Science.gov

Sample records for dielectric liquids icdl

  1. Counteracting Gravitation In Dielectric Liquids

    NASA Technical Reports Server (NTRS)

    Israelsson, Ulf E.; Jackson, Henry W.; Strayer, Donald M.

    1993-01-01

    Force of gravity in variety of dielectric liquids counteracted by imposing suitably contoured electric fields. Technique makes possible to perform, on Earth, variety of experiments previously performed only in outer space and at great cost. Also used similarly in outer space to generate sort of artificial gravitation.

  2. Miniaturization of dielectric liquid microlens in package

    PubMed Central

    Yang, Chih-Cheng; Tsai, C. Gary; Yeh, J. Andrew

    2010-01-01

    This study presents packaged microscale liquid lenses actuated with liquid droplets of 300–700 μm in diameter using the dielectric force manipulation. The liquid microlens demonstrated function focal length tunability in a plastic package. The focal length of the liquid lens with a lens droplet of 500 μm in diameter is shortened from 4.4 to 2.2 mm when voltages applied change from 0 to 79 Vrms. Dynamic responses that are analyzed using 2000 frames∕s high speed motion cameras show that the advancing and receding times are measured to be 90 and 60 ms, respectively. The size effect of dielectric liquid microlens is characterized for a lens droplet of 300–700 μm in diameter in an aspect of focal length. PMID:21267438

  3. RF cavity using liquid dielectric for tuning and cooling

    DOEpatents

    Popovic, Milorad [Warrenville, IL; Johnson, Rolland P [Newport News, VA

    2012-04-17

    A system for accelerating particles includes an RF cavity that contains a ferrite core and a liquid dielectric. Characteristics of the ferrite core and the liquid dielectric, among other factors, determine the resonant frequency of the RF cavity. The liquid dielectric is circulated to cool the ferrite core during the operation of the system.

  4. Transparent Conveyor of Dielectric Liquids or Particles

    NASA Technical Reports Server (NTRS)

    Calle, Carlos I.; Mantovani, James G.

    2009-01-01

    The concept of a transparent conveyor of small loose dielectric parti cles or small amounts of dielectric liquids has emerged as an outgro wth of an effort to develop efficient, reliable means of automated re moval of dust from solar cells and from windows of optical instrumen ts. This concept is based on the previously reported concept of an e lectrodynamic screen, according to which a grid-like electric field is established on and near a surface and is moved along the surface p erpendicularly to the grid lines. The resulting electrodynamic force s on loose dielectric particles or dielectric liquid drops in the vic inity would move the particles or drops along the surface. In the or iginal dust-removal application, dust particles would thus be swept out of the affected window area. Other potential applications may occ ur in nanotechnology -- for example, involving mixing of two or more fluids and/or nanoscale particles under optical illumination and/or optical observation.

  5. Interfacing dielectric elastomer actuators with liquids

    NASA Astrophysics Data System (ADS)

    Poulin, Alexandre; Maffli, Luc; Rosset, Samuel; Shea, Herbert

    2015-04-01

    Methods and materials for liquid encapsulation in thin (19 μm) silicone membranes are presented in this work. A set of 12 liquids including solvents, oils, silicone pre-polymers and one ionic liquid are experimentally tested. We show that all selected liquids are chemically inert to silicone and that vapor pressure is the key parameter for stable encapsulation. It is demonstrated that encapsulated volume of silicone pre-polymers and ionic liquids can stay stable for more than 1 month. The actuation of dielectric elastomer actuators (DEAs) in conductive liquids is also investigated. An analysis of the equivalent electrical circuits of immersed DEAs shows that non-overlapping regions of the electrodes should be minimized. It also provides guidelines to determine when the electrodes should be passivated. The effects of immersion in a conductive liquid are assessed by measuring the actuation strain and capacitance over periodic actuation. The experimental results show no sign of liquid-induced degradation over more than 45k actuation cycles.

  6. Dielectric Dispersion Effects in Liquid Crystals.

    NASA Astrophysics Data System (ADS)

    Lavrentovich, Oleg; Yin, Ye; Gu, Mingxia; Shiyanovskii, Sergij

    2006-03-01

    As the switching speed in practical LC devices is pushed from the currently common 10 ms to sub-millisecond levels, it is important to take into account the effects associated with the finite rate with which the electric displacement changes in the external electric field. We discuss two important general consequences of the dielectric relaxation phenomenon: (1) Non-local time relationship between the electric displacement and the electric field [1]. In a quickly changing electric field, orientation of the liquid crystal depends not only on the instantaneous value of the electric field, but also on the previous values of the field and previous orientations of the material. (2) Dielectric heating. [1] Y. Yin, S.V. Shiyanovskii, A.B. Golovin, and O. D. Lavrentovich, Phys. Rev. Lett. 95, 087801 (2005) .

  7. Tunable dielectric liquid lens on flexible substrate

    PubMed Central

    Lu, Yen-Sheng; Tu, Hongen; Xu, Yong; Jiang, Hongrui

    2013-01-01

    We demonstrate the fabrication of a tunable-focus dielectric liquid lens (DLL) on a flexible substrate made of polydimethylsiloxane, which was wrapped onto a goggle surface to show its functionality. As a positive meniscus converging lens, the DLL has the focal length variable from 14.2 to 6.3 mm in 1.3 s when the driving voltage increases to 125 Vrms. The resolving power of the DLL is 17.95 line pairs per mm. The DLL on a flexible, curvilinear surface is promising for expanded field of view covered as well as in reconfigurable optical systems. PMID:24493877

  8. Dynamics of a Liquid Dielectric Attracted by a Cylindrical Capacitor

    ERIC Educational Resources Information Center

    Nardi, Rafael; Lemos, Nivaldo A.

    2007-01-01

    The dynamics of a liquid dielectric attracted by a vertical cylindrical capacitor are studied. Contrary to what might be expected from the standard calculation of the force exerted by the capacitor, the motion of the dielectric is different depending on whether the charge or the voltage of the capacitor is held constant. The problem turns out to…

  9. Ionic structure in liquids confined by dielectric interfaces

    NASA Astrophysics Data System (ADS)

    Jing, Yufei; Jadhao, Vikram; Zwanikken, Jos W.; Olvera de la Cruz, Monica

    2015-11-01

    The behavior of ions in liquids confined between macromolecules determines the outcome of many nanoscale assembly processes in synthetic and biological materials such as colloidal dispersions, emulsions, hydrogels, DNA, cell membranes, and proteins. Theoretically, the macromolecule-liquid boundary is often modeled as a dielectric interface and an important quantity of interest is the ionic structure in a liquid confined between two such interfaces. The knowledge gleaned from the study of ionic structure in such models can be useful in several industrial applications, such as in the design of double-layer supercapacitors for energy storage and in the extraction of metal ions from wastewater. In this article, we compute the ionic structure in a model system of electrolyte confined by two planar dielectric interfaces using molecular dynamics simulations and liquid state theory. We explore the effects of high electrolyte concentrations, multivalent ions, dielectric contrasts, and external electric field on the ionic distributions. We observe the presence of non-monotonic ionic density profiles leading to a layered structure in the fluid which is attributed to the competition between electrostatic and steric (entropic) interactions. We find that thermal forces that arise from symmetry breaking at the interfaces can have a profound effect on the ionic structure and can oftentimes overwhelm the influence of the dielectric discontinuity. The combined effect of ionic correlations and inhomogeneous dielectric permittivity significantly changes the character of the effective interaction between the two interfaces.

  10. Dielectric constant of liquid alkanes and hydrocarbon mixtures

    NASA Technical Reports Server (NTRS)

    Sen, A. D.; Anicich, V. G.; Arakelian, T.

    1992-01-01

    The complex dielectric constants of n-alkanes with two to seven carbon atoms have been measured. The measurements were conducted using a slotted-line technique at 1.2 GHz and at atmospheric pressure. The temperature was varied from the melting point to the boiling point of the respective alkanes. The real part of the dielectric constant was found to decrease with increasing temperature and correlate with the change in the molar volume. An upper limit to all the loss tangents was established at 0.001. The complex dielectric constants of a few mixtures of liquid alkanes were also measured at room temperature. For a pentane-octane mixture the real part of the dielectric constant could be explained by the Clausius-Mosotti theory. For the mixtures of n-hexane-ethylacetate and n-hexane-acetone the real part of the dielectric constants could be explained by the Onsager theory extended to mixtures. The dielectric constant of the n-hexane-acetone mixture displayed deviations from the Onsager theory at the highest fractions of acetone. The dipole moments of ethylacetate and acetone were determined for dilute mixtures using the Onsager theory and were found to be in agreement with their accepted gas-phase values. The loss tangents of the mixtures exhibited a linear relationship with the volume fraction for low concentrations of the polar liquids.

  11. Dielectric constant of liquid alkanes and hydrocarbon mixtures.

    PubMed

    Sen, A D; Anicich, V G; Arakelian, T

    1992-01-01

    The complex dielectric constants of n-alkanes with two to seven carbon atoms have been measured. The measurements were conducted using a slotted-line technique at 1.2 GHz and at atmospheric pressure. The temperature was varied from the melting point to the boiling point of the respective alkanes. The real part of the dielectric constant was found to decrease with increasing temperature and correlate with the change in the molar volume. An upper limit to all the loss tangents was established at 0.001. The complex dielectric constants of a few mixtures of liquid alkanes were also measured at room temperature. For a pentane-octane mixture the real part of the dielectric constant could be explained by the Clausius-Mosotti theory. For the mixtures of n-hexane-ethylacetate and n-hexane-acetone the real part of the dielectric constants could be explained by the Onsager theory extended to mixtures. The dielectric constant of the n-hexane-acetone mixture displayed deviations from the Onsager theory at the highest fractions of acetone. The dipole moments of ethylacetate and acetone were determined for dilute mixtures using the Onsager theory and were found to be in agreement with their accepted gas-phase values. The loss tangents of the mixtures exhibited a linear relationship with the volume fraction for low concentrations of the polar liquids.

  12. Heating liquid dielectrics by time dependent fields

    NASA Astrophysics Data System (ADS)

    Khalife, A.; Pathak, U.; Richert, R.

    2011-10-01

    Steady state and time-resolved dielectric relaxation experiments are performed at high fields on viscous glycerol and the effects of energy absorption from the electric field are studied. Time resolution is obtained by a sinusoidal field whose amplitude is switched from a low to a high level and by recording voltage and current traces with an oscilloscope during this transition. Based on their distinct time and frequency dependences, three sources of modifying the dynamics and dielectric loss via an increase in the effective temperature can be distinguished: electrode temperature, real sample temperature, and configurational temperatures of the modes that absorbed the energy. Isothermal conditions that are desired for focusing on the configurational temperature changes (as in dielectric hole burning and related techniques) are maintained only for very thin samples and for moderate power levels. For high frequencies, say ν > 1 MHz, changes of the real temperature will exceed the effects of configurational temperatures in the case of macroscopic samples. Regarding microwave chemistry, heating via cell phone use, and related situations in which materials are subject to fields involving frequencies beyond the MHz regime, we conclude that changes in the configurational (or fictive) temperatures remain negligible compared with the increase of the real temperature. This simplifies the assessment of how time dependent electric fields modify the properties of materials.

  13. Table of Dielectric Constants of Pure Liquids

    DTIC Science & Technology

    1951-08-10

    Mathematics Series, Building Materials and Structures Reports, Miscellaneous Publications, and Circulars. Each issue contains 12 or more two-column pages...2.2 Standard liquids ---------------------- ----------- 2.3 Chemical formulas and the order of listing of substances _II 2.4 Estimated accuracy of...Numdriques XI, Fasicule 2, 1931-34; that are recommended as reference liquids because XII, Fasicule :32, 1935-:36 and earlier volumes of of their chemical

  14. Terahertz properties of liquid crystals with negative dielectric anisotropy.

    PubMed

    Vieweg, Nico; Koch, Martin

    2010-10-20

    We present what is believed to be the first terahertz time-domain study of a set of liquid crystals (LCs) with negative dielectric anisotropy. From the measured data, refractive indices, and absorption coefficients for ordinary and extraordinary polarization are extracted. We find that the investigated materials exhibit a much smaller absorption than LCs with positive dielectric anisotropy. Thus, these materials are more useful for switchable terahertz devices. Moreover, the LC 1808 shows what is to our knowledge the largest terahertz birefringence reported so far.

  15. Effect of dielectric and liquid on plasma sterilization using dielectric barrier discharge plasma.

    PubMed

    Mastanaiah, Navya; Johnson, Judith A; Roy, Subrata

    2013-01-01

    Plasma sterilization offers a faster, less toxic and versatile alternative to conventional sterilization methods. Using a relatively small, low temperature, atmospheric, dielectric barrier discharge surface plasma generator, we achieved ≥ 6 log reduction in concentration of vegetative bacterial and yeast cells within 4 minutes and ≥ 6 log reduction of Geobacillus stearothermophilus spores within 20 minutes. Plasma sterilization is influenced by a wide variety of factors. Two factors studied in this particular paper are the effect of using different dielectric substrates and the significance of the amount of liquid on the dielectric surface. Of the two dielectric substrates tested (FR4 and semi-ceramic (SC)), it is noted that the FR4 is more efficient in terms of time taken for complete inactivation. FR4 is more efficient at generating plasma as shown by the intensity of spectral peaks, amount of ozone generated, the power used and the speed of killing vegetative cells. The surface temperature during plasma generation is also higher in the case of FR4. An inoculated FR4 or SC device produces less ozone than the respective clean devices. Temperature studies show that the surface temperatures reached during plasma generation are in the range of 30°C-66 °C (for FR4) and 20 °C-49 °C (for SC). Surface temperatures during plasma generation of inoculated devices are lower than the corresponding temperatures of clean devices. pH studies indicate a slight reduction in pH value due to plasma generation, which implies that while temperature and acidification may play a minor role in DBD plasma sterilization, the presence of the liquid on the dielectric surface hampers sterilization and as the liquid evaporates, sterilization improves.

  16. Effect of Dielectric and Liquid on Plasma Sterilization Using Dielectric Barrier Discharge Plasma

    PubMed Central

    Mastanaiah, Navya; Johnson, Judith A.; Roy, Subrata

    2013-01-01

    Plasma sterilization offers a faster, less toxic and versatile alternative to conventional sterilization methods. Using a relatively small, low temperature, atmospheric, dielectric barrier discharge surface plasma generator, we achieved ≥6 log reduction in concentration of vegetative bacterial and yeast cells within 4 minutes and ≥6 log reduction of Geobacillus stearothermophilus spores within 20 minutes. Plasma sterilization is influenced by a wide variety of factors. Two factors studied in this particular paper are the effect of using different dielectric substrates and the significance of the amount of liquid on the dielectric surface. Of the two dielectric substrates tested (FR4 and semi-ceramic (SC)), it is noted that the FR4 is more efficient in terms of time taken for complete inactivation. FR4 is more efficient at generating plasma as shown by the intensity of spectral peaks, amount of ozone generated, the power used and the speed of killing vegetative cells. The surface temperature during plasma generation is also higher in the case of FR4. An inoculated FR4 or SC device produces less ozone than the respective clean devices. Temperature studies show that the surface temperatures reached during plasma generation are in the range of 30°C–66°C (for FR4) and 20°C–49°C (for SC). Surface temperatures during plasma generation of inoculated devices are lower than the corresponding temperatures of clean devices. pH studies indicate a slight reduction in pH value due to plasma generation, which implies that while temperature and acidification may play a minor role in DBD plasma sterilization, the presence of the liquid on the dielectric surface hampers sterilization and as the liquid evaporates, sterilization improves. PMID:23951023

  17. Stochastic and deterministic causes of streamer branching in liquid dielectrics

    SciTech Connect

    Jadidian, Jouya; Zahn, Markus; Lavesson, Nils; Widlund, Ola; Borg, Karl

    2013-08-14

    Streamer branching in liquid dielectrics is driven by stochastic and deterministic factors. The presence of stochastic causes of streamer branching such as inhomogeneities inherited from noisy initial states, impurities, or charge carrier density fluctuations is inevitable in any dielectric. A fully three-dimensional streamer model presented in this paper indicates that deterministic origins of branching are intrinsic attributes of streamers, which in some cases make the branching inevitable depending on shape and velocity of the volume charge at the streamer frontier. Specifically, any given inhomogeneous perturbation can result in streamer branching if the volume charge layer at the original streamer head is relatively thin and slow enough. Furthermore, discrete nature of electrons at the leading edge of an ionization front always guarantees the existence of a non-zero inhomogeneous perturbation ahead of the streamer head propagating even in perfectly homogeneous dielectric. Based on the modeling results for streamers propagating in a liquid dielectric, a gauge on the streamer head geometry is introduced that determines whether the branching occurs under particular inhomogeneous circumstances. Estimated number, diameter, and velocity of the born branches agree qualitatively with experimental images of the streamer branching.

  18. Dielectric response of polar liquids in narrow slit pores.

    PubMed

    Froltsov, Vladimir A; Klapp, Sabine H L

    2007-03-21

    Based on molecular dynamics (MD) simulations and a simple (Stockmayer) model we investigate the static and dynamic dielectric response of polar liquids confined to narrow slit pores. The MD simulations are used to calculate the time-dependent polarization fluctuations along directions parallel and perpendicular to the walls, from which the components of the frequency-dependent dielectric tensor can be derived via linear response theory. Our numerical results reveal that the system's response is strongly anisotropic. The parallel dielectric function, epsilonparallel(omega), has Debye-like character very similar to the corresponding isotropic bulk function, epsilonbulk(omega), at the same chemical potential. Indeed, the main confinement effect on epsilonparallel(omega) consists in a shift toward smaller values relative to the bulk function. On the other hand, in the perpendicular direction we observe a characteristic peak in the absorption part of the dielectric function, epsilonperpendicular(omega). This peak is absent in the bulk system and reflects strongly pronounced, damped oscillations in the polarization fluctuations normal to the walls. We discuss two possible origins of the oscillations (and the resulting absorption peak), that is collective oscillations of dipoles in clusters formed parallel to the walls, and the existence of a "dipolaron mode" previously observed in MD simulations of bulk polar fluids.

  19. Dielectric studies of molecular motions in glassy and liquid nicotine

    NASA Astrophysics Data System (ADS)

    Kaminski, K.; Paluch, M.; Ziolo, J.; Ngai, K. L.

    2006-06-01

    The dielectric permittivity and loss spectra of glassy and liquid states of nicotine have been measured over the frequency range 10-2-109 Hz. The relaxation spectra are similar to common small molecular glass-forming substances, showing the structural α-relaxation and its precursor, the Johari-Goldstein β-relaxation. The α-relaxation is well described by the Fourier transform of the Kohlrausch-Williams-Watts stretched exponential function with an approximately constant stretch exponent that is equal to 0.70 as the glass transition temperature is approached. The dielectric α-relaxation time measured over 11 orders of magnitude cannot be described by a single Vogel-Fulcher-Tamman-Hesse equation. The most probable Johari-Goldstein β-relaxation time determined from the dielectric spectra is in good agreement with the primitive relaxation time of the coupling model calculated from parameters of the structural α-relaxation. The shape of the dielectric spectra of nicotine is compared with that of other glass-formers having about the same stretch exponent, and they are shown to be nearly isomorphic. The results indicate that the molecular dynamics of nicotine conform to the general pattern found in other glass-formers, and the presence of the universal Johari-Goldstein secondary relaxation, which plays a role in the crystallization of amorphous pharmaceuticals.

  20. Electric double layer at the interface of ionic liquid-dielectric liquid under electric field.

    PubMed

    Lee, D W; Im, D J; Kang, I S

    2013-02-12

    The structure of the electric double layer (EDL) is analyzed in order to understand the electromechanical behavior of the interface of ionic liquid-dielectric liquid. The modified Poisson-Boltzmann equation proposed by Bazant et al. is solved to see the crowding and the overscreening effects that are the characteristics of an ionic liquid (Bazant, M. Z.; Storey, B. D.; Kornyshev, A. A. Double layer in ionic liquids: Overscreening versus crowding. Phys. Rev. Lett. 2011, 106, 046102.). From the simple one-dimensional (1-D) analysis, it is found that the changes of the composition and the material properties in the EDL are negligible except under some extreme conditions such as strong electric field over O(10(8)) V/m. From the electromechanical view points, an ionic liquid behaves like a pure conductor at the interface with a dielectric liquid. Based on these findings, three specific application problems are considered. In the first, a new method is suggested for measuring the interfacial tension of an ionic liquid-dielectric liquid system. The deformation of a charged ionic liquid droplet translating between two electrodes is used for this measurement. The second is for the Taylor cone problem, which includes an extreme electric field condition near the tip. The size of the critical region, where the EDL effect should be considered, is estimated by using the 1-D analysis result. Numerical computation is also performed to see the profiles of electric potential and the electric stress along the interface of the Taylor cone. Lastly, the electrowetting problem of the ionic liquid is considered. The discrepancies in the results of previous workers are interpreted by using the results of the present work. It is shown that all the results might be consistent if the leaking of the dielectric layer and/or the adsorption of ions is considered.

  1. The Preparation of Electrohydrodynamic Bridges from Polar Dielectric Liquids

    PubMed Central

    Wexler, Adam D.; López Sáenz, Mónica; Schreer, Oliver; Woisetschläger, Jakob; Fuchs, Elmar C.

    2014-01-01

    Horizontal and vertical liquid bridges are simple and powerful tools for exploring the interaction of high intensity electric fields (8-20 kV/cm) and polar dielectric liquids. These bridges are unique from capillary bridges in that they exhibit extensibility beyond a few millimeters, have complex bi-directional mass transfer patterns, and emit non-Planck infrared radiation. A number of common solvents can form such bridges as well as low conductivity solutions and colloidal suspensions. The macroscopic behavior is governed by electrohydrodynamics and provides a means of studying fluid flow phenomena without the presence of rigid walls. Prior to the onset of a liquid bridge several important phenomena can be observed including advancing meniscus height (electrowetting), bulk fluid circulation (the Sumoto effect), and the ejection of charged droplets (electrospray). The interaction between surface, polarization, and displacement forces can be directly examined by varying applied voltage and bridge length. The electric field, assisted by gravity, stabilizes the liquid bridge against Rayleigh-Plateau instabilities. Construction of basic apparatus for both vertical and horizontal orientation along with operational examples, including thermographic images, for three liquids (e.g., water, DMSO, and glycerol) is presented. PMID:25350319

  2. The preparation of electrohydrodynamic bridges from polar dielectric liquids.

    PubMed

    Wexler, Adam D; López Sáenz, Mónica; Schreer, Oliver; Woisetschläger, Jakob; Fuchs, Elmar C

    2014-09-30

    Horizontal and vertical liquid bridges are simple and powerful tools for exploring the interaction of high intensity electric fields (8-20 kV/cm) and polar dielectric liquids. These bridges are unique from capillary bridges in that they exhibit extensibility beyond a few millimeters, have complex bi-directional mass transfer patterns, and emit non-Planck infrared radiation. A number of common solvents can form such bridges as well as low conductivity solutions and colloidal suspensions. The macroscopic behavior is governed by electrohydrodynamics and provides a means of studying fluid flow phenomena without the presence of rigid walls. Prior to the onset of a liquid bridge several important phenomena can be observed including advancing meniscus height (electrowetting), bulk fluid circulation (the Sumoto effect), and the ejection of charged droplets (electrospray). The interaction between surface, polarization, and displacement forces can be directly examined by varying applied voltage and bridge length. The electric field, assisted by gravity, stabilizes the liquid bridge against Rayleigh-Plateau instabilities. Construction of basic apparatus for both vertical and horizontal orientation along with operational examples, including thermographic images, for three liquids (e.g., water, DMSO, and glycerol) is presented.

  3. Challenges of using dielectric elastomer actuators to tune liquid lens

    NASA Astrophysics Data System (ADS)

    Keong, Gih-Keong; La, Thanh-Giang; Shiau, Li-Lynn; Tan, Adrian W. Y.

    2014-03-01

    Recently, dielectric elastomer actuators (DEAs) have been adopted to tune liquid membrane lens, just like ciliary muscles do to the lens in human eye. However, it faces some challenges, such as high stress, membrane puncture, high driving voltage requirement, and limited focus distance (not more than 707cm), that limit its practical use. The design problem gets more complex as the liquid lens shares the same elastomeric membrane as the DEA. To address these challenges, we separate DEA from the lens membrane. Instead, a liquid-immersed DEA, which is safe from terminal failure, is used as a diaphragm pump to inflate or deflate the liquid lens by hydraulic pressure. This opens up the possibility that the DEA can be thinned down and stacked up to reduce the driving voltage, independent of the lens membrane thickness. Preliminary study showed that our 8-mm-diameter tunable lens can focus objects in the range of 15cm to 50cm with a small driving voltage of 1.8kV. Further miniaturization of DEA could achieve a driving voltage less than 1kV.

  4. Atmospheric pressure dielectric barrier discharges interacting with liquid covered tissue

    NASA Astrophysics Data System (ADS)

    Tian, Wei; Kushner, Mark J.

    2014-04-01

    The interaction of plasmas with liquids is of increasing importance in biomedical applications. Tissues treated by atmospheric pressure dielectric barrier discharges (DBDs) in plasma medicine are often covered by a thin layer of liquid, typically a blood serum like water with dissolved gases and proteins up to hundreds of micrometres thick. The liquid processes the plasma-produced radicals and ions prior to their reaching the tissue. In this paper, we report on a computational investigation of the interaction of DBDs in humid air with a thin water layer covering tissue. The water layer, 50-400 µm thick, contains dissolved O2aq (aq means an aqueous species) and alkane-like hydrocarbons (RHaq). In the model, the DBDs are operated with multiple pulses at 100 Hz followed by a 1 s afterglow. Gas phase reactive oxygen and nitrogen species (RONS) intersect the water-vapour saturated air above the liquid and then solvate when reaching the water. The photolysis of water by plasma-produced UV/VUV plays a significant role in the production of radicals. Without RHaq, O_{2aq}^{-} , ONOO_{aq}^{-} , NO_{3aq}^{-} and hydronium (H_{3} O_{aq}^{+} ) dominate the water ions with H_{3} O_{aq}^{+} determining the pH. The dominant RONS in the liquid are O3aq, H2O2aq, and HNOxaq. Dissolved O2aq assists the production of HNO3aq and HOONOaq during the afterglow. With RHaq, reactive oxygen species are largely consumed, leaving an R·aq (alkyl radical) to reach the tissue. These results are sensitive to the thickness of the water layer.

  5. Dielectric Anisotropy of Gold Nanoparticle Colloids in Nematic Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Visco, Angelo; Foust, Jon; Mahmood, Rizwan

    We present electrical and optical studies of hexanethiol-treated gold nanoparticle (GNPs) colloids in 4-cyano-4 '-pentyl-biphenyl (5CB) liquid crystals. Preliminary data analysis suggests an unusual behavior of sudden drop and then rise in the dielectric anisotropy at a critical concentration of 0.0862% by wt. GNPs and a sudden rise and then drop in the nematic to isotropic transition temperature. Above the critical concentration the data level off to within the uncertainty of the experimental errors. This colloidal system will help us to understand the interaction and the effects of nanoparticles on the self-assembly of LC molecules and the manner in which these particles organize in LC. This study is important for further developments in nanotechnology, sharp and fast display panels, and within the medical field.

  6. Dielectric constant of liquids confined in the extended nanospace measured by a streaming potential method.

    PubMed

    Morikawa, Kyojiro; Kazoe, Yutaka; Mawatari, Kazuma; Tsukahara, Takehiko; Kitamori, Takehiko

    2015-02-03

    Understanding liquid structure and the electrical properties of liquids confined in extended nanospaces (10-1000 nm) is important for nanofluidics and nanochemistry. To understand these liquid properties requires determination of the dielectric constant of liquids confined in extended nanospaces. A novel dielectric constant measurement method has thus been developed for extended nanospaces using a streaming potential method. We focused on the nonsteady-state streaming potential in extended nanospaces and successfully measured the dielectric constant of liquids within them without the use of probe molecules. The dielectric constant of water was determined to be significantly reduced by about 3 times compared to that of the bulk. This result contributes key information toward further understanding of the chemistry and fluidics in extended nanospaces.

  7. Meta-atom microfluidic sensor for measurement of dielectric properties of liquids

    NASA Astrophysics Data System (ADS)

    Awang, Robiatun A.; Tovar-Lopez, Francisco J.; Baum, Thomas; Sriram, Sharath; Rowe, Wayne S. T.

    2017-03-01

    High sensitivity microwave frequency microfluidic sensing is gaining popularity in chemical and biosensing applications for evaluating the dielectric properties of liquid samples. Here, we show that a tiny microfluidic channel positioned in the gaps of a dual-gap meta-atom split-ring resonator can exploit the electric field sensitivity to predict the dielectric properties of liquid samples. Employing an empirical relation between resonant characteristics of the fabricated sensor and the complex permittivity of water-ethanol or water-methanol mixtures produces good congruence to standardized values from the literature. This microfluidic sensor offers a potential lab-on-chip solution for liquid dielectric characterization without external electrical connections.

  8. Effect of nickel oxide nanoparticles on dielectric and optical properties of nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Jamwal, Gaurav; Prakash, Jai; Chandran, Achu; Gangwar, Jitendra; Srivastava, A. K.; Biradar, A. M.

    2015-08-01

    In the present paper, we have studied the improvement in dielectric and optical properties of nematic liquid crystal (NLC) by doping of nickel oxide (NiO) nanoparticles. We have observed the dielectric and optical properties of pure and doped cells in order to understand the influence of NiO nanoparticles in the pure NLC. The experimental results have been analyzed through dielectric spectroscopic and optical texural methods.Detailed studies of dielectric parameters such as dielectric permittivity, dielectric loss and dielectric loss factor as a function of frequency with temperature were carried out. It has been observed that on doping the nanoparticles in NLC, the value of dielectric parameters (dielectric permittivity, dielectric loss and dielectric loss factor) decreases. The impedance and resistance of both pure and nanoparticles doped NLC cells were studied and found that for doped NLC, these parameter have low value. In addition to this, optical textures of the pure and doped samples have also been observed with a polarizing optical microscope at room temperature. All the results i.e. related to the investigation of dielectric and electro-optic properties have been explained by using existing theory of NLC.

  9. Dielectric spectroscopy of isotropic liquids and liquid crystal phases with dispersed graphene oxide

    NASA Astrophysics Data System (ADS)

    Al-Zangana, Shakhawan; Iliut, Maria; Boran, Gökçen; Turner, Michael; Vijayaraghavan, Aravind; Dierking, Ingo

    2016-08-01

    Graphene oxide (GO) flakes of different sizes were prepared and dispersed in isotropic and nematic (anisotropic) fluid media. The dielectric relaxation behaviour of GO-dispersions was examined for a wide temperature (25-60 oC) and frequency range (100 Hz-2 MHz). The mixtures containing GO flakes exhibited varying dielectric relaxation processes, depending on the size of the flakes and the elastic properties of the dispersant fluid. Relaxation frequencies of the GO doped isotropic media, such as isopropanol IPA, were observed to be much lower than the GO doped thermotropic nematic medium 5CB. It is anticipated that the slow relaxation frequencies (~10 kHz) could be resulting from the relaxation modes of the GO flakes while the fast relaxation frequencies (~100 kHz) could indicate strongly slowed down molecular modes of the nematogenic molecules, which are anchored to the GO flakes via dispersion interactions. The relaxation frequencies decreased as the size of the GO flakes in the isotropic solvent was increased. Polarizing microscopy showed that GO flakes with a mean diameter of 10 μm, dispersed in water, formed a lyotropic nematic liquid crystal phase. This lyotropic nematic exhibited the slowest dielectric relaxation process, with relaxation frequencies in the order of 2 kHz, as compared to the GO-isotropic suspension and the GO-doped 5CB.

  10. Dielectric spectroscopy of isotropic liquids and liquid crystal phases with dispersed graphene oxide

    PubMed Central

    Al-Zangana, Shakhawan; Iliut, Maria; Boran, Gökçen; Turner, Michael; Vijayaraghavan, Aravind; Dierking, Ingo

    2016-01-01

    Graphene oxide (GO) flakes of different sizes were prepared and dispersed in isotropic and nematic (anisotropic) fluid media. The dielectric relaxation behaviour of GO-dispersions was examined for a wide temperature (25–60 oC) and frequency range (100 Hz–2 MHz). The mixtures containing GO flakes exhibited varying dielectric relaxation processes, depending on the size of the flakes and the elastic properties of the dispersant fluid. Relaxation frequencies of the GO doped isotropic media, such as isopropanol IPA, were observed to be much lower than the GO doped thermotropic nematic medium 5CB. It is anticipated that the slow relaxation frequencies (~10 kHz) could be resulting from the relaxation modes of the GO flakes while the fast relaxation frequencies (~100 kHz) could indicate strongly slowed down molecular modes of the nematogenic molecules, which are anchored to the GO flakes via dispersion interactions. The relaxation frequencies decreased as the size of the GO flakes in the isotropic solvent was increased. Polarizing microscopy showed that GO flakes with a mean diameter of 10 μm, dispersed in water, formed a lyotropic nematic liquid crystal phase. This lyotropic nematic exhibited the slowest dielectric relaxation process, with relaxation frequencies in the order of 2 kHz, as compared to the GO-isotropic suspension and the GO-doped 5CB. PMID:27555475

  11. An electrodeless system for measurement of liquid sample dielectric properties in radio frequency band.

    PubMed

    Hartwig, V; Giovannetti, G; Vanello, N; Costantino, M; Landini, L; Benassi, A

    2006-01-01

    An electrodeless measurement system based on a resonant circuit is proposed for the measurement of dielectric properties of liquid samples at RF (radio frequency). Generally, properties as dielectric constant, loss factor and conductivity are measured by parallel plate capacitor cells: this method has several limitations in the case of particular liquid samples and in the range of radiofrequencies. Our method is based on the measurements of resonance frequency and quality factor of a LC resonant circuit in different measuring conditions, without and with the liquid sample placed inside a test tube around which the home made coil is wrapped. The measurement is performed using a network analyzer and a dual loop probe, inductively coupled with the resonant circuit. One of the advantages of this method is the contactless between the liquid sample and the measurement electrodes. In this paper the measurement system is described and test measurements of conventional liquids dielectric properties are reported.

  12. Controlled thermal expansion printed wiring boards based on liquid crystal polymer dielectrics

    NASA Technical Reports Server (NTRS)

    Knoll, Thomas E.; Blizard, Kent; Jayaraj, K.; Rubin, Leslie S.

    1994-01-01

    Dielectric materials based on innovative Liquid Crystal Polymers (LCP's) have been used to fabricate surface mount printed wiring boards (PWB's) with a coefficient of thermal expansion matched to leadless ceramic chip carriers. Proprietary and patented polymer processing technology has resulted in self reinforcing material with balanced in-plane mechanical properties. In addition, LCP's possess excellent electrical properties, including a low dielectric constant (less than 2.9) and very low moisture absorption (less than 0.02%). LCP-based multilayer boards processed with conventional drilling and plating processes show improved performance over other materials because they eliminate the surface flatness problems of glass or aramid reinforcements. Laser drilling of blind vias in the LCP dielectric provides a very high density for use in direct chip attach and area array packages. The material is ideally suited for MCM-L and PCMCIA applications fabricated with very thin dielectric layers of the liquid crystal polymer.

  13. Pulsed picosecond and nanosecond discharge development in liquids with various dielectric permittivity constants

    NASA Astrophysics Data System (ADS)

    Starikovskiy, Andrey

    2016-09-01

    The dynamics of pulsed picosecond and nanosecond discharge development in liquid water, ethanol and hexane were investigated experimentally. It is shown that the dynamics of discharge formation fundamentally differ between liquids with low and high dielectric permittivity coefficients. The difference in the nanosecond discharge development in liquid dielectrics may be explained by the formation of micro-discontinuities in the media during the electrostriction compression/rarefaction stage in liquids with high dielectric permittivity. Three possible mechanisms for the propagation of discharge in liquids play a different role depending on the pulse duration. The first is the formation of low density channels in liquid. In the second case the electrostatic forces support the expansion of nanoscale voids behind the front of the ionization wave; in the wave front the extreme electric field provides a strong negative pressure in the dielectric fluid due to the presence of electrostriction forces, forming the initial micro-voids in the continuous medium. Finally, in the third case, when a picosecond electric pulse is utilized, the ionization in the liquid phase occurs as a result of direct electron impact without undergoing a phase transition.

  14. High dielectric constant nickel-doped titanium oxide films prepared by liquid-phase deposition

    NASA Astrophysics Data System (ADS)

    Lee, Ming-Kwei; Yen, Chih-Feng; Fan, Cho-Han

    2014-09-01

    The electrical characteristics of nickel-doped titanium oxide films prepared by liquid-phase deposition on p-type (100) silicon substrate were investigated. The aqueous solutions of ammonium hexafluorotitanate and boric acid were used as precursors for the growth of titanium oxide films and the dielectric constant is 29. The dielectric constant can be improved to 94 by nickel doping at the thermal annealing at 700 °C in nitrous oxide.

  15. Effect of polarization on dielectric behaviour of PET/0.8PHB polymer liquid crystals

    SciTech Connect

    Yarramaneni, Sridharbabu; Sharma, Anu; Quamara, J. K.

    2014-04-24

    Dielectric constant and loss behaviour of pristine and polarized samples of Poly (p-hydroxybenzoic acid-co-ethylene terephthalate) polymer liquid crystals were studied at continuous temperatures ranging from 20 °C to 250 °C, polarized at potentials 500V and 2000V with high precision d.c. power supply. Dielectric constant appears to be almost linearly dependent in the lower temperature region and is independent in the higher temperature region. Dielectric loss becomes approximately ten times lower at higher temperatures.

  16. Dielectric Behavior of Antiferroelectric Liquid Crystals in Presence of Flexoelectric Effect

    NASA Astrophysics Data System (ADS)

    Das, Deblal; Mandal, Pravash; Pal Majumder, Tapas

    2015-06-01

    We studied theoretically the effect of flexoelectricity on the behavior of dielectric fluctuations of antiferroelectric liquid crystals (AFLCs) influenced by the mechanical distortion associated with flexoelectric effect. By using the appropriate free energy and the Landau-Ginzburg equation, we found an approximate expression of dielectric permittivity, which was strongly influenced by the existence of flexoelectric polarization for both in-phase and anti-phase motions. Consequently, the corresponding dielectric strength for both in-phase and anti-phase motions were varied due to the existence of flexoelectric polarization.

  17. Dielectric relaxation and birefringence study of 7.O5O.7 dimeric liquid crystal compound

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Debanjan; Paul-Choudhury, Sandip; Alapati, Parameswara Rao; Bhattacharjee, Ayon

    2016-05-01

    Measurement of dielectric relaxation and birefringence phenomenon of dimeric liquid crystal compound with the dependence of temperature was reported in this paper. Homogeneous (HG) and homeotropic (HT) alignment of the cell are introduced to investigate the dielectric relaxation, activation energy and birefringence. Cole-Cole plots analyzed the dielectric relaxation of the dimeric compound. The observed Cole-Cole plots were semi-circular, and the relaxation mechanism obeys the non-Debye type of relaxation behaviour. Slater's perturbation equations have been used to analysis the activation energy of the compound. The birefringence of the compound has positively anisotropy and thin prism mechanism was used to study the anisotropy of the compound.

  18. Quantitative assessment of radiation force effect at the dielectric air-liquid interface

    PubMed Central

    Capeloto, Otávio Augusto; Zanuto, Vitor Santaella; Malacarne, Luis Carlos; Baesso, Mauro Luciano; Lukasievicz, Gustavo Vinicius Bassi; Bialkowski, Stephen Edward; Astrath, Nelson Guilherme Castelli

    2016-01-01

    We induce nanometer-scale surface deformation by exploiting momentum conservation of the interaction between laser light and dielectric liquids. The effect of radiation force at the air-liquid interface is quantitatively assessed for fluids with different density, viscosity and surface tension. The imparted pressure on the liquids by continuous or pulsed laser light excitation is fully described by the Helmholtz electromagnetic force density. PMID:26856622

  19. Understanding Ion Transport in Polymerized Ionic Liquids using Dielectric Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hyeok Choi, U.; Chen, Hong; Liu, Wenjuan; Elabd, Yossef A.; Colby, Ralph H.

    2009-03-01

    In order to deduce the mechanism of ion conduction in ion-containing polymers, not only the conductivity needs to be measured but also the number density and mobility of conducting ions must be determined using broadband dielectric spectroscopy, covering broad frequency and temperature ranges. To obtain a transference number of unity, one ionic charge is covalently bonded to the polymer so that only the counterions can contribute to ion conduction. In this study, imidazolium-containing monomer was synthesized and polymerized to make a cationic homopolymer with either tetrafluoroborate or bis(trifluoromethanesulfonyl)imide anionic counterions. These ions can associate into pairs and larger aggregates. The degree of ion pairing can be estimated from the temperature dependence of the dielectric constant and knowledge of the dipole moment of the ion pair, using the 1936 Onsager equation. Using the 1953 Macdonald model makes it possible to determine concentration and mobility of mobile counterions from analysis of electrode polarization in dielectric spectroscopy.

  20. Electrically tunable all-dielectric optical metasurfaces based on liquid crystals

    NASA Astrophysics Data System (ADS)

    Komar, Andrei; Fang, Zheng; Bohn, Justus; Sautter, Jürgen; Decker, Manuel; Miroshnichenko, Andrey; Pertsch, Thomas; Brener, Igal; Kivshar, Yuri S.; Staude, Isabelle; Neshev, Dragomir N.

    2017-02-01

    We demonstrate electrical tuning of the spectral response of a Mie-resonant dielectric metasurface consisting of silicon nanodisks embedded into liquid crystals. We use the reorientation of nematic liquid crystals in a moderate applied electric field to alter the anisotropic permittivity tensor around the metasurface. By switching a control voltage "on" and "off," we induce a large spectral shift of the metasurface resonances, resulting in an absolute transmission modulation of up to 75%. Our experimental demonstration of voltage control of dielectric metasurfaces paves the way for new types of electrically tunable metadevices, including dynamic displays and holograms.

  1. Effect of longitudinal electric field on capillary instability of a thin axisymmetric layer of liquid dielectric coating a dielectric fiber

    NASA Astrophysics Data System (ADS)

    Korovin, V. M.

    2016-12-01

    The flow of a viscous dielectric liquid surrounded with a gas is investigated in the process of capillary disintegration of a thin axisymmetric liquid layer on an undeformable cylindrical dielectric fiber in a uniform electric field is investigated. An asymptotic analysis of the system of equations and hydrodynamic boundary conditions written with allowance for surface ponderomotive forces is carried out for the case when the average thickness of the layer is much smaller than the radius of the fiber cross section. The problem of the transition of the liquid configuration from the state of a stationary cylindrical layer to the hydrodynamic state in the form of a regular sequence of drops is formulated. In this formulation, a nonlinear parabolic equation that describes the evolution of the local thickness of the layer on the time interval to the instant of drop formation is derived. The effect of the key parameters on the capillary instability is analyzed based on the linearized version of the resultant equation and the linearized electrostatic problem of calculating the field perturbations.

  2. Liquid Metals: Stretchable, High-k Dielectric Elastomers through Liquid-Metal Inclusions (Adv. Mater. 19/2016).

    PubMed

    Bartlett, Michael D; Fassler, Andrew; Kazem, Navid; Markvicka, Eric J; Mandal, Pratiti; Majidi, Carmel

    2016-05-01

    An all-soft-matter composite consisting of liquid metal microdroplets embedded in a soft elastomer matrix is presented by C. Majidi and co-workers on page 3726. This composite exhibits a high dielectric constant while maintaining exceptional elasticity and compliance. The image shows the composite's microstructure captured by 3D X-ray imaging using a nano-computed tomographic scanner.

  3. Nano-electromechanical rotation of graphene and giant enhancement in dielectric anisotropy in a liquid crystal

    SciTech Connect

    Basu, Rajratan Kinnamon, Daniel; Garvey, Alfred

    2015-05-18

    A nematic liquid crystal (LC) is doped with dilute concentrations of pristine monolayer graphene (GP) flakes, and the LC + GP hybrids are found to exhibit a dramatic increase in the dielectric anisotropy. Electric field-dependent conductance studies reveal that the graphene flakes follow the nematic director that mechanically rotates on increasing an applied electric field. Further studies show that the π–π electron stacking, between the graphene's honeycomb structure and the LC's benzene rings, stabilizes pseudo-nematic domains that collectively amplify the dielectric anisotropy by improving the orientational order parameter in the nematic phase. These anisotropic domains interact with the external electric field, resulting in a nonzero dielectric anisotropy in the isotropic phase as well. The enhancement in dielectric anisotropy, due to the LC–graphene coupling, is found to have subsequent positive impacts on the LC's orientational threshold field and elasticity that allows the nematic director to respond quicker on switching the electric field off.

  4. Dielectric response of metal/SrTiO{sub 3}/two-dimensional electron liquid heterostructures

    SciTech Connect

    Mikheev, Evgeny; Raghavan, Santosh; Stemmer, Susanne

    2015-08-17

    Maximizing the effective dielectric constant of the gate dielectric stack is important for electrostatically controlling high carrier densities inherent to strongly correlated materials. SrTiO{sub 3} is uniquely suited for this purpose, given its extremely high dielectric constant, which can reach 10{sup 4}. Here, we present a systematic study of the thickness dependence of the dielectric response and leakage of SrTiO{sub 3} that is incorporated into a vertical structure on a high-carrier-density two-dimensional electron liquid (2DEL). A simple model can be used to interpret the data. The results show a need for improved interface control in the design of metal/SrTiO{sub 3}/2DEL devices.

  5. Dielectric properties induced by hindered molecular motion in crystals and liquids

    NASA Astrophysics Data System (ADS)

    Bashirov, F. I.

    1999-09-01

    A united theoretical description of dielectric properties of molecular solids and liquids is developed. The numbering data are tabulated and some results are pictured. The theory expands the fundamental dispersion expressions of complex dielectric permeability, initiated by Debye for molecular liquids, to any condensed molecular medium. Une approche théorique unifiant les propriétés diélectriques des cristaux moléculaires et celles des liquides est développée. Les données numériques sont disposées et les résultats principaux sont imaginés. La théorie élargie les expressions fondamentales de dispersion de la permittivité complexe du diélectrique liquide moléculaire, initié par Debye, à tout milieu condensé moléculaire.

  6. Method for imaging liquid and dielectric materials with scanning polarization force microscopy

    DOEpatents

    Hu, J.; Ogletree, D.F.; Salmeron, M.; Xiao, X.

    1999-03-09

    The invention images dielectric polarization forces on surfaces induced by a charged scanning force microscope (SFM) probe tip. On insulators, the major contribution to the surface polarizability at low frequencies is from surface ions. The mobility of these ions depends strongly on the humidity. Using the inventive SFM, liquid films, droplets, and other weakly adsorbed materials have been imaged. 9 figs.

  7. Apparatus for imaging liquid and dielectric materials with scanning polarization force microscopy

    DOEpatents

    Hu, J.; Ogletree, D.F.; Salmeron, M.; Xiao, X.

    1998-04-28

    The invention images dielectric polarization forces on surfaces induced by a charged scanning force microscope (SFM) probe tip. On insulators, the major contribution to the surface polarizability at low frequencies is from surface ions. The mobility of these ions depends strongly on the humidity. Using the inventive SFM, liquid films, droplets, and other weakly adsorbed materials have been imaged. 9 figs.

  8. Apparatus for imaging liquid and dielectric materials with scanning polarization force microscopy

    DOEpatents

    Hu, Jun; Ogletree, D. Frank; Salmeron, Miguel; Xiao, Xudong

    1998-01-01

    The invention images dielectric polarization forces on surfaces induced by a charged scanning force microscope (SFM) probe tip. On insulators, the major contribution to the surface polarizability at low frequencies is from surface ions. The mobility of these ions depends strongly on the humidity. Using the inventive SFM, liquid films, droplets, and other weakly adsorbed materials have been imaged.

  9. Method for imaging liquid and dielectric materials with scanning polarization force microscopy

    DOEpatents

    Hu, Jun; Ogletree, D. Frank; Salmeron, Miguel; Xiao, Xudong

    1999-01-01

    The invention images dielectric polarization forces on surfaces induced by a charged scanning force microscope (SFM) probe tip. On insulators, the major contribution to the surface polarizability at low frequencies is from surface ions. The mobility of these ions depends strongly on the humidity. Using the inventive SFM, liquid films, droplets, and other weakly adsorbed materials have been imaged.

  10. Dielectric relaxations of small carbohydrate molecules in the liquid and glassy states

    SciTech Connect

    Noel, T.R.; Ring, S.G.; Whittam, M.A.

    1992-06-25

    Dielectric relaxations of several vitreous and liquid monosaccharides were measured at 100 - 10{sup 5} Hz and -100 to 150 {degrees}C. Depending upon the molecule, one or two relaxations were observed. Primary alcohol moieties on the monosaccharide conferred higher activation energies than those without, such as xylitol and glucitol. 19 refs., 7 figs., 2 tabs.

  11. Liquid Crystalline Epoxies with Lateral Substituents Showing a Low Dielectric Constant and High Thermal Conductivity

    NASA Astrophysics Data System (ADS)

    Guo, Huilong; Lu, Mangeng; Liang, Liyan; Wu, Kun; Ma, Dong; Xue, Wei

    2017-02-01

    In this work, liquid crystalline epoxies with lateral substituents were synthesized and cured with aromatic amines or anhydride. The liquid crystalline phase structure of liquid crystalline epoxies with lateral substituents was determined by polarized optical microscopy. The relationship between thermal conductivity and dielectric properties and liquid crystalline domain structure was discussed in the paper. The samples show high thermal conductivity up to 0.29 W/(m × K), due to the orientation of mesogenic units in epoxies. The sample's low dielectric constant of 2.29 is associated with the oriented mesogenic units and long nonpolar lateral substituents. This indicates a new way to obtain materials with high thermal conductivity and a low dielectric constant by introducing oriented mesogenic units into cross-linked epoxy systems. The water repellency is reflected in the contact angles of 92-98°, which are apparently higher than that of conventional epoxy systems. It was also found that the better toughness of liquid crystalline epoxies with lateral substituents was attributed to the existence of long flexible alkyl lateral substituents.

  12. Dielectric Properties of Polypropylene-Based Nanocomposites with Ionic Liquid-Functionalized Multiwalled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Xu, Pei; Gui, Haoguan; Hu, Yadong; Bahader, Ali; Ding, Yunsheng

    2014-07-01

    Nanocomposites were prepared from polypropylene (PP) and untreated multiwalled carbon nanotubes (MWCNTs) or MWCNTs surface-functionalized with ionic liquids (MIL), as fillers, and their dielectric properties were compared. The physical (cation-π/π-π) interaction between the ionic liquids and the MWCNTs was apparent from Raman spectroscopy and from thermogravimetric analysis. Morphology characterization revealed that ionic liquids improve the dispersibility of MWCNTs in the PP matrix. It is suggested that the substantial increase in the dielectric permittivity of the nanocomposites compared with that of the PP originates from a remarkable Maxwell-Wagner-Sillars (MWS) effect at percolation threshold where mobile charge carriers are blocked at internal interfaces between the MIL and the PP matrix. The high polarity of ionic liquids may reinforce the MWS effect, and the nonconducting organic groups of the ionic liquids promote the low loss tangent and low conductivity of the MIL/PP nanocomposites. Compared with MWCNTs/PP nanocomposites, lower loss tangent and higher dielectric permittivity were observed for MIL/PP nanocomposites, making the material more attractive for application in electronics.

  13. Measurement of optical characteristics in dielectric liquid lens by Shack-Hartmann wave front sensors

    NASA Astrophysics Data System (ADS)

    Tung, Y. T.; Hsu, C. Y.; Yeh, J. A.; Wang, P. J.

    2012-10-01

    Liquid lenses based on the principle of driving two dielectric fluids via controlled electric field were investigated with an experimental apparatus designed for analysis of wave front read from a Shack-Hartmann sensor. Due to small available aperture and requirements in dynamic responses, wave front measurement was selected for study of optical characteristics in dielectric lenses. With the advent of commercial electro-optics sensors in wave front measurement, the experimental apparatus was first designed and simulated with the help of ASAP program. The simulated results proved the conceptual design with handful of engineering insights so that less trial and error efforts could be relieved from building the optics system on the bench. In-house built liquid lens modules with driving circuits were then set on the apparatus for initial calibration and functional tests. Since the electric field generated for the control of liquid profile must be alternating current, various frequency and modulation schemes were put through the liquid lens module to further study the influences on dynamic responses in terms of optical characteristics. Furthermore, effects due to material impurity and ambient effects were also carefully studied for established the fundamental phenomena of liquid lenses made of dielectric fluids. More detailed observations were possible with the measured wave-front data. In conclusion, the wave-front measurement proved to be more reliable and less expensive compared to measurement based on interferometer.

  14. Communication: Temperature derivative of the dielectric constant gives access to multipoint correlations in polar liquids

    NASA Astrophysics Data System (ADS)

    Matyushov, Dmitry V.; Richert, Ranko

    2016-01-01

    Fluctuations of the dipole moment of a macroscopic dielectric sample are induced by thermal motions. The variance of the sample dipole moment, characterizing the extent of thermal fluctuations, is a decaying function of temperature for many polar liquids. This result is inconsistent with the Nyquist (fluctuation-dissipation) theorem predicting the variance of a macroscopic property to grow linearly with temperature. The reason for a qualitatively different behavior is in strong multi-particle correlations of dipolar orientations. An equation connecting the temperature slope of the dielectric constant to a static three-point correlation function is derived. When applied to experimental data for polar and hydrogen-bonding liquids at normal conditions, the three-point correlations of different liquids fall on a single master curve as a function of the dielectric constant. Static three-point correlation functions can potentially reflect the growing spatial correlation length on approach to the glass transition. However, the measured temperature slope of the dielectric constant of glycerol does not indicate a change in such a lengthscale.

  15. Vaporization heat transfer of dielectric liquids on a wick-covered surface

    NASA Technical Reports Server (NTRS)

    Gu, C. B.; Chow, L. C.; Baker, K.

    1993-01-01

    Vaporization heat transfer characteristics were measured for the dielectric liquid FC-72 on a horizontal heated surface covered with wire screen wicks with the mesh number for the screens varying from 24 to 100. In such a situation the liquid level can be either higher or lower than the heated surface. When the liquid level was above the heated surface (shallow pool boiling), the height of the liquid level above the surface, h, was varied from 0 to 10 mm. When the liquid level was below the heated surface (evaporation through capillary pumping), the distance from the liquid level to the edge of the surface, L, was adjusted from 0 to 15 mm. Experimental data revealed that the critical heat flux (CHF) decreases as the mesh number is increased from 24 to 100 for both vaporation and shallow pool boiling, showing that the vapor-escaping limit is more important than the capillary limit in flat plate heat pipe application.

  16. The Thomas-Fermi model in the theory of systems of charged particles above the surface of liquid dielectrics

    NASA Astrophysics Data System (ADS)

    Lytvtnenko, D. M.; Slyusarenko, Yu. V.; Kirdin, A. I.

    2012-10-01

    A consistent theory of equilibrium states of same sign charges above the surface of liquid dielectric film located on solid substrate in the presence of external attracting constant electric field is proposed. The approach to the development of the theory is based on the Thomas-Fermi model generalized to the systems under consideration and on the variational principle. The using of self-consistent field model allows formulating a theory containing no adjustable constants. In the framework of the variational principle we obtain the self-consistency equations for the parameters describing the system: the distribution function of charges above the liquid dielectric surface, the electrostatic field potentials in all regions of the system and the surface profile of the liquid dielectric. The self-consistency equations are used to describe the phase transition associated with the formation of spatially periodic structures in the system of charges on liquid dielectric surface. Assuming the non-degeneracy of the gas of charges above the surface of liquid dielectric film the solutions of the self-consistency equations near the critical point are obtained. In the case of the symmetric phase we obtain the expressions for the potentials and electric fields in all regions of the studied system. The distribution of the charges above the surface of liquid dielectric film for the symmetric phase is derived. The system parameters of the phase transition to nonsymmetric phase - the states with a spatially periodic ordering are obtained. We derive the expression determining the period of two-dimensional lattice as a function of physical parameters of the problem - the temperature, the external attractive electric field, the number of electrons per unit of the flat surface area of the liquid dielectric, the density of the dielectric, its surface tension and permittivity, and the permittivity of the solid substrate. The possibility of generalizing the developed theory in the case of

  17. Temperature-stable parallel-plate dielectric cell for broadband liquid impedance measurements

    NASA Astrophysics Data System (ADS)

    Mazzeo, Brian A.; Chandra, Satyan; Mellor, Brett L.; Arellano, Jesus

    2010-12-01

    A liquid impedance cell for broadband impedance measurements up to 110 MHz is presented. The design incorporates temperature control and minimizes parasitic capacitance and inductance. The cell is simple to fabricate and uses chemically resistant materials, stainless steel, and Teflon. This dielectric cell can be used in a variety of liquid measurements, particularly those related to impedance measurements of biological objects in solution. Temperature control is illustrated in measurements of the permittivity of deionized water from 5 to 55 °C. Numerical fitting procedures employed on the relaxation curves indicate good agreement with previous studies on beta-lactoglobulin and hen lysozyme. Titration capability is demonstrated through dielectric titration of hen lysozyme and beta-lactoglobulin.

  18. A Method for Determination of Alcohol Content in Dielectric Liquids by a Longitudinal-Slot Waveguide

    NASA Astrophysics Data System (ADS)

    Meriakri, Viatcheslav Viatcheslavovich; Olmi, Roberto; Nikitin, Ivan P.; Chigryai, Evgenii E.; Fedoseev, Nikolai A.

    2010-05-01

    A new method is proposed to determine the content of alcohol in dielectric liquids. The method is based on measuring the attenuation of a wave propagating in a rectangular waveguide with a longitudinal slot in its narrow wall, immersed in a liquid under test. The propagation constant of the H 10 mode in such a waveguide is calculated numerically for various parameters of the medium and the waveguide. It is shown that the attenuation of the wave depends on the parameters of the dielectric medium outside the waveguide. Experiment is carried out on two different types of waveguide at frequencies from 29 to 37 GHz with a solution of ethyl alcohol in water as the external medium. The results of the measurements show that the method can be used for the on-line measurement of alcohol concentration during fermentation.

  19. Microwave-to-terahertz dielectric resonators for liquid sensing in microfluidic systems

    NASA Astrophysics Data System (ADS)

    Klein, N.; Watts, C.; Hanham, S. M.; Otter, W. J.; Ahmad, M. M.; Lucyszyn, S.

    2016-09-01

    The microwave-to-terahertz frequency range offers unique opportunities for the sensing of liquids based on the degree of molecular orientational and electronic polarization, Debye relaxation due to intermolecular forces between (semi-)polar molecules and collective vibrational modes within complex molecules. Methods for the fast dielectric characterization of (sub-)nanolitre volumes of mostly aqueous liquids and biological cell suspensions are discussed, with emphasis on labon- chip approaches aimed towards single-cell detection and label-free flow cytometry at microwave-to-terahertz frequencies. Among the most promising approaches, photonic crystal defect cavities made from high-resistivity silicon are compared with metallic split-ring resonant systems and high quality factor (Q-factor) whispering gallery-type resonances in dielectric resonators. Applications range from accurate haemoglobin measurements on nanolitre samples to label-free detection of circulating tumor cells.

  20. A 2.5 Gigawatt Liquid Dielectric Coaxial Pulse Forming Line

    DTIC Science & Technology

    1987-06-01

    A 2.5 GIGAWATT LIQUID DIELECTRIC COAXIAL PULSE FORMING LINE T. L. Berger, V. H. Gehman, D. D. Lindberg and R. J. Gripshover Naval Surface Weapons...Center Dahlgren, va. 22448 ABSTRACT The pulse forming line (PFL) can store approximately 600 joules at 100 kilovolts. Line impedance is 0.86 ohm...and discharge time into a matched load is 200 nanoseconds . The coaxial line is filled with a mixture of 60% ethylene glycol and 40% water, by

  1. Communication: Nonadditive dielectric susceptibility spectra of associating liquids

    NASA Astrophysics Data System (ADS)

    Bierwirth, S. P.; Münzner, P.; Knapp, T. A.; Gainaru, C.; Böhmer, R.

    2017-03-01

    Highly unusual linear-response spectra involving contributions from hydrogen-bonded supramolecular processes and from structural relaxations are found in 4-methyl-3-heptanol mixed with 2-ethyl-1-hexylbromide. Although the mean time scales of the underlying relaxations are separated by more than 3 decades, the overall spectra cannot be decomposed into a sum of these processes. This finding challenges the ubiquitous practice of disentangling susceptibility spectra of Debye liquids by adding suitable subspectra. The spectral shape of the studied viscous mixtures is excellently described using the Williams ansatz, here a necessary approach and not as previously considered merely an alternative to additive analyses.

  2. Models for ionic contribution to the complex dielectric constant of nematic liquid crystals.

    PubMed

    Alexe-Ionescu, A L; Barbero, G; Lelidis, I

    2009-12-01

    We analyze the models that account the ionic contribution to the complex dielectric constant of a nematic liquid crystal. We compare the predictions of the model of [Sawada, Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 318, 225 (1998)] based on the assumption that the electric field in the liquid coincides with the applied one, with the model of Macdonald where the electric field in the sample is determined in self-consistent manner by solving the equation of Poisson. We show that the model of Sawada , widely used to determine the bulk density of ions and their diffusion coefficient in liquid crystal cells, predicts a thickness dependence of the real and imaginary parts of the dielectric constant different from that predicted by the model of Macdonald. On the contrary, the predictions of the two models coincide for what concerns the frequency dependencies of the two components of the dielectric constant. By considering a typical case, we show that the numerical values of the ionic properties derived by means of the model of Sawada may differ even more than 1 order of magnitude by those predicted by the model of Macdonald. A rescaling procedure allowing to evaluate the bulk density of ions and the ionic diffusion coefficient determined by means of the model of Sawada in agreement with the one of Macdonald is proposed.

  3. Nematic liquid crystals doped with nanoparticles: Phase behavior and dielectric properties

    NASA Astrophysics Data System (ADS)

    Osipov, Mikhail A.; Gorkunov, Maxim V.

    Thermodynamics and dielectric properties of nematic liquid crystals doped with various nanoparticles have been studied in the framework of a molecular mean-field theory. It is shown that spherically isotropic nanoparticles effectively dilute the liquid crystal material and cause a decrease of the nematic-isotropic transition temperature, while anisotropic nanoparticles are aligned by the nematic host and, in turn, may significantly improve the liquid crystal alignment. In the case of strong interaction between spherical nanoparticles and mesogenic molecules, the nanocomposite possesses a number of unexpected properties: The nematic-isotropic co-existence region appears to be very broad, and the system either undergoes a direct transition from the isotropic phase into the phase-separated state, or undergoes first a transition into the homogeneous nematic phase and then phase-separates at a lower temperature. The phase separation does not occur for sufficiently low nanoparticle concentrations, and, in certain cases, the separation takes place only within a finite region of the nanoparticle concentration. For nematics doped with strongly polar nanoparticles, the theory predicts the nanoparticle aggregation in linear chains that make a substantial contribution to the static dielectric anisotropy and optical birefringence of the nematic composite. The theory clarifies the microscopic origin of important phenomena observed in nematic composites including a shift of the isotropic-nematic phase transition and improvement of the nematic order; a considerable softening of the first order nematic-isotropic transition; a complex phase-separation behavior; and a significant increase of the dielectric anisotropy and the birefringence.

  4. Pumping of dielectric liquids using non-uniform-field induced electrohydrodynamic flow

    NASA Astrophysics Data System (ADS)

    Kim, Wonkyoung; Chun Ryu, Jae; Kweon Suh, Yong; Hyoung Kang, Kwan

    2011-11-01

    We present a method of pumping dielectric (or non-polar) liquids. The pumping method relies on the electrohydrodynamic flow generated by field dependent electrical conductivity (Onsager effect). Adding a small amount of polar liquid increases the field-dependency of conductivity. Applying either dc or ac voltage produces a fast and regular flow around electrodes. Flow speed is proportional to cube of electric-field strength and inversely to applied frequency. The experimental results agreed well with numerical analysis based on our theoretical model.

  5. Spreading of Thin Droplets of Perfect and Leaky Dielectric Liquids on Inclined Surfaces.

    PubMed

    Corbett, Andrew; Kumar, Satish

    2016-07-05

    The spreading of droplets may be influenced by electric fields, a situation that is relevant to applications such as coating, printing, and microfluidics. In this work we study the effects of an electric field on the gravity-driven spreading of two-dimensional droplets down an inclined plane. We consider both perfect and leaky dielectric liquids, as well as perfectly and partially wetting systems. In addition to the effects of electric fields, we examine the use of thermocapillary forces to suppress the growth of the capillary ridge near the droplet front. Lubrication theory is applied to generate a set of coupled partial differential equations for interfacial height and charge, which are then solved numerically with a finite-difference method. Electric fields increase the height of the capillary ridge in both perfect and leaky dielectric droplets due to electrostatic pressure gradients that drive liquid into the ridge. In leaky dielectrics, large interfacial charge gradients in the contact-line region create shear stresses that also enhance ridge growth and the formation of trailing minor ridges. The coalescence of these ridges can significantly affect the long-time thinning rate of leaky dielectric droplets. In partially wetting liquids, electric fields promote the splitting of smaller droplets from the primary droplet near the receding contact line due to the interplay between electrostatic forces and disjoining pressure. Cooling from below and heating from above generates thermocapillary forces that counteract the effects of electric fields and suppress the growth of the capillary ridge. The results of this work have important implications for manipulating the spreading of droplets down inclined surfaces.

  6. Density fluctuations and dielectric constant of water in low and high density liquid states

    NASA Astrophysics Data System (ADS)

    Lascaris, Erik; Zhang, Cui; Galli, Giulia A.; Franzese, Giancarlo; Stanley, H. Eugene

    2012-02-01

    The hypothesis of a liquid-liquid critical point (LLCP) in the phase diagram of water, though first published many years ago, still remains the subject of a heated debate. According to this hypothesis there exists a critical point near T 244 K, and P 215 MPa, located at the end of a coexistence line between a high density liquid (HDL) and a low density liquid state (LDL). The LLCP lies below the homogenous nucleation temperature of water and it has so far remained inaccessible to experiments. We study a model of water exhibiting a liquid-liquid phase transition (that is a liquid interacting through the ST2 potential) and investigate the properties of dipolar fluctuations as a function of density, in the HDL and LDL. We find an interesting correlation between the macroscopic dielectric constants and the densities of the two liquids in the vicinity of the critical point, and we discuss possible implications for measurements close to the region where the LLCP may be located.

  7. Dielectric analysis of micelles and microemulsions formed in a hydrophilic ionic liquid. I. Interaction and percolation.

    PubMed

    Lian, Yiwei; Zhao, Kongshuang

    2011-10-06

    Dielectric measurements were carried out on binary mixtures of Triton X-100 (TX-100, a nonionic surfactant with a polyoxyethylene chain) and 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF(4)], a hydrophilic ionic liquid), and [bmim][BF(4)]/TX-100/cyclohexane microemulsions in a wide frequency range to study the molecular interaction and percolation in these systems. Striking dielectric relaxations were observed, and the dc conductivity data were obtained from the measured total dielectric loss spectra. The interaction between TX-100 and [bmim][BF(4)] is estimated by analyzing the dc conductivity of TX-100/[bmim][BF(4)] solutions in light of the Bruggeman's effective medium approximation, which indicates that spherical micelles are formed when the TX-100 volume fraction is below 48% and the number of cations associated with every TX-100 molecule is eight. For IL-oil microemulsions, both the dependence of dc conductivity and the permittivity (for fixed frequency) on cyclohexane concentration were used to identify the oil-in-IL, bicontinuous, and IL-in-oil microregions. Both the conduction and dielectric relaxation behavior suggest that a static percolation occurs in this hydrophilic IL microemulsion.

  8. Effect of pressure on the dielectric behavior of a bent-core liquid crystal

    NASA Astrophysics Data System (ADS)

    Bapat, Prasad N.; Shankar Rao, D. S.; Prasad, S. Krishna; Hiremath, U. S.; Yelamaggad, C. V.

    2013-04-01

    We report the effect of applied pressure on the dielectric properties of the B2 phase of a bent-core liquid crystal. This study on bent-core banana-shaped molecules shows that while the dielectric anisotropy hardly varies with pressure, the relaxation parameters associated with the rotation around the long axes of the molecules are significantly influenced. These studies also bring out the fact that there are additional phases between the B2 phase and the true crystalline solid. Indeed, the existence of another variant of the B2 phase (labeled B2'), is revealed only in dielectric studies but not seen in x-ray and calorimetric measurements. Employing the dependence of the relaxation frequency along isobaric as well as isothermal paths, different activation parameters are determined and their behavior is compared with those of rodlike systems. The influence of dc bias on the dielectric behavior obtained at atmospheric pressure is also presented, which exhibits features similar to chiral antiferroelectric smectics, and further shows an additional relaxation over a small window of dc voltages.

  9. Simulation studies of ionic liquids: orientational correlations and static dielectric properties.

    PubMed

    Schröder, C; Rudas, T; Steinhauser, O

    2006-12-28

    The ionic liquids BMIM+I-, BMIM+BF4-, and BMIM+PF6- were simulated by means of the molecular dynamics method over a time period of more than 100 ns. Besides the common structural analysis, e.g., radial distribution functions and three dimensional occupancy plots, a more sophisticated orientational analysis was performed. The angular correlation functions g(00)110(r) and g(00)101(r) are the first distance dependent coefficients of the pairwise orientational distribution function g(rij,Omega1,Omega2,Omega12). These functions help to interpret the three dimensional plot and reveal interesting insights into the local structure of the analyzed ionic liquids. Furthermore, the collective network of ionic liquids can be characterized by the Kirkwood factor Gkappa(r) [J. Chem. Phys. 7, 911 (1939)]. The short-range behavior (r<10 A) of this factor may be suitable to predict the water miscibility of the ionic liquid. The long-range limit of Gkinfinity is below 1 which demonstrates the strongly coupled nature of the ionic liquid networks. In addition, this factor relates the orientational structure and the dielectric properties of the ionic liquids. The static dielectric constant epsilon(omega=0) for the simulated system is 8.9-9.5. Since in ionic liquids the very same molecule contributes to the total dipole moment as well as carries a net charge, a small, but significant contribution of the cross term between the total dipole moment and the electric current to epsilon(omega=0) is observed.

  10. Apparatus and method to measure dielectric properties (epsilon(') and epsilon(")) of ionic liquids.

    PubMed

    Göllei, Attila; Vass, András; Pallai, Elisabeth; Gerzson, Miklós; Ludányi, Lajos; Mink, János

    2009-04-01

    Conventional techniques for measurement of dielectric properties of ionic liquids or electrolyte solutions fail because the samples are largely short circuited by the high electrical conductance. The object of the author's research activity was to elaborate an apparatus (microwave dielectrometer) and method suitable to measure the dielectric constant (epsilon(')) and loss factor (epsilon(")) of well conducting ionic liquids and other solvents. This process is based on a revised waveguide method completed with an automatic calibration possibility. Contrary to conventional measuring methods this technique uses about 20 W/g power density. The measurements were carried out at 2.45 GHz frequency in the temperature range from 10 up to 100 degrees C. The obtained (epsilon(')) and (epsilon(")) values of different solvents were compared with several published (calculated and measured) data. Statistical analysis was used to determine the error of measurements and distilled water was chosen as a standard for study of data dispersion. To accomplish statistical analysis, namely, the dielectric characteristics have to be determined at the same temperature. The values of variances were less or equal 1 in case of epsilon(') and decrease with increasing temperature. In case of epsilon(") the variance data were much smaller.

  11. Novel Characterization Method of Ions in Liquid Crystal Materials by Complex Dielectric Constant Measurements

    NASA Astrophysics Data System (ADS)

    Sawada, Atsushi; Tarumi, Kazuaki; Naemura, Shohei

    1999-03-01

    The frequency dependence of the complex dielectric constant of liquid crystal materials doped with tetra-n-butylammonium iodide (TBAI) is investigated in the low-frequency region, and the experimental results are analyzed in terms of space charge polarization. The contribution from an electric double layer is also taken into consideration in the analysis. By means of curve fitting utilizing theoretical expressions of the space charge polarization, five sets of diffusion coefficient and density values are obtained for mobile ions. It is confirmed by experiments on the temperature dependence that five kinds of ions follow Walden's rule, and verified from the viewpoint of ion radii that two of the five kinds of ions are TBA+ and I-. The frequency-dependent dielectric properties, which are characteristic of the behaviors of ions, can be well explained by this study and the analytical method introduced here is considered to be powerful for the evaluation of the attributes of mobile ions.

  12. Retreating behavior of a charged ionic liquid droplet in a dielectric liquid under electric field

    NASA Astrophysics Data System (ADS)

    Ahn, Myung Mo; Im, Do Jin; Kang, In Seok

    2013-11-01

    Ionic liquids show great promise as excellent solvents or catalysts in energy and biological fields due to their unique chemical and physical properties. The ionic liquid droplets in microfluidic systems can also be used as a potential platform for chemical biological reactions. In order to control electrically the ionic liquid droplets in a microfluidic device, the charging characteristics of ionic liquid droplets need to be understood. In this work, the charging characteristics of various ionic liquids are investigated by using the parallel plate electrodes system. Under normal situation, a charged droplet shows bouncing motion between electrodes continuously. However, for some special ionic liquids, interesting retreating behavior of charged ionic liquid droplet has been observed. This retreating behavior of ionic liquid droplet has been analyzed experimentally by the image analysis and the electrometer signal analysis. Based on the hypothesis of charge leakage of the retreating ionic liquid droplets, FT-IR spectroscopy analysis has also been performed. The retreating behavior of ionic liquid droplet is discussed from the intermolecular point of view according to the species of ionic liquids. This research was supported by grant No. 2013R1A1A2011956 funded by the Ministry of Science, ICT and Future Planning (MSIP) and by grant No. 2013R1A1A2010483 funded by the Ministry of Education, Science and Technology (MEST) through the NRF.

  13. Structural and Dielectric Properties of Ionic Liquid Doped Metal Organic Framework based Polymer Electrolyte Nanocomposites

    NASA Astrophysics Data System (ADS)

    Dutta, Rituraj; Kumar, Ashok

    2016-10-01

    Metal Organic Frameworks (MOFs) are mesoporous materials that can be treated as potential hosts for trapping guest molecules in their pores. Ion conduction and phase behavior dynamics of Ionic Liquids (ILs) can be controlled by tunable interactions of MOFs with the ILs. MOFs incorporated with ionic liquid can be dispersed in the polymers to synthesize polymer electrolyte nanocomposites with high ionic conductivity, electrochemical and thermal stability for applications in energy storage and conversion devices such as rechargeable Li-ion batteries. In the present work we have synthesized Cu-based MOF [Cu3(l,3,5-benzene tricarboxylate)2(H2O)] incorporated with the ionic liquid 1-Butyl-3-methylimidazolium bromide at different weight ratios of MOF and IL. The synthesized MOF-IL composites are dispersed in Poly (ethylene oxide) (PEO). Frequency dependent behavior of permittivity and dielectric loss of the nanocomposites depict the non-Debye dielectric relaxation mechanism. The room temperature Nyquist plots reveal decreasing bulk resistance upto 189 Ω with optimum ionic conductivity of 1.3×10-3S cm-1at maximum doping concentration of IL in the nanocomposite system.

  14. Highly sensitive terahertz dielectric sensor for small-volume liquid samples

    NASA Astrophysics Data System (ADS)

    Soltani, A.; Neshasteh, H.; Mataji-Kojouri, A.; Born, N.; Castro-Camus, E.; Shahabadi, M.; Koch, M.

    2016-05-01

    We present a resonator-based sensor for the measurement of the refractive index of dielectric liquid samples. The proposed sensor operates on the basis of an electromagnetic resonance between a thin metallic grating and a reflecting ground plane. The fluid whose refractive index is to be measured fills the region between the metallic grating and the ground plane and causes a considerable shift in the resonance frequency (>500 GHz/RIU). The sensor has a relatively simple structure; therefore, it can be manufactured economically on industrial scales.

  15. Enhanced optoelastic interaction range in liquid crystals with negative dielectric anisotropy

    SciTech Connect

    Simoni, F.; Lalli, S.; Lucchetti, L.; Criante, L.

    2014-01-06

    We demonstrate that the long-range interaction between surface-functionalized microparticles immersed a nematic liquid crystal—a “nematic colloid”—and a laser-induced “ghost colloid” can be enhanced by a low-voltage quasistatic electric field when the nematic mesophase has a negative dielectric anisotropy. The optoelastic trapping distance is shown to be enhanced by a factor up to 2.5 in presence of an electric field. Experimental data are quantitatively described with a theoretical model accounting for the spatial overlap between the orientational distortions around the microparticle and those induced by the trapping light beam itself.

  16. Dielectric Response of Glass-Forming Liquids in the Nonlinear Regime

    NASA Astrophysics Data System (ADS)

    Samanta, Subarna

    Broadband dielectric spectroscopy is a powerful technique for understanding the dynamics in supercooled liquids. It generates information about the timescale of the orientational motions of molecular dipoles within the liquid. However, dynamics of liquids measured in the non-linear response regime has recently become an area of significant interest, because additional information can be obtained compared with linear response measurements. The first part of this thesis describes nonlinear dielectric relaxation experiments performed on various molecular glass forming-liquids, with an emphasis on the response at high frequencies (excess wing). A significant nonlinear dielectric effect (NDE) was found to persist in these modes, and the magnitude of this NDE traces the temperature dependence of the activation energy. A time resolved measurement technique monitoring the dielectric loss revealed that for the steady state NDE to develop it would take a very large number of high amplitude alternating current (ac) field cycles. High frequency modes were found to be 'slaved' to the average structural relaxation time, contrary to the standard picture of heterogeneity. Nonlinear measurements were also performed on the Johari-Goldstein beta-relaxation process. High ac fields were found to modify the amplitudes of these secondary modes. The nonlinear features of this secondary process are reminiscent of those found for the excess wing regime, suggesting that these two contributions to dynamics have common origins. The second part of this thesis describes the nonlinear effects observed from the application of high direct current (dc) bias fields superposed with a small amplitude sinusoidal ac field. For several molecular glass formers, the application of a dc field was found to slow down the system via reduction in configurational entropy (Adam-Gibbs relation). Time resolved measurements indicated that the rise of the non-linear effect is slower than its decay, as observed in the

  17. Dielectric permittivity of room temperature ionic liquids: a relation to the polar and nonpolar domain structures.

    PubMed

    Mizoshiri, Makoto; Nagao, Takena; Mizoguchi, Yuri; Yao, Makoto

    2010-04-28

    We measured microwave transmission and reflection spectra for typical room temperature ionic liquids, [C(4)min][TFSA], [C(4)min][PF(6)], [C(6)min][PF(6)], and [C(8)min][PF(6)], at frequencies between 40 MHz and 40 GHz in the temperature range up to 100 degrees C. The transmission spectra were analyzed using complex dielectric functions, and the static permittivity epsilon(S) was determined as a function of temperature. Applying the effective medium approximation to epsilon(S), we have estimated that the static permittivity of the polar domain is around 20, and that of the nonpolar domain around 2.5.

  18. Molecular dynamics simulation of liquid water confined inside graphite channels: dielectric and dynamical properties.

    PubMed

    Martí, J; Nagy, G; Guàrdia, E; Gordillo, M C

    2006-11-30

    Electric and dielectric properties and microscopic dynamics of liquid water confined between graphite slabs are analyzed by means of molecular dynamics simulations for several graphite-graphite separations at ambient conditions. The electric potential across the interface shows oscillations due to water layering, and the overall potential drop is about -0.28 V. The total dielectric constant is larger than the corresponding value for the bulklike internal region of the system. This is mainly due to the preferential orientations of water nearest the graphite walls. Estimation of the capacitance of the system is reported, indicating large variations for the different adsorption layers. The main trend observed concerning water diffusion is 2-fold: on one hand, the overall diffusion of water is markedly smaller for the closest graphite-graphite separations, and on the other hand, water molecules diffuse in interfaces slightly slower than those in the bulklike internal areas. Molecular reorientational times are generally larger than those corresponding to those of unconstrained bulk water. The analysis of spectral densities revealed significant spectral shifts, compared to the bands in unconstrained water, in different frequency regions, and associated to confinement effects. These findings are important because of the scarce information available from experimental, theoretical, and computer simulation research into the dielectric and dynamical properties of confined water.

  19. Vaporization heat transfer of dielectric liquids on enhanced surfaces covered with screen wicks

    NASA Technical Reports Server (NTRS)

    Gu, C. B.; Chow, L. C.; Pais, M. R.; Baker, K.

    1993-01-01

    Experiments were conducted to investigate the vaporization heat transfer characteristics for the dielectric liquid FC-72 on several wicking surfaces which may be used in flat-plate heat pipes. The wicking materials studied included microstructure enhanced surfaces and coarse surfaces covered with screen meshes. Experimental data for q versus deltaT curves and critical heat fluxes were obtained for the two different operating conditions of a heat pipe, evaporation, and shallow pool boiling. When the liquid level was above the heated surface, the height of the liquid level above the surface was varied from 0 to 10 mm. When the liquid level was below the heated surface, the distance from the liquid level to the edge of the surface was adjusted from 0 to 15 mm. Experimental results revealed that for shallow pool boiling when the heated surface was covered with a wire screen mesh, the heat transfer coefficient increased at lower heat fluxes but the critical heat flux (CHF) decreased for all the surfaces tested. In the case of evaporation, both CHF and the heat transfer coefficient increased as the microstructure surfaces were covered with screen meshes.

  20. Structure of the menisci of leaky dielectric liquids during electrically-assisted evaporation of ions

    NASA Astrophysics Data System (ADS)

    Coffman, Chase; Martínez-Sánchez, Manuel; Higuera, F. J.; Lozano, Paulo C.

    2016-12-01

    An understanding of the processes enabling field-assisted evaporation of ions from leaky dielectric liquids, i.e., liquids that are substantially less conductive than liquid metals, has historically been elusive in comparison to those of conventional electrohydrodynamic emission modes such as that of the cone-jet. While select ionic liquids have been shown to yield nearly monodisperse beams of molecular ions under certain conditions, the dearth of direct observation (visualization) and theoretical insight has precluded a fundamental appreciation for the inherent mechanics. In this paper, we present a family of equilibrium meniscus structures that shed measurable charge when the meniscus is large in relation to a characteristic emission scale. Such structures reside in a region of parameter space where empirical evidence suggests that steady emission may occur and also where stationary interfaces have not been reported before. In this regime, we show (i) that the macroscopic shape of the meniscus may vary only with the applied electric field; (ii) that the feeding flow is very germane to the emission characteristics, unlike liquid metal ion sources; and (iii) that while the balance of stresses governing the interface shape may in some cases be very similar to that of the classical Taylor cone, the widespread notion of a ubiquitous 49° half-angle is unfounded. Further study of this family may be helpful in elucidating a number of outstanding questions surrounding the pure ion mode.

  1. On two optomechanical effects of laser-induced electrostriction in dielectric liquids

    NASA Astrophysics Data System (ADS)

    Gojani, Ardian B.; Bejtullahu, Rasim; Obayashi, Shigeru

    2014-09-01

    This paper presents electrostriction from the phenomenological perspective, and gives details on two mechanical effects arising from laser-matter interaction. Electrostriction is the tendency of materials to compress in the presence of a varying electric field. In this paper, the investigated materials are polar and nonpolar dielectric liquids. It is stressed that the dominant factor is the time evolution of the laser pulse, which causes tensile stresses and acoustic waves. The study is supported by experimental realization of electrostriction, which can be detected only at favorable conditions (observed in water, but not in castor oil). This study will shed light in developing measurement techniques (e.g., laser-induced grating spectroscopy) and in explaining the onset of cavities and laser-induced liquid breakdown.

  2. Slow dielectric response of Debye-type in water and other hydrogen bonded liquids

    NASA Astrophysics Data System (ADS)

    Jansson, Helén; Bergman, Rikard; Swenson, Jan

    2010-05-01

    The slow dynamics of some hydrogen bonded glass-forming liquids has been investigated by broadband dielectric spectroscopy. We show that the polyalcohols glycerol, xylitol, and sorbitol, and mixtures of glycerol and water, and in fact, even pure water exhibit a process of Debye character at longer time-scales than the glass transition and viscosity related α-relaxation. Even if it is less pronounced, this process displays many similarities to the well-studied Debye-like process in monoalcohols. It can be observed in both the negative derivative of the real part of the permittivity or in the imaginary part of the permittivity, if the conductivity contribution is reduced. In the present study the conductivity contribution has been suppressed by use of a thin Teflon film placed between the sample and one of the electrodes. The new findings might have important implications for the structure and dynamics of hydrogen bonded liquids in general, and for water in particular.

  3. Antiferroelectric liquid crystals studied by DSC, electro-optic, and dielectric methods

    NASA Astrophysics Data System (ADS)

    Marzec, M.; Fafara, A.; Wrobel, S.; Godlewska, Malgorzata; Dabrowski, Roman S.; Czuprynski, Krzysztof L.; Haase, Wolfgang

    2000-05-01

    Thermal properties of four liquid crystalline substances exhibiting antiferroelectric SmCA* and ferroelectric SmC* phases were studied using differential scanning calorimetry, texture observation, electrooptic measurements and dielectric spectroscopy. The measurements were performed both on heating and cooling of the samples. All four substances studied in this work are characterized by a complex polymorphism. The temperatures of phase transitions and enthalpy changes associated with them were determined. The transition from the liquid crystalline to the crystalline state showed significant hysteresis for all four substances studied. Textures observations and electrooptic measurements were performed using ITO cells having thickness from 6 to 10 micrometers . The measurements of spontaneous polarization were performed by means of reversal current method. Spontaneous polarization was measured for a few frequencies of the triangular voltage applied. Temperature dependencies of spontaneous polarization have been studied as a function of the side chain structure.

  4. Ionic mobility and dielectric relaxation in supercooled liquid KCl-glycerol solutions

    NASA Astrophysics Data System (ADS)

    Champeney, D. C.; Ould Kaddour, F.

    Measurements of the electrical conductivities of liquid and supercooled liquid KCl-glycerol solutions between + 50·6°C and -89·1°C are described. Time domain measurements of dielectric relaxation in pure glycerol between -78·1°C and -91·0°C, and in KCl-glycerol solutions between -77·5°C and -89·1°C are also described. Empirical equations are presented which in each case describe the non-Arrhenius temperature dependence over more than 12 decades in value with a r.m.s. deviation of less than 15 per cent. A 'power law' fit is found to be slightly better than a 'Vogel-Tammann-Fulcher' fit in each case. The temperature dependence of Walden product for KCl-glycerol solutions is discussed, and the relaxation data for pure glycerol is discussed in the light of the Kauzmann paradox.

  5. The inactivation of Chlorella spp. with dielectric barrier discharge in gas-liquid mixture

    NASA Astrophysics Data System (ADS)

    Song, Dan; Sun, Bing; Zhu, Xiaomei; Yan, Zhiyu; Liu, Hui; Liu, Yongjun

    2013-03-01

    The inactivation of Chlorella spp. with high voltage and frequency pulsed dielectric barrier discharge in hybrid gas-liquid reactor with a suspension electrode was studied experimentally. In the hybrid gas-liquid reactor, a steel plate was used as high voltage electrode while a quartz plate as a dielectric layer, another steel plate placing in the aqueous solution worked as a whole ground electrode. A suspension electrode is installed near the surface of solution between high voltage and ground electrode to make the dielectric barrier discharge uniform and stable, the discharge gap was between the quartz plate and the surface of the water. The effect of peak voltage, treatment time, the initial concentration of Chlorella spp. and conductivity of solution on the inactivation rate of Chlorella spp. was investigated, and the inactivation mechanism of Chlorella spp. preliminarily was studied. Utilizing this system inactivation of Chlorella spp., the inactivation rate increased with increasing of peak voltage, treatment time and electric conductivity. It was found that the inactivation rate of Chlorella spp. arrived at 100% when the initial concentration was 4 × 106 cells mL-1, and the optimum operation condition required a peak voltage of 20 kV, a treatment time of 10 min and a frequency of 7 kHz. Though the increasing of initial concentration of the Chlorella spp. contributed to the addition of interaction probability between the Chlorella spp. and O3, H2O2, high-energy electrons, UV radiation and other active substances, the total inactivation number raise, but the inactivation rate of the Chlorella spp. decreased.

  6. Liquid 1-propanol studied by neutron scattering, near-infrared, and dielectric spectroscopy.

    PubMed

    Sillrén, P; Matic, A; Karlsson, M; Koza, M; Maccarini, M; Fouquet, P; Götz, M; Bauer, Th; Gulich, R; Lunkenheimer, P; Loidl, A; Mattsson, J; Gainaru, C; Vynokur, E; Schildmann, S; Bauer, S; Böhmer, R

    2014-03-28

    Liquid monohydroxy alcohols exhibit unusual dynamics related to their hydrogen bonding induced structures. The connection between structure and dynamics is studied for liquid 1-propanol using quasi-elastic neutron scattering, combining time-of-flight and neutron spin-echo techniques, with a focus on the dynamics at length scales corresponding to the main peak and the pre-peak of the structure factor. At the main peak, the structural relaxation times are probed. These correspond well to mechanical relaxation times calculated from literature data. At the pre-peak, corresponding to length scales related to H-bonded structures, the relaxation times are almost an order of magnitude longer. According to previous work [C. Gainaru, R. Meier, S. Schildmann, C. Lederle, W. Hiller, E. Rössler, and R. Böhmer, Phys. Rev. Lett. 105, 258303 (2010)] this time scale difference is connected to the average size of H-bonded clusters. The relation between the relaxation times from neutron scattering and those determined from dielectric spectroscopy is discussed on the basis of broad-band permittivity data of 1-propanol. Moreover, in 1-propanol the dielectric relaxation strength as well as the near-infrared absorbance reveal anomalous behavior below ambient temperature. A corresponding feature could not be found in the polyalcohols propylene glycol and glycerol.

  7. Liquid 1-propanol studied by neutron scattering, near-infrared, and dielectric spectroscopy

    SciTech Connect

    Sillrén, P.; Matic, A.; Karlsson, M.; Koza, M.; Maccarini, M.; Fouquet, P.; Götz, M.; Bauer, Th.; Gulich, R.; Lunkenheimer, P.; Loidl, A.; Mattsson, J.; Gainaru, C.; Vynokur, E.; Schildmann, S.; Bauer, S.; Böhmer, R.

    2014-03-28

    Liquid monohydroxy alcohols exhibit unusual dynamics related to their hydrogen bonding induced structures. The connection between structure and dynamics is studied for liquid 1-propanol using quasi-elastic neutron scattering, combining time-of-flight and neutron spin-echo techniques, with a focus on the dynamics at length scales corresponding to the main peak and the pre-peak of the structure factor. At the main peak, the structural relaxation times are probed. These correspond well to mechanical relaxation times calculated from literature data. At the pre-peak, corresponding to length scales related to H-bonded structures, the relaxation times are almost an order of magnitude longer. According to previous work [C. Gainaru, R. Meier, S. Schildmann, C. Lederle, W. Hiller, E. Rössler, and R. Böhmer, Phys. Rev. Lett. 105, 258303 (2010)] this time scale difference is connected to the average size of H-bonded clusters. The relation between the relaxation times from neutron scattering and those determined from dielectric spectroscopy is discussed on the basis of broad-band permittivity data of 1-propanol. Moreover, in 1-propanol the dielectric relaxation strength as well as the near-infrared absorbance reveal anomalous behavior below ambient temperature. A corresponding feature could not be found in the polyalcohols propylene glycol and glycerol.

  8. Liquid 1-propanol studied by neutron scattering, near-infrared, and dielectric spectroscopy

    NASA Astrophysics Data System (ADS)

    Sillrén, P.; Matic, A.; Karlsson, M.; Koza, M.; Maccarini, M.; Fouquet, P.; Götz, M.; Bauer, Th.; Gulich, R.; Lunkenheimer, P.; Loidl, A.; Mattsson, J.; Gainaru, C.; Vynokur, E.; Schildmann, S.; Bauer, S.; Böhmer, R.

    2014-03-01

    Liquid monohydroxy alcohols exhibit unusual dynamics related to their hydrogen bonding induced structures. The connection between structure and dynamics is studied for liquid 1-propanol using quasi-elastic neutron scattering, combining time-of-flight and neutron spin-echo techniques, with a focus on the dynamics at length scales corresponding to the main peak and the pre-peak of the structure factor. At the main peak, the structural relaxation times are probed. These correspond well to mechanical relaxation times calculated from literature data. At the pre-peak, corresponding to length scales related to H-bonded structures, the relaxation times are almost an order of magnitude longer. According to previous work [C. Gainaru, R. Meier, S. Schildmann, C. Lederle, W. Hiller, E. Rössler, and R. Böhmer, Phys. Rev. Lett. 105, 258303 (2010)] this time scale difference is connected to the average size of H-bonded clusters. The relation between the relaxation times from neutron scattering and those determined from dielectric spectroscopy is discussed on the basis of broad-band permittivity data of 1-propanol. Moreover, in 1-propanol the dielectric relaxation strength as well as the near-infrared absorbance reveal anomalous behavior below ambient temperature. A corresponding feature could not be found in the polyalcohols propylene glycol and glycerol.

  9. A complete dielectric response model for liquid water: a solution of the Bethe ridge problem.

    PubMed

    Emfietzoglou, Dimitris; Cucinotta, Francis A; Nikjoo, Hooshang

    2005-08-01

    We present a complete yet computationally simple model for the dielectric response function of liquid water over the energy-momentum plane, which, in contrast to earlier models, is consistent with the recent inelastic X-ray scattering spectroscopy data at both zero and finite momentum transfer values. The model follows Ritchie's extended-Drude algorithm and is particularly effective at the region of the Bethe ridge, substantially improving previous models. The present development allows for a more accurate simulation of the inelastic scattering and energy deposition process of low-energy electrons in liquid water and other biomaterials. As an example, we calculate the stopping power of liquid water for electrons over the 0.1-10 keV range where direct experimental measurements are still impractical and the Bethe stopping formula is inaccurate. The new stopping power values are up to 30-40% lower than previous calculations. Within the range of validity of the first Born approximation, the new values are accurate to within the experimental uncertainties (a few percent). At the low end, the introduction of Born corrections raises the uncertainty to perhaps approximately 10%. Thus the present model helps extend the ICRU electron stopping power database for liquid water down to about two orders of magnitude with a comparable level of uncertainty.

  10. Liquid argon dielectric breakdown studies with the MicroBooNE purification system

    SciTech Connect

    Acciarri, R.; Carls, B.; James, C.; Johnson, B.; Jostlein, H.; Lockwitz, S.; Lundberg, B.; Raaf, J. L.; Rameika, R.; Rebel, B.; Zeller, G. P.; Zuckerbrot, M.

    2014-11-01

    The proliferation of liquid argon time projection chamber detectors makes the characterization of the dielectric properties of liquid argon a critical task. To improve understanding of these properties, a systematic study of the breakdown electric field in liquid argon was conducted using a dedicated cryostat connected to the MicroBooNE cryogenic system at Fermilab. An electrode sphere-plate geometry was implemented using spheres with diameters of 1.3 mm, 5.0 mm, and 76 mm. The MicroBooNE cryogenic system allowed measurements to be taken at a variety of electronegative contamination levels ranging from a few parts-per-million to tens of parts-per-trillion. The cathode-anode distance was varied from 0.1 mm to 2.5 cm. The results demonstrate a geometric dependence of the electric field strength at breakdown. This study is the first time that the dependence of the breakdown field on stressed cathode area has been shown for liquid argon.

  11. Study of the heating effect contribution to the nonlinear dielectric response of a supercooled liquid

    NASA Astrophysics Data System (ADS)

    Brun, C.; Crauste-Thibierge, C.; Ladieu, F.; L'Hôte, D.

    2010-12-01

    We present a detailed study of the heating effects in dielectric measurements carried out on a liquid. Such effects come from the dissipation of the electric power in the liquid and give contribution to the nonlinear third harmonics susceptibility χ _3, which depends on the frequency and temperature. This study is used to evaluate a possible "spurious" contribution to the recently measured nonlinear susceptibility of an archetypical glassforming liquid (glycerol). Those measurements have been shown to give a direct evaluation of the number of dynamically correlated molecules temperature dependence close to the glass transition temperature T_g ≈ 190 K [Crauste-Thibierge et al., Phys. Rev. Lett. 104, 165703 (2010)]. We show that the heating contribution is totally negligible (i) below 204 K at any frequency; (ii) for any temperature at the frequency where the third harmonics response χ _3 is maximum. Besides, this heating contribution does not scale as a function of f/f_{α }, with f_{α }(T) the relaxation frequency of the liquid. In the high frequency range, when f/f_{α } ≥ 1, we find that the heating contribution is damped because the dipoles cannot follow instantaneously the temperature modulation due to the heating phenomenon. An estimate of the magnitude of this damping is given.

  12. Electrowetting-on-dielectric assisted bubble detachment in a liquid film

    NASA Astrophysics Data System (ADS)

    Wang, S.; Chen, H. H.; Chen, C. L.

    2016-05-01

    Drawing inspiration from electrowetting-controlled droplets, the potential advantages of electrowetting for bubble dynamics are investigated experimentally. In this study, we present and characterize an open electrowetting-on-dielectric (EWOD) system for studying the bubble behavior. Both detachment and non-detachment processes of a small single bubble in a thick liquid film under EWOD were experimentally observed. The measurement of contact angle changes of the small air bubble shows relatively good agreement with Young-Lippmann's equation within the majority of the test voltage range, except for the saturation region. Meanwhile, we have experimentally demonstrated both the characteristics of single- and double-bubble detachment within a thin liquid film. Direct bubble detachment may occur when it touches the gas-liquid interface during the process of contact angle change, while indirect bubble detachment is highly possible due to the dramatic oscillation resulting from the detachment of adjacent bubbles. The experimental results demonstrate that EWOD can effectively facilitate the detachment of small air bubble in a thin liquid film.

  13. The dielectric behaviour of snow: A study versus liquid water content

    NASA Technical Reports Server (NTRS)

    Ambach, W.; Denoth, A.

    1980-01-01

    Snow is treated as a heterogeneous dielectric material consisting of ice, air, and water. The greater difference in the high frequency relative permittivity of dry snow and water allows to determine the liquid water content by measurements of the relative permittivity of snow. A plate condenser with a volume of about 1000 cv cm was used to measure the average liquid water content in a snow volume. Calibration was carried out using a freezing calorimeter. In order to measure the liquid water content in thin snow layers, a comb-shaped condenser was developed, which is the two dimensional analogon of the plate condenser. With this moisture meter the liquid water content was measured in layers of a few millimeters in thickness, whereby the effective depth of measurement is given by the penetration depth of electric field lines which is controlled by the spacing of the strip lines. Results of field measurements with both moisture meters, the plate condenser and the comb-shaped condenser, are given.

  14. Molecular dynamics of a binary mixture of twist-bend nematic liquid crystal dimers studied by dielectric spectroscopy.

    PubMed

    Robles-Hernández, Beatriz; Sebastián, Nerea; Salud, Josep; Diez-Berart, Sergio; Dunmur, David A; Luckhurst, Geoffrey R; López, David O; de la Fuente, M Rosario

    2016-06-01

    We report a comprehensive dielectric characterization of a liquid crystalline binary mixture composed of the symmetric mesogenic dimer CB7CB and the nonsymmetric mesogenic dimer FFO9OCB. In addition to the high-temperature nematic phase, such a binary mixture shows a twist-bend nematic phase at room temperature which readily vitrifies on slow cooling. Changes in the conformational distribution of the dimers are reflected in the dielectric permittivity and successfully analyzed by means of an appropriate theoretical model. It is shown that the dielectric spectra of the mixture reflect the different molecular dipole properties of the components, resembling in the present case the characteristic dielectric spectra of nonsymmetric dimers. Comparison of the nematic and twist-bend nematic phases reveals that molecular dynamics are similar despite the difference in the molecular environment.

  15. Dielectric and electro-optical properties of polymer-stabilized liquid crystal. II. Polymer PiBMA dispersed in MBBA

    NASA Astrophysics Data System (ADS)

    Tripathi, Pankaj Kumar; Pande, Mukti; Singh, Shri

    2016-09-01

    In continuation of our earlier work (Pande et al. in Appl Phys A 122:217-226, 2016), we report the results of dielectric and electro-optical properties of pure MBBA and PSLC (polymer PiBMA dispersed in MBBA) systems. The polymer networks domains formed are found to be anisotropic and are oriented in the direction of electric field for both the planar and homeotropic alignment cells. The dielectric anisotropy, optical anisotropy, response time, threshold voltage, splay elastic constant and rotational viscosity were observed for both the LC and PSLC systems with electric field. The liquid crystal properties are affected significantly with increasing concentration of polymer in pure LC material. It has been observed that the polymer networks interaction plays a major role in changing the properties of PSLC system. The effect of dielectric loss and dielectric permittivity on both pure LC and PSLC systems is also discussed.

  16. Effect of boundary surfaces on the effective dielectric susceptibility of the helical structure of a ferroelectric liquid crystal

    SciTech Connect

    Kaznacheev, A. V.; Pozhidaev, E. P.

    2015-08-15

    We present the results of a theoretical investigation of the effect of boundary surfaces of a liquidcrystal cell on the effective dielectric susceptibility of the helical structure of a ferroelectric smectic C* liquid crystal (FLC). We consider for this purpose the deformation and untwisting of the helix by solid surfaces bounding the FLC layer. An analytic expression is obtained for critical thickness d{sub c} of the liquid-crystal layer, for which untwisting of the helix by surfaces takes place. In calculating the effective dielectric susceptibility, it is shown that the deformation of the FLC helix by the boundaries leads to the occurrence of anisotropy in the effective dielectric susceptibility in the plane perpendicular to the helix axis.

  17. Dielectric relaxations of polyether-based polyurethanes containing ionic liquids as antistatic agents.

    PubMed

    Tsurumaki, Akiko; Bertasi, Federico; Vezzù, Keti; Negro, Enrico; Di Noto, Vito; Ohno, Hiroyuki

    2016-01-28

    Dielectric properties of polyurethanes containing poly(propylene oxide) (PO) and poly(ethylene oxide) (EO) units are discussed, along with the results of direct current (DC) measurements and broadband electrical spectroscopy (BES) studies. The dielectric properties of polyether-containing polyurethanes (PUs) are compared to those of PUs containing 1000 ppm of ionic liquids (ILs) as antistatic agents. The effects of the chemical environment of these ILs, including anion-fixed polymers (PU-AF), cation-fixed polymers (PU-CF), and a simple mixture of IL with the PUs (PU-IL), are compared and discussed on the basis of ion mobility. DC measurements suggest that the charge current is attributed not only to the electrode polarization but also to continuous dielectric relaxation. BES studies elucidate that both fast and slow relaxations are taking place in EO-rich domains in pristine PU and PU-AF. The activation energies of the slow relaxation and of the ionic conductivity are similar, suggesting that the ionic conductivity of these materials is attributed to the ion exchange reaction in EO/ion complexes. In contrast, only fast relaxations are observed in the domains mostly comprised of ion-depleted EO in the PUs containing "free" anions, i.e., PU-CF and PU-IL. This suggests that [Tf2N](-) ligands are weakly interacting with the EO chains and contribute effectively to the ion conduction. Thus, enhanced ionic conductivity is observed in PU-CF and PU-IL, yielding sufficient antistatic effects. Taking into account its long shelf life, arising from the lack of IL bleed-out, PU-CF is concluded to be the most promising candidate.

  18. Liquid Phase Sintering and Microwave Dielectric Properties of NdAlO3 Ceramics

    NASA Astrophysics Data System (ADS)

    Huang, Cheng-Liang; Chen, Yao-Chung

    2002-03-01

    The effects of CuO addition on the microstructures and microwave dielectric properties of NdAlO3 ceramics were investigated. CuO was selected as a liquid-phase-sintering aid to lower the sintering temperature of NdAlO3 ceramics. With CuO addition, the sintering temperature of NdAlO3 can be effectively reduced from 1650°C to 1410-1430°C. The crystalline phase exhibited no phase differences at a low addition level while Nd4Al2O9 and NdAl11O18 were presented as second phases at the addition level higher than 0.5 wt%. The quality factors Q× f were strongly dependent upon the CuO concentration. The Q× f value of 63000 GHz was obtained at 1410-1430°C with 0.25 wt% CuO. For all levels of CuO concentration, the relative dielectric constants were not significantly different and ranged from 21.5 to 22.6. The temperature coefficients varied from -30 ppm/°C to -45 ppm/°C. Results of X-ray diffraction analysis and scanning electron microscopy are also presented.

  19. Dielectric and electro-optic measurements of nematic liquid crystals doped with carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Peterson, Matthew; Georgiev, Georgi; Atherton, Timothy; Cebe, Peggy

    We studied the effects of carbon nanotubes (CNTs) on the dielectric and electro-optic properties of nematic 5CB liquid crystals (LCs). Samples containing 0.01%, 0.10% and 1.00% CNTs by weight were prepared. Anti- parallel rubbed cells with a nominal thickness of 10 μm were prepared using indium tin oxide coated glass cells and a polyimide alignment layer. The capacitance and dissipation factor were measured using an Agilent 4284A precision LCR meter. From these measurements, the complex dielectric permittivity was determined as a function of frequency. Analysis of the low frequency regime (f <1000 Hz) indicates that 5CB samples containing CNTs have a higher conductance than neat samples. The Fréedericksz transition critical voltage was noted by a sharp increase in capacitance after an initial plateau. Numerical simulations of CNT-facilitated switching show that polarization induced on the nanotubes from capacitive effects can significantly reduce the critical voltage in DC electric fields, in agreement with experimental results. Measurements of the critical voltage over a range of frequencies will also be presented. Research was supported by the National Science Foundation, DMR1206010.

  20. Unsaturated and Saturated Flow Front Tracking in Liquid Composite Molding Processes using Dielectric Sensors

    NASA Astrophysics Data System (ADS)

    Carlone, P.; Palazzo, G. S.

    2015-10-01

    Liquid composite molding processes are manufacturing techniques involving the impregnation and saturation of dry fibrous preforms by means of injection or infusion of catalyzed resin systems. Complete wetting of the reinforcement and reduction of voids are key issues to enhance mechanical properties of the final product, as a consequence on line monitoring and control of resin flow is highly desirable to detect and avoid potentialbet macro- as well as micro-voids. In this paper, parallel-plate dielectric sensors were investigated to track the position of unsaturated as well as saturated flow fronts through dual scale porous media. Sensors configuration was analyzed and improved via electromagnetic (EM) finite element simulations. The effectiveness of the proposed system was assessed in one-dimensional impregnation tests. Good agreement was found between unsaturated front positions provided by the considered system and acquired through conventional visual techniques. An indirect verification strategy, based on CFD and EM simulations of the process, was applied to investigate the reliability of dielectric sensors with respect to saturation phenomena. Obtained outcomes highlighted the intriguing capabilities of the proposed method.

  1. Reduced equations of motion of the interface of dielectric liquids in vertical electric and gravitational fields

    NASA Astrophysics Data System (ADS)

    Kochurin, Evgeny A.; Zubarev, Nikolay M.

    2012-07-01

    The dynamics of the interface between two dielectric fluids in the presence of vertical electric and gravitational fields is studied theoretically. It is shown that, in the particular case where the rate of change of the electric field is proportional to the effective gravitational acceleration, a special flow regime can be realized for which the velocity and electric potentials are linearly dependent functions. This means that there exists a frame of reference in which liquids move along the electric field lines. We derive and analyze the corresponding reduced equations of motion of a liquid-liquid interface. For small density ratio, they turn into the equations describing the Laplacian growth. In the case of two spatial dimensions, we show that these equations determine the asymptotic behavior of the system. For arbitrary density ratios, the Laplacian growth equations adequately describe the initial (weakly nonlinear) stage of the interface instability development. The integrability of these equations makes it possible to investigate the evolution of nonlinear waves at the boundary and, in particular, to demonstrate the tendency to the formation of singularities (cusps).

  2. Effect of polymer additives on characteristics of direct-current motor with liquid dielectric filler

    NASA Astrophysics Data System (ADS)

    Ivanov, V. I.; Bashkatova, S. T.; Lubsanova, A. A.; Tokarev, S. B.; Zadaroshnaya, G. N.; Pastukhova, I. N.

    1984-11-01

    In d.c. motors filled with dielectric of the hydrocarbon kind hydrodynamic losses can constitute up to 40% of the total losses. Consequently, a study was made to determine the proper additive and amount to reduce the hydraulic drag without dehomogenizing the liquid filler over long operating periods. Two polymethacrylates, never before used for this application were selected. Two motors of different size, a 0.8 kW DPK and a 6 kW DPK, were tested in kerosene with 0.005-1.0 wt% of these additives. An evaluation of the data, including the hydraulic drag coefficient as a function of the Reynolds number and the temperature rise at critical motor components (armature winding in slots, armature endturns on drive side, armature teeth, liquid in interpolar space, field winding, pole pieces) with or without additive, has yielded the optimum range of additive concentration for each motor size. An evaluation of the heat transfer at critical surfaces, with the aid of dimensional analysis, has yielded the semiempirical relation Nu=CRe0.65Pr0.4Km (C- constant factor different for each surface, Km- constant factor with exponent different for each additive polymer materials). The results can be extended to transformer oil and diesel oil as liquid motor-filling medium.

  3. Static dielectric function with exact exchange contribution in the electron liquid

    SciTech Connect

    Qian, Zhixin

    2015-11-15

    The exchange contribution, Π{sub 1}(k, 0), to the static dielectric function in the electron liquid is evaluated exactly. Expression for it is derived analytically in terms of one quadrature. The expression, as presented in Eq. (3) in the Introduction, turns out to be very simple. A fully explicit expression (with no more integral in it) for Π{sub 1}(k, 0) is further developed in terms of series. Equation (3) is proved to be equal to the expression obtained before under some mathematical assumption by Engel and Vosko [Phys. Rev. B 42, 4940 (1990)], thus in the meanwhile putting the latter on a rigorous basis. The expansions of Π{sub 1}(k, 0) at the wavevectors of k = 0, k = 2k{sub F}, and at limiting large k are derived. The results all verify those obtained by Engel and Vosko.

  4. Static dielectric function with exact exchange contribution in the electron liquid

    NASA Astrophysics Data System (ADS)

    Qian, Zhixin

    2015-11-01

    The exchange contribution, Π1(k, 0), to the static dielectric function in the electron liquid is evaluated exactly. Expression for it is derived analytically in terms of one quadrature. The expression, as presented in Eq. (3) in the Introduction, turns out to be very simple. A fully explicit expression (with no more integral in it) for Π1(k, 0) is further developed in terms of series. Equation (3) is proved to be equal to the expression obtained before under some mathematical assumption by Engel and Vosko [Phys. Rev. B 42, 4940 (1990)], thus in the meanwhile putting the latter on a rigorous basis. The expansions of Π1(k, 0) at the wavevectors of k = 0, k = 2kF, and at limiting large k are derived. The results all verify those obtained by Engel and Vosko.

  5. Effect of cadmium selenide quantum dots on the dielectric and physical parameters of ferroelectric liquid crystal

    NASA Astrophysics Data System (ADS)

    Singh, D. P.; Gupta, S. K.; Manohar, R.; Varia, M. C.; Kumar, S.; Kumar, A.

    2014-07-01

    The effect of cadmium selenide quantum dots (CdSe QDs) on the dielectric relaxation and material constants of a ferroelectric liquid crystal (FLC) has been investigated. Along with the characteristic Goldstone mode, a new relaxation mode has been induced in the FLC material due to the presence of CdSe QDs. This new relaxation mode is strongly dependent on the concentration of CdSe QDs but is found to be independent of the external bias voltage and temperature. The material constants have also been modified remarkably due to the presence of CdSe QDs. The appearance of this new relaxation phenomenon has been attributed to the concentration dependent interaction between CdSe QDs and FLC molecules.

  6. Effect of cadmium selenide quantum dots on the dielectric and physical parameters of ferroelectric liquid crystal

    SciTech Connect

    Singh, D. P.; Gupta, S. K.; Manohar, R.; Varia, M. C.; Kumar, S.; Kumar, A.

    2014-07-21

    The effect of cadmium selenide quantum dots (CdSe QDs) on the dielectric relaxation and material constants of a ferroelectric liquid crystal (FLC) has been investigated. Along with the characteristic Goldstone mode, a new relaxation mode has been induced in the FLC material due to the presence of CdSe QDs. This new relaxation mode is strongly dependent on the concentration of CdSe QDs but is found to be independent of the external bias voltage and temperature. The material constants have also been modified remarkably due to the presence of CdSe QDs. The appearance of this new relaxation phenomenon has been attributed to the concentration dependent interaction between CdSe QDs and FLC molecules.

  7. Dielectric technique to measure the twist elastic constant of liquid crystals: the case of a bent-core material.

    PubMed

    Salamon, P; Eber, N; Seltmann, J; Lehmann, M; Gleeson, J T; Sprunt, S; Jákli, A

    2012-06-01

    The effect of director pretilt on the twist magnetic Fréedericksz transition of nematics was investigated in a planar cell. The director configuration was calculated as a function of magnetic inductance. The dielectric and optical response of the nematic liquid crystal was numerically modeled. A dielectric measurement method for determining the elastic constant K_{22} is presented. The influence of the conditions for the Mauguin effect is discussed. The theoretical predictions were confirmed by our experiments. Experimental data for all elastic constants of a bent-core nematic material are presented and discussed.

  8. Electro-optical and dielectric properties of CdSe quantum dots and 6CHBT liquid crystals composites

    SciTech Connect

    Singh, U. B.; Pandey, M. B.; Dhar, R; Pandey, A. S.; Kumar, S.; Dabrowski, R.

    2014-11-15

    We have prepared the composites of a room temperature nematic liquid crystal namely 4-(trans-4-n-hexylcyclohexyl) isothiocyanatobenzoate (6CHBT) and Cadmium Selenide Quantum Dots (CdSe-QDs) and investigated their electro-optical and dielectric properties. Effect of dispersion of CdSe-QDs on various electro-optical and display parameters of host liquid crystalline material have been studied. Physical parameters, such as switching threshold voltage and splay elastic constant have been altered drastically for composites. Dispersion of QDs in a liquid crystals medium destabilizes nematic ordering of the host and decreases the nematic-to-isotropic transition temperature.

  9. Electro-optical and dielectric properties of CdSe quantum dots and 6CHBT liquid crystals composites

    NASA Astrophysics Data System (ADS)

    Singh, U. B.; Dhar, R.; Pandey, A. S.; Kumar, S.; Dabrowski, R.; Pandey, M. B.

    2014-11-01

    We have prepared the composites of a room temperature nematic liquid crystal namely 4-(trans-4-n-hexylcyclohexyl) isothiocyanatobenzoate (6CHBT) and Cadmium Selenide Quantum Dots (CdSe-QDs) and investigated their electro-optical and dielectric properties. Effect of dispersion of CdSe-QDs on various electro-optical and display parameters of host liquid crystalline material have been studied. Physical parameters, such as switching threshold voltage and splay elastic constant have been altered drastically for composites. Dispersion of QDs in a liquid crystals medium destabilizes nematic ordering of the host and decreases the nematic-to-isotropic transition temperature.

  10. Luminescence and electrification in a flow of dielectric liquids through narrow channels

    NASA Astrophysics Data System (ADS)

    Margulis, M. A.; Pil'Gunov, V. N.

    2009-08-01

    Blue-violet luminescence was observed in a mineral oil, which appeared under hydrodynamic cavitation conditions in a channel orifice 1 mm in diameter in a transparent throttling device at inlet pressures higher than 2 MPa. The appearance of electric pulses when a dielectric liquid flew through a thin channel orifice was observed much earlier than luminescence arose. A device for continuously scanning electric potential along a flow without disturbing it was developed. According to the oscillograms obtained, the electric signal was high-frequency, could not be synchronized, and its separate peaks reached 1000 mV. Light emission flux decreased as the temperature of the liquid increased to 30-35°C and inlet pressure grew. The appearance of luminescence and its intensity depended on the sharpness of the entrance edge of the throttle. Studies of hydrodynamic luminescence revealed hysteresis of light emission. A mechanism of localized light emission based on an important role played by electrokinetic phenomena was suggested.

  11. Dielectric nanosheets made by liquid-phase exfoliation in water and their use in graphene-based electronics

    NASA Astrophysics Data System (ADS)

    Yang, Huafeng; Withers, Freddie; Gebremedhn, Elias; Lewis, Edward; Britnell, Liam; Felten, Alexandre; Palermo, Vincenzo; Haigh, Sarah; Beljonne, David; Casiraghi, Cinzia

    2014-06-01

    One of the challenges associated with the development of next-generation electronics is to find alternatives to silicon oxide caused by the size-reduction constraints of the devices. The dielectric properties of two-dimensional (2D) crystals, added to their excellent chemical stability, mechanical and thermal properties, make them promising dielectrics. Here we show that liquid-phase exfoliation (LPE) in water by using low-cost commercial organic dyes as dispersant agents can efficiently produce defect-free 2D nanosheets, including mono-layers, in suspensions. We further show that these suspensions can be easily incorporated into current practical graphene-based devices. In particular, it is found that boron nitride thin films made by LPE are excellent dielectrics that are highly compatible with graphene-based electronics.

  12. Dielectric properties of liquid-crystal azomethine polymer with a side alkyl-substituted chain, doped with fullerene C60

    NASA Astrophysics Data System (ADS)

    Kovalev, D. S.; Kostromin, S. V.; Musteaţa, V.; Cozan, V.; Bronnikov, S. V.

    2016-04-01

    We studied the actual and imaginary components of the dielectric constant of liquid-crystal azomethine polymer with a side chain, doped with 0.5 wt % of fullerene C60, over a wide range of temperatures and frequencies; measurements were made by means of dielectric spectroscopy. By analyzing the frequency dependence of the dielectric constant, we detected the relaxation processes (α, β1, and β2) in the nanocomposite, corresponding to certain modes of molecular motion and described them by the Arrhenius equations (β1- and β2-processes) and the Vogel-Fulcher-Tamman equation (α-process). An antiplasticization effect is discovered after doping the polymer with fullerene C60, which manifests itself in increasing the glass transition temperature of the nanocomposite compared to this parameter typical of pure polymer.

  13. Spectral and dielectric properties of nematic liquid crystal doped semiconductor quantum dots CdSe/ZnS

    NASA Astrophysics Data System (ADS)

    Kurachkina, M. A.; Shcherbinin, D. P.; Konshina, E. A.

    2015-06-01

    We investigated the absorption and luminescence spectra and the low-frequency spectra of dielectric losses of the nematic liquid crystal (NLC) suspensions with quantum dots (QDs) CdSe/ZnS with a core diameter of 3.5 nm and 5.0 nm. The changing of luminescence intensity and dielectric losses in the region below 103 Hz were observed as result variation of a concentration and a QDs size in the spectra of NLC/QDs suspensions in comparison with the pure NLC. Luminescence quenching of the NLC and the increase of dielectric loss in the spectra were found with the increasing CdSe/ZnS concentration in interval between 0.07 - 0.3 wt. %.

  14. Dynamics of hydrogen-bonded liquids confined to mesopores: A dielectric and neutron spectroscopy study

    SciTech Connect

    Mel`nichenko, Y.B.; Schueller, J.; Richert, R.; Ewen, B.; Loong, C.

    1995-08-08

    In this paper we present and discuss experimental results on molecular mobility in propylene glycol and its three oligomers confined to the {similar_to}100 A pores of a controlled porous glass. The objective is to elucidate the finite size effects on the dynamics of hydrogen-bonded liquids of different molecular weights but identical chemical composition. The methods of dielectric and neutron spectroscopy have been employed to investigate both the low- and high-frequency features as a function of temperature. We find that all fluids in pores separate into two distinct liquid phases. (i) molecules physisorbed at the surface which exhibit a dramatic frustration of their mobility related to a substantial {ital positive} shift of the glass transition temperature {ital T}{sub {ital g}} by up to {Delta}{ital T}{sub {ital g}}{approx}+47 K; and (ii) relatively ``free`` molecules in the inner pore space subject to only moderate retardation of the {alpha} and normal mode relaxation and substantial broadening of the distribution of relaxation times. The shift in {ital T}{sub {ital g}} for the {alpha} process with {Delta}{ital T}{sub {ital g}}{approx}+5 K is maximal for the monomer liquid and gradually diminishes with increasing molecular weight or decreasing intermolecular hydrogen bonding. The inelastic neutron spectrum of confined propylene glycol shows the boson peak as expected in bulk strong and intermediate glass formers in the vicinity of {ital T}{sub {ital g}}. This effect can be attributed to the finite-size induced crossover from long wave vibrations characteristic of a continuous medium to localized vibrations in a confined geometry. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  15. Dielectric constant and low-frequency infrared spectra for liquid water and ice Ih within the E3B model

    SciTech Connect

    Shi, L.; Ni, Y.; Drews, S. E. P.; Skinner, J. L.

    2014-08-28

    Two intrinsic difficulties in modeling condensed-phase water with conventional rigid non-polarizable water models are: reproducing the static dielectric constants for liquid water and ice Ih, and generating the peak at about 200 cm{sup −1} in the low-frequency infrared spectrum for liquid water. The primary physical reason for these failures is believed to be the missing polarization effect in these models, and consequently various sophisticated polarizable water models have been developed. However, in this work we pursue a different strategy and propose a simple empirical scheme to include the polarization effect only on the dipole surface (without modifying a model's intermolecular interaction potential). We implement this strategy for our explicit three-body (E3B) model. Our calculated static dielectric constants and low-frequency infrared spectra are in good agreement with experiment for both liquid water and ice Ih over wide temperature ranges, albeit with one fitting parameter for each phase. The success of our modeling also suggests that thermal fluctuations about local minima and the energy differences between different proton-disordered configurations play minor roles in the static dielectric constant of ice Ih. Our analysis shows that the polarization effect is important in resolving the two difficulties mentioned above and sheds some light on the origin of several features in the low-frequency infrared spectra for liquid water and ice Ih.

  16. Overall dielectric study on the odd members of a highly nonsymmetric pyrene-based series of liquid crystal dimers.

    PubMed

    Sebastián, N; de la Fuente, M R; López, D O; Pérez-Jubindo, M A; Salud, J; Ros, M B

    2013-11-21

    Broadband dielectric spectroscopy (10(3) Hz-1.8 × 10(9) Hz) has been performed on the odd nonsymmetric liquid crystal dimers of the series α-(4-cyanobiphenyl-4'-oxy)-ω-(1-pyreniminebenzylidene-4'-oxy) alkanes (CBOnO.Py) with n ranging from 3 to 11, as a function of temperature. A previous thermal behavior study through heat capacity measurements has been made. Dielectric measurements enable us to obtain information about the molecular dynamics in the nematic mesophase as well as in the isotropic phase. Two orientations (parallel and perpendicular) of the molecular director with regard to the probe electric field have been investigated. In the nematic mesophase, the dielectric anisotropy is revealed to be positive for all studied compounds. Measurements of the parallel component of the dielectric permittivity are well-explained by means of the molecular theory of dielectric relaxation in nematic dimers (Stocchero, M.; Ferrarini, A.; Moro, G. J.; Dunmur, D. A.; Luckhurst, G. R. J. Chem. Phys., 2004, 121(16), 8079). The dimer is seen as a mixture of cis and trans conformers, and the model allows us to estimate their relative populations at each temperature. The main molecular motions are interpreted by the model as independent end-overend rotations of each terminal semirigid unit of the dimer.

  17. Toward a better understanding of dielectric responses of van der Waals liquids: The role of chemical structures

    NASA Astrophysics Data System (ADS)

    Jedrzejowska, Agnieszka; Wojnarowska, Zaneta; Adrjanowicz, Karolina; Ngai, K. L.; Paluch, Marian

    2017-03-01

    Exhaustive analysis of dielectric relaxation data of van der Waals glass-forming liquids revealed a strong correlation between the width of the frequency dispersion of the α-relaxation and the dielectric strength Δ ɛ , originating from the dipole-dipole interaction contribution to the intermolecular potential [M. Paluch et al., Phys. Rev. Lett. 116, 025702 (2016)]. The two van der Waals liquids, 4-vinyl-1,3-dioxolan-2-one (VPC) and 4-ethyl-1,3-dioxolan-2-one (EPC), have chemical structures modified from that of propylene carbonate. All three glass-formers have very similar values of dipole moments, exactly the same dielectric strength, and hence identical frequency dispersion of the α-relaxation in all three glass-formers is expected if the correlation holds. Based on this expectation, we performed dielectric relaxation measurements of the VPC and EPC at ambient and elevated pressures. The results obtained show not only identical α-relaxation frequency dispersion for the three glass-formers but also the excess wing which is the unresolved Johari-Goldstein β-relaxation. On the other hand, the other thermodynamics related parameters of the α-relaxation dynamics, including the glass transition temperature Tg, the fragility index mP, and activation volume Δ Va c t, are not uniformly the same for all three glass-formers.

  18. Natural Convection Cooling of a Three by Three Array of Leadless Chip Carrier Packages in a Dielectric Liquid

    DTIC Science & Technology

    1994-03-24

    NAVAL POSTGRADUATE SCHOOL Monterey, California AD-A282 298 UUU1UII1HUL .2 <~o STA~To THESIS NATURAL CONVECTION COOLING OF A THREE BY THREE ARRAY OF...LEADLESS CHIP CARRIER PACKAGES IN A DIELECTRIC LIQUID by Joseph Matthew Bradley March 1994 Thesis Advisor: Yogendra Joshi Approved for public release...1994. Engineer’s Thesis 5. TITLE AND SUBTITLE NATURAL CONVECTION COOLING OF A FUNDING NUMBERS THREE-BY-THREE ARRAY OF LEADLESS CHIP CARRIER PACKAGES IN A

  19. Experimental study on the dielectric characteristics of liquid nitrogen with respect to various pressures

    NASA Astrophysics Data System (ADS)

    Na, J. B.; Kang, H.; Chang, K. S.; Kim, Y. J.; Kim, K. J.; Lee, H. G.; Ko, T. K.

    2010-11-01

    The electrical breakdown characteristics of liquid nitrogen (LN2) are required to design of high voltage superconducting machines which should have high reliability. This paper deals with the investigation to verify the relationships between the electrical breakdown characteristics of LN2 its pressure condition. The electrical breakdown characteristics of LN2 were measured by using sphere-plane electrode systems. The diameter of sphere electrode had five different values. The gaseous nitrogen was injected into a cryostat which contained the sphere-plane electrode system to control the pressure of LN2 from 50 to 200 kPa. The AC dielectric tests in LN2 were repeated 10 times in each pressure condition. The AC breakdown voltage at sparkover with 50% probability was calculated by commercialized statics tools. From finite element method simulation results, the field utilization factor which means the field uniformity was calculated between sphere and plane electrode and its relations with AC breakdown voltage with 50% probability were analyzed. Finally, these results provided a suitable design parameter of electrical insulation for high voltage superconducting machines such as superconducting fault current limiters, superconducting cables, and superconducting transformers.

  20. Spectroscopic and dielectric properties of liquid water: A molecular dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Bursulaya, Badry D.; Kim, Hyung J.

    1998-09-01

    The spectroscopic and dielectric properties of liquid water under an ambient condition are studied via a molecular dynamics (MD) computer simulation method. By employing the recent TAB/10D potential model [B. D. Bursulaya, J. Jeon, D. A. Zichi, and H. J. Kim, J. Chem. Phys. 108, 3286 (1997)], the evolving solvent electronic structure is incorporated into the simulation. Thus both the induced dipole and polarizability variations of individual water molecules with the fluctuating nuclear configuration are accounted for. The MD results on far-IR absorption, depolarized Raman scattering (DRS) and optical Kerr effect (OKE) spectroscopy are in reasonable agreement with experiments. It is found that the nonlinear electronic response of water to its fluctuating environment plays an important role in the DRS and OKE; it significantly enhances the contribution of the water librational motions to the spectra, compared with that of hindered translations. This indicates that not only molecular dynamics but also accompanying electronic structure modulations are essential to quantitative understanding of various electronic spectroscopy. The effects of H/D isotope substitution are briefly discussed.

  1. Tunable and ultra-elongated photonic nanojet generated by a liquid-immersed core-shell dielectric microsphere

    NASA Astrophysics Data System (ADS)

    Wu, Pinghui; Li, Jia; Wei, Kaihua; Yue, Wenjie

    2015-11-01

    A three-dimensional (3D) photonic nanojet (PNJ) emerging from a liquid-immersed core-shell dielectric microsphere is numerically investigated by the finite-difference time-domain (FDTD) method. An ultra-elongated PNJ with an effective length larger than 57 wavelengths while retaining a high intensity and a large working distance is obtained from the simulation. In particular, PNJ properties, including intensity enhancement, working distance, effective length, and full width at half maximum (FWHM), can be well tuned and controlled by varying the refractive index of the immersed liquid. We believe that this design is applicable to many fields, such as material science, nanophotonics, and biomedicine.

  2. Ab initio molecular dynamics study of temperature and pressure-dependent infrared dielectric functions of liquid methanol

    NASA Astrophysics Data System (ADS)

    Wang, C. C.; Tan, J. Y.; Liu, L. H.

    2017-03-01

    The temperature and pressure-dependent dielectric functions of liquids are of great importance to the thermal radiation transfer and the diagnosis and control of fuel combustion. In this work, we apply the state-of-the-art ab initio molecular dynamics (AIMD) method to calculate the infrared dielectric functions of liquid methanol at 183-573 K and 0.1-160 MPa in the spectral range 10-4000 cm-1, and study the temperature and pressure effects on the dielectric functions. The AIMD approach is validated by the Infrared Variable Angle Spectroscopic Ellipsometry (IR-VASE) experimental measurements at 298 K and 0.1 MPa, and the proposed IR-VASE method is verified by comparison with paper data of distilled water. The results of the AIMD approach agrees well with the experimental values of IR-VASE. The experimental and theoretical analyses indicate that the temperature and pressure exert a noticeable influence on the infrared dielectric functions of liquid methanol. As temperature increases, the average molecular dipole moment decreases. The amplitudes of dominant absorption peaks reduce to almost one half as temperature increases from 183 to 333 K at 0.1 MPa and from 273 to 573 K at 160 MPa. The absorption peaks below 1500 cm-1 show a redshift, while those centered around 3200 cm-1 show a blueshift. Moreover, larger average dipole moments are observed as pressure increases. The amplitudes of dominant absorption peaks increase to almost two times as pressure increases from 1 to 160 MPa at 373 K.

  3. Dynamics of glass-forming liquids. XX. Third harmonic experiments of non-linear dielectric effects versus a phenomenological model

    NASA Astrophysics Data System (ADS)

    Kim, Pyeongeun; Young-Gonzales, Amanda R.; Richert, Ranko

    2016-08-01

    We have re-measured the third harmonic non-linear dielectric response of supercooled glycerol using zero-bias sinusoidal electric fields, with the aim of comparing the resulting susceptibilities with a phenomenological model of non-linear dielectric responses. In the absence of known chemical effects in this liquid, the present model accounts for three sources of non-linear behavior: dielectric saturation, field induced entropy reduction, and energy absorption from the time dependent field. Using parameters obtained from static high field results, the present model reproduces the characteristic features observed in the third harmonic susceptibility spectra: a low frequency plateau originating from dielectric saturation and a peak positioned below the loss peak frequency whose amplitude increases with decreasing temperature. Semi-quantitative agreement is achieved between experiment and the present model, which does not involve spatial scales or dynamical correlations explicitly. By calculating the three contributions separately, the model reveals that the entropy effect is the main source of the "hump" feature of this third harmonic response.

  4. Dielectric spectroscopy study on ionic liquid microemulsion composed of water, TX-100, and BmimPF6

    NASA Astrophysics Data System (ADS)

    Chen, Zhen; Nozaki, Ryusuke

    2012-06-01

    We report here a broadband dielectric spectroscopy study on an ionic liquid microemulsion (ILM) composed of water, Triton X-100 (TX-100), and 1-butyl-3-methylimidazolium hexafluorophosphate (bmimPF6). It is found that the phase behavior of this ILM can be easily identified by its dielectric response. The dielectric behavior of the ILM in the GHz range is consistent with that of TX-100/water mixtures with comparable water-to-TX-100 weight ratio. It consists of the relaxations due to ethylene oxide (EO) unit relaxation, hydration water dynamics, and/or free water dynamics. The water content dependence of the EO unit relaxation suggests that this relaxation involves dynamics of hydration water molecules. In the IL-in-water microemulsion phase, it is found that bmimPF6 molecules are preferentially dissolved in water when their concentration in water is lower than the solubility. An additional dielectric relaxation that is absent in the TX-100/water mixtures is observed in the frequency range of 107-108 Hz for this ILM. This low-frequency relaxation is found closely related to the bmimPF6 molecule and could be attributed to the hopping of its cations/anions between the anionic/cationic sites.

  5. Dielectric relaxation and the conformer equilibrium in the liquid and glassy states of β- D-fructose

    NASA Astrophysics Data System (ADS)

    Tombari, E.; Cardelli, C.; Salvetti, G.; Johari, G. P.

    2001-01-01

    To investigate the ionic and molecular dynamics in the liquid and glassy states of β- D-fructose, its dielectric relaxation spectra (12 Hz-500 kHz) and dynamic heat capacity (3.33 mHz) have been measured from 5 K above its melting point through the vitrification range, by allowing sufficient time for attainment of the conformer (or chemical) equilibria. Effects of the change in the conformer population on thermal cycling has been further studied. The dielectric behavior of liquid β- D-fructose is characteristically different from that of other molecular liquids in three ways: (i) the contribution to orientation polarization associated with the fast relaxation process, which persists in the glassy state, is relatively high in the liquid state of β- D-fructose; (ii) this contribution decreases with temperature exceptionally rapidly on cooling; and (iii) the difference in the rates of the two process is exceptionally large. The dynamic heat capacity change through the vitrification region is ˜160 J/(mol K), and is spread over ˜20 K range, and the enthalpy relaxation time is ˜50 s at 383 K. Transformation of β-pyranose to other conformers and other conformer transformation equilibria change on thermal cycling with the result that the overall relaxation rate increases at T>315 K and decreases at T<315 K. The relaxation spectrum becomes broader, the dc conductivity increases and the rate of the Johari-Goldstein relaxation whose Arrhenius energy is 42.1 kJ/mol increases.

  6. Saddle-like deformation in a dielectric elastomer actuator embedded with liquid-phase gallium-indium electrodes

    SciTech Connect

    Wissman, J.; Finkenauer, L.; Deseri, L.; Majidi, C.

    2014-10-14

    We introduce a dielectric elastomer actuator (DEA) composed of liquid-phase Gallium-Indium (GaIn) alloy electrodes embedded between layers of poly(dimethylsiloxane) (PDMS) and examine its mechanics using a specialized elastic shell theory. Residual stresses in the dielectric and sealing layers of PDMS cause the DEA to deform into a saddle-like geometry (Gaussian curvature K<0). Applying voltage Φ to the liquid metal electrodes induces electrostatic pressure (Maxwell stress) on the dielectric and relieves some of the residual stress. This reduces the longitudinal bending curvature and corresponding angle of deflection ϑ. Treating the elastomer as an incompressible, isotropic, NeoHookean solid, we develop a theory based on the principle of minimum potential energy to predict the principal curvatures as a function of Φ. Based on this theory, we predict a dependency of ϑ on Φ that is in strong agreement with experimental measurements performed on a GaIn-PDMS composite. By accurately modeling electromechanical coupling in a soft-matter DEA, this theory can inform improvements in design and fabrication.

  7. Dielectric and magnetic characterizations of capacitor structures with an ionic liquid/MgO barrier and a ferromagnetic Pt electrode

    NASA Astrophysics Data System (ADS)

    Hayakawa, D.; Obinata, A.; Miwa, K.; Ono, S.; Hirai, T.; Koyama, T.; Chiba, D.

    2016-11-01

    The dielectric and magnetic properties of electric double layer (EDL) capacitor structures with a perpendicularly magnetized Pt/Co/Pt electrode and an insulating cap layer (MgO) are investigated. An electric field is applied through a mixed ionic liquid/MgO barrier to the surface of the top Pt layer, at which the magnetic moment is induced by the ferromagnetic proximity effect. The basic dielectric properties of the EDL capacitor are studied by varying the thickness of the MgO cap layer. The results indicate that the capacitance, i.e., the accumulated charge density at the Pt surface, is reduced with increasing the MgO thickness. From the MgO thickness dependence of the capacitance value, the effective dielectric constant of the ionic liquid is evaluated. Almost no electric field effect on the magnetic moment, the coercivity, or the Curie temperature is confirmed in the top Pt layer with the thickness of 1.3 nm, regardless of the presence or absence of the MgO cap layer, whereas the a clear change in the magnetic moment is observed when the top Pt layer is replaced by a Pd layer of 1.7 nm.

  8. Experimental study on the lightning impulse dielectric strength of liquid nitrogen insulation medium according to various pressures

    NASA Astrophysics Data System (ADS)

    Na, J. B.; Kang, H.; Chang, K. S.; Kim, Y. J.; Chu, S. Y.; Kim, T. J.; Kim, K.-J.; Lee, H. G.; Ko, T. K.

    2011-11-01

    The lightning impulse breakdown characteristics of liquid nitrogen are necessarily considered for designing high voltage superconducting machines required high reliability. This paper investigates the dielectric capability of liquid nitrogen (LN2) to withstand lightning impulse. To gain the dielectric capability of LN2 cryogenic cooling system, lightning impulse was induced in sphere-plane electrode systems which have six different diameters of sphere electrode. The pressure is one of major condition to decide dielectric strength at LN2 cryogenic cooling system. Thus, the gaseous nitrogen was injected to control pressure in the cryostat, ranging from 100 kPa to 200 kPa. Moreover, field utilization factor was calculated between sphere and plane electrode systems by a finite element method analysis. The electric field criterion of LN2 as insulation media was calculated from correlation between the experimental results and the field utilization factor. In the future, these results can be applied as the design parameter of electrical insulation for developing high voltage superconducting machines.

  9. Characterization of a dielectric barrier discharge in contact with liquid and producing a plasma activated water

    NASA Astrophysics Data System (ADS)

    Neretti, G.; Taglioli, M.; Colonna, G.; Borghi, C. A.

    2017-01-01

    In this work a low-temperature plasma source for the generation of plasma activated water (PAW) is developed and characterized. The plasma reactor was operated by means of an atmospheric-pressure air dielectric barrier discharge (DBD). The plasma generated is in contact with the water surface and is able to chemically activate the liquid medium. Electrodes were supplied by both sinusoidal and nanosecond-pulsed voltage waveforms. Treatment times were varied from 2 to 12 min to increase the energy dose released to the water by the DBD plasma. The physics of the discharge was studied by means of electrical, spectroscopic and imaging diagnostics. The interaction between the plasma and the liquid was investigated as well. Temperature and composition of the treated water were detected. Images of the discharges showed a filamentary behaviour in the sinusoidal case and a more homogeneous behaviour in the nanosecond-pulsed one. The images and the electrical measurements allowed to evaluate an average electron number density of about 4  ×  1019 and 6  ×  1017 m-3 for the sinusoidal and nanosecond-pulsed discharges respectively. Electron temperatures in the range of 2.1÷2.6 eV were measured by using spectroscopic diagnostics. Rotational temperatures in the range of 318-475 K were estimated by fitting synthetic spectra with the measured ones. Water temperature and pH level did not change significantly after the exposure to the DBD plasma. The production of ozone and hydrogen peroxide within the water was enhanced by increasing the plasma treatment time and the energy dose. Numerical simulations of the nanosecond-pulsed discharge were performed by using a self-consistent coupling of state-to-state kinetics of the air mixture with the Boltzmann equation of free electron kinetics. Temporal evolution of the electron energy distribution function shows departure from the Maxwellian distribution especially during the afterglow phase of the discharge. When

  10. Laser-induced processes on the back side of dielectric surfaces using a CuSO4-based absorber liquid

    NASA Astrophysics Data System (ADS)

    Zehnder, Sarah; Lorenz, Pierre; Ehrhardt, Martin; Zimmer, Klaus; Schwaller, Patrick

    2014-03-01

    Micro-structured dielectric surfaces in combination with electrode structures are promising in the field of rapid prototyping of micro-sensors. In this work laser-induced back side etching and back side deposition using aqueous copper sulfate in form of a tartrate complex with formaldehyde as absorber liquid has been investigated regarding this aim. Results obtained with different laser systems ranging from UV to Near-IR and with pulse lengths from femtoseconds to nanoseconds will be presented, in order to give a wide-spread overview of the different observable effects. Depending on the specific setup and laser parameters, either well-defined compact Cu deposits, micro- or nanoscaled Cu droplets or ablation of the dielectric substrate was observed. Best quality crystalline and conducting Cu structures were achieved using ns pulses at 532 nm wavelength. Droplet formation with UV excimer laser was observed. Parameters influencing each configuration will be discussed.

  11. Hexatic and blue phases in a chiral liquid crystal: optical polarizing microscopy, synchrotron radiation and dielectric study

    NASA Astrophysics Data System (ADS)

    Sinha, Debashis; Debnath, Asim; Mandal, Pradip Kumar

    2014-09-01

    Phase behavior, structure and molecular dynamics of a chiral liquid crystalline compound, which exhibits SmG*, SmJ*, SmF*, SmI*, SmC*, SmA*, N* and BP*, have been investigated. Observed optical textures, synchrotron radiation diffraction data and frequency dependent dielectric spectroscopic study clearly depict the temperature evolution of the different hexatic smectic phases along with cholesteric and blue phase in a single compound. In hexatic phases dielectric absorption spectra show one low frequency relaxation process, related to the phase fluctuation of the bond orientational order, and one high frequency process related to amplitude fluctuation of the bond orientational order coupled with the polarization and tilt of the molecules. Goldstone and soft mode relaxation processes are detected, respectively, in SmC* and SmA* phases.

  12. Dynamics of glass-forming liquids. VIII. Dielectric signature of probe rotation and bulk dynamics in branched alkanes.

    PubMed

    Shahriari, Shervin; Mandanici, Andrea; Wang, Li-Min; Richert, Ranko

    2004-11-08

    We have measured the dielectric relaxation of several glass forming branched alkanes with very low dielectric loss in the frequency range 50 Hz-20 kHz. The molecular liquids of this study are 3-methylpentane, 3-methylheptane, 4-methylheptane, 2,3-dimethylpentane, and 2,4,6-trimethylheptane. All liquids display asymmetric loss peaks typical of supercooled liquids and slow beta relaxations of similar amplitudes. As an unusual feature, deliberate doping with 2-ethyl-1-hexanol, 5-methyl-2-hexanol, 2-methyl-1-butanol, 1-propanol, or 2-methyltetrahydrofuran at the 1 wt % level generates additional relaxation peaks at frequencies below those of the alpha relaxation. The relaxation times of these sub-alpha-peaks increase systematically with the size of the dopant molecules. Because these features are spectrally separate from the bulk dynamics, the rotational behavior and effective dipole moments of the probes can be studied in detail. For the alcohol guest molecules, the large relative rotational time scales and small effective dipole moments are indicative of hydrogen bonded clusters instead of individual molecules.

  13. Effect of dielectric permittivity on the performance of polymer dispersed liquid crystal (PDLC) electrolyte dye-sensitized solar cells (DSSCs)

    NASA Astrophysics Data System (ADS)

    Kamarudin, Muhammad A. A.; Khan, Ammar A.; Qasim, Malik M.; Wilkinson, Timothy D.

    2016-09-01

    Dye-sensitized solar cells (DSSCs) are a type of organic solar cell often cited for their high efficiency and easy fabrication. Recent studies have shown that modification of the standard liquid electrolyte DSSC architecture by the changing one of the components or the addition of additives often results in the improvement in one of the photovoltaic parameters and hence the overall efficiency. Here we explore a dielectric liquid crystal material which is a known insulator but possesses a high degree of order and optical anisotropy. In the presence of an applied electric field, the equilibrium of positive and negative charges are displaced in opposite directions. In this work, different mixtures with different dielectric anisotropies ranging from negative, zero and positive are formulated. These mixtures are then used to prepare polymer dispersed liquid crystal (PDLC) electrolytes and subsequently DSSC devices based on these PDLC electrolytes are fabricated. The morphology of the PDLC is observed through polarizing optical microscopy (POM) and the electrical/photovoltaic characterizations are performed through current density-voltage (J-V) measurements and electrochemical impedance spectroscopy.

  14. Effect of Dielectric Titanium, Yttrium, and Silicon Oxide Nanoparticles on Electro-Optical Characteristics of Polymer-Dispersed Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Zhdanov, K. R.; Romanenko, A. I.; Zharkova, G. M.

    2016-01-01

    Electro-optical characteristics of composite polymer-dispersed liquid crystals doped (implanted) with inorganic SiO2, TiO2, and Y2O3 nanoparticles in strong electric fields are studied. The composites were obtained by the method of phase separation of liquid crystals (5CB) and polymer (polyvinyl acetate). It is revealed that implantation of up to 1 wt.% of nanoparticles does not noticeably affect the morphology of the composites. The implanted particles change the mismatch between the refractive indices of the polymer and the liquid crystal, and the strong particle aggregation increases the light scattering that can improve the electrooptical contrast of the composites. Changes of the dielectric permittivity with the field are correlated with the light transmittance. It is found that the yttrium and silicon oxides decrease and the titanium oxides increase the Fredericks threshold field. The titanium oxides and to a greater extent the silicon oxides decrease the dependence of the light transmittance on the changes in the dielectric permittivity.

  15. A complementary organic inverter of porphyrazine thin films: low-voltage operation using ionic liquid gate dielectrics.

    PubMed

    Fujimoto, Takuya; Miyoshi, Yasuhito; Matsushita, Michio M; Awaga, Kunio

    2011-05-28

    We studied a complementary organic inverter consisting of a p-type semiconductor, metal-free phthalocyanine (H(2)Pc), and an n-type semiconductor, tetrakis(thiadiazole)porphyrazine (H(2)TTDPz), operated through the ionic-liquid gate dielectrics of N,N-diethyl-N-methyl(2-methoxyethyl)ammonium bis(trifluoromethylsulfonyl)imide (DEME-TFSI). This organic inverter exhibits high performance with a very low operation voltage below 1.0 V and a dynamic response up to 20 Hz.

  16. Dielectric relaxation in ionic liquid/dipolar solvent binary mixtures: A semi-molecular theory

    NASA Astrophysics Data System (ADS)

    Daschakraborty, Snehasis; Biswas, Ranjit

    2016-03-01

    A semi-molecular theory is developed here for studying dielectric relaxation (DR) in binary mixtures of ionic liquids (ILs) with common dipolar solvents. Effects of ion translation on DR time scale, and those of ion rotation on conductivity relaxation time scale are explored. Two different models for the theoretical calculations have been considered: (i) separate medium approach, where molecularities of both the IL and dipolar solvent molecules are retained, and (ii) effective medium approach, where the added dipolar solvent molecules are assumed to combine with the dipolar ions of the IL, producing a fictitious effective medium characterized via effective dipole moment, density, and diameter. Semi-molecular expressions for the diffusive DR times have been derived which incorporates the effects of wavenumber dependent orientational static correlations, ion dynamic structure factors, and ion translation. Subsequently, the theory has been applied to the binary mixtures of 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF4]) with water (H2O), and acetonitrile (CH3CN) for which experimental DR data are available. On comparison, predicted DR time scales show close agreement with the measured DR times at low IL mole fractions (xIL). At higher IL concentrations (xIL > 0.05), the theory over-estimates the relaxation times and increasingly deviates from the measurements with xIL, deviation being the maximum for the neat IL by almost two orders of magnitude. The theory predicts negligible contributions to this deviation from the xIL dependent collective orientational static correlations. The drastic difference between DR time scales for IL/solvent mixtures from theory and experiments arises primarily due to the use of the actual molecular volume ( Vmol dip ) for the rotating dipolar moiety in the present theory and suggests that only a fraction of Vmol dip is involved at high xIL. Expectedly, nice agreement between theory and experiments appears when experimental

  17. Dielectric relaxation in ionic liquid/dipolar solvent binary mixtures: A semi-molecular theory.

    PubMed

    Daschakraborty, Snehasis; Biswas, Ranjit

    2016-03-14

    A semi-molecular theory is developed here for studying dielectric relaxation (DR) in binary mixtures of ionic liquids (ILs) with common dipolar solvents. Effects of ion translation on DR time scale, and those of ion rotation on conductivity relaxation time scale are explored. Two different models for the theoretical calculations have been considered: (i) separate medium approach, where molecularities of both the IL and dipolar solvent molecules are retained, and (ii) effective medium approach, where the added dipolar solvent molecules are assumed to combine with the dipolar ions of the IL, producing a fictitious effective medium characterized via effective dipole moment, density, and diameter. Semi-molecular expressions for the diffusive DR times have been derived which incorporates the effects of wavenumber dependent orientational static correlations, ion dynamic structure factors, and ion translation. Subsequently, the theory has been applied to the binary mixtures of 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF4]) with water (H2O), and acetonitrile (CH3CN) for which experimental DR data are available. On comparison, predicted DR time scales show close agreement with the measured DR times at low IL mole fractions (x(IL)). At higher IL concentrations (x(IL) > 0.05), the theory over-estimates the relaxation times and increasingly deviates from the measurements with x(IL), deviation being the maximum for the neat IL by almost two orders of magnitude. The theory predicts negligible contributions to this deviation from the x(IL) dependent collective orientational static correlations. The drastic difference between DR time scales for IL/solvent mixtures from theory and experiments arises primarily due to the use of the actual molecular volume (V(mol)(dip)) for the rotating dipolar moiety in the present theory and suggests that only a fraction of V(mol)(dip) is involved at high x(IL). Expectedly, nice agreement between theory and experiments appears when

  18. Coaxial probe and apparatus for measuring the dielectric spectra of high pressure liquids and supercritical fluid mixtures

    NASA Astrophysics Data System (ADS)

    Lee, Sung B.; Smith, Richard L.; Inomata, Hiroshi; Arai, Kunio

    2000-11-01

    A probe and apparatus were developed for measuring the dielectric spectra (complex permittivity) of high pressure liquids and supercritical fluid mixtures. The probe consisted a 2.2 mm semirigid coaxial cable that was cut off flat and mounted into a high pressure tube. The apparatus for measuring complex permittivity consisted of the dielectric probe, cell, densimeter, piston for varying the system density at constant composition, and magnetic pump for agitation and recirculation, all of which were housed in a constant temperature air bath. The probe is simple, robust, inexpensive, and further, its design allows for quick connection to high pressure systems. Probe accuracy is estimated to be ±0.5 in ɛ' and ±0.5 in ɛ″ from 200 MHz to 18 GHz based on replicate measurements of calibration and 2σ deviations over the interval. Dielectric spectra were measured over the 200 MHz-20 GHz range for methanol+carbon dioxide mixture at 323.2 K and a pressures up to 18 MPa.

  19. Dielectric relaxation and solvation dynamics in a prototypical ionic liquid + dipolar protic liquid mixture: 1-butyl-3-methylimidazolium tetrafluoroborate + water.

    PubMed

    Zhang, Xin-Xing; Liang, Min; Hunger, Johannes; Buchner, Richard; Maroncelli, Mark

    2013-12-12

    Dielectric and solvation data on mixtures of 1-butyl-3-methylimidazilium tetrafluoroborate ([Im41][BF4]) + water are reported and used to examine the utility of dielectric solvation models. Dielectric permittivity and loss spectra (25 °C) were recorded over the frequency range 200 MHz to 89 GHz at 17 compositions and fit to a 4-Debye form. Dynamic Stokes shift measurements on the solute coumarin 153 (C153), made by combining fluorescence upconversion (80 fs resolution) and time-correlated single photon counting data (20 ns range), were used to determine the solvation response at 7 compositions (20.5 °C). All properties measured here were found to depend upon mixture composition in a simple continuous manner, especially when viewed in terms of volume fraction. Solvation response functions predicted by a simple dielectric continuum model are similar to but ∼7-fold faster than the spectral response functions measured with C153. The solvation data are in better agreement with the recently published predictions of a semimolecular model of Biswas and co-workers [J. Phys. Chem. B 2011, 115, 4011], but these latter predictions are systematically slow by a factor of ∼3.

  20. Relaxor-like dielectric response of spin liquid CuCrO{sub 2}

    SciTech Connect

    Mazumder, N. Roy, R.; Ghorai, U. K.; Saha, S.; Chattopadhyay, K. K.

    2014-04-24

    Broadband dielectric analysis (10{sup −2}-10{sup 7} Hz) of layered triangular lattice CuCrO{sub 2} is performed (123 K - 473 K) and analyzed in connection with recently observed spin frustration in this multiferroic [M. Poienar et al. Phys. Rev. B 81, 104411, (2010); M. Frontzek et al. Phys. Rev. B 84, 094448, (2011)]. Most unexpectedly, this well known delafossite has found to have nontrivial charge degrees of freedom, being characterized by a relaxor-like dielectric relaxation around 375 K with FWHM of ∼100K. The result strongly suggests the existence of intermolecular Coulomb interaction between charge disproportionation induced electric dipoles.

  1. Dielectric Susceptibility of Liquid Water: Microscopic Insights from Coherent and Incoherent Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Arbe, A.; Malo de Molina, P.; Alvarez, F.; Frick, B.; Colmenero, J.

    2016-10-01

    The analysis of neutron scattering results on H dynamics (H2O ) and the dynamic structure factor (D2O ) around the intermolecular peak and at intermediate length scales in terms of the susceptibilities reveals three processes (diffusive, local relaxational and vibrational) at frequencies below 3 THz, to which the contributions commonly invoked in dielectric studies can be directly mapped. We achieve a unified description of the results from both techniques, clarifying the nature of the molecular motions involved in the dielectric spectra and their impact on the structural relaxation.

  2. Effect of flip-flop motion on dielectric spectra of highly ordered liquid crystals

    NASA Astrophysics Data System (ADS)

    Osiecka, N.; Massalska-Arodź, M.; Galewski, Z.; Chłedowska, K.; Bąk, A.

    2015-11-01

    This paper presents studies of dielectric response of chosen Schiff bases, which have similar molecular structures with different isomerizations of an azomethine bridging group, alkyloxy chain length with n =5 or n =6 carbon atoms, and a bromine or chlorine halogen terminal atom. Significant differences in the values of the maximum of dielectric absorption related to flip-flop molecular jumps in hexagonal smectic-BCry phases have been found despite small differences of molecular dipole moments in these substances. This phenomenon is discussed in relation to the possibilities of the creation of dimers and to steric factors favoring motions.

  3. Dynamics of glass-forming liquids. X. Dielectric relaxation of 3-bromopentane as molecular probes in 3-methylpentane.

    PubMed

    Huang, Wei; Shahriari, Shervin; Richert, Ranko

    2005-10-22

    The glass-forming liquids 3-bromopentane (3BP) and 3-methylpentane (3MP) are readily miscible across the entire composition range, although their polarities differ considerably. As noted by Berberian [J. Non-Cryst. Solids 131-133, 48 (1991)], the nearly matching molar volumes makes this binary system appear ideal for probe-sensitized measurements. We have performed a dielectric study of these mixtures in the range of 3BP mole fractions x from 2 x 10(-4) to 0.75. In the limit of low concentrations, x<0.5%, the dielectric loss peak of 3BP is slower by a factor of 2.5 relative to that of 3MP. Additionally, the relaxation behavior of the guest is more exponential than that of the host liquid. We interpret the distinct dynamics of the guest as a result of temporal averaging over the heterogeneous host dynamics, with the exchange time being near the longest structural time constant of the system.

  4. Heat transfer in two-dimensional jet impingement of a dielectric liquid on to a flat plate with uniform heat flux

    NASA Astrophysics Data System (ADS)

    Gil, C. B.; Su, G. S.; Chow, L. C.; Beam, J. E.

    1992-10-01

    Experiments were performed to investigate the convective heat transfer from a two-dimensional slot jet of the dielectric liquid PAO to a smooth 15.2 mm by 9.5 mm film resistor surface. The effects of nozzle width, nozzle-to-plate distance, impinging velocity, and liquid properties bave been examined. Heat transfer correlations and a discussion of relative parametric effects are provided.

  5. Towards Automated Benchmarking of Atomistic Forcefields: Neat Liquid Densities and Static Dielectric Constants from the ThermoML Data Archive

    PubMed Central

    Beauchamp, Kyle A.; Behr, Julie M.; Rustenburg, Ariën S.; Bayly, Christopher I.; Kroenlein, Kenneth; Chodera, John D.

    2015-01-01

    Atomistic molecular simulations are a powerful way to make quantitative predictions, but the accuracy of these predictions depends entirely on the quality of the forcefield employed. While experimental measurements of fundamental physical properties offer a straightforward approach for evaluating forcefield quality, the bulk of this information has been tied up in formats that are not machine-readable. Compiling benchmark datasets of physical properties from non-machine-readable sources requires substantial human effort and is prone to the accumulation of human errors, hindering the development of reproducible benchmarks of forcefield accuracy. Here, we examine the feasibility of benchmarking atomistic forcefields against the NIST ThermoML data archive of physicochemical measurements, which aggregates thousands of experimental measurements in a portable, machine-readable, self-annotating IUPAC-standard format. As a proof of concept, we present a detailed benchmark of the generalized Amber small molecule forcefield (GAFF) using the AM1-BCC charge model against experimental measurements (specifically bulk liquid densities and static dielectric constants at ambient pressure) automatically extracted from the archive, and discuss the extent of data available for use in larger scale (or continuously performed) benchmarks. The results of even this limited initial benchmark highlight a general problem with fixed-charge forcefields in the representation low dielectric environments such as those seen in binding cavities or biological membranes. PMID:26339862

  6. Breakdown and Partial Discharge Measurements of Some Commonly Used Dielectric Materials in Liquid Nitrogen for HTS Applications

    SciTech Connect

    James, David Randy; Sauers, Isidor; Ellis, Alvin R; Tuncer, Enis; Tekletsadik, Kasegn; Hazelton, Drew

    2007-01-01

    For high temperature superconducting (HTS) power applications it is necessary to improve the understanding of the dielectric properties of materials in a cryogenic environment. It is necessary to know the breakdown strength of materials and systems as a function of gap in order to scale to higher voltages. The partial discharge (PD) onset voltage for materials is also very important since the primary aging mechanism at cryogenic temperature is PD. Another important design characteristic is the surface flashover voltage of a material in liquid nitrogen as a function of gap. With these characteristics in mind, several generic materials were investigated under a variety of electrode and gap configurations. The impulse breakdown voltage and PD onset of three types of commercial polyetherimide, filled and unfilled, were measured at room temperature and 77 K. A modest increase in PD onset voltage was observed at the lower temperature. Breakdown voltages of fiberglass reinforced plastic (FRP) cylinders for two wall thicknesses were measured which showed a decrease in strength at the larger gap. Breakdown voltages for liquid nitrogen using a sphere-plane electrode geometry were measured. Also flashover voltages along a FRP plate immersed in liquid nitrogen were performed for sphere-plane and rod-plane electrodes at 1 bar pressure. It was found that the breakdown voltage increased only slightly with increasing gap lengths.

  7. Cooling of a multichip electronic module by means of confined two-dimensional jets of dielectric liquid

    NASA Astrophysics Data System (ADS)

    Wadsworth, D. C.; Mudawar, I.

    1990-11-01

    Experiments were performed to investigate single-phase heat transfer from a smooth 12.7 x 12.7-sq-mm simulated chip to a two-dimensional jet of dielectric FC-72 liquid issuing from a thin rectangular slot into a channel confined between the chip surface and nozzle plate. The effects of jet width, confinement channel height, and impingement velocity have been examined. Channel height had a negligible effect on the heat-transfer performance of the jet. A correlation for the convective heat-transfer coefficient is presented as a function of jet width, heater length, flow velocity, and fluid properties. A self-contained multichip cooling module consisting of a 3 x 3 array of heat sources confirmed the uniformity and predictability of cooling for each of the nine chips, and proved the cooling module is well suited for packaging large arrays of high-power-density chips.

  8. Cooling of a multichip electronic module by means of confined two-dimensional jets of dielectric liquid

    SciTech Connect

    Wadsworth, D.C.; Mudawar, I. )

    1990-11-01

    Experiments were performed to investigate single-phase heat transfer froma smooth 12.7 {times} 12.7 mm{sup 2} simulated chip to a two-dimensional jet of dielectric Fluorinert FC-72 liquid issuing from a thin rectangular slot into a channel confined between the chip surface and nozzle plate. The effects of jet width, confined channel height, and impingement velocity have been examined. Channel height had a negligible effect ont eh theat transfer performance of the jet for the conditions of the present study. A correlation for the convective heat transfer coefficient is presented as a function of jet, width, heat length, flow velocity, and fluid properties. A self-contained multichip cooling module consisting of a 3 {times} 3 array of heat sources confirmed the uniformity and predictability of cooling for each of the nine chips, and proved the cooling module is well suited for packaging large arrays of high-power density chips.

  9. Contributions to the second order dielectric response of an electron liquid

    NASA Astrophysics Data System (ADS)

    Bachlechner, Martina E.; Miesenboeck, Helga M.; Macke, Wilhelm

    1988-06-01

    The dielectric response function χ of a uniform electron gas is investigated up to the second order of the Coulomb interaction with different methods. When examining all polarisation diagrams with two interaction lines, it is confirmed that previous work in the Green's function formalism does not contain all second order processes and the importance of the corrections is pointed out. It is further shown, how the evaluation of χ with Green's function can be greatly simplified when taking into account the symmetry of the expressions.

  10. Dynamical processes in a superpressed glass-forming liquid studied by dielectric spectroscopy

    NASA Astrophysics Data System (ADS)

    Paluch, M.; Ziolo, J.

    1998-11-01

    Dielectric measurements of poly(bisphenol A-co-epichlorohydrin), glicydyl end-capped have been carried out at pressures from 0.1 MPa to 350 MPa. Two different types of relaxation phenomena, namely primary (α) and conductivity relaxation have been studied. It was found that conductivity relaxation (reflecting translational diffusion of mobile ions) is decoupled from α-relaxation. Pressure dependences of the characteristic relaxation time for both processes obey the following law: τ = τ0exp [CpP/P0 - P].

  11. Dipolar self-consistent field theory for ionic liquids between charged plates: Effects of dielectric contrast between cation and anion under external electrostatic fields

    NASA Astrophysics Data System (ADS)

    Nakamura, Issei

    We develop a new dipolar self-consistent field theory (DSCFT) for both incompressible and compressible ionic liquids under external electrostatic fields. Our theory accounts for the difference between the dipole moments and the molecular volumes of the cation and anion, and the double layer caused by the strong association of the ions with the electrodes. To date, few theoretical studies have considered the dielectric contrast between the cation and anion. Thus, our study focuses on the effect of the dielectric inhomogeneity on the ion distribution and the capacitance. Our theory shows that the capacitance changes with the applied voltage in agreement with experimental observations. Importantly, the dielectric contrast and the difference in molecular volumes between the cation and anion have equal effects on the magnitude of the capacitance. We also consider compressible ionic liquids by developing a hybrid of DSCFT combined with Monte Carlo simulations. We then demonstrate that the hard-core nature of the ions causes oscillations in the density profile and dielectric value near the charged plates. Accordingly, the dielectric constants derived from the classical theories of Onsager and Kirkwood are shown to be gross approximations of the true situation in nanochannels. National Natural Science Foundation of China (21474112).

  12. Probing the conformational changes of proteins in liquid water by dielectric terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Charkhesht, Ali; George, Deepu; Vinh, Nguyen

    2015-03-01

    Proteins solvated in their biological milieu are expected to exhibit strong absorption in the terahertz range that contain information on their global and sub-global collective vibrational modes (conformational dynamics) and global dynamical correlations among solvent water molecules and proteins. Measurements in this region, however, are challenging due to the strong absorption of water and often severe interference artifacts. In response, we have developed a highly sensitive dielectric terahertz frequency-domain system and a terahertz-time domain system for probing the collective dynamics in aqueous solution. Using these techniques we explore the complex dielectric response from 5 GHz up to 3 THz that directly probes such questions as the hydration level around proteins and the large scale vibrational modes of biological polymers. We make a direct comparison to the existing molecular dynamic simulations and normal mode calculations and investigate the dependence of the terahertz frequency dynamics on protein concentration. Our measurements shed light on the macromolecular motions in a biologically relevant water environment.

  13. Comparative dielectric studies on two hydrogen-bonded and van der Waals liquids

    NASA Astrophysics Data System (ADS)

    Kaminski, K.; Wlodarczyk, P.; Hawelek, L.; Adrjanowicz, K.; Wojnarowska, Z.; Paluch, M.; Kaminska, E.

    2011-06-01

    Broadband dielectric measurements were performed in a wide range of temperatures on glucose, maltose, and their acetyl derivatives. We have indicated that molecular dynamics above and below the glass transition temperature differ considerably for the hydrogen-bonded and van der Waals systems. We have shown that structural relaxation dispersions of D-glucose and maltose are broader than those obtained for peracetyl carbohydrates. Moreover, glass transition temperatures of the former systems are much higher than for the latter ones. In the glassy state of both glucose and its acetyl derivatives only one well-separated secondary relaxation process was identified. In the case of maltose and peracetyl maltose a completely different situation was observed. In the former carbohydrate two secondary modes were detected, whereas in the latter one only a faster relaxation process was visible in the glassy state. This finding is discussed in greater detail on the basis of density functional theory calculations.

  14. A study of dielectric breakdown along insulators surrounding conductors in liquid argon

    SciTech Connect

    Lockwitz, Sarah; Jostlein, Hans

    2016-03-22

    High voltage breakdown in liquid argon is an important concern in the design of liquid argon time projection chambers, which are often used as neutrino and dark matter detectors. We have made systematic measurements of breakdown voltages in liquid argon along insulators surrounding negative rod electrodes where the breakdown is initiated at the anode. The measurements were performed in an open cryostat filled with commercial grade liquid argon exposed to air, and not the ultra-pure argon required for electron drift. While not addressing all high voltage concerns in liquid argon, these measurements have direct relevance to the design of high voltage feedthroughs especially for averting the common problem of flash-over breakdown. The purpose of these tests is to understand the effects of materials, of breakdown path length, and of surface topology for this geometry and setup. We have found that the only material-specific effects are those due to their permittivity. We have found that the breakdown voltage has no dependence on the length of the exposed insulator. Lastly, a model for the breakdown mechanism is presented that can help inform future designs.

  15. A study of dielectric breakdown along insulators surrounding conductors in liquid argon

    DOE PAGES

    Lockwitz, Sarah; Jostlein, Hans

    2016-03-22

    High voltage breakdown in liquid argon is an important concern in the design of liquid argon time projection chambers, which are often used as neutrino and dark matter detectors. We have made systematic measurements of breakdown voltages in liquid argon along insulators surrounding negative rod electrodes where the breakdown is initiated at the anode. The measurements were performed in an open cryostat filled with commercial grade liquid argon exposed to air, and not the ultra-pure argon required for electron drift. While not addressing all high voltage concerns in liquid argon, these measurements have direct relevance to the design of highmore » voltage feedthroughs especially for averting the common problem of flash-over breakdown. The purpose of these tests is to understand the effects of materials, of breakdown path length, and of surface topology for this geometry and setup. We have found that the only material-specific effects are those due to their permittivity. We have found that the breakdown voltage has no dependence on the length of the exposed insulator. Lastly, a model for the breakdown mechanism is presented that can help inform future designs.« less

  16. Polydimethylsiloxane as dielectric and hydrophobic material in electro-wetting liquid lens

    NASA Astrophysics Data System (ADS)

    Wang, Liang; Duan, Junping; Zhang, Binzhen; Wang, Wanjun

    2016-10-01

    An electro-wetting-based variable-focus liquid lens with a spin coated polydimethylsiloxane (PDMS) layer is presented. The PDMS layer acts as both insulation and hydrophobic material of the liquid lens. By changing the applied voltage between the two electrodes, the radius of the water-oil contact curved surface is adjusted to realize the zoom function. In preparation process, at first, the liquid lens is divided into two parts, the PDMS substrate and the cavity, and then two parts of liquid lens are bonding together after surface treatment. After liquid injection and sealing cavity, the whole process was accomplished. The zooming performance of lens is tested, and COMSOL is used to analyze the shape of the water-oil contact curved surface at different voltages, the results shows that with the applied voltage changing from 0V to 120V, the height of meniscus vertex reduced from 2.41mm to 1.67mm, and the focal length changes from -14.3mm to infinity first, and then to 27.1mm.

  17. Dielectric measurements of nanoliter liquids with a photonic crystal resonator at terahertz frequencies

    SciTech Connect

    Hanham, S. M. Watts, C.; Klein, N.; Otter, W. J.; Lucyszyn, S.

    2015-07-20

    We present a highly sensitive technique for determining the complex permittivity of nanoliter liquid samples in the terahertz band based on a photonic crystal resonator and microcapillary. Liquids are characterized by using a capillary tube to introduce a ∼4 nl liquid sample into the electromagnetic field of a resonant mode confined by an L3 resonant cavity in a high-resistivity silicon photonic crystal slab. Monitoring the perturbation of the resonant frequency and unloaded Q-factor of the resonant mode at 100 GHz and ∼5800, respectively, allows a sample's permittivity to be calculated. An analytical model describing the system response based on perturbation theory and quasi-static analysis of the electric field within the capillary is also presented and found to agree well with FEM simulations and experimental measurements of ethanol-water mixtures of various concentrations for low to moderate loss tangents of the liquid samples. We demonstrate the utility of this approach by measuring the complex permittivity of several bioliquids, including suspensions of red and white blood cells. These results represent a step towards a lab-on-a-chip device for the analysis of extremely small quantities of biological, toxic, explosive, and other liquid types at terahertz frequencies.

  18. Dielectric measurements of nanoliter liquids with a photonic crystal resonator at terahertz frequencies

    NASA Astrophysics Data System (ADS)

    Hanham, S. M.; Watts, C.; Otter, W. J.; Lucyszyn, S.; Klein, N.

    2015-07-01

    We present a highly sensitive technique for determining the complex permittivity of nanoliter liquid samples in the terahertz band based on a photonic crystal resonator and microcapillary. Liquids are characterized by using a capillary tube to introduce a ˜4 nl liquid sample into the electromagnetic field of a resonant mode confined by an L3 resonant cavity in a high-resistivity silicon photonic crystal slab. Monitoring the perturbation of the resonant frequency and unloaded Q-factor of the resonant mode at 100 GHz and ˜5800, respectively, allows a sample's permittivity to be calculated. An analytical model describing the system response based on perturbation theory and quasi-static analysis of the electric field within the capillary is also presented and found to agree well with FEM simulations and experimental measurements of ethanol-water mixtures of various concentrations for low to moderate loss tangents of the liquid samples. We demonstrate the utility of this approach by measuring the complex permittivity of several bioliquids, including suspensions of red and white blood cells. These results represent a step towards a lab-on-a-chip device for the analysis of extremely small quantities of biological, toxic, explosive, and other liquid types at terahertz frequencies.

  19. Studies of nanosecond pulse surface ionization wave discharges over solid and liquid dielectric surfaces

    NASA Astrophysics Data System (ADS)

    Petrishchev, Vitaly; Leonov, Sergey; Adamovich, Igor V.

    2014-12-01

    Surface ionization wave discharges generated by high-voltage nanosecond pulses, propagating over a planar quartz surface and over liquid surfaces (distilled water and 1-butanol) have been studied in a rectangular cross section test cell. The discharge was initiated using a custom-made, alternating polarity, high-voltage nanosecond pulse plasma generator, operated at a pulse repetition rate of 100-500 Hz, with a pulse peak voltage and current of 10-15 kV and 7-20 A, respectively, a pulse FWHM of ˜100 ns, and a coupled pulse energy of 2-9 mJ/pulse. Wave speed was measured using a capacitive probe. ICCD camera images demonstrated that the ionization wave propagated predominantly over the quartz wall or over the liquid surface adjacent to the grounded waveguide placed along the bottom wall of the test cell. Under all experimental conditions tested, the surface plasma ‘sheet’ was diffuse and fairly uniform, both for positive and negative polarities. The parameters of ionization wave discharge propagating over distilled water and 1-butanol surfaces were close to those of the discharge over a quartz wall. No perturbation of the liquid surface by the discharge was detected. In most cases, the positive polarity surface ionization wave propagated at a higher speed and over a longer distance compared to the negative polarity wave. For all three sets of experiments (surface ionization wave discharge over quartz, water and 1-butanol), wave speed and travel distance decreased with pressure. Diffuse, highly reproducible surface ionization wave discharge was also observed over the liquid butanol-saturated butanol vapor interface, as well as over the distilled water-saturated water vapor interface, without buffer gas flow. No significant difference was detected between surface ionization discharges sustained using single-polarity (positive or negative), or alternating polarity high-voltage pulses. Plasma emission images yielded preliminary evidence of charge removal from the

  20. Environmentally friendly power generator based on moving liquid dielectric and double layer effect

    PubMed Central

    Huynh, D. H.; Nguyen, T. C.; Nguyen, P. D.; Abeyrathne, C. D.; Hossain, Md. S.; Evans, R.; Skafidas, E.

    2016-01-01

    An electrostatic power generator converts mechanical energy to electrical energy by utilising the principle of variable capacitance. This change in capacitance is usually achieved by varying the gap or overlap between two parallel metallic plates. This paper proposes a novel electrostatic micro power generator where the change in capacitance is achieved by the movement of an aqueous solution of NaCl. A significant change in capacitance is achieved due to the higher than air dielectric constant of water and the Helmholtz double layer capacitor formed by ion separation at the electrode interfaces. The proposed device has significant advantages over traditional electrostatic devices which include low bias voltage and low mechanical frequency of operation. This is critical if the proposed device is to have utility in harvesting power from the environment. A figure of merit exceeding 10000(108μW)/(mm2HzV2) which is two orders of magnitude greater than previous devices, is demonstrated for a prototype operating at a bias voltage of 1.2 V and a droplet frequency of 6 Hz. Concepts are presented for large scale power harvesting. PMID:27255577

  1. Electron transport in fast dielectric liquids at high applied electric fields

    SciTech Connect

    Faidas, H.; McCorkle, D.L. . Dept. of Physics); Christophorou, L.G. )

    1990-01-01

    The drift velocity, w, of excess electrons as a function of the applied uniform electric field, E, in liquid 2,2-dimethylpropane (TMC), tetramethylsilane (TMS), tetramethylgermanium (TMG), tetramethyltin (TMT), 2,2,4,4-tetramethylpentane (TMP) and in mixtures of TMS with TMP (mole ratio M = 1.31/1) and n-pentane (M = 102/1, 17/1, and 5.6/1) has been measured for E-values up to {approximately}10{sup 5} V cm{sup {minus}1}. The thermal electron mobility in the above liquids is 71.5, 119.3, 114.7, 85.7, 31.8, 39.1, 118, 85, and 47.6 cm{sup 2} s{sup {minus}1} V{sup {minus}1}, respectively. 8 refs., 2 figs., 1 tab.

  2. Electrically switchable, polarization-independent diffraction grating based on negative dielectric anisotropy liquid crystal

    NASA Astrophysics Data System (ADS)

    Zhu, Minhua; Carbone, Giovanni; Rosenblatt, Charles

    2006-06-01

    An atomic force microscope is used to scribe polymer-coated substrates to create an electrically controlled liquid crystal-based polarization grating. The grating is nondiffracting in the voltage-off state and diffracting in the voltage-on state. Based upon an optical phase difference of approximately π between adjacent pixels, the grating's efficiency is independent of optical polarization and can be prepared for diffraction in either one or two dimensions.

  3. Design of 1-μm-pitch liquid crystal spatial light modulators having dielectric shield wall structure for holographic display with wide field of view

    NASA Astrophysics Data System (ADS)

    Isomae, Yoshitomo; Shibata, Yosei; Ishinabe, Takahiro; Fujikake, Hideo

    2017-03-01

    In the development of electronic holographic displays with a wide field of view, one issue is the realization of 1-μm-pitch spatial light modulators (SLMs) using liquid crystal on silicon (LCOS) techniques. We clarified that it is necessary to suppress not only the leakage of fringe electric fields from adjacent pixels but also the effect of elastic forces in the liquid crystal to achieve full-phase modulation (2π) in individual pixels. We proposed a novel LCOS-SLM with a dielectric shield wall structure, and achieved driving of individual 1-μm-pitch pixels. We also investigated the optimum values for width and dielectric constant of the wall structure when enlarging the area that can modulate light in the pixels. These results contribute to the design of 1-μm-pitch LCOS-SLM devices for wide-viewing-angle holographic displays.

  4. Pesticide analysis at ppt concentration levels: coupling nano-liquid chromatography with dielectric barrier discharge ionization-mass spectrometry.

    PubMed

    Mirabelli, Mario F; Wolf, Jan-Christoph; Zenobi, Renato

    2016-05-01

    We report the coupling of nano-liquid chromatography (nano-LC) with an ambient dielectric barrier discharge ionization (DBDI)-based source. Detection and quantification were carried out by high-resolution mass spectrometry (MS), using an LTQ-Orbitrap in full scan mode. Despite the fact that nano-LC systems are rarely used in food analysis, this coupling was demonstrated to deliver extremely high sensitivity in pesticide analysis, with limits of detection (LODs) as low as 10 pg/mL. In all cases, the limits of quantification (LOQs) were compliant with the current EU regulation. An excellent signal linearity over up to four orders of magnitude was also observed. Therefore, this method can easily compete with conventional GC-(EI)-MS or LC-ESI-MS/MS methods and in some cases outperform them. The method was successfully tested for food sample analysis, with apples and baby food, extracted using the QuEChERS approach. Our results demonstrate an outstanding sensitivity (at femtogram level) and reproducibility of the nano-LC-DBDI coupling, capable of improving routine pesticide analysis. To the best of our knowledge, this is the most sensitive and reproducible plasma-MS-based method for pesticide analysis reported to date.

  5. Influence of ionic liquid and ionic salt on protein against the reactive species generated using dielectric barrier discharge plasma

    NASA Astrophysics Data System (ADS)

    Attri, Pankaj; Sarinont, Thapanut; Kim, Minsup; Amano, Takaaki; Koga, Kazunori; Cho, Art E.; Ha Choi, Eun; Shiratani, Masaharu

    2015-12-01

    The presence of salts in biological solution can affect the activity of the reactive species (RS) generated by plasma, and so they can also have an influence on the plasma-induced sterilization. In this work, we assess the influence that diethylammonium dihydrogen phosphate (DEAP), an ionic liquid (IL), and sodium chloride (NaCl), an ionic salt (IS), have on the structural changes in hemoglobin (Hb) in the presence of RS generated using dielectric barrier discharge (DBD) plasma in the presence of various gases [O2, N2, Ar, He, NO (10%) + N2 and Air]. We carry out fluorescence spectroscopy to verify the generation of •OH with or without the presence of DEAP IL and IS, and we use electron spin resonance (ESR) to check the generation of H• and •OH. In addition, we verified the structural changes in the Hb structure after treatment with DBD in presence and absence of IL and IS. We then assessed the structural stability of the Hb in the presence of IL and IS by using molecular dynamic (MD) simulations. Our results indicate that the IL has a strong effect on the conservation of the Hb structure relative to that of IS against RS generated by plasma.

  6. Dependence of image flickering of negative dielectric anisotropy liquid crystal on the flexoelectric coefficient ratio and the interdigitated electrode structure

    NASA Astrophysics Data System (ADS)

    Lee, Hyojin; Kim, Hyungmin; Kim, Jongyoon; Lee, Ji-Hoon

    2016-02-01

    We experimentally measured the splay (e s) and the bend flexoelectric coefficients (e b) of liquid crystal (LC) mixtures with negative dielectric anisotropy and investigated their effect on the image flicker of the LC mixtures driven with a low frequency electric field. Using the experimentally measured e s and e b, we simulated the transmittance (TR) response with the continuum model. First, we confirmed that the TR simulation results were approximated to the experimental data with only small variation. Second, we varied the simulation parameters of e s , e b, the separation (S), and the width (W) of the interdigitated electrodes and tried to find the optimum condition showing the least image flicker. Given W  =  3.0 μm and e b  =  5.7 pC m-1, it was found that the image flicker could be minimized when the e s /e b value was about 2.4 and the S/W ratio was about 1.5. Because the e s /e b value of the rod-like LC material is generally less than 1, it is desirable to design an interdigitated electrode structure to minimize the image flicker effect.

  7. Self-Powered Random Number Generator Based on Coupled Triboelectric and Electrostatic Induction Effects at the Liquid-Dielectric Interface.

    PubMed

    Yu, Aifang; Chen, Xiangyu; Cui, Haotian; Chen, Libo; Luo, Jianjun; Tang, Wei; Peng, Mingzeng; Zhang, Yang; Zhai, Junyi; Wang, Zhong Lin

    2016-12-27

    Modern cryptography increasingly employs random numbers generated from physical sources in lieu of conventional software-based pseudorandom numbers, primarily owing to the great demand of unpredictable, indecipherable cryptographic keys from true random numbers for information security. Thus, far, the sole demonstration of true random numbers has been generated through thermal noise and/or quantum effects, which suffers from expensive and complex equipment. In this paper, we demonstrate a method for self-powered creation of true random numbers by using triboelectric technology to collect random signals from nature. This random number generator based on coupled triboelectric and electrostatic induction effects at the liquid-dielectric interface includes an elaborately designed triboelectric generator (TENG) with an irregular grating structure, an electronic-optical device, and an optical-electronic device. The random characteristics of raindrops are harvested through TENG and consequently transformed and converted by electronic-optical device and an optical-electronic device with a nonlinear characteristic. The cooperation of the mechanical, electrical, and optical signals ensures that the generator possesses complex nonlinear input-output behavior and contributes to increased randomness. The random number sequences are deduced from final electrical signals received by an optical-electronic device using a familiar algorithm. These obtained random number sequences exhibit good statistical characteristics, unpredictability, and unrepeatability. Our study supplies a simple, practical, and effective method to generate true random numbers, which can be widely used in cryptographic protocols, digital signatures, authentication, identification, and other information security fields.

  8. Influence of ionic liquid and ionic salt on protein against the reactive species generated using dielectric barrier discharge plasma

    PubMed Central

    Attri, Pankaj; Sarinont, Thapanut; Kim, Minsup; Amano, Takaaki; Koga, Kazunori; Cho, Art E.; Ha Choi, Eun; Shiratani, Masaharu

    2015-01-01

    The presence of salts in biological solution can affect the activity of the reactive species (RS) generated by plasma, and so they can also have an influence on the plasma-induced sterilization. In this work, we assess the influence that diethylammonium dihydrogen phosphate (DEAP), an ionic liquid (IL), and sodium chloride (NaCl), an ionic salt (IS), have on the structural changes in hemoglobin (Hb) in the presence of RS generated using dielectric barrier discharge (DBD) plasma in the presence of various gases [O2, N2, Ar, He, NO (10%) + N2 and Air]. We carry out fluorescence spectroscopy to verify the generation of •OH with or without the presence of DEAP IL and IS, and we use electron spin resonance (ESR) to check the generation of H• and •OH. In addition, we verified the structural changes in the Hb structure after treatment with DBD in presence and absence of IL and IS. We then assessed the structural stability of the Hb in the presence of IL and IS by using molecular dynamic (MD) simulations. Our results indicate that the IL has a strong effect on the conservation of the Hb structure relative to that of IS against RS generated by plasma. PMID:26656857

  9. The interaction between plasma filaments in dielectric barrier discharges and liquid covered wounds: electric fields delivered to model platelets and cells

    NASA Astrophysics Data System (ADS)

    Babaeva, Natalia Yu; Tian, Wei; Kushner, Mark J.

    2014-06-01

    The treatment of wounds by atmospheric pressure plasmas in the context of plasma medicine typically proceeds through a liquid layer covering exposed cells. The wounds and their liquid covering often have irregular shapes with electrical properties (i.e. conductivity and permittivities) that may differ not only from wound-to-wound but also for a single wound as healing proceeds. The differing shapes and electrical properties extend into the liquid within the wound that typically contains cellular materials such as blood platelets. The plasma, wound, liquid and intra-liquid cellular components represent an interacting system of mutual dependence. In this paper, we discuss the results from a computational investigation of the treatment of small, liquid-covered wounds by filamentary dielectric barrier discharges. The sizes of the wounds are of the order of the plasma filaments and the liquid within the wound, an approximation of blood serum, contains idealized blood platelets. We find that the electrical properties of a wound can have significant effects on the spreading of the plasma on its surface by virtue of the deformation of the vacuum electric fields due to the shape, the effective capacitance of the wound and the discontinuities in electrical permittivity. This in turn effects the penetration of the electric field to cells under the liquid. The orientation and permittivity of the platelets relative to the liquid determines the electric fields that may stimulate the platelets.

  10. Dielectric and thermodynamic study on the liquid crystal dimer α-(4-cyanobiphenyl-4'-oxy)-ω-(1-pyreniminebenzylidene-4'-oxy)undecane (CBO11O·Py).

    PubMed

    Sebastián, N; de la Fuente, M R; López, D O; Pérez-Jubindo, M A; Salud, J; Diez-Berart, S; Ros, M B

    2011-08-18

    Broadband dielectric spectroscopy (10(3) to 1.8 × 10(9) Hz) and specific heat measurements have been performed on the odd nonsymmetric liquid crystal dimer α-(4-cyanobiphenyl-4'-oxy)-ω-(1-pyreniminebenzylidene-4'-oxy)undecane (CBO11O·Py), as a function of temperature. The mesogenic behavior is restricted to a nematic mesophase which can be supercooled down to its corresponding glassy state if the cooling rate is fast enough (no less than 15 K·min(-1)). Dielectric measurements enable us to obtain the static permittivity and information about the molecular dynamics in the nematic mesophase as well as in the isotropic phase and across the isotropic-to-nematic phase transition. Two orientations (parallel and perpendicular) of the molecular director with regard to the probe electric field have been investigated. In the nematic mesophase, the dielectric anisotropy is revealed to be positive. Measurements of the parallel component of the dielectric permittivity are well explained by means of the molecular theory of dielectric relaxation in nematic dimers (J. Chem. Phys. 2004, 121 (16), 8079). The dimer is seen as a mixture of cis and trans conformers, and the model allows us to estimate their relative populations at each temperature. The main molecular motions are interpreted by the model as independent end-overend rotations of each terminal semirigid unit of the dimer. The nematic-to-isotropic phase transition has been exhaustively studied from the accurate evolution of the specific-heat and the static dielectric permittivity data. It has been concluded that the transition is first order in nature and follows the tricritical hypothesis. As a consequence, the nematic mesophase has been characterized as uniaxial despite the biaxiality and flexibility of the dimer molecule.

  11. Note: Tesla based pulse generator for electrical breakdown study of liquid dielectrics

    NASA Astrophysics Data System (ADS)

    Veda Prakash, G.; Kumar, R.; Patel, J.; Saurabh, K.; Shyam, A.

    2013-12-01

    In the process of studying charge holding capability and delay time for breakdown in liquids under nanosecond (ns) time scales, a Tesla based pulse generator has been developed. Pulse generator is a combination of Tesla transformer, pulse forming line, a fast closing switch, and test chamber. Use of Tesla transformer over conventional Marx generators makes the pulse generator very compact, cost effective, and requires less maintenance. The system has been designed and developed to deliver maximum output voltage of 300 kV and rise time of the order of tens of nanoseconds. The paper deals with the system design parameters, breakdown test procedure, and various experimental results. To validate the pulse generator performance, experimental results have been compared with PSPICE simulation software and are in good agreement with simulation results.

  12. Effect of microwave dielectric heating on intraparticle diffusion in reversed-phase liquid chromatography

    SciTech Connect

    Galinada, Wilmer; Guiochon, Georges A

    2005-08-01

    The influence of microwave (MW) irradiation on the mass transfer kinetics in reversed-phase liquid chromatography (RPLC) was studied by placing a column in a microwave oven and measuring the incremental change in the temperature of the column effluent stream at various microwave energies and mobile phase compositions. The microwave energy dissipated in the column was set between 15 and 200 W and the mobile phase composition used varied from 100 to 70, 50, and 10% methanol in water at 1.2 mL/min. At all the mobile phase compositions considered, the effluent temperature increased with increasing microwave energy. At 70% methanol, the mobile phase flow rate was set at 1.2, 2.0, and 2.8 mL/min. At 1.2 mL/min, the effluent temperatures at the lowest (15 W) and highest (200 W) microwave energy inputs were 25 {+-} 1 C and 41 {+-} 1 C for pure methanol, 25 {+-} 1 C and 48 {+-} 1 C for 70% methanol, 25 {+-} 1 C and 50 {+-} 1 C for 50% methanol, and, 25 {+-} 1 C and 52 {+-} 1 C for 10% methanol, respectively. With 70% methanol and microwave energy inputs of 15, 30, and 50 W, the effluent temperature did not change with increasing flow rate; a considerable change was observed at 100, 150, and 200 W between 1.2 and 2.0 mL/min and none between 2.0 and 2.8 mL/min. Chromatographic elution band profiles of propylbenzene were recorded under linear conditions, in 70% methanol solutions, for microwave energy inputs of 0, 15 and 30 W, at constant temperature. The intraparticle diffusion coefficient, D{sub e}, under microwave irradiation was ca. 20% higher than without irradiation. These preliminary results suggest that microwave irradiation may have a considerable influence on intraparticle diffusion in RPLC.

  13. Cell Gap-Dependent Transmittance Characteristic in a Fringe Field-Driven Homogeneously Aligned Liquid Crystal Cell with Positive Dielectric Anisotropy

    NASA Astrophysics Data System (ADS)

    Kim, Seung Jai; Kim, Hyang Yul; Lee, Seung Hee; Lee, Yong Kyun; Park, Kyu Chang; Jang, Jin

    2005-09-01

    Transmittance characteristic in a homogeneously aligned liquid crystal (LC) cell driven by a fringe-electric field is investigated as a function of cell gap using the LC with positive dielectric anisotropy. In this device, the fringe-electric field drives the LCs to rotate so that the dielectric torque is electrode-positional dependent, which results in electrode-position dependency in the LC’s rotating angle. As the cell gap decreases to 2 μm, more LCs are affected by surface anchoring, and the LCs above the center of electrodes, in which the LCs are twisted by elastic force between neighboring molecules, are less twisted compared to the 4 μm cell. Consequently, when the cell gap decreases from 4 to 2 μm, the transmittance also decreases even though the cell retardation value remains the same.

  14. Accurate Measurements of Dielectric and Optical Functions of Liquid Water and Liquid Benzene in the VUV Region (1-100 eV) Using Small-Angle Inelastic X-ray Scattering.

    PubMed

    Hayashi, Hisashi; Hiraoka, Nozomu

    2015-04-30

    Using a third-generation synchrotron source (the BL12XU beamline at SPring-8), inelastic X-ray scattering (IXS) spectra of liquid water and liquid benzene were measured at energy losses of 1-100 eV with 0.24 eV resolution for small momentum transfers (q) of 0.23 and 0.32 au with ±0.06 au uncertainty for q. For both liquids, the IXS profiles at these values of q converged well after we corrected for multiple scattering, and these results confirmed the dipole approximation for q ≤ ∼0.3 au. Several dielectric and optical functions [including the optical oscillator strength distribution (OOS), the optical energy-loss function (OLF), the complex dielectric function, the complex index of refraction, and the reflectance] in the vacuum ultraviolet region were derived and tabulated from these small-angle (small q) IXS spectra. These new data were compared with previously obtained results, and this comparison demonstrated the strong reproducibility and accuracy of IXS spectroscopy. For both water and benzene, there was a notable similarity between the OOSs of the liquids and amorphous solids, and there was no evidence of plasmon excitation in the OLF. The static structure factor [S(q)] for q ≤ ∼0.3 au was also deduced and suggests that molecular models that include electron correlation effects can serve as a good approximation for the liquid S(q) values over the full range of q.

  15. Effect of conducting polymer poly (3,4-ethylenedioxythiophene) (PEDOT) nanotubes on electro-optical and dielectric properties of a ferroelectric liquid crystal.

    PubMed

    Ghosh, S; Nayek, P; Roy, S K; Gangopadhyay, R; Rahaman Molla, M; Majumder, T P

    2011-04-01

    A detailed comparative study of the dielectric and electro-optical properties of a ferroelectric liquid crystal (FLC) and FLC after having doped with conducting polymer Poly (3,4-ethylenedioxythiophene) (PEDOT) nanotubes is done. The electro-optic study reveals a lower electrical response time, rotational viscosity and spontaneous polarization in the FLC/PEDOT nanocomposite system. By fitting the capacitance with voltage in a Preisach model, four dipolar species in both FLC and composites system have been obtained. The orientation of the four dipolar species in the composites system is such that the effective dipole moment in the transverse direction of the FLC molecule is less than that in FLC compound.

  16. Capacitive Cells for Dielectric Constant Measurement

    ERIC Educational Resources Information Center

    Aguilar, Horacio Munguía; Maldonado, Rigoberto Franco

    2015-01-01

    A simple capacitive cell for dielectric constant measurement in liquids is presented. As an illustrative application, the cell is used for measuring the degradation of overheated edible oil through the evaluation of their dielectric constant.

  17. Static dielectric constants and molecular dipole distributions of liquid water and ice-Ih investigated by the PAW-PBE exchange-correlation functional.

    PubMed

    Rusnak, Andrew J; Pinnick, Eric R; Calderon, Camilo E; Wang, Feng

    2012-07-21

    The static dielectric constants, ε(s), of ice-Ih and liquid water were calculated using density functional theory with the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional and the projector-augmented-wave (PAW) approach. Proton disordered ice configurations and uncorrelated liquid configurations were sampled with the electrostatic switching method using force fields specially designed to facilitate the ab initio free energy perturbation calculations. Our results indicate that PAW-PBE underestimates the ε(s) of both ice-Ih and liquid water but predicts the ratio of ice and water ε(s) in good agreement with experimental measurements. PAW-PBE gives average water dipole moments of 2.50 D in ice-Ih and 2.48 D in the liquid. Our results show that the fixed-charge water models developed by adaptive force matching can reproduce the PAW-PBE dipole moments with an error of approximately 5%. The ice and liquid models created in this work have polarizabilities of 1.32 Å(3) and 1.30 Å(3), respectively, along the HOH bisector direction.

  18. Propagation of large-amplitude waves on dielectric liquid sheets in a tangential electric field: exact solutions in three-dimensional geometry.

    PubMed

    Zubarev, Nikolay M; Zubareva, Olga V

    2010-10-01

    Nonlinear waves on sheets of dielectric liquid in the presence of an external tangential electric field are studied theoretically. It is shown that waves of arbitrary shape in three-dimensional geometry can propagate along (or against) the electric field direction without distortion, i.e., the equations of motion admit a wide class of exact traveling wave solutions. This unusual situation occurs for nonconducting ideal liquids with high dielectric constants in the case of a sufficiently strong field strength. Governing equations for evolution of plane symmetric waves on fluid sheets are derived using conformal variables. A dispersion relation for the evolution of small perturbations of the traveling wave solutions is obtained. It follows from this relation that, regardless of the wave shape, the amplitudes of small-scale perturbations do not increase with time and, hence, the traveling waves are stable. We also study the interaction of counterpropagating symmetric waves with small but finite amplitudes. The corresponding solution of the equations of motion describes the nonlinear superposition of the oppositely directed waves. The results obtained are applicable for the description of long waves on fluid sheets in a horizontal magnetic field.

  19. Precision liquid level sensor

    DOEpatents

    Field, M.E.; Sullivan, W.H.

    A precision liquid level sensor utilizes a balanced bridge, each arm including an air dielectric line. Changes in liquid level along one air dielectric line imbalance the bridge and create a voltage which is directly measurable across the bridge.

  20. Force Field Benchmark of Organic Liquids: Density, Enthalpy of Vaporization, Heat Capacities, Surface Tension, Isothermal Compressibility, Volumetric Expansion Coefficient, and Dielectric Constant.

    PubMed

    Caleman, Carl; van Maaren, Paul J; Hong, Minyan; Hub, Jochen S; Costa, Luciano T; van der Spoel, David

    2012-01-10

    The chemical composition of small organic molecules is often very similar to amino acid side chains or the bases in nucleic acids, and hence there is no a priori reason why a molecular mechanics force field could not describe both organic liquids and biomolecules with a single parameter set. Here, we devise a benchmark for force fields in order to test the ability of existing force fields to reproduce some key properties of organic liquids, namely, the density, enthalpy of vaporization, the surface tension, the heat capacity at constant volume and pressure, the isothermal compressibility, the volumetric expansion coefficient, and the static dielectric constant. Well over 1200 experimental measurements were used for comparison to the simulations of 146 organic liquids. Novel polynomial interpolations of the dielectric constant (32 molecules), heat capacity at constant pressure (three molecules), and the isothermal compressibility (53 molecules) as a function of the temperature have been made, based on experimental data, in order to be able to compare simulation results to them. To compute the heat capacities, we applied the two phase thermodynamics method (Lin et al. J. Chem. Phys.2003, 119, 11792), which allows one to compute thermodynamic properties on the basis of the density of states as derived from the velocity autocorrelation function. The method is implemented in a new utility within the GROMACS molecular simulation package, named g_dos, and a detailed exposé of the underlying equations is presented. The purpose of this work is to establish the state of the art of two popular force fields, OPLS/AA (all-atom optimized potential for liquid simulation) and GAFF (generalized Amber force field), to find common bottlenecks, i.e., particularly difficult molecules, and to serve as a reference point for future force field development. To make for a fair playing field, all molecules were evaluated with the same parameter settings, such as thermostats and barostats

  1. Two-phase mixed media dielectric with macro dielectric beads for enhancing resistivity and breakdown strength

    DOEpatents

    Falabella, Steven; Meyer, Glenn A; Tang, Vincent; Guethlein, Gary

    2014-06-10

    A two-phase mixed media insulator having a dielectric fluid filling the interstices between macro-sized dielectric beads packed into a confined volume, so that the packed dielectric beads inhibit electro-hydrodynamically driven current flows of the dielectric liquid and thereby increase the resistivity and breakdown strength of the two-phase insulator over the dielectric liquid alone. In addition, an electrical apparatus incorporates the two-phase mixed media insulator to insulate between electrical components of different electrical potentials. And a method of electrically insulating between electrical components of different electrical potentials fills a confined volume between the electrical components with the two-phase dielectric composite, so that the macro dielectric beads are packed in the confined volume and interstices formed between the macro dielectric beads are filled with the dielectric liquid.

  2. PRESSURE DEPENDENCE OF THE DIELECTRIC PROPERTIES OF SOME ORGANIC LIQUIDS AND OF FIFTEEN OF THE ALKALI HALIDES.

    DTIC Science & Technology

    eugenol , glycerol, diethyl ether, LiF, LiCl, NaF, NaCl, NaBr, NaI, KF, KCl, KBr, KI, RbBr, RbI, CsBr, CsI (single crystals). Temperature range 0-100...deg C., pressure range 1-4,000 kgf/sq. cm, frequency range 20-8 million Hz. Temperature dependence of the permittivity of alkali halides measured and dielectric dispersion in glycerol and eugenol investigated. (Author)

  3. Phase behavior and characterization of heptamethyltrisiloxane-based de Vries smectic liquid crystal by electro-optics, x rays, and dielectric spectroscopy

    NASA Astrophysics Data System (ADS)

    Sreenilayam, S. P.; Agra-Kooijman, D. M.; Panov, V. P.; Swaminathan, V.; Vij, J. K.; Panarin, Yu. P.; Kocot, A.; Panov, A.; Rodriguez-Lojo, D.; Stevenson, P. J.; Fisch, Michael R.; Kumar, Satyendra

    2017-03-01

    A heptamethyltrisiloxane liquid crystal (LC) exhibiting I -Sm A*-Sm C* phases has been characterized by calorimetry, polarizing microscopy, x-ray diffraction, electro-optics, and dielectric spectroscopy. Observations of a large electroclinic effect, a large increase in the birefringence (Δ n ) with electric field, a low shrinkage in the layer thickness (˜1.75%) at 20 °C below the Sm A*-Sm C* transition, and low values of the reduction factor (˜0.40) suggest that the Sm A* phase in this material is of the de Vries type. The reduction factor is a measure of the layer shrinkage in the Sm C* phase and it should be zero for an ideal de Vries. Moreover, a decrease in the magnitude of Δ n with decreasing temperature indicates the presence of the temperature-dependent tilt angle in the Sm A* phase. The electro-optic behavior is explained by the generalized Langevin-Debye model as given by Shen et al. [Y. Shen et al., Phys. Rev. E 88, 062504 (2013), 10.1103/PhysRevE.88.062504]. The soft-mode dielectric relaxation strength shows a critical behavior when the system goes from the Sm A* to the Sm C* phase.

  4. Toward Automated Benchmarking of Atomistic Force Fields: Neat Liquid Densities and Static Dielectric Constants from the ThermoML Data Archive.

    PubMed

    Beauchamp, Kyle A; Behr, Julie M; Rustenburg, Ariën S; Bayly, Christopher I; Kroenlein, Kenneth; Chodera, John D

    2015-10-08

    Atomistic molecular simulations are a powerful way to make quantitative predictions, but the accuracy of these predictions depends entirely on the quality of the force field employed. Although experimental measurements of fundamental physical properties offer a straightforward approach for evaluating force field quality, the bulk of this information has been tied up in formats that are not machine-readable. Compiling benchmark data sets of physical properties from non-machine-readable sources requires substantial human effort and is prone to the accumulation of human errors, hindering the development of reproducible benchmarks of force-field accuracy. Here, we examine the feasibility of benchmarking atomistic force fields against the NIST ThermoML data archive of physicochemical measurements, which aggregates thousands of experimental measurements in a portable, machine-readable, self-annotating IUPAC-standard format. As a proof of concept, we present a detailed benchmark of the generalized Amber small-molecule force field (GAFF) using the AM1-BCC charge model against experimental measurements (specifically, bulk liquid densities and static dielectric constants at ambient pressure) automatically extracted from the archive and discuss the extent of data available for use in larger scale (or continuously performed) benchmarks. The results of even this limited initial benchmark highlight a general problem with fixed-charge force fields in the representation low-dielectric environments, such as those seen in binding cavities or biological membranes.

  5. Optimal Super Dielectric Material

    DTIC Science & Technology

    2015-09-01

    electrically insulating materials filled to the point of incipient wetness (paste consistency) with liquids containing dissolved ions. This work...109. This strongly supports the fundamental hypothesis of SDM: In the presence of an electric field any electrically insulating, porous material...ABSTRACT The results of this study establish that powder-based super dielectric materials (SDM) are a large family of porous electrically

  6. Quasicritical behavior of the low-frequency dielectric permittivity in the isotropic phase of liquid crystalline materials.

    PubMed

    Drozd-Rzoska, A; Rzoska, S J; Zioło, J; Jadzyn, J

    2001-05-01

    Results presented give evidence of the existence of quasicritical, fluidlike behavior in the isotropic phase of 4-cyano-4-pentyl-biphenyl (5CB) for frequencies ranging from the static to the ionic-dominated [low-frequency (LF)] region. Despite the boost of dielectric permittivity on lowering the frequency below 1 kHz, values of the isotropic-nematic transition discontinuity (approximately 1.1 K) and the critical exponent alpha (approximately 0.5) remain constant. It is shown that the contribution from residual ionic impurities is a linear function of temperature in the critical, prenematic fluctuation-dominated region. The validity of the fluidlike and critical behavior for LF dielectric permittivity confirmed results of a derivative analysis of the experimental data: d(epsilon)/dT proportional to (T-T*)(-alpha), originally proposed for critical mixtures. Results of a preliminary test in the isotropic phase of 4-decyl-4'-isothiocyanatobiphenyl (10BT), on approaching the smectic-E phase, may indicate a general validity of results obtained.

  7. Non-Debye relaxation in the dielectric response of nematic liquid crystals: surface and memory effects in the adsorption-desorption process of ionic impurities.

    PubMed

    de Paula, J L; Santoro, P A; Zola, R S; Lenzi, E K; Evangelista, L R; Ciuchi, F; Mazzulla, A; Scaramuzza, N

    2012-11-01

    We demonstrate theoretically that the presence of ions in insulating materials such as nematic liquid crystals may be responsible for the dielectric spectroscopy behavior observed experimentally. It is shown that, at low frequencies, an essentially non-Debye relaxation process takes place due to surface effects. This is accomplished by investigating the effects of the adsorption-desorption process on the electrical response of an electrolytic cell when the generation and recombination of ions is present. The adsorption-desorption is governed by a non-usual kinetic equation in order to incorporate memory effects related to a non-Debye relaxation and the roughness of the surface. The analysis is carried out by searching for solutions to the drift-diffusion equation that satisfy the Poisson equation relating the effective electric field to the net charge density. We also discuss the effect of the mobility of the ions, i.e., situations with equal and different diffusion coefficients for positive and negative ions, on the impedance and obtain an exact expression for the admittance. The model is compared with experimental results measured for the impedance of a nematic liquid crystal sample and a very good agreement is obtained.

  8. Non-Debye relaxation in the dielectric response of nematic liquid crystals: Surface and memory effects in the adsorption-desorption process of ionic impurities

    NASA Astrophysics Data System (ADS)

    de Paula, J. L.; Santoro, P. A.; Zola, R. S.; Lenzi, E. K.; Evangelista, L. R.; Ciuchi, F.; Mazzulla, A.; Scaramuzza, N.

    2012-11-01

    We demonstrate theoretically that the presence of ions in insulating materials such as nematic liquid crystals may be responsible for the dielectric spectroscopy behavior observed experimentally. It is shown that, at low frequencies, an essentially non-Debye relaxation process takes place due to surface effects. This is accomplished by investigating the effects of the adsorption-desorption process on the electrical response of an electrolytic cell when the generation and recombination of ions is present. The adsorption-desorption is governed by a non-usual kinetic equation in order to incorporate memory effects related to a non-Debye relaxation and the roughness of the surface. The analysis is carried out by searching for solutions to the drift-diffusion equation that satisfy the Poisson equation relating the effective electric field to the net charge density. We also discuss the effect of the mobility of the ions, i.e., situations with equal and different diffusion coefficients for positive and negative ions, on the impedance and obtain an exact expression for the admittance. The model is compared with experimental results measured for the impedance of a nematic liquid crystal sample and a very good agreement is obtained.

  9. Morphology of SiO2 films as a key factor in alignment of liquid crystals with negative dielectric anisotropy

    PubMed Central

    Marino, Antigone; Otón, Eva; Bennis, Noureddine; Otón, Josè Manuel

    2016-01-01

    Control of liquid crystal (LC) orientation using a proper SiO2 alignment layer is essential for the optimization of vertically aligned nematic (VAN) displays. With this aim, we studied the optical anisotropy of thin SiO2 films by generalized ellipsometry as a function of deposition angle. The columnar SiO2 structure orientation measured by a noninvasive ellipsometry technique is reported for the first time, and its morphology influence on the LC alignment is demonstrated for large deposition angles. PMID:28144524

  10. Morphology of SiO2 films as a key factor in alignment of liquid crystals with negative dielectric anisotropy.

    PubMed

    Tkachenko, Volodymyr; Marino, Antigone; Otón, Eva; Bennis, Noureddine; Otón, Josè Manuel

    2016-01-01

    Control of liquid crystal (LC) orientation using a proper SiO2 alignment layer is essential for the optimization of vertically aligned nematic (VAN) displays. With this aim, we studied the optical anisotropy of thin SiO2 films by generalized ellipsometry as a function of deposition angle. The columnar SiO2 structure orientation measured by a noninvasive ellipsometry technique is reported for the first time, and its morphology influence on the LC alignment is demonstrated for large deposition angles.

  11. Dielectric, electro-optical, and photoluminescence characteristics of ferroelectric liquid crystals on a graphene-coated indium tin oxide substrate.

    PubMed

    Singh, Dharmendra Pratap; Gupta, Swadesh Kumar; Vimal, Tripti; Manohar, Rajiv

    2014-08-01

    Multilayer graphene was deposited on indium tin oxide (ITO) -coated glass plates and characterized by suitable techniques. A liquid crystal sample cell was designed using graphene deposited ITO glass plates without any additional treatment for alignment. Ferroelectric liquid crystal (FLC) material was filled in the sample cell. The effect of multilayer graphene on the characteristics of FLC material was investigated. The extremely high relative permittivity of pristine graphene and charge transfer between graphene and FLC material were consequences of the enormous increase in relative permittivity for the graphene-FLC (GFLC) system as compared to pure FLC. The presence of multilayer graphene suppresses the ionic impurities, comprised in the FLC material at lower frequencies. The ionic charge annihilation mechanism might be responsible for the reduction of ionic impurities. The presence of graphene reduces the net ferroelectricity and results in a change in the spontaneous polarization of pure FLC. Rotational viscosity of the GFLC system also decreases due to the strong π-π interaction between the FLC molecule and multilayer graphene. The photoluminescence of the GFLC system is blueshifted as compared to pure FLC, which is due to the coupling of energy released in the process of charge annihilation and photon emission.

  12. Dielectric, calorimetric and mesophase properties of 1''-(2',4-difluorobiphenyl-4'-yloxy)-9''-(4-cyanobiphenyl-4'-yloxy) nonane: an odd liquid crystal dimer with a monotropic mesophase having the characteristics of a twist-bend nematic phase.

    PubMed

    Sebastián, N; López, D O; Robles-Hernández, B; de la Fuente, M R; Salud, J; Pérez-Jubindo, M A; Dunmur, D A; Luckhurst, G R; Jackson, D J B

    2014-10-21

    This paper reports a novel liquid crystal phase having the characteristics of a twist-bend nematic phase formed by a non-symmetric ether-linked liquid crystal dimer. The dimer 1''-(2',4-difluorobiphenyl-4'-yloxy)-9''-(4-cyanobiphenyl-4'-yloxy) nonane (FFO9OCB) exhibits two liquid-crystalline phases on cooling at a sufficiently high rate from the isotropic phase. The high temperature mesophase has been reported in the literature as nematic and confirmed in this study. The other mesophase is metastable and can be supercooled giving rise to a glassy state. Its identification and characterization are based on optical textures, broadband dielectric spectroscopy, calorimetry, measurements of both splay and bend elastic constants in the nematic phase and miscibility studies. It is concluded that the low temperature mesophase exhibits the characteristics of a twist-bend nematic phase. Dielectric measurements enable us to obtain the static permittivity and information about the molecular dynamics in the isotropic phase, in the nematic mesophase and across the isotropic-to-nematic phase transition. Two orientations, parallel and perpendicular to the director, have been investigated. In the high temperature nematic mesophase, the dielectric anisotropy is found to be positive. Measurements of the parallel component of the dielectric permittivity are well-explained by the molecular theory of dielectric relaxation in nematic dimers (M. Stocchero, A. Ferrarini, G. J. Moro, D. A. Dunmur and G. R. Luckhurst, J. Chem. Phys., 2004, 121, 8079). The dimer is modelled as a mixture of cis and trans conformers and the model allows an estimate of their relative populations at each temperature. The nematic-to-isotropic phase transition has been exhaustively studied from the accurate evolution of the heat capacity and the static dielectric permittivity data. It has been concluded that the transition is first order in nature, but close to tricritical. The nature of the nematic-to-the novel

  13. Effect of high hydrostatic pressure on the dielectric relaxation in a non-crystallizable monohydroxy alcohol in its supercooled liquid and glassy states.

    PubMed

    Pawlus, S; Paluch, M; Nagaraj, M; Vij, J K

    2011-08-28

    The complex relative permittivity of a non-crystallizable secondary alcohol, 5-methyl-2-hexanol, is measured over a wide range of temperatures and pressures up to 1750 MPa (17.5 kbar). The data at atmospheric pressure (P = 0.101 MPa) are analyzed in terms of three processes, and the results are in complete agreement with that of O. E. Kalinovskaya and J. K. Vij [J. Chem. Phys. 112, 3262 (2000)]. Process I is of the Debye type and process II is of the Davidson-Cole type, whereas process III is identified as the Johari-Goldstein relaxation process. For pressures of ∼500 MPa and higher, processes I and II are seen to merge into each other to form a single dominant process which unambiguously cannot be resolved into more than one process. The dielectric relaxation strength of process I decreases slightly initially with pressure and when the two processes have merged at elevated pressures, the total relaxation strength increases with increase in pressure. Process III is better resolvable at higher pressures especially above T(g) in the supercooled liquid state for the reason that the separation in the time scales between the dominant and the JG relaxation process increases at elevated pressures. Surprisingly we find a change in the slope in the plot of log τ(JG) vs. 1/T for P = 1750 MPa. The results for the relaxation time of alcohols are compared with the Kirkwood correlation factor, g, and it is found that higher is the g, lower is the relaxation time for process I, and it is more of the Debye type. On a reduction in g brought about by an increase in pressure at lower temperatures, the dominant process becomes non-Debye though extensive hydrogen bonding is still present. The dielectric strength of the merged processes increases with increase in pressure. The values of the steepness index, m = |d log τ/d(T(g)/T)|(T = Tg) for processes I and II are different for P = 0.1 MPa. However the value of m, for the composite process, which is a merger of processes I and II

  14. Frequency-dependent local field factors in dielectric liquids by a polarizable force field and molecular dynamics simulations

    SciTech Connect

    Davari, Nazanin; Haghdani, Shokouh; Åstrand, Per-Olof

    2015-12-31

    A force field model for calculating local field factors, i.e. the linear response of the local electric field for example at a nucleus in a molecule with respect to an applied electric field, is discussed. It is based on a combined charge-transfer and point-dipole interaction model for the polarizability, and thereby it includes two physically distinct terms for describing electronic polarization: changes in atomic charges arising from transfer of charge between the atoms and atomic induced dipole moments. A time dependence is included both for the atomic charges and the atomic dipole moments and if they are assumed to oscillate with the same frequency as the applied electric field, a model for frequency-dependent properties are obtained. Furthermore, if a life-time of excited states are included, a model for the complex frequency-dependent polariability is obtained including also information about excited states and the absorption spectrum. We thus present a model for the frequency-dependent local field factors through the first molecular excitation energy. It is combined with molecular dynamics simulations of liquids where a large set of configurations are sampled and for which local field factors are calculated. We are normally not interested in the average of the local field factor but rather in configurations where it is as high as possible. In electrical insulation, we would like to avoid high local field factors to reduce the risk for electrical breakdown, whereas for example in surface-enhanced Raman spectroscopy, high local field factors are desired to give dramatically increased intensities.

  15. Liquid gallium and the eutectic gallium indium (EGaIn) alloy: Dielectric functions from 1.24 to 3.1 eV by electrochemical reduction of surface oxides

    NASA Astrophysics Data System (ADS)

    Morales, Daniel; Stoute, Nicholas A.; Yu, Zhiyuan; Aspnes, David E.; Dickey, Michael D.

    2016-08-01

    Liquid metals based on gallium are promising materials for soft, stretchable, and shape reconfigurable electromagnetic devices. The behavior of these metals relates directly to the thicknesses of their surface oxide layers, which can be determined nondestructively by ellipsometry if their dielectric functions ɛ are known. This paper reports on the dielectric functions of liquid gallium and the eutectic gallium indium (EGaIn) alloy from 1.24 to 3.1 eV at room temperature, measured by spectroscopic ellipsometry. Overlayer-induced artifacts, a continuing problem in optical measurements of these highly reactive metals, are eliminated by applying an electrochemically reductive potential to the surface of the metal immersed in an electrolyte. This technique enables measurements at ambient conditions while avoiding the complications associated with removing overlayers in a vacuum environment. The dielectric responses of both metals are closely represented by the Drude model. The EGaIn data suggest that in the absence of an oxide the surface is In-enriched, consistent with the previous vacuum-based studies. Possible reasons for discrepancies with previous measurements are discussed.

  16. Simultaneous testing of multiclass organic contaminants in food and environment by liquid chromatography/dielectric barrier discharge ionization-mass spectrometry.

    PubMed

    Gilbert-López, Bienvenida; García-Reyes, Juan F; Meyer, Cordula; Michels, Antje; Franzke, Joachim; Molina-Díaz, Antonio; Hayen, Heiko

    2012-11-21

    A Dielectric Barrier Discharge Ionization (DBDI) LC/MS interface is based on the use of a low-temperature helium plasma, which features the possibility of simultaneous ionization of species with a wide variety of physicochemical properties. In this work, the performance of LC/DBDI-MS for trace analysis of highly relevant species in food and environment has been examined. Over 75 relevant species including multiclass priority organic contaminants and residues such as pesticides, polycyclic aromatic hydrocarbons, organochlorine species, pharmaceuticals, personal care products, and drugs of abuse were tested. LC/DBDI-MS performance for this application was assessed and compared with standard LC/MS sources (electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI)). The used benchtop Orbitrap mass spectrometer features a 10 Hz polarity switching mode, so that both positive and negative ion mode acquisitions are possible with acquisition cycles matching the requirements of fast liquid chromatography. Both polar and nonpolar species (including those typically analyzed by GC/electron ionization-MS) can be tested in a single run using polarity switching mode. The methodology was found to be effective in detecting a wide array of organic compounds at concentration levels in the low ng L(-1) to μg kg(-1) range in wastewater and food matrices, respectively. The linearity was evaluated in an olive oil extract, obtaining good correlation coefficients in the studied range. Additionally, minor matrix effects (≤15% of signal suppression or enhancement) were observed for most of the studied analytes in this complex fatty matrix. The results obtained were compared with data from both ESI and APCI sources, obtaining a merged coverage between ESI and APCI in terms of analyte ionization and higher overall sensitivity for the proposed ion source based on the DBD principle. The use of this approach further extends the coverage of current LC/MS methods towards

  17. Renewable liquid reflecting zone plate

    DOEpatents

    Toor, Arthur; Ryutov, Dmitri D.

    2003-12-09

    A renewable liquid reflecting zone plate. Electrodes are operatively connected to a dielectric liquid in a circular or other arrangement to produce a reflecting zone plate. A system for renewing the liquid uses a penetrable substrate.

  18. Precision liquid level sensor

    DOEpatents

    Field, M.E.; Sullivan, W.H.

    1985-01-29

    A precision liquid level sensor utilizes a balanced R. F. bridge, each arm including an air dielectric line. Changes in liquid level along one air dielectric line imbalance the bridge and create a voltage which is directly measurable across the bridge. 2 figs.

  19. Precision liquid level sensor

    DOEpatents

    Field, Michael E.; Sullivan, William H.

    1985-01-01

    A precision liquid level sensor utilizes a balanced R. F. bridge, each arm including an air dielectric line. Changes in liquid level along one air dielectric line imbalance the bridge and create a voltage which is directly measurable across the bridge.

  20. Dielectric relaxation and molecular dynamics of liquid crystalline side-chain oligoacrylates with 4-cyanazobensene side mesogenic groups in external electric or mechanical fields

    NASA Astrophysics Data System (ADS)

    Nikonorova, N. A.; Borisova, T. I.; Stakhanov, A. I.; Shibaev, Valery P.

    1998-01-01

    Dielectric relaxation and molecular mobility have ben investigated over the frequency range 60Hz-1MHz between 160 degrees C and 150 degrees C for smectic side-chain oligoacrylates with 4-cyanazobenzene mesogenic side groups and methylene spacers of different length. The studied oligomers were oriented by electric or mechanic fields. In the range of subglass temperatures two dielectric processes were observed - the (gamma) 1 and the (beta) . The (gamma) 1 process reflects the local motion of the spacer groups and the (beta) process is connected with the local motion of the mesogenic moieties. the molecular mobility of the (gamma) 1 process increases with the spacer lengthening but at the same time in the case of the (beta) process the mobility is not changed. In LC state near Tg transition, the temperature-frequency dependencies of dielectric losses show two cooperative processes, the (alpha) - an the (delta) , related to the reorientation of the transverse or longitudinal components of the dipole moment of the mesogenic group, correspondingly. The preliminary orientation in external electric or mechanic fields leads to the establishment of planar or homeotropic orientation of the side mesogenic groups. The order parameters of oriented films were calculated. It was shown the planar or homeotropic orientation of mesogenic groups did not influence on relaxation times of the observed dielectric processes.

  1. High voltage research (breakdown strengths of gaseous and liquid insulators) and environmental effects of dielectric gases. Semiannual report, October 1, 1979-March 31, 1980

    SciTech Connect

    Christophorou, L.G.; James, D.R.; Pai, R.Y.

    1980-08-01

    Topics covered include basic studies of gaseous dielectrics, direct current breakdown strengths of gases/mixtures, environmental effects studies and decomposition analyses, impulse studies, breakdown strengths of binary mixtures with concentric cylinder geometry, and a discussion of the experimental apparatus. (GHT)

  2. A simple method for reducing inevitable dielectric loss in high-permittivity dielectric elastomers

    NASA Astrophysics Data System (ADS)

    Madsen, F. B.; Yu, L.; Mazurek, P.; Skov, A. L.

    2016-07-01

    Commercial viability of dielectric elastomers (DEs) is currently limited by a few obstacles, including high driving voltages (in the kV range). Driving voltage can be lowered by either decreasing the Young’s modulus or increasing the dielectric permittivity of silicone elastomers, or a combination thereof. A decrease in the Young’s modulus, however, is often accompanied by a loss in mechanical stability, whereas increases in dielectric permittivity are usually followed by a large increase in dielectric loss followed by a decrease in breakdown strength and thereby the lifetime of the DE. A new soft elastomer matrix, with high dielectric permittivity and a low Young’s modulus, aligned with no loss of mechanical stability, was prepared through the use of commercially available chloropropyl-functional silicone oil mixed into a tough commercial liquid silicone rubber silicone elastomer. The addition of chloropropyl-functional silicone oil in concentrations up to 30 phr was found to improve the properties of the silicone elastomer significantly, as dielectric permittivity increased to 4.4, dielectric breakdown increased up to 25% and dielectric losses were reduced. The chloropropyl-functional silicone oil also decreased the dielectric losses of an elastomer containing dielectric permittivity-enhancing TiO2 fillers. Commercially available chloropropyl-functional silicone oil thus constitutes a facile method for improved silicone DEs, with very low dielectric losses.

  3. Identification of structural relaxation in the dielectric response of water

    DOE PAGES

    Hansen, Jesper S.; Kisliuk, Alexander; Sokolov, Alexei P.; ...

    2016-06-09

    One century ago pioneering dielectric results obtained for water and n-alcohols triggered the advent of molecular rotation diffusion theory considered by Debye to describe the primary dielectric absorption in these liquids. Here, comparing dielectric, viscoelastic, and light scattering results, we unambiguously demonstrate that the structural relaxation appears only as a high-frequency shoulder in the dielectric spectra of water. In contrast, the main dielectric peak is related to a supramolecular structure, analogous to the Debye-like peak observed in monoalcohols.

  4. Ranking solvent interactions and dielectric constants with [Pt(mesBIAN)(tda)]: A cautionary tale for polarity determinations in ionic liquids.

    PubMed

    Baker, Gary A; Rachford, Aaron A; Castellano, Felix N; Baker, Sheila N

    2013-04-02

    The solvatochromic properties of [Pt(mesBIAN)(tda)] are studied in traditional molecular solvents and ionic liquids and duly compared along established empirical solvent parameter scales. The charge-transfer absorption band of [Pt(mesBIAN)(tda)] is determined to be primarily dependent upon solvent acidity and dipolarity. Notably, ionic liquids do not obey the same well-behaved trend as molecular solvents, highlighting the complexity and domain (nano)segregation inherent to ionic liquids.

  5. Instant and supersaturated dissolution of naproxen and sesamin (poorly water-soluble drugs and supplements) nanoparticles prepared by continuous expansion of liquid carbon dioxide solution through long dielectric nozzle

    NASA Astrophysics Data System (ADS)

    Arita, Toshihiko; Manabe, Noriyoshi; Nakahara, Koichi

    2012-11-01

    Nanoparticles (NPs) of naproxen (a nonsteroidal anti-inflammatory drug, BCS Class 2) and sesamin (a poorly water-soluble lignan) were investigated. By applying a newly developed rapid expansion system of liquid carbon dioxide solutions equipped with a dielectric nozzle, well-separated and fine both naproxen NPs (averaged particle size (APS) = 46.9 nm) and sesamin NPs (APS = 60.2 nm) were obtained without heating, surfactants, and co-solvents. Obtained naproxen and sesamin NPs had large surface/weight ratio, therefore, they showed instant dissolution to water until about ten percent higher than the saturated concentrations. In addition, the technique developed in the study has big advantage on producing especially drug NPs because the NPs produced by the method never includes neither poisonous additives (especially co-solvents and detergents) nor thermally denatured compounds.

  6. Dielectric metasurfaces

    NASA Astrophysics Data System (ADS)

    Valentine, Jason

    While plasmonics metasurfaces have seen much development over the past several years, they still face throughput limitations due to ohmic losses. On the other hand, dielectric resonators and associated metasurfaces can eliminate the issue of ohmic loss while still providing the freedom to engineer the optical properties of the composite. In this talk, I will present our recent efforts to harness this freedom using metasurfaces formed from silicon and fabricated using CMOS-compatible techniques. Operating in the telecommunications band, I will discuss how we have used this platform to realize a number of novel functionalities including wavefront control, near-perfect reflection, and high quality factor resonances. In many cases the optical performance of these silicon-based metasurfaces can surpass their plasmonic counterparts. Furthermore, for some cases the surfaces are more amenable to large-area fabrication techniques.

  7. Asymmetric Dielectric Elastomer Composite Material

    NASA Technical Reports Server (NTRS)

    Stewart, Brian K. (Inventor)

    2014-01-01

    Embodiments of the invention provide a dielectric elastomer composite material comprising a plurality of elastomer-coated electrodes arranged in an assembly. Embodiments of the invention provide improved force output over prior DEs by producing thinner spacing between electrode surfaces. This is accomplished by coating electrodes directly with uncured elastomer in liquid form and then assembling a finished component (which may be termed an actuator) from coated electrode components.

  8. Dielectric anisotropy in polar solvents under external fields

    NASA Astrophysics Data System (ADS)

    Buyukdagli, Sahin

    2015-08-01

    We investigate dielectric saturation and increment in polar liquids under external fields. We couple a previously introduced dipolar solvent model to a uniform electric field and derive the electrostatic kernel of interacting dipoles. This procedure allows an unambiguous definition of the liquid dielectric permittivity embodying non-linear dielectric response and correlation effects. We find that the presence of the external field results in a dielectric anisotropy characterized by a two-component dielectric permittivity tensor. The increase of the electric field amplifies the permittivity component parallel to the field direction, i.e. dielectric increment is observed along the field. However, the perpendicular component is lowered below the physiological permittivity {{\\varepsilon}w}≈ 77 , indicating dielectric saturation perpendicular to the field. By comparison with Molecular Dynamics simulations from the literature, we show that the mean-field level dielectric response theory underestimates dielectric saturation. The inclusion of dipolar correlations at the weak-coupling level intensify the mean-field level dielectric saturation and improves the agreement with simulation data at weak electric fields. The correlation-corrected theory predicts as well the presence of a metastable configuration corresponding to the antiparallel alignment of dipoles with the field. This prediction can be verified by solvent-explicit simulations where solvent molecules are expected to be trapped transiently in this metastable state.

  9. Renewable liquid reflection grating

    DOEpatents

    Ryutov, Dmitri D.; Toor, Arthur

    2003-10-07

    A renewable liquid reflection grating. Electrodes are operatively connected to a conducting liquid in an arrangement that produces a reflection grating and driven by a current with a resonance frequency. In another embodiment, the electrodes create the grating by a resonant electrostatic force acting on a dielectric liquid.

  10. Quantitative Determination of Saturates, Olefins, and Aromatics in Hydrocarbon Distillate Products Using High-Performance Liquid Chromatography with Dielectric Constant Detection (HPLC-DC).

    DTIC Science & Technology

    high - performance liquid chromatography (HPLC) is the basis of a rapid and accurate hydrocarbon group-type analysis. This novel method can determine saturates, olefins, and total aromatics in hydrocarbon liquids with distillation endpoints of at least 400 deg C. The HPLC separation is achieved using a single, 5-micron olefin-selective column, a backflush valve, and Freon 123 as the mobile phase. The DC detector ensures a genuine uniformity of response (less than 2.5% RSD) for each hydrocarbon group type, independent of the carbon number distribution of

  11. PREFACE: Dielectrics 2009: Measurement Analysis and Applications

    NASA Astrophysics Data System (ADS)

    Vaughan, Alun; Williams, Graham

    2009-07-01

    The conference Dielectrics 2009: Measurements, Analysis and Applications represents a significant milestone in the evolution of dielectrics research in the UK. It is reasonable to state that the academic study of dielectrics has led to many fundamental advances and that dielectric materials underpin the modern world in devices ranging from field effect transistors, which operate at extremely high fields, albeit low voltages, to the high voltage plants that provide the energy that powers our economy. The origins of the Dielectrics Group of the Institute of Physics (IOP), which organized this conference, can be traced directly back to the early 1960s, when Professor Mansel Davies was conducting research into the dielectric relaxation behaviour of polar liquids and solids at The Edward Davies Chemical Laboratories of the University College of Wales, Aberystwyth. He was already well-known internationally for his studies of molecular structure and bonding of small molecules, using infra-red-spectroscopy, and of the physical properties of hydrogen-bonded liquids and solids, using thermodynamic methods. Dielectric spectroscopy was a fairly new area for him and he realized that opportunities for scientists in the UK to gather together and discuss their research in this developing area of physical chemistry/chemical physics were very limited. He conceived the idea of forming a Dielectrics Discussion Group (DDG), which would act as a meeting point and provide a platform for dielectrics research in the UK and beyond and, as a result, a two-day Meeting was convened in the spring of 1968 at Gregynog Hall of the University of Wales, near Newtown, Montgomeryshire. It was organized by Mansel Davies, Alun Price and Graham Williams, all physical chemists from the UCW, Aberystwyth. Fifty scientists attended, being a mix of physical chemists, theoretical chemists, physicists, electrical engineers, polymer and materials scientists, all from the UK, except Dr Brendan Scaife of Trinity

  12. Dielectric absorption in mixtures of anisole with some primary alcohols at microwave frequency

    NASA Astrophysics Data System (ADS)

    Chaube, H. A.; Rana, V. A.; Gadani, D. H.

    2011-12-01

    Dielectric properties of binary mixtures of anisole with methanol (MeOH), 1-propanol (1-PrOH), 1-butanol (1-BuOH) and 1-heptanol (1-HeOH) over an entire concentration range have been studied at a fixed temperature 40°C. The dielectric constant (ε‧) and dielectric loss (ε″) of the binary mixtures of polar liquids have been determined at a microwave frequency of 9.1 GHz. The static dielectric permittivity (ε 0) of the liquid samples was also determined using a precision LCR meter. Determined values of static dielectric permittivity (ε 0) and dielectric permittivity (ε*) at 9.1 GHz frequency were used to evaluate relaxation time (τ) and high frequency limit dielectric permittivity (ε ∞). Dielectric parameters were interpreted in terms of molecular interaction between the anisole and alcohol molecules.

  13. Ion distributions in electrolyte confined by multiple dielectric interfaces

    NASA Astrophysics Data System (ADS)

    Jing, Yufei; Zwanikken, Jos W.; Jadhao, Vikram; de La Cruz, Monica

    2014-03-01

    The distribution of ions at dielectric interfaces between liquids characterized by different dielectric permittivities is crucial to nanoscale assembly processes in many biological and synthetic materials such as cell membranes, colloids and oil-water emulsions. The knowledge of ionic structure of these systems is also exploited in energy storage devices such as double-layer super-capacitors. The presence of multiple dielectric interfaces often complicates computing the desired ionic distributions via simulations or theory. Here, we use coarse-grained models to compute the ionic distributions in a system of electrolyte confined by two planar dielectric interfaces using Car-Parrinello molecular dynamics simulations and liquid state theory. We compute the density profiles for various electrolyte concentrations, stoichiometric ratios and dielectric contrasts. The explanations for the trends in these profiles and discuss their effects on the behavior of the confined charged fluid are also presented.

  14. Determination of two-liquid mixture composition by assessing its dielectric parameters 2. modified measuring system for monitoring the dehydration process of bioethanol production

    NASA Astrophysics Data System (ADS)

    Vilitis, O.; Shipkovs, P.; Merkulovs, D.; Rucins, A.; Zihmane-Ritina, K.; Bremers, G.

    2014-02-01

    In Part 2 of the work we describe a modified measuring system for precise monitoring of the dehydration process of bioethanol production. This is based on the earlier proposed system for measuring the concentration of solutions and two-liquid mixtures using devices with capacitive sensors (1-300pF), which provides a stable measuring resolution of ± 0.005 pF at measuring the capacitance of a sensor. In this part of our work we determine additional requirements that are to be imposed on the measuring system at monitoring the ethanol dehydration process and control of bioethanol production. The most important parameters of the developed measuring system are identified. An exemplary calculation is given for the thermocompensated calibration of measuring devices. The results of tests have shown a good performance of the developed measuring system.

  15. Method for producing high dielectric strength microvalves

    DOEpatents

    Kirby, Brian J.; Reichmuth, David S.; Shepodd, Timothy J.

    2006-04-04

    A microvalve having a cast-in-place and lithographically shaped mobile, polymer monolith for fluid flow control in microfluidic devices and method of manufacture. The microvalve contains a porous fluorinated polymer monolithic element whose pores are filled with an electrically insulating, high dielectric strength fluid, typically a perfluorinated liquid. This combination provides a microvalve that combines high dielectric strength with extremely low electrical conductivity. These microvalves have been shown to have resistivities of at least 100 G.OMEGA. and are compatible with solvents such as water at a pH between 2.7 and 9.0, 1-1 propanol, acetonitrile, and acetone.

  16. Resonant dielectric metamaterials

    DOEpatents

    Loui, Hung; Carroll, James; Clem, Paul G; Sinclair, Michael B

    2014-12-02

    A resonant dielectric metamaterial comprises a first and a second set of dielectric scattering particles (e.g., spheres) having different permittivities arranged in a cubic array. The array can be an ordered or randomized array of particles. The resonant dielectric metamaterials are low-loss 3D isotropic materials with negative permittivity and permeability. Such isotropic double negative materials offer polarization and direction independent electromagnetic wave propagation.

  17. Millimeter wave and terahertz dielectric properties of biological materials

    NASA Astrophysics Data System (ADS)

    Khan, Usman Ansar

    Broadband dielectric properties of materials can be employed to identify, detect, and characterize materials through their unique spectral signatures. In this study, millimeter wave, submillimeter wave, and terahertz dielectric properties of biological substances inclusive of liquids, solids, and powders were obtained using Dispersive Fourier Transform Spectroscopy (DFTS). Two broadband polarizing interferometers were constructed to test materials from 60 GHz to 1.2 THz. This is an extremely difficult portion of the frequency spectrum to obtain a material's dielectric properties since neither optical nor microwave-based techniques provide accurate data. The dielectric characteristics of liquids such as cyclohexane, chlorobenzene, benzene, ethanol, methanol, 1,4 dioxane, and 10% formalin were obtained using the liquid interferometer. Subsequently the solid interferometer was utilized to determine the dielectric properties of human breast tissues, which are fixed and preserved in 10% formalin. This joint collaboration with the Tufts New England Medical Center demonstrated a significant difference between the dielectric response of tumorous and non-tumorous breast tissues across the spectrum. Powders such as anthrax, flour, talc, corn starch, dry milk, and baking soda have been involved in a number of security threats and false alarms around the globe in the last decade. To be able to differentiate hoax attacks and serious security threats, the dielectric properties of common household powders were also examined using the solid interferometer to identify the powders' unique resonance peaks. A new sample preparation kit was designed to test the powder specimens. It was anticipated that millimeter wave and terahertz dielectric characterization will enable one to clearly distinguish one powder from the other; however most of the powders had relatively close dielectric responses and only Talc had a resonance signature recorded at 1.135 THz. Furthermore, due to

  18. Inductive dielectric analyzer

    NASA Astrophysics Data System (ADS)

    Agranovich, Daniel; Polygalov, Eugene; Popov, Ivan; Ben Ishai, Paul; Feldman, Yuri

    2017-03-01

    One of the approaches to bypass the problem of electrode polarization in dielectric measurements is the free electrode method. The advantage of this technique is that, the probing electric field in the material is not supplied by contact electrodes, but rather by electromagnetic induction. We have designed an inductive dielectric analyzer based on a sensor comprising two concentric toroidal coils. In this work, we present an analytic derivation of the relationship between the impedance measured by the sensor and the complex dielectric permittivity of the sample. The obtained relationship was successfully employed to measure the dielectric permittivity and conductivity of various alcohols and aqueous salt solutions.

  19. Ionic Structure at Dielectric Interfaces

    NASA Astrophysics Data System (ADS)

    Jing, Yufei

    The behavior of ions in liquids confined between macromolecules determines the outcome of many nanoscale assembly processes in synthetic and biological materials such as colloidal dispersions, emulsions, hydrogels, DNA, cell membranes, and proteins. Theoretically, the macromolecule-liquid boundary is often modeled as a dielectric interface and an important quantity of interest is the ionic structure in a liquid confined between two such interfaces. The knowledge gleaned from the study of ionic structure in such models can be useful in several industrial applications, such as biosensors, lithium-ion batteries double-layer supercapacitors for energy storage and seawater desalination. Electrostatics plays a critical role in the development of such functional materials. Many of the functions of these materials, result from charge and composition heterogeneities. There are great challenges in solving electrostatics problems in heterogeneous media with arbitrary shapes because electrostatic interactions remains unknown but depend on the particular density of charge distributions. Charged molecules in heterogeneous media affect the media's dielectric response and hence the interaction between the charges is unknown since it depends on the media and on the geometrical properties of the interfaces. To determine the properties of heterogeneous systems including crucial effects neglected in classical mean field models such as the hard core of the ions, the dielectric mismatch and interfaces with arbitrary shapes. The effect of hard core interactions accounts properly for short range interactions and the effect of local dielectric heterogeneities in the presence of ions and/or charged molecules for long-range interactions are both analyzed via an energy variational principle that enables to update charges and the medium's response in the same simulation time step. In particular, we compute the ionic structure in a model system of electrolyte confined by two planar dielectric

  20. Terahertz Artificial Dielectric Lens

    NASA Astrophysics Data System (ADS)

    Mendis, Rajind; Nagai, Masaya; Wang, Yiqiu; Karl, Nicholas; Mittleman, Daniel M.

    2016-03-01

    We have designed, fabricated, and experimentally characterized a lens for the THz regime based on artificial dielectrics. These are man-made media that mimic properties of naturally occurring dielectric media, or even manifest properties that cannot generally occur in nature. For example, the well-known dielectric property, the refractive index, which usually has a value greater than unity, can have a value less than unity in an artificial dielectric. For our lens, the artificial-dielectric medium is made up of a parallel stack of 100 μm thick metal plates that form an array of parallel-plate waveguides. The convergent lens has a plano-concave geometry, in contrast to conventional dielectric lenses. Our results demonstrate that this lens is capable of focusing a 2 cm diameter beam to a spot size of 4 mm, at the design frequency of 0.17 THz. The results further demonstrate that the overall power transmission of the lens can be better than certain conventional dielectric lenses commonly used in the THz regime. Intriguingly, we also observe that under certain conditions, the lens boundary demarcated by the discontinuous plate edges actually resembles a smooth continuous surface. These results highlight the importance of this artificial-dielectric technology for the development of future THz-wave devices.

  1. [Dielectric properties of human sweat fluid in the microwave range].

    PubMed

    Romanov, A N

    2010-01-01

    The dielectric properties of sweat fluid gathered from different zones of the human body have been studied in the frequency range from 300 MHz to 3 GHz. It has been shown that the dielectric properties of sweat of different zones differ. The dependence of refraction and absorption indices on the frequency of the signal and the mass concentration of substances dissolved in sweat liquid has been determined.

  2. Frequency Controllable Metamaterial Absorber by an Added Dielectric Layer

    NASA Astrophysics Data System (ADS)

    Li, Xiong; Feng, Qin; Luo, Xiangang; Hong, Minghui

    2011-03-01

    In this paper, we introduce a covered dielectric layer in the traditional metamaterial absorber (MA) constructed by periodic resonant split rings. The absorber frequency can be simply controlled by the permittivity and the thickness of the added layer, without affecting the shape of the absorptivity spectrum. Furthermore, the dielectric loss property of the added layer does not influence the absorption characteristic obviously when the loss is not high. Based on these unique properties, a dynamically tunable MA can be realized by modulating a covered liquid dielectric layer.

  3. Characterisation of the dielectric properties of the propellants MON & MMH

    NASA Astrophysics Data System (ADS)

    Delil, A. A. M.

    1998-01-01

    Future (commercial) satellites will require accurate propellant gauging systems, in order to meet the end-of-life reorbiting requirement and the need for replacement planning. A capacitive Gauging Sensor Unit is currently being developed for the Meteosat Second Generation spacecraft. Its measurement principle is based on the difference of the dielectric properties of the propellant liquid and vapour. To optimise the sensor accuracy, the dielectric properties of propellants need to be accurately known as a function of the temperature (and pressure). Therefore the dielectric properties of MON (Mixed Oxides of Nitrides) and MMH (Mono Methyl Hydrazine) were to be measured. The test setup and the test results are described in detail.

  4. Improved Dielectric Films For Capacitors

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S.; Lewis, Carol R.; Cygan, Peter J.; Jow, T. Richard

    1994-01-01

    Dielectric films made from blends of some commercially available high-dielectric-constant cyanoresins with each other and with cellulose triacetate (CTA) have both high dielectric constants and high breakdown strengths. Dielectric constants as high as 16.2. Films used to produce high-energy-density capacitors.

  5. Fabrication of Polyurethane Dielectric Actuators

    DTIC Science & Technology

    2005-01-01

    a summary of a 3 year Technology Investment Fund Project entitled “Dielectric Polymer Actuators for Active/ Passive Vibration Isolation”, which was...completed in March 2005. The purpose of this project was to investigate dielectric polymer materials for potential use in active/ passive vibration...devices and systems based on dielectric polymer actuators. Keywords: dielectric actuators, electroactive polymers , Technology Investment Fund 1

  6. Nonlinear dielectric effect in supercritical diethyl ether

    NASA Astrophysics Data System (ADS)

    Drozd-Rzoska, Aleksandra; Rzoska, Sylwester J.; Martinez-Garcia, Julio Cesar

    2014-09-01

    Nonlinear dielectric effect (NDE) describes changes of dielectric permittivity induced by a strong electric field in a liquid dielectric. The most classical finding related to this magnitude is the negative sign of NDE in liquid diethyl ether (DEE), recalled by Peter Debye in his Nobel Prize lecture. This article shows that the positive sign of NDE in DEE is also possible, in the supercritical domain. Moreover, NDE on approaching the gas-liquid critical point exhibits a unique critical effect described by the critical exponent ψ ≈ 0.4 close to critical temperature (TC) and ψ ≈ 0.6 remote from TC. This can be linked to the emergence of the mean-field behavior in the immediate vicinity of TC, contrary to the typical pattern observed for critical phenomena. The multi-frequency mode of NDE measurements made it possible to estimate the evolution of lifetime of critical fluctuations. The new way of data analysis made it possible to describe the critical effect without a knowledge of the non-critical background contribution in prior.

  7. Cast dielectric composite linear accelerator

    DOEpatents

    Sanders, David M.; Sampayan, Stephen; Slenes, Kirk; Stoller, H. M.

    2009-11-10

    A linear accelerator having cast dielectric composite layers integrally formed with conductor electrodes in a solventless fabrication process, with the cast dielectric composite preferably having a nanoparticle filler in an organic polymer such as a thermosetting resin. By incorporating this cast dielectric composite the dielectric constant of critical insulating layers of the transmission lines of the accelerator are increased while simultaneously maintaining high dielectric strengths for the accelerator.

  8. Pattern formation in dielectric barrier discharges with different dielectric materials

    SciTech Connect

    Dong, L. F.; Fan, W. L.; Wang, S.; Ji, Y. F.; Liu, Z. W.; Chen, Q.

    2011-03-15

    The influence of dielectric material on the bifurcation and spatiotemporal dynamics of the patterns in dielectric barrier discharge in argon/air at atmospheric pressure is studied. It is found that pattern bifurcation sequences are different with different dielectric materials. The spatiotemporal dynamics of the hexagonal pattern in dielectric barrier discharge depends on the dielectric material. The hexagon pattern with glass dielectric is an interleaving of two rectangular sublattices appearing at different moments. The hexagon pattern with quartz dielectric is composed of one set of hexagonal lattice discharging twice in one half cycle of the applied voltage, one is at the rising edge and the other at the falling edge. It results in that the accumulation of wall charges in individual microdischarges in a hexagon pattern with quartz dielectric is greater than that with glass dielectric, which is in agreement with the electron density measurement by Stark broadening of Ar I 696.54 nm.

  9. Novel Materials with Effective Super Dielectric Constants for Energy Storage

    NASA Astrophysics Data System (ADS)

    Cortes, Francisco Javier Quintero; Phillips, Jonathan

    2015-05-01

    To test a theory of the recently discovered phenomenon of super dielectric behavior at very low frequency, the dielectric constants of several `pastes', composed of porous alumina powders filled to the point of incipient wetness with water containing dissolved sodium chloride, were measured. The effective dielectric low frequency constants of some of the pastes were greater than 1010, dramatically higher than that of any material ever reported. Moreover, the total energy density reported for one capacitor generated with NaCl-based super dielectric material is marginally higher than found in any prior report. These results are consistent with this recently postulated model of low frequency super dielectric behavior in porous, non-conductive materials saturated with ion-containing liquids: upon the application of an electric field, ions dissolved in the saturating liquid contained in the pores will travel to the ends of pore-filling liquid droplets creating giant dipoles. The fields of these giant dipoles oppose the applied field, reducing the net field created per unit of charge on the capacitor plates, effectively increasing charge/voltage ratio, hence capacitance. This is simply a version of the theory of `polarizable media' found in most classic texts on electromagnetism. Other observations reported here include (1) the impact of ion concentration on dielectric values, (2) a maximum voltage similar to that associated with the electrical breakdown of water, (3) the loss of capacitance upon drying, (4) the recovery of capacitance upon the addition of water to a dry super dielectric material, and (5) the linear relationship between capacitance and inverse thickness. All observations are consistent with the earlier proposed model of the super dielectric phenomenon. An extrapolation of results suggests this technology can lead to energy density greater than the best lithium-ion battery.

  10. PREFACE: Dielectrics 2011

    NASA Astrophysics Data System (ADS)

    Vaughan, Alun; Lewin, Paul

    2011-08-01

    In 2011, the biennial meeting of the Dielectrics Group of the IOP, Dielectrics 2011, was held for the first time in a number of years at the University of Kent at Canterbury. This conference represents the most recent in a long standing series that can trace its roots back to a two-day meeting that was held in the spring of 1968 at Gregynog Hall of the University of Wales. In the intervening 43 years, this series of meetings has addressed many topics, including dielectric relaxation, high field phenomena, biomaterials and even molecular electronics, and has been held at many different venues within the UK. However, in the early 1990s, a regular venue was established at the University of Kent at Canterbury and, it this respect, this year's conference can be considered as "Dielectrics coming home". The format for the 2011 meeting followed that established at Dielectrics 2009, in breaking away from the concept of a strongly themed event that held sway during the mid 2000s. Rather, we again adopted a general, inclusive approach that was based upon four broad technical areas: Theme 1: Insulation/HV Materials Theme 2: Dielectric Spectroscopy Theme 3: Modelling Dielectric Response Theme 4: Functional Materials The result was a highly successful conference that attracted more than 60 delegates from eight countries, giving the event a truly international flavour, and which included both regular and new attendees; it was particularly pleasing to see the number of early career researchers at the meeting. Consequently, the organizing committee would like to thank our colleagues at the IOP, the invited speakers, our sponsors and all the delegates for making the event such a success. Finally, we look forward to convening again in 2013, when we will be returning to The University of Reading. Prof Alun Vaughan and Prof Paul Lewin, Editors

  11. A single dielectric nanolaser

    NASA Astrophysics Data System (ADS)

    Huang, Tsung-Yu; Yen, Ta-Jen

    2016-09-01

    To conquer Ohmic losses from metal and enhance pump absorption efficiency of a nanolaser based on surface plasmon polariton, we theoretically calculate the first magnetic and electric scattering coefficient of a dielectric sphere under a plane wave excitation with a dielectric constant of around 12. From this calculation, we could retrieve both negative effective permittivity and permeability of the sphere simultaneously at frequencies around 153 THz in the aids of Lewin's theory and the power distribution clearly demonstrate the expected negative Goos-Hänchen effect, which usually occurred in a negative refractive waveguide, thus creating two energy vortices to trap incident energy and then promoting the pump absorption efficiency. Meanwhile, a magnetic lasing mode at 167.3 THz is demonstrated and reveals a magnetic dipole resonance mode and a circulating energy flow within the dielectric sphere, providing a possible stopped light feedback mechanism to enable the all-dielectric nanolaser. More importantly, the corresponding mode volume is reduced to 0.01λ3 and a gain threshold of 5.1×103 is obtained. To validate our design of all-dielectric nanolaser, we employ finite-difference-time-domain simulation software to examine the behavior of the nanolaser. From simulation, we could obtain a pinned-down population inversion of 0.001 and a lasing peak at around 166.5 THz, which is very consistent with the prediction of Mie theory. Finally, according to Mie theory, we can regard the all-dielectric nanolaser as the excitation of material polariton and thus could make an analogue between lasing modes of the dielectric and metallic nanoparticles.

  12. Measuring the dielectric properties of soil-organic mixtures using coaxial impedance dielectric reflectometry

    NASA Astrophysics Data System (ADS)

    Francisca, Franco M.; Montoro, Marcos A.

    2012-05-01

    Contamination of soils with non-aqueous phase liquids (NAPLs) is frequently produced by accidental spills and storage tanks or pipes leakage. The main goals dealing with soil and groundwater contamination include determining the extension of the affected zone, monitoring the contaminant plume and quantifying the pollution degree. The objective of this work is to evaluate the potential of dielectric permittivity measurements to detect the presence of NAPLs in sands. Tested samples were fine, medium, coarse and silty sand with different volumetric contents of water and paraffin oil. The dielectric permittivity was measured by means of a Coaxial Impedance Dielectric Reflectometry method in specimens with either known fluid content or at different stages during immiscible displacement tests. A simplified method was developed to quantify the amount of oil from dielectric permittivity measurements and effective mixture media models. Obtained results showed that groundwater contamination with NAPL and the monitoring of immiscible fluid displacement in saturated porous media can be clearly identified from dielectric measurements. Finally, very accurate results can be obtained when computing the contamination degree with the proposed method in comparison with the real volumetric content of NAPL (r2 > 90%).

  13. Experimental study on the dielectric properties of polyacrylate dielectric elastomer

    NASA Astrophysics Data System (ADS)

    Qiang, Junhua; Chen, Hualing; Li, Bo

    2012-02-01

    The dielectric constant of elastomeric dielectric material is an essential physical parameter, whose value may affect the electromechanical deformation of a dielectric elastomer actuator. Since the dielectric constant is influenced by several external factors as reported before, and no certain value has been confirmed to our knowledge, in the present paper, on the basis of systematical comparison of recent past literature, we conducted extensive works on the measurement of dielectric properties of VHB films, involving five influencing factors: prestretch (both equal and unequal biaxial), electrical frequency, electrode material, stress relaxation time and temperature. Experimental results directly show that the dielectric response changes according to these factors, based on which we investigate the significance of each factor, especially the interaction of two external conditions on the dielectric constant of deformable dielectric, by presenting a physical picture of the mechanism of polarization.

  14. Electrolyte creepage barrier for liquid electrolyte fuel cells

    DOEpatents

    Li, Jian; Farooque, Mohammad; Yuh, Chao-Yi

    2008-01-22

    A dielectric assembly for electrically insulating a manifold or other component from a liquid electrolyte fuel cell stack wherein the dielectric assembly includes a substantially impermeable dielectric member over which electrolyte is able to flow and a barrier adjacent the dielectric member and having a porosity of less than 50% and greater than 10% so that the barrier is able to measurably absorb and chemically react with the liquid electrolyte flowing on the dielectric member to form solid products which are stable in the liquid electrolyte. In this way, the barrier inhibits flow or creepage of electrolyte from the dielectric member to the manifold or component to be electrically insulated from the fuel cell stack by the dielectric assembly.

  15. Dielectric spectroscopy of high aspect ratio graphene-polyurethane nanocomposites

    NASA Astrophysics Data System (ADS)

    Jan, Rahim; Habib, Amir; Abbassi, Hina; Amir, Shahid

    2015-03-01

    High aspect ratio graphene nanosheets (GNS), prepared via liquid exfoliation, are homogeneously dispersed in thermoplastic polyurethane (TPU). Dielectric spectroscopy results are reported for these nanocomposites (up to 0.55 vol. % GNS) in the frequency range of 100 Hz to 5 MHz. The as-prepared GNS increased the AC conductivity 10-1000 times across the given frequency range. The dielectric constant is increased 5-6 times at 100 Hz for the maximum loading of GNS when compared with the pristine TPU, with subsequently high dielectric loss making them a suitable candidate for high energy dissipation applications such as EMI shielding. The temperature effects on the dielectric characteristics of 0.55 vol. % GNS/TPU nanocomposites beyond 400 K are more pronounced due to the interfacial and orientation polarization. Mechanical characteristics evaluation of GNS/TPU composites shows a marked increase in the ultimate tensile strength without compromising their ductility and stiffness. [Figure not available: see fulltext.

  16. Dielectric Constant of Suspensions

    NASA Astrophysics Data System (ADS)

    Mendelson, Kenneth S.; Ackmann, James J.

    1997-03-01

    We have used a finite element method to calculate the dielectric constant of a cubic array of spheres. Extensive calculations support preliminary conclusions reported previously (K. Mendelson and J. Ackmann, Bull. Am. Phys. Soc. 41), 657 (1996).. At frequencies below 100 kHz the real part of the dielectric constant (ɛ') shows oscillations as a function of the volume fraction of suspension. These oscillations disappear at low conductivities of the suspending fluid. Measurements of the dielectric constant (J. Ackmann, et al., Ann. Biomed. Eng. 24), 58 (1996). (H. Fricke and H. Curtis, J. Phys. Chem. 41), 729 (1937). are not sufficiently sensitive to show oscillations but appear to be consistent with the theoretical results.

  17. Superdirective dielectric nanoantennas

    NASA Astrophysics Data System (ADS)

    Krasnok, Alexander E.; Simovski, Constantin R.; Belov, Pavel A.; Kivshar, Yuri S.

    2014-06-01

    We introduce the novel concept of superdirective nanoantennas based on the excitation of higher-order magnetic multipole moments in subwavelength dielectric nanoparticles. Our superdirective nanoantenna is a small Si nanosphere containing a notch, and is excited by a dipole located within the notch. In addition to extraordinary directivity, this nanoantenna demonstrates efficient radiation steering at the nanoscale, resulting from the subwavelength sensitivity of the beam radiation direction to variation of the source position inside the notch. We compare our dielectric nanoantenna with a plasmonic nanoantenna of similar geometry, and reveal that the nanoantenna's high directivity in the regime of transmission is not associated with strong localization of near fields in the regime of reception. Likewise, the absence of hot spots inside the nanoantenna leads to low dissipation in the radiation regime, so that our dielectric nanoantenna has significantly smaller losses and high radiation efficiency of up to 70%.

  18. Dielectric assist accelerating structure

    NASA Astrophysics Data System (ADS)

    Satoh, D.; Yoshida, M.; Hayashizaki, N.

    2016-01-01

    A higher-order TM02 n mode accelerating structure is proposed based on a novel concept of dielectric loaded rf cavities. This accelerating structure consists of ultralow-loss dielectric cylinders and disks with irises which are periodically arranged in a metallic enclosure. Unlike conventional dielectric loaded accelerating structures, most of the rf power is stored in the vacuum space near the beam axis, leading to a significant reduction of the wall loss, much lower than that of conventional normal-conducting linac structures. This allows us to realize an extremely high quality factor and a very high shunt impedance at room temperature. A simulation of a 5 cell prototype design with an existing alumina ceramic indicates an unloaded quality factor of the accelerating mode over 120 000 and a shunt impedance exceeding 650 M Ω /m at room temperature.

  19. PREFACE: Dielectrics 2013

    NASA Astrophysics Data System (ADS)

    Hadjiloucas, Sillas; Blackburn, John

    2013-11-01

    This volume records the 42nd Dielectrics Group Proceedings of the Dielectrics Conference that took place at the University of Reading UK from 10-12 April 2013. The meeting is part of the biennial Dielectrics series of the Dielectrics Group, and formerly Dielectrics Society, and is organised by the Institute of Physics. The conference proceedings showcase some of the diversity and activity of the Dielectrics community worldwide, and bring together contributions from academics and industrial researchers with a diverse background and experiences from the Physics, Chemistry and Engineering communities. It is interesting to note some continuing themes such as Insulation/HV Materials, Dielectric Spectroscopy, Dielectric Measurement Techniques and Ferroelectric materials have a growing importance across a range of technologically important areas from the Energy sector to Materials research, Semiconductor and Electronics industries, and Metrology. We would like to thank all of our colleagues and friends in the Dielectrics community who have supported this event by contributing manuscripts and participating in the event. The conference has provided excellent networking opportunities for all delegates. Our thanks go also to our theme chairs: Dr Stephen Dodd (University of Leicester) on Insulation/HV Materials, Professor Darryl Almond (University of Bath) on Dielectric Spectroscopy, Dr John Blackburn (NPL) on Dielectric Measurement Techniques and Professor Anthony R West (University of Sheffield) on Ferroelectric Materials. We would also like to thank the other members of the Technical Programme Committee for their support, and refereeing the submitted manuscripts. Our community would also like to wish a full recovery to our plenary speaker Prof John Fothergill (City University London) who was unexpectedly unable to give his talk as well as thank Professor Alun Vaughan for stepping in and giving an excellent plenary lecture in his place at such very short notice. We are also

  20. Controlling birefringence in dielectrics

    NASA Astrophysics Data System (ADS)

    Danner, Aaron J.; Tyc, Tomáš; Leonhardt, Ulf

    2011-06-01

    Birefringence, from the very essence of the word itself, refers to the splitting of light rays into two parts. In natural birefringent materials, this splitting is a beautiful phenomenon, resulting in the perception of a double image. In optical metamaterials, birefringence is often an unwanted side effect of forcing a device designed through transformation optics to operate in dielectrics. One polarization is usually implemented in dielectrics, and the other is sacrificed. Here we show, with techniques beyond transformation optics, that this need not be the case, that both polarizations can be controlled to perform useful tasks in dielectrics, and that rays, at all incident angles, can even follow different trajectories through a device and emerge together as if the birefringence did not exist at all. A number of examples are shown, including a combination Maxwell fisheye/Luneburg lens that performs a useful task and is achievable with current fabrication materials.

  1. Thermally switchable dielectrics

    DOEpatents

    Dirk, Shawn M.; Johnson, Ross S.

    2013-04-30

    Precursor polymers to conjugated polymers, such as poly(phenylene vinylene), poly(poly(thiophene vinylene), poly(aniline vinylene), and poly(pyrrole vinylene), can be used as thermally switchable capacitor dielectrics that fail at a specific temperature due to the non-conjugated precursor polymer irreversibly switching from an insulator to the conjugated polymer, which serves as a bleed resistor. The precursor polymer is a good dielectric until it reaches a specific temperature determined by the stability of the leaving groups. Conjugation of the polymer backbone at high temperature effectively disables the capacitor, providing a `built-in` safety mechanism for electronic devices.

  2. A dielectric affinity microbiosensor

    NASA Astrophysics Data System (ADS)

    Huang, Xian; Li, Siqi; Schultz, Jerome S.; Wang, Qian; Lin, Qiao

    2010-01-01

    We present an affinity biosensing approach that exploits changes in dielectric properties of a polymer due to its specific, reversible binding with an analyte. The approach is demonstrated using a microsensor comprising a pair of thin-film capacitive electrodes sandwiching a solution of poly(acrylamide-ran-3-acrylamidophenylboronic acid), a synthetic polymer with specific affinity to glucose. Binding with glucose induces changes in the permittivity of the polymer, which can be measured capacitively for specific glucose detection, as confirmed by experimental results at physiologically relevant concentrations. The dielectric affinity biosensing approach holds the potential for practical applications such as long-term continuous glucose monitoring.

  3. Multilayer dielectric diffraction gratings

    DOEpatents

    Perry, Michael D.; Britten, Jerald A.; Nguyen, Hoang T.; Boyd, Robert; Shore, Bruce W.

    1999-01-01

    The design and fabrication of dielectric grating structures with high diffraction efficiency used in reflection or transmission is described. By forming a multilayer structure of alternating index dielectric materials and placing a grating structure on top of the multilayer, a diffraction grating of adjustable efficiency, and variable optical bandwidth can be obtained. Diffraction efficiency into the first order in reflection varying between 1 and 98 percent has been achieved by controlling the design of the multilayer and the depth, shape, and material comprising the grooves of the grating structure. Methods for fabricating these gratings without the use of ion etching techniques are described.

  4. Multilayer dielectric diffraction gratings

    DOEpatents

    Perry, M.D.; Britten, J.A.; Nguyen, H.T.; Boyd, R.; Shore, B.W.

    1999-05-25

    The design and fabrication of dielectric grating structures with high diffraction efficiency used in reflection or transmission is described. By forming a multilayer structure of alternating index dielectric materials and placing a grating structure on top of the multilayer, a diffraction grating of adjustable efficiency, and variable optical bandwidth can be obtained. Diffraction efficiency into the first order in reflection varying between 1 and 98 percent has been achieved by controlling the design of the multilayer and the depth, shape, and material comprising the grooves of the grating structure. Methods for fabricating these gratings without the use of ion etching techniques are described. 7 figs.

  5. Ferroelectric liquid crystal display

    NASA Technical Reports Server (NTRS)

    York, Paul K. (Inventor)

    1977-01-01

    A ferroelectric liquid crystal display device employs capacitance spoiling layers to minimize unneeded capacitances created by crossovers of X and Y address lines and to accurately define desired capacitances. The spoiler layers comprise low dielectric constant layers which space electrodes from the ferroelectric at crossover points where capacitance is not needed for device operation.

  6. Simulation of waves of partial discharges in a chain of gas inclusions located in condensed dielectrics

    NASA Astrophysics Data System (ADS)

    Kupershtokh, A. L.; Karpov, D. I.

    2016-10-01

    A stochastic model of partial discharges inside gas inclusions in condensed dielectrics was developed. The possibility of a "relay-race" wave propagation mechanism of partial discharges in a linear chain of gas inclusions is shown. The lattice Boltzmann method is successfully implemented for three-dimensional computer simulations of flows of dielectric fluid with bubbles. Growth and elongation of bubbles in a liquid dielectric under the action of a strong electric field are simulated. The physical model of propagation of partial discharges along a chain of gas bubbles in a liquid is formulated.

  7. Dielectric THz waveguides

    NASA Astrophysics Data System (ADS)

    Dupuis, Alexandre

    In this thesis we have explored a wide variety of dielectric waveguides that rely on many different waveguiding mechanisms to guide THz (far-infrared) radiation. We have explored both theoretically and experimentally a large number of waveguide designs with the aim of reducing propagation and bending losses. The different waveguides can be classified into two fundamentally different strategies for reducing the propagation loss: small-core single-mode evanescent-field fibers or large hollow-core multi-mode tubes. Our focus was first set on exploring the small-core evanescent-field fiber strategy for reducing propagation losses. Following initial theoretical work in our group, much effort was spent on the fabrication and measurement of evanescent porous subwavelength diameter plastic fibers, in an attempt to further reduce the propagation losses. The fabrication of such fibers is a challenge and many novel techniques were devised to enable fiber drawing without hole collapse. The first method sealed the holes of an assembly of polymer tubes and lead to fibers of relatively low porosity (˜25% air within the core) due to reduction in hole size during fiber drawing. The second method was a novel sacrificial polymer technique whereby drawing a completely solid fiber prevented any hole collapse and the subsequent dissolution of the sacrificial polymer revealed the holes in the fiber. The third method was a combination of preform casting using glass molds and drawing with pressurized air within the holes. This led to fibers of record porosity (86% air). The measurement of these porous fibers began with a collaboration with a group from the university of Sherbrooke. At the time, the only available detector was a frequency integrating liquid-helium-cooled bolometer (powermeter). A novel directional coupler method for measuring the losses of subwavelength fibers was developed whereby an evanescent coupler is formed by bringing a probe fiber in proximity to the sample fiber

  8. Model of dissipative dielectric elastomers

    NASA Astrophysics Data System (ADS)

    Chiang Foo, Choon; Cai, Shengqiang; Jin Adrian Koh, Soo; Bauer, Siegfried; Suo, Zhigang

    2012-02-01

    The dynamic performance of dielectric elastomer transducers and their capability of electromechanical energy conversion are affected by dissipative processes, such as viscoelasticity, dielectric relaxation, and current leakage. This paper describes a method to construct a model of dissipative dielectric elastomers on the basis of nonequilibrium thermodynamics. We characterize the state of the dielectric elastomer with kinematic variables through which external loads do work, and internal variables that measure the progress of the dissipative processes. The method is illustrated with examples motivated by existing experiments of polyacrylate very-high-bond dielectric elastomers. This model predicts the dynamic response of the dielectric elastomer and the leakage current behavior. We show that current leakage can be significant under large deformation and for long durations. Furthermore, current leakage can result in significant hysteresis for dielectric elastomers under cyclic voltage.

  9. A Variational Statistical-Field Theory for Polar Liquid Mixtures

    NASA Astrophysics Data System (ADS)

    Zhuang, Bilin; Wang, Zhen-Gang

    Using a variational field-theoretic approach, we derive a molecularly-based theory for polar liquid mixtures. The resulting theory consists of simple algebraic expressions for the free energy of mixing and the dielectric constant as functions of mixture composition. Using only the dielectric constants and the molar volumes of the pure liquid constituents, the theory evaluates the mixture dielectric constants in good agreement with the experimental values for a wide range of liquid mixtures, without using adjustable parameters. In addition, the theory predicts that liquids with similar dielectric constants and molar volumes dissolve well in each other, while sufficient disparity in these parameters result in phase separation. The calculated miscibility map on the dielectric constant-molar volume axes agrees well with known experimental observations for a large number of liquid pairs. Thus the theory provides a quantification for the well-known empirical ``like-dissolves-like'' rule. Bz acknowledges the A-STAR fellowship for the financial support.

  10. Effects of conducting polymer poly(3, 4-ethylenedioxythiophene) nanotubes on the electro-optical and dielectric properties of a nematic liquid crystal 4-n-pentyl-4'-cyanobiphenyl host

    NASA Astrophysics Data System (ADS)

    Ghosh, Sharmistha; Nayek, Prasenjit; Roy, Subir Kr.; Gangopadhyay, Rupali; Molla, Mijanur Rahaman; Dabrowski, Roman

    2010-02-01

    We report the results of the optical transmission and the capacitance behavior as a function dc electric field of a pristine liquid crystal and conducting polymer nanotube-liquid crystal composite measured in twisted nematic cells. The threshold and driving voltages have been determined from transmission-voltage curve. There is remarkable reduction in the threshold and driving voltage in the polymer nanotube doped liquid crystal cell which is good from application point of view. The residual dc is also reduced significantly in the doped cell and the reduction is even more than that observed in the carbon nanotube doped same liquid crystal system.

  11. Antenna with Dielectric Having Geometric Patterns

    NASA Technical Reports Server (NTRS)

    Dudley, Kenneth L. (Inventor); Elliott, Holly A. (Inventor); Cravey, Robin L. (Inventor); Connell, John W. (Inventor); Ghose, Sayata (Inventor); Watson, Kent A. (Inventor); Smith, Jr., Joseph G. (Inventor)

    2013-01-01

    An antenna includes a ground plane, a dielectric disposed on the ground plane, and an electrically-conductive radiator disposed on the dielectric. The dielectric includes at least one layer of a first dielectric material and a second dielectric material that collectively define a dielectric geometric pattern, which may comprise a fractal geometry. The radiator defines a radiator geometric pattern, and the dielectric geometric pattern is geometrically identical, or substantially geometrically identical, to the radiator geometric pattern.

  12. Dielectric properties and microstructures for various MLCCs coated with additives

    NASA Astrophysics Data System (ADS)

    Oh, Min Wook; Yeo, Dong Hun; Shin, Hyo Soon; Jeong, Dae Yong

    2013-12-01

    As electronic devices become smaller and have higher capacity, dielectric thin films are being used in the development of multilayer ceramic capacitors (MLCCs). Smaller BaTiO3 dielectric particles should be used to obtain the thickness of low dielectric layers. Further, MLCC properties are achieved through the uniform addition of various additives, but the existing method of adding nano additives has limitations. As such, this study evaluated the dielectric properties of BaTiO3 pellets after using the liquid coating method to add additives such as Dy, Mg, Mn, Cr, and Si to 150 nm BaTiO3 dielectric powder. Mn, Cr, and Si ions were each fixed at 0.1, 0.1, and 0.65 mol-%. Sintering was performed in a reducing atmosphere, and the microstructure and the dielectric properties were evaluated while varying Dy from 0.5 to 1.0 mol-% and Mg from 1.0 to 2.0 mol-%. Grain growth was observed for higher amounts of Dy, but were suppressed for higher amounts of Mg. With regards to changes in particle size, both the permittivity and the temperature coefficient of capacitance (TCC) increased with increasing particle size. The permittivity was highest for Si=0.65, Mn=0.1, Cr=0.1 Dy=0.75, and Mg=2.0 mol-%. These levels also satisfied the TCC properties of X7R. In the microstructure, the core-shell was the most developed.

  13. High stress actuation by dielectric elastomer with oil capsules

    NASA Astrophysics Data System (ADS)

    La, Thanh-Giang; Lau, Gih-Keong; Shiau, Li-Lynn; Tan, Adrian W. Y.

    2014-03-01

    Though capable of generating a large strain, dielectric elastomer actuators (DEAs) generate only a moderate actuation stress not more than 200kPa, which seriously limits its use as artificial muscles for robotic arm. Enhancement of dielectric strength (greater than 500MV/m) by dielectric oil immersion could possibly enable it a larger force generation. Previously, the immersion was done in an oil bath, which limits portability together with DEAs. In this study, we developed portable capsules to enclose oil over the DEA substrate (VHB 4905). The capsules is made of a thinner soft acrylic membrane and they seals dielectric liquid oil (Dow Corning Fluid 200 50cSt). The DEA substrate is a graphiteclad VHB membrane, which is pre-stretched with pure-shear boundary condition for axial actuation. When activated under isotonic condition, the oil-capsule DEA can sustain a very high dielectric field up to 903 MV/m and does not fail; whereas, the dry DEA breaks down at a lower electric field at 570 MV/m. Furthermore, the oil-capsule DEA can produces higher isometric stress change up to 1.05MPa, which is 70% more than the maximum produced by the dry DEA. This study confirmed that oil capping helps DEA achieve very high dielectric strength and generate more stress change for work.

  14. Giant voltage-induced deformation of a dielectric elastomer under a constant pressure

    NASA Astrophysics Data System (ADS)

    Godaba, Hareesh; Foo, Choon Chiang; Zhang, Zhi Qian; Khoo, Boo Cheong; Zhu, Jian

    2014-09-01

    Dielectric elastomer actuators coupled with liquid have recently been developed as soft pumps, soft lenses, Braille displays, etc. In this paper, we investigate the performance of a dielectric elastomer actuator, which is coupled with water. The experiments demonstrate that the membrane of a dielectric elastomer can achieve a giant voltage-induced area strain of 1165%, when subject to a constant pressure. Both theory and experiment show that the pressure plays an important role in determining the electromechanical behaviour. The experiments also suggest that the dielectric elastomer actuators, when coupled with liquid, may suffer mechanical instability and collapse after a large amount of liquid is enclosed by the membrane. This failure mode needs to be taken into account in designing soft actuators.

  15. An acoustic dielectric and mechanical spectrometer.

    PubMed

    Hu, Ruifen; Stevenson, Adrian C; Lowe, Christopher R

    2012-06-21

    In this report, the dielectric constant of glycerol solutions (0-70% (w/w)) and the mechanical transitions of poly(2-hydroxylethyl methacrylate-co-methacrylic acid) films (600-800 nm, 1.5-10 mol% cross-linker) have been investigated by the magnetic acoustic resonance sensor (MARS), which is an electrode-free acoustic sensor and operates over a continuous frequency spectrum (6-200 MHz). When a glycerol solution was loaded, the response of the MARS decayed exponentially as the operating frequency was increased. The decay rate against frequency as a function of the glycerol concentration reflects the change of the dielectric property of the glycerol solutions. In addition, mechanical relaxation of the poly(2-hydroxylethyl methacrylate-co-methacrylic acid) film has been observed on the MARS and the corresponding viscoelastic transition frequency has been estimated. The viscoelastic transition frequency increased as the polymer was more highly cross-linked. The MARS system behaved as a dielectric and mechanical spectrometer, monitoring the electrical and mechanical properties of viscoelastic materials or on the solid-liquid interfaces simultaneously, which has prospective application in studies of biomaterials, molecular interactions and drug deliveries.

  16. Temperature switchable polymer dielectrics.

    SciTech Connect

    Kholwadwala, Fenil Manish; Johnson, Ross Stefan; Dirk, Shawn M.

    2010-06-01

    Materials with switchable states are desirable in many areas of science and technology. The ability to thermally transform a dielectric material to a conductive state should allow for the creation of electronics with built-in safety features. Specifically, the non-desirable build-up and discharge of electricity in the event of a fire or over-heating would be averted by utilizing thermo-switchable dielectrics in the capacitors of electrical devices (preventing the capacitors from charging at elevated temperatures). We have designed a series of polymers that effectively switch from a non-conductive to a conductive state. The thermal transition is governed by the stability of the leaving group after it leaves as a free entity. Here, we present the synthesis and characterization of a series of precursor polymers that eliminate to form poly(p-phenylene vinylene) (PPV's).

  17. Broadband local dielectric spectroscopy

    NASA Astrophysics Data System (ADS)

    Labardi, M.; Lucchesi, M.; Prevosto, D.; Capaccioli, S.

    2016-05-01

    A route to extend the measurement bandwidth of local dielectric spectroscopy up to the MHz range has been devised. The method is based on a slow amplitude modulation at a frequency Ω of the excitation field oscillating at a frequency ω and the coherent detection of the modulated average electric force or force gradient at Ω. The cantilever mechanical response does not affect the measurement if Ω is well below its resonant frequency; therefore, limitations on the excitation field frequency are strongly reduced. Demonstration on a thin poly(vinyl acetate) film is provided, showing its structural relaxation spectrum on the local scale up to 45 °C higher than glass temperature, and nanoscale resolution dielectric relaxation imaging near conductive nanowires embedded in the polymer matrix was obtained up to 5 MHz frequency, with no physical reason to hinder further bandwidth extension.

  18. Temperature switchable polymer dielectrics.

    SciTech Connect

    Johnson, Ross Stefan

    2010-08-01

    Materials with switchable states are desirable in many areas of science and technology. The ability to thermally transform a dielectric material to a conductive state should allow for the creation of electronics with built-in safety features. Specifically, the non-desirable build-up and discharge of electricity in the event of a fire or over-heating would be averted by utilizing thermo-switchable dielectrics in the capacitors of electrical devices (preventing the capacitors from charging at elevated temperatures). We have designed a series of polymers that effectively switch from a non-conductive to a conductive state. The thermal transition is governed by the stability of the leaving group after it leaves as a free entity. Here, we present the synthesis and characterization of a series of precursor polymers that eliminate to form poly(p-phenylene vinylene) (PPV's).

  19. DIELECTRIC WALL ACCELERATOR TECHNOLOGY

    SciTech Connect

    Sampayan, S; Caporaso, G; Chen, Y; Harris, J; Hawkins, S; Holmes, C; Nelson, S; Poole, B; Rhodes, M; Sanders, D; Sullivan, J; Wang, L; Watson, J

    2007-10-18

    The dielectric wall accelerator (DWA) is a compact pulsed power device where the pulse forming lines, switching, and vacuum wall are integrated into a single compact geometry. For this effort, we initiated a extensive compact pulsed power development program and have pursued the study of switching (gas, oil, laser induced surface flashover and photoconductive), dielectrics (ceramics and nanoparticle composites), pulse forming line topologies (asymmetric and symmetric Blumleins and zero integral pulse forming lines), and multilayered vacuum insulator (HGI) technology. Finally, we fabricated an accelerator cell for test on ETAII (a 5.5 MeV, 2 kA, 70 ns pulsewidth electron beam accelerator). We review our past results and report on the progress of accelerator cell testing.

  20. All-dielectric metamaterials

    NASA Astrophysics Data System (ADS)

    Jahani, Saman; Jacob, Zubin

    2016-01-01

    The ideal material for nanophotonic applications will have a large refractive index at optical frequencies, respond to both the electric and magnetic fields of light, support large optical chirality and anisotropy, confine and guide light at the nanoscale, and be able to modify the phase and amplitude of incoming radiation in a fraction of a wavelength. Artificial electromagnetic media, or metamaterials, based on metallic or polar dielectric nanostructures can provide many of these properties by coupling light to free electrons (plasmons) or phonons (phonon polaritons), respectively, but at the inevitable cost of significant energy dissipation and reduced device efficiency. Recently, however, there has been a shift in the approach to nanophotonics. Low-loss electromagnetic responses covering all four quadrants of possible permittivities and permeabilities have been achieved using completely transparent and high-refractive-index dielectric building blocks. Moreover, an emerging class of all-dielectric metamaterials consisting of anisotropic crystals has been shown to support large refractive index contrast between orthogonal polarizations of light. These advances have revived the exciting prospect of integrating exotic electromagnetic effects in practical photonic devices, to achieve, for example, ultrathin and efficient optical elements, and realize the long-standing goal of subdiffraction confinement and guiding of light without metals. In this Review, we present a broad outline of the whole range of electromagnetic effects observed using all-dielectric metamaterials: high-refractive-index nanoresonators, metasurfaces, zero-index metamaterials and anisotropic metamaterials. Finally, we discuss current challenges and future goals for the field at the intersection with quantum, thermal and silicon photonics, as well as biomimetic metasurfaces.

  1. Dielectric spectroscopy of polyaniline

    SciTech Connect

    Calleja, R.D.; Matveeva, E.M.

    1993-12-31

    Polyaniline films (PANI) are being considered as attractive new galvanic sources, electrochromic displays, chemical sensors, etc. So far much work has been done to study their optical, electrochemical and electrical properties. However, there are still doubts about the basic electric conductivity mechanisms of PANI. The aim of this paper is to study the influence of water molecules and acid anions on the properties of PANI films by dielectric spectroscopy.

  2. All-dielectric metamaterials.

    PubMed

    Jahani, Saman; Jacob, Zubin

    2016-01-01

    The ideal material for nanophotonic applications will have a large refractive index at optical frequencies, respond to both the electric and magnetic fields of light, support large optical chirality and anisotropy, confine and guide light at the nanoscale, and be able to modify the phase and amplitude of incoming radiation in a fraction of a wavelength. Artificial electromagnetic media, or metamaterials, based on metallic or polar dielectric nanostructures can provide many of these properties by coupling light to free electrons (plasmons) or phonons (phonon polaritons), respectively, but at the inevitable cost of significant energy dissipation and reduced device efficiency. Recently, however, there has been a shift in the approach to nanophotonics. Low-loss electromagnetic responses covering all four quadrants of possible permittivities and permeabilities have been achieved using completely transparent and high-refractive-index dielectric building blocks. Moreover, an emerging class of all-dielectric metamaterials consisting of anisotropic crystals has been shown to support large refractive index contrast between orthogonal polarizations of light. These advances have revived the exciting prospect of integrating exotic electromagnetic effects in practical photonic devices, to achieve, for example, ultrathin and efficient optical elements, and realize the long-standing goal of subdiffraction confinement and guiding of light without metals. In this Review, we present a broad outline of the whole range of electromagnetic effects observed using all-dielectric metamaterials: high-refractive-index nanoresonators, metasurfaces, zero-index metamaterials and anisotropic metamaterials. Finally, we discuss current challenges and future goals for the field at the intersection with quantum, thermal and silicon photonics, as well as biomimetic metasurfaces.

  3. Dielectric properties of condensed fluoromethanes and fluoromethane mixtures

    NASA Astrophysics Data System (ADS)

    Böhmer, R.; Loidl, A.

    1988-10-01

    Dielectric measurements were performed on liquid and solid (CF4)1-x (CMF3)x with M=H, Cl, and Br. The dielectric behavior of the polar molecules in the liquid state is well described by an Onsager equation. At the melting point, pure hydrogenated and brominated fluoromethanes condense into dipolar rigid phases, while pure tetrafluoromethane forms a plastic crystal. CClF3 exhibits dipolar relaxational phenomena in the solid state. The data indicate that near the melting point this compound is close to a transition into a plastic phase. Mixtures of CF4 with CHF3 and CBrF3 exhibit monotectic phase diagrams with a limited solubility in the liquid state and complete immiscibility in the solid state. However, formation of mixed crystals is found in (CF4)1-x (CClF3)x which exhibits a eutectic phase diagram.

  4. Dipolar correlations and the dielectric permittivity of water.

    PubMed

    Sharma, Manu; Resta, Raffaele; Car, Roberto

    2007-06-15

    The static dielectric properties of liquid and solid water are investigated within linear response theory in the context of ab initio molecular dynamics. Using maximally localized Wannier functions to treat the macroscopic polarization we formulate a first-principles, parameter-free, generalization of Kirkwood's phenomenological theory. Our calculated static permittivity is in good agreement with experiment. Two effects of the hydrogen bonds, i.e., a significant increase of the average local moment and a local alignment of the molecular dipoles, contribute in almost equal measure to the unusually large dielectric constant of water.

  5. Remote Sensing of Salinity: The Dielectric Constant of Sea Water

    NASA Technical Reports Server (NTRS)

    LeVine, David M.; Lang, R.; Utku, C.; Tarkocin, Y.

    2011-01-01

    Global monitoring of sea surface salinity from space requires an accurate model for the dielectric constant of sea water as a function of salinity and temperature to characterize the emissivity of the surface. Measurements are being made at 1.413 GHz, the center frequency of the Aquarius radiometers, using a resonant cavity and the perturbation method. The cavity is operated in a transmission mode and immersed in a liquid bath to control temperature. Multiple measurements are made at each temperature and salinity. Error budgets indicate a relative accuracy for both real and imaginary parts of the dielectric constant of about 1%.

  6. Tunable dielectric properties of ferrite-dielectric based metamaterial.

    PubMed

    Bi, K; Huang, K; Zeng, L Y; Zhou, M H; Wang, Q M; Wang, Y G; Lei, M

    2015-01-01

    A ferrite-dielectric metamaterial composed of dielectric and ferrite cuboids has been investigated by experiments and simulations. By interacting with the electromagnetic wave, the Mie resonance can take place in the dielectric cuboids and the ferromagnetic precession will appear in the ferrite cuboids. The magnetic field distributions show the electric Mie resonance of the dielectric cuboids can be influenced by the ferromagnetic precession of ferrite cuboids when a certain magnetic field is applied. The effective permittivity of the metamaterial can be tuned by modifying the applied magnetic field. A good agreement between experimental and simulated results is demonstrated, which confirms that these metamaterials can be used for tunable microwave devices.

  7. Tunable Dielectric Properties of Ferrite-Dielectric Based Metamaterial

    PubMed Central

    Bi, K.; Huang, K.; Zeng, L. Y.; Zhou, M. H.; Wang, Q. M.; Wang, Y. G.; Lei, M.

    2015-01-01

    A ferrite-dielectric metamaterial composed of dielectric and ferrite cuboids has been investigated by experiments and simulations. By interacting with the electromagnetic wave, the Mie resonance can take place in the dielectric cuboids and the ferromagnetic precession will appear in the ferrite cuboids. The magnetic field distributions show the electric Mie resonance of the dielectric cuboids can be influenced by the ferromagnetic precession of ferrite cuboids when a certain magnetic field is applied. The effective permittivity of the metamaterial can be tuned by modifying the applied magnetic field. A good agreement between experimental and simulated results is demonstrated, which confirms that these metamaterials can be used for tunable microwave devices. PMID:25993433

  8. The dielectric breakdown limit of silicone dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Gatti, Davide; Haus, Henry; Matysek, Marc; Frohnapfel, Bettina; Tropea, Cameron; Schlaak, Helmut F.

    2014-02-01

    Soft silicone elastomers are used in a generation of dielectric elastomer actuators (DEAs) with improved actuation speed and durability compared to the commonly used, highly viscoelastic polyacrylate 3M VHB™ films. The maximum voltage-induced stretch of DEAs is ultimately limited by their dielectric breakdown field strength. We measure the dependence of dielectric breakdown field strength on thickness and stretch for a silicone elastomer, when voltage-induced deformation is prevented. The experimental results are combined with an analytic model of equi-biaxial actuation to show that accounting for variable dielectric field strength results in different values of optimal pre-stretch and thickness that maximize the DEA actuation.

  9. Adhesion promoters for large scale fabrication of dielectric elastomer stack transducers (DESTs) made of pre-fabricated dielectric films

    NASA Astrophysics Data System (ADS)

    Grotepaß, T.; Förster-Zügel, F.; Mößinger, H.; Schlaak, H. F.

    2015-04-01

    Multilayer dielectric elastomer stack transducers (DESTs) are a promising new transducer technology with many applications in different industry sectors, like medical devices, human-machine-interaction, etc. Stacked dielectric elastomer transducers show larger thickness contraction driven by lower voltages than transducers made from a single dielectric layer. Traditionally multilayered DESTs are produced by repeatedly cross-linking a liquid elastomeric pre-polymer into the required shape. Our recent research focusses on a novel fabrication method for large scale stack transducers with a surface area over 200 x 300 mm by processing pre-fabricated elastomeric thin films of less than 50 μm thicknesses. The thin films are provided as two- or three-layer composites, where the elastomer is sandwiched between one or two sacrificial liners. Separating the elastomeric film from the residual layers and assembling them into dielectric elastomer stack transducers poses many challenges concerning adhesion, since the dielectric film merely separates from the liner if the adhesive forces between them are overcome. Conversely, during the assembly of a dielectric elastomer stack transducer, adhesive forces have to be established between two elastomeric layers or between the dielectric and the electrode layer. The very low Young's modulus of at least one adhesion partner requires suitable means of increasing the adhesive forces between the different adhesive layers of a dielectric elastomer stack transducer to prevent a delamination of the transducer during its lifetime. This work evaluates different surface activation treatments - corona, low-pressure plasma and UV-light - and their applicability in the production of large scale DESTs made from pre-fabricated elastomeric films.

  10. Tunable lenses using transparent dielectric elastomer actuators.

    PubMed

    Shian, Samuel; Diebold, Roger M; Clarke, David R

    2013-04-08

    Focus tunable, adaptive lenses provide several advantages over traditional lens assemblies in terms of compactness, cost, efficiency, and flexibility. To further improve the simplicity and compact nature of adaptive lenses, we present an elastomer-liquid lens system which makes use of an inline, transparent electroactive polymer actuator. The lens requires only a minimal number of components: a frame, a passive membrane, a dielectric elastomer actuator membrane, and a clear liquid. The focal length variation was recorded to be greater than 100% with this system, responding in less than one second. Through the analysis of membrane deformation within geometrical constraints, it is shown that by selecting appropriate lens dimensions, even larger focusing dynamic ranges can be achieved.

  11. Dielectric Nonlinear Transmission Line (Postprint)

    DTIC Science & Technology

    2011-12-01

    Technical Paper 3. DATES COVERED (From - To) 2011 4. TITLE AND SUBTITLE Dielectric Nonlinear Transmission Line (POSTPRINT) 5a. CONTRACT NUMBER...14. ABSTRACT A parallel plate nonlinear transmission line (NLTL) was constructed. Periodic loading of nonlinear dielectric slabs provides the...846-9101 Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. 239.18 Dielectric Nonlinear Transmission Line David M. French, Brad W. Hoff

  12. Dielectric properties of lunar surface

    NASA Astrophysics Data System (ADS)

    Yushkova, O. V.; Kibardina, I. N.

    2017-03-01

    Measurements of the dielectric characteristics of lunar soil samples are analyzed in the context of dielectric theory. It has been shown that the real component of the dielectric permittivity and the loss tangent of rocks greatly depend on the frequency of the interacting electromagnetic field and the soil temperature. It follows from the analysis that one should take into account diurnal variations in the lunar surface temperature when interpreting the radar-sounding results, especially for the gigahertz radio range.

  13. Dielectric Relaxation in Dimethyl Sulfoxide/Water Mixtures Studied by Microwave Dielectric Relaxation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Lu, Zijie; Manias, Evangelos; MacDonald, Digby D.; Lanagan, Michael

    2009-10-01

    Dielectric spectra of dimethyl sulfoxide (DMSO)/water mixtures, over the entire concentration range, have been measured using the transmission line method at frequencies from 45 MHz to 26 GHz and at temperatures of 298-318 K. The relaxation times of the mixtures show a maximum at an intermediate molar fraction of DMSO. The specific structure of mixtures in different concentration regions was determined by the dielectric relaxation dynamics, obtained from the effect of temperature on the relaxation time. A water structure "breaking effect" is observed in dilute aqueous solutions. The average number of hydrogen bonds per water molecule in these mixtures is found to be reduced compared to pure water. The increase in the dielectric relaxation time in DMSO/water mixtures is attributed to the spatial (steric) constraints of DMSO molecules on the hydrogen-bond network, rather than being due to hydrophobic hydration of the methyl groups. The interaction between water and DMSO by hydrogen bonding reaches a maximum at a DMSO molar fraction of 0.33, reflected by the maximum activation enthalpy for dielectric relaxation in this concentration, suggesting the formation of a stoichiometric compound, H2O-DMSO-H2O. In highly concentrated solutions, negative activation entropies are observed, indicating the presence of aggregates of DMSO molecules. A distinct antiparallel arrangement of dipoles is obtained for neat DMSO in the liquid state according to the Kirkwood correlation factor (gK = 0.5), calculated from the static permittivity. The similarity of the dielectric behavior of pure DMSO and DMSO-rich mixtures suggests that dipole-dipole interactions contribute significantly to the rotational relaxation process in these solutions.

  14. Breakdown and partial discharges in magnetic liquids

    NASA Astrophysics Data System (ADS)

    Herchl, F.; Marton, K.; Tomčo, L.; Kopčanský, P.; Timko, M.; Koneracká, M.; Kolcunová, I.

    2008-05-01

    The dielectric properties (permittivity, loss factor, dielectric breakdown strength) of magnetic liquids were investigated. The magnetic liquids were composed of magnetite particles coated with oleic acid as surfactant and dispersed in transformer oil. To determine their dielectric properties they were subjected to a uniform magnetic field at high alternating electric fields up to 14 MV m-1. Nearly constant permittivity of magnetic liquid with particle volume concentration Φ = 0.0019 as a function of electric field was observed. Magnetic liquids with concentrations Φ = 0.019 and 0.032 showed significant changes of permittivity and loss factor dependent on electric and magnetic fields. The best concentration of magnetic fluid was found at which partial current impulse magnitudes were the lowest. The breakdown strength distribution of the magnetic liquid with Φ = 0.0025 was fitted with the Duxbury-Leath, Weibull and Gauss distribution functions.

  15. The mechanism of the dielectric relaxation in water.

    PubMed

    Popov, Ivan; Ishai, Paul Ben; Khamzin, Airat; Feldman, Yuri

    2016-05-18

    Although relating to the same system, the interpretations of the water spectra from Raman and Dielectric spectroscopy present independent pictures of the nature of water. We show that in the overlap region of the two methods it is possible to combine these views into a coherent concept of what drives the dynamic features of water. In this work, we develop the idea that the dielectric relaxation in water is driven by the migration of defects through the H-bond network, leading to a Debye-like peak in the lower frequencies. The deviation from the Debye law in the higher sub-THz frequencies is traced to a global fluctuation of the same H-bond network, clearly evident in the Raman Spectra. By incorporating these two views, a mathematical formalism is presented that can aptly explicate the dielectric spectra of liquid water.

  16. Low Dielectric Polymers

    NASA Technical Reports Server (NTRS)

    Venumbaka, Sreenivasulu R.; Cassidy, Patrick E.

    2002-01-01

    This report summarizes results obtained from research funded through Research Cooperative Agreement No. NCC-1-01033-"Low Dielectric Polymers" (from 5/10/01 through 5/09/02). Results are reported in three of the proposed research areas (Tasks 1-3 in the original proposal): (1) Repeat and confirm the preparation and properties of the new alkyl-substituted PEK, 6HC17-PEK, (2) Prepare and evaluate polymers derived from a highly fluorinated monomer, and (3) Prepare and evaluate new silicon and/or fluorine-containing polymers expected to retain useful properties at low temperature.

  17. Inorganic optical dielectric films

    NASA Astrophysics Data System (ADS)

    Woollam, John A.

    1996-07-01

    Dielectric coatings have been in use for a very long time, yet today they represent a steadily growing wold-wide industry. A wide range of materials, and applications from the near ultraviolet into the infrared are in use, or under development. This paper is a brief survey, including references to the literature, and a discussion of materials diagnostics. Discussed is the microstructure, optical constants and their relationship as determined especially by optical measurements. This paper emphasizes the materials science aspects rather than applications.

  18. Boron nitride as two dimensional dielectric: Reliability and dielectric breakdown

    SciTech Connect

    Ji, Yanfeng; Pan, Chengbin; Hui, Fei; Shi, Yuanyuan; Lanza, Mario; Zhang, Meiyun; Long, Shibing; Lian, Xiaojuan; Miao, Feng; Larcher, Luca; Wu, Ernest

    2016-01-04

    Boron Nitride (BN) is a two dimensional insulator with excellent chemical, thermal, mechanical, and optical properties, which make it especially attractive for logic device applications. Nevertheless, its insulating properties and reliability as a dielectric material have never been analyzed in-depth. Here, we present the first thorough characterization of BN as dielectric film using nanoscale and device level experiments complementing with theoretical study. Our results reveal that BN is extremely stable against voltage stress, and it does not show the reliability problems related to conventional dielectrics like HfO{sub 2}, such as charge trapping and detrapping, stress induced leakage current, and untimely dielectric breakdown. Moreover, we observe a unique layer-by-layer dielectric breakdown, both at the nanoscale and device level. These findings may be of interest for many materials scientists and could open a new pathway towards two dimensional logic device applications.

  19. Voltage sensor and dielectric material

    DOEpatents

    Yakymyshyn, Christopher Paul; Yakymyshyn, Pamela Jane; Brubaker, Michael Allen

    2006-10-17

    A voltage sensor is described that consists of an arrangement of impedance elements. The sensor is optimized to provide an output ratio that is substantially immune to changes in voltage, temperature variations or aging. Also disclosed is a material with a large and stable dielectric constant. The dielectric constant can be tailored to vary with position or direction in the material.

  20. Microwave Propagation in Dielectric Fluids.

    ERIC Educational Resources Information Center

    Lonc, W. P.

    1980-01-01

    Describes an undergraduate experiment designed to verify quantitatively the effect of a dielectric fluid's dielectric constant on the observed wavelength of microwave radiation propagating through the fluid. The fluid used is castor oil, and results agree with the expected behavior within 5 percent. (Author/CS)

  1. Low dielectric polyimide fibers

    NASA Technical Reports Server (NTRS)

    Dorogy, William E., Jr. (Inventor); St.clair, Anne K. (Inventor)

    1994-01-01

    A high temperature resistant polyimide fiber that has a dielectric constant of less than 3 is presented. The fiber was prepared by first reacting 2,2-bis (4-(4aminophenoxy)phenyl) hexafluoropropane with 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride in an aprotic solvent to form a polyamic acid resin solution. The polyamic acid resin solution is then extruded into a coagulation medium to form polyamic acid fibers. The fibers are thermally cured to their polyimide form. Alternatively, 2,2-bis(4-(4-aminophenoxy)phenyl) hexafluoropropane is reacted with 2,2-bis(3,4-dicarboxyphenyl) hexafluoropropane dianhydride to form a polyamic acid, and the polyamic acid is chemically converted to its polyimide form. The polyimide is then dissolved in a solvent to form a polyimide resin solution, and the polyimide resin is extruded into a coagulation medium to form a polyimide wet gel filament. In order to obtain polyimide fibers of increased tensile properties, the polyimide wet gel filaments are stretched at elevated temperatures. The tensile properties of the fibers were measured and found to be in the range of standard textile fibers. Polyimide fibers obtained by either method will have a dielectric constant similar to that of the corresponding polymer, viz., less than 3 at 10 GHz.

  2. Folded dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Carpi, Federico; Salaris, Claudio; DeRossi, Danilo

    2007-04-01

    Polymer-based linear actuators with contractile ability are currently demanded for several types of applications. Within the class of dielectric elastomer actuators, two basic configurations are available today for such a purpose: the multi-layer stack and the helical structure. The first consists of several layers of elementary planar actuators stacked in series mechanically and parallel electrically. The second configuration relies on a couple of helical compliant electrodes alternated with a couple of helical dielectrics. The fabrication of both these configurations presents some specific drawbacks today, arising from the peculiarity of each structure. Accordingly, the availability of simpler solutions may boost the short-term use of contractile actuators in practical applications. For this purpose, a new configuration is here described. It consists of a monolithic structure made of an electroded sheet, which is folded up and compacted. The resulting device is functionally equivalent to a multi-layer stack with interdigitated electrodes. However, with respect to a stack the new configuration is advantageously not discontinuous and can be manufactured in one single phase, avoiding layer-by-layer multi-step procedures. The development and preliminary testing of prototype samples of this new actuator made of a silicone elastomer are presented here.

  3. Dielectric laser accelerators

    NASA Astrophysics Data System (ADS)

    England, R. Joel; Noble, Robert J.; Bane, Karl; Dowell, David H.; Ng, Cho-Kuen; Spencer, James E.; Tantawi, Sami; Wu, Ziran; Byer, Robert L.; Peralta, Edgar; Soong, Ken; Chang, Chia-Ming; Montazeri, Behnam; Wolf, Stephen J.; Cowan, Benjamin; Dawson, Jay; Gai, Wei; Hommelhoff, Peter; Huang, Yen-Chieh; Jing, Chunguang; McGuinness, Christopher; Palmer, Robert B.; Naranjo, Brian; Rosenzweig, James; Travish, Gil; Mizrahi, Amit; Schachter, Levi; Sears, Christopher; Werner, Gregory R.; Yoder, Rodney B.

    2014-10-01

    The use of infrared lasers to power optical-scale lithographically fabricated particle accelerators is a developing area of research that has garnered increasing interest in recent years. The physics and technology of this approach is reviewed, which is referred to as dielectric laser acceleration (DLA). In the DLA scheme operating at typical laser pulse lengths of 0.1 to 1 ps, the laser damage fluences for robust dielectric materials correspond to peak surface electric fields in the GV /m regime. The corresponding accelerating field enhancement represents a potential reduction in active length of the accelerator between 1 and 2 orders of magnitude. Power sources for DLA-based accelerators (lasers) are less costly than microwave sources (klystrons) for equivalent average power levels due to wider availability and private sector investment. Because of the high laser-to-particle coupling efficiency, required pulse energies are consistent with tabletop microJoule class lasers. Combined with the very high (MHz) repetition rates these lasers can provide, the DLA approach appears promising for a variety of applications, including future high-energy physics colliders, compact light sources, and portable medical scanners and radiative therapy machines.

  4. Repulsive Casimir forces between solid materials with high-refractive-index intervening liquids

    SciTech Connect

    Zwol, P. J. van; Palasantzas, G.

    2010-06-15

    In order to explore repulsive Casimir or van der Waals forces between solid materials with liquid as the intervening medium, we analyze dielectric data for a wide range of materials as, for example, (p)olytetrafluoroethylene, polystyrene, silica, and more than 20 liquids. Although significant variation in the dielectric data from different sources exists, we provide a scheme based on measured static dielectric constants, refractive indices, and applying Kramers-Kronig consistency to dielectric data to create accurate dielectric functions at imaginary frequencies. The latter is necessary for more accurate force calculations via the Lifshitz theory, thereby allowing reliable predictions of repulsive Casimir forces.

  5. [Relationship between the critical phases of the physiological state of insect during supercooling and its dielectric permeability].

    PubMed

    Es'kov, E K; Toboev, V A

    2011-01-01

    The relationship between critical temperatures causing the cold torpor and freezing of liquid fractions of the body of honeybees and their dielectric permeability has been studied. It has been shown that the temperature at which the freezing of liquid fractions occurs, as distinct from the temperature inducing the cold torpor, depends on age and seasonal generation of insects. It has been found that changes in the temperature causing the torpor and freezing correlate with jumps of dielectric permeability.

  6. Dielectric Actuation of Polymers

    NASA Astrophysics Data System (ADS)

    Niu, Xiaofan

    Dielectric polymers are widely used in a plurality of applications, such as electrical insulation, dielectric capacitors, and electromechanical actuators. Dielectric polymers with large strain deformations under an electric field are named dielectric elastomers (DE), because of their relative low modulus, high elongation at break, and outstanding resilience. Dielectric elastomer actuators (DEA) are superior to traditional transducers as a muscle-like technology: large strains, high energy densities, high coupling efficiency, quiet operation, and light weight. One focus of this dissertation is on the design of DE materials with high performance and easy processing. UV radiation curing of reactive species is studied as a generic synthesis methodology to provide a platform for material scientists to customize their own DE materials. Oligomers/monomers, crosslinkers, and other additives are mixed and cured at appropriate ratios to control the stress-strain response, suppress electromechanical instability of the resulting polymers, and provide stable actuation strains larger than 100% and energy densities higher than 1 J/g. The processing is largely simplified in the new material system by removal of the prestretching step. Multilayer stack actuators with 11% linear strain are demonstrated in a procedure fully compatible with industrial production. A multifunctional DE derivative material, bistable electroactive polymer (BSEP), is invented enabling repeatable rigid-to-rigid deformation without bulky external structures. Bistable actuation allows the polymer actuator to have two distinct states that can support external load without device failure. Plasticizers are used to lower the glass transition temperature to 45 °C. Interpenetrating polymer network structure is established inside the BSEP to suppress electromechanical instability, providing a breakdown field of 194 MV/m and a stable bistable strain as large as 228% with a 97% strain fixity. The application of BSEP

  7. Technique for Performing Dielectric Property Measurements at Microwave Frequencies

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin B.; Jackson, Henry W.

    2010-01-01

    A paper discusses the need to perform accurate dielectric property measurements on larger sized samples, particularly liquids at microwave frequencies. These types of measurements cannot be obtained using conventional cavity perturbation methods, particularly for liquids or powdered or granulated solids that require a surrounding container. To solve this problem, a model has been developed for the resonant frequency and quality factor of a cylindrical microwave cavity containing concentric cylindrical samples. This model can then be inverted to obtain the real and imaginary dielectric constants of the material of interest. This approach is based on using exact solutions to Maxwell s equations for the resonant properties of a cylindrical microwave cavity and also using the effective electrical conductivity of the cavity walls that is estimated from the measured empty cavity quality factor. This new approach calculates the complex resonant frequency and associated electromagnetic fields for a cylindrical microwave cavity with lossy walls that is loaded with concentric, axially aligned, lossy dielectric cylindrical samples. In this approach, the calculated complex resonant frequency, consisting of real and imaginary parts, is related to the experimentally measured quantities. Because this approach uses Maxwell's equations to determine the perturbed electromagnetic fields in the cavity with the material(s) inserted, one can calculate the expected wall losses using the fields for the loaded cavity rather than just depending on the value of the fields obtained from the empty cavity quality factor. These additional calculations provide a more accurate determination of the complex dielectric constant of the material being studied. The improved approach will be particularly important when working with larger samples or samples with larger dielectric constants that will further perturb the cavity electromagnetic fields. Also, this approach enables the ability to have a

  8. Measurements of the dielectric constants for planetary volatiles

    NASA Technical Reports Server (NTRS)

    Anicich, Vincent G.; Huntress, Wesley T., Jr.

    1987-01-01

    The model of Titan at present has the surface temperature, pressure, and composition such that there is a possibility of a binary ethane-methane ocean. Proposed experiments for future Titan flybys include microwave mappers. Very little has been measured of the dielectric properties of the small hydrocarbons at these radar frequencies. An experiment was conducted utilizing a slotted line to measure the dielectric properties of the hydrocarbons, methane to heptane, from room temperature to -180 C. Measurements of the real part of the dielectric constants are accurate to + or - 0.006 and the imaginary part (the loss tangent) of the liquids studied is less than or equal to 0.001. In order to verify this low loss tangent, the real part of the dielectric constant of hexane at 25 C was studied as a function of the frequency range of the slotted line system used. The dielectric constant of hexane at room temperature, between 500 MHz and 3 MHz, is constant within experimental error.

  9. Comparative study of low frequency dielectric properties of Hexyloxybenzylidine hexylaniline and Heptyloxybenzylidine hexylaniline

    NASA Astrophysics Data System (ADS)

    Singh, K. N.; Gogoi, B.; Dubey, R.; Singh, N. M.; Sharma, H. B.; Alapati, P. R.

    2016-06-01

    This article presents a comparative study of low frequency dielectric properties of two Alkyloxybenzylidine alkylaniline compounds—Hexyloxybenzylidine hexylaniline (6O.6) and Heptyloxybenzylidine hexylaniline (7O.6). Dielectric study is made by using cells with ITO coated surface pretreated with polyvinyl alcohol as the aligning layer. We have found that the switching of dielectric anisotropy from negative to positive value is related to the change in orientation of alkyloxy dipole. It indicates 6O.6 (and lower members) to be negative dielectric anisotropic material while 7O.6 (and higher members) to be positive dielectric anisotropic materials. Further comparative study on the interfacial polarization between the two types of interfaces (PVA-6O.6 and PVA-7O.6) with different relaxation times support the differences of the two liquid crystal samples. The dc electric field characteristics of the two samples are drastically different in behaviour and can be explained satisfactorily on the interplay between the dipole orientation and the ionic motion.

  10. Nanosecond liquid crystalline optical modulator

    SciTech Connect

    Borshch, Volodymyr; Shiyanovskii, Sergij V.; Lavrentovich, Oleg D.

    2016-07-26

    An optical modulator includes a liquid crystal cell containing liquid crystal material having liquid crystal molecules oriented along a quiescent director direction in the unbiased state, and a voltage source configured to apply an electric field to the liquid crystal material wherein the direction of the applied electric field does not cause the quiescent director direction to change. An optical source is arranged to transmit light through or reflect light off the liquid crystal cell with the light passing through the liquid crystal material at an angle effective to undergo phase retardation in response to the voltage source applying the electric field. The liquid crystal material may have negative dielectric anisotropy, and the voltage source configured to apply an electric field to the liquid crystal material whose electric field vector is transverse to the quiescent director direction. Alternatively, the liquid crystal material may have positive dielectric anisotropy and the voltage source configured to apply an electric field to the liquid crystal material whose electric field vector is parallel with the quiescent director direction.

  11. Open-Ended Coaxial Dielectric Probe Effective Penetration Depth Determination.

    PubMed

    Meaney, Paul M; Gregory, Andrew P; Seppälä, Jan; Lahtinen, Tapani

    2016-03-01

    We have performed a series of experiments which demonstrate the effect of open-ended coaxial diameter on the depth of penetration. We used a two layer configuration of a liquid and movable cylindrical piece of either Teflon or acrylic. The technique accurately demonstrates the depth in a sample for which a given probe diameter provides a reasonable measure of the bulk dielectric properties for a heterogeneous volume. In addition we have developed a technique for determining the effective depth for a given probe diameter size. Using a set of simulations mimicking four 50 Ω coaxial cable diameters, we demonstrate that the penetration depth in both water and saline has a clear dependence on probe diameter but is remarkably uniform over frequency and with respect to the intervening liquid permittivity. Two different 50 Ω commercial probes were similarly tested and confirm these observations. This result has significant implications to a range of dielectric measurements, most notably in the area of tissue property studies.

  12. [Dielectric parameters of ascitic and pleural fluids in the microwave range in different nosologies].

    PubMed

    Romanov, A N; Kovrigin, A O; Grigorchuk, O G; Lubennikov, V A; Lazarev, A F

    2011-01-01

    The dielectric parameters of ascitic and pleural fluids formed in the human body in oncological and nononcological diseases of different nosology have been estimated in the range between 400 MHz and 1.2 GHZ. The dependence of refractive and absorption indices of ascitic and pleural liquids on the signal frequency and mass concentration of dissolved substances was found. Common regularities and distinctions in the behavior of their dielectric properties were revealed.

  13. Biphenyl alkyloxy benzoates ferroelectric liquid crystals : structural, thermodynamic and dielectric studies of the octyl and the decyl homologous ; electroclinic effect in the N^* phase near a N^*-SA-SC^* multicritical point

    NASA Astrophysics Data System (ADS)

    Legrand, C.; Isaert, N.; Hmine, J.; Buisine, J. M.; Parneix, J. P.; Nguyen, H. T.; Destrade, C.

    1992-08-01

    A new biphenyl alkyloxy benzoate series is synthesized. Thermodynamic, structural and dielectric measurements have been performed on the two homologous n=8 and n=10. For these two compounds, the sequences N^*-SC^* or N^*-SA-SC^* are respectively observed under atmospheric pressure. Pressure-Temperature phase diagrams show that these phase transitions appear near a N^*-SA-SC^* multicritical point : for n=8, the SA phase is induced under moderate pressure ; for n=10, the SA temperature range is less than 1 °C at atmospheric pressure and slightly increases under pressure. The dielectric charcterization detects a relaxation process in the N^* phase near the N^*-SC^* or the N^*-SA phase transitions whose temperature dependence of the characteristic parameters are similar to these of the classical soft mode observed near the SA-SC^* phase transition. This relaxation process is attributed to an electroclinic effect in the N^* phase near the N^*-SC^* or the N^*-SA phase transitions. This is the first dielectric observation of such an effect, furthermore it is observed it is observed in pure compounds and it is of large amplitude. This is probably connected with hte high polarization, the local smectic order and the proximity of a N^*-SA-SC^* multicritical point. Une nouvelle série de biphényles benzoates a été synthétisée. Des mesures thermodynamiques, structurales et diélectriques ont été entreprises pour les homologues n=8 et n=10. Pour ces deux composés, les deux séquences N^*-SC^* et N^*-SA-SC^* sont respectivement observées sous pression atmosphérique. Les diagrammes de phase Pression-Température montrent que ces transitions de phases apparaissent près d'un point multicritique : pour n=8, la phase SA est induite sous une pression modérée ; pour n=10, le domaine d'existence de la phase SA inférieur à 1 °C à pression atmosphérique s'accroît légèrement avec la pression. La caractérisation diélectrique met en évidence un mécanisme de

  14. A dielectric omnidirectional reflector

    PubMed

    Fink; Winn; Fan; Chen; Michel; Joannopoulos; Thomas

    1998-11-27

    A design criterion that permits truly omnidirectional reflectivity for all polarizations of incident light over a wide selectable range of frequencies was used in fabricating an all-dielectric omnidirectional reflector consisting of multilayer films. The reflector was simply constructed as a stack of nine alternating micrometer-thick layers of polystyrene and tellurium and demonstrates omnidirectional reflection over the wavelength range from 10 to 15 micrometers. Because the omnidirectionality criterion is general, it can be used to design omnidirectional reflectors in many frequency ranges of interest. Potential uses depend on the geometry of the system. For example, coating of an enclosure will result in an optical cavity. A hollow tube will produce a low-loss, broadband waveguide, whereas a planar film could be used as an efficient radiative heat barrier or collector in thermoelectric devices.

  15. The Dielectric Wall Accelerator

    SciTech Connect

    Caporaso, George J.; Chen, Yu-Jiuan; Sampayan, Stephen E.

    2009-01-01

    The Dielectric Wall Accelerator (DWA), a class of induction accelerators, employs a novel insulating beam tube to impress a longitudinal electric field on a bunch of charged particles. The surface flashover characteristics of this tube may permit the attainment of accelerating gradients on the order of 100 MV/m for accelerating pulses on the order of a nanosecond in duration. A virtual traveling wave of excitation along the tube is produced at any desired speed by controlling the timing of pulse generating modules that supply a tangential electric field to the tube wall. Because of the ability to control the speed of this virtual wave, the accelerator is capable of handling any charge to mass ratio particle; hence it can be used for electrons, protons and any ion. The accelerator architectures, key technologies and development challenges will be described.

  16. Multilayer optical dielectric coating

    DOEpatents

    Emmett, John L.

    1990-01-01

    A highly damage resistant, multilayer, optical reflective coating includes alternating layers of doped and undoped dielectric material. The doping levels are low enough that there are no distinct interfaces between the doped and undoped layers so that the coating has properties nearly identical to the undoped material. The coating is fabricated at high temperature with plasma-assisted chemical vapor deposition techniques to eliminate defects, reduce energy-absorption sites, and maintain proper chemical stoichiometry. A number of differently-doped layer pairs, each layer having a thickness equal to one-quarter of a predetermined wavelength in the material are combined to form a narrowband reflective coating for a predetermined wavelength. Broadband reflectors are made by using a number of narrowband reflectors, each covering a portion of the broadband.

  17. Dielectric and magnetic anisotropy of a nematic ytterbium complex

    SciTech Connect

    Dobrun, L. A. Sakhatskii, A. S.; Kovshik, A. P.; Ryumtsev, E. I.; Kolomiets, I. P.; Knyazev, A. A.; Galyametdinov, Yu. G.

    2015-05-15

    The sign and the magnitude of the dielectric anisotropy of an ytterbium-based paramagnetic nematic liquid crystal complex, namely, tris[1-(4-(4-propylcyclohexyl)phenyl)octane-1,3-dione]-[5,5'-di (heptadecile)-2,2'-bipyridine]ytterbium, are determined. The temperature dependence of the permittivity components of the complex is obtained in the temperature range of a nematic phase. The sign of the anisotropy of the magnetic susceptibility of this compound is experimentally determined.

  18. Dielectric screening in semiconductors

    NASA Astrophysics Data System (ADS)

    Harrison, Walter A.; Klepeis, John E.

    1988-01-01

    Intra-atomic and interatomic Coulomb interactions are incorporated into bond-orbital theory, based upon universal tight-binding parameters, in order to treat the effects of charge redistribution in semiconductor bonds. The dielectric function ɛ(q) is obtained for wave numbers in a [100] direction. The screening of differences in average hybrid energy across a heterojunction is calculated in detail, indicating that the decay length for the potential depends upon the relative values of Madelung and intra-atomic Coulomb terms. The parameters used here predict an imaginary decay length and thus an oscillating potential near the interface. The same theory is applied to point defects by imbedding a cluster in a matrix lattice, taking charges in that lattice to be consistent with continuum theory. Illustrating the theory with a phosphorus impurity in silicon, it is seen that the impurity and its neighboring atoms have charges on the order of only one-tenth of an electronic charge, alternating in sign from neighbor to neighbor as for planar defects. Although there are shifts in the term values on the order of a volt, the difference in these shifts for neighboring atoms is much smaller so that the effect on the bonds is quite small. This behavior is analogous to the response of a dielectric continuum to a point charge: The medium is locally neutral except at the center of the cluster and there are slowly varying potentials e2/ɛr. Because of this slow variation, free-atom term values should ordinarily suffice for the calculation of bond properties and bond lengths at impurities. Corrections are larger for homovalent substitutions such as carbon in silicon.

  19. Dielectric behaviors of typical benzene monosubstitutes, bromobenzene and benzonitrile.

    PubMed

    Shikata, Toshiyuki; Sugimoto, Natsuki; Sakai, Yuji; Watanabe, Junji

    2012-10-18

    The dielectric behaviors of typical benzene monosubstitutes, bromobenzene (Br-Bz) and benzonitrile (NC-Bz), were investigated up to 3 THz in the pure liquid state over a temperature range from 10 to 60 °C to understand differences in molecular motions of these simple, planar molecules bearing rather different electric dipole moments: 1.72 and 4.48 D for Br-Bz and NC-Bz in gaseous state, respectively. Temperature dependence of spin-lattice relaxation time (T(1)) for (13)C NMR and viscosities for these liquids were also determined to obtain information for molecular motions. Moreover, depolarized Rayleigh scattering (DRS) experiments were carried out for both liquids at 20 °C to determine frequency dependencies of optical susceptibilities up to 8 THz directly relating to rotational motions of their molecular planes. Most Br-Bz molecules rotate freely over a temperature range examined, showing a Kirkwood correlation factor close to g(K) ∼ 1.0 at dielectric Debye-type relaxation times (ca. 18 ps at 20 °C) essentially identical to microscopic (dielectric) relaxation times evaluated from T(1)(13)C NMR data. A small amount of Br-Bz molecules forms dimeric intermolecular associations in an antiparallel configuration of dipole moments. On the other hand, NC-Bz molecules form stable dimers in the antiparallel dipole configuration at a population much higher than that of Br-Bz because of a markedly greater dipole moment than that of Br-Bz. A major dielectric relaxation mechanism for NC-Bz found at ca. 70 ps at 20 °C results from the dissociation process of dimers with a lifetime longer than a rotational relaxation time, observable as a minor dielectric relaxation mechanism at ca. 12 ps at 20 °C, of individual monomeric NC-Bz molecules without the formation of dimers. The formation of stable dimers in an antiparallel configuration is responsible for the observed small g(K) values, ca. 0.5, and disagreement between major (or minor) dielectric relaxation times and

  20. Vapor etching of nuclear tracks in dielectric materials

    DOEpatents

    Musket, Ronald G.; Porter, John D.; Yoshiyama, James M.; Contolini, Robert J.

    2000-01-01

    A process involving vapor etching of nuclear tracks in dielectric materials for creating high aspect ratio (i.e., length much greater than diameter), isolated cylindrical holes in dielectric materials that have been exposed to high-energy atomic particles. The process includes cleaning the surface of the tracked material and exposing the cleaned surface to a vapor of a suitable etchant. Independent control of the temperatures of the vapor and the tracked materials provide the means to vary separately the etch rates for the latent track region and the non-tracked material. As a rule, the tracked regions etch at a greater rate than the non-tracked regions. In addition, the vapor-etched holes can be enlarged and smoothed by subsequent dipping in a liquid etchant. The 20-1000 nm diameter holes resulting from the vapor etching process can be useful as molds for electroplating nanometer-sized filaments, etching gate cavities for deposition of nano-cones, developing high-aspect ratio holes in trackable resists, and as filters for a variety of molecular-sized particles in virtually any liquid or gas by selecting the dielectric material that is compatible with the liquid or gas of interest.

  1. Dielectric elastomer actuators with granular coupling

    NASA Astrophysics Data System (ADS)

    Carpi, Federico; Frediani, Gabriele; Nanni, Massimo; De Rossi, Danilo

    2011-04-01

    So-called 'hydrostatically coupled' dielectric elastomer actuators (HC-DEAs) have recently been shown to offer new opportunities for actuation devices made of electrically responsive elastomeric insulators. HC-DEAs include an incompressible fluid that mechanically couples a dielectric elastomer based active part to a passive part interfaced to the load, so as to enable hydrostatic transmission. Drawing inspiration from that concept, this paper presents a new kind of actuators, analogous to HC-DEAs, except for the fact that the fluid is replaced by fine powder. The related technology, here referred to as 'granularly coupled' DEAs (GC-DEAs), relies entirely on solid-state materials. This permits to avoid drawbacks (such as handling and leakage) inherent to usage of fluids, especially those in liquid phase. The paper presents functionality and actuation performance of bubble-like GC-DEAs, in direct comparison with HC-DEAs. For this purpose, prototype actuators made of two pre-stretched membranes of acrylic elastomer, coupled via talcum powder (for GC-DEA) or silicone grease (for HC-DEA), were manufactured and comparatively tested. As compared to HC-DEAs, GC-DEAs showed a higher maximum stress, the same maximum relative displacement, and nearly the same bandwidth. The paper presents characterization results and discusses advantages and drawbacks of GC-DEAs, in comparison with HC-DEAs.

  2. Dielectric loss in microstrip lines

    NASA Technical Reports Server (NTRS)

    Simpson, T. L.; Tseng, B.

    1976-01-01

    A technique is presented for calculating dielectric loss in microstrip lines. Numerical results for several different substrates are included. These are compared with other available results and experimental data.

  3. Dielectric inspection of erythrocyte morphology

    NASA Astrophysics Data System (ADS)

    Hayashi, Yoshihito; Oshige, Ikuya; Katsumoto, Yoichi; Omori, Shinji; Yasuda, Akio; Asami, Koji

    2008-05-01

    We performed a systematic study of the sensitivity of dielectric spectroscopy to erythrocyte morphology. Namely, rabbit erythrocytes of four different shapes were prepared by precisely controlling the pH of the suspending medium, and their complex permittivities over the frequency range from 0.1 to 110 MHz were measured and analyzed. Their quantitative analysis shows that the characteristic frequency and the broadening parameter of the dielectric relaxation of interfacial polarization are highly specific to the erythrocyte shape, while they are insensitive to the cell volume fraction. Therefore, these two dielectric parameters can be used to differentiate erythrocytes of different shapes, if dielectric spectroscopy is applied to flow-cytometric inspection of single blood cells. In addition, we revealed the applicability and limitations of the analytical theory of interfacial polarization to explain the experimental permittivities of non-spherical erythrocytes.

  4. Interconnect Between a Waveguide and a Dielectric Waveguide Comprising an Impedance Matched Dielectric Lens

    NASA Technical Reports Server (NTRS)

    Decrossas, Emmanuel (Inventor); Chattopadhyay, Goutam (Inventor); Chahat, Nacer (Inventor); Tang, Adrian J. (Inventor)

    2016-01-01

    A lens for interconnecting a metallic waveguide with a dielectric waveguide is provided. The lens may be coupled a metallic waveguide and a dielectric waveguide, and minimize a signal loss between the metallic waveguide and the dielectric waveguide.

  5. Dielectric surface properties of Venus

    NASA Technical Reports Server (NTRS)

    Pettengill, G. H.; Wilt, R. J.; Ford, P. G.

    1992-01-01

    It has been known for over a decade that certain high-altitude regions on Venus exhibit bizarre radar-scattering and radiothermal-emission behavior. For example, observed values for normal-incidence power reflection coefficients in these areas can exceed 0.5; enhanced back scatter in some mountainous areas in the Magellan SAR images creates a bright surface with the appearance of snow; and reduced thermal emission in the anomalous areas makes the surface there appear hundreds of degrees cooler than the corresponding physical surface temperatures. The inferred radio emissivity in several of these regions falls to 0.3 for horizontal linear polarization at viewing angles in the range 20 deg - 40 deg. Several explanations have been offered for these linked phenomena. One involves single-surface reflection from a sharp discontinuity separating two media that have extremely disparate values of electromagnetic propagation. The mismatch may occur in either or both the real (associated with propagation velocity) or imaginary (associated with absorption) components of the relevant indices of refraction, and the discontinuity must take place over a distance appreciably shorter than a wavelength. An example of such an interaction of Earth would occur at the surface of a body of water. At radio wavelengths, water has an index of refraction of 9 (dielectric permittivity of about 80), and an associated loss factor that varies strongly with the amount of dissolved salts, but is generally significant. Its single-surface radar reflectivity at normal incidence is about 0.65, and the corresponding emissivity (viewed at the same angle) is therefore 0.35. Both these values are similar to the extremes found on Venus, but in the absence of liquid water, the process on Venus requires a different explanation. Two of the present authors (Pettengill and Ford) have suggested that scattering from a single surface possessing a very high effective dielectric permittivity could explain many of the

  6. Dielectric properties of marsh vegetation

    NASA Astrophysics Data System (ADS)

    Kochetkova, Tatiana D.; Suslyaev, Valentin I.; Shcheglova, Anna S.

    2015-10-01

    The present work is devoted to the measurement of the dielectric properties of mosses and lichens in the frequency range from 500 MHz to 18 GHz. Subjects of this research were three species of march vegetation - moss (Dicranum polysetum Michx), groundcedar (Diphasiastrum complanatum (L.) Holub) and lichen (Cladonia stellaris). Samples of vegetation were collected in Tomsk region, Western Siberia, Russia. Complex dielectric permittivity was measured in coaxial section by Agilent Technologies vector network analyzer E8363B. Green samples was measured for some moisture contents from 100% to 3-5 % during a natural drying. The measurements were performed at room temperature, which remained within 21 ÷ 23 ° C. The frequency dependence of the dielectric constant for the three species of marsh vegetation differ markedly. Different parts of the complex permittivity dependency on moisture were fitted by line for all frequency points. Two break point were observed corresponding to the transition of water in the vegetation in various phase states. The complex permittivity spectra of water in the vegetation allow determining the most likely corresponding dielectric model of water in the vegetation by the method of hypothesis testing. It is the Debye's model. Parameters of Debye's model were obtained by numerical methods for all of three states of water. This enables to calculate the dielectric constant of water at any frequency range from 500 MHz to 18 GHz and to find the parameters of the dielectric model of the vegetation.

  7. Liquid hydrogen densitometer utilizes open-ended microwave cavity

    NASA Technical Reports Server (NTRS)

    Smetana, J.; Wenger, N. C.

    1967-01-01

    Open-ended microwave cavity directly measures the density of flowing liquid, gaseous, or two-phase hydrogen. Its operation is based on derived relations between the cavity resonant frequency and the dielectric constant and density of hydrogen.

  8. Laser-sustained liquid bridges

    NASA Astrophysics Data System (ADS)

    Casner, A.; Delville, J.-P.

    2004-02-01

    The stabilization of free-standing liquid bridges encounters a fundamental limitation associated to the Rayleigh-Plateau instability. Classically in weightless conditions, a liquid column breaks when its length exceeds its circumference. We overcome this fundamental limitation using a new technique, based on the optical-radiation pressure of a continuous laser wave, to form and stabilize pure dielectric bridges far beyond the instability onset. Since control over aspect ratio and orientation are simply realized by adjusting the waist and the direction of the exciting laser, these laser-sustained liquid columns also behave as reconfigurable optical waveguides and provide an appealing example of self-adapted optical microsystem based on microfluidics.

  9. Helium atmospheric pressure plasma jets touching dielectric and metal surfaces

    NASA Astrophysics Data System (ADS)

    Norberg, Seth A.; Johnsen, Eric; Kushner, Mark J.

    2015-07-01

    Atmospheric pressure plasma jets (APPJs) are being investigated in the context plasma medicine and biotechnology applications, and surface functionalization. The composition of the surface being treated ranges from plastics, liquids, and biological tissue, to metals. The dielectric constant of these materials ranges from as low as 1.5 for plastics to near 80 for liquids, and essentially infinite for metals. The electrical properties of the surface are not independent variables as the permittivity of the material being treated has an effect on the dynamics of the incident APPJ. In this paper, results are discussed from a computational investigation of the interaction of an APPJ incident onto materials of varying permittivity, and their impact on the discharge dynamics of the plasma jet. The computer model used in this investigation solves Poisson's equation, transport equations for charged and neutral species, the electron energy equation, and the Navier-Stokes equations for the neutral gas flow. The APPJ is sustained in He/O2 = 99.8/0.2 flowing into humid air, and is directed onto dielectric surfaces in contact with ground with dielectric constants ranging from 2 to 80, and a grounded metal surface. Low values of relative permittivity encourage propagation of the electric field into the treated material and formation and propagation of a surface ionization wave. High values of relative permittivity promote the restrike of the ionization wave and the formation of a conduction channel between the plasma discharge and the treated surface. The distribution of space charge surrounding the APPJ is discussed.

  10. Low frequency ionic conduction across liquid interfaces

    NASA Astrophysics Data System (ADS)

    Solis, Francisco J.; Guerrero, Guillermo Ivan; Olvera de La Cruz, Monica

    Ionic conduction in liquid media is a central component of many recently proposed technologies. As in the case of solid state systems, the presence of heterogeneous media gives rise to interesting nonlinear phenomena. We present simulations and theoretical analysis of the low frequency ionic conduction in a two-liquid system. In the case analyzed, the conduction is driven by an electric field perpendicular to the liquid-liquid interface. We show that the dielectric contrast between the liquids produces non-linear effects in the effective conductivity of the system and discuss the effects of the ion solubility in the media.

  11. A new force field of formamide and the effect of the dielectric constant on miscibility.

    PubMed

    de la Luz, Alexander Pérez; Méndez-Maldonado, G Arlette; Núñez-Rojas, Edgar; Bresme, Fernando; Alejandre, José

    2015-06-09

    Current force fields underestimate significantly the dielectric constant of formamide at standard conditions. We present a derivation of an accurate potential for formamide, with a functional form based on the OPLS/AA force field. Our procedure follows the approach introduced by Salas et al. ( J. Chem. Theory Comput. 2015 , 11 , 683 - 693 ) that relies on ab initio calculations and molecular dynamics simulations. We consider several strategies to derive the atomic charges of formamide. We find that the inclusion of polarization effects in the quantum mechanical computations is essential to obtain reliable force fields. By varying the atomic charges and the Lennard-Jones parameters describing the dispersion interactions in the OPLS/AA force field, we derive an optimum set of parameters that provides accurate results for the dielectric constant, surface tension, and bulk density of liquid formamide in a wide range of thermodynamic states. We test the transferability of our parameters to investigate liquid/liquid mixtures. We have chosen as case study an equimolar mixture of formamide and hexan-2-one. This mixture involves two fluids with very different polar characteristics, namely, large differences in their dielectric constants and their performance as solvents. The new potential predicts a liquid/liquid phase separation, in good agreement with experimental data, and highlights the importance of the correct parametrization of the pure liquid phases to investigate liquid mixtures. Finally, we examine the microscopic origin of the observed inmiscibility between formamide and hexa-2-one.

  12. Comparing calorimetric and dielectric polarization modes in viscous 2-ethyl-1-hexanol.

    PubMed

    Huth, Heiko; Wang, Li-Min; Schick, Christoph; Richert, Ranko

    2007-03-14

    Dielectric relaxation and dynamic heat capacity measurements are compared for 2-ethyl-1-hexanol near its glass transition temperature Tg in order to further clarify the origin of the prominent Debye-type loss peak observed in many monohydroxy alcohols and other hydrogen-bonding liquids. While the dielectric spectrum epsilon" displays two distinct polarization processes that are separated by a factor of 2000 in terms of the peak frequency, the heat capacity cp" shows only a single peak. The dielectric process with lower amplitude and higher peak frequency coincides with the calorimetric signal, whereas the large dielectric Debye signal is not associated with calorimetric modes. The authors conclude that the Debye process corresponds to a transition among states which differ in energy only in the case of an external electric field.

  13. Electromechanical phase transition in dielectric elastomers under uniaxial tension and electrical voltage

    NASA Astrophysics Data System (ADS)

    Huang, Rui; Suo, Zhigang

    2012-02-01

    Subject to forces and voltage, a dielectric elastomer may undergo electromechanical phase transition. A phase diagram is constructed for an ideal dielectric elastomer membrane under uniaxial force and voltage, reminiscent of the phase diagram for liquid-vapor transition of a pure substance. We identify a critical point for the electromechanical phase transition. Two states of deformation (thick and thin) may coexist during the phase transition, with the mismatch in lateral stretch accommodated by wrinkling of the membrane in the thin state. The processes of electromechanical phase transition under various conditions are discussed. A reversible cycle is suggested for electromechanical energy conversion using the dielectric elastomer membrane, analogous to the classical Carnot cycle for a heat engine. The amount of energy conversion, however, is limited by failure of the dielectric elastomer due to electrical breakdown. With a particular combination of material properties, the electromechanical energy conversion can be significantly extended by taking advantage of the phase transition without electrical breakdown.

  14. Simulation of charged systems in heterogeneous dielectric media via a true energy functional.

    PubMed

    Jadhao, Vikram; Solis, Francisco J; Olvera de la Cruz, Monica

    2012-11-30

    For charged systems in heterogeneous dielectric media, a key obstacle for molecular dynamics (MD) simulations is the need to solve the Poisson equation in the media. This obstacle can be bypassed using MD methods that treat the local polarization charge density as a dynamic variable, but such approaches require access to a true free energy functional, one that evaluates to the equilibrium electrostatic energy at its minimum. In this Letter, we derive the needed functional. As an application, we develop a Car-Parrinello MD method for the simulation of free charges present near a spherical emulsion droplet separating two immiscible liquids with different dielectric constants. Our results show the presence of nonmonotonic ionic profiles in the dielectric with a lower dielectric constant.

  15. Optics of nanostructured dielectrics

    NASA Astrophysics Data System (ADS)

    Wiersma, D. S.; Sapienza, R.; Mujumdar, S.; Colocci, M.; Ghulinyan, M.; Pavesi, L.

    2005-02-01

    We discuss the optical transport properties of complex photonic structures ranging from ordered photonic crystals to disordered strongly-scattering materials, with particular focus on the intermediate regime between complete order and disorder. We start by giving an overview of the field and explain the important analogies between the transport of optical waves in complex photonic materials and the transport of electrons in solids. We then discuss amplifying disordered materials that exhibit random laser action and show how liquid crystal infiltration can be used to control the scattering strength of random structures. Also we discuss the occurrence of narrow emission modes in random lasers. Liquid crystals are discussed as an example of a partially ordered system and particular attention is dedicated to quasi-crystalline materials. One-dimensional quasi-crystals can be realized by controlled etching of multi-layer structures in silicon. Transmission spectra of Fibonacci type quasi-crystals are reported and the (self-similar) light distributions of the transmission modes at the Fibonacci band edge are calculated and discussed.

  16. Elastomer dielectric for pulse power

    NASA Astrophysics Data System (ADS)

    Bradely, L. P.; Orham, E. L.; Stowers, I. F.; Braucht, J. R.

    1980-05-01

    Selected elastomer dielectrics are characterized as high voltage insulators for use in pulse power systems. Silicone, ethylene propylene rubber and polyurethene were tested, but most of the data is for silicone. The particular power system developed uses a formed silicone insulator 76 cm in dia. and 3 mm thick as the major insulator between capacitors, railgap switches, load, and return conductor. The capacitor array is dc charged to 50 kv. The use of an elastomer dielectric made possible the construction of a pulser one order of magnitude smaller than previously constructed pulsers having the same current characteristics. Also, use of the elastomer dielectrics in pulse powr systems leads to improved production techniques and system reliability.

  17. Experiments on Liquid Immersion Natural Convection Cooling of Leadless Chip Carriers Mounted on Ceramic Substrate

    DTIC Science & Technology

    1989-09-01

    Tfilm Average dielectric liquid 0C temperature TLC Thermochromic Liquid Crystal Dimensionless Tlid Average package lid temperature c TSE Temperature...the temperature sensitive Thermochromic Liquid Crystal (TLC). For additional thermal response measurement, nine Copper Constantan thermocouples of...heater assembly for Thermochromic Liquid Crystal (TLC) calibration. Approximately 1.27 centimeters diagonally from one of the corners, a 2.95

  18. Stiff, strong, yet tough free-standing dielectric films of graphene nanosheets-polyurethane nanocomposites with very high dielectric constant and loss

    NASA Astrophysics Data System (ADS)

    Jan, Rahim; Habib, Amir; Gul, Iftikhar Hussain

    2016-01-01

    In this study, graphene nanosheets (GNS) prepared through a liquid exfoliation technique are dispersed in thermoplastic polyurethane (TPU) at a volume fraction (Vf) of up to 0.19. Then, the electrical and mechanical properties of the obtained composites are characterized. The dielectric spectroscopy shows an excessive variation in dielectric constant (1.1 to 3.53 × 107) and dielectric tangent loss (0.03 to 2515) with varying Vf over the frequency range of 25 kHz to 5 MHz. A considerable enhancement in electrical conductivity (DC) is found, from 3.87 × 10-10 S/m (base polymer) to 53.5 S/m for the 0.19 Vf GNS-TPU nanocomposite. The GNS-TPU composites are mechanically robust, with a considerable increase in stiffness (˜4-fold) and strength (almost twice), maintaining its ductility up to 0.09 Vf GNS. The high dielectric constant at lower frequencies is attributed to the well-established Maxwell-Wagner polarization effect, whereas the high dielectric tangent loss is due to leakage currents as a physical conducting network is formed at high filler loadings. The layered structure, high aspect ratio, and improved dispersion of GNS are the main reasons for the improvement in both the dielectric characteristics and the mechanical properties of the host polymer. [Figure not available: see fulltext.

  19. USDA/ARS and dielectric properties research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An overview of the research is presented, including RF dielectric heating for seed treatment, insect control, product conditioning, and moisture and quality sensing applications, equipment used, dielectric properties measurement techniques, broad- frequency- range data obtained, and research results...

  20. Dielectric anomalies of both chiral and achiral nematogens near the isotropic to mesogenic phase transition

    NASA Astrophysics Data System (ADS)

    Godfrey, Garrett J.

    The dielectric properties of nematic liquid crystals were studied in both the achiral and chiral limits. For achiral nematics, the literature documents that pretransitional curvature occurs for polar molecules on both sides of the nematic and isotropic phase transition. This curvature is due to anti-parallel dimer formation. However, past models have failed to quantitatively describe pretransitional curvature. Through a generalization of the order parameter, a macroscopic model has been developed to mathematically describe the pretransitional curvature on the isotropic side of the transition. The new model was fitted to dielectric data from the literature. Meaningful parameter estimates were extracted. The dielectric response of chiral nematic systems has not been well studied in the literature. A system with tunable chirality was dielectrically studied by mixing two highly chiral liquid crystals: cholesteryl oleyl carbonate (left handed) and cholesteryl chloride (right handed). An apparatus was designed and built to systematically measure the dielectric response of the mixtures. Optical cross-polarized microscopy was used to identify the transition temperatures of each phase. The transition temperatures were then correlated with the dielectric response. The initial intentions of studying chiral systems was two-fold: to see how chirality played a role in the pretransitional curvature, and to see if the blue phases were dielectrically distinguishable. While the initial intentions were null and indecisive, respectively, interesting results were obtained. First, the phase transitions were monotropic for the highest chirality mixtures. Second, the estimated discontinuity at the isotropic to mesogenic transition followed theoretical predictions that had not been tested for dielectric measurements.

  1. A Free-Space Measurement Technique of Terahertz Dielectric Properties

    NASA Astrophysics Data System (ADS)

    Zhang, Xiansheng; Chang, Tianying; Cui, Hong-Liang; Sun, Zhonglin; Yang, Chuanfa; Yang, Xiuwei; Liu, Lingyu; Fan, Wei

    2017-03-01

    The free-space method for material dielectric characterization in the microwave band is extended to terahertz frequencies. By analyzing the advantages and disadvantages of the relative permittivity of the transmission/reflection method for non-magnetic materials, a fast calculation method using a transmission-only method is proposed. Based on the convergence analysis of the algorithm, a method to estimate the initial value is also proposed. Finally, through measurements of the permittivity of high-density polyethylene, polystyrene, polypropylene, and polymethyl methacrylate in the 325-500 GHz band, we verify the rationality of the algorithm and demonstrate its applicability. Through the combination of the two methods, the terahertz dielectric properties of a majority of flat non-conducting solid materials and non-polar liquid materials can be measured.

  2. A Free-Space Measurement Technique of Terahertz Dielectric Properties

    NASA Astrophysics Data System (ADS)

    Zhang, Xiansheng; Chang, Tianying; Cui, Hong-Liang; Sun, Zhonglin; Yang, Chuanfa; Yang, Xiuwei; Liu, Lingyu; Fan, Wei

    2016-11-01

    The free-space method for material dielectric characterization in the microwave band is extended to terahertz frequencies. By analyzing the advantages and disadvantages of the relative permittivity of the transmission/reflection method for non-magnetic materials, a fast calculation method using a transmission-only method is proposed. Based on the convergence analysis of the algorithm, a method to estimate the initial value is also proposed. Finally, through measurements of the permittivity of high-density polyethylene, polystyrene, polypropylene, and polymethyl methacrylate in the 325-500 GHz band, we verify the rationality of the algorithm and demonstrate its applicability. Through the combination of the two methods, the terahertz dielectric properties of a majority of flat non-conducting solid materials and non-polar liquid materials can be measured.

  3. Ultraslow dielectric relaxation process in supercooled polyhydric alcohols

    NASA Astrophysics Data System (ADS)

    Yomogida, Yoshiki; Minoguchi, Ayumi; Nozaki, Ryusuke

    2006-04-01

    Complex permittivity was obtained on glycerol, xylitol, sorbitol and sorbitol-xylitol mixtures in the supercooled liquid state in the frequency range between 10μHz and 500MHz at temperatures near and above the glass transition temperature. For all the materials, a dielectric relaxation process was observed in addition to the well-known structural α and Johari-Goldstein β relaxation process [G. P. Johari and M. Goldstein, J. Chem. Phys. 53, 2372 (1970)]. The relaxation time for the new process is always larger than that for the α process. The relaxation time shows non-Arrhenius temperature dependence with correlation to the behavior of the α process and it depends on the molecular size systematically. The dielectric relaxation strength for the new process shows the effect of thermal history and decreases exponentially with time at a constant temperature. It can be considered that a nonequilibrium dynamics causes the new process.

  4. Dielectric Properties of Piezoelectric Polyimides

    NASA Technical Reports Server (NTRS)

    Ounaies, Z.; Young, J. A.; Simpson, J. O.; Farmer, B. L.

    1997-01-01

    Molecular modeling and dielectric measurements are being used to identify mechanisms governing piezoelectric behavior in polyimides such as dipole orientation during poling, as well as degree of piezoelectricity achievable. Molecular modeling on polyimides containing pendant, polar nitrile (CN) groups has been completed to determine their remanent polarization. Experimental investigation of their dielectric properties evaluated as a function of temperature and frequency has substantiated numerical predictions. With this information in hand, we are then able to suggest changes in the molecular structures, which will then improve upon the piezoelectric response.

  5. CVD Diamond Dielectric Accelerating Structures

    SciTech Connect

    Schoessow, P.; Kanareykin, A.; Gat, R.

    2009-01-22

    The electrical and mechanical properties of diamond make it an ideal candidate material for use in dielectric accelerating structures: high RF breakdown field, extremely low dielectric losses and the highest available thermoconductive coefficient. Using chemical vapor deposition (CVD) cylindrical diamond structures have been manufactured with dimensions corresponding to fundamental TM{sub 01} mode frequencies in the GHz to THz range. Surface treatments are being developed to reduce the secondary electron emission (SEE) coefficient below unity to reduce the possibility of multipactor. The diamond CVD cylindrical waveguide technology developed here can be applied to a variety of other high frequency, large-signal applications.

  6. Dielectric barrier discharges applied for optical spectrometry

    NASA Astrophysics Data System (ADS)

    Brandt, S.; Schütz, A.; Klute, F. D.; Kratzer, J.; Franzke, J.

    2016-09-01

    The present review reflects the importance of dielectric barrier discharges for optical spectrometric detection in analytical chemistry. In contrast to usual discharges with a direct current the electrodes are separated by at least one dielectric barrier. There are two main features of the dielectric barrier discharges: they can serve as dissociation and excitation devices as well as ionization sources, respectively. This article portrays various application fields of dielectric barrier discharges in analytical chemistry used for elemental and molecular detection with optical spectrometry.

  7. Dielectric nanostructures with high laser damage threshold

    NASA Astrophysics Data System (ADS)

    Ngo, C. Y.; Hong, L. Y.; Deng, J.; Khoo, E. H.; Liu, Z.; Wu, R. F.; Teng, J. H.

    2017-02-01

    Dielectric-based metamaterials are proposed to be the ideal candidates for low-loss, high-efficiency devices. However, to employ dielectric nanostructures for high-power applications, the dielectric material must have a high laser-induced damaged threshold (LIDT) value. In this work, we investigated the LIDT values of dielectric nanostructures for high-power fiber laser applications. Consequently, we found that the fabricated SiO2 nanostructured lens can withstand laser fluence exceeding 100 J/cm2.

  8. Simultaneous dielectric monitoring of microfluidic channels at microwaves utilizing a metamaterial transmission line structure.

    PubMed

    Schüßler, M; Puentes, M; Dubuc, D; Grenier, K; Jakoby, R

    2012-01-01

    The paper presents a technique that allows the simultaneous monitoring of the dielectric properties of liquids in microfluidic channels at microwave frequencies. It is capable of being integrated within the lab-on-a-chip concept and uses a composite right/left-handed transmission line resonator which is detuned by the dielectric loading of the liquids in the channels. By monitoring the change in the resonance spectrum of the resonator the loading profile can be derived with the multi-resonant perturbation method. From the value of the dielectric constant inference on the substances like cells or chemicals in the channels can be drawn. The paper presents concept, design, fabrication and characterization of prototype sensors. The sensors have been designed to operate between 20 and 30 GHz and were tested with water and water ethanol mixtures.

  9. Dielectric relaxation of long-chain glass-forming monohydroxy alcohols

    NASA Astrophysics Data System (ADS)

    Gao, Yanqin; Tu, Wenkang; Chen, Zeming; Tian, Yongjun; Liu, Riping; Wang, Li-Min

    2013-10-01

    The dielectric relaxation of two long-chain glass forming monohydroxy alcohols, 2-butyl-1-octanol and 2-hexyl-1-decanol, is studied at low temperature. Remarkable broadening from the pure Debye relaxation is identified for the slowest dynamics, differing from the dielectric spectra of short-chain alcohols. The broadening of the Debye-like relaxation in the two liquids develops as temperature increases, and the approaching of the Debye-like and structural relaxation widths is shown. Similar results are observed in the dielectric spectra of dilute 2-ethyl-1-hexanol in either 2-hexyl-1-decanol or squalane. The results of the liquids and mixtures reveal a correlation between the broadening and the Debye-like relaxation strength. Molecular associations in monohydroxy alcohols are discussed with the modification of the Debye relaxation.

  10. DIELECTRIC PROPERTIES OF POLYVINYL ALCOHOL, POLY(METHYL METHACRYLATE), POLYVINYL BUTYRAL RESIN AND POLYIMIDE AT LOW TEMPERATURES

    SciTech Connect

    Tuncer, Enis; Sauers, Isidor; James, David Randy; Ellis, Alvin R

    2008-01-01

    Performance of materials and their compatibility determine the size of the electrical insulation in power equipment. For this reason dielectric properties of electrical insulation materials are needed for low temperature power applications. In this work we report the dielectric properties of four polymers: polyvinyl alcohol (PVA), poly(methyl methacrylate) (PMMA), polyvinyl butyral resin (PVB), and polyimide (PI--Kapton\\textregistered). The dielectric measurements are performed with an electrical impedance analyzer in the frequency domain. The impedances are recorded in a cryocooler in the temperature range from 45K to 350K. The dielectric breakdown characteristics of the polymers are measured in a liquid nitrogen bath at atmospheric pressure. It is observed that PI and \\pmma\\ dissolved in toluene have the lowest dielectric losses for temperatures lower than $100\\ \\kelvin$. \\Blx\\ and PI have the smallest spread in their breakdown strength data.

  11. Cellulose Triacetate Dielectric Films For Capacitors

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S.; Jow, T. Richard

    1994-01-01

    Cellulose triacetate investigated for use as dielectric material in high-energy-density capacitors for pulsed-electrical-power systems. Films of cellulose triacetate metalized on one or both sides for use as substrates for electrodes and/or as dielectrics between electrodes in capacitors. Used without metalization as simple dielectric films. Advantages include high breakdown strength and self-healing capability.

  12. Characterizing dielectric tensors of anisotropic materials from a single measurement

    NASA Astrophysics Data System (ADS)

    Smith, Paula Kay

    tensor and film thickness, a Jones reflectivity matrix is calculated by solving Maxwell's equations at each surface. Converting the Jones matrix into a Mueller matrix provides a starting point for optimization. An optimization algorithm then finds the best fit dielectric tensor based on the measured angle-of-incidence Mueller matrix image. This process can be applied to polarizing materials, birefringent crystals and the multilayer structures of liquid crystal displays. In particular, the need for such accuracy in liquid crystal displays is growing as their applications in industry evolve.

  13. MONITOIRNG OF A CONTROLLED DNAPL SPILL USING A PROTOTYPE DIELECTRIC LOGGING TOOL

    EPA Science Inventory

    The U. S. Geological Survey (USGS) utilized their prototype dielectric logging tool to monitor a controlled Dense Non-Aqueous Phase Liquid (DNAPL) spill into a large tank located at the University of California Richmond Field Station (RFS) containing multiple sand and clayey sand...

  14. Scattering from Thin Dielectric Disks

    NASA Technical Reports Server (NTRS)

    Levine, D. M.; Schneider, A.; Lang, R. H.; Carter, H. G.

    1984-01-01

    A solution was obtained for scattering from thin dielectric disks by approximating the currents induced inside the disk with the currents which would exist inside a dielectric slab of the same thickness, orientation and dielectric properties. This approximation reduces to an electrostatic approximation when the disk thickness, T, is small compared to the wavelength of the incident radiation and the approximation yields a conventional physical optics solution when the dimension, A, characteristic of the geometrical cross section of the disk (e.g., the diameter of a circular disk) is large compared to wavelength. When the ratio A/T is sufficiently large the disk will always be in one or the other of these regimes (T lambda or kA1. Consequently, when A/T is large this solution provides a conventional approximation for the scattered fields which can be applied at all frequencies. As a check on this conclusion, a comparison was made between the theoretical and measured radar cross section of thin dielectric disks. Agreement was found for thin disks with both large and small values of kA.

  15. Soft Dielectrics: Heterogeneity and Instabilities

    NASA Astrophysics Data System (ADS)

    Rudykh, Stephan; Debotton, Gal; Bhattacharya, Kaushik

    2012-02-01

    Dielectric Elastomers are capable of large deformations in response to electrical stimuli. Heterogeneous soft dielectrics with proper microstructures demonstrate much stronger electromechanical coupling than their homogeneous constituents. In turn, the heterogeneity is an origin for instability developments leading to drastic change in the composite microstructure. In this talk, the electromechanical instabilities are considered. Stability of anisotropic soft dielectrics is analyzed. Ways to achieve giant deformations and manipulating extreme material properties are discussed. 1. S. Rudykh and G. deBotton, ``Instabilities of Hyperelastic Fiber Composites: Micromechanical Versus Numerical Analyses.'' Journal of Elasticity, 2011. http://dx.doi.org/2010.1007/s10659-011-9313-x 2. S. Rudykh, K. Bhattacharya and G. deBotton, ``Snap-through actuation of thick-wall electroactive balloons.'' International Journal of Non-Linear Mechanics, 2011. http://dx.doi.org/10.1016/j.ijnonlinmec.2011.05.006 3. S. Rudykh and G. deBotton, ``Stability of Anisotropic Electroactive Polymers with Application to Layered Media.'' Zeitschrift f"ur angewandte Mathematik und Physik, 2011. http://dx.doi.org/10.1007/s00033-011-0136-1 4. S. Rudykh, A. Lewinstein, G. Uner and G. deBotton, ``Giant Enhancement of the Electromechanical Coupling in Soft Heterogeneous Dielectrics.'' 2011 http://arxiv.org/abs/1105.4217v1

  16. Dielectrically Loaded HTS Spiral Antenna

    NASA Astrophysics Data System (ADS)

    Ramasamy, J.; Hanna, D.; Vlasov, Y. A.; Larkins, G. L.; Moeckly, B. H.

    2004-06-01

    The objective of this work is to fabricate, test, and study a dielectrically loaded high temperature superconductor (HTS) spiral antenna that would operate in the frequency band of 10 MHz to 200 MHz. The antenna is formed by depositing and patterning a YBa2Cu3O7 (YBCO) thin film on top of 4-inch-diameter sapphire and Yittria Stabilized ZrO2 substrates. The presence of the HTS material guarantees low conductor loss in the antenna. A thick epitaxial layer of strontium titanate (STO) is then deposited on top of the YBCO for high dielectric constant loading. This set-up can be simulated using the Fidelity software routine, a Finite Difference Time Domain based program from Zeland, Inc. We have simulated the performance of this antenna structure, first in free space and then after loading with the dielectric slabs. Important parameters such as feed point impedance and antenna gain are studied for different simulation conditions. The dielectric ensures reduced feed point impedance as well as improvement of the low frequency response of the antenna.

  17. Dielectric and specific heat relaxations in vapor deposited glycerol

    NASA Astrophysics Data System (ADS)

    Kasina, A.; Putzeys, T.; Wübbenhorst, M.

    2015-12-01

    Recently [S. Capponi, S. Napolitano, and M. Wübbenhorst, Nat. Commun. 3, 1233 (2012)], vapor deposited glasses of glycerol have been found to recover their super-cooled liquid state via a metastable, ordered liquid (MROL) state characterized by a tremendously enhanced dielectric strength along with a slow-down of the relaxation rate of the structural relaxation. To study the calorimetric signature of this phenomenon, we have implemented a chip-based, differential AC calorimeter in an organic molecular beam deposition setup, which allows the simultaneous measurement of dielectric relaxations via interdigitated comb electrodes and specific heat relaxation spectra during deposition and as function of the temperature. Heating of the as-deposited glass just above the bulk Tg and subsequent cooling/reheating revealed a step-wise increase in cp by in total 9%, indicating unambiguously that glycerol, through slow vapour deposition, forms a thermodynamically stable glass, which has a specific heat as low as that of crystalline glycerol. Moreover, these glasses were found to show excellent kinetic stability as well as evidenced by both a high onset-temperature and quasi-isothermal recovery measurements at -75 °C. The second goal of the study was to elucidate the impact of the MROL state on the specific heat and its relaxation to the super-cooled state. Conversion of "MROL glycerol" to its "normal" (ordinary liquid, OL) state revealed a second, small (˜2%) increase of the glassy cp, a little gain (<10%) in the relaxed specific heat, and no signs of deviations of τcal from that of normal "bulk" glycerol. These findings altogether suggest that the MROL state in glycerol comprises largely bulk-type glycerol that coexist with a minor volume fraction (<10%) of PVD-induced structural anomalies with a crystal-like calorimetric signature. Based on the new calorimetric findings, we have proposed a new physical picture that assumes the existence of rigid polar clusters (RPCs) and

  18. Dielectric barrier discharges in analytical chemistry.

    PubMed

    Meyer, C; Müller, S; Gurevich, E L; Franzke, J

    2011-06-21

    The present review reflects the importance of dielectric barrier discharges in analytical chemistry. Special about this discharge is-and in contrast to usual discharges with direct current-that the plasma is separated from one or two electrodes by a dielectric barrier. This gives rise to two main features of the dielectric barrier discharges; it can serve as dissociation and excitation device and as ionization mechanism, respectively. The article portrays the various application fields for dielectric barrier discharges in analytical chemistry, for example the use for elemental detection with optical spectrometry or as ionization source for mass spectrometry. Besides the introduction of different kinds of dielectric barrier discharges used for analytical chemistry from the literature, a clear and concise classification of dielectric barrier discharges into capacitively coupled discharges is provided followed by an overview about the characteristics of a dielectric barrier discharge concerning discharge properties and the ignition mechanism.

  19. Reorganization Free Energy for Electron Transfers at Liquid-Liquid and Dielectric Semiconductor-Liquid Interfaces

    DTIC Science & Technology

    1989-07-26

    some Landau - Zener factor 26 for the ET in this region of R and v is some relevant frequency for the molecular motion then k, can be written...the reactant. A characteristic time for that transition U can be inferred from the Landau - Zener -type expression for the probability P of a

  20. Tailoring dielectric properties of ferroelectric-dielectric multilayers

    SciTech Connect

    Kesim, M. T.; Zhang, J.; Cole, M. W.; Misirlioglu, I. B.

    2014-01-13

    We develop a nonlinear thermodynamic model for multilayer ferroelectric heterostructures that takes into account electrostatic and electromechanical interactions between layers. We concentrate on the effect of relative layer fractions and in-plane thermal stresses on dielectric properties of Ba{sub 0.6}Sr{sub 0.4}TiO{sub 3}-, BaTiO{sub 3}-, and PbZr{sub 0.2}Ti{sub 0.8}O{sub 3} (PZT)-SrTiO{sub 3} (STO) multilayers on Si and c-sapphire. We show that dielectric properties of such multilayers can be significantly enhanced by tailoring the growth/processing temperature and the STO layer fraction. Our computations show that large tunabilities (∼90% at 400 kV/cm) are possible in carefully designed barium strontium titanate-STO and PZT-STO even on Si for which there exist substantially large in-plane strains.

  1. Relaxation dynamics of amorphous dibucaine using dielectric studies

    NASA Astrophysics Data System (ADS)

    Sahra, M.; Jumailath, K.; Thayyil, M. Shahin; Capaccioli, S.

    2015-06-01

    Using broadband dielectric spectroscopy the molecular mobility of dibucaine is investigated in the supercooled liquid and gassy states, over a wide temperature range for some test frequencies. Above the glass transition temperature Tg, the presence of structural α- relaxation peak was observed due to the cooperative motions of the molecule and upon cooling frozen kinetically to form the glass. The secondary relaxation process was perceivable below Tg due to localized motions. The peak loss frequency of α-relaxation process shows non-Arrhenius behavior and obeys Vogel-Fulcher-Tammann equation over the measured temperature range whereas the β- process shows Arrhenius behavior.

  2. Temperature and pressure effects on capacitance probe cryogenic liquid level measurement accuracy

    NASA Technical Reports Server (NTRS)

    Edwards, Lawrence G.; Haberbusch, Mark

    1993-01-01

    The inaccuracies of liquid nitrogen and liquid hydrogen level measurements by use of a coaxial capacitance probe were investigated as a function of fluid temperatures and pressures. Significant liquid level measurement errors were found to occur due to the changes in the fluids dielectric constants which develop over the operating temperature and pressure ranges of the cryogenic storage tanks. The level measurement inaccuracies can be reduced by using fluid dielectric correction factors based on measured fluid temperatures and pressures. The errors in the corrected liquid level measurements were estimated based on the reported calibration errors of the temperature and pressure measurement systems. Experimental liquid nitrogen (LN2) and liquid hydrogen (LH2) level measurements were obtained using the calibrated capacitance probe equations and also by the dielectric constant correction factor method. The liquid levels obtained by the capacitance probe for the two methods were compared with the liquid level estimated from the fluid temperature profiles. Results show that the dielectric constant corrected liquid levels agreed within 0.5 percent of the temperature profile estimated liquid level. The uncorrected dielectric constant capacitance liquid level measurements deviated from the temperature profile level by more than 5 percent. This paper identifies the magnitude of liquid level measurement error that can occur for LN2 and LH2 fluids due to temperature and pressure effects on the dielectric constants over the tank storage conditions from 5 to 40 psia. A method of reducing the level measurement errors by using dielectric constant correction factors based on fluid temperature and pressure measurements is derived. The improved accuracy by use of the correction factors is experimentally verified by comparing liquid levels derived from fluid temperature profiles.

  3. The electro-mechanical phase transition of Gent model dielectric elastomer tube with two material constants

    NASA Astrophysics Data System (ADS)

    Liu, Liwu; Luo, Xiaojian; Fei, Fan; Wang, Yixing; Leng, Jinsong; Liu, Yanju

    2013-04-01

    Applied to voltage, a dielectric elastomer membrane may deform into a mixture of two states under certain conditions. One of which is the flat state and the other is the wrinkled state. In the flat state, the membrane is relatively thick with a small area, while on the contrary, in the wrinkled state, the membrane is relatively thin with a large area. The coexistence of these two states may cause the electromechanical phase transition of dielectric elastomer. The phase diagram of idea dielectric elastomer membrane under unidirectional stress and voltage inspired us to think about the liquid-to-vapor phase transition of pure substance. The practical working cycle of a steam engine includes the thermodynamical process of liquid-to-vapor phase transition, the fact is that the steam engine will do the maximum work if undergoing the phase transition process. In this paper, in order to consider the influence of coexistent state of dielectric elastomer, we investigate the homogeneous deformation of the dielectric elastomer tube. The theoretical model is built and the relationship between external loads and stretch are got, we can see that the elastomer tube experiences the coexistent state before reaching the stretching limit from the diagram. We think these results can guide the design and manufacture of energy harvesting equipments.

  4. Behavior of the dielectric constant of Ar near the critical point.

    PubMed

    Hidalgo, Marcelo; Coutinho, Kaline; Canuto, Sylvio

    2015-03-01

    The fundamental question of the behavior of the dielectric constant near the critical point is addressed using Ar as the probe system. The neighborhood of the liquid-vapor critical point of Ar is accessed by classical Monte Carlo simulation and then explicit quantum mechanics calculations are performed to study the behavior of the dielectric constant. The theoretical critical temperature is determined by calculating the position of the discontinuity of the specific heat and is found to be at T(c)Theor=148.7K, only 2 K below the experimental value. The large fluctuations and the inhomogeneity of the density that characterize the critical point rapidly disappear and are not seen at T=T(c)Theor+2K. The structure of Ar obtained by the radial distribution function is found to be in very good agreement with experiment both in the liquid phase and 2 K above the critical temperature. The behavior of the dielectric constant is then analyzed after calculating the static dipole polarizability and using a many-body Clausius-Mossotti equation. The dielectric constant shows a density-independent behavior around the critical density, 2 K above the critical temperature. At this point, the calculated value of the dielectric constant is 1.173±0.005 in excellent agreement with the experimental value of 1.179.

  5. Characterizing dielectric tensors from angle-of-incidence Mueller matrix images

    NASA Astrophysics Data System (ADS)

    Smith, Paula K.; Chipman, Russell A.

    2007-09-01

    Biaxial ellipsometry is a technique that measures the dielectric tensor and thickness of a biaxial substrate, single-layer thin film, or multi-layer structure. The dielectric tensor of a biaxial material consists of the real and imaginary parts of the three orthogonal principal indices (n x+ ik x, n y+ ik y and n z + ik z) and three Euler angles (Θ, Φ, Δ) to describe its orientation. The method utilized in this work measures an angle-of-incidence Mueller matrix from a Mueller matrix imaging polarimeter equipped with a pair of microscope objectives with low polarization aberrations. The dielectric tensors for multilayer samples are determined from multi-spectral angle-of-incidence Mueller matrix images in either a transmission or reflection mode using an appropriate dispersion model. Given approximate a priori knowledge of the dielectric tensor and film thickness, a Jones matrix image is first calculated by solving Maxwell's equations at each surface which is then transformed into a Mueller matrix image. An optimization algorithm then finds the best fit dielectric tensor based on matching the measured and calculated angle-of-incidence Mueller matrix images. One use for this application is to more accurately determine the dielectric tensors of biaxial films used in liquid crystal displays.

  6. Solution-Processed Dielectrics Based on Thickness-Sorted Two-Dimensional Hexagonal Boron Nitride Nanosheets.

    PubMed

    Zhu, Jian; Kang, Joohoon; Kang, Junmo; Jariwala, Deep; Wood, Joshua D; Seo, Jung-Woo T; Chen, Kan-Sheng; Marks, Tobin J; Hersam, Mark C

    2015-10-14

    Gate dielectrics directly affect the mobility, hysteresis, power consumption, and other critical device metrics in high-performance nanoelectronics. With atomically flat and dangling bond-free surfaces, hexagonal boron nitride (h-BN) has emerged as an ideal dielectric for graphene and related two-dimensional semiconductors. While high-quality, atomically thin h-BN has been realized via micromechanical cleavage and chemical vapor deposition, existing liquid exfoliation methods lack sufficient control over h-BN thickness and large-area film quality, thus limiting its use in solution-processed electronics. Here, we employ isopycnic density gradient ultracentrifugation for the preparation of monodisperse, thickness-sorted h-BN inks, which are subsequently layer-by-layer assembled into ultrathin dielectrics with low leakage currents of 3 × 10(-9) A/cm(2) at 2 MV/cm and high capacitances of 245 nF/cm(2). The resulting solution-processed h-BN dielectric films enable the fabrication of graphene field-effect transistors with negligible hysteresis and high mobilities up to 7100 cm(2) V(-1) s(-1) at room temperature. These h-BN inks can also be used as coatings on conventional dielectrics to minimize the effects of underlying traps, resulting in improvements in overall device performance. Overall, this approach for producing and assembling h-BN dielectric inks holds significant promise for translating the superlative performance of two-dimensional heterostructure devices to large-area, solution-processed nanoelectronics.

  7. AC field induced-charge electroosmosis over leaky dielectric blocks embedded in a microchannel.

    PubMed

    Zhao, Cunlu; Yang, Chun

    2011-02-01

    An effective electrical boundary condition is formulated to describe AC field-driven induced-charge electrokinetic (ICEK) phenomena at the interface between a liquid and a leaky dielectric solid. Since most materials in reality possess finite dielectric and conductive properties, i.e. leaky dielectric, the present boundary condition can be used to describe the induced zeta potential on a leaky dielectric surface with consideration of both bond charges (due to polarization) and free charges (due to conduction). Two well-known limiting cases, i.e. the perfectly dielectric and the perfectly conducting wall boundary conditions can be recovered from the present formulation. Utilizing the derived boundary condition, we obtain analytical solutions in closed form for the AC field-driven induced-charge electroosmosis (ICEO) over two symmetric leaky dielectric blocks embedded in the walls of an infinitely long microchannel. Two important factors for the induced zeta potential are identified to respectively account for the polarization charges and the free charges, and their effects on AC field-driven ICEO oscillating flow patterns are analyzed. It is found that the flow patterns exhibit two counter-rotating vortices, which can be deformed, relocated, eliminated and even reverse their rotating directions. It is very promising that such temporary evolution of flow patterns can possibly induce chaotic advection which can enhance microfluidic mixing.

  8. Can molecular dynamics help in understanding dielectric phenomena?

    NASA Astrophysics Data System (ADS)

    Olmi, Roberto; Bittelli, Marco

    2017-01-01

    Molecular dynamics (MD) is a modeling technique widely used in material science as well as in chemical physics, biochemistry and biophysics. MD is based on ‘first principles’, allowing one to compute the physical characteristics of a material, such as density, heat capacity, isothermal compressibility and also the dielectric constant and relaxation, mixing a classical physics approach and statistical mechanics. Although a number of papers exist in the literature concerning the study of the dielectric properties of liquid and solid materials, the MD approach appears to be almost ignored in the electromagnetic aquametry community. We use a rather simple example, a mixture of ethanol and water at various concentrations, to introduce MD as a theoretical tool for investigating the dielectric behavior of more complex moist substances. We show that MD simulations suggest a time-domain model for alcohol-water solutions, consisting in a mixture of a KWW stretched-exponential and a simple exponential, whose validity could be subjected to an experimental verification.

  9. Dielectric decrement of electrolyte solutions

    NASA Astrophysics Data System (ADS)

    Felderhof, B. U.

    We calculate the dielectric decrement of ionic solutions in a continuum model. We show that apart from a familiar static contribution there are three kinetic contributions to the effect, two of which are related by a symmetry relation. The third contribution is due to frequency dispersion of the friction coefficient and for small ions reduces the total effect considerably. We find that the total effect as calculated from the continuum model is too small to account for the experimental data.

  10. 'Photonic jets' from dielectric microaxicons

    SciTech Connect

    Geints, Yu E; Zemlyanov, A A; Panina, E K

    2015-08-31

    We consider a specific spatially localised light structure, namely, a 'photonic jet' formed in the near field upon scattering of an optical wave in a dielectric micron particle. Dimensional parameters and intensity of a photonic jet from microaxicons of different spatial orientation are studied theoretically. It is found for the first time that an axicon-generated photonic jet has in this case a substantially larger length compared with the case of a jet formed on a spherical particle. (scattering of light)

  11. Techniques for Microwave Dielectric Measurements.

    DTIC Science & Technology

    1986-03-01

    the complex dielectric constant. The theory is developed on the premise that the electromagnetic (EM) fields are unchanged in form and only slightly...values of these shifts, the validity of the theory can come into doubt. It is also true that as the sample is made smaller, the tolerances on the accuracy...Complex Permittivity in Re- entrant Cavity: Part A - Theoretical Analysis of the Method," Microwave Theory Tech., Vol. MTT-28 (1980), pp. 225-28

  12. Electrical conduction in polymer dielectrics

    NASA Technical Reports Server (NTRS)

    Cotts, D. B.

    1985-01-01

    The use of polymer dielectrics with moderate resistivities could reduce or eliminate problems associated with spacecraft charging. The processes responsible for conduction and the properties of electroactive polymers are reviewed, and correlations drawn between molecular structure and electrical conductivity. These structure-property relationships led to the development of several new electroactive polymer compositions and the identification of several systems that have the requisite thermal, mechanical, environmental and electrical properties for use in spacecraft.

  13. Binary Operation Of A Liquid-Crystal Light Valve

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey A.

    1990-01-01

    Conditions for operation of commercially available liquid-crystal light valve as binary spatial light modulator discovered. In mode, modulator turns on sharply and then saturates as intensity of writing beam increases. Valve comprises photoconductive layer and liquid-crystal layer separated by dielectric mirror and sandwiched between two transparent electrodes. Potential applications include enhancement of images, optical recording, and holography.

  14. Brownian dynamics determine universality of charge transport in ionic liquids

    SciTech Connect

    Sangoro, Joshua R; Iacob, Ciprian; Mierzwa, Michal; Paluch, Marian; Kremer, Friedrich

    2012-01-01

    Broadband dielectric spectroscopy is employed to investigate charge transport in a variety of glass-forming ionic liquids over wide frequency, temperature and pressure ranges. Using a combination of Einstein, Einstein-Smoluchowski, and Langevin relations, the observed universal scaling of charge transport in ionic liquids is traced back to the dominant role of Brownian dynamics.

  15. Frederiks transition in ferroelectric liquid-crystal nanosuspensions

    NASA Astrophysics Data System (ADS)

    Shelestiuk, Sergii M.; Reshetnyak, Victor Yu.; Sluckin, Timothy J.

    2011-04-01

    We construct a theoretical model of the dielectric properties of a ferroelectric LC nanosuspension (FLCNS), using a generalized Maxwell-Garnett picture. The theory supposes that an FLCNS may as a first approximation be considered as a complex homogeneous dielectric ceramic, thus neglecting positional correlations of the colloidal particles. The FLCNS then consists of an anisotropic matrix with a very low concentration (<1% by volume) of impurity particles. The impurity particles possess both shape and dielectric anisotropy, as well as a permanent electric polarization and strong liquid-crystal director anchoring on the particle surface. We show that the effective dielectric properties for capacitance properties and for effective liquid-crystal free energies do not coincide. We calculate the effect of doping a liquid crystal with ferroelectric impurities on the Frederiks transition. The theory takes account of inclusion shape, dielectric susceptibility, and local field effects. We neglect the possibility of dielectric particle chaining, which appears experimentally not to occur in general. Our calculations suggest, in qualitative agreement with experiment, that doping a nematic liquid crystal with ferroelectric particles, even at very low particle concentration, can in some cases significantly decrease the electric Frederiks threshold field.

  16. Light emission from a dielectric subjected to a rapidly alternating electric field

    NASA Astrophysics Data System (ADS)

    Chernyshev, V. V.

    1983-12-01

    Experiments are reported in which light emission was observed in liquid and solid dielectrics which were in contact with a ferroelectric during the polarization reversal (switching) of the ferroelectric domains. In the experiments, samples of an optically nontransparent ferroelectric ceramic, barium titanate, in the form of 10-mm-diameter, 2-mm-thick disk were used, with a 50-Hz sinusoidal switching voltage applied to the disks through deposited electrodes. In experiments with liquid electrodes, the sample was immersed in a glass cell holding the liquid. The solid dielectrics studied were reactively sputtered silicon dioxide and an anodic aluminum oxide produced by electrochemical oxidation through a vacuum-deposited film of pure aluminum. Results indicate there is a threshold field above which the light emission is observed. The existence of this threshold and its level are in agreement with data in the literature on the critical field for the switching of domains in ferroelectrics.

  17. Microwave dielectric spectrum of rocks

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.; Bengal, T.; East, J.; Dobson, M. C.; Garvin, J.; Evans, D.

    1988-01-01

    A combination of several measurement techniques was used to investigate the dielectric properties of 80 rock samples in the microwave region. The real part of the dielectric constant, epsilon', was measured in 0.1 GHz steps from 0.5 to 18 GHz, and the imaginary part, epsilon'', was measured at five frequencies extending between 1.6 and 16 GHz. In addition to the dielectric measurements, the bulk density was measured for all the samples and the bulk chemical composition was determined for 56 of the samples. The study shows that epsilon' is frequency-dependent over the 0.5 to 18 GHz range for all rock samples, and that the bulk density rho accounts for about 50 percent of the observed variance of epsilon'. For individual rock types (by genesis), about 90 percent of the observed variance may be explained by the combination of density and the fractional contents of SiO2, Fe2O3, MgO, and TiO2. For the loss factor epsilon'', it was not possible to establish statistically significant relationships between it and the measured properties of the rock samples (density and chemical composition).

  18. Scattering from thin dielectric disks

    NASA Technical Reports Server (NTRS)

    Le Vine, D. M.; Schneider, A.; Lang, R. H.; Carter, H. G.

    1985-01-01

    A solution was obtained for scattering from thin dielectric disks by approximating the currents induced inside the disk with the currents which would exist inside a dielectric slab of the same thickness, orientation and dielectic properties. This approximation reduces to an electrostatic approximation when the disk thickness, T, is small compared to the wavelength of the incident radiation and the approximation yields a conventional physical optics solution when the dimension, A, characteristic of the geometrical cross section of the disk (e.g., the diameter of a circular disk) is large compared to wavelength. When the ratio A/T sufficiently large the disk will always be in one or the other of these regimes, T lambda or kA1. Consequently, when A/T is large this solution provides a conventional approximation for the scattered fields which can be applied at all frequencies. As a check on this conclusion, a comparison was made between the theoretical and measured radar cross section of thin dielectric disks. Agreement was found for thin disks with both large and small values of kA.

  19. Investigation of the Dielectric Strength of Syntactic Foam at 77 K under DC Stress

    NASA Astrophysics Data System (ADS)

    Winkel, D.; Puffer, R.; Schnettler, A.

    2014-05-01

    Liquid nitrogen (LN2) based electrical insulation systems for superconducting equipment of electrical power distribution networks are state of the art. Since LN2 is a cryogenic liquid it has some disadvantages when used as insulation. This paper deals with syntactic foam as an alternative insulation system for superconducting apparatus. Syntactic foam is a composite material consisting of a polymeric matrix and embedded hollow microspheres with diameters of several 10 μp?. As hollow microspheres are gas-filled, using those as filling material features significant reductions of the relative permittivity and of the thermal contraction due to cooling the material to liquid nitrogen temperature (LNT, T = 77 K). In this study both an epoxy resin (ER) and an unsaturated polyester resin (UPR) serve as matrix material. The hollow microspheres used in this investigation are made of untreated and silanized glass. The results of measurements of the dielectric DC strength show, that the dielectric strength of all investigated syntactic foam compositions are significantly higher at LNT compared to ambient temperature (AT). Furthermore, the effect of a higher dielectric strength of syntactic foam with silanized glass spheres at ambient temperature vanishes at LNT. Hence, the dielectric strength at LNT is unaffected by silanization of glass microspheres.

  20. Communication: Linking the dielectric Debye process in mono-alcohols to density fluctuations

    NASA Astrophysics Data System (ADS)

    Hecksher, Tina

    2016-04-01

    This work provides the first direct evidence that the puzzling dielectric Debye process observed in mono-alcohols is coupled to density fluctuations. The results open up for an explanation of the Debye process within the framework of conventional liquid-state theory. The spectral shape of the dynamical bulk modulus of the two studied mono-alcohols, 2-ethyl-1-hexanol and 4-methyl-3-heptanol, is nearly identical to that of their corresponding shear modulus, and thus the supramolecular structures believed to be responsible for the slow dielectric Debye process are manifested in the bulk modulus in the same way as in the shear modulus.

  1. Microwave open-ended coaxial dielectric probe: interpretation of the sensing volume re-visited

    PubMed Central

    2014-01-01

    Background Tissue dielectric properties are specific to physiological changes and consequently have been pursued as imaging biomarkers of cancer and other pathological disorders. However, a recent study (Phys Med Biol 52:2637–2656, 2007; Phys Med Biol 52:6093–6115, 2007), which utilized open-ended dielectric probing techniques and a previously established sensing volume, reported that the dielectric property contrast may only be 10% or less between breast cancer and normal fibroglandular tissue whereas earlier data suggested ratios of 4:1 and higher may exist. Questions about the sensing volume of this probe relative to the amount of tissue interrogated raise the distinct possibility that the conclusions drawn from that study may have been over interpreted. Methods We performed open-ended dielectric probe measurements in two-layer compositions consisting of a background liquid and a planar piece of Teflon that was translated to predetermined distances away from the probe tip to assess the degree to which the probe produced property estimates representative of the compositional averages of the dielectric properties of the two materials resident within a small sensing volume around the tip of the probe. Results When Teflon was in contact with the probe, the measured properties were essentially those of pure Teflon whereas the properties were nearly identical to those of the intervening liquid when the Teflon was located more than 2 mm from the probe tip. However, when the Teflon was moved closer to the probe tip, the dielectric property measurements were not linearly related to the compositional fraction of the two materials, but reflected nearly 50% of those of the intervening liquid at separation distances as small as 0.2 mm, and approximately 90% of the liquid when the Teflon was located 0.5 mm from the probe tip. Conclusion These results suggest that the measurement methods reported in the most recent breast tissue dielectric property study are not likely

  2. Dielectric elastomer pump for artificial organisms

    NASA Astrophysics Data System (ADS)

    Bowers, Amy E.; Rossiter, Jonathan M.; Walters, Peter J.; Ieropoulos, Ioannis A.

    2011-04-01

    This paper presents a bio-inspired, dielectric elastomer (DE) based tubular pumping unit, developed for eventual use as a component of an artificial digestive tract onboard a microbial fuel cell powered robot (EcoBot). The pump effects fluid displacement by direct actuation of the tube wall as opposed to excitation by an external body. The actuator consists of a DE tube moulded from silicone, held in a negative pressure chamber, which is used for prestraining the tube. The pump is coupled with custom designed polymeric check valves in order to rectify the fluid flow and assess the performance of the unit. The valves exhibited the necessary low opening pressures required for use with the actuator. The tube's actuation characteristics were measured both with and without liquid in the system. Based on these data the optimal operating conditions for the pump are discussed. The pump and valve system has achieved flowrates in excess of 40μl/s. This radially contracting/expanding actuator element is the fundamental component of a peristaltic pump. This 'soft pump' concept is suitable for biomimetic robotic systems, or for the medical or food industries where hard contact with the delivered substrate may be undesirable. Future work will look at connecting multiple tubes in series in order to achieve peristalsis.

  3. Molecular dynamics and reaction kinetics during polymerization using dielectric spectroscopy and calorimetry

    NASA Astrophysics Data System (ADS)

    Wasylyshyn, Dwayne Andrew

    The evolution of molecular dynamics during the polymerization of linear-chain and network forming liquids was studied using dielectric spectroscopy and differential scanning calorimetry. Polymerization was carried out using step-addition reactions between epoxide and amine molecules, and by catalysis of epoxide molecules with tertiary amines. The former resulted in linear-chain or network structured polymers while the latter resulted in network polymers. The step-addition polymerizations resulted in linear-chain polymers by reacting stoichiometric quantities of diepoxide and monoamine molecules, and network structure polymers by reacting stoichiometric quantities of triepoxide and monoamine molecules, or diepoxide and diamine molecules. The growth and extinction of localized (or secondary) relaxation processes during the polymerization were studied by measuring the changing dielectric properties using two techniques; fixed frequency dielectric measurements during heating of the partially polymerized samples, and isothermal dielectric measurements over the frequency range of 1 MHz to 20 GHz. The number of covalent bonds formed at any instant during the polymerization was determined by isothermal calorimetric measurements. Thus, the change in the dielectric properties during polymerization was associated with the increase in the number of covalent bonds. It was found that the localized relaxations evolve in a manner that is independent of the spontaneous increase in configurational entropy. The results also tend evidence towards the concept that these relaxations occur in regions of relatively high energy, and the collapse of such regions led to the observed changes in the dielectric properties. As well, an analogy was made between the structural relaxation of a physically metastable glass and the polymerization of a chemically metastable liquid. This has lead to the concept of a chemical fictive temperature to describe the state of the polymerizing liquid. The

  4. Dielectric properties of conductive ionomers

    NASA Astrophysics Data System (ADS)

    Klein, Robert James

    Ion and polymer dynamics of ion-containing polymers were investigated, with the majority of results obtained from application of a physical model of electrode polarization (EP) to dielectric spectroscopy data. The physical model of MacDonald, further developed by Coelho, was extended for application to tan delta (the ratio of dielectric loss to dielectric constant) as a function of frequency. The validity of this approach was confirmed by plotting the characteristic EP time as a function of thickness and comparing the actual and predicted unrelaxed dielectric constant for a poly(ethylene oxide) (PEO)-based ionomer neutralized by lithium, sodium, and cesium. Results were obtained for ion mobility and mobile ion concentration for a neat PEO-based ionomer, two (methoxyethoxy-ethoxy phosphazene) (MEEP) -based ionomers, two MEEP-based salt-doped polymers, sulfonated polystyrene (SPS) neutralized by sodium with a high sulfonation fraction, and SPS neutralized by zinc with a low sulfonation fraction. Additionally, the conductivity parameters of six plasticized forms of a neat PEO-based ionomer were characterized, but the method apparently failed to correctly evaluate bulk ionic behavior. In all cases except the SPS ionomers ion mobility follows a Vogel-Fulcher-Tammann (VFT) temperature dependence. In all cases, mobile ion concentration follows an Arrhenius temperature dependence. Fitting parameters from these two relationships yielded direct information about the state of ionic diffusion and ion pairing in each system. Combination of these two functionalities predicts a relationship for conductivity that is significantly different than the VFT relation typically used in the literature to fit conductivity. The most outstanding result was the extremely small fraction of ions found to be mobile. For ionomers it can be concluded that the primary reason for low conductivities arises from the low fraction of mobile ions. The local and segmental dynamics of the neat and

  5. A self-healing dielectric elastomer actuator

    NASA Astrophysics Data System (ADS)

    Hunt, Stacy; McKay, Thomas G.; Anderson, Iain A.

    2014-03-01

    Dielectric elastomer actuators that can provide muscle-like actuation are unable to self-heal like real muscle tissue. This severely limits dielectric elastomer reliability and robustness. This paper describes a way to instill self-healing into the DE by using a two-phase dielectric consisting of an open-cell silicone sponge saturated with silicone oil. When the dielectric is breached, the oil is able to flow back into any void, re-establishing the dielectric structure. The sponge holds the oil in place and provides dimensional stability, while the oil ensures the integrity of the dielectric layer. The operation of this has been demonstrated in a prototype DE actuator that continued to function despite being perforated multiple times with a sharp object.

  6. Dielectric relaxation of high-k oxides

    PubMed Central

    2013-01-01

    Frequency dispersion of high-k dielectrics was observed and classified into two parts: extrinsic cause and intrinsic cause. Frequency dependence of dielectric constant (dielectric relaxation), that is the intrinsic frequency dispersion, could not be characterized before considering the effects of extrinsic frequency dispersion. Several mathematical models were discussed to describe the dielectric relaxation of high-k dielectrics. For the physical mechanism, dielectric relaxation was found to be related to the degree of polarization, which depended on the structure of the high-k material. It was attributed to the enhancement of the correlations among polar nanodomain. The effect of grain size for the high-k materials' structure mainly originated from higher surface stress in smaller grain due to its higher concentration of grain boundary. PMID:24180696

  7. Dielectric constant of water in the interface

    NASA Astrophysics Data System (ADS)

    Dinpajooh, Mohammadhasan; Matyushov, Dmitry V.

    2016-07-01

    We define the dielectric constant (susceptibility) that should enter the Maxwell boundary value problem when applied to microscopic dielectric interfaces polarized by external fields. The dielectric constant (susceptibility) of the interface is defined by exact linear-response equations involving correlations of statistically fluctuating interface polarization and the Coulomb interaction energy of external charges with the dielectric. The theory is applied to the interface between water and spherical solutes of altering size studied by molecular dynamics (MD) simulations. The effective dielectric constant of interfacial water is found to be significantly lower than its bulk value, and it also depends on the solute size. For TIP3P water used in MD simulations, the interface dielectric constant changes from 9 to 4 when the solute radius is increased from ˜5 to 18 Å.

  8. Exploring Strategies for High Dielectric Constant and Low Loss Polymer Dielectrics

    NASA Astrophysics Data System (ADS)

    Zhu, Lei

    Polymer dielectrics having high dielectric constant, high temperature capability, and low loss are attractive for a broad range of applications such as film capacitors, gate dielectrics, artificial muscles, and electrocaloric cooling. Unfortunately, it is generally observed that higher polarization or dielectric constant tends to cause significantly enhanced dielectric loss. It is therefore highly desired that the fundamental physics of all types of polarization and loss mechanisms be thoroughly understood for dielectric polymers. In this presentation, we intend to explore advantages and disadvantages for different types of polarization. Among a number of approaches, dipolar polarization is promising for high dielectric constant and low loss polymer dielectrics, if the dipolar relaxation peak can be pushed to above the gigahertz range. In particular, dipolar glass, paraelectric, and relaxor ferroelectric polymers are discussed for the dipolar polarization approach. This work is supported by NSF Polymers Program (DMR-1402733).

  9. Exploring Strategies for High Dielectric Constant and Low Loss Polymer Dielectrics.

    PubMed

    Zhu, Lei

    2014-11-06

    Polymer dielectrics having high dielectric constant, high temperature capability, and low loss are attractive for a broad range of applications such as film capacitors, gate dielectrics, artificial muscles, and electrocaloric cooling. Unfortunately, it is generally observed that higher polarization or dielectric constant tends to cause significantly enhanced dielectric loss. It is therefore highly desired that the fundamental physics of all types of polarization and loss mechanisms be thoroughly understood for dielectric polymers. In this Perspective, we intend to explore advantages and disadvantages for different types of polarization. Among a number of approaches, dipolar polarization is promising for high dielectric constant and low loss polymer dielectrics, if the dipolar relaxation peak can be pushed to above the gigahertz range. In particular, dipolar glass, paraelectric, and relaxor ferroelectric polymers are discussed for the dipolar polarization approach.

  10. Bursting drops in solid dielectrics caused by high voltages.

    PubMed

    Wang, Qiming; Suo, Zhigang; Zhao, Xuanhe

    2012-01-01

    Fluid drops tend to be spheres--a shape that minimizes surface energy. In thunderstorm clouds, drops can become unstable and emit thin jets when charged beyond certain limits. The instability of electrified drops in gases and liquids has been widely studied and used in applications including ink-jet printing, electrospinning nanofibers, microfluidics and electrospray ionization. Here we report a different scenario: drops in solids become unstable and burst under sufficiently high electric fields. We find the instability of drops in solids morphologically resembles that in liquids, but the critical electric field for the instability follows a different scaling due to elasticity of solids. Our observations and theoretical models not only advance the fundamental understanding of electrified drops, but also suggest a new failure mechanism of high energy density dielectric polymers, which have diverse applications ranging from capacitors for power grids and electric vehicles to muscle-like transducers for soft robots and energy harvesting.

  11. Bursting Drops in Solid Dielectrics Caused by High Voltages

    PubMed Central

    Wang, Qiming; Suo, Zhigang

    2013-01-01

    Drops in fluids tend to be spheres—a shape that minimizes surface energy. In thunderstorm clouds, drops can become unstable and emit thin jets when charged beyond certain limits. The instability of electrified drops in gases and liquids has been widely studied and used in applications including ink-jet printing, electrospinning nano-fibers, microfluidics and electrospray ionization. Here we report a different scenario: drops in solids become unstable and burst under sufficiently high electric fields. We find the instability of drops in solids morphologically resembles that in liquids, but the critical electric field for the instability follows a different scaling due to elasticity of solids. Our observations and theoretical models not only advance the fundamental understanding of electrified drops but also suggest a new failure mechanism of high-energy-density dielectric polymers, which have diverse applications ranging from capacitors for power grids and electric vehicles to muscle-like transducers for soft robots and energy harvesting. PMID:23093194

  12. A solid dielectric gated graphene nanosensor in electrolyte solutions.

    PubMed

    Zhu, Yibo; Wang, Cheng; Petrone, Nicholas; Yu, Jaeeun; Nuckolls, Colin; Hone, James; Lin, Qiao

    2015-03-23

    This letter presents a graphene field effect transistor (GFET) nanosensor that, with a solid gate provided by a high-κ dielectric, allows analyte detection in liquid media at low gate voltages. The gate is embedded within the sensor and thus is isolated from a sample solution, offering a high level of integration and miniaturization and eliminating errors caused by the liquid disturbance, desirable for both in vitro and in vivo applications. We demonstrate that the GFET nanosensor can be used to measure pH changes in a range of 5.3-9.3. Based on the experimental observations and quantitative analysis, the charging of an electrical double layer capacitor is found to be the major mechanism of pH sensing.

  13. A microwave dielectric resonant oscillatory circuit

    NASA Astrophysics Data System (ADS)

    Sigov, A. S.; Shvartsburg, A. B.

    2016-07-01

    Bias currents in a thin dielectric nonconducting torus are investigated, and the resonant mode of excitation of these currents is established. The similarity of the frequency spectrum of such a dielectric element to the spectra of a classical Thomson oscillatory circuit and a metamaterial with negative permittivity is demonstrated. The resonant frequency of electromagnetic oscillations of the ring dielectric circuit and magnetic and electric fields of such a circuit under resonant excitation are determined.

  14. Controllable Liquid Artificial Dielectric S-Band Phase Shifters

    DTIC Science & Technology

    1975-02-01

    IcNamara now on leave of absence to the University for conducting all work on phase shifter design, low pout,- testins anw his contribution to the paper...toward inalog, recipiroeal devie, tMal nre simple In construction. can ht produhcN aM low c0ost in smill quan- titles., can handle hIN power levels, and...Effects ..................... 50 7 LOW O%* WER TESTING .............................. 53 7.1 Insertion Loss. Electrode Deslp .............. ... 53 7.2

  15. Decoherence in Josephson qubits from dielectric loss.

    PubMed

    Martinis, John M; Cooper, K B; McDermott, R; Steffen, Matthias; Ansmann, Markus; Osborn, K D; Cicak, K; Oh, Seongshik; Pappas, D P; Simmonds, R W; Yu, Clare C

    2005-11-18

    Dielectric loss from two-level states is shown to be a dominant decoherence source in superconducting quantum bits. Depending on the qubit design, dielectric loss from insulating materials or the tunnel junction can lead to short coherence times. We show that a variety of microwave and qubit measurements are well modeled by loss from resonant absorption of two-level defects. Our results demonstrate that this loss can be significantly reduced by using better dielectrics and fabricating junctions of small area . With a redesigned phase qubit employing low-loss dielectrics, the energy relaxation rate has been improved by a factor of 20, opening up the possibility of multiqubit gates and algorithms.

  16. Relaxation processes in non-Debye dielectrics

    NASA Astrophysics Data System (ADS)

    Turik, A. V.; Bogatin, A. S.; Andreev, E. V.

    2011-12-01

    The specific features of the relaxation processes in non-Debye dielectrics have been investigated. The nature of the difference between the relaxation frequencies of the dielectric constant and dielectric loss (conductivity) has been explained. It has been shown that the average relaxation frequency of the conductivity is considerably (in some cases, by several orders of magnitude) higher than the relaxation frequency of the dielectric constant owing to an increase in the conductivity spectra of the statistical weight of the relaxation processes with short relaxation times.

  17. Computationally efficient dielectric calculations of molecular crystals

    SciTech Connect

    Schwarz, Kathleen A.; Sundararaman, Ravishankar; Arias, T. A.

    2015-06-07

    The microscopic dielectric response is a key quantity for electronic materials such as organic semiconductors. Calculations of this response for molecular crystals are currently either expensive or rely on extreme simplifications such as multipole expansions which lack microscopic detail. We present an alternate approach using a microscopic analogue of the Clausius-Mossotti equation, which constructs the dielectric response of a crystal from an eigenvalue decomposition of the dielectric response of individual molecules. This method can potentially be used to examine the effects of defects, disorder, and surfaces on the dielectric properties of molecular solids.

  18. Model dielectric functions and conservation laws

    NASA Astrophysics Data System (ADS)

    Shirley, Eric L.

    2003-03-01

    There continues to be a need for calculating dielectric screening of charges in solids. Most work has been done in the random-phase approximation (RPA) with minor variations, which proves to be quite accurate for many applications. However, this is still a time-consuming and computationally intensive approach, and model dielectric functions can be valuable for this reason. This talk discusses several conservation laws related to dielectric screening and a model dielectric function that obeys such laws. Shortcomings of model functions that are difficult to overcome will be touched on, and a possible means of combining results from RPA and model calculations will be addressed.

  19. Helium atmospheric pressure plasma jets touching dielectric and metal surfaces

    SciTech Connect

    Norberg, Seth A. Johnsen, Eric; Kushner, Mark J.

    2015-07-07

    Atmospheric pressure plasma jets (APPJs) are being investigated in the context plasma medicine and biotechnology applications, and surface functionalization. The composition of the surface being treated ranges from plastics, liquids, and biological tissue, to metals. The dielectric constant of these materials ranges from as low as 1.5 for plastics to near 80 for liquids, and essentially infinite for metals. The electrical properties of the surface are not independent variables as the permittivity of the material being treated has an effect on the dynamics of the incident APPJ. In this paper, results are discussed from a computational investigation of the interaction of an APPJ incident onto materials of varying permittivity, and their impact on the discharge dynamics of the plasma jet. The computer model used in this investigation solves Poisson's equation, transport equations for charged and neutral species, the electron energy equation, and the Navier-Stokes equations for the neutral gas flow. The APPJ is sustained in He/O{sub 2} = 99.8/0.2 flowing into humid air, and is directed onto dielectric surfaces in contact with ground with dielectric constants ranging from 2 to 80, and a grounded metal surface. Low values of relative permittivity encourage propagation of the electric field into the treated material and formation and propagation of a surface ionization wave. High values of relative permittivity promote the restrike of the ionization wave and the formation of a conduction channel between the plasma discharge and the treated surface. The distribution of space charge surrounding the APPJ is discussed.

  20. Preliminary Evaluation of Polyarylate Dielectric Films for Cryogenic Applications

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad; Fialla, Peter

    2002-01-01

    Polymeric materials are used extensively on spacecraft and satellites in electrical power and distribution systems, as thermal blankets and optical surface coatings, as well as mechanical support structures. The reliability of these systems when exposed to the harsh environment of space is very critical to the success of the mission and the safety of the crew in manned-flight ventures. In this work, polyarylate films were evaluated for potential use as capacitor dielectrics and wiring insulation for cryogenic applications. Two grades of the film were characterized in terms of their electrical and mechanical properties before and after exposure to liquid nitrogen (-196 C). The electrical characterization consisted of capacitance and dielectric loss measure Cents in the frequency range of 50 Hz to 100 kHz, and volume and surface resistivities. The mechanical measurements performed included changes in tensile (Young's modulus, elongation-at-break, and tensile strength) and structural properties (dimensional change, weight, and surface morphology). The preliminary results, which indicate good stability of the polymer after exposure to liquid nitrogen, are presented and discussed.

  1. Dielectric Relaxation of Materials that Form Ultra-Stable Glasses

    NASA Astrophysics Data System (ADS)

    Richert, Ranko

    2015-03-01

    Physical vapor deposition of glass forming materials onto substrates at temperatures around 0.8 Tg produces glasses of high density and low enthalpy. Using interdigitated electrode cells as substrates, such stable glasses can be studied by dielectric spectroscopy in situ. This technique is applied to monitor the dynamics of stable films upon their conversion to the ordinary supercooled liquid state. The dielectric loss during transformation indicates that the softening proceeds by a growth front mechanism and generates the ordinary liquid state without forming intermediates. The same technique is also used to assess the residual dynamics of the stable glassy state. We observe that processes such as the Johari-Goldstein beta relaxation are strongly suppressed in this stable state, consistent with the relatively low fictive temperature of these glassy states. coauthors: Hai-Bin Yu, Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85278; Michael Tylinski, and Mark D. Ediger, Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706.

  2. Open-Ended Coaxial Dielectric Probe Effective Penetration Depth Determination

    PubMed Central

    Meaney, Paul M.; Gregory, Andrew P.; Seppälä, Jan; Lahtinen, Tapani

    2016-01-01

    We have performed a series of experiments which demonstrate the effect of open-ended coaxial diameter on the depth of penetration. We used a two layer configuration of a liquid and movable cylindrical piece of either Teflon or acrylic. The technique accurately demonstrates the depth in a sample for which a given probe diameter provides a reasonable measure of the bulk dielectric properties for a heterogeneous volume. In addition we have developed a technique for determining the effective depth for a given probe diameter size. Using a set of simulations mimicking four 50 Ω coaxial cable diameters, we demonstrate that the penetration depth in both water and saline has a clear dependence on probe diameter but is remarkably uniform over frequency and with respect to the intervening liquid permittivity. Two different 50 Ω commercial probes were similarly tested and confirm these observations. This result has significant implications to a range of dielectric measurements, most notably in the area of tissue property studies. PMID:27346890

  3. Self-consistent treatment of the local dielectric permittivity and electrostatic potential in solution for polarizable macromolecular force fields

    PubMed Central

    Hassan, Sergio A.

    2012-01-01

    A self-consistent method is presented for the calculation of the local dielectric permittivity and electrostatic potential generated by a solute of arbitrary shape and charge distribution in a polar and polarizable liquid. The structure and dynamics behavior of the liquid at the solute/liquid interface determine the spatial variations of the density and the dielectric response. Emphasis here is on the treatment of the interface. The method is an extension of conventional methods used in continuum protein electrostatics, and can be used to estimate changes in the static dielectric response of the liquid as it adapts to charge redistribution within the solute. This is most relevant in the context of polarizable force fields, during electron structure optimization in quantum chemical calculations, or upon charge transfer. The method is computationally efficient and well suited for code parallelization, and can be used for on-the-fly calculations of the local permittivity in dynamics simulations of systems with large and heterogeneous charge distributions, such as proteins, nucleic acids, and polyelectrolytes. Numerical calculation of the system free energy is discussed for the general case of a liquid with field-dependent dielectric response. PMID:22920098

  4. Calculation of Dielectric Response in Molecular Solids for High Capacitance Organic Dielectrics

    NASA Astrophysics Data System (ADS)

    Heitzer, Henry Matthew

    The dielectric response of a material is critically important in numerous scientific processes spanning the fields of biology, chemistry, materials science, and physics. While important across these fundamental disciplines, it remains difficult to determine theoretically the dielectric environment of a system. With recent advances in nanotechnology, biochemistry, and molecular electronics, it has become necessary to determine the dielectric response in molecular systems that are difficult to measure experimentally, such as nanoscale interfaces, highly disordered biological environments, or molecular materials that are difficult to synthesize. In these scenarios it is highly advantageous to determine the dielectric response through efficient and accurate calculations. A good example of where a theoretical prediction of dielectric response is critical is in the development of high capacitance molecular dielectrics. Molecular dielectrics offer the promise of cheap, flexible, and mass producible electronic devices when used in conjunction with organic semiconducting materials to form Organic Field Effect Transistors (OFETs). To date, molecular dielectrics suffer from poor dielectric properties resulting in low capacitances. A low capacitance dielectric material requires a much larger power source to operate the device in OFETs, leading to modest device performance. Development of better performing dielectric materials has been hindered due to the time it takes to synthesize and fabricate new molecular materials. An accurate and efficient theoretical technique could drastically decrease this time by screening potential dielectric materials and providing design rules for future molecular dielectrics. Here in, the methodology used to calculate dielectric properties of molecular materials is described. The validity of the technique is demonstrated on model systems, capturing the frequency dependence of the dielectric response and achieving quantitative accuracy compared

  5. Techniques for Measuring the Dielectric Properties of Agricultural Products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dielectrics and dielectric properties of materials are defined generally, and methods for measuring dielectric properties of agricultural products are described for several frequency ranges from audio frequencies through microwave frequencies. These include measurement with impedance and admittance...

  6. Determination of Two-Liquid Mixture Composition by Assessing Dielectric Parameters 1. Precise Measuring System / Divu Šķidrumu Maisījuma Sastāva Noteikšana, Izvērtējot to Dielektriskos Parametrus 1. Precīza Mērīšanas Sistēma

    NASA Astrophysics Data System (ADS)

    Vilitis, O.; Shipkovs, P.; Merkulovs, D.

    2013-08-01

    Concentration measurements are important in bioethanol industries, in the R&D areas, for chemical, medical and microbiological analyses and processing as well as for diagnostics, manufacturing, etc. The overview shows development of the structural design of a system for measuring the concentration of solutions and mixtures consisting of two dielectric liquids. The basic principles of the system's design are given along with relevant equations. The concentration of dielectric liquids is measured using devices with capacitive sensors (1-300 pF). The operational frequency of the developed measuring system is 100.000 kHz. Configuration of the system excludes some errors usually arising at measurements, and broadens its applicability. For testing, the system was calibrated for measuring the concentration of anhydrous ethanol + de-ionized water mixture. Experimental results have shown a stable resolution of ±0.005 pF at measuring the sensor capacitance and a reproducible resolution better than ±0.01% at measuring the ethanol volume concentration Rakstā esam parādījuši iespējas izveidot augstas precizitātes, kompaktu, lētu un ērtu lietošanai dielektrisku šķidrumu mērīšanas sistēmu koncentrācijas noteikšanai. Šī sistēma ir piemērojama kapacitīviem sensoriem, kuru kapacitāte ir atkarīga no sensora izveidojuma kā arī mērāmā šķidruma dielektriskās konstantes vērtības, un kapacitāte var tikt noteikta pie frekvences 100,000 kHz robežās no 1 F līdz 300 pF. Mērīšanas sistēmas pārbaudei, sistēma tika kalibrēta etanola koncentrācijas mērīšanai tilpuma procentos sertificēta bezūdens etanola un dejonizēta ūdens maisījumiem. Pārbaužu rezultāti pierādīja, ka sensora kapacitātes vērtības ir stabili nosakāmas ar izšķirtspēju ne mazāku par ±0,005 pF. Sensora kapacitāšu vērtībām atbilstošā etanola tilpuma koncentrācijas atkārtojamu mērījumu izšķirtspēja visā mērīšanas diapazonā nebija mazāka par ±0

  7. Actuation and Control of Droplets by Using Electrowetting-on-Dielectric

    NASA Astrophysics Data System (ADS)

    Zeng, Xue-Feng; Yue, Rui-Feng; Wu, Jian-Gang; Dong, Liang; Liu, Li-Tian

    2004-09-01

    Electrowetting-on-dielectric (EWOD) controls directly the wettability of liquids on the solid surface by applying an electric potential to the microelectrode array under the dielectric layer. A prototype of the EWOD droplet actuator is put forward, consisting of Si used as the substrate of the microelectrode array, Si3N4 film as the dielectric layer and fluorocarbon polymer (p-C:F) film deposited by plasma enhanced chemical vapour deposition (PECVD) as the hydrophobic layer. The p-C:F film was uniform and compact, and the contact angle of deionized water on the p-C:F film reached 110 degrees . The actuator successfully actuated deionized droplets surrounded in silicone oil at the voltage of 35 V.

  8. Comparison of the sensitivity of air and dielectric modes in photonic crystal slab sensors.

    PubMed

    Tomljenovic-Hanic, Snjezana; Rahmani, Adel; Steel, M J; de Sterke, C Martijn

    2009-08-17

    Optical cavities provide a route to sensing through the shift of the optical resonant peak. However, effective sensing with optical cavities requires the optimization of the modal quality factor, Q, and the field overlap with the sample, f. For a photonic crystal slab (PCS) this figure of merit, M = fQ, involves two competing effects. The air modes usually have large f but small Q, whereas the dielectric modes have high-Q and small f. We compare the sensitivity of air and dielectric modes for different PCS cavity designs and account for loss associated with absorption by the sensed sample or its host liquid. We find that optimizing Q at the expense of f is the most beneficial strategy, and modes deriving from the dielectric bands are thus preferred.

  9. On-line process analysis innovation: DiComp (tm) shunting dielectric sensor technology

    NASA Technical Reports Server (NTRS)

    Davis, Craig R.; Waldman, Frank A.

    1993-01-01

    The DiComp Shunting Dielectric Sensor (SDS) is a new patent-pending technology developed under the Small Business Innovation Research Program (SBIR) for NASA's Kennedy Space Center. The incorporation of a shunt electrode into a conventional fringing field dielectric sensor makes the SDS uniquely sensitive to changes in material dielectric properties in the KHz to MHz range which were previously detectable only at GHz measurement frequencies. The initial NASA application of the SDS for Nutrient Delivery Control has demonstrated SDS capabilities for thickness and concentration measurement of Hoagland nutrient solutions. The commercial introduction of DiComp SDS technology for concentration and percent solids measurements in dispersions, emulsions and solutions represents a new technology for process measurements for liquids in a variety of industries.

  10. Enhanced dual-frequency operation of a polymerized liquid crystal microplate by liquid crystal infiltration

    NASA Astrophysics Data System (ADS)

    Kumagai, Takayuki; Yoshida, Hiroyuki; Ozaki, Masanori

    2017-04-01

    The electric-field-induced switching behavior of a polymer microplate is investigated. A microplate fabricated with a photopolymerizable dual-frequency liquid crystal was surrounded by an unpolymerized photopolymerizable dual-frequency liquid crystal in the isotropic phase. As an electric field was applied along the plane of the microplate, the microplate switched to set its interior molecular orientation to be either parallel or perpendicular to the field, depending on the frequency. Analysis of the rotational behavior, as well as numerical calculations, showed that the surrounding unpolymerized photopolymerizable dual-frequency liquid crystal infiltrated into the microplate, which enhanced the dielectric properties of the microplate. To the best of our knowledge, this is the first report of an enhanced dual-frequency dielectric response of a polymer microplate induced by liquid crystal infiltration.

  11. Interaction of two dielectric macroparticles

    SciTech Connect

    Munirov, V. R.; Filippov, A. V.

    2013-11-15

    The electrostatic interaction of two charged dielectric spherical particles with a nonuniform freecharge distribution over their surfaces in an external homogeneous electric field is considered. An exact solution for the electric field potential is obtained, and an analytical expression for the interaction force between these two particles is found. The case of a uniform free-charge distribution is considered in detail, and the region of parameters in the plane “the ratio of the radii vs. the ratio of the charges,” where repulsion between two like-charged particles turns into attraction as the interparticle distance decreases is established.

  12. Dielectric cure monitoring: Preliminary studies

    NASA Technical Reports Server (NTRS)

    Goldberg, B. E.; Semmel, M. L.

    1984-01-01

    Preliminary studies have been conducted on two types of dielectric cure monitoring systems employing both epoxy resins and phenolic composites. An Audrey System was used for 23 cure monitoring runs with very limited success. Nine complete cure monitoring runs have been investigated using a Micromet System. Two additional measurements were performed to investigate the Micromet's sensitivity to water absorption in a post-cure carbon-phenolic material. While further work is needed to determine data significance, the Micromet system appears to show promise as a feedback control device during processing.

  13. Viscosity of Liquid Crystal Mixtures in the Presence of Electroconvection

    NASA Astrophysics Data System (ADS)

    Nagaya, Tomoyuki; Satou, Yuki; Goto, Yoshitomo; Hidaka, Yoshiki; Orihara, Hiroshi

    2016-07-01

    We have experimentally investigated the viscosity of nematic liquid crystal mixtures of p-methoxybenzylidene-p'-n-butylaniline (MBBA) and p-ethoxybenzylidene-p'-cyanoaniline (EBCA) in the presence of electroconvection under an ac electric field with 60 Hz. Although the viscosity of the mixtures with negative dielectric anisotropy shows a characteristic decrease in the high-voltage regime, that with positive dielectric anisotropy shows a monotonic increase as the applied voltage is increased. The experimental results suggest that the decrease in viscosity observed only for the mixtures with negative dielectric anisotropy is attributed to the negative contribution of electric stress caused by the anisotropic director distribution of the turbulent state.

  14. On the nonlinear variation of dc conductivity with dielectric relaxation time

    NASA Astrophysics Data System (ADS)

    Johari, G. P.; Andersson, Ove

    2006-09-01

    The long-known observations that dc conductivity σdc of an ultraviscous liquid varies nonlinearly with the dielectric relaxation time τ, and the slope of the logσdc against logτ plot deviates from -1 are currently seen as two of the violations of the Debye-Stokes-Einstein equation. Here we provide a formalism using a zeroth order Bjerrum description for ion association to show that in addition to its variation with temperature T and pressure P, impurity ion population varies with a liquid's equilibrium dielectric permittivity. Inclusion of this electrostatic effect modifies the Debye-Stokes-Einstein equation to log(σdcτ )=constant+logα, where α is the T and P-dependent degree of ionic dissociation of an electrolytic impurity. Variation of a liquid's shear modulus with T and P would add to the nonlinearity of σdc-τ relation, as would a nonequivalence of the shear and dielectric relaxation times, proton transfer along the hydrogen bonds, or occurrence of another chemical process. This is illustrated by using the data for ultraviscous acetaminophen-aspirin liquid.

  15. Inhibiting electro-thermal breakdown of acrylic dielectric elastomer actuators by dielectric gel coating

    NASA Astrophysics Data System (ADS)

    La, Thanh-Giang; Lau, Gih-Keong

    2016-01-01

    Electrical breakdown of dielectric elastomer actuators (DEA) is very localized; a spark and a pinhole (puncture) in dielectric ends up with short-circuit. This letter shows that prevention of electrothermal breakdown helps defer failure of DEAs even with conductive-grease electrodes. Dielectric gel encapsulation or coating (Dow Corning 3-4170) helps protect acrylic elastomer (VHB 4905), making it thermally more stable and delaying its thermal oxidation (burn) from 218 °C to 300 °C. Dielectric-gel-coated acrylic DEAs can withstand higher local leak-induced heating and thus achieve higher dielectric strengths than non-coated DEAs do.

  16. Crosslinked polymeric dielectric materials and electronic devices incorporating same

    NASA Technical Reports Server (NTRS)

    Marks, Tobin J. (Inventor); Facchetti, Antonio (Inventor); Wang, Zhiming (Inventor); Choi, Hyuk-Jin (Inventor); Suh, legal representative, Nae-Jeong (Inventor)

    2012-01-01

    Solution-processable dielectric materials are provided, along with precursor compositions and processes for preparing the same. Composites and electronic devices including the dielectric materials also are provided.

  17. High thermal conductivity lossy dielectric using a multi layer configuration

    DOEpatents

    Tiegs, Terry N.; Kiggans, Jr., James O.

    2003-01-01

    Systems and methods are described for loss dielectrics. A loss dielectric includes at least one high dielectric loss layer and at least one high thermal conductivity-electrically insulating layer adjacent the at least one high dielectric loss layer. A method of manufacturing a loss dielectric includes providing at least one high dielectric loss layer and providing at least one high thermal conductivity-electrically insulating layer adjacent the at least one high dielectric loss layer. The systems and methods provide advantages because the loss dielectrics are less costly and more environmentally friendly than the available alternatives.

  18. Dielectric Spectroscopy of Fresh Chicken Breast Meat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Technical abstract The dielectric properties of fresh chicken breast meat were measured at temperatures from 5 to 85 degrees °C over the frequency range from 10 MHz to 1.8 GHz by dielectric spectroscopy techniques with an open-ended coaxial-line probe and impedance analyzer. Samples were cut from ...

  19. Dielectric Spectroscopy of Fresh Chicken Breast Meat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The dielectric properties of fresh chicken breast meat were measured at temperatures from 5 to 85 'C over the frequency range from 10 MHz to 1.8 GHz by dielectric spectroscopy techniques with an open-ended coaxial-line probe and impedance analyzer. Samples were cut from both the Pectoralis major an...

  20. Graphene-Dielectric Integration for Graphene Transistors

    PubMed Central

    Liao, Lei; Duan, Xiangfeng

    2010-01-01

    Graphene is emerging as an interesting electronic material for future electronics due to its exceptionally high carrier mobility and single-atomic thickness. Graphene-dielectric integration is of critical importance for the development of graphene transistors and a new generation of graphene based electronics. Deposition of dielectric materials onto graphene is of significant challenge due to the intrinsic material incompatibility between pristine graphene and dielectric oxide materials. Here we review various strategies being researched for graphene-dielectric integration. Physical vapor deposition (PVD) can be used to directly deposit dielectric materials on graphene, but often introduces significant defects into the monolayer of carbon lattice; Atomic layer deposition (ALD) process has also been explored to to deposit high-κ dielectrics on graphene, which however requires functionalization of graphene surface with reactive groups, inevitably leading to a significant degradation in carrier mobilities; Using naturally oxidized thin aluminum or polymer as buffer layer for dielectric deposition can mitigate the damages to graphene lattice and improve the carrier mobility of the resulted top-gated transistors; Lastly, a physical assembly approach has recently been explored to integrate dielectric nanostructures with graphene without introducing any appreciable defects, and enabled top-gated graphene transistors with the highest carrier mobility reported to date. We will conclude with a brief summary and perspective on future opportunities. PMID:21278913

  1. Polycarbonate based three-phase nanocomposite dielectrics

    NASA Astrophysics Data System (ADS)

    Sain, P. K.; Goyal, R. K.; Prasad, Y. V. S. S.; Bhargava, A. K.

    2016-08-01

    Three-phase polycarbonate (PC) matrix nanocomposites are prepared using the solution method. One of the nanocomposite fillers is dielectric and the other is conducting. Lead zirconate titanate (PZT) is used as the dielectric filler. The conducting fillers, nano-Cu and multi-walled carbon nanotubes (MWCNTs), are used to make two different nanocomposites, MWCNT-PZT-PC and Cu-PZT-PC. The prepared nanocomposites are characterized using density measurement, x-ray diffractometry, scanning electron microscopy, energy dispersive x-ray spectroscopy, and differential scanning calorimetry. Percolation is absent in both three-phase nanocomposites within the study’s concentration window of conducting fillers. The dielectric properties of the nanocomposites are evaluated using a precision impedance analyser. The dielectric constant of the Cu-PZT-PC nanocomposite increases to 14 (a dissipation factor of 0.17), whereas in the case of the MWCNT-PZT-PC nanocomposite it increases to 8.5 (a dissipation factor of 0.002). The melting point of both nanocomposites decreases with respect to the control PC. The frequency (1 kHz to 1 MHz) and temperature (room temperature to 200 °C) dependence of the dielectric constant and dissipation factor are examined. For the Cu-PZT-PC nanocomposites, the dielectric constant decreases with increasing frequency, whereas in the case of the MWCNT-PZT-PC nanocomposites the dielectric constant is almost constant. The dielectric constant and dissipation factor exhibit a slight temperature dependence.

  2. Dielectric spectroscopy of watermelons for quality sensing

    NASA Astrophysics Data System (ADS)

    Nelson, Stuart O.; Guo, Wen-chuan; Trabelsi, Samir; Kays, Stanley J.

    2007-07-01

    Dielectric properties of four small-sized watermelon cultivars, grown and harvested to provide a range of maturities, were measured with an open-ended coaxial-line probe and an impedance analyser over the frequency range from 10 MHz to 1.8 GHz. Probe measurements were made on the external surface of the melons and also on tissue samples from the edible internal tissue. Moisture content and soluble solids content (SSC) were measured for internal tissue samples, and SSC (sweetness) was used as the quality factor for correlation with the dielectric properties. Individual dielectric constant and loss factor correlations with SSC were low, but a high correlation was obtained between the SSC and permittivity from a complex-plane plot of dielectric constant and loss factor, each divided by SSC. However, SSC prediction from the dielectric properties by this relationship was not as high as expected (coefficient of determination about 0.4). Permittivity data (dielectric constant and loss factor) for the melons are presented graphically to show their relationships with frequency for the four melon cultivars and for external surface and internal tissue measurements. A dielectric relaxation for the external surface measurements, which may be attributable to a combination of bound water, Maxwell-Wagner, molecular cluster or ion-related effects, is also illustrated. Coefficients of determination for complex-plane plots, moisture content and SSC relationship, and penetration depth are also shown graphically. Further studies are needed for determining the practicality of sensing melon quality from their dielectric properties.

  3. Nanostructured high-performance dielectric block copolymers.

    PubMed

    Liu, Wenmei; Liao, Xiaojuan; Li, Yawei; Zhao, Qiuhua; Xie, Meiran; Sun, Ruyi

    2015-10-25

    A new type of insulating-conductive block copolymer was synthesized by metathesis polymerization. The copolymer can self-assemble into unique nanostructures of micelles or hollow spheres. It exhibits a high dielectric constant, low dielectric loss, and high stored/released energy density due to the strong dipolar and nano-interfacial polarization contributions.

  4. Dielectric Loss Measurements on Raw Materials.

    ERIC Educational Resources Information Center

    Mwanje, J.

    1980-01-01

    Describes an experiment used to study dielectric properties of materials. Values of the dielectric loss tangent can be determined at low frequencies from Lissajous figures formed on an oscilloscope. Some mineral rock specimens show Debye-type relaxation peaks at frequencies in the region of 1 to 500 Hz. (Author/DS)

  5. Thermoplastic and thermoset main chain liquid crystal polymers prepared from biphenyl mesogen

    SciTech Connect

    Su, W.F.A.

    1993-12-31

    Main chain liquid crystal thermoplastic polyesters and thermosetting epoxy resins were prepared using biphenyl mesogen. The melting point of polyesters was effectively decreased by incorporating flexible methylene spacers into the polymer main chain. The liquid crystal epoxy resins exhibit high glass transition temperature, low thermal expansion coefficient, high dielectric strength and low dielectric loss. They are suitable for the preparation of self-reinforcing molecular composites.

  6. Liquid-Crystal Displays: Fabrication and Measurement of a Twisted Nematic Liquid-Crystal Cell

    ERIC Educational Resources Information Center

    Waclawik, Eric R.; Ford, Michael J.; Hale, Penny S.; Shapter, Joe G.; Voelcker, Nico H.

    2004-01-01

    An experiment is developed for a laboratory course on nanostructures, as part of the undergraduate Bachelor of Science degree in nanotechnology at Flinders University. Designed to demonstrate the relationship between molecular order and the optical dielectric properties of the liquid crystalline state, the experiment is shown to be a useful tool…

  7. Dielectric bow-tie nanocavity.

    PubMed

    Lu, Qijing; Shu, Fang-Jie; Zou, Chang-Ling

    2013-12-15

    We propose a novel dielectric bow-tie (DBT) nanocavity consisting of two opposing tip-to-tip triangle semiconductor nanowires, whose end faces are coated by silver nanofilms. Based on the advantages of the dielectric slot and tip structures, and the high reflectivity of the silver mirror, light can be confined in this nanocavity with low loss. We demonstrate that at 4.5 K (300 K) around the resonance wavelength of 1550 nm, the mode excited in this nanocavity has a deep subwavelength mode volume of 2.8×10(-4) μm³ and a high quality factor of 4.9×10(4) (401.3), corresponding to an ultrahigh Purcell factor of 1.6×10(7) (1.36×10(5)). This DBT nanocavity may find applications for integrated nanophotonic circuits, such as high-efficiency single photon sources, thresholdless nanolasers, and strong coupling in cavity quantum electrodynamics experiments.

  8. Ion implanted dielectric elastomer circuits

    NASA Astrophysics Data System (ADS)

    O'Brien, Benjamin M.; Rosset, Samuel; Anderson, Iain A.; Shea, Herbert R.

    2013-06-01

    Starfish and octopuses control their infinite degree-of-freedom arms with panache—capabilities typical of nature where the distribution of reflex-like intelligence throughout soft muscular networks greatly outperforms anything hard, heavy, and man-made. Dielectric elastomer actuators show great promise for soft artificial muscle networks. One way to make them smart is with piezo-resistive Dielectric Elastomer Switches (DES) that can be combined with artificial muscles to create arbitrary digital logic circuits. Unfortunately there are currently no reliable materials or fabrication process. Thus devices typically fail within a few thousand cycles. As a first step in the search for better materials we present a preliminary exploration of piezo-resistors made with filtered cathodic vacuum arc metal ion implantation. DES were formed on polydimethylsiloxane silicone membranes out of ion implanted gold nano-clusters. We propose that there are four distinct regimes (high dose, above percolation, on percolation, low dose) in which gold ion implanted piezo-resistors can operate and present experimental results on implanted piezo-resistors switching high voltages as well as a simple artificial muscle inverter. While gold ion implanted DES are limited by high hysteresis and low sensitivity, they already show promise for a range of applications including hysteretic oscillators and soft generators. With improvements to implanter process control the promise of artificial muscle circuitry for soft smart actuator networks could become a reality.

  9. Dielectric breakdown of additively manufactured polymeric materials

    SciTech Connect

    Monzel, W. Jacob; Hoff, Brad W.; Maestas, Sabrina S.; French, David M.; Hayden, Steven C.

    2016-01-11

    Dielectric strength testing of selected Polyjet-printed polymer plastics was performed in accordance with ASTM D149. This dielectric strength data is compared to manufacturer-provided dielectric strength data for selected plastics printed using the stereolithography (SLA), fused deposition modeling (FDM), and selective laser sintering (SLS) methods. Tested Polyjet samples demonstrated dielectric strengths as high as 47.5 kV/mm for a 0.5 mm thick sample and 32.1 kV/mm for a 1.0 mm sample. As a result, the dielectric strength of the additively manufactured plastics evaluated as part of this study was lower than the majority of non-printed plastics by at least 15% (with the exception of polycarbonate).

  10. Dielectric breakdown of additively manufactured polymeric materials

    DOE PAGES

    Monzel, W. Jacob; Hoff, Brad W.; Maestas, Sabrina S.; ...

    2016-01-11

    Dielectric strength testing of selected Polyjet-printed polymer plastics was performed in accordance with ASTM D149. This dielectric strength data is compared to manufacturer-provided dielectric strength data for selected plastics printed using the stereolithography (SLA), fused deposition modeling (FDM), and selective laser sintering (SLS) methods. Tested Polyjet samples demonstrated dielectric strengths as high as 47.5 kV/mm for a 0.5 mm thick sample and 32.1 kV/mm for a 1.0 mm sample. As a result, the dielectric strength of the additively manufactured plastics evaluated as part of this study was lower than the majority of non-printed plastics by at least 15% (with themore » exception of polycarbonate).« less

  11. Microwave dielectric properties of boreal forest trees

    NASA Technical Reports Server (NTRS)

    Xu, G.; Ahern, F.; Brown, J.

    1993-01-01

    The knowledge of vegetation dielectric behavior is important in studying the scattering properties of the vegetation canopy and radar backscatter modelling. Until now, a limited number of studies have been published on the dielectric properties in the boreal forest context. This paper presents the results of the dielectric constant as a function of depth in the trunks of two common boreal forest species: black spruce and trembling aspen, obtained from field measurements. The microwave penetration depth for the two species is estimated at C, L, and P bands and used to derive the equivalent dielectric constant for the trunk as a whole. The backscatter modelling is carried out in the case of black spruce and the results are compared with the JPL AIRSAR data. The sensitivity of the backscatter coefficient to the dielectric constant is also examined.

  12. Microwave Characterization of Low-k Dielectric Thin Films using a Coplanar Waveguide

    NASA Astrophysics Data System (ADS)

    Radican, Kevin P.; Koeck, Deborah C.; Geerts, Wilhelmus; Spencer, Gregory; Donnelly, David; Galloway, Heather C.

    2003-03-01

    As microelectronic logic devices increase in speed the RC time delay is becoming of greater concern. One remedy is the use of low-k dielectrics along with less resistive metals such as Cu in back end processing. We have demonstrated a method of forming coplanar waveguides on low-k dielectric materials deposited on SiC/Si wafers. These thin films are prepared by the usual semiconductor industry methods. Then, the dielectric properties of the low-k dielectric thin films on wafers were measured at microwave frequencies using coplanar waveguide test structures. Several OSG low k materials were investigated before and after chemical mechanical planarization processing which involves placing the dielectrics in a liquid abrasive slurry. We will report on the details of the fabrication of the waveguide structures using argon laser beam lithography, magnetron sputter deposition, and reactive plasma etching. We will also report on the electrical changes observed due to the chemical processing. Electrical measurements were taken using an Agilent network analyzer, and Cascade Microtech probe station.

  13. Measuring and Modeling of the Dielectric Properties and Attenuation of Vegetation

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.

    1984-01-01

    The dielectric properties of vegetation material--primarily agricultural plants--as a function of moisture content and microwave frequency was measured and used to develop dielectric mixing models for the vegetation-water mixture. A model for the loss factor of a vegetation canopy was also developed. During the first phase of this investigation, three waveguide transmission systems covering from 1 to 2-GHz, from 3.5 to 6.5-GHz, and from 7.5 to 8.5-GHz bands were constructed and calibrated. By measuring the magnitude and phase of the field transmission coefficient of a given sample, it was possible to calculate the real and imaginary parts of the complex dielectric constant of the sample. Measurements were made for numerous samples of leaves and stalks of wheat and corn, and for wheat heads. Also, dielectric measurements were made of the liquid included in the vegetation material after extraction by mechanical means. The propagation loss is more than an order of magnitude greater than had previously been assumed. Various types of dielectric mixing models were investigated in terms of the available data, and a propagation model was developed and evaluated against direct canopy attenuation measurements. The canopy measurements were made by transmitting a signal from a radar antenna mounted atop a truck-mounted boom, and using a small antenna mounted on a rail beneath the canopy to receive it.

  14. Numerical simulation of the leaky dielectric microdroplet generation in electric fields

    NASA Astrophysics Data System (ADS)

    Kamali, Reza; Manshadi, Mohammad Karim Dehghan

    2016-07-01

    Microdroplet generation has a vast range of applications in the chemical, biomedical, and biological sciences. Several devices are applied to produce microdroplets, such as Co-flow, T-junction and Flow-focusing. The important point in the producing process is controlling the separated fluid volume in these devices. On the other hand, a large number of liquids, especially aqueous one, are influenced by electric or magnetic fields. As a consequence, an electric field could be used in order to affect the separated fluid volume. In this study, effects of an electric field on the microdroplet generation in a Co-flow device are investigated numerically. Furthermore, effects of some electrical properties such as permittivity on the separating process of microdroplets are studied. Leaky dielectric and perfect dielectric models are used in this investigation. According to the results, in the microdroplet generating process, leaky dielectric fluids show different behaviors, when an electric field is applied to the device. In other words, in a constant electric field strength, the volume of generated microdroplets can increase or decrease, in comparison with the condition without the electric field. However, for perfect dielectric fluids, droplet volume always decreases with increasing the electric field strength. In order to validate the numerical method of this study, deformation of a leaky dielectric droplet in an electric field is investigated. Results are compared with Taylor theoretical model.

  15. Processable fluoropolymers with low dielectric constants: Preparation and structure-property relationships of polyacrylates and polymethacrylates

    SciTech Connect

    Hu, H. S.W.; Griffith, J.R.

    1993-12-31

    The preparation of a series of processable heavily fluorinated acrylic and methacrylic homo- and co-polymers with low dielectric constants is carried out to elucidate the structure-property relationships. The monomers were prepared through the condensation of the respective alcohols with acryloyl and methacryloyl chloride. Unlike tetrafluoroethylene, these monomers are easy to process into transparent polymers under normal conditions due to their liquid or semisolid nature. All polymers exhibit dielectric constants around 2.06-2.41 with variation within 0.03 over a frequency region of 500 MHz to 18.5 GHz. These values are very close to the minimum known dielectric constants of 2.0-2.08 for Teflon and 1.89-1.93 for Teflon AF. The factors which affect the dielectric constant include the fluorine content, the polymer type and molecular features. Lower dielectric constants are obtained as fluorine contents from polymer backbone or sidechain increase, when acrylate is replaced by methacrylate, when ether linkages are present in the fluorocarbon and when aromatic structure is symmetrically meta-substituted.

  16. Molecular theory of dielectric relaxation in nematic dimers

    NASA Astrophysics Data System (ADS)

    Stocchero, M.; Ferrarini, A.; Moro, G. J.; Dunmur, D. A.; Luckhurst, G. R.

    2004-10-01

    This paper reports a theory for the dielectric relaxation of dimeric mesogenic molecules in a nematic liquid crystal phase. Liquid crystal dimers consist of two mesogenic groups linked by a flexible chain. Recent experimental studies [D. A. Dunmur, G. R. Luckhurst, M. R. de la Fuente, S. Diez, and M. A. Perez Jubindo, J. Chem. Phys. 115, 8681 (2001)] of the dielectric properties of polar liquid crystal dimers have found unexpected results for both the static (low frequency) and variable frequency dielectric response of these materials. The theory developed in this paper provides a quantitative model with which to understand the observed experimental results. The mean-square dipole moments of α,ω-bis[(4-cyanobiphenyl-4'-yl]alkanes in a nematic phase have been calculated using both the rotational isomeric state model and a full torsional potential for the carbon-carbon bonds of the flexible chain. The orienting effect of the nematic phase is taken into account by a parametrized potential of mean torque acting on the mesogenic groups and the segments in the flexible chain. Results of calculations using the full torsional potential are in excellent agreement with experimental results for comparable systems. The probability density peq(βA,βB) for the orientation of the mesogenic groups (A,B) along the nematic director is also calculated. The resultant potential of mean torque is a surface characterized by four deep energy wells or sites equivalent to alignment of the terminal groups A and B approximately parallel and antiparallel to the director; of course, the reversal of the director leads to equivalent sites. This potential energy surface provides the basis for a kinetic model of dielectric relaxation in nematic dimers. Solution of the Fokker-Planck equation corresponding to this four-site model gives the time dependence of the site populations, and hence the time-correlation functions for the total dipole moment along the director. In this model the end

  17. Development of a liquid metal slip ring

    NASA Technical Reports Server (NTRS)

    Weinberger, S. M.

    1972-01-01

    A liquid metal slip ring/solar orientation mechanism was designed and a model tested. This was a follow-up of previous efforts for the development of a gallium liquid metal slip ring in which the major problem was the formation and ejection of debris. A number of slip ring design approaches were studied. The probe design concept was fully implemented with detail drawings and a model was successfully tested for dielectric strength, shock vibration, acceleration and operation. The conclusions are that a gallium liquid metal slip ring/solar orientation mechanism is feasible and that the problem of debris formation and ejection has been successfully solved.

  18. Electro-osmosis in nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Tovkach, O. M.; Calderer, M. Carme; Golovaty, Dmitry; Lavrentovich, Oleg; Walkington, Noel J.

    2016-07-01

    We derive a mathematical model of a nematic electrolyte based on a variational formulation of nematodynamics. We verify the model by comparing its predictions to the results of the experiments on the substrate-controlled liquid-crystal-enabled electrokinetics. In the experiments, a nematic liquid crystal confined to a thin planar cell with surface-patterned anchoring conditions exhibits electro-osmotic flows along the "guiding rails" imposed by the spatially varying director. Extending our previous work, we consider a general setup which incorporates dielectric anisotropy of the liquid-crystalline matrix and the full set of nematic viscosities.

  19. Electro-osmosis in nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Tovkach, O. M.; Carme Calderer, M.; Golovaty, Dmitry; Lavrentovich, Oleg; Walkington, Noel J.

    2016-04-01

    We derive a mathematical model of a nematic electrolyte based on a variational formulation of nematodynamics. Extending our previous work, we consider a general setup which incorporates dielectric anisotropy of the liquid-crystalline matrix and the full set of nematic viscosities. We verify the model by comparing its predictions to the results of the experiments on the substrate-controlled liquid-crystal-enabled electrokinetics. In the experiments a nematic liquid crystal confined to a thin planar cell with surface-patterned anchoring conditions exhibit electro-osmotic flows along the "guiding rails" imposed by the spatially varying director.

  20. Numerical investigation of dielectric barrier discharges

    NASA Astrophysics Data System (ADS)

    Li, Jing

    1997-12-01

    A dielectric barrier discharge (DBD) is a transient discharge occurring between two electrodes in coaxial or planar arrangements separated by one or two layers of dielectric material. The charge accumulated on the dielectric barrier generates a field in a direction opposite to the applied field. The discharge is quenched before an arc is formed. It is one of the few non-thermal discharges that operates at atmospheric pressure and has the potential for use in pollution control. In this work, a numerical model of the dielectric barrier discharge is developed, along with the numerical approach. Adaptive grids based on the charge distribution is used. A self-consistent method is used to solve for the electric field and charge densities. The Successive Overrelaxation (SOR) method in a non-uniform grid spacing is used to solve the Poisson's equation in the cylindrically-symmetric coordinate. The Flux Corrected Transport (FCT) method is modified to solve the continuity equations in the non-uniform grid spacing. Parametric studies of dielectric barrier discharges are conducted. General characteristics of dielectric barrier discharges in both anode-directed and cathode-directed streamer are studied. Effects of the dielectric capacitance, the applied field, the resistance in external circuit and the type of gases (O2, air, N2) are investigated. We conclude that the SOR method in an adaptive grid spacing for the solution of the Poisson's equation in the cylindrically-symmetric coordinate is convergent and effective. The dielectric capacitance has little effect on the g-factor of radical production, but it determines the strength of the dielectric barrier discharge. The applied field and the type of gases used have a significant role on the current peak, current pulse duration and radical generation efficiency, discharge strength, and microstreamer radius, whereas the external series resistance has very little effect on the streamer properties. The results are helpful in

  1. Pressure sensor using liquid crystals

    NASA Technical Reports Server (NTRS)

    Parmar, Devendra S. (Inventor); Holmes, Harlan K. (Inventor)

    1994-01-01

    A pressure sensor includes a liquid crystal positioned between transparent, electrically conductive films (18 and 20), that are biased by a voltage (V) which induces an electric field (E) that causes the liquid crystal to assume a first state of orientation. Application of pressure (P) to a flexible, transparent film (24) causes the conductive film (20) to move closer to or farther from the conductive film (18), thereby causing a change in the electric field (E'(P)) which causes the liquid crystal to assume a second state of orientation. Polarized light (P.sub.1) is directed into the liquid crystal and transmitted or reflected to an analyzer (A or 30). Changes in the state of orientation of the liquid crystal induced by applied pressure (P) result in a different light intensity being detected at the analyzer (A or 30) as a function of the applied pressure (P). In particular embodiments, the liquid crystal is present as droplets (10) in a polymer matrix (12) or in cells (14) in a polymeric or dielectric grid (16) material in the form of a layer (13) between the electrically conductive films (18 and 20). The liquid crystal fills the open wells in the polymer matrix (12) or grid (16) only partially.

  2. Spontaneous emission in dielectric nanoparticles

    NASA Astrophysics Data System (ADS)

    Pukhov, K. K.; Basiev, T. T.; Orlovskii, Yu. V.

    2008-09-01

    An analytical expression is obtained for the radiative-decay rate of an excited optical center in an ellipsoidal dielectric nanoparticle (with sizes much less than the wavelength) surrounded by a dielectric medium. It is found that the ratio of the decay rate A nano of an excited optical center in the nanoparticle to the decay rate A bulk of an excited optical center in the bulk sample is independent of the local-field correction and, therefore, of the adopted local-field model. Moreover, the expression implies that the ratio A nano/ A bulk for oblate and prolate ellipsoids depends strongly on the orientation of the dipole moment of the transition with respect to the ellipsoid axes. In the case of spherical nanoparticles, a formula relating the decay rate A nano and the dielectric parameters of the nanocomposite and the volumetric content c of these particles in the nanocomposite is derived. This formula reduces to a known expression for spherical nanoparticles in the limit c ≪ 1, while the ratio A nano/ A bulk approaches unity as c tends to unity. The analysis shows that the approach used in a number of papers {H. P. Christensen, D. R. Gabbe, and H. P. Jenssen, Phys. Rev. B 25, 1467 (1982); R. S. Meltzer, S. P. Feofilov, B. Tissue, and H. B. Yuan, Phys. Rev. B 60, R14012 (1999); R. I. Zakharchenya, A. A. Kaplyanskii, A. B. Kulinkin, et al., Fiz. Tverd. Tela 45, 2104 (2003) [Phys. Solid State 45, 2209 (2003)]; G. Manoj Kumar, D. Narayana Rao, and G. S. Agarwal, Phys. Rev. Lett. 91, 203903 (2003); Chang-Kui Duan, Michael F. Reid, and Zhongqing Wang, Phys. Lett. A 343, 474 (2005); K. Dolgaleva, R. W. Boyd, and P. W. Milonni, J. Opt. Soc. Am. B 24, 516 (2007)}, for which the formula for A nano is derived merely by substituting the bulk refractive index by the effective refractive index of the nanocomposite must be revised, because the resulting ratio A nano/ A bulk turns out to depend on the local-field model. The formulas for the emission and absorption cross

  3. Optical lens with electrically variable focus using an optically hidden dielectric structure.

    PubMed

    Asatryan, Karen; Presnyakov, Vladimir; Tork, Amir; Zohrabyan, Armen; Bagramyan, Aram; Galstian, Tigran

    2010-06-21

    Electrically variable gradient index liquid crystal lens is developed that uses flat uniform liquid crystal layer and electrodes. The spatial modulation of the electric field across the lens aperture is obtained by the modulation of the effective dielectric constant of an integrated doublet lens structure. The dielectric constants of two materials, composing the doublet, are chosen to be different at electrical driving frequencies, while their optical refractive indexes are the same, hiding thus the structure from the optical point of view. This "hidden layer" approach decouples the electrical and optical functions of that structure, increases significantly the performance of the lens and enables new functionalities. The technical performance and various driving schemes of the obtained lens are presented and analyzed.

  4. Redox chemistry at liquid/liquid interfaces

    NASA Technical Reports Server (NTRS)

    Volkov, A. G.; Deamer, D. W.

    1997-01-01

    The interface between two immiscible liquids with immobilized photosynthetic pigments can serve as the simplest model of a biological membrane convenient for the investigation of photoprocesses accompanied by spatial separation of charges. As it follows from thermodynamics, if the resolvation energies of substrates and products are very different, the interface between two immiscible liquids may act as a catalyst. Theoretical aspects of charge transfer reactions at oil/water interfaces are discussed. Conditions under which the free energy of activation of the interfacial reaction of electron transfer decreases are established. The activation energy of electron transfer depends on the charges of the reactants and dielectric permittivity of the non-aqueous phase. This can be useful when choosing a pair of immiscible solvents to decrease the activation energy of the reaction in question or to inhibit an undesired process. Experimental interfacial catalytic systems are discussed. Amphiphilic molecules such as chlorophyll or porphyrins were studied as catalysts of electron transfer reactions at the oil/water interface.

  5. Dielectric investigation of some woven fabrics

    NASA Astrophysics Data System (ADS)

    Cerovic, Dragana D.; Dojcilovic, Jablan R.; Asanovic, Koviljka A.; Mihajlidi, Tatjana A.

    2009-10-01

    In this paper, we have investigated the temperature dependence of dielectric properties (relative dielectric permeabilities and dielectric tangents of losses) for woven fabrics of hemp, jute, flax, cotton, polyester (PES), cotton-PES mixture, and wool. The measurements have been carried out at a temperature range from -50 to 50 °C in the electric periodic field at a frequency 1 MHz in vacuum. For the same specimens, the values of the dielectric properties have also been measured at an air temperature of 21 °C and at relative humidities of 40%, 60%, and 80%. At different frequencies from 80 kHz to 5 MHz, the dielectric properties have been measured at a relative humidity of 40% and at a temperature of 21 °C. An investigation of the dielectric properties of woven fabrics can provide a better understanding of the relation between the dielectric properties of woven fabrics and the different raw material compositions, temperatures, relative air humidities, and frequencies for specimens. Hence, this investigation helps to improve textile material properties.

  6. Dielectric Heaters for Testing Spacecraft Nuclear Reactors

    NASA Technical Reports Server (NTRS)

    Sims, William Herbert; Bitteker, Leo; Godfroy, Thomas

    2006-01-01

    A document proposes the development of radio-frequency-(RF)-driven dielectric heaters for non-nuclear thermal testing of the cores of nuclear-fission reactors for spacecraft. Like the electrical-resistance heaters used heretofore for such testing, the dielectric heaters would be inserted in the reactors in place of nuclear fuel rods. A typical heater according to the proposal would consist of a rod of lossy dielectric material sized and shaped like a fuel rod and containing an electrically conductive rod along its center line. Exploiting the dielectric loss mechanism that is usually considered a nuisance in other applications, an RF signal, typically at a frequency .50 MHz and an amplitude between 2 and 5 kV, would be applied to the central conductor to heat the dielectric material. The main advantage of the proposal is that the wiring needed for the RF dielectric heating would be simpler and easier to fabricate than is the wiring needed for resistance heating. In some applications, it might be possible to eliminate all heater wiring and, instead, beam the RF heating power into the dielectric rods from external antennas.

  7. Extending applications of dielectric elastomer artificial muscle

    NASA Astrophysics Data System (ADS)

    Chiba, Seiki; Waki, Mikio; Kornbluh, Roy; Pelrine, Ron

    2007-04-01

    Dielectric elastomers have demonstrated high energy density and high strains as well as high electromechanical efficiency and fast speeds of response. These properties, combined with their projected low cost make them attractive for a variety of actuator applications including linear actuators, diaphragm pumps, rotary motors, and haptic displays. Dielectric elastomers have also been shown to offer high energy density, high efficiency, and large strains when operated as generators. Dielectric elastomers have reached a stage of development where standardized products can be applied to new applications. In some cases, dielectric elastomer devices are improvements over existing devices. In other cases, however, dielectric elastomers can enable new types of devices that cannot be made with existing technologies, such as new types of loudspeakers and power generating devices. A new dipole loudspeaker system was developed using a commercially available push-pull diaphragm configuration. This same transducer configuration was used to develop a new power generating system. This generator system enables a power generation of 0.06 to 0.12 W by manually displacing the device by 5 to 6 mm once a second. By introducing a voltage step-down conversion circuit, the device was able to power wireless communications, allowing the control of devices separated by a distance of a few meters. These two devices are examples of the new applications that are enabled as the dielectric elastomer technology commercially emerges. Future improvements to dielectric elastomers could enable new capabilities in clean electrical power generation from ocean waves, for example.

  8. New trends in Brunner's relation: dielectric levels

    NASA Astrophysics Data System (ADS)

    Trouiller, Yorick; Didiergeorges, Anne; Fanget, Gilles L.; Laviron, Cyrille; Comboure, Corinne; Quere, Yves

    1999-07-01

    The goal of this paper is to understand the optical phenomena at dielectric levels. The purpose is also to quantify the impact of dielectric and resist thickness variations on the CD range with and without Bottom Anti Reflective COating (BARC). First we will show how all dielectric levels can be reduced to the stack metal/oxide/BARC/resist, and what are the contributions to resists and dielectric thickness range for each levels. Then a simple model will be developed to understand CD variation in this tack: by extending the Perot/Fabry model to the dielectric levels, developed by Brunner for the gate level, we can obtain a simple relation between the CD variation and all parameters. Experimentally CD variation for Damascene line level on 0.18micrometers technology has been measured depending on oxide thickness and resist thickness and can confirm this model. UV5 resist, AR2 BARC from Shipley and Top ARC from JSR have been used for these experiments. The main conclusions are: (1) Depending on your dielectric deposition and CMP processes, if resist thickness is controlled, a standard BARC process used for the gate is adapted to remove oxide thickness variation influence providing the optimized resist thickness is used. (2) If both resist thickness and dielectric thickness are uncontrolled, a more absorbent BARC is required.

  9. Microwave dielectric behavior of vegetation material

    NASA Technical Reports Server (NTRS)

    Elrayes, Mohamed A.; Ulaby, Fawwaz T.

    1987-01-01

    The microwave dielectric behavior of vegetation was examined through the development of theoretical models involving dielectric dispersion by both bound and free water and supported by extensive dielectric measurements conducted over a wide range of conditions. The experimental data were acquired using an open-ended coaxial probe that was developed for sensing the dielectric constant of thin layers of materials, such as leaves, from measurements of the complex reflection coefficient using a network analyzer. The probe system was successfully used to record the spectral variation of the dielectric constant over a wide frequency range extending from 0.5 to 20.4 GHz at numerous temperatures between -40 to +40 C. The vegetation samples were measured over a wide range of moisture conditions. To model the dielectric spectrum of the bound water component of the water included in vegetation, dielectric measurements were made for several sucrose-water solutions as analogs for the situation in vegetation. The results were used in conjunction with the experimental data for leaves to determine some of the constant coefficients in the theoretical models. Two models, both of which provide good fit to the data, are proposed.

  10. Tuning sound with soft dielectrics

    NASA Astrophysics Data System (ADS)

    Bortot, Eliana; Shmuel, Gal

    2017-04-01

    Soft dielectric tubes undergo large deformations when subjected to radial voltage. Using the theory of nonlinear electroelasticity, we investigate how voltage-controlled deformations of these tubes in an array alter acoustic wave propagation through it. We show that the propagation is annihilated across a certain audible frequency range, referred to as a sonic band gap. We carry out a numerical study, to find that the band gap depends nonlinearly on the voltage, owing to geometrical and material nonlinearities. By analyzing different mechanical constraints, we demonstrate that snap-through instabilities resulting from these nonlinearities can be harnessed to achieve sharp transitions in the gap width. Our conclusions hint at a new strategy to adaptively filter sound using a simple control parameter—an applied voltage.

  11. Dielectric-constant gas thermometry

    NASA Astrophysics Data System (ADS)

    Gaiser, Christof; Zandt, Thorsten; Fellmuth, Bernd

    2015-10-01

    The principles, techniques and results from dielectric-constant gas thermometry (DCGT) are reviewed. Primary DCGT with helium has been used for measuring T-T90 below the triple point of water (TPW), where T is the thermodynamic temperature and T90 is the temperature on the international temperature scale of 1990 (ITS-90), and, in an inverse regime with T as input quantity, for determining the Boltzmann constant at the TPW. Furthermore, DCGT allows the determination of several important material properties including the polarizability of neon and argon as well as the virial coefficients of helium, neon, and argon. With interpolating DCGT (IDCGT), the ITS-90 has been approximated in the temperature range from 4 K to 25 K. An overview and uncertainty budget for each of these applications of DCGT is provided, accompanied by corroborating evidence from the literature or, for IDCGT, a CIPM key comparison.

  12. Virtual gap dielectric wall accelerator

    DOEpatents

    Caporaso, George James; Chen, Yu-Jiuan; Nelson, Scott; Sullivan, Jim; Hawkins, Steven A

    2013-11-05

    A virtual, moving accelerating gap is formed along an insulating tube in a dielectric wall accelerator (DWA) by locally controlling the conductivity of the tube. Localized voltage concentration is thus achieved by sequential activation of a variable resistive tube or stalk down the axis of an inductive voltage adder, producing a "virtual" traveling wave along the tube. The tube conductivity can be controlled at a desired location, which can be moved at a desired rate, by light illumination, or by photoconductive switches, or by other means. As a result, an impressed voltage along the tube appears predominantly over a local region, the virtual gap. By making the length of the tube large in comparison to the virtual gap length, the effective gain of the accelerator can be made very large.

  13. Femtosecond optomagnetism in dielectric antiferromagnets

    NASA Astrophysics Data System (ADS)

    Bossini, D.; Rasing, Th

    2017-02-01

    Optical femtosecond manipulation of magnetic order is attractive for the development of new concepts for ultrafast magnetic recording. Theoretical and experimental investigations in this research area aim at establishing a physical understanding of magnetic media in light-induced non-equilibrium states. Such a quest requires one to adjust the theory of magnetism, since the thermodynamical concepts of elementary excitations and spin alignment determined by the exchange interaction are not applicable on the femtosecond time-scale after the photo-excitation. Here we report some key milestones concerning the femtosecond optical control of spins in dielectric antiferromagnets, whose spin dynamics is by nature faster than that of ferromagnets and can be triggered even without any laser heating. The recent progress of the opto-magnetic effect in the sub-wavelength regime makes this exciting research area even more promising, in terms of both fundamental breakthroughs and technological perspectives.

  14. Standards for dielectric elastomer transducers

    NASA Astrophysics Data System (ADS)

    Carpi, Federico; Anderson, Iain; Bauer, Siegfried; Frediani, Gabriele; Gallone, Giuseppe; Gei, Massimiliano; Graaf, Christian; Jean-Mistral, Claire; Kaal, William; Kofod, Guggi; Kollosche, Matthias; Kornbluh, Roy; Lassen, Benny; Matysek, Marc; Michel, Silvain; Nowak, Stephan; O'Brien, Benjamin; Pei, Qibing; Pelrine, Ron; Rechenbach, Björn; Rosset, Samuel; Shea, Herbert

    2015-10-01

    Dielectric elastomer transducers consist of thin electrically insulating elastomeric membranes coated on both sides with compliant electrodes. They are a promising electromechanically active polymer technology that may be used for actuators, strain sensors, and electrical generators that harvest mechanical energy. The rapid development of this field calls for the first standards, collecting guidelines on how to assess and compare the performance of materials and devices. This paper addresses this need, presenting standardized methods for material characterisation, device testing and performance measurement. These proposed standards are intended to have a general scope and a broad applicability to different material types and device configurations. Nevertheless, they also intentionally exclude some aspects where knowledge and/or consensus in the literature were deemed to be insufficient. This is a sign of a young and vital field, whose research development is expected to benefit from this effort towards standardisation.

  15. Molecular approach to the interpretation of the dielectric relaxation spectrum of a molecular glass former

    PubMed

    Gonzalez; Enciso; Bermejo; Jimenez-Ruiz; Bee

    2000-04-01

    The frequency-dependent dielectric function of ethanol at temperatures within the normal liquid range is evaluated by means of computer molecular dynamics simulations and compared with recent experimental data. The calculated spectra show a similar structure to those reported from experimental measurements and the temperature dependence of its most prominent bands also follows the experimental estimates. An attempt is also made to assign the most intense bands to specific molecular reorientations.

  16. Electromechanical model for actuating liquids in a two-plate droplet microfluidic device.

    PubMed

    Chatterjee, Debalina; Shepherd, Heather; Garrell, Robin L

    2009-05-07

    Both conducting and insulating liquids can be actuated in two-plate droplet ("digital") microfluidic devices. Droplet movement is accomplished by applying a voltage across electrodes patterned beneath the dielectric-coated top and bottom plates. This report presents a general electromechanical model for calculating the forces on insulating and conducting liquids in two-plate devices. The devices are modeled as an equivalent circuit in which the dielectric layers and ambient medium (air or oil) are described as capacitors, while the liquid being actuated is described as a resistor and capacitor in parallel. The experimental variables are the thickness and dielectric constant of each layer in the device, the gap between plates, the applied voltage and frequency, and the conductivity of the liquid. The model has been used to calculate the total force acting on droplets of liquids that have been studied experimentally, and to explain the relative ease with which liquids of different conductivities can be actuated. The contributions of the electrowetting (EW) and dielectrophoretic (DEP) forces to droplet actuation have also been calculated. While for conductive liquids the EW force dominates, for dielectric liquids, both DEP and EW contribute, and the DEP force may dominate. The general utility of the model is that it can be used to predict the operating conditions needed to actuate particular liquids in devices of known geometry, and to optimize the design and operating conditions to enable movement of virtually any liquid.

  17. Dielectric Characterization of Confined Water in Chiral Cellulose Nanocrystal Films.

    PubMed

    Natarajan, Bharath; Emiroglu, Caglar; Obrzut, Jan; Fox, Douglas M; Pazmino, Beatriz; Douglas, Jack F; Gilman, Jeffrey W

    2017-04-10

    A known deterrent to the large-scale development and use of cellulose nanocrystals (CNCs) in composite materials is their affinity for moisture, which has a profound effect on dispersion, wetting, interfacial adhesion, matrix crystallization, water uptake and hydrothermal stability. To quantify and control the hydration and confinement of absorbed water in CNCs we studied sulfated-CNCs neutralized with sodium cations and CNCs functionalized with less hydrophilic methyl(triphenyl)phosphonium cations. Films were cast from water suspensions at 20 ○C under controlled humidity and drying rate, yielding CNC materials with distinguishably different dielectric properties and cholesteric structures. By controlling the evaporation rate, we obtained self-assembled chiral CNC films with extended uniformity, having helical modulation length (nominal pitch) tunable from 1300 nm to 600 nm. SEM imaging, and UV-Vis-NIR total reflectance spectra revealed tighter and more uniform CNC packing in films cast at slow evaporation rates or having lower surface energy when modified with phosphonium. The dielectric constant was measured by a non-contact microwave cavity perturbation method and fitted to a classical mixing model employing randomly oriented ellipsoidal water inclusions. The dielectric constant of absorbed water was found to be significantly smaller than that for free liquid indicating a limited mobility due to binding with the CNC "matrix". In the case of hydrophilic Na modified CNCs, a decreasing pitch led to greater anisotropy in the shape of moisture inclusions (spherical to platelet-like) and greater confinement. In contrast, the structure of hydrophobic phosphonium modified CNC films was found to reduce the pitch considerably, yet the shape of confined water remained predominantly spherical. These results provide a useful perspective on the current state of understanding of CNC-water interactions as well as on CNC self-assembly mechanisms. More broadly we believe that

  18. Antenna dielectric sealing process characterization. Final report

    SciTech Connect

    Busby, M.L.; Yerganian, S.S.

    1994-04-01

    An antenna assembly experienced leak test failures during TMS testing. The leaks were occurring between the dielectric and housing. The antenna assembly dielectric is sealed into a nickel-plated aluminum housing using a tin catalyzed condensation cure silicone (RTV). In preparation for sealing, the dielectric and housing are chemically cleaned and then plasma cleaned. The surfaces to be sealed are primed, RTV is applied, and the RTV is cured in a humidity chamber. This report is an evaluation of the production process and includes FEM analysis and process characterization and control (PC&C) data.

  19. Exploring Hamiltonian dielectric solvent molecular dynamics

    NASA Astrophysics Data System (ADS)

    Bauer, Sebastian; Tavan, Paul; Mathias, Gerald

    2014-09-01

    Hamiltonian dielectric solvent (HADES) is a recent method [7,25], which enables Hamiltonian molecular dynamics (MD) simulations of peptides and proteins in dielectric continua. Sample simulations of an α-helical decapeptide with and without explicit solvent demonstrate the high efficiency of HADES-MD. Addressing the folding of this peptide by replica exchange MD we study the properties of HADES by comparing melting curves, secondary structure motifs and salt bridges with explicit solvent results. Despite the unoptimized ad hoc parametrization of HADES, calculated reaction field energies correlate well with numerical grid solutions of the dielectric Poisson equation.

  20. Epoxy Foam Encapsulants: Processing and Dielectric Characterization

    SciTech Connect

    Linda Domeier; Marion Hunter

    1999-01-01

    The dielectric performance of epoxy foams was investigated to determine if such materials might provide advantages over more standard polyurethane foams in the encapsulation of electronic assemblies. Comparisons of the dielectric characteristics of epoxy and urethane encapsulant foams found no significant differences between the two resin types and no significant difference between as-molded and machined foams. This study specifically evaluated the formulation and processing of epoxy foams using simple methylhydrosiloxanes as the flowing agent and compared the dielectric performance of those to urethane foams of similar density.

  1. Dielectric gas mixtures containing sulfur hexafluoride

    DOEpatents

    Cooke, Chathan M.

    1979-01-01

    Electrically insulating gaseous media of unexpectedly high dielectric strength comprised of mixtures of two or more dielectric gases are disclosed wherein the dielectric strength of at least one gas in each mixture increases at less than a linear rate with increasing pressure and the mixture gases are present in such proportions that the sum of their electrical discharge voltages at their respective partial pressures exceeds the electrical discharge voltage of each individual gas at the same temperature and pressure as that of the mixture.

  2. Dielectric constants of soils at microwave frequencies

    NASA Technical Reports Server (NTRS)

    Geiger, F. E.; Williams, D.

    1972-01-01

    A knowledge of the complex dielectric constant of soils is essential in the interpretation of microwave airborne radiometer data of the earth's surface. Measurements were made at 37 GHz on various soils from the Phoenix, Ariz., area. Extensive data have been obtained for dry soil and soil with water content in the range from 0.6 to 35 percent by dry weight. Measurements were made in a two arm microwave bridge and results were corrected for reflections at the sample interfaces by solution of the parallel dielectric plate problem. The maximum dielectric constants are about a factor of 3 lower than those reported for similar soils at X-band frequencies.

  3. Porous low dielectric constant materials for microelectronics.

    PubMed

    Baklanov, Mikhail R; Maex, Karen

    2006-01-15

    Materials with a low dielectric constant are required as interlayer dielectrics for the on-chip interconnection of ultra-large-scale integration devices to provide high speed, low dynamic power dissipation and low cross-talk noise. The selection of chemical compounds with low polarizability and the introduction of porosity result in a reduced dielectric constant. Integration of such materials into microelectronic circuits, however, poses a number of challenges, as the materials must meet strict requirements in terms of properties and reliability. These issues are the subject of the present paper.

  4. Dielectric and specific heat relaxations in vapor deposited glycerol

    SciTech Connect

    Kasina, A. E-mail: wubbenhorst@fys.kuleuven.be; Putzeys, T.; Wübbenhorst, M. E-mail: wubbenhorst@fys.kuleuven.be

    2015-12-28

    Recently [S. Capponi, S. Napolitano, and M. Wübbenhorst, Nat. Commun. 3, 1233 (2012)], vapor deposited glasses of glycerol have been found to recover their super-cooled liquid state via a metastable, ordered liquid (MROL) state characterized by a tremendously enhanced dielectric strength along with a slow-down of the relaxation rate of the structural relaxation. To study the calorimetric signature of this phenomenon, we have implemented a chip-based, differential AC calorimeter in an organic molecular beam deposition setup, which allows the simultaneous measurement of dielectric relaxations via interdigitated comb electrodes and specific heat relaxation spectra during deposition and as function of the temperature. Heating of the as-deposited glass just above the bulk T{sub g} and subsequent cooling/reheating revealed a step-wise increase in c{sub p} by in total 9%, indicating unambiguously that glycerol, through slow vapour deposition, forms a thermodynamically stable glass, which has a specific heat as low as that of crystalline glycerol. Moreover, these glasses were found to show excellent kinetic stability as well as evidenced by both a high onset-temperature and quasi-isothermal recovery measurements at −75 °C. The second goal of the study was to elucidate the impact of the MROL state on the specific heat and its relaxation to the super-cooled state. Conversion of “MROL glycerol” to its “normal” (ordinary liquid, OL) state revealed a second, small (∼2%) increase of the glassy c{sub p}, a little gain (<10%) in the relaxed specific heat, and no signs of deviations of τ{sub cal} from that of normal “bulk” glycerol. These findings altogether suggest that the MROL state in glycerol comprises largely bulk-type glycerol that coexist with a minor volume fraction (<10%) of PVD-induced structural anomalies with a crystal-like calorimetric signature. Based on the new calorimetric findings, we have proposed a new physical picture that assumes the

  5. Improved SPC force field of water based on the dielectric constant: SPC/ ε

    NASA Astrophysics Data System (ADS)

    Fuentes-Azcatl, Raúl; Mendoza, Noé; Alejandre, José

    2015-02-01

    In a recent work, Fuentes and Alejandre (2014) found that for TIP4P models there is a dipole moment of minimum density at 240 K and that the Lennard-Jones parameters can be adjusted to match the experimental dielectric constant at 300 K and the temperature of maximum density, respectively. The same procedure is used in this work to re-parameterize the simple point charge (SPC) model keeping the original geometry. The new model fails to reproduce the experimental self-diffusion coefficient and shear viscosity but improves the results at different temperatures and pressures of dielectric constant, isothermal compressibility, thermal expansion coefficient, surface tension, coexisting densities at the liquid-vapor interface, equation of state of ice Ih and equation of state of liquids at high pressures. A second model that reproduces the dielectric constant, self-diffusion coefficient and shear viscosity is proposed but the temperature of maximum density is 250 K, compared with the experimental value of 277 K. Both models improve the SPC/E results for almost all properties. The TIP3P model was also analyzed but the liquid density at 240 K always increases and a minimum in the dipole moment was not found. It is not possible to adjust for that model the charge distribution and short range interaction parameters to reproduce at the same time the target properties.

  6. Thermal aspects of laser-based measurement and ultrafast laser processing of dielectric materials

    NASA Astrophysics Data System (ADS)

    Fan, Ching-Hua

    Two extreme regimes for laser applications on dielectric materials are presented in this dissertation. First, two independent novel techniques that use low power laser light to make precision non-contact measurement of liquids are introduced: (1) real-time concentration measurement of NaCl-H2O and MgCl2-H2O aqueous mixtures in a flowing system, and (2) temperature or concentration measurements of liquids, including water, ethanol, methanol, 1-proponal, and their mixtures, at a free surface as well as a solid-liquid interface. These measurement techniques exhibit very high spatial and temporal resolutions, making them good candidates for use in microscale and MEMS-based measurement technologies. Another extreme of laser applications is materials processing using high power ultrashort laser pulses, which exhibits exciting new opportunities for non-contact materials modification with high precision and high feature quality. The second part of this dissertation focuses on modeling the interactions between ultrashort laser pulses and dielectrics. Present models effectively characterize several dominant parameters during ultrafast laser processing of dielectrics. Good agreement has been found between the model predictions and the experimental results. Future research will be directed towards the utilization of these model predictions to enhance energy deposition and material removal rate during ultrafast laser processing, improve machined features, and optimize technologies that involve laser-microstructures fabrication.

  7. Graphene liquid crystal retarded percolation for new high-k materials

    NASA Astrophysics Data System (ADS)

    Yuan, Jinkai; Luna, Alan; Neri, Wilfrid; Zakri, Cécile; Schilling, Tanja; Colin, Annie; Poulin, Philippe

    2015-11-01

    Graphene flakes with giant shape anisotropy are extensively used to establish connectedness electrical percolation in various heterogeneous systems. However, the percolation behaviour of graphene flakes has been recently predicted to be far more complicated than generally anticipated on the basis of excluded volume arguments. Here we confirm experimentally that graphene flakes self-assemble into nematic liquid crystals below the onset of percolation. The competition of percolation and liquid crystal transition provides a new route towards high-k materials. Indeed, near-percolated liquid-crystalline graphene-based composites display unprecedented dielectric properties with a dielectric constant improved by 260-fold increase as compared with the polymer matrix, while maintaining the loss tangent as low as 0.4. This performance is shown to depend on the structure of monodomains of graphene liquid-crystalline phases. Insights into how the liquid crystal phase transition interferes with percolation transition and thus alters the dielectric constant are discussed.

  8. Graphene liquid crystal retarded percolation for new high-k materials

    PubMed Central

    Yuan, Jinkai; Luna, Alan; Neri, Wilfrid; Zakri, Cécile; Schilling, Tanja; Colin, Annie; Poulin, Philippe

    2015-01-01

    Graphene flakes with giant shape anisotropy are extensively used to establish connectedness electrical percolation in various heterogeneous systems. However, the percolation behaviour of graphene flakes has been recently predicted to be far more complicated than generally anticipated on the basis of excluded volume arguments. Here we confirm experimentally that graphene flakes self-assemble into nematic liquid crystals below the onset of percolation. The competition of percolation and liquid crystal transition provides a new route towards high-k materials. Indeed, near-percolated liquid-crystalline graphene-based composites display unprecedented dielectric properties with a dielectric constant improved by 260-fold increase as compared with the polymer matrix, while maintaining the loss tangent as low as 0.4. This performance is shown to depend on the structure of monodomains of graphene liquid-crystalline phases. Insights into how the liquid crystal phase transition interferes with percolation transition and thus alters the dielectric constant are discussed. PMID:26567720

  9. Relaxation in the glass former acetylsalicylic acid studied by deuteron magnetic resonance and dielectric spectroscopy

    NASA Astrophysics Data System (ADS)

    Nath, R.; El Goresy, T.; Geil, B.; Zimmermann, H.; Böhmer, R.

    2006-08-01

    Supercooled liquid and glassy acetylsalicylic acid was studied using dielectric spectroscopy and deuteron relaxometry in a wide temperature range. The supercooled liquid is characterized by major deviations from thermally activated behavior. In the glass the secondary relaxation exhibits the typical features of a Johari-Goldstein process. Via measurements of spin-lattice relaxation times the selectively deuterated methyl group was used as a sensitive probe of its local environments. There is a large difference in the mean activation energy in the glass with respect to that in crystalline acetylsalicylic acid. This can be understood by taking into account the broad energy barrier distribution in the glass.

  10. Investigation of the shear-mechanical and dielectric relaxation processes in two monoalcohols close to the glass transition

    NASA Astrophysics Data System (ADS)

    Jakobsen, Bo; Maggi, Claudio; Christensen, Tage; Dyre, Jeppe C.

    2008-11-01

    Shear-mechanical and dielectric measurements on the two monohydroxy (monoalcohol) molecular glass formers 2-ethyl-1-hexanol and 2-butanol close to the glass-transition temperature are presented. The shear-mechanical data are obtained using the piezoelectric shear-modulus gauge method covering frequencies from 1 mHz to 10 kHz. The shear-mechanical relaxation spectra show two processes, which follow the typical scenario of a structural (alpha) relaxation and an additional (Johari-Goldstein) beta relaxation. The dielectric relaxation spectra are dominated by a Debye-type peak with an additional non-Debye peak visible. This Debye-type relaxation is a common feature peculiar to monoalcohols. The time scale of the non-Debye dielectric relaxation process is shown to correspond to the mechanical structural (alpha) relaxation. Glass-transition temperatures and fragilities are reported based on the mechanical alpha relaxation and the dielectric Debye-type process, showing that the two glass-transition temperatures differ by approximately 10 K and that the fragility based on the Debye-type process is a factor of 2 smaller than the structural fragility. If a mechanical signature of the Debye-type relaxation exists in these liquids, its relaxation strength is at most 1% and 3% of the full relaxation strength of 2-butanol and 2-ethyl-1-hexanol, respectively. These findings support the notion that it is the non-Debye dielectric relaxation process that corresponds to the structural alpha relaxation in the liquid.

  11. Stochastic tools hidden behind the empirical dielectric relaxation laws.

    PubMed

    Stanislavsky, Aleksander; Weron, Karina

    2017-03-01

    The paper is devoted to recent advances in stochastic modeling of anomalous kinetic processes observed in dielectric materials which are prominent examples of disordered (complex) systems. Theoretical studies of dynamical properties of 'structures with variations' (Goldenfield and Kadanoff 1999 Science 284 87-9) require application of such mathematical tools-by means of which their random nature can be analyzed and, independently of the details distinguishing various systems (dipolar materials, glasses, semiconductors, liquid crystals, polymers, etc), the empirical universal kinetic patterns can be derived. We begin with a brief survey of the historical background of the dielectric relaxation study. After a short outline of the theoretical ideas providing the random tools applicable to modeling of relaxation phenomena, we present probabilistic implications for the study of the relaxation-rate distribution models. In the framework of the probability distribution of relaxation rates we consider description of complex systems, in which relaxing entities form random clusters interacting with each other and single entities. Then we focus on stochastic mechanisms of the relaxation phenomenon. We discuss the diffusion approach and its usefulness for understanding of anomalous dynamics of relaxing systems. We also discuss extensions of the diffusive approach to systems under tempered random processes. Useful relationships among different stochastic approaches to the anomalous dynamics of complex systems allow us to get a fresh look at this subject. The paper closes with a final discussion on achievements of stochastic tools describing the anomalous time evolution of complex systems.

  12. Tissue dielectric measurement using an interstitial dipole antenna.

    PubMed

    Wang, Peng; Brace, Christopher L

    2012-01-01

    The purpose of this study was to develop a technique to measure the dielectric properties of biological tissues with an interstitial dipole antenna based upon previous efforts for open-ended coaxial probes. The primary motivation for this technique is to facilitate treatment monitoring during microwave tumor ablation by utilizing the heating antenna without additional intervention or interruption of the treatment. The complex permittivity of a tissue volume surrounding the antenna was calculated from reflection coefficients measured after high-temperature microwave heating by using a rational function model of the antenna's input admittance. Three referencing liquids were needed for measurement calibration. The dielectric measurement technique was validated ex vivo in normal and ablated bovine livers. Relative permittivity and effective conductivity were lower in the ablation zone when compared to normal tissue, consistent with previous results. The dipole technique demonstrated a mean 10% difference of permittivity values when compared to open-ended coaxial cable measurements in the frequency range of 0.5-20 GHz. Variability in measured permittivities could be smoothed by fitting to a Cole-Cole dispersion model. Further development of this technique may facilitate real-time monitoring of microwave ablation treatments through the treatment applicator.

  13. Stochastic tools hidden behind the empirical dielectric relaxation laws

    NASA Astrophysics Data System (ADS)

    Stanislavsky, Aleksander; Weron, Karina

    2017-03-01

    The paper is devoted to recent advances in stochastic modeling of anomalous kinetic processes observed in dielectric materials which are prominent examples of disordered (complex) systems. Theoretical studies of dynamical properties of ‘structures with variations’ (Goldenfield and Kadanoff 1999 Science 284 87–9) require application of such mathematical tools—by means of which their random nature can be analyzed and, independently of the details distinguishing various systems (dipolar materials, glasses, semiconductors, liquid crystals, polymers, etc), the empirical universal kinetic patterns can be derived. We begin with a brief survey of the historical background of the dielectric relaxation study. After a short outline of the theoretical ideas providing the random tools applicable to modeling of relaxation phenomena, we present probabilistic implications for the study of the relaxation-rate distribution models. In the framework of the probability distribution of relaxation rates we consider description of complex systems, in which relaxing entities form random clusters interacting with each other and single entities. Then we focus on stochastic mechanisms of the relaxation phenomenon. We discuss the diffusion approach and its usefulness for understanding of anomalous dynamics of relaxing systems. We also discuss extensions of the diffusive approach to systems under tempered random processes. Useful relationships among different stochastic approaches to the anomalous dynamics of complex systems allow us to get a fresh look at this subject. The paper closes with a final discussion on achievements of stochastic tools describing the anomalous time evolution of complex systems.

  14. Polymer-supported ionic-liquid-like phases (SILLPs): transferring ionic liquid properties to polymeric matrices.

    PubMed

    Sans, Victor; Karbass, Naima; Burguete, M Isabel; Compañ, Vicente; García-Verdugo, Eduardo; Luis, Santiago V; Pawlak, Milena

    2011-02-07

    The physico-chemical properties of polymers with ionic-liquid-like moieties covalently bound to their surfaces (SILLPs) have been studied by thermal and spectroscopic techniques, as well as by direct impedance and dielectric measurements, and compared to those of the corresponding bulk ionic liquids. The effective transfer of properties from ionic liquids in solution to the supported species has thereby been demonstrated. The effects of the chemical nature of these tunable "solid solvents" on their macroscopic swelling and microwave heating, as well as the stabilities and activities of different catalytic moieties immobilized on the SILLPs, have been studied. Finally, the experimental effect observed in microwave heating can be directly correlated with the values of tan δ derived from dielectric measurements.

  15. Metal-dielectric hybrid surfaces as integrated optoelectronic interfaces

    DOEpatents

    Narasimhan, Vijay K.; Hymel, Thomas M.; Lai, Ruby A.; Cui, Yi

    2017-01-03

    An optoelectronic device has a hybrid metal-dielectric optoelectronic interface including an array of nanoscale dielectric resonant elements (e.g., nanopillars), and a metal film disposed between the dielectric resonant elements and below a top surface of the resonant elements such that the dielectric resonant elements protrude through the metal film. The device may also include an anti-reflection coating. The device may further include a metal film layer on each of the dielectric resonant elements.

  16. Laboratory measurement of the complex dielectric constant of soils

    NASA Technical Reports Server (NTRS)

    Wiebe, M. L.

    1971-01-01

    The dielectric constant of a material is an extremely important parameter when considering passive radiometric remote sensing applications. This is because the emitted energy measured by a microwave radiometer is dependent on the dielectric constant of the surface being scanned. Two techniques of measuring dielectric constants are described. The first method involves a dielectric located in air. The second method uses basically the same theoretical approach, but the dielectric under consideration is located inside a section of waveguide.

  17. Thermoluminescence and dielectric response of gamma irradiated muscovite mica

    SciTech Connect

    Kaur, Sukhnandan Singh, Surinder Singh, Lakhwant; Lochab, S. P.

    2014-04-24

    The effect of gamma radiation dose on the thermoluminescence (TL) and dielectric properties of muscovite mica was studied. TL glow curves exhibited a single peak around 141 {sup 0}C and its activation energy was estimated to be about 0.89 eV. Different dielectric parameters like dielectric constant, dielectric loss and ac conductivity have been calculated in both pristine and gamma irradiated samples. These dielectric parameters have been studied as a function of irradiation dose.

  18. Thermoluminescence and dielectric response of gamma irradiated muscovite mica

    NASA Astrophysics Data System (ADS)

    Kaur, Sukhnandan; Singh, Surinder; Singh, Lakhwant; Lochab, S. P.

    2014-04-01

    The effect of gamma radiation dose on the thermoluminescence (TL) and dielectric properties of muscovite mica was studied. TL glow curves exhibited a single peak around 141 0C and its activation energy was estimated to be about 0.89 eV. Different dielectric parameters like dielectric constant, dielectric loss and ac conductivity have been calculated in both pristine and gamma irradiated samples. These dielectric parameters have been studied as a function of irradiation dose.

  19. Dielectric Measurements of Millimeter-Wave Materials

    NASA Astrophysics Data System (ADS)

    Afsar, M. N.

    1984-12-01

    It is no longer necessary to use extrapolated microwave dielectric data when designing millimeter-wave components, devices, and systems. Precision measurements can now be made to generate highly accurate millimeter-wave (5 to 1/2 mm) continuous spectra on complex refractive index, complex dielectric permittivity, and loss tangent for a variety of materials such as common ceramics, semiconductors, crystalline, and glassy materials. The continuous spectra reveal an increase in dielectric loss with increase in frequency in this wavelength range for most materials. Reliable measurements also reveal that the method of preparation of nominally identical specimens can change the dielectric losses by many factors. These broad-band measurements were carried out employing dispersive Fourier transform spectroscopy applied to a modular two-beam polarization interferometer. Data obtained with Fabry-Perot open resonator methods at wavelengths of 5 mm and longer will also be compared.

  20. Characterization of photonic nanojets in dielectric microdisks

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-Yang; Chen, Chien-Jung

    2015-09-01

    The direct imaging of photonic nanojets in different dielectric microdisks illuminated by a laser source is reported. The SiO2 and Si3N4 microdisks are of height 650 nm with diameters ranging from 3 μm to 8 μm. The finite-difference time-domain calculation is used to execute the numerical simulation for the photonic nanojets in the dielectric microdisks. The photonic nanojet measurements are performed with a scanning optical microscope system. The photonic nanojets with high intensity spots and low divergence are observed in the dielectric microdisks illuminated from the side with laser source of wavelengths 405 nm, 532 nm and 671 nm. The experimental results of key parameters are compared to the simulations and in agreement with theoretical results. Our studies show that photonic nanojets can be efficiently created by a dielectric microdisk and straightforwardly applied to nano-photonics circuit.

  1. Chemically prepared lead magnesium niobate dielectrics

    SciTech Connect

    Tuttle, B.A.; Voigt, J.A.; Sipola, D.L.; Olson, W.R.; Goy, D.M.

    1998-11-01

    A chemical solution powder synthesis technique has been developed that produces first, uniform powders of lead magnesium niobate (PMN) with 60 to 80 nm crystallite size. The synthesis technique was based on the dissolution of lead acetate and alkoxide precursors in acetic acid followed by precipitation with oxalic acid/propanol solutions. Lead magnesium niobate ceramics fabricated from these chemically derived powders had smaller, more uniform grain size and higher dielectric constants than ceramics fabricated from mixed oxide powders that were processed under similar thermal conditions. Chem-prep PMN dielectrics with peak dielectric constants greater than 22,000 and polarizations in excess of 29 {micro}C/cm{sup 2} were obtained for 1,100 C firing treatments. Substantial decreases in dielectric constant and polarization were measured for chemically prepared PMN ceramics fired at lower temperatures, consistent with previous work on mixed oxide materials.

  2. Coal Liquefaction by Using Dielectric Barrier Discharge Plasma

    NASA Astrophysics Data System (ADS)

    Wang, Qiuying; Wu, Peng; Gu, Fan

    2013-07-01

    An innovative method for coal liquefaction by using dielectric barrier discharge (DBD) plasma in a short reaction time was developed. Using tetralin as the reaction medium, DBD plasma as the energy source, and a reaction time of 10 min at 140°C, up to 10% of coal was converted to liquid material. The results showed the feasibility of coal's liquefaction by DBD plasma under relatively moderate conditions. Simultaneously, it was clarified that the effect of DBD plasma treatment was opposed to the thermal effect of heating. An acid plasma sheath could be formed on the coal powder surface in DBD conditions, liquefied reactions could be carried out in the absence of inorganic acid, and the products were nearly neutral and with low causticity.

  3. Composite Dielectric Materials for Electrical Switching

    SciTech Connect

    Modine, F.A.

    1999-04-25

    Composites that consist of a dielectric host containing a particulate conductor as a second phase are of interest for electrical switching applications. Such composites are "smart" materials that can function as either voltage or current limiters, and the difference in fimction depends largely upon whether the dielectric is filled to below or above the percolation threshold. It also is possible to combine current and voltage limiting in a single composite to make a "super-smart" material.

  4. Transition Control with Dielectric Barrier Discharge Plasmas

    DTIC Science & Technology

    2013-01-01

    AFRL-AFOSR-UK-TR-2013-0007 Transition Control with Dielectric Barrier Discharge Plasmas Professor Cameron Tropea...Discharge Plasmas 5a. CONTRACT NUMBER FA8655-11-1-3067 5b. GRANT NUMBER Grant 11-3067 5c. PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S...15. SUBJECT TERMS EOARD, Plasma Aerodynamic, transition control, Dielectric Barrier 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

  5. Low-loss coupling to dielectric resonators

    NASA Technical Reports Server (NTRS)

    Hearn, C. P.; Bradshaw, E. S.; Trew, R. J.; Hefner, B. B., Jr.

    1991-01-01

    A compilation is presented of experimental observations and arguments concerning the use of dielectric resonators in applications requiring both tight coupling (beta greater than 10) and high unloaded Q, such as low loss bandpass filters. The microstrip coupled dielectric resonator is the primary focus, but an alternative coupling technique is discussed and comparatively evaluated. It is concluded that coupling factors as large as 65 are achievable.

  6. Deep-Dielectric Charging - A Review.

    DTIC Science & Technology

    1985-05-24

    L. L., Kristiansen, M. , Marx, J., and Bowling, A. (1983) Pulse flashover of solid dielectrics in vacuum , IEEE Trans. Elect. Insul . , EI- 18:3 10-314...electric field pattern. These processes are expected to occur on spacecraft having exposed insulating surfaces which, at times, may be subject to energetic...dielectric near the surface where the electric field strength exceeds the experimentally determined prebreakdown level-1 of Z10 V cm for polymers. As an

  7. Low-Dielectric-Constant Polyimide Fibers

    NASA Technical Reports Server (NTRS)

    Dorogy, William E., Jr.; Proctor, K. Mason; St. Clair, Anne K.

    1994-01-01

    In experiments performed at NASA Langley Research Center, low-dielectric-constant polyimide fibers produced by use of resin extrusion. These fibers also have high thermal stability and good tensile properties. Useful in industrial and aerospace applications in which fibers required to have dielectric constants less than 3, high thermal stability, and tensile properties in range of those of standard textile fibers. Potential applications include use in printed circuit-boards and in aircraft composites.

  8. Method of casting patterned dielectric structures

    DOEpatents

    Poco, John F.; Hrubesh, Lawrence W.

    2001-01-01

    A pattern of dielectric structures are formed directly on a substrate in a single step using sol-gel chemistry and molding procedures. The resulting dielectric structures are useful in vacuum applications for electronic devices. Porous, lightweight structures having a high aspect ratio that are suitable for use as spacers between the faceplate and baseplate of a field emission display can be manufactured using this method.

  9. Radiative transfer in a plane stratified dielectric

    NASA Technical Reports Server (NTRS)

    Wilheit, T. T., Jr.

    1975-01-01

    A model is developed for calculating radiative transfer in a stratified dielectric. This model is used to show that the reflectivity of a stratified dielectric is primarily determined by gradients in the real part of the refractive index over distances on the order of 1/10 wavelength in the medium. The effective temperature of the medium is determined by the thermodynamic temperature profile over distances of the order delta T.

  10. Dispersion Characteristics of a Dielectric Loaded Waveguide,

    DTIC Science & Technology

    1984-07-30

    NATIONAL BUREAU OF STANOAODS-1963-A ., ’I A NSWC TR 84-338 00 In ’DISPERSION CHARACTERISTICS OF A SDIELECTRIC LOADED WAVEGUIDE By H. CROSBY J. CHOE Y...4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED DISPERSION CHARACTERISTICS OF A DIELECTRIC LOADED WAVEGUIDE S. PERFORMING ORG. REPORT...SUPPLEMENTARY NOTES S. KEY WORDS (Continue on reverse aide it necessary and Identify by block number) Dielectric Loaded Waveguide ) " Resonant Cavity) a

  11. High Dielectric Constant Polymer Film Capacitors (PREPRINT)

    DTIC Science & Technology

    2010-02-01

    film, and the test of our first generation prototype capacitors . High-K Polymeric Dielectrics Commercial polypropylene (PP) capacitor film has a...1994). 2. Maurizio Rabuffi and Guido Picci, “Status Quo and Future Prospects for Metallized Polypropylene Energy Storage Capacitors ”, IEEE Trans...AFRL-RZ-WP-TP-2010-2126 HIGH DIELECTRIC CONSTANT POLYMER FILM CAPACITORS (PREPRINT) Shihai Zhang, Brian Zellers, Dean Anderson, Paul

  12. Electrode Placement for Active Tuning of Silicon-on-Insulator (SOI) Ring Resonator Structure Clad in Nematic Liquid Crystals

    DTIC Science & Technology

    2014-08-01

    their electromagnetic spectrum and find applications in optical switching, filtering, buffering , lasers, and biosensors. Photonic resonances are... coupler ring resonators [1–3]. Combining dielectric resonators with nematic liquid crystals (LC) enables easily tunable devices where the tuning is

  13. Thin film dielectric composite materials

    DOEpatents

    Jia, Quanxi; Gibbons, Brady J.; Findikoglu, Alp T.; Park, Bae Ho

    2002-01-01

    A dielectric composite material comprising at least two crystal phases of different components with TiO.sub.2 as a first component and a material selected from the group consisting of Ba.sub.1-x Sr.sub.x TiO.sub.3 where x is from 0.3 to 0.7, Pb.sub.1-x Ca.sub.x TiO.sub.3 where x is from 0.4 to 0.7, Sr.sub.1-x Pb.sub.x TiO.sub.3 where x is from 0.2 to 0.4, Ba.sub.1-x Cd.sub.x TiO.sub.3 where x is from 0.02 to 0.1, BaTi.sub.1-x Zr.sub.x O.sub.3 where x is from 0.2 to 0.3, BaTi.sub.1-x Sn.sub.x O.sub.3 where x is from 0.15 to 0.3, BaTi.sub.1-x Hf.sub.x O.sub.3 where x is from 0.24 to 0.3, Pb.sub.1-1.3x La.sub.x TiO.sub.3+0.2x where x is from 0.23 to 0.3, (BaTiO.sub.3).sub.x (PbFeo.sub.0.5 Nb.sub.0.5 O.sub.3).sub.1-x where x is from 0.75 to 0.9, (PbTiO.sub.3).sub.- (PbCo.sub.0.5 W.sub.0.5 O.sub.3).sub.1-x where x is from 0.1 to 0.45, (PbTiO.sub.3).sub.x (PbMg.sub.0.5 W.sub.0.5 O.sub.3).sub.1-x where x is from 0.2 to 0.4, and (PbTiO.sub.3).sub.x (PbFe.sub.0.5 Ta.sub.0.5 O.sub.3).sub.1-x where x is from 0 to 0.2, as the second component is described. The dielectric composite material can be formed as a thin film upon suitable substrates.

  14. Dielectric loss against piezoelectric power harvesting

    NASA Astrophysics Data System (ADS)

    Liang, Junrui; Shu-Hung Chung, Henry; Liao, Wei-Hsin

    2014-09-01

    Piezoelectricity is one of the most popular electromechanical transduction mechanisms for constructing kinetic energy harvesting systems. When a standard energy harvesting (SEH) interface circuit, i.e., bridge rectifier plus filter capacitor, is utilized for collecting piezoelectric power, the previous literature showed that the power conversion can be well predicted without much consideration for the effect of dielectric loss. Yet, as the conversion power gets higher by adopting power-boosting interface circuits, such as synchronized switch harvesting on inductor (SSHI), the neglect of dielectric loss might give rise to deviation in harvested power estimation. Given the continuous progress on power-boosting interface circuits, the role of dielectric loss in practical piezoelectric energy harvesting (PEH) systems should receive attention with better evaluation. Based on the integrated equivalent impedance network model, this fast track communication provides a comprehensive study on the susceptibility of harvested power in PEH systems under different conditions. It shows that, dielectric loss always counteracts piezoelectric power harvesting by causing charge leakage across piezoelectric capacitance. In particular, taking corresponding ideal lossless cases as references, the counteractive effect might be aggravated under one of the five conditions: larger dielectric loss tangent, lower vibration frequency, further away from resonance, weaker electromechanical coupling, or using power-boosting interface circuit. These relationships are valuable for the study of PEH systems, as they not only help explain the role of dielectric loss in piezoelectric power harvesting, but also add complementary insights for material, structure, excitation, and circuit considerations towards holistic evaluation and design for practical PEH systems.

  15. Diffractive coherence in multilayer dielectric gratings

    SciTech Connect

    Shore, B.W.; Feit, M.D.; Perry, M.D.; Boyd, R.D.; Britten, J.A.; Li, Lifeng

    1995-05-26

    Successful operation of large-scale high-power lasers, such as those in use and planned at LLNL and elsewhere, require optical elements that can withstand extremely high fluences without suffering damage. Of particular concern are dielectric diffraction gratings used for beam sampling and pulse compression. Laser induced damage to bulk dielectric material originates with coupling of the electric field of the radiation to bound electrons, proceeding through a succession of mechanisms that couple the electron kinetic energy to lattice energy and ultimately to macroscopic structural changes (e.g. melting). The constructive interference that is responsible for the diffractive behavior of a grating or the reflective properties of a multilayer dielectric stack can enhance the electric field above values that would occur in unstructured homogeneous material. Much work has been done to model damage to bulk matter. The presence of nonuniform electric fields, resulting from diffractive coherence, has the potential to affect damage thresholds and requires more elaborate theory. We shall discuss aspects of work directed towards understanding the influence of dielectric structures upon damage, with particular emphasis on computations and interpretation of electric fields within dielectric gratings and multilayer dielectric stacks, noting particularly the interference effects that occur in these structures.

  16. Dielectric silicone elastomers with mixed ceramic nanoparticles

    SciTech Connect

    Stiubianu, George; Bele, Adrian; Cazacu, Maria; Racles, Carmen; Vlad, Stelian; Ignat, Mircea

    2015-11-15

    Highlights: • Composite ceramics nanoparticles (MCN) with zirconium dioxide and lead zirconate. • Dielectric elastomer films wDith PDMS matrix and MCN as dielectric filler. • Hydrophobic character—water resistant and good flexibility specific to siloxanes. • Increased value of dielectric constant with the content of MCN in dielectric films. • Increased energy output from uniaxial deformation of the dielectric elastomer films. - Abstract: A ceramic material consisting in a zirconium dioxide-lead zirconate mixture has been obtained by precipitation method, its composition being proved by wide angle X-ray powder diffraction and energy-dispersive X-ray spectroscopy. The average diameter of the ceramic particles ranged between 50 and 100 nm, as revealed by transmission electron microscopy images. These were surface treated and used as filler for a high molecular mass polydimethylsiloxane-α,ω-diol (Mn = 450,000) prepared in laboratory, the resulted composites being further processed as films and crosslinked. A condensation procedure, unusual for polydimethylsiloxane having such high molecular mass, with a trifunctional silane was approached for the crosslinking. The effect of filler content on electrical and mechanical properties of the resulted materials was studied and it was found that the dielectric permittivity of nanocomposites increased in line with the concentration of ceramic nanoparticles.

  17. Quantum electric-dipole liquid on a triangular lattice.

    PubMed

    Shen, Shi-Peng; Wu, Jia-Chuan; Song, Jun-Da; Sun, Xue-Feng; Yang, Yi-Feng; Chai, Yi-Sheng; Shang, Da-Shan; Wang, Shou-Guo; Scott, James F; Sun, Young

    2016-02-04

    Geometric frustration and quantum fluctuations may prohibit the formation of long-range ordering even at the lowest temperature, and therefore liquid-like ground states could be expected. A good example is the quantum spin liquid in frustrated magnets. Geometric frustration and quantum fluctuations can happen beyond magnetic systems. Here we propose that quantum electric-dipole liquids, analogues of quantum spin liquids, could emerge in frustrated dielectrics where antiferroelectrically coupled electric dipoles reside on a triangular lattice. The quantum paraelectric hexaferrite BaFe12O19 with geometric frustration represents a promising candidate for the proposed electric-dipole liquid. We present a series of experimental lines of evidence, including dielectric permittivity, heat capacity and thermal conductivity measured down to 66 mK, to reveal the existence of an unusual liquid-like quantum phase in BaFe12O19, characterized by itinerant low-energy excitations with a small gap. The possible quantum liquids of electric dipoles in frustrated dielectrics open up a fresh playground for fundamental physics.

  18. Quantum electric-dipole liquid on a triangular lattice

    NASA Astrophysics Data System (ADS)

    Shen, Shi-Peng; Wu, Jia-Chuan; Song, Jun-Da; Sun, Xue-Feng; Yang, Yi-Feng; Chai, Yi-Sheng; Shang, Da-Shan; Wang, Shou-Guo; Scott, James F.; Sun, Young

    2016-02-01

    Geometric frustration and quantum fluctuations may prohibit the formation of long-range ordering even at the lowest temperature, and therefore liquid-like ground states could be expected. A good example is the quantum spin liquid in frustrated magnets. Geometric frustration and quantum fluctuations can happen beyond magnetic systems. Here we propose that quantum electric-dipole liquids, analogues of quantum spin liquids, could emerge in frustrated dielectrics where antiferroelectrically coupled electric dipoles reside on a triangular lattice. The quantum paraelectric hexaferrite BaFe12O19 with geometric frustration represents a promising candidate for the proposed electric-dipole liquid. We present a series of experimental lines of evidence, including dielectric permittivity, heat capacity and thermal conductivity measured down to 66 mK, to reveal the existence of an unusual liquid-like quantum phase in BaFe12O19, characterized by itinerant low-energy excitations with a small gap. The possible quantum liquids of electric dipoles in frustrated dielectrics open up a fresh playground for fundamental physics.

  19. Quantum electric-dipole liquid on a triangular lattice

    PubMed Central

    Shen, Shi-Peng; Wu, Jia-Chuan; Song, Jun-Da; Sun, Xue-Feng; Yang, Yi-Feng; Chai, Yi-Sheng; Shang, Da-Shan; Wang, Shou-Guo; Scott, James F.; Sun, Young

    2016-01-01

    Geometric frustration and quantum fluctuations may prohibit the formation of long-range ordering even at the lowest temperature, and therefore liquid-like ground states could be expected. A good example is the quantum spin liquid in frustrated magnets. Geometric frustration and quantum fluctuations can happen beyond magnetic systems. Here we propose that quantum electric-dipole liquids, analogues of quantum spin liquids, could emerge in frustrated dielectrics where antiferroelectrically coupled electric dipoles reside on a triangular lattice. The quantum paraelectric hexaferrite BaFe12O19 with geometric frustration represents a promising candidate for the proposed electric-dipole liquid. We present a series of experimental lines of evidence, including dielectric permittivity, heat capacity and thermal conductivity measured down to 66 mK, to reveal the existence of an unusual liquid-like quantum phase in BaFe12O19, characterized by itinerant low-energy excitations with a small gap. The possible quantum liquids of electric dipoles in frustrated dielectrics open up a fresh playground for fundamental physics. PMID:26843363

  20. Model for chaotic dielectric microresonators

    NASA Astrophysics Data System (ADS)

    Keating, J. P.; Novaes, M.; Schomerus, H.

    2008-01-01

    We develop a random-matrix model of two-dimensional dielectric resonators which combines internal wave chaos with the deterministic Fresnel laws for reflection and refraction at the interfaces. The model is used to investigate the statistics of the laser threshold and linewidth (lifetime and Petermann factor of the resonances) when the resonator is filled with an active medium. The laser threshold decreases for increasing refractive index n and is smaller for TM polarization than for TE polarization, but is almost independent of the number of out-coupling modes N . The Petermann factor in the linewidth of the longest-living resonance also decreases for increasing n and scales as N , but is less sensitive to polarization. For resonances of intermediate lifetime, the Petermann factor scales linearly with N . These qualitative parametric dependencies are consistent with the random-matrix theory of resonators with small openings. However, for a small refractive index where the resonators are very open, the details of the statistics become nonuniversal. This is demonstrated by comparison with a particular dynamical model.

  1. Laser produced nanocavities in dielectrics

    NASA Astrophysics Data System (ADS)

    Hallo, Ludovic; Bourgeade, Antoine; Mezel, Candice; Tikhonchuk, Vladimir; Gamaly, Eugene

    2006-10-01

    Tight focusing of the laser pulses opens a possibility to modify the properties of transparent materials and create high-density memories and photonic crystals. It was demonstrated recently [1,2] a formation of sub-wavelength holes by focusing a 100 ns, 100 fs laser pulses inside samples of sapphir and glass. This paper presents the results of numerical simulations of the interaction of sub-ps laser pulses with transparent dielectrics. It contains two parts : a 2D model of the laser energy deposition, based on the solution of full Maxwell equations coupled to a ionisation model accounting for the multiphotonic and avalanche ionisation, and the 3-body recombination. The second part presents the 2D hydrodynamic simulations of the shock wave propagation and the cavity formation with initial conditions provided by 2D absorption model. It is shown that the cavity parameters are very sensitive to the properties of the EOS in the phase transition domain. [1] E.G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther-Davies, L. Hallo, Ph. Nicola"i, V. T. Tikhonchuk, Phys. Rev. B 73, 214101 (2006). [2] S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E.G. Gamaly, B. Luther-Davies, L. Hallo, Ph. Nicola"i, V. T. Tikhonchuk, Phys. Rev. Lett. 96, 166101 (2006).

  2. Liquid dynamics in partially crystalline glycerol

    NASA Astrophysics Data System (ADS)

    Sanz, Alejandro; Niss, Kristine

    2017-01-01

    We present a dielectric study on the dynamics of supercooled glycerol during crystallization. We explore the transformation into a solid phase in real time by monitoring the temporal evolution of the amplitude of the dielectric signal. Neither the initial nucleation nor the crystal growth influences the liquid dynamics visibly. For one of the samples studied, a tiny fraction of glycerol remained in the disordered state after the end of the transition. We examined the nature of the α relaxation in this frustrated crystal and find that it is virtually identical to the bulk dynamics. In addition, we have found no evidence that supercooled glycerol transforms into a peculiar phase in which either a new solid amorphous state or nano-crystals dispersed in a liquid matrix are formed.

  3. Fruit and Vegetable Quality Assessment via Dielectric Sensing

    PubMed Central

    El Khaled, Dalia; Novas, Nuria; Gazquez, Jose A.; Garcia, Rosa M.; Manzano-Agugliaro, Francisco

    2015-01-01

    The demand for improved food quality has been accompanied by a technological boost. This fact enhances the possibility of improving the quality of horticultural products, leading towards healthier consumption of fruits and vegetables. A better electrical characterization of the dielectric properties of fruits and vegetables is required for this purpose. Moreover, a focused study of dielectric spectroscopy and advanced dielectric sensing is a highly interesting topic. This review explains the dielectric property basics and classifies the dielectric spectroscopy measurement techniques. It comprehensively and chronologically covers the dielectric experiments explored for fruits and vegetables, along with their appropriate sensing instrumentation, analytical modelling methods and conclusions. An in-depth definition of dielectric spectroscopy and its usefulness in the electric characterization of food materials is presented, along with the various sensor techniques used for dielectric measurements. The collective data are tabulated in a summary of the dielectric findings in horticultural field investigations, which will facilitate more advanced and focused explorations in the future. PMID:26131680

  4. Fruit and Vegetable Quality Assessment via Dielectric Sensing.

    PubMed

    El Khaled, Dalia; Novas, Nuria; Gazquez, Jose A; Garcia, Rosa M; Manzano-Agugliaro, Francisco

    2015-06-29

    The demand for improved food quality has been accompanied by a technological boost. This fact enhances the possibility of improving the quality of horticultural products, leading towards healthier consumption of fruits and vegetables. A better electrical characterization of the dielectric properties of fruits and vegetables is required for this purpose. Moreover, a focused study of dielectric spectroscopy and advanced dielectric sensing is a highly interesting topic. This review explains the dielectric property basics and classifies the dielectric spectroscopy measurement techniques. It comprehensively and chronologically covers the dielectric experiments explored for fruits and vegetables, along with their appropriate sensing instrumentation, analytical modelling methods and conclusions. An in-depth definition of dielectric spectroscopy and its usefulness in the electric characterization of food materials is presented, along with the various sensor techniques used for dielectric measurements. The collective data are tabulated in a summary of the dielectric findings in horticultural field investigations, which will facilitate more advanced and focused explorations in the future.

  5. Temperature and moisture dependent dielectric properties of legume flours associated with dielectric heating

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dielectric properties of flour samples from four legumes (chickpea, green pea, lentil, and soybean) at four different moisture contents were measured using an open-ended coaxial probe and impedance analyzer at frequencies of 10 to 1800 MHz and temperatures of 20 to 90°C. The dielectric constant and ...

  6. Nonlinear electroelastic deformations of dielectric elastomer composites: I-Ideal elastic dielectrics

    NASA Astrophysics Data System (ADS)

    Lefèvre, Victor; Lopez-Pamies, Oscar

    2017-02-01

    This paper puts forth homogenization solutions for the macroscopic elastic dielectric response-under finite deformations and finite electric fields-of ideal elastic dielectric composites with two-phase isotropic particulate microstructures. Specifically, solutions are presented for three classes of microstructures: (i) an isotropic iterative microstructure wherein the particles are infinitely polydisperse in size, (ii) an isotropic distribution of polydisperse spherical particles of a finite number of different sizes, and (iii) an isotropic distribution of monodisperse spherical particles. The solution for the iterative microstructure, which corresponds to the viscosity solution of a Hamilton-Jacobi equation in five "space" variables, is constructed by means of a novel high-order WENO finite-difference scheme. On the other hand, the solutions for the microstructures with spherical particles are constructed by means of hybrid finite elements. Prompted by the functional features shared by all three obtained solutions, a simple closed-form approximation is proposed for the macroscopic elastic dielectric response of ideal elastic dielectric composites with any type of (non-percolative) isotropic particulate microstructure. As elaborated in a companion paper, the proposed approximate solution proves particularly useful as a fundamental building block to generate approximate solutions for the macroscopic elastic dielectric response of dielectric elastomer composites made up of non-Gaussian dielectric elastomers filled with nonlinear elastic dielectric particles.

  7. Temperature and Moisture Dependent Dielectric Properties of Legume Flours Associated with Dielectric Heating

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dielectric property data are important in developing thermal treatments using radio frequency (RF) and microwave (MW) energy and essential to estimate the heating uniformity in electromagnetic fields. Dielectric properties of flour samples from four legumes (chickpea, green pea, lentil, and soybean)...

  8. Electrohydrodynamic Stability of a Liquid Bridge: The "ALEX" Experiment

    NASA Technical Reports Server (NTRS)

    Burcham, C. L.; Sanakaran, S.; Saville, D. A.

    1999-01-01

    To provide insight into the roles of electrical forces, experiments on the stability of a liquid bridge were carried out during the 1996 Life And Microgravity Science Mission on the space shuttle Columbia. In terrestrial laboratories a Plateau configuration (where the bridge is surrounded by a matched density liquid) is necessary to avoid deformation due to buoyancy. This complicates the electrical boundary conditions, since charge is transported across the liquid-liquid interface. In the microgravity environment, a cylindrical bridge can be deployed in a gas which considerably simplifies the boundary condition. Nevertheless, to provide a tie-in to terrestrial experiments, two-phase experiments were carried out. The agreement with previous work was excellent. Then several experiments were conducted with a bridge deployed in a dielectric gas, SF6. In experiments with steady fields, it was found that the bridge was less stable than predicted by a linearized stability analysis using the Taylor-Melcher leaky dielectric model.

  9. Dielectric relaxations and dielectric response in multiferroic BiFeO{sub 3} ceramics

    SciTech Connect

    Hunpratub, Sitchai; Thongbai, Prasit; Maensiri, Santi; Yamwong, Teerapon; Yimnirun, Rattikorn

    2009-02-09

    Single-phase multiferroic BiFeO{sub 3} ceramics were fabricated using pure precipitation-prepared BiFeO{sub 3} powder. Dielectric response of BiFeO{sub 3} ceramics was investigated over a wide range of temperature and frequency. Our results reveal that the BiFeO{sub 3} ceramic sintered at 700 deg. C exhibited high dielectric permittivity, and three dielectric relaxations were observed. A Debye-type dielectric relaxation at low temperatures (-50 to 20 deg. C) is attributed to the carrier hopping process between Fe{sup 2+} and Fe{sup 3+}. The other two dielectric relaxations at the temperature ranges 30-130 deg. C and 140-200 deg. C could be due to the grain boundary effect and the defect ordering and/or the conductivity, respectively.

  10. Cu-Induced Dielectric Breakdown of Porous Low-Dielectric-Constant Film

    NASA Astrophysics Data System (ADS)

    Cheng, Yi-Lung; Lee, Chih-Yen; Huang, Yao-Liang; Sun, Chung-Ren; Lee, Wen-Hsi; Chen, Giin-Shan; Fang, Jau-Shiung; Phan, Bach Thang

    2017-02-01

    Dielectric breakdown induced by Cu ion migration in porous low-k dielectric films has been investigated in alternating-polarity bias conditions using a metal-insulator-metal capacitor with Cu top metal electrode. The experimental results indicated that Cu ions migrated into the dielectric film under stress with positive polarity, leading to weaker dielectric strength and shorter time to failure (TTF). In the alternating-polarity test, the measured TTFs increased with decreasing stressing frequency, implying backward migration of Cu ions during reverse-bias stress. Additionally, compared with a direct-current stress condition, the measured TTFs were higher as the frequency was decreased to 10-2 Hz. The electric-field acceleration factor for porous low-k dielectric film breakdown in the alternating-polarity test was also found to increase. This Cu backward migration effect is effective when the stressing time under negative polarity is longer than 0.1 s.

  11. Note: Extraction of hydrogen bond thermodynamic properties of water from dielectric constant and relaxation time data

    NASA Astrophysics Data System (ADS)

    Rastogi, Abhishek; Yadav, Siddharth; Suresh, S. J.

    2011-08-01

    We recently proposed a theory [Suresh, J. Chem. Phys. 113, 9727 (2000)], 10.1063/1.1320822, based on the principles of statistical mechanics, for describing the temperature variation of static dielectric constant of water and the average number of H-bonds per molecule in the liquid phase. The theoretical model contains three parameters; two of them pertain to the energy and entropy changes accompanying bond-formation, and the third (ɛ∞) represents the dielectric constant at a frequency that is sufficiently low for atomic and electronic polarization, but sufficiently high for intermolecular relaxation processes involving the movement of permanent dipole moments to be inoperative. In the absence of a consensus in the literature for the value of ɛ∞ to be used in dielectric constant calculations, it was arbitrarily set to a commonly accepted value of 1.77 (corresponding to refractive index of 1.33). Values for H-bond parameters were then estimated by best fitting model calculations to experimental data for dielectric constant across temperatures ranging from melting to the critical point of water. It is the purpose of the present Note to eliminate the ambiguity on the choice of ɛ∞ and propose refined values for the H-bond parameters.

  12. A dielectric slit die for in-line monitoring of polymer compounding

    NASA Astrophysics Data System (ADS)

    Bur, Anthony J.; Roth, Steven C.; Lee, Yu-Hsin; McBrearty, Michael

    2004-04-01

    The dielectric slit die is an instrument that is designed to measure electrical, rheological, ultrasonics, optical, and other properties of a flowing liquid. In one application, it is connected to the exit of an extruder, pump or mixing machine that passes liquefied material such as molten plastic, solvents, slurries, colloidal suspensions, and foodstuffs into the sensing region of the slit-shaped die. Dielectric sensing is the primary element of the slit die, but in addition to the dielectric sensor, the die contains other sensing devices such as pressure, optical fiber, and ultrasonic sensors that simultaneously yield an array of materials property data. The slit die has a flexible design that permits interchangeability among sensors and sensor positions. The design also allows for the placement of additional sensors and instrumentation ports that expand the potential data package obtained. To demonstrate sensor operation, we present data from the extrusion and compounding of a polymer/clay nanocomposite. An analysis of the dielectric data involves a nonlinear fitting procedure that takes into account effects due to electrode polarization and dc conductivity. Light transmission through a filled polymer is analyzed in terms of a Beer's law attenuation coefficient.

  13. Dielectric breakdown of polycrystalline alumina: A weakest-link failure analysis

    NASA Astrophysics Data System (ADS)

    Block, Benjamin

    The effects of varying electrode geometry (ball and ring) and size (radius), dielectric media (castor oil and DialaRTM oil), specimen thickness, and concentration of defects on the dielectric breakdown strength of commercial-grade alumina and high-purity fine-grained (HPFG) alumina were investigated. The breakdown strength was expressed in terms of the maximum electric field in the ceramic at the breakdown voltage calculated by finite element analysis (FEA). The breakdown strength decreased systematically with increasing electrode radius and specimen thickness. The breakdown strength increased with decreasing concentration of defects. The breakdown strength was higher in the Diala RTM oil (dielectric constant, epsilonr = 2.3 +/- 0.12) as compared to the castor oil (epsilonr = 4.59 +/- 0.06). The breakdown strength was higher for the HPFG alumina as compared to the commercial- grade alumina. These effects of the electrode geometry, specimen thickness, concentration of defects, and of the dielectric media were analyzed with a weakest-link failure model employing the Laplace and Weibull distributions for a population of defects in the material. The measured size or scaling effects of the electrodes, specimen thickness, concentration of defects, and of the liquid media on breakdown strength were in better agreement with the Laplace distribution for the population. The measured concentration of surface defects was in good agreement with the concentration of surface defects estimated from the surface area scaling of the breakdown field with the Laplace distribution.

  14. Nonlinear electrohydrodynamics of leaky dielectric drops in the Quincke regime: Numerical simulations

    NASA Astrophysics Data System (ADS)

    Das, Debasish; Saintillan, David

    2015-11-01

    The deformation of leaky dielectric drops in a dielectric fluid medium when subject to a uniform electric field is a classic electrohydrodynamic phenomenon best described by the well-known Melcher-Taylor leaky dielectric model. In this work, we develop a three-dimensional boundary element method for the full leaky dielectric model to systematically study the deformation and dynamics of liquid drops in strong electric fields. We compare our results with existing numerical studies, most of which have been constrained to axisymmetric drops or have neglected interfacial charge convection by the flow. The leading effect of convection is to enhance deformation of prolate drops and suppress deformation of oblate drops, as previously observed in the axisymmetric case. The inclusion of charge convection also enables us to investigate the dynamics in the Quincke regime, in which experiments exhibit a symmetry-breaking bifurcation leading to a tank-treading regime. Our simulations confirm the existence of this bifurcation for highly viscous drops, and also reveal the development of sharp interfacial charge gradients driven by convection near the drop's equator. American Chemical Society, Petroleum Research Fund.

  15. LSPR properties of metal nanoparticles adsorbed at a liquid-liquid interface.

    PubMed

    Yang, Zhilin; Chen, Shu; Fang, Pingping; Ren, Bin; Girault, Hubert H; Tian, Zhongqun

    2013-04-21

    Unlike the solid-air and solid-liquid interfaces, the optical properties of metal nanoparticles adsorbed at the liquid-liquid interface have not been theoretically exploited to date. In this work, the three dimensional finite difference time domain (3D-FDTD) method is employed to clarify the localized surface plasmon resonance (LSPR) based optical properties of gold nanoparticles (NPs) adsorbed at the water-oil interface, including near field distribution, far field absorption and their relevance. The LSPR spectra of NPs located at a liquid-liquid interface are shown to differ significantly from those in a uniform liquid environment or at the other interfaces. The absorption spectra exhibit two distinct LSPR peaks, the positions and relative strengths of which are sensitive to the dielectric properties of each liquid and the exact positions of the NPs with respect to the interface. Precise control of the particles' position and selection of the appropriate wavelength of the excitation laser facilitates the rational design and selective excitation of localized plasmon modes for interfacial NPs, a necessary advance for the exploration of liquid-liquid interfaces via surface enhanced Raman spectroscopy (SERS). According to our calculations, the SERS enhancement factor for Au nanosphere dimers at the water-oil interface can be as high as 10(7)-10(9), implying significant promise for future investigations of interfacial structure and applications of liquid-liquid interfaces towards chemical analysis.

  16. A system for traceable measurement of the microwave complex permittivity of liquids at high pressures and temperatures

    NASA Astrophysics Data System (ADS)

    Dimitrakis, G A; George, M; Poliakoff, M; Harrison, I; Robinson, J; Kingman, S; Lester, E; Gregory, A P; Lees, K

    2009-04-01

    A system has been developed for direct traceable dielectric measurements on liquids at high pressures and temperatures. The system consists of a coaxial reflectometric sensor terminated by a metallic cylindrical cell to contain the liquid. It has been designed for measurements on supercritical liquids, but as a first step measurements on dielectric reference liquids were performed. This paper reports on a full evaluation of the system up to 2.5 GHz using methanol, ethanol and n-propanol at pressures up to 9 MPa and temperatures up to 273 °C. A comprehensive approach to the evaluation of uncertainties using Monte Carlo modelling is used.

  17. Nanoactuators Based on Electrostatic Forces on Dielectrics

    NASA Technical Reports Server (NTRS)

    Wang, Yu

    2005-01-01

    Nanoactuators of a proposed type would exploit the forces exerted by electric fields on dielectric materials. As used here, "nanoactuators" includes motors, manipulators, and other active mechanisms that have dimensions of the order of nanometers and/or are designed to manipulate objects that have dimensions of the order of nanometers. The underlying physical principle can be described most simply in terms of the example of a square parallel-plate capacitor in which a square dielectric plate is inserted part way into the gap between the electrode plates (see Figure Typically, the force is small from our macroscopic human perspective. The above equation shows that the force depends on the ratio between the capacitor dimensions but does not depend on the size. In other words, the force remains the same if the capacitor and the dielectric slab are shrunk to nanometer dimensions. At the same time, the masses of all components are proportional to third power of their linear dimensions. Therefore the force-to-mass ratio (and, consequently, the acceleration that can be imparted to the dielectric slab) is much larger at the nanoscale than at the macroscopic scale. The proposed actuators would exploit this effect. The upper part of Figure 2 depicts a simple linear actuator based on a parallel- plate capacitor similar to Figure 1. In this case, the upper electrode plate would be split into two parts (A and B) and the dielectric slab would be slightly longer than plate A or B. The actuator would be operated in a cycle. During the first half cycle, plate B would be grounded to the lower plate and plate A would be charged to a potential, V, with respect to the lower plate, causing the dielectric slab to be pulled under plate A. During the second half cycle, plate A would be grounded and plate B would be charged to potential V, causing the dielectric slab to be pulled under plate B. The back-and-forth motion caused by alternation of the voltages on plates A and B could be used

  18. Accelerating Dielectrics Design Using Thinking Machines

    NASA Astrophysics Data System (ADS)

    Ramprasad, R.

    2013-03-01

    High energy density capacitors are required for several pulsed power and energy storage applications, including food preservation, nuclear test simulations, electric propulsion of ships and hybrid electric vehicles. The maximum electrostatic energy that can be stored in a capacitor dielectric is proportional to its dielectric constant and the square of its breakdown field. The current standard material for capacitive energy storage is polypropylene which has a large breakdown field but low dielectric constant. We are involved in a search for new classes of polymers superior to polypropylene using first principles computations combined with statistical and machine learning methods. Essential to this search are schemes to efficiently compute the dielectric constant of polymers and the intrinsic dielectric breakdown field, as well as methods to determine the stable structures of new classes of polymers and strategies to efficiently navigate through the polymer chemical space offered by the periodic table. These methodologies have been combined with statistical learning paradigms in order to make property predictions rapidly, and promising classes of polymeric systems for energy storage applications have been identified. This work is being supported by the Office of Naval Research.

  19. Evaluation of high temperature capacitor dielectrics

    NASA Technical Reports Server (NTRS)

    Hammoud, Ahmad N.; Myers, Ira T.

    1992-01-01

    Experiments were carried out to evaluate four candidate materials for high temperature capacitor dielectric applications. The materials investigated were polybenzimidazole polymer and three aramid papers: Voltex 450, Nomex 410, and Nomex M 418, an aramid paper containing 50 percent mica. The samples were heat treated for six hours at 60 C and the direct current and 60 Hz alternating current breakdown voltages of both dry and impregnated samples were obtained in a temperature range of 20 to 250 C. The samples were also characterized in terms of their dielectric constant, dielectric loss, and conductivity over this temperature range with an electrical stress of 60 Hz, 50 V/mil present. Additional measurements are underway to determine the volume resistivity, thermal shrinkage, and weight loss of the materials. Preliminary data indicate that the heat treatment of the films slightly improves the dielectric properties with no influence on their breakdown behavior. Impregnation of the samples leads to significant increases in both alternating and direct current breakdown strength. The results are discussed and conclusions made concerning their suitability as high temperature capacitor dielectrics.

  20. Multiwall carbon nanotubes doped ferroelectric liquid crystal composites: A study of modified electrical behavior

    NASA Astrophysics Data System (ADS)

    Neeraj; Raina, K. K.

    2014-02-01

    We systematically investigated the role of carbon nanotubes and their nature of interaction with the high polarization ferroelectric liquid crystal molecules that causes a change in the dynamic behavior of the liquid crystals. The carbon nanotubes were functionalized with carboxyl group (-COOH) before dispersion in order to enhance their stability in the liquid crystal medium. For the systematic investigation of a non linear behavior of dispersed composite systems, results for various physical properties were determined by thermal, morphological and dielectric studies in the planer aligned 5 μm thickness cells. An effort has also gone into detail to investigate these properties with varying concentration (0.02 wt%, 0.05 wt% and 0.1 wt%) of multiwall carbon nanotubes. The various carbon nanotubes doped ferroelectric liquid crystal thin film composites have shown enhanced dielectric strength and dielectric permittivity values as compared to the undoped sample.