise for ultra-thin silicon solar panels with reduced material utilization and enhanced light-trapping.« less

  14. Nano-Photonic Structures for Light Trapping in Ultra-Thin Crystalline Silicon Solar Cells.

    PubMed

    Pathi, Prathap; Peer, Akshit; Biswas, Rana

    2017-01-13

    Thick wafer-silicon is the dominant solar cell technology. It is of great interest to develop ultra-thin solar cells that can reduce materials usage, but still achieve acceptable performance and high solar absorption. Accordingly, we developed a highly absorbing ultra-thin crystalline Si based solar cell architecture using periodically patterned front and rear dielectric nanocone arrays which provide enhanced light trapping. The rear nanocones are embedded in a silver back reflector. In contrast to previous approaches, we utilize dielectric photonic crystals with a completely flat silicon absorber layer, providing expected high electronic quality and low carrier recombination. This architecture creates a dense mesh of wave-guided modes at near-infrared wavelengths in the absorber layer, generating enhanced absorption. For thin silicon (<2 μm) and 750 nm pitch arrays, scattering matrix simulations predict enhancements exceeding 90%. Absorption approaches the Lambertian limit at small thicknesses (<10 μm) and is slightly lower (by ~5%) at wafer-scale thicknesses. Parasitic losses are ~25% for ultra-thin (2 μm) silicon and just 1%-2% for thicker (>100 μm) cells. There is potential for 20 μm thick cells to provide 30 mA/cm² photo-current and >20% efficiency. This architecture has great promise for ultra-thin silicon solar panels with reduced material utilization and enhanced light-trapping.

  15. Accuracy of dielectric-dependent hybrid functionals in the prediction of optoelectronic properties of metal oxide semiconductors: a comprehensive comparison with many-body GW and experiments

    NASA Astrophysics Data System (ADS)

    Gerosa, M.; E Bottani, C.; Di Valentin, C.; Onida, G.; Pacchioni, G.

    2018-01-01

    Understanding the electronic structure of metal oxide semiconductors is crucial to their numerous technological applications, such as photoelectrochemical water splitting and solar cells. The needed experimental and theoretical knowledge goes beyond that of pristine bulk crystals, and must include the effects of surfaces and interfaces, as well as those due to the presence of intrinsic defects (e.g. oxygen vacancies), or dopants for band engineering. In this review, we present an account of the recent efforts in predicting and understanding the optoelectronic properties of oxides using ab initio theoretical methods. In particular, we discuss the performance of recently developed dielectric-dependent hybrid functionals, providing a comparison against the results of many-body GW calculations, including G 0 W 0 as well as more refined approaches, such as quasiparticle self-consistent GW. We summarize results in the recent literature for the band gap, the band level alignment at surfaces, and optical transition energies in defective oxides, including wide gap oxide semiconductors and transition metal oxides. Correlated transition metal oxides are also discussed. For each method, we describe successes and drawbacks, emphasizing the challenges faced by the development of improved theoretical approaches. The theoretical section is preceded by a critical overview of the main experimental techniques needed to characterize the optoelectronic properties of semiconductors, including absorption and reflection spectroscopy, photoemission, and scanning tunneling spectroscopy (STS).

  16. Optical properties of nanowire metamaterials with gain

    NASA Astrophysics Data System (ADS)

    Lima, Joaquim; Adam, Jost; Rego, Davi; Esquerre, Vitaly; Bordo, Vladimir

    2016-11-01

    The transmittance, reflectance and absorption of a nanowire metamaterial with optical gain are numerically simulated and investigated. It is assumed that the metamaterial is represented by aligned silver nanowires embedded into a semiconductor matrix, made of either silicon or gallium phosphide. The gain in the matrix is modeled by adding a negative imaginary part to the dielectric function of the semiconductor. It is found that the optical coefficients of the metamaterial depend on the gain magnitude in a non-trivial way: they can both increase and decrease with gain depending on the lattice constant of the metamaterial. This peculiar behavior is explained by the field redistribution between the lossy metal nanowires and the amplifying matrix material. These findings are significant for a proper design of nanowire metamaterials with low optical losses for diverse applications.

  17. Electronic and optical properties of Fe2SiO4 under pressure effect: ab initio study

    NASA Astrophysics Data System (ADS)

    Xiao, Lingping; Li, Xiaobin; Yang, Xue

    2018-05-01

    We report first-principles studies the structural, electronic, and optical properties of the Fe2SiO4 fayalite in orthorhombic structure, including pressure dependence of structural parameters, band structures, density of states, and optical constants up to 30 GPa. The calculated results indicate that the linear compressibility along b axis is significantly higher than a and c axes, which is in agreement with earlier work. Meanwhile, the pressure dependence of the electronic band structure, density of states and partial density of states of Fe2SiO4 fayalite up to 30 GPa were presented. Moreover, the evolution of the dielectric function, absorption coefficient (α(ω)), reflectivity (R(ω)), and the real part of the refractive index (n(ω)) at high pressure are also presented.

  18. The structural, electronic, magnetic and optical properties of the half-metallic binary alloys ZCl3 (Z=Be, Mg, Ca, Sr): A first-principles study

    NASA Astrophysics Data System (ADS)

    Song, Jun-Tao; Zhang, Jian-Min

    2018-06-01

    The investigations of the electronic and magnetic properties show the binary Heusler alloys ZCl3 (Z = Be, Mg, Ca, Sr) are half-metallic (HM) ferromagnets with an integer magnetic moment (Mt) of 1 μB /f.u.. The alloy BeCl3 is thermodynamic meta-stable, while other alloys are thermodynamic stable according to their cohesive energies and formation energies. Moreover, wide HM regions for alloys ZCl3 (Z = Be, Mg, Ca, Sr) show their HM characters are robust when the lattices are expanded or compressed under uniform and tetragonal strains. Finally, some optical properties are analyzed in detail, such as the dielectric function, the absorption coefficient, the refractive index and the extinction coefficient.

  19. Optical constants of wurtzite ZnS thin films determined by spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Ong, H. C.; Chang, R. P. H.

    2001-11-01

    The complex dielectric functions of wurtzite ZnS thin films grown on (0001) Al2O3 have been determined by using spectroscopic ellipsometry over the spectral range of 1.33-4.7 eV. Below the band gap, the refractive index n is found to follow the first-order Sellmeir dispersion relationship n2(λ)=1+2.22λ2/(λ2-0.0382). Strong and well-defined free excitonic features located above the band edge are clearly observed at room temperature. The intrinsic optical parameters of wurtzite ZnS such as band gaps and excitonic binding energies have been determined by fitting the absorption spectrum using a modified Elliott expression together with Lorentizan broadening. Both parameters are found to be larger than their zinc blende counterparts.

  20. Model dielectric function for 2D semiconductors including substrate screening

    NASA Astrophysics Data System (ADS)

    Trolle, Mads L.; Pedersen, Thomas G.; Véniard, Valerie

    2017-01-01

    Dielectric screening of excitons in 2D semiconductors is known to be a highly non-local effect, which in reciprocal space translates to a strong dependence on momentum transfer q. We present an analytical model dielectric function, including the full non-linear q-dependency, which may be used as an alternative to more numerically taxing ab initio screening functions. By verifying the good agreement between excitonic optical properties calculated using our model dielectric function, and those derived from ab initio methods, we demonstrate the versatility of this approach. Our test systems include: Monolayer hBN, monolayer MoS2, and the surface exciton of a 2 × 1 reconstructed Si(111) surface. Additionally, using our model, we easily take substrate screening effects into account. Hence, we include also a systematic study of the effects of substrate media on the excitonic optical properties of MoS2 and hBN.

  1. Nonempirical range-separated hybrid functionals for solids and molecules

    DOE PAGES

    Skone, Jonathan H.; Govoni, Marco; Galli, Giulia

    2016-06-03

    Dielectric-dependent hybrid (DDH) functionals were recently shown to yield accurate energy gaps and dielectric constants for a wide variety of solids, at a computational cost considerably less than that of GW calculations. The fraction of exact exchange included in the definition of DDH functionals depends (self-consistently) on the dielectric constant of the material. Here we introduce a range-separated (RS) version of DDH functionals where short and long-range components are matched using system dependent, non-empirical parameters. We show that RS DDHs yield accurate electronic properties of inorganic and organic solids, including energy gaps and absolute ionization potentials. Moreover, we show thatmore » these functionals may be generalized to finite systems.« less

  2. Origin of the colossal dielectric response of Pr0.6 Ca0.4 Mn O3

    NASA Astrophysics Data System (ADS)

    Biškup, N.; de Andrés, A.; Martinez, J. L.; Perca, C.

    2005-07-01

    We report the detailed study of dielectric response of Pr0.6Ca0.4MnO3 (PCMO), a member of the manganite family showing colossal magnetoresistance. Measurements have been performed on four polycrystalline samples and four single crystals, allowing us to compare and extract the essence of dielectric response in the material. High-frequency dielectric function is found to be ɛHF=30 , as expected for the perovskite material. Dielectric relaxation is found in the frequency window of 20Hzto1MHz at temperatures of 50-200K that yields to colossal low-frequency dielectric function, i.e., the static dielectric constant. The static dielectric constant is always colossal, but varies considerably in different samples from ɛ(0)=103to105 . The measured data can be simulated very well by blocking (surface barrier) capacitance in series with sample resistance. This indicates that the large dielectric constant in PCMO arises from the Schottky barriers at electrical contacts. Measurements in magnetic field and with dc bias support this interpretation. Colossal magnetocapacitance observed in the title compound is thus attributed to extrinsic effects. Weak anomaly at the charge ordering temperature can also be attributed to interplay of sample and contact resistance. We comment on our results in the framework of related studies by other groups.

  3. Dielectric relaxation and localized electron hopping in colossal dielectric (Nb,In)-doped TiO2 rutile nanoceramics.

    PubMed

    Tsuji, Kosuke; Han, HyukSu; Guillemet-Fritsch, Sophie; Randall, Clive A

    2017-03-28

    Dielectric spectroscopy was performed on a Nb and In co-doped rutile TiO 2 nano-crystalline ceramic (n-NITO) synthesized by a low-temperature spark plasma sintering (SPS) technique. The dielectric properties of the n-NITO were not largely affected by the metal electrode contacts. Huge dielectric relaxation was observed at a very low temperature below 35 K. Both the activation energy and relaxation time suggested that the electronic hopping motion is the underlying mechanism responsible for the colossal dielectric permittivity (CP) and its relaxation, instead of the internal barrier layer effect or a dipolar relaxation. With Havriliak-Negami (H-N) fitting, a relaxation time with a large distribution of dielectric relaxations was revealed. The broad distributed relaxation phenomena indicated that Nb and In were involved, controlling the dielectric relaxation by modifying the polarization mechanism and localized states. The associated distribution function is calculated and presented. The frequency-dependent a.c. conductance is successfully explained by a hopping conduction model of the localized electrons with the distribution function. It is demonstrated that the dielectric relaxation is strongly correlated with the hopping electrons in the localized states. The CP in SPS n-NITO is then ascribed to a hopping polarization.

  4. A Review: Origins of the Dielectric Properties of Proteins and Potential Development as Bio-Sensors

    PubMed Central

    Bibi, Fabien; Villain, Maud; Guillaume, Carole; Sorli, Brice; Gontard, Nathalie

    2016-01-01

    Polymers can be classified as synthetic polymers and natural polymers, and are often characterized by their most typical functions namely their high mechanical resistivity, electrical conductivity and dielectric properties. This bibliography report consists in: (i) Defining the origins of the dielectric properties of natural polymers by reviewing proteins. Despite their complex molecular chains, proteins present several points of interest, particularly, their charge content conferring their electrical and dielectric properties; (ii) Identifying factors influencing the dielectric properties of protein films. The effects of vapors and gases such as water vapor, oxygen, carbon dioxide, ammonia and ethanol on the dielectric properties are put forward; (iii) Finally, potential development of protein films as bio-sensors coated on electronic devices for detection of environmental changes particularly humidity or carbon dioxide content in relation with dielectric properties variations are discussed. As the study of the dielectric properties implies imposing an electric field to the material, it was necessary to evaluate the impact of frequency on the polymers and subsequently on their structure. Characterization techniques, on the one hand dielectric spectroscopy devoted for the determination of the glass transition temperature among others, and on the other hand other techniques such as infra-red spectroscopy for structure characterization as a function of moisture content for instance are also introduced. PMID:27527179

  5. Dielectric metamaterials with toroidal dipolar response

    DOE PAGES

    Basharin, Alexey A.; Kafesaki, Maria; Economou, Eleftherios N.; ...

    2015-03-27

    Toroidal multipoles are the terms missing in the standard multipole expansion; they are usually overlooked due to their relatively weak coupling to the electromagnetic fields. Here, we propose and theoretically study all-dielectric metamaterials of a special class that represent a simple electromagnetic system supporting toroidal dipolar excitations in the THz part of the spectrum. In addition, we show that resonant transmission and reflection of such metamaterials is dominated by toroidal dipole scattering, the neglect of which would result in a misunderstanding interpretation of the metamaterials’ macroscopic response. Due to the unique field configuration of the toroidal mode, the proposed metamaterialsmore » could serve as a platform for sensing or enhancement of light absorption and optical nonlinearities.« less

  6. Dielectric properties of organic solvents from non-polarizable molecular dynamics simulation with electronic continuum model and density functional theory.

    PubMed

    Lee, Sanghun; Park, Sung Soo

    2011-11-03

    Dielectric constants of electrolytic organic solvents are calculated employing nonpolarizable Molecular Dynamics simulation with Electronic Continuum (MDEC) model and Density Functional Theory. The molecular polarizabilities are obtained by the B3LYP/6-311++G(d,p) level of theory to estimate high-frequency refractive indices while the densities and dipole moment fluctuations are computed using nonpolarizable MD simulations. The dielectric constants reproduced from these procedures are evaluated to provide a reliable approach for estimating the experimental data. An additional feature, two representative solvents which have similar molecular weights but are different dielectric properties, i.e., ethyl methyl carbonate and propylene carbonate, are compared using MD simulations and the distinctly different dielectric behaviors are observed at short times as well as at long times.

  7. Parameter Search Algorithms for Microwave Radar-Based Breast Imaging: Focal Quality Metrics as Fitness Functions.

    PubMed

    O'Loughlin, Declan; Oliveira, Bárbara L; Elahi, Muhammad Adnan; Glavin, Martin; Jones, Edward; Popović, Milica; O'Halloran, Martin

    2017-12-06

    Inaccurate estimation of average dielectric properties can have a tangible impact on microwave radar-based breast images. Despite this, recent patient imaging studies have used a fixed estimate although this is known to vary from patient to patient. Parameter search algorithms are a promising technique for estimating the average dielectric properties from the reconstructed microwave images themselves without additional hardware. In this work, qualities of accurately reconstructed images are identified from point spread functions. As the qualities of accurately reconstructed microwave images are similar to the qualities of focused microscopic and photographic images, this work proposes the use of focal quality metrics for average dielectric property estimation. The robustness of the parameter search is evaluated using experimental dielectrically heterogeneous phantoms on the three-dimensional volumetric image. Based on a very broad initial estimate of the average dielectric properties, this paper shows how these metrics can be used as suitable fitness functions in parameter search algorithms to reconstruct clear and focused microwave radar images.

  8. Frequency and Temperature Dependent Dielectric Properties of Free-standing Strontium Titanate Thin Films.

    NASA Astrophysics Data System (ADS)

    Dalberth, Mark J.; Stauber, Renaud E.; Anderson, Britt; Price, John C.; Rogers, Charles T.

    1998-03-01

    We will report on the frequency and temperature dependence of the complex dielectric function of free-standing strontium titanate (STO) films. STO is an incipient ferroelectric with electric-field tunable dielectric properties of utility in microwave electronics. The films are grown epitaxially via pulsed laser deposition on a variety of substrates, including lanthanum aluminate (LAO), neodymium gallate (NGO), and STO. An initial film of yttrium barium cuprate (YBCO) is grown on the substrate, followed by deposition of the STO layer. Following deposition, the sacrificial YBCO layer is chemically etched away in dilute nitric acid, leaving the substrate and a released, free-standing STO film. Coplanar capacitor structures fabricated on the released films allow us to measure the dielectric response. We observe a peak dielectric function in excess of 5000 at 35K, change in dielectric constant of over a factor of 8 for 10Volt/micron electric fields, and temperature dependence above 50K that is very similar to bulk material. The dielectric loss shows two peaks, each with a thermally activated behavior, apparently arising from two types of polar defects. We will discuss the correlation between dielectric properties, growth conditions, and strain in the free-standing STO films.

  9. Hamiltonian adaptive resolution molecular dynamics simulation of infrared dielectric functions of liquids

    NASA Astrophysics Data System (ADS)

    Wang, C. C.; Tan, J. Y.; Liu, L. H.

    2018-05-01

    Hamiltonian adaptive resolution scheme (H-AdResS), which allows to simulate materials by treating different domains of the system at different levels of resolution, is a recently proposed atomistic/coarse-grained multiscale model. In this work, a scheme to calculate the dielectric functions of liquids on account of H-AdResS is presented. In the proposed H-AdResS dielectric-function calculation scheme (DielectFunctCalS), the corrected molecular dipole moments are calculated by multiplying molecular dipole moment by the weighting fraction of the molecular mapping point. As the widths of all-atom and hybrid regions show different degrees of influence on the dielectric functions, a prefactor is multiplied to eliminate the effects of all-atom and hybrid region widths. Since one goal of using the H-AdResS method is to reduce computational costs, widths of the all-atom region and the hybrid region can be reduced considering that the coarse-grained simulation is much more timesaving compared to atomistic simulation. Liquid water and ethanol are taken as test cases to validate the DielectFunctCalS. The H-AdResS DielectFunctCalS results are in good agreement with all-atom molecular dynamics simulations. The accuracy of the H-AdResS results, together with all-atom molecular dynamics results, depends heavily on the choice of the force field and force field parameters. The H-AdResS DielectFunctCalS allows us to calculate the dielectric functions of macromolecule systems with high efficiency and makes the dielectric function calculations of large biomolecular systems possible.

  10. Chemoselectivity-induced multiple interfaces in MWCNT/Fe3O4@ZnO heterotrimers for whole X-band microwave absorption.

    PubMed

    Wang, Zhijiang; Wu, Lina; Zhou, Jigang; Jiang, Zhaohua; Shen, Baozhong

    2014-11-07

    A chemoselective route to induce Fe3O4@ZnO core-shell nanoparticles decorating carbon nanotubes to form MWCNT/Fe3O4@ZnO heterotrimers has been developed. Charges are redistributed in the heterotrimers through C-O-Zn, C-O-Fe and Fe-O-Zn bondings, giving rise to multiple electronic phases. The generated significant interfacial polarization and synergetic interaction between dielectric and magnetic absorbers result in the MWCNT/Fe3O4@ZnO heterotrimers with high-performance microwave absorption in an entire X band.

  11. Electromagnetic interference attenuation and shielding effect of quaternary Epoxy-PPy/Fe3O4-ZnO nanocomposite as a broad band microwave-absorber

    NASA Astrophysics Data System (ADS)

    Olad, Ali; Shakoori, Sahar

    2018-07-01

    An increase in the electromagnetic wave pollution generated from wireless telecommunication devices has devoted to a great request for exploiting microwave absorbing materials for themselves. The combination of inherently conducting polymers such as polypyrrole (PPy) with metal oxides has led to design ideal microwave absorbing materials which benefit both advantage effects of ICPs and metal oxide nanoparticles. Herein, the quaternary nanocomposite of Epoxy-PPy/Fe3O4-ZnO was prepared and tested for the absorption of X-band microwaves. Simultaneous application of metal oxides and conducting polypyrrole in the epoxy matrix was evaluated in order to increase the absorption intensity and broadness of microwaves in X-band region. The morphology, microstructure, and phase structure of Fe3O4, ZnO, and PPy, as well as quaternary nanocomposite were characterized and studied using FTIR, XRD, FESEM and TEM techniques. The presence of nanoparticles in the quaternary nanocomposite was confirmed by EDS. The magnetization of iron oxide was studied by VSM. The synergetic effect of iron oxide and zinc oxide nanoparticles in different weight ratios (Fe3O4/ZnO) on the electromagnetic wave absorption was evaluated. The electromagnetic parameters have been evaluated by the vector network analyzer in the frequency range of 8.2-12.4 GHz which is named as X-band region and is adequate for radar applications. The electromagnetic wave absorbing outcomes indicated that Epoxy-PPy/Fe3O4-ZnO quaternary nanocomposite has wide absorption area and high attenuation, which is believed to be due to dielectric loss properties related to the polypyrrole, magnetic loss factor of Fe3O4, and synergetic effects of components. The maximum reflection loss reached to -32.53 dB at 9.96 GHz with a nanocomposite thickness of 2 mm which is dedicated to the Epoxy-PPy/Fe3O4-ZnO with iron oxide to zinc oxide ratio of 2:1. The absorption bandwidth with the reflection loss lower than -10 dB (90% attenuation) was up to 4.2 GHz that covering a frequency range of 8.2-12.4 GHz. Results showed that absorber having %15 (w/w) polypyrrole/epoxy resin in Epoxy-PPy/Fe3O4-ZnO nanocomposite with iron oxide to zinc oxide ratio of 2:1 displays the best reflection loss properties. The loss curves illustrated the values of dielectric loss tangent and magnetic loss tangent of prepared nanocomposites which are in the range of 0.25-0.7 and -0.08 to 0.09 respectively. Therefore, microwave absorption mechanism is probably attributed to dielectric loss.

  12. Structural and Electrical Characterization of SiO2 Gate Dielectrics Deposited from Solutions at Moderate Temperatures in Air.

    PubMed

    Esro, Mazran; Kolosov, Oleg; Jones, Peter J; Milne, William I; Adamopoulos, George

    2017-01-11

    Silicon dioxide (SiO 2 ) is the most widely used dielectric for electronic applications. It is usually produced by thermal oxidation of silicon or by using a wide range of vacuum-based techniques. By default, the growth of SiO 2 by thermal oxidation of silicon requires the use of Si substrates whereas the other deposition techniques either produce low quality or poor interface material and mostly require high deposition or annealing temperatures. Recent investigations therefore have focused on the development of alternative deposition paradigms based on solutions. Here, we report the deposition of SiO 2 thin film dielectrics deposited by spray pyrolysis in air at moderate temperatures of ≈350 °C from pentane-2,4-dione solutions of SiCl 4 . SiO 2 dielectrics were investigated by means of UV-vis absorption spectroscopy, spectroscopic ellipsometry, XPS, XRD, UFM/AFM, admittance spectroscopy, and field-effect measurements. Data analysis reveals smooth (R RMS < 1 nm) amorphous films with a dielectric constant of about 3.8, an optical band gap of ≈8.1 eV, leakage current densities in the order of ≈10 -7 A/cm 2 at 1 MV/cm, and high dielectric strength in excess of 5 MV/cm. XPS measurements confirm the SiO 2 stoichiometry and FTIR spectra reveal features related to SiO 2 only. Thin film transistors implementing spray-coated SiO 2 gate dielectrics and C 60 and pentacene semiconducting channels exhibit excellent transport characteristics, i.e., negligible hysteresis, low leakage currents, high on/off current modulation ratio on the order of 10 6 , and high carrier mobility.

  13. Engineering Room-temperature Superconductors Via ab-initio Calculations

    NASA Astrophysics Data System (ADS)

    Gulian, Mamikon; Melkonyan, Gurgen; Gulian, Armen

    The BCS, or bosonic model of superconductivity, as Little and Ginzburg have first argued, can bring in superconductivity at room temperatures in the case of high-enough frequency of bosonic mode. It was further elucidated by Kirzhnitset al., that the condition for existence of high-temperature superconductivity is closely related to negative values of the real part of the dielectric function at finite values of the reciprocal lattice vectors. In view of these findings, the task is to calculate the dielectric function for real materials. Then the poles of this function will indicate the existence of bosonic excitations which can serve as a "glue" for Cooper pairing, and if the frequency is high enough, and the dielectric matrix is simultaneously negative, this material is a good candidate for very high-Tc superconductivity. Thus, our approach is to elaborate a methodology of ab-initio calculation of the dielectric function of various materials, and then point out appropriate candidates. We used the powerful codes (TDDF with the DP package in conjunction with ABINIT) for computing dielectric responses at finite values of the wave vectors in the reciprocal lattice space. Though our report is concerned with the particular problem of superconductivity, the application range of the data processing methodology is much wider. The ability to compute the dielectric function of existing and still non-existing (though being predicted!) materials will have many more repercussions not only in fundamental sciences but also in technology and industry.

  14. Atomic layer deposition of dielectrics on graphene using reversibly physisorbed ozone.

    PubMed

    Jandhyala, Srikar; Mordi, Greg; Lee, Bongki; Lee, Geunsik; Floresca, Carlo; Cha, Pil-Ryung; Ahn, Jinho; Wallace, Robert M; Chabal, Yves J; Kim, Moon J; Colombo, Luigi; Cho, Kyeongjae; Kim, Jiyoung

    2012-03-27

    Integration of graphene field-effect transistors (GFETs) requires the ability to grow or deposit high-quality, ultrathin dielectric insulators on graphene to modulate the channel potential. Here, we study a novel and facile approach based on atomic layer deposition through ozone functionalization to deposit high-κ dielectrics (such as Al(2)O(3)) without breaking vacuum. The underlying mechanisms of functionalization have been studied theoretically using ab initio calculations and experimentally using in situ monitoring of transport properties. It is found that ozone molecules are physisorbed on the surface of graphene, which act as nucleation sites for dielectric deposition. The physisorbed ozone molecules eventually react with the metal precursor, trimethylaluminum to form Al(2)O(3). Additionally, we successfully demonstrate the performance of dual-gated GFETs with Al(2)O(3) of sub-5 nm physical thickness as a gate dielectric. Back-gated GFETs with mobilities of ~19,000 cm(2)/(V·s) are also achieved after Al(2)O(3) deposition. These results indicate that ozone functionalization is a promising pathway to achieve scaled gate dielectrics on graphene without leaving a residual nucleation layer. © 2012 American Chemical Society

  15. Rationally designed polyimides for high-energy density capacitor applications.

    PubMed

    Ma, Rui; Baldwin, Aaron F; Wang, Chenchen; Offenbach, Ido; Cakmak, Mukerrem; Ramprasad, Rampi; Sotzing, Gregory A

    2014-07-09

    Development of new dielectric materials is of great importance for a wide range of applications for modern electronics and electrical power systems. The state-of-the-art polymer dielectric is a biaxially oriented polypropylene (BOPP) film having a maximal energy density of 5 J/cm(3) and a high breakdown field of 700 MV/m, but with a limited dielectric constant (∼2.2) and a reduced breakdown strength above 85 °C. Great effort has been put into exploring other materials to fulfill the demand of continuous miniaturization and improved functionality. In this work, a series of polyimides were investigated as potential polymer materials for this application. Polyimide with high dielectric constants of up to 7.8 that exhibits low dissipation factors (<1%) and high energy density around 15 J/cm(3), which is 3 times that of BOPP, was prepared. Our syntheses were guided by high-throughput density functional theory calculations for rational design in terms of a high dielectric constant and band gap. Correlations of experimental and theoretical results through judicious variations of polyimide structures allowed for a clear demonstration of the relationship between chemical functionalities and dielectric properties.

  16. Structural phase transition, Néel temperature enhancement, and persistent magneto-dielectric coupling in Cr-substituted Mn3O4

    NASA Astrophysics Data System (ADS)

    Dwivedi, G. D.; Kumar, Abhishek; Yang, K. S.; Chen, B. Y.; Liu, K. W.; Chatterjee, Sandip; Yang, H. D.; Chou, H.

    2016-05-01

    Structural phase transition and Néel temperature (TN) enhancement were observed in Cr-substituted Mn3O4 spinels. Structural, magnetic, and dielectric properties of (Mn1-xCrx)3O4 (where x = 0.00, 0.10, 0.20, 0.25, 0.30, 0.40, and 0.50) were investigated. Cr-substitution induces room temperature structural phase transition from tetragonally distorted I41/amd (x = 0.00) to cubic Fd 3 ¯ m (x = 0.50). TN is found to increase from 43 K (x = 0.00) to 58 K (x = 0.50) with Cr-substitution. The spin ordering-induced dielectric anomaly near TN ensures that magneto-dielectric coupling persists in the cubic x = 0.50 system. X-ray absorption spectra reveal that Cr exists in a trivalent oxidation state and prefers the octahedral (Oh)-site, replacing Mn3+. Due to a reduction in the Jahn-Teller active Mn3+ cation and an increase in the smaller Cr3+ cation, the system begins to release the geometrical frustration by lowering its degeneracy. Consequently, a phase transition, from distorted tetragonal structure to the more symmetric cubic phase, occurs.

  17. A Tesla-type repetitive nanosecond pulse generator for solid dielectric breakdown research.

    PubMed

    Zhao, Liang; Pan, Ya Feng; Su, Jian Cang; Zhang, Xi Bo; Wang, Li Min; Fang, Jin Peng; Sun, Xu; Lui, Rui

    2013-10-01

    A Tesla-type repetitive nanosecond pulse generator including a pair of electrode and a matched absorption resistor is established for the application of solid dielectric breakdown research. As major components, a built-in Tesla transformer and a gas-gap switch are designed to boost and shape the output pulse, respectively; the electrode is to form the anticipated electric field; the resistor is parallel to the electrode to absorb the reflected energy from the test sample. The parameters of the generator are a pulse width of 10 ns, a rise and fall time of 3 ns, and a maximum amplitude of 300 kV. By modifying the primary circuit of the Tesla transformer, the generator can produce both positive and negative pulses at a repetition rate of 1-50 Hz. In addition, a real-time measurement and control system is established based on the solid dielectric breakdown requirements for this generator. With this system, experiments on test samples made of common insulation materials in pulsed power systems are conducted. The preliminary experimental results show that the constructed generator is capable to research the solid dielectric breakdown phenomenon on a nanosecond time scale.

  18. Silver Film Surface Modification by Ion Bombardment Decreases Surface Plasmon Resonance Absorption.

    PubMed

    Fryauf, David M; Diaz Leon, Juan J; Phillips, Andrew C; Kobayashi, Nobuhiko P

    2017-05-10

    Silver thin films covered with dielectric films serving as protective coatings are desired for telescope mirrors, but durable coatings have proved elusive. As part of an effort to develop long-lived protected-silver mirrors, silver thin films were deposited by electron beam evaporation using a physical vapor deposition system at the University of California Observatories Astronomical Coatings Lab. The silver films were later covered with a stack of dielectric films utilizing silicon nitride and titanium dioxide deposited by ion-assisted electron beam evaporation to fabricate protected mirrors. In-situ argon ion bombardment was introduced after silver deposition and prior to the deposition of dielectric films to assess its effects on the performance of the mirrors. We found that ion bombardment of the silver influenced surface morphology and reflectivity, and these effects correlated with time between silver deposition and ion bombardment. The overall reflectivity at wavelengths in the range of 350-800 nm was found to improve due to ion bombardment, which was qualitatively interpreted as a result of decreased surface plasmon resonance coupling. We suggest that the observed decrease in coupling is caused by silver grain boundary pinning due to ion bombardment suppressing silver surface diffusion, forming smoother silver-dielectric interfaces.

  19. Optimization of effective absorption enhancement of paired-strips gold nanoantennas arrays in organic thin-films

    NASA Astrophysics Data System (ADS)

    Yang, Zih-Ying; Su, Chen-Wei; Chen, Kuo-Ping

    2018-01-01

    This study sought to optimize the dimensional characteristics of paired-strips gold nanoantennas embedded in a P3HT: PCBM thin-film by taking into account the tradeoff between the size of the nanostructures and absorber layer as well as the gaps between nanoparticles, to maximize the effective absorption enhancement. The average enhancement behavior within the working region was discussed using integral analysis, which is important for overall enhancement. The discussion would focus on comparing the bands' features of paired-strips nanoantennas embedded in a dielectric thin-film, and in air. By the average absorption 3D slices plots, in which the dimension width, height, and gap are changed with a fixed wavelength; the optimized dimension of paired-strips nanoantennas could be realized. Fixing the period (400 nm) of paired-strips nanoantennas embedded in P3HT:PCBM thin-films (120 nm in thickness) enhanced absorption by 9.8 times.

  20. Development of CIP/graphite composite additives for electromagnetic wave absorption applications

    NASA Astrophysics Data System (ADS)

    Woo, Soobin; Yoo, Chan-Sei; Kim, Hwijun; Lee, Mijung; Quevedo-Lopez, Manuel; Choi, Hyunjoo

    2017-09-01

    In this study, the electromagnetic (EM) wave absorption ability of carbonyl iron powder (CIP)/graphite composites produced by ball milling were studied in a range of 28.5 GHz to examine the effects of the morphology and volume fraction of graphite on EM wave absorption ability. The results indicated that a ball milling technique was effective in exfoliating the graphite and covering it with CIP, thereby markedly increasing the specific surface area of the hybrid powder. The increase in the surface area and hybridization with dielectric loss materials (i.e., graphite) improved EM absorbing properties of CIP in the range of S and X bands. Specifically, the CIP/graphite composite containing 3 wt% graphite exhibited electromagnetic wave absorption of -13 dB at 7 GHz, -21 dB at 5.8 GHz, and -29 dB at 4.3 GHz after 1 h, 8 h, and 16 h of milling, respectively. [Figure not available: see fulltext.

  1. Absorption Voltages and Insulation Resistance in Ceramic Capacitors with Cracks

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander

    2014-01-01

    Time dependence of absorption voltages (V(sub abs)) in different types of low-voltage X5R and X7R ceramic capacitors was monitored for a maximum duration of hundred hours after polarization. To evaluate the effect of mechanical defects on V(sub abs)), cracks in the dielectric were introduced either mechanically or by thermal shock. The maximum absorption voltage, time to roll-off, and the rate of voltage decrease are shown to depend on the crack-related leakage currents and insulation resistance in the parts. A simple model that is based on the Dow equivalent circuit for capacitors with absorption has been developed to assess the insulation resistance of capacitors. Standard measurements of the insulation resistance, contrary to the measurements based on V(sub abs)), are not sensitive to the presence of mechanical defects and fail to reveal capacitors with cracks.

  2. High efficient light absorption and nanostructure-dependent birefringence of a metal-dielectric symmetrical layered structure

    NASA Astrophysics Data System (ADS)

    Jen, Yi-Jun; Jhang, Yi-Ciang; Liu, Wei-Chih

    2017-08-01

    A multilayer that comprises ultra-thin metal and dielectric films has been investigated and applied as a layered metamaterial. By arranging metal and dielectric films alternatively and symmetrically, the equivalent admittance and refractive index can be tailored separately. The tailored admittance and refractive index enable us to design optical filters with more flexibility. The admittance matching is achieved via the admittance tracing in the normalized admittance diagram. In this work, an ultra-thin light absorber is designed as a multilayer composed of one or several cells. Each cell is a seven-layered film stack here. The design concept is to have the extinction as large as possible under the condition of admittance matching. For a seven-layered symmetrical film stack arranged as Ta2O5 (45 nm)/ a-Si (17 nm)/ Cr (30 nm)/ Al (30 nm)/ Cr (30 nm)/ a-Si (17 nm)/ Ta2O5 (45 nm), its mean equivalent admittance and extinction coefficient over the visible regime is 1.4+0.2i and 2.15, respectively. The unit cell on a transparent BK7 glass substrate absorbs 99% of normally incident light energy for the incident medium is glass. On the other hand, a transmission-induced metal-dielectric film stack is investigated by using the admittance matching method. The equivalent anisotropic property of the metal-dielectric multilayer varied with wavelength and nanostructure are investigated here.

  3. Thin-film composite materials as a dielectric layer for flexible metal-insulator-metal capacitors.

    PubMed

    Tiwari, Jitendra N; Meena, Jagan Singh; Wu, Chung-Shu; Tiwari, Rajanish N; Chu, Min-Ching; Chang, Feng-Chih; Ko, Fu-Hsiang

    2010-09-24

    A new organic-organic nanoscale composite thin-film (NCTF) dielectric has been synthesized by solution deposition of 1-bromoadamantane and triblock copolymer (Pluronic P123, BASF, EO20-PO70-EO20), in which the precursor solution has been achieved with organic additives. We have used a sol-gel process to make a metal-insulator-metal capacitor (MIM) comprising a nanoscale (10 nm-thick) thin-film on a flexible polyimide (PI) substrate at room temperature. Scanning electron microscope and atomic force microscope revealed that the deposited NCTFs were crack-free, uniform, highly resistant to moisture absorption, and well adhered on the Au-Cr/PI. The electrical properties of 1-bromoadamantane-P123 NCTF were characterized by dielectric constant, capacitance, and leakage current measurements. The 1-bromoadamantane-P123 NCTF on the PI substrate showed a low leakage current density of 5.5 x 10(-11) A cm(-2) and good capacitance of 2.4 fF at 1 MHz. In addition, the calculated dielectric constant of 1-bromoadamantane-P123 NCTF was 1.9, making them suitable candidates for use in future flexible electronic devices as a stable intermetal dielectric. The electrical insulating properties of 1-bromoadamantane-P123 NCTF have been improved due to the optimized dipole moments of the van der Waals interactions.

  4. Optical-model potential for electron and positron elastic scattering by atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salvat, Francesc

    2003-07-01

    An optical-model potential for systematic calculations of elastic scattering of electrons and positrons by atoms and positive ions is proposed. The electrostatic interaction is determined from the Dirac-Hartree-Fock self-consistent atomic electron density. In the case of electron projectiles, the exchange interaction is described by means of the local-approximation of Furness and McCarthy. The correlation-polarization potential is obtained by combining the correlation potential derived from the local density approximation with a long-range polarization interaction, which is represented by means of a Buckingham potential with an empirical energy-dependent cutoff parameter. The absorption potential is obtained from the local-density approximation, using the Born-Ochkurmore » approximation and the Lindhard dielectric function to describe the binary collisions with a free-electron gas. The strength of the absorption potential is adjusted by means of an empirical parameter, which has been determined by fitting available absolute elastic differential cross-section data for noble gases and mercury. The Dirac partial-wave analysis with this optical-model potential provides a realistic description of elastic scattering of electrons and positrons with energies in the range from {approx}100 eV up to {approx}5 keV. At higher energies, correlation-polarization and absorption corrections are small and the usual static-exchange approximation is sufficiently accurate for most practical purposes.« less

  5. All-dielectric planar chiral metasurface with gradient geometric phase.

    PubMed

    Ma, Zhijie; Li, Yi; Li, Yang; Gong, Yandong; Maier, Stefan A; Hong, Minghui

    2018-03-05

    Planar optical chirality of a metasurface measures its differential response between left and right circularly polarized (CP) lights and governs the asymmetric transmission of CP lights. In 2D ultra-thin plasmonic structures the circular dichroism is limited to 25% in theory and it requires high absorption loss. Here we propose and numerically demonstrate a planar chiral all-dielectric metasurface that exhibits giant circular dichroism and transmission asymmetry over 0.8 for circularly polarized lights with negligible loss, without bringing in bianisotropy or violating reciprocity. The metasurface consists of arrays of high refractive index germanium Z-shape resonators that break the in-plane mirror symmetry and induce cross-polarization conversion. Furthermore, at the transmission peak of one handedness, the transmitted light is efficiently converted into the opposite circular polarization state, with a designated geometric phase depending on the orientation angle of the optical element. In this way, the optical component sets before and after the metasurface to filter the light of certain circular polarization states are not needed and the metasurface can function under any linear polarization, in contrast to the conventional setup for geometry phase based metasurfaces. Anomalous transmission and two-dimensional holography based on the geometric phase chiral metasurface are numerically demonstrate as proofs of concept.

  6. Differential evolution algorithm based photonic structure design: numerical and experimental verification of subwavelength λ/5 focusing of light.

    PubMed

    Bor, E; Turduev, M; Kurt, H

    2016-08-01

    Photonic structure designs based on optimization algorithms provide superior properties compared to those using intuition-based approaches. In the present study, we numerically and experimentally demonstrate subwavelength focusing of light using wavelength scale absorption-free dielectric scattering objects embedded in an air background. An optimization algorithm based on differential evolution integrated into the finite-difference time-domain method was applied to determine the locations of each circular dielectric object with a constant radius and refractive index. The multiobjective cost function defined inside the algorithm ensures strong focusing of light with low intensity side lobes. The temporal and spectral responses of the designed compact photonic structure provided a beam spot size in air with a full width at half maximum value of 0.19λ, where λ is the wavelength of light. The experiments were carried out in the microwave region to verify numerical findings, and very good agreement between the two approaches was found. The subwavelength light focusing is associated with a strong interference effect due to nonuniformly arranged scatterers and an irregular index gradient. Improving the focusing capability of optical elements by surpassing the diffraction limit of light is of paramount importance in optical imaging, lithography, data storage, and strong light-matter interaction.

  7. Differential evolution algorithm based photonic structure design: numerical and experimental verification of subwavelength λ/5 focusing of light

    PubMed Central

    Bor, E.; Turduev, M.; Kurt, H.

    2016-01-01

    Photonic structure designs based on optimization algorithms provide superior properties compared to those using intuition-based approaches. In the present study, we numerically and experimentally demonstrate subwavelength focusing of light using wavelength scale absorption-free dielectric scattering objects embedded in an air background. An optimization algorithm based on differential evolution integrated into the finite-difference time-domain method was applied to determine the locations of each circular dielectric object with a constant radius and refractive index. The multiobjective cost function defined inside the algorithm ensures strong focusing of light with low intensity side lobes. The temporal and spectral responses of the designed compact photonic structure provided a beam spot size in air with a full width at half maximum value of 0.19λ, where λ is the wavelength of light. The experiments were carried out in the microwave region to verify numerical findings, and very good agreement between the two approaches was found. The subwavelength light focusing is associated with a strong interference effect due to nonuniformly arranged scatterers and an irregular index gradient. Improving the focusing capability of optical elements by surpassing the diffraction limit of light is of paramount importance in optical imaging, lithography, data storage, and strong light-matter interaction. PMID:27477060

  8. Approaching perfect absorption of monolayer molybdenum disulfide at visible wavelengths using critical coupling.

    PubMed

    Jiang, Xiaoyun; Wang, Tao; Xiao, Shuyuan; Yan, Xicheng; Cheng, Le; Zhong, Qingfang

    2018-08-17

    A simple perfect absorption structure is proposed to achieve the high efficiency light absorption of monolayer molybdenum disulfide (MoS 2 ) by the critical coupling mechanism of guided resonances. The results of numerical simulation and theoretical analysis show that the light absorption in this atomically thin layer can be as high as 98.3% at the visible wavelengths, which is over 12 times more than that of a bare monolayer MoS 2 . In addition, the operating wavelength can be tuned flexibly by adjusting the radius of the air hole and the thickness of the dielectric layers, which is of great practical significance to improve the efficiency and selectivity of the absorption in monolayer MoS 2 . The novel idea of using critical coupling to enhance the light-MoS 2 interaction can be also adopted in other atomically thin materials. The meaningful improvement and tunability of the absorption in monolayer MoS 2 provides a good prospect for the realization of high-performance MoS 2 -based optoelectronic applications, such as photodetection and photoluminescence.

  9. First principle investigation of electronic structure, chemical bonding and optical properties of tetrabarium gallium trinitride oxide single crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Saleem Ayaz, E-mail: sayaz_usb@yahoo.com; Azam, Sikander

    The electronic band structure, valence electron charge density and optical susceptibilities of tetrabarium gallium trinitride (TGT) were calculated via first principle study. The electronic band structure calculation describes TGT as semiconductor having direct band gap of 1.38 eV. The valence electronic charge density contour verified the non-polar covalent nature of the bond. The absorption edge and first peak of dielectric tensor components showed electrons transition from N-p state to Ba-d state. The calculated uniaxial anisotropy (0.4842) and birefringence (−0.0061) of present paper is prearranged as follow the spectral components of the dielectric tensor. The first peak in energy loss functionmore » (ELOS) shows the energy loss of fast traveling electrons in the material. The first sharp peak produced in ELOS around 10.5 eV show plasmon loss having plasma frequencies 0.1536, 0.004 and 0.066 of dielectric tensor components. This plasmon loss also cause decrease in reflectivity spectra.« less

  10. Dipolar response of hydrated proteins

    NASA Astrophysics Data System (ADS)

    Matyushov, Dmitry V.

    2012-02-01

    The paper presents an analytical theory and numerical simulations of the dipolar response of hydrated proteins in solution. We calculate the effective dielectric constant representing the average dipole moment induced at the protein by a uniform external field. The dielectric constant shows a remarkable variation among the proteins, changing from 0.5 for ubiquitin to 640 for cytochrome c. The former value implies a negative dipolar susceptibility, that is a dia-electric dipolar response and negative dielectrophoresis. It means that ubiquitin, carrying an average dipole of ≃240 D, is expected to repel from the region of a stronger electric field. This outcome is the result of a negative cross-correlation between the protein and water dipoles, compensating for the positive variance of the intrinsic protein dipole in the overall dipolar susceptibility. In contrast to the neutral ubiquitin, charged proteins studied here show para-electric dipolar response and positive dielectrophoresis. The study suggests that the dipolar response of proteins in solution is strongly affected by the coupling of the protein surface charge to the hydration water. The protein-water dipolar cross-correlations are long-ranged, extending ˜2 nm from the protein surface into the bulk. A similar correlation length of about 1 nm is seen for the electrostatic potential produced by the hydration water inside the protein. The analysis of numerical simulations suggests that the polarization of the protein-water interface is highly heterogeneous and does not follow the standard dielectric results for cavities carved in dielectrics. The polarization of the water shell gains in importance, relative to the intrinsic protein dipole, at high frequencies, above the protein Debye peak. The induced interfacial dipole can be either parallel or antiparallel to the protein dipole, depending on the distribution of the protein surface charge. As a result, the high-frequency absorption of the protein solution can be either higher or lower than the absorption of water. Both scenarios have been experimentally observed in the THz window of radiation.

  11. Dipolar response of hydrated proteins.

    PubMed

    Matyushov, Dmitry V

    2012-02-28

    The paper presents an analytical theory and numerical simulations of the dipolar response of hydrated proteins in solution. We calculate the effective dielectric constant representing the average dipole moment induced at the protein by a uniform external field. The dielectric constant shows a remarkable variation among the proteins, changing from 0.5 for ubiquitin to 640 for cytochrome c. The former value implies a negative dipolar susceptibility, that is a dia-electric dipolar response and negative dielectrophoresis. It means that ubiquitin, carrying an average dipole of ≃240 D, is expected to repel from the region of a stronger electric field. This outcome is the result of a negative cross-correlation between the protein and water dipoles, compensating for the positive variance of the intrinsic protein dipole in the overall dipolar susceptibility. In contrast to the neutral ubiquitin, charged proteins studied here show para-electric dipolar response and positive dielectrophoresis. The study suggests that the dipolar response of proteins in solution is strongly affected by the coupling of the protein surface charge to the hydration water. The protein-water dipolar cross-correlations are long-ranged, extending ~2 nm from the protein surface into the bulk. A similar correlation length of about 1 nm is seen for the electrostatic potential produced by the hydration water inside the protein. The analysis of numerical simulations suggests that the polarization of the protein-water interface is highly heterogeneous and does not follow the standard dielectric results for cavities carved in dielectrics. The polarization of the water shell gains in importance, relative to the intrinsic protein dipole, at high frequencies, above the protein Debye peak. The induced interfacial dipole can be either parallel or antiparallel to the protein dipole, depending on the distribution of the protein surface charge. As a result, the high-frequency absorption of the protein solution can be either higher or lower than the absorption of water. Both scenarios have been experimentally observed in the THz window of radiation.

  12. Ultrawideband temperature-dependent dielectric properties of animal liver tissue in the microwave frequency range.

    PubMed

    Lazebnik, Mariya; Converse, Mark C; Booske, John H; Hagness, Susan C

    2006-04-07

    The development of ultrawideband (UWB) microwave diagnostic and therapeutic technologies, such as UWB microwave breast cancer detection and hyperthermia treatment, is facilitated by accurate knowledge of the temperature- and frequency-dependent dielectric properties of biological tissues. To this end, we characterize the temperature-dependent dielectric properties of a representative tissue type-animal liver-from 0.5 to 20 GHz. Since discrete-frequency linear temperature coefficients are impractical and inappropriate for applications spanning wide frequency and temperature ranges, we propose a novel and compact data representation technique. A single-pole Cole-Cole model is used to fit the dielectric properties data as a function of frequency, and a second-order polynomial is used to fit the Cole-Cole parameters as a function of temperature. This approach permits rapid estimation of tissue dielectric properties at any temperature and frequency.

  13. Band alignment of semiconductors and insulators using dielectric-dependent hybrid functionals: Toward high-throughput evaluation

    NASA Astrophysics Data System (ADS)

    Hinuma, Yoyo; Kumagai, Yu; Tanaka, Isao; Oba, Fumiyasu

    2017-02-01

    The band alignment of prototypical semiconductors and insulators is investigated using first-principles calculations. A dielectric-dependent hybrid functional, where the nonlocal Fock exchange mixing is set at the reciprocal of the static electronic dielectric constant and the exchange correlation is otherwise treated as in the Perdew-Burke-Ernzerhof (PBE0) hybrid functional, is used as well as the Heyd-Scuseria-Ernzerhof (HSE06) hybrid and PBE semilocal functionals. In addition, these hybrid functionals are applied non-self-consistently to accelerate calculations. The systems considered include C and Si in the diamond structure, BN, AlP, AlAs, AlSb, GaP, GaAs, InP, ZnS, ZnSe, ZnTe, CdS, CdSe, and CdTe in the zinc-blende structure, MgO in the rocksalt structure, and GaN and ZnO in the wurtzite structure. Surface band positions with respect to the vacuum level, i.e., ionization potentials and electron affinities, and band offsets at selected zinc-blende heterointerfaces are evaluated as well as band gaps. The non-self-consistent approach speeds up hybrid functional calculations by an order of magnitude, while it is shown using HSE06 that the resultant band gaps and surface band positions are similar to the self-consistent results. The dielectric-dependent hybrid functional improves the band gaps and surface band positions of wide-gap systems over HSE06. The interfacial band offsets are predicted with a similar degree of precision. Overall, the performance of the dielectric-dependent hybrid functional is comparable to the G W0 approximation based on many-body perturbation theory in the prediction of band gaps and alignments for most systems. The present results demonstrate that the dielectric-dependent hybrid functional, particularly when applied non-self-consistently, is promising for applications to systematic calculations or high-throughput screening that demand both computational efficiency and sufficient accuracy.

  14. Bathymetry and composition of Titan's Ontario Lacus derived from Monte Carlo-based waveform inversion of Cassini RADAR altimetry data

    NASA Astrophysics Data System (ADS)

    Mastrogiuseppe, M.; Hayes, A. G.; Poggiali, V.; Lunine, J. I.; Lorenz, R. D.; Seu, R.; Le Gall, A.; Notarnicola, C.; Mitchell, K. L.; Malaska, M.; Birch, S. P. D.

    2018-01-01

    Recently, the Cassini RADAR was used to sound hydrocarbon lakes and seas on Saturn's moon Titan. Since the initial discovery of echoes from the seabed of Ligeia Mare, the second largest liquid body on Titan, a dedicated radar processing chain has been developed to retrieve liquid depth and microwave absorptivity information from RADAR altimetry of Titan's lakes and seas. Herein, we apply this processing chain to altimetry data acquired over southern Ontario Lacus during Titan fly-by T49 in December 2008. The new signal processing chain adopts super resolution techniques and dedicated taper functions to reveal the presence of reflection from Ontario's lakebed. Unfortunately, the extracted waveforms from T49 are often distorted due to signal saturation, owing to the extraordinarily strong specular reflections from the smooth lake surface. This distortion is a function of the saturation level and can introduce artifacts, such as signal precursors, which complicate data interpretation. We use a radar altimetry simulator to retrieve information from the saturated bursts and determine the liquid depth and loss tangent of Ontario Lacus. Received waveforms are represented using a two-layer model, where Cassini raw radar data are simulated in order to reproduce the effects of receiver saturation. A Monte Carlo based approach along with a simulated waveform look-up table is used to retrieve parameters that are given as inputs to a parametric model which constrains radio absorption of Ontario Lacus and retrieves information about the dielectric properties of the liquid. We retrieve a maximum depth of 50 m along the radar transect and a best-fit specific attenuation of the liquid equal to 0.2 ± 0.09 dB m-1 that, when converted into loss tangent, gives tanδ = 7 ± 3 × 10-5. When combined with laboratory measured cryogenic liquid alkane dielectric properties and the variable solubility of nitrogen in ethane-methane mixtures, the best-fit loss tangent is consistent with a ternary mixture of 51% methane, 38% ethane and 11% nitrogen by volume.

  15. Characterization of transceive surface element designs for 7 tesla magnetic resonance imaging of the prostate: radiative antenna and microstrip.

    PubMed

    Ipek, O; Raaijmakers, A J E; Klomp, D W J; Lagendijk, J J W; Luijten, P R; van den Berg, C A T

    2012-01-21

    Ultra-high field magnetic resonance (≥7 tesla) imaging (MRI) faces challenges with respect to efficient spin excitation and signal reception from deeply situated organs. Traditional radio frequency surface coil designs relying on near-field coupling are suboptimal at high field strengths. Better signal penetration can be obtained by designing a radiative antenna in which the energy flux is directed to the target location. In this paper, two different radiative antenna designs are investigated to be used as transceive elements, which employ different dielectric permittivities for the antenna substrate. Their transmit and receive performances in terms of B(+)(1), local SAR (specific absorption rate) and SNR (signal-to-noise ratio) were compared using extensive electromagnetic simulations and MRI measurements with traditional surface microstrip coils. Both simulations and measurements demonstrated that the radiative element shows twofold gain in B(+)(1) and SNR at 10 cm depth, and additionally a comparable SAR peak value. In terms of transmit performance, the radiative antenna with a dielectric permittivity of 37 showed a 24% more favorable local SAR(10g avg)/(B(+)(1))(2) ratio than the radiative antenna with a dielectric permittivity of 90. In receive, the radiative element with a dielectric permittivity of 90 resulted in a 20% higher SNR for shallow depths, but for larger depths this difference diminished compared to the radiative element with a dielectric permittivity of 37. Therefore, to image deep anatomical regions effectively, the radiative antenna with a dielectric permittivity of 37 is favorable.

  16. Effects of oxygen partial pressure, deposition temperature, and annealing on the optical response of CdS:O thin films as studied by spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Junda, Maxwell M.; Grice, Corey R.; Subedi, Indra; Yan, Yanfa; Podraza, Nikolas J.

    2016-07-01

    Ex-situ spectroscopic ellipsometry measurements are made on radio frequency magnetron sputtered oxygenated cadmium sulfide (CdS:O) thin films. Films are deposited onto glass substrates at room temperature and at 270 °C with varying oxygen to total gas flow ratios in the sputtering ambient. Ellipsometric spectra from 0.74 to 5.89 eV are collected before and after annealing at 607 °C to simulate the thermal processes during close-space sublimation of overlying cadmium telluride in that solar cell configuration. Complex dielectric function (ɛ = ɛ1 + iɛ2) spectra are extracted for films as a function of oxygen gas flow ratio, deposition temperature, and post-deposition annealing using a parametric model accounting for critical point transitions and an Urbach tail for sub-band gap absorption. The results suggest an inverse relationship between degree of crystallinity and oxygen gas flow ratio, whereas annealing is shown to increase crystallinity in all samples. Direct band gap energies are determined from the parametric modeling of ɛ and linear extrapolations of the square of the absorption coefficient. As-deposited samples feature a range of band gap energies whereas annealing is shown to result in gap energies ranging only from 2.40 to 2.45 eV, which is close to typical band gaps for pure cadmium sulfide.

  17. Quantum-dot size and thin-film dielectric constant: precision measurement and disparity with simple models.

    PubMed

    Grinolds, Darcy D W; Brown, Patrick R; Harris, Daniel K; Bulovic, Vladimir; Bawendi, Moungi G

    2015-01-14

    We study the dielectric constant of lead sulfide quantum dot (QD) films as a function of the volume fraction of QDs by varying the QD size and keeping the ligand constant. We create a reliable QD sizing curve using small-angle X-ray scattering (SAXS), thin-film SAXS to extract a pair-distribution function for QD spacing, and a stacked-capacitor geometry to measure the capacitance of the thin film. Our data support a reduced dielectric constant in nanoparticles.

  18. Green’s Functions for a Theoretical Model of an Aperture Fed Stacked-Patch Microstrip Antenna

    DTIC Science & Technology

    1989-12-01

    44 4 - 1 Normalized values of D bk3b on the real axis for (a) f = 4 GHz, bib = 1.6 mm, b2b = 4.8 mm, Flb = 5 o’ 2b = 2.5 Eo’ 3b = Co, P’lb = 2b...dielectric la. bIb Thickness of dielectric lb. b2b Total thickness of dielectrics lb and 2b. Cli Observer cell on the aperture, i is an index variable...interface 3b (patch 2). Sfj Source current cell on the feedline. tb Thickness of dielectric layer 2b ( b2b - bib). T lj Vector rooftop basis function

  19. ALON® Components With Tunable Dielectric Properties for High Power Accelerator Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldman, Lee M; Jha, Santosh K; Lobur, Nicole

    There are challenges in linear particle accelerators associated with the need to suppress “higher order modes” (HOMs). HOMs are detrimental to accelerator operation as they are a source of beam instability. The absorption/suppression of HOMs and dissipation of the energy of higher order modes is vital to the function of these accelerators. Surmet has identified ALON® Optical Ceramic (Aluminum Oxynitride), a hard, durable ceramic that is fabricated through conventional powder processing techniques, as a potential material for HOM absorber. In this Phase I program, Surmet has produced new ALON-composite HOM absorber materials that function at both ambient and cryogenic temperatures.more » The composite materials were developed and evaluated in collaboration with Thomas Jefferson National Labs. Success in this Phase I and the potential Phase II will demonstrate the utility of ALON composite components for RF absorbing applications and lay the groundwork for commercialization of such products, with applications in basic science, medical and digital electronics industries.« less

  20. Charge Transport in Trehalose-Derived Sugar Glasses

    NASA Astrophysics Data System (ADS)

    Nemzer, Louis; Navati, Mahantesh; Friedman, Joel; Epstein, Arthur

    2013-03-01

    Trehalose is a naturally occurring disaccharide with a well-known ability to preserve the biological function of proteins and cell membranes during periods of stress, including dehydration, by stabilizing the conformations of the macromolecules within a glassy matrix. This phenomenon makes use of the propensity of trehalose to interact strongly with protein functional groups and solvating water molecules via hydrogen bonding. Recently, it has been shown that trehalose sugar glasses also support long range charge transport in the form of oxidation-reduction reactions occurring between spatially separated donors and acceptors. Based on an Arrhenius conductivity analysis, along with IR-absorption and dielectric spectroscopy data, we propose that a Grotthuss-like proton hopping mechanism is responsible for the high charge carrier mobility and observed bias-dependent apparent activation energy. The possibility is raised for novel redox reactions to be performed on proteins constrained to specific 3D conformations. This could lead to a deeper understanding of biological processes, such as anhydrobiosis, as well as the development of new biomimetic photovoltaic devices.

Top