Sample records for dielectric layer thickness

  1. Contact method to allow benign failure in ceramic capacitor having self-clearing feature

    DOEpatents

    Myers, John D; Taylor, Ralph S

    2012-06-26

    A capacitor exhibiting a benign failure mode has a first electrode layer, a first ceramic dielectric layer deposited on a surface of the first electrode, and a second electrode layer disposed on the ceramic dielectric layer, wherein selected areas of the ceramic dielectric layer have additional dielectric material of sufficient thickness to exhibit a higher dielectric breakdown voltage than the remaining majority of the dielectric layer. The added thickness of the dielectric layer in selected areas allows lead connections to be made at the selected areas of greater dielectric thickness while substantially eliminating a risk of dielectric breakdown and failure at the lead connections, whereby the benign failure mode is preserved.

  2. Method for fabrication of crack-free ceramic dielectric films

    DOEpatents

    Ma, Beihai; Narayanan, Manoj; Balachandran, Uthamalingam; Chao, Sheng; Liu, Shanshan

    2016-05-31

    The invention provides a process for forming crack-free dielectric films on a substrate. The process comprises the application of a dielectric precursor layer of a thickness from about 0.3 .mu.m to about 1.0 .mu.m to a substrate. The deposition is followed by low temperature heat pretreatment, prepyrolysis, pyrolysis and crystallization step for each layer. The deposition, heat pretreatment, prepyrolysis, pyrolysis and crystallization are repeated until the dielectric film forms an overall thickness of from about 1.5 .mu.m to about 20.0 .mu.m and providing a final crystallization treatment to form a thick dielectric film. The process provides a thick crack-free dielectric film on a substrate, the dielectric forming a dense thick crack-free dielectric having an overall dielectric thickness of from about 1.5 .mu.m to about 20.0 .mu.m.

  3. Method for fabrication of crack-free ceramic dielectric films

    DOEpatents

    Ma, Beihai; Balachandran, Uthamalingam; Chao, Sheng; Liu, Shanshan; Narayanan, Manoj

    2014-02-11

    The invention provides a process for forming crack-free dielectric films on a substrate. The process comprise the application of a dielectric precursor layer of a thickness from about 0.3 .mu.m to about 1.0 .mu.m to a substrate. The deposition is followed by low temperature heat pretreatment, prepyrolysis, pyrolysis and crystallization step for each layer. The deposition, heat pretreatment, prepyrolysis, pyrolysis and crystallization are repeated until the dielectric film forms an overall thickness of from about 1.5 .mu.m to about 20.0 .mu.m and providing a final crystallization treatment to form a thick dielectric film. Also provided was a thick crack-free dielectric film on a substrate, the dielectric forming a dense thick crack-free dielectric having an overall dielectric thickness of from about 1.5 .mu.m to about 20.0 .mu.m.

  4. Organic field effect transistors - Study of performance parameters for different dielectric layer thickness

    NASA Astrophysics Data System (ADS)

    Assis, Anu; Shahul Hameed T., A.; Predeep, P.

    2017-06-01

    Mobility and current handling capabilities of Organic Field Effect Transistor (OFET) are vitally important parameters in the electrical performance where the material parameters and thickness of different layers play significant role. In this paper, we report the simulation of an OFET using multi physics tool, where the active layer is pentacene and Poly Methyl Methacrylate (PMMA) forms the dielectric. Electrical characterizations of the OFET on varying the thickness of the dielectric layer from 600nm to 400nm are simulated and drain current, transconductance and mobility are analyzed. In the study it is found that even though capacitance increases with reduction in dielectric layer thickness, the transconductance effect is reflected many more times in the mobility which in turn could be attributed to the variations in transverse electric field. The layer thickness below 300nm may result in gate leakage current points to the requirement of optimizing the thickness of different layers for better performance.

  5. Thermal conductivity and thermal boundary resistance of atomic layer deposited high-k dielectric aluminum oxide, hafnium oxide, and titanium oxide thin films on silicon

    NASA Astrophysics Data System (ADS)

    Scott, Ethan A.; Gaskins, John T.; King, Sean W.; Hopkins, Patrick E.

    2018-05-01

    The need for increased control of layer thickness and uniformity as device dimensions shrink has spurred increased use of atomic layer deposition (ALD) for thin film growth. The ability to deposit high dielectric constant (high-k) films via ALD has allowed for their widespread use in a swath of optical, optoelectronic, and electronic devices, including integration into CMOS compatible platforms. As the thickness of these dielectric layers is reduced, the interfacial thermal resistance can dictate the overall thermal resistance of the material stack compared to the resistance due to the finite dielectric layer thickness. Time domain thermoreflectance is used to interrogate both the thermal conductivity and the thermal boundary resistance of aluminum oxide, hafnium oxide, and titanium oxide films on silicon. We calculate a representative design map of effective thermal resistances, including those of the dielectric layers and boundary resistances, as a function of dielectric layer thickness, which will be of great importance in predicting the thermal resistances of current and future devices.

  6. ZrO2 Layer Thickness Dependent Electrical and Dielectric Properties of BST/ZrO2/BST Multilayer Thin Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahoo, S. K.; Misra, D.; Agrawal, D. C.

    2011-01-01

    Recently, high K materials play an important role in microelectronic devices such as capacitors, memory devices, and microwave devices. Now a days ferroelectric barium strontium titanate [Ba{sub x}Sr{sub 1-x}TiO{sub 3}, (BST)] thin film is being actively investigated for applications in dynamic random access memories (DRAM), field effect transistor (FET), and tunable devices because of its properties such as high dielectric constant, low leakage current, low dielectric loss, and high dielectric breakdown strength. Several approaches have been used to optimize the dielectric and electrical properties of BST thin films such as doping, graded compositions, and multilayer structures. We have found thatmore » inserting a ZrO{sub 2} layer in between two BST layers results in a significant reduction in dielectric constant, loss tangent, and leakage current in the multilayer thin films. Also it is shown that the properties of multilayer structure are found to depend strongly on the sublayer thicknesses. In this work the effect of ZrO{sub 2} layer thickness on the dielectric, ferroelectric as well as electrical properties of BST/ZrO{sub 2}/BST multilayer structure is studied. The multilayer Ba{sub 0.8}Sr{sub 0.2}TiO{sub 3}/ZrO{sub 2}/Ba{sub 0.8}Sr{sub 0.2}TiO{sub 3} film is deposited by a sol-gel process on the platinized Si substrate. The thickness of the middle ZrO{sub 2} layer is varied while keeping the top and bottom BST layer thickness as fixed. It is observed that the dielectric constant, dielectric loss tangent, and leakage current of the multilayer films reduce with the increase of ZrO{sub 2} layer thickness and hence suitable for memory device applications. The ferroelectric properties of the multilayer film also decrease with the ZrO{sub 2} layer thickness.« less

  7. Method for fabrication of crack-free ceramic dielectric films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Beihai; Narayanan, Manoj; Balachandran, Uthamalingam

    The invention provides a process for forming crack-free dielectric films on a substrate. The process comprises the application of a dielectric precursor layer of a thickness from about 0.3 .mu.m to about 1.0 .mu.m to a substrate. The deposition is followed by low temperature heat pretreatment, prepyrolysis, pyrolysis and crystallization step for each layer. The deposition, heat pretreatment, prepyrolysis, pyrolysis and crystallization are repeated until the dielectric film forms an overall thickness of from about 1.5 .mu.m to about 20.0 .mu.m and providing a final crystallization treatment to form a thick dielectric film. The process provides a thick crack-free dielectricmore » film on a substrate, the dielectric forming a dense thick crack-free dielectric having an overall dielectric thickness of from about 1.5 .mu.m to about 20.0 .mu.m.« less

  8. Casimir Pressure in Mds-Structures

    NASA Astrophysics Data System (ADS)

    Yurova, V. A.; Bukina, M. N.; Churkin, Yu. V.; Fedortsov, A. B.; Klimchitskaya, G. L.

    2012-07-01

    The Casimir pressure on the dielectric layer in metal-dielectric-semiconductor (MDS) structures is calculated in the framework of the Lifshitz theory at nonzero temperature. In this calculation the standard parameters of semiconductor devices with a thin dielectric layer are used. We consider the thickness of a layer decreasing from 40 to 1 nm. At the shortest thickness the Casimir pressure achieves 8 MPa. At small thicknesses the results are compared with the predictions of nonrelativistic theory.

  9. Thick adherent dielectric films on plastic substrates and method for depositing same

    DOEpatents

    Wickboldt, Paul; Ellingboe, Albert R.; Theiss, Steven D.; Smith, Patrick M.

    2002-01-01

    Thick adherent dielectric films deposited on plastic substrates for use as a thermal barrier layer to protect the plastic substrates from high temperatures which, for example, occur during laser annealing of layers subsequently deposited on the dielectric films. It is desirable that the barrier layer has properties including: a thickness of 1 .mu.m or greater, adheres to a plastic substrate, does not lift-off when cycled in temperature, has few or no cracks and does not crack when subjected to bending, resistant to lift-off when submersed in fluids, electrically insulating and preferably transparent. The thick barrier layer may be composed, for example, of a variety of dielectrics and certain metal oxides, and may be deposited on a variety of plastic substrates by various known deposition techniques. The key to the method of forming the thick barrier layer on the plastic substrate is maintaining the substrate cool during deposition of the barrier layer. Cooling of the substrate maybe accomplished by the use of a cooling chuck on which the plastic substrate is positioned, and by directing cooling gas, such as He, Ar and N.sub.2, between the plastic substrate and the cooling chucks. Thick adherent dielectric films up to about 5 .mu.m have been deposited on plastic substrates which include the above-referenced properties, and which enable the plastic substrates to withstand laser processing temperatures applied to materials deposited on the dielectric films.

  10. Properties of dielectric dead layers for SrTiO3 thin films on Pt electrodes

    NASA Astrophysics Data System (ADS)

    Finstrom, Nicholas H.; Cagnon, Joel; Stemmer, Susanne

    2007-02-01

    Dielectric measurements as a function of temperature were used to characterize the properties of the dielectric dead layers in parallel-plate capacitors with differently textured SrTiO3 thin films and Pt electrodes. The apparent thickness dependence of the permittivity was described with low-permittivity passive (dead) layers at the interfaces connected in series with the bulk of the SrTiO3 film. Interfacial capacitance densities changed with the film microstructure and were weakly temperature dependent. Estimates of the dielectric dead layer thickness and permittivity were limited by the film surface roughness (˜5nm ). The consequences for the possible origins of dielectric dead layers that have been proposed in the literature are discussed.

  11. Giant dielectric constant dominated by Maxwell-Wagner relaxation in Al{sub 2}O{sub 3}/TiO{sub 2} nanolaminates synthesized by atomic layer deposition.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, W.; Auciello, O.; Premnath, R. N.

    2010-01-01

    Nanolaminates consisting of Al{sub 2}O{sub 3} and TiO{sub 2} oxide sublayers were synthesized by using atomic layer deposition to produce individual layers with atomic scale thickness control. The sublayer thicknesses were kept constant for each multilayer structure, and were changed from 50 to 0.2 nm for a series of different samples. Giant dielectric constant ({approx}1000) was observed when the sublayer thickness is less than 0.5 nm, which is significantly larger than that of Al{sub 2}O{sub 3} and TiO{sub 2} dielectrics. Detailed investigation revealed that the observed giant dielectric constant is originated from the Maxwell-Wagner type dielectric relaxation.

  12. Design and analysis of a low actuation voltage electrowetting-on-dielectric microvalve for drug delivery applications.

    PubMed

    Samad, Mst Fateha; Kouzani, Abbas Z

    2014-01-01

    This paper presents a low actuation voltage microvalve with optimized insulating layers that manipulates a conducting ferro-fluid droplet by the principle of electrowetting-on-dielectric (EWOD). The proposed EWOD microvalve contains an array of chromium (Cr) electrodes on the soda-lime glass substrate, covered by both dielectric and hydrophobic layers. Various dielectric layers including Su-8 2002, Polyvinylidenefluoride (PVDF) and Cyanoethyl pullulan (CEP), and thin (50 nm) hydrophobic Teflon and Cytonix are used to analyze the EWOD microvalves at different voltages. The Finite Element Method (FEM) based software, Coventorware is used to carry out the simulation analysis. It is observed that the EWOD microvalve having a CEP dielectric layer with dielectric constant of about 20 and thickness of 1 μm, and a Cytonix hydrophobic layer with thickness of 50 nm operated the conducting ferro-fluid droplet at the actuation voltage as low as 7.8 V.

  13. Reliability Evaluation of Base-Metal-Electrode (BME) Multilayer Ceramic Capacitors for Space Applications

    NASA Technical Reports Server (NTRS)

    Liu, David (Donghang)

    2011-01-01

    This paper reports reliability evaluation of BME ceramic capacitors for possible high reliability space-level applications. The study is focused on the construction and microstructure of BME capacitors and their impacts on the capacitor life reliability. First, the examinations of the construction and microstructure of commercial-off-the-shelf (COTS) BME capacitors show great variance in dielectric layer thickness, even among BME capacitors with the same rated voltage. Compared to PME (precious-metal-electrode) capacitors, BME capacitors exhibit a denser and more uniform microstructure, with an average grain size between 0.3 and approximately 0.5 micrometers, which is much less than that of most PME capacitors. The primary reasons that a BME capacitor can be fabricated with more internal electrode layers and less dielectric layer thickness is that it has a fine-grained microstructure and does not shrink much during ceramic sintering. This results in the BME capacitors a very high volumetric efficiency. The reliability of BME and PME capacitors was investigated using highly accelerated life testing (HALT) and regular life testing as per MIL-PRF-123. Most BME capacitors were found to fail· with an early dielectric wearout, followed by a rapid wearout failure mode during the HALT test. When most of the early wearout failures were removed, BME capacitors exhibited a minimum mean time-to-failure of more than 10(exp 5) years. Dielectric thickness was found to be a critical parameter for the reliability of BME capacitors. The number of stacked grains in a dielectric layer appears to play a significant role in determining BME capacitor reliability. Although dielectric layer thickness varies for a given rated voltage in BME capacitors, the number of stacked grains is relatively consistent, typically between 10 and 20. This may suggest that the number of grains per dielectric layer is more critical than the thickness itself for determining the rated voltage and the life expectancy of the BME capacitor. Since BME capacitors have a much smaller grain size than PME capacitors, it is reasonable to predict that BME capacitors with thinner dielectric layers may have an equivalent life expectancy to that of PME capacitors with thicker dielectric layers.

  14. Absolute Thickness Measurements on Coatings Without Prior Knowledge of Material Properties Using Terahertz Energy

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Cosgriff, Laura M.; Harder, Bryan; Zhu, Dongming; Martin, Richard E.

    2013-01-01

    This study investigates the applicability of a novel noncontact single-sided terahertz electromagnetic measurement method for measuring thickness in dielectric coating systems having either dielectric or conductive substrate materials. The method does not require knowledge of the velocity of terahertz waves in the coating material. The dielectric coatings ranged from approximately 300 to 1400 m in thickness. First, the terahertz method was validated on a bulk dielectric sample to determine its ability to precisely measure thickness and density variation. Then, the method was studied on simulated coating systems. One simulated coating consisted of layered thin paper samples of varying thicknesses on a ceramic substrate. Another simulated coating system consisted of adhesive-backed Teflon adhered to conducting and dielectric substrates. Alumina samples that were coated with a ceramic adhesive layer were also investigated. Finally, the method was studied for thickness measurement of actual thermal barrier coatings (TBC) on ceramic substrates. The unique aspects and limitations of this method for thickness measurements are discussed.

  15. Quantitative thickness measurement of polarity-inverted piezoelectric thin-film layer by scanning nonlinear dielectric microscopy

    NASA Astrophysics Data System (ADS)

    Odagawa, Hiroyuki; Terada, Koshiro; Tanaka, Yohei; Nishikawa, Hiroaki; Yanagitani, Takahiko; Cho, Yasuo

    2017-10-01

    A quantitative measurement method for a polarity-inverted layer in ferroelectric or piezoelectric thin film is proposed. It is performed nondestructively by scanning nonlinear dielectric microscopy (SNDM). In SNDM, linear and nonlinear dielectric constants are measured using a probe that converts the variation of capacitance related to these constants into the variation of electrical oscillation frequency. In this paper, we describe a principle for determining the layer thickness and some calculation results of the output signal, which are related to the radius of the probe tip and the thickness of the inverted layer. Moreover, we derive an equation that represents the relationship between the output signal and the oscillation frequency of the probe and explain how to determine the thickness from the measured frequency. Experimental results in Sc-doped AlN piezoelectric thin films that have a polarity-inverted layer with a thickness of 1.5 µm fabricated by radio frequency magnetron sputtering showed a fairly good value of 1.38 µm for the thickness of the polarity-inverted layer.

  16. Achieving polydimethylsiloxane/carbon nanotube (PDMS/CNT) composites with extremely low dielectric loss and adjustable dielectric constant by sandwich structure

    NASA Astrophysics Data System (ADS)

    Fan, Benhui; Liu, Yu; He, Delong; Bai, Jinbo

    2018-01-01

    Sandwich-structured composites of polydimethylsiloxane/carbon nanotube (PDMS/CNT) bulk between two neat PDMS thin films with different thicknesses are prepared by the spin-coating method. Taking advantage of CNT's percolation behavior, the composite keeps relatively high dielectric constant (ɛ' = 40) at a low frequency (at 100 Hz). Meanwhile, due to the existence of PDMS isolated out-layers which limits the conductivity of the composite, the composite maintains an extremely low dielectric loss (tan δ = 0.01) (at 100 Hz). Moreover, the same matrix of the out-layer and bulk can achieve excellent interfacial adhesion, and the thickness of the coating layer can be controlled by a multi-cycle way. Then, based on the experimental results, the calculation combining the percolation theory and core-shell model is used to analyze the thickness effect of the coating layer on ɛ'. The obtained relationship between the ɛ' of the composite and the thickness of the coating layer can help to optimize the sandwich structure in order to obtain the adjustable ɛ' and the extremely low tan δ.

  17. Compound surface-plasmon-polariton waves guided by a thin metal layer sandwiched between a homogeneous isotropic dielectric material and a structurally chiral material

    NASA Astrophysics Data System (ADS)

    Chiadini, Francesco; Fiumara, Vincenzo; Scaglione, Antonio; Lakhtakia, Akhlesh

    2016-03-01

    Multiple compound surface plasmon-polariton (SPP) waves can be guided by a structure consisting of a sufficiently thick layer of metal sandwiched between a homogeneous isotropic dielectric (HID) material and a dielectric structurally chiral material (SCM). The compound SPP waves are strongly bound to both metal/dielectric interfaces when the thickness of the metal layer is comparable to the skin depth but just to one of the two interfaces when the thickness is much larger. The compound SPP waves differ in phase speed, attenuation rate, and field profile, even though all are excitable at the same frequency. Some compound SPP waves are not greatly affected by the choice of the direction of propagation in the transverse plane but others are, depending on metal thickness. For fixed metal thickness, the number of compound SPP waves depends on the relative permittivity of the HID material, which can be useful for sensing applications.

  18. Wave attenuation and mode dispersion in a waveguide coated with lossy dielectric material

    NASA Technical Reports Server (NTRS)

    Lee, C. S.; Chuang, S. L.; Lee, S. W.; Lo, Y. T.

    1984-01-01

    The modal attenuation constants in a cylindrical waveguide coated with a lossy dielectric material are studied as functions of frequency, dielectric constant, and thickness of the dielectric layer. A dielectric material best suited for a large attenuation is suggested. Using Kirchhoff's approximation, the field attenuation in a coated waveguide which is illuminated by a normally incident plane wave is also studied. For a circular guide which has a diameter of two wavelengths and is coated with a thin lossy dielectric layer (omega sub r = 9.1 - j2.3, thickness = 3% of the radius), a 3 dB attenuation is achieved within 16 diameters.

  19. Real-time curling probe monitoring of dielectric layer deposited on plasma chamber wall

    NASA Astrophysics Data System (ADS)

    Hotta, Masaya; Ogawa, Daisuke; Nakamura, Keiji; Sugai, Hideo

    2018-04-01

    A microwave resonator probe called a curling probe (CP) was applied to in situ monitoring of a dielectric layer deposited on a chamber wall during plasma processing. The resonance frequency of the CP was analytically found to shift in proportion to the dielectric layer thickness; the proportionality constant was determined from a comparison with the finite-difference time-domain (FDTD) simulation result. Amorphous carbon layers deposited in acetylene inductively coupled plasma (ICP) discharge were monitored using the CP. The measured resonance frequency shift dictated the carbon layer thickness, which agreed with the results from the surface profiler and ellipsometry.

  20. Dielectric function of InGaAs in the visible

    NASA Technical Reports Server (NTRS)

    Alterovitz, S. A.; Sieg, R. E.; Yao, H. D.; Snyder, P. G.; Woollam, J. A.; Pamulapati, J.; Bhattacharya, P. K.; Sekula-Moise, P. A.

    1990-01-01

    Measurements are reported of the dielectric function of thermodynamically stable In(x)Ga(1-x)As in the composition range 0.3 equal to or less than X = to or less than 0.7. The optically thick samples of InGaAs were made by molecular beam epitaxy (MBE) in the range 0.4 = to or less than X = to or less than 0.7 and by metal-organic chemical vapor deposition (MOCVD) for X = 0.3. The MBE made samples, usually 1 micron thick, were grown on semi-insulating InP and included a strain release structure. The MOCVD sample was grown on GaAs and was 2 microns thick. The dielectric functions were measured by variable angle spectroscopic ellipsometry in the range 1.55 to 4.4 eV. The data was analyzed assuming an optically thick InGaAs material with an oxide layer on top. The thickness of this layer was estimated by comparing the results for the InP lattice matched material, i.e., X = 0.53, with results published in the literature. The top oxide layer mathematically for X = 0.3 and X = 0.53 was removed to get the dielectric function of the bare InGaAs. In addition, the dielectric function of GaAs in vacuum, after a protective arsenic layer was removed. The dielectric functions for X = 0, 0.3, and 0.53 together with the X = 1 result from the literature to evaluate an algorithm for calculating the dielectric function of InGaAs for an arbitrary value of X(0 = to or less than X = to or less than 1) were used. Results of the dielectric function calculated using the algorithm were compared with experimental data.

  1. Dielectric function of InGaAs in the visible

    NASA Technical Reports Server (NTRS)

    Alterovitz, S. A.; Yao, H. D.; Snyder, P. G.; Woolam, J. A.; Pamulapati, J.; Bhattacharya, P. K.; Sekula-Moise, P. A.; Sieg, R. E.

    1990-01-01

    Measurements are reported of the dielectric function of thermodynamically stable In(x)Ga(1-x)As in the composition range 0.3 equal to or less than X = to or less than 0.7. The optically thick samples of InGaAs were made by molecular beam epitaxy (MBE) in the range 0.4 = to or less than X = to or less than 0.7 and by metal-organic chemical vapor deposition (MOCVD) for X = 0.3. The MBE made samples, usually 1 micron thick, were grown on semi-insulating InP and included a strain release structure. The MOCVD sample was grown on GaAs and was 2 microns thick. The dielectric functions were measured by variable angle spectroscopic ellipsometry in the range 1.55 to 4.4 eV. The data was analyzed assuming an optically thick InGaAs material with an oxide layer on top. The thickness of this layer was estimated by comparing the results for the InP lattice matched material, i.e., X = 0.53, with results published in the literature. The top oxide layer mathematically for X = 0.3 and X = 0.53 was removed to get the dielectric function of the bare InGaAs. In addition, the dielectric function of GaAs in vacuum, after a protective arsenic layer was removed. The dielectric functions for X = 0, 0.3, and 0.53 together with the X = 1 result from the literature to evaluate an algorithm for calculating the dielectric function of InGaAs for an arbitrary value of X (0 = to or less than X = to or less than 1) were used. Results of the dielectric function calculated using the algorithm were compared with experimental data.

  2. Identifying the perfect absorption of metamaterial absorbers

    NASA Astrophysics Data System (ADS)

    Duan, G.; Schalch, J.; Zhao, X.; Zhang, J.; Averitt, R. D.; Zhang, X.

    2018-01-01

    We present a detailed analysis of the conditions that result in unity absorption in metamaterial absorbers to guide the design and optimization of this important class of functional electromagnetic composites. Multilayer absorbers consisting of a metamaterial layer, dielectric spacer, and ground plane are specifically considered. Using interference theory, the dielectric spacer thickness and resonant frequency for unity absorption can be numerically determined from the functional dependence of the relative phase shift of the total reflection. Further, using transmission line theory in combination with interference theory we obtain analytical expressions for the unity absorption resonance frequency and corresponding spacer layer thickness in terms of the bare resonant frequency of the metamaterial layer and metallic and dielectric losses within the absorber structure. These simple expressions reveal a redshift of the unity absorption frequency with increasing loss that, in turn, necessitates an increase in the thickness of the dielectric spacer. The results of our analysis are experimentally confirmed by performing reflection-based terahertz time-domain spectroscopy on fabricated absorber structures covering a range of dielectric spacer thicknesses with careful control of the loss accomplished through water absorption in a semiporous polyimide dielectric spacer. Our findings can be widely applied to guide the design and optimization of the metamaterial absorbers and sensors.

  3. Study on the dielectric properties of Al2O3/TiO2 sub-nanometric laminates: effect of the bottom electrode and the total thickness

    NASA Astrophysics Data System (ADS)

    Ben Elbahri, M.; Kahouli, A.; Mercey, B.; Lebedev, O.; Donner, W.; Lüders, U.

    2018-02-01

    Dielectrics based on amorphous sub-nanometric laminates of TiO2 and Al2O3 are subject to elevated dielectric losses and leakage currents, in large parts due to the extremely thin individual layer thickness chosen for the creation of the Maxwell-Wagner relaxation and therefore the high apparent dielectric constants. The optimization of performances of the laminate itself being strongly limited by this contradiction concerning its internal structure, we will show in this study that modifications of the dielectric stack of capacitors based on these sub-nanometric laminates can positively influence the dielectric losses and the leakage, as for example the nature of the electrodes, the introduction of thick insulating layers at the laminate/electrode interfaces and the modification of the total laminate thickness. The optimization of the dielectric stack leads to the demonstration of a capacitor with an apparent dielectric constant of 90, combined with low dielectric loss (tan δ) of 7 · 10-2 and with leakage currents smaller than 1  ×  10-6 A cm-2 at 10 MV m-1.

  4. High dielectric constant and energy density induced by the tunable TiO2 interfacial buffer layer in PVDF nanocomposite contained with core-shell structured TiO2@BaTiO3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Hu, Penghao; Jia, Zhuye; Shen, Zhonghui; Wang, Peng; Liu, Xiaoru

    2018-05-01

    To realize application in high-capacity capacitors and portable electric devices, large energy density is eagerly desired for polymer-based nanocomposite. The core-shell structured nanofillers with inorganic buffer layer are recently supposed to be promising in improving the dielectric property of polymer nanocomposite. In this work, core-shell structured TO@BT nanoparticles with crystalline TiO2 buffer layer coated on BaTiO3 nanoparticle were fabricated via solution method and heat treatment. The thickness of the TO buffer layer can be tailored by modulating the additive amount of the titanate coupling agent in preparation process, and the apparent dielectric properties of nanocomposite are much related to the thickness of the TO layer. The relatively thin TO layer prefer to generate high polarization to increase dielectric constant while the relatively thick TO layer would rather to homogenize field to maintain breakdown strength. Simulation of electric field distribution in the interfacial region reveals the improving effect of the TO buffer layer on the dielectric properties of nanocomposite which accords with the experimental results well. The optimized nanoparticle TO@BT-2 with a mean thickness of 3-5 nm buffer layer of TO is effective in increasing both the ε and Eb in the PVDF composite film. The maximal discharged energy density of 8.78 J/cm3 with high energy efficiency above 0.6 is obtained in TO@BT-2/PVDF nanocomposite with 2.5 vol% loading close to the breakdown strength of 380 kV/mm. The present study demonstrates the approach to optimize the structure of core-shell nanoparticles by modulating buffer layer and provides a new way to further enlarge energy density in polymer nanocomposite.

  5. Some Aspects of the Failure Mechanisms in BaTiO3-Based Multilayer Ceramic Capacitors

    NASA Technical Reports Server (NTRS)

    Liu, David Donhang; Sampson, Michael J.

    2012-01-01

    The objective of this presentation is to gain insight into possible failure mechanisms in BaTiO3-based ceramic capacitors that may be associated with the reliability degradation that accompanies a reduction in dielectric thickness, as reported by Intel Corporation in 2010. The volumetric efficiency (microF/cm3) of a multilayer ceramic capacitor (MLCC) has been shown to not increase limitlessly due to the grain size effect on the dielectric constant of ferroelectric ceramic BaTiO3 material. The reliability of an MLCC has been discussed with respect to its structure. The MLCCs with higher numbers of dielectric layers will pose more challenges for the reliability of dielectric material, which is the case for most base-metal-electrode (BME) capacitors. A number of MLCCs manufactured using both precious-metal-electrode (PME) and BME technology, with 25 V rating and various chip sizes and capacitances, were tested at accelerated stress levels. Most of these MLCCs had a failure behavior with two mixed failure modes: the well-known rapid dielectric wearout, and so-called 'early failures." The two failure modes can be distinguished when the testing data were presented and normalized at use-level using a 2-parameter Weibull plot. The early failures had a slope parameter of Beta >1, indicating that the early failures are not infant mortalities. Early failures are triggered due to external electrical overstress and become dominant as dielectric layer thickness decreases, accompanied by a dramatic reduction in reliability. This indicates that early failures are the main cause of the reliability degradation in MLCCs as dielectric layer thickness decreases. All of the early failures are characterized by an avalanche-like breakdown leakage current. The failures have been attributed to the extrinsic minor construction defects introduced during fabrication of the capacitors. A reliability model including dielectric thickness and extrinsic defect feature size is proposed in this presentation. The model can be used to explain the Intel-reported reliability degradation in MLCCs with respect to the reduction of dielectric thickness. It can also be used to estimate the reliability of a MLCC based on its construction and microstructure parameters such as dielectric thickness, average grain size, and number of dielectric layers. Measures for preventing early failures are also discussed in this document.

  6. Analysis of transmittance properties in 1D hybrid dielectric photonic crystal containing superconducting thin films

    NASA Astrophysics Data System (ADS)

    Soltani, Osswa; Zaghdoudi, Jihene; Kanzari, Mounir

    2018-06-01

    By means of two fluid model and transfer matrix method (TMM), we investigate theoretically the transmittance properties of a defective hybrid dielectric-dielectric photonic crystal that contains a superconducting material as a defect layer. The considered hybrid photonic structure is: H(LH) 7(HLSLH) P H(LH) 7 , where H is the high refractive index dielectric, L is the low refractive index dielectric, S is the superconducting material and P is the repetitive number. The results show that the variation of the number and the positions of the transmissions modes depend strongly on the repetitive number P, the temperature T and the thickness of the layer S. An improvement of the spectral response is obtained with the exponential gradation of layer thicknesses dj =d0 + βejα , where d0 is the initial thickness of the layer j, α and β are two particular constants for each material. In addition, the effect of the incident angle for both transverse electric (TE) and transverse magnetic (TM) polarizations on the transmittance spectrum is discussed. As a result, we propose a tunable narrow stop-band polychromatic filter that covers the visible wavelength.

  7. Method of manufacturing flexible metallic photonic band gap structures, and structures resulting therefrom

    DOEpatents

    Gupta, Sandhya; Tuttle, Gary L.; Sigalas, Mihail; McCalmont, Jonathan S.; Ho, Kai-Ming

    2001-08-14

    A method of manufacturing a flexible metallic photonic band gap structure operable in the infrared region, comprises the steps of spinning on a first layer of dielectric on a GaAs substrate, imidizing this first layer of dielectric, forming a first metal pattern on this first layer of dielectric, spinning on and imidizing a second layer of dielectric, and then removing the GaAs substrate. This method results in a flexible metallic photonic band gap structure operable with various filter characteristics in the infrared region. This method may be used to construct multi-layer flexible metallic photonic band gap structures. Metal grid defects and dielectric separation layer thicknesses are adjusted to control filter parameters.

  8. Exciton-dominated dielectric function of atomically thin MoS 2 films

    DOE PAGES

    Yu, Yiling; Yu, Yifei; Cai, Yongqing; ...

    2015-11-24

    We systematically measure the dielectric function of atomically thin MoS 2 films with different layer numbers and demonstrate that excitonic effects play a dominant role in the dielectric function when the films are less than 5–7 layers thick. The dielectric function shows an anomalous dependence on the layer number. It decreases with the layer number increasing when the films are less than 5–7 layers thick but turns to increase with the layer number for thicker films. We show that this is because the excitonic effect is very strong in the thin MoS 2 films and its contribution to the dielectricmore » function may dominate over the contribution of the band structure. We also extract the value of layer-dependent exciton binding energy and Bohr radius in the films by fitting the experimental results with an intuitive model. The dominance of excitonic effects is in stark contrast with what reported at conventional materials whose dielectric functions are usually dictated by band structures. Lastly, the knowledge of the dielectric function may enable capabilities to engineer the light-matter interactions of atomically thin MoS 2 films for the development of novel photonic devices, such as metamaterials, waveguides, light absorbers, and light emitters.« less

  9. Improvement in temperature dependence and dielectric tunability properties of PbZr0.52Ti0.48O3 thin films using Ba(Mg1/3Ta2/3)O3 buffer layer

    NASA Astrophysics Data System (ADS)

    Wu, Zhi; Zhou, Jing; Chen, Wen; Shen, Jie; Yang, Huimin; Zhang, Shisai; Liu, Yueli

    2016-12-01

    In this paper, Pb(Zr0.52Ti0.48)O3 (PZT) thin films were prepared via sol-gel method. The effects of Ba(Mg1/3Ta2/3)O3 (BMT) buffer layer on the temperature dependence and dielectric tunability properties of PZT thin films were studied. As the thickness of BMT buffer layer increases, the tan δ and tunability of PZT thin films decrease while tunability still maintains above 10%. This result shows that BMT buffer layer can improve the dielectric tunability properties of PZT thin films. Furthermore, the temperature coefficient of the dielectric constant decreases from 2333.4 to 906.9 ppm/°C with the thickness of BMT buffer layer increasing in the range from 25 to 205 °C, indicating that BMT buffer layer can improve the temperature stability of PZT thin films. Therefore, BMT buffer layer plays a critical role in improving temperature dependence and dielectric tunability properties of PbZr0.52Ti0.48O3 thin films.

  10. Improved dielectric properties of CaCu3Ti4O12 films with a CaTiO3 interlayer on Pt/TiO2/SiO2/Si substrates prepared by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Lee, Sung-Yun; Kim, Hui Eun; Jo, William; Kim, Young-Hwan; Yoo, Sang-Im

    2015-11-01

    We report the greatly improved dielectric properties of CaCu3Ti4O12 (CCTO) films with a 60 nm-thick CaTiO3 (CTO) interlayer on Pt/TiO2/SiO2/Si substrates. Both CCTO films and CTO interlayers were prepared by pulsed laser deposition (PLD). With increasing the thickness of CCTO from 200 nm to 1.3 μm, the dielectric constants ( ɛ r ) at 10 kHz in both CCTO single-layered and CCTO/CTO double-layered films increased from ˜260 to ˜6000 and from ˜630 to ˜3700, respectively. Compared with CCTO single-layered films, CCTO/CTO double-layered films irrespective of CCTO film thickness exhibited a remarkable decrease in their dielectric losses ( tanδ) (<0.1 at the frequency region of 1 - 100 kHz) and highly reduced leakage current density at room temperature. The reduced leakage currents in CCTO/CTO double-layered films are attributable to relatively higher trap ionization energies in the Poole-Frenkel conduction model. [Figure not available: see fulltext.

  11. Investigation of Fumed Silica/Aqueous NaCl Superdielectric Material.

    PubMed

    Jenkins, Natalie; Petty, Clayton; Phillips, Jonathan

    2016-02-20

    A constant current charge/discharge protocol which showed fumed silica filled to the point of incipient wetness with aqueous NaCl solution to have dielectric constants >10⁸ over the full range of dielectric thicknesses of 0.38-3.9 mm and discharge times of 0.25->100 s was studied, making this material another example of a superdielectric. The dielectric constant was impacted by both frequency and thickness. For time to discharge greater than 10 s the dielectric constant for all thicknesses needed to be fairly constant, always >10⁸, although trending higher with increasing thickness. At shorter discharge times the dielectric constant consistently decreased, with decreasing time to discharge. Hence, it is reasonable to suggest that for time to discharge >10 s the dielectric constant at all thicknesses will be greater than 10⁸. This in turn implies an energy density for a 5 micron thick dielectric layer in the order of 350 J/cm³ for discharge times greater than 10 s.

  12. Investigation of Fumed Silica/Aqueous NaCl Superdielectric Material

    PubMed Central

    Jenkins, Natalie; Petty, Clayton; Phillips, Jonathan

    2016-01-01

    A constant current charge/discharge protocol which showed fumed silica filled to the point of incipient wetness with aqueous NaCl solution to have dielectric constants >108 over the full range of dielectric thicknesses of 0.38–3.9 mm and discharge times of 0.25–>100 s was studied, making this material another example of a superdielectric. The dielectric constant was impacted by both frequency and thickness. For time to discharge greater than 10 s the dielectric constant for all thicknesses needed to be fairly constant, always >109, although trending higher with increasing thickness. At shorter discharge times the dielectric constant consistently decreased, with decreasing time to discharge. Hence, it is reasonable to suggest that for time to discharge >10 s the dielectric constant at all thicknesses will be greater than 109. This in turn implies an energy density for a 5 micron thick dielectric layer in the order of 350 J/cm3 for discharge times greater than 10 s. PMID:28787918

  13. Thickness-dependent electron mobility of single and few-layer MoS{sub 2} thin-film transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Ji Heon; Kim, Tae Ho; Lee, Hyunjea

    We investigated the dependence of electron mobility on the thickness of MoS{sub 2} nanosheets by fabricating bottom-gate single and few-layer MoS{sub 2} thin-film transistors with SiO{sub 2} gate dielectrics and Au electrodes. All the fabricated MoS{sub 2} transistors showed on/off-current ratio of ∼10{sup 7} and saturated output characteristics without high-k capping layers. As the MoS{sub 2} thickness increased from 1 to 6 layers, the field-effect mobility of the fabricated MoS{sub 2} transistors increased from ∼10 to ∼18 cm{sup 2}V{sup −1}s{sup −1}. The increased subthreshold swing of the fabricated transistors with MoS{sub 2} thickness suggests that the increase of MoS{sub 2}more » mobility with thickness may be related to the dependence of the contact resistance and the dielectric constant of MoS{sub 2} layer on its thickness.« less

  14. Adhesion promoters for large scale fabrication of dielectric elastomer stack transducers (DESTs) made of pre-fabricated dielectric films

    NASA Astrophysics Data System (ADS)

    Grotepaß, T.; Förster-Zügel, F.; Mößinger, H.; Schlaak, H. F.

    2015-04-01

    Multilayer dielectric elastomer stack transducers (DESTs) are a promising new transducer technology with many applications in different industry sectors, like medical devices, human-machine-interaction, etc. Stacked dielectric elastomer transducers show larger thickness contraction driven by lower voltages than transducers made from a single dielectric layer. Traditionally multilayered DESTs are produced by repeatedly cross-linking a liquid elastomeric pre-polymer into the required shape. Our recent research focusses on a novel fabrication method for large scale stack transducers with a surface area over 200 x 300 mm by processing pre-fabricated elastomeric thin films of less than 50 μm thicknesses. The thin films are provided as two- or three-layer composites, where the elastomer is sandwiched between one or two sacrificial liners. Separating the elastomeric film from the residual layers and assembling them into dielectric elastomer stack transducers poses many challenges concerning adhesion, since the dielectric film merely separates from the liner if the adhesive forces between them are overcome. Conversely, during the assembly of a dielectric elastomer stack transducer, adhesive forces have to be established between two elastomeric layers or between the dielectric and the electrode layer. The very low Young's modulus of at least one adhesion partner requires suitable means of increasing the adhesive forces between the different adhesive layers of a dielectric elastomer stack transducer to prevent a delamination of the transducer during its lifetime. This work evaluates different surface activation treatments - corona, low-pressure plasma and UV-light - and their applicability in the production of large scale DESTs made from pre-fabricated elastomeric films.

  15. Theoretical analysis of optical properties of dielectric coatings dependence on substrate subsurface defects

    NASA Astrophysics Data System (ADS)

    Shen, Jian; Liu, Shouhua; Shen, Zicai; Shao, Jianda; Fan, Zhengxiu

    2006-03-01

    A model for refractive index of stratified dielectric substrate was put forward according to theories of inhomogeneous coatings. The substrate was divided into surface layer, subsurface layer and bulk layer along the normal direction of its surface. Both the surface layer (separated into N1 sublayers of uniform thickness) and subsurface layer (separated into N2 sublayers of uniform thickness), whose refractive indices have different statistical distributions, are equivalent to inhomogeneous coatings, respectively. And theoretical deduction was carried out by employing characteristic matrix method of optical coatings. An example of mathematical calculation for optical properties of dielectric coatings had been presented. The computing results indicate that substrate subsurface defects can bring about additional bulk scattering and change propagation characteristic in thin film and substrate. Therefore, reflectance, reflective phase shift and phase difference of an assembly of coatings and substrate deviate from ideal conditions. The model will provide some beneficial theory directions for improving optical properties of dielectric coatings via substrate surface modification.

  16. Numerical and theoretical analysis on the absorption properties of metasurface-based terahertz absorbers with different thicknesses.

    PubMed

    Wu, Kaimin; Huang, Yongjun; Wanghuang, Tenglong; Chen, Weijian; Wen, Guangjun

    2015-01-10

    In this paper, we numerically and theoretically discuss the novel absorption properties of a conventional metasurface-based terahertz (THz) electromagnetic (EM) absorber with different dielectric thicknesses. Two absorption modes are presented in the considered frequency band due to the increased dielectric thickness, and both modes can achieve near-unity absorptions when the dielectric layers reach additional nλ(d)/2 (n=1, 2) thicknesses, where λ(d) is the operating wavelength at the peak absorption in the dielectric slabs. The surface currents between the metasurface resonators and ground plane are not associated any longer, different from the conventional thin absorbers. Moreover, the EM wave energies are completely absorbed by the metasurface resonators and dielectric layer, and the main function of ground plane is to reflect the incident EM waves back to the resonators. The discussed novel absorption properties are analyzed and explained by classical EM theory and interference theory after numerical demonstrations. These findings can broaden the potential applications of the metasurface-based absorbers in the THz frequency range for different requirements.

  17. Low voltage electrowetting lenticular lens by using multilayer dielectric structure

    NASA Astrophysics Data System (ADS)

    Lee, Junsik; Kim, Junoh; Kim, Cheoljoong; Shin, Dooseub; Koo, Gyohyun; Sim, Jee Hoon; Won, Yong Hyub

    2017-02-01

    Lenticular type multi-view display is one of the most popular ways for implementing three dimensional display. This method has a simple structure and exhibits a high luminance. However, fabricating the lenticular lens is difficult because it requires optically complex calculations. 2D-3D conversion is also impossible due to the fixed shape of the lenticular lens. Electrowetting based liquid lenticular lens has a simple fabrication process compared to the solid lenticular lens and the focal length of the liquid lenticular lens can be changed by applying the voltage. 3D and 2D images can be observed with a convex and a flat lens state respectively. Despite these advantages, the electrowetting based liquid lenticular lens demands high driving voltage and low breakdown voltage with a single dielectric layer structure. A certain degree of thickness of the dielectric layer is essential for a uniform operation and a low degradation over time. This paper presents multilayer dielectric structure which results in low driving voltage and the enhanced dielectric breakdown. Aluminum oxide (Al2O3), silicon oxide (SiO2) and parylene C were selected as the multilayer insulators. The total thickness of the dielectric layer of all samples was the same. This method using the multilayer dielectric structure can achieve the lower operating voltage than when using the single dielectric layer. We compared the liquid lenticular lens with three kinds of the multilayer dielectric structure to one with the parylene C single dielectric layer in regard to operational characteristics such as the driving voltage and the dielectric breakdown.

  18. Effects of Complex Structured Anodic Oxide Dielectric Layer Grown in Pore Matrix for Aluminum Capacitor.

    PubMed

    Shin, Jin-Ha; Yun, Sook Young; Lee, Chang Hyoung; Park, Hwa-Sun; Suh, Su-Jeong

    2015-11-01

    Anodization of aluminum is generally divided up into two types of anodic aluminum oxide structures depending on electrolyte type. In this study, an anodization process was carried out in two steps to obtain high dielectric strength and break down voltage. In the first step, evaporated high purity Al on Si wafer was anodized in oxalic acidic aqueous solution at various times at a constant temperature of 5 degrees C. In the second step, citric acidic aqueous solution was used to obtain a thickly grown sub-barrier layer. During the second anodization process, the anodizing potential of various ranges was applied at room temperature. An increased thickness of the sub-barrier layer in the porous matrix was obtained according to the increment of the applied anodizing potential. The microstructures and the growth of the sub-barrier layer were then observed with an increasing anodizing potential of 40 to 300 V by using a scanning electron microscope (SEM). An impedance analyzer was used to observe the change of electrical properties, including the capacitance, dissipation factor, impedance, and equivalent series resistance (ESR) depending on the thickness increase of the sub-barrier layer. In addition, the breakdown voltage was measured. The results revealed that dielectric strength was improved with the increase of sub-barrier layer thickness.

  19. Droplet Velocity Measurement Based on Dielectric Layer Thickness Variation Using Digital Microfluidic Devices.

    PubMed

    Zulkepli, Siti Noor Idora Syafinaz; Hamid, Nor Hisham; Shukla, Vineeta

    2018-05-08

    In recent years, the number of interdisciplinary research works related to the development of miniaturized systems with integrated chemical and biological analyses is increasing. Digital microfluidic biochips (DMFBs) are one kind of miniaturized systems designed for conducting inexpensive, fast, convenient and reliable biochemical assay procedures focusing on basic scientific research and medical diagnostics. The role of a dielectric layer in the digital microfluidic biochips is prominent as it helps in actuating microliter droplets based on the electrowetting-on-dielectric (EWOD) technique. The advantages of using three different material layers of dielectric such as parafilm, polytetrafluoroethylene (PTFE) and ethylene tetrafluoroethylene (ETFE) were reported in the current work. A simple fabrication process of a digital microfluidic device was performed and good results were obtained. The threshold of the actuation voltage was determined for all dielectric materials of varying thicknesses. Additionally, the OpenDrop device was tested by utilizing a single-plate system to transport microliter droplets for a bioassay operation. With the newly proposed fabrication methods, these dielectric materials showed changes in contact angle and droplet velocity when the actuation voltage was applied. The threshold actuation voltage for the dielectric layers of 10⁻13 μm was 190 V for the open plate DMFBs.

  20. The narrow pass band filter of tunable 1D phononic crystals with a dielectric elastomer layer

    NASA Astrophysics Data System (ADS)

    Wu, Liang-Yu; Wu, Mei-Ling; Chen, Lien-Wen

    2009-01-01

    In this paper, we study the defect bands of a 1D phononic crystal consisting of aluminum (Al) and polymethyl methacrylate (PMMA) layers with a dielectric elastomer (DE) defect layer. The plane wave expansion (PWE) method and supercell calculation are used to calculate the band structure and the defect bands. The transmission spectra are obtained using the finite element method (FEM). Since the thickness of the dielectric elastomer defect layer is controlled by applying an electric voltage, the frequencies of the defect bands can be tuned. A narrow pass band filter can be developed and designed by using the dielectric elastomer.

  1. All-Dielectric Multilayer Cylindrical Structures for Invisibility Cloaking

    PubMed Central

    Mirzaei, Ali; Miroshnichenko, Andrey E.; Shadrivov, Ilya V.; Kivshar, Yuri S.

    2015-01-01

    We study optical response of all-dielectric multilayer structures and demonstrate that the total scattering of such structures can be suppressed leading to optimal invisibility cloaking. We use experimental material data and a genetic algorithm to reduce the total scattering by adjusting the material and thickness of various layers for several types of dielectric cores at telecommunication wavelengths. Our approach demonstrates 80-fold suppression of the total scattering cross-section by employing just a few dielectric layers. PMID:25858295

  2. CMUTs with high-K atomic layer deposition dielectric material insulation layer.

    PubMed

    Xu, Toby; Tekes, Coskun; Degertekin, F

    2014-12-01

    Use of high-κ dielectric, atomic layer deposition (ALD) materials as an insulation layer material for capacitive micromachined ultrasonic transducers (CMUTs) is investigated. The effect of insulation layer material and thickness on CMUT performance is evaluated using a simple parallel plate model. The model shows that both high dielectric constant and the electrical breakdown strength are important for the dielectric material, and significant performance improvement can be achieved, especially as the vacuum gap thickness is reduced. In particular, ALD hafnium oxide (HfO2) is evaluated and used as an improvement over plasma-enhanced chemical vapor deposition (PECVD) silicon nitride (Six)Ny)) for CMUTs fabricated by a low-temperature, complementary metal oxide semiconductor transistor-compatible, sacrificial release method. Relevant properties of ALD HfO2) such as dielectric constant and breakdown strength are characterized to further guide CMUT design. Experiments are performed on parallel fabricated test CMUTs with 50-nm gap and 16.5-MHz center frequency to measure and compare pressure output and receive sensitivity for 200-nm PECVD Six)Ny) and 100-nm HfO2) insulation layers. Results for this particular design show a 6-dB improvement in receiver output with the collapse voltage reduced by one-half; while in transmit mode, half the input voltage is needed to achieve the same maximum output pressure.

  3. Nano-scale zirconia and hafnia dielectrics grown by atomic layer deposition: Crystallinity, interface structures and electrical properties

    NASA Astrophysics Data System (ADS)

    Kim, Hyoungsub

    With the continued scaling of transistors, leakage current densities across the SiO2 gate dielectric have increased enormously through direct tunneling. Presently, metal oxides having higher dielectric constants than SiO2 are being investigated to reduce the leakage current by increasing the physical thickness of the dielectric. Many possible techniques exist for depositing high-kappa gate dielectrics. Atomic layer deposition (ALD) has drawn attention as a method for preparing ultrathin metal oxide layers with excellent electrical characteristics and near-perfect film conformality due to the layer-by-layer nature of the deposition mechanism. For this research, an ALD system using ZrCl4/HfCl4 and H2O was built and optimized. The microstructural and electrical properties of ALD-ZrO2 and HfO2 grown on SiO2/Si substrates were investigated and compared using various characterization tools. In particular, the crystallization kinetics of amorphous ALD-HfO2 films were studied using in-situ annealing experiments in a TEM. The effect of crystallization on the electrical properties of ALD-HfO 2 was also investigated using various in-situ and ex-situ post-deposition anneals. Our results revealed that crystallization had little effect on the magnitude of the gate leakage current or on the conduction mechanisms. Building upon the results for each metal oxide separately, more advanced investigations were made. Several nanolaminate structures using ZrO2 and HfO2 with different sequences and layer thicknesses were characterized. The effects of the starting microstructure on the microstructural evolution of nanolaminate stacks were studied. Additionally, a promising new approach for engineering the thickness of the SiO2-based interface layer between the metal oxide and silicon substrate after deposition of the metal oxide layer was suggested. Through experimental measurements and thermodynamic analysis, it is shown that a Ti overlayer, which exhibits a high oxygen solubility, can effectively getter oxygen from the interface layer, thus decomposing SiO2 and reducing the interface layer thickness in a controllable fashion. As one of several possible applications, ALD-ZrO2 and HfO 2 gate dielectric films were deposited on Ge (001) substrates with different surface passivations. After extensive characterization using various microstructural, electrical, and chemical analyses, excellent MOS electrical properties of high-kappa gate dielectrics on Ge were successfully demonstrated with optimized surface nitridation of the Ge substrates.

  4. Hf layer thickness dependence of resistive switching characteristics of Ti/Hf/HfO2/Au resistive random access memory device

    NASA Astrophysics Data System (ADS)

    Nakajima, Ryo; Azuma, Atsushi; Yoshida, Hayato; Shimizu, Tomohiro; Ito, Takeshi; Shingubara, Shoso

    2018-06-01

    Resistive random access memory (ReRAM) devices with a HfO2 dielectric layer have been studied extensively owing to the good reproducibility of their SET/RESET switching properties. Furthermore, it was reported that a thin Hf layer next to a HfO2 layer stabilized switching properties because of the oxygen scavenging effect. In this work, we studied the Hf thickness dependence of the resistance switching characteristics of a Ti/Hf/HfO2/Au ReRAM device. It is found that the optimum Hf thickness is approximately 10 nm to obtain good reproducibility of SET/RESET voltages with a small RESET current. However, when the Hf thickness was very small (∼2 nm), the device failed after the first RESET process owing to the very large RESET current. In the case of a very thick Hf layer (∼20 nm), RESET did not occur owing to the formation of a leaky dielectric layer. We observed the occurrence of multiple resistance states in the RESET process of the device with a Hf thickness of 10 nm by increasing the RESET voltage stepwise.

  5. Wideband Low-Reflection Inhomogeneous Dielectric Structures

    NASA Astrophysics Data System (ADS)

    Denisova, N. A.; Rezvov, A. V.

    2017-08-01

    We consider reflection of electromagnetic waves from two-layer dielectric films with finite thickness, whose refractive indices vary in the direction of wave propagation, which is perpendicular to the substrate boundary. The profiles of the refractive indices of the structures having low reflection coefficients in a wide frequency range are found. The obtained results are based on exact analytical solutions of the Helmholtz equation for one type of the layered inhomogeneous dielectric medium. The possibility of creating new low-reflection wideband inhomogeneous dielectric structures is demonstrated.

  6. Reliability Evaluation of Base-Metal-Electrode Multilayer Ceramic Capacitors for Potential Space Applications

    NASA Technical Reports Server (NTRS)

    Liu, David (Donhang); Sampson, Michael J.

    2011-01-01

    Base-metal-electrode (BME) ceramic capacitors are being investigated for possible use in high-reliability spacelevel applications. This paper focuses on how BME capacitors construction and microstructure affects their lifetime and reliability. Examination of the construction and microstructure of commercial off-the-shelf (COTS) BME capacitors reveals great variance in dielectric layer thickness, even among BME capacitors with the same rated voltage. Compared to PME (precious-metal-electrode) capacitors, BME capacitors exhibit a denser and more uniform microstructure, with an average grain size between 0.3 and 0.5 m, which is much less than that of most PME capacitors. BME capacitors can be fabricated with more internal electrode layers and thinner dielectric layers than PME capacitors because they have a fine-grained microstructure and do not shrink much during ceramic sintering. This makes it possible for BME capacitors to achieve a very high capacitance volumetric efficiency. The reliability of BME and PME capacitors was investigated using highly accelerated life testing (HALT). Most BME capacitors were found to fail with an early avalanche breakdown, followed by a regular dielectric wearout failure during the HALT test. When most of the early failures, characterized with avalanche breakdown, were removed, BME capacitors exhibited a minimum mean time-to-failure (MTTF) of more than 105 years at room temperature and rated voltage. Dielectric thickness was found to be a critical parameter for the reliability of BME capacitors. The number of stacked grains in a dielectric layer appears to play a significant role in determining BME capacitor reliability. Although dielectric layer thickness varies for a given rated voltage in BME capacitors, the number of stacked grains is relatively consistent, typically around 12 for a number of BME capacitors with a rated voltage of 25V. This may suggest that the number of grains per dielectric layer is more critical than the thickness itself for determining the rated voltage and the life expectancy of the BME capacitor. The leakage current characterization and the failure analysis results suggest that most of these early avalanche failures are due to the extrinsic minor construction defects introduced during fabrication of BME capacitors. The concentration of the extrinsic defects must be reduced if the BME capacitors are considered for high reliability applications. There are two approaches that can reduce or prevent the occurrence of early failure in BME capacitors: (1) to reduce the defect concentration with improved processing control; (2) to prevent the use of BME capacitors under harsh external stress levels so that the extrinsic defects will never be triggered for a failure. In order to do so appropriate dielectric layer thickness must be determined for a given rated voltage.

  7. Optical coating design for the annular mirrors of the Alpha I HF laser

    NASA Astrophysics Data System (ADS)

    Shellan, Jeffrey B.

    The dielectric-coating design for the annular mirrors of the Alpha I HF laser is described along with the numerous other designs that were considered. The coatings were required to produce a 0-deg phase shift after one round trip, which involved reflections from six surfaces. Although novel high-reflectivity multilayer dielectric coatings satisfied this requirement, single-layer phase control coatings were preferred because the use of these greatly reduced coating layer-thickness control and thus resulted in significant program savings. Among the single-layer designs investigated, a coating consisting of a 0.06-micron-thick SiO layer was found to be sufficient for all surfaces except those of the rear cone, for which a 0.515-micron thick SiO layer was recommended. The metallic substrate selected was Au. These coatings were found to have a high damage threshold, provide the necessary polarization phase control, and to be quite forgiving to thickness deposition errors that were anticipated using existing chambers.

  8. Surface plasmon polariton Akhmediev Breather in a dielectric-metal-dielectric geometry with subwavelength thickness

    NASA Astrophysics Data System (ADS)

    Devi, Koijam Monika; Porsezian, K.; Sarma, Amarendra K.

    2018-05-01

    We report Akhmediev Breather solutions in a nonlinear multilayer structure comprising of a metal sandwiched between two semi-infinite dielectric layers with subwavelength thickness. These nonlinear solutions inherit the properties of Surface plasmon polaritons and its dynamics is governed by the Nonlinear Schrodinger equation. The breather evolution is studied for specific values of nonlinear and dispersion parameters. An experimental scheme to observe these breathers is also proposed.

  9. Estimation of Complex Permittivity of Composite Multilayer Material at Microwave Frequency Using Waveguide Measurements

    NASA Technical Reports Server (NTRS)

    Deshpande, Manohar D.; Dudley, Kenneth

    2003-01-01

    A simple method is presented to estimate the complex dielectric constants of individual layers of a multilayer composite material. Using the MatLab Optimization Tools simple MatLab scripts are written to search for electric properties of individual layers so as to match the measured and calculated S-parameters. A single layer composite material formed by using materials such as Bakelite, Nomex Felt, Fiber Glass, Woven Composite B and G, Nano Material #0, Cork, Garlock, of different thicknesses are tested using the present approach. Assuming the thicknesses of samples unknown, the present approach is shown to work well in estimating the dielectric constants and the thicknesses. A number of two layer composite materials formed by various combinations of above individual materials are tested using the present approach. However, the present approach could not provide estimate values close to their true values when the thicknesses of individual layers were assumed to be unknown. This is attributed to the difficulty in modelling the presence of airgaps between the layers while doing the measurement of S-parameters. A few examples of three layer composites are also presented.

  10. A novel method of fabricating laminated silicone stack actuators with pre-strained dielectric layers

    NASA Astrophysics Data System (ADS)

    Hinitt, Andrew D.; Conn, Andrew T.

    2014-03-01

    In recent studies, stack based Dielectric Elastomer Actuators (DEAs) have been successfully used in haptic feedback and sensing applications. However, limitations in the fabrication method, and materials used to con- struct stack actuators constrain their force and displacement output per unit volume. This paper focuses on a fabrication process enabling a stacked elastomer actuator to withstand the high tensile forces needed for high power applications, such as mimetics for mammalian muscle contraction (i.e prostheses), whilst requiring low voltage for thickness-mode contractile actuation. Spun elastomer layers are bonded together in a pre-strained state using a conductive adhesive filler, forming a Laminated Inter-Penetrating Network (L-IPN) with repeatable and uniform electrode thickness. The resulting structure utilises the stored strain energy of the dielectric elas- tomer to compress the cured electrode composite material. The method is used to fabricate an L-IPN example, which demonstrated that the bonded L-IPN has high tensile strength normal to the lamination. Additionally, the uniformity and retained dielectric layer pre-strain of the L-IPN are confirmed. The described method is envisaged to be used in a semi-automated assembly of large-scale multi-layer stacks of pre-strained dielectric layers possessing a tensile strength in the range generated by mammalian muscle.

  11. Using GNSS-R techniques to investigate the near sub-surface of Mars with the Deep Space Network

    NASA Astrophysics Data System (ADS)

    Elliott, H. M.; Bell, D. J.; Jin, C.; Decrossas, E.; Asmar, S.; Lazio, J.; Preston, R. A.; Ruf, C. S.; Renno, N. O.

    2017-12-01

    Global Navigation Satellite Systems Reflectometry (GNSS-R) has shown that passive measurements using separate active sources can infer the soil moisture, snow pack depth and other quantities of scientific interest. Here, we expand upon this method and propose that a passive measurement of the sub-surface dielectric profile of Mars can be made by using multipath interference between reflections off the surface and subsurface dielectric discontinuities. This measurement has the ability to reveal changes in the soil water content, the depth of a layer of sand, thickness of a layer of ice, and even identify centimeter-scale layering which may indicate the presence of a sedimentary bed. We have created a numerical ray tracing model to understand the potential of using multipath interference techniques to investigate the sub-surface dielectric properties and structure of Mars. We have further verified this model using layered beds of sand and concrete in laboratory experiments and then used the model to extrapolate how this technique may be applied to future Mars missions. We will present new results demonstrating how to characterize a multipath interference patterns as a function of frequency and/or incidence angle to measure the thickness of a dielectric layer of sand or ice. Our results demonstrate that dielectric discontinuities in the subsurface can be measured using this passive sensing technique and it could be used to effectively measure the thickness of a dielectric layer in the proximity of a landed spacecraft. In the case of an orbiter, we believe this technique would be effective at measuring the seasonal thickness of CO2 ice in the Polar Regions. This is exciting because our method can produce similar results to traditional ground penetrating radars without the need to have an active radar transmitter in-situ. Therefore, it is possible that future telecommunications systems can serve as both a radio and a scientific instrument when used in conjunction with the Deep Space Network, a huge potential cost-savings for interplanetary missions.

  12. Green’s Functions for a Theoretical Model of an Aperture Fed Stacked-Patch Microstrip Antenna

    DTIC Science & Technology

    1989-12-01

    44 4 - 1 Normalized values of D bk3b on the real axis for (a) f = 4 GHz, bib = 1.6 mm, b2b = 4.8 mm, Flb = 5 o’ 2b = 2.5 Eo’ 3b = Co, P’lb = 2b...dielectric la. bIb Thickness of dielectric lb. b2b Total thickness of dielectrics lb and 2b. Cli Observer cell on the aperture, i is an index variable...interface 3b (patch 2). Sfj Source current cell on the feedline. tb Thickness of dielectric layer 2b ( b2b - bib). T lj Vector rooftop basis function

  13. Multi-layer coating of SiO2 nanoparticles to enhance light absorption by Si solar cells

    NASA Astrophysics Data System (ADS)

    Nam, Yoon-Ho; Um, Han-Don; Park, Kwang-Tae; Shin, Sun-Mi; Baek, Jong-Wook; Park, Min-Joon; Jung, Jin-Young; Zhou, Keya; Jee, Sang-Won; Guo, Zhongyi; Lee, Jung-Ho

    2012-06-01

    We found that multi-layer coating of a Si substrate with SiO2 dielectric nanoparticles (NPs) was an effective method to suppress light reflection by silicon solar cells. To suppress light reflection, two conditions are required for the coating: 1) The difference of refractive indexes between air and Si should be alleviated, and 2) the quarter-wavelength antireflection condition should be satisfied while avoiding intrinsic absorption loss. Light reflection was reduced due to destructive interference at certain wavelengths that depended on the layer thickness. For the same thickness dielectric layer, smaller NPs enhanced antireflectance more than larger NPs due to a decrease in scattering loss by the smaller NPs.

  14. CMUTs with High-K Atomic Layer Deposition Dielectric Material Insulation Layer

    PubMed Central

    Xu, Toby; Tekes, Coskun; Degertekin, F. Levent

    2014-01-01

    Use of high-κ dielectric, atomic layer deposition (ALD) materials as an insulation layer material for capacitive micromachined ultrasonic transducers (CMUTs) is investigated. The effect of insulation layer material and thickness on CMUT performance is evaluated using a simple parallel plate model. The model shows that both high dielectric constant and the electrical breakdown strength are important for the dielectric material, and significant performance improvement can be achieved, especially as the vacuum gap thickness is reduced. In particular, ALD hafnium oxide (HfO2) is evaluated and used as an improvement over plasma-enhanced chemical vapor deposition (PECVD) silicon nitride (SixNy) for CMUTs fabricated by a low-temperature, complementary metal oxide semiconductor transistor-compatible, sacrificial release method. Relevant properties of ALD HfO2 such as dielectric constant and breakdown strength are characterized to further guide CMUT design. Experiments are performed on parallel fabricated test CMUTs with 50-nm gap and 16.5-MHz center frequency to measure and compare pressure output and receive sensitivity for 200-nm PECVD SixNy and 100-nm HfO2 insulation layers. Results for this particular design show a 6-dB improvement in receiver output with the collapse voltage reduced by one-half; while in transmit mode, half the input voltage is needed to achieve the same maximum output pressure. PMID:25474786

  15. Thermally stable dielectric responses in uniaxially (001)-oriented CaBi4Ti4O15 nanofilms grown on a Ca2Nb3O10- nanosheet seed layer.

    PubMed

    Kimura, Junichi; Takuwa, Itaru; Matsushima, Masaaki; Shimizu, Takao; Uchida, Hiroshi; Kiguchi, Takanori; Shiraishi, Takahisa; Konno, Toyohiko J; Shibata, Tatsuo; Osada, Minoru; Sasaki, Takayoshi; Funakubo, Hiroshi

    2016-02-15

    To realize a high-temperature capacitor, uniaxially (001)-oriented CaBi4Ti4O15 films with various film thicknesses were prepared on (100)cSrRuO3/Ca2Nb3O10(-) nanosheet/glass substrates. As the film thickness decreases to 50 nm, the out-of-plane lattice parameters decrease while the in-plane lattice ones increase due to the in-plane tensile strain. However, the relative dielectric constant (εr) at room temperature exhibits a negligible degradation as the film thickness decreases to 50 nm, suggesting that εr of (001)-oriented CaBi4Ti4O15 is less sensitive to the residual strain. The capacitance density increases monotonously with decreasing film thickness, reaching a value of 4.5 μF/cm(2) for a 50-nm-thick nanofilm, and is stable against temperature changes from room temperature to 400 °C irrespective of film thickness. This behaviour differs from that of the widely investigated perovskite-structured dielectrics. These results show that (001)-oriented CaBi4Ti4O15 films derived using Ca2Nb3O10(-) nanosheets as seed layers can be made candidates for high-temperature capacitor applications by a small change in the dielectric properties against film thickness and temperature variations.

  16. Simple approach for high-contrast optical imaging and characterization of graphene-based sheets.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, I.; Pelton, M.; Piner, R.

    2007-12-01

    A simple optical method is presented for identifying and measuring the effective optical properties of nanometer-thick, graphene-based materials, based on the use of substrates consisting of a thin dielectric layer on silicon. High contrast between the graphene-based materials and the substrate is obtained by choosing appropriate optical properties and thickness of the dielectric layer. The effective refractive index and optical absorption coefficient of graphene oxide, thermally reduced graphene oxide, and graphene are obtained by comparing the predicted and measured contrasts.

  17. Investigation of optical properties of multilayer dielectric structures using prism-coupling technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sokolov, V I; Glebov, V N; Malyutin, A M

    2015-09-30

    A method based on resonant excitation of waveguide modes with a prism coupler is proposed for measuring the thickness and refractive index of thin-film layers in multilayer dielectric structures. The peculiarities of reflection of TE- and TM-polarised light beams from a structure comprising eleven alternating layers of zinc sulfide (ZnS) and magnesium barium fluoride (MgBaF{sub 4}), whose thicknesses are much less than the wavelength of light, are investigated. Using the mathematical model developed, we have calculated the coefficients of reflection of collimated TE and TM light beams from a multilayer structure and determined the optical constants and thicknesses of themore » structure layers. The refractive indices of the layers, obtained for TE and TM polarisation of incident light, are in good agreement. The thicknesses of ZnS and MgBaF{sub 4} layers, found for different polarisations, coincide with an accuracy of ±1%. Thus, we have demonstrated for the first time that the prism-coupling technique allows one to determine the optical properties of thin-film structures when the number of layers in the structure exceeds ten layers. (integrated optics)« less

  18. Fabrication of a Cryogenic Bias Filter for Ultrasensitive Focal Plane

    NASA Technical Reports Server (NTRS)

    Chervenak, James; Wollack, Edward

    2012-01-01

    A fabrication process has been developed for cryogenic in-line filtering for the bias and readout of ultrasensitive cryogenic bolometers for millimeter and submillimeter wavelengths. The design is a microstripline filter that cuts out, or strongly attenuates, frequencies (10 50 GHz) that can be carried by wiring staged at cryogenic temperatures. The filter must have 100-percent transmission at DC and low frequencies where the bias and readout lines will carry signal. The fabrication requires the encapsulation of superconducting wiring in a dielectric-metal envelope with precise electrical characteristics. Sufficiently thick insulation layers with high-conductivity metal layers fully surrounding a patterned superconducting wire in arrayable formats have been demonstrated. A degenerately doped silicon wafer has been chosen to provide a metallic ground plane. A metallic seed layer is patterned to enable attachment to the ground plane. Thick silicon dioxide films are deposited at low temperatures to provide tunable dielectric isolation without degrading the metallic seed layer. Superconducting wiring is deposited and patterned using microstripline filtering techniques to cut out the relevant frequencies. A low Tc superconductor is used so that it will attenuate power strongly above the gap frequency. Thick dielectric is deposited on top of the circuit, and then vias are patterned through both dielectric layers. A thick conductive film is deposited conformally over the entire circuit, except for the contact pads for the signal and bias attachments to complete the encapsulating ground plane. Filters are high-aspect- ratio rectangles, allowing close packing in one direction, while enabling the chip to feed through the wall of a copper enclosure. The chip is secured in the copper wall using a soft metal seal to make good thermal and electrical contact to the outer shield.

  19. Directional Emission from Metal-Dielectric-Metal Structures: Effect of Mixed Metal Layers, Dye Location and Dielectric Thickness.

    PubMed

    Choudhury, Sharmistha Dutta; Badugu, Ramachandram; Ray, Krishanu; Lakowicz, Joseph R

    2015-02-12

    Metal-dielectric-metal (MDM) structures provide directional emission close to the surface normal, which offers opportunities for new design formats in fluorescence based applications. The directional emission arises due to near-field coupling of fluorophores with the optical modes present in the MDM substrate. Reflectivity simulations and dispersion diagrams provide a basic understanding of the mode profiles and the factors that affect the coupling efficiency and the spatial distribution of the coupled emission. This work reveals that the composition of the metal layers, the location of the dye in the MDM substrate and the dielectric thickness are important parameters that can be chosen to tune the color of the emission wavelength, the angle of observation, the angular divergence of the emission and the polarization of the emitted light. These features are valuable for displays and optical signage.

  20. Directional Emission from Metal-Dielectric-Metal Structures: Effect of Mixed Metal Layers, Dye Location and Dielectric Thickness

    PubMed Central

    Choudhury, Sharmistha Dutta; Badugu, Ramachandram; Ray, Krishanu; Lakowicz, Joseph R.

    2015-01-01

    Metal-dielectric-metal (MDM) structures provide directional emission close to the surface normal, which offers opportunities for new design formats in fluorescence based applications. The directional emission arises due to near-field coupling of fluorophores with the optical modes present in the MDM substrate. Reflectivity simulations and dispersion diagrams provide a basic understanding of the mode profiles and the factors that affect the coupling efficiency and the spatial distribution of the coupled emission. This work reveals that the composition of the metal layers, the location of the dye in the MDM substrate and the dielectric thickness are important parameters that can be chosen to tune the color of the emission wavelength, the angle of observation, the angular divergence of the emission and the polarization of the emitted light. These features are valuable for displays and optical signage. PMID:25844110

  1. Film Thickness Allowance and Waveguide Length in 3-Layer Unidirectional Magneto-Optical TE-TM Mode Converter

    NASA Astrophysics Data System (ADS)

    Abe, Masanori; Nakagawa, Hidenobu; Gomi, Manabu; Nomura, Shoichiro

    1982-01-01

    The film thickness allowance and the waveguide length in a 3-layer (substrate/film/air) magneto-optical unidirectional TE-TM mode converter which utilizes the intrinsic birefringence in an anisotropic material are calculated at λ0{=}1.55 μm. The film material should be gyrotropic in order to make the waveguide length short, and the film thickness allowance is relaxed by reducing the ratio of the dielectric constant of the film to that of the substrate. When the waveguide is made of an isotropic gyrotropic film of YIG deposited on an anisotropic substrate (which may be gyrotropic or not), the restriction on the film thickness can in practice be removed, but this requires precise control of the dielectric constant of the film and the substrate instead.

  2. Vertical dielectric screening of few-layer van der Waals semiconductors.

    PubMed

    Koo, Jahyun; Gao, Shiyuan; Lee, Hoonkyung; Yang, Li

    2017-10-05

    Vertical dielectric screening is a fundamental parameter of few-layer van der Waals two-dimensional (2D) semiconductors. However, unlike the widely-accepted wisdom claiming that the vertical dielectric screening is sensitive to the thickness, our first-principles calculation based on the linear response theory (within the weak field limit) reveals that this screening is independent of the thickness and, in fact, it is the same as the corresponding bulk value. This conclusion is verified in a wide range of 2D paraelectric semiconductors, covering narrow-gap ones and wide-gap ones with different crystal symmetries, providing an efficient and reliable way to calculate and predict static dielectric screening of reduced-dimensional materials. Employing this conclusion, we satisfactorily explain the tunable band gap in gated 2D semiconductors. We further propose to engineer the vertical dielectric screening by changing the interlayer distance via vertical pressure or hybrid structures. Our predicted vertical dielectric screening can substantially simplify the understanding of a wide range of measurements and it is crucial for designing 2D functional devices.

  3. Microslab - Waveguide medium for the future

    NASA Astrophysics Data System (ADS)

    Sequeira, H. B.

    1986-09-01

    'Microslab' technology, which has the transmission properties of both microstrip and dielectric slab waveguides, and which is aimed for use in MIMIC devices, is described. The Microslab configuration consists of a guiding layer bonded to a metallized dielectric substrate (slab) and a metallized dielectric rod, with the dielectric material and thicknesses chosen for minimal loss and dispersion and for optimum control of the propagating energy. The propagating energy is confined mainly to the guiding layer. The new technology has been used to couple a GaAs Gunn oscillator directly to a GaAs Microslab network to produce 0.25 mW at 141 GHz.

  4. Thickness Dependent Structural and Dielectric Properties of Calcium Copper Titanate Thin Films Produced by Spin-Coating Method for Microelectronic Devices

    NASA Astrophysics Data System (ADS)

    Thiruramanathan, P.; Sankar, S.; Marikani, A.; Madhavan, D.; Sharma, Sanjeev K.

    2017-07-01

    Calcium copper titanate (CaCu3Ti4O12, CCTO) thin films have been deposited on platinized silicon [(111)Pt/Ti/SiO2/Si] substrate through a sol-gel spin coating technique and annealed at 600-900°C with a variation of 100°C per sample for 3 h. The activation energy for crystalline growth, as well as optimal annealing temperature (900°C) of the CCTO crystallites was studied by x-ray diffraction analysis (XRD). Thickness dependent structural, morphological, and optical properties of CCTO thin films were observed. The field emission scanning electron microscopy (FE-SEM) verified that the CCTO thin films are uniform, fully covered, densely packed, and the particle size was found to be increased with film thickness. Meanwhile, quantitative analysis of dielectric properties (interfacial capacitance, dead layers, and bulk dielectric constant) of CCTO thin film with metal-insulator-metal (M-I-M) structures has been investigated systematically using a series capacitor model. Room temperature dielectric properties of all the samples exhibit dispersion at low frequencies, which can be explained based on Maxwell-Wagner two-layer models and Koop's theory. It was found that the 483 nm thick CCTO film represents a high dielectric constant ( ɛ r = 3334), low loss (tan δ = 3.54), capacitance ( C = 4951 nF), which might satisfy the requirements of embedded capacitor.

  5. Material optimization of multi-layered enhanced nanostructures

    NASA Astrophysics Data System (ADS)

    Strobbia, Pietro

    The employment of surface enhanced Raman scattering (SERS)-based sensing in real-world scenarios will offer numerous advantages over current optical sensors. Examples of these advantages are the intrinsic and simultaneous detection of multiple analytes, among many others. To achieve such a goal, SERS substrates with throughput and reproducibility comparable to commonly used fluorescence sensors have to be developed. To this end, our lab has discovered a multi-layer geometry, based on alternating films of a metal and a dielectric, that amplifies the SERS signal (multi-layer enhancement). The advantage of these multi-layered structures is to amplify the SERS signal exploiting layer-to-layer interactions in the volume of the structures, rather than on its surface. This strategy permits an amplification of the signal without modifying the surface characteristics of a substrate, and therefore conserving its reproducibility. Multi-layered structures can therefore be used to amplify the sensitivity and throughput of potentially any previously developed SERS sensor. In this thesis, these multi-layered structures were optimized and applied to different SERS substrates. The role of the dielectric spacer layer in the multi-layer enhancement was elucidated by fabricating spacers with different characteristics and studying their effect on the overall enhancement. Thickness, surface coverage and physical properties of the spacer were studied. Additionally, the multi-layered structures were applied to commercial SERS substrates and to isolated SERS probes. Studies on the dependence of the multi-layer enhancement on the thickness of the spacer demonstrated that the enhancement increases as a function of surface coverage at sub-monolayer thicknesses, due to the increasing multi-layer nature of the substrates. For fully coalescent spacers the enhancement decreases as a function of thickness, due to the loss of interaction between proximal metallic films. The influence of the physical properties of the spacer on the multi-layer enhancement were also studied. The trends in Schottky barrier height, interfacial potential and dielectric constant were isolated by using different materials as spacers (i.e., TiO2, HfO2, Ag 2O and Al2O3). The results show that the bulk dielectric constant of the material can be used to predict the relative magnitude of the multi-layer enhancement, with low dielectric constant materials performing more efficiently as spacers. Optimal spacer layers were found to be ultrathin coalescent films (ideally a monolayer) of low dielectric constant materials. Finally, multi-layered structures were observed to be employable to amplify SERS in drastically different substrate geometries. The multi-layered structures were applied to disposable commercial SERS substrates (i.e., Klarite). This project involved the regeneration of the used substrates, by stripping and redepositing the gold coating layer, and their amplification, by using the multi-layer geometry. The latter was observed to amplify the sensitivity of the substrates. Additionally, the multi-layered structures were applied to probes dispersed in solution. Such probes were observed to yield stronger SERS signal when optically trapped and to reduce the background signal. The application of the multi-layered structures on trapped probes, not only further amplified the SERS signal, but also increased the maximum number of applicable layers for the structures.

  6. Terahertz Mapping of Microstructure and Thickness Variations

    NASA Technical Reports Server (NTRS)

    Roth, Donald J.; Seebo, Jeffrey P.; Winfree, William P.

    2010-01-01

    A noncontact method has been devised for mapping or imaging spatial variations in the thickness and microstructure of a layer of a dielectric material. The method involves (1) placement of the dielectric material on a metal substrate, (2) through-the-thickness pulse-echo measurements by use of electromagnetic waves in the terahertz frequency range with a raster scan in a plane parallel to the substrate surface that do not require coupling of any kind, and (3) appropriate processing of the digitized measurement data.

  7. Significance of the double-layer capacitor effect in polar rubbery dielectrics and exceptionally stable low-voltage high transconductance organic transistors.

    PubMed

    Wang, Chao; Lee, Wen-Ya; Kong, Desheng; Pfattner, Raphael; Schweicher, Guillaume; Nakajima, Reina; Lu, Chien; Mei, Jianguo; Lee, Tae Hoon; Wu, Hung-Chin; Lopez, Jeffery; Diao, Ying; Gu, Xiaodan; Himmelberger, Scott; Niu, Weijun; Matthews, James R; He, Mingqian; Salleo, Alberto; Nishi, Yoshio; Bao, Zhenan

    2015-12-14

    Both high gain and transconductance at low operating voltages are essential for practical applications of organic field-effect transistors (OFETs). Here, we describe the significance of the double-layer capacitance effect in polar rubbery dielectrics, even when present in a very low ion concentration and conductivity. We observed that this effect can greatly enhance the OFET transconductance when driven at low voltages. Specifically, when the polar elastomer poly(vinylidene fluoride-co-hexafluoropropylene) (e-PVDF-HFP) was used as the dielectric layer, despite a thickness of several micrometers, we obtained a transconductance per channel width 30 times higher than that measured for the same organic semiconductors fabricated on a semicrystalline PVDF-HFP with a similar thickness. After a series of detailed experimental investigations, we attribute the above observation to the double-layer capacitance effect, even though the ionic conductivity is as low as 10(-10) S/cm. Different from previously reported OFETs with double-layer capacitance effects, our devices showed unprecedented high bias-stress stability in air and even in water.

  8. Significance of the double-layer capacitor effect in polar rubbery dielectrics and exceptionally stable low-voltage high transconductance organic transistors

    PubMed Central

    Wang, Chao; Lee, Wen-Ya; Kong, Desheng; Pfattner, Raphael; Schweicher, Guillaume; Nakajima, Reina; Lu, Chien; Mei, Jianguo; Lee, Tae Hoon; Wu, Hung-Chin; Lopez, Jeffery; Diao, Ying; Gu, Xiaodan; Himmelberger, Scott; Niu, Weijun; Matthews, James R.; He, Mingqian; Salleo, Alberto; Nishi, Yoshio; Bao, Zhenan

    2015-01-01

    Both high gain and transconductance at low operating voltages are essential for practical applications of organic field-effect transistors (OFETs). Here, we describe the significance of the double-layer capacitance effect in polar rubbery dielectrics, even when present in a very low ion concentration and conductivity. We observed that this effect can greatly enhance the OFET transconductance when driven at low voltages. Specifically, when the polar elastomer poly(vinylidene fluoride-co-hexafluoropropylene) (e-PVDF-HFP) was used as the dielectric layer, despite a thickness of several micrometers, we obtained a transconductance per channel width 30 times higher than that measured for the same organic semiconductors fabricated on a semicrystalline PVDF-HFP with a similar thickness. After a series of detailed experimental investigations, we attribute the above observation to the double-layer capacitance effect, even though the ionic conductivity is as low as 10–10 S/cm. Different from previously reported OFETs with double-layer capacitance effects, our devices showed unprecedented high bias-stress stability in air and even in water. PMID:26658331

  9. A SONOS device with a separated charge trapping layer for improvement of charge injection

    NASA Astrophysics Data System (ADS)

    Ahn, Jae-Hyuk; Moon, Dong-Il; Ko, Seung-Won; Kim, Chang-Hoon; Kim, Jee-Yeon; Kim, Moon-Seok; Seol, Myeong-Lok; Moon, Joon-Bae; Choi, Ji-Min; Oh, Jae-Sub; Choi, Sung-Jin; Choi, Yang-Kyu

    2017-03-01

    A charge trapping layer that is separated from the primary gate dielectric is implemented on a FinFET SONOS structure. By virtue of the reduced effective oxide thickness of the primary gate dielectric, a strong gate-to-channel coupling is obtained and thus short-channel effects in the proposed device are effectively suppressed. Moreover, a high program/erase speed and a large shift in the threshold voltage are achieved due to the improved charge injection by the reduced effective oxide thickness. The proposed structure has potential for use in high speed flash memory.

  10. Fluorinated graphene as high performance dielectric materials and the applications for graphene nanoelectronics.

    PubMed

    Ho, Kuan-I; Huang, Chi-Hsien; Liao, Jia-Hong; Zhang, Wenjing; Li, Lain-Jong; Lai, Chao-Sung; Su, Ching-Yuan

    2014-07-31

    There is broad interest in surface functionalization of 2D materials and its related applications. In this work, we present a novel graphene layer transistor fabricated by introducing fluorinated graphene (fluorographene), one of the thinnest 2D insulator, as the gate dielectric material. For the first time, the dielectric properties of fluorographene, including its dielectric constant, frequency dispersion, breakdown electric field and thermal stability, were comprehensively investigated. We found that fluorographene with extremely thin thickness (5 nm) can sustain high resistance at temperature up to 400 °C. The measured breakdown electric field is higher than 10 MV cm(-1), which is the heightest value for dielectric materials in this thickness. Moreover, a proof-of-concept methodology, one-step fluorination of 10-layered graphene, is readily to obtain the fluorographene/graphene heterostructures, where the top-gated transistor based on this structure exhibits an average carrier mobility above 760 cm(2)/Vs, higher than that obtained when SiO₂ and GO were used as gate dielectric materials. The demonstrated fluorographene shows excellent dielectric properties with fast and scalable processing, providing a universal applications for the integration of versatile nano-electronic devices.

  11. Fluorinated Graphene as High Performance Dielectric Materials and the Applications for Graphene Nanoelectronics

    PubMed Central

    Ho, Kuan-I; Huang, Chi-Hsien; Liao, Jia-Hong; Zhang, Wenjing; Li, Lain-Jong; Lai, Chao-Sung; Su, Ching-Yuan

    2014-01-01

    There is broad interest in surface functionalization of 2D materials and its related applications. In this work, we present a novel graphene layer transistor fabricated by introducing fluorinated graphene (fluorographene), one of the thinnest 2D insulator, as the gate dielectric material. For the first time, the dielectric properties of fluorographene, including its dielectric constant, frequency dispersion, breakdown electric field and thermal stability, were comprehensively investigated. We found that fluorographene with extremely thin thickness (5 nm) can sustain high resistance at temperature up to 400°C. The measured breakdown electric field is higher than 10 MV cm−1, which is the heightest value for dielectric materials in this thickness. Moreover, a proof-of-concept methodology, one-step fluorination of 10-layered graphene, is readily to obtain the fluorographene/graphene heterostructures, where the top-gated transistor based on this structure exhibits an average carrier mobility above 760 cm2/Vs, higher than that obtained when SiO2 and GO were used as gate dielectric materials. The demonstrated fluorographene shows excellent dielectric properties with fast and scalable processing, providing a universal applications for the integration of versatile nano-electronic devices. PMID:25081226

  12. Non-destructive determination of thickness of the dielectric layers using EDX

    NASA Astrophysics Data System (ADS)

    Sokolov, S. A.; Kelm, E. A.; Milovanov, R. A.; Abdullaev, D. A.; Sidorov, L. N.

    2016-12-01

    In this work a non-destructive method for measuring the thickness of the dielectric layers consisting of silicon dioxide and silicon nitride has been developed using a scanning electron microscope (SEM) equipped with energy dispersive X-ray spectrometer (EDS). Rising in accelerating voltage of electron beam leads to increasing in the depth of generation of the characteristic X-ray. If the ratio of the signal intensity of one of the substrate's elements to the noise equal to 3 suggests that the generation's depth of the characteristic X-ray coincides with the thickness of the overlying film. Dependence of the overlying film's thickness on the accelerating voltage can be plotted. Validation of the results was carried out by using the equation of Anderson-Hassler. The generation's volume of the characteristic X-Ray was simulated by CASINO program. The simulations results are in good agreement with experimental results for small thicknesses.

  13. Highly scaled equivalent oxide thickness of 0.66 nm for TiN/HfO2/GaSb MOS capacitors by using plasma-enhanced atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Tsai, Ming-Li; Wang, Shin-Yuan; Chien, Chao-Hsin

    2017-08-01

    Through in situ hydrogen plasma treatment (HPT) and plasma-enhanced atomic-layer-deposited TiN (PEALD-TiN) layer capping, we successfully fabricated TiN/HfO2/GaSb metal-oxide-semiconductor capacitors with an ultrathin equivalent oxide thickness of 0.66 nm and a low density of states of approximately 2 × 1012 cm-2 eV-1 near the valence band edge. After in situ HPT, a native oxide-free surface was obtained through efficient etching. Moreover, the use of the in situ PEALD-TiN layer precluded high-κ dielectric damage that would have been caused by conventional sputtering, thereby yielding a superior high-κ dielectric and low gate leakage current.

  14. Influence of dielectric protective layer on laser damage resistance of gold coated gratings

    NASA Astrophysics Data System (ADS)

    Wu, Kepeng; Ma, Ping; Pu, Yunti; Xia, Zhilin

    2016-03-01

    Aiming at the problem that the damage threshold of gold coated grating is relatively low, a dielectric film is considered on the gold coated gratings as a protective layer. The thickness range of the protective layer is determined under the prerequisite that the diffraction efficiency of the gold coated grating is reduced to an acceptable degree. In this paper, the electromagnetic field, the temperature field and the stress field distribution in the grating are calculated when the silica and hafnium oxide are used as protective layers, under the preconditions of the electromagnetic field distribution of the gratings known. The results show that the addition of the protective layer changes the distribution of the electromagnetic field, temperature field and stress field in the grating, and the protective layer with an appropriate thickness can improve the laser damage resistance of the grating.

  15. The optical properties of transferred graphene and the dielectrics grown on it obtained by ellipsometry

    NASA Astrophysics Data System (ADS)

    Kasikov, Aarne; Kahro, Tauno; Matisen, Leonard; Kodu, Margus; Tarre, Aivar; Seemen, Helina; Alles, Harry

    2018-04-01

    Graphene layers grown by chemical vapour deposition (CVD) method and transferred from Cu-foils to the oxidized Si-substrates were investigated by spectroscopic ellipsometry (SE), Raman and X-Ray Photoelectron Spectroscopy (XPS) methods. The optical properties of transferred CVD graphene layers do not always correspond to the ones of the exfoliated graphene due to the contamination from the chemicals used in the transfer process. However, the real thickness and the mean properties of the transferred CVD graphene layers can be found using ellipsometry if a real thickness of the SiO2 layer is taken into account. The pulsed laser deposition (PLD) and atomic layer deposition (ALD) methods were used to grow dielectric layers on the transferred graphene and the obtained structures were characterized using optical methods. The approach demonstrated in this work could be useful for the characterization of various materials grown on graphene.

  16. Thickness determination of few-layer hexagonal boron nitride films by scanning electron microscopy and Auger electron spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutter, P., E-mail: psutter@bnl.gov; Sutter, E.

    2014-09-01

    We assess scanning electron microscopy (SEM) and Auger electron spectroscopy (AES) for thickness measurements on few-layer hexagonal boron nitride (h-BN), the layered dielectric of choice for integration with graphene and other two-dimensional materials. Observations on h-BN islands with large, atomically flat terraces show that the secondary electron intensity in SEM reflects monolayer height changes in films up to least 10 atomic layers thickness. From a quantitative analysis of AES data, the energy-dependent electron escape depth in h-BN films is deduced. The results show that AES is suitable for absolute thickness measurements of few-layer h-BN of 1 to 6 layers.

  17. Elastomer modulus and dielectric strength scaling with sample thickness

    NASA Astrophysics Data System (ADS)

    Larson, Kent

    2015-04-01

    Material characteristics such as adhesion and dielectric strength have well recognized dependencies on material thickness. There is disagreement, however, on the scale: the long held dictum that dielectric strength is inversely proportional to the square root of sample thickness has been shown to not always hold true for all materials, nor for all possible thickness regions. In D-EAP applications some studies have postulated a "critical thickness" below which properties show significantly less thickness dependency. While a great deal of data is available for dielectric strength, other properties are not nearly as well documented as samples get thinner. In particular, elastic modulus has been found to increase and elongation to decrease as sample thickness is lowered. This trend can be observed experimentally, but has been rarely reported and certainly does not appear in typical suppliers' product data sheets. Both published and newly generated data were used to study properties such as elastic modulus and dielectric strength vs sample thickness in silicone elastomers. Several theories are examined to explain such behavior, such as the impact of defect size and of common (but not well reported) concentration gradients that occur during elastomer curing that create micron-sized layers at the upper and lower interfaces with divergent properties to the bulk material. As Dielectric Electro-Active Polymer applications strive to lower and lower material thickness, changing mechanical properties must be recognized and taken into consideration for accurate electro-mechanical predictions of performance.

  18. Effect of film thickness on the ferroelectric and dielectric properties of low-temperature (400 °C) Hf0.5Zr0.5O2 films

    NASA Astrophysics Data System (ADS)

    Kim, Si Joon; Mohan, Jaidah; Lee, Jaebeom; Lee, Joy S.; Lucero, Antonio T.; Young, Chadwin D.; Colombo, Luigi; Summerfelt, Scott R.; San, Tamer; Kim, Jiyoung

    2018-04-01

    We report on the effect of the Hf0.5Zr0.5O2 (HZO) film thickness on the ferroelectric and dielectric properties using pulse write/read measurements. HZO films of thicknesses ranging from 5 to 20 nm were annealed at 400 °C for 1 min in a nitrogen ambient to be compatible with the back-end of the line thermal budget. As the HZO film thickness decreases, low-voltage operation (1.0 V or less) can be achieved without the dead layer effect, although switching polarization (Psw) tends to decrease due to the smaller grain size. Meanwhile, for 20-nm-thick HZO films prepared under the identical stress (similar TiN top electrode thickness and thermal budget), the Psw and dielectric constant are reduced because of additional monoclinic phase formation.

  19. Multilayer thin films with compositional PbZr0.52Ti0.48O3/Bi1.5Zn1.0Nb1.5O7 layers for tunable applications

    PubMed Central

    Yu, Shihui; Li, Lingxia; Zhang, Weifeng; Sun, Zheng; Dong, Helei

    2015-01-01

    The dielectric properties and tunability of multilayer thin films with compositional PbZr0.52Ti0.48O3/Bi1.5Zn1.0Nb1.5O7 (PZT/BZN) layers (PPBLs) fabricated by pulsed laser deposition on Pt/TiO2/SiO2/Si substrate have been investigated. Dielectric measurements indicate that the PZT/BZN bilayer thin films exhibit medium dielectric constant of about 490, low loss tangent of 0.017, and superior tunable dielectric properties (tunability = 49.7% at 500 kV/cm) at a PZT/BZN thickness ratio of 3, while the largest figure of merit is obtained as 51.8. The thickness effect is discussed with a series connection model of bilayer capacitors, and the calculated dielectric constant and loss tangent are obtained. Furthermore, five kinds of thin–film samples comprising single bilayers, two, three, four and five PPBLs were also elaborated with the final same thickness. The four PPBLs show the largest dielectric constant of ~538 and tunability of 53.3% at a maximum applied bias field of 500 kV/cm and the lowest loss tangent of ~0.015, while the largest figure of merit is 65.6. The results indicate that four PPBLs are excellent candidates for applications of tunable devices. PMID:25960043

  20. Method for cleaning a solar cell surface opening made with a solar etch paste

    DOEpatents

    Rohatgi, Ajeet; Meemongkolkiat, Vichai

    2010-06-22

    A thin silicon solar cell having a back dielectric passivation and rear contact with local back surface field is described. Specifically, the solar cell may be fabricated from a crystalline silicon wafer having a thickness from 50 to 500 micrometers. A barrier layer and a dielectric layer are applied at least to the back surface of the silicon wafer to protect the silicon wafer from deformation when the rear contact is formed. At least one opening is made to the dielectric layer. An aluminum contact that provides a back surface field is formed in the opening and on the dielectric layer. The aluminum contact may be applied by screen printing an aluminum paste having from one to 12 atomic percent silicon and then applying a heat treatment at 750 degrees Celsius.

  1. Method for formation of high quality back contact with screen-printed local back surface field

    DOEpatents

    Rohatgi, Ajeet; Meemongkolkiat, Vichai

    2010-11-30

    A thin silicon solar cell having a back dielectric passivation and rear contact with local back surface field is described. Specifically, the solar cell may be fabricated from a crystalline silicon wafer having a thickness from 50 to 500 micrometers. A barrier layer and a dielectric layer are applied at least to the back surface of the silicon wafer to protect the silicon wafer from deformation when the rear contact is formed. At least one opening is made to the dielectric layer. An aluminum contact that provides a back surface field is formed in the opening and on the dielectric layer. The aluminum contact may be applied by screen printing an aluminum paste having from one to 12 atomic percent silicon and then applying a heat treatment at 750 degrees Celsius.

  2. Use of Ground Penetrating Radar at the FAA's National Airport Pavement Test Facility

    NASA Astrophysics Data System (ADS)

    Injun, Song

    2015-04-01

    The Federal Aviation Administration (FAA) in the United States has used a ground-coupled Ground Penetrating Radar (GPR) at the National Airport Pavement Test Facility (NAPTF) since 2005. One of the primary objectives of the testing at the facility is to provide full-scale pavement response and failure information for use in airplane landing gear design and configuration studies. During the traffic testing at the facility, a GSSI GPR system was used to develop new procedures for monitoring Hot Mix Asphalt (HMA) pavement density changes that is directly related to pavement failure. After reviewing current setups for data acquisition software and procedures for identifying different pavement layers, dielectric constant and pavement thickness were selected as dominant parameters controlling HMA properties provided by GPR. A new methodology showing HMA density changes in terms of dielectric constant variations, called dielectric sweep test, was developed and applied in full-scale pavement test. The dielectric constant changes were successfully monitored with increasing airplane traffic numbers. The changes were compared to pavement performance data (permanent deformation). The measured dielectric constants based on the known HMA thicknesses were also compared with computed dielectric constants using an equation from ASTM D4748-98 Standard Test Method for Determining the Thickness of Bound Pavement Layers Using Short-Pulse Radar. Six inches diameter cylindrical cores were taken after construction and traffic testing for the HMA layer bulk specific gravity. The measured bulk specific gravity was also compared to monitor HMA density changes caused by aircraft traffic conditions. Additionally this presentation will review the applications of the FAA's ground-coupled GPR on embedded rebar identification in concrete pavement, sewer pipes in soil, and gage identifications in 3D plots.

  3. Origin of colossal dielectric response of CaCu3Ti4O12 studied by using CaTiO3/CaCu3Ti4O12/CaTiO3 multilayer thin films

    NASA Astrophysics Data System (ADS)

    Mitsugi, Masakazu; Asanuma, Shutaro; Uesu, Yoshiaki; Fukunaga, Mamoru; Kobayashi, Wataru; Terasaki, Ichiro

    2007-06-01

    To elucidate the origin of the colossal dielectric response (CDR) of CaCu3Ti4O12 (CCTO), multilayer thin films of CCTO interposed in insulating CaTiO3 (CTO) were synthesized using a pulsed laser deposition technique. The capacitance C of CTO/CCTO/CTO films with different layer thicknesses is measured. After removing the capacitance of CTO by extrapolating C to zero CTO thickness, the real part of dielectric constant of CCTO is estimated to be 329-435, which is much smaller than the reported value for CCTO thin films. This fact indicates that the CDR of CCTO is extrinsic and originates from an internal barrier layer capacitor.

  4. Quantitative investigation on the critical thickness of the dielectric shell for metallic nanoparticles determined by the plasmon decay length.

    PubMed

    Li, Anran; Lim, Xinyi; Guo, Lin; Li, Shuzhou

    2018-04-20

    Inert dielectric shells coating the surface of metallic nanoparticles (NPs) are important for enhancing the NPs' stability, biocompatibility, and realizing targeting detection, but they impair NPs' sensing ability due to the electric fields damping. The dielectric shell not only determines the distance of the analyte from the NP surface, but also affects the field decay. From a practical point of view, it is extremely important to investigate the critical thickness of the shell, beyond which the NPs are no longer able to effectively detect the analytes. The plasmon decay length of the shell-coated NPs determines the critical thickness of the coating layer. Extracting from the exponential fitting results, we quantitatively demonstrate that the critical thickness of the shell exhibits a linear dependence on the NP volume and the dielectric constants of the shell and the surrounding medium, but only with a small variation influenced by the NP shape where the dipole resonance is dominated. We show the critical thickness increases with enlarging the NP sizes, or increasing the dielectric constant differences between the shell and surrounding medium. The findings are essential for applications of shell-coated NPs in plasmonic sensing.

  5. Quantitative investigation on the critical thickness of the dielectric shell for metallic nanoparticles determined by the plasmon decay length

    NASA Astrophysics Data System (ADS)

    Li, Anran; Lim, Xinyi; Guo, Lin; Li, Shuzhou

    2018-04-01

    Inert dielectric shells coating the surface of metallic nanoparticles (NPs) are important for enhancing the NPs’ stability, biocompatibility, and realizing targeting detection, but they impair NPs’ sensing ability due to the electric fields damping. The dielectric shell not only determines the distance of the analyte from the NP surface, but also affects the field decay. From a practical point of view, it is extremely important to investigate the critical thickness of the shell, beyond which the NPs are no longer able to effectively detect the analytes. The plasmon decay length of the shell-coated NPs determines the critical thickness of the coating layer. Extracting from the exponential fitting results, we quantitatively demonstrate that the critical thickness of the shell exhibits a linear dependence on the NP volume and the dielectric constants of the shell and the surrounding medium, but only with a small variation influenced by the NP shape where the dipole resonance is dominated. We show the critical thickness increases with enlarging the NP sizes, or increasing the dielectric constant differences between the shell and surrounding medium. The findings are essential for applications of shell-coated NPs in plasmonic sensing.

  6. Inkjet printing of metal-oxide-based transparent thin-film capacitors

    NASA Astrophysics Data System (ADS)

    Matavž, A.; Malič, B.; Bobnar, V.

    2017-12-01

    We report on the inkjet printing of transparent, thin-film capacitors (TTFCs) composed of indium-zinc-oxide electrodes and a tantalum-oxide-based dielectric on glass substrates. The printing parameters were adapted for the sequential deposition of functional layers, resulting in approximately 100-nm-thick transparent capacitors with a uniform thickness. The relatively high electrical resistivity of the electrodes is reflected in the frequency dispersive dielectric behaviour, which is explained in terms of an equivalent circuit. The resistivity of the electrode strongly decreases with the number of printing passes; consequently, any misalignment of the printed layers is detected in the measured response. At low frequency, the TTFCs show a stable intrinsic dielectric response and a high capacitance density of ˜280 nF/cm2. The good dielectric performance as well as the low leakage-current density (8 × 10-7 A/cm2 at 1 MV cm-1) of our capacitors indicates that inkjet printing can be used to produce all-printed, high-quality electrical devices.

  7. Thickness-dependent domain wall reorientation in 70/30 lead magnesium niobate- lead titanate thin films

    DOE PAGES

    Keech, Ryan; Morandi, Carl; Wallace, Margeaux; ...

    2017-04-11

    Continued reduction in length scales associated with many ferroelectric film-based technologies is contingent on retaining the functional properties as the film thickness is reduced. Epitaxial and polycrystalline lead magnesium niobate - lead titanate (70PMN-30PT) thin films were studied over the thickness range of 100-350 nm for the relative contributions to property thickness dependence from interfacial and grain boundary low permittivity layers. Epitaxial PMN-PT films were grown on SrRuO 3 /(001)SrTiO 3, while polycrystalline films with {001}-Lotgering factors >0.96 were grown on Pt/TiO 2/SiO 2/Si substrates via chemical solution deposition. Both film types exhibited similar relative permittivities of ~300 at highmore » fields at all measured thicknesses with highly crystalline electrode/dielectric interfaces. These results, with the DC-biased and temperature dependent dielectric characterization, suggest irreversible domain wall mobility is the major contributor to the overall dielectric response and its thickness dependence. In epitaxial films, the irreversible Rayleigh coefficients reduced 85% upon decreasing thickness from 350 to 100 nm. The temperature at which a peak in the relative permittivity is observed was the only measured small signal quantity which was more thickness dependent in polycrystalline than epitaxial films. This is attributed to the relaxor nature present in the films, potentially stabilized by defect concentrations, and/or chemical inhomogeneity. Finally, the effective interfacial layers are found to contribute to the measured thickness dependence in the longitudinal piezoelectric coefficient.« less

  8. Behavior of pentacene initial nucleation on various dielectrics and its effect on carrier transport in organic field-effect transistor.

    PubMed

    Qi, Qiong; Yu, Aifang; Wang, Liangmin; Jiang, Chao

    2010-11-01

    The influence of dielectric surface energy on the initial nucleation and the growth of pentacene films as well as the electrical properties of the pentacene-based field-effect transistors are investigated. We have examined a range of organic and inorganic dielectrics with different surface energies, such as polycarbonate/SiO2, polystyrene/SiO2, and PMMA/SiO2 bi-layered dielectrics and also the bare SiO2 dielectric. Atomic force microscopy measurements of sub-monolayer and thick pentacene films indicated that the growth of pentacene film was in Stranski-Kranstanow growth mode on all the dielectrics. However, the initial nucleation density and the size of the first-layered pentacene islands deposited on different dielectrics are drastically influenced by the dielectric surface energy. With the increasing of the surface energy, the nucleation density increased and thus the average size of pentacene islands for the first mono-layer deposition decreased. The performance of fabricated pentacene-based thin film transistors was found to be highly related to nucleation density and the island size of deposited Pentacene film, and it had no relationship to the final particle size of the thick pentacene film. The field effect mobility of the thin film transistor could be achieved as high as 1.38 cm2Ns with on/off ratio over 3 x 10(7) on the PS/SiO2 where the lowest surface energy existed among all the dielectrics. For comparison, the values of mobility and on/off ratio were 0.42 cm2Ns and 1 x 10(6) for thin film transistor deposited directly on bare SiO2 having the highest surface energy.

  9. Surface plasmon resonance in electrodynamically coupled Au NPs monolayer/dielectric spacer/Al film nanostructure: tuning by variation of spacer thickness

    NASA Astrophysics Data System (ADS)

    Yeshchenko, Oleg A.; Kozachenko, Viktor V.; Liakhov, Yuriy F.; Tomchuk, Anastasiya V.; Haftel, Michael; Pinchuk, Anatoliy O.

    2017-10-01

    Effects of plasmonic coupling between metal nanoparticles and thin metal films separated by thin dielectric film-spacers have been studied by means of light extinction in three-layer planar Au NPs monolayer/dielectric (shellac) film/Al film nanostructure. The influence of coupling on the spectral characteristics of the Au NPs SPR extinction peak has been analyzed with spacer thickness, varied from 3 to 200 nm. The main observed features are a strong red shift (160 nm), and non-monotonical behavior of the magnitude and width of Au NPs SPR, as the spacer thickness decreased. The appearance of an intensive gap mode peak was observed at a spacer thickness smaller than approximately 30 nm, caused by the hybridization of the Au NPs SPR mode and gap mode in the presence of the Al film. Additionally, the appreciable enhancement (5.6 times) of light extinction by the Au NPs monolayer in the presence of Al film has been observed. A certain value of dielectric spacer thickness (70 nm) exists at which such enhancement is maximal.

  10. Reaching state-of-the art requirements for MIM capacitors with a single-layer anodic Al2O3 dielectric and imprinted electrodes

    NASA Astrophysics Data System (ADS)

    Hourdakis, Emmanouel; Nassiopoulou, Androula G.

    2017-07-01

    Metal-Insulator-Metal (MIM) capacitors with a high capacitance density and low non-linearity coefficient using a single-layer dielectric of barrier-type anodic alumina (Al2O3) and an imprinted bottom Al electrode are presented. Imprinting of the bottom electrode aimed at increasing the capacitor effective surface area by creating a three-dimensional MIM capacitor architecture. The bottom Al electrode was only partly nanopatterned so as to ensure low series resistance of the MIM capacitor. With a 3 nm thick anodic Al2O3 dielectric, the capacitor with the imprinted electrode showed a 280% increase in capacitance density compared to the flat electrode capacitor, reaching a value of 20.5 fF/μm2. On the other hand, with a 30 nm thick anodic Al2O3 layer, the capacitance density was 7.9 fF/μm2 and the non-linearity coefficient was as low as 196 ppm/V2. These values are very close to reaching all requirements of the last International Technology Roadmap for Semiconductors for MIM capacitors [ITRS, http://www.itrs2.net/2013-itrs.html for ITRS Roadmap (2013)], and they are achieved by a single-layer dielectric instead of the complicated dielectric stacks of the literature. The obtained results constitute a real progress compared to previously reported results by our group for MIM capacitors using imprinted electrodes.

  11. Temperature- and frequency-dependent dielectric behaviors of insulator/semiconductor (Al2O3/ZnO) nanolaminates with various ZnO thicknesses

    NASA Astrophysics Data System (ADS)

    Li, Jin; Bi, Xiaofang

    2016-07-01

    Al2O3/ZnO nanolaminates (NLs) with various ZnO sublayer thicknesses were prepared by atomic layer deposition. The Al2O3 sublayers are characterized as amorphous and the ZnO sublayers have an oriented polycrystalline structure. As the ZnO thickness decreases to a certain value, each NL exhibits a critical temperature at which its dielectric constant starts to rise quickly. Moreover, this temperature increases as the ZnO thickness is decreased further. On the other hand, the permittivity demonstrates a large value of several hundred at a frequency  ⩽1000 Hz, followed by a steplike decrease at a higher frequency. The change in the cut-off frequency with ZnO thickness is characterized by a hook function. It is revealed that the Coulomb confinement effect becomes predominant in the dielectric behaviors of the NLs with very thin ZnO. As the ZnO thickness decreases to about the same as or even smaller than the Bohr radius of ZnO, a great change in the carrier concentration and effective mass of ZnO is induced, which is shown to be responsible for the peculiar dielectric behaviors of Al2O3/ZnO with very thin ZnO. These findings provide insight into the prevailing mechanisms to optimize the dielectric properties of semiconductor/insulator laminates with nanoscale sublayer thickness.

  12. Structural investigations of human hairs by spectrally resolved ellipsometry

    NASA Astrophysics Data System (ADS)

    Chan, Danny; Schulz, Benjamin; Rübhausen, Michael; Wessel, Sonya; Wepf, Roger

    2006-01-01

    Human hair is a biological layered system composed of two major layers, the cortex and the cuticle. We show spectrally resolved ellipsometry measurements of the ellipsometric parameters Ψ and Δ of single human hairs. The spectra reflect the layered nature of hair and the optical anisotropy of the hair's structure. In addition, measurements on strands of human hair show a high reproducibility of the ellipsometric parameters for different hair fiber bundles from the same person. Based on the measurements, we describe a dielectric model of hair that explains the spectra in terms of the dielectric properties of the major parts of hair and their associated layer thicknesses. In addition, surface roughness effects modeled by a roughness layer with a complex refractive index given by an effective medium approach can be seen to have a significant effect on the measurements. We derive values for the parameters of the cuticle surface roughness layer of the thickness dACu=273 to 360 nm and the air inclusion fA=0.6 to 5.7%.

  13. Experimentally demonstrate the surface state and optical topological phase transition of one dimensional hyperbolic metamaterials in Otto and KR configuration (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wei, Chih Chung; Un, Leng-Wai; Yen, Ta-Jen

    2017-05-01

    One-dimension hyperbolic metamaterials (1DHMMs) possess marvelous and considerable applications: hyperlens, spontaneous emission engineering and nonlinear optics. Conventionally, effective medium theory, which is only valid for long wavelength limit, was used to predict and analyze the optical properties and applications. In our previous works, we considered a binary 1DHMM which consists of alternative metallic and dielectric layers, and rigorously demonstrated the existence of surface states and bulk-interface correspondence with the plasmonic band theory from the coupled surface plasmon point of view. In the plasmonic band structure, we can classify 1DHMMs into two classes: metallic-like and dielectric-like, depending on the formation of the surface states with dielectric and metallic material, respectively. Band crossing exists only when the dielectric layers are thicker than the metallic ones, which is independent from the dielectric constants. Furthermore, the 1DHMMs are all metallic-like without band crossing. On the other hand, the 1DHMMs with band crossing are metal-like before the band crossing point, while they are dielectric-like after the band crossing point. In this work, we measure the surface states formed by dielectric material and 1DHMMs with band crossing in Otto configuration. With white light source and fixed incident angle, we measure the reflectance to investigate the existence of the surface states of 1DHMMs with various thickness ratio of metallic to dielectric layers. Conclusively, our results show that the surface states of 1DHMMs exist only when the thickness ratio is larger than 0.15. The disappearance of the surface states indicates the topological phase transition of 1DHMMs. Our experimental results will benefit new applications for manipulating light on the surface of hyperbolic metamaterials.

  14. Quantitative Raman spectrum and reliable thickness identification for atomic layers on insulating substrates.

    PubMed

    Li, Song-Lin; Miyazaki, Hisao; Song, Haisheng; Kuramochi, Hiromi; Nakaharai, Shu; Tsukagoshi, Kazuhito

    2012-08-28

    We demonstrate the possibility in quantifying the Raman intensities for both specimen and substrate layers in a common stacked experimental configuration and, consequently, propose a general and rapid thickness identification technique for atomic-scale layers on dielectric substrates. Unprecedentedly wide-range Raman data for atomically flat MoS(2) flakes are collected to compare with theoretical models. We reveal that all intensity features can be accurately captured when including optical interference effect. Surprisingly, we find that even freely suspended chalcogenide few-layer flakes have a stronger Raman response than that from the bulk phase. Importantly, despite the oscillating intensity of specimen spectrum versus thickness, the substrate weighted spectral intensity becomes monotonic. Combined with its sensitivity to specimen thickness, we suggest this quantity can be used to rapidly determine the accurate thickness for atomic layers.

  15. Subminiature eddy current transducers for studying metal- dielectric junctions

    NASA Astrophysics Data System (ADS)

    Dmitriev, S.; Katasonov, A.; Malikov, V.; Sagalakov, A.; Davydchenko, M.; Shevtsova, L.; Ishkov, A.

    2016-11-01

    Based on an eddy current transducer (ECT), a probe has been designed to research metal-dielectric structures. The measurement procedure allowing one to detect defects in laminate composites with a high accuracy is described. The transducer was tested on the layered structure consisting of paper and aluminum layers with a thickness of 100 μm each in which the model defect was placed. The dependences of the ECT signal on the defect in this structure are given.

  16. Effects of HfO2 encapsulation on electrical performances of few-layered MoS2 transistor with ALD HfO2 as back-gate dielectric.

    PubMed

    Xu, Jingping; Wen, Ming; Zhao, Xinyuan; Liu, Lu; Song, Xingjuan; Lai, Pui-To; Tang, Wing-Man

    2018-08-24

    The carrier mobility of MoS 2 transistors can be greatly improved by the screening role of high-k gate dielectric. In this work, atomic-layer deposited (ALD) HfO 2 annealed in NH 3 is used to replace SiO 2 as the gate dielectric to fabricate back-gated few-layered MoS 2 transistors, and good electrical properties are achieved with field-effect mobility (μ) of 19.1 cm 2 V -1 s -1 , subthreshold swing (SS) of 123.6 mV dec -1 and on/off ratio of 3.76 × 10 5 . Furthermore, enhanced device performance is obtained when the surface of the MoS 2 channel is coated by an ALD HfO 2 layer with different thicknesses (10, 15 and 20 nm), where the transistor with a 15 nm HfO 2 encapsulation layer exhibits the best overall electrical properties: μ = 42.1 cm 2 V -1 s -1 , SS = 87.9 mV dec -1 and on/off ratio of 2.72 × 10 6 . These improvements should be associated with the enhanced screening effect on charged-impurity scattering and protection from absorption of environmental gas molecules by the high-k encapsulation. The capacitance equivalent thickness of the back-gate dielectric (HfO 2 ) is only 6.58 nm, which is conducive to scaling of the MoS 2 transistors.

  17. Damage evaluation in graphene underlying atomic layer deposition dielectrics

    PubMed Central

    Tang, Xiaohui; Reckinger, Nicolas; Poncelet, Olivier; Louette, Pierre; Ureña, Ferran; Idrissi, Hosni; Turner, Stuart; Cabosart, Damien; Colomer, Jean-François; Raskin, Jean-Pierre; Hackens, Benoit; Francis, Laurent A.

    2015-01-01

    Based on micro-Raman spectroscopy (μRS) and X-ray photoelectron spectroscopy (XPS), we study the structural damage incurred in monolayer (1L) and few-layer (FL) graphene subjected to atomic-layer deposition of HfO2 and Al2O3 upon different oxygen plasma power levels. We evaluate the damage level and the influence of the HfO2 thickness on graphene. The results indicate that in the case of Al2O3/graphene, whether 1L or FL graphene is strongly damaged under our process conditions. For the case of HfO2/graphene, μRS analysis clearly shows that FL graphene is less disordered than 1L graphene. In addition, the damage levels in FL graphene decrease with the number of layers. Moreover, the FL graphene damage is inversely proportional to the thickness of HfO2 film. Particularly, the bottom layer of twisted bilayer (t-2L) has the salient features of 1L graphene. Therefore, FL graphene allows for controlling/limiting the degree of defect during the PE-ALD HfO2 of dielectrics and could be a good starting material for building field effect transistors, sensors, touch screens and solar cells. Besides, the formation of Hf-C bonds may favor growing high-quality and uniform-coverage dielectric. HfO2 could be a suitable high-K gate dielectric with a scaling capability down to sub-5-nm for graphene-based transistors. PMID:26311131

  18. Dielectric constant estimation of the uppermost Basal Unit layer in the martian Boreales Scopuli region

    NASA Astrophysics Data System (ADS)

    Lauro, Sebastian E.; Mattei, Elisabetta; Soldovieri, Francesco; Pettinelli, Elena; Orosei, Roberto; Vannaroni, Giuliano

    2012-05-01

    An electromagnetic inversion model has been applied to echoes from the subsurface sounding Shallow Radar (SHARAD) to retrieve the dielectric properties of the uppermost Basal Unit (BU) beneath the North Polar Layered Deposits of Mars. SHARAD data have been carefully selected to satisfy the assumption of the inversion model which requires a stratigraphy consisting of mostly plane parallel layers. The resulting values of the dielectric constant have been interpreted in terms of a variable percentage of dust in an ice-dust mixture through the use of a mixing model for dielectric properties. The resulting dust content exceeds 65%, reaching perhaps 95%, depending on the permittivity values assumed for the dust. Such a concentration is higher than that obtained by Selvans et al. (Selvans, M.M., Plaut, J.J., Aharonson, O. [2010]. J. Geophys. Res, 115, E09003). This discrepancy could be justified considering that our observations refer to the uppermost BU layer, whereas Selvans et al. (Selvans, M.M., Plaut, J.J., Aharonson, O. [2010]. J. Geophys. Res, 115, E09003) probed the BU full thickness. Moreover, if the BU is considered spatially inhomogeneous, with very different dust content and thickness (Tanaka, K.L., Skinner, J.A., Fortezzo, C.M., Herkenhoff, K.E., Rodriguez, J.A.P., Bourke, M.C., Kolb, E.J., Okubo, C.H. [2008]. Icarus, 196, 318-358), the discrepancy could be furtherly reconciled.

  19. Ellipsometric characterization of MoSe2 thin layers obtained by thermal treatment of molybdenum in selenium vapor

    NASA Astrophysics Data System (ADS)

    Bayramov, Ayaz; Aliyeva, Yegana; Eyyubov, Gurban; Mammadov, Eldar; Jahangirli, Zakir; Lincot, Daniel; Mamedov, Nazim

    2017-11-01

    Submicron MoSe2 layers were prepared by thermal treatment of thick Mo layers on glass substrate in saturated selenium vapor. Spectroscopic ellipsometry was then applied to the obtained MoSe2/Mo/Glass structures and MoSe2 target sample at room temperature. Dielectric function for both the MoSe2 layer and MoSe2 target was retrieved in the spectral range 190-1700 nm by using the Kramers-Kronig consistent B-spline dispersion model. The obtained data were similar in both cases. Despite apparent red shift of the dielectric function spectra of the layer in high energy region the peculiarity at around 1 eV is manifested at the same energy for both, layer and target. Comparison of the ellipsometry-based dielectric function of the target and the one, obtained within calculated band structure of MoSe2 for room temperature lattice parameters, has shown that the former is a broadened counterpart of the latter. Above-mentioned peculiar feature is not reproduced in the calculated dielectric function and is assumed to have excitonic nature.

  20. Multilayer Dielectric Transmissive Optical Phase Modulator

    NASA Technical Reports Server (NTRS)

    Keys, Andrew Scott; Fork, Richard Lynn

    2004-01-01

    A multilayer dielectric device has been fabricated as a prototype of a low-loss, low-distortion, transmissive optical phase modulator that would provide as much as a full cycle of phase change for all frequency components of a transmitted optical pulse over a frequency band as wide as 6.3 THz. Arrays of devices like this one could be an alternative to the arrays of mechanically actuated phase-control optics (adaptive optics) that have heretofore been used to correct for wave-front distortions in highly precise optical systems. Potential applications for these high-speed wave-front-control arrays of devices include agile beam steering, optical communications, optical metrology, optical tracking and targeting, directional optical ranging, and interferometric astronomy. The device concept is based on the same principle as that of band-pass interference filters made of multiple dielectric layers with fractional-wavelength thicknesses, except that here there is an additional focus on obtaining the desired spectral phase profile in addition to the device s spectral transmission profile. The device includes a GaAs substrate, on which there is deposited a stack of GaAs layers alternating with AlAs layers, amounting to a total of 91 layers. The design thicknesses of the layers range from 10 nm to greater than 1 micrometer. The number of layers and the thickness of each layer were chosen in a computational optimization process in which the wavelength dependences of the indices of refraction of GaAs and AlAs were taken into account as the design was iterated to maximize the transmission and minimize the group-velocity dispersion for a wavelength band wide enough to include all significant spectral components of the pulsed optical signal to be phase modulated.

  1. Microfabricated bragg waveguide

    DOEpatents

    Fleming, James G.; Lin, Shawn-Yu; Hadley, G. Ronald

    2004-10-19

    A microfabricated Bragg waveguide of semiconductor-compatible material having a hollow core and a multilayer dielectric cladding can be fabricated by integrated circuit technologies. The microfabricated Bragg waveguide can comprise a hollow channel waveguide or a hollow fiber. The Bragg fiber can be fabricated by coating a sacrificial mandrel or mold with alternating layers of high- and low-refractive-index dielectric materials and then removing the mandrel or mold to leave a hollow tube with a multilayer dielectric cladding. The Bragg channel waveguide can be fabricated by forming a trench embedded in a substrate and coating the inner wall of the trench with a multilayer dielectric cladding. The thicknesses of the alternating layers can be selected to satisfy the condition for minimum radiation loss of the guided wave.

  2. Lead zirconate titanate-nickel zink ferrite thick-film composites: obtaining by the screen printing technique and magnetoelectric properties

    NASA Astrophysics Data System (ADS)

    Bush, A. A.; Shkuratov, V. Ya.; Chernykh, I. A.; Fetisov, Y. K.

    2010-03-01

    Layered thick-film composites containing one lead zirconate titanate (PZT) layer, one nickel zinc ferrite (NZF) layer, two PZT-NZF layers, or three PZT-NZF-PZT layers each 40-50 μm thick are prepared. The layers are applied by screen printing on a ceramic aluminum oxide substrate with a preformed contact (conducting) layer. The dielectric properties of the composites are studied in the temperature interval 80-900 K and the frequency interval 25 Hz-1 MHz. Polarized samples exhibit piezoelectric, pyroelectric, and magnetoelectric effects. In tangentially magnetized two- and three-layer composites, the magnetoelectric conversion factor equals 57 kV/(m T) at low frequencies and reaches 2000 kV/(m T) at the mechanical resonance frequency.

  3. Simulation and analysis of Au-MgF2 structure in plasmonic sensor in near infrared spectral region

    NASA Astrophysics Data System (ADS)

    Sharma, Anuj K.

    2018-05-01

    Plasmonic sensor based on metal-dielectric combination of gold and MgF2 layers is studied in near infrared (NIR) spectral region. An emphasis is given on the effect of variable thickness of MgF2 layer in combination with operating wavelength and gold layer thickness on the sensor's performance in NIR. It is established that the variation in MgF2 thickness in connection with plasmon penetration depth leads to significant variation in sensor's performance. The analysis leads to a conclusion that taking smaller values of MgF2 layer thickness and operating at longer NIR wavelength leads to enhanced sensing performance. Also, fluoride glass can provide better sensing performance than chalcogenide glass and silicon substrate.

  4. Effects of BOX engineering on analogue/RF and circuit performance of InGaAs-OI-Si MOSFET

    NASA Astrophysics Data System (ADS)

    Maity, Subir Kr.; Pandit, Soumya

    2017-11-01

    InGaAs is an attractive choice as alternate channel material in n-channel metal oxide semiconductor transistor for high-performance applications. However, electrostatic integrity of such device is poor. In this paper, we present a comprehensive technology computer-aided design simulation-based study of the effect of scaling the thickness of the buried oxide (BOX) region and varying the dielectric constant of BOX material on the electrostatic integrity, analogue/radio frequency (RF) performance and circuit performance of InGaAs-on-Insulator device. Device with thin BOX layer gives better drain-induced barrier lowering performance which enhances output resistance. The carrier mobility remains almost constant with thinning of BOX layer up to certain value. By lowering the dielectric constant of the BOX material, it is further possible to improve the analogue and RF performance. Effect of BOX thickness scaling and role of BOX dielectric material on gain-frequency response of common source amplifier is also studied. It is observed that frequency response of the amplifier improves for thin BOX and with low dielectric constant-based material.

  5. Dielectric properties of crystalline organic molecular films in the limit of zero overlap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D’Avino, Gabriele, E-mail: gabriele.davino@gmail.com; Vanzo, Davide; Soos, Zoltán G., E-mail: soos@princeton.edu

    2016-01-21

    We present the calculation of the static dielectric susceptibility tensor and dipole field sums in thin molecular films in the well-defined limit of zero intermolecular overlap. Microelectrostatic and charge redistribution approaches are applied to study the evolution of dielectric properties from one to a few molecular layers in films of different conjugated molecules with organic electronics applications. Because of the conditional convergence of dipolar interactions, dipole fields depend on the shape of the sample and different values are found in the middle layer of a thick film and in the bulk. The shape dependence is eliminated when depolarization is takenmore » into account, and the dielectric tensor of molecular films converges to the bulk limit within a few molecular layers. We quantify the magnitude of surface effects and interpret general trends among different systems in terms of molecular properties, such as shape, polarizability anisotropy, and supramolecular organization. A connection between atomistic models for molecular dielectrics and simpler theories for polarizable atomic lattices is also provided.« less

  6. Mode propagation in optical nanowaveguides with dielectric cores and surrounding metal layers.

    PubMed

    Lapchuk, Anatoly S; Shin, Dongho; Jeong, Ho-Seop; Kyong, Chun Su; Shin, Dong-Ik

    2005-12-10

    The mode spectrum in an optical nanowaveguide consisting of a dielectric-core layer surrounded by two identical metal layers is investigated. A simple model based on mode matching to predict the properties of mode propagation in such optical nanowaveguides is proposed. It is shown that quasi-TM00 and quasi-TM10 modes supported by an optical microstrip line do not have a cutoff frequency, regardless of the size of the metal strips, the thickness of the dielectric slab, and the cross-sectional shape. The transverse size of the TM00 mode supported by a nanosized microstrip line was found to be approximately equal to the transverse dimension of the microstrip line. In closed rectangular and elliptical nanowaveguides, i.e., in which all dielectric surfaces are covered with metal films, the cross-sectional shape of the waveguide should be stretched along one side to produce propagation conditions for the fundamental mode.

  7. van der Waals torque and force between dielectrically anisotropic layered media.

    PubMed

    Lu, Bing-Sui; Podgornik, Rudolf

    2016-07-28

    We analyse van der Waals interactions between a pair of dielectrically anisotropic plane-layered media interacting across a dielectrically isotropic solvent medium. We develop a general formalism based on transfer matrices to investigate the van der Waals torque and force in the limit of weak birefringence and dielectric matching between the ordinary axes of the anisotropic layers and the solvent. We apply this formalism to study the following systems: (i) a pair of single anisotropic layers, (ii) a single anisotropic layer interacting with a multilayered slab consisting of alternating anisotropic and isotropic layers, and (iii) a pair of multilayered slabs each consisting of alternating anisotropic and isotropic layers, looking at the cases where the optic axes lie parallel and/or perpendicular to the plane of the layers. For the first case, the optic axes of the oppositely facing anisotropic layers of the two interacting slabs generally possess an angular mismatch, and within each multilayered slab the optic axes may either be the same or undergo constant angular increments across the anisotropic layers. In particular, we examine how the behaviors of the van der Waals torque and force can be "tuned" by adjusting the layer thicknesses, the relative angular increment within each slab, and the angular mismatch between the slabs.

  8. Studying tantalum-based high-κ dielectrics in terms of capacitance measurements

    NASA Astrophysics Data System (ADS)

    Stojanovska-Georgievska, L.

    2016-08-01

    The trend of rapid development of microelectronics towards nano-miniaturization dictates the inevitable introduction of dielectrics with high permittivity (high-κ dielectrics), as alternative material for replacing SiO2. Therefore, studying these materials in terms of their characteristics, especially in terms of reliability, is of great importance for proper design and manufacture of devices. In this paper, alteration of capacitance in different frequency regimes is used, in order to determine the overall behavior of the material. Samples investigated here are MOS structures containing nanoscale tantalum based dielectrics. Layers of pure Ta2O5, but also Hf and Ti doped tantalum pentoxide, i.e. Ta2O5:Hf and Ta2O5:Ti are studied here. All samples are considered as ultrathin oxide layers with thicknesses less than 15 nm, obtained by radio frequent sputtering on p-type silicon substrate. Measuring capacitive characteristics enables determination of several specific parameters of the structures. The obtained results for capacitance in accumulation, the thickness and time evolution of the interfacial SiO2 layer, values of flatband and threshold voltage, density of oxide charges, interfacial and border states, and reliability properties favor the possibilities for more intensive use of studied materials in new nanoelectronic technologies.

  9. Long-range wetting transparency on top of layered metal-dielectric substrates

    NASA Astrophysics Data System (ADS)

    Noginov, M. A.; Barnakov, Yuri A.; Liberman, Vladimir; Prayakarao, Srujana; Bonner, Carl E.; Narimanov, Evgenii E.

    2016-06-01

    It has been recently shown that scores of physical and chemical phenomena (including spontaneous emission, scattering and Förster energy transfer) can be controlled by nonlocal dielectric environments provided by metamaterials with hyperbolic dispersion and simpler metal/dielectric structures. At this time, we have researched van der Waals interactions and experimentally studied wetting of several metallic, dielectric and composite multilayered substrates. We have found that the wetting angle of water on top of MgF2 is highly sensitive to the thickness of the MgF2 layer and the nature of the underlying substrate that could be positioned as far as ~100 nm beneath the water/MgF2 interface. We refer to this phenomenon as long range wetting transparency. The latter effect cannot be described in terms of the most basic model of dispersion van der Waals-London forces based on pair-wise summation of dipole-dipole interactions across an interface or a gap separating the two media. We infer that the experimentally observed gradual change of the wetting angle with increase of the thickness of the MgF2 layer can possibly be explained by the distance dependence of the Hamaker function (describing the strength of interaction), which originates from retardation of electromagnetic waves at the distances comparable to a wavelength.

  10. Long-range wetting transparency on top of layered metal-dielectric substrates.

    PubMed

    Noginov, M A; Barnakov, Yuri A; Liberman, Vladimir; Prayakarao, Srujana; Bonner, Carl E; Narimanov, Evgenii E

    2016-06-21

    It has been recently shown that scores of physical and chemical phenomena (including spontaneous emission, scattering and Förster energy transfer) can be controlled by nonlocal dielectric environments provided by metamaterials with hyperbolic dispersion and simpler metal/dielectric structures. At this time, we have researched van der Waals interactions and experimentally studied wetting of several metallic, dielectric and composite multilayered substrates. We have found that the wetting angle of water on top of MgF2 is highly sensitive to the thickness of the MgF2 layer and the nature of the underlying substrate that could be positioned as far as ~100 nm beneath the water/MgF2 interface. We refer to this phenomenon as long range wetting transparency. The latter effect cannot be described in terms of the most basic model of dispersion van der Waals-London forces based on pair-wise summation of dipole-dipole interactions across an interface or a gap separating the two media. We infer that the experimentally observed gradual change of the wetting angle with increase of the thickness of the MgF2 layer can possibly be explained by the distance dependence of the Hamaker function (describing the strength of interaction), which originates from retardation of electromagnetic waves at the distances comparable to a wavelength.

  11. Long-range wetting transparency on top of layered metal-dielectric substrates

    PubMed Central

    Noginov, M. A.; Barnakov, Yuri A.; Liberman, Vladimir; Prayakarao, Srujana; Bonner, Carl E.; Narimanov, Evgenii E.

    2016-01-01

    It has been recently shown that scores of physical and chemical phenomena (including spontaneous emission, scattering and Förster energy transfer) can be controlled by nonlocal dielectric environments provided by metamaterials with hyperbolic dispersion and simpler metal/dielectric structures. At this time, we have researched van der Waals interactions and experimentally studied wetting of several metallic, dielectric and composite multilayered substrates. We have found that the wetting angle of water on top of MgF2 is highly sensitive to the thickness of the MgF2 layer and the nature of the underlying substrate that could be positioned as far as ~100 nm beneath the water/MgF2 interface. We refer to this phenomenon as long range wetting transparency. The latter effect cannot be described in terms of the most basic model of dispersion van der Waals-London forces based on pair-wise summation of dipole-dipole interactions across an interface or a gap separating the two media. We infer that the experimentally observed gradual change of the wetting angle with increase of the thickness of the MgF2 layer can possibly be explained by the distance dependence of the Hamaker function (describing the strength of interaction), which originates from retardation of electromagnetic waves at the distances comparable to a wavelength. PMID:27324650

  12. Effect of dead layer and strain on diffuse phase transition of PLZT relaxor thin films.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tong, S.; Narayanan, M.; Ma, B.

    2011-02-01

    Bulk relaxor ferroelectrics exhibit excellent permittivity compared to their thin film counterpart, although both show diffuse phase transition (DPT) behavior unlike normal ferroelectrics. To better understand the effect of dead layer and strain on the observed anomaly in the dielectric properties, we have developed relaxor PLZT (lead lanthanum zirconate titanate) thin films with different thicknesses and measured their dielectric properties as a function of temperature and frequency. The effect of dead layer on thin film permittivity has been found to be independent of temperature and frequency, and is governed by the Schottky barrier between the platinum electrode and PLZT. Themore » total strain (thermal and intrinsic) in the film majorly determines the broadening, dielectric peak and temperature shift in the relaxor ferroelectric. The Curie-Weiss type law for relaxors has been further modified to incorporate these two effects to accurately predict the DPT behavior of thin film and bulk relaxor ferroelectrics. The dielectric behavior of thin film is predicted by using the bulk dielectric data from literature in the proposed equation, which agree well with the measured dielectric behavior.« less

  13. Middle Electrode in a Vertical Transistor Structure Using an Sn Layer by Thermal Evaporation

    NASA Astrophysics Data System (ADS)

    Nogueira, Gabriel Leonardo; da Silva Ozório, Maiza; da Silva, Marcelo Marques; Morais, Rogério Miranda; Alves, Neri

    2018-05-01

    We report a process for performing the middle electrode for a vertical field effect transistor (VOFET) by the evaporation of a tin (Sn) layer. Bare aluminum oxide (Al2O3), obtained by anodization, and Al2O3 covered with a polymethylmethacrylate (PMMA) layer were used as the gate dielectric. We measured the electrical resistance of Sn while the evaporation was carried out to find the best condition to prepare the middle electrode, that is, good lateral conduction associated with openings that give permeability to the electric field in a vertical direction. This process showed that 55 nm Sn thick is suitable for use in a VOFET, being easier to achieve optimal thickness when the Sn is evaporated onto PMMA than onto bare Al2O3. The addition of a PMMA layer on the Al2O3 surface modifies the morphology of the Sn layer, resulting in a lowering of the threshold voltage. The values of threshold voltage and electric field, VTH = - 8 V and ETH = 354.5 MV/m respectively, were calculated using an Al2O3 film 20 nm thick covered with a 14 nm PMMA layer as gate dielectric, while for bare Al2O3 these values were VTH = - 10 V and ETH = 500 MV/m.

  14. Modes of interaction between nanostructured metal and a conducting mirror as a function of separation and incident polarization

    NASA Astrophysics Data System (ADS)

    Bonnie, F.; Arnold, M. D.; Smith, G. B.; Gentle, A. R.

    2013-09-01

    The optical resonances that occur in nanostructured metal layers are modulated in thin film stacks if the nanostructured layer is separated from a reflecting conducting layer by various thicknesses of thin dielectric. We have measured and modeled the optical response of interacting silver layers, with alumina spacer thickness ranging from a few nm to 50 nm, for s- and p-polarized incident light, and a range of incident angles. Standard thin film models, including standard effective medium models for the nanostructured layer, will break down for spacer thickness below a critical threshold. For example, with polarisation in the film plane and some nano-islands, it may occur at around 10 nm depending on spacer refractive index. Of particular interest here are novel effects observed with the onset of percolation in the nanolayer. Hot spot effects can be modified by nearby mirrors. Other modes to consider include (a) a two-particle mode involving a particle and its mirror image (b) A Fano resonance from hybridisation of localized and de-localised plasmon modes (c) a Babinet's core-(partial) shell particle with metal core-dielectric shell in metal (d) spacing dependent phase modulation (e) the impact of field gradients induced by the mirror at the nano-layer.

  15. Structural and dielectric properties of thin ZrO2 films on silicon grown by atomic layer deposition from cyclopentadienyl precursor

    NASA Astrophysics Data System (ADS)

    Niinistö, J.; Putkonen, M.; Niinistö, L.; Kukli, K.; Ritala, M.; Leskelä, M.

    2004-01-01

    ZrO2 thin films with thicknesses below 20 nm were deposited by the atomic layer deposition process on Si(100) substrates at 350 °C. An organometallic precursor, Cp2Zr(CH3)2 (Cp=cyclopentadienyl, C5H5) was used as the zirconium source and water or ozone as oxygen source. The influence of oxygen source and substrate pretreatment on the dielectric properties of ZrO2 films was investigated. Structural characterization with high-resolution transmission electron microscopy was performed to films grown onto HF-etched or native oxide covered silicon. Strong inhibition of ZrO2 film growth was observed with the water process on HF-etched Si. Ozone process on HF-etched Si resulted in interfacial SiO2 formation between the dense and uniform film and the substrate while water process produced interfacial layer with intermixing of SiO2 and ZrO2. The effective permittivity of ZrO2 in Al/ZrO2/Si/Al capacitor structures was dependent on the ZrO2 layer thickness and oxygen source used. The interfacial layer formation increased the capacitance equivalent oxide thickness (CET). CET of 2.0 nm was achieved with 5.9 nm ZrO2 film deposited with the H2O process on HF-stripped Si. The ozone-processed films showed good dielectric properties such as low hysteresis and nearly ideal flatband voltage. The leakage current density was lower and breakdown field higher for the ozone-processed ZrO2 films.

  16. A new high-κ Al2O3 based metal-insulator-metal antifuse

    NASA Astrophysics Data System (ADS)

    Tian, Min; Zhong, Huicai; Li, Li; Wang, Zhigang

    2018-06-01

    In this paper, a new metal-insulator-metal (MIM) antifuse was fabricated with the high κ Al2O3 deposited by atomic layer deposition (ALD) as the dielectric. On this high κ antifuse structure, the very low on-state resistance was obtained under certain programming conditions. It is the first time that the antifuse on-state resistance has been found decreasing along with the increase of dielectric film thickness, which is attributed to a large current overshoot during breakdown. For the device with a dielectric thickness of 12 nm, very large overshoot current (∼60 mA) was observed and extremely low on-state resistance (∼10 Ω) was achieved.

  17. The effect of chain rigidity on the interfacial layer thickness and dynamics of polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Cheng, Shiwang; Carrillo, Jan-Michael Y.; Carroll, Bobby; Sumpter, Bobby G.; Sokolov, Alexei P.

    There are growing experimental evidences showing the existence of an interfacial layer that has a finite thickness with slowing down dynamics in polymer nanocomposites (PNCs). Moreover, it is believed that the interfacial layer plays a significant role on various macroscopic properties of PNCs. A thicker interfacial layer is found to have more pronounced effect on the macroscopic properties such as the mechanical enhancement. However, it is not clear what molecular parameter controls the interfacial layer thickness. Inspired by our recent computer simulations that showed the chain rigidity correlated well with the interfacial layer thickness, we performed systematic experimental studies on different polymer nanocomposites by varying the chain stiffness. Combining small-angle X-ray scattering, broadband dielectric spectroscopy and temperature modulated differential scanning calorimetry, we find a good correlation between the polymer Kuhn length and the thickness of the interfacial layer, confirming the earlier computer simulations results. Our findings provide a direct guidance for the design of new PNCs with desired properties.

  18. Structural investigations of human hairs by spectrally resolved ellipsometry

    NASA Astrophysics Data System (ADS)

    Schulz, Benjamin; Chan, D.; Ruebhausen, M.; Wessel, S.; Wepf, R.

    2006-03-01

    Human hair is a biological layered system composed of two major layers, the cortex and the cuticle. We show spectrally resolved ellipsometry measurements of the ellipsometric parameters ψ and δ of single human hairs. The spectra reflect the layered nature of hair and the optical anisotropy of the hair’s structure. In addition, measurements on strands of human hair show a high reproducibility of the ellipsometric parameters for different hair fiber bundles from the same person. Based on the measurements, we develop a model of the dielectric function of hair that explains the spectra. This model includes the dielectric properties of the cuticle and cortex as well as their associated layer thicknesses. In addition, surface roughness effects modelled by a roughness layer with an complex refractive index given by an effective medium approach can have a significant effect on the measurements. We derive values for the parameters of the cuticle surface roughness layer of the thickness dACu= 273-360 nm and the air inclusion fA= 0.6 -5.7%. [1] accepted for publication in J. Biomed Opt., 2005

  19. High Transparent and Conductive TiO2/Ag/TiO2 Multilayer Electrode Films Deposited on Sapphire Substrate

    NASA Astrophysics Data System (ADS)

    Loka, Chadrasekhar; Moon, Sung Whan; Choi, YiSik; Lee, Kee-Sun

    2018-03-01

    Transparent conducting oxides attract intense interests due to its diverse industrial applications. In this study, we report sapphire substrate-based TiO2/Ag/TiO2 (TAT) multilayer structure of indium-free transparent conductive multilayer coatings. The TAT thin films were deposited at room temperature on sapphire substrates and a rigorous analysis has been presented on the electrical and optical properties of the films as a function of Ag thickness. The optical and electrical properties were mainly controlled by the Ag mid-layer thickness of the TAT tri-layer. The TAT films showed high luminous transmittance 84% at 550 nm along with noteworthy low electrical resistance 3.65 × 10-5 Ω-cm and sheet resistance of 3.77 Ω/square, which is better are than those of amorphous ITO films and any sapphire-based dielectric/metal/dielectric multilayer stack. The carrier concentration of the films was increased with respect to Ag thickness. We obtained highest Hackke's figure of merit 43.97 × 10-3 Ω-1 from the TAT multilayer thin film with a 16 nm thick Ag mid-layer.

  20. Dielectric properties of graphene/MoS2 heterostructures from ab initio calculations and electron energy-loss experiments

    NASA Astrophysics Data System (ADS)

    Mohn, Michael J.; Hambach, Ralf; Wachsmuth, Philipp; Giorgetti, Christine; Kaiser, Ute

    2018-06-01

    High-energy electronic excitations of graphene and MoS2 heterostructures are investigated by momentum-resolved electron energy-loss spectroscopy in the range of 1 to 35 eV. The interplay of excitations on different sheets is understood in terms of long-range Coulomb interactions and is simulated using a combination of ab initio and dielectric model calculations. In particular, the layered electron-gas model is extended to thick layers by including the spatial dependence of the dielectric response in the direction perpendicular to the sheets. We apply this model to the case of graphene/MoS2/graphene heterostructures and discuss the possibility of extracting the dielectric properties of an encapsulated monolayer from measurements of the entire stack.

  1. Low-voltage bendable pentacene thin-film transistor with stainless steel substrate and polystyrene-coated hafnium silicate dielectric.

    PubMed

    Yun, Dong-Jin; Lee, Seunghyup; Yong, Kijung; Rhee, Shi-Woo

    2012-04-01

    The hafnium silicate and aluminum oxide high-k dielectrics were deposited on stainless steel substrate using atomic layer deposition process and octadecyltrichlorosilane (OTS) and polystyrene (PS) were treated improve crystallinity of pentacene grown on them. Besides, the effects of the pentacene deposition condition on the morphologies, crystallinities and electrical properties of pentacene were characterized. Therefore, the surface treatment condition on dielectric and pentacene deposition conditions were optimized. The pentacene grown on polystyrene coated high-k dielectric at low deposition rate and temperature (0.2-0.3 Å/s and R.T.) showed the largest grain size (0.8-1.0 μm) and highest crystallinity among pentacenes deposited various deposition conditions, and the pentacene TFT with polystyrene coated high-k dielectric showed excellent device-performance. To decrease threshold voltage of pentacene TFT, the polystyrene-thickness on high-k dielectric was controlled using different concentration of polystyrene solution. As the polystyrene-thickness on hafnium silicate decreases, the dielectric constant of polystyrene/hafnium silicate increases, while the crystallinity of pentacene grown on polystyrene/hafnium silicate did not change. Using low-thickness polystyrene coated hafnium silicate dielectric, the high-performance and low voltage operating (<5 V) pentacene thin film transistor (μ: ~2 cm(2)/(V s), on/off ratio, >1 × 10(4)) and complementary inverter (DC gains, ~20) could be fabricated.

  2. Dielectric function of two-phase colloid-polymer nanocomposite.

    PubMed

    Mitzscherling, S; Cui, Q; Koopman, W; Bargheer, M

    2015-11-28

    The plasmon resonance of metal nanoparticles determines their optical response in the visible spectral range. Many details such as the electronic properties of gold near the particle surface and the local environment of the particles influence the spectra. We show how the cheap but highly precise fabrication of composite nanolayers by spin-assisted layer-by-layer deposition of polyelectrolytes can be used to investigate the spectral response of gold nanospheres (GNS) and gold nanorods (GNR) in a self-consistent way, using the established Maxwell-Garnett effective medium (MGEM) theory beyond the limit of homogeneous media. We show that the dielectric function of gold nanoparticles differs from the bulk value and experimentally characterize the shape and the surrounding of the particles thoroughly by SEM, AFM and ellipsometry. Averaging the dielectric functions of the layered surrounding by an appropriate weighting with the electric field intensity yields excellent agreement for the spectra of several nanoparticles and nanorods with various cover-layer thicknesses.

  3. Impact of bimetal electrodes on dielectric properties of TiO2 and Al-doped TiO2 films.

    PubMed

    Kim, Seong Keun; Han, Sora; Jeon, Woojin; Yoon, Jung Ho; Han, Jeong Hwan; Lee, Woongkyu; Hwang, Cheol Seong

    2012-09-26

    Rutile structured Al-doped TiO(2) (ATO) and TiO(2) films were grown on bimetal electrodes (thin Ru/thick TiN, Pt, and Ir) for high-performance capacitors. The work function of the top Ru layer decreased on TiN and increased on Pt and Ir when it was thinner than ~2 nm, suggesting that the lower metal within the electrodes influences the work function of the very thin Ru layer. The use of the lower electrode with a high work function for bottom electrode eventually improves the leakage current properties of the capacitor at a very thin Ru top layer (≤2 nm) because of the increased Schottky barrier height at the interface between the dielectric and the bottom electrode. The thin Ru layer was necessary to achieve the rutile structured ATO and TiO(2) dielectric films.

  4. Ferroelectric FET for nonvolatile memory application with two-dimensional MoSe2 channels

    NASA Astrophysics Data System (ADS)

    Wang, Xudong; Liu, Chunsen; Chen, Yan; Wu, Guangjian; Yan, Xiao; Huang, Hai; Wang, Peng; Tian, Bobo; Hong, Zhenchen; Wang, Yutao; Sun, Shuo; Shen, Hong; Lin, Tie; Hu, Weida; Tang, Minghua; Zhou, Peng; Wang, Jianlu; Sun, Jinglan; Meng, Xiangjian; Chu, Junhao; Li, Zheng

    2017-06-01

    Graphene and other two-dimensional materials have received considerable attention regarding their potential applications in nano-electronics. Here, we report top-gate nonvolatile memory field-effect transistors (FETs) with different layers of MoSe2 nanosheets channel gated by ferroelectric film. The conventional gate dielectric of FETs was replaced by a ferroelectric thin film that provides a ferroelectric polarization electric field, and therefore defined as an Fe-FET where the poly (vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) was used as the gate dielectric. Among the devices with MoSe2 channels of different thicknesses, the device with a single layer of MoSe2 exhibited a large hysteresis of electronic transport with an over 105 write/erase ratio, and displayed excellent retention and endurance performance. The possible mechanism of the device’s good properties was qualitatively analyzed using band theory. Additionally, a comprehensive study comparing the memory properties of MoSe2 channels of different thicknesses is presented. Increasing the numbers of MoSe2 layers was found to cause a reduced memory window. However, MoSe2 thickness of 5 nm yielded a write/erase ratio of more than 103. The results indicate that, based on a Fe-FET structure, the combination of two-dimensional semiconductors and organic ferroelectric gate dielectrics shows good promise for future applications in nonvolatile ferroelectric memory.

  5. Time-dependent electrophoresis of a dielectric spherical particle embedded in Brinkman medium

    NASA Astrophysics Data System (ADS)

    Saad, E. I.; Faltas, M. S.

    2018-04-01

    An expression for electrophoretic apparent velocity slip in the time-dependent flow of an electrolyte solution saturated in a charged porous medium within an electric double layer adjacent to a dielectric plate under the influence of a tangential uniform electric field is derived. The velocity slip is used as a boundary condition to solve the electrophoretic motion of an impermeable dielectric spherical particle embedded in an electrolyte solution saturated in porous medium under the unsteady Darcy-Brinkman model. Throughout the system, a uniform electric field is applied and maintains with constant strength. Two cases are considered, when the electric double layer enclosing the particle is thin, but finite and when of a particle with a thick double layer. Expressions for the electrophoretic mobility of the particle as functions of the relevant parameters are found. Our results indicate that the time scale for the growth of mobility is significant and small for high permeability. Generally, the effect of the relaxation time for starting electrophoresis is negligible, irrespective of the thickness of the double layer and permeability of the medium. The effects of the elapsed time, permeability, mass density and Debye length parameters on the fluid velocity, the electrophoretic mobility and the acceleration are shown graphically.

  6. Modeling and Characterization of Capacitive Elements With Tissue as Dielectric Material for Wireless Powering of Neural Implants.

    PubMed

    Erfani, Reza; Marefat, Fatemeh; Sodagar, Amir M; Mohseni, Pedram

    2018-05-01

    This paper reports on the modeling and characterization of capacitive elements with tissue as the dielectric material, representing the core building block of a capacitive link for wireless power transfer to neural implants. Each capacitive element consists of two parallel plates that are aligned around the tissue layer and incorporate a grounded, guarded, capacitive pad to mitigate the adverse effect of stray capacitances and shield the plates from external interfering electric fields. The plates are also coated with a biocompatible, insulating, coating layer on the inner side of each plate in contact with the tissue. A comprehensive circuit model is presented that accounts for the effect of the coating layers and is validated by measurements of the equivalent capacitance as well as impedance magnitude/phase of the parallel plates over a wide frequency range of 1 kHz-10 MHz. Using insulating coating layers of Parylene-C at a thickness of and Parylene-N at a thickness of deposited on two sets of parallel plates with different sizes and shapes of the guarded pad, our modeling and characterization results accurately capture the effect of the thickness and electrical properties of the coating layers on the behavior of the capacitive elements over frequency and with different tissues.

  7. Quenching Mo optical losses in CIGS solar cells by a point contacted dual-layer dielectric spacer: a 3-D optical study.

    PubMed

    Rezaei, Nasim; Isabella, Olindo; Vroon, Zeger; Zeman, Miro

    2018-01-22

    A 3-D optical modelling was calibrated to calculate the light absorption and the total reflection of fabricated CIGS solar cells. Absorption losses at molybdenum (Mo) / CIGS interface were explained in terms of plasmonic waves. To quench these losses, we assumed the insertion of a lossless dielectric spacer between Mo and CIGS, whose optical properties were varied. We show that such a spacer with low refractive index and proper thickness can significantly reduce absorption in Mo in the long wavelength regime and improve the device's rear reflectance, thus leading to enhanced light absorption in the CIGS layer. Therefore, we optimized a realistic two-layer MgF 2 / Al 2 O 3 dielectric spacer to exploit (i) the passivation properties of ultra-thin Al 2 O 3 on the CIGS side for potential high open-circuit voltage and (ii) the low refractive index of MgF 2 on the Mo side to reduce its optical losses. Combining our realistic spacer with optically-optimized point contacts increases the implied photocurrent density of a 750 nm-thick CIGS layer by 10% for the wavelengths between 700 and 1150 nm with respect to the reference cell. The elimination of plasmonic resonances in the new structure leads to a higher electric field magnitude at the bottom of CIGS layer and justifies the improved optical performance.

  8. A Study of Dip-Coatable, High-Capacitance Ion Gel Dielectrics for 3D EWOD Device Fabrication

    PubMed Central

    Clement, Carlos E.; Jiang, Dongyue; Thio, Si Kuan; Park, Sung-Yong

    2017-01-01

    We present a dip-coatable, high-capacitance ion gel dielectric for scalable fabrication of three-dimensional (3D) electrowetting-on-dielectric (EWOD) devices such as an n × n liquid prism array. Due to the formation of a nanometer-thick electric double layer (EDL) capacitor, an ion gel dielectric offers two to three orders higher specific capacitance (c ≈ 10 μF/cm2) than that of conventional dielectrics such as SiO2. However, the previous spin-coating method used for gel layer deposition poses several issues for 3D EWOD device fabrication, particularly when assembling multiple modules. Not only does the spin-coating process require multiple repetitions per module, but the ion gel layer also comes in risks of damage or contamination due to handling errors caused during assembly. In addition, it was observed that the chemical formulation previously used for the spin-coating method causes the surface defects on the dip-coated gel layers and thus leads to poor EWOD performance. In this paper, we alternatively propose a dip-coating method with modified gel solutions to obtain defect-free, functional ion gel layers without the issues arising from the spin-coating method for 3D device fabrication. A dip-coating approach offers a single-step coating solution with the benefits of simplicity, scalability, and high throughput for deposition of high-capacitance gel layers on non-planar EWOD devices. An ion gel solution was prepared by combining the [EMIM][TFSI] ionic liquid and the [P(VDF-HFP)] copolymer at various wt % ratios in acetone solvent. Experimental studies were conducted to fully understand the effects of chemical composition ratios in the gel solution and how varying thicknesses of ion gel and Teflon layers affects EWOD performance. The effectiveness and potentiality of dip-coatable gel layers for 3D EWOD devices have been demonstrated through fabricating 5 × 1 arrayed liquid prisms using a single-step dip-coating method. Each prism module has been individually controlled to achieve spatial beam steering without the need for bulky mechanical moving parts. PMID:28772400

  9. A Study of Dip-Coatable, High-Capacitance Ion Gel Dielectrics for 3D EWOD Device Fabrication.

    PubMed

    Clement, Carlos E; Jiang, Dongyue; Thio, Si Kuan; Park, Sung-Yong

    2017-01-05

    We present a dip-coatable, high-capacitance ion gel dielectric for scalable fabrication of three-dimensional (3D) electrowetting-on-dielectric (EWOD) devices such as an n × n liquid prism array. Due to the formation of a nanometer-thick electric double layer (EDL) capacitor, an ion gel dielectric offers two to three orders higher specific capacitance ( c ≈ 10 μF/cm²) than that of conventional dielectrics such as SiO₂. However, the previous spin-coating method used for gel layer deposition poses several issues for 3D EWOD device fabrication, particularly when assembling multiple modules. Not only does the spin-coating process require multiple repetitions per module, but the ion gel layer also comes in risks of damage or contamination due to handling errors caused during assembly. In addition, it was observed that the chemical formulation previously used for the spin-coating method causes the surface defects on the dip-coated gel layers and thus leads to poor EWOD performance. In this paper, we alternatively propose a dip-coating method with modified gel solutions to obtain defect-free, functional ion gel layers without the issues arising from the spin-coating method for 3D device fabrication. A dip-coating approach offers a single-step coating solution with the benefits of simplicity, scalability, and high throughput for deposition of high-capacitance gel layers on non-planar EWOD devices. An ion gel solution was prepared by combining the [EMIM][TFSI] ionic liquid and the [P(VDF-HFP)] copolymer at various wt % ratios in acetone solvent. Experimental studies were conducted to fully understand the effects of chemical composition ratios in the gel solution and how varying thicknesses of ion gel and Teflon layers affects EWOD performance. The effectiveness and potentiality of dip-coatable gel layers for 3D EWOD devices have been demonstrated through fabricating 5 × 1 arrayed liquid prisms using a single-step dip-coating method. Each prism module has been individually controlled to achieve spatial beam steering without the need for bulky mechanical moving parts.

  10. Nanoscale Multigate TiN Metal Nanocrystal Memory Using High-k Blocking Dielectric and High-Work-Function Gate Electrode Integrated on Silcon-on-Insulator Substrate

    NASA Astrophysics Data System (ADS)

    Lu, Chi-Pei; Luo, Cheng-Kei; Tsui, Bing-Yue; Lin, Cha-Hsin; Tzeng, Pei-Jer; Wang, Ching-Chiun; Tsai, Ming-Jinn

    2009-04-01

    In this study, a charge-trapping-layer-engineered nanoscale n-channel trigate TiN nanocrystal nonvolatile memory was successfully fabricated on silicon-on-insulator (SOI) wafer. An Al2O3 high-k blocking dielectric layer and a P+ polycrystalline silicon gate electrode were used to obtain low operation voltage and suppress the back-side injection effect, respectively. TiN nanocrystals were formed by annealing TiN/Al2O3 nanolaminates deposited by an atomic layer deposition system. The memory characteristics of various samples with different TiN wetting layer thicknesses, post-deposition annealing times, and blocking oxide thicknesses were also investigated. The sample with a thicker wetting layer exhibited a much larger memory window than other samples owing to its larger nanocrystal size. Good retention with a mere 12% charge loss for up to 10 years and high endurance were also obtained. Furthermore, gate disturbance and read disturbance were measured with very small charge migrations after a 103 s stressing bias.

  11. Chemical structure of interfaces

    NASA Technical Reports Server (NTRS)

    Grunthaner, F. J.

    1985-01-01

    The interfacial structure of silicon/dielectric and silicon/metal systems is particularly amenable to analysis using a combination of surface spectroscopies together with a variety of chemical structures of Si/SiO2, Si/SiO2Si3N4, Si/Si2N2O, Si/SiO2/Al, and Si/Native Oxide interfaces using high resolution (0.350 eV FWHM) X ray photoelectron spectroscopy. The general structure of these dielectric interfaces entails a monolayer chemical transition layer at the Si/dielectric boundary. Amorphous Si substrates show a wide variety of hydrogenated Si and Si(OH) sub x states that are not observed in thermal oxidation of single crystal material. Extended SiO2 layers greater than 8 A in thickness are shown to be stoichiometric SiO2, but to exhibit a wide variety of local network structures. In the nitrogen containing systems, an approach to stoichiometric oxynitride compounds with interesting impurity and electron trapping properties are seen. In native oxides, substantial topographical nonuniformity in oxide thickness and composition are found. Analysis of metal/oxide interfacial layers is accomplished by analytical removal of the Si substrate by UHV XeF2 dry etching methods.

  12. Theoretical modeling of a coupled plasmon waveguide resonance sensor based on multimode optical fiber

    NASA Astrophysics Data System (ADS)

    Liu, Kun; Xue, Meng; Jiang, Junfeng; Wang, Tao; Chang, Pengxiang; Liu, Tiegen

    2018-03-01

    A coupled plasmon waveguide resonance (CPWR) sensor based on metal/dielectric-coated step index multimode optical fiber is proposed. Theoretical simulations using the four-layer Fresnel equations based on a bi-dimensional optical fiber model were implemented on four structures: Ag-ZnO, Au-ZnO, Ag-TiO2 and Au-TiO2. By controlling the thickness of dielectric layer, we managed to manipulate the CPWR resonance wavelengths. When a CPWR resonance dip is in the short wavelength region, it is insensitive to the change of surrounding refractive index (SRI) and can be used as a reference to improve the sensing accuracy of surface plasmon resonance (SPR) mode. With the increase of the thickness of the dielectric layer, the CPWR resonance dips shift to longer wavelength and the corresponding sensitivities increase. When the 1st CPWR resonance wavelength is near 1550 nm and SRI is around 1.333, the sensitivities of four structures reach 1360.61 nm/RIU, 1375.76 nm/RIU, 1048.48 nm/RIU and 1015.15 nm/RIU, respectively. The values are close to that of the conventional SPR optical fiber sensor while the spectral bandwidths of the optical fiber CPWR sensors are narrower.

  13. Nanoimprinted Hybrid Metal-Semiconductor Plasmonic Multilayers with Controlled Surface Nano Architecture for Applications in NIR Detectors

    PubMed Central

    Khosroabadi, Akram A.; Gangopadhyay, Palash; Hernandez, Steven; Kim, Kyungjo; Peyghambarian, Nasser; Norwood, Robert A.

    2015-01-01

    We present a proof of concept for tunable plasmon resonance frequencies in a core shell nano-architectured hybrid metal-semiconductor multilayer structure, with Ag as the active shell and ITO as the dielectric modulation media. Our method relies on the collective change in the dielectric function within the metal semiconductor interface to control the surface. Here we report fabrication and optical spectroscopy studies of large-area, nanostructured, hybrid silver and indium tin oxide (ITO) structures, with feature sizes below 100 nm and a controlled surface architecture. The optical and electrical properties of these core shell electrodes, including the surface plasmon frequency, can be tuned by suitably changing the order and thickness of the dielectric layers. By varying the dimensions of the nanopillars, the surface plasmon wavelength of the nanopillar Ag can be tuned from 650 to 690 nm. Adding layers of ITO to the structure further shifts the resonance wavelength toward the IR region and, depending on the sequence and thickness of the layers within the structure, we show that such structures can be applied in sensing devices including enhancing silicon as a photodetection material. PMID:28793489

  14. Low Voltage Electrowetting-on-Dielectric Platform using Multi-Layer Insulators

    PubMed Central

    Lin, Yan-You; Evans, Randall D.; Welch, Erin; Hsu, Bang-Ning; Madison, Andrew C.; Fair, Richard B.

    2010-01-01

    A low voltage, two-level-metal, and multi-layer insulator electrowetting-on-dielectric (EWD) platform is presented. Dispensing 300pl droplets from 140nl closed on-chip reservoirs was accomplished with as little as 11.4V solely through EWD forces, and the actuation threshold voltage was 7.2V with a 1Hz voltage switching rate between electrodes. EWD devices were fabricated with a multilayer insulator consisting of 135nm sputtered tantalum pentoxide (Ta2O5) and 180nm parylene C coated with 70nm of CYTOP. Furthermore, the minimum actuation threshold voltage followed a previously published scaling model for the threshold voltage, VT, which is proportional to (t/εr)1/2, where t and εr are the insulator thickness and dielectric constant respectively. Device threshold voltages are compared for several insulator thicknesses (200nm, 500nm, and 1µm), different dielectric materials (parylene C and tantalum pentoxide), and homogeneous versus heterogeneous compositions. Additionally, we used a two-level-metal fabrication process, which enables the fabrication of smaller and denser electrodes with high interconnect routing flexibility. We also have achieved low dispensing and actuation voltages for scaled devices with 30pl droplets. PMID:20953362

  15. A multi-dielectric-layered triboelectric nanogenerator as energized by corona discharge.

    PubMed

    Shao, Jia Jia; Tang, Wei; Jiang, Tao; Chen, Xiang Yu; Xu, Liang; Chen, Bao Dong; Zhou, Tao; Deng, Chao Ran; Wang, Zhong Lin

    2017-07-13

    Triboelectric nanogenerators (TENGs) have been invented recently for meeting the power requirements of small electronics and potentially solving the worldwide energy crisis. Here, we developed a vertical contact-separation mode TENG based on a novel multi-dielectric-layered (MDL) structure, which was comprised of parylene C, polyimide and SiO 2 films. By using the corona discharge approach, the surface charge density was enhanced to as high as 283 μC m -2 , and especially the open-circuit voltage could be increased by a factor of 55 compared with the original value. Furthermore, the theoretical models were built to reveal the output characteristics and store the electrostatic energy of the TENG. The influences of the structural parameters and operation conditions including the effective dielectric thickness, dielectric constant, gap distance and air breakdown voltage were investigated systematically. It was found that the output performances such as the peak voltage and power density are approximately proportional to the thickness of the MDL film, but they would be restricted by the air breakdown voltage. These unique structures and models could be used to deepen the understanding of the fundamental mechanism of TENGs, and serve as an important guide for designing high performance TENGs.

  16. Plasmon-polariton distributed-feedback laser pumped by a fast drift current in graphene

    NASA Astrophysics Data System (ADS)

    Zolotovskii, Igor O.; Dadoenkova, Yuliya S.; Moiseev, Sergey G.; Kadochkin, Aleksei S.; Svetukhin, Vyacheslav V.; Fotiadi, Andrei A.

    2018-05-01

    We propose a model of a slow surface plasmon-polariton distributed-feedback laser with pump by drift current. The amplification in the dielectric-semiconducting film-dielectric waveguide structure is created by fast drift current in the graphene layer, placed at the semiconductor/dielectric interface. The feedback is provided due to a periodic change in the thickness of the semiconducting film. We have shown that in such a system it is possible to achieve surface plasmon-polariton generation in the terahertz region.

  17. Atomic layer deposition of dielectrics on graphene using reversibly physisorbed ozone.

    PubMed

    Jandhyala, Srikar; Mordi, Greg; Lee, Bongki; Lee, Geunsik; Floresca, Carlo; Cha, Pil-Ryung; Ahn, Jinho; Wallace, Robert M; Chabal, Yves J; Kim, Moon J; Colombo, Luigi; Cho, Kyeongjae; Kim, Jiyoung

    2012-03-27

    Integration of graphene field-effect transistors (GFETs) requires the ability to grow or deposit high-quality, ultrathin dielectric insulators on graphene to modulate the channel potential. Here, we study a novel and facile approach based on atomic layer deposition through ozone functionalization to deposit high-κ dielectrics (such as Al(2)O(3)) without breaking vacuum. The underlying mechanisms of functionalization have been studied theoretically using ab initio calculations and experimentally using in situ monitoring of transport properties. It is found that ozone molecules are physisorbed on the surface of graphene, which act as nucleation sites for dielectric deposition. The physisorbed ozone molecules eventually react with the metal precursor, trimethylaluminum to form Al(2)O(3). Additionally, we successfully demonstrate the performance of dual-gated GFETs with Al(2)O(3) of sub-5 nm physical thickness as a gate dielectric. Back-gated GFETs with mobilities of ~19,000 cm(2)/(V·s) are also achieved after Al(2)O(3) deposition. These results indicate that ozone functionalization is a promising pathway to achieve scaled gate dielectrics on graphene without leaving a residual nucleation layer. © 2012 American Chemical Society

  18. Impact of AlO x layer on resistive switching characteristics and device-to-device uniformity of bilayered HfO x -based resistive random access memory devices

    NASA Astrophysics Data System (ADS)

    Chuang, Kai-Chi; Chung, Hao-Tung; Chu, Chi-Yan; Luo, Jun-Dao; Li, Wei-Shuo; Li, Yi-Shao; Cheng, Huang-Chung

    2018-06-01

    An AlO x layer was deposited on HfO x , and bilayered dielectric films were found to confine the formation locations of conductive filaments (CFs) during the forming process and then improve device-to-device uniformity. In addition, the Ti interposing layer was also adopted to facilitate the formation of oxygen vacancies. As a result, the resistive random access memory (RRAM) device with TiN/Ti/AlO x (1 nm)/HfO x (6 nm)/TiN stack layers demonstrated excellent device-to-device uniformity although it achieved slightly larger resistive switching characteristics, which were forming voltage (V Forming) of 2.08 V, set voltage (V Set) of 1.96 V, and reset voltage (V Reset) of ‑1.02 V, than the device with TiN/Ti/HfO x (6 nm)/TiN stack layers. However, the device with a thicker 2-nm-thick AlO x layer showed worse uniformity than the 1-nm-thick one. It was attributed to the increased oxygen atomic percentage in the bilayered dielectric films of the 2-nm-thick one. The difference in oxygen content showed that there would be less oxygen vacancies to form CFs. Therefore, the random growth of CFs would become severe and the device-to-device uniformity would degrade.

  19. Atomic Layer Engineering of High-κ Ferroelectricity in 2D Perovskites.

    PubMed

    Li, Bao-Wen; Osada, Minoru; Kim, Yoon-Hyun; Ebina, Yasuo; Akatsuka, Kosho; Sasaki, Takayoshi

    2017-08-09

    Complex perovskite oxides offer tremendous potential for controlling their rich variety of electronic properties, including high-T C superconductivity, high-κ ferroelectricity, and quantum magnetism. Atomic-scale control of these intriguing properties in ultrathin perovskites is an important challenge for exploring new physics and device functionality at atomic dimensions. Here, we demonstrate atomic-scale engineering of dielectric responses using two-dimensional (2D) homologous perovskite nanosheets (Ca 2 Na m-3 Nb m O 3m+1 ; m = 3-6). In this homologous 2D material, the thickness of the perovskite layers can be incrementally controlled by changing m, and such atomic layer engineering enhances the high-κ dielectric response and local ferroelectric instability. The end member (m = 6) attains a high dielectric constant of ∼470, which is the highest among all known dielectrics in the ultrathin region (<10 nm). These results provide a new strategy for achieving high-κ ferroelectrics for use in ultrascaled high-density capacitors and post-graphene technology.

  20. Two-dimensional simulation of discharge channels in atmospheric-pressure single dielectric barrier discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jiao; Wang, Yanhui, E-mail: wangyh@dlut.edu.cn; Wang, Dezhen, E-mail: wangdez@dlut.edu.cn

    A two-dimensional fluid model is developed to study the filaments (or discharge channels) in atmospheric-pressure discharge with one plate electrode covered by a dielectric layer. Under certain discharge parameters, one or more stable filaments with wide radii could be regularly arranged in the discharge space. Different from the short-lived randomly distributed microdischarges, this stable and thick filament can carry more current and have longer lifetime. Because only one electrode is covered by a dielectric layer in the simulation, the formed discharge channel extends outwards near the dielectric layer and shrinks inwards near the naked electrode, agreeing with the experimental results.more » In this paper, the evolution of channel is studied, and its behavior is like a streamer or an ionization wave, but the propagation distance is short. The discharge parameters such as voltage amplitude, electrode width, and N{sub 2} impurities content could significantly influence the number of discharge channel, which is discussed in the paper.« less

  1. Terahertz antireflection coating enabled by a subwavelength metallic mesh capped with a thin dielectric film

    DOE PAGES

    Huang, Li; Chen, Hou -Tong; Zeng, Beibei; ...

    2016-03-30

    Metamaterials/metasurfaces have enabled unprecedented manipulation of electromagnetic waves. Here we present a new design of metasurface structure functioning as antireflection coatings. The structure consists of a subwavelength metallic mesh capped with a thin dielectric layer on top of a substrate. By tailoring the geometric parameters of the metallic mesh and the refractive index and thickness of the capping dielectric film, reflection from the substrate can be completely eliminated at a specific frequency. Compared to traditional methods such as coatings with single- or multi-layer dielectric films, the metasurface antireflection coatings are much thinner and the requirement of index matching is largelymore » lifted. Here, this approach is particularly suitable for antireflection coatings in the technically challenging terahertz frequency range and is also applicable in other frequency regimes.« less

  2. Dependence of the Carrier Transport Characteristics on the Buried Layer Thickness in Ambipolar Double-Layer Organic Field-Effect Transistors Investigated by Electrical and Optical Measurements

    NASA Astrophysics Data System (ADS)

    Zhang, Le; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa

    2013-05-01

    By using current-voltage (I-V) measurements and optical modulation spectroscopy, we investigated the dependence of the carrier behaviour on the film thickness of the buried pentacene layer in C60/pentacene ambipolar double-layer organic field-effect transistors (OFETs). It was found that the buried pentacene layer not only acted as a hole transport layer, but also accounted for the properties of the C60/pentacene interface. The hole and electron behaviour exhibited different thickness dependence on the buried pentacene layer, implying the presence of the spatially separated conduction paths. It was suggested that the injected holes transported along the pentacene/gate dielectric interface, which were little affected by the buried pentacene layer thickness or the upper C60 layer; while, the injected electrons accumulated at the C60/pentacene interface, which were sensitive to the interfacial conditions or the buried pentacene layer. Furthermore, it was suggested that the enhanced surface roughness of the buried pentacene layer was responsible for the observed electron behaviour, especially when dpent>10 nm.

  3. Etching-dependent fluorescence quenching of Ag-dielectric-Au three-layered nanoshells: The effect of inner Ag nanosphere

    NASA Astrophysics Data System (ADS)

    Zhu, Jian; Xu, Zai-jie; Weng, Guo-jun; Zhao, Jing; Li, Jian-jun; Zhao, Jun-wu

    2018-07-01

    In this report, Ag-dielectric-Au three-layered nanoshells with controlled inner core size were synthesized. The fluorescence emission of the rhodamine 6G (R6G) could be quenched by the three-layered nanoshells distinctly. What's more, the fluorescence quenching efficiency could be further improved by tuning the etching of inner Ag nanosphere. The maximum fluorescence quenching efficiency is obtained when the separate layer just appears between the inner Ag core and the outer Au shell. Whereas the fluorescence quenching efficiency is weakened when no gaps take place around the inner Ag core or the separate layer is too thick and greater than 13 nm. The fluorescence quenching properties of the Ag-dielectric-Au three-layered nanoshells with different initial sizes of the Ag nanoparticles are also studied. The maximum fluorescence quenching efficiency is obtained when the three-layered nanoshells are synthesized based on the Ag nanoparticles with 60 nm, which is better than others two sizes (42 and 79 nm). Thus we believe that the size of initial Ag nanospheres also greatly affects the optimized fluorescence quenching efficiency. These results about fluorescence quenching properties of Ag-dielectric-Au three-layered nanoshells present a potential for design and fabrication of fluorescence nanosensors based on tuning the geometry of the inner core and the separate layer.

  4. Extreme IR absorption in group IV-SiGeSn core-shell nanowires

    NASA Astrophysics Data System (ADS)

    Attiaoui, Anis; Wirth, Stephan; Blanchard-Dionne, André-Pierre; Meunier, Michel; Hartmann, J. M.; Buca, Dan; Moutanabbir, Oussama

    2018-06-01

    Sn-containing Si and Ge (Ge1-y-xSixSny) alloys are an emerging family of semiconductors with the potential to impact group IV material-based devices. These semiconductors provide the ability to independently engineer both the lattice parameter and bandgap, which holds the premise to develop enhanced or novel photonic and electronic devices. With this perspective, we present detailed investigations of the influence of Ge1-y-xSixSny layers on the optical properties of Si and Ge based heterostructures and nanowires. We found that by adding a thin Ge1-y-xSixSny capping layer on Si or Ge greatly enhances light absorption especially in the near infrared range, leading to an increase in short-circuit current density. For the Ge1-y-xSixSny structure at thicknesses below 30 nm, a 14-fold increase in the short-circuit current is observed with respect to bare Si. This enhancement decreases by reducing the capping layer thickness. Conversely, decreasing the shell thickness was found to improve the short-circuit current in Si/Ge1-y-xSixSny and Ge/Ge1-y-xSixSny core/shell nanowires. The optical absorption becomes very important by increasing the Sn content. Moreover, by exploiting an optical antenna effect, these nanowires show extreme light absorption, reaching an enhancement factor, with respect to Si or Ge nanowires, on the order of 104 in Si/Ge0.84Si0.04Sn0.12 and 12 in Ge/Ge0.84Si0.04Sn0.12. Furthermore, we analyzed the optical response after the addition of a dielectric layer of Si3N4 to the Si/Ge1-y-xSixSny core-shell nanowire and found approximatively a 50% increase in the short-circuit current density for a dielectric layer of thickness equal to 45 nm and both a core radius and a shell thickness greater than 40 nm. The core-shell optical antenna benefits from a multiplication of enhancements contributed by leaky mode resonances in the semiconductor part and antireflection effects in the dielectric part.

  5. Visible Wavelength Color Filters Using Dielectric Subwavelength Gratings for Backside-Illuminated CMOS Image Sensor Technologies.

    PubMed

    Horie, Yu; Han, Seunghoon; Lee, Jeong-Yub; Kim, Jaekwan; Kim, Yongsung; Arbabi, Amir; Shin, Changgyun; Shi, Lilong; Arbabi, Ehsan; Kamali, Seyedeh Mahsa; Lee, Hong-Seok; Hwang, Sungwoo; Faraon, Andrei

    2017-05-10

    We report transmissive color filters based on subwavelength dielectric gratings that can replace conventional dye-based color filters used in backside-illuminated CMOS image sensor (BSI CIS) technologies. The filters are patterned in an 80 nm-thick poly silicon film on a 115 nm-thick SiO 2 spacer layer. They are optimized for operating at the primary RGB colors, exhibit peak transmittance of 60-80%, and have an almost insensitive response over a ± 20° angular range. This technology enables shrinking of the pixel sizes down to near a micrometer.

  6. Complex oxide thin films for microelectronics

    NASA Astrophysics Data System (ADS)

    Suvorova, Natalya

    The rapid scaling of the device dimensions, namely in metal oxide semiconductor field effect transistor (MOSFET), is reaching its fundamental limit which includes the increase in allowable leakage current due to direct tunneling with decrease of physical thickness of SiO2 gate dielectric. The significantly higher relative dielectric constant (in the range 9--25) of the gate dielectric beyond the 3.9 value of silicon dioxide will allow increasing the physical thickness. Among the choices for the high dielectric constant (K) materials for future generation MOSFET application, barium strontium titanate (BST) and strontium titanate (STO) possess one of the highest attainable K values making them the promising candidates for alternative gate oxide. However, the gate stack engineering does not imply the simple replacement of the SiO2 with the new dielectric. Several requirements should be met for successful integration of a new material. The major one is a production of high level of interface states (Dit) compared to that of SiO 2 on Si. An insertion of a thin SiO2 layer prior the growth of high-K thin film is a simple solution that helps to limit reaction with Si substrate and attains a high quality interface. However, the combination of two thin films reduces the overall K of the dielectric stack. An optimization of the SiO2 underlayer in order to maintain the interface quality yet minimize the effect on K is the focus of this work. The results from our study are presented with emphasis on the key process parameters that improve the dielectric film stack. For in-situ growth characterization of BST and STO films sputter deposited on thermally oxidized Si substrates spectroscopic ellipsometry in combination with time of flight ion scattering and recoil spectrometry have been employed. Studies of material properties have been complemented with analytical electron microscopy. To evaluate the interface quality the electrical characterization has been employed using capacitance-voltage and conductance-voltage measurements. Special attention was given to the extraction of static dielectric constant of BST and STO from the multiple film stack. The K value was found to be sensitive to the input parameters such as dielectric constant and thickness of interface layers.

  7. Ultrathin phase-change coatings on metals for electrothermally tunable colors

    NASA Astrophysics Data System (ADS)

    Bakan, Gokhan; Ayas, Sencer; Saidzoda, Tohir; Celebi, Kemal; Dana, Aykutlu

    2016-08-01

    Metal surfaces coated with ultrathin lossy dielectrics enable color generation through strong interferences in the visible spectrum. Using a phase-change thin film as the coating layer offers tuning the generated color by crystallization or re-amorphization. Here, we study the optical response of surfaces consisting of thin (5-40 nm) phase-changing Ge2Sb2Te5 (GST) films on metal, primarily Al, layers. A color scale ranging from yellow to red to blue that is obtained using different thicknesses of as-deposited amorphous GST layers turns dim gray upon annealing-induced crystallization of the GST. Moreover, when a relatively thick (>100 nm) and lossless dielectric film is introduced between the GST and Al layers, optical cavity modes are observed, offering a rich color gamut at the expense of the angle independent optical response. Finally, a color pixel structure is proposed for ultrahigh resolution (pixel size: 5 × 5 μm2), non-volatile displays, where the metal layer acting like a mirror is used as a heater element. The electrothermal simulations of such a pixel structure suggest that crystallization and re-amorphization of the GST layer using electrical pulses are possible for electrothermal color tuning.

  8. Silicon Wafer Advanced Packaging (SWAP). Multichip Module (MCM) Foundry Study. Version 2

    DTIC Science & Technology

    1991-04-08

    Next Layer Dielectric Spacing - Additional Metal Thickness Impact on Dielectric Uniformity/Adhiesion. The first step in .!Ie EPerimental design would be... design CAM - computer aided manufacturing CAE - computer aided engineering CALCE - computer aided life cycle engineering center CARMA - computer aided...expansion 5 j- CVD - chemical vapor deposition J . ..- j DA - design automation J , DEC - Digital Equipment Corporation --- DFT - design for testability

  9. Optical Tamm states in one-dimensional superconducting photonic crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El Abouti, O.; El Boudouti, E. H.; IEMN, UMR-CNRS 8520, UFR de Physique, Université de Lille 1, 59655 Villeneuve d'Ascq

    2016-08-15

    In this study, we investigate localized and resonant optical waves associated with a semi-infinite superlattice made out of superconductor-dielectric bilayers and terminated with a cap layer. Both transverse electric and transverse magnetic waves are considered. These surface modes are analogous to the so-called Tamm states associated with electronic states found at the surface of materials. The surface guided modes induced by the cap layer strongly depend on whether the superlattice ends with a superconductor or a dielectric layer, the thickness of the surface layer, the temperature of the superconductor layer as well as on the polarization of the waves. Differentmore » kinds of surface modes are found and their properties examined. These structures can be used to realize the highly sensitive photonic crystal sensors.« less

  10. Multilayer optical dielectric coating

    DOEpatents

    Emmett, John L.

    1990-01-01

    A highly damage resistant, multilayer, optical reflective coating includes alternating layers of doped and undoped dielectric material. The doping levels are low enough that there are no distinct interfaces between the doped and undoped layers so that the coating has properties nearly identical to the undoped material. The coating is fabricated at high temperature with plasma-assisted chemical vapor deposition techniques to eliminate defects, reduce energy-absorption sites, and maintain proper chemical stoichiometry. A number of differently-doped layer pairs, each layer having a thickness equal to one-quarter of a predetermined wavelength in the material are combined to form a narrowband reflective coating for a predetermined wavelength. Broadband reflectors are made by using a number of narrowband reflectors, each covering a portion of the broadband.

  11. Dielectric tuned circular dichroism of L-shaped plasmonic metasurface

    NASA Astrophysics Data System (ADS)

    Qu, Yu; Zhang, Zhidong; Fu, Tong; Wang, Gang; Wang, Tiankun; Wang, Mingyan; Bai, Yu; Zhang, Zhongyue

    2017-12-01

    In this paper, a dielectric layer is introduced to tune circular dichroism (CD) of chiral plasmonic metasurfaces. The dielectric layer is used to control the optical phase of electric diploes in Born-Kuhn configurations. To prove our assumption, an L-shaped plasmonic metasurface consisting of two metallic slices is prepared by glancing angle deposition, and then an SiO2 slice is deposited on one arm of the L-shaped metasurface. Experimental results reveal that CD of the L-shaped plasmonic metasurface can be tuned by the thickness of the SiO2 slice. These findings not only contribute to a better understanding of the CD physical mechanism, but also can be used in nanophotonic metasurfaces because of the concise fabrication process.

  12. Doped bottom-contact organic field-effect transistors

    NASA Astrophysics Data System (ADS)

    Liu, Shiyi; Billig, Paul; Al-Shadeedi, Akram; Kaphle, Vikash; Lüssem, Björn

    2018-07-01

    The influence of doping on doped bottom-gate bottom-contact organic field-effect transistors (OFETs) is discussed. It is shown that the inclusion of a doped layer at the dielectric/organic semiconductor layer leads to a significant reduction in the contact resistances and a fine control of the threshold voltage. Through varying the thickness of the doped layer, a linear shift of threshold voltage V T from ‑3.1 to ‑0.22 V is observed for increasing thickness of doped layer. Meanwhile, the contact resistance at the source and drain electrode is reduced from 138.8 MΩ at V GS = ‑10 V for 3 nm to 0.3 MΩ for 7 nm thick doped layers. Furthermore, an increase of charge mobility is observed for increasing thickness of doped layer. Overall, it is shown that doping can minimize injection barriers in bottom-contact OFETs with channel lengths in the micro-meter regime, which has the potential to increase the performance of this technology further.

  13. Revisiting the effective medium approximation in all-dielectric subwavelength multilayers: Breakdown and rebuilding

    NASA Astrophysics Data System (ADS)

    Lei, Xinrui; Mao, Lei; Lu, Yonghua; Wang, Pei

    2017-07-01

    Here, we present a comprehensive analysis of the effective medium approximation (EMA) breakdown in all-dielectric deep-subwavelength multilayers made of alternating layers by means of the transfer matrix method. We demonstrated that the approximation is invalid at the vicinity of the effective medium's critical angle for total internal reflection and obtained an analytical criterion for the breakdown of the EMA, which depends on the layer thickness, the incident angle, and the permittivity difference between the alternate layers. We rebuilt the EMA by adding higher-order correction onto the traditional effective permittivity. Furthermore, we found that the EMA breakdown that arises from the boundary effect cannot be repaired in the traditional homogenization strategy with only one layer of effective medium. By adding an artificial matched layer after the conventional effective layer, the boundary effect breakdown was neatly removed.

  14. Reflection/suppression coatings for 900 - 1200 A radiation

    NASA Technical Reports Server (NTRS)

    Edelstein, Jerry

    1989-01-01

    The design and performance of multiple-layer, selective-reflection, selective-suppression coatings for the 900 - 1200 A band are described. These coatings are designed to optimize both high reflectivity at a desirable wavelength and low reflectivity at an undesirable wavelength. The minimum structure for a selective coating consists of a thin metal or metal oxide layer (50 - 150 A thickness) over an aluminum substrate protected with a semi-transparent dielectric (100 - 1000 A thickness). Predicted coating performance is strongly effected by varying the layer combination and thickness. A graphical method of optimizing the coating layer structure is developed. Aluminum, silicon, their oxides, and gold have been investigated as coating layer materials. A very simple coating with a 1026 to 1216 A reflectivity ratio greater than 100 was fabricated. Such reflection/suppression coatings may be of great utility to spaceborne EUV spectrographs.

  15. Conductive, magnetic and structural properties of multilayer films

    NASA Astrophysics Data System (ADS)

    Kotov, L. N.; Turkov, V. K.; Vlasov, V. S.; Lasek, M. P.; Kalinin, Yu E.; Sitnikov, A. V.

    2013-12-01

    Composite-semiconductor and composite-dielectric multilayer films were obtained by the ion beam sputtering method in the argon and hydrogen atmospheres with compositions: {[(Co45-Fe45-Zr10)x(Al2O3)y]-[α-Si]}120, {[(Co45-Ta45-Nb10)x(SiO2)y]-[SiO2]}56, {[(Co45-Fe45-Zr10)x(Al2O3)y]-[α-Si:H]}120. The images of surface relief and distribution of the dc current on composite layer surface were obtained with using of atomic force microscopy (AFM). The dependencies of specific electric resistance, ferromagnetic resonance (FMR) fields and width of line on metal (magnetic) phase concentration x and nanolayers thickness of multilayer films were obtained. The characteristics of FMR depend on magnetic interaction among magnetic granules in the composite layers and between the layers. These characteristics depend on the thickness of composite and dielectric or semiconductor nanolayers. The dependences of electric microwave losses on the x and alternating field frequency were investigated.

  16. Effects of surface passivation dielectrics on carrier transport in AlGaN/GaN heterostructure field-effect transistors

    NASA Astrophysics Data System (ADS)

    Oh, Sejoon; Jang, Han-Soo; Choi, Chel-Jong; Cho, Jaehee

    2018-04-01

    Dielectric layers prepared by different deposition methods were used for the surface passivation of AlGaN/GaN heterostructure field-effect transistors (HFETs) and the corresponding electrical characteristics were examined. Increases in the sheet charge density and the maximum drain current by approximately 45% and 28%, respectively, were observed after the deposition of a 100 nm-thick SiO2 layer by plasma-enhanced chemical vapor deposition (PECVD) on the top of the AlGaN/GaN HFETs. However, SiO2 deposited by a radio frequency (rf) sputter system had the opposite effect. As the strain applied to AlGaN was influenced by the deposition methods used for the dielectric layers, the carrier transport in the two-dimensional electron gas formed at the interface between AlGaN and GaN was affected accordingly.

  17. Transmission properties of dielectric-coated hollow optical fibers based on stainless tube

    NASA Astrophysics Data System (ADS)

    Iwai, Katsumasa; Takaku, Hiroyuki; Miyagi, Mitsunobu; Shi, Yi-Wei; Zhu, Xiao-Song; Matsuura, Yuji

    2018-02-01

    Stainless pipe is used as the supporting tube for the infrared hollow fiber to obtain high durability and strong mechanical strength. In order to reduce roughness of inner surface of stainless tubes which causes the additional transmission loss, an acrylic-silicon resin material is used as a buffer layer to the inner wall of stainless tube for a low-loss characteristic. For the dielectric inner-coating layer, cyclic olefin polymer (COP) is used to lower the transmission loss. The COP layer is formed by using liquid-phase coating method. The hollow fiber with optimized COP inner film thickness for CO2 laser light were fabricated and reasonable transmission loss was demonstrated.

  18. Effect of temperature on terahertz photonic and omnidirectional band gaps in one-dimensional quasi-periodic photonic crystals composed of semiconductor InSb.

    PubMed

    Singh, Bipin K; Pandey, Praveen C

    2016-07-20

    Engineering of thermally tunable terahertz photonic and omnidirectional bandgaps has been demonstrated theoretically in one-dimensional quasi-periodic photonic crystals (PCs) containing semiconductor and dielectric materials. The considered quasi-periodic structures are taken in the form of Fibonacci, Thue-Morse, and double periodic sequences. We have shown that the photonic and omnidirectional bandgaps in the quasi-periodic structures with semiconductor constituents are strongly depend on the temperature, thickness of the constituted semiconductor and dielectric material layers, and generations of the quasi-periodic sequences. It has been found that the number of photonic bandgaps increases with layer thickness and generation of the quasi-periodic sequences. Omnidirectional bandgaps in the structures have also been obtained. Results show that the bandwidths of photonic and omnidirectional bandgaps are tunable by changing the temperature and lattice parameters of the structures. The generation of quasi-periodic sequences can also change the properties of photonic and omnidirectional bandgaps remarkably. The frequency range of the photonic and omnidirectional bandgaps can be tuned by the change of temperature and layer thickness of the considered quasi-periodic structures. This work will be useful to design tunable terahertz PC devices.

  19. Effects of superconducting film on the defect mode in dielectric photonic crystal heterostructure

    NASA Astrophysics Data System (ADS)

    Hu, Chung-An; Liu, Jia-Wei; Wu, Chien-Jang; Yang, Tzong-Jer; Yang, Su-Lin

    2013-03-01

    Effects of superconducting thin film on the defect mode in a dielectric photonic crystal heterostructure (PCH) are theoretically investigated. The considered structure is (12)NS(21)N, in which both layers 1 and 2 are dielectrics, layer S is a high-temperature superconducting layer, and N is the stack number. The defect mode is analyzed based on the transmission spectrum calculated by using the transfer matrix method. It is found that, in the normal incidence, the defect mode existing in the host PCH of (12)N(21)N will be blue-shifted as the thickness of layer S increases. In addition, the defect mode is also blue-shifted for both TE and TM modes in the case of oblique incidence. The embedded superconducting thin film plays the role of tuning agent for the defect mode of PCH. As a result, the proposed structure can be designed as a tunable narrowband transmission filter which could be of technical use in the optoelectronic applications.

  20. Electromagnetically induced reflectance and Fano resonance in one dimensional superconducting photonic crystal

    NASA Astrophysics Data System (ADS)

    Athe, Pratik; Srivastava, Sanjay; Thapa, Khem B.

    2018-04-01

    In the present work, we demonstrate the generation of optical Fano resonance and electromagnetically induced reflectance (EIR) in one-dimensional superconducting photonic crystal (1D SPC) by numerical simulation using transfer matrix method as analysis tool. We investigated the optical response of 1D SPC structure consisting of alternate layer of two different superconductors and observed that the optical spectra of this structure exhibit two narrow reflectance peaks with zero reflectivity of sidebands. Further, we added a dielectric cap layer to this 1D SPC structure and found that addition of dielectric cap layer transforms the line shape of sidebands around the narrow reflectance peaks which leads to the formation of Fano resonance and EIR line shape in reflectance spectra. We also studied the effects of the number of periods, refractive index and thickness of dielectric cap layer on the lineshape of EIR and Fano resonances. It was observed that the amplitude of peak reflectance of EIR achieves 100% reflectance by increasing the number of periods.

  1. Coincident Above- and Below-ground Autonomous Monitoring to Quantify Co-variability in Permafrost, Soil and Vegetation Properties in Arctic Tundra: Supporting Data

    DOE Data Explorer

    Baptiste Dafflon; Rusen Oktem; John Peterson; Craig Ulrich; Anh Phuong Tran; Vladimir Romanovsky; Susan Hubbard

    2017-05-10

    The dataset contains measurements obtained through electrical resistivity tomography (ERT) to monitor soil properties, pole-mounted optical cameras to monitor vegetation dynamics, point probes to measure soil temperature, and periodic manual measurements of thaw layer thickness, snow thickness and soil dielectric permittivity.

  2. Fermi level de-pinning of aluminium contacts to n-type germanium using thin atomic layer deposited layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gajula, D. R., E-mail: dgajula01@qub.ac.uk; Baine, P.; Armstrong, B. M.

    Fermi-level pinning of aluminium on n-type germanium (n-Ge) was reduced by insertion of a thin interfacial dielectric by atomic layer deposition. The barrier height for aluminium contacts on n-Ge was reduced from 0.7 eV to a value of 0.28 eV for a thin Al{sub 2}O{sub 3} interfacial layer (∼2.8 nm). For diodes with an Al{sub 2}O{sub 3} interfacial layer, the contact resistance started to increase for layer thicknesses above 2.8 nm. For diodes with a HfO{sub 2} interfacial layer, the barrier height was also reduced but the contact resistance increased dramatically for layer thicknesses above 1.5 nm.

  3. Control of spontaneous emission of quantum dots using correlated effects of metal oxides and dielectric materials

    NASA Astrophysics Data System (ADS)

    Sadeghi, S. M.; Wing, W. J.; Gutha, R. R.; Capps, L.

    2017-03-01

    We study the emission dynamics of semiconductor quantum dots in the presence of the correlated impact of metal oxides and dielectric materials. For this we used layered material structures consisting of a base substrate, a dielectric layer, and an ultrathin layer of a metal oxide. After depositing colloidal CdSe/ZnS quantum dots on the top of the metal oxide, we used spectral and time-resolved techniques to show that, depending on the type and thickness of the dielectric material, the metal oxide can characteristically change the interplay between intrinsic excitons, defect states, and the environment, offering new material properties. Our results show that aluminum oxide, in particular, can strongly change the impact of amorphous silicon on the emission dynamics of quantum dots by balancing the intrinsic near band emission and fast trapping of carriers. In such a system the silicon/aluminum oxide charge barrier can lead to large variation of the radiative lifetime of quantum dots and control of the photo-ejection rate of electrons in quantum dots. The results provide unique techniques to investigate and modify physical properties of dielectrics and manage optical and electrical properties of quantum dots.

  4. Control of spontaneous emission of quantum dots using correlated effects of metal oxides and dielectric materials.

    PubMed

    Sadeghi, S M; Wing, W J; Gutha, R R; Capps, L

    2017-03-03

    We study the emission dynamics of semiconductor quantum dots in the presence of the correlated impact of metal oxides and dielectric materials. For this we used layered material structures consisting of a base substrate, a dielectric layer, and an ultrathin layer of a metal oxide. After depositing colloidal CdSe/ZnS quantum dots on the top of the metal oxide, we used spectral and time-resolved techniques to show that, depending on the type and thickness of the dielectric material, the metal oxide can characteristically change the interplay between intrinsic excitons, defect states, and the environment, offering new material properties. Our results show that aluminum oxide, in particular, can strongly change the impact of amorphous silicon on the emission dynamics of quantum dots by balancing the intrinsic near band emission and fast trapping of carriers. In such a system the silicon/aluminum oxide charge barrier can lead to large variation of the radiative lifetime of quantum dots and control of the photo-ejection rate of electrons in quantum dots. The results provide unique techniques to investigate and modify physical properties of dielectrics and manage optical and electrical properties of quantum dots.

  5. Ion Structure Near a Core-Shell Dielectric Nanoparticle

    NASA Astrophysics Data System (ADS)

    Ma, Manman; Gan, Zecheng; Xu, Zhenli

    2017-02-01

    A generalized image charge formulation is proposed for the Green's function of a core-shell dielectric nanoparticle for which theoretical and simulation investigations are rarely reported due to the difficulty of resolving the dielectric heterogeneity. Based on the formulation, an efficient and accurate algorithm is developed for calculating electrostatic polarization charges of mobile ions, allowing us to study related physical systems using the Monte Carlo algorithm. The computer simulations show that a fine-tuning of the shell thickness or the ion-interface correlation strength can greatly alter electric double-layer structures and capacitances, owing to the complicated interplay between dielectric boundary effects and ion-interface correlations.

  6. Thickness scaling of atomic-layer-deposited HfO2 films and their application to wafer-scale graphene tunnelling transistors

    PubMed Central

    Jeong, Seong-Jun; Gu, Yeahyun; Heo, Jinseong; Yang, Jaehyun; Lee, Chang-Seok; Lee, Min-Hyun; Lee, Yunseong; Kim, Hyoungsub; Park, Seongjun; Hwang, Sungwoo

    2016-01-01

    The downscaling of the capacitance equivalent oxide thickness (CET) of a gate dielectric film with a high dielectric constant, such as atomic layer deposited (ALD) HfO2, is a fundamental challenge in achieving high-performance graphene-based transistors with a low gate leakage current. Here, we assess the application of various surface modification methods on monolayer graphene sheets grown by chemical vapour deposition to obtain a uniform and pinhole-free ALD HfO2 film with a substantially small CET at a wafer scale. The effects of various surface modifications, such as N-methyl-2-pyrrolidone treatment and introduction of sputtered ZnO and e-beam-evaporated Hf seed layers on monolayer graphene, and the subsequent HfO2 film formation under identical ALD process parameters were systematically evaluated. The nucleation layer provided by the Hf seed layer (which transforms to the HfO2 layer during ALD) resulted in the uniform and conformal deposition of the HfO2 film without damaging the graphene, which is suitable for downscaling the CET. After verifying the feasibility of scaling down the HfO2 thickness to achieve a CET of ~1.5 nm from an array of top-gated metal-oxide-graphene field-effect transistors, we fabricated graphene heterojunction tunnelling transistors with a record-low subthreshold swing value of <60 mV/dec on an 8″ glass wafer. PMID:26861833

  7. Fabrication of dielectric elastomer stack transducers (DEST) by liquid deposition modeling

    NASA Astrophysics Data System (ADS)

    Klug, Florian; Solano-Arana, Susana; Mößinger, Holger; Förster-Zügel, Florentine; Schlaak, Helmut F.

    2017-04-01

    Established fabrication methods for dielectric elastomer stack transducers (DEST) are mostly based on twodimensional thin-film technology. Because of this, DEST are based on simple two-dimensionally structured shapes. For certain applications, like valves or Braille displays, these structures are suited well enough. However, a more flexible fabrication method allows for more complex actuator designs, which would otherwise require extra processing steps. Fabrication methods with the possibility of three-dimensional structuring allow e.g. the integration of electrical connections, cavities, channels, sensor and other structural elements during the fabrication. This opens up new applications, as well as the opportunity for faster prototype production of individually designed DEST for a given application. In this work, a manufacturing system allowing three dimensional structuring is described. It enables the production of multilayer and three-dimensional structured DEST by liquid deposition modelling. The system is based on a custom made dual extruder, connected to a commercial threeaxis positioning system. It allows a computer controlled liquid deposition of two materials. After tuning the manufacturing parameters the production of thin layers with at thickness of less than 50 μm, as well as stacking electrode and dielectric materials is feasible. With this setup a first DEST with dielectric layer thickness less than 50 μm is build successfully and its performance is evaluated.

  8. Dielectric Properties of BST/(Y 2O 3) x(ZrO 2) 1-x/BST Trilayer Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahoo, Santosh K.; Misra, D.

    2011-01-31

    Thin films of Ba1-xSrxTiO3 (BST) are being actively investigated for applications in dynamic random access memories (DRAM) because of their properties such as high dielectric constant, low leakage current, and high dielectric breakdown strength. Various approaches have been used to improve the dielectric properties of BST thin films such as doping, graded compositions, and multilayer structures. We have found that inserting a ZrO2 layer in between two BST layers results in a significant reduction in dielectric constant as well as dielectric loss. In this work the effect of Y2O3 doped ZrO2 on the dielectric properties of BST/ZrO2/BST trilayer structure ismore » studied. The structure Ba0.8Sr0.2TiO3/(Y2O3)x(ZrO2)1-x/Ba0.8Sr0.2TiO3 is deposited by a sol-gel process on platinized Si substrate. The composition (x) of the middle layer is varied while keeping the total thickness of the trilayer film constant. The dielectric constant of the multilayer film decreases with the increase of Y2O3 amount in the film whereas there is a slight variation in dielectric loss. In Y2O3 doped multilayer thin films, the dielectric loss is lower in comparison to other films and also there is good frequency stability in the loss in the measured frequency range and hence very suitable for microwave device applications.« less

  9. Inkjet printed graphene-based field-effect transistors on flexible substrate

    NASA Astrophysics Data System (ADS)

    Monne, Mahmuda Akter; Enuka, Evarestus; Wang, Zhuo; Chen, Maggie Yihong

    2017-08-01

    This paper presents the design and fabrication of inkjet printed graphene field-effect transistors (GFETs). The inkjet printed GFET is fabricated on a DuPont Kapton FPC Polyimide film with a thickness of 5 mill and dielectric constant of 3.9 by using a Fujifilm Dimatix DMP-2831 materials deposition system. A layer by layer 3D printing technique is deployed with an initial printing of source and drain by silver nanoparticle ink. Then graphene active layer doped with molybdenum disulfide (MoS2) monolayer/multilayer dispersion, is printed onto the surface of substrate covering the source and drain electrodes. High capacitance ion gel is adopted as the dielectric material due to the high dielectric constant. Then the dielectric layer is then covered with silver nanoparticle gate electrode. Characterization of GFET has been done at room temperature (25°C) using HP-4145B semiconductor parameter analyzer (Hewlett-Packard). The characterization result shows for a voltage sweep from -2 volts to 2 volts, the drain current changes from 949 nA to 32.3 μA and the GFET achieved an on/off ratio of 38:1, which is a milestone for inkjet printed flexible graphene transistor.

  10. Insight into the electrical properties and chain conformation of spherical polyelectrolyte brushes by dielectric spectroscopy

    NASA Astrophysics Data System (ADS)

    Guo, Xiaoxia; Zhao, Kongshuang

    2017-02-01

    We report here a dielectric study on three kinds of anionic spherical polyelectrolyte brush (SPBs, consisting of a polystyrene (PS) core and three different poly (acrylic acid) chains grafted onto the core) suspensions over a frequency ranging from 40 Hz to 110 MHz. The relaxation behavior of the SPB suspensions shows significant changes in the brush-layer properties when the mass fraction of SPBs and the pH of the suspensions change. Two definite relaxations related to the interfacial polarization are observed around 100 kHz and 10 MHz. A single-layer spherical-shell model is applied to describe the SPB suspensions wherein the suspended SPB is modeled as a spherical-shell composite particle in which an insulated PS sphere is surrounded by a conducting ion-permeable shell (the polyelectrolyte chain layer). We developed the curve-fitting procedure to analyze the dielectric spectrum in order to obtain the dielectric properties of the components of the SPBs, especially the properties of the polyelectrolyte brush. Based on this method and model, the permittivity and conductivity of the brush layer, ζ potential, etc are calculated. The ordered orientation of the water molecules in the layer leads to an additional electrical dipole moment; increasing pH causes the brush layer to swell. In addition, the repulsive force between the SPB particles are evaluated using the brush-layer thickness, which is obtained by fitting dielectric spectra, combined with relative theoretical formulas. Increasing PH values or SPB concentration would improve the stability of the SPBs dispersion.

  11. Electrically Addressable Optical Devices Using A System Of Composite Layered Flakes Suspended In A Fluid Host To Obtain Angularly Depende

    DOEpatents

    Kosc, Tanya Z.; Marshall, Kenneth L.; Jacobs, Stephen D.

    2004-12-07

    Composite or layered flakes having a plurality of layers of different materials, which may be dielectric materials, conductive materials, or liquid crystalline materials suspended in a fluid host and subjected to an electric field, provide optical effects dependent upon the angle or orientation of the flakes in the applied electric field. The optical effects depend upon the composition and thickness of the layers, producing reflectance, interference, additive and/or subtractive color effects. The composition of layered flakes may also be selected to enhance and/or alter the dielectric properties of flakes, whereby flake motion in an electric field is also enhanced and/or altered. The devices are useful as active electro-optical displays, polarizers, filters, light modulators, and wherever controllable polarizing, reflecting and transmissive optical properties are desired.

  12. NASA Astrophysics Data System (ADS)

    Wang, Mao-Hua; Zhang, Bo; Zhou, Fu

    2014-07-01

    Silica was homogeneously coated on the surface of CaCu3Ti4O12 (CCTO) particles via the sol-gel method. The obtained powders were characterized by x-ray diffraction analysis, Fourier-transform infrared spectroscopy, transmission electron microscopy (TEM), energy-dispersive spectroscopy, scanning electron microscopy, and zeta potential analysis. The results demonstrate that there were silica layers on the surface of the CCTO particles. Physical and dielectric properties of silica-coated CCTO were also studied. TEM imaging showed that the thickness of the silica layer on the CCTO particles was about 20 nm to 35 nm. The specimen coated with 1.0 wt.% silica showed the maximum relative density of 96.7% with high dielectric constant (12.78 × 104) and low dielectric loss (0.005) at 20°C after sintering at 1000°C for 6 h.

  13. Slotted rectangular waveguide with dielectric sandwich structure inside

    NASA Astrophysics Data System (ADS)

    Abdullin, R. R.; Sokolov, R. I.

    2018-03-01

    This paper continues the series of works devoted to the investigation of leaky-wave antenna based on layered rectangular waveguide with periodic transverse slots in broad face. Previously developed wavenumber calculation technique has been adapted for analysis of slotted sandwich waveguide with three layers at least. The paper provides the numerical results of velocity factor dependencies for partially filled slotted rectangular waveguide containing a dielectric slab in the middle position inside or an air gap between two dielectric slabs. Additionally, dispersion properties are also considered for multilayer waveguide with linear laws combinations of thickness and permittivity. This allows recognizing the trends to develop new prospective antennas with complex patterns of tilt angle change. All numerical results obtained are confirmed with the in-situ measurements of transmission coefficient phase.

  14. Micro-Scale Regenerative Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Moran, Matthew E.; Stelter, Stephan; Stelter, Manfred

    2004-01-01

    A micro-scale regenerative heat exchanger has been designed, optimized and fabricated for use in a micro-Stirling device. Novel design and fabrication techniques enabled the minimization of axial heat conduction losses and pressure drop, while maximizing thermal regenerative performance. The fabricated prototype is comprised of ten separate assembled layers of alternating metal-dielectric composite. Each layer is offset to minimize conduction losses and maximize heat transfer by boundary layer disruption. A grating pattern of 100 micron square non-contiguous flow passages were formed with a nominal 20 micron wall thickness, and an overall assembled ten-layer thickness of 900 microns. Application of the micro heat exchanger is envisioned in the areas of micro-refrigerators/coolers, micropower devices, and micro-fluidic devices.

  15. Poly(methyl methacrylate) as a self-assembled gate dielectric for graphene field-effect transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanne, A.; Movva, H. C. P.; Kang, S.

    We investigate poly(methyl methacrylate) (PMMA) as a low thermal budget organic gate dielectric for graphene field effect-transistors (GFETs) based on a simple process flow. We show that high temperature baking steps above the glass transition temperature (∼130 °C) can leave a self-assembled, thin PMMA film on graphene, where we get a gate dielectric almost for “free” without additional atomic layer deposition type steps. Electrical characterization of GFETs with PMMA as a gate dielectric yields a dielectric constant of k = 3.0. GFETs with thinner PMMA dielectrics have a lower dielectric constant due to decreased polarization arising from neutralization of dipoles and charged carriersmore » as baking temperatures increase. The leakage through PMMA gate dielectric increases with decreasing dielectric thickness and increasing electric field. Unlike conventional high-k gate dielectrics, such low-k organic gate dielectrics are potentially attractive for devices such as the proposed Bilayer pseudoSpin Field-Effect Transistor or flexible high speed graphene electronics.« less

  16. Numerical analysis of the reverse blocking enhancement in High-K passivation AlGaN/GaN Schottky barrier diodes with gated edge termination

    NASA Astrophysics Data System (ADS)

    Bai, Zhiyuan; Du, Jiangfeng; Xin, Qi; Li, Ruonan; Yu, Qi

    2018-02-01

    We conducted a numerical analysis on high-K dielectric passivated AlGaN/GaN Schottky barrier diodes (HPG-SBDs) with a gated edge termination (GET). The reverse blocking characteristics were significantly enhanced without the stimulation of any parasitic effect by varying the dielectric thickness dge under the GET, thickness TP, and dielectric constant εr of the high-K passivation layer. The leakage current was reduced by increasing εr and decreasing dge. The breakdown voltage of the device was enhanced by increasing εr and TP. The highest breakdown voltage of 970 V and the lowest leakage current of 0.5 nA/mm were achieved under the conditions of εr = 80, TP = 800 nm, and dge = 10 nm. C-V simulation revealed that the HPG-SBDs induced no parasitic capacitance by comparing the integrated charges of the devices with different high-K dielectrics and different dge.

  17. Microwave Dielectric Constant Dependence on Soil Tension.

    DTIC Science & Technology

    1983-10-01

    water to be only a single monolayer thick .1 (OA) with Ice-like dielectric properties EWS = (3.15, JO). The first approach apportions the soil solution Into...mixing model that accounts explicitly for the presence of a hydrationU layer of bound water adjacent to hydrophilic soil particle surfaces. The soil ... solution is differentiated Into (1) a bound, ice-like component and (2) a bulk solution component, by a physical soil model dependent upon either soil

  18. Design and characterization of dielectric subwavelength focusing lens with polarization dependence

    NASA Astrophysics Data System (ADS)

    Kim, Sung W.; Pang, Lin; Fainman, Yeshaiahu

    2016-03-01

    We introduce and develop design, fabrication and characterization methodology for engineering the effective refractive index of a composite dielectric planar surface created by controlling the density of deeply subwavelength low index nanoholes (e.g., air) in a high index dielectric layer (e.g., Si). The nanoscale properties of a composite dielectric layer allows for full control of the optical wavefront phase by designing arbitrary space-variant refractive index profiles. We present the composite dielectric metasurface microlens exploiting symmetric design to achieve polarization invariant impulse response, and use asymmetric design to demonstrate polarization sensitive impulse response of the lens. This composite dielectric layers lenses were fabricated by patterning nanohole distributions on a dielectric surface and etching to submicron depths. Our dielectric microlens with asymmetric distribution of neff (neff x ≠ neff y) demonstrates a graded index lens with polarization dependent focusing with of 32um and 22 um for linearly x- and y-polarized light, respectively operating at a wavelength of λ = 1550nm. We also show numerically and demonstrate experimentally achromatic performance of the devices operating in the wavelength range of 1500nm - 1900nm with FWHM of the focal spots of about 4um. Namely, we have constructed a graded index lens that can overcome diffraction effects even when aperture/wavelength (D/λ) is smaller than 40. The demonstrated novel approach to engineer dielectric composite nanosurfaces has the potential to realize arbitrary phase functions with minimal insertion loss, submicron thickness and miniaturization to reduce element size and weight, and may have a significant impact on numerous miniature imaging systems applications.

  19. Microwave properties of ice from The Great Lakes

    NASA Technical Reports Server (NTRS)

    Vickers, R. S.

    1975-01-01

    The increasing use of radar systems as remote sensors of ice thickness has revealed a lack of basic data on the microwave properties of fresh-water ice. A program, in which the complex dielectric constant was measured for a series of ice samples taken from the Great Lakes, is described. The measurements were taken at temperatures of -5, -10, and -15 C. It is noted that the ice has considerable internal layered structure, and the effects of the layering are examined. Values of 3.0 to 3.2 are reported for the real part of the dielectric constant, with an error bar of + or - 0.01.

  20. Polarization-independent dual-band terahertz metamaterial absorbers based on gold/parylene-C/silicide structure.

    PubMed

    Wen, Yongzheng; Ma, Wei; Bailey, Joe; Matmon, Guy; Yu, Xiaomei; Aeppli, Gabriel

    2013-07-01

    We design, fabricate, and characterize dual-band terahertz (THz) metamaterial absorbers with high absorption based on structures consisting of a cobalt silicide (Co-Si) ground plane, a parylene-C dielectric spacer, and a metal top layer. By combining two periodic metal resonators that couple separately within a single unit cell, a polarization-independent absorber with two distinct absorption peaks was obtained. By varying the thickness of the dielectric layer, we obtain absorptivity of 0.76 at 0.76 THz and 0.97 at 2.30 THz, which indicates the Co-Si ground plane absorbers present good performance.

  1. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Influence of the layer thickness and concentration of dye molecules on the emission amplification in cholesteric liquid crystals

    NASA Astrophysics Data System (ADS)

    Alaverdyan, R. B.; Gevorgyan, A. A.; Chilingaryan, A. D.; Chilingaryan, Yu S.

    2008-05-01

    The propagation of light through a planar layer of a cholesteric liquid crystal doped with dye molecules is considered. The features of the emission spectra of the crystal are studied both in the absence and presence of dielectric boundaries. The increase in the emission intensity is investigated for different layer thicknesses and different concentrations of dye molecules. It is shown that an anomalously strong increase in the emission intensity with the diffraction intrinsic polarisation takes place in the case of a comparatively small crystal thickness and a relatively low concentration of dye molecules. The obtained results can be used for the development of miniature lasers with the circular polarisation of the fundamental radiation mode.

  2. A new design of dielectric elastomer membrane resonator with tunable resonant frequencies and mode shapes

    NASA Astrophysics Data System (ADS)

    Li, Yunlong; Oh, Inkyu; Chen, Jiehao; Hu, Yuhang

    2018-06-01

    Conventional membrane resonators are bulky, and once the geometries and materials are fixed in the fabricated device, the resonators’ characteristics are fixed. In this work, we introduce the active membrane, dielectric elastomer (DE), into the resonator design. Attaching a stiffer passive membrane onto the active DE membrane forms a two-layer system, which generates an out-of-plane deformation when the DE is actuated through a DC voltage applied across the thickness of the DE membrane. When an AC voltage is applied, the two-layer system can generate an out-of-plane oscillation which enables its use as membrane resonators. Both experiments and simulations are carried out to study the dynamic characteristics of the system. The resonant frequencies and mode shapes of the resonator can be tuned through the passive layer properties such as the modulus, thickness, density, and size. The effective stiffness of the DE film changes as the magnitude of the voltage applied on the film changes, which provides an active way to tune the dynamic characteristics of the two-layer resonator even after the device is set. The system is also light weight, low cost, and easy to fabricate, and has great potential in many engineering applications.

  3. Atomic-layer-deposited Al2O3-HfO2-Al2O3 dielectrics for metal-insulator-metal capacitor applications

    NASA Astrophysics Data System (ADS)

    Ding, Shi-Jin; Zhu, Chunxiang; Li, Ming-Fu; Zhang, David Wei

    2005-08-01

    Atomic-layer-deposited Al2O3-HfO2-Al2O3 dielectrics have been investigated to replace conventional silicon oxide and nitride for radio frequency and analog metal-insulator-metal capacitors applications. In the case of 1-nm-Al2O3, sufficiently good electrical performances are achieved, including a high dielectric constant of ˜17, a small dissipation factor of 0.018 at 100kHz, an extremely low leakage current of 7.8×10-9A/cm2 at 1MV/cm and 125°C, perfect voltage coefficients of capacitance (74ppm/V2 and 10ppm/V). The quadratic voltage coefficient of capacitance decreases with the applied frequency due to the change of relaxation time with different carrier mobility in insulator, and correlates with the dielectric composition and thickness, which is of intrinsic property owing to electric field polarization. Furthermore, the conduction mechanism of the AHA dielectrics is also discussed, indicating the Schottky emission dominated at room temperature.

  4. Hidden symmetries in N-layer dielectric stacks

    NASA Astrophysics Data System (ADS)

    Liu, Haihao; Shoufie Ukhtary, M.; Saito, Riichiro

    2017-11-01

    The optical properties of a multilayer system with arbitrary N layers of dielectric media are investigated. Each layer is one of two dielectric media, with a thickness one-quarter the wavelength of light in that medium, corresponding to a central frequency f 0. Using the transfer matrix method, the transmittance T is calculated for all possible 2 N sequences for small N. Unexpectedly, it is found that instead of 2 N different values of T at f 0 (T 0), there are only (N/2+1) discrete values of T 0, for even N, and (N + 1) for odd N. We explain this high degeneracy in T 0 values by finding symmetry operations on the sequences that do not change T 0. Analytical formulae were derived for the T 0 values and their degeneracies as functions of N and an integer parameter for each sequence we call ‘charge’. Additionally, the bandwidth at f 0 and filter response of the transmission spectra are investigated, revealing asymptotic behavior at large N.

  5. Improvement in the breakdown endurance of high-κ dielectric by utilizing stacking technology and adding sufficient interfacial layer.

    PubMed

    Pang, Chin-Sheng; Hwu, Jenn-Gwo

    2014-01-01

    Improvement in the time-zero dielectric breakdown (TZDB) endurance of metal-oxide-semiconductor (MOS) capacitor with stacking structure of Al/HfO2/SiO2/Si is demonstrated in this work. The misalignment of the conduction paths between two stacking layers is believed to be effective to increase the breakdown field of the devices. Meanwhile, the resistance of the dielectric after breakdown for device with stacking structure would be less than that of without stacking structure due to a higher breakdown field and larger breakdown power. In addition, the role of interfacial layer (IL) in the control of the interface trap density (D it) and device reliability is also analyzed. Device with a thicker IL introduces a higher breakdown field and also a lower D it. High-resolution transmission electron microscopy (HRTEM) of the samples with different IL thicknesses is provided to confirm that IL is needed for good interfacial property.

  6. Microwave radiometric aircraft observations of the Fabry-Perot interference fringes of an ice-water system

    NASA Technical Reports Server (NTRS)

    Harrington, R. F.; Swift, C. T.; Fedors, J. C.

    1980-01-01

    Airborne stepped-frequency microwave radiometer (SFMR) observations of the Fabry-Perot interference fringes of ice-water systems are discussed. The microwave emissivity at normal incidence of a smooth layered dielectric medium over a semi-infinite dielectric medium is examined for the case of ice over water as a function of ice thickness and attenuation coefficient, and the presence of quarter-wavelength oscillations in emissivity as the ice thickness and frequency are varied is pointed out. Experimental observations of pronounced quarter-wavelength oscillations in radiometric brightness temperature due to the Fabry-Perot interference fringes over smooth sea ice and lake ice varying in roughness as the radiometer frequencies were scanned are then presented.

  7. Relative influence upon microwave emissivity of fine-scale stratigraphy, internal scattering, and dielectric properties

    USGS Publications Warehouse

    England, A.W.

    1976-01-01

    The microwave emissivity of relatively low-loss media such as snow, ice, frozen ground, and lunar soil is strongly influenced by fine-scale layering and by internal scattering. Radiometric data, however, are commonly interpreted using a model of emission from a homogeneous, dielectric halfspace whose emissivity derives exclusively from dielectric properties. Conclusions based upon these simple interpretations can be erroneous. Examples are presented showing that the emission from fresh or hardpacked snow over either frozen or moist soil is governed dominantly by the size distribution of ice grains in the snowpack. Similarly, the thickness of seasonally frozen soil and the concentration of rock clasts in lunar soil noticeably affect, respectively, the emissivities of northern latitude soils in winter and of the lunar regolith. Petrophysical data accumulated in support of the geophysical interpretation of microwave data must include measurements of not only dielectric properties, but also of geometric factors such as finescale layering and size distributions of grains, inclusions, and voids. ?? 1976 Birkha??user Verlag.

  8. Control of optical properties of metal-dielectric planar plasmonic nanostructures by adjusting their architecture in the case of TiAlN/Ag system

    NASA Astrophysics Data System (ADS)

    Wainstein, D. L.; Vakhrushev, V. O.; Kovalev, A. I.

    2017-05-01

    The multilayer Ag/(Ti34Al66)N metal-insulator-metal (MIM) heterostructures with different thicknesses of individual layers varied from several to several hundred nanometers were fabricated by DC-magnetron sputtering on the surfaces of Si single crystal wafers. The coatings structure was determined by STEM. The phase composition and crystallography of individual layers were studied by X-ray diffraction. The reflection indexes were measured in the photons energies range from 1 to 5 eV, or from 1240 to 248 nm. The spectroscopy of plasmon losses and plasmon microscopy allowed us to measure the plasmons losses characteristic energies and their surface distribution. The energies of plasmons peaks and their locations are strongly depending on Ag layers thickness in the MIM nanocomposite. The surface plasmon with energy about 4 eV was observed in the middle of 20 nm Ag layer. The plasmons were localized at the metal/dielectric interface for Ag layers 5 nm and less. The reflectance spectral profiles edges positions at long and short waves are correlated with plasmons energies and features of their spatial distribution. The MIMs based on the TiAlN/Ag can find applications as optical filters, photovoltaic energy conversion devices, etc.

  9. Lanthanide-based oxides and silicates for high-kappa gate dielectric applications

    NASA Astrophysics Data System (ADS)

    Jur, Jesse Stephen

    The ability to improve performance of the high-end metal oxide semiconductor field effect transistor (MOSFET) is highly reliant on the dimensional scaling of such a device. In scaling, a decrease in dielectric thickness results in high current leakage between the electrode and the substrate by way of direct tunneling through the gate dielectric. Observation of a high leakage current when the standard gate dielectric, SiO2, is decreased below a thickness of 1.5 nm requires engineering of a replacement dielectric that is much more scalable. This high-kappa dielectric allows for a physically thicker oxide, reducing leakage current. Integration of select lanthanide-based oxides and silicates, in particular lanthanum oxide and silicate, into MOS gate stack devices is examined. The quality of the high-kappa dielectrics is monitored electrically to determine properties such as equivalent oxide thickness, leakage current density and defect densities. In addition, analytical characterization of the dielectric and the gate stack is provided to examine the materialistic significance to the change of the electrical properties of the devices. In this work, lanthanum oxide films have been deposited by thermal evaporation on to a pre-grown chemical oxide layer on silicon. It is observed that the SiO2 interfacial layer can be consumed by a low-temperature reaction with lanthanum oxide to produce a high-quality silicate. This is opposed to depositing lanthanum oxide directly on silicon, which can possibly favor silicide formation. The importance of oxygen regulation in the surrounding environment of the La2O3-SiO2 reaction-anneal is observed. By controlling the oxygen available during the reaction, SiO2 growth can be limited to achieve high stoichiometric ratios of La2O 3 to SiO2. As a result, MOS devices with an equivalent oxide thickness (EOT) of 5 A and a leakage current density of 5.0 A/cm 2 are attained. This data equals the best value achieved in this field and is a substantial improvement over SiO(N) dielectrics, allowing for increased device scaling. High-temperature processing, consistent with the source/drain activation anneal in MOSFET processing, is performed on lanthanum-silicate based MOS devices with Ta or TaN gate electrodes and a W metal capping layer. The thermal limit of Ta is observed to be less than 800°C, resulting in a phase transformation that can result in uncontrolled shifting of the MOS device flat-band voltage. TaN is observed to be more thermally stable (up to 1000°C) and results in an increase in the capacitance density suggesting that it impedes oxygen reaction with silicon to produce SiO2. It is later observed that a W metal capping layer can serve as a high-oxygen source, which results in an increased interfacial SiO2 formation. By limiting the oxygen content in the W capping layer and by utilizing a thermally stable TaN gate electrode, control over the electrical properties of the MOS device is acquired. To determine the stability of amorphous lanthanum-silicate in contact with investigated by means of back-side secondary ion mass spectroscopy profiling. The results are the first reported data showing that the lanthanum incorporated in the silica matrix doe not diffuse into the silicon substrate after high temperature processing. The decrease in the device effective work function (φM,eff ) observed in these samples is examined in detail. First, as a La 2O3 capping layer on HfSiO(N), the shift yields ideal-φ M,eff values for nMOSFET deices (4.0 eV) that were previously inaccessible. Other lanthanide oxides (Dy, Ho and Yb) used as capping layers show similar effects. It is also shown that tuning of φM,eff can be realized by controlling the extent of lanthanide-silicate formation. This research, conducted in conjunction with SEMATECH and the SRC, represents a significant technological advancement in realizing 45 and sub-45 nm MOSFET device nodes.

  10. Theory and practical considerations of multilayer dielectric thin-film stacks in Ag-coated hollow waveguides.

    PubMed

    Bledt, Carlos M; Melzer, Jeffrey E; Harrington, James A

    2014-02-01

    This analysis explores the theory and design of dielectric multilayer reflection-enhancing thin film stacks based on high and low refractive index alternating layers of cadmium sulfide (CdS) and lead sulfide (PbS) on silver (Ag)-coated hollow glass waveguides (HGWs) for low loss transmission at midinfrared wavelengths. The fundamentals for determining propagation losses in such multilayer thin-film-coated Ag hollow waveguides is thoroughly discussed, and forms the basis for further theoretical analysis presented in this study. The effects on propagation loss resulting from several key parameters of these multilayer thin film stacks is further explored in order to bridge the gap between results predicted through calculation under ideal conditions and deviations from such ideal models that often arise in practice. In particular, the effects on loss due to the number of dielectric thin film layers deposited, deviation from ideal individual layer thicknesses, and surface roughness related scattering losses are presented and thoroughly investigated. Through such extensive theoretical analysis the level of understanding of the underlying loss mechanisms of multilayer thin-film Ag-coated HGWs is greatly advanced, considerably increasing the potential practical development of next-generation ultralow-loss mid-IR Ag/multilayer dielectric-coated HGWs.

  11. High-resolution well-log derived dielectric properties of gas-hydrate-bearing sediments, Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope

    USGS Publications Warehouse

    Sun, Y.; Goldberg, D.; Collett, T.; Hunter, R.

    2011-01-01

    A dielectric logging tool, electromagnetic propagation tool (EPT), was deployed in 2007 in the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well (Mount Elbert Well), North Slope, Alaska. The measured dielectric properties in the Mount Elbert well, combined with density log measurements, result in a vertical high-resolution (cm-scale) estimate of gas hydrate saturation. Two hydrate-bearing sand reservoirs about 20 m thick were identified using the EPT log and exhibited gas-hydrate saturation estimates ranging from 45% to 85%. In hydrate-bearing zones where variation of hole size and oil-based mud invasion are minimal, EPT-based gas hydrate saturation estimates on average agree well with lower vertical resolution estimates from the nuclear magnetic resonance logs; however, saturation and porosity estimates based on EPT logs are not reliable in intervals with substantial variations in borehole diameter and oil-based invasion.EPT log interpretation reveals many thin-bedded layers at various depths, both above and below the thick continuous hydrate occurrences, which range from 30-cm to about 1-m thick. Such thin layers are not indicated in other well logs, or from the visual observation of core, with the exception of the image log recorded by the oil-base microimager. We also observe that EPT dielectric measurements can be used to accurately detect fine-scale changes in lithology and pore fluid properties of hydrate-bearing sediments where variation of hole size is minimal. EPT measurements may thus provide high-resolution in-situ hydrate saturation estimates for comparison and calibration with laboratory analysis. ?? 2010 Elsevier Ltd.

  12. Unexpected significant increase in bulk conductivity of a dielectric arising from charge injection

    NASA Astrophysics Data System (ADS)

    Wang, Jian-Jun; Bayer, Thorsten J. M.; Wang, Rui; Carter, Jared J.; Randall, Clive A.; Chen, Long-Qing

    2017-06-01

    Charge injection is a common phenomenon in heterostructures or devices containing metal-insulator interfaces under a voltage bias ranging from dielectric capacitors to electroluminescent and lasing devices. It is generally believed that charge injection only significantly increases the conductivity near the interfacial region or in capacitors with very thin dielectric layers. In this work, the impact of charge injection on bulk conductivity of a 0.5 mm thick Fe-doped SrTiO3 single crystal is investigated with a combination of experimental impedance measurements and computational modelling. It is found that the interfacial charge injection may increase the predicted bulk conductivity of a dielectric by more than one order of magnitude as a consequence of Schottky barrier height lowering.

  13. Study on influences of TiN capping layer on time-dependent dielectric breakdown characteristic of ultra-thin EOT high-k metal gate NMOSFET with kMC TDDB simulations

    NASA Astrophysics Data System (ADS)

    Xu, Hao; Yang, Hong; Luo, Wei-Chun; Xu, Ye-Feng; Wang, Yan-Rong; Tang, Bo; Wang, Wen-Wu; Qi, Lu-Wei; Li, Jun-Feng; Yan, Jiang; Zhu, Hui-Long; Zhao, Chao; Chen, Da-Peng; Ye, Tian-Chun

    2016-08-01

    The thickness effect of the TiN capping layer on the time dependent dielectric breakdown (TDDB) characteristic of ultra-thin EOT high-k metal gate NMOSFET is investigated in this paper. Based on experimental results, it is found that the device with a thicker TiN layer has a more promising reliability characteristic than that with a thinner TiN layer. From the charge pumping measurement and secondary ion mass spectroscopy (SIMS) analysis, it is indicated that the sample with the thicker TiN layer introduces more Cl passivation at the IL/Si interface and exhibits a lower interface trap density. In addition, the influences of interface and bulk trap density ratio N it/N ot are studied by TDDB simulations through combining percolation theory and the kinetic Monte Carlo (kMC) method. The lifetime reduction and Weibull slope lowering are explained by interface trap effects for TiN capping layers with different thicknesses. Project supported by the National High Technology Research and Development Program of China (Grant No. SS2015AA010601), the National Natural Science Foundation of China (Grant Nos. 61176091 and 61306129), and the Opening Project of Key Laboratory of Microelectronics Devices & Integrated Technology, Institute of MicroElectronics of Chinese Academy of Sciences.

  14. Electrical and dielectric properties of (barium, strontium) titanium trioxide thin film capacitors for ultra-high density dynamic random access memories

    NASA Astrophysics Data System (ADS)

    Basceri, Cem

    The electrical and dielectric properties of fiber-textured, MOCVD (Basb{0.7}Srsb{0.3})TiOsb3 (BST) thin film capacitors appropriate for ultra-large scale integration (ULSI) dynamic random access memory (DRAM) applications have been analyzed. Dielectric relaxation, leakage, resistance degradation, and dielectric response phenomena, within a comprehensive matrix of external and material parameters, have been investigated. The phenomenology of the dielectric response of our BST films has been shown to be well-described by Curie-von Schweidler behavior, although the microscopic origin of this behavior has not been presently agreed upon. The time-dependent polarization behavior has been linked to the dispersion in permittivity with respect to frequency. The leakage current through our BST films has been found to be primarily limited by interfacial Schottky barriers whose properties depend on the electrode material, interface microstructure, and deposition conditions. Its temperature and voltage dependence have been interpreted via a thermionic emission model. Analysis in terms of Schottky-barrier limited current flow gave acceptable values for the cathode barrier height. The results have indicated that our BST films, appropriate for DRAM applications, do not possess depletion layers at the film-electrode interfaces. Instead, they must be considered as depleted of charge carriers across their entire thickness. Resistance degradation has been found to be thermally activated and voltage/field dependent. The results have indicated that there is a film thickness effect, which manifests itself as a decrease in the activation energy with respect to temperature for thicker films. A significant stoichiometry effect on the measured resistance degradation lifetimes has been observed. The analyses of the leakage and capacitance-voltage behaviors for the degraded samples have indicated that a demixing of oxygen vacancies occurs during resistance degradation, which causes the Schottky barrier height to decrease, in agreement with the observed relative shift of the peak capacitance as a function of voltage. For all the film thicknesses and compositions studied, extrapolated resistance degradation lifetimes of our BST films, which were obtained by using an appropriate form, are well above the current benchmark of 10 years at the DRAM operating conditions of 1.6 V and 85sp°C. Above the bulk Curie point (˜300 K), the phenomenological approach, i.e., Landau-Ginzburg-Devonshire (LGD) theory, has been demonstrated to account very well for the observed C-V behavior in our BST films. Furthermore, temperature dependent measurements gave evidence that, as expected, the form of the dielectric behavior changes near the bulk Curie point, but that the phase transition appears for some reason to be frustrated. Film thickness has been established to impact primarily the zero-bias permittivity through a thickness dependence of the first order coefficient of the LGD power series. Our analysis does indicate that if it results from a series-connected interfacial layer, that layer must be a nonlinear dielectric, as must the bulk of the film. The dielectric constant has been found to be composition dependent, reaching its highest values for compositions near the stoichiometric values. Furthermore, film stoichiometry has been established to strongly effect both the first order and third order coefficients of the LGD power series.

  15. Refractive index sensing in the visible/NIR spectrum using silicon nanopillar arrays.

    PubMed

    Visser, D; Choudhury, B Dev; Krasovska, I; Anand, S

    2017-05-29

    Si nanopillar (NP) arrays are investigated as refractive index sensors in the visible/NIR wavelength range, suitable for Si photodetector responsivity. The NP arrays are fabricated by nanoimprint lithography and dry etching, and coated with thin dielectric layers. The reflectivity peaks obtained by finite-difference time-domain (FDTD) simulations show a linear shift with coating layer thickness. At 730 nm wavelength, sensitivities of ~0.3 and ~0.9 nm/nm of SiO 2 and Si 3 N 4 , respectively, are obtained; and the optical thicknesses of the deposited surface coatings are determined by comparing the experimental and simulated data. The results show that NP arrays can be used for sensing surface bio-layers. The proposed method could be useful to determine the optical thickness of surface coatings, conformal and non-conformal, in NP-based optical devices.

  16. Accurate characterization and understanding of interface trap density trends between atomic layer deposited dielectrics and AlGaN/GaN with bonding constraint theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramanan, Narayanan; Lee, Bongmook; Misra, Veena, E-mail: vmisra@ncsu.edu

    2015-06-15

    Many dielectrics have been proposed for the gate stack or passivation of AlGaN/GaN based metal oxide semiconductor heterojunction field effect transistors, to reduce gate leakage and current collapse, both for power and RF applications. Atomic Layer Deposition (ALD) is preferred for dielectric deposition as it provides uniform, conformal, and high quality films with precise monolayer control of film thickness. Identification of the optimum ALD dielectric for the gate stack or passivation requires a critical investigation of traps created at the dielectric/AlGaN interface. In this work, a pulsed-IV traps characterization method has been used for accurate characterization of interface traps withmore » a variety of ALD dielectrics. High-k dielectrics (HfO{sub 2}, HfAlO, and Al{sub 2}O{sub 3}) are found to host a high density of interface traps with AlGaN. In contrast, ALD SiO{sub 2} shows the lowest interface trap density (<2 × 10{sup 12 }cm{sup −2}) after annealing above 600 °C in N{sub 2} for 60 s. The trend in observed trap densities is subsequently explained with bonding constraint theory, which predicts a high density of interface traps due to a higher coordination state and bond strain in high-k dielectrics.« less

  17. Characterization of Ultrathin Ta-oxide Films Formed on Ge(100) by ALD and Layer-by-Layer Methods

    NASA Astrophysics Data System (ADS)

    Mishima, K.; Murakami, H.; Ohta, A.; Sahari, S. K.; Fujioka, T.; Higashi, S.; Miyazaki, S.

    2013-03-01

    Atomic layer deposition (ALD) and Layer-by-Layer deposition of Ta-oxide films on Ge(100) with using tris (tert-butoxy) (tert-butylimido) tantalum have been studied systematically. From the analysis of the chemical bonding features of the interface between TaOx and Ge(100) using x-ray photoelectron spectroscopy (XPS), Ge atom diffusion into the Ta oxide layer and resultant TaGexOy formation during deposition at temperatures higher than 200°C were confirmed. Also, we have demonstrated that nanometer-thick deposition of Tantalum oxide as an interfacial layer effectively suppresses the formation of GeOx in the HfO2 ALD on Ge. By the combination of TaOx pre-deposition on Ge(100) and subsequent ALD of HfO2, a capacitance equivalent thickness (CET) of 1.35 nm and relative dielectric constant of 23 were achieved.

  18. Tunable positive and negative refraction of infrared radiation in graphene-dielectric multilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, R. Z.; Zhang, Z. M., E-mail: zhuomin.zhang@me.gatech.edu

    2015-11-09

    Graphene-dielectric multilayers consisting of alternating layers of atom-thick graphene and nanometer-scale dielectric films exhibit characteristics of hyperbolic metamaterials, in which one positive and one negative permittivity are defined for orthogonal directions. Negative permittivity for electric field polarized in the direction parallel to the conductive graphene sheets gives rise to a negative angle of refraction and low-loss transmission for the side-incidence perspective proposed in this work. The Poynting vector tracing demonstrates the switching between positive and negative refraction in the mid-infrared region by tuning the chemical potential of graphene. This adjustable dual-mode metamaterial holds promise for infrared imaging applications.

  19. Inkjet-printed p-type nickel oxide thin-film transistor

    NASA Astrophysics Data System (ADS)

    Hu, Hailong; Zhu, Jingguang; Chen, Maosheng; Guo, Tailiang; Li, Fushan

    2018-05-01

    High-performance inkjet-printed nickel oxide thin-film transistors (TFTs) with Al2O3 high-k dielectric have been fabricated using a sol-gel precursor ink. The "coffee ring" effect during the printing process was facilely restrained by modifying the viscosity of the ink to control the outward capillary flow. The impacts on the device performance was studied in detail in consideration of annealing temperature of the nickel oxide film and the properties of dielectric layer. The optimized switching ability of the device were achieved at an annealing temperature of 280 °C on a 50-nm-thick Al2O3 dielectric layer, with a hole mobility of 0.78 cm2/V·s, threshold voltage of -0.6 V and on/off current ratio of 5.3 × 104. The as-printed p-type oxide TFTs show potential application in low-cost, large-area complementary electronic devices.

  20. Anomalously low dielectric constant of confined water.

    PubMed

    Fumagalli, L; Esfandiar, A; Fabregas, R; Hu, S; Ares, P; Janardanan, A; Yang, Q; Radha, B; Taniguchi, T; Watanabe, K; Gomila, G; Novoselov, K S; Geim, A K

    2018-06-22

    The dielectric constant ε of interfacial water has been predicted to be smaller than that of bulk water (ε ≈ 80) because the rotational freedom of water dipoles is expected to decrease near surfaces, yet experimental evidence is lacking. We report local capacitance measurements for water confined between two atomically flat walls separated by various distances down to 1 nanometer. Our experiments reveal the presence of an interfacial layer with vanishingly small polarization such that its out-of-plane ε is only ~2. The electrically dead layer is found to be two to three molecules thick. These results provide much-needed feedback for theories describing water-mediated surface interactions and the behavior of interfacial water, and show a way to investigate the dielectric properties of other fluids and solids under extreme confinement. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  1. Multispectral surface plasmon resonance approach for ultra-thin silver layer characterization: Application to top-emitting OLED cathode

    NASA Astrophysics Data System (ADS)

    Taverne, S.; Caron, B.; Gétin, S.; Lartigue, O.; Lopez, C.; Meunier-Della-Gatta, S.; Gorge, V.; Reymermier, M.; Racine, B.; Maindron, T.; Quesnel, E.

    2018-01-01

    While dielectric/metal/dielectric (DMD) multilayer thin films have raised considerable interest as transparent and conductive electrodes in various optoelectronic devices, the knowledge of optical characteristics of thin metallic layers integrated in such structures is still rather approximate. The multispectral surface plasmon resonance characterization approach described in this work precisely aims at providing a rigorous methodology able to accurately determine the optical constants of ultra-thin metallic films. As a practical example, the refractive index and extinction dispersion curves of 8 to 25 nm-thick silver layers have been investigated. As a result, their extreme dependence on the layer thickness is highlighted, in particular in a thickness range close to the critical threshold value (˜10 nm) where the silver film becomes continuous and its electrical conductance/optical transmittance ratio particularly interesting. To check the validity of the revisited Ag layers constant dispersion curves deduced from this study, they were introduced into a commercial optical model software to simulate the behavior of various optoelectronic building blocks from the simplest ones (DMD electrodes) to much more complex structures [full organic light emitting device (OLED) stacks]. As a result, a much better prediction of the emission spectrum profile as well as the angular emission pattern of top-emitting OLEDs is obtained. On this basis, it is also shown how a redesign of the top encapsulation thin film of OLEDs is necessary to better take benefit from the advanced DMD electrode. These results should particularly interest the micro-OLED display field where bright and directive single color pixel emission is required.

  2. Electromagnetic reflection from multi-layered snow models

    NASA Technical Reports Server (NTRS)

    Linlor, W. I.; Jiracek, G. R.

    1975-01-01

    The remote sensing of snow-pack characteristics with surface installations or an airborne system could have important applications in water-resource management and flood prediction. To derive some insight into such applications, the electromagnetic response of multilayered snow models is analyzed in this paper. Normally incident plane waves at frequencies ranging from 1 MHz to 10 GHz are assumed, and amplitude reflection coefficients are calculated for models having various snow-layer combinations, including ice layers. Layers are defined by thickness, permittivity, and conductivity; the electrical parameters are constant or prescribed functions of frequency. To illustrate the effect of various layering combinations, results are given in the form of curves of amplitude reflection coefficients versus frequency for a variety of models. Under simplifying assumptions, the snow thickness and effective dielectric constant can be estimated from the variations of reflection coefficient as a function of frequency.

  3. Materials science, integration, and performance characterization of high-dielectric constant thin film based devices

    NASA Astrophysics Data System (ADS)

    Fan, Wei

    To overcome the oxidation and diffusion problems encountered during Copper integration with oxide thin film-based devices, TiAl/Cu/Ta heterostructure has been first developed in this study. Investigation on the oxidation and diffusion resistance of the laminate structure showed high electrical conductance and excellent thermal stability in oxygen environment. Two amorphous oxide layers that were formed on both sides of the TiAl barrier after heating in oxygen have been revealed as the structure that effectively prevents oxygen penetration and protects the integrity of underlying Cu layer. Polycrystalline (BaxSr1-x)TiO3 (BST) thin films were subsequently deposited on the Cu-based bottom electrode by RF magnetron sputtering to investigate the interaction between the oxide and Cu layers. The thickness of the interfacial layer and interface roughness play critical roles in the optimization of the electrical performance of the BST capacitors using Cu-based electrode. It was determined that BST deposition at moderate temperature followed by rapid thermal annealing in pure oxygen yields BST/Cu capacitors with good electrical properties for application to high frequency devices. The knowledge obtained on the study of barrier properties of TiAl inspired a continuous research on the materials science issues related to the application of the hybrid TiAlOx, as high-k gate dielectric in MOSFET devices. Novel fabrication process such as deposition of ultra-thin TiAl alloy layer followed by oxidation with atomic oxygen has been established in this study. Stoichiometric amorphous TiAlOx layers, exhibiting only Ti4+ and Al3+ states, were produced with a large variation of oxidation temperature (700°C to room temperature). The interfacial SiOx formation between TiAlOx and Si was substantially inhibited by the use of the low temperature oxidation process. Electrical characterization revealed a large permittivity of 30 and an improved band structure for the produced TiAlOx layers, compared with pure TiO2. A modified 3-element model was adopted to extract the true C-V behavior of the TiAlOx-based MOS capacitor. Extremely small equivalent oxide thickness (EOT) less than 0.5 nm with dielectric leakage 4˜5 magnitude lower than that for SiO2 has been achieved on TiAlOx layer as a result of its excellent dielectric properties.

  4. Designing optimal nanofocusing with a gradient hyperlens

    NASA Astrophysics Data System (ADS)

    Shen, Lian; Prokopeva, Ludmila J.; Chen, Hongsheng; Kildishev, Alexander V.

    2017-11-01

    We report the design of a high-throughput gradient hyperbolic lenslet built with real-life materials and capable of focusing a beam into a deep sub-wavelength spot of λ/23. This efficient design is achieved through high-order transformation optics and circular effective-medium theory (CEMT), which are used to engineer the radially varying anisotropic artificial material based on the thin alternating cylindrical metal and dielectric layers. The radial gradient of the effective anisotropic optical constants allows for matching the impedances at the input and output interfaces, drastically improving the throughput of the lenslet. However, it is the use of the zeroth-order CEMT that enables the practical realization of a gradient hyperlens with realistic materials. To illustrate the importance of using the CEMT versus the conventional planar effective-medium theory (PEMT) for cylindrical anisotropic systems, such as our hyperlens, both the CEMT and PEMT are adopted to design gradient hyperlenses with the same materials and order of elemental layers. The CEMT- and PEMT-based designs show similar performance if the number of metal-dielectric binary layers is sufficiently large (9+ pairs) and if the layers are sufficiently thin. However, for the manufacturable lenses with realistic numbers of layers (e.g. five pairs) and thicknesses, the performance of the CEMT design continues to be practical, whereas the PEMT-based design stops working altogether. The accurate design of transformation optics-based layered cylindrical devices enabled by CEMT allow for a new class of robustly manufacturable nanophotonic systems, even with relatively thick layers of real-life materials.

  5. Modified Coaxial Probe Feeds for Layered Antennas

    NASA Technical Reports Server (NTRS)

    Fink, Patrick W.; Chu, Andrew W.; Dobbins, Justin A.; Lin, Greg Y.

    2006-01-01

    In a modified configuration of a coaxial probe feed for a layered printed-circuit antenna (e.g., a microstrip antenna), the outer conductor of the coaxial cable extends through the thickness of at least one dielectric layer and is connected to both the ground-plane conductor and a radiator-plane conductor. This modified configuration simplifies the incorporation of such radio-frequency integrated circuits as power dividers, filters, and low-noise amplifiers. It also simplifies the design and fabrication of stacked antennas with aperture feeds.

  6. Graphene-based multilayer resonance structure to enhance the optical pressure on a Mie particle

    NASA Astrophysics Data System (ADS)

    Hassanzadeh, Abdollah; Mohammadnezhad, Mohammadbagher

    2016-04-01

    We theoretically investigate the optical force exerted on a Mie dielectric particle in the evanescent field of a graphene-based resonance multilayer structure using the arbitrary beam theory and the theory of multilayer films. The resonance structure consists of several thin films including a dielectric film (MgF2), a metal film (silver or gold), and several graphene layers which are located on a prism base. The effects of the metal film thickness and the number of graphene layers on the optical force are numerically investigated. The thickness of the metal layer and the number of graphene layers are optimized to reach the highest optical force. The numerical results show that an optimized composition of graphene and gold leads to a higher optical force compared to that of the graphene and silver. The optical force was enhanced resonantly by four orders of magnitude for the resonance structure containing graphene and a gold film and by three orders of magnitude for the structure containing graphene and a silver film compared to other similar resonance structures. We hope that the results presented in this paper can provide an excellent means of improving the optical manipulation of particles and enable the provision of effective optical tweezers, micromotors, and microaccelelators.

  7. Flexible, Low-Power Thin-Film Transistors Made of Vapor-Phase Synthesized High-k, Ultrathin Polymer Gate Dielectrics.

    PubMed

    Choi, Junhwan; Joo, Munkyu; Seong, Hyejeong; Pak, Kwanyong; Park, Hongkeun; Park, Chan Woo; Im, Sung Gap

    2017-06-21

    A series of high-k, ultrathin copolymer gate dielectrics were synthesized from 2-cyanoethyl acrylate (CEA) and di(ethylene glycol) divinyl ether (DEGDVE) monomers by a free radical polymerization via a one-step, vapor-phase, initiated chemical vapor deposition (iCVD) method. The chemical composition of the copolymers was systematically optimized by tuning the input ratio of the vaporized CEA and DEGDVE monomers to achieve a high dielectric constant (k) as well as excellent dielectric strength. Interestingly, DEGDVE was nonhomopolymerizable but it was able to form a copolymer with other kinds of monomers. Utilizing this interesting property of the DEGDVE cross-linker, the dielectric constant of the copolymer film could be maximized with minimum incorporation of the cross-linker moiety. To our knowledge, this is the first report on the synthesis of a cyanide-containing polymer in the vapor phase, where a high-purity polymer film with a maximized dielectric constant was achieved. The dielectric film with the optimized composition showed a dielectric constant greater than 6 and extremely low leakage current densities (<3 × 10 -8 A/cm 2 in the range of ±2 MV/cm), with a thickness of only 20 nm, which is an outstanding thickness for down-scalable cyanide polymer dielectrics. With this high-k dielectric layer, organic thin-film transistors (OTFTs) and oxide TFTs were fabricated, which showed hysteresis-free transfer characteristics with an operating voltage of less than 3 V. Furthermore, the flexible OTFTs retained their low gate leakage current and ideal TFT characteristics even under 2% applied tensile strain, which makes them some of the most flexible OTFTs reported to date. We believe that these ultrathin, high-k organic dielectric films with excellent mechanical flexibility will play a crucial role in future soft electronics.

  8. Effect of solvents on morphology, magnetic and dielectric properties of (α-Fe2O3@SiO2) core-shell nanoparticles.

    PubMed

    Joshi, Deepika P; Pant, Geeta; Arora, Neha; Nainwal, Seema

    2017-02-01

    Present work describes the formation of α-Fe 2 O 3 @SiO 2 core shell structure by systematic layer by layer deposition of silica shell on core iron oxide nanoparticles prepared via various solvents. Sol-gel method has been used to synthesize magnetic core and the dielectric shell. The average crystallite size of iron oxide nanoparticles was calculated ∼20 nm by X-ray diffraction pattern. Morphological study by scanning electron microscopy revealed that the core-shell nanoparticles were spherical in shape and the average size of nanoparticles increased by varying solvent from methanol to ethanol to isopropanol due to different chemical structure and nature of the solvents. It was also observed that the particles prepared by solvent ethanol were more regular and homogeneous as compared to other solvents. Magnetic measurements showed the weak ferromagnetic behaviour of both core α-Fe 2 O 3 and silica-coated iron oxide nanoparticles which remained same irrespective of the solvent chosen. However, magnetization showed dependency on the types of solvent chosen due to the variation in shell thickness. At room temperature, dielectric constant and dielectric loss of silica nanoparticles for all the solvents showed decrement with the increment in frequency. Decrement in the value of dielectric constant and increment in dielectric loss was observed for silica coated iron oxide nanoparticles in comparison of pure silica, due to the presence of metallic core. Homogeneous and regular silica layer prepared by using ethanol as a solvent could serve as protecting layer to shield the magnetic behaviour of iron oxide nanoparticles as well as to provide better thermal insulation over pure α-Fe 2 O 3 nanoparticles.

  9. Mathematical models for the reflection coefficients of dielectric half-spaces

    NASA Technical Reports Server (NTRS)

    Evans, D. D.

    1973-01-01

    The reflection coefficients at normal incidence are found for a large class of one-dimensionally inhomogeneous or stratified half-spaces, which contain a homogeneous half-space. The formulation of the problem involves a combination of the classical boundary value technique, and the nonclassical principle of invariant imbedding. Solutions are in closed form and expressible in terms of Bessel functions. All results are given in terms of the ratio of the distance between free space and the homogeneous half-space to the wavelength in vacuo. One special case is that of an arbitrary number of layers lying on a homogeneous half-space where the dielectric constant of each layer has a constant gradient. A number of other special cases, limiting cases, and generalizations are developed including one in which the thickness of the top layer obeys a probability distribution.

  10. Dual interface gratings design for absorption enhancement in thin crystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    Zhang, Jinqiannan; Yu, Zhongyuan; Liu, Yumin; Chai, Hongyu; Hao, Jing; Ye, Han

    2017-09-01

    We numerically study and analyze the light absorption enhancement in thin crystalline silicon solar cell with dual interface gratings. The structure combines the front dielectric nanowalls and the sinusoidal plasmonic grating at back reflector. We show that having specific interfaces with well-chosen period, fill factor and height can allow more efficient dielectric and plasmonic modes coupling into active layer and can improve the solar cell performance. For 1 μm active layer case, the optimal result for the proposed structure achieves short-circuit current of 23.6 mA/cm2, which performs over 50% better than flat solar cell structure, the short-circuit current of which is 15.5 mA/cm2. In addition, the active layer thickness and angular analysis show that the proposed structure maintains its advantage over flat structure.

  11. Localized temperature stability in Low Temperature Cofired Ceramics (LTCC).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Steven Xunhu; Hsieh, Lung-Hwa.

    2012-04-01

    The base dielectrics of commercial low temperature cofired ceramics (LTCC) systems have a temperature coefficient of resonant frequency ({tau}{sub f}) in the range -50 {approx} -80 ppm/C. In this research we explored a method to realize zero or near zero {tau}{sub f} resonators by incorporating {tau}{sub f} compensating materials locally into a multilayer LTCC structure. To select composition for {tau}{sub f} adjustment, {tau}{sub f} compensating materials with different amount of titanates were formulated, synthesized, and characterized. Chemical interactions and physical compatibility between the {tau}{sub f} modifiers and the host LTCC dielectrics were investigated. Studies on stripline (SL) resonator panels withmore » multiple compensating dielectrics revealed that: 1) compositions using SrTiO{sub 3} provide the largest {tau}{sub f} adjustment among titanates, 2) the {tau}{sub f} compensation is proportional to the amount of SrTiO{sub 3} in compensating materials, as well as the thickness of the compensating layer, and 3) the most effective {tau}{sub f} compensation is achieved when the compensating dielectric is integrated next to the SL. Using the effective dielectric constant of a heterogeneous layered dielectric structure, results from Method of Momentum (MoM) electromagnetic simulations are consistent with the experimental observations.« less

  12. Thermal conductivity measurement of amorphous dielectric multilayers for phase-change memory power reduction

    NASA Astrophysics Data System (ADS)

    Fong, S. W.; Sood, A.; Chen, L.; Kumari, N.; Asheghi, M.; Goodson, K. E.; Gibson, G. A.; Wong, H.-S. P.

    2016-07-01

    In this work, we investigate the temperature-dependent thermal conductivities of few nanometer thick alternating stacks of amorphous dielectrics, specifically SiO2/Al2O3 and SiO2/Si3N4. Experiments using steady-state Joule-heating and electrical thermometry, while using a micro-miniature refrigerator over a wide temperature range (100-500 K), show that amorphous thin-film multilayer SiO2/Si3N4 and SiO2/Al2O3 exhibit through-plane room temperature effective thermal conductivities of about 1.14 and 0.48 W/(m × K), respectively. In the case of SiO2/Al2O3, the reduced conductivity is attributed to lowered film density (7.03 → 5.44 × 1028 m-3 for SiO2 and 10.2 → 8.27 × 1028 m-3 for Al2O3) caused by atomic layer deposition of thin-films as well as a small, finite, and repeating thermal boundary resistance (TBR) of 1.5 m2 K/GW between dielectric layers. Molecular dynamics simulations reveal that vibrational mismatch between amorphous oxide layers is small, and that the TBR between layers is largely due to imperfect interfaces. Finally, the impact of using this multilayer dielectric in a dash-type phase-change memory device is studied using finite-element simulations.

  13. Multispectral Detection with Metal-Dielectric Filters: An Investigation in Several Wavelength Bands with Temporal Coupled-Mode Theory

    NASA Astrophysics Data System (ADS)

    Lesmanne, Emeline; Espiau de Lamaestre, Roch; Boutami, Salim; Durantin, Cédric; Dussopt, Laurent; Badano, Giacomo

    2016-09-01

    Multispectral infrared (IR) detection is of great interest to enhance our ability to gather information from a scene. Filtering is a low-cost alternative to the complex multispectral device architectures to which the IR community has devoted much attention. Multilayer dielectric filters are standard in industry, but they require changing the thickness of at least one layer to tune the wavelength. Here, we pursue an approach based on apertures in a metallic layer of fixed thickness, in which the filtered wavelengths are selected by varying the aperture geometry. In particular, we study filters made of at least one sheet of resonating apertures in metal embedded in dielectrics. We will discuss two interesting problems that arise when one attempts to design such filters. First, metallic absorption must be taken into account. Second, the form and size of the pattern is limited by lithography. We will present some design examples and an attempt at explaining the filtering behavior based on the temporal coupled mode theory. That theory models the filter as a resonator interacting with the environment via loss channels. The transmission is solely determined by the loss rates associated with those channels. This model allows us to give a general picture of the filtering performance and compare their characteristics at different wavelength bands.

  14. Measurement of Thicknesses of High-κ Gate-Dielectric Films on Silicon by Angle-Resolved XPS

    NASA Astrophysics Data System (ADS)

    Powell, Cedric; Smekal, Werner; Werner, Wolfgang

    2006-03-01

    We report on the use of a new NIST database for the Simulation of Electron Spectra for Surface Analysis (SESSA) in measuring thicknesses of candidate high-κ gate-dielectric materials (HfO2, HfSiO4, ZrO2, and ZrSiO4) on silicon by angle-resolved XPS. For conventional measurements of film thicknesses, effective attenuation lengths (EALs) have been computed for these materials from SESSA as a function of film thickness and photoelectron emission angle (i.e., to simulate the effects of tilting the sample). These EALs are believed to be more accurate than similar EALs obtained from the transport approximation because realistic cross sections are used for both elastic and inelastic scattering in the film and substrate materials. We also present ``calibration curves'' showing calculated ratios of selected photoelectron intensities from thin films of HfO2 on Si with an intermediate SiO2 layer. These ratios provide a simple and convenient means of determining the thicknesses of SiO2 and HfO2 films for particular measurement conditions.

  15. Design and characterization of terahertz-absorbing nano-laminates of dielectric and metal thin films.

    PubMed

    Bolakis, C; Grbovic, D; Lavrik, N V; Karunasiri, G

    2010-07-05

    A terahertz-absorbing thin-film stack, containing a dielectric Bragg reflector and a thin chromium metal film, was fabricated on a silicon substrate for applications in bi-material terahertz (THz) sensors. The Bragg reflector is to be used for optical readout of sensor deformation under THz illumination. The THz absorption characteristics of the thin-film composite were measured using Fourier transform infrared spectroscopy. The absorption of the structure was calculated both analytically and by finite element modeling and the two approaches agreed well. Finite element modeling provides a convenient way to extract the amount of power dissipation in each layer and is used to quantify the THz absorption in the multi-layer stack. The calculation and the model were verified by experimentally characterizing the multi-layer stack in the 3-5 THz range. The measured and simulated absorption characteristics show a reasonably good agreement. It was found that the composite film absorbed about 20% of the incident THz power. The model was used to optimize the thickness of the chromium film for achieving high THz absorption and found that about 50% absorption can be achieved when film thickness is around 9 nm.

  16. Graphene based resonance structure to enhance the optical pressure between two planar surfaces.

    PubMed

    Hassanzadeh, Abdollah; Azami, Darya

    2015-12-28

    To enhance the optical pressure on a thin dielectric sample, a resonance structure using graphene layers coated over a metal film on a high index prism sputtered with MgF2 was theoretically analyzed. The number of graphene layers and the thicknesses of metal and MgF2 films were optimized to achieve the highest optical pressure on the sample. Effects of three different types of metals on the optical pressure were investigated numerically. In addition, simulations were carried out for samples with various thicknesses. Our numerical results show that the optical pressure increased by more than five orders of magnitude compared to the conventional metal-film-base resonance structure. The highest optical pressure was obtained for 10 layers of graphene deposited on 29-nm thick Au film and 650 nm thickness of MgF2 at 633nm wavelength, The proposed graphene based resonance structure can open new possibilities for optical tweezers, nanomechnical devices and surface plasmon based sensing and imaging techniques.

  17. Materials science and integration bases for fabrication of (BaxSr1-x)TiO3 thin film capacitors with layered Cu-based electrodes

    NASA Astrophysics Data System (ADS)

    Fan, W.; Kabius, B.; Hiller, J. M.; Saha, S.; Carlisle, J. A.; Auciello, O.; Chang, R. P. H.; Ramesh, R.

    2003-11-01

    The synthesis and fundamental material properties of layered TiAl/Cu/Ta electrodes were investigated to achieve the integration of Cu electrodes with high-dielectric constant (κ) oxide thin films for application to the fabrication of high-frequency devices. The Ta layer is an excellent diffusion barrier to inhibit deleterious Cu diffusion into the Si substrate, while the TiAl layer provides an excellent barrier against oxygen diffusion into the Cu layer to inhibit Cu oxidation during the growth of the high-κ layer in an oxygen atmosphere. Polycrystalline (BaxSr1-x)TiO3 (BST) thin films were grown on the Cu-based bottom electrode by rf magnetron sputtering at temperatures in the range 400-600 °C in oxygen, to investigate the performance of BST/Cu-based capacitors. Characterization of the Cu-based layered structure using surface analytical methods showed that two amorphous oxide layers were formed on both sides of the TiAl barrier, such that the oxide layer on the free surface of the TiAl layer correlates with TiAlOx, while the oxide layer at the TiAl/Cu interface is an Al2O3-rich layer. This double amorphous barrier layer structure effectively prevents oxygen penetration towards the underlying Cu and Ta layers. The TiAlOx interfacial layer, which has a relatively low dielectric constant compared with BST, reduced the total capacitance of the BST thin film capacitors. In addition, the layered electrode-oxide interface roughening observed during the growth of BST films at high temperature, due to copper grain growth, resulted in large dielectric loss on the fabricated BST capacitors. These problems were solved by growing the BST layer at 450 °C followed by a rapid thermal annealing at 700 °C. This process significantly reduced the thickness of the TiAlOx layer and interface roughness resulting in BST capacitors exhibiting properties suitable for the fabrication of high-performance high-frequency devices. In summary, relatively high dielectric constant (280), low dielectric loss (0.007), and low leakage current (<2×10-8 A/cm2 at 100 kV/cm) were achieved for BST thin film capacitors with Cu-based electrodes.

  18. Optically induced metal-to-dielectric transition in Epsilon-Near-Zero metamaterials

    PubMed Central

    Kaipurath, R. M.; Pietrzyk, M.; Caspani, L.; Roger, T.; Clerici, M.; Rizza, C.; Ciattoni, A.; Di Falco, A.; Faccio, D.

    2016-01-01

    Epsilon-Near-Zero materials exhibit a transition in the real part of the dielectric permittivity from positive to negative value as a function of wavelength. Here we study metal-dielectric layered metamaterials in the homogenised regime (each layer has strongly subwavelength thickness) with zero real part of the permittivity in the near-infrared region. By optically pumping the metamaterial we experimentally show that close to the Epsilon-Near-Zero (ENZ) wavelength the permittivity exhibits a marked transition from metallic (negative permittivity) to dielectric (positive permittivity) as a function of the optical power. Remarkably, this transition is linear as a function of pump power and occurs on time scales of the order of the 100 fs pump pulse that need not be tuned to a specific wavelength. The linearity of the permittivity increase allows us to express the response of the metamaterial in terms of a standard third order optical nonlinearity: this shows a clear inversion of the roles of the real and imaginary parts in crossing the ENZ wavelength, further supporting an optically induced change in the physical behaviour of the metamaterial. PMID:27292270

  19. Transparent actuator made with few layer graphene electrode and dielectric elastomer, for variable focus lens

    NASA Astrophysics Data System (ADS)

    Hwang, Taeseon; Kwon, Hyeok-Yong; Oh, Joon-Suk; Hong, Jung-Pyo; Hong, Seung-Chul; Lee, Youngkwan; Ryeol Choi, Hyouk; Jin Kim, Kwang; Hossain Bhuiya, Mainul; Nam, Jae-Do

    2013-07-01

    A transparent dielectric elastomer actuator driven by few-layer-graphene (FLG) electrode was experimentally investigated. The electrodes were made of graphene, which was dispersed in N-methyl-pyrrolidone. The transparent actuator was fabricated from developed FLG electrodes. The FLG electrode with its sheet resistance of 0.45 kΩ/sq (80 nm thick) was implemented to mask silicone elastomer. The developed FLG-driven actuator exhibited an optical transparency of over 57% at a wavenumber of 600 nm and produced bending displacement performance ranging from 29 to 946 μm as functions of frequency and voltage. The focus variation was clearly demonstrated under actuation to study its application-feasibility in variable focus lens and various opto-electro-mechanical devices.

  20. A dielectric model of self-assembled monolayer interfaces by capacitive spectroscopy.

    PubMed

    Góes, Márcio S; Rahman, Habibur; Ryall, Joshua; Davis, Jason J; Bueno, Paulo R

    2012-06-26

    The presence of self-assembled monolayers at an electrode introduces capacitance and resistance contributions that can profoundly affect subsequently observed electronic characteristics. Despite the impact of this on any voltammetry, these contributions are not directly resolvable with any clarity by standard electrochemical means. A capacitive analysis of such interfaces (by capacitance spectroscopy), introduced here, enables a clean mapping of these features and additionally presents a means of studying layer polarizability and Cole-Cole relaxation effects. The resolved resistive term contributes directly to an intrinsic monolayer uncompensated resistance that has a linear dependence on the layer thickness. The dielectric model proposed is fully aligned with the classic Helmholtz plate capacitor model and additionally explains the inherently associated resistive features of molecular films.

  1. Ceramic materials of low-temperature synthesis for dielectric coating applied by 3D aerosol printing used in nano- and microelectronics, lighting engineering, and spacecraft control devices

    NASA Astrophysics Data System (ADS)

    Ivanov, A. A.; Tuev, V. I.; Nisan, A. V.; Potapov, G. N.

    2016-11-01

    A synthesis technique of low-temperature ceramic material based on aluminosilicates of dendrimer morphology capable to contain up to 80 wt % of nitrides and oxides of high-melting compounds as filler has been developed. The synthesis is based on a sol-gel method followed by mechanochemical treatment and ultrasonic dispersing. Dielectric ceramic layers with the layer thickness in the nanometer range and high thermal conductivity have been obtained for the first time by 3D aerosol printing of the synthesized material. The study of the obtained ceramic coating on the metal surface (Al) has proved its use prospects in microelectronics, light engineering, and devices for special purposes.

  2. Dielectric discontinuity at interfaces in the atomic-scale limit: permittivity of ultrathin oxide films on silicon.

    PubMed

    Giustino, Feliciano; Umari, Paolo; Pasquarello, Alfredo

    2003-12-31

    Using a density-functional approach, we study the dielectric permittivity across interfaces at the atomic scale. Focusing on the static and high-frequency permittivities of SiO2 films on silicon, for oxide thicknesses from 12 A down to the atomic scale, we find a departure from bulk values in accord with experiment. A classical three-layer model accounts for the calculated permittivities and is supported by the microscopic polarization profile across the interface. The local screening varies on length scales corresponding to first-neighbor distances, indicating that the dielectric transition is governed by the chemical grading. Silicon-induced gap states are shown to play a minor role.

  3. Hysteresis mechanism and control in pentacene organic field-effect transistors with polymer dielectric

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Shi, Wei; Han, Shijiao; Yu, Junsheng

    2013-05-01

    Hysteresis mechanism of pentacene organic field-effect transistors (OFETs) with polyvinyl alcohol (PVA) and/or polymethyl methacrylate (PMMA) dielectrics is studied. Through analyzing the electrical characteristics of OFETs with various PVA/PMMA arrangements, it shows that charge, which is trapped in PVA bulk and at the interface of pentacene/PVA, is one of the origins of hysteresis. The results also show that memory window is proportional to both trap amount in PVA and charge density at the gate/PVA or PVA/pentacene interfaces. Hence, the controllable memory window of around 0 ˜ 10 V can be realized by controlling the thickness and combination of triple-layer polymer dielectrics.

  4. Interference effects in the sum frequency generation spectra of thin organic films. II: Applications to different thin-film systems.

    PubMed

    Tong, Yujin; Zhao, Yanbao; Li, Na; Ma, Yunsheng; Osawa, Masatoshi; Davies, Paul B; Ye, Shen

    2010-07-21

    In this paper, the results of the modeling calculations carried out for predicting the interference effects expected in the sum frequency generation (SFG) spectra of a specific thin-layer system, described in the accompanying paper, are tested by comparing them with the experimental spectra obtained for a real thin-layer film comprising an organic monolayer/variable thickness dielectric layer/gold substrate. In this system, two contributions to the SFG spectra arise, a resonant contribution from the organic film and a nonresonant contribution from the gold substrate. The modeling calculations are in excellent agreement with the experimental spectra over a wide range of thicknesses and for different polarization combinations. The introduction of another resonant monolayer adjacent to the gold substrate and with the molecules having a reverse orientation has a significant affect on the spectral shapes which is predicted. If a dielectric substrate such as CaF(2) is used instead of a gold substrate, only the spectral intensities vary with the film thickness but not the spectral shapes. The counterpropagating beam geometry will change both the thickness dependent spectral shapes and the intensity of different vibrational modes in comparison with a copropagating geometry. The influences of these experimental factors, i.e., the molecular orientational structure in the thin film, the nature of the substrate, and the selected incident beam geometry, on the experimental SFG spectra are quantitatively predicted by the calculations. The thickness effects on the signals from a SFG active monolayer contained in a thin liquid-layer cell of the type frequently used for in situ electrochemical measurements is also discussed. The modeling calculation is also valid for application to other thin-film systems comprising more than two resonant SFG active interfaces by appropriate choice of optical geometries and relevant optical properties.

  5. Engineering new properties in PbTiO3 based superlattices: compositionally broken inversion symmetry and polarization rotation

    NASA Astrophysics Data System (ADS)

    Dawber, Matthew

    2013-03-01

    In this talk I will present results on two superlattice systems which contain ultra fine layers of PbTiO3 and another perovskite material. In recent years, much work has been done on the PbTiO3/SrTiO3 system, with a focus on improper ferroelectricity and the arrangement of ferroelectric domains. Here, we consider two different partner materials for PbTiO3, each of which introduces markedly different behavior in the resulting superlattice. PbTiO3/SrRuO3 superlattices with ultra-thin SrRuO3 layers were studied both experimentally and using density functional theory. Due to the superlattice geometry, the samples show a large anisotropy in their electrical resistivity, which can be controlled by changing the thickness of the PbTiO3 layers. Therefore, along the ferroelectric direction, SrRuO3 layers can act as dielectric, rather than metallic, elements. We show that, by reducing the thickness of the PbTiO3 layers, an increasingly important effect of polarization asymmetry due to compositional inversion symmetry breaking occurs. The compositional inversion symmetry breaking is seen in this bi-color superlattice due to the combined variation of A and B site ions within the superlattice. We have also achieved an experimental enhancement of the piezoelectric response and dielectric tunability in artificially layered epitaxial PbTiO3/CaTiO3 superlattices through an engineered rotation of the polarization direction. As the relative layer thicknesses within the superlattice were changed from sample to sample we found evidence for polarization rotation in multiple x-ray diffraction measurements. Associated changes in functional properties were seen in electrical measurements and piezoforce microscopy. These results demonstrate a new approach to inducing polarization rotation under ambient conditions in an artificially layered thin film. Work supported by NSF DMR1055413

  6. Metal/Dielectric Multilayers for High Resolution Imaging

    DTIC Science & Technology

    2012-08-07

    of a silicon waveguide coated by thin metal film. The proposed PWG structure consists of narrow silicon waveguide clad by gold film without top...where the waveguide thickness is 220nm and the lower oxide cladding is 2μm. The device consists of main waveguide (of waveguide width WSOI=450nm...evaporation, where 3nm thick titanium was used as adhesion layer before 40nm gold deposition took place. Finally, the samples were spun coated with

  7. Effect of an Interfacial Layer on Electron Tunneling through Atomically Thin Al2O3 Tunnel Barriers.

    PubMed

    Wilt, Jamie; Sakidja, Ridwan; Goul, Ryan; Wu, Judy Z

    2017-10-25

    Electron tunneling through high-quality, atomically thin dielectric films can provide a critical enabling technology for future microelectronics, bringing enhanced quantum coherent transport, fast speed, small size, and high energy efficiency. A fundamental challenge is in controlling the interface between the dielectric and device electrodes. An interfacial layer (IL) will contain defects and introduce defects in the dielectric film grown atop, preventing electron tunneling through the formation of shorts. In this work, we present the first systematic investigation of the IL in Al 2 O 3 dielectric films of 1-6 Å's in thickness on an Al electrode. We integrated several advanced approaches: molecular dynamics to simulate IL formation, in situ high vacuum sputtering atomic layer deposition (ALD) to synthesize Al 2 O 3 on Al films, and in situ ultrahigh vacuum scanning tunneling spectroscopy to probe the electron tunneling through the Al 2 O 3 . The IL had a profound effect on electron tunneling. We observed a reduced tunnel barrier height and soft-type dielectric breakdown which indicate that defects are present in both the IL and in the Al 2 O 3 . The IL forms primarily due to exposure of the Al to trace O 2 and/or H 2 O during the pre-ALD heating step of fabrication. As the IL was systematically reduced, by controlling the pre-ALD sample heating, we observed an increase of the ALD Al 2 O 3 barrier height from 0.9 to 1.5 eV along with a transition from soft to hard dielectric breakdown. This work represents a key step toward the realization of high-quality, atomically thin dielectrics with electron tunneling for the next generation of microelectronics.

  8. Nano-Photonic Structures for Light Trapping in Ultra-Thin Crystalline Silicon Solar Cells

    PubMed Central

    Pathi, Prathap; Peer, Akshit; Biswas, Rana

    2017-01-01

    Thick wafer-silicon is the dominant solar cell technology. It is of great interest to develop ultra-thin solar cells that can reduce materials usage, but still achieve acceptable performance and high solar absorption. Accordingly, we developed a highly absorbing ultra-thin crystalline Si based solar cell architecture using periodically patterned front and rear dielectric nanocone arrays which provide enhanced light trapping. The rear nanocones are embedded in a silver back reflector. In contrast to previous approaches, we utilize dielectric photonic crystals with a completely flat silicon absorber layer, providing expected high electronic quality and low carrier recombination. This architecture creates a dense mesh of wave-guided modes at near-infrared wavelengths in the absorber layer, generating enhanced absorption. For thin silicon (<2 μm) and 750 nm pitch arrays, scattering matrix simulations predict enhancements exceeding 90%. Absorption approaches the Lambertian limit at small thicknesses (<10 μm) and is slightly lower (by ~5%) at wafer-scale thicknesses. Parasitic losses are ~25% for ultra-thin (2 μm) silicon and just 1%–2% for thicker (>100 μm) cells. There is potential for 20 μm thick cells to provide 30 mA/cm2 photo-current and >20% efficiency. This architecture has great promise for ultra-thin silicon solar panels with reduced material utilization and enhanced light-trapping. PMID:28336851

  9. Nano-photonic structures for light trapping in ultra-thin crystalline silicon solar cells

    DOE PAGES

    Pathi, Prathap; Peer, Akshit; Biswas, Rana

    2017-01-13

    Thick wafer-silicon is the dominant solar cell technology. It is of great interest to develop ultra-thin solar cells that can reduce materials usage, but still achieve acceptable performance and high solar absorption. Accordingly, we developed a highly absorbing ultra-thin crystalline Si based solar cell architecture using periodically patterned front and rear dielectric nanocone arrays which provide enhanced light trapping. The rear nanocones are embedded in a silver back reflector. In contrast to previous approaches, we utilize dielectric photonic crystals with a completely flat silicon absorber layer, providing expected high electronic quality and low carrier recombination. This architecture creates a densemore » mesh of wave-guided modes at near-infrared wavelengths in the absorber layer, generating enhanced absorption. For thin silicon (<2 μm) and 750 nm pitch arrays, scattering matrix simulations predict enhancements exceeding 90%. Absorption approaches the Lambertian limit at small thicknesses (<10 μm) and is slightly lower (by ~5%) at wafer-scale thicknesses. Parasitic losses are ~25% for ultra-thin (2 μm) silicon and just 1%–2% for thicker (>100 μm) cells. There is potential for 20 μm thick cells to provide 30 mA/cm2 photo-current and >20% efficiency. Furthermore, this architecture has great promise for ultra-thin silicon solar panels with reduced material utilization and enhanced light-trapping.« less

  10. Nano-photonic structures for light trapping in ultra-thin crystalline silicon solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pathi, Prathap; Peer, Akshit; Biswas, Rana

    Thick wafer-silicon is the dominant solar cell technology. It is of great interest to develop ultra-thin solar cells that can reduce materials usage, but still achieve acceptable performance and high solar absorption. Accordingly, we developed a highly absorbing ultra-thin crystalline Si based solar cell architecture using periodically patterned front and rear dielectric nanocone arrays which provide enhanced light trapping. The rear nanocones are embedded in a silver back reflector. In contrast to previous approaches, we utilize dielectric photonic crystals with a completely flat silicon absorber layer, providing expected high electronic quality and low carrier recombination. This architecture creates a densemore » mesh of wave-guided modes at near-infrared wavelengths in the absorber layer, generating enhanced absorption. For thin silicon (<2 μm) and 750 nm pitch arrays, scattering matrix simulations predict enhancements exceeding 90%. Absorption approaches the Lambertian limit at small thicknesses (<10 μm) and is slightly lower (by ~5%) at wafer-scale thicknesses. Parasitic losses are ~25% for ultra-thin (2 μm) silicon and just 1%–2% for thicker (>100 μm) cells. There is potential for 20 μm thick cells to provide 30 mA/cm2 photo-current and >20% efficiency. Furthermore, this architecture has great promise for ultra-thin silicon solar panels with reduced material utilization and enhanced light-trapping.« less

  11. Nano-Photonic Structures for Light Trapping in Ultra-Thin Crystalline Silicon Solar Cells.

    PubMed

    Pathi, Prathap; Peer, Akshit; Biswas, Rana

    2017-01-13

    Thick wafer-silicon is the dominant solar cell technology. It is of great interest to develop ultra-thin solar cells that can reduce materials usage, but still achieve acceptable performance and high solar absorption. Accordingly, we developed a highly absorbing ultra-thin crystalline Si based solar cell architecture using periodically patterned front and rear dielectric nanocone arrays which provide enhanced light trapping. The rear nanocones are embedded in a silver back reflector. In contrast to previous approaches, we utilize dielectric photonic crystals with a completely flat silicon absorber layer, providing expected high electronic quality and low carrier recombination. This architecture creates a dense mesh of wave-guided modes at near-infrared wavelengths in the absorber layer, generating enhanced absorption. For thin silicon (<2 μm) and 750 nm pitch arrays, scattering matrix simulations predict enhancements exceeding 90%. Absorption approaches the Lambertian limit at small thicknesses (<10 μm) and is slightly lower (by ~5%) at wafer-scale thicknesses. Parasitic losses are ~25% for ultra-thin (2 μm) silicon and just 1%-2% for thicker (>100 μm) cells. There is potential for 20 μm thick cells to provide 30 mA/cm² photo-current and >20% efficiency. This architecture has great promise for ultra-thin silicon solar panels with reduced material utilization and enhanced light-trapping.

  12. Preparation of TiO2/Ag/TiO2 (TAT) multilayer films with optical and electrical properties enhanced by using Cr-added Ag film

    NASA Astrophysics Data System (ADS)

    Loka, Chadrasekhar; Lee, Kee-Sun

    2017-09-01

    The dielectric-metal-dielectric tri-layer films have attracted much attention by virtue of their low-cost and high quality device performance as a transparent conductive electrode. Here, we report the deposition of Cr doped Ag films sandwiched between thin TiO2 layers and investigation on the surface microstructure, optical and electrical properties depending on the thickness of the Ag(Cr). The activation energy (1.18 eV) for grain growth of Ag was calculated from the Arrhenius plot using the law Dn -D0n = kt , which was comparable to the bulk diffusion of Ag. This result indicated the grain growth of Ag was effectively retarded by the Cr addition, which was presumed to related with blocking the surface and grain boundary diffusion due to Cr segregation. Based on thermal stability of Cr added Ag film, we deposited TiO2/Ag(Cr)/TiO2 (TAT) multilayer thin films and with a 10 nm thick Ag(Cr), the TAT films showed high optical transmittance in the visible region (94.2%), low electrical resistivity (8.66 × 10-5 Ω cm), and hence the high figure of merit 57.15 × 10-3 Ω-1 was achieved. The high transmittance of the TAT film was believed to be attributed to the low optical loss due to a reduction in the Ag layer thickness, the surface plasmon effect, and the electron scattering reduced by the Ag layer with a low electrical resistivity.

  13. Hybrid nanomembrane-based capacitors for the determination of the dielectric constant of semiconducting molecular ensembles.

    PubMed

    Petrini, Paula A; Silva, Ricardo M L; de Oliveira, Rafael F; Merces, Leandro; Bof Bufon, Carlos C

    2018-06-29

    Considerable advances in the field of molecular electronics have been achieved over the recent years. One persistent challenge, however, is the exploitation of the electronic properties of molecules fully integrated into devices. Typically, the molecular electronic properties are investigated using sophisticated techniques incompatible with a practical device technology, such as the scanning tunneling microscopy. The incorporation of molecular materials in devices is not a trivial task as the typical dimensions of electrical contacts are much larger than the molecular ones. To tackle this issue, we report on hybrid capacitors using mechanically-compliant nanomembranes to encapsulate ultrathin molecular ensembles for the investigation of molecular dielectric properties. As the prototype material, copper (II) phthalocyanine (CuPc) has been chosen as information on its dielectric constant (k CuPc ) at the molecular scale is missing. Here, hybrid nanomembrane-based capacitors containing metallic nanomembranes, insulating Al 2 O 3 layers, and the CuPc molecular ensembles have been fabricated and evaluated. The Al 2 O 3 is used to prevent short circuits through the capacitor plates as the molecular layer is considerably thin (<30 nm). From the electrical measurements of devices with molecular layers of different thicknesses, the CuPc dielectric constant has been reliably determined (k CuPc  = 4.5 ± 0.5). These values suggest a mild contribution of the molecular orientation on the CuPc dielectric properties. The reported nanomembrane-based capacitor is a viable strategy for the dielectric characterization of ultrathin molecular ensembles integrated into a practical, real device technology.

  14. Hybrid nanomembrane-based capacitors for the determination of the dielectric constant of semiconducting molecular ensembles

    NASA Astrophysics Data System (ADS)

    Petrini, Paula A.; Silva, Ricardo M. L.; de Oliveira, Rafael F.; Merces, Leandro; Bof Bufon, Carlos C.

    2018-06-01

    Considerable advances in the field of molecular electronics have been achieved over the recent years. One persistent challenge, however, is the exploitation of the electronic properties of molecules fully integrated into devices. Typically, the molecular electronic properties are investigated using sophisticated techniques incompatible with a practical device technology, such as the scanning tunneling microscopy. The incorporation of molecular materials in devices is not a trivial task as the typical dimensions of electrical contacts are much larger than the molecular ones. To tackle this issue, we report on hybrid capacitors using mechanically-compliant nanomembranes to encapsulate ultrathin molecular ensembles for the investigation of molecular dielectric properties. As the prototype material, copper (II) phthalocyanine (CuPc) has been chosen as information on its dielectric constant (k CuPc) at the molecular scale is missing. Here, hybrid nanomembrane-based capacitors containing metallic nanomembranes, insulating Al2O3 layers, and the CuPc molecular ensembles have been fabricated and evaluated. The Al2O3 is used to prevent short circuits through the capacitor plates as the molecular layer is considerably thin (<30 nm). From the electrical measurements of devices with molecular layers of different thicknesses, the CuPc dielectric constant has been reliably determined (k CuPc = 4.5 ± 0.5). These values suggest a mild contribution of the molecular orientation on the CuPc dielectric properties. The reported nanomembrane-based capacitor is a viable strategy for the dielectric characterization of ultrathin molecular ensembles integrated into a practical, real device technology.

  15. Enhanced sensitivity to dielectric function and thickness of absorbing thin films by combining total internal reflection ellipsometry with standard ellipsometry and reflectometry

    NASA Astrophysics Data System (ADS)

    Lizana, A.; Foldyna, M.; Stchakovsky, M.; Georges, B.; Nicolas, D.; Garcia-Caurel, E.

    2013-03-01

    High sensitivity of spectroscopic ellipsometry and reflectometry for the characterization of thin films can strongly decrease when layers, typically metals, absorb a significant fraction of the light. In this paper, we propose a solution to overcome this drawback using total internal reflection ellipsometry (TIRE) and exciting a surface longitudinal wave: a plasmon-polariton. As in the attenuated total reflectance technique, TIRE exploits a minimum in the intensity of reflected transversal magnetic (TM) polarized light and enhances the sensitivity of standard methods to thicknesses of absorbing films. Samples under study were stacks of three films, ZnO : Al/Ag/ZnO : Al, deposited on glass substrates. The thickness of the silver layer varied from sample to sample. We performed measurements with a UV-visible phase-modulated ellipsometer, an IR Mueller ellipsometer and a UV-NIR reflectometer. We used the variance-covariance formalism to evaluate the sensitivity of the ellipsometric data to different parameters of the optical model. Results have shown that using TIRE doubled the sensitivity to the silver layer thickness when compared with the standard ellipsometry. Moreover, the thickness of the ZnO : Al layer below the silver layer can be reliably quantified, unlike for the fit of the standard ellipsometry data, which is limited by the absorption of the silver layer.

  16. Thickness and temperature dependent electrical characteristics of crystalline BaxSr1-xTiO3 thin films

    NASA Astrophysics Data System (ADS)

    Panda, B.; Roy, A.; Dhar, A.; Ray, S. K.

    2007-03-01

    Polycrystalline Ba1-xSrxTiO3 (BST) thin films with three different compositions have been deposited by radio-frequency magnetron sputtering technique on platinum coated silicon substrates. Samples with buffer and barrier layers for different film thicknesses and processing temperatures have been studied. Crystallite size of BST films has been found to increase with increasing substrate temperature. Thickness dependent dielectric constant has been studied and discussed in the light of an interfacial dead layer and the finite screening length of the electrode. Ferroelectric properties of the films have also been studied for various deposition conditions. The electrical resistivity of the films measured at different temperatures shows a positive temperature coefficient of resistance under a constant bias voltage.

  17. Fabrication of Crack-Free Barium Titanate Thin Film with High Dielectric Constant Using Sub-Micrometric Scale Layer-by-Layer E-Jet Deposition.

    PubMed

    Liang, Junsheng; Li, Pengfei; Wang, Dazhi; Fang, Xu; Ding, Jiahong; Wu, Junxiong; Tang, Chang

    2016-01-19

    Dense and crack-free barium titanate (BaTiO₃, BTO) thin films with a thickness of less than 4 μm were prepared by using sub-micrometric scale, layer-by-layer electrohydrodynamic jet (E-jet) deposition of the suspension ink which is composed of BTO nanopowder and BTO sol. Impacts of the jet height and line-to-line pitch of the deposition on the micro-structure of BTO thin films were investigated. Results show that crack-free BTO thin films can be prepared with 4 mm jet height and 300 μm line-to-line pitch in this work. Dielectric constant of the prepared BTO thin film was recorded as high as 2940 at 1 kHz at room temperature. Meanwhile, low dissipation factor of the BTO thin film of about 8.6% at 1 kHz was also obtained. The layer-by-layer E-jet deposition technique developed in this work has been proved to be a cost-effective, flexible and easy to control approach for the preparation of high-quality solid thin film.

  18. Spectroscopic ellipsometry data inversion using constrained splines and application to characterization of ZnO with various morphologies

    NASA Astrophysics Data System (ADS)

    Gilliot, Mickaël; Hadjadj, Aomar; Stchakovsky, Michel

    2017-11-01

    An original method of ellipsometric data inversion is proposed based on the use of constrained splines. The imaginary part of the dielectric function is represented by a series of splines, constructed with particular constraints on slopes at the node boundaries to avoid well-know oscillations of natural splines. The nodes are used as fit parameters. The real part is calculated using Kramers-Kronig relations. The inversion can be performed in successive inversion steps with increasing resolution. This method is used to characterize thin zinc oxide layers obtained by a sol-gel and spin-coating process, with a particular recipe yielding very thin layers presenting nano-porosity. Such layers have particular optical properties correlated with thickness, morphological and structural properties. The use of the constrained spline method is particularly efficient for such materials which may not be easily represented by standard dielectric function models.

  19. Theoretical model for thin ferroelectric films and the multilayer structures based on them

    NASA Astrophysics Data System (ADS)

    Starkov, A. S.; Pakhomov, O. V.; Starkov, I. A.

    2013-06-01

    A modified Weiss mean-field theory is used to study the dependence of the properties of a thin ferroelectric film on its thickness. The possibility of introducing gradient terms into the thermodynamic potential is analyzed using the calculus of variations. An integral equation is introduced to generalize the well-known Langevin equation to the case of the boundaries of a ferroelectric. An analysis of this equation leads to the existence of a transition layer at the interface between ferroelectrics or a ferroelectric and a dielectric. The permittivity of this layer is shown to depend on the electric field direction even if the ferroelectrics in contact are homogeneous. The results obtained in terms of the Weiss model are compared with the results of the models based on the correlation effect and the presence of a dielectric layer at the boundary of a ferroelectric and with experimental data.

  20. Transmittance properties of one dimensional ternary nanocomposite photonic crystals

    NASA Astrophysics Data System (ADS)

    Elsayed, Hussein A.

    2018-03-01

    In the present work, we have theoretically investigated the transmittance characteristics of one dimensional ternary photonic crystals that containing a nanocomposite layer. The nanocomposite layer was designed from metallic nanoparticles of (Ag) in a transparent matrix of a dielectric material (MgF2). The numerical results are obtained based on the theoretical modeling of the characteristic matrix method and Maxwell-Garnett model. The investigated results demonstrate the significant effect of the volume fraction of the nanoparticles on the effective permittivity of the nanocomposite material as well as the transmission characteristics of our design. Moreover, the roles played by other parameters such as the thickness of the nanocomposite layer, the permittivity of the host dielectric material and the spherical radius of the nanoparticles are included her. The proposed structure could be promising for many applications such as THz optical filters, reflectors and optical switches.

  1. Inferring regional vertical crustal velocities from averaged relative sea level trends: A proof of concept

    NASA Astrophysics Data System (ADS)

    Bâki Iz, H.; Shum, C. K.; Zhang, C.; Kuo, C. Y.

    2017-11-01

    We report the design of a high-throughput gradient hyperbolic lenslet built with real-life materials and capable of focusing a beam into a deep sub-wavelength spot of λ/23. This efficient design is achieved through high-order transformation optics and circular effective-medium theory (CEMT), which are used to engineer the radially varying anisotropic artificial material based on the thin alternating cylindrical metal and dielectric layers. The radial gradient of the effective anisotropic optical constants allows for matching the impedances at the input and output interfaces, drastically improving the throughput of the lenslet. However, it is the use of the zeroth-order CEMT that enables the practical realization of a gradient hyperlens with realistic materials. To illustrate the importance of using the CEMT versus the conventional planar effective-medium theory (PEMT) for cylindrical anisotropic systems, such as our hyperlens, both the CEMT and PEMT are adopted to design gradient hyperlenses with the same materials and order of elemental layers. The CEMT- and PEMT-based designs show similar performance if the number of metal-dielectric binary layers is sufficiently large (9+ pairs) and if the layers are sufficiently thin. However, for the manufacturable lenses with realistic numbers of layers (e.g. five pairs) and thicknesses, the performance of the CEMT design continues to be practical, whereas the PEMT-based design stops working altogether. The accurate design of transformation optics-based layered cylindrical devices enabled by CEMT allow for a new class of robustly manufacturable nanophotonic systems, even with relatively thick layers of real-life materials.

  2. SiO2/AlON stacked gate dielectrics for AlGaN/GaN MOS heterojunction field-effect transistors

    NASA Astrophysics Data System (ADS)

    Watanabe, Kenta; Terashima, Daiki; Nozaki, Mikito; Yamada, Takahiro; Nakazawa, Satoshi; Ishida, Masahiro; Anda, Yoshiharu; Ueda, Tetsuzo; Yoshigoe, Akitaka; Hosoi, Takuji; Shimura, Takayoshi; Watanabe, Heiji

    2018-06-01

    Stacked gate dielectrics consisting of wide bandgap SiO2 insulators and thin aluminum oxynitride (AlON) interlayers were systematically investigated in order to improve the performance and reliability of AlGaN/GaN metal–oxide–semiconductor (MOS) devices. A significantly reduced gate leakage current compared with that in a single AlON layer was achieved with these structures, while maintaining the superior thermal stability and electrical properties of the oxynitride/AlGaN interface. Consequently, distinct advantages in terms of the reliability of the gate dielectrics, such as an improved immunity against electron injection and an increased dielectric breakdown field, were demonstrated for AlGaN/GaN MOS capacitors with optimized stacked structures having a 3.3-nm-thick AlON interlayer.

  3. Radial/axial power divider/combiner

    NASA Technical Reports Server (NTRS)

    Vaddiparty, Yerriah P. (Inventor)

    1987-01-01

    An electromagnetic power divider/combiner comprises N radial outputs (31) having equal powers and preferably equal phases, and a single axial output (20). A divider structure (1) and a preferably identical combiner structure (2) are broadside coupled across a dielectric substrate (30) containing on one side the network of N radial outputs (31) and on its other side a set of N equispaced stubs (42) which are capacitively coupled through the dielectric substrate (30) to the N radial outputs (31). The divider structure (1) and the combiner structure (2) each comprise a dielectric disk (12, 22, respectively) on which is mounted a set of N radial impedance transformers (14, 24, respectively). Gross axial coupling is determined by the thickness of the dielectric layer (30). Rotating the disks (12, 22) with respect to each other effectuates fine adjustment in the degree of axial coupling.

  4. Surface plasmons based terahertz modulator consisting of silicon-air-metal-dielectric-metal layers

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Yang, Dongxiao; Qian, Zhenhai

    2018-05-01

    An optically controlled modulator of the terahertz wave, which is composed of a metal-dielectric-metal structure etched with circular loop arrays on both the metal layers and a photoexcited silicon wafer separated by an air layer, is proposed. Simulation results based on experimentally measured complex permittivities predict that modification of complex permittivity of the silicon wafer through excitation laser leads to a significant tuning of transmission characteristics of the modulator, forming the modulation depths of 59.62% and 96.64% based on localized surface plasmon peak and propagating surface plasmon peak, respectively. The influences of the complex permittivity of the silicon wafer and the thicknesses of both the air layer and the silicon wafer are numerically studied for better understanding the modulation mechanism. This study proposes a feasible methodology to design an optically controlled terahertz modulator with large modulation depth, high speed and suitable insertion loss, which is useful for terahertz applications in the future.

  5. Enhanced optical-to-THz conversion efficiency of photoconductive antenna using dielectric nano-layer encapsulation

    NASA Astrophysics Data System (ADS)

    Gupta, Abhishek; Rana, Goutam; Bhattacharya, Arkabrata; Singh, Abhishek; Jain, Ravikumar; Bapat, Rudheer D.; Duttagupta, S. P.; Prabhu, S. S.

    2018-05-01

    Photoconductive antennas (PCAs) are among the most conventional devices used for emission as well as detection of terahertz (THz) radiation. However, due to their low optical-to-THz conversion efficiencies, applications of these devices in out-of-laboratory conditions are limited. In this paper, we report several factors of enhancement in THz emission efficiency from conventional PCAs by coating a nano-layer of dielectric (TiO2) on the active area between the electrodes of a semi-insulating GaAs-based device. Extensive experiments were done to show the effect of thicknesses of the TiO2 layer on the THz power enhancement with different applied optical power and bias voltages. Multiphysics simulations were performed to elucidate the underlying physics behind the enhancement of efficiency of the PCA. Additionally, this layer increases the robustness of the electrode gaps of the PCAs with high electrical insulation as well as protect it from external dust particles.

  6. Optical and magneto-optical properties of one-dimensional magnetized coupled resonator plasma photonic crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamidi, S. M.

    2012-01-15

    In this paper, the optical and magneto-optical properties of one-dimensional magnetized coupled resonator plasma photonic crystals have been investigated. We use transfer matrix method to solve our magnetized coupled resonator plasma photonic crystals consist of dielectric and magnetized plasma layers. The results of the change in the optical and magneto-optical properties of structure as a result of the alteration in the structural properties such as thickness, plasma frequency and collision frequency, plasma filling factor, number of resonators and dielectric constant of dielectric layers and external magnetic field have been reported. The main feature of this structure is a good magneto-opticalmore » rotation that takes place at the defect modes and the edge of photonic band gap of our proposed optical magnetized plasma waveguide. Our outcomes demonstrate the potential applications of the device for tunable and adjustable filters or reflectors and active magneto-optic in microwave devices under structural parameter and external magnetic field.« less

  7. High thermal conductivity lossy dielectric using a multi layer configuration

    DOEpatents

    Tiegs, Terry N.; Kiggans, Jr., James O.

    2003-01-01

    Systems and methods are described for loss dielectrics. A loss dielectric includes at least one high dielectric loss layer and at least one high thermal conductivity-electrically insulating layer adjacent the at least one high dielectric loss layer. A method of manufacturing a loss dielectric includes providing at least one high dielectric loss layer and providing at least one high thermal conductivity-electrically insulating layer adjacent the at least one high dielectric loss layer. The systems and methods provide advantages because the loss dielectrics are less costly and more environmentally friendly than the available alternatives.

  8. Studies of electrochemical oxidation of Zircaloy nuclear reactor fuel cladding using time-of-flight-energy elastic recoil detection analysis

    NASA Astrophysics Data System (ADS)

    Whitlow, H. J.; Zhang, Y.; Wang, Y.; Winzell, T.; Simic, N.; Ahlberg, E.; Limbäck, M.; Wikmark, G.

    2000-03-01

    The trend towards increased fuel burn-up and higher operating temperatures in order to achieve more economic operation of nuclear power plants places demands on a better understanding of oxidative corrosion of Zircaloy (Zry) fuel rod cladding. As part of a programme to study these processes we have applied time-of-flight-energy elastic recoil detection (ToF-E ERD), electrochemical impedance measurements and scanning electron microscopy to quantitatively characterise thin-oxide films corresponding to the pre-transition oxidation regime. Oxide films of different nominal thickness in the 9-300 nm range were grown on a series of rolled Zr and Zry-2 plates by anodisation in dilute H 2SO 4 with applied voltages. The dielectric thickness of the oxide layer was determined from the electrochemical impedance measurements and the surface topography characterised by scanning electron microscopy. ToF-E ERD with a 60 MeV 127I 11+ ion beam was used to determine the oxygen content and chemical composition of the oxide layer. In the Zr samples, the oxygen content (O atom cm -2) that was determined by ERD was closely similar to the O content derived from impedance measurements from the dielectric film. The absolute agreement was well within the uncertainty associated with the stopping powers. Moreover, the measured composition of the thick oxide layers corresponded to ZrO 2 for the films thicker than 65 nm where the oxide layer was resolved in the ERD depth profile. Zry-2 samples exhibited a similar behaviour for small thickness ( ⩽130 nm) but had an enhanced O content at larger thicknesses that could be associated either with enhanced rough surface topography or porous oxide formation that was correlated with the presence of Second Phase Particles (SPP) in Zry-2. The concentration of SPP elements (Fe, Cr, Ni) in relation to Zr was the same in the outer 9×10 17 atom cm -2 of oxide as in the same thickness of metal. The results also revealed the presence of about 1 at.% 32S in the oxides on the Zr and Zry-2 samples which presumably originates from the electrolyte.

  9. Low-Impedance Compact Modulators Capable of Generating Intense Ultra-fast Rising Nanosecond Waveforms

    DTIC Science & Technology

    2006-10-31

    spark gap is shown in Fig. 1. The Blumleins were constructed from copper plates separated by laminated layered Kapton (polyimide) dielectrics. Scaling... convolution factor. The diamond/GaAs heterojunction response is limited to a very thin layer across the cross section between amorphic diamond and GaAs...were fastened to electrode mounts and passed through the cast material of the base before it hardened. A thick kapton laminate 1.2 cm wide separated

  10. Ultrathin free-standing graphene oxide film based flexible touchless sensor

    NASA Astrophysics Data System (ADS)

    Liu, Lin; Wang, Yingyi; Li, Guanghui; Qin, Sujie; Zhang, Ting

    2018-01-01

    Ultrathin free-standing graphene oxide (GO) films were fabricated by vacuum filtration method assisted with Ni(OH)2 nanosheets as the sacrifice layer. The surface of the obtained GO film is very clean as the Ni(OH)2 nanosheets can be thoroughly etched by HCl. The thickness of the GO films can be well-controlled by changing the volume of GO dispersion, and the thinnest GO film reached ~12 nm. As a novel and transparent dielectric material, the GO film has been applied as the dielectric layer for the flexible touchless capacitive sensor which can effectively distinguish the approaching of an insulator or a conductor. Project supported by the National Natural Science Foundation of China (No. 61574163) and the Foundation Research Project of Jiangsu Province (Nos. BK20160392, BK20170008).

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajkumar, K.; Rajavel, K.; Cameron, D. C.

    This paper reports the electrowetting properties of liquid droplet on superhydrophobic silicon nanowires with Atomic layer deposited (ALD) Al{sub 2}O{sub 3} as dielectric layer. Silicon wafer were etched by metal assisted wet chemical etching with silver as catalyst. ALD Al{sub 2}O{sub 3} films of 10nm thickness were conformally deposited over silicon nanowires. Al{sub 2}O{sub 3} dielectric film coated silicon nanowires was chemically modified with Trichloro (1H, 1H, 2H, 2H-perfluorooctyl) silane to make it superhydrophobic(SHP). The contact angle was measured and all the samples exhibited superhydrophobic nature with maximum contact angles of 163° and a minimum contact angle hysteresis of 6°.more » Electrowetting induced a maximum reversible decrease of the contact angle of 20°at 150V in air.« less

  12. Effects of plasma pretreatment on the process of self-forming Cu-Mn alloy barriers for Cu interconnects

    NASA Astrophysics Data System (ADS)

    Park, Jae-Hyung; Han, Dong-Suk; Kim, Kyoung-Deok; Park, Jong-Wan

    2018-02-01

    This study investigated the effect of plasma pretreatment on the process of a self-forming Cu-Mn alloy barrier on porous low-k dielectrics. To study the effects of plasma on the performance of a self-formed Mn-based barrier, low-k dielectrics were pretreated with H2 plasma or NH3 plasma. Cu-Mn alloy materials on low-k substrates that were subject to pretreatment with H2 plasma exhibited lower electrical resistivity values and the formation of thicker Mn-based interlayers than those on low-k substrates that were subject to pretreatment with NH3 plasma. Transmission electron microscopy (TEM), X-ray photoemission spectroscopy (XPS), and thermal stability analyses demonstrated the exceptional performance of the Mn-based interlayer on plasma-pretreated low-k substrates with regard to thickness, chemical composition, and reliability. Plasma treating with H2 gas formed hydrophilic Si-OH bonds on the surface of the low-k layer, resulting in Mn-based interlayers with greater thickness after annealing. However, additional moisture uptake was induced on the surface of the low-k dielectric, degrading electrical reliability. By contrast, plasma treating with NH3 gas was less effective with regard to forming a Mn-based interlayer, but produced a Si-N/C-N layer on the low-k surface, yielding improved barrier characteristics.

  13. Detecting subsurface features and distresses of roadways and bridge decks with ground penetrating radar at traffic speed

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Birken, Ralf; Wang, Ming L.

    2017-04-01

    This paper presents the detections of the subsurface features and distresses in roadways and bridge decks from ground penetrating radar (GPR) data collected at traffic speed. This GPR system is operated at 2 GHz with a penetration depth of 60 cm in common road materials. The system can collect 1000 traces a second, has a large dynamic range and compact packaging. Using a four channel GPR array, dense spatial coverage can be achieved in both longitudinal and transversal directions. The GPR data contains significant information about subsurface features and distresses resulting from dielectric difference, such as distinguishing new and old asphalt, identification of the asphalt-reinforced concrete (RC) interface, and detection of rebar in bridge decks. For roadways, the new and old asphalt layers are distinguished from the dielectric and thickness discontinuities. The results are complemented by surface images of the roads taken by a video camera. For bridge decks, the asphalt-RC interface is automatically detected by a cross correlation and Hilbert transform algorithms, and the layer properties (e.g., dielectric constant and thickness) can be identified. Moreover, the rebar hyperbolas can be visualized from the GPR B-scan images. In addition, the reflection amplitude from steel rebar can be extracted. It is possible to estimate the rebar corrosion level in concrete from the distribution of the rebar reflection amplitudes.

  14. Epitaxial pentacene films grown on the surface of ion-beam-processed gate dielectric layer

    NASA Astrophysics Data System (ADS)

    Chou, W. Y.; Kuo, C. W.; Cheng, H. L.; Mai, Y. S.; Tang, F. C.; Lin, S. T.; Yeh, C. Y.; Horng, J. B.; Chia, C. T.; Liao, C. C.; Shu, D. Y.

    2006-06-01

    The following research describes the process of fabrication of pentacene films with submicron thickness, deposited by thermal evaporation in high vacuum. The films were fabricated with the aforementioned conditions and their characteristics were analyzed using x-ray diffraction, scanning electron microscopy, polarized Raman spectroscopy, and photoluminescence. Organic thin-film transistors (OTFTs) were fabricated on an indium tin oxide coated glass substrate, using an active layer of ordered pentacene molecules, which were grown at room temperature. Pentacene film was aligned using the ion-beam aligned method, which is typically employed to align liquid crystals. Electrical measurements taken on a thin-film transistor indicated an increase in the saturation current by a factor of 15. Pentacene-based OTFTs with argon ion-beam-processed gate dielectric layers of silicon dioxide, in which the direction of the ion beam was perpendicular to the current flow, exhibited a mobility that was up to an order of magnitude greater than that of the controlled device without ion-beam process; current on/off ratios of approximately 106 were obtained. Polarized Raman spectroscopy investigation indicated that the surface of the gate dielectric layer, treated with argon ion beam, enhanced the intermolecular coupling of pentacene molecules. The study also proposes the explanation for the mechanism of carrier transportation in pentacene films.

  15. Integration of Porogen-Based Low-k Films: Influence of Capping Layer Thickness and Long Thermal Anneals on Low-k Damage and Reliability

    NASA Astrophysics Data System (ADS)

    De Roest, David; Vereecke, Bart; Huffman, Craig; Heylen, Nancy; Croes, Kristof; Arai, Hirofumi; Takamure, Noboru; Beynet, Julien; Sprey, Hessel; Matsushita, Kiyohiro; Kobayashi, Nobuyoshi; Verdonck, Patrick; Demuynck, Steven; Beyer, Gerald; Tokei, Zsolt; Struyf, Herbert

    2010-05-01

    This paper discusses integration aspects of a porous low-k film (k ˜2.45) cured with a broadband UV lamp. Different process splits are discussed which could contribute to avoid integration induced damage and improve reliability. The main factor contributing to a successful integration is the presence of a thick (protecting) cap layer partially remaining after chemical mechanical polishing (CMP), which leads to yielding structures with a keff of ˜2.6, a breakdown voltage of ˜6.9 MV/cm and time dependent dielectric breakdown (TDDB) lifetimes in the excess of 100 years. Long thermal anneals restore the k-value but degrade lifetime.

  16. Study of InGaAs-based modulation doped field effect transistor structures using variable-angle spectroscopic ellipsometry

    NASA Technical Reports Server (NTRS)

    Alterovitz, S. A.; Sieg, R. M.; Yao, H. D.; Snyder, P. G.; Woollam, J. A.; Pamulapati, J.; Bhattacharya, P. K.; Sekula-Moise, P. A.

    1991-01-01

    Variable-angle spectroscopic ellipsometry was used to estimate the thicknesses of all layers within the optical penetration depth of InGaAs-based modulation doped field effect transistor structures. Strained and unstrained InGaAs channels were made by molecular beam epitaxy (MBE) on InP substrates and by metal-organic chemical vapor deposition on GaAs substrates. In most cases, ellipsometrically determined thicknesses were within 10% of the growth-calibration results. The MBE-made InGaAs strained layers showed large strain effects, indicating a probable shift in the critical points of their dielectric function toward the InP lattice-matched concentration.

  17. Research into the feasibility of metal- and oxide-film capacitors

    NASA Technical Reports Server (NTRS)

    Jorgenson, G. V.; Larson, H. W.

    1973-01-01

    Thin film capacitors with up to twenty-two active layers have been deposited by RF sputtering. The materials were aluminum electrodes of 1200 to 1500 angstrom thickness and silica dielectric layers of 3000 to 6000 angstrom thickness. The best electrical characteristics were capacitances of nearly 0.1 microfarad for an active area of 1.25 square centimeters, dissipation factor of less than 0.01 over a frequency range of 0.5 to 100 kilohertz and energy density of approximately 70 millijoules per cubic centimeter of active deposited material at a working voltage of 40 volts. These aluminum-silica capacitors exhibit excellent electrical stability over a temperature range from -55 C to +300 C.

  18. Fabrication of ultrathin film capacitors by chemical solution deposition

    DOE PAGES

    Brennecka, Geoff L.; Tuttle, Bruce A.

    2007-10-01

    We present that a facile solution-based processing route using standard spin-coating deposition techniques has been developed for the production of reliable capacitors based on lead lanthanum zirconate titanate (PLZT) with active areas of ≥1 mm 2 and dielectric layer thicknesses down to 50 nm. With careful control of the dielectric phase development through improved processing, ultrathin capacitors exhibited slim ferroelectric hysteresis loops and dielectric constants of >1000, similar to those of much thicker films. Furthermore, it has been demonstrated that chemical solution deposition is a viable route to the production of capacitor films which are as thin as 50 nmmore » but are still macroscopically addressable with specific capacitance values >160 nF/mm 2.« less

  19. Tunable graphene-based hyperbolic metamaterial operating in SCLU telecom bands.

    PubMed

    Janaszek, Bartosz; Tyszka-Zawadzka, Anna; Szczepański, Paweł

    2016-10-17

    The tunability of graphene-based hyperbolic metamaterial structure operating in SCLU telecom bands is investigated. For the first time it has been shown that for the proper design of a graphene/dielectric multilayer stack, the HMM Type I, Epsilon-Near-Zero and Type II regimes are possible by changing the biasing potential. Numerical results reveal the effect of structure parameters such as the thickness of the dielectric layer as well as a number of graphene sheets in a unit cell (i.e., dielectric/graphene bilayer) on the tunability range and shape of the dispersion characteristics (i.e., Type I/ENZ/Type II) in SCLU telecom bands. This kind of materials could offer a technological platform for novel devices having various applications in optical communications technology.

  20. Interface engineering and reliability characteristics of hafnium dioxide with poly silicon gate and dual metal (ruthenium-tantalum alloy, ruthenium) gate electrode for beyond 65 nm technology

    NASA Astrophysics Data System (ADS)

    Kim, Young-Hee

    Chip density and performance improvements have been driven by aggressive scaling of semiconductor devices. In both logic and memory applications, SiO 2 gate dielectrics has reached its physical limit, direct tunneling resulting from scaling down of dielectrics thickness. Therefore high-k dielectrics have attracted a great deal of attention from industries as the replacement of conventional SiO2 gate dielectrics. So far, lots of candidate materials have been evaluated and Hf-based high-k dielectrics were chosen to the promising materials for gate dielectrics. However, lots of issues were identified and more thorough researches were carried out on Hf-based high-k dielectrics. For instances, mobility degradation, charge trapping, crystallization, Fermi level pinning, interface engineering, and reliability studies. In this research, reliability study of HfO2 were explored with poly gate and dual metal (Ru-Ta alloy, Ru) gate electrode as well as interface engineering. Hard breakdown and soft breakdown were compared and Weibull slope of soft breakdown was smaller than that of hard breakdown, which led to a potential high-k scaling issue. Dynamic reliability has been studied and the combination of trapping and detrapping contributed the enhancement of lifetime projection. Polarity dependence was shown that substrate injection might reduce lifetime projection as well as it increased soft breakdown behavior. Interface tunneling mechanism was suggested with dual metal gate technology. Soft breakdown (l st breakdown) was mainly due to one layer breakdown of bi-layer structure. Low weibull slope was in part attributed to low barrier height of HfO 2 compared to interface layer. Interface layer engineering was thoroughly studied in terms of mobility, swing, and short channel effect using deep sub-micron MOSFET devices. In fact, Hf-based high-k dielectrics could be scaled down to below EOT of ˜10A and it successfully achieved the competitive performance goals. However, it is still necessary to understand what is intrinsic we can not change, or what is extrinsic one we can improve.

  1. Reduction Characteristics of FM-Band Cross-Talks between Two Parallel Signal Traces on Printed Circuit Boards for Vehicles

    NASA Astrophysics Data System (ADS)

    Maeno, Tsuyoshi; Ueyama, Hiroya; Iida, Michihira; Fujiwara, Osamu

    It is well known that electromagnetic disturbances in vehicle-mounted radios are mainly caused by conducted noise currents flowing through wiring-harnesses from vehicle-mounted printed circuit boards (PCBs) with common ground patterns with slits. To suppress the noise current outflows from the PCBs of this kind, we previously measured noise current outflows from simple two-layer PCBs having two parallel signal traces and different ground patterns with/without slits, which revealed that making slits with open ends on the ground patterns in parallel with the traces can reduce the conducted noise currents. In the present study, with the FDTD simulation, we investigated reduction characteristics of the FM-band cross-talk noise levels between two parallel signal traces for eighteen PCBs, which have different ground patterns with/without slits parallel to the traces and dielectric layers with different thickness. As a result, we found that the cross-talk reduction effect due to slits is obtained by 3.6-5.3dB, while the cross-talks between signal traces are reduced in inverse proportion to the square of the dielectric-layer thickness and in proportion to the square of the trace interval and, which can quantitatively be explained from an inductive coupling theory.

  2. Comparison of finite element and transfer matrix methods for numerical investigation of surface plasmon waveguides

    NASA Astrophysics Data System (ADS)

    Haddouche, Issam; Cherbi, Lynda

    2017-01-01

    In this paper, we investigate Surface Plasmon Polaritons (SPPs) in the visible regime at a metal/dielectric interface within two different waveguide structures, the first is a Photonic Crystal Fiber where the Full Vector Finite Element Method (FVFEM) is used and the second is a slab waveguide where the transfer matrix method (TMM) is used. Knowing the diversities between the two methods in terms of speed, simplicity, and scope of application, computation is implemented with respect to wavelength and metal layer thickness in order to analyze and compare the performances of the two methods. Simulation results show that the TMM can be a good approximation for the FVFEM and that SPPs behave more like modes propagating in a semi infinite metal/dielectric structure as metal thickness increases from about 150 nm.

  3. ZnO/(Hf,Zr)O2/ZnO-trilayered nanowire capacitor structure fabricated solely by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Fujisawa, Hironori; Kuwamoto, Kei; Nakashima, Seiji; Shimizu, Masaru

    2016-02-01

    HfO2-based thin films are one of the key dielectric and ferroelectric materials in Si-CMOS LSIs as well as in oxide electronic nanodevices. In this study, we demonstrated the fabrication of a ZnO/(Hf,Zr)O2/ZnO-trilayered nanowire (NW) capacitor structure solely by metalorganic chemical vapor deposition (MOCVD). 15-nm-thick dielectric (Hf,Zr)O2 and 40-nm-thick top ZnO electrode layers were uniformly grown by MOCVD on a ZnO NW template with average diameter, length, and aspect ratio of 110 nm, 10 µm, and ˜90, respectively. The diameter and aspect ratio of the resultant trilayerd NWs are 200-300 nm and above 30, respectively. The crystalline phase of HfO2 and stacked the structure are also discussed.

  4. Size Dependence of Residual Thermal Stresses in Micro Multilayer Ceramic Capacitors by Using Finite Element Unit Cell Model Including Strain Gradient Effect

    NASA Astrophysics Data System (ADS)

    Jiang, W. G.; Xiong, C. A.; Wu, X. G.

    2013-11-01

    The residual thermal stresses induced by the high-temperature sintering process in multilayer ceramic capacitors (MLCCs) are investigated by using a finite-element unit cell model, in which the strain gradient effect is considered. The numerical results show that the residual thermal stresses depend on the lateral margin length, the thickness ratio of the dielectrics layer to the electrode layer, and the MLCC size. At a given thickness ratio, as the MLCC size is scaled down, the peak shear stress reduces significantly and the normal stresses along the length and thickness directions change slightly with the decrease in the ceramic layer thickness t d as t d > 1 μm, but as t d < 1 μm, the normal stress components increase sharply with the increase in t d. Thus, the residual thermal stresses induced by the sintering process exhibit strong size effects and, therefore, the strain gradient effect should be taken into account in the design and evaluation of MLCC devices

  5. BaTiO3/PVDF Nanocomposite Film with High Energy Storage Density

    NASA Astrophysics Data System (ADS)

    Wang, Xiaohui

    2016-03-01

    A gradated multilayer BaTiO3/poly(vinylidenefluoride) thin film structure is presented to achieve both a higher breakdown strength and a superior energy-storage capability. Key to the process is the sequential deposition of uniform dispersions of the single component source, which generate a blended PVDF-BTO-PVDF structure prior to full evaporation of solvent, and thermal treatment of the dielectric. The result is like sandwich structure with partial 0-3 character. The central layer designed to provide the high electric displacement, is composed of high volume fraction 6-10 nm BTO nanocrystals produced by a TEG-sol method. The outer layers of the structure are predominantly PVDF, with a significantly lower volume fraction of BTO, taking advantage of the higher dielectric strength for pure PVDF at the electrode-nanocomposite interface. The film is mechanically flexible, and can be removed from the substrate, with total thicknesses in the range 1.2 - 1.5 μm. Parallel plate capacitance devices improved dielectric performances, compared to reported values for BTO-PVDF 0-3 nanocomposites, with a maximal discharged energy density of 19.4J/cm3 and dielectric breakdown strengths of up to 495 kV/mm.

  6. Electric field around a dielectric elastomer actuator in proximity to the human body

    NASA Astrophysics Data System (ADS)

    McKenzie, Anita C.; Calius, Emilio P.; Anderson, Iain A.

    2008-03-01

    Dielectric elastomer actuators (DEAs) are a promising artificial muscle technology that will enable new kinds of prostheses and wearable rehabilitation devices. DEAs are driven by electric fields in the MV/m range and the dielectric elastomer itself is typically 30μm in thickness or more. Large operating voltages, in the order of several kilovolts, are then required to produce useful strains and these large voltages and the resulting electric fields could potentially pose problems when DEAs are used in close proximity to the human body. The fringing electric fields of a DEA in close association with the skin were modelled using finite element methods. The model was verified against a known analytic solution describing the electric field surrounding a capacitor in air. The agreement between the two is good, as the difference is less than 10% unless within 4.5mm of the DEA's lateral edges. As expected, it was found that for a DEA constructed with thinner dielectric layers, the fringe field strength dropped in direct proportion to the reduction in applied voltage, despite the internal field being maintained at the same level. More interestingly, modelling the electric field around stacked DEAs showed that for an even number of layers the electric field is an order of magnitude less than for an odd number of layers, due to the cancelling of opposing electric fields.

  7. Bilayer insulator tunnel barriers for graphene-based vertical hot-electron transistors

    NASA Astrophysics Data System (ADS)

    Vaziri, S.; Belete, M.; Dentoni Litta, E.; Smith, A. D.; Lupina, G.; Lemme, M. C.; Östling, M.

    2015-07-01

    Vertical graphene-based device concepts that rely on quantum mechanical tunneling are intensely being discussed in the literature for applications in electronics and optoelectronics. In this work, the carrier transport mechanisms in semiconductor-insulator-graphene (SIG) capacitors are investigated with respect to their suitability as electron emitters in vertical graphene base transistors (GBTs). Several dielectric materials as tunnel barriers are compared, including dielectric double layers. Using bilayer dielectrics, we experimentally demonstrate significant improvements in the electron injection current by promoting Fowler-Nordheim tunneling (FNT) and step tunneling (ST) while suppressing defect mediated carrier transport. High injected tunneling current densities approaching 103 A cm-2 (limited by series resistance), and excellent current-voltage nonlinearity and asymmetry are achieved using a 1 nm thick high quality dielectric, thulium silicate (TmSiO), as the first insulator layer, and titanium dioxide (TiO2) as a high electron affinity second layer insulator. We also confirm the feasibility and effectiveness of our approach in a full GBT structure which shows dramatic improvement in the collector on-state current density with respect to the previously reported GBTs. The device design and the fabrication scheme have been selected with future CMOS process compatibility in mind. This work proposes a bilayer tunnel barrier approach as a promising candidate to be used in high performance vertical graphene-based tunneling devices.

  8. Charged defects in two-dimensional semiconductors of arbitrary thickness and geometry: Formulation and application to few-layer black phosphorus

    NASA Astrophysics Data System (ADS)

    Wang, Dan; Han, Dong; Li, Xian-Bin; Chen, Nian-Ke; West, Damien; Meunier, Vincent; Zhang, Shengbai; Sun, Hong-Bo

    2017-10-01

    Energy evaluation of charged defects is tremendously important in two-dimensional (2D) semiconductors for the industrialization of 2D electronic devices because of its close relation with the corresponding type of conductivity and its strength. Although the method to calculate the energy of charged defects in single-layer one-atom-thick systems of equilateral unit-cell geometry has recently been proposed, few-layer 2D semiconductors are more common in device applications. As it turns out, one may not apply the one-layer formalism to multilayer cases without jeopardizing accuracy. Here, we generalize the approach to 2D systems of arbitrary cell geometry and thickness and use few-layer black phosphorus to illustrate how defect properties, mainly group-VI substitutional impurities, are affected. Within the framework of density functional theory, we show that substitutional Te (T eP) is the best candidate for n -type doping, and as the thickness increases, the ionization energy is found to decrease monotonically from 0.67 eV (monolayer) to 0.47 eV (bilayer) and further to 0.33 eV (trilayer). Although these results show the ineffectiveness of the dielectric screening at the monolayer limit, they also show how it evolves with increasing thickness whereby setting a new direction for the design of 2D electronics. The proposed method here is generally suitable to all the 2D materials regardless of their thickness and geometry.

  9. Design and fabrication of far ultraviolet filters based on π-multilayer technology in high-k materials

    PubMed Central

    Wang, Xiao-Dong; Chen, Bo; Wang, Hai-Feng; He, Fei; Zheng, Xin; He, Ling-Ping; Chen, Bin; Liu, Shi-Jie; Cui, Zhong-Xu; Yang, Xiao-Hu; Li, Yun-Peng

    2015-01-01

    Application of π-multilayer technology is extended to high extinction coefficient materials, which is introduced into metal-dielectric filter design. Metal materials often have high extinction coefficients in far ultraviolet (FUV) region, so optical thickness of metal materials should be smaller than that of the dielectric material. A broadband FUV filter of 9-layer non-periodic Al/MgF2 multilayer was successfully designed and fabricated and it shows high reflectance in 140–180 nm, suppressed reflectance in 120–137 nm and 181–220 nm. PMID:25687255

  10. Anodic Behavior of the Aluminum Current Collector in Imide-Based Electrolytes: Influence of Solvent, Operating Temperature, and Native Oxide-Layer Thickness.

    PubMed

    Meister, Paul; Qi, Xin; Kloepsch, Richard; Krämer, Elisabeth; Streipert, Benjamin; Winter, Martin; Placke, Tobias

    2017-02-22

    The inability of imide salts to form a sufficiently effective passivation layer on aluminum current collectors is one of the main obstacles that limit their broad application in electrochemical energy-storage systems. However, under certain circumstances, the use of electrolytes with imide electrolyte salts in combination with the aluminum current collector is possible. In this contribution, the stability of the aluminum current collector in electrolytes containing either lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) or lithium fluorosulfonyl-(trifluoromethanesulfonyl) imide (LiFTFSI) as conductive salt was investigated by electrochemical techniques, that is, cyclic voltammetry (CV) and chronocoulometry (CC) in either room-temperature ionic liquids or in ethyl methyl sulfone. In particular, the influence of the solvent, operating temperature, and thickness of the native oxide layer of aluminum on the pit formation at the aluminum current collector surface was studied by means of scanning electron microscopy. In general, a more pronounced aluminum dissolution and pit formation was found at elevated temperatures as well as in solvents with a high dielectric constant. An enhanced thickness of the native aluminum oxide layer increases the oxidative stability versus dissolution. Furthermore, we found a different reaction rate depending on dwell time at the upper cut-off potential for aluminum dissolution in TFSI- and FTFSI-based electrolytes during the CC measurements; the use of LiFTFSI facilitated the dissolution of aluminum compared to LiTFSI. Overall, the mechanism of anodic aluminum dissolution is based on: i) the attack of the Al 2 O 3 surface by acidic species and ii) the dissolution of bare aluminum into the electrolyte, which, in turn, is influenced by the electrolyte's dielectric constant. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Atomic layer deposition of ZrO2 on W for metal-insulator-metal capacitor application

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Yun; Kim, Hyoungsub; McIntyre, Paul C.; Saraswat, Krishna C.; Byun, Jeong-Soo

    2003-04-01

    A metal-insulator-metal (MIM) capacitor using ZrO2 on tungsten (W) metal bottom electrode was demonstrated and characterized in this letter. Both ZrO2 and W metal were synthesized by an atomic layer deposition (ALD) method. High-quality 110˜115 Å ZrO2 films were grown uniformly on ALD W using ZrCl4 and H2O precursors at 300 °C, and polycrystalline ZrO2 in the ALD regime could be obtained. A 13˜14-Å-thick interfacial layer between ZrO2 and W was observed after fabrication, and it was identified as WOx through angle-resolved x-ray photoelectron spectroscopy analysis with wet chemical etching. The apparent equivalent oxide thickness was 20˜21 Å. An effective dielectric constant of 22˜25 including an interfacial WOx layer was obtained by measuring capacitance and thickness of MIM capacitors with Pt top electrodes. High capacitance per area (16˜17 fF/μm2) and low leakage current (10-7 A/cm2 at ±1 V) were achieved.

  12. Surface texture change on-demand and microfluidic devices based on thickness mode actuation of dielectric elastomer actuators (DEAs)

    NASA Astrophysics Data System (ADS)

    Ankit, Ankit; Nguyen, Anh Chien; Mathews, Nripan

    2017-04-01

    Tactile feedback devices and microfluidic devices have huge significance in strengthening the area of robotics, human machine interaction and low cost healthcare. Dielectric Elastomer Actuators (DEAs) are an attractive alternative for both the areas; offering the advantage of low cost and simplistic fabrication in addition to the high actuation strains. The inplane deformations produced by the DEAs can be used to produce out-of-plane deformations by what is known as the thickness mode actuation of DEAs. The thickness mode actuation is achieved by adhering a soft passive layer to the DEA. This enables a wide area of applications in tactile applications without the need of complex systems and multiple actuators. But the thickness mode actuation has not been explored enough to understand how the deformations can be improved without altering the material properties; which is often accompanied with increased cost and a trade off with other closely associated material properties. We have shown the effect of dimensions of active region and non-active region in manipulating the out-of-plane deformation. Making use of this, we have been able to demonstrate large area devices and complex patterns on the passive top layer for the surface texture change on-demand applications. We have also been able to demonstrate on-demand microfluidic channels and micro-chambers without the need of actually fabricating the channels; which is a cost incurring and cumbersome process.

  13. Microwave Quantitative NDE Technique for Dielectric Slab Thickness Estimation Using the Music Algorithm

    NASA Astrophysics Data System (ADS)

    Abou-Khousa, M. A.; Zoughi, R.

    2007-03-01

    Non-invasive monitoring of dielectric slab thickness is of great interest in various industrial applications. This paper focuses on estimating the thickness of dielectric slabs, and consequently monitoring their variations, utilizing wideband microwave signals and the MUtiple SIgnal Characterization (MUSIC) algorithm. The performance of the proposed approach is assessed by validating simulation results with laboratory experiments. The results clearly indicate the utility of this overall approach for accurate dielectric slab thickness evaluation.

  14. Design and Laboratory Validation of a Capacitive Sensor for Measuring the Recession of Thin-Layered Ablator

    NASA Technical Reports Server (NTRS)

    Noffz, Gregory K.; Bowman, Michael P.

    1996-01-01

    Flight vehicles are typically instrumented with subsurface thermocouples to estimate heat transfer at the surface using inverse analysis procedures. If the vehicle has an ablating heat shield, however, temperature time histories from subsurface thermocouples no longer provide enough information to estimate heat flux at the surface. In this situation, the geometry changes and thermal energy leaves the surface in the form of ablation products. The ablation rate is required to estimate heat transfer to the surface. A new concept for a capacitive sensor has been developed to measure ablator depth using the ablator's dielectric effect on a capacitor's fringe region. Relying on the capacitor's fringe region enables the gage to be flush mounted in the vehicle's permanent structure and not intrude into the ablative heat shield applied over the gage. This sensor's design allows nonintrusive measurement of the thickness of dielectric materials, in particular, the recession rates of low-temperature ablators applied in thin (0.020 to 0.060 in. (0.05 to 0.15 mm)) layers. Twenty capacitive gages with 13 different sensing element geometries were designed, fabricated, and tested. A two-dimensional finite-element analysis was performed on several candidate geometries. Calibration procedures using ablator-simulating shims are described. A one-to-one correspondence between system output and dielectric material thickness was observed out to a thickness of 0.055 in. (1.4 mm) for a material with a permittivity about three times that of air or vacuum. A novel method of monitoring the change in sensor capacitance was developed. This technical memorandum suggests further improvements in gage design and fabrication techniques.

  15. Leakage current and charging/discharging processes in barrier-type anodic alumina thin films for use in metal-insulator-metal capacitors

    NASA Astrophysics Data System (ADS)

    Hourdakis, E.; Koutsoureli, M.; Papaioannou, G.; Nassiopoulou, A. G.

    2018-06-01

    Barrier-type anodic alumina thin films are interesting for use in high capacitance density metal-insulator-metal capacitors due to their excellent dielectric properties at small thickness. This thickness is easily controlled by the anodization voltage. In previous papers we studied the main parameters of interest of the Al/barrier-type anodic alumina/Al structure for use in RF applications and showed the great potential of barrier-type anodic alumina in this respect. In this paper, we investigated in detail charging/discharging processes and leakage current of the above dielectric material. Two different sets of metal-insulator-metal capacitors were studied, namely, with the top Al electrode being either e-gun deposited or sputtered. The dielectric constant of the barrier-type anodic alumina was found at 9.3. Low leakage current was observed in all samples studied. Furthermore, depending on the film thickness, field emission following the Fowler-Nordheim mechanism was observed above an applied electric field. Charging of the anodic dielectric was observed, occurring in the bulk of the anodic layer. The stored charge was of the order of few μC/cm2 and the calculated trap density ˜2 × 1018 states/cm3, the most probable origin of charge traps being, in our opinion, positive electrolyte ions trapped in the dielectric during anodization. We do not think that oxygen vacancies play an important role, since their existence would have a more important impact on the leakage current characteristics, such as resistive memory effects or significant changes during annealing, which were not observed. Finally, discharging characteristic times as high as 5 × 109 s were measured.

  16. Enhancement of absorption and color contrast in ultra-thin highly absorbing optical coatings

    NASA Astrophysics Data System (ADS)

    Kats, Mikhail A.; Byrnes, Steven J.; Blanchard, Romain; Kolle, Mathias; Genevet, Patrice; Aizenberg, Joanna; Capasso, Federico

    2013-09-01

    Recently a new class of optical interference coatings was introduced which comprises ultra-thin, highly absorbing dielectric layers on metal substrates. We show that these lossy coatings can be augmented by an additional transparent subwavelength layer. We fabricated a sample comprising a gold substrate, an ultra-thin film of germanium with a thickness gradient, and several alumina films. The experimental reflectivity spectra showed that the additional alumina layer increases the color range that can be obtained, in agreement with calculations. More generally, this transparent layer can be used to enhance optical absorption, protect against erosion, or as a transparent electrode for optoelectronic devices.

  17. The design and performance of the nano-carbon based double layers flexible coating for tunable and high-efficiency microwave absorption

    NASA Astrophysics Data System (ADS)

    Zhang, Danfeng; Hao, Zhifeng; Qian, Yannan; Zeng, Bi; Zhu, Haiping; Wu, Qibai; Yan, Chengjie; Chen, Muyu

    2018-05-01

    Nanocarbon-based materials are outstanding microwave absorbers with good dielectric properties. In this study, double-layer silicone resin flexible absorbing coatings, composed of carbon-coated nickel nanoparticles (Ni@C) and carbon nanotubes (CNTs), with low loading and a total thickness of 2 mm, were prepared. The reflection loss (RL) of the double-layer absorbing coatings has measured for frequencies between 2 and 18 GHz using the Arch reflecting testing method. The effects of the thickness and electromagnetic parameters of each layer and of the layer sequence on the absorbing properties were investigated. It is found that the measured bandwidth (RL ≤ - 10 dB) of the optimum double-layer structure in our experiment range achieves 3.70 GHz. The results indicated that the double coating structure composed of different materials has greater synergistic absorption effect on impedance matching than that of same materials with different loading. The maximum RL of S1 (5 wt% CNTs)/S3 (60 wt% Ni@C) double-layer absorbing coating composed of different materials (S1 and S3) was larger than the one achieved using either S1 or S3 alone with the same thickness. This was because double-layer coating provided a suitable matching layer and improve the interfacial impedance. It was also shown that absorbing peak value and frequency position can be adjusted by double-layer coating structure.

  18. Characterization and metrology implications of the 1997 NTRS

    NASA Astrophysics Data System (ADS)

    Class, W.; Wortman, J. J.

    1998-11-01

    In the Front-end (transistor forming) area of silicon CMOS device processing, several NTRS difficult challenges have been identified including; scaled and alternate gate dielectric materials, new DRAM dielectric materials, alternate gate materials, elevated contact structures, engineered channels, and large-area cost-effective silicon substrates. This paper deals with some of the characterization and metrology challenges facing the industry if it is to meet the projected needs identified in the NTRS. In the areas of gate and DRAM dielectric, scaling requires that existing material layers be thinned to maximize capacitance. For the current gate dielectric, SiO2 and its nitrided derivatives, direct tunneling will limit scaling to approximately 1.5nm for logic applications before power losses become unacceptable. Low power logic and memory applications may limit scaling to the 2.0-2.2nm range. Beyond these limits, dielectric materials having higher dielectric constant, will permit continued capacitance increases while allowing for the use of thicker dielectric layers, where tunneling may be minimized. In the near term silicon nitride is a promising SiO2 substitute material while in the longer term "high-k" materials such as tantalum pentoxide and barium strontium titanate (BST) will be required. For these latter materials, it is likely that a multilayer dielectric stack will be needed, consisting of an ultra-thin (1-2 atom layer) interfacial SiO2 layer and a high-k overlayer. Silicon wafer surface preparation control, as well as the control of composition, crystal structure, and thickness for such stacks pose significant characterization and metrology challenges. In addition to the need for new gate dielectric materials, new gate materials will be required to overcome the limitations of the current doped polysilicon gate materials. Such a change has broad ramifications on device electrical performance and manufacturing process robustness which again implies a broad range of new characterization and metrology requirements. Finally, the doped structure of the MOS transistor must scale to very small lateral and depth dimensions, and thermal budgets must be reduced to permit the retention of very abrupt highly doped drain and channel engineered structures. Eventually, the NTRS forecasts the need for an elevated contact structure. Here, there are significant challenges associated with three-dimensional dopant profiling, measurement of dopant activity in ultra-shallow device regions, as well as point defect metrology and characterization.

  19. High-Energy-Density Capacitors

    NASA Technical Reports Server (NTRS)

    Slenes, Kirk

    2003-01-01

    Capacitors capable of storing energy at high densities are being developed for use in pulse-power circuits in such diverse systems as defibrillators, particle- beam accelerators, microwave sources, and weapons. Like typical previously developed energy-storage capacitors, these capacitors are made from pairs of metal/solid-dielectric laminated sheets that are wound and pressed into compact shapes to fit into cans, which are then filled with dielectric fluids. Indeed, these capacitors can be fabricated largely by conventional fabrication techniques. The main features that distinguish these capacitors from previously developed ones are improvements in (1) the selection of laminate materials, (2) the fabrication of the laminated sheets from these materials, and (3) the selection of dielectric fluids. In simplest terms, a high-performance laminated sheet of the type used in these capacitors is made by casting a dielectric polymer onto a sheet of aluminized kraft paper. The dielectric polymer is a siloxane polymer that has been modified with polar pendant groups to increase its permittivity and dielectric strength. Potentially, this polymer is capable of withstanding an energy density of 7.5 J/cm3, which is four times that of the previous state-of-the-art-capacitor dielectric film material. However, the full potential of this polymer cannot be realized at present because (1) at thicknesses needed for optimum performance (.8.0 m), the mechanical strength of a film of this polymer is insufficient for incorporation into a wound capacitor and (2) at greater thickness, the achievable energy density decreases because of a logarithmic decrease in dielectric strength with increasing thickness. The aluminized kraft paper provides the mechanical strength needed for processing of the laminate and fabrication of the capacitor, and the aluminum film serves as an electrode layer. Because part of the thickness of the dielectric is not occupied by the modified siloxane polymer, the achievable energy density must be somewhat less than the maximum value. The laminate is produced by a continuous film-casting process, using the machinery depicted schematically in the figure. The designs of the process and machinery are dictated partly by the fact that during the processing step prior to casting the polymer, the aluminized kraft paper becomes wet with water. Because the polymer resin to be cast is hydrophobic, the paper must be dried to make it possible to coat the paper uniformly, leaving no pinholes. Accordingly, an infrared heater is placed next to the paper feed roll to dry the paper prior to casting.

  20. Fabrication of Crack-Free Barium Titanate Thin Film with High Dielectric Constant Using Sub-Micrometric Scale Layer-by-Layer E-Jet Deposition

    PubMed Central

    Liang, Junsheng; Li, Pengfei; Wang, Dazhi; Fang, Xu; Ding, Jiahong; Wu, Junxiong; Tang, Chang

    2016-01-01

    Dense and crack-free barium titanate (BaTiO3, BTO) thin films with a thickness of less than 4 μm were prepared by using sub-micrometric scale, layer-by-layer electrohydrodynamic jet (E-jet) deposition of the suspension ink which is composed of BTO nanopowder and BTO sol. Impacts of the jet height and line-to-line pitch of the deposition on the micro-structure of BTO thin films were investigated. Results show that crack-free BTO thin films can be prepared with 4 mm jet height and 300 μm line-to-line pitch in this work. Dielectric constant of the prepared BTO thin film was recorded as high as 2940 at 1 kHz at room temperature. Meanwhile, low dissipation factor of the BTO thin film of about 8.6% at 1 kHz was also obtained. The layer-by-layer E-jet deposition technique developed in this work has been proved to be a cost-effective, flexible and easy to control approach for the preparation of high-quality solid thin film. PMID:28787860

  1. Improved longitudinal magneto-optic Kerr effect signal contrast from nanomagnets with dielectric coatings

    NASA Astrophysics Data System (ADS)

    Holiday, L. F.; Gibson, U. J.

    2006-12-01

    We report on the use of dielectric coatings to improve the contrast of longitudinal magneto-optic Kerr effect signals from submicron magnetic structures. Electron-beam lithography was used to define disks in 22 nm thick Ni films deposited on Si substrates. The structures were measured in four configurations: as-deposited, through a fused silica prism using index-matching fluid, coated with ZnS, and using a prism on top of the ZnS layer. The modified samples show up to 20 times improvement in the MOKE contrast due to admittance matching to the magnetic material and suppression of the substrate reflectance. The behavior is successfully predicted by a model that includes the magneto-optic response of the nickel layer and accounts for the fraction of the beam intercepted by the magnetic structure.

  2. Analysis of a static undulation on the surface of a thin dielectric liquid layer formed by dielectrophoresis forces

    NASA Astrophysics Data System (ADS)

    Brown, Carl V.; McHale, Glen; Mottram, Nigel J.

    2011-07-01

    A layer of insulating liquid of dielectric constant ɛOil and average thickness h- coats a flat surface at y = 0 at which a one-dimensional sinusoidal potential V(x ,0)=VOcos(πx /p) is applied. Dielectrophoresis forces create a static undulation (or "wrinkle") distortion h(x) of period p at the liquid/air interface. Analytical expressions have been derived for the electrostatic energy and the interfacial energy associated with the surface undulation when h(x)=h--(1/2)Acos(2πx /p) yielding a scaling relationship for A as a function of h-, p, VO, ɛOil and the surface tension. The analysis is valid as A/p → 0, and in this limit convergence with numerical simulation of the system is shown.

  3. Aerosol-Jet-Printing silicone layers and electrodes for stacked dielectric elastomer actuators in one processing device

    NASA Astrophysics Data System (ADS)

    Reitelshöfer, Sebastian; Göttler, Michael; Schmidt, Philip; Treffer, Philipp; Landgraf, Maximilian; Franke, Jörg

    2016-04-01

    In this contribution we present recent findings of our efforts to qualify the so called Aerosol-Jet-Printing process as an additive manufacturing approach for stacked dielectric elastomer actuators (DEA). With the presented system we are able to print the two essential structural elements dielectric layer and electrode in one machine. The system is capable of generating RTV-2 silicone layers made of Wacker Elastosil P 7670. Therefore, two aerosol streams of both precursor components A and B are generated in parallel and mixed in one printing nozzle that is attached to a 4-axis kinematic. At maximum speed the printing of one circular Elastosil layer with a calculated thickness of 10 μm and a diameter of 1 cm takes 12 seconds while the process keeps stable for 4.5 hours allowing a quite high overall material output and the generation of numerous silicone layers. By adding a second printing nozzle and the infrastructure to generate a third aerosol, the system is also capable of printing inks with conductive particles in parallel to the silicone. We have printed a reduced graphene oxide (rGO) ink prepared in our lab to generate electrodes on VHB 4905, Elastosil foils and finally on Aerosol-Jet-Printed Elastosil layers. With rGO ink printed on Elastosil foil, layers with a 4-point measured sheet resistance as low as 4 kΩ can be realized leaving room for improving the electrode printing time, which at the moment is not as good as the quite good time-frame for printing the silicone layers. Up to now we have used the system to print a fully functional two-layer stacked DEA to demonstrate the principle of continuously 3D printing actuators.

  4. Propagational characteristics in a warm hybrid plasmonic waveguide

    NASA Astrophysics Data System (ADS)

    Mahmodi Moghadam, M.; Shahmansouri, M.; Farokhi, B.

    2017-12-01

    We theoretically analyze the properties of guided modes in a warm planar conductor-gap-dielectric (CGD) system. The latter consists of a high index dielectric, separated from a warm metallic plasma with a low index nano-sized dielectric layer (gap) by using the hydrodynamic model coupled to Maxwell's equations. The effects of thermal pressure on the confinement and the propagation losses of Hybrid Plasmon Polariton (HPP) modes are studied. We found that the thermal effect leads to a reduction in the effective refractive index as well as in the propagation losses of the HPP mode. Furthermore, the cutoff thickness in the warm CGD waveguide is found to be smaller than that in a cold CGD waveguide. The results may be useful in understanding the essential physics of active/passive Plasmonic devices and chip-scale systems.

  5. Nonlinear pulse propagation in one-dimensional metal-dielectric multilayer stacks: ultrawide bandwidth optical limiting.

    PubMed

    Scalora, Michael; Mattiucci, Nadia; D'Aguanno, Giuseppe; Larciprete, MariaCristina; Bloemer, Mark J

    2006-01-01

    We numerically study the nonlinear optical properties of metal-dielectric photonic band gap structures in the pulsed regime. We exploit the high chi3 of copper metal to induce nonlinear effects such as broadband optical limiting, self-phase modulation, and unusual spectral narrowing of high intensity pulses. We show that in a single pass through a typical, chirped multilayer stack nonlinear transmittance and peak powers can be reduced by nearly two orders of magnitude compared to low light intensity levels across the entire visible range. Chirping dielectric layer thickness dramatically improves the linear transmittance through the stack and achieves large fields inside the copper to access the large nonlinearity. At the same time, the linear properties of the stack block most of the remaining electromagnetic spectrum.

  6. Thermally tunable VO2-SiO2 nanocomposite thin-film capacitors

    NASA Astrophysics Data System (ADS)

    Sun, Yifei; Narayanachari, K. V. L. V.; Wan, Chenghao; Sun, Xing; Wang, Haiyan; Cooley, Kayla A.; Mohney, Suzanne E.; White, Doug; Duwel, Amy; Kats, Mikhail A.; Ramanathan, Shriram

    2018-03-01

    We present a study of co-sputtered VO2-SiO2 nanocomposite dielectric thin-film media possessing continuous temperature tunability of the dielectric constant. The smooth thermal tunability is a result of the insulator-metal transition in the VO2 inclusions dispersed within an insulating matrix. We present a detailed comparison of the dielectric characteristics of this nanocomposite with those of a VO2 control layer and of VO2/SiO2 laminate multilayers of comparable overall thickness. We demonstrated a nanocomposite capacitor that has a thermal capacitance tunability of ˜60% between 25 °C and 100 °C at 1 MHz, with low leakage current. Such thermally tunable capacitors could find potential use in applications such as sensing, thermal cloaks, and phase-change energy storage devices.

  7. A General Reliability Model for Ni-BaTiO3-Based Multilayer Ceramic Capacitors

    NASA Technical Reports Server (NTRS)

    Liu, Donhang

    2014-01-01

    The evaluation of multilayer ceramic capacitors (MLCCs) with Ni electrode and BaTiO3 dielectric material for potential space project applications requires an in-depth understanding of their reliability. A general reliability model for Ni-BaTiO3 MLCC is developed and discussed. The model consists of three parts: a statistical distribution; an acceleration function that describes how a capacitor's reliability life responds to the external stresses, and an empirical function that defines contribution of the structural and constructional characteristics of a multilayer capacitor device, such as the number of dielectric layers N, dielectric thickness d, average grain size, and capacitor chip size A. Application examples are also discussed based on the proposed reliability model for Ni-BaTiO3 MLCCs.

  8. A General Reliability Model for Ni-BaTiO3-Based Multilayer Ceramic Capacitors

    NASA Technical Reports Server (NTRS)

    Liu, Donhang

    2014-01-01

    The evaluation for potential space project applications of multilayer ceramic capacitors (MLCCs) with Ni electrode and BaTiO3 dielectric material requires an in-depth understanding of the MLCCs reliability. A general reliability model for Ni-BaTiO3 MLCCs is developed and discussed in this paper. The model consists of three parts: a statistical distribution; an acceleration function that describes how a capacitors reliability life responds to external stresses; and an empirical function that defines the contribution of the structural and constructional characteristics of a multilayer capacitor device, such as the number of dielectric layers N, dielectric thickness d, average grain size r, and capacitor chip size A. Application examples are also discussed based on the proposed reliability model for Ni-BaTiO3 MLCCs.

  9. Lusters of renaissance pottery: Experimental and theoretical optical properties using inhomogeneous theories

    NASA Astrophysics Data System (ADS)

    Berthier, S.; Padeletti, G.; Fermo, P.; Bouquillon, A.; Aucouturier, M.; Charron, E.; Reillon, V.

    2006-06-01

    Luster decoration of medieval and renaissance potteries constitutes one of the most important and sophisticated decoration techniques of the Mediterranean basin. Lusters consist in a thin layer of silver and copper nanocrystals immersed in a dielectric matrix. Different physical phenomena are responsible for the very brilliant and complex colored effect produced by the lusters. On one hand, according to the thickness of the thin layer, interferential effects occur giving rise to a classical iridescent effect. On the other hand, the nanostructure of the metallic compound leads to extra absorption, generally observed in the visible or near infrared, due to an external resonance associated with the excitation of a surface plasmon in the metallic particles. The position of this resonance, and so the color of the film, depends from many parameters, mainly: (1) the relative volume fraction p of the metal inclusions. (2) The mean size of the metal particle. (3) The shape of the particles and (4) the dielectric functions of the constituents. These two phenomena are not independent as the second one greatly affects the dielectric function of the film and, thus, its optical thickness. In this paper, the physical and optical properties of various lusters from Deruta and Gubbio (Italy) of the XVI century are presented. The structure and the composition of the different films have been determined by scanning electron microscope (SEM), ion beam analyses (PIXE and RBS) and low incidence X-ray diffraction. The optical properties have been determined by two different techniques: (a) hemispherical spectroscopic measurements under near-normal incidence; (b) gonioscopic measurements for a given angle of incidence and wavelength. The first one allows the determination of the effective index of refraction of the inhomogeneous layer, and the second one the determination of the bidirectional reflectance distribution function (BRDF) of the material.

  10. Extensive ionic partitioning in interfaces that membranous and biomimetic surfaces form with electrolytes: Antitheses of the gold-electrolyte interface

    NASA Astrophysics Data System (ADS)

    Chilcott, Terry; Guo, Chuan; Coster, Hans

    2013-04-01

    Maxwell-Wagner modeling of electrical impedance measurements of tetradecane-electrolyte systems yielded three interfacial layers between the tetradecane layer and the bulk electrolytes of concentration ranging from 1-300 mM KCl whereas the gold-electrolyte system yielded only one layer. The conductivity and thickness for the surface layer were orders of magnitude different from that expected for the Gouy-Chapman layer and did not reflect dependencies of the Debye length on concentration. Conductivity values for the three layers were less than those of the bulk electrolyte but exhibited a dependency on concentration similar to that expected for the bulk. Thickness values for the layers indicate an interface extending ~106 Å into the bulk electrolyte, which contrasts with the gold-electrolyte interface that extended only 20-30 Å into the bulk. Maxwell-Wagner characterizations of both interfaces were consistent with spatial distributions of ionic partitioning arising from the Born energy as determined by the dielectric properties of the substrates and electrolyte. The distributions for the membranous and silicon interfaces were similar but the antitheses of that for the gold interface.

  11. Observation of Anderson localization in disordered nanophotonic structures

    NASA Astrophysics Data System (ADS)

    Sheinfux, Hanan Herzig; Lumer, Yaakov; Ankonina, Guy; Genack, Azriel Z.; Bartal, Guy; Segev, Mordechai

    2017-06-01

    Anderson localization is an interference effect crucial to the understanding of waves in disordered media. However, localization is expected to become negligible when the features of the disordered structure are much smaller than the wavelength. Here we experimentally demonstrate the localization of light in a disordered dielectric multilayer with an average layer thickness of 15 nanometers, deep into the subwavelength regime. We observe strong disorder-induced reflections that show that the interplay of localization and evanescence can lead to a substantial decrease in transmission, or the opposite feature of enhanced transmission. This deep-subwavelength Anderson localization exhibits extreme sensitivity: Varying the thickness of a single layer by 2 nanometers changes the reflection appreciably. This sensitivity, approaching the atomic scale, holds the promise of extreme subwavelength sensing.

  12. Designing hybrid gate dielectric for fully printing high-performance carbon nanotube thin film transistors

    NASA Astrophysics Data System (ADS)

    Li, Qian; Li, Shilong; Yang, Dehua; Su, Wei; Wang, Yanchun; Zhou, Weiya; Liu, Huaping; Xie, Sishen

    2017-10-01

    The electrical characteristics of carbon nanotube (CNT) thin-film transistors (TFTs) strongly depend on the properties of the gate dielectric that is in direct contact with the semiconducting CNT channel materials. Here, we systematically investigated the dielectric effects on the electrical characteristics of fully printed semiconducting CNT-TFTs by introducing the organic dielectrics of poly(methyl methacrylate) (PMMA) and octadecyltrichlorosilane (OTS) to modify SiO2 dielectric. The results showed that the organic-modified SiO2 dielectric formed a favorable interface for the efficient charge transport in s-SWCNT-TFTs. Compared to single-layer SiO2 dielectric, the use of organic-inorganic hybrid bilayer dielectrics dramatically improved the performances of SWCNT-TFTs such as mobility, threshold voltage, hysteresis and on/off ratio due to the suppress of charge scattering, gate leakage current and charge trapping. The transport mechanism is related that the dielectric with few charge trapping provided efficient percolation pathways for charge carriers, while reduced the charge scattering. High density of charge traps which could directly act as physical transport barriers and significantly restrict the charge carrier transport and, thus, result in decreased mobile carriers and low device performance. Moreover, the gate leakage phenomenon is caused by conduction through charge traps. So, as a component of TFTs, the gate dielectric is of crucial importance to the manufacture of high quality TFTs from the aspects of affecting the gate leakage current and device operation voltage, as well as the charge carrier transport. Interestingly, the OTS-modified SiO2 allows to directly print horizontally aligned CNT film, and the corresponding devices exhibited a higher mobility than that of the devices with the hybrid PMMA/SiO2 dielectric although the thickness of OTS layer is only ˜2.5 nm. Our present result may provide key guidance for the further development of printed nanomaterial electronics.

  13. FIBER AND INTEGRATED OPTICS: Optimization of optical film waveguides

    NASA Astrophysics Data System (ADS)

    Adamson, P. V.

    1990-10-01

    Theoretical investigations were made of the possibility of optimization of the effective thickness, of the optical confinement factor Γ1, and of the birefringence of a planar dielectric waveguide as a function of the waveguide parameter V and the waveguide asymmetry. For a given value of V it is possible to ensure higher values of Γ1, for an asymmetric waveguide than for a symmetric one. An approximate expression is proposed for the factor Γ1, of an asymmetric waveguide directly in terms of its thickness and the refractive indices of the layers.

  14. Electron tunneling through atomically flat and ultrathin hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Lee, Gwan-Hyoung; Yu, Young-Jun; Lee, Changgu; Dean, Cory; Shepard, Kenneth L.; Kim, Philip; Hone, James

    2011-12-01

    Electron tunneling through atomically flat and ultrathin hexagonal boron nitride (h-BN) on gold-coated mica was investigated using conductive atomic force microscopy. Low-bias direct tunneling was observed in mono-, bi-, and tri-layer h-BN. For all thicknesses, Fowler-Nordheim tunneling (FNT) occurred at high bias, showing an increase of breakdown voltage with thickness. Based on the FNT model, the barrier height for tunneling (3.07 eV) and dielectric strength (7.94 MV/cm) of h-BN are obtained; these values are comparable to those of SiO2.

  15. Method of making dielectric capacitors with increased dielectric breakdown strength

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Beihai; Balachandran, Uthamalingam; Liu, Shanshan

    The invention is directed to a process for making a dielectric ceramic film capacitor and the ceramic dielectric laminated capacitor formed therefrom, the dielectric ceramic film capacitors having increased dielectric breakdown strength. The invention increases breakdown strength by embedding a conductive oxide layer between electrode layers within the dielectric layer of the capacitors. The conductive oxide layer redistributes and dissipates charge, thus mitigating charge concentration and micro fractures formed within the dielectric by electric fields.

  16. Acoustic Phonons and Mechanical Properties of Ultra-Thin Porous Low-k Films: A Surface Brillouin Scattering Study

    NASA Astrophysics Data System (ADS)

    Zizka, J.; King, S.; Every, A.; Sooryakumar, R.

    2018-04-01

    To reduce the RC (resistance-capacitance) time delay of interconnects, a key development of the past 20 years has been the introduction of porous low-k dielectrics to replace the traditional use of SiO2. Moreover, in keeping pace with concomitant reduction in technology nodes, these low-k materials have reached thicknesses below 100 nm wherein the porosity becomes a significant fraction of the film volume. The large degree of porosity not only reduces mechanical strength of the dielectric layer but also renders a need for non-destructive approaches to measure the mechanical properties of such ultra-thin films within device configurations. In this study, surface Brillouin scattering (SBS) is utilized to determine the elastic constants, Poisson's ratio, and Young's modulus of these porous low-k SiOC:H films (˜ 25-250 nm thick) grown on Si substrates by probing surface acoustic phonons and their dispersions.

  17. GaN-on-silicon high-electron-mobility transistor technology with ultra-low leakage up to 3000 V using local substrate removal and AlN ultra-wide bandgap

    NASA Astrophysics Data System (ADS)

    Dogmus, Ezgi; Zegaoui, Malek; Medjdoub, Farid

    2018-03-01

    We report on extremely low off-state leakage current in AlGaN/GaN-on-silicon metal–insulator–semiconductor high-electron-mobility transistors (MISHEMTs) up to a high blocking voltage. Remarkably low off-state gate and drain leakage currents below 1 µA/mm up to 3 kV have been achieved owing to the use of a thick in situ SiN gate dielectric under the gate, and a local Si substrate removal technique combined with a cost effective 15-µm-thick AlN dielectric layer followed by a Cu deposition. This result establishes a manufacturable state-of-the-art high-voltage GaN-on-silicon power transistors while maintaining a low specific on-resistance of approximately 10 mΩ·cm2.

  18. Critical coupling using the hexagonal boron nitride crystals in the mid-infrared range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Jipeng; Wang, Hengliang; Wen, Shuangchun

    2016-05-28

    We theoretically demonstrate the perfect absorption phenomena in the hexagonal boron nitride (hBN) crystals in the mid-infrared wavelength ranges by means of critical coupling with a one-dimensional photonic crystal spaced by the air. Different from the polymer absorbing layer composed by a metal-dielectric composite film, the hyperbolic dispersion characteristics of hBN can meet the condition of critical coupling and achieve the total absorption in the mid-infrared wavelength ranges. However, the critical coupling phenomenon can only appear in the hBN crystals with the type II dispersion. Moreover, we discuss the influence of the thickness of hBN, the incident angle, and themore » thickness and permittivity of the space dielectric on the total absorption. Ultimately, the conditions for absorption enhancement and the optimization methods of perfect absorption are proposed, and the design rules for a totally absorbing system under the different conditions are achieved.« less

  19. Acoustic Phonons and Mechanical Properties of Ultra-Thin Porous Low- k Films: A Surface Brillouin Scattering Study

    NASA Astrophysics Data System (ADS)

    Zizka, J.; King, S.; Every, A.; Sooryakumar, R.

    2018-07-01

    To reduce the RC (resistance-capacitance) time delay of interconnects, a key development of the past 20 years has been the introduction of porous low- k dielectrics to replace the traditional use of SiO2. Moreover, in keeping pace with concomitant reduction in technology nodes, these low- k materials have reached thicknesses below 100 nm wherein the porosity becomes a significant fraction of the film volume. The large degree of porosity not only reduces mechanical strength of the dielectric layer but also renders a need for non-destructive approaches to measure the mechanical properties of such ultra-thin films within device configurations. In this study, surface Brillouin scattering (SBS) is utilized to determine the elastic constants, Poisson's ratio, and Young's modulus of these porous low- k SiOC:H films (˜ 25-250 nm thick) grown on Si substrates by probing surface acoustic phonons and their dispersions.

  20. Investigation of substrate-mounted thin-film meteoroid sensors for use in large area impact experiments

    NASA Technical Reports Server (NTRS)

    Carollo, S. F.; Davis, J. M.; Dance, W. E.

    1973-01-01

    Two types of sensor designs were investigated: (1)a polysulfone dielectric film with vapor-deposited aluminum and gold sensor plates, bonded to a relatively thick aluminum substrate, and (2) an aluminum oxide (A1203) dielectric layer prepared on an aluminum substrate by anodization, with a layer of vapor-deposited aluminum providing one sensor plate and the substrate serving as the other plate. In the first design, specimens were prepared which indicate the state of the art for application of this type of sensor for elements of a meteoroid detection system having an area as large as 10 sq M. Techniques were investigated for casting large-area polysulfone films on the surface of water and for transferring the films from the water. Methods of preparing sensors by layering of films, the deposition of capacitor plates, and sensor film-to-substrate bonding, as well as techniques for making electrical connections to the capacitor plates, were studied.

  1. Modeling liquid organic thin films on substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernacki, Bruce E.; Johnson, Timothy J.; Myers, Tanya L.

    We present the rationale, methods, and results of modeling of thin film organic liquids on various substrates. These liquids may coat surfaces (substrates) either as a result of their production, dispersal via aerosols or spills. Identification of unknown coated surfaces using either reflectance or emittance spectroscopy cannot be accomplished simply through reference to reflectance signature libraries since neither the thickness of the liquid layer nor the substrate type is known beforehand and both contribute to the signature. Liquid spectral libraries offer the complex index of refraction (n,k) as a function of wavelength which by itself is useful only for thickmore » (bulk) liquid layers via computation of reflectance and transmittance coefficients using the Fresnel equations. Thin liquid layers both reflect and refract incident light in combination with reflectance from the substrate. We show modeling of various organic liquids on substrates using commercial thin film design and modeling software, as well as Monte Carlo ray tracing software to demonstrate the variety of potential signatures encountered that depend on the thickness of the liquid layer as well as the characteristics of the substrate (metal or dielectric). These substrates give rise to transflectance behavior, while many dielectric substrates have rich absorption features that provide complex signatures that combine attributes of both the liquid and the substrate. Knowledge of the complex index of refraction of both target liquids and substrates is essential in order to synthesize spectra necessary in the application of target identification algorithms.« less

  2. Spectroscopic ellipsometric characterization of Si/Si(1-x)Ge(x) strained-layer superlattices

    NASA Technical Reports Server (NTRS)

    Yao, H.; Woollam, J. A.; Wang, P. J.; Tejwani, M. J.; Alterovitz, S. A.

    1993-01-01

    Spectroscopic ellipsometry (SE) was employed to characterize Si/Si(1-x)Ge(x) strained-layer superlattices. An algorithm was developed, using the available optical constants measured at a number of fixed x values of Ge composition, to compute the dielectric function spectrum of Si(1-x)Ge(x) at an arbitrary x value in the spectral range 17 to 5.6 eV. The ellipsometrically determined superlattice thicknesses and alloy compositional fractions were in excellent agreement with results from high-resolution x ray diffraction studies. The silicon surfaces of the superlattices were subjected to a 9:1 HF cleaning prior to the SE measurements. The HF solution removed silicon oxides on the semiconductor surface, and terminated the Si surface with hydrogen-silicon bonds, which were monitored over a period of several weeks, after the HF cleaning, by SE measurements. An equivalent dielectric layer model was established to describe the hydrogen-terminated Si surface layer. The passivated Si surface remained unchanged for greater than 2 h, and very little surface oxidation took place even over 3 to 4 days.

  3. Electrostatically assisted fabrication of silver-dielectric core/shell nanoparticles thin film capacitor with uniform metal nanoparticle distribution and controlled spacing.

    PubMed

    Li, Xue; Niitsoo, Olivia; Couzis, Alexander

    2016-03-01

    An electrostatically-assisted strategy for fabrication of thin film composite capacitors with controllable dielectric constant (k) has been developed. The capacitor is composed of metal-dielectric core/shell nanoparticle (silver/silica, Ag@SiO2) multilayer films, and a backfilling polymer. Compared with the simple metal particle-polymer mixtures where the metal nanoparticles (NP) are randomly dispersed in the polymer matrix, the metal volume fraction in our capacitor was significantly increased, owing to the densely packed NP multilayers formed by the electrostatically assisted assembly process. Moreover, the insulating layer of silica shell provides a potential barrier that reduces the tunneling current between neighboring Ag cores, endowing the core/shell nanocomposites with a stable and relatively high dielectric constant (k) and low dielectric loss (D). Our work also shows that the thickness of the SiO2 shell plays a dominant role in controlling the dielectric properties of the nanocomposites. Control over metal NP separation distance was realized not only by variation the shell thickness of the core/shell NPs but also by introducing a high k nanoparticle, barium strontium titanate (BST) of relatively smaller size (∼8nm) compared to 80-160nm of the core/shell Ag@SiO2 NPs. The BST assemble between the Ag@SiO2 and fill the void space between the closely packed core/shell NPs leading to significant enhancement of the dielectric constant. This electrostatically assisted assembly method is promising for generating multilayer films of a large variety of NPs over large areas at low cost. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Simulation of the lunar surface emission and inversion of the lunar regolith thickness using fusion of optical and microwave remote sensing data

    NASA Astrophysics Data System (ADS)

    Jin, Y.-Q.

    begin table htbp begin center begin tabular p 442pt hline A correspondence of the lunar regolith layer thickness to the lunar digital elevation mapping DEM is presented to construct the global distribution of lunar regolith layer thickness Based on some measurements the physical temperature distribution over the lunar surface is proposed Albedo of the lunar nearside at the wavelengths 0 42 0 65 0 75 0 95 mu m from the telescopic observation is employed to construct the spatial distribution of the FeO TiO 2 on the lunar regolith layer A statistic relationship between the DEM and FeO TiO 2 content of the lunar nearside is then extended to construction of FeO TiO 2 content of the lunar farside Thus the dielectric permittivity of global lunar regolith layer can be determined par Based on all theses conditions brightness temperature of the lunar regolith layer in passive microwave remote sensing which is planned for China s Chang-E lunar project is numerically simulated by a parallel layer model using the fluctuation dissipation theorem par Furthermore taking these simulations as observations an inversion method of the lunar regolith layer thickness is developed by using three- or two-channels brightness temperatures When the FeO TiO 2 content is low and the four channels brightness temperatures in Chang-E project are well distinguishable the regolith layer thickness and physical temperature of the underlying lunar rocky media can be inverted by the three-channels approach When the FeO TiO 2 content is so high that the

  5. The influence of Span-20 surfactant and micro-/nano-Chromium (Cr) Powder Mixed Electrical Discharge Machining (PMEDM) on the surface characteristics of AISI D2 hardened steel

    NASA Astrophysics Data System (ADS)

    Hosni, N. A. J.; Lajis, M. A.

    2018-04-01

    The application of powder mixed dielectric to improve the efficiency of electrical discharge machining (EDM) has been extensively studied. Therefore, PMEDM have attracted the attention of many researchers since last few decades. Improvement in EDM process has resulted in the use of span-20 surfactant and Cr powder mixed in dielectric fluid, which results in increasing machiniability, better surface quality and faster machining time. However, the study of powder suspension size of surface charateristics in EDM field is still limited. This paper presents the improvement of micro-/nano- Cr powder size on the surface characteristics of the AISI D2 hardened steels in PMEDM. It has found that the reacst layer in PMEDM improved by as high as 41-53 % compared to conventional EDM. Also notably, the combination of added Cr powder and span-20 surfactant reduced the recast layer thickness significantly especially in nano-Cr size. This improvement was great potential adding nano-size Cr powder to dielectric for machining performance.

  6. Method of forming a multiple layer dielectric and a hot film sensor therewith

    NASA Technical Reports Server (NTRS)

    Hopson, Purnell, Jr. (Inventor); Tran, Sang Q. (Inventor)

    1990-01-01

    The invention is a method of forming a multiple layer dielectric for use in a hot-film laminar separation sensor. The multiple layer dielectric substrate is formed by depositing a first layer of a thermoelastic polymer such as on an electrically conductive substrate such as the metal surface of a model to be tested under cryogenic conditions and high Reynolds numbers. Next, a second dielectric layer of fused silica is formed on the first dielectric layer of thermoplastic polymer. A resistive metal film is deposited on selected areas of the multiple layer dielectric substrate to form one or more hot-film sensor elements to which aluminum electrical circuits deposited upon the multiple layered dielectric substrate are connected.

  7. Fabricating with crystalline Si to improve superconducting detector performance

    NASA Astrophysics Data System (ADS)

    Beyer, A. D.; Hollister, M. I.; Sayers, J.; Frez, C. F.; Day, P. K.; Golwala, S. R.

    2017-05-01

    We built and measured radio-frequency (RF) loss tangent, tan δ, evaluation structures using float-zone quality silicon-on-insulator (SOI) wafers with 5 μm thick device layers. Superconducting Nb components were fabricated on both sides of the SOI Si device layer. Our main goals were to develop a robust fabrication for using crystalline Si (c-Si) dielectric layers with superconducting Nb components in a wafer bonding process and to confirm that tan δ with c-Si dielectric layers was reduced at RF frequencies compared to devices fabricated with amorphous dielectrics, such as SiO2 and SixNy, where tan δ ∼ 10-3. Our primary test structure used a Nb coplanar waveguide (CPW) readout structure capacitively coupled to LC resonators, where the capacitors were defined as parallel-plate capacitors on both sides of a c-Si device layer using a wafer bonding process with benzocyclobutene (BCB) wafer bonding adhesive. Our control experiment, to determine the intrinsic tan δ in the SOI device layer without wafer bonding, also used Nb CPW readout coupled to LC resonators; however, the parallel-plate capacitors were fabricated on both sides of the Si device layer using a deep reactive ion etch (DRIE) to access the c-Si underside through the buried oxide and handle Si layers in the SOI wafers. We found that our wafer bonded devices demonstrated F· δ = (8 ± 2) × 10-5, where F is the filling fraction of two-level states (TLS). For the control experiment, F· δ = (2.0 ± 0.6) × 10-5, and we discuss what may be degrading the performance in the wafer bonded devices as compared to the control devices.

  8. Fast process flow, on-wafer interconnection and singulation for MEPV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okandan, Murat; Nielson, Gregory N.; Cruz-Campa, Jose Luis

    2017-01-31

    A method including providing a substrate comprising a device layer on which a plurality of device cells are defined; depositing a first dielectric layer on the device layer and metal interconnect such that the deposited interconnect is electrically connected to at least two of the device cells; depositing a second dielectric layer over the interconnect; and exposing at least one contact point on the interconnect through the second dielectric layer. An apparatus including a substrate having defined thereon a device layer including a plurality of device cells; a first dielectric layer disposed directly on the device layer; a plurality ofmore » metal interconnects, each of which is electrically connected to at least two of the device cells; and a second dielectric layer disposed over the first dielectric layer and over the interconnects, wherein the second dielectric layer is patterned in a positive or negative planar spring pattern.« less

  9. Fast process flow, on-wafer interconnection and singulation for MEPV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okandan, Murat; Nielson, Gregory N.; Cruz-Campa, Jose Luis

    2017-08-29

    A method including providing a substrate comprising a device layer on which a plurality of device cells are defined; depositing a first dielectric layer on the device layer and metal interconnect such that the deposited interconnect is electrically connected to at least two of the device cells; depositing a second dielectric layer over the interconnect; and exposing at least one contact point on the interconnect through the second dielectric layer. An apparatus including a substrate having defined thereon a device layer including a plurality of device cells; a first dielectric layer disposed directly on the device layer; a plurality ofmore » metal interconnects, each of which is electrically connected to at least two of the device cells; and a second dielectric layer disposed over the first dielectric layer and over the interconnects, wherein the second dielectric layer is patterned in a positive or negative planar spring pattern.« less

  10. Sci-Sat AM: Radiation Dosimetry and Practical Therapy Solutions - 01: Optimization of an organic field effect transistor for radiation dosimetry measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Syme, Alasdair

    2016-08-15

    Purpose: To use Monte Carlo simulations to optimize the design of an organic field effect transistor (OFET) to maximize water-equivalence across the diagnostic and therapeutic photon energy ranges. Methods: DOSXYZnrc was used to simulate transport of mono-energetic photon beams through OFETs. Dose was scored in the dielectric region of devices and used for evaluating the response of the device relative to water. Two designs were considered: 1. a bottom-gate device on a substrate of polyethylene terephthalate (PET) with an aluminum gate, a dielectric layer of either PMMA or CYTOP (a fluorocarbon) and an organic semiconductor (pentacene). 2. a symmetric bilayermore » design was employed in which two polymer layers (PET and CYTOP) were deposited both below the gate and above the semiconductor to improve water-equivalence and reduce directional dependence. The relative thickness of the layers was optimized to maximize water-equivalence. Results: Without the bilayer, water-equivalence was diminished relative to OFETs with the symmetric bilayer at low photon energies (below 80 keV). The bilayer’s composition was designed to have one layer with an effective atomic number larger than that of water and the other with an effective atomic number lower than that of water. For the particular materials used in this study, a PET layer 0.1mm thick coupled with a CYTOP layer of 900 nm provided a device with a water-equivalence within 3% between 20 keV and 5 MeV. Conclusions: organic electronic devices hold tremendous potential as water-equivalent dosimeters that could be used in a wide range of applications without recalibration.« less

  11. Micromachined Thin-Film Sensors for SOI-CMOS Co-Integration

    NASA Astrophysics Data System (ADS)

    Laconte, Jean; Flandre, D.; Raskin, Jean-Pierre

    Co-integration of sensors with their associated electronics on a single silicon chip may provide many significant benefits regarding performance, reliability, miniaturization and process simplicity without significantly increasing the total cost. Micromachined Thin-Film Sensors for SOI-CMOS Co-integration covers the challenges and interests and demonstrates the successful co-integration of gas flow sensors on dielectric membrane, with their associated electronics, in CMOS-SOI technology. We firstly investigate the extraction of residual stress in thin layers and in their stacking and the release, in post-processing, of a 1 μm-thick robust and flat dielectric multilayered membrane using Tetramethyl Ammonium Hydroxide (TMAH) silicon micromachining solution.

  12. The development of insulated electrocardiogram electrodes

    NASA Technical Reports Server (NTRS)

    Portnoy, W. M.; David, R. M.

    1971-01-01

    An integrated system was developed, consisting of an insulated electrode and an impedance transformer, which can be used for the acquisition of electrocardiographic data. The electrode consists of a thin layer of dielectric material deposited onto a silicon substrate. The impedance transformer is an operational amplifier used in the unity gain configuration. Both electrode and impedance transformer are contained in a plastic housing identical to that used with the NASA Apollo-type electrode. The lower cut off frequency of the electrode system is between 0.01 and 1.0 Hz, depending on the dielectric used and its thickness. Clinical quality electrocardiograms were obtained with these electrodes.

  13. Validated numerical simulation model of a dielectric elastomer generator

    NASA Astrophysics Data System (ADS)

    Foerster, Florentine; Moessinger, Holger; Schlaak, Helmut F.

    2013-04-01

    Dielectric elastomer generators (DEG) produce electrical energy by converting mechanical into electrical energy. Efficient operation requires homogeneous deformation of each single layer. However, by different internal and external influences like supports or the shape of a DEG the deformation will be inhomogeneous and hence negatively affect the amount of the generated electrical energy. Optimization of the deformation behavior leads to improved efficiency of the DEG and consequently to higher energy gain. In this work a numerical simulation model of a multilayer dielectric elastomer generator is developed using the FEM software ANSYS. The analyzed multilayer DEG consists of 49 active dielectric layers with layer thicknesses of 50 μm. The elastomer is silicone (PDMS) while the compliant electrodes are made of graphite powder. In the simulation the real material parameters of the PDMS and the graphite electrodes need to be included. Therefore, the mechanical and electrical material parameters of the PDMS are determined by experimental investigations of test samples while the electrode parameters are determined by numerical simulations of test samples. The numerical simulation of the DEG is carried out as coupled electro-mechanical simulation for the constant voltage energy harvesting cycle. Finally, the derived numerical simulation model is validated by comparison with analytical calculations and further simulated DEG configurations. The comparison of the determined results show good accordance with regard to the deformation of the DEG. Based on the validated model it is now possible to optimize the DEG layout for improved deformation behavior with further simulations.

  14. Dielectric and mechanical investigations on the hydrophilicity and hydrophobicity of polyethylene oxide modified on a silicon surface

    DOE PAGES

    Shang, Jing; Hong, Kunlun; Wang, Tao; ...

    2016-10-02

    Here, polyethylene oxide (PEO) has been widely used in biomedical fields. The antibiofouling property of the PEO-modified surface has been extensively investigated but is far from being fully understood. A series of PEOs with narrowly distributed molecular weight (M w), synthesized with the technique of high vacuum anionic polymerization, have been successfully grafted onto the surface of silicon wafers. The power-law relationship between the thickness of the monolayer versus the M w of the grafted PEO shows a scaling of 0.3, indicating compact condensing of the chains. The static contact angles show higher hydrophobicity for the layer of PEO withmore » higher M w, which can be attributed to the closely packed conformation of the chains with high density. The frequency shift of the contact resonance indicates that the Young’s modulus decreases and the loss factor increases with the increase in the M w of PEO and the thickness of the PEO layers. Dielectric spectroscopy of bare or PEO-grafted wafers in the aqueous solutions reveals an interfacial polarization, which results from compositional and structural changes in the interface layer and depends on temperatures and salt concentrations. At a given grafting density, the PEO chains are swollen in pure water, demonstrating hydrophilic behavior, whereas they collapse in salt solutions, showing hydrophobic characteristics.« less

  15. Multilayered models for electromagnetic reflection amplitudes

    NASA Technical Reports Server (NTRS)

    Linlor, W. I.

    1976-01-01

    The remote sensing of snowpack characteristics with surface installations or with an airborne system could have important applications in water resource management and flood prediction. To derive some insight into such applications, the electromagnetic response of multilayer snow models is analyzed. Normally incident plane waves are assumed at frequencies ranging from 10 to the 6th power to 10 to the 10th power Hz, and amplitude reflection coefficients are calculated for models having various snow-layer combinations, including ice sheets. Layers are defined by a thickness, permittivity, and conductivity; the electrical parameters are constant or prescribed functions of frequency. To illustrate the effect of various layering combinations, results are given in the form of curves of amplitude reflection coefficients, versus frequency for a variety of models. Under simplifying assumptions, the snow thickness and effective dielectric constant can be estimated from the reflection coefficient variations as a function of frequency.

  16. Enhancing the spectral response of filled bolometer arrays for submillimeter astronomy.

    PubMed

    Revéret, Vincent; Rodriguez, Louis; Agnèse, Patrick

    2010-12-10

    Future missions for astrophysical studies in the submillimeter region will need detectors with very high sensitivity and large fields of view. Bolometer arrays can fulfill these requirements over a very broad band. We describe a technique that enables bolometer arrays that use quarter-wave cavities to have a high spectral response over most of the submillimeter band. This technique is based on the addition on the front of the array of an antireflecting dielectric layer. The optimum parameters (layer thickness and distance to the array) are determined by a 2D analytic code. This general principle is applied to the case of Herschel PACS bolometers (optimized for the 60 to 210 μm band). As an example, we demonstrate experimentally that a PACS array covered by a 138 μm thick silicon layer can improve the spectral response by a factor of 1.7 in the 450 μm band.

  17. Electrical Properties of Ultrathin Hf-Ti-O Higher k Gate Dielectric Films and Their Application in ETSOI MOSFET.

    PubMed

    Xiong, Yuhua; Chen, Xiaoqiang; Wei, Feng; Du, Jun; Zhao, Hongbin; Tang, Zhaoyun; Tang, Bo; Wang, Wenwu; Yan, Jiang

    2016-12-01

    Ultrathin Hf-Ti-O higher k gate dielectric films (~2.55 nm) have been prepared by atomic layer deposition. Their electrical properties and application in ETSOI (fully depleted extremely thin SOI) PMOSFETs were studied. It is found that at the Ti concentration of Ti/(Ti + Hf) ~9.4%, low equivalent gate oxide thickness (EOT) of ~0.69 nm and acceptable gate leakage current density of 0.61 A/cm 2 @ (V fb  - 1)V could be obtained. The conduction mechanism through the gate dielectric is dominated by the F-N tunneling in the gate voltage range of -0.5 to -2 V. Under the same physical thickness and process flow, lower EOT and higher I on /I off ratio could be obtained while using Hf-Ti-O as gate dielectric compared with HfO 2 . With Hf-Ti-O as gate dielectric, two ETSOI PMOSFETs with gate width/gate length (W/L) of 0.5 μm/25 nm and 3 μm/40 nm show good performances such as high I on , I on /I off ratio in the magnitude of 10 5 , and peak transconductance, as well as suitable threshold voltage (-0.3~-0.2 V). Particularly, ETSOI PMOSFETs show superior short-channel control capacity with DIBL <82 mV/V and subthreshold swing <70 mV/decade.

  18. Growth and properties of silicon heterostructures with buried nanosize Mg2Si clusters

    NASA Astrophysics Data System (ADS)

    Galkin, N. G.; Galkin, K. N.

    2005-06-01

    The technology of solid-phase growth of nanosize islands of magnesium suicide on Si (111) 7x7 with narrow distributions of lateral size and height (60 - 80 and 5 - 7 nanometers, respectively) and density of up to 2x 109 sm-2 is proposed. A 20-50 nm thick Si layer has been grown upon these islands. Basing on the data of AES, EELS, AFM and JR spectroscopy, a conclusion is made that the Mg2Si islands remain in depth of the Si layer. The suggestion is made that sizes, density and crystal structure of the buried magnesium suicide clusters preserves. It is shown, that the system of three as-grown layers of buried clusters has smoother surface than the one layer system. The contribution of the Mg2Si clusters into the dielectric function is observed at the energy 0.8-1.2 eV, it is maximal if the clusters are localized on the silicon surface. It is shown, that with increase of the number of Mg2Si cluster layers their contribution increases into the effective number of electrons per a unit cell and effective dielectric function of the sample.

  19. Ultrahigh Energy Density in SrTiO3 Film Capacitors.

    PubMed

    Hou, Chuangming; Huang, Weichuan; Zhao, Wenbo; Zhang, Dalong; Yin, Yuewei; Li, Xiaoguang

    2017-06-21

    Solid-state dielectric film capacitors with high-energy-storage density will further promote advanced electronic devices and electrical power systems toward miniaturization, lightweight, and integration. In this study, the influence of interface and thickness on energy storage properties of SrTiO 3 (STO) films grown on La 0.67 Sr 0.33 MnO 3 (LSMO) electrode are systematically studied. The cross-sectional high resolution transmission electron microscopy reveals an ion interdiffusion layer and oxygen vacancies at the STO/LSMO interface. The capacitors show good frequency stability and increased dielectric constant with increasing STO thickness (410-710 nm). The breakdown strength (E b ) increases with decreasing STO thickness and reaches 6.8 MV/cm. Interestingly, the E b under positive field is enhanced significantly and an ultrahigh energy density up to 307 J/cm 3 with a high efficiency of 89% is realized. The enhanced E b may be related to the modulation of local electric field and redistribution of oxygen vacancies at the STO/LSMO interface. Our results should be helpful for potential strategies to design devices with ultrahigh energy density.

  20. Characterization of screen-printed electrodes for dielectric elastomer (DE) membranes: influence of screen dimensions and electrode thickness on actuator performance

    NASA Astrophysics Data System (ADS)

    Fasolt, Bettina; Hodgins, Micah; Seelecke, Stefan

    2016-04-01

    Screen printing is used as a method for printing electrodes on silicone thin films for the fabrication of dielectric elastomer transducers (DET). This method can be used to manufacture a multitude of patternable designs for actuator and sensor applications, implementing the same method for prototyping as well as large-scale production. The fabrication of DETs does not only require the development of a flexible, highly conductive electrode material, which adheres to a stretched and unstretched silicone film, but also calls for a thorough understanding of the effects of the different printing parameters. This work studies the influence of screen dimensions (open area, mesh thickness) as well as the influence of multiple-layer- printing on the electrode stiffness, electrical resistance and capacitance as well as actuator performance. The investigation was conducted in a custom-built testing device, which enabled an electro-mechanical characterization of the DET, simultaneously measuring parameters such as strain, voltage, current, force, sheet resistance, capacitance and membrane thickness. Magnified pictures of the electrodes will additionally illustrate the effects of the different printing parameters.

  1. Gate-tunable resonant tunneling in double bilayer graphene heterostructures.

    PubMed

    Fallahazad, Babak; Lee, Kayoung; Kang, Sangwoo; Xue, Jiamin; Larentis, Stefano; Corbet, Christopher; Kim, Kyounghwan; Movva, Hema C P; Taniguchi, Takashi; Watanabe, Kenji; Register, Leonard F; Banerjee, Sanjay K; Tutuc, Emanuel

    2015-01-14

    We demonstrate gate-tunable resonant tunneling and negative differential resistance in the interlayer current-voltage characteristics of rotationally aligned double bilayer graphene heterostructures separated by hexagonal boron nitride (hBN) dielectric. An analysis of the heterostructure band alignment using individual layer densities, along with experimentally determined layer chemical potentials indicates that the resonance occurs when the energy bands of the two bilayer graphene are aligned. We discuss the tunneling resistance dependence on the interlayer hBN thickness, as well as the resonance width dependence on mobility and rotational alignment.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNeill, Jason Douglas

    Electronic states of a thin layer of material on a surface possess unique physical and chemical properties. Some of these properties arise from the reduced dimensionality of the thin layer with respect to the bulk or the properties of the electric field where two materials of differing dielectric constants meet at an interface. Other properties are related to the nature of the surface chemical bond. Here, the properties of excess electrons in thin layers of Xenon, Krypton, and alkali metals are investigated, and the bound state energies and effective masses of the excess electrons are determined using two-photon photoemission. Formore » Xenon, the dependence of bound state energy, effective mass, and lifetime on layer thickness from one to nine layers is examined. Not all quantities were measured at each coverage. The two photon photoemission spectra of thin layers of Xenon on a Ag(111) substrate exhibit a number of sharp, well-defined peaks. The binding energy of the excess electronic states of Xenon layers exhibited a pronounced dependence on coverage. A discrete energy shift was observed for each additional atomic layer. At low coverage, a series of states resembling a Rydberg series is observed. This series is similar to the image state series observed on clean metal surfaces. Deviations from image state energies can be described in terms of the dielectric constant of the overlayer material and its effect on the image potential. For thicker layers of Xe (beyond the first few atomic layers), the coverage dependence of the features begins to resemble that of quantum well states. Quantum well states are related to bulk band states. However, the finite thickness of the layer restricts the perpendicular wavevector to a discrete set of values. Therefore, the spectrum of quantum well states contains a series of peaks which correspond to the various allowed values of the perpendicular wavevector. Analysis of the quantum well spectrum yields electronic band structure information. In this case, the quantum well states examined are derived from the Xenon conduction band. Measurements of the energies as a function of coverage yield the dispersion along the axis perpendicular to the surface while angle-resolved two-photon photoemission measurements yield information about dispersion along the surface parallel. The relative importance of the image potential and the overlayer band structure also depends on the quantum number and energy of the state. Some members of the image series may have an energy which is in an energy gap of the layer material, therefore such states may tend to remain physically outside the layer and retain much of their image character even at higher coverages. This is the case for the n = 1 image state of the Xe/Ag(111) system. The energies of image states which are excluded from the layer have a complex dependence on the thickness of the layer and its dielectric constant. The population decay kinetics of excited electronic states of the layer were also determined. Lifetimes are reported for the first three excited states for 1-6 atomic layers of Xe on Ag(111). As the image states evolve into quantum well states with increasing coverage, the lifetimes undergo an oscillation which marks a change in the spatial extent of the state. For example, the n = 2 quantum well state decreases substantially at 3-5 layers as the electron probability density in the layer increases. The lifetime data are modeled by extending the two-band nearly-free-electron approximation to account for the insulating Xe layer.« less

  3. pH-sensitive ion-selective field-effect transistor with zirconium dioxide film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlasov, Yu.G.; Bratov, A.V.; Tarantov, Yu.A.

    1988-09-20

    Miniature semiconductor pH sensors for liquid media, i.e., ion-selective field-effect transistors (ISFETs), are silicon field-effect transistors with a two-layer dielectric consisting of a passivating SiO/sub 2/ layer adjoining the silicon and a layer of pH-sensitive material in contact with the electrolyte solution to be tested. This study was devoted to the characteristics of pH-sensitive ISFETs with ZrO/sub 2/ films. The base was p-type silicon (KDB-10) with a (100) surface orientation. A ZrO/sub 2/ layer 10-50 nm thick was applied over the SiO/sub 2/ layer by electron-beam deposition. The measurements were made in aqueous KNO/sub 3/ or KCl solutions.

  4. Low temperature perovskite crystallization of highly tunable dielectric Ba0.7Sr0.3TiO3 thick films deposited by ion beam sputtering on platinized silicon substrates

    NASA Astrophysics Data System (ADS)

    Zhu, X. H.; Guigues, B.; Defaÿ, E.; Dubarry, C.; Aïd, M.

    2009-02-01

    Ba0.7Sr0.3TiO3 (BST) thick films with thickness up to 1 μm were deposited on Pt-coated silicon substrates by ion beam sputtering, followed by an annealing treatment. It is demonstrated that pure well-crystallized perovskite phase could be obtained in thick BST films by a low temperature process (535 °C). The BST thick films show highly tunable dielectric properties with tunability (at 800 kV/cm) up to 51.0% and 66.2%, respectively, for the 0.5 and 1 μm thick films. The relationship between strains and dielectric properties was systematically investigated in the thick films. The results suggest that a comparatively larger tensile thermal in-plane strain (0.15%) leads to the degradation in dielectric properties of the 0.5 μm thick film; besides, strong defect-related inhomogeneous strains (˜0.3%) make the dielectric peaks smearing and broadening in the thick films, which, however, preferably results in high figure-of-merit factors over a wide operating temperature range. Moreover, the leakage current behavior in the BST thick films was found to be dominated by the space-charge-limited-current mechanism, irrespective of the film thickness.

  5. Solar cell with silicon oxynitride dielectric layer

    DOEpatents

    Shepherd, Michael; Smith, David D

    2015-04-28

    Solar cells with silicon oxynitride dielectric layers and methods of forming silicon oxynitride dielectric layers for solar cell fabrication are described. For example, an emitter region of a solar cell includes a portion of a substrate having a back surface opposite a light receiving surface. A silicon oxynitride (SiO.sub.xN.sub.y, 0

  6. Microwave corrosion detection using open ended rectangular waveguide sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qaddoumi, N.; Handjojo, L.; Bigelow, T.

    The use of microwave and millimeter wave nondestructive testing methods utilizing open ended rectangular waveguide sensors has shown great potential for detecting minute thickness variations in laminate structures, in particular those backed by a conducting plate. Slight variations in the dielectric properties of materials may also be detected using a set of optimal parameters which include the standoff distance and the frequency of operation. In a recent investigation, on detecting rust under paint, the dielectric properties of rust were assumed to be similar to those of Fe{sub 2}O{sub 3} powder. These values were used in an electromagnetic model that simulatesmore » the interaction of fields radiated by a rectangular waveguide aperture with layered structures to obtain optimal parameters. The dielectric properties of Fe{sub 2}O{sub 3} were measured to be very similar to the properties of paint. Nevertheless, the presence of a simulated Fe{sub 2}O{sub 3} layer under a paint layer was detected. In this paper the dielectric properties of several different rust samples from different environments are measured. The measurements indicate that the nature of real rust is quite diverse and is different from Fe{sub 2}O{sub 3} and paint, indicating that the presence of rust under paint can be easily detected. The same electromagnetic model is also used (with the newly measured dielectric properties of real rust) to obtain an optimal standoff distance at a frequency of 24 GHz. The results indicate that variations in the magnitude as well as the phase of the reflection coefficient can be used to obtain information about the presence of rust. An experimental investigation on detecting the presence of very thin rust layers (2.5--5 x 10{sup {minus}2} mm [09--2.0 x 10{sup {minus}3} in.]) using an open ended rectangular waveguide probe is also conducted. Microwave images of rusted specimens, obtained at 24 GHz, are also presented.« less

  7. Interface composition of InAs nanowires with Al2O3 and HfO2 thin films

    NASA Astrophysics Data System (ADS)

    Timm, R.; Hjort, M.; Fian, A.; Borg, B. M.; Thelander, C.; Andersen, J. N.; Wernersson, L.-E.; Mikkelsen, A.

    2011-11-01

    Vertical InAs nanowires (NWs) wrapped by a thin high-κ dielectric layer may be a key to the next generation of high-speed metal-oxide-semiconductor devices. Here, we have investigated the structure and chemical composition of the interface between InAs NWs and 2 nm thick Al2O3 and HfO2 films. The native oxide on the NWs is significantly reduced upon high-κ deposition, although less effective than for corresponding planar samples, resulting in a 0.8 nm thick interface layer with an In-/As-oxide composition of about 0.7/0.3. The exact oxide reduction and composition including As-suboxides and the role of the NW geometry are discussed in detail.

  8. Numerical study on refractive index sensor based on hybrid-plasmonic mode

    NASA Astrophysics Data System (ADS)

    Yun, Jeong-Geun; Kim, Joonsoo; Lee, Kyookeun; Lee, Yohan; Lee, Byoungho

    2017-04-01

    We propose a highly sensitive hybrid-plasmonic sensor based on thin-gold nanoslit arrays. The transmission characteristics of gold nanoslit arrays are analyzed as changing the thickness of gold layer. The surface plasmon polariton mode excited on the sensing medium, which is sensitive to refractive index change of the sensing medium, is strengthened by reducing the thickness of the gold layer. A design rule is suggested that steeper dispersion curve of the surface plasmon polariton mode leads to higher sensitivity. For the dispersion engineering, hybrid-plasmonic structure, which consists of thin-gold nanoslit arrays, sensing region and high refractive index dielectric space is introduced. The proposed sensor structure with period of 700 nm shows the improved sensitivity up to 1080 nm/RIU (refractive index unit), and the surface sensitivity is extremely enhanced.

  9. Microminiature coaxial cable and methods manufacture

    DOEpatents

    Bongianni, Wayne L.

    1986-01-01

    A coaxial cable is provided having a ribbon inner conductor surrounded by a dielectric and a circumferential conductor. The coaxial cable may be microminiature comprising a very thin ribbon strip conductor from between 5 to 15 .mu.m thick and from 150 to 200 .mu.m wide, having a surrounding foamed dielectric or parylene applied thereon by a vapor plasma process and an outer conductor of an adhering high conductivity metal vacuum deposited on the dielectric. Alternately the foam dielectric embodiment may have a contiguous parylene coating applied adjacent the inner conductor or the outer conductor or both. Also, the cable may be fabricated by forming a thin ribbon of strip conductive material into an inner conductor, applying thereabout a dielectric by spraying on a solution of polystyrene and polyethylene and then vacuum depositing and adhering high conductivity metal about the dielectric. The cable strength may be increased by adding glass microfilament fibers or glass microballoons to the solution of polystyrene and polyethylene. Further, the outer conductive layer may be applied by electroless deposition in an aqueous solution rather than by vacuum deposition. A thin coating of parylene is preferably applied to the outer conductor to prevent its oxidation and inhibit mechanical abrasion.

  10. Microminiature coaxial cable and method of manufacture

    DOEpatents

    Bongianni, W.L.

    1989-03-28

    A coaxial cable is provided having a ribbon inner conductor surrounded by a dielectric and a circumferential conductor. The coaxial cable may be microminiature comprising a very thin ribbon strip conductor from between 5 to 15 [mu]m thick and from 150 to 200 [mu]m wide, having a surrounding foamed dielectric or parylene applied thereon by a vapor plasma process and an outer conductor of an adhering high conductivity metal vacuum deposited on the dielectric. Alternately, the foam dielectric embodiment may have a contiguous parylene coating applied adjacent the inner conductor or the outer conductor or both. Also, the cable may be fabricated by forming a thin ribbon of strip conductive material into an inner conductor, applying thereabout a dielectric by spraying on a solution of polystyrene and polyethylene and then vacuum depositing and adhering high conductivity metal about the dielectric. The cable strength may be increased by adding glass microfilament fibers or glass microspheres to the solution of polystyrene and polyethylene. Further, the outer conductive layer may be applied by electroless deposition in an aqueous solution rather than by vacuum deposition. A thin coating of parylene is preferably applied to the outer conductor to prevent its oxidation and inhibit mechanical abrasion. 2 figs.

  11. Microminiature coaxial cable and method of manufacture

    DOEpatents

    Bongianni, Wayne L.

    1989-01-01

    A coaxial cable is provided having a ribbon inner conductor surrounded by a dielectric and a circumferential conductor. The coaxial cable may be microminiature comprising a very thin ribbon strip conductor from between 5 to 15 .mu.m thick and from 150 to 200 .mu.m wide, having a surrounding foamed dielectric or parylene applied thereon by a vapor plasma process and an outer conductor of an adhering high conductivity metal vacuum deposited on the dielectric. Alternately, the foam dielectric embodiment may have a contiguous parylene coating applied adjacent the inner conductor or the outer conductor or both. Also, the cable may be fabricated by forming a thin ribbon of strip conductive material into an inner conductor, applying thereabout a dielectric by spraying on a solution of polystyrene and polyethylene and then vacuum depositing and adhering high conductivity metal about the dielectric. The cable strength may be increased by adding glass microfilament fibers or glass microspheres to the solution of polystyrene and polyethylene. Further, the outer conductive layer may be applied by electroless deposition in an aqueous solution rather than by vacuum deposition. A thin coating of parylene is preferably applied to the outer conductor to prevent its oxidation and inhibit mechanical abrasion.

  12. Microminiature coaxial cable and methods manufacture

    DOEpatents

    Bongianni, W.L.

    1986-04-08

    A coaxial cable is provided having a ribbon inner conductor surrounded by a dielectric and a circumferential conductor. The coaxial cable may be microminiature comprising a very thin ribbon strip conductor from between 5 to 15 [mu]m thick and from 150 to 200 [mu]m wide, having a surrounding foamed dielectric or parylene applied thereon by a vapor plasma process and an outer conductor of an adhering high conductivity metal vacuum deposited on the dielectric. Alternately the foam dielectric embodiment may have a contiguous parylene coating applied adjacent the inner conductor or the outer conductor or both. Also, the cable may be fabricated by forming a thin ribbon of strip conductive material into an inner conductor, applying thereabout a dielectric by spraying on a solution of polystyrene and polyethylene and then vacuum depositing and adhering high conductivity metal about the dielectric. The cable strength may be increased by adding glass microfilament fibers or glass microballoons to the solution of polystyrene and polyethylene. Further, the outer conductive layer may be applied by electroless deposition in an aqueous solution rather than by vacuum deposition. A thin coating of parylene is preferably applied to the outer conductor to prevent its oxidation and inhibit mechanical abrasion. 2 figs.

  13. Dielectric properties and microstructure of sintered BaTiO3 fabricated by using mixed 150-nm and 80-nm powders with various additives

    NASA Astrophysics Data System (ADS)

    Oh, Min Wook; Kang, Jae Won; Yeo, Dong Hun; Shin, Hyo Soon; Jeong, Dae Yong

    2015-04-01

    Recently, the use of small-sized BaTiO3 particles for ultra-thin MLCC research has increased as a method for minimizing the dielectric layer's thickness in thick film process. However, when particles smaller than 100 nm are used, the reduced particle size leads to a reduced dielectric constant. The use of nanoparticles, therefore, requires an increase in the amount of additive used due to the increase in the specific surface area, thus increasing the production cost. In this study, a novel method of coating 150-nm and 80-nm BaTiO3 powders with additives and mixing them together was employed, taking advantage of the effect obtained through the use of BaTiO3 particles smaller than 100 nm, to conveniently obtain the desired dielectric constant and thermal characteristics. Also, the microstructure and the dielectric properties were evaluated. The additives Dy, Mn, Mg, Si, and Cr were coated on a 150-nm powder, and the additives Dy, Mn, Mg, and Si were coated on 80-nm powder, followed by mixing at a ratio of 1:1. As a result, the microstructure revealed grain formation according to the liquid-phase additive Si; additionally, densification was well realized. However, non-reducibility was not obtained, and the material became a semiconductor. When the amount of added Mn in the 150-nm powder was increased to 0.2 and 0.3 mol%, insignificant changes in the microstructure were observed, and the bulk density after mixing was found to have increased drastically in comparison to that before mixing. Also, non-reducibility was obtained for certain conditions. The dielectric property was found to be consistent with the densification and the grain size. The mixed composition #1-0.3 had a dielectric constant over 2000, and the result somewhat satisfied the dielectric constant temperature dependency for X6S.

  14. All-Aluminum Thin Film Transistor Fabrication at Room Temperature.

    PubMed

    Yao, Rihui; Zheng, Zeke; Zeng, Yong; Liu, Xianzhe; Ning, Honglong; Hu, Shiben; Tao, Ruiqiang; Chen, Jianqiu; Cai, Wei; Xu, Miao; Wang, Lei; Lan, Linfeng; Peng, Junbiao

    2017-02-23

    Bottom-gate all-aluminum thin film transistors with multi conductor/insulator nanometer heterojunction were investigated in this article. Alumina (Al₂O₃) insulating layer was deposited on the surface of aluminum doping zinc oxide (AZO) conductive layer, as one AZO/Al₂O₃ heterojunction unit. The measurements of transmittance electronic microscopy (TEM) and X-ray reflectivity (XRR) revealed the smooth interfaces between ~2.2-nm-thick Al₂O₃ layers and ~2.7-nm-thick AZO layers. The devices were entirely composited by aluminiferous materials, that is, their gate and source/drain electrodes were respectively fabricated by aluminum neodymium alloy (Al:Nd) and pure Al, with Al₂O₃/AZO multilayered channel and AlO x :Nd gate dielectric layer. As a result, the all-aluminum TFT with two Al₂O₃/AZO heterojunction units exhibited a mobility of 2.47 cm²/V·s and an I on / I off ratio of 10⁶. All processes were carried out at room temperature, which created new possibilities for green displays industry by allowing for the devices fabricated on plastic-like substrates or papers, mainly using no toxic/rare materials.

  15. Photonic band gaps from a stack of right- and left-hand chiral photonic crystal layers.

    PubMed

    Gevorgyan, A H

    2012-02-01

    In the present paper we investigated the optical properties of a stack of right- and left- hand chiral photonic crystal layers. The problem is solved by Ambartsumian's layer addition modified method. We investigated the reflection spectra peculiarities of this system and showed that in contrast to a single cholesteric liquid crystal (CLC) layer this system has multiple photonic band gaps (PBGs) (at light normal incidence). We showed that this system has unique polarization properties, particularly the eigenpolarizations (EPs) of the system are degenerated (i.e., the two EPs coincide) for an even number of layers and, in contrast to ordinary gyrotropic systems, the polarization plane rotation decreases if the system thickness is increased, the rotation sign depends on the first sublayer chirality sign, the system is very sensitive to the change of the sublayer number in the system, etc. We also investigated the influence of sublayer thicknesses, incidence angle, the sublayer local dielectric anisotropies, the sublayer helix pitches on the reflection peculiarities, and other optical parameters of the system. © 2012 American Physical Society

  16. Simultaneous Noncontact Precision Imaging of Microstructural and Thickness Variation in Dielectric Materials Using Terahertz Energy

    NASA Technical Reports Server (NTRS)

    Roth, Donald J (Inventor)

    2011-01-01

    A process for simultaneously measuring the velocity of terahertz electromagnetic radiation in a dielectric material sample without prior knowledge of the thickness of the sample and for measuring the thickness of a material sample using terahertz electromagnetic radiation in a material sample without prior knowledge of the velocity of the terahertz electromagnetic radiation in the sample is disclosed and claimed. The process evaluates, in a plurality of locations, the sample for microstructural variations and for thickness variations and maps the microstructural and thickness variations by location. A thin sheet of dielectric material may be used on top of the sample to create a dielectric mismatch. The approximate focal point of the radiation source (transceiver) is initially determined for good measurements.

  17. PLZT capacitor and method to increase the dielectric constant

    DOEpatents

    Taylor, Ralph S.; Fairchild, Manuel Ray; Balachjandran, Uthamalingam; Lee, Tae H.

    2017-12-12

    A ceramic-capacitor includes a first electrically-conductive-layer, a second electrically-conductive-layer arranged proximate to the first electrically-conductive-layer, and a dielectric-layer interposed between the first electrically-conductive-layer and the second electrically-conductive-layer. The dielectric-layer is formed of a lead-lanthanum-zirconium-titanate material (PLZT), wherein the PLZT is characterized by a dielectric-constant greater than 125, when measured at 25 degrees Celsius and zero Volts bias, and an excitation frequency of ten-thousand Hertz (10 kHz). A method for increasing a dielectric constant of the lead-lanthanum-zirconium-titanate material (PLZT) includes the steps of depositing PLZT to form a dielectric-layer of a ceramic-capacitor, and heating the ceramic-capacitor to a temperature not greater than 300.degree. C.

  18. P-polarized reflectance spectroscopy: A high sensitive real-time monitoring technique to study surface kinetics under steady state epitaxial deposition conditions

    NASA Technical Reports Server (NTRS)

    Dietz, Nikolaus; Bachmann, Klaus J.

    1995-01-01

    This paper describes the results of real-time optical monitoring of epitaxial growth processes by p-polarized reflectance spectroscopy (PRS) using a single wavelength application under pulsed chemical beam epitaxy (PCBE) condition. The high surface sensitivity of PRS allows the monitoring of submonolayer precursors coverage on the surface as shown for GaP homoepitaxy and GaP on Si heteroepitaxy as examples. In the case of heteroepitaxy, the growth rate and optical properties are revealed by PRS using interference oscillations as they occur during growth. Super-imposed on these interference oscillations, the PRS signal exhibits a fine structure caused by the periodic alteration of the surface chemistry by the pulsed supply of chemical precursors. This fine structure is modeled under conditions where the surface chemistry cycles between phosphorus supersaturated and phosphorus depleted surfaces. The mathematical model describes the fine structure using a surface layer that increases during the tertiarybutyl phosphine (TBP) supply and decreases during and after the triethylgallium (TEG) pulse, which increases the growing GaP film thickness. The imaginary part of the dielectric function of the surface layer is revealed from the turning points in the fine structure, where the optical response to the first precursor pulse in the cycle sequence changes sign. The amplitude of the fine structure is determined by the surface layer thickness and the complex dielectric functions for the surface layer with the underlying bulk film. Surface kinetic data can be obtained by analyzing the rise and decay transients of the fine structure.

  19. Charging and breakdown in amorphous dielectrics: Phenomenological modeling approach and applications

    NASA Astrophysics Data System (ADS)

    Palit, Sambit

    Amorphous dielectrics of different thicknesses (nm to mm) are used in various applications. Low temperature processing/deposition of amorphous thin-film dielectrics often result in defect-states or electronic traps. These traps are responsible for increased leakage currents and bulk charge trapping in many associated applications. Additional defects may be generated during regular usage, leading to electrical breakdown. Increased leakage currents, charge trapping and defect generation/breakdown are important and pervasive reliability concerns in amorphous dielectrics. We first explore the issue of charge accumulation and leakage in amorphous dielectrics. Historically, charge transport in amorphous dielectrics has been presumed, depending on the dielectric thickness, to be either bulk dominated (Frenkel-Poole (FP) emission) or contact dominated (Fowler-Nordheim tunneling). We develop a comprehensive dielectric charging modeling framework which solves for the transient and steady state charge accumulation and leakage currents in an amorphous dielectric, and show that for intermediate thickness dielectrics, the conventional assumption of FP dominated current transport is incorrect, and may lead to false extraction of dielectric parameters. We propose an improved dielectric characterization methodology based on an analytical approximation of our model. Coupled with ab-initio computed defect levels, the dielectric charging model explains measured leakage currents more accurately with lesser empiricism. We study RF-MEMS capacitive switches as one of the target applications of intermediate thickness amorphous dielectrics. To achieve faster analysis and design of RF-MEMS switches in particular, and electro-mechanical actuators in general, we propose a set of fundamental scaling relationships which are independent of specific physical dimensions and material properties; the scaling relationships provide an intrinsic classification of all electro-mechanical actuators. However, RF-MEMS capacitive switches are plagued by the reliability issue of temporal shifts of actuation voltages due to dielectric charge accumulation, often resulting in failure due to membrane stiction. Using the dielectric charging model, we show that in spite of unpredictable roughness of deposited dielectrics, there are predictable shifts in actuation voltages due to dielectric charging in RF-MEMS switches. We also propose a novel non-obtrusive, non-contact, fully electronic resonance based technique to characterize charging driven actuation shifts in RF-MEMS switches which overcomes limitations in conventionally used methods. Finally, we look into the issue of defect generation and breakdown in thick polymer dielectrics. Polymer materials often face premature electrical breakdown due to high electric fields and frequencies, and exposure to ambient humidity conditions. Using a field-driven correlated defect generation model, coupled with a model for temperature rise due to dielectric heating at AC stresses, we explain measured trends in time-to-breakdown and breakdown electric fields in polymer materials. Using dielectric heating we are able to explain the observed lifetime and dielectric strength reduction with increasing dielectric thicknesses. Performing lifetime measurements after exposure to controlled humidity conditions, we find that moisture ingress into a polymer material reduces activation barriers for chain breakage and increases dielectric heating. Overall, this thesis develops a comprehensive framework of dielectric charging, leakage and degradation of insulators of different thicknesses that have broad applications in multiple technologies.

  20. Discharge cell for ozone generator

    DOEpatents

    Nakatsuka, Suguru

    2000-01-01

    A discharge cell for use in an ozone generator is provided which can suppress a time-related reduction in ozone concentration without adding a catalytic gas such as nitrogen gas to oxygen gas as a raw material gas. The discharge cell includes a pair of electrodes disposed in an opposed spaced relation with a discharge space therebetween, and a dielectric layer of a three-layer structure consisting of three ceramic dielectric layers successively stacked on at least one of the electrodes, wherein a first dielectric layer of the dielectric layer contacting the one electrode contains no titanium dioxide, wherein a second dielectric layer of the dielectric layer exposed to the discharge space contains titanium dioxide in a metal element ratio of not lower than 10 wt %.

  1. Solution-processable alumina: PVP nanocomposite dielectric layer for high-performance organic thin-film transistors

    NASA Astrophysics Data System (ADS)

    Lin, Hui; Kong, Xiao; Li, Yiran; Kuang, Peng; Tao, Silu

    2018-03-01

    In this article, we have investigated the effect of nanocomposite gate dielectric layer built by alumina (Al2O3) and poly(4-vinyphenol) (PVP) with solution method which could enhance the dielectric capability and decrease the surface polarity. Then, we used modify layer to optimize the surface morphology of dielectric layer to further improve the insulation capability, and finally we fabricated the high-performance and low-voltage organic thin-film transistors by using this nanocomposite dielectric layer. The result shows that the devices with Al2O3:10%PVP dielectric layer with a modified layer exhibited a mobility of 0.49 cm2/Vs, I on/Ioff ratio of 7.8 × 104, threshold voltage of - 1.2 V, sub-threshold swing of 0.3 V/dec, and operating voltage as low as - 4 V. The improvement of devices performance was owing to the good insulation capability, appropriate capacitance of dielectric layer, and preferable interface contact, smaller crystalline size of active layer.

  2. Low temperature perovskite crystallization of highly tunable dielectric Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} thick films deposited by ion beam sputtering on platinized silicon substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, X. H.; Defaye, E.; Aied, M.

    2009-02-15

    Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} (BST) thick films with thickness up to 1 {mu}m were deposited on Pt-coated silicon substrates by ion beam sputtering, followed by an annealing treatment. It is demonstrated that pure well-crystallized perovskite phase could be obtained in thick BST films by a low temperature process (535 deg. C). The BST thick films show highly tunable dielectric properties with tunability (at 800 kV/cm) up to 51.0% and 66.2%, respectively, for the 0.5 and 1 {mu}m thick films. The relationship between strains and dielectric properties was systematically investigated in the thick films. The results suggest that a comparatively largermore » tensile thermal in-plane strain (0.15%) leads to the degradation in dielectric properties of the 0.5 {mu}m thick film; besides, strong defect-related inhomogeneous strains ({approx}0.3%) make the dielectric peaks smearing and broadening in the thick films, which, however, preferably results in high figure-of-merit factors over a wide operating temperature range. Moreover, the leakage current behavior in the BST thick films was found to be dominated by the space-charge-limited-current mechanism, irrespective of the film thickness.« less

  3. Controlling dielectric and relaxor-ferroelectric properties for energy storage by tuning Pb0.92La0.08Zr0.52Ti0.48O3 film thickness.

    PubMed

    Brown, Emery; Ma, Chunrui; Acharya, Jagaran; Ma, Beihai; Wu, Judy; Li, Jun

    2014-12-24

    The energy storage properties of Pb0.92La0.08Zr0.52Ti0.48O3 (PLZT) films grown via pulsed laser deposition were evaluated at variable film thickness of 125, 250, 500, and 1000 nm. These films show high dielectric permittivity up to ∼1200. Cyclic I-V measurements were used to evaluate the dielectric properties of these thin films, which not only provide the total electric displacement, but also separate contributions from each of the relevant components including electric conductivity (D1), dielectric capacitance (D2), and relaxor-ferroelectric domain switching polarization (P). The results show that, as the film thickness increases, the material transits from a linear dielectric to nonlinear relaxor-ferroelectric. While the energy storage per volume increases with the film thickness, the energy storage efficiency drops from ∼80% to ∼30%. The PLZT films can be optimized for different energy storage applications by tuning the film thickness to optimize between the linear and nonlinear dielectric properties and energy storage efficiency.

  4. Controlling Dielectric and Relaxor-Ferroelectric Properties for Energy Storage by Tuning Pb 0.92La 0.08Zr 0.52Ti 0.48O 3 Film Thickness

    DOE PAGES

    Brown, Emery; Ma, Chunrui; Acharya, Jagaran; ...

    2014-12-24

    The energy storage properties of Pb 0.92La 0.08Zr 0.52Ti 0.48O 3 (PLZT) films grown via pulsed laser deposition were evaluated at variable film thickness of 125, 250, 500, and 1000 nm. These films show high dielectric permittivity up to ~1200. Cyclic I–V measurements were used to evaluate the dielectric properties of these thin films, which not only provide the total electric displacement, but also separate contributions from each of the relevant components including electric conductivity (D1), dielectric capacitance (D2), and relaxor-ferroelectric domain switching polarization (P). Our results show that, as the film thickness increases, the material transits from a linearmore » dielectric to nonlinear relaxor-ferroelectric. And while the energy storage per volume increases with the film thickness, the energy storage efficiency drops from ~80% to ~30%. The PLZT films can be optimized for different energy storage applications by tuning the film thickness to optimize between the linear and nonlinear dielectric properties and energy storage efficiency.« less

  5. TiO2-Based Indium Phosphide Metal-Oxide-Semiconductor Capacitor with High Capacitance Density.

    PubMed

    Cheng, Chun-Hu; Hsu, Hsiao-Hsuan; Chou, Kun-i

    2015-04-01

    We report a low-temperature InP p-MOS with a high capacitance density of 2.7 µF/cm2, low leakage current of 0.77 A/cm2 at 1 V and tight current distribution. The high-density and low-leakage InP MOS was achieved by using high-κ TiLaO dielectric and ultra-thin SiO2 buffer layer with a thickness of less than 0.5 nm. The obtained EOT can be aggressively scaled down to < 1 nm through the use of stacked TiLaO/SiO2 dielectric, which has the potential for the future application of high mobility III-V CMOS devices.

  6. Optimized dielectric properties of SrTiO3:Nb /SrTiO3 (001) films for high field effect charge densities

    NASA Astrophysics Data System (ADS)

    Cai, Xiuyu; Frisbie, C. Daniel; Leighton, C.

    2006-12-01

    The authors report the growth, structural and electrical characterizations of SrTiO3 films deposited on conductive SrTiO3:Nb (001) substrates by high pressure reactive rf magnetron sputtering. Optimized deposition parameters yield smooth epitaxial layers of high crystalline perfection with a room temperature dielectric constant ˜200 (for a thickness of 1150Å). The breakdown fields in SrTiO3:Nb /SrTiO3/Ag capacitors are consistent with induced charge densities >1×1014cm-2 for both holes and electrons, making these films ideal for high charge density field effect devices.

  7. Capacitive Biosensors and Molecularly Imprinted Electrodes.

    PubMed

    Ertürk, Gizem; Mattiasson, Bo

    2017-02-17

    Capacitive biosensors belong to the group of affinity biosensors that operate by registering direct binding between the sensor surface and the target molecule. This type of biosensors measures the changes in dielectric properties and/or thickness of the dielectric layer at the electrolyte/electrode interface. Capacitive biosensors have so far been successfully used for detection of proteins, nucleotides, heavy metals, saccharides, small organic molecules and microbial cells. In recent years, the microcontact imprinting method has been used to create very sensitive and selective biorecognition cavities on surfaces of capacitive electrodes. This chapter summarizes the principle and different applications of capacitive biosensors with an emphasis on microcontact imprinting method with its recent capacitive biosensor applications.

  8. Design and measure of a tunable double-band metamaterial absorber in the THz spectrum

    NASA Astrophysics Data System (ADS)

    Guiming, Han

    2018-04-01

    We demonstrate and measure a hybrid double-band tunable metamaterial absorber in the terahertz region. The measured metamaterial absorber contains of a hybrid dielectric layer structure: a SU-8 layer and a VO2 layer. Near perfect double-band absorption performances are achieved by optimizing the SU-8 layer thickness at room temperature 25 °C. Measured results show that the phase transition can be observed when the measured temperature reaches 68 °C. Further measured results indicate that the resonance frequency and absorption amplitude of the proposed metamaterial absorber are tunable through increasing the measured temperature, while structural parameters unchanged. The proposed hybrid metamaterial absorber shows many advantages, such as frequency agility, absorption amplitude tunable, and simple fabrication.

  9. A Novel, Real-Valued Genetic Algorithm for Optimizing Radar Absorbing Materials

    NASA Technical Reports Server (NTRS)

    Hall, John Michael

    2004-01-01

    A novel, real-valued Genetic Algorithm (GA) was designed and implemented to minimize the reflectivity and/or transmissivity of an arbitrary number of homogeneous, lossy dielectric or magnetic layers of arbitrary thickness positioned at either the center of an infinitely long rectangular waveguide, or adjacent to the perfectly conducting backplate of a semi-infinite, shorted-out rectangular waveguide. Evolutionary processes extract the optimal physioelectric constants falling within specified constraints which minimize reflection and/or transmission over the frequency band of interest. This GA extracted the unphysical dielectric and magnetic constants of three layers of fictitious material placed adjacent to the conducting backplate of a shorted-out waveguide such that the reflectivity of the configuration was 55 dB or less over the entire X-band. Examples of the optimization of realistic multi-layer absorbers are also presented. Although typical Genetic Algorithms require populations of many thousands in order to function properly and obtain correct results, verified correct results were obtained for all test cases using this GA with a population of only four.

  10. Polymer thick-film conductors and dielectrics for membrane switches and flexible circuitry

    NASA Technical Reports Server (NTRS)

    Nazarenko, N.

    1983-01-01

    The fabrication and operation of membrane switches are discussed. The membrane switch functions as a normally open, momentary contact, low-voltage pressure-sensitive device. Its design is a three-layer sandwich usually constructed of polyester film. Conductive patterns are deposited onto the inner side of top and bottom sheets by silk screening. The center spacer is then placed between the two circuit layers to form a sandwich, generally held together by an adhesive. When pressure is applied to the top layer, it flexes through the punched openings of the spacer to establish electrical contact between conductive pads of the upper and lower sheets, momentarily closing the circuit. Upon release of force the top sheet springs back to its normal open position. The membrane touch switch is being used in a rapidly expanding range of applications, including instrumentation, appliances, electronic games and keyboards. Its board acceptance results from its low cost, durability, ease of manufacture, cosmetic appeal and design flexibility. The principal electronic components in the membrane switch are the conductor and dielectric.

  11. Narrow Band Filter at 1550 nm Based on Quasi-One-Dimensional Photonic Crystal with a Mirror-Symmetric Heterostructure.

    PubMed

    Wang, Fang; Cheng, Yong Zhi; Wang, Xian; Zhang, Yi Nan; Nie, Yan; Gong, Rong Zhou

    2018-06-27

    In this paper, we present a high-efficiency narrow band filter (NBF) based on quasi-one-dimensional photonic crystal (PC) with a mirror symmetric heterostructure. Similarly to the Fabry-Perot-like resonance cavity, the alternately-arranged dielectric layers on both sides act as the high reflectance and the junction layers used as the defect mode of the quasi-one-dimensional PC, which can be designed as a NBF. The critical conditions for the narrow pass band with high transmittance are demonstrated and analyzed by simulation and experiment. The simulation results indicate that the transmission peak of the quasi-one-dimensional PC-based NBF is up to 95.99% at the telecommunication wavelength of 1550 nm, which agrees well with the experiment. Furthermore, the influences of the periodicity and thickness of dielectric layers on the transmission properties of the PC-based NBF also have been studied numerically. Due to its favorable properties of PC-based NBF, it is can be found to have many potential applications, such as detection, sensing, and communication.

  12. Finite-size effects of hysteretic dynamics in multilayer graphene on a ferroelectric

    DOE PAGES

    Morozovska, Anna N.; Pusenkova, Anastasiia S.; Varenyk, Oleksandr V.; ...

    2015-06-11

    The origin and influence of finite-size effects on the nonlinear dynamics of space charge stored by multilayer graphene on a ferroelectric and resistivity of graphene channel were analyzed. In this paper, we develop a self-consistent approach combining the solution of electrostatic problems with the nonlinear Landau-Khalatnikov equations for a ferroelectric. The size-dependent behaviors are governed by the relations between the thicknesses of multilayer graphene, ferroelectric film, and the dielectric layer. The appearance of charge and electroresistance hysteresis loops and their versatility stem from the interplay of polarization reversal dynamics and its incomplete screening in an alternating electric field. These featuresmore » are mostly determined by the dielectric layer thickness. The derived analytical expressions for electric fields and space-charge-density distribution in a multilayer system enable knowledge-driven design of graphene-on-ferroelectric heterostructures with advanced performance. We further investigate the effects of spatially nonuniform ferroelectric domain structures on the graphene layers’ conductivity and predict its dramatic increase under the transition from multi- to single-domain state in a ferroelectric. Finally, this intriguing effect can open possibilities for the graphene-based sensors and explore the underlying physical mechanisms in the operation of graphene field-effect transistor with ferroelectric gating.« less

  13. Ultra-capacitor flexible films with tailored dielectric constants using electric field assisted assembly of nanoparticles.

    PubMed

    Batra, Saurabh; Cakmak, Miko

    2015-12-28

    In this study, the chaining and preferential alignment of barium titanate nanoparticles (100 nm) through the thickness direction of a polymer matrix in the presence of an electric field is shown. Application of an AC electric field in a well-dispersed solution leads to the formation of chains of nanoparticles in discrete rows oriented with their primary axis in the E-field direction due to dielectrophoresis. The change in the orientation of these chains was quantified through statistical analysis of SEM images and was found to be dependent on E-field, frequency and viscosity. When a DC field is applied a distinct layer consisting of dense particles was observed with micro-computed tomography. These studies show that the increase in DC voltage leads to increase in the thickness of the particle rich layer along with the packing density also increasing. Increasing the mutual interactions between particles due to the formation of particle chains in the "Z"-direction decreases the critical percolation concentration above which substantial enhancement of properties occurs. This manufacturing method therefore shows promise to lower the cost of the products for a range of applications including capacitors by either enhancing the dielectric properties for a given concentration or reduces the concentration of nanoparticles needed for a given property.

  14. Numerical Simulation of Liquid Metal RF MEMS Switch Based on EWOD

    NASA Astrophysics Data System (ADS)

    Liu, Tingting; Gao, Yang; Yang, Tao; Guo, Huihui

    2018-03-01

    Conventional RF MEMS switches rely on metal-to-dielectric or metal-to-metal contacts. Some problems in the “solid-solid” contact, such as contact degradation, signal bounce and poor reliability, can be solved by using “liquid-solid” contact. The RF MEMS switch based on liquid metal is characterized by small contact resistance, no moving parts, high reliability and long life. Using electrowetting-on-dielectric (EWOD) way to control the movement of liquid metal in the RF MEMS switch, to achieve the “on” and “off” of the switch. In this paper, the electrical characteristics and RF characteristics of RF MEMS switches are simulated by fluid mechanics software FLUENT and electromagnetic simulation software HFSS. The effects of driving voltage, switching time, dielectric layer, hydrophobic layer material and thickness, switching channel height on the RF characteristics are studied. The results show that to increase the external voltage to the threshold voltage of 58V, the liquid metal began to move, and the switching time from “off” state to “on” state is 16ms. In the 0~20GHz frequency range, the switch insertion loss is less than 0.28dB, isolation is better than 23.32dB.

  15. HfSe2 and ZrSe2: Two-dimensional semiconductors with native high-κ oxides

    PubMed Central

    Mleczko, Michal J.; Zhang, Chaofan; Lee, Hye Ryoung; Kuo, Hsueh-Hui; Magyari-Köpe, Blanka; Moore, Robert G.; Shen, Zhi-Xun; Fisher, Ian R.; Nishi, Yoshio; Pop, Eric

    2017-01-01

    The success of silicon as a dominant semiconductor technology has been enabled by its moderate band gap (1.1 eV), permitting low-voltage operation at reduced leakage current, and the existence of SiO2 as a high-quality “native” insulator. In contrast, other mainstream semiconductors lack stable oxides and must rely on deposited insulators, presenting numerous compatibility challenges. We demonstrate that layered two-dimensional (2D) semiconductors HfSe2 and ZrSe2 have band gaps of 0.9 to 1.2 eV (bulk to monolayer) and technologically desirable “high-κ” native dielectrics HfO2 and ZrO2, respectively. We use spectroscopic and computational studies to elucidate their electronic band structure and then fabricate air-stable transistors down to three-layer thickness with careful processing and dielectric encapsulation. Electronic measurements reveal promising performance (on/off ratio > 106; on current, ~30 μA/μm), with native oxides reducing the effects of interfacial traps. These are the first 2D materials to demonstrate technologically relevant properties of silicon, in addition to unique compatibility with high-κ dielectrics, and scaling benefits from their atomically thin nature. PMID:28819644

  16. High thermal conductivity lossy dielectric using co-densified multilayer configuration

    DOEpatents

    Tiegs, Terry N.; Kiggans, Jr., James O.

    2003-06-17

    Systems and methods are described for loss dielectrics. A method of manufacturing a lossy dielectric includes providing at least one high dielectric loss layer and providing at least one high thermal conductivity-electrically insulating layer adjacent the at least one high dielectric loss layer and then densifying together. The systems and methods provide advantages because the lossy dielectrics are less costly and more environmentally friendly than the available alternatives.

  17. Large-area growth of multi-layer hexagonal boron nitride on polished cobalt foils by plasma-assisted molecular beam epitaxy

    PubMed Central

    Xu, Zhongguang; Tian, Hao; Khanaki, Alireza; Zheng, Renjing; Suja, Mohammad; Liu, Jianlin

    2017-01-01

    Two-dimensional (2D) hexagonal boron nitride (h-BN), which has a similar honeycomb lattice structure to graphene, is promising as a dielectric material for a wide variety of potential applications based on 2D materials. Synthesis of high-quality, large-size and single-crystalline h-BN domains is of vital importance for fundamental research as well as practical applications. In this work, we report the growth of h-BN films on mechanically polished cobalt (Co) foils using plasma-assisted molecular beam epitaxy. Under appropriate growth conditions, the coverage of h-BN layers can be readily controlled by growth time. A large-area, multi-layer h-BN film with a thickness of 5~6 nm is confirmed by Raman spectroscopy, scanning electron microscopy, X-ray photoelectron spectroscopy and transmission electron microscopy. In addition, the size of h-BN single domains is 20~100 μm. Dielectric property of as-grown h-BN film is evaluated by characterization of Co(foil)/h-BN/Co(contact) capacitor devices. Breakdown electric field is in the range of 3.0~3.3 MV/cm, which indicates that the epitaxial h-BN film has good insulating characteristics. In addition, the effect of substrate morphology on h-BN growth is discussed regarding different domain density, lateral size, and thickness of the h-BN films grown on unpolished and polished Co foils. PMID:28230178

  18. Front-Side Microstrip Line Feeding a Raised Antenna Patch

    NASA Technical Reports Server (NTRS)

    Hodges, Richard; Hoppe, Daniel

    2005-01-01

    An improved design concept for a printed-circuit patch antenna and the transmission line that feeds the patch calls for (1) a microstrip transmission line on the front (radiative) side of a printed-circuit board based on a thin, high-permittivity dielectric substrate; (2) using the conductor covering the back side of the circuit board as a common ground plane for both the microstrip line and the antenna patch; (3) supporting the antenna patch in front of the circuit board on a much thicker, lower-permittivity dielectric spacer layer; and (4) connecting the microstrip transmission line to the patch by use of a thin wire or narrow ribbon that extends through the thickness of the spacer and is oriented perpendicularly to the circuit-board plane. The thickness of the substrate is typically chosen so that a microstrip transmission line of practical width has an impedance between 50 and 100 ohms. The advantages of this design concept are best understood in the context of the disadvantages of prior design concepts, as explained

  19. CMOS compatible metamaterial absorbers for hyperspectral medium wave infrared imaging and sensing applications.

    PubMed

    Grant, James; Kenney, Mitchell; Shah, Yash D; Escorcia-Carranza, Ivonne; Cumming, David R S

    2018-04-16

    We experimentally demonstrate a CMOS compatible medium wave infrared metal-insulator-metal (MIM) metamaterial absorber structure where for a single dielectric spacer thickness at least 93% absorption is attained for 10 separate bands centred at 3.08, 3.30, 3.53, 3.78, 4.14, 4.40, 4.72, 4.94, 5.33, 5.60 μm. Previous hyperspectral MIM metamaterial absorber designs required that the thickness of the dielectric spacer layer be adjusted in order to attain selective unity absorption across the band of interest thereby increasing complexity and cost. We show that the absorption characteristics of the hyperspectral metamaterial structures are polarization insensitive and invariant for oblique incident angles up to 25° making them suitable for practical implementation in an imaging system. Finally, we also reveal that under TM illumination and at certain oblique incident angles there is an extremely narrowband Fano resonance (Q > 50) between the MIM absorber mode and the surface plasmon polariton mode that could have applications in hazardous/toxic gas identification and biosensing.

  20. Advanced optical modeling of TiN metal hard mask for scatterometric critical dimension metrology

    NASA Astrophysics Data System (ADS)

    Ebersbach, Peter; Urbanowicz, Adam M.; Likhachev, Dmitriy; Hartig, Carsten

    2017-03-01

    The majority of scatterometric production control models assume constant optical properties of the materials and only dimensional parameters are allowed to vary. However, this assumption, especially in case of thin-metal films, negatively impacts model precision and accuracy. In this work we focus on optical modeling of the TiN metal hardmask for scatterometry applications. Since the dielectric function of TiN exhibits thickness dependence, we had to take this fact into account. Moreover, presence of the highly absorbing films influences extracted thicknesses of dielectric layers underneath the metal films. The later phenomenon is often not reflected by goodness of fit. We show that accurate optical modeling of metal is essential to achieve desired scatterometric model quality for automatic process control in microelectronic production. Presented modeling methodology can be applied to other TiN applications such as diffusion barriers and metal gates as well as for other metals used in microelectronic manufacturing for all technology nodes.

  1. Multilayer Lead-Free Ceramic Capacitors with Ultrahigh Energy Density and Efficiency.

    PubMed

    Li, Jinglei; Li, Fei; Xu, Zhuo; Zhang, Shujun

    2018-06-26

    The utilization of antiferroelectric (AFE) materials is thought to be an effective approach to enhance the energy density of dielectric capacitors. However, the high energy dissipation and inferior reliability that are associated with the antiferroelectric-ferroelectric phase transition are the main issues that restrict the applications of antiferroelectric ceramics. Here, simultaneously achieving high energy density and efficiency in a dielectric ceramic is proposed by combining antiferroelectric and relaxor features. Based on this concept, a lead-free dielectric (Na 0.5 Bi 0.5 )TiO 3 -x(Sr 0.7 Bi 0.2 )TiO 3 (NBT-xSBT) system is investigated and the corresponding multilayer ceramic capacitors (MLCCs) are fabricated. A record-high energy density of 9.5 J cm -3 , together with a high energy efficiency of 92%, is achieved in NBT-0.45SBT multilayer ceramic capacitors, which consist of ten dielectric layers with the single-layer thickness of 20 µm and the internal electrode area of 6.25 mm 2 . Furthermore, the newly developed capacitor exhibits a wide temperature usage range of -60 to 120 °C, with an energy-density variation of less than 10%, and satisfactory cycling reliability, with degradation of less than 8% over 10 6 cycles. These characteristics demonstrate that the NBT-0.45SBT multilayer ceramic is a promising candidate for high-power energy storage applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Graphene Oxide Papers Simultaneously Doped with Mg(2+) and Cl(-) for Exceptional Mechanical, Electrical, and Dielectric Properties.

    PubMed

    Lin, Xiuyi; Shen, Xi; Sun, Xinying; Liu, Xu; Wu, Ying; Wang, Zhenyu; Kim, Jang-Kyo

    2016-01-27

    This paper reports simultaneous modification of graphene oxide (GO) papers by functionalization with MgCl2. The Mg(2+) ions enhance both the interlayer cross-links and lateral bridging between the edges of adjacent GO sheets by forming Mg-O bonds. The improved load transfer between the GO sheets gives rise to a maximum of 200 and 400% increases in Young's modulus and tensile strength of GO papers. The intercalation of chlorine between the GO layers alters the properties of GO papers in two ways by forming ionic Cl(-) and covalent C-Cl bonds. The p-doping effect arising from Cl contributes to large enhancements in electrical conductivities of GO papers, with a remarkable 2500-fold surge in the through-thickness direction. The layered structure and the anisotropic electrical conductivities of reduced GO papers naturally create numerous nanocapacitors that lead to charge accumulation based on the Maxwell-Wagner (MW) polarization. The combined effect of much promoted dipolar polarizations due to Mg-O, C-Cl, and Cl(-) species results in an exceptionally high dielectric constant greater than 60 000 and a dielectric loss of 3 at 1 kHz by doping with 2 mM MgCl2. The excellent mechanical and electrical properties along with unique dielectric performance shown by the modified GO and rGO papers open new avenues for niche applications, such as electromagnetic interference shielding materials.

  3. Thin Sea-Ice Thickness as Inferred from Passive Microwave and In Situ Observations

    NASA Technical Reports Server (NTRS)

    Naoki, Kazuhiro; Ukita, Jinro; Nishio, Fumihiko; Nakayama, Masashige; Comiso, Josefino C.; Gasiewski, Al

    2007-01-01

    Since microwave radiometric signals from sea-ice strongly reflect physical conditions of a layer near the ice surface, a relationship of brightness temperature with thickness is possible especially during the early stages of ice growth. Sea ice is most saline during formation stage and as the salinity decreases with time while at the same time the thickness of the sea ice increases, a corresponding change in the dielectric properties and hence the brightness temperature may occur. This study examines the extent to which the relationships of thickness with brightness temperature (and with emissivity) hold for thin sea-ice, approximately less than 0.2 -0.3 m, using near concurrent measurements of sea-ice thickness in the Sea of Okhotsk from a ship and passive microwave brightness temperature data from an over-flying aircraft. The results show that the brightness temperature and emissivity increase with ice thickness for the frequency range of 10-37 GHz. The relationship is more pronounced at lower frequencies and at the horizontal polarization. We also established an empirical relationship between ice thickness and salinity in the layer near the ice surface from a field experiment, which qualitatively support the idea that changes in the near-surface brine characteristics contribute to the observed thickness-brightness temperature/emissivity relationship. Our results suggest that for thin ice, passive microwave radiometric signals contain, ice thickness information which can be utilized in polar process studies.

  4. Shellac Films as a Natural Dielectric Layer for Enhanced Electron Transport in Polymer Field-Effect Transistors.

    PubMed

    Baek, Seung Woon; Ha, Jong-Woon; Yoon, Minho; Hwang, Do-Hoon; Lee, Jiyoul

    2018-06-06

    Shellac, a natural polymer resin obtained from the secretions of lac bugs, was evaluated as a dielectric layer in organic field-effect transistors (OFETs) on the basis of donor (D)-acceptor (A)-type conjugated semiconducting copolymers. The measured dielectric constant and breakdown field of the shellac layer were ∼3.4 and 3.0 MV/cm, respectively, comparable with those of a poly(4-vinylphenol) (PVP) film, a commonly used dielectric material. Bottom-gate/top-contact OFETs were fabricated with shellac or PVP as the dielectric layer and one of three different D-A-type semiconducting copolymers as the active layer: poly(cyclopentadithiophene- alt-benzothiadiazole) with p-type characteristics, poly(naphthalene-bis(dicarboximide)- alt-bithiophene) [P(NDI2OD-T2)] with n-type characteristics, and poly(dithienyl-diketopyrrolopyrrole- alt-thienothiophene) [P(DPP2T-TT)] with ambipolar characteristics. The electrical characteristics of the fabricated OFETs were then measured. For all active layers, OFETs with a shellac film as the dielectric layer exhibited a better mobility than those with PVP. For example, the mobility of the OFET with a shellac dielectric and n-type P(NDI2OD-T2) active layer was approximately 2 orders of magnitude greater than that of the corresponding OFET with a PVP insulating layer. When P(DPP2T-TT) served as the active layer, the OFET with shellac as the dielectric exhibited ambipolar characteristics, whereas the corresponding OFET with the PVP dielectric operated only in hole-accumulation mode. The total density of states was analyzed using technology computer-aided design simulations. The results revealed that compared with the OFETs with PVP as the dielectric, the OFETs with shellac as the dielectric had a lower trap-site density at the polymer semiconductor/dielectric interface and much fewer acceptor-like trap sites acting as electron traps. These results demonstrate that shellac is a suitable dielectric material for D-A-type semiconducting copolymer-based OFETs, and the use of shellac as a dielectric layer facilitates electron transport at the interface with D-A-type copolymer channels.

  5. Design guidelines for advanced LSI microcircuit packaging using thick film multilayer technology

    NASA Technical Reports Server (NTRS)

    Peckinpaugh, C. J.

    1974-01-01

    Ceramic multilayer circuitry results from the sequential build-up of two or more layers of pre-determined conductive interconnections separated by dielectric layers and fired at an elevated temperature to form a solidly fused structure. The resultant ceramic interconnect matrix is used as a base to mount active and passive devices and provide the necessary electrical interconnection to accomplish the desired electrical circuit. Many methods are known for developing multilevel conductor mechanisms such as multilayer printed circuits, welded wire matrices, flexible copper tape conductors, and thin and thick-film ceramic multilayers. Each method can be considered as a specialized field with each possessing its own particular set of benefits and problems. This design guide restricts itself to the art of design, fabrication and assembly of ceramic multilayer circuitry and the reliability of the end product.

  6. Using a novel rigid-fluoride polymer to control the interfacial thickness of graphene and tailor the dielectric behavior of poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene) nanocomposites.

    PubMed

    Han, Xianghui; Chen, Sheng; Lv, Xuguang; Luo, Hang; Zhang, Dou; Bowen, Chris R

    2018-01-24

    Polymer nanocomposites based on conductive fillers for high performance dielectrics have attracted increasing attention in recent years. However, a number of physical issues are unclear, such as the effect of interfacial thickness on the dielectric properties of the polymer nanocomposites, which limits the enhancement of permittivity. In this research, two core-shell structured reduced graphene oxide (rGO)@rigid-fluoro-polymer conducting fillers with different shell thicknesses are prepared using a surface-initiated reversible-addition-fragmentation chain transfer polymerization method, which are denoted as rGO@PTFMS-1 with a thin shell and rGO@PTFMS-2 with a thick shell. A rigid liquid crystalline fluoride-polymer poly{5-bis[(4-trifluoro-methoxyphenyl)oxycarbonyl]styrene} (PTFMS) is chosen for the first time to tailor the shell thicknesses of rGO via tailoring the degree of polymerization. The effect of interfacial thickness on the dielectric behavior of the P(VDF-TrFE-CTFE) nanocomposites with rGO and modified rGO is studied in detail. The results demonstrate that the percolation threshold of the nanocomposites increased from 0.68 vol% to 1.69 vol% with an increase in shell thickness. Compared to the rGO@PTFMS-1/P(VDF-TrFE-CTFE) composites, the rGO@PTFMS-2/P(VDF-TrFE-CTFE) composites exhibited a higher breakdown strength and a lower dielectric constant, which can be interpreted by interfacial polarization and the micro-capacitor model, resulting from the insulating nature of the rigid-polymer shell and the change of rGO's morphology. The findings provide an innovative approach to tailor dielectric composites, and promote a deeper understanding of the influence of interfacial region thickness on the dielectric performance.

  7. Chemical gating of epitaxial graphene through ultrathin oxide layers.

    PubMed

    Larciprete, Rosanna; Lacovig, Paolo; Orlando, Fabrizio; Dalmiglio, Matteo; Omiciuolo, Luca; Baraldi, Alessandro; Lizzit, Silvano

    2015-08-07

    We achieved a controllable chemical gating of epitaxial graphene grown on metal substrates by exploiting the electrostatic polarization of ultrathin SiO2 layers synthesized below it. Intercalated oxygen diffusing through the SiO2 layer modifies the metal-oxide work function and hole dopes graphene. The graphene/oxide/metal heterostructure behaves as a gated plane capacitor with the in situ grown SiO2 layer acting as a homogeneous dielectric spacer, whose high capacity allows the Fermi level of graphene to be shifted by a few hundreds of meV when the oxygen coverage at the metal substrate is of the order of 0.5 monolayers. The hole doping can be finely tuned by controlling the amount of interfacial oxygen, as well as by adjusting the thickness of the oxide layer. After complete thermal desorption of oxygen the intrinsic doping of SiO2 supported graphene is evaluated in the absence of contaminants and adventitious adsorbates. The demonstration that the charge state of graphene can be changed by chemically modifying the buried oxide/metal interface hints at the possibility of tuning the level and sign of doping by the use of other intercalants capable of diffusing through the ultrathin porous dielectric and reach the interface with the metal.

  8. Electrical characterization of thin nanoscale SiOx layers grown on plasma hydrogenated silicon

    NASA Astrophysics Data System (ADS)

    Halova, E.; Kojuharova, N.; Alexandrova, S.; Szekeres, A.

    2018-03-01

    We analyzed the electrical characteristics of MOS structures with a SiOx layer grown on Si treated in plasma without heating. The hysteresis effect observed indicates the presence of traps spatially distributed into the oxide near the interface. The shift and the shape of the curves reveal a small oxide charge and low leakage currents, i.e. a high-quality dielectric layer. The generalized C-V curve was generated by applying the two-frequency methods on the C-V and G-V characteristics at frequencies in the range from 1 kHz to 300 kHz and by accounting for the series resistance and the leakage through the oxide layer. The energy spectra of the interface traps were calculated by comparing the experimental and the ideal theoretical C-V curves. The spectra showed the presence of interface traps with localized energy levels in the Si bandgap. These conclusions correlate well with the results on this oxide’s mechanical stress level, composition and Si-O ring structure, as well as on the interfacial region composition, obtained by our previous detailed multi-angle spectral ellipsometric studies. The ellipsometric data and the capacitance in strong accumulation of the C-V curves were used to calculate the thickness and the dielectric constants of the oxide layers.

  9. Use of a hard mask for formation of gate and dielectric via nanofilament field emission devices

    DOEpatents

    Morse, Jeffrey D.; Contolini, Robert J.

    2001-01-01

    A process for fabricating a nanofilament field emission device in which a via in a dielectric layer is self-aligned to gate metal via structure located on top of the dielectric layer. By the use of a hard mask layer located on top of the gate metal layer, inert to the etch chemistry for the gate metal layer, and in which a via is formed by the pattern from etched nuclear tracks in a trackable material, a via is formed by the hard mask will eliminate any erosion of the gate metal layer during the dielectric via etch. Also, the hard mask layer will protect the gate metal layer while the gate structure is etched back from the edge of the dielectric via, if such is desired. This method provides more tolerance for the electroplating of a nanofilament in the dielectric via and sharpening of the nanofilament.

  10. Method of fabricating conductive electrodes on the front and backside of a thin film structure

    DOEpatents

    Tabada, Phillipe J [Roseville, CA; Tabada, legal representative, Melody; Pannu, Satinderpall S [Pleasanton, CA

    2011-05-22

    A method of fabricating a thin film device having conductive front and backside electrodes or contacts. Top-side cavities are first formed on a first dielectric layer, followed by the deposition of a metal layer on the first dielectric layer to fill the cavities. Defined metal structures are etched from the metal layer to include the cavity-filled metal, followed by depositing a second dielectric layer over the metal structures. Additional levels of defined metal structures may be formed in a similar manner with vias connecting metal structures between levels. After a final dielectric layer is deposited, a top surface of a metal structure of an uppermost metal layer is exposed through the final dielectric layer to form a front-side electrode, and a bottom surface of a cavity-filled portion of a metal structure of a lowermost metal layer is also exposed through the first dielectric layer to form a back-side electrode.

  11. Multilayer solar cell waveguide structures containing metamaterials

    NASA Astrophysics Data System (ADS)

    Hamouche, Houria.; Shabat, Mohammed. M.; Schaadt, Daniel M.

    2017-01-01

    Multilayer antireflection coating structures made from silicon and metamaterials are designed and investigated using the Transfer Matrix Method (TMM). The Transfer Matrix Method is a very useful algorithm for the analysis of periodic structures. We investigate in this paper two anti-reflection coating structures for silicon solar cells with a metamaterial film layer. In the first structure, the metamaterial film layer is sandwiched between a semi-infinite glass cover layer and a semi-infinite silicon substrate layer. The second structure consists of a four layers, a pair of metamaterial-dielectric layer with opposite real part of refractive indices, is placed between the two semi-infinite cover and substrate. We have simulated the absorptivity property of the structures for adjustable thicknesses by using MAPLE software. The absorptivity of the structures achieves greater than 80% for incident electromagnetic wave of transverse magnetic (TM) polarization.

  12. Single-layer graphene-assembled 3D porous carbon composites with PVA and Fe₃O₄ nano-fillers: an interface-mediated superior dielectric and EMI shielding performance.

    PubMed

    Rao, B V Bhaskara; Yadav, Prasad; Aepuru, Radhamanohar; Panda, H S; Ogale, Satishchandra; Kale, S N

    2015-07-28

    In this study, a novel composite of Fe3O4 nanofiller-decorated single-layer graphene-assembled porous carbon (SLGAPC) with polyvinyl alcohol (PVA) having flexibility and a density of 0.75 g cm(-3) is explored for its dielectric and electromagnetic interference (EMI) response properties. The composite is prepared by the solution casting method and its constituents are optimized as 15 wt% SLGAPC and 20 wt% Fe3O4 through a novel solvent relaxation nuclear magnetic resonance experiment. The PVA-SLGAPC-Fe3O4 composite shows high dielectric permittivity in the range of 1 Hz-10 MHz, enhanced by a factor of 4 as compared to that of the PVA-SLGAPC composite, with a reduced loss by a factor of 2. The temperature dependent dielectric properties reveal the activation energy behaviour with reference to the glass transition temperature (80 °C) of PVA. The dielectric hysteresis with the temperature cycle reveals a remnant polarization. The enhanced dielectric properties are suggested to be the result of improvement in the localized polarization of the integrated interface system (Maxwell-Wagner-Sillars (MWS) polarization) formed by the uniform adsorption of Fe3O4 on the surface of SLGAPC conjugated with PVA. The EMI shielding property of the composite with a low thickness of 0.3 mm in the X-band (8.2-12.4 GHz) shows a very impressive shielding efficiency of ∼15 dB and a specific shielding effectiveness of 20 dB (g cm(-3))(-1), indicating the promising character of this material for flexible EMI shielding applications.

  13. Thin film integrated capacitors with sputtered-anodized niobium pentoxide dielectric for decoupling applications

    NASA Astrophysics Data System (ADS)

    Jacob, Susan

    Electronics system miniaturization is a major driver for high-k materials. High-k materials in capacitors allow for high capacitance, enabling system miniaturization. Ta2O5 (k˜24) has been the dominant high-k material in the electronic industry for decoupling capacitors, filter capacitors, etc. In order to facilitate further system miniaturization, this project has investigated thin film integrated capacitors with Nb2O5 dielectric. Nb2O 5 has k˜41 and is a potential candidate for replacing Ta2O5. But, the presence of suboxides (NbO2 and NbO) in the dielectric deteriorates the electrical properties (leakage current, thermal instability of capacitance, etc.). Also, the high oxygen solubility of niobium results in oxygen diffusion from the dielectric to niobium metal, if any is present. The major purpose of this project was to check the ability of NbN as a diffusion barrier and fabricate thermally stable niobium capacitors. As a first step to produce niobium capacitors, the material characterizations of reactively sputtered Nb2O5 and NbN were done. Thickness and film composition, and crystal structures of the sputtered films were obtained and the deposition parameters for the desired stoichiometry were found. Also, anodized Nb2O5 was characterized for its stoichiometry and thickness. To study the effect of nitrides on capacitance and thermal stability, Ta2O5 capacitors were initially fabricated with and without TaN. The results showed that the nitride does not affect the capacitance, and that capacitors with TaN are stable up to 150°C. In the next step, niobium capacitors were first fabricated with anodized dielectric and the oxygen diffusion issues associated with capacitor processing were studied. Reactively sputtered Nb2O5 was anodized to form complete Nb2O5 (with few oxygen vacancies) and NbN was used to sandwich the dielectric. The capacitor fabrication was not successful due to the difficulties in anodizing the sputtered dielectric. Another method, anodizing reactively sputtered Nb2O5 and a thin layer of sputtered niobium metal yielded high yield (99%) capacitors. Capacitors were fabricated with and without NbN and the results showed 93% decrease in leakage for a capacitor with ˜2000 A dielectric when NbN was present in the structure. These capacitors could withstand 20 V and showed 2.7 muA leakage current at 5 V. These results were obtained after thermal storage at 100°C and 150°C in air for 168 hours at each temperature. Two set of experiments were performed using Ta2O5 dielectric: one to determine the effect of anodization end point on the thickness (capacitance) and the second to determine the effect of boiling the dielectric on functional yield. The anodization end point experiment showed that the final current of anodization along with the anodizing voltage determines the anodic oxide thickness. The lower the current, the thicker the films produced by anodization. Therefore, it was important to specify the final current along with the anodization voltage for oxide growth rate. The capacitors formed with boiled wafers showed better functional yield 3 out of 5 times compared with the unboiled wafer. Niobium anodization was studied for the Nb--->Nb 2O5 conversion ratio and the effect of anodization bath temperature on the oxide film; a color chart was prepared for thicknesses ranging from 1900 A - 5000 A. The niobium metal to oxide conversion ratio was found to change with temperature.

  14. Direct growth of graphene-dielectric bi-layer structure on device substrates from Si-based polymer

    NASA Astrophysics Data System (ADS)

    Seo, Hong-Kyu; Kim, Kyunghun; Min, Sung-Yong; Lee, Yeongjun; Eon Park, Chan; Raj, Rishi; Lee, Tae-Woo

    2017-06-01

    To facilitate the utilization of graphene films in conventional semiconducting devices (e.g. transistors and memories) which includes an insulating layer such as gate dielectric, facile synthesis of bi-layers composed of a graphene film and an insulating layer by one-step thermal conversion will be very important. We demonstrate a simple, inexpensive, scalable and patternable process to synthesize graphene-dielectric bi-layer films from solution-processed polydimethylsiloxane (PDMS) under a Ni capping layer. This method fabricates graphene-dielectric bi-layer structure simultaneously directly on substrate by thermal conversion of PDMS without using additional graphene transfer and patterning process or formation of an expensive dielectric layer, which makes the device fabrication process much easier. The graphene-dielectric bi-layer on a conducting substrate was used in bottom-contact pentacene field-effect transistors that showed ohmic contact and small hysteresis. Our new method will provide a way to fabricate flexible electronic devices simply and inexpensively.

  15. Structure and transport in organic semiconductor thin films

    NASA Astrophysics Data System (ADS)

    Vos, Sandra Elizabeth Fritz

    Organic Semiconductors represent an exciting area of research due to their potential application in cheap and flexible electronics. In spite of the abundant interest in organic electronics the electronic transport mechanism remains poorly understood. Understanding the connection between molecular structure, crystal packing, intermolecular interactions and electronic delocalization is an important aspect of improving the transport properties of organics in thin film transistors (TFTs). In an organic thin film transistor, charge carrier transport is believed to occur within the first few monolayers of the organic material adjacent to the dielectric. It is therefore critical to understand the initial stages of film growth and molecular structure in these first few layers and relate this structure to electronic transport properties. The structure of organic films at the interface with an amorphous silicon dioxide ( a-SiO2) dielectric and how structure relates to transport in a TFT is the focus of this thesis. Pentacene films on a-SiO2 were extensively characterized with specular and in-plane X-ray diffraction, and CuKalpha1, and synchrotron radiation. The first layer of pentacene molecules adjacent to the a-SiO2 crystallized in a rectangular unit cell with the long axis of the molecules perpendicular to the substrate surface. Subsequent layers of pentacene crystallized in a slightly oblique in-plane unit cell that evolved as thickness was increased. The rectangular monolayer phase of pentacene did not persist when subsequent layers were deposited. Specular diffraction with Synchrotron radiation of a 160 A pentacene film (˜ 10 layers) revealed growth initiation of a bulk-like phase and persistence of the thin-film phase. Pentacene molecules were more tilted in the bulk-like phase and the in-plane unit cell was slightly more oblique. Pentacene grains began to grow randomly oriented with respect to the substrate surface (out-of-plane) in films near 650 A in thickness. The single crystal bulk phase of pentacene was observed from specular diffraction (CuKalpha1) of a 2.5 mum film. These results suggest that the thickness of pentacene films on a-SiO2 is an important aspect in the comparison of crystal structure and electronic transport.

  16. Formation of Bimolecular Membranes from Lipid Monolayers and a Study of Their Electrical Properties

    PubMed Central

    Montal, M.; Mueller, P.

    1972-01-01

    Bimolecular membranes are formed from two lipid monolayers at an air-water interface by the apposition of their hydrocarbon chains when an aperture in a Teflon partition separating two aqueous phases is lowered through the interface. Formation of the membrane is monitored by an increase of the electrical capacity, as measured with a voltage clamp. Electrical resistance of the unmodified membrane is analogous to that of conventional planar bilayers (black lipid membranes) prepared in the presence of a hydrocarbon solvent, i.e., 106-108 ohm cm2; the resistance can be lowered to values of 103 ohm cm2 by gramicidin, an antibiotic that modifies the conductance only when the membranes are of biomolecular thickness. In contrast to the resistance, there is a significant difference between the capacity of bilayers made from mono-layers and that of hydrocarbon-containing bilayers made by phase transition; the average values are 0.9 and 0.45 μF cm-2, respectively. The value of 0.9 μF cm-2 approximates that of biological membranes. Assuming a dielectric constant of 2.1 for the hydrocarbon region, the dielectric thickness, as calculated from a capacity of 0.9 μF cm-2, is 22 Å. This value is 6-10 Å smaller than the actual thickness of the hydrocarbon region of bilayers and cell membranes, as determined by x-ray diffraction. The difference may be due to a limited penetration of water into the hydrocarbon region near the ester groups that would lower the electrical resistance of this region and reduce the dielectric thickness. Asymmetric membranes have been formed by adjoining two lipid monolayers of different chemical composition. Images PMID:4509315

  17. Microminiature coaxial cable and methods of manufacture

    DOEpatents

    Bongianni, W.L.

    1983-12-29

    A coaxial cable is provided having a ribbon inner conductor surrounded by a dielectric and a circumferential conductor. The coaxial cable may be microminiature comprising a very thin ribbon strip conductor from between 5 to 15 ..mu..m thick and from 150 to 200 ..mu..m wide, having a surrounding foamed dielectric or parylene applied thereon by a vapor plasma process and an outer conductor of an adhering high conductivity metal vacuum deposited on the dieleectric. Alternately the foam dielectric embodiment may have a contiguous parylene coating applied adjacent the inner conductor or the outer conductor or both. Also, the cable may be fabricated by forming a thin ribbon of strip conductive material into an inner conductor, applying thereabout a dielectric by spraying on a solution of polystyrene and polyethylene and then vacuum depositing and adhering high conductivity metal about the dielectric. The cable strength may be increased by adding glass microfilament fibers or glass microballoons to the solution of polystyrene and polyethylene. Further, the outer conductive layer may be applied by electroless deposition in an aqueous solution rather than by vacuum deposition. A thin coating of parylene is preferably applied to the outer conductor to prevent its oxidation and inhibit mechanical abrasion.

  18. Repulsion-based model for contact angle saturation in electrowetting

    PubMed Central

    2015-01-01

    We introduce a new model for contact angle saturation phenomenon in electrowetting on dielectric systems. This new model attributes contact angle saturation to repulsion between trapped charges on the cap and base surfaces of the droplet in the vicinity of the three-phase contact line, which prevents these surfaces from converging during contact angle reduction. This repulsion-based saturation is similar to repulsion between charges accumulated on the surfaces of conducting droplets which causes the well known Coulombic fission and Taylor cone formation phenomena. In our model, both the droplet and dielectric coating were treated as lossy dielectric media (i.e., having finite electrical conductivities and permittivities) contrary to the more common assumption of a perfectly conducting droplet and perfectly insulating dielectric. We used theoretical analysis and numerical simulations to find actual charge distribution on droplet surface, calculate repulsion energy, and minimize energy of the total system as a function of droplet contact angle. Resulting saturation curves were in good agreement with previously reported experimental results. We used this proposed model to predict effect of changing liquid properties, such as electrical conductivity, and system parameters, such as thickness of the dielectric layer, on the saturation angle, which also matched experimental results. PMID:25759748

  19. Repulsion-based model for contact angle saturation in electrowetting.

    PubMed

    Ali, Hassan Abdelmoumen Abdellah; Mohamed, Hany Ahmed; Abdelgawad, Mohamed

    2015-01-01

    We introduce a new model for contact angle saturation phenomenon in electrowetting on dielectric systems. This new model attributes contact angle saturation to repulsion between trapped charges on the cap and base surfaces of the droplet in the vicinity of the three-phase contact line, which prevents these surfaces from converging during contact angle reduction. This repulsion-based saturation is similar to repulsion between charges accumulated on the surfaces of conducting droplets which causes the well known Coulombic fission and Taylor cone formation phenomena. In our model, both the droplet and dielectric coating were treated as lossy dielectric media (i.e., having finite electrical conductivities and permittivities) contrary to the more common assumption of a perfectly conducting droplet and perfectly insulating dielectric. We used theoretical analysis and numerical simulations to find actual charge distribution on droplet surface, calculate repulsion energy, and minimize energy of the total system as a function of droplet contact angle. Resulting saturation curves were in good agreement with previously reported experimental results. We used this proposed model to predict effect of changing liquid properties, such as electrical conductivity, and system parameters, such as thickness of the dielectric layer, on the saturation angle, which also matched experimental results.

  20. The Electrolyte Factor in O2 Reduction Electrocatalysis

    DTIC Science & Technology

    1993-04-23

    molecule thick and does not seem to interfere with 02 and water/proton transport at this interface. This layer resembles a self-ordered Langmuir - Blodgett ... liquid electrolyte from within the polymer is in contact with the catalyst and completes the ionic circuit between the ionic conducting polymer and the...the free energy of adsorption of H2 0 and ionic components because of the lower effective dielectric constant in the electrolyte phase immediately

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Taehoon; Jung, Yong Chan; Seong, Sejong

    The metal gate electrodes of Ni, W, and Pt have been investigated for their scavenging effect: a reduction of the GeO{sub x} interfacial layer (IL) between HfO{sub 2} dielectric and Ge substrate in metal/HfO{sub 2}/GeO{sub x}/Ge capacitors. All the capacitors were fabricated using the same process except for the material used in the metal electrodes. Capacitance-voltage measurements, scanning transmission electron microscopy, and electron energy loss spectroscopy were conducted to confirm the scavenging of GeO{sub x} IL. Interestingly, these metals are observed to remotely scavenge the interfacial layer, reducing its thickness in the order of Ni, W, and then Pt. Themore » capacitance equivalent thickness of these capacitors with Ni, W, and Pt electrodes are evaluated to be 2.7 nm, 3.0 nm, and 3.5 nm, and each final remnant physical thickness of GeO{sub x} IL layer is 1.1 nm 1.4 nm, and 1.9 nm, respectively. It is suggested that the scavenging effect induced by the metal electrodes is related to the concentration of oxygen vacancies generated by oxidation reaction at the metal/HfO{sub 2} interface.« less

  2. Spatial and thickness dependence of coupling interaction of surface states and influence on transport and optical properties of few-layer Bi2Se3

    NASA Astrophysics Data System (ADS)

    Li, Zhongjun; Chen, Shi; Sun, Jiuyu; Li, Xingxing; Qiu, Huaili; Yang, Jinlong

    2018-02-01

    Coupling interaction between the bottom and top surface electronic states and the influence on transport and optical properties of Bi2Se3 thin films with 1-8 quintuple layers (QLs) have been investigated by first principles calculations. Obvious spatial and thickness dependences of coupling interaction are found by analyzing hybridization of two surface states. In the thin film with a certain thickness, from the outer to inner atomic layers, the coupling interaction exhibits an increasing trend. On the other hand, as thickness increases, the coupling interaction shows a disproportionate decrease trend. Moreover, the system with 3 QLs exhibits stronger interaction than that with 2 QLs. The presence of coupling interaction would suppress destructive interference of surface states and enhance resistance in various degrees. In view of the inversely proportional relation to transport channel width, the resistance of thin films should show disproportionate thickness dependence. This prediction is qualitatively consistent with the transport measurements at low temperature. Furthermore, the optical properties also exhibit obvious thickness dependence. Especially as the thickness increases, the coupling interaction results in red and blue shifts of the multiple-peak structures in low and high energy regions of imaginary dielectric function, respectively. The red shift trend is in agreement with the recent experimental observation and the blue shift is firstly predicted by the present calculation. The present results give a concrete understanding of transport and optical properties in devices based on Bi2Se3 thin films with few QLs.

  3. Control of Evaporation Behavior of an Inkjet-Printed Dielectric Layer Using a Mixed-Solvent System

    NASA Astrophysics Data System (ADS)

    Yang, Hak Soon; Kang, Byung Ju; Oh, Je Hoon

    2016-01-01

    In this study, the evaporation behavior and the resulting morphology of inkjet-printed dielectric layers were controlled using a mixed-solvent system to fabricate uniform poly-4-vinylphenol (PVP) dielectric layers without any pinholes. The mixed-solvent system consisted of two different organic solvents: 1-hexanol and ethanol. The effects of inkjet-printing variables such as overlap condition, substrate temperature, and different printing sequences (continuous and interlacing printing methods) on the inkjet-printed dielectric layer were also investigated. Increasing volume fraction of ethanol (VFE) is likely to reduce the evaporation rate gradient and the drying time of the inkjet-printed dielectric layer; this diminishes the coffee stain effect and thereby improves the uniformity of the inkjet-printed dielectric layer. However, the coffee stain effect becomes more severe with an increase in the substrate temperature due to the enhanced outward convective flow. The overlap condition has little effect on the evaporation behavior of the printed dielectric layer. In addition, the interlacing printing method results in either a stronger coffee stain effect or wavy structures of the dielectric layers depending on the VFE of the PVP solution. All-inkjet-printed capacitors without electrical short circuiting can be successfully fabricated using the optimized PVP solution (VFE = 0.6); this indicates that the mixed-solvent system is expected to play an important role in the fabrication of high-quality inkjet-printed dielectric layers in various printed electronics applications.

  4. Plasmon analysis and homogenization in plane layered photonic crystals and hyperbolic metamaterials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidovich, M. V., E-mail: davidovichmv@info.sgu.ru

    2016-12-15

    Dispersion equations are obtained and analysis and homogenization are carried out in periodic and quasiperiodic plane layered structures consisting of alternating dielectric layers, metal and dielectric layers, as well as graphene sheets and dielectric (SiO{sub 2}) layers. Situations are considered when these structures acquire the properties of hyperbolic metamaterials (HMMs), i.e., materials the real parts of whose effective permittivity tensor have opposite signs. It is shown that the application of solely dielectric layers is more promising in the context of reducing losses.

  5. Analysis of the electromagnetic scattering from an inlet geometry with lossy walls

    NASA Technical Reports Server (NTRS)

    Myung, N. H.; Pathak, P. H.; Chunang, C. D.

    1985-01-01

    One of the primary goals is to develop an approximate but sufficiently accurate analysis for the problem of electromagnetic (EM) plane wave scattering by an open ended, perfectly-conducting, semi-infinite hollow circular waveguide (or duct) with a thin, uniform layer of lossy or absorbing material on its inner wall, and with a simple termination inside. The less difficult but useful problem of the EM scattering by a two-dimensional (2-D), semi-infinite parallel plate waveguide with an impedance boundary condition on the inner walls was chosen initially for analysis. The impedance boundary condition in this problem serves to model a thin layer of lossy dielectric/ferrite coating on the otherwise perfectly-conducting interior waveguide walls. An approximate but efficient and accurate ray solution was obtained recently. That solution is presently being extended to the case of a moderately thick dielectric/ferrite coating on the walls so as to be valid for situations where the impedance boundary condition may not remain sufficiently accurate.

  6. Stress measurements of planar dielectric elastomer actuators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osmani, Bekim; Aeby, Elise A.; Müller, Bert

    Dielectric elastomer actuator (DEA) micro- and nano-structures are referred to artificial muscles because of their specific continuous power and adequate time response. The bending measurement of an asymmetric, planar DEA is described. The asymmetric cantilevers consist of 1 or 5 μm-thin DEAs deposited on polyethylene naphthalate (PEN) substrates 16, 25, 38, or 50 μm thick. The application of a voltage to the DEA electrodes generates an electrostatic pressure in the sandwiched silicone elastomer layer, which causes the underlying PEN substrate to bend. Optical beam deflection enables the detection of the bending angle vs. applied voltage. Bending radii as large asmore » 850 m were reproducibly detected. DEA tests with electric fields of up to 80 V/μm showed limitations in electrode’s conductivity and structure failures. The actuation measurement is essential for the quantitative characterization of nanometer-thin, low-voltage, single- and multi-layer DEAs, as foreseen for artificial sphincters to efficiently treat severe urinary and fecal incontinence.« less

  7. Experimental Methods for Trapping Ions Using Microfabricated Surface Ion Traps

    PubMed Central

    Hong, Seokjun; Lee, Minjae; Kwon, Yeong-Dae; Cho, Dong-il "Dan"; Kim, Taehyun

    2017-01-01

    Ions trapped in a quadrupole Paul trap have been considered one of the strong physical candidates to implement quantum information processing. This is due to their long coherence time and their capability to manipulate and detect individual quantum bits (qubits). In more recent years, microfabricated surface ion traps have received more attention for large-scale integrated qubit platforms. This paper presents a microfabrication methodology for ion traps using micro-electro-mechanical system (MEMS) technology, including the fabrication method for a 14 µm-thick dielectric layer and metal overhang structures atop the dielectric layer. In addition, an experimental procedure for trapping ytterbium (Yb) ions of isotope 174 (174Yb+) using 369.5 nm, 399 nm, and 935 nm diode lasers is described. These methodologies and procedures involve many scientific and engineering disciplines, and this paper first presents the detailed experimental procedures. The methods discussed in this paper can easily be extended to the trapping of Yb ions of isotope 171 (171Yb+) and to the manipulation of qubits. PMID:28872137

  8. Dielectric properties and microstructures for various MLCCs coated with additives

    NASA Astrophysics Data System (ADS)

    Oh, Min Wook; Yeo, Dong Hun; Shin, Hyo Soon; Jeong, Dae Yong

    2013-12-01

    As electronic devices become smaller and have higher capacity, dielectric thin films are being used in the development of multilayer ceramic capacitors (MLCCs). Smaller BaTiO3 dielectric particles should be used to obtain the thickness of low dielectric layers. Further, MLCC properties are achieved through the uniform addition of various additives, but the existing method of adding nano additives has limitations. As such, this study evaluated the dielectric properties of BaTiO3 pellets after using the liquid coating method to add additives such as Dy, Mg, Mn, Cr, and Si to 150 nm BaTiO3 dielectric powder. Mn, Cr, and Si ions were each fixed at 0.1, 0.1, and 0.65 mol-%. Sintering was performed in a reducing atmosphere, and the microstructure and the dielectric properties were evaluated while varying Dy from 0.5 to 1.0 mol-% and Mg from 1.0 to 2.0 mol-%. Grain growth was observed for higher amounts of Dy, but were suppressed for higher amounts of Mg. With regards to changes in particle size, both the permittivity and the temperature coefficient of capacitance (TCC) increased with increasing particle size. The permittivity was highest for Si=0.65, Mn=0.1, Cr=0.1 Dy=0.75, and Mg=2.0 mol-%. These levels also satisfied the TCC properties of X7R. In the microstructure, the core-shell was the most developed.

  9. ROS mediated high anti-bacterial efficacy of strain tolerant layered phase pure nano-calcium hydroxide.

    PubMed

    Samanta, Aniruddha; Podder, Soumik; Ghosh, Chandan Kumar; Bhattacharya, Manjima; Ghosh, Jiten; Mallik, Awadesh Kumar; Dey, Arjun; Mukhopadhyay, Anoop Kumar

    2017-08-01

    The present work provides the first ever report on extraordinarily high antibacterial efficacy of phase pure micro-layered calcium hydroxide nanoparticles (LCHNPs) even under dark condition. The LCHNPs synthesized especially in aqueous medium by a simple, inexpensive method show adequate mechanical properties along with the presence of a unique strain tolerant behaviour. The LCHNPs are characterized by FTIR, Raman spectroscopy, XRD, Rietveld analysis, FE-SEM, TEM, TG-DTA, surface area, particle size distribution, zeta potential analysis and nanoindentation techniques. The LCHNPs have 98.1% phase pure hexagonal Ca(OH) 2 as the major phase having micro-layered architecture made up of about ~100-200nm thick individual nano-layers. The nanomechanical properties e.g., nanohardness (H) and Young's modulus (E) of the LCHNPs are found to have a unique load independent behavior. The dielectric responses (e.g., dielectric constant and dielectric loss) and antibacterial properties are evaluated for such LCHNPs. Further, the LCHNPs show much better antibacterial potency against both gram-positive e.g., Staphylococcus aureus (S. aureus) and gram-negative e.g., Pseudomonas putida (P. putida) bacteria even in dark especially, with the lowest ever reported MIC value (e.g., 1 μg ml -1 ) against the P. putida bacterial strain and exhibit ROS mediated antibacterial proficiency. Finally, such LCHNPs has almost ~8-16% inhibition efficacy towards the development of biofilm of these microorganisms quantified by colorimetric detection process. So, such LCHNPs may find potential applications in the areas of healthcare industry and environmental engineering. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Integration of perovskite oxide dielectrics into complementary metal-oxide-semiconductor capacitor structures using amorphous TaSiN as oxygen diffusion barrier

    NASA Astrophysics Data System (ADS)

    Mešić, Biljana; Schroeder, Herbert

    2011-09-01

    The high permittivity perovskite oxides have been intensively investigated for their possible application as dielectric materials for stacked capacitors in dynamic random access memory circuits. For the integration of such oxide materials into the CMOS world, a conductive diffusion barrier is indispensable. An optimized stack p++-Si/Pt/Ta21Si57N21/Ir was developed and used as the bottom electrode for the oxide dielectric. The amorphous TaSiN film as oxygen diffusion barrier showed excellent conductive properties and a good thermal stability up to 700 °C in oxygen ambient. The additional protective iridium layer improved the surface roughness after annealing. A 100-nm-thick (Ba,Sr)TiO3 film was deposited using pulsed laser deposition at 550 °C, showing very promising properties for application; the maximum relative dielectric constant at zero field is κ ≈ 470, and the leakage current density is below 10-6 A/cm2 for fields lower then ± 200 kV/cm, corresponding to an applied voltage of ± 2 V.

  11. Naphthalenetetracarboxylic diimide layer-based transistors with nanometer oxide and side chain dielectrics operating below one volt.

    PubMed

    Jung, Byung Jun; Martinez Hardigree, Josue F; Dhar, Bal Mukund; Dawidczyk, Thomas J; Sun, Jia; See, Kevin Cua; Katz, Howard E

    2011-04-26

    We designed a new naphthalenetetracarboxylic diimide (NTCDI) semiconductor molecule with long fluoroalkylbenzyl side chains. The side chains, 1.2 nm long, not only aid in self-assembly and kinetically stabilize injected electrons but also act as part of the gate dielectric in field-effect transistors. On Si substrates coated only with the 2 nm thick native oxide, NTCDI semiconductor films were deposited with thicknesses from 17 to 120 nm. Top contact Au electrodes were deposited as sources and drains. The devices showed good transistor characteristics in air with 0.1-1 μA of drain current at 0.5 V of V(G) and V(DS) and W/L of 10-20, even though channel width (250 μm) is over 1000 times the distance (20 nm) between gate and drain electrodes. The extracted capacitance-times-mobility product, an expression of the sheet transconductance, can exceed 100 nS V(-1), 2 orders of magnitude higher than typical organic transistors. The vertical low-frequency capacitance with gate voltage applied in the accumulation regime reached as high as 650 nF/cm(2), matching the harmonic sum of capacitances of the native oxide and one side chain and indicating that some gate-induced carriers in such devices are distributed among all of the NTCDI core layers, although the preponderance of the carriers are still near the gate electrode. Besides demonstrating and analyzing thickness-dependent NTCDI-based transistor behavior, we also showed <1 V detection of dinitrotoluene vapor by such transistors.

  12. Surface plasmon holographic microscopy for near-field refractive index detection and thin film mapping

    NASA Astrophysics Data System (ADS)

    Zhao, Jianlin; Zhang, Jiwei; Dai, Siqing; Di, Jianglei; Xi, Teli

    2018-02-01

    Surface plasmon microscopy (SPM) is widely applied for label-free detection of changes of refractive index and concentration, as well as mapping thin films in near field. Traditionally, the SPM systems are based on the detection of light intensity or phase changes. Here, we present two kinds of surface plasmon holographic microscopy (SPHM) systems for amplitude- and phase-contrast imaging simultaneously. Through recording off-axis holograms and numerical reconstruction, the complex amplitude distributions of surface plasmon resonance (SPR) images can be obtained. According to the Fresnel's formula, in a prism/ gold/ dielectric structure, the reflection phase shift is uniquely decided by refractive index of the dielectric. By measuring the phase shift difference of the reflected light exploiting prism-coupling SPHM system based on common-path interference configuration, monitoring tiny refractive index variation and imaging biological tissue are performed. Furthermore, to characterize the thin film thickness in near field, we employ a four-layer SPR model in which the third film layer is within the evanescent field. The complex reflection coefficient, including the reflectivity and reflection phase shift, is uniquely decided by the film thickness. By measuring the complex amplitude distributions of the SPR images exploiting objective-coupling SPHM system based on common-path interference configuration, the thickness distributions of thin films are mapped with sub-nanometer resolution theoretically. Owing to its high temporal stability, the recommended SPHMs show great potentials for monitoring tiny refractive index variations, imaging biological tissues and mapping thin films in near field with dynamic, nondestructive and full-field measurement capabilities in chemistry, biomedicine field, etc.

  13. Tailoring the soft magnetic properties of sputtered multilayers by microstructure engineering for high frequency applications

    NASA Astrophysics Data System (ADS)

    Falub, Claudiu V.; Rohrmann, Hartmut; Bless, Martin; Meduňa, Mojmír; Marioni, Miguel; Schneider, Daniel; Richter, Jan H.; Padrun, Marco

    2017-05-01

    Soft magnetic Ni78.5Fe21.5, Co91.5Ta4.5Zr4 and Fe52Co28B20 thin films laminated with SiO2, Al2O3, AlN, and Ta2O5 dielectric interlayers were deposited on 8" Si wafers using DC, pulsed DC and RF cathodes in the industrial, high-throughput Evatec LLS-EVO-II magnetron sputtering system. A typical multilayer consists of a bilayer stack up to 50 periods, with alternating (50-100) nm thick magnetic layers and (2-20) nm thick dielectric interlayers. We introduced the in-plane magnetic anisotropy in these films during sputtering by a combination of a linear magnetic field, seed layer texturing by means of linear collimators, and the oblique incidence inherent to the geometry of the sputter system. Depending on the magnetic material, the anisotropy field for these films was tuned in the range of ˜(7-120) Oe by choosing the appropriate interlayer thickness, the aspect ratios of the linear collimators in front of the targets, and the sputter process parameters (e.g. pressure, power, DC pulse frequency), while the coercivity was kept low, ˜(0.05-0.9) Oe. The alignment of the easy axis (EA) on the 8" wafers was typically between ±1.5° and ±4°. We discuss the interdependence of structure and magnetic properties in these films, as revealed by atomic force microscopy (AFM), X-ray reflectivity (XRR) with reciprocal space mapping (RSM) and magneto-optical Kerr effect (MOKE) measurements.

  14. A Novel Electro-Thermal Laminated Ceramic with Carbon-Based Layer

    PubMed Central

    Ji, Yi; Huang, Bin; Rao, Pinggen

    2017-01-01

    A novel electro-thermal laminated ceramic composed of ceramic tile, carbon-based layer, dielectric layer, and foaming ceramic layer was designed and prepared by tape casting. The surface temperature achieved at an applied voltage of 10 V by the laminated ceramics was 40.3 °C when the thickness of carbon-based suspension was 1.0 mm and the adhesive strength between ceramic tile and carbon-based layer was 1.02 ± 0.06 MPa. In addition, the thermal aging results at 100 °C up to 192 h confirmed the high thermal stability and reliability of the electro-thermal laminated ceramics. The development of this laminated ceramic with excellent electro-thermal properties and safety provides a new individual heating device which is highly expected to be widely applied in the field of indoor heat supply. PMID:28773006

  15. A Novel Electro-Thermal Laminated Ceramic with Carbon-Based Layer.

    PubMed

    Ji, Yi; Huang, Bin; Rao, Pinggen

    2017-06-12

    A novel electro-thermal laminated ceramic composed of ceramic tile, carbon-based layer, dielectric layer, and foaming ceramic layer was designed and prepared by tape casting. The surface temperature achieved at an applied voltage of 10 V by the laminated ceramics was 40.3 °C when the thickness of carbon-based suspension was 1.0 mm and the adhesive strength between ceramic tile and carbon-based layer was 1.02 ± 0.06 MPa. In addition, the thermal aging results at 100 °C up to 192 h confirmed the high thermal stability and reliability of the electro-thermal laminated ceramics. The development of this laminated ceramic with excellent electro-thermal properties and safety provides a new individual heating device which is highly expected to be widely applied in the field of indoor heat supply.

  16. Electrically tunable coherent optical absorption in graphene with ion gel.

    PubMed

    Thareja, Vrinda; Kang, Ju-Hyung; Yuan, Hongtao; Milaninia, Kaveh M; Hwang, Harold Y; Cui, Yi; Kik, Pieter G; Brongersma, Mark L

    2015-03-11

    We demonstrate electrical control over coherent optical absorption in a graphene-based Salisbury screen consisting of a single layer of graphene placed in close proximity to a gold back reflector. The screen was designed to enhance light absorption at a target wavelength of 3.2 μm by using a 600 nm-thick, nonabsorbing silica spacer layer. An ionic gel layer placed on top of the screen was used to electrically gate the charge density in the graphene layer. Spectroscopic reflectance measurements were performed in situ as a function of gate bias. The changes in the reflectance spectra were analyzed using a Fresnel based transfer matrix model in which graphene was treated as an infinitesimally thin sheet with a conductivity given by the Kubo formula. The analysis reveals that a careful choice of the ionic gel layer thickness can lead to optical absorption enhancements of up to 5.5 times for the Salisbury screen compared to a suspended sheet of graphene. In addition to these absorption enhancements, we demonstrate very large electrically induced changes in the optical absorption of graphene of ∼3.3% per volt, the highest attained so far in a device that features an atomically thick active layer. This is attributable in part to the more effective gating achieved with the ion gel over the conventional dielectric back gates and partially by achieving a desirable coherent absorption effect linked to the presence of the thin ion gel that boosts the absorption by 40%.

  17. All-Aluminum Thin Film Transistor Fabrication at Room Temperature

    PubMed Central

    Yao, Rihui; Zheng, Zeke; Zeng, Yong; Liu, Xianzhe; Ning, Honglong; Hu, Shiben; Tao, Ruiqiang; Chen, Jianqiu; Cai, Wei; Xu, Miao; Wang, Lei; Lan, Linfeng; Peng, Junbiao

    2017-01-01

    Bottom-gate all-aluminum thin film transistors with multi conductor/insulator nanometer heterojunction were investigated in this article. Alumina (Al2O3) insulating layer was deposited on the surface of aluminum doping zinc oxide (AZO) conductive layer, as one AZO/Al2O3 heterojunction unit. The measurements of transmittance electronic microscopy (TEM) and X-ray reflectivity (XRR) revealed the smooth interfaces between ~2.2-nm-thick Al2O3 layers and ~2.7-nm-thick AZO layers. The devices were entirely composited by aluminiferous materials, that is, their gate and source/drain electrodes were respectively fabricated by aluminum neodymium alloy (Al:Nd) and pure Al, with Al2O3/AZO multilayered channel and AlOx:Nd gate dielectric layer. As a result, the all-aluminum TFT with two Al2O3/AZO heterojunction units exhibited a mobility of 2.47 cm2/V·s and an Ion/Ioff ratio of 106. All processes were carried out at room temperature, which created new possibilities for green displays industry by allowing for the devices fabricated on plastic-like substrates or papers, mainly using no toxic/rare materials. PMID:28772579

  18. Thick layered semiconductor devices with water top-gates: High on-off ratio field-effect transistors and aqueous sensors.

    PubMed

    Huang, Yuan; Sutter, Eli; Wu, Liangmei; Xu, Hong; Bao, Lihong; Gao, Hong-Jun; Zhou, Xingjiang; Sutter, Peter

    2018-06-21

    Layered semiconductors show promise as channel materials for field-effect transistors (FETs). Usually, such devices incorporate solid back or top gate dielectrics. Here, we explore de-ionized (DI) water as a solution top gate for field-effect switching of layered semiconductors including SnS2, MoS2, and black phosphorus. The DI water gate is easily fabricated, can sustain rapid bias changes, and its efficient coupling to layered materials provides high on-off current ratios, near-ideal sub-threshold swing, and enhanced short-channel behavior even for FETs with thick, bulk-like channels where such control is difficult to realize with conventional back-gating. Screening by the high-k solution gate eliminates hysteresis due to surface and interface trap states and substantially enhances the field-effect mobility. The onset of water electrolysis sets the ultimate limit to DI water gating at large negative gate bias. Measurements in this regime show promise for aqueous sensing, demonstrated here by the amperometric detection of glucose in aqueous solution. DI water gating of layered semiconductors can be harnessed in research on novel materials and devices, and it may with further development find broad applications in microelectronics and sensing.

  19. Method of doping organic semiconductors

    DOEpatents

    Kloc,; Christian Leo; Ramirez; Arthur Penn; So, Woo-Young

    2010-10-26

    An apparatus has a crystalline organic semiconducting region that includes polyaromatic molecules. A source electrode and a drain electrode of a field-effect transistor are both in contact with the crystalline organic semiconducting region. A gate electrode of the field-effect transistor is located to affect the conductivity of the crystalline organic semiconducting region between the source and drain electrodes. A dielectric layer of a first dielectric that is substantially impermeable to oxygen is in contact with the crystalline organic semiconducting region. The crystalline organic semiconducting region is located between the dielectric layer and a substrate. The gate electrode is located on the dielectric layer. A portion of the crystalline organic semiconducting region is in contact with a second dielectric via an opening in the dielectric layer. A physical interface is located between the second dielectric and the first dielectric.

  20. Rapid, conformal gas-phase formation of silica (SiO2) nanotubes from water condensates

    NASA Astrophysics Data System (ADS)

    Bae, Changdeuck; Kim, Hyunchul; Yang, Yunjeong; Yoo, Hyunjun; Montero Moreno, Josep M.; Bachmann, Julien; Nielsch, Kornelius; Shin, Hyunjung

    2013-06-01

    An innovative atomic layer deposition (ALD) concept, with which nanostructures of water condensates with high aspect ratio at equilibrium in cylindrical nanopores can be transformed uniformly into silica (SiO2) at near room temperature and ambient pressure, has been demonstrated for the first time. As a challenging model system, we first prove the conversion of cylindrical water condensates in porous alumina membranes to silica nanotubes (NTs) by introducing SiCl4 as a metal reactant without involving any catalytic reaction. Surprisingly, the water NTs reproducibly transformed into silica NTs, where the wall thickness of the silica NTs deposited per cycle was found to be limited by the amount of condensed water, and it was on the orders of ten nanometers per cycle (i.e., over 50 times faster than that of conventional ALD). More remarkably, the reactions only took place for 10-20 minutes or less without vacuum-related equipment. The thickness of initially adsorbed water layers in cylindrical nanopores was indirectly estimated from the thickness of formed SiO2 layers. With systematic experimental designs, we tackle the classical Kelvin equation in the nanosized pores, and the role of van der Waals forces in the nanoscale wetting phenomena, which is a long-standing issue lacking experimental insight. Moreover, we show that the present strategy is likely generalized to other oxide systems such as TiO2. Our approach opens up a new avenue for ultra-simple preparation of porous oxides and allows for the room temperature formation of dielectric layers toward organic electronic and photovoltaic applications.An innovative atomic layer deposition (ALD) concept, with which nanostructures of water condensates with high aspect ratio at equilibrium in cylindrical nanopores can be transformed uniformly into silica (SiO2) at near room temperature and ambient pressure, has been demonstrated for the first time. As a challenging model system, we first prove the conversion of cylindrical water condensates in porous alumina membranes to silica nanotubes (NTs) by introducing SiCl4 as a metal reactant without involving any catalytic reaction. Surprisingly, the water NTs reproducibly transformed into silica NTs, where the wall thickness of the silica NTs deposited per cycle was found to be limited by the amount of condensed water, and it was on the orders of ten nanometers per cycle (i.e., over 50 times faster than that of conventional ALD). More remarkably, the reactions only took place for 10-20 minutes or less without vacuum-related equipment. The thickness of initially adsorbed water layers in cylindrical nanopores was indirectly estimated from the thickness of formed SiO2 layers. With systematic experimental designs, we tackle the classical Kelvin equation in the nanosized pores, and the role of van der Waals forces in the nanoscale wetting phenomena, which is a long-standing issue lacking experimental insight. Moreover, we show that the present strategy is likely generalized to other oxide systems such as TiO2. Our approach opens up a new avenue for ultra-simple preparation of porous oxides and allows for the room temperature formation of dielectric layers toward organic electronic and photovoltaic applications. Electronic supplementary information (ESI) available: TEM gallery of silica NTs under different experimental conditions, detailed calculation of estimating the thickness of condensed water and Hamaker constants, and a comparison of processing times. See DOI: 10.1039/c3nr00906h

  1. Phase transformation in SiOx/SiO₂ multilayers for optoelectronics and microelectronics applications.

    PubMed

    Roussel, M; Talbot, E; Pratibha Nalini, R; Gourbilleau, F; Pareige, P

    2013-09-01

    Due to the quantum confinement, silicon nanoclusters (Si-ncs) embedded in a dielectric matrix are of prime interest for new optoelectronics and microelectronics applications. In this context, SiO(x)/SiO₂ multilayers have been prepared by magnetron sputtering and subsequently annealed to induce phase separation and Si clusters growth. The aim of this paper is to study phase separation processes and formation of nanoclusters in SiO(x)/SiO₂ multilayers by atom probe tomography. Influences of the silicon supersaturation, annealing temperature and SiO(x) and SiO₂ layer thicknesses on the final microstructure have been investigated. It is shown that supersaturation directly determines phase separation regime between nucleation/classical growth and spinodal decomposition. Annealing temperature controls size of the particles and interface with the surrounding matrix. Layer thicknesses directly control Si-nc shapes from spherical to spinodal-like structures. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Mesomorphic phase transitions of 3F7HPhF studied by complementary methods

    NASA Astrophysics Data System (ADS)

    Deptuch, Aleksandra; Jaworska-Gołąb, Teresa; Marzec, Monika; Pociecha, Damian; Fitas, Jakub; Żurowska, Magdalena; Tykarska, Marzena; Hooper, James

    2018-02-01

    Physical properties and the phase sequence of (S)-4‧-(1-methylheptyloxycarbonyl)biphenyl-4-yl 4-[7-(2,2,3,3,4,4,4-heptafluorobutoxy) heptyl-1-oxy]-2-fluorobenzoate exhibiting the liquid crystalline paraelectric smectic A*, ferroelectric smectic C* and antiferroelectric smectic CA* phases were studied by complementary methods in the temperature range from -125 to 120 °C. Differential scanning calorimetry measurements together with polarizing optical microscopy provided the phase sequence, including the glass transition and a cold crystallization. X-ray diffraction was used to obtain the unit-cell parameters of the crystal phase, as well as the layer thickness and correlation length in the liquid crystalline smectic phases. The tilt angle was found to reach 45°, as determined from the measurements of the layer thickness and molecular modeling. Relaxation processes in the smectic phases and the fragility parameter were studied using frequency-domain dielectric spectroscopy.

  3. Atomic Layer Deposited Thin Films for Dielectrics, Semiconductor Passivation, and Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Xu, Runshen

    Atomic layer deposition (ALD) utilizes sequential precursor gas pulses to deposit one monolayer or sub-monolayer of material per cycle based on its self-limiting surface reaction, which offers advantages, such as precise thickness control, thickness uniformity, and conformality. ALD is a powerful means of fabricating nanoscale features in future nanoelectronics, such as contemporary sub-45 nm metal-oxide-semiconductor field effect transistors, photovoltaic cells, near- and far-infrared detectors, and intermediate temperature solid oxide fuel cells. High dielectric constant, kappa, materials have been recognized to be promising candidates to replace traditional SiO2 and SiON, because they enable good scalability of sub-45 nm MOSFET (metal-oxide-semiconductor field-effect transistor) without inducing additional power consumption and heat dissipation. In addition to high dielectric constant, high-kappa materials must meet a number of other requirements, such as low leakage current, high mobility, good thermal and structure stability with Si to withstand high-temperature source-drain activation annealing. In this thesis, atomic layer deposited Er2O3 doped TiO2 is studied and proposed as a thermally stable amorphous high-kappa dielectric on Si substrate. The stabilization of TiO2 in its amorphous state is found to achieve a high permittivity of 36, a hysteresis voltage of less than 10 mV, and a low leakage current density of 10-8 A/cm-2 at -1 MV/cm. In III-V semiconductors, issues including unsatisfied dangling bonds and native oxides often result in inferior surface quality that yields non-negligible leakage currents and degrades the long-term performance of devices. The traditional means for passivating the surface of III-V semiconductors are based on the use of sulfide solutions; however, that only offers good protection against oxidation for a short-term (i.e., one day). In this work, in order to improve the chemical passivation efficacy of III-V semiconductors, ultra-thin layer of encapsulating ZnS is coated on the surface of GaSb and GaSb/InAs substrates. The 2 nm-thick ZnS film is found to provide a long-term protection against reoxidation for one order and a half longer times than prior reported passivation likely due to its amorphous structure without pinholes. Finally, a combination of binary ALD processes is developed and demonstrated for the growth of yttria-stabilized zirconia films using alkylamido-cyclopentadiengyls zirconium and tris(isopropyl-cyclopentadienyl)yttrium, as zirconium and yttrium precursors, respectively, with ozone being the oxidant. The desired cubic structure of YSZ films is apparently achieved after post-deposition annealing. Further, platinum is atomic layer deposited as electrode on YSZ (8 mol% of Yttria) within the same system. In order to control the morphology of as-deposited Pt thin structure, the nucleation behavior of Pt on amorphous and cubic YSZ is investigated. Three different morphologies of Pt are observed, including nanoparticle, porous and dense films, which are found to depend on the ALD cycle number and the structure and morphology of they underlying ALD YSZ films.

  4. Synthesis and Characterization of Hexagonal Boron Nitride as a Gate Dielectric

    PubMed Central

    Jang, Sung Kyu; Youn, Jiyoun; Song, Young Jae; Lee, Sungjoo

    2016-01-01

    Two different growth modes of large-area hexagonal boron nitride (h-BN) film, a conventional chemical vapor deposition (CVD) growth mode and a high-pressure CVD growth mode, were compared as a function of the precursor partial pressure. Conventional self-limited CVD growth was obtained below a critical partial pressure of the borazine precursor, whereas a thick h-BN layer (thicker than a critical thickness of 10 nm) was grown beyond a critical partial pressure. An interesting coincidence of a critical thickness of 10 nm was identified in both the CVD growth behavior and in the breakdown electric field strength and leakage current mechanism, indicating that the electrical properties of the CVD h-BN film depended significantly on the film growth mode and the resultant film quality. PMID:27458024

  5. Limitations in the 2D description of the electromagnetic waves propagation in thin dielectric and magnetic layers

    NASA Astrophysics Data System (ADS)

    Radożycki, Tomasz; Bargieła, Piotr

    2018-07-01

    The propagation of electromagnetic waves trapped within dielectric and magnetic layers is considered. The description within the three-dimensional theory is compared to the simplified analysis in two dimensions. Two distinct media configurations of different topology are dealt with: a plane slab and a hollow cylinder. Choosing the appropriate values for the geometrical parameters (layer thickness, radius of the cylinder) and for the electromagnetic properties of the media one can trap exactly one mode corresponding to that obtained within the two-dimensional electromagnetism. However, the symmetry between electric and magnetic fields suggests, that the two versions of the simplified electromagnetism ought to be equally considered. Its usual form is incomplete to describe all modes. It is also found that there exists a domain of optimal values of parameters for which the 2D model works relatively correctly. However, in the case of a cylindrical surface we observe several differences which may be attributed to the curvature of the layer, and which exclude the propagation of evanescent modes. The two-dimensional electrodynamics, whichever form is used, turns out still too poor to describe the so-called 'hybrid modes' excited in a real layer. The obtained results can be essential for proper description of the propagating waves within thin layers for which 3D approach is not available due to mathematical complexity and reducing the layer to a lower dimensional structure seems the only possible option.

  6. Novel techniques for optical sensor using single core multi-layer structures for electric field detection

    NASA Astrophysics Data System (ADS)

    Ali, Amir R.; Kamel, Mohamed A.

    2017-05-01

    This paper studies the effect of the electrostriction force on the single optical dielectric core coated with multi-layers based on whispering gallery mode (WGM). The sensing element is a dielectric core made of polymeric material coated with multi-layers having different dielectric and mechanical properties. The external electric field deforming the sensing element causing shifts in its WGM spectrum. The multi-layer structures will enhance the body and the pressure forces acting on the core of the sensing element. Due to the gradient on the dielectric permittivity; pressure forces at the interface between every two layers will be created. Also, the gradient on Young's modulus will affect the overall stiffness of the optical sensor. In turn the sensitivity of the optical sensor to the electric field will be increased when the materials of each layer selected properly. A mathematical model is used to test the effect for that multi-layer structures. Two layering techniques are considered to increase the sensor's sensitivity; (i) Pressure force enhancement technique; and (ii) Young's modulus reduction technique. In the first technique, Young's modulus is kept constant for all layers, while the dielectric permittivity is varying. In this technique the results will be affected by the value dielectric permittivity of the outer medium surrounding the cavity. If the medium's dielectric permittivity is greater than that of the cavity, then the ascending ordered layers of the cavity will yield the highest sensitivity (the core will have the smallest dielectric permittivity) to the applied electric field and vice versa. In the second technique, Young's modulus is varying along the layers, while the dielectric permittivity has a certain constant value per layer. On the other hand, the descending order will enhance the sensitivity in the second technique. Overall, results show the multi-layer cavity based on these techniques will enhance the sensitivity compared to the typical polymeric optical sensor.

  7. Low-loss single-layer metamaterial with negative index of refraction at visible wavelengths.

    PubMed

    García-Meca, C; Ortuño, R; Salvador, R; Martínez, A; Martí, J

    2007-07-23

    We present a structure exhibiting a negative index of refraction at visible or near infrared frequencies using a single metal layer. This contrasts with recently developed structures based on metal-dielectric-metal composites. The proposed metamaterial consists of periodically arranged thick stripes interacting with each other to give rise to a negative permeability. Improved designs that allow for a negative index for both polarizations are also presented. The structures are numerically analyzed and it is shown that the dimensions can be engineered to shift the negative index band within a region ranging from telecommunication wavelengths down to blue light.

  8. Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition.

    PubMed

    Wang, Guizhen; Gao, Zhe; Tang, Shiwei; Chen, Chaoqiu; Duan, Feifei; Zhao, Shichao; Lin, Shiwei; Feng, Yuhong; Zhou, Lei; Qin, Yong

    2012-12-21

    In this work, atomic layer deposition is applied to coat carbon nanocoils with magnetic Fe(3)O(4) or Ni. The coatings have a uniform and highly controlled thickness. The coated nanocoils with coaxial multilayer nanostructures exhibit remarkably improved microwave absorption properties compared to the pristine carbon nanocoils. The enhanced absorption ability arises from the efficient complementarity between complex permittivity and permeability, chiral morphology, and multilayer structure of the products. This method can be extended to exploit other composite materials benefiting from its convenient control of the impedance matching and combination of dielectric-magnetic multiple loss mechanisms for microwave absorption applications.

  9. Thermal sensors utilizing thin layer technology applied to the analysis of aeronautical thermal exchanges

    NASA Astrophysics Data System (ADS)

    Godefroy, J. C.; Gageant, C.; Francois, D.

    Thin film surface thermometers and thermal gradient fluxmeters developed by ONERA to monitor thermal exchanges in aircraft engines to predict the remaining service life of the components are described. The sensors, less than 80 microns thick, with flexible Kapton dielectric layers and metal substrates, are integrated into the shape of the surface being monitored. Features of Cu-n, Ni-, Au-, and Cr-based films, including mounting and circuitry methods that permit calibration and accurate signal analysis, are summarized. Results are discussed from sample applications of the devices on a symmetric NACA 65(1)-012 airfoil and on a turbine blade.

  10. High performance capacitors using nano-structure multilayer materials fabrication

    DOEpatents

    Barbee, Jr., Troy W.; Johnson, Gary W.; O'Brien, Dennis W.

    1995-01-01

    A high performance capacitor fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a "notepad" configuration composed of 200-300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The "notepad" capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density.

  11. High performance capacitors using nano-structure multilayer materials fabrication

    DOEpatents

    Barbee, Jr., Troy W.; Johnson, Gary W.; O'Brien, Dennis W.

    1996-01-01

    A high performance capacitor fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a "notepad" configuration composed of 200-300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The "notepad" capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density.

  12. Characterization of natural photonic crystals in iridescent wings of damselfly Chalcopteryx rutilans by FIB/SEM, TEM, and TOF-SIMS.

    PubMed

    Carr, David M; Ellsworth, Ashley A; Fisher, Gregory L; Valeriano, Wescley W; Vasco, Juan P; Guimarães, Paulo S S; de Andrade, Rodrigo R; da Silva, Elizabeth R; Rodrigues, Wagner N

    2018-02-05

    The iridescent wings of the Chalcopterix rutilans damselfly (Rambur) (Odonata, Polythoridae) are investigated with focused ion beam/scanning electron microscopy, transmission electron microscopy, and time-of-flight secondary ion mass spectrometry. The electron microscopy images reveal a natural photonic crystal as the source of the varying colors. The photonic crystal has a consistent number and thickness (∼195 nm) of the repeat units on the ventral side of the wing, which is consistent with the red color visible from the bottom side of the wing in all regions. The dorsal side of the wing shows strong color variations ranging from red to blue depending on the region. In the electron microscopy images, the dorsal side of the wing exhibits varied number and thicknesses of the repeat units. The repeat unit spacings for the red, yellow/green, and blue regions are approximately 195, 180, and 145 nm, respectively. Three-dimensional analysis of the natural photonic crystals by time-of-flight secondary ion mass spectrometry reveals that changes in the relative levels of Na, K, and eumelanin are responsible for the varying dielectric constant needed to generate the photonic crystal. The photonic crystal also appears to be assembled with a chemical tricomponent layer structure due to the enhancement of the CH 6 N 3 + species at every other interface between the high/low dielectric constant layers.

  13. Second harmonic generation from metallo-dielectric multilayered structures in the plasmonic regime.

    PubMed

    Mattiucci, Nadia; D'Aguanno, Giuseppe; Bloemer, Mark J

    2010-11-08

    We present a theoretical study on second harmonic generation from metallo-dielectric multilayered structures in the plasmonic regime. In particular we analyze the behavior of structures made of Ag (silver) and MgF2 (magnesium-fluoride) due to the straightforward procedure to grow these materials with standard sputtering or thermal evaporation techniques. A systematic study is performed which analyzes four different kinds of elementary cells--namely (Ag/MgF2)N, (MgF2/Ag)N, (Ag/MgF2/Ag)N and (MgF2/Ag/MgF2)N--as function of the number of periods (N) and the thickness of the layers. We predict the conversion efficiency to be up to three orders of magnitude greater than the conversion efficiency found in the non-plasmonic regime and we point out the best geometries to achieve these conversion efficiencies. We also underline the role played by the short-range/long-range plasmons and leaky waves in the generation process. We perform a statistical study to demonstrate the robustness of the SH process in the plasmonic regime against the inevitable variations in the thickness of the layers. Finally, we show that a proper choice of the output medium can further improve the conversion efficiency reaching an enhancement of almost five orders of magnitude with respect to the non plasmonic regime.

  14. Phase behavior and characterization of heptamethyltrisiloxane-based de Vries smectic liquid crystal by electro-optics, x rays, and dielectric spectroscopy.

    PubMed

    Sreenilayam, S P; Agra-Kooijman, D M; Panov, V P; Swaminathan, V; Vij, J K; Panarin, Yu P; Kocot, A; Panov, A; Rodriguez-Lojo, D; Stevenson, P J; Fisch, Michael R; Kumar, Satyendra

    2017-03-01

    A heptamethyltrisiloxane liquid crystal (LC) exhibiting I-SmA^{*}-SmC^{*} phases has been characterized by calorimetry, polarizing microscopy, x-ray diffraction, electro-optics, and dielectric spectroscopy. Observations of a large electroclinic effect, a large increase in the birefringence (Δn) with electric field, a low shrinkage in the layer thickness (∼1.75%) at 20 °C below the SmA^{*}-SmC^{*} transition, and low values of the reduction factor (∼0.40) suggest that the SmA^{*} phase in this material is of the de Vries type. The reduction factor is a measure of the layer shrinkage in the SmC^{*} phase and it should be zero for an ideal de Vries. Moreover, a decrease in the magnitude of Δn with decreasing temperature indicates the presence of the temperature-dependent tilt angle in the SmA^{*} phase. The electro-optic behavior is explained by the generalized Langevin-Debye model as given by Shen et al. [Y. Shen et al., Phys. Rev. E 88, 062504 (2013)10.1103/PhysRevE.88.062504]. The soft-mode dielectric relaxation strength shows a critical behavior when the system goes from the SmA^{*} to the SmC^{*} phase.

  15. Measuring the bending of asymmetric planar EAP structures

    NASA Astrophysics Data System (ADS)

    Weiss, Florian M.; Zhao, Xue; Thalmann, Peter; Deyhle, Hans; Urwyler, Prabitha; Kovacs, Gabor; Müller, Bert

    2013-04-01

    The geometric characterization of low-voltage dielectric electro-active polymer (EAP) structures, comprised of nanometer thickness but areas of square centimeters, for applications such as artificial sphincters requires methods with nanometer precision. Direct optical detection is usually restricted to sub-micrometer resolution because of the wavelength of the light applied. Therefore, we propose to take advantage of the cantilever bending system with optical readout revealing a sub-micrometer resolution at the deflection of the free end. It is demonstrated that this approach allows us to detect bending of rather conventional planar asymmetric, dielectric EAP-structures applying voltages well below 10 V. For this purpose, we built 100 μm-thin silicone films between 50 nm-thin silver layers on a 25 μm-thin polyetheretherketone (PEEK) substrate. The increase of the applied voltage in steps of 50 V until 1 kV resulted in a cantilever bending that exhibits only in restricted ranges the expected square dependence. The mean laser beam displacement on the detector corresponded to 6 nm per volt. The apparatus will therefore become a powerful mean to analyze and thereby improve low-voltage dielectric EAP-structures to realize nanometer-thin layers for stack actuators to be incorporated into artificial sphincter systems for treating severe urinary and fecal incontinence.

  16. Phase behavior and characterization of heptamethyltrisiloxane-based de Vries smectic liquid crystal by electro-optics, x rays, and dielectric spectroscopy

    NASA Astrophysics Data System (ADS)

    Sreenilayam, S. P.; Agra-Kooijman, D. M.; Panov, V. P.; Swaminathan, V.; Vij, J. K.; Panarin, Yu. P.; Kocot, A.; Panov, A.; Rodriguez-Lojo, D.; Stevenson, P. J.; Fisch, Michael R.; Kumar, Satyendra

    2017-03-01

    A heptamethyltrisiloxane liquid crystal (LC) exhibiting I -Sm A*-Sm C* phases has been characterized by calorimetry, polarizing microscopy, x-ray diffraction, electro-optics, and dielectric spectroscopy. Observations of a large electroclinic effect, a large increase in the birefringence (Δ n ) with electric field, a low shrinkage in the layer thickness (˜1.75%) at 20 °C below the Sm A*-Sm C* transition, and low values of the reduction factor (˜0.40) suggest that the Sm A* phase in this material is of the de Vries type. The reduction factor is a measure of the layer shrinkage in the Sm C* phase and it should be zero for an ideal de Vries. Moreover, a decrease in the magnitude of Δ n with decreasing temperature indicates the presence of the temperature-dependent tilt angle in the Sm A* phase. The electro-optic behavior is explained by the generalized Langevin-Debye model as given by Shen et al. [Y. Shen et al., Phys. Rev. E 88, 062504 (2013), 10.1103/PhysRevE.88.062504]. The soft-mode dielectric relaxation strength shows a critical behavior when the system goes from the Sm A* to the Sm C* phase.

  17. Characterization of high-{kappa} LaLuO{sub 3} thin film grown on AlGaN/GaN heterostructure by molecular beam deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang Shu; Huang Sen; Chen Hongwei

    2011-10-31

    We report the study of high-dielectric-constant (high-{kappa}) dielectric LaLuO{sub 3} (LLO) thin film that is grown on AlGaN/GaN heterostructure by molecular beam deposition (MBD). The physical properties of LLO on AlGaN/GaN heterostrucure have been investigated with atomic force microscopy, x-ray photoelectron spectroscopy, and TEM. It is revealed that the MBD-grown 16 nm-thick LLO film is polycrystalline with a thin ({approx}2 nm) amorphous transition layer at the LLO/GaN interface. The bandgap of LLO is derived as 5.3 {+-} 0.04 eV from O1s energy loss spectrum. Capacitance-voltage (C-V) characteristics of a Ni-Au/LLO/III-nitride metal-insulator-semiconductor diode exhibit small frequency dispersion (<2%) and reveal amore » high effective dielectric constant of {approx}28 for the LLO film. The LLO layer is shown to be effective in suppressing the reverse and forward leakage current in the MIS diode. In particular, the MIS diode forward current is reduced by 7 orders of magnitude at a forward bias of 1 V compared to a conventional Ni-Au/III-nitride Schottky diode.« less

  18. Dielectric Properties of PMMA and its Composites with ZrO2

    NASA Astrophysics Data System (ADS)

    Sannakki, Basavaraja; Anita

    The polymer films of PMMA with different thickness and its composites with ZrO2 at various weight percentages but of same thickness have been studied. The determination of its dielectric properties, dielectric loss, a.conductivity and dielectric modulus were carried out using capacitance measurements of the above samples as a function of frequency, over the range 50 Hz - 5 MHz at room temperature. The films of PMMA and its composites have been characterized using X-Ray Diffractometer. The dielectric permittivity of films of PMMA behaves nonlinearly as frequency increases over the range 50-300 Hz, where as above 300 Hz the values of dielectric constant remains constant. But it is observed that the dielectric constant of PMMA increases as thickness of the film increases. In case of composite films of PMMA with ZrO2 the values of dielectric permittivity decreases gradually up to frequency of around 1 KHz and at higher frequencies it remains constant for all the weight percentages of ZrO2. The complex form of dielectric modulus of PMMA is obtained from the experimentally measured data of dielectric constant and dielectric loss values. The relaxation time of the orientation of dipoles is obtained from the peak value of angular frequency through the plots of imaginary part of electrical modulus as function of frequency. The impedance of PMMA polymer increases as thickness of the films increases. The a c conductivity of PMMA film remains constant up to frequency of 1 MHz and above. It shows a nonlinear phenomenon with peak values at frequency 4 MHz. Shape and size of the nanoparticles of composite film of PMMA with ZrO2 was analyzed by Field Emission Scanning Electron Microscope (FESEM).

  19. Effect of dielectric layers on device stability of pentacene-based field-effect transistors.

    PubMed

    Di, Chong-an; Yu, Gui; Liu, Yunqi; Guo, Yunlong; Sun, Xiangnan; Zheng, Jian; Wen, Yugeng; Wang, Ying; Wu, Weiping; Zhu, Daoben

    2009-09-07

    We report stable organic field-effect transistors (OFETs) based on pentacene. It was found that device stability strongly depends on the dielectric layer. Pentacene thin-film transistors based on the bare or polystyrene-modified SiO(2) gate dielectrics exhibit excellent electrical stabilities. In contrast, the devices with the octadecyltrichlorosilane (OTS)-treated SiO(2) dielectric layer showed the worst stabilities. The effects of the different dielectrics on the device stabilities were investigated. We found that the surface energy of the gate dielectric plays a crucial role in determining the stability of the pentacene thin film, device performance and degradation of electrical properties. Pentacene aggregation, phase transfer and film morphology are also important factors that influence the device stability of pentacene devices. As a result of the surface energy mismatch between the dielectric layer and organic semiconductor, the electronic performance was degraded. Moreover, when pentacene was deposited on the OTS-treated SiO(2) dielectric layer with very low surface energy, pentacene aggregation occurred and resulted in a dramatic decrease of device performance. These results demonstrated that the stable OFETs could be obtained by using pentacene as a semiconductor layer.

  20. Multifunctional Hybrid Multilayer Gate Dielectrics with Tunable Surface Energy for Ultralow-Power Organic and Amorphous Oxide Thin-Film Transistors.

    PubMed

    Byun, Hye-Ran; You, Eun-Ah; Ha, Young-Geun

    2017-03-01

    For large-area, printable, and flexible electronic applications using advanced semiconductors, novel dielectric materials with excellent capacitance, insulating property, thermal stability, and mechanical flexibility need to be developed to achieve high-performance, ultralow-voltage operation of thin-film transistors (TFTs). In this work, we first report on the facile fabrication of multifunctional hybrid multilayer gate dielectrics with tunable surface energy via a low-temperature solution-process to produce ultralow-voltage organic and amorphous oxide TFTs. The hybrid multilayer dielectric materials are constructed by iteratively stacking bifunctional phosphonic acid-based self-assembled monolayers combined with ultrathin high-k oxide layers. The nanoscopic thickness-controllable hybrid dielectrics exhibit the superior capacitance (up to 970 nF/cm 2 ), insulating property (leakage current densities <10 -7 A/cm 2 ), and thermal stability (up to 300 °C) as well as smooth surfaces (root-mean-square roughness <0.35 nm). In addition, the surface energy of the hybrid multilayer dielectrics are easily changed by switching between mono- and bifunctional phosphonic acid-based self-assembled monolayers for compatible fabrication with both organic and amorphous oxide semiconductors. Consequently, the hybrid multilayer dielectrics integrated into TFTs reveal their excellent dielectric functions to achieve high-performance, ultralow-voltage operation (< ± 2 V) for both organic and amorphous oxide TFTs. Because of the easily tunable surface energy, the multifunctional hybrid multilayer dielectrics can also be adapted for various organic and inorganic semiconductors, and metal gates in other device configurations, thus allowing diverse advanced electronic applications including ultralow-power and large-area electronic devices.

  1. Numerical study of the influence of solid polarization on electrophoresis at finite Debye thickness.

    PubMed

    Bhattacharyya, Somnath; De, Simanta

    2015-09-01

    The influence of solid polarization on the electrophoresis of a uniformly charged dielectric particle for finite values of the particle-to-fluid dielectric permittivity ratio is analyzed quantitatively without imposing the thin Debye length or weak-field assumption. Present analysis is based on the computation of the coupled Poisson-Nernst-Planck and Stokes equations in the fluid domain along with the Laplace equation within the solid. The electrophoretic velocity is determined through the balance of forces acting on the particle. The solid polarization of the charged particle produces a reduction on its electrophoretic velocity compared to a nonpolarizable particle of the same surface charge density. In accordance with the existing thin-layer analysis, our computed results for thin Debye layer shows that the solid polarization is important only when the applied electric field is strong. When the Debye length is in the order of the particle size, the electrophoretic velocity decreases with the rise of the particle permittivity and attains a saturation limit at large values of the permittivity. Our computed solution for electrophoretic velocity is in agreement with the existing asymptotic analyses based on a thin Debye layer for limiting cases.

  2. Effect of Organic Blocking Layer on the Energy Storage Characteristics of High-Permittivity Sol-Gel Thin Film Based on Neat 2-Cyanoethyltrimethoxysilane

    NASA Astrophysics Data System (ADS)

    Kim, Yunsang; Kathaperumal, Mohanalingam; Pan, Ming-Jen; Perry, Joseph

    2014-03-01

    Organic-inorganic hybrid sol-gel materials with polar groups that can undergo reorientational polarization provide a potential route to dielectric materials for energy storage. We have investigated the influence of nanoscale polymeric layer on dielectric and energy storage properties of 2-cyanoethyltrimethoxysilane (CNETMS) films. Two polymeric materials, fluoropolymer (CYTOP) and poly(p-phenylene oxide, PPO), are examined as potential materials to control charge injection from electrical contacts into CNETMS films by means of a potential barrier, whose width and height are defined by thickness and permittivity. Blocking layers ranging from 20 nm to 200 nm were deposited on CNETMS films by spin casting and subjected to thermal treatment. Polarization-electric field measurements show 30% increase in extractable energy density with PPO/CNETMS bilayers, relative to CNETMS alone, due to improved breakdown strength. Conduction current of the bilayers indicate that onset of charge conduction at high field is much delayed, which can be translated into effective suppression of charge injection and probability of breakdown events. The results will be discussed in regards to film morphology, field partitioning, width and height of potential barrier, charge trapping and loss of bilayers.

  3. Nanostructure multilayer dielectric materials for capacitors and insulators

    DOEpatents

    Barbee, Jr., Troy W.; Johnson, Gary W.

    1998-04-21

    A capacitor is formed of at least two metal conductors having a multilayer dielectric and opposite dielectric-conductor interface layers in between. The multilayer dielectric includes many alternating layers of amorphous zirconium oxide (ZrO.sub.2) and alumina (Al.sub.2 O.sub.3). The dielectric-conductor interface layers are engineered for increased voltage breakdown and extended service life. The local interfacial work function is increased to reduce charge injection and thus increase breakdown voltage. Proper material choices can prevent electrochemical reactions and diffusion between the conductor and dielectric. Physical vapor deposition is used to deposit the zirconium oxide (ZrO.sub.2) and alumina (Al.sub.2 O.sub.3) in alternating layers to form a nano-laminate.

  4. Nanostructure multilayer dielectric materials for capacitors and insulators

    DOEpatents

    Barbee, T.W. Jr.; Johnson, G.W.

    1998-04-21

    A capacitor is formed of at least two metal conductors having a multilayer dielectric and opposite dielectric-conductor interface layers in between. The multilayer dielectric includes many alternating layers of amorphous zirconium oxide (ZrO{sub 2}) and alumina (Al{sub 2}O{sub 3}). The dielectric-conductor interface layers are engineered for increased voltage breakdown and extended service life. The local interfacial work function is increased to reduce charge injection and thus increase breakdown voltage. Proper material choices can prevent electrochemical reactions and diffusion between the conductor and dielectric. Physical vapor deposition is used to deposit the zirconium oxide (ZrO{sub 2}) and alumina (Al{sub 2}O{sub 3}) in alternating layers to form a nano-laminate. 1 fig.

  5. Significantly Elevated Dielectric and Energy Storage Traits in Boron Nitride Filled Polymer Nano-composites with Topological Structure

    NASA Astrophysics Data System (ADS)

    Feng, Yefeng; Zhang, Jianxiong; Hu, Jianbing; Li, Shichun; Peng, Cheng

    2018-03-01

    Interface induced polarization has a prominent influence on dielectric properties of 0-3 type polymer based composites containing Si-based semi-conductors. The disadvantages of composites were higher dielectric loss, lower breakdown strength and energy storage density, although higher permittivity was achieved. In this work, dielectric, conductive, breakdown and energy storage properties of four nano-composites have been researched. Based on the cooperation of fluoropolymer/alpha-SiC layer and fluoropolymer/hexagonal-BN layer, it was confirmed constructing the heterogeneous layer-by-layer composite structure rather than homogeneous mono-layer structure could significantly reduce dielectric loss, promote breakdown strength and increase energy storage density. The former worked for a larger dielectric response and the latter layer acted as a robust barrier of charge carrier transfer. The best nano-composite could possess a permittivity of 43@100 Hz ( 3.3 times of polymer), loss of 0.07@100 Hz ( 37% of polymer), discharged energy density of 2.23 J/cm3@249 kV/cm ( 10 times of polymer) and discharged energy efficiency of 54%@249 kV/cm ( 5 times of polymer). This work might enlighten a facile route to achieve the promising high energy storage composite dielectrics by constructing the layer-by-layer topological structure.

  6. Effect of solution combusted TiO2 nanopowder within commercial BaTiO3 dielectric layer on the photoelectric properties for AC powder electroluminescence devices.

    PubMed

    Park, Sung; Choi, Gil Rak; Kim, Youn Cheol; Lee, Jae Chun; Lee, Ju Hyeon

    2013-05-01

    A unique synthesis method was developed, which is called solution combustion method (SCM). TiO2 nanopowder was synthesized by this method. This SCM TiO2 nanopowder (-35 nm) was added to the dielectric layer of AC powder electroluminescence (EL) device. The dielectric layer was made of commercial BaTiO3 powder (-1.2 microm) and binding polymer. 0, 5, 10 and 15 wt% of SCM TiO2 nanopowder was added to the dielectric layer during fabrication of AC powder EL device respectively. Dielectric constant of these four kinds of dielectric layers was measured. The brightness and current density of AC powder EL device were also measured. When 10 wt% of SCM TiO2 nanopowder was added, dielectric constant and brightness were increased by 30% and 101% respectively. Furthermore, the current density was decreased by 71%. This means that the brightness was double and the power consumption was one third.

  7. Energy Storage via Polyvinylidene Fluoride Dielectric on the Counterelectrode of Dye-Sensitized Solar Cells.

    PubMed

    Huang, Xuezhen; Zhang, Xi; Jiang, Hongrui

    2014-02-15

    To study the fundamental energy storage mechanism of photovoltaically self-charging cells (PSCs) without involving light-responsive semiconductor materials such as Si powder and ZnO nanowires, we fabricate a two-electrode PSC with the dual functions of photocurrent output and energy storage by introducing a PVDF film dielectric on the counterelectrode of a dye-sensitized solar cell. A layer of ultrathin Au film used as a quasi-electrode establishes a shared interface for the I - /I 3 - redox reaction and for the contact between the electrolyte and the dielectric for the energy storage, and prohibits recombination during the discharging period because of its discontinuity. PSCs with a 10-nm-thick PVDF provide a steady photocurrent output and achieve a light-to-electricity conversion efficiency ( η) of 3.38%, and simultaneously offer energy storage with a charge density of 1.67 C g -1 . Using this quasi-electrode design, optimized energy storage structures may be used in PSCs for high energy storage density.

  8. Improved interfacial and electrical properties of GaAs metal-oxide-semiconductor capacitors with HfTiON as gate dielectric and TaON as passivation interlayer

    NASA Astrophysics Data System (ADS)

    Wang, L. S.; Xu, J. P.; Zhu, S. Y.; Huang, Y.; Lai, P. T.

    2013-08-01

    The interfacial and electrical properties of sputtered HfTiON on sulfur-passivated GaAs with or without TaON as interfacial passivation layer (IPL) are investigated. Experimental results show that the GaAs metal-oxide-semiconductor capacitor with HfTiON/TaON stacked gate dielectric annealed at 600 °C exhibits low interface-state density (1.0 × 1012 cm-2 eV-1), small gate leakage current (7.3 × 10-5 A cm-2 at Vg = Vfb + 1 V), small capacitance equivalent thickness (1.65 nm), and large equivalent dielectric constant (26.2). The involved mechanisms lie in the fact that the TaON IPL can effectively block the diffusions of Hf, Ti, and O towards GaAs surface and suppress the formation of interfacial As-As bonds, Ga-/As-oxides, thus unpinning the Femi level at the TaON/GaAs interface and improving the interface quality and electrical properties of the device.

  9. One-dimensional dielectric bi-periodic photonic structures based on ternary photonic crystals

    NASA Astrophysics Data System (ADS)

    Dadoenkova, Nataliya N.; Dadoenkova, Yuliya S.; Panyaev, Ivan S.; Sannikov, Dmitry G.; Lyubchanskii, Igor L.

    2018-01-01

    We investigate the transmittivity spectra, fields, and energy distribution of the electromagnetic eigenwaves propagating in a one-dimensional (1D) dielectric photonic crystal [(TiO2/SiO2)NAl2O3]M with two periods formed by unit cells TiO2/SiO2 and (TiO2/SiO2)NAl2O3. Spectra of TE- and TM-modes depend on the geometric parameters of the structure and undergo modifications with the change in the period numbers, layer thicknesses, and incidence angle. Special attention is paid to the applicability of the hybrid effective medium approximation comprising the long-wave approximation and two-dimensional (2 × 2) transfer matrix method. We demonstrate spectral peculiarities of the bi-periodic structure and also show the differences between the band gap spectra of the bi-periodic and ternary 1D dielectric photonic crystals. The presented photonic crystal structure can find its applications in optoelectronics and nanophotonics areas as omnidirectional reflectors, optical ultra-narrow bandpass filters, and antireflection coatings.

  10. Back scattering involving embedded silicon nitride (SiN) nanoparticles for c-Si solar cells

    NASA Astrophysics Data System (ADS)

    Ghosh, Hemanta; Mitra, Suchismita; Siddiqui, M. S.; Saxena, A. K.; Chaudhuri, Partha; Saha, Hiranmay; Banerjee, Chandan

    2018-04-01

    A novel material, structure and method of synthesis for dielectric light trapping have been presented in this paper. First, the light scattering behaviour of silicon nitride nanoparticles have been theoretically studied in order to find the optimized size for dielectric back scattering by FDTD simulations from Lumerical Inc. The optical results have been used in electrical analysis and thereby, estimate the effect of nanoparticles on efficiency of the solar cells depending on substrate thickness. Experimentally, silicon nitride (SiN) nanoparticles have been formed using hydrogen plasma treatment on SiN layer deposited by Plasma Enhanced Chemical Vapour Deposition (PECVD). The size and area coverage of the nanoparticles were controlled by varying the working pressure, power density and treatment duration. The nanoparticles were integrated with partial rear contact c-Si solar cells as dielectric back reflector structures for the light trapping in thin silicon solar cells. Experimental results revealed the increases of current density by 2.7% in presence of SiN nanoparticles.

  11. The stability of aluminium oxide monolayer and its interface with two-dimensional materials

    NASA Astrophysics Data System (ADS)

    Song, Ting Ting; Yang, Ming; Chai, Jian Wei; Callsen, Martin; Zhou, Jun; Yang, Tong; Zhang, Zheng; Pan, Ji Sheng; Chi, Dong Zhi; Feng, Yuan Ping; Wang, Shi Jie

    2016-07-01

    The miniaturization of future electronic devices requires the knowledge of interfacial properties between two-dimensional channel materials and high-κ dielectrics in the limit of one atomic layer thickness. In this report, by combining particle-swarm optimization method with first-principles calculations, we present a detailed study of structural, electronic, mechanical, and dielectric properties of Al2O3 monolayer. We predict that planar Al2O3 monolayer is globally stable with a direct band gap of 5.99 eV and thermal stability up to 1100 K. The stability of this high-κ oxide monolayer can be enhanced by substrates such as graphene, for which the interfacial interaction is found to be weak. The band offsets between the Al2O3 monolayer and graphene are large enough for electronic applications. Our results not only predict a stable high-κ oxide monolayer, but also improve the understanding of interfacial properties between a high-κ dielectric monolayer and two-dimensional material.

  12. Formation of nanofilament field emission devices

    DOEpatents

    Morse, Jeffrey D.; Contolini, Robert J.; Musket, Ronald G.; Bernhardt, Anthony F.

    2000-01-01

    A process for fabricating a nanofilament field emission device. The process enables the formation of high aspect ratio, electroplated nanofilament structure devices for field emission displays wherein a via is formed in a dielectric layer and is self-aligned to a via in the gate metal structure on top of the dielectric layer. The desired diameter of the via in the dielectric layer is on the order of 50-200 nm, with an aspect ratio of 5-10. In one embodiment, after forming the via in the dielectric layer, the gate metal is passivated, after which a plating enhancement layer is deposited in the bottom of the via, where necessary. The nanofilament is then electroplated in the via, followed by removal of the gate passification layer, etch back of the dielectric, and sharpening of the nanofilament. A hard mask layer may be deposited on top of the gate metal and removed following electroplating of the nanofilament.

  13. Cast dielectric composite linear accelerator

    DOEpatents

    Sanders, David M [Livermore, CA; Sampayan, Stephen [Manteca, CA; Slenes, Kirk [Albuquerque, NM; Stoller, H M [Albuquerque, NM

    2009-11-10

    A linear accelerator having cast dielectric composite layers integrally formed with conductor electrodes in a solventless fabrication process, with the cast dielectric composite preferably having a nanoparticle filler in an organic polymer such as a thermosetting resin. By incorporating this cast dielectric composite the dielectric constant of critical insulating layers of the transmission lines of the accelerator are increased while simultaneously maintaining high dielectric strengths for the accelerator.

  14. Controlled thickness and dielectric constant titanium-doped SiO2 thin films on silicon by sol gel process

    NASA Astrophysics Data System (ADS)

    Liu, H. L.; Wang, S. S.; Zhou, Yan; Lam, Yee Loy; Chan, Yuen Chuen; Kam, Chan Hin

    1997-08-01

    In this paper, we report the preparation of crack-free relatively thick SiO2-TiO2 thin films on silicon substrates using the sol-gel spin-coating method. The influence of the process parameters on the quality of the film, such as the solution condition, the spin-coating speed, the heat treatment temperature and time, have been studied. We found that the cracking of the film could be avoided by selecting the right sol composition ratios, adding PVA to the sold and properly controlling the heat treatment. Most importantly, we discovered that by polishing the edges of the film after the deposition of each single layer, the number of such layers that deposited without crack formation could be substantially increased. The refractive index profile and thickness of the film have been determined using prism coupling technique and the inverse WKB method. The refractive index was found to depend on the content of TiO2 as well as the heat treatment condition. Using an AFM, the surface morphology of the film was found to be good.

  15. Characterizing dielectric tensors of anisotropic materials from a single measurement

    NASA Astrophysics Data System (ADS)

    Smith, Paula Kay

    Ellipsometry techniques look at changes in polarization states to measure optical properties of thin film materials. A beam reflected from a substrate measures the real and imaginary parts of the index of the material represented as n and k, respectively. Measuring the substrate at several angles gives additional information that can be used to measure multilayer thin film stacks. However, the outstanding problem in standard ellipsometry is that it uses a limited number of incident polarization states (s and p). This limits the technique to isotropic materials. The technique discussed in this paper extends the standard process to measure anisotropic materials by using a larger set of incident polarization states. By using a polarimeter to generate several incident polarization states and measure the polarization properties of the sample, ellipsometry can be performed on biaxial materials. Use of an optimization algorithm in conjunction with biaxial ellipsometry can more accurately determine the dielectric tensor of individual layers in multilayer structures. Biaxial ellipsometry is a technique that measures the dielectric tensors of a biaxial substrate, single-layer thin film, or multi-layer structure. The dielectric tensor of a biaxial material consists of the real and imaginary parts of the three orthogonal principal indices (n x + ikx, ny +iky and nz + i kz) as well as three Euler angles (alpha, beta and gamma) to describe its orientation. The method utilized in this work measures an angle-of-incidence Mueller matrix from a Mueller matrix imaging polarimeter equipped with a pair of microscope objectives that have low polarization properties. To accurately determine the dielectric tensors for multilayer samples, the angle-of-incidence Mueller matrix images are collected for multiple wavelengths. This is done in either a transmission mode or a reflection mode, each incorporates an appropriate dispersion model. Given approximate a priori knowledge of the dielectric tensor and film thickness, a Jones reflectivity matrix is calculated by solving Maxwell's equations at each surface. Converting the Jones matrix into a Mueller matrix provides a starting point for optimization. An optimization algorithm then finds the best fit dielectric tensor based on the measured angle-of-incidence Mueller matrix image. This process can be applied to polarizing materials, birefringent crystals and the multilayer structures of liquid crystal displays. In particular, the need for such accuracy in liquid crystal displays is growing as their applications in industry evolve.

  16. Frequency- and doping-level influence on electric and dielectric properties of PolySi/SiO2/cSi (MOS) structures

    NASA Astrophysics Data System (ADS)

    Doukhane, N.; Birouk, B.

    2018-03-01

    The electric and dielectric characteristics of PolySi/SiO2/cSi (MOS) structure, such as series resistance ( R s), dielectric constants ( ɛ') and ( ɛ″), dielectric losses (tan δ), and the ac electric conductivity ( σ ac), were studied in the frequency range 100 kHz-1 MHz for various doping levels and two thicknesses for the polysilicon layer (100 and 175 nm). The experimental results show that the C and G/ ω characteristics are very sensitive to the frequency due to the presence of interface states. Series resistance R s is deduced from C and G/ ω measurements and is plotted as a function of the frequency for various doping levels. It is found to decrease with frequency and doping level. To determine {ɛ ^' }, ɛ″, tan δ, and {σ _{{ac}}}, the admittance technique was used. An interesting behavior of the constants, {ɛ ^' } and ɛ″, was noticed. The {ɛ ^' } values fit led to relations between {ɛ ^' } and the frequency, on one hand, and between {ɛ ^' } and the electric conductivity of the polysilicon layers on the other. These relations make it possible to interpolate directly between two experimental points for a given frequency. The analysis of the results shows that the values of {ɛ ^' }, ɛ″, and tan δ decrease with increasing frequency. This is due to the fact that in the region of low frequencies, interfacial polarization occurs easily, and the interface states between Si and SiO2 contribute to the improvement of the dielectric properties of the PolySi/SiO2/cSi structures. The study also emphasizes that the ac electric conductivity increases with the increase in frequency and doping level; this causes to the reduction in series resistance.

  17. Atomic layer deposition TiO 2-Al 2O 3 stack: An improved gate dielectric on Ga-polar GaN metal oxide semiconductor capacitors

    DOE PAGES

    Wei, Daming; Edgar, James H.; Briggs, Dayrl P.; ...

    2014-10-15

    This research focuses on the benefits and properties of TiO 2-Al 2O 3 nano-stack thin films deposited on Ga 2O 3/GaN by plasma-assisted atomic layer deposition (PA-ALD) for gate dielectric development. This combination of materials achieved a high dielectric constant, a low leakage current, and a low interface trap density. Correlations were sought between the films’ structure, composition, and electrical properties. The gate dielectrics were approximately 15 nm thick and contained 5.1 nm TiO 2, 7.1 nm Al 2O 3 and 2 nm Ga 2O 3 as determined by spectroscopic ellipsometry. The interface carbon concentration, as measured by x-ray photoelectronmore » spectroscopy (XPS) depth profile, was negligible for GaN pretreated by thermal oxidation in O 2 for 30 minutes at 850°C. The RMS roughness slightly increased after thermal oxidation and remained the same after ALD of the nano-stack, as determined by atomic force microscopy. The dielectric constant of TiO 2-Al 2O 3 on Ga2O3/GaN was increased to 12.5 compared to that of pure Al 2O 3 (8~9) on GaN. In addition, the nano-stack's capacitance-voltage (C-V) hysteresis was small, with a total trap density of 8.74 × 10 11 cm -2. The gate leakage current density (J=2.81× 10 -8 A/cm 2) was low at +1 V gate bias. These results demonstrate the promising potential of plasma ALD deposited TiO 2/Al 2O 3 for serving as the gate oxide on Ga 2O 3/GaN based MOS devices.« less

  18. Atomic layer deposition TiO 2-Al 2O 3 stack: An improved gate dielectric on Ga-polar GaN metal oxide semiconductor capacitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Daming; Edgar, James H.; Briggs, Dayrl P.

    This research focuses on the benefits and properties of TiO 2-Al 2O 3 nano-stack thin films deposited on Ga 2O 3/GaN by plasma-assisted atomic layer deposition (PA-ALD) for gate dielectric development. This combination of materials achieved a high dielectric constant, a low leakage current, and a low interface trap density. Correlations were sought between the films’ structure, composition, and electrical properties. The gate dielectrics were approximately 15 nm thick and contained 5.1 nm TiO 2, 7.1 nm Al 2O 3 and 2 nm Ga 2O 3 as determined by spectroscopic ellipsometry. The interface carbon concentration, as measured by x-ray photoelectronmore » spectroscopy (XPS) depth profile, was negligible for GaN pretreated by thermal oxidation in O 2 for 30 minutes at 850°C. The RMS roughness slightly increased after thermal oxidation and remained the same after ALD of the nano-stack, as determined by atomic force microscopy. The dielectric constant of TiO 2-Al 2O 3 on Ga2O3/GaN was increased to 12.5 compared to that of pure Al 2O 3 (8~9) on GaN. In addition, the nano-stack's capacitance-voltage (C-V) hysteresis was small, with a total trap density of 8.74 × 10 11 cm -2. The gate leakage current density (J=2.81× 10 -8 A/cm 2) was low at +1 V gate bias. These results demonstrate the promising potential of plasma ALD deposited TiO 2/Al 2O 3 for serving as the gate oxide on Ga 2O 3/GaN based MOS devices.« less

  19. Study of plasmonics in hybrids made from a quantum emitter and double metallic nanoshell dimer

    NASA Astrophysics Data System (ADS)

    Guo, Jiaohan; Black, Kevin; Hu, Jiawen; Singh, Mahi

    2018-05-01

    We developed a theory for the fluorescence (FL) for quantum emitter and double metallic nanoshell dimer hybrids using the density matrix method. The dimer is made from two identical double metallic nanoshells, which are made of a dielectric core, a gold metallic shell and a dielectric spacer layer. The quantum emitters are deposited on the surface of the spacer layers of the dimers due to the electrostatic absorptions. We consider that dimer hybrids are surrounded by biological cells. This can be achieved by injecting them into human or animal cells. The surface plasmon polaritons (SPP) are calculated for the dimer using Maxwell’s equations in the static wave approximation. The calculated SPP energy agrees with experimental data from Zhai et al (2017 Plasmonics 12 263) for the dimer made from a silica core, a gold metallic nanoshell and a silica spacer layer. We have also obtained an analytical expression of the FL using the density matrix method. We compare our theory with FL experimental data from Zhai et al (2017 Plasmonics 12 263) where the FL spectrum was measured by varying the thickness of the spacer layer from 9 nm to 40 nm. A good agreement between theory and experiment is found. We have shown that the enhancement of the FL increases as the thickness of the spacer layer decreases. We have also found that the enhancement of the FL increases as the distance between the double metallic nanoshells in the dimer decreases. These are interesting findings which are consistent with the experiments of Zhai et al (2017 Plasmonics 12 263) and can be used to control the FL enhancement in the FL-based biomedical imaging and cancer treatment. These interesting findings may also be useful in the fabrication of nanosensors and nanoswitches for applications in medicine.

  20. Downscaling ferroelectric field effect transistors by using ferroelectric Si-doped HfO2

    NASA Astrophysics Data System (ADS)

    Martin, Dominik; Yurchuk, Ekaterina; Müller, Stefan; Müller, Johannes; Paul, Jan; Sundquist, Jonas; Slesazeck, Stefan; Schlösser, Till; van Bentum, Ralf; Trentzsch, Martin; Schröder, Uwe; Mikolajick, Thomas

    2013-10-01

    Throughout the 22 nm technology node HfO2 is established as a reliable gate dielectric in contemporary complementary metal oxide semiconductor (CMOS) technology. The working principle of ferroelectric field effect transistors FeFET has also been demonstrated for some time for dielectric materials like Pb[ZrxTi1-x]O3 and SrBi2Ta2O9. However, integrating these into contemporary downscaled CMOS technology nodes is not trivial due to the necessity of an extremely thick gate stack. Recent developments have shown HfO2 to have ferroelectric properties, given the proper doping. Moreover, these doped HfO2 thin films only require layer thicknesses similar to the ones already in use in CMOS technology. This work will show how the incorporation of Si induces ferroelectricity in HfO2 based capacitor structures and finally demonstrate non-volatile storage in nFeFETs down to a gate length of 100 nm. A memory window of 0.41 V can be retained after 20,000 switching cycles. Retention can be extrapolated to 10 years.

  1. Influence of Passivation Layers for Metal Grating-Based Quantum Well Infrared Photodetectors

    NASA Astrophysics Data System (ADS)

    Liu, Dong; Fu, Yong-Qi; Yang, Le-Chen; Zhang, Bao-Shun; Li, Hai-Jun; Fu, Kai; Xiong, Min

    2012-06-01

    To improve absorption of quantum well infrared photodetectors (QWIPs), a coupling layer with metallic grating is designed and fabricated above the quantum well. The metal grating is composed of 100 nm Au film on top, and a 20-nm Ti thin layer between the Au film and the sapphire substrate is coated as an adhesion/buffer layer. To protect the photodetector from oxidation and to decrease leakage, a SiO2 film is deposited by means of plasma-enhanced chemical vapor deposition. A value of about 800 nm is an optimized thickness for the SiO2 applied in the metallic grating-based mid-infrared QWIP. In addition, a QWIP passivation layer is studied experimentally. The results demonstrate that the contribution from the layer is positive for metal grating coupling with the quantum well. The closer the permittivity of the two dielectric layers (SiO2 and the passivation layers), and the closer the two transmission peaks, the greater the QWIP enhancement will be.

  2. Insulator-semiconductor interface fixed charges in AlGaN/GaN metal-insulator-semiconductor devices with Al2O3 or AlTiO gate dielectrics

    NASA Astrophysics Data System (ADS)

    Le, Son Phuong; Nguyen, Duong Dai; Suzuki, Toshi-kazu

    2018-01-01

    We have investigated insulator-semiconductor interface fixed charges in AlGaN/GaN metal-insulator-semiconductor (MIS) devices with Al2O3 or AlTiO (an alloy of Al2O3 and TiO2) gate dielectrics obtained by atomic layer deposition on AlGaN. Analyzing insulator-thickness dependences of threshold voltages for the MIS devices, we evaluated positive interface fixed charges, whose density at the AlTiO/AlGaN interface is significantly lower than that at the Al2O3/AlGaN interface. This and a higher dielectric constant of AlTiO lead to rather shallower threshold voltages for the AlTiO gate dielectric than for Al2O3. The lower interface fixed charge density also leads to the fact that the two-dimensional electron concentration is a decreasing function of the insulator thickness for AlTiO, whereas being an increasing function for Al2O3. Moreover, we discuss the relationship between the interface fixed charges and interface states. From the conductance method, it is shown that the interface state densities are very similar at the Al2O3/AlGaN and AlTiO/AlGaN interfaces. Therefore, we consider that the lower AlTiO/AlGaN interface fixed charge density is not owing to electrons trapped at deep interface states compensating the positive fixed charges and can be attributed to a lower density of oxygen-related interface donors.

  3. Dielectric elastomers with novel highly-conducting electrodes

    NASA Astrophysics Data System (ADS)

    Böse, Holger; Uhl, Detlev

    2013-04-01

    Beside the characteristics of the elastomer material itself, the performance of dielectric elastomers in actuator, sensor as well as generator applications depends also on the properties of the electrode material. Various electrode materials based on metallic particles dispersed in a silicone matrix were manufactured and investigated. Anisotropic particles such as silver-coated copper flakes and silver-coated glass flakes were used for the preparation of the electrodes. The concentration of the metallic particles and the thickness of the electrode layers were varied. Specific conductivities derived from resistance measurements reached about 100 S/cm and surmount those of the reference materials based on graphite and carbon black by up to three orders of magnitude. The high conductivities of the new electrode materials can be maintained even at very large stretch deformations up to 200 %.

  4. Characterization of SiO{sub 2}/SiN{sub x} gate insulators for graphene based nanoelectromechanical systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tóvári, E.; Csontos, M., E-mail: csontos@dept.phy.bme.hu; Kriváchy, T.

    2014-09-22

    The structural and magnetotransport characterization of graphene nanodevices exfoliated onto Si/SiO{sub 2}/SiN{sub x} heterostructures are presented. Improved visibility of the deposited flakes is achieved by optimal tuning of the dielectric film thicknesses. The conductance of single layer graphene Hall-bar nanostructures utilizing SiO{sub 2}/SiN{sub x} gate dielectrics were characterized in the quantum Hall regime. Our results highlight that, while exhibiting better mechanical and chemical stability, the effect of non-stoichiometric SiN{sub x} on the charge carrier mobility of graphene is comparable to that of SiO{sub 2}, demonstrating the merits of SiN{sub x} as an ideal material platform for graphene based nanoelectromechanical applications.

  5. Nondestructive characterization of textured a-Si:H/c-Si heterojunction solar cell structures with nanometer-scale a-Si:H and In2O3:Sn layers by spectroscopic ellipsometry

    NASA Astrophysics Data System (ADS)

    Matsuki, Nobuyuki; Fujiwara, Hiroyuki

    2013-07-01

    Nanometer-scale hydrogenated amorphous silicon (a-Si:H) layers formed on crystalline silicon (c-Si) with pyramid-shaped textures have been characterized by spectroscopic ellipsometry (SE) using a tilt angle measurement configuration, in an attempt to establish a nondestructive method for the structural characterization of the a-Si:H/c-Si heterojunction solar cells. By applying an a-Si:H dielectric function model developed recently, the thickness and SiH2 content of the a-Si:H layer have been determined even on the textured substrates. Furthermore, from the SE analysis incorporating the Drude model, the carrier properties of the In2O3:Sn layers in the textured solar-cell structure have been characterized.

  6. Effect of dual-dielectric hydrogen-diffusion barrier layers on the performance of low-temperature processed transparent InGaZnO thin-film transistors

    NASA Astrophysics Data System (ADS)

    Tari, Alireza; Wong, William S.

    2018-02-01

    Dual-dielectric SiOx/SiNx thin-film layers were used as back-channel and gate-dielectric barrier layers for bottom-gate InGaZnO (IGZO) thin-film transistors (TFTs). The concentration profiles of hydrogen, indium, gallium, and zinc oxide were analyzed using secondary-ion mass spectroscopy characterization. By implementing an effective H-diffusion barrier, the hydrogen concentration and the creation of H-induced oxygen deficiency (H-Vo complex) defects during the processing of passivated flexible IGZO TFTs were minimized. A bilayer back-channel passivation layer, consisting of electron-beam deposited SiOx on plasma-enhanced chemical vapor-deposition (PECVD) SiNx films, effectively protected the TFT active region from plasma damage and minimized changes in the chemical composition of the semiconductor layer. A dual-dielectric PECVD SiOx/PECVD SiNx gate-dielectric, using SiOx as a barrier layer, also effectively prevented out-diffusion of hydrogen atoms from the PECVD SiNx-gate dielectric to the IGZO channel layer during the device fabrication.

  7. Surface order in cold liquids: X-ray reflectivity studies of dielectric liquids and comparison to liquid metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chattopadhyay, S.; Ehrlich, S.; Uysal, A.

    2010-05-17

    Oscillatory surface-density profiles layers have previously been reported in several metallic liquids, one dielectric liquid, and in computer simulations of dielectric liquids. We have now seen surface layers in two other dielectric liquids, pentaphenyl trimethyl trisiloxane, and pentavinyl pentamethyl cyclopentasiloxane. These layers appear below T?285 K and T?130 K, respectively; both thresholds correspond to T/Tc?0.2 where Tc is the liquid-gas critical temperature. All metallic and dielectric liquid surfaces previously studied are also consistent with the existence of this T/Tc threshold, first indicated by the simulations of Chacon et al. The layer width parameters, determined using a distorted-crystal fitting model, followmore » common trends as functions of Tc for both metallic and dielectric liquids.« less

  8. Three dimensional interactive display

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    2005-01-01

    A three-dimensional (3-D) interactive display and method of forming the same, includes a transparent capaciflector (TC) camera formed on a transparent shield layer on the screen surface. A first dielectric layer is formed on the shield layer. A first wire layer is formed on the first dielectric layer. A second dielectric layer is formed on the first wire layer. A second wire layer is formed on the second dielectric layer. Wires on the first wire layer and second wire layer are grouped into groups of parallel wires with a turnaround at one end of each group and a sensor pad at the opposite end. An operational amplifier is connected to each of the sensor pads and the shield pad biases the pads and receives a signal from connected sensor pads in response to intrusion of a probe. The signal is proportional to probe location with respect to the monitor screen.

  9. Nonlinear behaviour of reflectivity of gallium - Silica interface & its applications

    NASA Astrophysics Data System (ADS)

    Naruka, Preeti; Bissa, Shivangi

    2018-05-01

    In this paper Optical properties and nonlinear behaviour of Gallium-Silica Interface is studied. Change in reflectivity of gallium film is explained as a function of thickness of metallic layer and intensity of incident light by using non-thermal mechanism. Here variation of dielectric constant of gallium with temperature is also explained on considering Binary nanoshell model of gallium nanoparticles of spherical shape. In the present paper application of structural phase transformation of gallium is explained as a Grating assisted coupler.

  10. Characterizing Radio Emission From Extensive Air Showers with the SLAC-T510 Experiment, with Applications to ANITA

    NASA Astrophysics Data System (ADS)

    McGuire, Felicia Ann

    Essential to metal-oxide-semiconductor field-effect transistor (MOSFET) scaling is the reduction of the supply voltage to mitigate the power consumption and corresponding heat dissipation. Conventional dielectric materials are subject to the thermal limit imposed by the Boltzmann factor in the subthreshold swing, which places an absolute minimum on the supply voltage required to modulate the current. Furthermore, as technology approaches the 5 nm node, electrostatic control of a silicon channel becomes exceedingly difficult, regardless of the gating technique. This notion of "the end of silicon scaling" has rapidly increased research into more scalable channel materials as well as new methods of transistor operation. Among the many promising options are two-dimensional (2D) FETs and negative capacitance (NC) FETs. 2D-FETs make use of atomically thin semiconducting channels that have enabled demonstrated scalability beyond what silicon can offer. NC-FETs demonstrate an effective negative capacitance arising from the integration of a ferroelectric into the transistor gate stack, allowing sub-60 mV/dec switching. While both of these devices provide significant advantages, neither can accomplish the ultimate goal of a FET that is both low-voltage and scalable. However, an appropriate fusion of the 2D-FET and NC-FET into a 2D NC-FET has the potential of enabling a steep-switching device that is dimensionally scalable beyond the 5 nm technology node. In this work, the motivation for and operation of 2D NC-FETs is presented. Experimental realization of 2D NC-FETs using 2D transition metal dichalcogenide molybdenum disulfide (MoS2) as the channel is shown with two different ferroelectric materials: 1) a solution-processed, polymeric poly(vinylidene difluoride trifluoroethylene) ferroelectric and 2) an atomic layer deposition (ALD) grown hafnium zirconium oxide (HfZrO2) ferroelectric. Each ferroelectric was integrated into the gate stack of a 2D-FET having either a top-gate (polymeric ferroelectric) or bottom-gate (HfZrO2 ferroelectric) configuration. HfZrO 2 devices with metallic interfacial layers (between ferroelectric and dielectric) and thinner ferroelectric layers were found to reduce both the hysteresis and the threshold voltage. Detailed characterization of the devices was performed and, most significantly, the 2D NC-FETs with HfZrO2 reproducibly yielded subthreshold swings well below the thermal limit with over more than four orders of magnitude in drain current modulation. HfZrO 2 devices without metallic interfacial layers were utilized to explore the impact of ferroelectric thickness, dielectric thickness, and dielectric composition on device performance. The impact of an interfacial metallic layer on the device operation was investigated in devices with HfZrO2 and shown to be crucial at enabling sub-60 mV/dec switching and large internal voltage gains. The significance of dielectric material choice on device performance was explored and found to be a critical factor in 2D NC-FET transistor operation. These successful results pave the way for future integration of this new device structure into existing technology markets.

  11. RF-MEMS capacitive switches with high reliability

    DOEpatents

    Goldsmith, Charles L.; Auciello, Orlando H.; Carlisle, John A.; Sampath, Suresh; Sumant, Anirudha V.; Carpick, Robert W.; Hwang, James; Mancini, Derrick C.; Gudeman, Chris

    2013-09-03

    A reliable long life RF-MEMS capacitive switch is provided with a dielectric layer comprising a "fast discharge diamond dielectric layer" and enabling rapid switch recovery, dielectric layer charging and discharging that is efficient and effective to enable RF-MEMS switch operation to greater than or equal to 100 billion cycles.

  12. Research on the honeycomb restrain layer application to the high power microwave dielectric window

    NASA Astrophysics Data System (ADS)

    Zhang, Qingyuan; Shao, Hao; Huang, Wenhua; Guo, Letian

    2018-01-01

    Dielectric window breakdown is an important problem of high power microwave radiation. A honeycomb layer can suppress the multipactor in two directions to restrain dielectric window breakdown. This paper studies the effect of the honeycomb restrain layer on improving the dielectric window power capability. It also studies the multipactor suppression mechanism by using the electromagnetic particle-in-cell software, gives the design method, and accomplishes the test experiment. The experimental results indicated that the honeycomb restrain layer can effectively improve the power capability twice.

  13. Research on the honeycomb restrain layer application to the high power microwave dielectric window.

    PubMed

    Zhang, Qingyuan; Shao, Hao; Huang, Wenhua; Guo, Letian

    2018-01-01

    Dielectric window breakdown is an important problem of high power microwave radiation. A honeycomb layer can suppress the multipactor in two directions to restrain dielectric window breakdown. This paper studies the effect of the honeycomb restrain layer on improving the dielectric window power capability. It also studies the multipactor suppression mechanism by using the electromagnetic particle-in-cell software, gives the design method, and accomplishes the test experiment. The experimental results indicated that the honeycomb restrain layer can effectively improve the power capability twice.

  14. Multi-layered nanocomposite dielectrics for high density organic memory devices

    NASA Astrophysics Data System (ADS)

    Kang, Moonyeong; Chung, Kyungwha; Baeg, Kang-Jun; Kim, Dong Ha; Kim, Choongik

    2015-01-01

    We fabricated organic memory devices with metal-pentacene-insulator-silicon structure which contain double dielectric layers comprising 3D pattern of Au nanoparticles (Au NPs) and block copolymer (PS-b-P2VP). The role of Au NPs is to charge/discharge carriers upon applied voltage, while block copolymer helps to form highly ordered Au NP patterns in the dielectric layer. Double-layered nanocomposite dielectrics enhanced the charge trap density (i.e., trapped charge per unit area) by Au NPs, resulting in increase of the memory window (ΔVth).

  15. Atomic layer deposited high-k nanolaminate capacitors

    NASA Astrophysics Data System (ADS)

    Smith, S. W.; McAuliffe, K. G.; Conley, J. F., Jr.

    2010-10-01

    Al 2O 3-Ta 2O 5 nanolaminate films were prepared via atomic layer deposition (ALD) on silicon with a single overall composition and thickness, but with a varying number of Al 2O 3/Ta 2O 5 bilayers. The composition of the films was roughly 57% Al 2O 3 and 43% Ta 2O 5 and the total film thickness was held at ˜58 nm, while the number of bilayers was varied from 3 to 192 by changing the target bilayer thickness from ˜19.2 nm to ˜0.3 nm. Varying the number of bilayers was found to impact electrical properties. Although, almost all laminate films exhibited leakage, breakdown, hysteresis, and overall dielectric constant intermediate between pure Al 2O 3 and Ta 2O 5 films, laminates with few bilayers exhibited leakage current density lower than Al 2O 3 over the range of ˜3.5-4.5 MV/cm. Select samples annealed at temperatures from 400 to 900 °C were compared with as-deposited laminates. Annealing the laminate films at low temperatures improved leakage and breakdown while higher temperature anneals degraded both leakage and breakdown but improved the effective dielectric constant. A figure of merit was used to evaluate the overall ability of the various films to store charge. It was found that the few bilayer laminates were ranked higher than the many bilayer laminates as well as above both the pure Ta 2O 5 and pure Al 2O 3 films. These results indicate that even for a fixed overall composition, the electrical properties of a nanolaminate can be adjusted by varying the number of bilayers.

  16. Comparative study of all-printed polyimide humidity sensors with single- and multiwalled carbon nanotube gas-permeable top electrodes

    NASA Astrophysics Data System (ADS)

    Itoh, Eiji; Yuan, Zihan

    2017-05-01

    We have developed printed capacitive humidity sensors with highly gas permeable carbon nanotube top electrodes using solution techniques. The hydrophobic, porous multiwalled carbon nanotube (MWCNT) network was suitable for gas permeation, and the response of the capacitive humidity sensors was faster than that of a device with a single-walled carbon nanotube (SWCNT) top electrode. The newly developed measurement system consisting of a small measurement chamber, a computer-controlled high-speed solenoid valve, and a mass-flow controller enabled us to vary the ambient relative humidity within 0.1 s. A comparative study of the devices consisting of a 1.1-µm-thick partially fluorinated polyimide dielectric layer and an MWCNT or SWCNT top electrode revealed that the rise time (humidification process) of the device with MWCNTs (0.49 s) in the transient measurement was almost 3 times shorter than that with SWCNTs (1.48 s) owing to the hydrophobic surface of the MWCNTs. A much larger difference was observed during the drying process (recovery time) probably owing to the hydrophilic parts of the SWCNT surface. It was revealed that the response time was almost proportional to the square of the thickness of the polyimide dielectric layer, d, and the sensitivity was inversely proportional to d. The rise time decreased to 0.15 s and a sensitivity per unit area of 12.1 pF %RH-1 cm-2 was obtained in a device with 0.6-µm-thick polyimide and MWCNT top electrodes. This value is suitable for use in high-speed humidity sensors to realize a real-time humidity and breath-sensing measurement system.

  17. 3D reconstruction of pentacene structural organization in top-contact OTFTs via resonant soft X-ray reflectivity

    NASA Astrophysics Data System (ADS)

    Capelli, Raffaella; Nardi, Marco Vittorio; Toccoli, Tullio; Verucchi, Roberto; Dinelli, Franco; Gelsomini, Carolina; Koshmak, Konstantin; Giglia, Angelo; Nannarone, Stefano; Pasquali, Luca

    2018-01-01

    Herein, we describe the use of soft X-ray reflectivity at the carbon K-edge to study the molecular organization (orientation, structure, and morphology) of pentacene active films in a top-contact transistor geometry. This technique is not affected by sample charging, and it can be applied in the case of insulating substrates. In addition, the sampling depth is not limited to the near-surface region, giving access to buried device interfaces (metal/organic and dielectric/organic). Spectral lineshape simulations, based on ab-initio calculations using a realistic 3D layer-by-layer model, allow us to unravel the details of the molecular organization in all the specific and crucial areas of the active film, overcoming the limitations of conventional approaches. The tilt angle of the long molecular axis in the whole film is found to progressively decrease with respect to the substrate normal from 25° to 0° with the increasing film thickness. A full vertical alignment, optimal for in-plane charge hopping, is reached only after the complete formation of the first five monolayers. Remarkably, starting from the first one in contact with the dielectric substrate, all the monolayers in the stack show a change in orientation with the increasing thickness. On the other hand, at the buried interface with a gold top-contact, the molecules assume a flat orientation that only propagates for two or three monolayers into the organic film. Top-contact devices with the highest performances can thus be obtained using films of at least ten monolayers. This explains the observed thickness dependence of charge mobility in pentacene transistors.

  18. Electrical characterization of anodic alumina substrate with via-in-pad structure

    NASA Astrophysics Data System (ADS)

    Kim, Moonjung

    2013-10-01

    An anodic alumina substrate has been developed as a package substrate for dynamic random access memory devices. Unlike the conventional package substrates commonly made by laminating an epoxy-based core and cladding with copper, this substrate is fabricated using aluminum anodization technology. The anodization process produces a thick aluminum oxide layer on the aluminum substrate to be used as a dielectric layer. Placing copper patterns on the anodic aluminum oxide layer forms a new substrate structure that consists of a layered structure of aluminum, anodic aluminum oxide, and copper. Using selective anodization in the fabrication process, a via structure connecting the top copper layer and bottom aluminum layer is demonstrated. Additionally, by putting vias directly in the bond and ball pads in the substrate design, the via-in-pad structure is applied in this work. These two-layer metal structures and via-in-pad arrangements make routing easier and thus provide more design flexibility. Additionally, this new package substrate has improved the power distribution network impedance given the characteristics of these structures.

  19. Numerical investigation of narrowband infrared absorber and sensor based on dielectric-metal metasurface.

    PubMed

    Lu, Xiaoyuan; Zhang, Tongyi; Wan, Rengang; Xu, Yongtao; Zhao, Changhong; Guo, Sheng

    2018-04-16

    Metasurfaces are investigated intensively for biophotonics applications due to their resonant wavelength flexibly tuned in the near infrared region specially matching biological tissues. Here, we present numerically a metasurface structure combining dielectric resonance with surface plasmon mode of a metal plane, which is a perfect absorber with a narrow linewidth 10 nm wide and quality factor 120 in the near infrared regime. As a sensor, its bulk sensitivity and bulk figure of merit reach respectively 840 nm/RIU and 84/RIU, while its surface sensitivity and surface figure of merit are respectively 1 and 0.1/nm. For different types of adsorbate layers with the same thickness of 8 nm, its surface sensitivity and figure of merit are respectively 32.3 and 3.2/RIU. The enhanced electric field is concentrated on top of dielectric patch ends and in the patch ends simultaneously. Results show that the presented structure has high surface (and bulk) sensing capability in sensing applications due to its narrow linewidth and deep modulation depth. This could pave a new route toward dielectric-metal metasurface in biosensing applications, such as early disease detections and designs of neural stem cell sensing platforms.

  20. Comprehensive Study of Lanthanum Aluminate High-Dielectric-Constant Gate Oxides for AdvancedCMOS Devices

    PubMed Central

    Suzuki, Masamichi

    2012-01-01

    A comprehensive study of the electrical and physical characteristics of Lanthanum Aluminate (LaAlO3) high-dielectric-constant gate oxides for advanced CMOS devices was performed. The most distinctive feature of LaAlO3 as compared with Hf-based high-k materials is the thermal stability at the interface with Si, which suppresses the formation of a low-permittivity Si oxide interfacial layer. Careful selection of the film deposition conditions has enabled successful deposition of an LaAlO3 gate dielectric film with an equivalent oxide thickness (EOT) of 0.31 nm. Direct contact with Si has been revealed to cause significant tensile strain to the Si in the interface region. The high stability of the effective work function with respect to the annealing conditions has been demonstrated through comparison with Hf-based dielectrics. It has also been shown that the effective work function can be tuned over a wide range by controlling the La/(La + Al) atomic ratio. In addition, gate-first n-MOSFETs with ultrathin EOT that use sulfur-implanted Schottky source/drain technology have been fabricated using a low-temperature process. PMID:28817057

  1. Liquid gallium and the eutectic gallium indium (EGaIn) alloy: Dielectric functions from 1.24 to 3.1 eV by electrochemical reduction of surface oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morales, Daniel; Yu, Zhiyuan; Dickey, Michael D., E-mail: mddickey@ncsu.edu, E-mail: aspnes@ncsu.edu

    Liquid metals based on gallium are promising materials for soft, stretchable, and shape reconfigurable electromagnetic devices. The behavior of these metals relates directly to the thicknesses of their surface oxide layers, which can be determined nondestructively by ellipsometry if their dielectric functions ε are known. This paper reports on the dielectric functions of liquid gallium and the eutectic gallium indium (EGaIn) alloy from 1.24 to 3.1 eV at room temperature, measured by spectroscopic ellipsometry. Overlayer-induced artifacts, a continuing problem in optical measurements of these highly reactive metals, are eliminated by applying an electrochemically reductive potential to the surface of the metalmore » immersed in an electrolyte. This technique enables measurements at ambient conditions while avoiding the complications associated with removing overlayers in a vacuum environment. The dielectric responses of both metals are closely represented by the Drude model. The EGaIn data suggest that in the absence of an oxide the surface is In-enriched, consistent with the previous vacuum-based studies. Possible reasons for discrepancies with previous measurements are discussed.« less

  2. Three-dimensional concentration of light in deeply sub-wavelength, laterally tapered gap-plasmon nanocavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tagliabue, Giulia; Thomas J. Watson, Sr. Laboratories of Applied Physics, California Institute of Technology, Pasadena, California 91125; Poulikakos, Dimos

    2016-05-30

    Gap-plasmons (GP) in metal-insulator-metal (MIM) structures have shown exceptional performance in guiding and concentrating light within deep subwavelength layers. Reported designs to date exploit tapered thicknesses of the insulating layer in order to confine and focus the GP mode. Here, we propose a mechanism for the three dimensional concentration of light in planar MIM structures which exploits exclusively the lateral tapering of the front metallic layer while keeping a constant thickness of the insulating layer. We demonstrate that an array of tapered planar GP nanocavities can efficiently concentrate light in all three dimensions. A semi-analytical, one-dimensional model provides understanding ofmore » the underlying physics and approximately predicts the behavior of the structure. Three-dimensional simulations are then used to precisely calculate the optical behavior. Cavities with effective volumes as small as 10{sup −5} λ{sup 3} are achieved in an ultrathin MIM configuration. Our design is inherently capable of efficiently coupling with free-space radiation. In addition, being composed of two electrically continuous layers separated by an ultrathin dielectric spacer, it could find interesting applications in the area of active metamaterials or plasmonic photocatalysis where both electrical access and light concentration are required.« less

  3. Surface order in cold liquids: X-ray reflectivity studies of dielectric liquids and comparison to liquid metals

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Sudeshna; Uysal, Ahmet; Stripe, Benjamin; Ehrlich, Steven; Karapetrova, Evguenia A.; Dutta, Pulak

    2010-05-01

    Oscillatory surface-density profiles (layers) have previously been reported in several metallic liquids, one dielectric liquid, and in computer simulations of dielectric liquids. We have now seen surface layers in two other dielectric liquids, pentaphenyl trimethyl trisiloxane, and pentavinyl pentamethyl cyclopentasiloxane. These layers appear below T˜285K and T˜130K , respectively; both thresholds correspond to T/Tc˜0.2 where Tc is the liquid-gas critical temperature. All metallic and dielectric liquid surfaces previously studied are also consistent with the existence of this T/Tc threshold, first indicated by the simulations of Chacón [Phys. Rev. Lett. 87, 166101 (2001)]. The layer width parameters, determined using a distorted-crystal fitting model, follow common trends as functions of Tc for both metallic and dielectric liquids.

  4. Nonequal iteration directional filters permit selective clearance of ripples in passband circuits

    NASA Technical Reports Server (NTRS)

    Kurpis, G. P.

    1970-01-01

    Modified directional filter is comprised of alternate pairs of dielectric and air gap filter sections with unequal electrical lengths. Filter provides more flexibility in choosing dielectric material thickness and permits switching from specially ground to standard thicknesses.

  5. Metal-dielectric composites for beam splitting and far-field deep sub-wavelength resolution for visible wavelengths.

    PubMed

    Yan, Changchun; Zhang, Dao Hua; Zhang, Yuan; Li, Dongdong; Fiddy, M A

    2010-07-05

    We report beam splitting in a metamaterial composed of a silver-alumina composite covered by a layer of chromium containing one slit. By simulating distributions of energy flow in the metamaterial for H-polarized waves, we find that the beam splitting occurs when the width of the slit is shorter than the wavelength, which is conducive to making a beam splitter in sub-wavelength photonic devices. We also find that the metamaterial possesses deep sub-wavelength resolution capabilities in the far field when there are two slits and the central silver layer is at least 36 nm in thickness, which has potential applications in superresolution imaging.

  6. High performance capacitors using nano-structure multilayer materials fabrication

    DOEpatents

    Barbee, T.W. Jr.; Johnson, G.W.; O`Brien, D.W.

    1995-05-09

    A high performance capacitor is fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a ``notepad`` configuration composed of 200-300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The notepad capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density. 5 figs.

  7. High performance capacitors using nano-structure multilayer materials fabrication

    DOEpatents

    Barbee, T.W. Jr.; Johnson, G.W.; O`Brien, D.W.

    1996-01-23

    A high performance capacitor is described which is fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a ``notepad`` configuration composed of 200--300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The ``notepad`` capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density. 5 figs.

  8. High-efficiency broadband polarization converter based on Ω-shaped metasurface

    NASA Astrophysics Data System (ADS)

    Zhang, Tianyao; Huang, Lingling; Li, Xiaowei; Liu, Juan; Wang, Yongtian

    2017-11-01

    The polarization state, which cannot be directly detected by human eyes, forms an important characteristic of electromagnetic waves. Control of polarization states has long been pursued for various applications. Conventional polarization converters can hardly meet the requirements in lab-on-chip systems, due to the involvement of bulk materials. Here, we propose the design and realization of a linear to circular polarization converter based on metasurfaces. The metasurface is deliberately designed using achiral two-fold mirror symmetry Ω-shaped antennas. The converter integrates a ground metal plane, a spacer dielectric layer and an antenna array, leading to a high conversion efficiency and broad operating bandwidth in the near infrared regime. The calculated Stokes parameters indicate an excellent conversion of linear to circular polarization for the reflected light. The tunability of the bandwidth by oblique incidence and by modulating the thickness of the dielectric layer is also introduced and demonstrated, which shows great flexibilities for such metasurface converters. The proposed metasurface may open up intriguing possibilities towards the realization of ultrathin nanophotonic devices for polarization manipulation and wavefront engineering.

  9. Capacitance-voltage characteristics of sub-nanometric Al2O3 / TiO2 laminates: dielectric and interface charge densities.

    PubMed

    Kahouli, Abdelkader; Elbahri, Marwa Ben; Lebedev, Oleg; Lüders, Ulrike

    2017-07-12

    Advanced amorphous sub-nanometric laminates based on TiO 2 and Al 2 O 3 were deposited by atomic layer deposition at low temperature. Low densities of 'slow' and 'fast' interface states are achieved with values of 3.96 · 10 10 cm -2 and 4.85 · 10 -9 eV -1 cm -2 , respectively, by using a 40 nm laminate constituted of 0.7 nm TiO 2 and 0.8 nm Al 2 O 3 . The sub-nanometric laminate shows a low hysteresis width of 20 mV due to the low oxide charge density of about 3.72 · 10 11 cm -2 . Interestingly, such properties are required for stable and reliable performance of MOS capacitors and transistor operation. Thus, decreasing the individual layer thickness to the sub-nanometric range and combining two dielectric materials with oppositely charged defects may play a major role in the electrical response, highly promising for the application in future micro and nano-electronics applications.

  10. Resonant scattering of light from a glass/Ag/MgF2/air system with rough interfaces and supporting guided modes in attenuated total reflection.

    PubMed

    Ramírez-Duverger, Aldo S; Gaspar-Armenta, Jorge A; García-Llamas, Raúl

    2003-08-01

    We report experimental results of the resonant scattering of light from a prism-glass/Ag/MgF2/air system with use of the attenuated total reflection technique for p and s polarized light. Two MgF2 film thicknesses were used. The system with the thinner dielectric layer supports two transverse magnetic (TM) and two transverse electric (TE) guided modes at a wavelength of 632.8 nm, and the system with the thicker dielectric layer supports three TM and three TE guided modes. In both cases we found dips in the specular reflection as a function of incident angle that is due to excitation of guided modes in the MgF2 film. The scattered light shows peaks at angles corresponding to the measured excitation of the guided modes. These peaks are due to single-order scattering and occur for any angle of the incident light. All features in the scattering response are enhanced in resonance conditions, and the efficiency of injecting light into the guide is reduced.

  11. Mechanical and electromagnetic properties of 3D printed hot pressed nanocarbon/poly(lactic) acid thin films

    NASA Astrophysics Data System (ADS)

    Kotsilkova, R.; Ivanov, E.; Todorov, P.; Petrova, I.; Volynets, N.; Paddubskaya, A.; Kuzhir, P.; Uglov, V.; Biró, I.; Kertész, K.; Márk, G. I.; Biró, L. P.

    2017-02-01

    We constructed a new type of light-weight, nanocarbon based thin film material having good mechanical properties, thermal stability, and electromagnetic shielding efficiency. Our method, 3D printing combined with hot pressing, is a cheap and industrially upscalable process. First a sandwich structure was created by layer-to-layer deposition of alternating 100 μm thick nanocarbon containing plastic layers and 100 μm thick pristine plastic layers, repeated as building blocks. The 3D printed samples were hot pressed to obtain thin films of 10-30 μm thickness. We used a commercial nanocarbon 3D printing filament (Black Magic). TEM investigations revealed the nanocarbon filler to be a mixture of graphene sheets, short carbon nanotubes, fishbone nanotubes, graphitic nanoparticles, and carbon black. Small-angle X-ray scattering and X-ray diffraction studies showed some amorphization of the nanocarbon filler as a consequence of the hot pressing. The nanoindentation hardness, nanoscratch hardness, and Young's modulus increase gradually by increasing the number of layers in the films, due to an increase of the amount of nanocarbon filler. Microwave absorption also increases continuously with the number of nanocarbon layers, reaching 40% for 3 nanocarbon layers. We demonstrate that unlike most conventional composites loaded with nanocarbons having pronounced dielectric properties, when the real part of permittivity Re(ɛ) is much higher than its imaginary part Im(ɛ) at high frequencies, a combination of 3D printing and hot pressing allows the fabrication of composites with Re ɛ ≈ Im ɛ in a very broad frequency range (0.2-0.6 THz). Our new 3D printed—hot pressed thin films may compete with the CVD graphene sandwiches in electromagnetic shielding applications because of their easier processability and low cost.

  12. Demonstration of Hole Transport and Voltage Equilibration in Self-Assembled π-Conjugated Peptide Nanostructures Using Field-Effect Transistor Architectures.

    PubMed

    Besar, Kalpana; Ardoña, Herdeline Ann M; Tovar, John D; Katz, Howard E

    2015-12-22

    π-Conjugated peptide materials are attractive for bioelectronics due to their unique photophysical characteristics, biofunctional interfaces, and processability under aqueous conditions. In order to be relevant for electrical applications, these types of materials must be able to support the passage of current and the transmission of applied voltages. Presented herein is an investigation of both the current and voltage transmission activities of one-dimensional π-conjugated peptide nanostructures. Observations of the nanostructures as both semiconducting and gate layers in organic field-effect transistors (OFETs) were made, and the effect of systematic changes in amino acid composition on the semiconducting/conducting functionality of the nanostructures was investigated. These molecular variations directly impacted the hole mobility values observed for the nanomaterial active layers over 3 orders of magnitude (∼0.02 to 5 × 10(-5) cm(2) V(-1) s(-1)) when the nanostructures had quaterthiophene cores and the assembled peptide materials spanned source and drain electrodes. Peptides without the quaterthiophene core were used as controls and did not show field-effect currents, verifying that the transport properties of the nanostructures rely on the semiconducting behavior of the π-electron core and not just ionic rearrangements. We also showed that the nanomaterials could act as gate electrodes and assessed the effect of varying the gate dielectric layer thickness in devices where the conventional organic semiconductor pentacene spanned the source and drain electrodes in a top-contact OFET, showing an optimum performance with 35-40 nm dielectric thickness. This study shows that these peptides that self-assemble in aqueous environments can be used successfully to transmit electronic signals over biologically relevant distances.

  13. Efficiency enhancement of semitransparent organic solar cells by using printed dielectric mirrors (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Bronnbauer, Carina; Forberich, Karen K.; Guo, Fei; Gasparini, Nicola; Brabec, Christoph J.

    2015-09-01

    Building integrated thin film solar cells are a strategy for future eco-friendly power generation. Such solar cells have to be semi-transparent, long-term stable and show the potential to be fabricated by a low-cost production process. Organic photovoltaics are a potential candidate because an absorber material with its main absorption in the infrared spectral region where the human eye is not sensitive can be chosen. We can increase the number of absorbed photons, at the same time, keep the transparency almost constant by using a dielectric, wavelength-selective mirror. The mirror reflects only in the absorption regime of the active layer material and shows high transparencies in the spectral region around 550 nm where the human eye is most sensitive. We doctor bladed a fully solution processed dielectric mirror at low temperatures below 80 °C. Both inks, which are printed alternatingly are based on nanoparticles and have a refractive index of 1.29 or 1.98, respectively, at 500 nm. The position and the intensity of the main reflection peak can be easily shifted and thus adjusted to the solar cell absorption spectrum. Eventually, the dielectric mirror was combined with different organic solar cells. For instance, the current increases by 20.6 % while the transparency decreases by 23.7 % for the low band gap absorber DPP and silver nanowires as top electrode. Moreover we proved via experiment and optical simulations, that a variation of the active layer thickness and the position of the main reflection peak affect the transparency and the increase in current.

  14. Excitation of the Uller-Zenneck electromagnetic surface waves in the prism-coupled configuration

    NASA Astrophysics Data System (ADS)

    Rasheed, Mehran; Faryad, Muhammad

    2017-08-01

    A configuration to excite the Uller-Zenneck surface electromagnetic waves at the planar interfaces of homogeneous and isotropic dielectric materials is proposed and theoretically analyzed. The Uller-Zenneck waves are surface waves that can exist at the planar interface of two dissimilar dielectric materials of which at least one is a lossy dielectric material. In this paper, a slab of a lossy dielectric material was taken with lossless dielectric materials on both sides. A canonical boundary-value problem was set up and solved to find the possible Uller-Zenneck waves and waveguide modes. The Uller-Zenneck waves guided by the slab of the lossy dielectric material were found to be either symmetric or antisymmetric and transmuted into waveguide modes when the thickness of that slab was increased. A prism-coupled configuration was then successfully devised to excite the Uller-Zenneck waves. The results showed that the Uller-Zenneck waves are excited at the same angle of incidence for any thickness of the slab of the lossy dielectric material, whereas the waveguide modes can be excited when the slab is sufficiently thick. The excitation of Uller-Zenneck waves at the planar interfaces with homogeneous and all-dielectric materials can usher in new avenues for the applications for electromagnetic surface waves.

  15. Enhanced middle-infrared light transmission through Au/SiO(x)N(y)/Au aperture arrays.

    PubMed

    Xiao, Gongli; Yao, Xiang; Ji, Xinming; Zhou, Jia; Bao, Zongming; Huang, Yiping

    2011-12-01

    The enhanced middle-infrared light transmission through Au/SiO(x)N(y)/Au aperture arrays by changing the refractive index and the thickness of a dielectric layer was studied experimentally. The results indicated that the transmission spectra was highly dependent on the refractive index and the thickness of SiO(x)N(y). We found that the transmission peaks redshifted regularly along with the refractive index from 1.6 to 1.8, owing to the role of surface plasmon polaritons (SPP) coupling in the Au/SiO(x)N(y)/Au cascaded metallic structure. Simultaneously, a higher transmission efficiency and narrower transmission peak was obtained in Au/SiO2.1N0.3/Au cascaded metallic structure with small refractive index (1.6) than in Au/SiO0.6N1/Au cascaded metallic structure with large refractive index (1.8). When the thickness of SiO(x)N(y) changes from 0.2 to 0.4 microm, the shape of transmission spectra exhibits a large change. It was found that a higher transmission efficiency and narrower transmission peak was obtained in Au/SiO(x)N(y)/Au cascaded metallic structure with a thin dielectric film (0.2 microm), with the increase of SiO(x)N(y) film's thickness, the transmission peak gradually widened and disappeared finally. This effect is useful in applications of biochemical sensing and tunable integrated plasmonic devices in the middle-infrared region.

  16. The microwave properties of Ag(Ta0.8Nb0.2)O3 thick film interdigital capacitors on alumina substrates

    NASA Astrophysics Data System (ADS)

    Lee, Ku-Tak; Koh, Jung-Hyuk

    2012-01-01

    In this paper, we will introduce the microwave properties of Ag(Ta0.8Nb0.2)O3 thick film planar type interdigital capacitors fabricated on alumina substrates. The tailored paraelectric state of Ag(Ta,Nb)O3 allows the material to be regarded as a part of the family of microwave materials. As thick films formed in our experiment, Ag(Ta,Nb)O3 exhibited extremely low dielectric loss with relatively high dielectric permittivity. This low dielectric loss is a very important issue for microwave applications. Therefore, we investigated the microwave properties of Ag(Ta0.8Nb0.2)O3 thick film planar type interdigital capacitors. Ag(Ta0.8Nb0.2)O3 thick films were prepared by a screen-printing method on alumina substrates and were sintered at 1140 °C for 2 hrs. The XRD analysis results showed that the Ag(Ta0.8Nb0.2)O3 thick film has the perovskite structure. The frequency dependent dielectric permittivity showed that these Ag(Ta0.8Nb0.2)O3 thick film planar type interdigital capacitors have very weak frequency dispersions with low loss tangents in the microwave range.

  17. Composite Nature of Layered Hybrid Perovskites: Assessment on Quantum and Dielectric Confinements and Band Alignment.

    PubMed

    Traore, Boubacar; Pedesseau, Laurent; Assam, Linda; Che, Xiaoyang; Blancon, Jean-Christophe; Tsai, Hsinhan; Nie, Wanyi; Stoumpos, Constantinos C; Kanatzidis, Mercouri G; Tretiak, Sergei; Mohite, Aditya D; Even, Jacky; Kepenekian, Mikaël; Katan, Claudine

    2018-04-24

    Layered hybrid organic-inorganic perovskites (HOPs) have re-emerged as potential technological solutions for next-generation photovoltaic and optoelectronic applications. Their two-dimensional (2D) nature confers them a significant flexibility and results in the appearance of quantum and dielectric confinements. Such confinements are at the origin of their fascinating properties, and understanding them from a fundamental level is of paramount importance for optimization. Here, we provide an in-depth investigation of band alignments of 2D HOP allowing access to carriers' confinement potentials. 2D HOPs are conceptualized as composite materials in which pseudoinorganic and -organic components are defined. In this way, computational modeling of band alignments becomes affordable using first-principles methods. First, we show that the composite approach is suitable to study the position-dependent dielectric profiles and enables clear differentiation of the respective contributions of inorganic and organic components. Then we apply the composite approach to a variety of 2D HOPs, assessing the impact on the confinement potentials of well and barrier thickness, of the nature of the inorganic well, and of structural transitions. Using the deduced potentials, we further discuss the limitations of the effective mass approximation, scrutinizing the electronic properties of this family of composite materials. Our simulations demonstrate type-I dominant band alignment in 2D HOPs. Finally, we outline design principles on band alignment toward achieving specific optoelectronic properties. Thus, we present alternative theoretical methods to inspect the properties of 2D hybrid perovskites and expect that the composite approach will be applicable to other classes of layered materials.

  18. Composite Nature of Layered Hybrid Perovskites: Assessment on Quantum and Dielectric Confinements and Band Alignment

    DOE PAGES

    Traore, Boubacar; Pedesseau, Laurent; Assam, Linda; ...

    2018-02-26

    Layered hybrid organic–inorganic perovskites (HOPs) have re-emerged as potential technological solutions for next-generation photovoltaic and optoelectronic applications. Their two-dimensional (2D) nature confers them a significant flexibility and results in the appearance of quantum and dielectric confinements. Such confinements are at the origin of their fascinating properties, and understanding them from a fundamental level is of paramount importance for optimization. Here, we provide an in-depth investigation of band alignments of 2D HOP allowing access to carriers’ confinement potentials. 2D HOPs are conceptualized as composite materials in which pseudoinorganic and -organic components are defined. In this way, computational modeling of band alignmentsmore » becomes affordable using first-principles methods. First, we show that the composite approach is suitable to study the position-dependent dielectric profiles and enables clear differentiation of the respective contributions of inorganic and organic components. Then we apply the composite approach to a variety of 2D HOPs, assessing the impact on the confinement potentials of well and barrier thickness, of the nature of the inorganic well, and of structural transitions. Using the deduced potentials, we further discuss the limitations of the effective mass approximation, scrutinizing the electronic properties of this family of composite materials. Our simulations demonstrate type-I dominant band alignment in 2D HOPs. Finally, we outline design principles on band alignment toward achieving specific optoelectronic properties. Furthermore, we present alternative theoretical methods to inspect the properties of 2D hybrid perovskites and expect that the composite approach will be applicable to other classes of layered materials.« less

  19. Composite Nature of Layered Hybrid Perovskites: Assessment on Quantum and Dielectric Confinements and Band Alignment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Traore, Boubacar; Pedesseau, Laurent; Assam, Linda

    Layered hybrid organic–inorganic perovskites (HOPs) have re-emerged as potential technological solutions for next-generation photovoltaic and optoelectronic applications. Their two-dimensional (2D) nature confers them a significant flexibility and results in the appearance of quantum and dielectric confinements. Such confinements are at the origin of their fascinating properties, and understanding them from a fundamental level is of paramount importance for optimization. Here, we provide an in-depth investigation of band alignments of 2D HOP allowing access to carriers’ confinement potentials. 2D HOPs are conceptualized as composite materials in which pseudoinorganic and -organic components are defined. In this way, computational modeling of band alignmentsmore » becomes affordable using first-principles methods. First, we show that the composite approach is suitable to study the position-dependent dielectric profiles and enables clear differentiation of the respective contributions of inorganic and organic components. Then we apply the composite approach to a variety of 2D HOPs, assessing the impact on the confinement potentials of well and barrier thickness, of the nature of the inorganic well, and of structural transitions. Using the deduced potentials, we further discuss the limitations of the effective mass approximation, scrutinizing the electronic properties of this family of composite materials. Our simulations demonstrate type-I dominant band alignment in 2D HOPs. Finally, we outline design principles on band alignment toward achieving specific optoelectronic properties. Furthermore, we present alternative theoretical methods to inspect the properties of 2D hybrid perovskites and expect that the composite approach will be applicable to other classes of layered materials.« less

  20. Tailoring Dielectric and Actuated Properties of Elastomer Composites by Bioinspired Poly(dopamine) Encapsulated Graphene Oxide.

    PubMed

    Ning, Nanying; Ma, Qin; Liu, Suting; Tian, Ming; Zhang, Liqun; Nishi, Toshio

    2015-05-27

    In this study, we obtained dielectric elastomer composites with controllable dielectric and actuated properties by using a biomimetic method. We used dopamine (DA) to simultaneously coat the graphene oxide (GO) and partially reduce GO by self-polymerization of DA on GO. The poly(dopamine) (PDA) coated GO (GO-PDA) was assembled around rubber latex particles by hydrogen bonding interaction between carboxyl groups of carboxylated nitrile rubber (XNBR) and imino groups or phenolic hydroxyl groups of GO-PDA during latex compounding, forming a segregated GO-PDA network at a low percolation threshold. The results showed that the introduction of PDA on GO prevented the restack of GO in the matrix. The dielectric and actuated properties of the composites depend on the thickness of PDA shell. The dielectric loss and the elastic modulus decrease, and the breakdown strength increases with increasing the thickness of PDA shell. The maximum actuated strain increases from 1.7% for GO/XNBR composite to 4.4% for GO-PDA/XNBR composites with the PDA thickness of about 5.4 nm. The actuated strain at a low electric field (2 kV/mm) obviously increases from 0.2% for pure XNBR to 2.3% for GO-PDA/XNBR composite with the PDA thickness of 1.1 nm, much higher than that of other DEs reported in previous studies. Thus, we successfully obtained dielectric composites with low dielectric loss and improved breakdown strength and actuated strain at a low electric field, facilitating the wide application of dielectric elastomers.

  1. Influence of Surrounding Dielectrics on the Data Retention Time of Doped Sb2Te Phase Change Material

    NASA Astrophysics Data System (ADS)

    Jedema, Friso; in `t Zandt, Micha; Wolters, Rob; Gravesteijn, Dirk

    2011-02-01

    The crystallization properties of as-deposited and laser written amorphous marks of doped Sb2Te phase change material are found to be only dependent on the top dielectric layer. A ZnS:SiO2 top dielectric layer yields a higher crystallization temperature and a larger crystal growth activation energy as compared to a SiO2 top dielectric layer, leading to superior data retention times at ambient temperatures. The observed correlation between the larger crystallization temperatures and larger crystal growth activation energies indicates that the viscosity of the phase change material in the amorphous state is dependent on the interfacial energy between the phase change material and the top dielectric layer.

  2. Terahertz gas sensing based on time-domain-spectroscopy using a hollow-optical fiber gas cell

    NASA Astrophysics Data System (ADS)

    Suzuki, T.; Katagiri, T.; Matsuura, Y.

    2018-02-01

    Terahertz gas sensing system based on time-domain spectroscopy (THz-TDS) using a hollow-optical fiber gas cell is proposed. A hollow optical fiber functions as a long-path and low-volume gas cell and loading a dielectric layer on the inside of the fiber reduces the transmission loss and the dielectric layer also protects the metal layer of the fiber from deterioration. In the fabrication process, a polyethylene tube with a thin wall is drawn from a thick preform and a metal layer is formed on the outside of the tube. By using a 34-cm long fiber gas cell, NH3 gas with a concentration of 8.5 % is detected with a good SN ratio. However, the absorption peaks of NH3 and water vapor appeared at around 1.2 THz are not separated. To improve the frequency resolution in Fourier transformation, the time scan width that is decided by the scanning length of linear stage giving a time delay in the probing THz beam is enlarged. As a result, the absorption peaks at around 1.2 THz are successfully separated. In addition, by introducing a longer fiber gas cell of 60-cm length, the measurement sensitivity is improved and an absorption spectrum of NH3 gas with a concentration of 0.5 % is successfully detected.

  3. Processing Waveform-Based NDE

    NASA Technical Reports Server (NTRS)

    Roth, Donald J (Inventor)

    2011-01-01

    A computer implemented process for simultaneously measuring the velocity of terahertz electromagnetic radiation in a dielectric material sample without prior knowledge of the thickness of the sample and for measuring the thickness of a material sample using terahertz electromagnetic radiation in a material sample without prior knowledge of the velocity of the terahertz electromagnetic radiation in the sample is disclosed and claimed. Utilizing interactive software the process evaluates, in a plurality of locations, the sample for microstructural variations and for thickness variations and maps the microstructural and thickness variations by location. A thin sheet of dielectric material may be used on top of the sample to create a dielectric mismatch. The approximate focal point of the radiation source (transceiver) is initially determined for good measurements.

  4. Atomic layer deposited TaCy metal gates: Impact on microstructure, electrical properties, and work function on HfO2 high-k dielectrics

    NASA Astrophysics Data System (ADS)

    Triyoso, D. H.; Gregory, R.; Schaeffer, J. K.; Werho, D.; Li, D.; Marcus, S.; Wilk, G. D.

    2007-11-01

    TaCy has been reported to have the appropriate work function for negative metal-oxide semiconductor metal in high-k metal-oxide field-effect transistors. As device size continues to shrink, a conformal deposition for metal gate electrodes is needed. In this work, we report on the development and characterization of a novel TaCy process by atomic layer deposition (ALD). Detailed physical properties of TaCy films are studied using ellipsometry, a four-point probe, Rutherford backscattering spectrometry (RBS), x-ray photoelectron spectroscopy (XPS), and x-ray diffraction (XRD). RBS and XPS analysis indicate that TaCy films are near-stoichiometric, nitrogen free, and have low oxygen impurities. Powder XRD spectra showed that ALD films have a cubic microstructure. XPS carbon bonding studies revealed that little or no glassy carbon is present in the bulk of the film. Excellent electrical properties are obtained using ALD TaCy as a metal gate electrode. Well-behaved capacitance-voltage characteristics with ALD HfO2 gate dielectrics are demonstrated for TaCy thicknesses of 50, 100, and 250 Å. A low fixed charge (˜2-4×10-11 cm-2) is observed for all ALD HfO2/ALD TaCy devices. Increasing the thickness of ALD TaCy results in a decrease in work function (4.77 to 4.54 eV) and lower threshold voltages.

  5. On the use of (3-trimethoxysilylpropyl)diethylenetriamine self-assembled monolayers as seed layers for the growth of Mn based copper diffusion barrier layers

    NASA Astrophysics Data System (ADS)

    Brady-Boyd, A.; O'Connor, R.; Armini, S.; Selvaraju, V.; Hughes, G.; Bogan, J.

    2018-01-01

    In this work x-ray photoelectron spectroscopy is used to investigate in-vacuo, the interaction of metallic manganese with a (3-trimethoxysilylpropyl)diethylenetriamine (DETA) self-assembled monolayer (SAM) on SiO2 and non-porous low-k dielectric materials. Subsequent deposition of a ∼0.5 nm thick Mn, followed by a 200 °C anneal results in the Mn diffusing through the SAM to interact with the underlying SiO2 layer to form a Mn-silicate layer. Furthermore, there is evidence that the Mn interacts with the carbon and nitrogen within the SAM to form Mn-carbide and Mn-nitride, respectively. When deposited on low-k materials the Mn is found to diffuse through to the SAM on deposition and interact both with the SAM and the underlying substrate in a similar fashion.

  6. Intensity tunable infrared broadband absorbers based on VO2 phase transition using planar layered thin films

    PubMed Central

    Kocer, Hasan; Butun, Serkan; Palacios, Edgar; Liu, Zizhuo; Tongay, Sefaattin; Fu, Deyi; Wang, Kevin; Wu, Junqiao; Aydin, Koray

    2015-01-01

    Plasmonic and metamaterial based nano/micro-structured materials enable spectrally selective resonant absorption, where the resonant bandwidth and absorption intensity can be engineered by controlling the size and geometry of nanostructures. Here, we demonstrate a simple, lithography-free approach for obtaining a resonant and dynamically tunable broadband absorber based on vanadium dioxide (VO2) phase transition. Using planar layered thin film structures, where top layer is chosen to be an ultrathin (20 nm) VO2 film, we demonstrate broadband IR light absorption tuning (from ~90% to ~30% in measured absorption) over the entire mid-wavelength infrared spectrum. Our numerical and experimental results indicate that the bandwidth of the absorption bands can be controlled by changing the dielectric spacer layer thickness. Broadband tunable absorbers can find applications in absorption filters, thermal emitters, thermophotovoltaics and sensing. PMID:26294085

  7. Optimized deformation behavior of a dielectric elastomer generator

    NASA Astrophysics Data System (ADS)

    Foerster, Florentine; Schlaak, Helmut F.

    2014-03-01

    Dielectric elastomer generators (DEGs) produce electrical energy by converting mechanical into electrical energy. Efficient operation requires an optimal deformation of the DEG during the energy harvesting cycle. However, the deformation resulting from an external load has to be applied to the DEG. The deformation behavior of the DEG is dependent on the type of the mechanical interconnection between the elastic DEG and a stiff support area. The maximization of the capacitance of the DEG in the deformed state leads to the maximum absolute energy gain. Therefore several configurations of mechanical interconnections between a single DEG module as well as multiple stacked DEG modules and stiff supports are investigated in order to find the optimal mechanical interconnection. The investigation is done with numerical simulations using the FEM software ANSYS. A DEG module consists of 50 active dielectric layers with a single layer thickness of 50 μm. The elastomer material is silicone (PDMS) while the compliant electrodes are made of graphite powder. In the simulation the real material parameters of the PDMS and the graphite electrodes are included to compare simulation results to experimental investigations in the future. The numerical simulations of the several configurations are carried out as coupled electro-mechanical simulation for the first step in an energy harvesting cycle with constant external load strain. The simulation results are discussed and an optimal mechanical interconnection between DEG modules and stiff supports is derived.

  8. Silicon base plate with low parasitic electrical interference for sensors

    NASA Technical Reports Server (NTRS)

    Tang, Tony K. (Inventor); Gutierrez, Roman C. (Inventor)

    2002-01-01

    A microgyroscope has a baseplate made of the same material as the rest of the microgyroscope. The baseplate is a silicon baseplate having a heavily p-doped epilayer covered by a thick dielectric film and metal electrodes. The metal electrodes are isolated from the ground plane by the dielectric. This provides very low parasitic capacitive coupling between the electrodes. The thick dielectric reduces the capacitance between the electrodes and the ground plane.

  9. Influence of the Coulomb interaction on the exchange coupling in granular magnets.

    PubMed

    Udalov, O G; Beloborodov, I S

    2017-04-20

    We develop a theory of the exchange interaction between ferromagnetic (FM) metallic grains embedded into insulating matrix by taking into account the Coulomb blockade effects. For bulk ferromagnets separated by the insulating layer the exchange interaction strongly depends on the height and thickness of the tunneling barrier created by the insulator. We show that for FM grains embedded into insulating matrix the exchange coupling additionally depends on the dielectric properties of this matrix due to the Coulomb blockade effects. In particular, the FM coupling decreases with decreasing the dielectric permittivity of insulating matrix. We find that the change in the exchange interaction due to the Coulomb blockade effects can be a few tens of percent. Also, we study dependence of the intergrain exchange interaction on the grain size and other parameters of the system.

  10. Ellipsometric porosimetry on pore-controlled TiO2 layers

    NASA Astrophysics Data System (ADS)

    Rosu, Dana-Maria; Ortel, Erik; Hodoroaba, Vasile-Dan; Kraehnert, Ralph; Hertwig, Andreas

    2017-11-01

    The practical performance of surface coatings in applications like catalysis, water splitting or batteries depends critically on the coating materials' porosity. Determining the porosity in a fast and non-destructive way is still an unsolved problem for industrial thin-films technology. As a contribution to calibrated, non-destructive, optical layer characterisation, we present a multi-method comparison study on porous TiO2 films deposited by sol-gel synthesis on Si wafers. The ellipsometric data were collected on a range of samples with different TiO2 layer thickness and different porosity values. These samples were produced by templated sol-gel synthesis resulting in layers with a well-defined pore size and pore density. The ellipsometry measurement data were analysed by means of a Bruggeman effective medium approximation (BEMA), with the aim to determine the mixture ratio of void and matrix material by a multi-sample analysis strategy. This analysis yielded porosities and layer thicknesses for all samples as well as the dielectric function for the matrix material. Following the idea of multi-method techniques in metrology, the data was referenced to imaging by electron microscopy (SEM) and to a new EPMA (electron probe microanalysis) porosity approach for thin film analysis. This work might lead to a better metrological understanding of optical porosimetry and also to better-qualified characterisation methods for nano-porous layer systems.

  11. Temperature Dependence of the Resonant Magnetoelectric Effect in Layered Heterostructures.

    PubMed

    Burdin, Dmitrii A; Ekonomov, Nikolai A; Chashin, Dmitrii V; Fetisov, Leonid Y; Fetisov, Yuri K; Shamonin, Mikhail

    2017-10-16

    The dependence of the resonant direct magnetoelectric effect on temperature is studied experimentally in planar composite structures. Samples of rectangular shapes with dimensions of 5 mm × 20 mm employed ferromagnetic layers of either an amorphous (metallic glass) alloy or nickel with a thickness of 20-200 μm and piezoelectric layers of single crystalline langatate material or lead zirconate titanate piezoelectric ceramics with a thickness of 500 μm. The temperature of the samples was varied in a range between 120 and 390 K by blowing a gaseous nitrogen stream around them. It is shown that the effective characteristics of the magnetoelectric effect-such as the mechanical resonance frequency f r , the quality factor Q and the magnitude of the magnetoelectric coefficient α E at the resonance frequency-are contingent on temperature. The interrelations between the temperature changes of the characteristics of the magnetoelectric effect and the temperature variations of the following material parameters-Young's modulus Y , the acoustic quality factor of individual layers, the dielectric constant ε , the piezoelectric modulus d of the piezoelectric layer as well as the piezomagnetic coefficients λ (n) of the ferromagnetic layer-are established. The effect of temperature on the characteristics of the nonlinear magnetoelectric effect is observed for the first time. The results can be useful for designing magnetoelectric heterostructures with specified temperature characteristics, in particular, for the development of thermally stabilized magnetoelectric devices.

  12. Effect of substrates and thickness on optical properties in atomic layer deposition grown ZnO thin films

    NASA Astrophysics Data System (ADS)

    Pal, Dipayan; Singhal, Jaya; Mathur, Aakash; Singh, Ajaib; Dutta, Surjendu; Zollner, Stefan; Chattopadhyay, Sudeshna

    2017-11-01

    Atomic Layer Deposition technique was used to grow high quality, very low roughness, crystalline, Zinc Oxide (ZnO) thin films on silicon (Si) and fused quartz (SiO2) substrates to study the optical properties. Spectroscopic ellipsometry results of ZnO/Si system, staggered type-II quantum well, demonstrate that there is a significant drop in the magnitudes of both the real and imaginary parts of complex dielectric constants and in near-band gap absorption along with a blue shift of the absorption edge with decreasing film thickness at and below ∼20 nm. Conversely, UV-vis absorption spectroscopy of ZnO/SiO2, thin type-I quantum well, consisting of a narrower-band gap semiconductor grown on a wider-band gap (insulator) substrate, shows the similar thickness dependent blue-shift of the absorption edge but with an increase in the magnitude of near-band gap absorption with decreasing film thickness. Thickness dependent blue shift, energy vs. 1/d2, in two different systems, ZnO/Si and ZnO/SiO2, show a difference in their slopes. The observed phenomena can be consistently explained by the corresponding exciton (or carrier/s) deconfinement and confinement effects at the ZnO/Si and ZnO/SiO2 interface respectively, where Tanguy-Elliott amplitude pre-factor plays the key role through the electron-hole overlap factor at the interface.

  13. Lead zirconate titanate (PZT)-based thin film capacitors for embedded passive applications

    NASA Astrophysics Data System (ADS)

    Kim, Taeyun

    Investigations on the key processing parameters and properties relationship for lead zirconate titanate (PZT, 52/48) based thin film capacitors for embedded passive capacitor application were performed using electroless Ni coated Cu foils as substrates. Undoped and Ca-doped PZT (52/48) thin film capacitors were prepared on electroless Ni coated Cu foil by chemical solution deposition. For PZT (52/48) thin film capacitors on electroless Ni coated Cu foil, voltage independent (zero tunability) capacitance behavior was observed. Dielectric constant reduced to more than half of the identical capacitor processed on Pt/SiO2/Si. Dielectric properties of the capacitors were mostly dependent on the crystallization temperature. Capacitance densities of almost 350 nF/cm2 and 0.02˜0.03 of loss tangent were routinely measured for capacitors crystallized at 575˜600°C. Leakage current showed dependence on film thickness and crystallization temperature. From a two-capacitor model, the existence of a low permittivity interface layer (permittivity ˜30) was suggested. For Ca-doped PZT (52/48) thin film capacitors prepared on Pt, typical ferroelectric and dielectric properties were measured up to 5 mol% Ca doping. When Ca-doped PZT (52/48) thin film capacitors were prepared on electroless Ni coated Cu foil, phase stability was influenced by Ca doping and phosphorous content. Dielectric properties showed dependence on the crystallization temperature and phosphorous content. Capacitance density of ˜400 nF/cm2 was achieved, which is an improvement by more than 30% compared to undoped composition. Ca doping also reduced the temperature coefficient of capacitance (TCC) less than 10%, all of them were consistent in satisfying the requirements of embedded passive capacitor. Leakage current density was not affected significantly by doping. To tailor the dielectric and reliability properties, ZrO2 was selected as buffer layer between PZT and electroless Ni. Only RF magnetron sputtering process could yield stable ZrO2 layers on electroless Ni coated Cu foil. Other processes resulted in secondary phase formation, which supports the reaction between PZT capacitor and electroless Ni might be dominated by phosphorous component. (Abstract shortened by UMI.)

  14. Fabrication of PVDF-TrFE based bilayered PbTiO3/PVDF-TrFE films capacitor

    NASA Astrophysics Data System (ADS)

    Nurbaya, Z.; Wahid, M. H.; Rozana, M. D.; Annuar, I.; Alrokayan, S. A. H.; Khan, H. A.; Rusop, M.

    2016-07-01

    Development of high performance capacitor is reaching towards new generation where the ferroelectric materials take places as the active dielectric layer. The motivation of this study is to produce high capacitance device with long life cycle. This was configured by preparing bilayered films where lead titanate as an active dielectric layer and stacked with the top dielectric layer, poly(vinyledenefluoride-trifluoroethylene). Both of them are being referred that have one in common which is ferroelectric behavior. Therefore the combination of ceramic and polymer ferroelectric material could perform optimum dielectric characteristic for capacitor applications. The fabrication was done by simple sol-gel spin coating method that being varied at spinning speed property for polymer layers, whereas maintaining the ceramic layer. The characterization of PVDF-TrFE/PbTiO3 was performed according to metal-insulator-metal stacked capacitor measurement which includes structural, dielectric, and ferroelectric measurement.

  15. Nano-fabricated plasmonic optical transformer

    DOEpatents

    Choo, Hyuck; Cabrini, Stefano; Schuck, P. James; Liang, Xiaogan; Yablonovitch, Eli

    2015-06-09

    The present invention provides a plasmonic optical transformer to produce a highly focuses optical beam spot, where the transformer includes a first metal layer, a dielectric layer formed on the first metal layer, and a second metal layer formed on the dielectric layer, where the first metal layer, the dielectric layer, and the second layer are patterned to a shape including a first section having a first cross section, a second section following the first section having a cross-section tapering from the first section to a smaller cross-section, and a third section following the second section having a cross-section matching the tapered smaller cross-section of the second section.

  16. Investigation of defect modes in a defective photonic crystal with a semiconductor metamaterial defect

    NASA Astrophysics Data System (ADS)

    Wu, Meng-Ru; Wu, Chien-Jang; Chang, Shoou-Jinn

    2014-11-01

    In this work, we theoretically investigate the properties of defect modes in a defective photonic crystal containing a semiconductor metamaterial defect. We consider the structure, (LH)N/DP/(LH)N, where N and P are respectively the stack numbers, L is SiO2, H is InP, and defect layer D is a semiconductor metamaterial composed of Al-doped ZnO (AZO) and ZnO. It is found that, within the photonic band gap, the number of defect modes (transmission peaks) will decrease as the defect thickness increases, in sharp contrast to the case of using usual dielectric defect. The peak height and position can be changed by the variation in the thickness of defect layer. In the angle-dependent defect mode, its position is shown to be blue-shifted as the angle of incidence increases for both TE and TM waves. The analysis of defect mode provides useful information for the design of tunable transmission filter in semiconductor optoelectronics.

  17. Effect of annealing temperature on microstructural evolution and electrical properties of sol-gel processed ZrO2/Si films

    NASA Astrophysics Data System (ADS)

    Hwang, Soo Min; Lee, Seung Muk; Park, Kyung; Lee, Myung Soo; Joo, Jinho; Lim, Jun Hyung; Kim, Hyoungsub; Yoon, Jae Jin; Kim, Young Dong

    2011-01-01

    High-permittivity (k) ZrO2/Si(100) films were fabricated by a sol-gel technique and the microstructural evolution with the annealing temperature (Ta) was correlated with the variation of their electrical performance. With increasing Ta, the ZrO2 films crystallized into a tetragonal (t) phase which was maintained until 700 °C at nanoscale thicknesses. Although the formation of the t-ZrO2 phase obviously enhanced the k value of the ZrO2 dielectric layer, the maximum capacitance in accumulation was decreased by the growth of a low-k interfacial layer (IL) between ZrO2 and Si with increasing Ta. On the other hand, the gate leakage current was remarkably depressed with increasing Ta probably due to the combined effects of the increased IL thickness, optical band gap of ZrO2, and density of ZrO2 and decreased remnant organic components.

  18. Fine-Scale Layering of Mars Polar Deposits and Signatures of Ice Content in Nonpolar Material From Multiband SHARAD Data Processing

    NASA Astrophysics Data System (ADS)

    Campbell, Bruce A.; Morgan, Gareth A.

    2018-02-01

    The variation of Shallow Radar (SHARAD) echo strength with frequency reveals material dielectric losses and polar layer properties. Loss tangents for Elysium and Amazonis Planitiae deposits are consistent with volcanic flows and sediments, while the Medusae Fossae Formation, lineated valley fill, and lobate debris aprons have low losses consistent with a major component of water ice. Mantling materials in Arcadia and Utopia Planitiae have higher losses, suggesting they are not dominated by ice over large fractions of their thickness. In Gemina Lingula, there are frequent deviations from a simple dependence of loss on depth. Within reflector packets, the brightest reflectors are often different among the frequency subbands, and there are cases of reflectors that occur in only the high- or low-frequency echoes. Many polar radar reflections must arise from multiple thin interfaces, or single deposits of appropriate thickness, that display resonant scattering behaviors. Reflector properties may be linked to climate-controlled polar dust deposition.

  19. Contribution of Dielectric Screening to the Total Capacitance of Few-Layer Graphene Electrodes.

    PubMed

    Zhan, Cheng; Jiang, De-en

    2016-03-03

    We apply joint density functional theory (JDFT), which treats the electrode/electrolyte interface self-consistently, to an electric double-layer capacitor (EDLC) based on few-layer graphene electrodes. The JDFT approach allows us to quantify a third contribution to the total capacitance beyond quantum capacitance (CQ) and EDL capacitance (CEDL). This contribution arises from the dielectric screening of the electric field by the surface of the few-layer graphene electrode, and we therefore term it the dielectric capacitance (CDielec). We find that CDielec becomes significant in affecting the total capacitance when the number of graphene layers in the electrode is more than three. Our investigation sheds new light on the significance of the electrode dielectric screening on the capacitance of few-layer graphene electrodes.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Yefeng; Gong, Honghong; Xie, Yunchuan

    Interface polarization and interface zone have been widely utilized to account for the abnormally improved dielectric properties of composites although their formation is rather vague and their influence has never been directly measured. In this work, micro α-SiC was designed as the filler particles incorporated into poly(vinylidenefluoride-co-chlorotrifluoroethylene) with internal double bonds (P(VDF-CTFE-DB)) to construct polymer micro composites through solution casting method. The dielectric constant of the composites is found to be increasing linearly as SiC content increases at lower content and the highest value is obtained as 83 at 100 Hz, which is unusually higher than both pristine polymer (13@100 Hz) andmore » SiC filler (17@100 Hz). By studying the dielectric properties of a bilayer model composite, the real dielectric permittivity of SiC sheet and P(VDF-CTFE-DB) layer has been directly measured to be significantly enhanced than their original value. The induced polarity between high polar PVDF units in polymer matrix and the electron-hole dipoles in α-SiC is responsible for the elevated dielectric properties of both components, which could address the failure of binary series and parallel models in predicting the dielectric permittivity of 0-3 composites as well. The strong dependence of induced polarity on the volume content, thickness, and polar nature of both components strongly suggests establishing promising high induced polarity between polymer matrix and fillers may provide an alternative strategy for fabricating high-k composites.« less

Top