Science.gov

Sample records for dielectrophoretic field-flow fractionation

  1. Numerical simulation of bioparticle separation by dielectrophoretic field-flow-fractionation (DEP-FFF)

    NASA Astrophysics Data System (ADS)

    Marchis, Andreea; Neculae, Adrian

    2014-11-01

    The separation systems based on dielectrophoretic field-flow-fractionation (DEP-FFF) are used for a wide range of bioparticle types, including cells, bacteria, viruses, proteins, etc. An array of interdigitated microelectrodes lining the bottom surface of a thin chamber is used to generate dielectrophoretic forces that levitate the bioparticle mixture. The balance between DEP levitation and gravitational forces determines the bioparticles position at equilibrium heights within a fluid-flow profile, and consequently determines their velocities and the corresponding elution times. The elution time depends on the voltage applied on the microelectrodes, geometry of the device, bioparticle dielectric properties and density. This paper analyses numerically the behavior of a bioparticle mixture suspended in a dense and viscous fluid under dielectrophoresis. The controlled spatial separation of bioparticle mixture is performed by a combination of dielectrophoretic and hydrodynamic forces. The theoretical background and a set of numerical results (calculated DEP force, particle trajectories, etc.) are presented. The numerical solutions are obtained using the COMSOL Multiphysics finite element solver. The presented results demonstrate that the DEP-FFF method can be successfully applicable to many biomedical cell separation problems, including microfluidic-scale diagnosis and preparative-scale purification of cell subpopulations.

  2. Model-based analysis of a dielectrophoretic microfluidic device for field-flow fractionation.

    PubMed

    Mathew, Bobby; Alazzam, Anas; Abutayeh, Mohammad; Stiharu, Ion

    2016-08-01

    We present the development of a dynamic model for predicting the trajectory of microparticles in microfluidic devices, employing dielectrophoresis, for Hyperlayer field-flow fractionation. The electrode configuration is such that multiple finite-sized electrodes are located on the top and bottom walls of the microchannel; the electrodes on the walls are aligned with each other. The electric potential inside the microchannel is described using the Laplace equation while the microparticles' trajectory is described using equations based on Newton's second law. All equations are solved using finite difference method. The equations of motion account for forces including inertia, buoyancy, drag, gravity, virtual mass, and dielectrophoresis. The model is used for parametric study; the geometric parameters analyzed include microparticle radius, microchannel depth, and electrode/spacing lengths while volumetric flow rate and actuation voltage are the two operating parameters considered in the study. The trajectory of microparticles is composed of transient and steady state phases; the trajectory is influenced by all parameters. Microparticle radius and volumetric flow rate, above the threshold, do not influence the steady state levitation height; microparticle levitation is not possible below the threshold of the volumetric flow rate. Microchannel depth, electrode/spacing lengths, and actuation voltage influence the steady-state levitation height.

  3. Model-based analysis of a dielectrophoretic microfluidic device for field-flow fractionation.

    PubMed

    Mathew, Bobby; Alazzam, Anas; Abutayeh, Mohammad; Stiharu, Ion

    2016-08-01

    We present the development of a dynamic model for predicting the trajectory of microparticles in microfluidic devices, employing dielectrophoresis, for Hyperlayer field-flow fractionation. The electrode configuration is such that multiple finite-sized electrodes are located on the top and bottom walls of the microchannel; the electrodes on the walls are aligned with each other. The electric potential inside the microchannel is described using the Laplace equation while the microparticles' trajectory is described using equations based on Newton's second law. All equations are solved using finite difference method. The equations of motion account for forces including inertia, buoyancy, drag, gravity, virtual mass, and dielectrophoresis. The model is used for parametric study; the geometric parameters analyzed include microparticle radius, microchannel depth, and electrode/spacing lengths while volumetric flow rate and actuation voltage are the two operating parameters considered in the study. The trajectory of microparticles is composed of transient and steady state phases; the trajectory is influenced by all parameters. Microparticle radius and volumetric flow rate, above the threshold, do not influence the steady state levitation height; microparticle levitation is not possible below the threshold of the volumetric flow rate. Microchannel depth, electrode/spacing lengths, and actuation voltage influence the steady-state levitation height. PMID:27322871

  4. Field-Flow Fractionation.

    ERIC Educational Resources Information Center

    Caldwell, Karin D.

    1988-01-01

    Describes a technique for separating samples that range over 15 orders of magnitude in molecular weight. Discusses theory, apparatus, and sample preparation techniques. Lists several types of field-flow fractionation (FFF) and their uses: sedimentation FFF, thermal FFF, flow FFF, electrical FFF, and steric FFF. (ML)

  5. Cyclical magnetic field flow fractionation

    NASA Astrophysics Data System (ADS)

    Tasci, T. O.; Johnson, W. P.; Gale, B. K.

    2012-04-01

    In this study, a new magnetic field flow fractionation (FFF) system was designed and modeled by using finite element simulations. Other than current magnetic FFF systems, which use static magnetic fields, our system uses cyclical magnetic fields. Results of the simulations show that our cyclical magnetic FFF system can be used effectively for the separation of magnetic nanoparticles. Cyclical magnetic FFF system is composed of a microfluidic channel (length = 5 cm, height = 30 μm) and 2 coils. Square wave currents of 1 Hz (with 90 deg of phase difference) were applied to the coils. By using Comsol Multiphysics 3.5a, magnetic field profile and corresponding magnetic force exerted on the magnetite nanoparticles were calculated. The magnetic force data were exported from Comsol to Matlab. In Matlab, a parabolic flow profile with maximum flow speed of 0.4 mL/h was defined. Particle trajectories were obtained by the calculation of the particle speeds resulted from both magnetic and hydrodynamic forces. Particle trajectories of the particles with sizes ranging from 10 to 50 nm were simulated and elution times of the particles were calculated. Results show that there is a significant difference between the elution times of the particles so that baseline separation of the particles can be obtained. In this work, it is shown that by the application of cyclical magnetic fields, the separation of magnetic nanoparticles can be done efficiently.

  6. Field-flow fractionation of chromosomes

    SciTech Connect

    Giddings, J.C.

    1990-09-01

    Research continued on field flow fractionation of chromosomes. Progress in the past year can be organized into three main categories: (1) chromosome sample preparation; (2) preliminary chromosome fractionation; (3) fractionation of a polystyrene aggregate model which approximates the chromosome shape. We have been successful in isolating metaphase chromosomes from the Chinese hamster. We also received a human chromosome sample from Dr. Carolyn Bell-Prince of Los Alamos National Laboratory. Results are discussed. 2 figs.

  7. Field-flow fractionation of chromosomes

    SciTech Connect

    Giddings, J.C.

    1993-04-01

    The first topic of this project involved the preparation, fractionation by sedimentation/steric Field Flow Fractionation (FFF), and modeling of metaphase chromosomes. After numerous unsuccessful attempts to prepare chromosomes, we have implemented a procedure (in collaboration with Los Alamos National Laboratory) to prepare metaphase chromosomes from Chinese hamster cells. Extensive experimentation was necessary to identify a suitable FFF channel surface to minimize chromosome adsorption and a carrier liquid to stabilize and disperse the chromosomes. Under suitable operating conditions, the Chinese hamster chromosomes were purified from cell debris and partially fractionated. The purified, preenriched chromosomes that can be prepared by sedimentation/steric FFF or produced continuously by continuous SPLITT fractionation provide an enriched feed material for subsequent flow cytometry. In the second project component, flow FFF permitted successful separations of single- from double-stranded circular DNA, double-stranded circular DNAs of various sizes, and linear double-stranded DNA fragments of various lengths. Diffusion coefficients extracted from retention data agreed well with literature data as well as predictions of major polymer theories. The capacity of FFF separations was evaluated to examine potential applications to long DNA chains.

  8. Introducing dielectrophoresis as a new force field for field-flow fractionation.

    PubMed Central

    Huang, Y; Wang, X B; Becker, F F; Gascoyne, P R

    1997-01-01

    We present the principle of cell characterization and separation by dielectrophoretic field-flow fractionation and show preliminary experimental results. The operational device takes the form of a thin chamber in which the bottom wall supports an array of microelectrodes. By applying appropriate AC voltage signals to these electrodes, dielectrophoretic forces are generated to levitate cells suspended in the chamber and to affect their equilibrium heights. A laminar flow profile is established in the chamber so that fluid flows faster with increasing distance from the chamber walls. A cell carried in the flow stream will attain an equilibrium height, and a corresponding velocity, based on the balance of dielectrophoretic, gravitational, and hydrodynamic lift forces it experiences. We describe a theoretical model for this system and show that the cell velocity is a function of the mean fluid velocity, the voltage and frequency of the signals applied to the electrodes, and, most significantly, the cell dielectric properties. The validity of the model is demonstrated with human leukemia (HL-60) cells subjected to a parallel electrode array, and application of the device to separating HL-60 cells from peripheral blood mononuclear cells is shown. PMID:9251828

  9. Field-Flow Fractionation of Carbon Nanotubes and Related Materials

    SciTech Connect

    John P. Selegue

    2011-11-17

    During the grant period, we carried out FFF studies of carbonaceous soot, single-walled and multi-walled carbon nanotubes, carbon nano-onions and polyoxometallates. FFF alone does not provide enough information to fully characterize samples, so our suite of characterization techniques grew to include light scattering (especially Photon Correlation Spectroscopy), scanning and transmission electron microscopy, thermogravimetric analysis and spectroscopic methods. We developed convenient techniques to deposit and examine minute FFF fractions by electron microscopy. In collaboration with Arthur Cammers (University of Kentucky), we used Flow Field-Flow Fractionation (Fl-FFF) to monitor the solution-phase growth of keplerates, a class of polyoxometallate (POM) nanoparticles. We monitored the evolution of Mo-POM nanostructures over the course of weeks by by using flow field-flow fractionation and corroborated the nanoparticle structures by using transmission electron microscopy (TEM). Total molybdenum in the solution and precipitate phases was monitored by using inductively coupled plasma analyses, and total Mo-POM concentration by following the UV-visible spectra of the solution phase. We observe crystallization-driven formation of (Mo132) keplerate and solution phase-driven evolution of structurally related nanoscopic species (3-60 nm). FFF analyses of other classes of materials were less successful. Attempts to analyze platelets of layered materials, including exfoliated graphite (graphene) and TaS2 and MoS2, were disappointing. We were not able to optimize flow conditions for the layered materials. The metal sulfides react with the aqueous carrier liquid and settle out of suspension quickly because of their high density.

  10. Sedimentation Field-Flow Fractionation of Nonspherical Particles

    PubMed

    Blau; Zollars

    1996-11-10

    Sedimentation field-flow fractionation (SdFFF) has proved to be a very powerful technique for the particle size analysis of submicrometer hydrosols. Recently reports have been published on the analysis of coagulated latex samples via SdFFF. In these investigations the coagulated particles do not behave as predicted by SdFFF theory but elute from the SdFFF channel more rapidly than expected. This behavior has been ascribed to the effect of particle shape on retention. In this investigation samples of monodisperse polystyrene latices were coagulated under shear to yield particles which were all alike in shape (rod-like). Analyzing these samples via SdFFF indicated that retention is determined by the maximum dimension of the particle rather than by any average size. For highly retained particles there was an additional effect acting to shorten the expected retention time due to the tumbling motion of the rod-like particles in the shear flow through the SdFFF channel.

  11. Separation of platelets from other blood cells in continuous-flow by dielectrophoresis field-flow-fractionation

    PubMed Central

    Piacentini, Niccolò; Mernier, Guillaume; Tornay, Raphaël; Renaud, Philippe

    2011-01-01

    We present a microfluidic device capable of separating platelets from other blood cells in continuous flow using dielectrophoresis field-flow-fractionation. The use of hydrodynamic focusing in combination with the application of a dielectrophoretic force allows the separation of platelets from red blood cells due to their size difference. The theoretical cell trajectory has been calculated by numerical simulations of the electrical field and flow speed, and is in agreement with the experimental results. The proposed device uses the so-called “liquid electrodes” design and can be used with low applied voltages, as low as 10 Vpp. The obtained separation is very efficient, the device being able to achieve a very high purity of platelets of 98.8% with less than 2% cell loss. Its low-voltage operation makes it particularly suitable for point-of-care applications. It could further be used for the separation of other cell types based on their size difference, as well as in combination with other sorting techniques to separate multiple cell populations from each other. PMID:22662047

  12. Illustrating Some Principles of Separation Science through Gravitational Field-Flow Fractionation

    ERIC Educational Resources Information Center

    Beckett, Ronald; Sharma, Reshmi; Andric, Goja; Chantiwas, Rattikan; Jakmunee, Jaroon; Grudpan, Kate

    2007-01-01

    Particle separation is an important but often neglected topic in undergraduate curricula. This article discusses how the method of gravitational field-flow fractionation (GrFFF) can be used to illustrate many principles of separation science and some fundamental concepts of physical chemistry. GrFFF separates particles during their elution through…

  13. Method of electric field flow fractionation wherein the polarity of the electric field is periodically reversed

    DOEpatents

    Stevens, Fred J.

    1992-01-01

    A novel method of electric field flow fractionation for separating solute molecules from a carrier solution is disclosed. The method of the invention utilizes an electric field that is periodically reversed in polarity, in a time-dependent, wave-like manner. The parameters of the waveform, including amplitude, frequency and wave shape may be varied to optimize separation of solute species. The waveform may further include discontinuities to enhance separation.

  14. Sedimentation field flow fractionation and flow field flow fractionation as tools for studying the aging effects of WO₃ colloids for photoelectrochemical uses.

    PubMed

    Contado, Catia; Argazzi, Roberto

    2011-07-01

    WO₃ colloidal suspensions obtained through a simple sol-gel procedure were subjected to a controlled temperature aging process whose time evolution in terms of particle mass and size distribution was followed by sedimentation field flow fractionation (SdFFF) and flow field flow fractionation (FlFFF). The experiments performed at a temperature of 60 °C showed that in a few hours the initially transparent sol of WO₃ particles, whose size was less than 25 nm, undergoes a progressive size increase allowing nanoparticles to reach a maximum equivalent spherical size of about 130 nm after 5 h. The observed shift in particle size distribution maxima (SdFFF), the broadening of the curves (FlFFF) and the SEM-TEM observations suggest a mixed mechanism of growth-aggregation of initial nanocrystals to form larger particles. The photoelectrochemical properties of thin WO₃ films obtained from the aged suspensions at regular intervals, were tested in a biased photoelectrocatalytic cell with 1M H₂SO₄ under solar simulated irradiation. The current-voltage polarization curves recorded in the potential range 0-1.8 V (vs. SCE) showed a diminution of the maximum photocurrent from 3.7 mA cm⁻² to 2.8 mA cm⁻² with aging times of 1h and 5h, respectively. This loss of performance was mainly attributed to the reduction of the electroactive surface area of the sintered particles as suggested by the satisfactory linear correlation between the integrated photocurrent and the cyclic voltammetry cathodic wave area of the W(VI)→W(V) process measured in the dark. PMID:21168138

  15. Sedimentation field flow fractionation and flow field flow fractionation as tools for studying the aging effects of WO₃ colloids for photoelectrochemical uses.

    PubMed

    Contado, Catia; Argazzi, Roberto

    2011-07-01

    WO₃ colloidal suspensions obtained through a simple sol-gel procedure were subjected to a controlled temperature aging process whose time evolution in terms of particle mass and size distribution was followed by sedimentation field flow fractionation (SdFFF) and flow field flow fractionation (FlFFF). The experiments performed at a temperature of 60 °C showed that in a few hours the initially transparent sol of WO₃ particles, whose size was less than 25 nm, undergoes a progressive size increase allowing nanoparticles to reach a maximum equivalent spherical size of about 130 nm after 5 h. The observed shift in particle size distribution maxima (SdFFF), the broadening of the curves (FlFFF) and the SEM-TEM observations suggest a mixed mechanism of growth-aggregation of initial nanocrystals to form larger particles. The photoelectrochemical properties of thin WO₃ films obtained from the aged suspensions at regular intervals, were tested in a biased photoelectrocatalytic cell with 1M H₂SO₄ under solar simulated irradiation. The current-voltage polarization curves recorded in the potential range 0-1.8 V (vs. SCE) showed a diminution of the maximum photocurrent from 3.7 mA cm⁻² to 2.8 mA cm⁻² with aging times of 1h and 5h, respectively. This loss of performance was mainly attributed to the reduction of the electroactive surface area of the sintered particles as suggested by the satisfactory linear correlation between the integrated photocurrent and the cyclic voltammetry cathodic wave area of the W(VI)→W(V) process measured in the dark.

  16. Characterization of magnetic nanoparticles using programmed quadrupole magnetic field-flow fractionation

    PubMed Central

    Williams, P. Stephen; Carpino, Francesca; Zborowski, Maciej

    2010-01-01

    Quadrupole magnetic field-flow fractionation is a relatively new technique for the separation and characterization of magnetic nanoparticles. Magnetic nanoparticles are often of composite nature having a magnetic component, which may be a very finely divided material, and a polymeric or other material coating that incorporates this magnetic material and stabilizes the particles in suspension. There may be other components such as antibodies on the surface for specific binding to biological cells, or chemotherapeutic drugs for magnetic drug delivery. Magnetic field-flow fractionation (MgFFF) has the potential for determining the distribution of the magnetic material among the particles in a given sample. MgFFF differs from most other forms of field-flow fractionation in that the magnetic field that brings about particle separation induces magnetic dipole moments in the nanoparticles, and these potentially can interact with one another and perturb the separation. This aspect is examined in the present work. Samples of magnetic nanoparticles were analysed under different experimental conditions to determine the sensitivity of the method to variation of conditions. The results are shown to be consistent and insensitive to conditions, although magnetite content appeared to be somewhat higher than expected. PMID:20732895

  17. [Effects of carrier liquid and flow rate on the separation in gravitational field-flow fractionation].

    PubMed

    Guo, Shuang; Zhu, Chenqi; Gao-Yang, Yaya; Qiu, Bailing; Wu, Di; Liang, Qihui; He, Jiayuan; Han, Nanyin

    2016-02-01

    Gravitational field-flow fractionation is the simplest field-flow fractionation technique in terms of principle and operation. The earth' s gravity is its external field. Different sized particles are injected into a thin channel and carried by carrier fluid. The different velocities of the carrier liquid in different places results in a size-based separation. A gravitational field-flow fractionation (GrFFF) instrument was designed and constructed. Two kinds of polystyrene (PS) particles with different sizes (20 µm and 6 µm) were chosen as model particles. In this work, the separation of the sample was achieved by changing the concentration of NaN3, the percentage of mixed surfactant in the carrier liquid and the flow rate of carrier liquid. Six levels were set for each factor. The effects of these three factors on the retention ratio (R) and plate height (H) of the PS particles were investigated. It was found that R increased and H decreased with increasing particle size. On the other hand, the R and H increased with increasing flow rate. The R and H also increased with increasing NaN3 concentration. The reason was that the electrostatic repulsive force between the particles and the glass channel wall increased. The force allowed the samples approach closer to the channel wall. The results showed that the resolution and retention time can be improved by adjusting the experimental conditions. These results can provide important values to the further applications of GrFFF technique. PMID:27382718

  18. Characterization of magnetic nanoparticles using programmed quadrupole magnetic field-flow fractionation.

    PubMed

    Williams, P Stephen; Carpino, Francesca; Zborowski, Maciej

    2010-09-28

    Quadrupole magnetic field-flow fractionation is a relatively new technique for the separation and characterization of magnetic nanoparticles. Magnetic nanoparticles are often of composite nature having a magnetic component, which may be a very finely divided material, and a polymeric or other material coating that incorporates this magnetic material and stabilizes the particles in suspension. There may be other components such as antibodies on the surface for specific binding to biological cells, or chemotherapeutic drugs for magnetic drug delivery. Magnetic field-flow fractionation (MgFFF) has the potential for determining the distribution of the magnetic material among the particles in a given sample. MgFFF differs from most other forms of field-flow fractionation in that the magnetic field that brings about particle separation induces magnetic dipole moments in the nanoparticles, and these potentially can interact with one another and perturb the separation. This aspect is examined in the present work. Samples of magnetic nanoparticles were analysed under different experimental conditions to determine the sensitivity of the method to variation of conditions. The results are shown to be consistent and insensitive to conditions, although magnetite content appeared to be somewhat higher than expected.

  19. Fractionating power and outlet stream polydispersity in asymmetrical flow field-flow fractionation. Part I: isocratic operation.

    PubMed

    Williams, P Stephen

    2016-05-01

    Asymmetrical flow field-flow fractionation (As-FlFFF) has become the most commonly used of the field-flow fractionation techniques. However, because of the interdependence of the channel flow and the cross flow through the accumulation wall, it is the most difficult of the techniques to optimize, particularly for programmed cross flow operation. For the analysis of polydisperse samples, the optimization should ideally be guided by the predicted fractionating power. Many experimentalists, however, neglect fractionating power and rely on light scattering detection simply to confirm apparent selectivity across the breadth of the eluted peak. The size information returned by the light scattering software is assumed to dispense with any reliance on theory to predict retention, and any departure of theoretical predictions from experimental observations is therefore considered of no importance. Separation depends on efficiency as well as selectivity, however, and efficiency can be a strong function of retention. The fractionation of a polydisperse sample by field-flow fractionation never provides a perfectly separated series of monodisperse fractions at the channel outlet. The outlet stream has some residual polydispersity, and it will be shown in this manuscript that the residual polydispersity is inversely related to the fractionating power. Due to the strong dependence of light scattering intensity and its angular distribution on the size of the scattering species, the outlet polydispersity must be minimized if reliable size data are to be obtained from the light scattering detector signal. It is shown that light scattering detection should be used with careful control of fractionating power to obtain optimized analysis of polydisperse samples. Part I is concerned with isocratic operation of As-FlFFF, and part II with programmed operation.

  20. Asymmetric flow field-flow fractionation in the field of nanomedicine.

    PubMed

    Wagner, Michael; Holzschuh, Stephan; Traeger, Anja; Fahr, Alfred; Schubert, Ulrich S

    2014-06-01

    Asymmetric flow field-flow fractionation (AF4) is a widely used and versatile technique in the family of field-flow fractionations, indicated by a rapidly increasing number of publications. It represents a gentle separation and characterization method, where nonspecific interactions are reduced to a minimum, allows a broad separation range from several nano- up to micrometers and enables a superior characterization of homo- and heterogenic systems. In particular, coupling to multiangle light scattering provides detailed access to sample properties. Information about molar mass, polydispersity, size, shape/conformation, or density can be obtained nearly independent of the used material. In this Perspective, the application and progress of AF4 for (bio)macromolecules and colloids, relevant for "nano" medical and pharmaceutical issues, will be presented. The characterization of different nanosized drug or gene delivery systems, e.g., polymers, nanoparticles, micelles, dendrimers, liposomes, polyplexes, and virus-like-particles (VLP), as well as therapeutic relevant proteins, antibodies, and nanoparticles for diagnostic usage will be discussed. Thereby, the variety of obtained information, the advantages and pitfalls of this emerging technique will be highlighted. Additionally, the influence of different fractionation parameters in the separation process is discussed in detail. Moreover, a comprehensive overview is given, concerning the investigated samples, fractionation parameters as membrane types and buffers used as well as the chosen detectors and the corresponding references. The perspective ends up with an outlook to the future.

  1. Theory for nanoparticle retention time in the helical channel of quadrupole magnetic field-flow fractionation

    NASA Astrophysics Data System (ADS)

    Williams, P. Stephen; Carpino, Francesca; Zborowski, Maciej

    2009-05-01

    Quadrupole magnetic field-flow fractionation (QMgFFF) is a separation and characterization technique for magnetic nanoparticles such as those used for cell labeling and for targeted drug therapy. A helical separation channel is used to efficiently exploit the quadrupole magnetic field. The fluid and sample components therefore have angular and longitudinal components to their motion in the thin annular space occupied by the helical channel. The retention ratio is defined as the ratio of the times for non-retained and a retained material to pass through the channel. Equations are derived for the respective angular and longitudinal components to retention ratio.

  2. Asymmetric flow field-flow fractionation of superferrimagnetic iron oxide multicore nanoparticles.

    PubMed

    Dutz, Silvio; Kuntsche, Judith; Eberbeck, Dietmar; Müller, Robert; Zeisberger, Matthias

    2012-09-01

    Magnetic nanoparticles are very useful for various medical applications where each application requires particles with specific magnetic properties. In this paper we describe the modification of the magnetic properties of magnetic multicore nanoparticles (MCNPs) by size dependent fractionation. This classification was carried out by means of asymmetric flow field-flow fractionation (AF4). A clear increase of the particle size with increasing elution time was confirmed by multi-angle laser light scattering coupled to the AF4 system, dynamic light scattering and Brownian diameters determined by magnetorelaxometry. In this way 16 fractions of particles with different hydrodynamic diameters, ranging between around 100 and 500 nm, were obtained. A high reproducibility of the method was confirmed by the comparison of the mean diameters of fractions of several fractionation runs under identical conditions. The hysteresis curves were measured by vibrating sample magnetometry. Starting from a coercivity of 1.41 kA m(-1) for the original MCNPs the coercivity of the particles in the different fractions varied from 0.41 to 3.83 kA m(-1). In our paper it is shown for the first time that fractions obtained from a broad size distributed MCNP fluid classified by AF4 show a strong correlation between hydrodynamic diameter and magnetic properties. Thus we state that AF4 is a suitable technology for reproducible size dependent classification of magnetic multicore nanoparticles suspended as ferrofluids. PMID:22875740

  3. Detection and identification of microorganisms using a combined flow field-flow fractionation/spectroscopy technique

    NASA Astrophysics Data System (ADS)

    Fu, Xiaojuan

    This doctoral project is focused on the implementation of a novel micron and sub-micron particle characterization technology for in-situ, continuous monitoring and detecting of microorganisms in water. The particle technology is based on simultaneous characterizing the joint particle property distribution (size, shape, and chemical composition) through the combined fractionation/separation and light scattering detection and interpretation techniques. Over more than a decade, field-flow fractionation (FFF) has shown to be well-suited for the separation and/or selection of bacteria (Giddings, 1993). As the most universal fractionation technique among the FFF family, flow field-flow fractionation (FFFF) has been chosen as the separation device in this research. The multi-angle laser light scattering (MALLS) photometer and the UV-vis/liquid core optical waveguide constitute the primary on-line light scattering detection system. The angular spectra obtained by the MALLS photometer provided information on the shape of microorganism; the multi-wavelength transmission spectra of microorganisms contain quantitative information on their size, number, shape, chemical composition and internal structure, which are essential for identification and classification of microorganisms. Both experimental results and the theoretical prediction have revealed that the particle size resolution capabilities of the FFFF fractionation system coupled with the sensitivity of the laser light scattering to particle shape, and the sensitivity of the UV-vis spectra to cell size, shape, cell orientation and chemical composition offer an integrated system for the identification and classification of microorganisms. The ability to discriminate between cell species was demonstrated by the light scattering and absorption interpretation model, which is based on light scattering theory (Rayleigh-Debye-Gans approximation), spectral deconvolution techniques, and on the approximation of the frequency

  4. Meeting in Florida: Using Asymmetric Flow Field-Flow Fractionation (AF4) to Determine C60 Colloidal Size Distributions

    EPA Science Inventory

    The study of nanomaterials in environmental systems requires robust and specific analytical methods. Analytical methods which discriminate based on particle size and molecular composition are not widely available. Asymmetric Flow Field-Flow Fractionation (AF4) is a separation...

  5. Circuit modification in electrical field flow fractionation systems generating higher resolution separation of nanoparticles.

    PubMed

    Tasci, Tonguc O; Johnson, William P; Fernandez, Diego P; Manangon, Eliana; Gale, Bruce K

    2014-10-24

    Compared to other sub-techniques of field flow fractionation (FFF), cyclical electrical field flow fractionation (CyElFFF) is a relatively new method with many opportunities remaining for improvement. One of the most important limitations of this method is the separation of particles smaller than 100nm. For such small particles, the diffusion rate becomes very high, resulting in severe reductions in the CyElFFF separation efficiency. To address this limitation, we modified the electrical circuitry of the ElFFF system. In all earlier ElFFF reports, electrical power sources have been directly connected to the ElFFF channel electrodes, and no alteration has been made in the electrical circuitry of the system. In this work, by using discrete electrical components, such as resistors and diodes, we improved the effective electric field in the system to allow high resolution separations. By modifying the electrical circuitry of the ElFFF system, high resolution separations of 15 and 40nm gold nanoparticles were achieved. The effects of applying different frequencies, amplitudes and voltage shapes have been investigated and analyzed through experiments.

  6. The use of asymmetrical flow field-flow fractionation in pharmaceutics and biopharmaceutics.

    PubMed

    Fraunhofer, Wolfgang; Winter, Gerhard

    2004-09-01

    Field-flow fractionation (FFF) is a family of flexible analytical fractionating techniques which have the advantage that the separation of analytes is achieved, solely through the interaction of the sample with an external, perpendicular physical field, rather than by the interaction with a stationary phase. The rapid progress in pharmaceutical biotechnology goes along with an increasing demand in potent, high-efficient analytical methods. Thus, FFF techniques are gaining increasing attention for their ability to separate and characterize populations of polymers, colloids and particles of up to about 100 microm in size. It is the intention of this review to provide an overview on common FFF techniques, to summarize inherent advantages and limitations and to introduce both established and challenging applications in the (bio)pharmaceutical field. Thereby, asymmetrical flow FFF is addressed predominantly, since it is the most versatile applicable FFF technique.

  7. Comprehensive triblock copolymer analysis by coupled thermal field-flow fractionation-NMR.

    PubMed

    van Aswegen, Werner; Hiller, Wolf; Hehn, Mathias; Pasch, Harald

    2013-07-12

    Thermal field-flow fractionation (ThFFF) is used as a novel fractionation technique to investigate the molecular heterogeneity of PB-b-PVP-b-PtBMA triblock copolymers. Such copolymers cause major problems in liquid chromatography due to very strong polar interactions with the stationary phase. ThFFF separates the copolymers with regard to size and/or chemical composition based on the normal and thermal diffusion coefficients. The separation mechanism in ThFFF and the chemical composition of the separated species is elucidated by online (1) H NMR. Based on the compositional analysis and a calibration of the system with the respective homopolymers, the samples are quantified regarding their molar masses, chemical compositions, and microstructures providing comprehensive information on the complex structure of these block copolymers. PMID:23722993

  8. Field-flow fractionation of chromosomes. Final technical report, July 1, 1989--January 31, 1993

    SciTech Connect

    Giddings, J.C.

    1993-04-01

    The first topic of this project involved the preparation, fractionation by sedimentation/steric Field Flow Fractionation (FFF), and modeling of metaphase chromosomes. After numerous unsuccessful attempts to prepare chromosomes, we have implemented a procedure (in collaboration with Los Alamos National Laboratory) to prepare metaphase chromosomes from Chinese hamster cells. Extensive experimentation was necessary to identify a suitable FFF channel surface to minimize chromosome adsorption and a carrier liquid to stabilize and disperse the chromosomes. Under suitable operating conditions, the Chinese hamster chromosomes were purified from cell debris and partially fractionated. The purified, preenriched chromosomes that can be prepared by sedimentation/steric FFF or produced continuously by continuous SPLITT fractionation provide an enriched feed material for subsequent flow cytometry. In the second project component, flow FFF permitted successful separations of single- from double-stranded circular DNA, double-stranded circular DNAs of various sizes, and linear double-stranded DNA fragments of various lengths. Diffusion coefficients extracted from retention data agreed well with literature data as well as predictions of major polymer theories. The capacity of FFF separations was evaluated to examine potential applications to long DNA chains.

  9. Optimization of flow field-flow fractionation for the characterization of natural colloids.

    PubMed

    El Hadri, Hind; Gigault, Julien; Chéry, Philippe; Potin-Gautier, Martine; Lespes, Gaëtane

    2014-02-01

    The methodological approach used to robustly optimize the characterization of the polydisperse colloidal phase of drain water samples is presented. The approach is based on asymmetric flow field-flow fractionation coupled to online ultraviolet/visible spectrophotometry, multi-angle light scattering, and inductively coupled plasma mass spectrometry. Operating factors such as the amount of sample injected and the ratio between main-flow and cross-flow rates were considered. The evaluation of the injection and fractionation steps was performed considering the polydispersity index and the contribution to the polydispersity of the plate height, the recovery, the retention ratio and the size range of the fractionated colloids. This approach allows the polydispersity of natural colloid samples to be taken into consideration to achieve the most efficient and representative fractionation. In addition to the size characterization, elemental analysis was also evaluated using the recovery, precision, and limits of detection and quantification relative to a trace element of interest (copper) in drain water. To complete this investigation, the potential application of the methodology was assessed using several independent drain water samples from different soils. The contribution of the polydispersity to the plate height ranges from 4.8 to 8.9 cm with a mean precision of 6%. The mean colloidal recovery was 81 ± 3 %, and the mean retention ratio was 0.043-0.062. The limits of detection and quantification for copper were 0.6 and 1.8 μg L(-1), respectively.

  10. Nanoparticle separation with a miniaturized asymmetrical flow field-flow fractionation cartridge

    NASA Astrophysics Data System (ADS)

    Müller, David; Cattaneo, Stefano; Meier, Florian; Welz, Roland; deMello, Andrew

    2015-07-01

    Asymmetrical Flow Field-Flow Fractionation (AF4) is a separation technique applicable to particles over a wide size range. Despite the many advantages of AF4, its adoption in routine particle analysis is somewhat limited by the large footprint of currently available separation cartridges, extended analysis times and significant solvent consumption. To address these issues, we describe the fabrication and characterization of miniaturized AF4 cartridges. Key features of the scale-down platform include simplified cartridge and reagent handling, reduced analysis costs and higher throughput capacities. The separation performance of the miniaturized cartridge is assessed using certified gold and silver nanoparticle standards. Analysis of gold nanoparticle populations indicates shorter analysis times and increased sensitivity compared to conventional AF4 separation schemes. Moreover, nanoparticulate titanium dioxide populations exhibiting broad size distributions are analyzed in a rapid and efficient manner. Finally, the repeatability and reproducibility of the miniaturized platform are investigated with respect to analysis time and separation efficiency.

  11. Factors affecting measurement of channel thickness in asymmetrical flow field-flow fractionation.

    PubMed

    Dou, Haiyang; Jung, Euo Chang; Lee, Seungho

    2015-05-01

    Asymmetrical flow field-flow fractionation (AF4) has been considered to be a useful tool for simultaneous separation and characterization of polydisperse macromolecules or colloidal nanoparticles. AF4 analysis requires the knowledge of the channel thickness (w), which is usually measured by injecting a standard with known diffusion coefficient (D) or hydrodynamic diameter (dh). An accurate w determination is a challenge due to its uncertainties arising from the membrane's compressibility, which may vary with experimental condition. In the present study, influence of factors including the size and type of the standard on the measurement of w was systematically investigated. The results revealed that steric effect and the particles-membrane interaction by van der Waals or electrostatic force may result in an error in w measurement. PMID:25817708

  12. Hydrodynamic chromatography and field flow fractionation in finite aspect ratio channels.

    PubMed

    Shendruk, T N; Slater, G W

    2014-04-25

    Hydrodynamic chromatography (HC) and field-flow fractionation (FFF) separation methods are often performed in 3D rectangular channels, though ideal retention theory assumes 2D systems. Devices are commonly designed with large aspect ratios; however, it can be unavoidable or desirable to design rectangular channels with small or even near-unity aspect ratios. To assess the significance of finite-aspect ratio effects and interpret experimental retention results, an ideal, analytical retention theory is needed. We derive a series solution for the ideal retention ratio of HC and FFF rectangular channels. Rather than limiting devices' ability to resolve samples, our theory predicts that retention curves for normal-mode FFF are well approximated by the infinite plate solution and that the performance of HC is actually improved. These findings suggest that FFF devices need not be designed with large aspect ratios and that rectangular HC channels are optimal when the aspect ratio is unity.

  13. Hydrodynamic chromatography and field flow fractionation in finite aspect ratio channels.

    PubMed

    Shendruk, T N; Slater, G W

    2014-04-25

    Hydrodynamic chromatography (HC) and field-flow fractionation (FFF) separation methods are often performed in 3D rectangular channels, though ideal retention theory assumes 2D systems. Devices are commonly designed with large aspect ratios; however, it can be unavoidable or desirable to design rectangular channels with small or even near-unity aspect ratios. To assess the significance of finite-aspect ratio effects and interpret experimental retention results, an ideal, analytical retention theory is needed. We derive a series solution for the ideal retention ratio of HC and FFF rectangular channels. Rather than limiting devices' ability to resolve samples, our theory predicts that retention curves for normal-mode FFF are well approximated by the infinite plate solution and that the performance of HC is actually improved. These findings suggest that FFF devices need not be designed with large aspect ratios and that rectangular HC channels are optimal when the aspect ratio is unity. PMID:24674643

  14. Factors affecting measurement of channel thickness in asymmetrical flow field-flow fractionation.

    PubMed

    Dou, Haiyang; Jung, Euo Chang; Lee, Seungho

    2015-05-01

    Asymmetrical flow field-flow fractionation (AF4) has been considered to be a useful tool for simultaneous separation and characterization of polydisperse macromolecules or colloidal nanoparticles. AF4 analysis requires the knowledge of the channel thickness (w), which is usually measured by injecting a standard with known diffusion coefficient (D) or hydrodynamic diameter (dh). An accurate w determination is a challenge due to its uncertainties arising from the membrane's compressibility, which may vary with experimental condition. In the present study, influence of factors including the size and type of the standard on the measurement of w was systematically investigated. The results revealed that steric effect and the particles-membrane interaction by van der Waals or electrostatic force may result in an error in w measurement.

  15. Electrochemical response and separation in cyclic electric field-flow fractionation.

    PubMed

    Chen, Zhi; Chauhan, Anuj

    2007-03-01

    Electric field-flow fractionation (EFFF) is a separation technique that couples a lateral electric field with axial Poiseuille flow to separate particles on the basis of size and/or mobility. In unidirectional EFFF, the field rapidly decreases in time due to charging of the double layer. The field strength could be increased by performing EFFF with cyclic electric fields. In cyclic electric field-flow fractionation (CEFFF), a periodic voltage, which can be either sinusoidal or square-wave, is applied in the lateral direction. In this paper, we measure the electrochemical response of CEFFF, i.e., the current-time response for a given time-dependent voltage and then utilize this electrochemical response in a transport model to predict separation. The CEFFF device studied here comprises two gold-coated glass plates separated by a spacer. The transient current profiles are measured for a step change and cyclic square-shaped voltage. The current profile is compared with the equivalent circuit model, and is fitted to a sum of two decaying exponentials. The dependence of the electrochemical response on voltage, frequency, channel thickness, and salt concentration is studied. Next, the electrochemical data are utilized in the convection-diffusion equation to develop a model for separation by CEFFF. The equations are solved by using a combination of analytical and numerical techniques to determine the mean velocity and the dispersion coefficient of molecules, and to determine the effect of various parameters on the separation efficiency of the EFFF device. Also, the model predictions are compared with experimental data available in the literature. PMID:17265539

  16. Analysis of plant ribosomes with asymmetric flow field-flow fractionation.

    PubMed

    Pitkänen, Leena; Tuomainen, Päivi; Eskelin, Katri

    2014-02-01

    Ribosome profiling is a technique used to separate ribosomal subunits, 80S ribosomes (monosomes), and polyribosomes (polysomes) from other RNA-protein complexes. It is traditionally performed in sucrose gradients. In this study, we used asymmetric flow field-flow fractionation (AsFlFFF) to characterize ribosome profiles of Nicotiana benthamiana plants. With the optimized running conditions, we were able to separate free molecules from ribosomal subunits and intact ribosomes. We used various chemical and enzymatic treatments to validate the positions of subunits, monosomes, and polysomes in the AsFlFFF fractograms. We also characterized the protein and RNA content of AsFlFFF fractions by gel electrophoresis and western blotting. The reverse transcription polymerase chain reaction (RT-PCR) analysis showed that ribosomes remained bound to messenger RNAs (mRNAs) during the analysis. Therefore, we conclude that AsFlFFF can be used for ribosome profiling to study the mRNAs that are being translated. It can also be used to study the protein composition of ribosomes that are active in translation at that particular moment.

  17. Size characterization by Sedimentation Field Flow Fractionation of silica particles used as food additives.

    PubMed

    Contado, Catia; Ravani, Laura; Passarella, Martina

    2013-07-25

    Four types of SiO2, available on the market as additives in food and personal care products, were size characterized using Sedimentation Field Flow Fractionation (SdFFF), SEM, TEM and Photon Correlation Spectroscopy (PCS). The synergic use of the different analytical techniques made it possible, for some samples, to confirm the presence of primary nanoparticles (10 nm) organized in clusters or aggregates of different dimension and, for others, to discover that the available information is incomplete, particularly that regarding the presence of small particles. A protocol to extract the silica particles from a simple food matrix was set up, enriching (0.25%, w w(-1)) a nearly silica-free instant barley coffee powder with a known SiO2 sample. The SdFFF technique, in conjunction with SEM observations, made it possible to identify the added SiO2 particles and verify the new particle size distribution. The SiO2 content of different powdered foodstuffs was determined by graphite furnace atomic absorption spectroscopy (GFAAS); the concentrations ranged between 0.006 and 0.35% (w w(-1)). The protocol to isolate the silica particles was so applied to the most SiO2-rich commercial products and the derived suspensions were separated by SdFFF; SEM and TEM observations supported the size analyses while GFAAS determinations on collected fractions permitted element identification.

  18. Size characterization and quantification of exosomes by asymmetrical-flow field-flow fractionation.

    PubMed

    Sitar, Simona; Kejžar, Anja; Pahovnik, David; Kogej, Ksenija; Tušek-Žnidarič, Magda; Lenassi, Metka; Žagar, Ema

    2015-09-15

    In the past few years extracellular vesicles called exosomes have gained huge interest of scientific community since they show a great potential for human diagnostic and therapeutic applications. However, an ongoing challenge is accurate size characterization and quantification of exosomes because of the lack of reliable characterization techniques. In this work, the emphasis was focused on a method development to size-separate, characterize, and quantify small amounts of exosomes by asymmetrical-flow field-flow fractionation (AF4) technique coupled to a multidetection system (UV and MALS). Batch DLS (dynamic light-scattering) and NTA (nanoparticle tracking analysis) analyses of unfractionated exosomes were also conducted to evaluate their shape and internal structure, as well as their number density. The results show significant influence of cross-flow conditions and channel thickness on fractionation quality of exosomes, whereas the focusing time has less impact. The AF4/UV-MALS and DLS results display the presence of two particles subpopulations, that is, the larger exosomes and the smaller vesicle-like particles, which coeluted in AF4 together with impurities in early eluting peak. Compared to DLS and AF4-MALS results, NTA somewhat overestimates the size and the number density for larger exosome population, but it discriminates the smaller particle population.

  19. Optimization and evaluation of asymmetric flow field-flow fractionation of silver nanoparticles.

    PubMed

    Loeschner, Katrin; Navratilova, Jana; Legros, Samuel; Wagner, Stephan; Grombe, Ringo; Snell, James; von der Kammer, Frank; Larsen, Erik H

    2013-01-11

    Asymmetric flow field-flow fractionation (AF(4)) in combination with on-line optical detection and mass spectrometry is one of the most promising methods for separation and quantification of nanoparticles (NPs) in complex matrices including food. However, to obtain meaningful results regarding especially the NP size distribution a number of parameters influencing the separation need to be optimized. This paper describes the development of a separation method for polyvinylpyrrolidone-stabilized silver nanoparticles (AgNPs) in aqueous suspension. Carrier liquid composition, membrane material, cross flow rate and spacer height were shown to have a significant influence on the recoveries and retention times of the nanoparticles. Focus time and focus flow rate were optimized with regard to minimum elution of AgNPs in the void volume. The developed method was successfully tested for injected masses of AgNPs from 0.2 to 5.0 μg. The on-line combination of AF(4) with detection methods including ICP-MS, light absorbance and light scattering was helpful because each detector provided different types of information about the eluting NP fraction. Differences in the time-resolved appearance of the signals obtained by the three detection methods were explained based on the physical origin of the signal. Two different approaches for conversion of retention times of AgNPs to their corresponding sizes and size distributions were tested and compared, namely size calibration with polystyrene nanoparticles (PSNPs) and calculations of size based on AF(4) theory. Fraction collection followed by transmission electron microscopy was performed to confirm the obtained size distributions and to obtain further information regarding the AgNP shape. Characteristics of the absorbance spectra were used to confirm the presence of non-spherical AgNP. PMID:23261297

  20. Magnetic Nanoparticle Drug Carriers and their Study by Quadrupole Magnetic Field-Flow Fractionation

    PubMed Central

    Williams, P. Stephen; Carpino, Francesca; Zborowski, Maciej

    2009-01-01

    Magnetic nanoparticle drug carriers continue to attract considerable interest for drug targeting in the treatment of cancers and other pathological conditions. The efficient delivery of therapeutic levels of drug to a target site while limiting nonspecific, systemic toxicity requires optimization of the drug delivery materials, the applied magnetic field, and the treatment protocol. The history and current state of magnetic drug targeting is reviewed. While initial studies involved micron-sized and larger carriers, and work with these microcarriers continues, it is the sub-micron carriers or nanocarriers that are of increasing interest. An aspect of magnetic drug targeting using nanoparticle carriers that has not been considered is then addressed. This aspect involves the variation in the magnetic properties of the nanocarriers. Quadrupole magnetic field-flow fractionation (QMgFFF) is a relatively new technique for characterizing magnetic nanoparticles. It is unique in its capability of determining the distribution in magnetic properties of a nanoparticle sample in suspension. The development and current state of this technique is also reviewed. Magnetic nanoparticle drug carriers have been found by QMgFFF analysis to be highly polydisperse in their magnetic properties, and the strength of response of the particles to magnetic field gradients is predicted to vary by orders of magnitude. It is expected that the least magnetic fraction of a formulation will contribute the most to systemic toxicity, and the depletion of this fraction will result in a more effective drug carrying material. A material that has a reduced systemic toxicity will allow higher doses of cytotoxic drugs to be delivered to the tumor with reduced side effects. Preliminary experiments involving a novel method of refining a magnetic nanoparticle drug carrier to achieve this result are described. QMgFFF is used to characterize the refined and unrefined material. PMID:19591456

  1. Colloidal transport of uranium in soil: Size fractionation and characterization by field-flow fractionation-multi-detection.

    PubMed

    Claveranne-Lamolère, Céline; Lespes, Gaëtane; Dubascoux, Stéphane; Aupiais, Jean; Pointurier, Fabien; Potin-Gautier, Martine

    2009-12-25

    The aim of this study was to characterize colloids associated with uranium by using an on-line fractionation/multi-detection technique based on asymmetrical flow field-flow fractionation (As-Fl-FFF) hyphenated with UV detector, multi angle laser light scattering (MALLS) and inductively coupling plasma-mass spectrometry (ICP-MS). Moreover, thanks to the As-Fl-FFF, the different colloidal fractions were collected and characterized by a total organic carbon analyzer (TOC). Thus it is possible to determine the nature (organic or inorganic colloids), molar mass, size (gyration and hydrodynamic radii) and quantitative uranium distribution over the whole colloidal phase. In the case of the site studied, two populations are highlighted. The first population corresponds to humic-like substances with a molar mass of (1500+/-300)gmol(-1) and a hydrodynamic diameter of (2.0+/-0.2)nm. The second one has been identified as a mix of carbonated nanoparticles or clays with organic particles (aggregates and/or coating of the inorganic particles) with a size range hydrodynamic diameter between 30 and 450nm. Each population is implied in the colloidal transport of uranium: maximum 1% of the uranium content in soil leachate is transported by the colloids in the site studied, according to the depth in the soil. Indeed, humic substances are the main responsible of this transport in sub-surface conditions whereas nanoparticles drive the phenomenon in depth conditions.

  2. Size sorting of citrate reduced gold nanoparticles by sedimentation field-flow fractionation.

    PubMed

    Contado, Catia; Argazzi, Roberto

    2009-12-25

    Gold nanoparticles (GNPs) have been synthesized through the citrate reduction method; the citrate/gold(III) ratio was changed from 1:1 up to 10:1 and the size of the resulting nanoparticles was measured by sedimentation field-flow fractionation (SdFFF). Experimental data showed that the GNPs size decreases in the ratio range 1:1-3:1 and then increases from 5:1 to 10:1 passing through a plateau region in between, and is almost independent of the precursor solution concentrations. In the zone of minimum diameters the synthetic process does not produce monodispersed GNPs but often multiple distributions, very close in size, are observed as evidenced by the particle size distributions (PSDs) derived from the SdFFF fractograms. UV-vis spectrophotometry, being the most common technique employed in the optical characterization of nanoparticles suspensions, was used throughout this work. A confirmation of the nucleation-aggregation-fragmentation mechanism was inferred from the cross-correlation between UV-vis and SdFFF results.

  3. Effect of asymmetrical flow field-flow fractionation channel geometry on separation efficiency.

    PubMed

    Ahn, Ji Yeon; Kim, Ki Hun; Lee, Ju Yong; Williams, P Stephen; Moon, Myeong Hee

    2010-06-11

    The separation efficiencies of three different asymmetrical flow field-flow fractionation (AF4) channel designs were evaluated using polystyrene latex standards. Channel breadth was held constant for one channel (rectangular profile), and was reduced either linearly (trapezoidal profile) or exponentially (exponential profile) along the length for the other two. The effective void volumes of the three channel types were designed to be equivalent. Theoretically, under certain flow conditions, the mean channel flow velocity of the exponential channel could be arranged to remain constant along the channel length, thereby improving separation in AF4. Particle separation obtained with the exponential channel was compared with particle separation obtained with the trapezoidal and rectangular channels. We demonstrated that at a certain flow rate condition (outflow/inflow rate=0.2), the exponential channel design indeed provided better performance with respect to the separation of polystyrene nanoparticles in terms of reducing band broadening. While the trapezoidal channel exhibited a little poorer performance than the exponential, the strongly decreasing mean flow velocity in the rectangular channel resulted in serious band broadening, a delay in retention time, and even failure of larger particles to elute. PMID:20439106

  4. Synthesis and size characterization of silica nanospheres using sedimentation field-flow fractionation (SdFFF).

    PubMed

    Kim, Woon Jung; Ahn, Se Young; Kim, Jai Hoon; Chun, Jong Han; Yu, Jong Shin; Jung, Euo Chang; Lee, Seungho

    2012-01-01

    Silica nanoparticles were synthesized by a conventional emulsion polymerization by mixing ethanol, ammonium hydroxide, water and tetra ethyl orthosilicate (TEOS). A new reaction apparatus was assembled for a large scale synthesis of silica nanospheres in the laboratory, which was designed for uniform mixing of the reactants. The apparatus was equipped with a disc type agitator with six rectangular propellers. The new apparatus allowed high reproducibility in terms of the mean size and the size distribution of the silica nanoparticles with the relative standard deviation of less than about 6%. Sedimentation field-flow fractionation (SdFFF) was employed for determination of the size distribution of the silica nanoparticles. SdFFF provided size-based separation of the silica nanoparticles, with the retention time increasing with the size. When SdFFF analysis was repeated three times for the same sample, the standard deviation was less than 4%, showing reliability of SdFFF in size measurement. SdFFF seems to provide more accurate size distribution than DLS, particularly for those having broad and multimodal size distributions. Change in the agitation speed resulted in significant change in the mean diameter of the silica nanoparticles. Agitation speed of 400 rpm in 3 L reaction vessel yielded silica particles of about 100 nm in diameter, while at 200 rpm in 1 L vessel yielded those of about 500 nm. PMID:22524028

  5. Probing and quantifying DNA-protein interactions with asymmetrical flow field-flow fractionation.

    PubMed

    Ashby, Jonathan; Schachermeyer, Samantha; Duan, Yaokai; Jimenez, Luis A; Zhong, Wenwan

    2014-09-01

    Tools capable of measuring binding affinities as well as amenable to downstream sequencing analysis are needed for study of DNA-protein interaction, particularly in discovery of new DNA sequences with affinity to diverse targets. Asymmetrical flow field-flow fractionation (AF4) is an open-channel separation technique that eliminates interference from column packing to the non-covalently bound complex and could potentially be applied for study of macromolecular interaction. The recovery and elution behaviors of the poly(dA)n strand and aptamers in AF4 were investigated. Good recovery of ssDNAs was achieved by judicious selection of the channel membrane with consideration of the membrane pore diameter and the radius of gyration (Rg) of the ssDNA, which was obtained with the aid of a Molecular Dynamics tool. The Rg values were also used to assess the folding situation of aptamers based on their migration times in AF4. The interactions between two ssDNA aptamers and their respective protein components were investigated. Using AF4, near-baseline resolution between the free and protein-bound aptamer fractions could be obtained. With this information, dissociation constants of ∼16nM and ∼57nM were obtained for an IgE aptamer and a streptavidin aptamer, respectively. In addition, free and protein-bound IgE aptamer was extracted from the AF4 eluate and amplified, illustrating the potential of AF4 in screening ssDNAs with high affinity to targets. Our results demonstrate that AF4 is an effective tool holding several advantages over the existing techniques and should be useful for study of diverse macromolecular interaction systems.

  6. Determining Aqueous Fullerene Particle Size Distributions by Asymmetric Flow Field-Flow Fractionation (AF4) without Surfactants

    EPA Science Inventory

    To determine the behavior of nanoparticles in environmental systems, methods must be developed to measure nanoparticle size. Asymmetric Flow Field Flow Fractionation (AF4) is an aqueous compatible size separation technique which is able to separate particles from 1 nm to 10 µm in...

  7. Quantum dot agglomerates in biological media and their characterization by asymmetrical flow field-flow fractionation.

    PubMed

    Moquin, Alexandre; Neibert, Kevin D; Maysinger, Dusica; Winnik, Françoise M

    2015-01-01

    The molecular composition of the biological environment of nanoparticles influences their physical properties and changes their pristine physicochemical identity. In order to understand, or predict, the interactions of cells with specific nanoparticles, it is critical to know their size, shape, and agglomeration state not only in their nascent state but also in biological media. Here, we use asymmetrical flow field-flow fractionation (AF4) with on-line multiangle light scattering (MALS), dynamic light scattering (DLS) and UV-Visible absorption detections to determine the relative concentration of isolated nanoparticles and agglomerates in the case of three types of semi-conductor quantum dots (QDs) dispersed in Dulbecco's Modified Eagle Media (DMEM) containing 10% of fetal bovine serum (DMEM-FBS). AF4 analysis also yielded the size and size distribution of the agglomerates as a function of the time of QDs incubation in DMEM-FBS. The preferred modes of internalization of the QDs are assessed for three cell-types, N9 microglia, human hepatocellular carcinoma cells (HepG2) and human embryonic kidney cells (Hek293), by confocal fluorescence imaging of live cells, quantitative determination of the intracellular QD concentration, and flow cytometry. There is an excellent correlation between the agglomeration status of the three types of QDs in DMEM-FBS determined by AF4 analysis and their preferred mode of uptake by the three cell lines, which suggests that AF4 yields an accurate description of the nanoparticles as they encounter cells and advocates its use as a means to characterize particles under evaluation.

  8. Size analysis of automobile soot particles using field-flow fractionation.

    PubMed

    Kim, W S; Kim, S H; Lee, D W; Lee, S; Lim, C S; Ryu, J H

    2001-03-15

    Soot particles emitted from various automobile engines are analyzed for size distributions using field-flow fractionation (FFF). Soot samples are prepared for FFF analysis using a three-step procedure, where a layer of soot particles is focused between the layers of n-hexane and water, followed by dispersing of particles in water containing 0.05% Triton X-100. The mean diameters determined by FFF show similar trends with those obtained from dynamic light scattering (DLS) and scanning electron microscopy (SEM). Data from FFF are also compared with those from an on-line scanning mobility particle sizer (SMPS). SMPS size distributions extend further to larger size than those of FFF distributions, which indicates the three-step sample preparation procedure effectively disaggregates the agglomerated particles. Although the amount of particulate matter (PM) emitted from a heavy-duty diesel engine is much higher than that from a light-duty diesel engine, the size distributions of soot particles show no significant difference between heavy- and light-duty diesel engines. The engine-operating mode (engine speed and load rate) does not seem to affect significantly the size distribution of soot particles. It was found that the PM from a turbocharged diesel engine contains a higher percentage of particles smaller than 100 nm than an engine with a naturally aspirated (NA) air-inhalation system. As for gasoline engines, the PM collected after the catalytic converter has a narrower size distribution than those collected before and has a higher percentage of particles smaller than 100 nm. PMID:11347907

  9. On the no-field method for void time determination in flow field-flow fractionation.

    PubMed

    Martin, Michel; Hoyos, Mauricio

    2011-07-01

    Elution time measurements of colloidal particles injected in a symmetrical flow field-flow fractionation (flow FFF) system when the inlet and outlet cross-flow connections are closed have been performed. This no-field method has been proposed earlier for void time (and void volume) determination in flow FFF Giddings et al. (1977). The elution times observed were much larger than expected on the basis of the channel geometrical volume and the flow rate. In order to explain these discrepancies, a flow model allowing the carrier liquid to flow through the porous walls toward the reservoirs located behind the porous elements and along these reservoirs was developed. The ratio between the observed elution time and expected one is found to depend only on a parameter which is a function of the effective permeability and thickness of the porous elements and of the channel thickness and length. The permeabilities of the frits used in the system were measured. Their values lead to predicted elution times in reasonable agreement with experimental ones, taking into account likely membrane protrusion inside the channel on system assembly. They comfort the basic feature of the flow model, in the no-field case. The carrier liquid mostly bypasses the channel to flow along the system mainly in the reservoir. It flows through the porous walls toward the reservoirs near channel inlet and again through the porous walls from the reservoirs to the channel near channel outlet before exiting the system. In order to estimate the extent of this bypassing process, it is desirable that the hydrodynamic characteristics of the permeable elements (permeability and thickness) are provided by flow FFF manufacturers. The model applies to symmetrical as well as asymmetrical flow FFF systems. PMID:21256498

  10. Effect of Ionic and Nonionic Carriers in Electrical Field-Flow Fractionation.

    PubMed

    Ornthai, Mathuros; Siripinyanond, Atitaya; Gale, Bruce K

    2016-02-01

    A major limitation of electrical field-flow fractionation (ElFFF) is the polarization of the electrodes that occurs when using an ionic carrier liquid. As there is great interest in using ElFFF with biological materials and biological materials typically have high ionic strengths and high osmotic concentrations, we explore the effect of concentration for phosphate buffered saline (PBS), a typical ionic medium for biological samples, and for two nonionic materials common in bioparticle analysis: isopropanol (IPA) and sucrose. Their effect on retention and separations in ElFFF for increasing concentrations was observed. The results suggest that modifying the carrier solution with PBS, sucrose, and/or IPA would enable characterization and separation of biological samples in ElFFF. Specifically, changes of elution time and electrical parameters such as current, conductivity, and bulk channel resistance were observed as functions of carrier ionic and osmotic strength for the different carrier additives. PBS can be used in the micromolar range, equivalent to about 0.1% 1× PBS (150 μM). These concentrations are far from the isotonic condition of PBS (∼ 150 mM) that is normally used with biological samples. However, the nonionic additive carriers IPA and sucrose show quality retention even when added in high concentrations. The results show that IPA could be used in ratios up to 60% and that sucrose can be used in concentrations up to 0.3 M. Concentrations of 2% IPA (0.26 M) and 0.30 M sucrose are biologically isotonic conditions (275-299 mOsm/kg), and retention was readily obtained in these conditions using both DC ElFFF and cyclical ElFFF (CyE1FFF). Carriers of this type may make it possible to use ElFFF with biological samples. PMID:26708115

  11. Impact of asymmetrical flow field-flow fractionation on protein aggregates stability.

    PubMed

    Bria, Carmen R M; Williams, S Kim Ratanathanawongs

    2016-09-23

    The impact of asymmetrical flow field-flow fractionation (AF4) on protein aggregate species is investigated with the aid of multiangle light scattering (MALS) and dynamic light scattering (DLS). The experimental parameters probed in this study include aggregate stability in different carrier liquids, shear stress (related to sample injection), sample concentration (during AF4 focusing), and sample dilution (during separation). Two anti-streptavidin (anti-SA) IgG1 samples composed of low and high molar mass (M) aggregates are subjected to different AF4 conditions. Aggregates suspended and separated in phosphate buffer are observed to dissociate almost entirely to monomer. However, aggregates in citric acid buffer are partially stable with dissociation to 25% and 5% monomer for the low and high M samples, respectively. These results demonstrate that different carrier liquids change the aggregate stability and low M aggregates can behave differently than their larger counterparts. Increasing the duration of the AF4 focusing step showed no significant changes in the percent monomer, percent aggregates, or the average Ms in either sample. Syringe-induced shear related to sample injection resulted in an increase in hydrodynamic diameter (dh) as measured by batch mode DLS. Finally, calculations showed that dilution during AF4 separation is significantly lower than in size exclusion chromatography with dilution occurring mainly at the AF4 channel outlet and not during the separation. This has important ramifications when analyzing aggregates that rapidly dissociate (<∼2s) upon dilution as the size calculated by AF4 theory may be more accurate than that measured by online DLS. Experimentally, the dhs determined by online DLS generally agreed with AF4 theory except for the more well retained larger aggregates for which DLS showed smaller sizes. These results highlight the importance of using AF4 retention theory to understand the impacts of dilution on analytes. PMID

  12. Effect of Ionic and Nonionic Carriers in Electrical Field-Flow Fractionation.

    PubMed

    Ornthai, Mathuros; Siripinyanond, Atitaya; Gale, Bruce K

    2016-02-01

    A major limitation of electrical field-flow fractionation (ElFFF) is the polarization of the electrodes that occurs when using an ionic carrier liquid. As there is great interest in using ElFFF with biological materials and biological materials typically have high ionic strengths and high osmotic concentrations, we explore the effect of concentration for phosphate buffered saline (PBS), a typical ionic medium for biological samples, and for two nonionic materials common in bioparticle analysis: isopropanol (IPA) and sucrose. Their effect on retention and separations in ElFFF for increasing concentrations was observed. The results suggest that modifying the carrier solution with PBS, sucrose, and/or IPA would enable characterization and separation of biological samples in ElFFF. Specifically, changes of elution time and electrical parameters such as current, conductivity, and bulk channel resistance were observed as functions of carrier ionic and osmotic strength for the different carrier additives. PBS can be used in the micromolar range, equivalent to about 0.1% 1× PBS (150 μM). These concentrations are far from the isotonic condition of PBS (∼ 150 mM) that is normally used with biological samples. However, the nonionic additive carriers IPA and sucrose show quality retention even when added in high concentrations. The results show that IPA could be used in ratios up to 60% and that sucrose can be used in concentrations up to 0.3 M. Concentrations of 2% IPA (0.26 M) and 0.30 M sucrose are biologically isotonic conditions (275-299 mOsm/kg), and retention was readily obtained in these conditions using both DC ElFFF and cyclical ElFFF (CyE1FFF). Carriers of this type may make it possible to use ElFFF with biological samples.

  13. Size analysis of automobile soot particles using field-flow fractionation.

    PubMed

    Kim, W S; Kim, S H; Lee, D W; Lee, S; Lim, C S; Ryu, J H

    2001-03-15

    Soot particles emitted from various automobile engines are analyzed for size distributions using field-flow fractionation (FFF). Soot samples are prepared for FFF analysis using a three-step procedure, where a layer of soot particles is focused between the layers of n-hexane and water, followed by dispersing of particles in water containing 0.05% Triton X-100. The mean diameters determined by FFF show similar trends with those obtained from dynamic light scattering (DLS) and scanning electron microscopy (SEM). Data from FFF are also compared with those from an on-line scanning mobility particle sizer (SMPS). SMPS size distributions extend further to larger size than those of FFF distributions, which indicates the three-step sample preparation procedure effectively disaggregates the agglomerated particles. Although the amount of particulate matter (PM) emitted from a heavy-duty diesel engine is much higher than that from a light-duty diesel engine, the size distributions of soot particles show no significant difference between heavy- and light-duty diesel engines. The engine-operating mode (engine speed and load rate) does not seem to affect significantly the size distribution of soot particles. It was found that the PM from a turbocharged diesel engine contains a higher percentage of particles smaller than 100 nm than an engine with a naturally aspirated (NA) air-inhalation system. As for gasoline engines, the PM collected after the catalytic converter has a narrower size distribution than those collected before and has a higher percentage of particles smaller than 100 nm.

  14. Influence of secondary preparative parameters and aging effects on PLGA particle size distribution: a sedimentation field flow fractionation investigation.

    PubMed

    Contado, Catia; Vighi, Eleonora; Dalpiaz, Alessandro; Leo, Eliana

    2013-01-01

    Poly(lactic-co-glycolic acid) particles in the 200-400-nm size range were formulated through nanoprecipitation and solvent evaporation methods. Different concentrations of the polymer and stabilizer (Pluronic® F 68) were tested in order to identify the best conditions for making poly(lactic-co-glycolic acid) particles of suitable size, stable in time, and to be used as carriers for brain-targeting drugs. The particles with the best characteristics for delivery system design were those formulated by nanoprecipitation with an organic/water phase ratio of 2:30, a polymer concentration of 25 mg/mL, and a surfactant concentration of 0.83 mg/mL; their surface charge was reasonably negative (approximately -27 mV) and the average size of the almost monodisperse population was roughly 250 nm. Particle characterization was obtained through ζ-potential measurements, scanning electron microscope observations, and particle size distribution determinations; the latter achieved by both photon-correlation spectroscopy and sedimentation field flow fractionation. Sedimentation field flow fractionation, which is considered more reliable than photon-correlation spectroscopy in describing the possible particle size distribution modifications, was used to investigate the effects of 3 months of storage at 4 °C had on the lyophilized particles. Figure Particle size ditribution from the SdFFF and the PCS techniques.

  15. Multidetector thermal field-flow fractionation as a novel tool for the microstructure separation of polyisoprene and polybutadiene.

    PubMed

    Greyling, Guilaume; Pasch, Harald

    2014-11-01

    For the first time, it is demonstrated that thermal field-flow fractionation (ThFFF) is an efficient tool for the fractionation of polyisoprene (PI) and polybutadiene (PB) with regard to molecular microstructure. ThFFF analysis of 1,4- and 3,4-PI as well as 1,4- and 1,2-PB samples in tetrahydrofuran (THF), THF/cyclohexane, and cyclohexane reveals that isomers of the same polymer family having similar molar masses exhibit different Soret coefficients depending on microstructure for each solvent. The separation according to microstructure is found to be based on the cooperative influence of the normal and the thermal diffusion coefficient. Of the three solvents, cyclohexane has the greatest influence on the fractionation of the isomers. In order to determine the distribution of isomeric structures in the PI and PB samples, the samples are fractionated by ThFFF in cyclohexane and subsequently analyzed by (1) H NMR. The isomeric distributions determined from NMR data correlate well with ThFFF retention data of the samples and thus further highlight the unique fractionating capabilities of ThFFF. The interplay of the normal and thermal diffusion coefficients that are influenced by temperature and the mobile phase opens the way to highly selective fractionations without the drawbacks of column-based separation methods. PMID:25220541

  16. Advanced analysis of polymer emulsions: Particle size and particle size distribution by field-flow fractionation and dynamic light scattering.

    PubMed

    Makan, Ashwell C; Spallek, Markus J; du Toit, Madeleine; Klein, Thorsten; Pasch, Harald

    2016-04-15

    Field flow fractionation (FFF) is an advanced fractionation technique for the analyses of very sensitive particles. In this study, different FFF techniques were used for the fractionation and analysis of polymer emulsions/latexes. As model systems, a pure acrylic emulsion and emulsions containing titanium dioxide were prepared and analyzed. An acrylic emulsion polymerization was conducted, continuously sampled from the reactor and subsequently analyzed to determine the particle size, radius of gyration in specific, of the latex particles throughout the polymerization reaction. Asymmetrical flow field-flow fractionation (AF4) and sedimentation field-flow fractionation (SdFFF), coupled to a multidetector system, multi-angle laser light scattering (MALLS), ultraviolet (UV) and refractive index (RI), respectively, were used to investigate the evolution of particle sizes and particle size distributions (PSDs) as the polymerization progressed. The obtained particle sizes were compared against batch-mode dynamic light scattering (DLS). Results indicated differences between AF4 and DLS results due to DLS taking hydration layers into account, whereas both AF4 and SdFFF were coupled to MALLS detection, hence not taking the hydration layer into account for size determination. SdFFF has additional separation capabilities with a much higher resolution compared to AF4. The calculated radii values were 5 nm larger for SdFFF measurements for each analyzed sample against the corresponding AF4 values. Additionally a low particle size shoulder was observed for SdFFF indicating bimodality in the reactor very early during the polymerization reaction. Furthermore, different emulsions were mixed with inorganic species used as additives in cosmetics and coatings such as TiO2. These complex mixtures of species were analyzed to investigate the retention and particle interaction behavior under different AF4 experimental conditions, such as the mobile phase. The AF4 system was coupled online

  17. Characterization of colloidal phosphorus species in drainage waters from a clay soil using asymmetric flow field-flow fractionation.

    PubMed

    Regelink, Inge C; Koopmans, Gerwin F; van der Salm, Caroline; Weng, Liping; van Riemsdijk, Willem H

    2013-01-01

    Phosphorus transport from agricultural land contributes to eutrophication of surface waters. Pipe drain and trench waters from a grassland field on a heavy clay soil in the Netherlands were sampled before and after manure application. Phosphorus speciation was analyzed by physicochemical P fractionation, and the colloidal P fraction in the dissolved fraction (<0.45 μm) was analyzed by asymmetric flow field-flow fractionation (AF4) coupled to high-resolution inductively coupled plasma-mass spectrometry and ultraviolet diode array detector. When no manure was applied for almost 7 mo, total P (TP) concentrations were low (<21 μmol L), and TP was almost evenly distributed among dissolved reactive P (DRP), dissolved unreactive P (DUP), and particulate P (PP). Total P concentrations increased by a factor of 60 and 4 when rainfall followed shortly after application of cattle slurry or its solid fraction, respectively. Under these conditions, DRP contributed 50% or more to TP. The P speciation within the DUP and PP fractions varied among the different sampling times. Phosphorus associated with dissolved organic matter, probably via cation bridging, comprised a small fraction of DUP at all sampling times. Colloidal P coeluted with clay particles when P application was withheld for almost 7 mo and after application of the solid cattle slurry fraction. At these sampling times, PP correlated well with particulate Fe, Al, and Si, indicating that P is associated with colloidal clay particles. After cattle slurry application, part of DUP was probably present as phospholipids. Physicochemical fractionation combined with AF4 analysis is a promising tool to unravel the speciation of colloidal P in environmental water samples.

  18. Analysis of liposomes using asymmetrical flow field-flow fractionation: separation conditions and drug/lipid recovery.

    PubMed

    Kuntsche, Judith; Decker, Christiane; Fahr, Alfred

    2012-08-01

    Liposomes composed of dipalmitoylphosphatidylcholine and dipalmitoylphosphatidylglycerol were analyzed by asymmetrical flow field-flow fractionation coupled with multi-angle laser light scattering. In addition to evaluation of fractionation conditions (flow conditions, sample mass, carrier liquid), radiolabeled drug-loaded liposomes were used to determine the liposome recovery and a potential loss of incorporated drug during fractionation. Neither sample concentration nor the cross-flow gradient distinctly affected the size results but at very low sample concentration (injected mass 5 μg) the fraction of larger vesicles was underestimated. Imbalance in the osmolality between the inner and outer aqueous phase resulted in liposome swelling after dilution in hypoosmotic carrier liquids. In contrast, liposome shrinking under hyperosmotic conditions was barely visible. The liposomes themselves eluted completely (lipid recoveries were close to 100%) but there was a loss of incorporated drugs during separation with a strong dependence on the octanol-water partition coefficient of the drug. Whereas corticosterone (partition coefficient ~2) was washed out more or less completely (recovery about 2%), loss of temoporfin (partition coefficient ~9) was only minor (recovery about 80%). All fractionations were well repeatable under the experimental conditions applied in the present study.

  19. Asymmetrical flow field-flow fractionation and multiangle light scattering for analysis of gelatin nanoparticle drug carrier systems.

    PubMed

    Fraunhofer, Wolfgang; Winter, Gerhard; Coester, Conrad

    2004-04-01

    The physicochemical properties of nanosized colloidal drug carrier systems are of great influence on drug efficacy. Consequently, a broad spectrum of analytical techniques is applied for comprehensive drug carrier characterization. It is the primary objective of this paper to present asymmetrical flow field-flow fractionation (AF4), coupled online with multiangle light scattering detection, for the characterization of gelatin nanoparticles. Size and size distribution of drug-loaded and unloaded nanoparticles were determined, and data were correlated with results of state-of-the-art methods, such as scanning electron microscopy and photon correlation spectroscopy. Moreover, the AF4 fractionation of gelatin nanoparticulate carriers from a protein model drug is demonstrated for the first time, proposing a feasible way to assess the amount of loaded drug in situ without sample preparation. This hypothesis was set into practice by monitoring the drug loading of nanoparticles with oligonucleotide payloads. In this realm, various fractions of gelatin bulk material were analyzed via AF4 and size-exclusion high-pressure liquid chromatography. Mass distributions and high-molecular-weight fraction ratios of the gelatin samples varied, depending on the separation method applied. In general, the AF4 method demonstrated the ability to comprehensively characterize polymeric gelatin bulk material as well as drug-loaded and unloaded nanoparticles in terms of size, size distribution, molecular weight, and loading efficiency.

  20. New Method for Sorting Endothelial and Neural Progenitors from Human Induced Pluripotent Stem Cells by Sedimentation Field Flow Fractionation.

    PubMed

    Faye, Pierre-Antoine; Vedrenne, Nicolas; De la Cruz-Morcillo, Miguel A; Barrot, Claire-Cécile; Richard, Laurence; Bourthoumieu, Sylvie; Sturtz, Franck; Funalot, Benoît; Lia, Anne-Sophie; Battu, Serge

    2016-07-01

    Human induced pluripotent stem cells (hiPSc) are a very useful solution to create and observe the behavior of specific and usually inaccessible cells, such as human motor neurons. Obtained from a patient biopsy by reprograming dermal fibroblasts (DF), hiPSc present the same properties as embryonic stem cells and can generate any cell type after several weeks of differentiation. Today, there are numerus protocols which aim to control hiPSC differentiation. The principal challenge is to obtain a sufficiently enriched specific cell population to study disease pathophysiology and to provide a good model for further investigation and drug screening. The differentiation process is very costly and time-consuming, because many specific factors and different culture media must be used. In this study, we used Sedimentation Field Flow Fractionation (SdFFF) to prepare enriched populations derived from hiPSc after only 10 days of culture in a classical medium. Based on phenotypic and proteomic characterization, "hyperlayer" elution resulted in a fraction expressing markers of endothelial progenitors while another fraction expressed markers of neural progenitors. The isolation of subpopulations representing various differentiation lineages is of major interest for the production of specialized, cell-enriched fractions and in the preparation of increasingly complex models for the development of new therapeutic tools. PMID:27263863

  1. Quantitative analysis in field-flow fractionation using ultraviolet-visible detectors: an experimental design for absolute measurements

    PubMed

    Zattoni; Melucci; Torsi; Reschiglian

    2000-03-01

    In previous works, it has been shown that a standard ultraviolet-visible detection system can be used for quantitative analysis of heterogeneous systems (dispersed supermicron particles) in field-flow fractionation (FFF) by single peak area measurements. Such an analysis method was shown to require either experimental measurements (standardless analysis) or an accurate model (absolute analysis) to determine the extinction efficiency of the particulate samples. In this work, an experimental design to assess absolute analysis in FFF through prediction of particles' optical extinction is presented. Prediction derives from the semiempirical approach by van de Hulst and Walstra. Special emphasis is given to the restriction of the experimental domain of instrumental conditions within which absolute analysis is allowed. Validation by statistical analysis and a practical application to real sample recovery studies are also given.

  2. Temporal variability of colloidal material in agricultural storm runoff from managed grassland using flow field-flow fractionation.

    PubMed

    Gimbert, Laura J; Worsfold, Paul J

    2009-12-25

    This paper reports the use of flow field-flow fractionation (FlFFF) to determine the temporal variability of colloidal (<1mum) particle size distributions in agricultural runoff waters in a small managed catchment in SW England during storm events. Three storm events of varying intensity were captured and the colloidal material in the runoff analysed by FlFFF. The technique had sufficient sensitivity to determine directly the changing colloidal profile over the 0.08-1.0mum size range in the runoff waters during these storm events. Rainfall, total phosphorus and suspended solids in the bulk runoff samples were also determined throughout one storm and showed significant correlation (P<0.01) with the amount of colloidal material. Whilst there are some uncertainties in the resolution and absolute calibration of the FlFFF profiles, the technique has considerable potential for the quantification of colloidal material in storm runoff waters. PMID:19577239

  3. Application of flow field-flow fractionation and laser sizing to characterize soil colloids in drained and undrained lysimeters.

    PubMed

    Gimbert, Laura J; Haygarth, Philip M; Worsfold, Paul J

    2008-01-01

    This paper reports the use of a new technique, flow field-flow fractionation (FlFFF), for the characterization of soil sampled under grassland. FlFFF can be used to determine the fine colloidal material in the <1 microm fraction obtained by gravitational settling of 1% m/v soil suspensions. The aim of this work was to determine the potential of FIFFF to characterize soil colloids in drained and undrained field lysimeters from soil cores sampled at different depths. Two different grassland lysimeter plots of 1 ha, one drained and one undrained, were investigated, and the soil was sampled at 20-m intervals along a single diagonal transect at three different depths (0-2, 10-12, and 30-32 cm). The results showed that there was a statistically significant (P = 0.05) increase in colloidal material at 30- to 32-cm depth along the transect under the drained lysimeter, which correlates with disturbance of the soil at this depth due to the installation of tile drains at 85-cm depth backfilled to 30-cm depth with gravel. Laser sizing was also used to determine the particles in the size range 1 to 2000 microm and complement the data obtained using FlFFF because laser sizing lacks resolution for the finer colloidal material (0.1-1.0 microm). The laser sizing data showed increased heterogeneity at 30- to 32-cm depth, particularly in the 50 to 250 microm size fraction. Therefore FIFFF characterized the finer material and laser sizing the coarser soil fraction (<2000 microm) at depth in drained and undrained grassland. This is of importance as colloidal material is more mobile than the larger material and consequently an important vector for contaminant transport from agricultural land to catchments.

  4. Characterization of silver nanoparticles using flow-field flow fractionation interfaced to inductively coupled plasma mass spectrometry.

    PubMed

    Poda, A R; Bednar, A J; Kennedy, A J; Harmon, A; Hull, M; Mitrano, D M; Ranville, J F; Steevens, J

    2011-07-01

    The ability to detect and identify the physiochemical form of contaminants in the environment is important for degradation, fate and transport, and toxicity studies. This is particularly true of nanomaterials that exist as discrete particles rather than dissolved or sorbed contaminant molecules in the environment. Nanoparticles will tend to agglomerate or dissolve, based on solution chemistry, which will drastically affect their environmental properties. The current study investigates the use of field flow fractionation (FFF) interfaced to inductively coupled plasma-mass spectrometry (ICP-MS) as a sensitive and selective method for detection and characterization of silver nanoparticles. Transmission electron microscopy (TEM) is used to verify the morphology and primary particle size and size distribution of precisely engineered silver nanoparticles. Subsequently, the hydrodynamic size measurements by FFF are compared to dynamic light scattering (DLS) to verify the accuracy of the size determination. Additionally, the sensitivity of the ICP-MS detector is demonstrated by fractionation of μg/L concentrations of mixed silver nanoparticle standards. The technique has been applied to nanoparticle suspensions prior to use in toxicity studies, and post-exposure biological tissue analysis. Silver nanoparticles extracted from tissues of the sediment-dwelling, freshwater oligochaete Lumbriculus variegatus increased in size from approximately 31-46nm, indicating a significant change in the nanoparticle characteristics during exposure.

  5. Complementary use of flow and sedimentation field-flow fractionation techniques for size characterizing biodegradable poly(lactic acid) nanospheres

    PubMed Central

    Contado, Catia; Dalpiaz, Alessandro; Leo, Eliana; Zborowski, Maciej; Williams, P. Stephen

    2009-01-01

    Poly(lactic acid) nanoparticles were synthesized using a modified evaporation method, testing two different surfactants (sodium cholate and Pluronic F68) for the process. During their formulation the prodrug 5′-octanoyl-CPA (Oct-CPA) of the antiischemic N6-cyclopentyladenosine (CPA) was encapsulated. Three different purification methods were compared with respect to the influence of surfactant on the size characteristics of the final nanoparticle product. Flow and sedimentation field-flow fractionation techniques (FlFFF and SdFFF, respectively) were used to size characterize the five poly(lactic acid) particle samples. Two different combinations of carrier solution (mobile phase) were employed in the FlFFF analyses, while a solution of poly(vinyl alcohol) was used as mobile phase for the SdFFF runs. The separation performances of the two techniques were compared and the particle size distributions, derived from the fractograms, were interpreted with the support of observations by scanning electron microscopy. Some critical aspects, such as the carrier choice and the channel thickness determination for the FlFFF, have been investigated. This is the first comprehensive comparison of the two FFF techniques for characterizing non standard particulate materials. The two FFF techniques proved to be complementary and gave good, congruent and very useful information on the size distributions of the five poly(lactic acid) particle samples. PMID:17482199

  6. Aggregation behavior of fullerenes in aqueous solutions: a capillary electrophoresis and asymmetric flow field-flow fractionation study.

    PubMed

    Astefanei, Alina; Núñez, Oscar; Galceran, Maria Teresa; Kok, Wim Th; Schoenmakers, Peter J

    2015-10-01

    In this work, the electrophoretic behavior of hydrophobic fullerenes [buckminsterfullerene (C60), C70, and N-methyl-fulleropyrrolidine (C60-pyrr)] and water-soluble fullerenes [fullerol (C60(OH)24); polyhydroxy small gap fullerene, hydrated (C120(OH)30); C60 pyrrolidine tris acid (C60-pyrr tris acid); and (1,2-methanofullerene C60)-61-carboxylic acid (C60CHCOOH)] in micellar electrokinetic capillary chromatography (MECC) was evaluated. The aggregation behavior of the water-soluble compounds in MECC at different buffer and sodium dodecyl sulfate (SDS) concentrations and pH values of the background electrolyte (BGE) was studied by monitoring the changes observed in the electrophoretic pattern of the peaks. Broad and distorted peaks that can be attributed to fullerene aggregation were obtained in MECC which became narrower and more symmetric by working at low buffer and SDS concentrations (below the critical micelle concentration, capillary zone electrophoresis (CZE) conditions). For the characterization of the suspected aggregates formed (size and shape), asymmetrical flow field-flow fractionation (AF4) and transmission electron microscopy (TEM) were used. The results showed that the increase in the buffer concentration promoted the aggregation of the particles, while the presence of SDS micelles revealed multiple peaks corresponding to particles of different aggregation degrees. Furthermore, MECC has been applied for the first time for the analysis of C60 in two different cosmetic products (i.e., anti-aging serum and facial mask).

  7. Effects of comprehensive function of factors on retention behavior of microparticles in gravitational field-flow fractionation.

    PubMed

    Guo, Shuang; Qiu, Bai-Ling; Zhu, Chen-Qi; Yang, Ya-Ya Gao; Wu, Di; Liang, Qi-Hui; Han, Nan-Yin

    2016-09-15

    Gravitational field-flow fractionation (GrFFF) is a useful technique for separation and characterization for micrometer-sized particles. Elution behavior of micrometer-sized particles in GrFFF was researched in this study. Particles in GrFFF channel are subject to hydrodynamic lift forces (HLF), fluid inertial forces and gravity, which drive them to different velocities by carrier flow, resulting in a size-based separation. Effects of ionic strength, flow rate and viscosity as well as methanol were investigated using polystyrene latex beads as model particles. This study is devoted to experimental verification of the effect of every factor and their comprehensive function. All experiments were performed to show isolated influence of every variable factor. The orthogonal design test was used to evaluate various factors comprehensively. Results suggested that retention ratio of particles increases with increasing flow rate or the viscosity of carrier liquid by adjusting external forces acting on particles. In addition, retention ratio increases as ionic strength decreases because of decreased electrostatic repulsion between particles and channel accumulation wall. As far as methanol, there is no general trend due to the change of both density and viscosity. On the basis of orthogonal design test it was found that viscosity of carrier liquid plays a significant role in determining resolution of micrometer-sized particles in GrFFF. PMID:27447927

  8. Development and evaluation of methods for starch dissolution using asymmetrical flow field-flow fractionation. Part II: Dissolution of amylose.

    PubMed

    Perez-Rea, Daysi; Bergenståhl, Björn; Nilsson, Lars

    2016-02-01

    In this paper, we investigate whether dissolution in water under autoclaving conditions (140 °C, 20 min) or in dimethyl sulfoxide, DMSO (100 °C, 1 h), is preferable for characterization of amylose. Two types of amylose, potato and maize, were dissolved either in water using an autoclave or in DMSO. On the aqueous solutions obtained, the extent of molecular dissolution of the sample (referred to as the dissolution yield) was determined by enzymatic analysis as well as the molecular properties, such as molar mass and root-mean-square radius, obtained with asymmetrical flow field-flow fractionation coupled to multi-angle light scattering and differential refractive index detection (AF4-MALS-dRI). The results showed that both dissolution methods are efficient at dissolving amylose. However, AF4-MALS-dRI analysis revealed substantial differences. Amylose aqueous solutions obtained by dissolution in DMSO were relatively stable over time, but the dissolution method in autoclave caused some degradation of the molecules, and their solutions display a high tendency to retrograde. PMID:26232931

  9. Sedimentation field flow fractionation of immunoglobulin A coated polystyrene beads. Influence of carrier composition on complex characterization.

    PubMed

    Contado, Catia; Bregola, Letizia; Dondi, Francesco

    2007-10-26

    The amount of immunoglobulin A (IgA) adsorbed on the surface of two different samples of polystyrene (PS) microbeads was evaluated using differential sedimentation field flow fractionation (SdFFF) analyses. For the first time, the SdFFF separations obtained by using, as mobile phase, solutions common to many biochemical procedures and applications have been compared and discussed. Good separation results were achieved in the different carriers, and the SdFFF gave equivalent mass per particle values in all carriers provided that the pH and ionic strength conditions of the eluents were well controlled. The IgA adsorption process onto PS occurred by maintaining unaltered the capacity of the PS-IgA substrate to selectively recognize anti-IgA (aIgA), as proven by elution of the ternary complex PS-IgA-aIgA and from the monitored lack of reaction when the PS-IgA was placed in contact with aIgE.

  10. Asymmetrical flow field-flow fractionation coupled with multiple detections: A complementary approach in the characterization of egg yolk plasma.

    PubMed

    Dou, Haiyang; Li, Yueqiu; Choi, Jaeyeong; Huo, Shuying; Ding, Liang; Shen, Shigang; Lee, Seungho

    2016-09-23

    The capability of asymmetrical flow field-flow fractionation (AF4) coupled with UV/VIS, multiangle light scattering (MALS) and quasi-elastic light scattering (QELS) (AF4-UV-MALS-QELS) for separation and characterization of egg yolk plasma was evaluated. The accuracy of hydrodynamic radius (Rh) obtained from QELS and AF4 theory (using both simplified and full expression of AF4 retention equations) was discussed. The conformation of low density lipoprotein (LDL) and its aggregates in egg yolk plasma was discussed based on the ratio of radius of gyration (Rg) to Rh together with the results from bio-transmission electron microscopy (Bio-TEM). The results indicate that the full retention equation is more relevant than simplified version for the Rh determination at high cross flow rate. The Rh from online QELS is reliable only at a specific range of sample concentration. The effect of programmed cross flow rate (linear and exponential decay) on the analysis of egg yolk plasma was also investigated. It was found that the use of an exponentially decaying cross flow rate not only reduces the AF4 analysis time of the egg yolk plasma, but also provides better resolution than the use of either a constant or linearly decaying cross flow rate. A combination of an exponentially decaying cross flow AF4-UV-MALS-QELS and the utilization of full retention equation was proved to be a useful method for the separation and characterization of egg yolk plasma. PMID:27582461

  11. Asymmetrical flow field-flow fractionation coupled with multiple detections: A complementary approach in the characterization of egg yolk plasma.

    PubMed

    Dou, Haiyang; Li, Yueqiu; Choi, Jaeyeong; Huo, Shuying; Ding, Liang; Shen, Shigang; Lee, Seungho

    2016-09-23

    The capability of asymmetrical flow field-flow fractionation (AF4) coupled with UV/VIS, multiangle light scattering (MALS) and quasi-elastic light scattering (QELS) (AF4-UV-MALS-QELS) for separation and characterization of egg yolk plasma was evaluated. The accuracy of hydrodynamic radius (Rh) obtained from QELS and AF4 theory (using both simplified and full expression of AF4 retention equations) was discussed. The conformation of low density lipoprotein (LDL) and its aggregates in egg yolk plasma was discussed based on the ratio of radius of gyration (Rg) to Rh together with the results from bio-transmission electron microscopy (Bio-TEM). The results indicate that the full retention equation is more relevant than simplified version for the Rh determination at high cross flow rate. The Rh from online QELS is reliable only at a specific range of sample concentration. The effect of programmed cross flow rate (linear and exponential decay) on the analysis of egg yolk plasma was also investigated. It was found that the use of an exponentially decaying cross flow rate not only reduces the AF4 analysis time of the egg yolk plasma, but also provides better resolution than the use of either a constant or linearly decaying cross flow rate. A combination of an exponentially decaying cross flow AF4-UV-MALS-QELS and the utilization of full retention equation was proved to be a useful method for the separation and characterization of egg yolk plasma.

  12. Characterization of Silver Nanoparticles under Environmentally Relevant Conditions Using Asymmetrical Flow Field-Flow Fractionation (AF4)

    PubMed Central

    Jang, Min-Hee; Lee, Seungho; Hwang, Yu Sik

    2015-01-01

    The development of methods to monitor manufactured nanomaterials in the environment is one of the crucial areas for the assessment of their risk. More specifically, particle size analysis is a key element, because many properties of nanomaterial are size dependent. The sizing of nanomaterials in real environments is challenging due to their heterogeneity and reactivity with other environmental components. In this study, the fractionation and characterization of a mixture of polyvinylpyrrolidone-coated silver nanoparticles (PVP-AgNPs) of three different sizes were investigated using asymmetrical flow field-flow fractionation (AF4) coupled with UV-Vis spectrophotometry. In particular, the effects of electrolyte composition and natural organic matter (NOM) on the particle size and stability were evaluated. The fractogram peaks (i.e., stability) of three different AgNPs decreased in the presence of both 10 mM NaCl and 10mM CaCl2, while increased with increasing concentration of humic acid (HA). In addition, the hydrodynamic diameters of AgNPs in both electrolytes slightly increased with an increase of HA concentration, suggesting the adsorption (coating) of HA onto the particle surface. It is also interesting to note that an increase in the particle size depended on the types of electrolyte, which could be explained by the conformational characteristics of the adsorbed HA layers. Consistent these results, AgNPs suspended in lake water containing relatively high concentration of organic carbon (TOC) showed higher particle stability and larger particle size (i.e., by approximately 4nm) than those in river water. In conclusion, the application of AF4 coupled with highly sensitive detectors could be a powerful method to characterize nanoparticles in natural waters. PMID:26575993

  13. Characterization of Silver Nanoparticles under Environmentally Relevant Conditions Using Asymmetrical Flow Field-Flow Fractionation (AF4).

    PubMed

    Jang, Min-Hee; Lee, Seungho; Hwang, Yu Sik

    2015-01-01

    The development of methods to monitor manufactured nanomaterials in the environment is one of the crucial areas for the assessment of their risk. More specifically, particle size analysis is a key element, because many properties of nanomaterial are size dependent. The sizing of nanomaterials in real environments is challenging due to their heterogeneity and reactivity with other environmental components. In this study, the fractionation and characterization of a mixture of polyvinylpyrrolidone-coated silver nanoparticles (PVP-AgNPs) of three different sizes were investigated using asymmetrical flow field-flow fractionation (AF4) coupled with UV-Vis spectrophotometry. In particular, the effects of electrolyte composition and natural organic matter (NOM) on the particle size and stability were evaluated. The fractogram peaks (i.e., stability) of three different AgNPs decreased in the presence of both 10 mM NaCl and 10 mM CaCl2, while increased with increasing concentration of humic acid (HA). In addition, the hydrodynamic diameters of AgNPs in both electrolytes slightly increased with an increase of HA concentration, suggesting the adsorption (coating) of HA onto the particle surface. It is also interesting to note that an increase in the particle size depended on the types of electrolyte, which could be explained by the conformational characteristics of the adsorbed HA layers. Consistent these results, AgNPs suspended in lake water containing relatively high concentration of organic carbon (TOC) showed higher particle stability and larger particle size (i.e., by approximately 4 nm) than those in river water. In conclusion, the application of AF4 coupled with highly sensitive detectors could be a powerful method to characterize nanoparticles in natural waters. PMID:26575993

  14. Online Coupling of Flow-Field Flow Fractionation and Single Particle Inductively Coupled Plasma-Mass Spectrometry: Characterization of Nanoparticle Surface Coating Thickness and Aggregation State

    EPA Science Inventory

    Surface coating thickness and aggregation state have strong influence on the environmental fate, transport, and toxicity of engineered nanomaterials. In this study, flow-field flow fractionation coupled on-line with single particle inductively coupled plasma-mass spectrometry i...

  15. Feasibility study of red blood cell debulking by magnetic field-flow fractionation with step-programmed flow.

    PubMed

    Moore, Lee R; Williams, P Stephen; Nehl, Franziska; Abe, Koji; Chalmers, Jeffrey J; Zborowski, Maciej

    2014-02-01

    Emerging applications of rare cell separation and analysis, such as separation of mature red blood cells from hematopoietic cell cultures, require efficient methods of red blood cell (RBC) debulking. We have tested the feasibility of magnetic RBC separation as an alternative to centrifugal separation using an approach based on the mechanism of magnetic field-flow fractionation (MgFFF). A specially designed permanent magnet assembly generated a quadrupole field having a maximum field of 1.68 T at the magnet pole tips, zero field at the aperture axis, and a nearly constant radial field gradient of 1.75 T/mm (with a negligible angular component) inside a cylindrical aperture of 1.9 mm (diameter) and 76 mm (length). The cell samples included high-spin hemoglobin RBCs obtained by chemical conversion of hemoglobin to methemoglobin (met RBC) or by exposure to anoxic conditions (deoxy RBC), low-spin hemoglobin obtained by exposure of RBC suspension to ambient air (oxy RBC), and mixtures of deoxy RBC and cells from a KG-1a white blood cell (WBC) line. The observation that met RBCs did not elute from the channel at the lower flow rate of 0.05 mL/min applied for 15 min but quickly eluted at the subsequent higher flow rate of 2.0 mL/min was in agreement with FFF theory. The well-defined experimental conditions (precise field and flow characteristics) and a well-established FFF theory verified by studies with model cell systems provided us with a strong basis for making predictions about potential practical applications of the magnetic RBC separation.

  16. Characterizing changes in levan physicochemical properties in different pH environments using asymmetric flow field-flow fractionation.

    PubMed

    Runyon, J Ray; Nilsson, Lars; Ulmius, Matilda; Castro, Alejandra; Ionescu, Ruxandra; Andersson, Claes; Schmidt, Christoph

    2014-02-01

    The purpose of this study was to assess the stability of the polyfructan levan under different pH solution conditions by monitoring changes in the levan physicochemical properties, such as molar mass (M), root mean square radius (r(rms)), hydrodynamic radius (r(h)), structure factor (r(rms)/r(h)), and aggregation state with respect to solution pH and hydrolysis time. A commercial levan produced from Z. Mobilis was characterized using asymmetric flow field-flow fractionation (AF4) in combination with online multiangle light scattering (MALS) and differential refractive index (dRI) detection. Under neutral pH solution conditions the levan was found to have a M ranging from 10(5) to 5 × 10(7) g/mol, a r(rms) ranging from ~25 to 100 nm and a r(h) from ~3 to 151 nm. Two populations were observed in the sample. One population with a M less than 106 g/mol which represented ~60 % of the sample and a second population with an ultrahigh M up to 5 × 10(7) g/mol, which comprised ~40 % of the sample. The measured r(rms)/r(h) structure factor decreased from 1.8 to 0.65 across the AF4 fractogram indicating that early eluting low M levan species had a random coil configuration and late eluting high M species had more homogeneous spherical structures. The measured apparent density values decreased from 80 to 10 kg/m(3) across the elution profile and suggest that the observed second population also contains aggregates. The stability of levan in different pH conditions ranging from 1.3 to 8.5 was assessed by tracking changes in the average M and r(h), and monitoring the formation of fructose over 1 week. The onset of levan acid hydrolysis was observed to occur sooner at lower pH conditions and no hydrolysis was observed for pH 5.5 and higher.

  17. Characterization of branched ultrahigh molar mass polymers by asymmetrical flow field-flow fractionation and size exclusion chromatography.

    PubMed

    Otte, T; Pasch, H; Macko, T; Brüll, R; Stadler, F J; Kaschta, J; Becker, F; Buback, M

    2011-07-01

    The molar mass distribution (MMD) of synthetic polymers is frequently analyzed by size exclusion chromatography (SEC) coupled to multi angle light scattering (MALS) detection. For ultrahigh molar mass (UHM) or branched polymers this method is not sufficient, because shear degradation and abnormal elution effects falsify the calculated molar mass distribution and information on branching. High temperatures above 130 °C have to be applied for dissolution and separation of semi-crystalline materials like polyolefins which requires special hardware setups. Asymmetrical flow field-flow fractionation (AF4) offers the possibility to overcome some of the main problems of SEC due to the absence of an obstructing porous stationary phase. The SEC-separation mainly depends on the pore size distribution of the used column set. The analyte molecules can enter the pores of the stationary phase in dependence on their hydrodynamic volume. The archived separation is a result of the retention time of the analyte species inside SEC-column which depends on the accessibility of the pores, the residence time inside the pores and the diffusion ability of the analyte molecules. The elution order in SEC is typically from low to high hydrodynamic volume. On the contrary AF4 separates according to the diffusion coefficient of the analyte molecules as long as the chosen conditions support the normal FFF-separation mechanism. The separation takes place in an empty channel and is caused by a cross-flow field perpendicular to the solvent flow. The analyte molecules will arrange in different channel heights depending on the diffusion coefficients. The parabolic-shaped flow profile inside the channel leads to different elution velocities. The species with low hydrodynamic volume will elute first while the species with high hydrodynamic volume elute later. The AF4 can be performed at ambient or high temperature (AT-/HT-AF4). We have analyzed one low molar mass polyethylene sample and a number of

  18. Chemical speciation studies on DU contaminated soils using flow field flow fractionation linked to inductively coupled plasma mass spectrometry (FlFFF-ICP-MS).

    PubMed

    Brittain, S R; Cox, A G; Tomos, A D; Paterson, E; Siripinyanond, A; McLeod, C W

    2012-03-01

    Flow field flow fractionation (FlFFF) in combination with inductively coupled plasma mass spectrometry (ICP-MS) was used to study the chemical speciation of U and trace metals in depleted uranium (DU) contaminated soils. A chemical extraction procedure using sodium pyrophosphate, followed by isolation of humic and fulvic substances was applied to two dissimilar DU contaminated sample types (a sandy soil and a clay-rich soil), in addition to a control soil. The sodium pyrophosphate fractions of the firing range soils (Eskmeals and Kirkcudbright) were found to contain over 50% of the total U (measured after aqua regia digestion), compared to approximately 10% for the control soil. This implies that the soils from the contaminated sites contained a large proportion of the U within more easily mobile soil fractions. Humic and fulvic acid fractions each gave characteristic peak maxima for analytes of interest (Mn, Fe, Cu, Zn, Pb and U), with the fulvic acid fraction eluting at a smaller diameter (approximately 2.1 nm on average) than the humic fraction (approximately 2.4 nm on average). DU in the fulvic acid fraction gave a bimodal peak, not apparent for other trace elements investigated, including natural U. This implies that DU interacts with the fulvic acid fraction in a different way to all other elements studied. PMID:22237634

  19. A new analytical platform based on field-flow fractionation and olfactory sensor to improve the detection of viable and non-viable bacteria in food.

    PubMed

    Roda, Barbara; Mirasoli, Mara; Zattoni, Andrea; Casale, Monica; Oliveri, Paolo; Bigi, Alessandro; Reschiglian, Pierluigi; Simoni, Patrizia; Roda, Aldo

    2016-10-01

    An integrated sensing system is presented for the first time, where a metal oxide semiconductor sensor-based electronic olfactory system (MOS array), employed for pathogen bacteria identification based on their volatile organic compound (VOC) characterisation, is assisted by a preliminary separative technique based on gravitational field-flow fractionation (GrFFF). In the integrated system, a preliminary step using GrFFF fractionation of a complex sample provided bacteria-enriched fractions readily available for subsequent MOS array analysis. The MOS array signals were then analysed employing a chemometric approach using principal components analysis (PCA) for a first-data exploration, followed by linear discriminant analysis (LDA) as a classification tool, using the PCA scores as input variables. The ability of the GrFFF-MOS system to distinguish between viable and non-viable cells of the same strain was demonstrated for the first time, yielding 100 % ability of correct prediction. The integrated system was also applied as a proof of concept for multianalyte purposes, for the detection of two bacterial strains (Escherichia coli O157:H7 and Yersinia enterocolitica) simultaneously present in artificially contaminated milk samples, obtaining a 100 % ability of correct prediction. Acquired results show that GrFFF band slicing before MOS array analysis can significantly increase reliability and reproducibility of pathogen bacteria identification based on their VOC production, simplifying the analytical procedure and largely eliminating sample matrix effects. The developed GrFFF-MOS integrated system can be considered a simple straightforward approach for pathogen bacteria identification directly from their food matrix. Graphical abstract An integrated sensing system is presented for pathogen bacteria identification in food, in which field-flow fractionation is exploited to prepare enriched cell fractions prior to their analysis by electronic olfactory system

  20. Bile Salt Micelles and Phospholipid Vesicles Present in Simulated and Human Intestinal Fluids: Structural Analysis by Flow Field-Flow Fractionation/Multiangle Laser Light Scattering.

    PubMed

    Elvang, Philipp A; Hinna, Askell H; Brouwers, Joachim; Hens, Bart; Augustijns, Patrick; Brandl, Martin

    2016-09-01

    Knowledge about colloidal assemblies present in human intestinal fluids (HIFs), such as bile salt micelles and phospholipid vesicles, is regarded of importance for a better understanding of the in vivo dissolution and absorption behavior of poorly soluble drugs (Biopharmaceutics Classification System class II/IV drugs) because of their drug-solubilizing ability. The characterization of these potential drug-solubilizing compartments is a prerequisite for further studies of the mechanistic interplays between drug molecules and colloidal structures within HIFs. The aim of the present study was to apply asymmetrical flow field-flow fractionation (AF4) in combination with multiangle laser light scattering in an attempt to reveal coexistence of colloidal particles in both artificial and aspirated HIFs and to determine their sizes. Asymmetrical flow field-flow fractionation/multiangle laser light scattering analysis of the colloidal phase of intestinal fluids allowed for a detailed insight into the whole spectrum of submicron- to micrometer-sized particles. With respect to the simulated intestinal fluids mimicking fasted and fed state (FaSSIF-V1 and FeSSIF-V1, respectively), FaSSIF contained one distinct size fraction of colloidal assemblies, whereas FeSSIF contained 2 fractions of colloidal species with significantly different sizes. These size fractions likely represent (1) mixed taurocholate-phospholipid-micelles, as indicated by a size range up to 70 nm (in diameter) and a strong UV absorption and (2) small phospholipid vesicles of 90-210 nm diameter. In contrast, within the colloidal phase of the fasted state aspirate of a human volunteer, 4 different size fractions were separated from each other in a consistent and reproducible manner. The 2 fractions containing large particles showed mean sizes of approximately 50 and 200 nm, respectively (intensity-weighted mean diameter, Dz), likely representing mixed cholate/phospholipid micelles and phospholipid vesicles

  1. Asymmetric flow-field flow fractionation-multidetection coupling for assessing colloidal copper in drain waters from a Bordeaux wine-growing area.

    PubMed

    El Hadri, Hind; Lespes, Gaëtane; Chéry, Philippe; Potin-Gautier, Martine

    2014-02-01

    The objective of this study was to show that on-line asymmetric flow-field flow fractionation (AFFFF)-multidetection coupling is useful for studying environmental colloids in a qualitative and quantitative way. The utility of the technique was illustrated by assessing the colloidal fraction of the copper that was extracted from the soil, transferred to an aqueous phase and then transported by drain waters in a wine-growing area. To determine the size and composition of the colloids, AFFFF was coupled to UV, multi-angle light scattering and inductively coupled plasma mass spectrometry detectors. Colloidal copper represents between 20 and 60% of the total copper in the sub 450 nm of drain waters. Copper is mainly associated with organic-rich colloids with a size below 10 nm. It is also found in organo-mineral populations (as clay or (oxy)hydroxides), with sizes ranging between 10 and 450 nm.

  2. Top-down and bottom-up lipidomic analysis of rabbit lipoproteins under different metabolic conditions using flow field-flow fractionation, nanoflow liquid chromatography and mass spectrometry.

    PubMed

    Byeon, Seul Kee; Kim, Jin Yong; Lee, Ju Yong; Chung, Bong Chul; Seo, Hong Seog; Moon, Myeong Hee

    2015-07-31

    This study demonstrated the performances of top-down and bottom-up approaches in lipidomic analysis of lipoproteins from rabbits raised under different metabolic conditions: healthy controls, carrageenan-induced inflammation, dehydration, high cholesterol (HC) diet, and highest cholesterol diet with inflammation (HCI). In the bottom-up approach, the high density lipoproteins (HDL) and the low density lipoproteins (LDL) were size-sorted and collected on a semi-preparative scale using a multiplexed hollow fiber flow field-flow fractionation (MxHF5), followed by nanoflow liquid chromatography-ESI-MS/MS (nLC-ESI-MS/MS) analysis of the lipids extracted from each lipoprotein fraction. In the top-down method, size-fractionated lipoproteins were directly infused to MS for quantitative analysis of targeted lipids using chip-type asymmetrical flow field-flow fractionation-electrospray ionization-tandem mass spectrometry (cAF4-ESI-MS/MS) in selected reaction monitoring (SRM) mode. The comprehensive bottom-up analysis yielded 122 and 104 lipids from HDL and LDL, respectively. Rabbits within the HC and HCI groups had lipid patterns that contrasted most substantially from those of controls, suggesting that HC diet significantly alters the lipid composition of lipoproteins. Among the identified lipids, 20 lipid species that exhibited large differences (>10-fold) were selected as targets for the top-down quantitative analysis in order to compare the results with those from the bottom-up method. Statistical comparison of the results from the two methods revealed that the results were not significantly different for most of the selected species, except for those species with only small differences in concentration between groups. The current study demonstrated that top-down lipid analysis using cAF4-ESI-MS/MS is a powerful high-speed analytical platform for targeted lipidomic analysis that does not require the extraction of lipids from blood samples.

  3. Improved particle counting and size distribution determination of aggregated virus populations by asymmetric flow field-flow fractionation and multiangle light scattering techniques.

    PubMed

    McEvoy, Matt; Razinkov, Vladimir; Wei, Ziping; Casas-Finet, Jose R; Tous, Guillermo I; Schenerman, Mark A

    2011-01-01

    A method using a combination of asymmetric flow field-flow fractionation (AFFFF) and multiangle light scattering (MALS) techniques has been shown to improve the estimation of virus particle counts and the amount of aggregated virus in laboratory samples. The method is based on the spherical particle counting approach given by Wyatt and Weida in 2004, with additional modifications. The new method was tested by analyzing polystyrene beads and adenovirus samples, both having a well-characterized particle size and concentration. Influenza virus samples were analyzed by the new AFFFF-MALS technique, and particle size and aggregate state were compared with results from atomic force microscopy analysis. The limitations and source of possible errors for the new AFFFF-MALS analysis are discussed.

  4. Application of a high-performance liquid chromatography fluorescence detector as a nephelometric turbidity detector following Field-Flow Fractionation to analyse size distributions of environmental colloids.

    PubMed

    v d Kammer, F; Baborowski, M; Friese, K

    2005-12-23

    A new operation mode for HPLC-type fluorescence detectors is presented and evaluated using synthetic and environmental particles in the colloidal size range. By applying identical wavelengths for excitation and emission a nephelometric turbidity or single angle light scattering detector is created which can be easily coupled to flow or sedimentation Field-Flow Fractionation (Flow FFF or Sed FFF) for the analysis of colloidal dispersions. The results are compared with standard UV-vis detection methods. Signals obtained are given as a function of particle size and selected detection wavelength. Conclusions can be drawn which affect the current practice of FFF but also for other techniques as groundwater sampling and laboratory column experiments when turbidity is measured in nephelometric mode and in small sample volumes or at low flow rates.

  5. TiO2 in commercial sunscreen lotion: flow field-flow fractionation and ICP-AES together for size analysis.

    PubMed

    Contado, Catia; Pagnoni, Antonella

    2008-10-01

    A new method for determining the size of titanium dioxide particles is proposed and assayed in a commercial sunscreen product. Today many sun protection cosmetics incorporate physical UV filters as active ingredients, and there are no official methods for determining these compounds in sunscreen cosmetics. Here flow field-flow fractionation (FlFFF) has been tested, first to sort two different types of TiO2 nano- and microstandard materials (AeroxideTiO2 Degussa P-25 and TiO2 rutile 0.1-0.2-microm size) and then to fractionate TiO2 particles, extracted from a commercial sunscreen lotion. All the TiO2 FlFFF separations were detected by UV but during elution fractions were collected and their Ti content measured by inductively coupled plasma-atomic emission spectrometer (ICP-AES); the Ti concentration profiles obtained by ICP-AES were well correlated with the UV signals. The TiO2 particle mass-size distribution were calculated from the UV profiles. This methodology is relatively simple and rapid, and the sample treatment is as a whole easy and low cost.

  6. Study on aggregation behavior of low density lipoprotein in hen egg yolk plasma by asymmetrical flow field-flow fractionation coupled with multiple detectors.

    PubMed

    Dou, Haiyang; Magnusson, Emma; Choi, Jaeyeong; Duan, Fei; Nilsson, Lars; Lee, Seungho

    2016-02-01

    In this study, asymmetrical flow field-flow fractionation (AF4) coupled online with UV, multiangle light scattering (MALS), and fluorescence (FS) detectors (AF4-UV-MALS-FS) was employed for separation and characterization of egg yolk plasma. AF4 provided separation of three major components of the egg yolk plasma i.e. soluble proteins, low density lipoproteins (LDL) and their aggregates, based on their respective hydrodynamic sizes. Identification of LDL was confirmed by staining the sample with a fluorescent dye, Nile Red. The effect of carrier liquids on aggregation of LDL was investigated. Collected fractions of soluble proteins were characterized using sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE). Moreover, the effect of heat and enzymatic treatment on egg yolk plasma was investigated. The results suggest that enzymatic treatment with phospholipase A2 (PLA2) significantly enhances the heat stability of LDL. The results show that AF4-UV-MALS-FS is a powerful tool for the fractionation and characterization of egg yolk plasma components.

  7. Flow field-flow fractionation for the analysis and characterization of natural colloids and manufactured nanoparticles in environmental systems: a critical review.

    PubMed

    Baalousha, M; Stolpe, B; Lead, J R

    2011-07-01

    The use of flow field flow fractionation (FlFFF) for the separation and characterization of natural colloids and nanoparticles has increased in the last few decades. More recently, it has become a popular method for the characterization of manufactured nanoparticles. Unlike conventional filtration methods, FlFFF provides a continuous and high-resolution separation of nanoparticles as a function of their diffusion coefficient, hence the interest for use in determining particle size distribution. Moreover, when coupled to other detectors such as inductively coupled plasma-mass spectroscopy, light scattering, UV-absorbance, fluorescence, transmission electron microscopy, and atomic force microscopy, FlFFF provides a wealth of information on particle properties including, size, shape, structural parameters, chemical composition and particle-contaminant association. This paper will critically review the application of FlFFF for the characterization of natural colloids and natural and manufactured nanoparticles. Emphasis will be given to the detection systems that can be used to characterize the nanoparticles eluted from the FlFFF system, the obtained information and advantages and limitation of FlFFF compared to other fractionation and particle sizing techniques. This review will help users understand (i) the theoretical principles and experimental consideration of the FlFFF, (ii) the range of analytical tools that can be used to further characterize the nanoparticles after fractionation by FlFFF, (iii) how FlFFF results are compared to other analytical techniques and (iv) the range of applications of FlFFF for natural and manufactured NPs.

  8. The potential of asymmetric flow field-flow fractionation hyphenated to multiple detectors for the quantification and size estimation of silica nanoparticles in a food matrix.

    PubMed

    Heroult, Julien; Nischwitz, Volker; Bartczak, Dorota; Goenaga-Infante, Heidi

    2014-06-01

    This work represents a first systematic approach to the size-based elemental quantification and size estimation of metal(loid) oxide nanoparticles such as silica (SiO2) in a real food matrix using asymmetric flow field-flow fractionation coupled online with inductively coupled plasma mass spectrometry (ICP-MS) and multi-angle light scattering (MALS) and offline with transmission electron microscopy (TEM) with energy-dispersive X-ray analysis (EDAX). Coffee creamer was selected as the model sample since it is known to contain silica as well as metal oxides such as titania at the milligramme per kilogramme levels. Optimisation of sample preparation conditions such as matrix-to-solvent ratio, defatting with organic solvents and sonication time that may affect nanoparticle size and size distribution in suspensions was investigated. Special attention was paid to the selection of conditions that minimise particle transformation during sample preparation and analysis. The coffee creamer matrix components were found to stabilise food grade SiO2 particles in comparison with water suspensions whilst no significant effect of defatting using hexane was found. The use of sample preparation procedures that mimic food cooking in real life was also investigated regarding their effect on particle size and particle size distribution of silica nanoparticles in the investigated food matrix; no significant effect of the water temperature ranging from ambient temperature to 60 °C was observed. Field-flow fractionation coupled to inductively coupled plasma-mass spectrometry (FFF-ICP-MS) analysis of extracts of both unspiked coffee creamer and coffee creamer spiked with food grade silicon dioxide, using different approaches for size estimation, enabled determination of SiO2 size-based speciation. Element-specific detection by ICP-MS and post-FFF calibration with elemental calibration standards was used to determine the elemental composition of size fractions separated online by FFF

  9. Combining asymmetrical flow field-flow fractionation with on- and off-line fluorescence detection to examine biodegradation of riverine dissolved and particulate organic matter.

    PubMed

    Lee, Sang Tak; Yang, Boram; Kim, Jin-Yong; Park, Ji-Hyung; Moon, Myeong Hee

    2015-08-28

    This study demonstrated that asymmetrical flow field-flow fractionation (AF4) coupled with on-line UV and fluorescence detection (FLD) and off-line excitation-emission matrix (EEM) fluorescence spectroscopy can be employed to analyze the influence of microbial metabolic activity on the consumption and production of freshwater organic matter. With the AF4 system, organic matter is on-line enriched during a focusing/relaxation period, which is an essential process prior to separation. Size-fractionated chromophoric and fluorophoric organic materials were simultaneously monitored during the 30-min AF4 separation process. Two fractions of different sizes (dissolved organic matter (DOM) and particulate organic matter (POM)) of freshwater samples from three locations (up-, mid-, and downstream) along the Han River basin of Korea were incubated with the same inoculum for 14 days to analyze fraction-specific alterations in optical properties using AF4-UV-FLD. A comparison of AF4 fractograms obtained from pre- and post-incubation samples revealed that POM-derived DOM were more susceptible to microbial metabolic activity than was DOM. Preferential microbial consumption of protein-like DOM components concurred with enhanced peaks of chromophoric and humic-like fluorescent components, presumably formed as by-products of microbial processing. AF4-UV-FLD combined with off-line identification of microbially processed components using EEM fluorescence spectroscopy provides a powerful tool to study the relationship between microbial activity and composition as well as biodegradability of DOM and POM-derived DOM from different origins, especially for the analysis of chromophoric and fluorophoric organic matter that are consumed and produced by microbial metabolic activity. The proposed AF4 system can be applied to organic matter in freshwater samples having low concentration range (0.3-2.5ppm of total organic carbon) without a pre-concentration procedure. PMID:26233252

  10. Combining asymmetrical flow field-flow fractionation with on- and off-line fluorescence detection to examine biodegradation of riverine dissolved and particulate organic matter.

    PubMed

    Lee, Sang Tak; Yang, Boram; Kim, Jin-Yong; Park, Ji-Hyung; Moon, Myeong Hee

    2015-08-28

    This study demonstrated that asymmetrical flow field-flow fractionation (AF4) coupled with on-line UV and fluorescence detection (FLD) and off-line excitation-emission matrix (EEM) fluorescence spectroscopy can be employed to analyze the influence of microbial metabolic activity on the consumption and production of freshwater organic matter. With the AF4 system, organic matter is on-line enriched during a focusing/relaxation period, which is an essential process prior to separation. Size-fractionated chromophoric and fluorophoric organic materials were simultaneously monitored during the 30-min AF4 separation process. Two fractions of different sizes (dissolved organic matter (DOM) and particulate organic matter (POM)) of freshwater samples from three locations (up-, mid-, and downstream) along the Han River basin of Korea were incubated with the same inoculum for 14 days to analyze fraction-specific alterations in optical properties using AF4-UV-FLD. A comparison of AF4 fractograms obtained from pre- and post-incubation samples revealed that POM-derived DOM were more susceptible to microbial metabolic activity than was DOM. Preferential microbial consumption of protein-like DOM components concurred with enhanced peaks of chromophoric and humic-like fluorescent components, presumably formed as by-products of microbial processing. AF4-UV-FLD combined with off-line identification of microbially processed components using EEM fluorescence spectroscopy provides a powerful tool to study the relationship between microbial activity and composition as well as biodegradability of DOM and POM-derived DOM from different origins, especially for the analysis of chromophoric and fluorophoric organic matter that are consumed and produced by microbial metabolic activity. The proposed AF4 system can be applied to organic matter in freshwater samples having low concentration range (0.3-2.5ppm of total organic carbon) without a pre-concentration procedure.

  11. A quantitative determination of magnetic nanoparticle separation using on-off field operation of quadrupole magnetic field-flow fractionation (QMgFFF).

    PubMed

    Orita, Toru; Moore, Lee R; Joshi, Powrnima; Tomita, Masahiro; Horiuchi, Takashi; Zborowski, Maciej

    2013-01-01

    Quadrupole Magnetic Field-Flow Fractionation (QMgFFF) is a technique for characterization of sub-micrometer magnetic particles based on their retention in the magnetic field from flowing suspensions. Different magnetic field strengths and volumetric flow rates were tested using on-off field application and two commercial nanoparticle preparations that significantly differed in their retention parameter, λ (by nearly 8-fold). The fractograms showed a regular pattern of higher retention (98.6% v. 53.3%) for the larger particle (200 nm v. 90 nm) at the higher flow rate (0.05 mL/min v. 0.01 mL/min) at the highest magnetic field (0.52 T), as expected because of its lower retention parameter. The significance of this approach is a demonstration of a system that is simpler in operation than a programmed field QMgFFF in applications to particle mixtures consisting of two distinct particle fractions. This approach could be useful for detection of unwanted particulate contaminants, especially important in industrial and biomedical applications.

  12. The role of nanominerals and mineral nanoparticles in the transport of toxic trace metals: Field-flow fractionation and analytical TEM analyses after nanoparticle isolation and density separation

    NASA Astrophysics Data System (ADS)

    Plathe, Kelly L.; von der Kammer, Frank; Hassellöv, Martin; Moore, Johnnie N.; Murayama, Mitsuhiro; Hofmann, Thilo; Hochella, Michael F.

    2013-02-01

    Nanominerals and mineral nanoparticles from a mining-contaminated river system were examined to determine their potential to co-transport toxic trace metals. A recent large-scale dam removal project on the Clark Fork River in western Montana (USA) has released reservoir and upstream sediments contaminated with toxic trace metals (Pb, As, Cu and Zn), which had accumulated there as a consequence of more than a century and a half of mining activity proximal to the river's headwaters near the cities of Butte and Anaconda. To isolate the high-density nanoparticle fractions from riverbed and bank sediments, a density separation with sodium polytungstate (2.8 g/cm3) was employed prior to a standard nanoparticle extraction procedure. The stable, dispersed nanoparticulate fraction was then analyzed by analytical transmission electron microscopy (aTEM) and flow field-flow fractionation (FlFFF) coupled to both multi-angle laser light scattering (MALLS) and high-resolution, inductively coupled plasma mass spectrometry (HR-ICPMS). FlFFF analysis revealed a size distribution in the nano range and that the elution profiles of the trace metals matched most closely to that for Fe and Ti. aTEM confirmed these results as the majority of the Fe and Ti oxides analyzed were associated with one or more of the trace metals of interest. The main mineral phases hosting trace metals are goethite, ferrihydrite and brookite. This demonstrates that they are likely playing a significant role in dictating the transport and distribution of trace metals in this river system, which could affect the bioavailability and toxicity of these metals.

  13. Asymmetric flow field-flow fractionation coupled to inductively coupled plasma mass spectrometry for the quantification of quantum dots bioconjugation efficiency.

    PubMed

    Menéndez-Miranda, Mario; Encinar, Jorge Ruiz; Costa-Fernández, José M; Sanz-Medel, Alfredo

    2015-11-27

    Hyphenation of asymmetric flow field-flow fractionation (AF4) to an on-line elemental detection (inductively coupled plasma-mass spectrometry, ICP-MS) is proposed as a powerful diagnostic tool for quantum dots bioconjugation studies. In particular, conjugation effectiveness between a "model" monoclonal IgG antibody (Ab) and CdSe/ZnS core-shell Quantum Dots (QDs), surface-coated with an amphiphilic polymer, has been monitored here by such hybrid AF4-ICP-MS technique. Experimental conditions have been optimized searching for a proper separation between the sought bioconjugates from the eventual free reagents excesses employed during the bioconjugation (QDs and antibodies). Composition and pH of the carrier have been found to be critical parameters to ensure an efficient separation while ensuring high species recovery from the AF4 channel. An ICP-MS equipped with a triple quadropole was selected as elemental detector to enable sensitive and reliable simultaneous quantification of the elemental constituents, including sulfur, of the nanoparticulated species and the antibody. The hyphenated technique used provided nanoparticle size-based separation, elemental detection, and composition analysis capabilities that turned out to be instrumental in order to investigate in depth the Ab-QDs bioconjugation process. Moreover, the analytical strategy here proposed allowed us not only to clearly identify the bioconjugation reaction products but also to quantify nanoparticle:antibodies bioconjugation efficiency. This is a key issue in future development of analytical and bioanalytical photoluminescent QDs applications. PMID:26493473

  14. An improved methodology of asymmetric flow field flow fractionation hyphenated with inductively coupled mass spectrometry for the determination of size distribution of gold nanoparticles in dietary supplements.

    PubMed

    Mudalige, Thilak K; Qu, Haiou; Linder, Sean W

    2015-11-13

    Engineered nanoparticles are available in large numbers of commercial products claiming various health benefits. Nanoparticle absorption, distribution, metabolism, excretion, and toxicity in a biological system are dependent on particle size, thus the determination of size and size distribution is essential for full characterization. Number based average size and size distribution is a major parameter for full characterization of the nanoparticle. In the case of polydispersed samples, large numbers of particles are needed to obtain accurate size distribution data. Herein, we report a rapid methodology, demonstrating improved nanoparticle recovery and excellent size resolution, for the characterization of gold nanoparticles in dietary supplements using asymmetric flow field flow fractionation coupled with visible absorption spectrometry and inductively coupled plasma mass spectrometry. A linear relationship between gold nanoparticle size and retention times was observed, and used for characterization of unknown samples. The particle size results from unknown samples were compared to results from traditional size analysis by transmission electron microscopy, and found to have less than a 5% deviation in size for unknown product over the size range from 7 to 30 nm.

  15. Sedimentation field-flow fractionation for characterization of citric acid-modified Hβ zeolite particles: Effect of particle dispersion and carrier composition.

    PubMed

    Dou, Haiyang; Bai, Guoyi; Ding, Liang; Li, Yueqiu; Lee, Seungho

    2015-11-27

    In this study, sedimentation field-flow fractionation (SdFFF) was, for the first time, applied for determination of size distribution of Hβ zeolite particles modified by citric acid (CA-Hβ). Effects of the particle dispersion and the carrier liquid composition (type of dispersing reagent (surfactant) and salt added in the carrier liquid, ionic strength, and pH) on SdFFF elution behavior of CA-Hβ zeolite particles were systematically investigated. Also the SdFFF separation efficiency of the particles was discussed in terms of the forces such as van der Waals, hydrophobic, and induced-dipole interactions. Results reveal that the type of salt and pH of the carrier liquid significantly affect the SdFFF separation efficiency of the zeolite particles. It was found that addition of a salt (NaN3) into the carrier liquid affects the characteristic of the SdFFF channel surface. It was found that the use of an acidic medium (pH 3.2) leads to a particle-channel interaction, while the use of a basic medium (pH 10.6) promotes an inter-particle hydrophobic interaction. Result from SdFFF was compared with those from scanning electron microscopy (SEM) and dynamic light scattering (DLS). It seems that, once the experimental conditions are optimized, SdFFF becomes a valuable tool for size characterization of the zeolite particles.

  16. Characterization of winemaking yeast by cell number-size distribution analysis through flow field-flow fractionation with multi-wavelength turbidimetric detection.

    PubMed

    Zattoni, Andrea; Melucci, Dora; Reschiglian, Pierluigi; Sanz, Ramsés; Puignou, Lluís; Galceran, Maria Teresa

    2004-10-29

    Yeasts are widely used in several areas of food industry, e.g. baking, beer brewing, and wine production. Interest in new analytical methods for quality control and characterization of yeast cells is thus increasing. The biophysical properties of yeast cells, among which cell size, are related to yeast cell capabilities to produce primary and secondary metabolites during the fermentation process. Biophysical properties of winemaking yeast strains can be screened by field-flow fractionation (FFF). In this work we present the use of flow FFF (FlFFF) with turbidimetric multi-wavelength detection for the number-size distribution analysis of different commercial winemaking yeast varieties. The use of a diode-array detector allows to apply to dispersed samples like yeast cells the recently developed method for number-size (or mass-size) analysis in flow-assisted separation techniques. Results for six commercial winemaking yeast strains are compared with data obtained by a standard method for cell sizing (Coulter counter). The method here proposed gives, at short analysis time, accurate information on the number of cells of a given size, and information on the total number of cells.

  17. Agglomeration behaviour of titanium dioxide nanoparticles in river waters: A multi-method approach combining light scattering and field-flow fractionation techniques.

    PubMed

    Chekli, L; Roy, M; Tijing, L D; Donner, E; Lombi, E; Shon, H K

    2015-08-15

    Titanium dioxide nanoparticles (TiO2 NPs) are currently one of the most prolifically used nanomaterials, resulting in an increasing likelihood of release to the environment. This is of concern as the potential toxicity of TiO2 NPs has been investigated in several recent studies. Research into their fate and behaviour once entering the environment is urgently needed to support risk assessment and policy development. In this study, we used a multi-method approach combining light scattering and field-flow fractionation techniques to assess both the aggregation behaviour and aggregate structure of TiO2 NPs in different river waters. Results showed that both the aggregate size and surface-adsorbed dissolved organic matter (DOM) were strongly related to the initial DOM concentration of the tested waters (i.e. R(2) > 0.90) suggesting that aggregation of TiO2 NPs is controlled by the presence and concentration of DOM. The conformation of the formed aggregates was also found to be strongly related to the surface-adsorbed DOM (i.e. R(2) > 0.95) with increasing surface-adsorbed DOM leading to more compact structures. Finally, the concentration of TiO2 NPs remaining in the supernatant after sedimentation of the larger aggregates was found to decrease proportionally with both increasing IS and decreasing DOM concentration, resulting in more than 95% sedimentation in the highest IS sample.

  18. Size and concentration determination of (functionalised) fullerenes in surface and sewage water matrices using field flow fractionation coupled to an online accurate mass spectrometer: method development and validation.

    PubMed

    Herrero, Pol; Bäuerlein, Patrick S; Emke, Erik; Marcé, Rosa M; de Voogt, Pim

    2015-04-29

    In order to assess the environmental risks of a compound it is imperative to have suitable and reliable techniques for its determination in environmental matrices. In this paper, we focused on a method development for the recently introduced online coupling of a field flow fractionation (FFF) system to an Orbitrap-HRMS, that allows the simultaneous size and concentration determination of different aqueous fullerene aggregates and their concentrations in different size fractions. A 0.05% NH4OH solution in water was identified as the best carrier liquid for the analysis of the three different aqueous fullerene suspensions (C60 [60], [6,6]-phenyl-C61 butyric acid methyl ester ([60]PCBM) and [6,6]-(bis)phenyl-C61 butyric acid methyl ester ([60]bisPCBM)). The multi-angle light scattering (MALS) data received after employing the ammonia solution was consistent with both the theory and calibration using well defined Au and latex particles. The LODs obtained using Orbitrap HRMS detection were 0.1 μg L(-1) for an injection volume of 100 μL which are significantly better than the LODs obtained by using UV (20 μg L(-1)) and MALS detectors (5 μg L(-1)). However, these LODs can be further improved as in theory there is no limit to the amount of sample that can be injected into the FFF. Environmental samples (river and sewage water) were spiked with fullerenes and the fractograms obtained for these samples revealed that the matrix does affect the size of fullerene aggregates. Information on the size distribution can be useful for the risk assessment of these particles.

  19. Characterization of ultrahigh-molecular weight cationic polyacrylamide using frit-inlet asymmetrical flow field-flow fractionation and multi-angle light scattering.

    PubMed

    Woo, Sohee; Lee, Ju Yong; Choi, Woonjin; Moon, Myeong Hee

    2016-01-15

    In this study, frit inlet asymmetrical flow field-flow fractionation (FlFFF) with multi-angle light scattering (MALS) and differential refractive index (DRI) detection is utilized for size separation, determination of molecular weight (MW), and conformation of ultrahigh-MW (10(7)-10(9) g/mol) cationic polyacrylamides (C-PAMs), a class of water-soluble copolymers based on acrylamide and vinyl-type comonomers with quaternary ammonium cations that are widely used in wastewater treatment and in paper industries. Linear and branched C-PAM copolymers prepared in two different polymerization methods (solution and emulsion) from varying amounts of crosslinking agent and initiator were size fractionated by FlFFF with field-programming. It was found experimentally that the linear copolymers from both polymerization methods were less than 10(8) g/mol in MW with compact, nearly spherical structures, while the branched C-PAM copolymers from the emulsion polymerization showed a significant increase in average MW up to ∼ 10(9)g/mol, which was about 20-fold greater than those from the solution method, and the branched copolymers had more compact or shrunken conformations. While both linear and branched copolymers less than 10(8) g/mol MW were well resolved in an increasing order of MW (normal mode), it was noted that branched copolymers prepared through emulsion polymerization exhibited significantly larger MWs of 10(8-)10(9) g/mol and eluted in the steric/hyperlayer mode, in which the elution order is reversed in an extreme run condition (strong initial field strength followed by a fast field decay during programming). PMID:26724894

  20. Characterization of ultrahigh-molecular weight cationic polyacrylamide using frit-inlet asymmetrical flow field-flow fractionation and multi-angle light scattering.

    PubMed

    Woo, Sohee; Lee, Ju Yong; Choi, Woonjin; Moon, Myeong Hee

    2016-01-15

    In this study, frit inlet asymmetrical flow field-flow fractionation (FlFFF) with multi-angle light scattering (MALS) and differential refractive index (DRI) detection is utilized for size separation, determination of molecular weight (MW), and conformation of ultrahigh-MW (10(7)-10(9) g/mol) cationic polyacrylamides (C-PAMs), a class of water-soluble copolymers based on acrylamide and vinyl-type comonomers with quaternary ammonium cations that are widely used in wastewater treatment and in paper industries. Linear and branched C-PAM copolymers prepared in two different polymerization methods (solution and emulsion) from varying amounts of crosslinking agent and initiator were size fractionated by FlFFF with field-programming. It was found experimentally that the linear copolymers from both polymerization methods were less than 10(8) g/mol in MW with compact, nearly spherical structures, while the branched C-PAM copolymers from the emulsion polymerization showed a significant increase in average MW up to ∼ 10(9)g/mol, which was about 20-fold greater than those from the solution method, and the branched copolymers had more compact or shrunken conformations. While both linear and branched copolymers less than 10(8) g/mol MW were well resolved in an increasing order of MW (normal mode), it was noted that branched copolymers prepared through emulsion polymerization exhibited significantly larger MWs of 10(8-)10(9) g/mol and eluted in the steric/hyperlayer mode, in which the elution order is reversed in an extreme run condition (strong initial field strength followed by a fast field decay during programming).

  1. Asymmetric Flow Field Flow Fractionation of Aqueous C60 Nanoparticles with Size Determination by Dynamic Light Scattering and Quantification by Liquid Chromatography Atmospheric Pressure Photo-Ionization Mass Spectrometry

    EPA Science Inventory

    A size separation method was developed for aqueous C60 fullerene aggregates (aqu/C60) using asymmetric flow field flow fractionation (AF4) coupled to a dynamic light scattering detector in flow through mode. Surfactants, which are commonly used in AF4, were avoided as they may al...

  2. Physicochemical characterization of titanium dioxide pigments using various techniques for size determination and asymmetric flow field flow fractionation hyphenated with inductively coupled plasma mass spectrometry.

    PubMed

    Helsper, Johannes P F G; Peters, Ruud J B; van Bemmel, Margaretha E M; Rivera, Zahira E Herrera; Wagner, Stephan; von der Kammer, Frank; Tromp, Peter C; Hofmann, Thilo; Weigel, Stefan

    2016-09-01

    Seven commercial titanium dioxide pigments and two other well-defined TiO2 materials (TiMs) were physicochemically characterised using asymmetric flow field flow fractionation (aF4) for separation, various techniques to determine size distribution and inductively coupled plasma mass spectrometry (ICPMS) for chemical characterization. The aF4-ICPMS conditions were optimised and validated for linearity, limit of detection, recovery, repeatability and reproducibility, all indicating good performance. Multi-element detection with aF4-ICPMS showed that some commercial pigments contained zirconium co-eluting with titanium in aF4. The other two TiMs, NM103 and NM104, contained aluminium as integral part of the titanium peak eluting in aF4. The materials were characterised using various size determination techniques: retention time in aF4, aF4 hyphenated with multi-angle laser light spectrometry (MALS), single particle ICPMS (spICPMS), scanning electron microscopy (SEM) and particle tracking analysis (PTA). PTA appeared inappropriate. For the other techniques, size distribution patterns were quite similar, i.e. high polydispersity with diameters from 20 to >700 nm, a modal peak between 200 and 500 nm and a shoulder at 600 nm. Number-based size distribution techniques as spICPMS and SEM showed smaller modal diameters than aF4-UV, from which mass-based diameters are calculated. With aF4-MALS calculated, light-scattering-based "diameters of gyration" (Øg) are similar to hydrodynamic diameters (Øh) from aF4-UV analyses and diameters observed with SEM, but much larger than with spICPMS. A Øg/Øh ratio of about 1 indicates that the TiMs are oblate spheres or fractal aggregates. SEM observations confirm the latter structure. The rationale for differences in modal peak diameter is discussed. PMID:27469116

  3. Rationalizing nanomaterial sizes measured by atomic force microscopy, flow field-flow fractionation, and dynamic light scattering: sample preparation, polydispersity, and particle structure.

    PubMed

    Baalousha, M; Lead, J R

    2012-06-01

    This study aims to rationalize the variability in the measured size of nanomaterials (NMs) by some of the most commonly applied techniques in the field of nano(eco)toxicology and environmental sciences, including atomic force microscopy (AFM), dynamic light scattering (DLS), and flow field-flow fractionation (FlFFF). A validated sample preparation procedure for size evaluation by AFM is presented, along with a quantitative explanation of the variability of measured sizes by FlFFF, AFM, and DLS. The ratio of the z-average hydrodynamic diameter (d(DLS)) by DLS and the particle height by AFM (d(AFM)) approaches 1.0 for monodisperse samples and increases with sample polydispersity. A polydispersity index of 0.1 is suggested as a suitable limit above which DLS data can no longer be interpreted accurately. Conversion of the volume particle size distribution (PSD) by FlFFF-UV to the number PSD reduces the differences observed between the sizes measured by FlFFF (d(FlFFF)) and AFM. The remaining differences in the measured sizes can be attributed to particle structure (sphericity and permeability). The ratio d(FlFFF)/d(AFM) approaches 1 for small ion-coated NMs, which can be described as hard spheres, whereas d(FlFFF)/d(AFM) deviates from 1 for polymer-coated NMs, indicating that these particles are permeable, nonspherical, or both. These findings improve our understanding of the rather scattered data on NM size measurements reported in the environmental and nano(eco)toxicology literature and provide a tool for comparison of the measured sizes by different techniques.

  4. Physicochemical characterization of titanium dioxide pigments using various techniques for size determination and asymmetric flow field flow fractionation hyphenated with inductively coupled plasma mass spectrometry.

    PubMed

    Helsper, Johannes P F G; Peters, Ruud J B; van Bemmel, Margaretha E M; Rivera, Zahira E Herrera; Wagner, Stephan; von der Kammer, Frank; Tromp, Peter C; Hofmann, Thilo; Weigel, Stefan

    2016-09-01

    Seven commercial titanium dioxide pigments and two other well-defined TiO2 materials (TiMs) were physicochemically characterised using asymmetric flow field flow fractionation (aF4) for separation, various techniques to determine size distribution and inductively coupled plasma mass spectrometry (ICPMS) for chemical characterization. The aF4-ICPMS conditions were optimised and validated for linearity, limit of detection, recovery, repeatability and reproducibility, all indicating good performance. Multi-element detection with aF4-ICPMS showed that some commercial pigments contained zirconium co-eluting with titanium in aF4. The other two TiMs, NM103 and NM104, contained aluminium as integral part of the titanium peak eluting in aF4. The materials were characterised using various size determination techniques: retention time in aF4, aF4 hyphenated with multi-angle laser light spectrometry (MALS), single particle ICPMS (spICPMS), scanning electron microscopy (SEM) and particle tracking analysis (PTA). PTA appeared inappropriate. For the other techniques, size distribution patterns were quite similar, i.e. high polydispersity with diameters from 20 to >700 nm, a modal peak between 200 and 500 nm and a shoulder at 600 nm. Number-based size distribution techniques as spICPMS and SEM showed smaller modal diameters than aF4-UV, from which mass-based diameters are calculated. With aF4-MALS calculated, light-scattering-based "diameters of gyration" (Øg) are similar to hydrodynamic diameters (Øh) from aF4-UV analyses and diameters observed with SEM, but much larger than with spICPMS. A Øg/Øh ratio of about 1 indicates that the TiMs are oblate spheres or fractal aggregates. SEM observations confirm the latter structure. The rationale for differences in modal peak diameter is discussed.

  5. Comparison of the molecular mass and optical properties of colored dissolved organic material in two rivers and coastal waters by flow field-flow fractionation.

    PubMed

    Zanardi-Lamardo, Eliete; Clark, Catherine D; Moore, Cynthia A; Zika, Rod G

    2002-07-01

    Colored dissolved organic material (CDOM) is an important sunlight absorbing substance affecting the optical properties of natural waters. However, little is known about its structural and optical properties mainly due to its complex matrix and the limitation of the techniques available. A comparison of two southwestern Florida rivers [the Caloosahatchee River (CR) and the Shark River (SR)] was done in terms of molecular mass (MM) and diffusion coefficients (D). The novel technique Frit inlet/frit outlet-flow field-flow fractionation (FIFO-FIFFF) with absorbance and fluorescence detectors was used to determine these properties. The SR receives organic material from the Everglades. By contrast, the CR arises from Lake Okeechobee in central Florida, receiving anthropogenic inputs, farming runoff, and natural organics. Both rivers discharge to the Gulf of Mexico. Fluorescence identified, for both rivers, two different MM distributions in low salinity water samples: the first was centered at approximately 1.7 kDa (CR) and approximately 2 kDa (SR); the second centered at approximately 13 kDa for both rivers, which disappeared gradually in the river plumes to below detection limit in coastal waters. Absorbance detected only one MM distribution centered at approximately 2 kDa (CR) and 2.2-2.4 kDa (SR). Fluorescence in general peaked at a lower MM than absorbance, suggesting a different size distribution for fluorophores vs chromophores. A photochemical study showed that, after sunlight, irradiated freshwater samples have similar characteristics to more marine waters, including a shift in MM distribution of chromophores. The differences observed between the rivers in the optical characteristics, MM distributions, and D values suggest that the CDOM sources, physical, and photochemical degradation processes are different for these two rivers.

  6. Characterization of aggregates of surface modified fullerenes by asymmetrical flow field-flow fractionation with multi-angle light scattering detection.

    PubMed

    Astefanei, Alina; Kok, Wim Th; Bäuerlein, Patrick; Núñez, Oscar; Galceran, Maria Teresa; de Voogt, Pim; Schoenmakers, Peter J

    2015-08-21

    Fullerenes are carbon nanoparticles with widespread biomedical, commercial and industrial applications. Attributes such as their tendency to aggregate and aggregate size and shape impact their ability to be transported into and through the environment and living tissues. Knowledge of these properties is therefore valuable for their human and environmental risk assessment as well as to control their synthesis and manufacture. In this work, asymmetrical flow-field flow fractionation (AF4) coupled to multi-angle light scattering (MALS) was used for the first time to study the size distribution of surface modified fullerenes with both polyhydroxyl and carboxyl functional groups in aqueous solutions having different pH (6.5-11) and ionic strength values (0-200mM) of environmental relevance. Fractionation key parameters such as flow rates, flow programming, and membrane material were optimized for the selected fullerenes. The aggregation of the compounds studied appeared to be indifferent to changes in solution pH, but was affected by changes in the ionic strength. Polyhydroxy-fullerenes were found to be present mostly as 4nm aggregates in water without added salt, but showed more aggregation at high ionic strength, with an up to 10-fold increase in their mean hydrodynamic radii (200mM), due to a decrease in the electrostatic repulsion between the nanoparticles. Carboxy-fullerenes showed a much stronger aggregation degree in water (50-100nm). Their average size and recoveries decreased with the increase in the salt concentration. This behavior can be due to enhanced adsorption of the large particles to the membrane at high ionic strength, because of their higher hydrophobicity and much larger particle sizes compared to polyhydroxy-fullerenes. The method performance was evaluated by calculating the run-to-run precision of the retention time (hydrodynamic radii), and the obtained RSD values were lower than 1%. MALS measurements showed aggregate sizes that were in good

  7. Dielectrophoretically tunable optofluidic devices

    NASA Astrophysics Data System (ADS)

    Xu, Su; Ren, Hongwen; Wu, Shin-Tson

    2013-12-01

    Tunable optofluidic devices exhibit some unique characteristics that are not achievable in conventional solid-state photonic devices. They provide exciting opportunities for emerging applications in imaging, information processing, sensing, optical communication, lab-on-a-chip and biomedical engineering. A dielectrophoresis effect is an important physical mechanism to realize tunable optofluidic devices. Via balancing the voltage-induced dielectric force and interfacial tension, the liquid interface can be dynamically manipulated and the optical output reconfigured or adaptively tuned in real time. Dielectrophoretically tunable optofluidic devices offer several attractive features, such as rapid prototyping, miniaturization, easy integration and low power consumption. In this review paper, we first explain the underlying operation principles and then review some recent progress in this field, covering the topics of adaptive lens, beam steering, iris, grating, optical switch/attenuator and single pixel display. Finally, the future perspectives are discussed.

  8. Application of an asymmetric flow field flow fractionation multi-detector approach for metallic engineered nanoparticle characterization--prospects and limitations demonstrated on Au nanoparticles.

    PubMed

    Hagendorfer, Harald; Kaegi, Ralf; Traber, Jacqueline; Mertens, Stijn F L; Scherrers, Roger; Ludwig, Christian; Ulrich, Andrea

    2011-11-14

    In this work we discuss about the method development, applicability and limitations of an asymmetric flow field flow fractionation (A4F) system in combination with a multi-detector setup consisting of UV/vis, light scattering, and inductively coupled plasma mass spectrometry (ICPMS). The overall aim was to obtain a size dependent-, element specific-, and quantitative method appropriate for the characterization of metallic engineered nanoparticle (ENP) dispersions. Thus, systematic investigations of crucial method parameters were performed by employing well characterized Au nanoparticles (Au-NPs) as a defined model system. For good separation performance, the A4F flow-, membrane-, and carrier conditions were optimized. To obtain reliable size information, the use of laser light scattering based detectors was evaluated, where an online dynamic light scattering (DLS) detector showed good results for the investigated Au-NP up to a size of 80 nm in hydrodynamic diameter. To adapt large sensitivity differences of the various detectors, as well as to guarantee long term stability and minimum contamination of the mass spectrometer a split-flow concept for coupling ICPMS was evaluated. To test for reliable quantification, the ICPMS signal response of ionic Au standards was compared to that of Au-NP. Using proper stabilization with surfactants, no difference for concentrations of 1-50 μg Au L(-1) in the size range from 5 to 80 nm for citrate stabilized dispersions was observed. However, studies using different A4F channel membranes showed unspecific particle-membrane interaction resulting in retention time shifts and unspecific loss of nanoparticles, depending on the Au-NP system as well as membrane batch and type. Thus, reliable quantification and discrimination of ionic and particular species was performed using ICPMS in combination with ultracentrifugation instead of direct quantification with the A4F multi-detector setup. Figures of merit were obtained, by comparing the

  9. Feasibility of asymmetric flow field-flow fractionation coupled to ICP-MS for the characterization of wear metal particles and metalloproteins in biofluids from hip replacement patients.

    PubMed

    Loeschner, Katrin; Harrington, Chris F; Kearney, Jacque-Lucca; Langton, David J; Larsen, Erik H

    2015-06-01

    Hip replacements are used to improve the quality of life of people with orthopaedic conditions, but the use of metal-on-metal (MoM) arthroplasty has led to poor outcomes for some patients. These problems are related to the generation of micro- to nanosized metal wear particles containing Cr, Co or other elements, but the current analytical methods used to investigate the processes involved do not provide sufficient information to understand the size or composition of the wear particles generated in vivo. In this qualitative feasibility study, asymmetric flow field-flow fractionation (AF(4)) coupled with inductively coupled plasma mass spectrometry (ICP-MS) was used to investigate metal protein binding and the size and composition of wear metal particles present in serum and hip aspirates from MoM hip replacement patients. A well-established HPLC anion exchange chromatography (AEC) separation system coupled to ICP-MS was used to confirm the metal-protein associations in the serum samples. Off-line single particle ICP-MS (spICP-MS) analysis was used to confirm the approximate size distribution indicated by AF(4) of the wear particles in hip aspirates. In the serum samples, AF(4) -ICP-MS suggested that Cr was associated with transferrin (Tf) and Co with albumin (Alb) and an unidentified species; AEC-ICP-MS confirmed these associations and also indicated an association of Cr with Alb. In the hip aspirate sample, AF(4)-ICP-MS suggested that Cr was associated with Alb and Tf and that Co was associated with Alb and two unidentified compounds; AEC analysis confirmed the Cr results and the association of Co with Alb and a second compound. Enzymatic digestion of the hip aspirate sample, followed by separation using AF(4) with detection by UV absorption (280 nm), multi-angle light scattering and ICP-MS, suggested that the sizes of the Cr-, Co- and Mo-containing wear particles in a hip aspirate sample were in the range 40-150 nm. Off-line spICP-MS was used to confirm these

  10. Application of an asymmetric flow field flow fractionation multi-detector approach for metallic engineered nanoparticle characterization--prospects and limitations demonstrated on Au nanoparticles.

    PubMed

    Hagendorfer, Harald; Kaegi, Ralf; Traber, Jacqueline; Mertens, Stijn F L; Scherrers, Roger; Ludwig, Christian; Ulrich, Andrea

    2011-11-14

    In this work we discuss about the method development, applicability and limitations of an asymmetric flow field flow fractionation (A4F) system in combination with a multi-detector setup consisting of UV/vis, light scattering, and inductively coupled plasma mass spectrometry (ICPMS). The overall aim was to obtain a size dependent-, element specific-, and quantitative method appropriate for the characterization of metallic engineered nanoparticle (ENP) dispersions. Thus, systematic investigations of crucial method parameters were performed by employing well characterized Au nanoparticles (Au-NPs) as a defined model system. For good separation performance, the A4F flow-, membrane-, and carrier conditions were optimized. To obtain reliable size information, the use of laser light scattering based detectors was evaluated, where an online dynamic light scattering (DLS) detector showed good results for the investigated Au-NP up to a size of 80 nm in hydrodynamic diameter. To adapt large sensitivity differences of the various detectors, as well as to guarantee long term stability and minimum contamination of the mass spectrometer a split-flow concept for coupling ICPMS was evaluated. To test for reliable quantification, the ICPMS signal response of ionic Au standards was compared to that of Au-NP. Using proper stabilization with surfactants, no difference for concentrations of 1-50 μg Au L(-1) in the size range from 5 to 80 nm for citrate stabilized dispersions was observed. However, studies using different A4F channel membranes showed unspecific particle-membrane interaction resulting in retention time shifts and unspecific loss of nanoparticles, depending on the Au-NP system as well as membrane batch and type. Thus, reliable quantification and discrimination of ionic and particular species was performed using ICPMS in combination with ultracentrifugation instead of direct quantification with the A4F multi-detector setup. Figures of merit were obtained, by comparing the

  11. Silver and gold nanoparticle separation using asymmetrical flow-field flow fractionation: Influence of run conditions and of particle and membrane charges.

    PubMed

    Meisterjahn, Boris; Wagner, Stephan; von der Kammer, Frank; Hennecke, Dieter; Hofmann, Thilo

    2016-04-01

    Flow-Field Flow Fractionation (Flow-FFF), coupled with online detection systems is one of the most promising tools available for the separation and quantification of engineered nanoparticles (ENPs) in complex matrices. To correctly relate the retention of nanoparticles in the Flow-FFF-channel to the particle size, ideal separation conditions must be met. This requires optimization of the parameters that influence the separation behavior. The aim of this study was therefore to systematically investigate and evaluate the influence of parameters such as the carrier liquid, the cross flow, and the membrane material, on the separation behavior of two metallic ENPs. For this purpose the retention, recovery, and separation efficiency of sterically stabilized silver nanoparticles (AgNPs) and electrostatically stabilized gold nanoparticles (AuNPs), which represent two materials widely used in investigations on environmental fate and ecotoxicology, were investigated against a parameter matrix of three different cross-flow densities, four representative carrier solutions, and two membrane materials. The use of a complex mixture of buffers, ionic and non-ionic surfactants (FL-70 solution) together with a medium cross-flow density provided an acceptable compromise in peak quality and recovery for both types of ENPs. However, these separation conditions do not represent a perfect match for both particle types at the same time (maximized recovery at maximized retention). It could be shown that the behavior of particles within Flow-FFF channels cannot be predicted or explained purely in terms of electrostatic interactions. Particles were irreversibly lost under conditions where the measured zeta potentials suggested that there should have been sufficient electrostatic repulsion to ensure stabilization of the particles in the Flow-FFF channel resulting in good recoveries. The wide variations that we observed in ENP behavior under different conditions, together with the different

  12. Interaction of bentonite colloids with Cs, Eu, Th and U in presence of humic acid: A flow field-flow fractionation study

    NASA Astrophysics Data System (ADS)

    Bouby, Muriel; Geckeis, Horst; Lützenkirchen, Johannes; Mihai, Silvia; Schäfer, Thorsten

    2011-07-01

    The interaction of Cs(I), Eu(III), Th(IV) and U(VI) with montmorillonite colloids was investigated in natural Grimsel Test Site groundwater over a 3 years period. The asymmetric flow field-flow fractionation combined with various detectors was applied to study size variations of colloids and to monitor colloid association of trace metals. The colloids suspended directly in the low ionic strength ( I), slightly alkaline granitic groundwater ( I = 10 -3 mol/L, pH 9.6) showed a gradual agglomeration with a size distribution shift from initially 10-200 nm to 50-400 nm within over 3 years. The Ca 2+ concentration of 2.1 × 10 -4 mol/L in the ground water is believed to be responsible for the slow agglomeration due to Ca 2+ ion exchange against Li + and Na + at the permanently charged basal clay planes. Furthermore, the Ca 2+ concentration lies close to the critical coagulation concentration (CCC) of 10 -3 mol L -1 for clay colloids. Slow destabilization may delimit clay colloid migration in this specific groundwater over long time scales. Eu(III) and Th(IV) are found predominantly bound to clay colloids, while U(VI) prevails as the UO 2(OH) 3- complex and Cs(I) remains mainly as aquo ion under our experimental conditions. Speciation calculations qualitatively represent the experimental data. A focus was set on the reversibility of metal ion-colloid binding. Addition of humic acid as a competing ligand induces rapid metal ion dissociation from clay colloids in the case of Eu(III) even after previous aging for about 3 years. Interestingly only partial dissociation occurs in the case of Th(IV). Experiments and calculations prove that the humate complexes dominate the speciation of all metal ions under given conditions. The partial irreversibility of clay bound Th(IV) is presently not understood but might play an important role for the colloid-mediated transport of polyvalent actinides over wide distances in natural groundwater.

  13. Dielectrophoretic systems without embedded electrodes

    DOEpatents

    Cummings, Eric B.; Singh, Anup K.

    2006-03-21

    Method and apparatus for dielectrophoretic separation of particles in a fluid based using array of insulating structures arranged in a fluid flow channel. By utilizing an array of insulating structures, a spatially inhomogeneous electric field is created without the use of the embedded electrodes conventionally employed for dielectrophoretic separations. Moreover, by using these insulating structures a steady applied electric field has been shown to provide for dielectrophoresis in contrast to the conventional use of an alternating electric field. In a uniform array of posts, dielectrophoretic effects have been produced flows having significant pressure-driven and electrokinetic transport. Above a threshold applied electric field, filaments of concentrated and rarefied particles appear in the flow as a result of dielectrophoresis. Above a higher threshold applied voltage, dielectrophoresis produces zones of highly concentrated and immobilized particles. These patterns are strongly influenced by the angle of the array of insulating structures with respect to the mean applied electric field and the shape of the insulating structures.

  14. Continuous flow dielectrophoretic particle concentrator

    DOEpatents

    Cummings, Eric B.

    2007-04-17

    A continuous-flow filter/concentrator for separating and/or concentrating particles in a fluid is disclosed. The filter is a three-port device an inlet port, an filter port and a concentrate port. The filter separates particles into two streams by the ratio of their dielectrophoretic mobility to their electrokinetic, advective, or diffusive mobility if the dominant transport mechanism is electrokinesis, advection, or diffusion, respectively.Also disclosed is a device for separating and/or concentrating particles by dielectrophoretic trapping of the particles.

  15. Hydrodynamic enhanced dielectrophoretic particle trapping

    DOEpatents

    Miles, Robin R.

    2003-12-09

    Hydrodynamic enhanced dielectrophoretic particle trapping carried out by introducing a side stream into the main stream to squeeze the fluid containing particles close to the electrodes producing the dielelectrophoretic forces. The region of most effective or the strongest forces in the manipulating fields of the electrodes producing the dielectrophoretic forces is close to the electrodes, within 100 .mu.m from the electrodes. The particle trapping arrangement uses a series of electrodes with an AC field placed between pairs of electrodes, which causes trapping of particles along the edges of the electrodes. By forcing an incoming flow stream containing cells and DNA, for example, close to the electrodes using another flow stream improves the efficiency of the DNA trapping.

  16. Study of the size-based environmental availability of metals associated to natural organic matter by stable isotope exchange and quadrupole inductively coupled plasma mass spectrometry coupled to asymmetrical flow field flow fractionation.

    PubMed

    Laborda, F; Ruiz-Beguería, S; Bolea, E; Castillo, J R

    2011-07-01

    The determination of the isotopically exchangeable fraction of metals in environmental solid samples (soils, composts, sediments, sludges, etc.) is used to know the amount of metal potentially available (E-value). Stable isotopes can be used for determination of E-values through the analysis of the aqueous phases from spiked suspensions. However, the presence of isotopically non-exchangeable metal forms in the aqueous phase led to overestimation of the E-values. In this paper, a method for monitoring the degree of isotopic exchange in function of the molecular mass and/or size of the metal form has been developed based on the direct coupling of asymmetrical flow field flow fractionation (AsFlFFF) with inductively coupled plasma mass spectrometry (ICP-MS) for on-line isotope ratio measurements. ICP-MS data acquisition parameters were stressed to avoid degradation of isotope ratio precision. Two sets of fractionation conditions were selected: a colloids separation, which allowed the separation of substances up to 1 μm, and a macromolecules separation, designed to resolve small size substances up to 50 kDa. The methodology was applied to study the environmental availability of copper and lead in compost samples, where metals are mainly associated to different forms of organic matter. No significant differences on isotopic exchange were observed over the size range studied, validating the E-values determined by direct analysis of the aqueous phases.

  17. Dielectrophoretic levitation of droplets and bubbles

    NASA Technical Reports Server (NTRS)

    Jones, T. B.

    1982-01-01

    Uncharged droplets and bubbles can be levitated dielectrophoretically in liquids using strong, nonuniform electric fields. The general equations of motion for a droplet or bubble in an axisymmetric, divergence-free electrostatic field allow determination of the conditions necessary and sufficient for stable levitation. The design of dielectrophoretic (DEP) levitation electrode structures is simplified by a Taylor-series expansion of cusped axisymmetric electrostatic fields. Extensive experimental measurements on bubbles in insulating liquids verify the simple dielectrophoretic model. Other have extended dielectrophoretic levitation to very small particles in aqueous media. Applications of DEP levitation to the study of gas bubbles, liquid droplets, and solid particles are discussed. Some of these applications are of special interest in the reduced gravitational field of a spacecraft.

  18. Dielectrophoretic deflection of ink jets

    NASA Astrophysics Data System (ADS)

    Chiarot, Paul R.; Jones, T. B.

    2009-12-01

    In continuous ink jet systems, streams of ~10 pL liquid droplets (diameter ~30 µm) are ejected from an orifice at rates of up to 350 000 per second with velocities in excess of 20 m s-1. Applications as diverse as printing, MEMS fabrication and microarraying benefit from this technology; however, reliable manipulation of the jet, including basic on/off control and steering of the liquid droplets, remains difficult to achieve. We report a novel scheme to manipulate the trajectories of droplets that rebound at shallow angles from a solid substrate using the dielectrophoretic force exerted by patterned electrodes. Varying the voltage applied to the electrodes provides precise control of the rebounding trajectories, mainly by shifting the location of the droplet impact. This technique can also be used to implement on/off control of the droplet stream. A simple dynamic model successfully predicts the modified trajectories of the droplets.

  19. Asymmetrical flow field-flow fractionation coupled with multi-angle light scattering and refractive index detections for characterization of ultra-high molar mass poly(acrylamide) flocculants.

    PubMed

    Leeman, Mats; Islam, Mohammad T; Haseltine, William G

    2007-11-23

    The molar mass distributions of ultra-high molar mass polyacrylamide-based flocculants were measured using asymmetrical flow field-flow fractionation (AFFFF) coupled with multi-angle light scattering and refractive index detectors. The mass load onto the separation channel was found to be critical in obtaining a good size separation. The detailed investigation with ultra-high molar mass polyacrylamides found that the injected amount should be

  20. Elimination of edge effects in micro-thermal field-flow fractionation channel of low aspect ratio by splitting the carrier liquid flow into the main central stream and the thin stream layers at the side channel walls.

    PubMed

    Janca, Josef; Dupák, Jan

    2005-03-18

    An optimized construction of the separation channel for micro-thermal field-flow fractionation (FFF) was proposed and studied experimentally. The sample is injected in such a manner that its zone moves along the channel only in the main central stream where the flow velocity profile in the plane parallel to the main accumulation wall is practically flat. This central stream is separated from the contact with the side walls of the channel by thin flowing layers of the free carrier liquid. The retained species do not reach the thin liquid streams at the side walls where the flow rate decreases rapidly to achieve zero at the side wall according to the established 3D flow velocity profile. Such a construction of the channel allows one to reduce the aspect ratio (the ratio of the channel breadth b to its thickness w) without increasing the zone broadening. The hydrodynamic splitting of the outlet streams allows one not only to increase the concentration of the detected species but also the determination of the sign of Soret coefficient.

  1. Asymmetric Flow-Field Flow Fractionation Hyphenated ICP-MS as an Alternative to Cloud Point Extraction for Quantification of Silver Nanoparticles and Silver Speciation: Application for Nanoparticles with a Protein Corona.

    PubMed

    Mudalige, Thilak K; Qu, Haiou; Linder, Sean W

    2015-07-21

    Production and application of nanoparticles in consumer products is at an all-time high due to the emerging field of nanotechnology. Direct detection and quantification of trace levels of nanoparticles within consumer products is very challenging and problematic. Although multiple methodologies are available for this purpose, each method has its own set of limitations. Herein, we developed an analytical platform consisting of asymmetric flow-field flow fractionation (AF4) coupled with inductively coupled plasma mass spectroscopy (ICP-MS) for the speciation and quantification of silver ions and silver nanoparticles at the ng/kg level (ppt). AF4 is utilized to concentrate the nanoparticles, and ICP-MS acts as the detector. The protein corona that forms upon exposure of nanoparticles to bovine serum albumin was utilized as a nanoparticle stabilization and AF4 recovery enhancement mechanism. Speciation of silver ions and nanoparticles was achieved with the assistance of penicillamine as a complexation ligand. The effect of nanoparticle size, surface coating, and ionization state toward the detection and quantification of the developed methodology was evaluated. The detection limit was found to be 4 ng/kg with the application of a 5 mL sample loop. Further application of this developed methodology on environmentally relevant samples was demonstrated by the analysis of Arkansas River water spiked with silver nanoparticles and nanoparticle spiked into humic acid solution (50 mg/L) at an environmentally relevant level.

  2. Characterization of hydrophilic coated gold nanoparticles via capillary electrophoresis and Taylor dispersion analysis. Part II: Determination of the hydrodynamic radius distribution - Comparison with asymmetric flow field-flow fractionation.

    PubMed

    Pyell, Ute; Jalil, Alaa H; Urban, Dominic A; Pfeiffer, Christian; Pelaz, Beatriz; Parak, Wolfgang J

    2015-11-01

    In the first paper of this series we have shown for hydrophilic coated Au nanoparticles that capillary electrophoresis in combination with Taylor dispersion analysis in fused silica capillaries with an inner diameter of 75 μm allows for the unbiased precise determination of the number-weighted mean hydrodynamic diameter, the zeta potential and the effective charge number, although mobility corrected double layer polarization has to be taken into account. In this second paper we investigate whether the modified approximate analytic expression developed by Ohshima (2001) permits the calculation of calibration lines and the concomitant conversion of electropherograms into number-weighted particle radius distributions. We show that with the method developed size distributions are obtained which are independent of the measurement conditions. These size distributions are much narrower than those obtained via dynamic light scattering and data evaluation by the CONTIN algorithm. Capillary electrophoresis together with the proposed data evaluation method reveals that the analyzed nanoparticle populations have very narrow size distributions with a width of 2-4 nm. The hydrodynamic radius distributions of the coated NPs are only slightly broader than the solid particle radius distribution of the Au-NP cores. The presence of monomodal/bimodal size distributions is confirmed by asymmetric flow field-flow fractionation.

  3. Asymmetrical flow field-flow fractionation coupled with multi-angle light scattering and refractive index detections for characterization of ultra-high molar mass poly(acrylamide) flocculants.

    PubMed

    Leeman, Mats; Islam, Mohammad T; Haseltine, William G

    2007-11-23

    The molar mass distributions of ultra-high molar mass polyacrylamide-based flocculants were measured using asymmetrical flow field-flow fractionation (AFFFF) coupled with multi-angle light scattering and refractive index detectors. The mass load onto the separation channel was found to be critical in obtaining a good size separation. The detailed investigation with ultra-high molar mass polyacrylamides found that the injected amount should be

  4. Toward full spectrum speciation of silver nanoparticles and ionic silver by on-line coupling of hollow fiber flow field-flow fractionation and minicolumn concentration with multiple detectors.

    PubMed

    Tan, Zhi-Qiang; Liu, Jing-Fu; Guo, Xiao-Ru; Yin, Yong-Guang; Byeon, Seul Kee; Moon, Myeong Hee; Jiang, Gui-Bin

    2015-08-18

    The intertransformation of silver nanoparticles (AgNPs) and ionic silver (Ag(I)) in the environment determines their transport, uptake, and toxicity, demanding methods to simultaneously separate and quantify AgNPs and Ag(I). For the first time, hollow fiber flow field-flow fractionation (HF5) and minicolumn concentration were on-line coupled together with multiple detectors (including UV-vis spectrometry, dynamic light scattering, and inductively coupled plasma mass spectrometry) for full spectrum separation, characterization, and quantification of various Ag(I) species (i.e., free Ag(I), weak and strong Ag(I) complexes) and differently sized AgNPs. While HF5 was employed for filtration and fractionation of AgNPs (>2 nm), the minicolumn packed with Amberlite IR120 resin functioned to trap free Ag(I) or weak Ag(I) complexes coming from the radial flow of HF5 together with the strong Ag(I) complexes and tiny AgNPs (<2 nm), which were further discriminated in a second run of focusing by oxidizing >90% of tiny AgNPs to free Ag(I) and trapped in the minicolumn. The excellent performance was verified by the good agreement of the characterization results of AgNPs determined by this method with that by transmission electron microscopy, and the satisfactory recoveries (70.7-108%) for seven Ag species, including Ag(I), the adduct of Ag(I) and cysteine, and five AgNPs with nominal diameters of 1.4 nm, 10 nm, 20 nm, 40 nm, and 60 nm in surface water samples. PMID:26222150

  5. Application of asymmetric flow field-flow fractionation (AsFlFFF) coupled to inductively coupled plasma mass spectrometry (ICPMS) to the quantitative characterization of natural colloids and synthetic nanoparticles.

    PubMed

    Bouby, M; Geckeis, H; Geyer, F W

    2008-12-01

    A straightforward quantification method is presented for the application of asymmetric flow field-flow fractionation (AsFlFFF) combined with inductively coupled plasma mass spectrometry (ICPMS) to the characterization of colloid-borne metal ions and nanoparticles. Reproducibility of the size calibration and recovery of elements are examined. Channel flow fluctuations are observed notably after initiation of the fractionation procedure. Their impact on quantification is considered by using (103)Rh as internal reference. Intensity ratios measured for various elements and Rh are calculated for each data point. These ratios turned out to be independent of the metal concentration and total sample solution flow introduced into the nebulizer within a range of 0.4-1.2 mL min(-1). The method is applied to study the interaction of Eu, U(VI) and Th with a mixture of humic acid and clay colloids and to the characterization of synthetic nanoparticles, namely CdSe/ZnS-MAA (mercaptoacetic acid) core/shell-coated quantum dots (QDs). Information is given not only on inorganic element composition but also on the effective hydrodynamic size under relevant conditions. Detection limits (DLs) are estimated for Ca, Al, Fe, the lanthanide Ce and the natural actinides Th and U in colloid-containing groundwater. For standard crossflow nebulizer, estimated values are 7 x 10(3), 20, 3 x 10(2), 0.1, 0.1 and 7 x 10(-2) microg L(-1), respectively. DLs for Zn and Cd in QD characterization are 28 and 11 microg L(-1), respectively.

  6. Light-Induced Dielectrophoretic Manipulation of DNA

    PubMed Central

    Hoeb, Marco; Rädler, Joachim O.; Klein, Stefan; Stutzmann, Martin; Brandt, Martin S.

    2007-01-01

    Light-induced dielectrophoretic movement of polystyrene beads and λ-DNA is studied using thin films of amorphous hydrogenated silicon as local photoaddressable electrodes with a diameter of 4 μm. Positive (high-field seeking) dielectrophoretic movement is observed for both types of objects. The absence of strong negative (low-field seeking) dielectrophoresis of DNA at high frequencies is in agreement with the similarity of the dielectric constants of DNA and water, the real part of the dielectric function. The corresponding imaginary part of the dielectric function governed by the conductivity of DNA can be determined from a comparison of the frequency dependence of the dielectrophoretic drift velocity with the Clausius-Mossotti relation. PMID:17483160

  7. Dielectrophoresis and dielectrophoretic impedance detection of adenovirus and rotavirus

    NASA Astrophysics Data System (ADS)

    Nakano, Michihiko; Ding, Zhenhao; Suehiro, Junya

    2016-01-01

    The aim of this study is the electrical detection of pathogenic viruses, namely, adenovirus and rotavirus, using dielectrophoretic impedance measurement (DEPIM). DEPIM consists of two simultaneous processes: dielectrophoretic trapping of the target and measurement of the impedance change and increase in conductance with the number of trapped targets. This is the first study of applying DEPIM, which was originally developed to detect bacteria suspended in aqueous solutions, to virus detection. The dielectric properties of the viruses were also investigated in terms of their dielectrophoretic behavior. Although their estimated dielectric properties were different from those of bacteria, the trapped viruses increased the conductance of the microelectrode in a manner similar to that in bacteria detection. We demonstrated the electrical detection of viruses within 60 s at concentrations as low as 70 ng/ml for adenovirus and 50 ng/ml for rotavirus.

  8. Fifty years of dielectrophoretic cell separation technology.

    PubMed

    Hughes, Michael P

    2016-05-01

    In 1966, Pohl and Hawk [Science 152, 647-649 (1966)] published the first demonstration of dielectrophoresis of living and dead yeast cells; their paper described how the different ways in which the cells responded to an applied nonuniform electric field could form the basis of a cell separation method. Fifty years later, the field of dielectrophoretic (DEP) cell separation has expanded, with myriad demonstrations of its ability to sort cells on the basis of differences in electrical properties without the need for chemical labelling. As DEP separation enters its second half-century, new approaches are being found to move the technique from laboratory prototypes to functional commercial devices; to gain widespread acceptance beyond the DEP community, it will be necessary to develop ways of separating cells with throughputs, purities, and cell recovery comparable to gold-standard techniques in life sciences, such as fluorescence- and magnetically activated cell sorting. In this paper, the history of DEP separation is charted, from a description of the work leading up to the first paper, to the current dual approaches of electrode-based and electrodeless DEP separation, and the path to future acceptance outside the DEP mainstream is considered. PMID:27462377

  9. Fifty years of dielectrophoretic cell separation technology

    PubMed Central

    Hughes, Michael P.

    2016-01-01

    In 1966, Pohl and Hawk [Science 152, 647–649 (1966)] published the first demonstration of dielectrophoresis of living and dead yeast cells; their paper described how the different ways in which the cells responded to an applied nonuniform electric field could form the basis of a cell separation method. Fifty years later, the field of dielectrophoretic (DEP) cell separation has expanded, with myriad demonstrations of its ability to sort cells on the basis of differences in electrical properties without the need for chemical labelling. As DEP separation enters its second half-century, new approaches are being found to move the technique from laboratory prototypes to functional commercial devices; to gain widespread acceptance beyond the DEP community, it will be necessary to develop ways of separating cells with throughputs, purities, and cell recovery comparable to gold-standard techniques in life sciences, such as fluorescence- and magnetically activated cell sorting. In this paper, the history of DEP separation is charted, from a description of the work leading up to the first paper, to the current dual approaches of electrode-based and electrodeless DEP separation, and the path to future acceptance outside the DEP mainstream is considered. PMID:27462377

  10. Glutaraldehyde enhanced dielectrophoretic yeast cell separation

    PubMed Central

    Gagnon, Zachary; Mazur, Jill; Chang, Hsueh-Chia

    2009-01-01

    We introduce a method for improved dielectrophoretic (DEP) discrimination and separation of viable and nonviable yeast cells. Due to the higher cell wall permeability of nonviable yeast cells compared with their viable counterpart, the cross-linking agent glutaraldehyde (GLT) is shown to selectively cross-link nonviable cells to a much greater extent than viable yeast. The DEP crossover frequency (cof) of both viable and nonviable yeast cells was measured over a large range of buffer conductivities (22 μS∕cm–400 μS∕cm) in order to study this effect. The results indicate that due to selective nonviable cell cross-linking, GLT modifies the DEP cof of nonviable cells, while viable cell cof remains relatively unaffected. To investigate this in more detail, a dual-shelled oblate spheroid model was evoked and fitted to the cof data to study cell electrical properties. GLT treatment is shown to minimize ion leakage out of the nonviable yeast cells by minimizing changes in cytoplasm conductivity over a large range of ionic concentrations. This effect is only observable in nonviable cells where GLT treatment serves to stabilize the cell cytoplasm conductivity over a large range of buffer conductivity and allow for much greater differences between viable and nonviable cell cofs. As such, by taking advantage of differences in cell wall permeability GLT magnifies the effect DEP has on the field induced separation of viable and nonviable yeasts. PMID:20216970

  11. Movement of particles using sequentially activated dielectrophoretic particle trapping

    DOEpatents

    Miles, Robin R.

    2004-02-03

    Manipulation of DNA and cells/spores using dielectrophoretic (DEP) forces to perform sample preparation protocols for polymerized chain reaction (PCR) based assays for various applications. This is accomplished by movement of particles using sequentially activated dielectrophoretic particle trapping. DEP forces induce a dipole in particles, and these particles can be trapped in non-uniform fields. The particles can be trapped in the high field strength region of one set of electrodes. By switching off this field and switching on an adjacent electrodes, particles can be moved down a channel with little or no flow.

  12. Experimental investigation on neural cell survival after dielectrophoretic trapping.

    PubMed

    Heida, T; Rutten, W L C; Marani, E

    2002-12-01

    Negative dielectrophoretic forces can effectively be used to trap cortical rat neurons. The creation of dielectrophoretic forces requires electric fields of high non-uniformity. High electric field strengths, however, can cause excessive membrane potentials by which cells may unrecoverably be changed or it may lead to cell death. In a previous study it was found that cells trapped at 3 Vtt/14 MHz did not change morphologically as compared to cells that were not exposed to the electric field. This study investigates the viability of fetal cortical rat neurons after being trapped by negative dielectrophoretic forces at frequencies up to 1 MHz. A planar quadrupole micro-electrode structure was used for the creation of a non-uniform electric field. The sinusoidal input signal was varied in amplitude (3 and 5 Vtt) and frequency (10 kHz-1 MHz). The results presented in this paper show that the viability of dielectrophoretically trapped postnatal cortical rat cells was greatly frequency dependent. To preserve viability frequencies above 100 kHz (at 3 Vtt) or 1 MHz (5 Vtt) must be used.

  13. Dielectrophoretic Separation of Cancer Cells from Blood

    PubMed Central

    Gascoyne, Peter R. C.; Wang, Xiao-Bo; Huang, Ying; Becker, Frederick F.

    2009-01-01

    Recent measurements have demonstrated that the dielectric properties of cells depend on their type and physiological status. For example, MDA-231 human breast cancer cells were found to have a mean plasma membrane specific capacitance of 26 mF/m2, more than double the value (11 mF/m2) observed for resting T-lymphocytes. When an inhomogeneous ac electric field is applied to a particle, a dielectrophoretic (DEP) force arises that depends on the particle dielectric properties. Therefore, cells having different dielectric characteristics will experience differential DEP forces when subjected to such a field. In this article, we demonstrate the use of differential DEP forces for the separation of several different cancerous cell types from blood in a dielectric affinity column. These separations were accomplished using thin, flat chambers having microelectrode arrays on the bottom wall. DEP forces generated by the application of ac fields to the electrodes were used to influence the rate of elution of cells from the chamber by hydrodynamic forces within a parabolic fluid flow profile. Electrorotation measurements were first made on the various cell types found within cell mixtures to be separated, and theoretical modeling was used to derive the cell dielectric parameters. Optimum separation conditions were then predicted from the frequency and suspension conductivity dependencies of cell DEP responses defined by these parameters. Cell separations were then undertaken for various ratios of cancerous to normal cells at different concentrations. Eluted cells were characterized in terms of separation efficiency, cell viability, and separation speed. For example, 100% efficiency was achieved for purging MDA-231 cells from blood at the tumor to normal cell ratio 1:1 × 105 or 1:3 × 105, cell viability was not compromised, and separation rates were at least 103 cells/s. Theoretical and experimental criteria for the design and operation of such separators are presented. PMID

  14. NOTE: Dielectrophoretic assay of bacterial resistance to antibiotics

    NASA Astrophysics Data System (ADS)

    Johari, Juliana; Hübner, Yvonne; Hull, Judith C.; Dale, Jeremy W.; Hughes, Michael P.

    2003-07-01

    The dielectrophoretic collection spectra of antibiotic-sensitive and antibiotic-resistant strains of Staphylococcus epidermidis have been determined. These indicate that in the absence of antibiotic treatment there is a strong similarity between the dielectric properties of sensitive and resistant strains, and that there is a significant difference between the sensitive strains before and after treatment with the antibiotic streptomycin after 24 h exposure. This method offers possibilities for the assessment of bacterial resistance to antibiotics.

  15. Development of a 3D graphene electrode dielectrophoretic device.

    PubMed

    Xie, Hongyu; Tewari, Radheshyam; Fukushima, Hiroyuki; Narendra, Jeffri; Heldt, Caryn; King, Julia; Minerick, Adrienne R

    2014-01-01

    The design and fabrication of a novel 3D electrode microdevice using 50 µm thick graphene paper and 100 µm double sided tape is described. The protocol details the procedures to construct a versatile, reusable, multiple layer, laminated dielectrophoresis chamber. Specifically, six layers of 50 µm x 0.7 cm x 2 cm graphene paper and five layers of double sided tape were alternately stacked together, then clamped to a glass slide. Then a 700 μm diameter micro-well was drilled through the laminated structure using a computer-controlled micro drilling machine. Insulating properties of the tape layer between adjacent graphene layers were assured by resistance tests. Silver conductive epoxy connected alternate layers of graphene paper and formed stable connections between the graphene paper and external copper wire electrodes. The finished device was then clamped and sealed to a glass slide. The electric field gradient was modeled within the multi-layer device. Dielectrophoretic behaviors of 6 μm polystyrene beads were demonstrated in the 1 mm deep micro-well, with medium conductivities ranging from 0.0001 S/m to 1.3 S/m, and applied signal frequencies from 100 Hz to 10 MHz. Negative dielectrophoretic responses were observed in three dimensions over most of the conductivity-frequency space and cross-over frequency values are consistent with previously reported literature values. The device did not prevent AC electroosmosis and electrothermal flows, which occurred in the low and high frequency regions, respectively. The graphene paper utilized in this device is versatile and could subsequently function as a biosensor after dielectrophoretic characterizations are complete. PMID:24998694

  16. Dielectrophoretic particle-particle interaction under AC electrohydrodynamic flow conditions.

    PubMed

    Lee, Doh-Hyoung; Yu, Chengjie; Papazoglou, Elisabeth; Farouk, Bakhtier; Noh, Hongseok M

    2011-09-01

    We used the Maxwell stress tensor method to understand dielectrophoretic particle-particle interactions and applied the results to the interpretation of particle behaviors under alternating current (AC) electrohydrodynamic conditions such as AC electroosmosis (ACEO) and electrothermal flow (ETF). Distinct particle behaviors were observed under ACEO and ETF. Diverse particle-particle interactions observed in experiments such as particle clustering, particles keeping a certain distance from each other, chain and disc formation and their rotation, are explained based on the numerical simulation data. The improved understanding of particle behaviors in AC electrohydrodynamic flows presented here will enable researchers to design better particle manipulation strategies for lab-on-a-chip applications. PMID:21823132

  17. Collection, Measurement and Treatment of Microorganism Using Dielectrophoretic Micro Devices

    NASA Astrophysics Data System (ADS)

    Uchida, Satoshi

    Constant monitoring of manufacturing processes has been essential in food industry because of global expansion of microbial infection. Micro-scale dielectrophoretic method is an attractive technique for direct operation and quantitative detection of bioparticles. The electrical system is capable of rapid and simple treatments corresponding to severe legal control for food safety. In this paper, newly developed techniques are reviewed for bacterial concentration, detection and sterilization using dielectrophoresis in a micro reactor. The perspective to an integrated micro device of those components is also discussed.

  18. Dielectrophoretic Manipulation and Separation of Microparticles Using Microarray Dot Electrodes

    PubMed Central

    Yafouz, Bashar; Kadri, Nahrizul Adib; Ibrahim, Fatimah

    2014-01-01

    This paper introduces a dielectrophoretic system for the manipulation and separation of microparticles. The system is composed of five layers and utilizes microarray dot electrodes. We validated our system by conducting size-dependent manipulation and separation experiments on 1, 5 and 15 μm polystyrene particles. Our findings confirm the capability of the proposed device to rapidly and efficiently manipulate and separate microparticles of various dimensions, utilizing positive and negative dielectrophoresis (DEP) effects. Larger size particles were repelled and concentrated in the center of the dot by negative DEP, while the smaller sizes were attracted and collected by the edge of the dot by positive DEP. PMID:24705632

  19. Embryo formation from low sperm concentration by using dielectrophoretic force

    PubMed Central

    Huang, Hong-Yuan; Huang, Yu-Hsuan; Kao, Wei-Lun

    2015-01-01

    A biochip system imitates the oviduct of mammals with a microfluidic channel to achieve fertilization in vitro of imprinting-control-region (ICR) mice. We apply a method to manipulate and to position the oocyte and the sperm of ICR mice at the same time in our microfluidic channel with a positive dielectrophoretic (DEP) force. The positive dielectrophoretic response of the oocyte and sperm was exhibited under applied bias conditions AC 10 Vpp waveform, 1 MHz, 10 min. With this method, the concentration of sperm in the vicinity of the oocyte was increased and enhanced the probability of natural fertilization. We used commercial numerical software (CFDRC-ACE+) to simulate the square of the electric field and analyzed the location at which the oocyte and sperm are trapped. The microfluidic devices were designed and fabricated with poly(dimethylsiloxane). The results of our experiments indicate that a positive DEP served to drive the position of the oocyte and the sperm to natural fertilization (average rate of fertilization 51.58%) in our microchannel structures at insemination concentration 1.5 × 106 sperm ml−1. Embryos were cultured to two cells after 24 h and four cells after 48 h. PMID:25825615

  20. Dielectrophoretic behaviours of microdroplet sandwiched between LN substrates

    NASA Astrophysics Data System (ADS)

    Chen, Lipin; Li, Shaobei; Fan, Bolin; Yan, Wenbo; Wang, Donghui; Shi, Lihong; Chen, Hongjian; Ban, Dechao; Sun, Shihao

    2016-07-01

    We demonstrate a sandwich configuration for microfluidic manipulation in LiNbO3 platform based on photovoltaic effect, and the behaviours of dielectric microdroplet under this sandwich configuration are investigated. It is found that the microdroplet can generate in the form of liquid bridge inside the LiNbO3-based sandwich structure under the governing dielectrophoretic force, and the dynamic process of microdroplet generation highly depends on the substrate combinations. Dynamic features found for different combinations are explained by the different electrostatic field distribution basing on the finite-element simulation results. Moreover, the electrostatic field required by the microdroplet generation is estimated through meniscus evolution and it is found in good agreement with the simulated electrostatic field inside the sandwich gap. Several kinds of microdroplet manipulations are attempted in this work. We suggest that the local dielectrophoretic force acting on the microdroplet depends on the distribution of the accumulated irradiation dosage. Without using any additional pumping or jetting actuator, the microdroplet can be step-moved, deformed or patterned by the inconsecutive dot-irradiation scheme, as well as elastically stretched out and back or smoothly guided in a designed pass by the consecutive line-irradiation scheme.

  1. Dielectrophoretic behaviours of microdroplet sandwiched between LN substrates.

    PubMed

    Chen, Lipin; Li, Shaobei; Fan, Bolin; Yan, Wenbo; Wang, Donghui; Shi, Lihong; Chen, Hongjian; Ban, Dechao; Sun, Shihao

    2016-01-01

    We demonstrate a sandwich configuration for microfluidic manipulation in LiNbO3 platform based on photovoltaic effect, and the behaviours of dielectric microdroplet under this sandwich configuration are investigated. It is found that the microdroplet can generate in the form of liquid bridge inside the LiNbO3-based sandwich structure under the governing dielectrophoretic force, and the dynamic process of microdroplet generation highly depends on the substrate combinations. Dynamic features found for different combinations are explained by the different electrostatic field distribution basing on the finite-element simulation results. Moreover, the electrostatic field required by the microdroplet generation is estimated through meniscus evolution and it is found in good agreement with the simulated electrostatic field inside the sandwich gap. Several kinds of microdroplet manipulations are attempted in this work. We suggest that the local dielectrophoretic force acting on the microdroplet depends on the distribution of the accumulated irradiation dosage. Without using any additional pumping or jetting actuator, the microdroplet can be step-moved, deformed or patterned by the inconsecutive dot-irradiation scheme, as well as elastically stretched out and back or smoothly guided in a designed pass by the consecutive line-irradiation scheme. PMID:27383027

  2. Dielectrophoretic behaviours of microdroplet sandwiched between LN substrates

    PubMed Central

    Chen, Lipin; Li, Shaobei; Fan, Bolin; Yan, Wenbo; Wang, Donghui; Shi, Lihong; Chen, Hongjian; Ban, Dechao; Sun, Shihao

    2016-01-01

    We demonstrate a sandwich configuration for microfluidic manipulation in LiNbO3 platform based on photovoltaic effect, and the behaviours of dielectric microdroplet under this sandwich configuration are investigated. It is found that the microdroplet can generate in the form of liquid bridge inside the LiNbO3-based sandwich structure under the governing dielectrophoretic force, and the dynamic process of microdroplet generation highly depends on the substrate combinations. Dynamic features found for different combinations are explained by the different electrostatic field distribution basing on the finite-element simulation results. Moreover, the electrostatic field required by the microdroplet generation is estimated through meniscus evolution and it is found in good agreement with the simulated electrostatic field inside the sandwich gap. Several kinds of microdroplet manipulations are attempted in this work. We suggest that the local dielectrophoretic force acting on the microdroplet depends on the distribution of the accumulated irradiation dosage. Without using any additional pumping or jetting actuator, the microdroplet can be step-moved, deformed or patterned by the inconsecutive dot-irradiation scheme, as well as elastically stretched out and back or smoothly guided in a designed pass by the consecutive line-irradiation scheme. PMID:27383027

  3. Dielectrophoretic sorting of membrane protein nanocrystals.

    PubMed

    Abdallah, Bahige G; Chao, Tzu-Chiao; Kupitz, Christopher; Fromme, Petra; Ros, Alexandra

    2013-10-22

    Structure elucidation of large membrane protein complexes is still a considerable challenge, yet is a key factor in drug development and disease combat. Femtosecond nanocrystallography is an emerging technique with which structural information of membrane proteins is obtained without the need to grow large crystals, thus overcoming the experimental riddle faced in traditional crystallography methods. Here, we demonstrate for the first time a microfluidic device capable of sorting membrane protein crystals based on size using dielectrophoresis. We demonstrate the excellent sorting power of this new approach with numerical simulations of selected submicrometer beads in excellent agreement with experimental observations. Crystals from batch crystallization broths of the huge membrane protein complex photosystem I were sorted without further treatment, resulting in a high degree of monodispersity and crystallinity in the ~100 nm size range. Microfluidic integration, continuous sorting, and nanometer-sized crystal fractions make this method ideal for direct coupling to femtosecond nanocrystallography.

  4. Modeling of dielectrophoretic transport of myoglobin molecules in microchannels

    PubMed Central

    Gunda, Naga Siva Kumar; Mitra, Sushanta Kumar

    2010-01-01

    Myoglobin is one of the premature identifying cardiac markers, whose concentration increases from 90 pg∕ml or less to over 250 ng∕ml in the blood serum of human beings after minor heart attack. Separation, detection, and quantification of myoglobin play a vital role in revealing the cardiac arrest in advance, which is the challenging part of ongoing research. In the present work, one of the electrokinetic approaches, i.e., dielectrophoresis (DEP), is chosen to separate the myoglobin. A mathematical model is developed for simulating dielectrophoretic behavior of a myoglobin molecule in a microchannel to provide a theoretical basis for the above application. This model is based on the introduction of a dielectrophoretic force and a dielectric myoglobin model. A dielectric myoglobin model is developed by approximating the shape of the myoglobin molecule as sphere, oblate, and prolate spheroids. A generalized theoretical expression for the dielectrophoretic force acting on respective shapes of the molecule is derived. The microchannel considered for analysis has an array of parallel rectangular electrodes at the bottom surface. The potential and electric field distributions are calculated using Green’s theorem method and finite element method. These results also compared to the Fourier series method, closed form solutions by Morgan et al. [J. Phys. D: Appl. Phys. 34, 1553 (2001)] and Chang et al. [J. Phys. D: Appl. Phys. 36, 3073 (2003)]. It is observed that both Green’s theorem based analytical solution and finite element based numerical solution for proposed model are closely matched for electric field and square electric field gradients. The crossover frequency is obtained as 40 MHz for given properties of myoglobin and for all approximated shapes of myoglobin molecule. The effect of conductivity of medium and myoglobin on the crossover frequency is also demonstrated. Further, the effect of hydration layer on the crossover frequency of myoglobin molecules is

  5. Dielectrophoretic sorting on a microfabricated flow cytometer: label free separation of Babesia bovis infected erythrocytes.

    PubMed

    Nascimento, Elisabete M; Nogueira, Nuno; Silva, Tiago; Braschler, Thomas; Demierre, Nicolas; Renaud, Philippe; Oliva, Abel G

    2008-08-01

    Dielectrophoresis is a method that has demonstrated great potential in cell discrimination and isolation. In this study, the dielectrophoretic sorting of normal and Babesia bovis infected erythrocytes was performed using a microfabricated flow cytometer. Separation was possible through exploitation of the dielectric differences between normal and infected erythrocytes, essentially due to the higher ionic membrane permeability of B. bovis infected cells. Sorting experiments were performed inside a microchip made from Pt microelectrodes and SU-8 channels patterned on a glass substrate. Optimum cell separation was achieved at 4 MHz using an in vitro culture of B. bovis suspended in 63 mS/m phosphate buffer and applying a sinusoidal voltage of 15 V peak-to-peak. Normal erythrocytes experienced stronger positive dielectrophoresis (pDEP) than B. bovis infected cells, moving them closer to the microelectrodes. Under these conditions it was possible to enrich the fraction of infected cells from 7 to 50% without the need of extensive sample preparation or labelling. Throughout the experiments very few microliters of sample were used, suggesting that this system may be considered suitable for integration in a low-cost automated device to be used in the in situ diagnostic of babesiosis. PMID:18511353

  6. Dielectrophoretic immobilization of proteins: Quantification by atomic force microscopy.

    PubMed

    Laux, Eva-Maria; Knigge, Xenia; Bier, Frank F; Wenger, Christian; Hölzel, Ralph

    2015-09-01

    The combination of alternating electric fields with nanometer-sized electrodes allows the permanent immobilization of proteins by dielectrophoretic force. Here, atomic force microscopy is introduced as a quantification method, and results are compared with fluorescence microscopy. Experimental parameters, for example the applied voltage and duration of field application, are varied systematically, and the influence on the amount of immobilized proteins is investigated. A linear correlation to the duration of field application was found by atomic force microscopy, and both microscopical methods yield a square dependence of the amount of immobilized proteins on the applied voltage. While fluorescence microscopy allows real-time imaging, atomic force microscopy reveals immobilized proteins obscured in fluorescence images due to low S/N. Furthermore, the higher spatial resolution of the atomic force microscope enables the visualization of the protein distribution on single nanoelectrodes. The electric field distribution is calculated and compared to experimental results with very good agreement to atomic force microscopy measurements.

  7. Cell Patterning for Liver Tissue Engineering via Dielectrophoretic Mechanisms

    PubMed Central

    Yahya, Wan Nurlina Wan; Kadri, Nahrizul Adib; Ibrahim, Fatimah

    2014-01-01

    Liver transplantation is the most common treatment for patients with end-stage liver failure. However, liver transplantation is greatly limited by a shortage of donors. Liver tissue engineering may offer an alternative by providing an implantable engineered liver. Currently, diverse types of engineering approaches for in vitro liver cell culture are available, including scaffold-based methods, microfluidic platforms, and micropatterning techniques. Active cell patterning via dielectrophoretic (DEP) force showed some advantages over other methods, including high speed, ease of handling, high precision and being label-free. This article summarizes liver function and regenerative mechanisms for better understanding in developing engineered liver. We then review recent advances in liver tissue engineering techniques and focus on DEP-based cell patterning, including microelectrode design and patterning configuration. PMID:24991941

  8. Dielectrophoretic capture of low abundance cell population using thick electrodes.

    PubMed

    Marchalot, Julien; Chateaux, Jean-François; Faivre, Magalie; Mertani, Hichem C; Ferrigno, Rosaria; Deman, Anne-Laure

    2015-09-01

    Enrichment of rare cell populations such as Circulating Tumor Cells (CTCs) is a critical step before performing analysis. This paper presents a polymeric microfluidic device with integrated thick Carbon-PolyDimethylSiloxane composite (C-PDMS) electrodes designed to carry out dielectrophoretic (DEP) trapping of low abundance biological cells. Such conductive composite material presents advantages over metallic structures. Indeed, as it combines properties of both the matrix and doping particles, C-PDMS allows the easy and fast integration of conductive microstructures using a soft-lithography approach while preserving O2 plasma bonding properties of PDMS substrate and avoiding a cumbersome alignment procedure. Here, we first performed numerical simulations to demonstrate the advantage of such thick C-PDMS electrodes over a coplanar electrode configuration. It is well established that dielectrophoretic force ([Formula: see text]) decreases quickly as the distance from the electrode surface increases resulting in coplanar configuration to a low trapping efficiency at high flow rate. Here, we showed quantitatively that by using electrodes as thick as a microchannel height, it is possible to extend the DEP force influence in the whole volume of the channel compared to coplanar electrode configuration and maintaining high trapping efficiency while increasing the throughput. This model was then used to numerically optimize a thick C-PDMS electrode configuration in terms of trapping efficiency. Then, optimized microfluidic configurations were fabricated and tested at various flow rates for the trapping of MDA-MB-231 breast cancer cell line. We reached trapping efficiencies of 97% at 20 μl/h and 78.7% at 80 μl/h, for 100 μm thick electrodes. Finally, we applied our device to the separation and localized trapping of CTCs (MDA-MB-231) from a red blood cells sample (concentration ratio of 1:10). PMID:26392836

  9. Dielectrophoretic capture of low abundance cell population using thick electrodes.

    PubMed

    Marchalot, Julien; Chateaux, Jean-François; Faivre, Magalie; Mertani, Hichem C; Ferrigno, Rosaria; Deman, Anne-Laure

    2015-09-01

    Enrichment of rare cell populations such as Circulating Tumor Cells (CTCs) is a critical step before performing analysis. This paper presents a polymeric microfluidic device with integrated thick Carbon-PolyDimethylSiloxane composite (C-PDMS) electrodes designed to carry out dielectrophoretic (DEP) trapping of low abundance biological cells. Such conductive composite material presents advantages over metallic structures. Indeed, as it combines properties of both the matrix and doping particles, C-PDMS allows the easy and fast integration of conductive microstructures using a soft-lithography approach while preserving O2 plasma bonding properties of PDMS substrate and avoiding a cumbersome alignment procedure. Here, we first performed numerical simulations to demonstrate the advantage of such thick C-PDMS electrodes over a coplanar electrode configuration. It is well established that dielectrophoretic force ([Formula: see text]) decreases quickly as the distance from the electrode surface increases resulting in coplanar configuration to a low trapping efficiency at high flow rate. Here, we showed quantitatively that by using electrodes as thick as a microchannel height, it is possible to extend the DEP force influence in the whole volume of the channel compared to coplanar electrode configuration and maintaining high trapping efficiency while increasing the throughput. This model was then used to numerically optimize a thick C-PDMS electrode configuration in terms of trapping efficiency. Then, optimized microfluidic configurations were fabricated and tested at various flow rates for the trapping of MDA-MB-231 breast cancer cell line. We reached trapping efficiencies of 97% at 20 μl/h and 78.7% at 80 μl/h, for 100 μm thick electrodes. Finally, we applied our device to the separation and localized trapping of CTCs (MDA-MB-231) from a red blood cells sample (concentration ratio of 1:10).

  10. Dielectrophoretic capture of low abundance cell population using thick electrodes

    PubMed Central

    Marchalot, Julien; Chateaux, Jean-François; Faivre, Magalie; Mertani, Hichem C.; Ferrigno, Rosaria; Deman, Anne-Laure

    2015-01-01

    Enrichment of rare cell populations such as Circulating Tumor Cells (CTCs) is a critical step before performing analysis. This paper presents a polymeric microfluidic device with integrated thick Carbon-PolyDimethylSiloxane composite (C-PDMS) electrodes designed to carry out dielectrophoretic (DEP) trapping of low abundance biological cells. Such conductive composite material presents advantages over metallic structures. Indeed, as it combines properties of both the matrix and doping particles, C-PDMS allows the easy and fast integration of conductive microstructures using a soft-lithography approach while preserving O2 plasma bonding properties of PDMS substrate and avoiding a cumbersome alignment procedure. Here, we first performed numerical simulations to demonstrate the advantage of such thick C-PDMS electrodes over a coplanar electrode configuration. It is well established that dielectrophoretic force (FDEP) decreases quickly as the distance from the electrode surface increases resulting in coplanar configuration to a low trapping efficiency at high flow rate. Here, we showed quantitatively that by using electrodes as thick as a microchannel height, it is possible to extend the DEP force influence in the whole volume of the channel compared to coplanar electrode configuration and maintaining high trapping efficiency while increasing the throughput. This model was then used to numerically optimize a thick C-PDMS electrode configuration in terms of trapping efficiency. Then, optimized microfluidic configurations were fabricated and tested at various flow rates for the trapping of MDA-MB-231 breast cancer cell line. We reached trapping efficiencies of 97% at 20 μl/h and 78.7% at 80 μl/h, for 100 μm thick electrodes. Finally, we applied our device to the separation and localized trapping of CTCs (MDA-MB-231) from a red blood cells sample (concentration ratio of 1:10). PMID:26392836

  11. Dielectrophoretic characterization of antibiotic-treated Mycobacterium tuberculosis complex cells.

    PubMed

    Inoue, Shinnosuke; Lee, Hyun-Boo; Becker, Annie L; Weigel, Kris M; Kim, Jong-Hoon; Lee, Kyong-Hoon; Cangelosi, Gerard A; Chung, Jae-Hyun

    2015-10-01

    Multi-drug resistant tuberculosis (MDR-TB) has become a serious concern for proper treatment of patients. As a phenotypic method, dielectrophoresis can be useful but is yet to be attempted to evaluate Mycobacterium tuberculosis complex cells. This paper investigates the dielectrophoretic behavior of Mycobacterium bovis (Bacillus Calmette-Guérin, BCG) cells that are treated with heat or antibiotics rifampin (RIF) or isoniazid (INH). The experimental parameters are designed on the basis of our sensitivity analysis. The medium conductivity (σ(m)) and the frequency (f) for a crossover frequency (f(xo1)) test are decided to detect the change of σ(m)-f(xo1) in conjunction with the drug mechanism. Statistical modeling is conducted to estimate the distributions of viable and nonviable cells from the discrete measurement of f (xo1). Finally, the parameters of the electrophysiology of BCG cells, C(envelope) and σ(cyto), are extracted through a sampling algorithm. This is the first evaluation of the dielectrophoresis (DEP) approach as a means to assess the effects of antimicrobial drugs on M. tuberculosis complex cells.

  12. Dielectrophoretic Rayleigh-Bénard convection under microgravity conditions

    NASA Astrophysics Data System (ADS)

    Yoshikawa, H. N.; Tadie Fogaing, M.; Crumeyrolle, O.; Mutabazi, I.

    2013-04-01

    Thermal convection in a dielectric fluid layer between two parallel plates subjected to an alternating electric field and a temperature gradient is investigated under microgravity conditions. A thermoelectric coupling resulting from the thermal variation of the electric permittivity of the fluid produces the dielectrophoretic (DEP) body force, which can be regarded as thermal buoyancy due to an effective gravity. This electric gravity can destabilize a stationary conductive state of the fluid to develop convection. The similarity of the DEP thermal convection with the Rayleigh-Bénard (RB) convection is examined by considering its behavior in detail by a linear stability theory and a two-dimensional direct numerical simulation. The results are analyzed from an energetic viewpoint and in the framework of the Ginzburg-Landau (GL) equation. The stabilizing effects of a thermoelectric feedback make the critical parameters different from those in the RB instability. The nonuniformity of the electric gravity arising from the finite variation of permittivity also affects the critical parameters. The characteristic constants of the GL equation are comparable with those for the RB convection. The heat transfer in the DEP convection is weaker than in the RB convection as a consequence of the feedback that impedes the convection.

  13. Dielectrophoretic Rayleigh-Bénard convection under microgravity conditions.

    PubMed

    Yoshikawa, H N; Tadie Fogaing, M; Crumeyrolle, O; Mutabazi, I

    2013-04-01

    Thermal convection in a dielectric fluid layer between two parallel plates subjected to an alternating electric field and a temperature gradient is investigated under microgravity conditions. A thermoelectric coupling resulting from the thermal variation of the electric permittivity of the fluid produces the dielectrophoretic (DEP) body force, which can be regarded as thermal buoyancy due to an effective gravity. This electric gravity can destabilize a stationary conductive state of the fluid to develop convection. The similarity of the DEP thermal convection with the Rayleigh-Bénard (RB) convection is examined by considering its behavior in detail by a linear stability theory and a two-dimensional direct numerical simulation. The results are analyzed from an energetic viewpoint and in the framework of the Ginzburg-Landau (GL) equation. The stabilizing effects of a thermoelectric feedback make the critical parameters different from those in the RB instability. The nonuniformity of the electric gravity arising from the finite variation of permittivity also affects the critical parameters. The characteristic constants of the GL equation are comparable with those for the RB convection. The heat transfer in the DEP convection is weaker than in the RB convection as a consequence of the feedback that impedes the convection. PMID:23679509

  14. Numerical study on dielectrophoretic chaining of two ellipsoidal particles.

    PubMed

    House, Dustin L; Luo, Haoxiang; Chang, Siyuan

    2012-05-15

    Electric field-induced assembly of biological and synthetic particles has proven useful in two- and three-dimensional fabrication of composite materials, microwires, photonic crystals, artificial tissues, and more. Biological particles are typically irregularly shaped, and using non-spherical synthetic particles has the ability to expand current applications. However, there is much to be understood about the dielectrophoretic (DEP) interaction that takes place between particles of general shape. In this work, we numerically study the DEP interaction between two prolate spheroid particles suspended in an unbounded fluid. The boundary-element method (BEM) is applied to solve the coupled electric field, Stokes flow, and particle motion, and the DEP forces are obtained by integrating the Maxwell stress tensor over the particle surfaces. Effects of the initial configuration and aspect ratio are investigated. Results show that the particles go through a self-rotation process, that is, electro-orientation, while translating slowly to form a chain pair. The final formation resembles the chaining pattern observed previously in experiments using densely distributed ellipsoidal particles. Thus, the transient behavior and particle-particle interaction exhibited in the current study could be used as the fundamental mechanism to explain the phenomenon in the experiment. PMID:22340950

  15. Dielectrophoretic manipulation of the mixture of isotropic and nematic liquid

    PubMed Central

    Kim, Soo-Dong; Lee, Bomi; Kang, Shin-Woong; Song, Jang-Kun

    2015-01-01

    In various applications involving liquid crystals, the manipulation of the nanoscale molecular assembly and microscale director alignment is highly useful. Here we show that a nematic–isotropic mixture, a unique bi-liquid system, has potential for the fabrication of microstructures having an ordered phase within a disordered phase, or vice versa. The volume expansion and shrinkage, migration, splitting, mergence and elongation of one phase within the other are easily accomplished via thermal treatment and dielectrophoretic manipulation. This is particularly achievable when one phase is suspended in the middle. In that case, a highly biased ordered-phase preference of surfaces, that is, the nematic-philic nature of a polyimide layer and the nematic-phobic nature of a self-assembled monolayer of chlorosilane derivatives, is used. Further, by combining this approach with photopolymerization, the patterned microstructure is solidified as a patterned polymer film having both isotropic and anisotropic molecular arrangements simultaneously, or as a template with a morphological variation. PMID:26242251

  16. Field-flow orientation effects in magnetorheological fluids

    NASA Astrophysics Data System (ADS)

    Baltimore, Craig Victor

    Magnetorheological (MR) materials are suspensions of micron-sized magnetically polarized particles in a liquid medium. When subject to magnetic fields, these particles form a micro-structure which endow the MR material with solid-like properties. Devices constructed with MR materials can achieve controllable force levels that have use in vibration mitigation. The orientation of the magnetic field is a key design parameter. To date research and device development has been concerned with MR material flow perpendicular the applied magnetic field. This relationship of material flow to applied magnetic field is known as perpendicular field/flow. This emphasis on perpendicular field/flow application describes only a limited view of MR material behavior. This work makes original contributions to the magnetorheological research literature through experimentation in MR material flow parallel to the applied magnetic field. This relationship of MR material flowing parallel to an applied magnetic field is known as parallel field/flow. These experiments show the high magnitudes of flux density associated with perpendicular field/flow are difficult to achieve in parallel field/flow. These low flux densities do not create a strong reordering of MR material micro-structure. The net effect is, in parallel field/flow application, that a visco-elastic behavior describes the response as opposed to Bingham behavior. This work also analyzes the experimental data to demonstrate the decrease in device response time, for parallel field/flow orientations, due to the elimination of the iron magnetic circuit (typical in perpendicular field/flow applications). MR fluid material properties are determined through Poiseuille flow.

  17. Insulator-based dielectrophoretic diagnostic tool for babesiosis.

    PubMed

    Adekanmbi, Ezekiel O; Ueti, Massaro W; Rinaldi, Brady; Suarez, Carlos E; Srivastava, Soumya K

    2016-05-01

    Babesia species are obligate intraerythrocytic tick-borne protozoan parasites that are the etiologic agents of babesiosis, a potentially life-threatening, malaria-like illness in humans and animals. Babesia-infected people have been known to suffer from complications including liver problems, severe hemolytic anemia, and kidney failure. As reported by the Food and Drug Administration, 38% of mortality cases observed in transfusion recipients were associated with transfusion transmitted diseases of which babesiosis is the chief culprit. As of now, no tests have been licensed yet for screening blood donors for babesiosis. Current diagnostic tools for babesiosis including enzyme-linked immunosorbent assay, fluorescence in situ hybridization, and polymerase chain reaction are expensive and burdened with multifarious shortcomings. In this research, a low-cost, high-specificity, quick, and easy-to-use insulator-based dielectrophoretic diagnostic tool is developed for characterizing and concentrating Babesia-infected cells in their homogenous mixture with healthy cell population. In this work, a mixture of Babesia-infected (varying parasitemia) and healthy red blood cells (RBCs or erythrocytes) was exposed to non-uniform electric fields in a fabricated microfluidic platform to manipulate and sort the Babesia-infected cells within a minute. At DC voltage configurations of 10 V and 0/6 V in the inlet and the two outlet channels, respectively, the diseased cells were seen to flow in a direction different from the healthy RBCs. Bright field and fluorescence microscopy were utilized to present qualitative differentiation of the healthy erythrocytes from the infected cells. The proposed micro device platform was able to enrich RBCs from 0.1% to ∼70% parasitemia. This device, when finally developed into a point-of-care diagnostic chip, would enhance the detection of Babesia-infected erythrocytes and as well serve as a precursor to babesiosis vaccine development. PMID

  18. A continuous DC-insulator dielectrophoretic sorter of microparticles.

    PubMed

    Srivastava, Soumya Keshavamurthy; Baylon-Cardiel, Javier L; Lapizco-Encinas, Blanca H; Minerick, Adrienne Robyn

    2011-04-01

    A lab-on-a-chip device is described for continuous sorting of fluorescent polystyrene microparticles utilizing direct current insulating dielectrophoresis (DC-iDEP) at lower voltages than previously reported. Particles were sorted by combining electrokinetics and dielectrophoresis in a 250 μm wide PDMS microchannel containing a rectangular insulating obstacle and four outlet channels. The DC-iDEP particle flow behaviors were investigated with 3.18, 6.20 and 10 μm fluorescent polystyrene particles which experience negative DEP forces depending on particle size, DC electric field magnitude and medium conductivity. Due to negative DEP effects, particles are deflected into different outlet streams as they pass the region of high electric field density around the obstacle. Particles suspended in dextrose added phosphate buffer saline (PBS) at conductivities ranging from 0.50 to 8.50 mS/cm at pH 7.0 were compared at 6.85 and 17.1V/cm. Simulations of electrokinetic and dielectrophoretic forces were conducted with COMSOL Multiphysics® to predict particle pathlines. Experimental and simulation results show the effect of medium and voltage operating conditions on particle sorting. Further, smaller particles experience smaller iDEP forces and are more susceptible to competing nonlinear electrostatic effects, whereas larger particles experience greater iDEP forces and prefer channels 1 and 2. This work demonstrates that 6.20 and 10 μm particles can be independently sorted into specific outlet streams by tuning medium conductivity even at low operating voltages. This work is an essential step forward in employing DC-iDEP for multiparticle sorting in a continuous flow, multiple outlet lab-on-a-chip device. PMID:21338990

  19. A hybrid dielectrophoretic system for trapping of microorganisms from water

    PubMed Central

    Allahrabbi, Narjes; Chia, Yi Shi Michelle; Saifullah, Mohammad S. M.; Lim, Kian-Meng; Yung, Lin Yue Lanry

    2015-01-01

    Assessment of the microbial safety of water resources is among the most critical issues in global water safety. As the current detection methods have limitations such as high cost and long process time, new detection techniques have transpired among which microfluidics is the most attractive alternative. Here, we show a novel hybrid dielectrophoretic (DEP) system to separate and detect two common waterborne pathogens, Escherichia coli (E. coli), a bacterium, and Cryptosporidium parvum (C. parvum), a protozoan parasite, from water. The hybrid DEP system integrates a chemical surface coating with a microfluidic device containing inter-digitated microelectrodes to impart positive dielectrophoresis for enhanced trapping of the cells. Trimethoxy(3,3,3-trifluoropropyl) silane, (3-aminopropyl)triethoxysilane, and polydiallyl dimethyl ammonium chloride (p-DADMAC) were used as surface coatings. Static cell adhesion tests showed that among these coatings, the p-DADMAC-coated glass surface provided the most effective cell adhesion for both the pathogens. This was attributed to the positively charged p-DADMAC-coated surface interacting electrostatically with the negatively charged cells suspended in water leading to increased cell trapping efficiency. The trapping efficiency of E. coli and C. parvum increased from 29.0% and 61.3% in an uncoated DEP system to 51.9% and 82.2% in the hybrid DEP system, respectively. The hybrid system improved the cell trapping by encouraging the formation of cell pearl-chaining. The increment in trapping efficiency in the hybrid DEP system was achieved at an optimal frequency of 1 MHz and voltage of 2.5 Vpp for C. parvum and 2 Vpp for E. coli, the latter is lower than 2.5 Vpp and 7 Vpp, respectively, utilized for obtaining similar efficiency in an uncoated DEP system. PMID:26180567

  20. Joule heating effects on particle immobilization in insulator-based dielectrophoretic devices

    PubMed Central

    Gallo-Villanueva, Roberto C.; Sano, Michael B.; Lapizco-Encinas, Blanca H.; Davalos, Rafael V.

    2014-01-01

    In this work, the temperature effects due to Joule heating obtained by application of a DC electric potential were investigated for a microchannel with cylindrical insulating posts employed for insulator based dielectrophoresis (iDEP). The conductivity of the suspending medium, the local electric field, and the gradient of the squared electric field, which directly affect the magnitude of the dielectrophoretic force exerted on particles, were computationally simulated employing COMSOL Multiphysics. It was observed that a temperature gradient is formed along the microchannel which redistributes the conductivity of the suspending medium leading to an increase of the dielectrophoretic force towards the inlet of the channel while decreasing towards the outlet. Experimental results are in good agreement with simulations on the particle trapping zones anticipated. This study demonstrates the importance of considering Joule heating effects when designing iDEP systems. PMID:24002905

  1. Dielectrophoretic and electrophoretic force analysis of colloidal fullerenes in a nematic liquid-crystal medium.

    PubMed

    Srivastava, Anoop Kumar; Kim, Miyoung; Kim, Sung Min; Kim, Mi-Kyung; Lee, Kyu; Lee, Young Hee; Lee, Myong-Hoon; Lee, Seung Hee

    2009-11-01

    This research focuses on the electrokinetic motion of fullerenes suspended in liquid crystal host medium, which are investigated in the homogeneously aligned nematic liquid crystal cells driven by in-plane field. We investigated the effect of electrophoretic and dielectrophoretic forces and related parameters of the colloidal fullerenes in liquid crystals. The electrophoretic mobility, zeta potential, and critical voltage have been evaluated. Fullerenes suspended in liquid crystal medium migrated toward the positive electrode, but were pulled back in the opposite direction when the polarity was reversed especially at low frequency range (<5 Hz) . At higher electric field and higher frequency ranges, the net displacement of fullerenes has been observed. We demonstrate that the dielectrophoretic force dominated the motion in the colloidal fullerenes by a proper analysis of different electrophoretic parameters. In addition, the electrodynamics of fullerenes was explained by applying the theory of the dielectrophoresis and Schwarz's formula. We propose a model to estimate the density of fullerenes suspended in liquid crystal medium.

  2. Particle Removal by Electrostatic and Dielectrophoretic Forces for Dust Control During Lunar Exploration Missions

    NASA Technical Reports Server (NTRS)

    Calle, C. I.; Buhler, C. R.; McFall, J. L.; Snyder, S. J.

    2009-01-01

    Particle removal during lunar exploration activities is of prime importance for the success of robotic and human exploration of the moon. We report on our efforts to use electrostatic and dielectrophoretic forces to develop a dust removal technology that prevents the accumulation of dust on solar panels and removes dust adhering to those surfaces. Testing of several prototypes showed solar shield output above 90% of the initial potentials after dust clearing.

  3. Effect of surface charge convection and shape deformation on the dielectrophoretic motion of a liquid drop.

    PubMed

    Mandal, Shubhadeep; Bandopadhyay, Aditya; Chakraborty, Suman

    2016-04-01

    The dielectrophoretic motion and shape deformation of a Newtonian liquid drop in an otherwise quiescent Newtonian liquid medium in the presence of an axisymmetric nonuniform dc electric field consisting of uniform and quadrupole components is investigated. The theory put forward by Feng [J. Q. Feng, Phys. Rev. E 54, 4438 (1996)10.1103/PhysRevE.54.4438] is generalized by incorporating the following two nonlinear effects-surface charge convection and shape deformation-towards determining the drop velocity. This two-way coupled moving boundary problem is solved analytically by considering small values of electric Reynolds number (ratio of charge relaxation time scale to the convection time scale) and electric capillary number (ratio of electrical stress to the surface tension) under the framework of the leaky dielectric model. We focus on investigating the effects of charge convection and shape deformation for different drop-medium combinations. A perfectly conducting drop suspended in a leaky (or perfectly) dielectric medium always deforms to a prolate shape and this kind of shape deformation always augments the dielectrophoretic drop velocity. For a perfectly dielectric drop suspended in a perfectly dielectric medium, the shape deformation leads to either increase (for prolate shape) or decrease (for oblate shape) in the dielectrophoretic drop velocity. Both surface charge convection and shape deformation affect the drop motion for leaky dielectric drops. The combined effect of these can significantly increase or decrease the dielectrophoretic drop velocity depending on the electrohydrodynamic properties of both the liquids and the relative strength of the electric Reynolds number and electric capillary number. Finally, comparison with the existing experiments reveals better agreement with the present theory. PMID:27176410

  4. Effect of surface charge convection and shape deformation on the dielectrophoretic motion of a liquid drop

    NASA Astrophysics Data System (ADS)

    Mandal, Shubhadeep; Bandopadhyay, Aditya; Chakraborty, Suman

    2016-04-01

    The dielectrophoretic motion and shape deformation of a Newtonian liquid drop in an otherwise quiescent Newtonian liquid medium in the presence of an axisymmetric nonuniform dc electric field consisting of uniform and quadrupole components is investigated. The theory put forward by Feng [J. Q. Feng, Phys. Rev. E 54, 4438 (1996), 10.1103/PhysRevE.54.4438] is generalized by incorporating the following two nonlinear effects—surface charge convection and shape deformation—towards determining the drop velocity. This two-way coupled moving boundary problem is solved analytically by considering small values of electric Reynolds number (ratio of charge relaxation time scale to the convection time scale) and electric capillary number (ratio of electrical stress to the surface tension) under the framework of the leaky dielectric model. We focus on investigating the effects of charge convection and shape deformation for different drop-medium combinations. A perfectly conducting drop suspended in a leaky (or perfectly) dielectric medium always deforms to a prolate shape and this kind of shape deformation always augments the dielectrophoretic drop velocity. For a perfectly dielectric drop suspended in a perfectly dielectric medium, the shape deformation leads to either increase (for prolate shape) or decrease (for oblate shape) in the dielectrophoretic drop velocity. Both surface charge convection and shape deformation affect the drop motion for leaky dielectric drops. The combined effect of these can significantly increase or decrease the dielectrophoretic drop velocity depending on the electrohydrodynamic properties of both the liquids and the relative strength of the electric Reynolds number and electric capillary number. Finally, comparison with the existing experiments reveals better agreement with the present theory.

  5. Effect of surface charge convection and shape deformation on the dielectrophoretic motion of a liquid drop.

    PubMed

    Mandal, Shubhadeep; Bandopadhyay, Aditya; Chakraborty, Suman

    2016-04-01

    The dielectrophoretic motion and shape deformation of a Newtonian liquid drop in an otherwise quiescent Newtonian liquid medium in the presence of an axisymmetric nonuniform dc electric field consisting of uniform and quadrupole components is investigated. The theory put forward by Feng [J. Q. Feng, Phys. Rev. E 54, 4438 (1996)10.1103/PhysRevE.54.4438] is generalized by incorporating the following two nonlinear effects-surface charge convection and shape deformation-towards determining the drop velocity. This two-way coupled moving boundary problem is solved analytically by considering small values of electric Reynolds number (ratio of charge relaxation time scale to the convection time scale) and electric capillary number (ratio of electrical stress to the surface tension) under the framework of the leaky dielectric model. We focus on investigating the effects of charge convection and shape deformation for different drop-medium combinations. A perfectly conducting drop suspended in a leaky (or perfectly) dielectric medium always deforms to a prolate shape and this kind of shape deformation always augments the dielectrophoretic drop velocity. For a perfectly dielectric drop suspended in a perfectly dielectric medium, the shape deformation leads to either increase (for prolate shape) or decrease (for oblate shape) in the dielectrophoretic drop velocity. Both surface charge convection and shape deformation affect the drop motion for leaky dielectric drops. The combined effect of these can significantly increase or decrease the dielectrophoretic drop velocity depending on the electrohydrodynamic properties of both the liquids and the relative strength of the electric Reynolds number and electric capillary number. Finally, comparison with the existing experiments reveals better agreement with the present theory.

  6. Gravitational Effects on Near-Field Flow Structure of Low-Density Gas Jets

    NASA Technical Reports Server (NTRS)

    Yep, Tze-Wing; Agrawal, Ajay K.; Griffin, DeVon

    2004-01-01

    Experiments were conducted in earth gravity and micro gravity to acquire quantitative data on near field flow structure of helium jets injected into air. Microgravity conditions were simulated in the 2.2 s drop tower at NASA John H. Glenn Research Center. The jet flow was observed by quantitative rainbow schlieren deflectometry, a non-intrusive line of sight measurement technique suited for the microgravity environment. The flow structure was characterized by distribution of helium mole fraction obtained from color schlieren images taken at 60 Hz. Results show that the jet in microgravity was up to 70% wider than that in Earth gravity. Experiments reveal that the global flow oscillations observed in Earth are absent in microgravity. Quantitative deatails are provided of the evolution as the experiment undergoes changes in gravity in the drop tower.

  7. Using Asymmetric Flow Field-Flow Fractionation (AF4) to Determine C60 Colloidal Size Distributions

    EPA Science Inventory

    The formation of aqueous fullerene suspensions by solvent exchange, sonication, or extended mixing in water is widely reported. Commonly used methods for determining the size of these aggregates rely on static and dynamic light scattering, electron microscopy (EM), or atomic forc...

  8. Towards 2D field-flow fractionation - Vector separation over slanted open cavities

    NASA Astrophysics Data System (ADS)

    Bernate, Jorge A.; Yang, Mengfei; Zhao, Hong; Risbud, Sumedh; Paul, Colin; Dallas, Matthew; Konstantopoulos, Konstantinos; Drazer, German; Shaqfeh, Eric S. G.

    2013-11-01

    Planar microfluidic platforms for vector chromatography, in which different species fan out in different directions and can be continuously sorted, are particularly promising for the high throughput separation of multicomponent mixtures. We carry out a computational study of the vector separation of dilute suspensions of rigid and flexible particles transported by a pressure-driven flow over an array of slanted open cavities. The numerical scheme is based on a Stokes flow boundary integral equation method. The simulations are performed in a periodic system without lateral confinement, relevant to microfluidic devices with negligible recirculation in the main channel. We study the deflection of rigid spherical particles, of flexible capsules as a model of white and red blood cells, and of rigid discoidal particles as a model of platelets. We characterize the deflection of different particles as a function of their size, shape, shear elasticity, their release position, and the geometric parameters of the channel. The simulations provide insight into the separation mechanism and allow the optimization of specific devices depending on the application. Good agreement with experiments is observed.

  9. Field-flow fractionation of nucleic acids and proteins under large-scale gradient magnetic fields

    NASA Astrophysics Data System (ADS)

    Iwasaka, M.

    2007-05-01

    For the purpose of developing techniques for separating biological macromolecules, the present study reports a magnetic chromatography system employing high performance liquid chromatography and superconducting magnets of 14 and 5T. We observed chromatograms of catalase and albumin, which were eluded from columns that were exposed to magnetic fields of up to 14T with a maximum gradient of 90T/m. Without the magnetic fields, the chromatograms of the macromolecules showed a clear peak, while the chromatograms changed to have separated peaks for the same molecules after exposure to gradient magnetic fields. When the chromatocolumn was placed so the magnetic forces were opposite to the direction of flow, the albumin molecules separated into two groups. In addition, the chromatograms of catalase exposed to the magnetic fields indicated that the retention times of the two kinds of magnetically separated catalase were relatively changed if the column-field configuration was changed. Probably, the balance of paramagnetism in the heme and diamagnetism in the protein controlled the transport velocity under the influence of the gradient magnetic fields. In addition, the transport velocity of DNA molecules in the flow with a high gradient magnetic field was observed using a time-resolved spectrophotometric system.

  10. Mach-Zehnder interferometer for separation of platelets from red blood cells using dielectrophoretics

    NASA Astrophysics Data System (ADS)

    Shwetha, M.; Narayan, K.

    2016-03-01

    In this work, separation of platelets from red blood cells using Mach-Zehnder interferometer is shown using Dielectrophoretics (DEP). The proposed model demonstrates continuous separation of platelets from red blood cells. Mach-Zehnder Interferometer (MZI) has two arms, in which sensing arm will sense according to the applied voltage and separate the platelets from mixed blood cells. The platelets and the red blood cells will flow in two outlets of MZI. Microfluidic device is used to separate the RBC's and the platelets from the mixed blood cells.

  11. Finite element modelling of a 3 dimensional dielectrophoretic flow separator device for optimal bioprocessing conditions.

    PubMed

    Fatoyinbo, H O; Hughes, M P

    2004-01-01

    Planar 2-dimensional dielectrophoresis electrode geometries are limited in only being capable of handling fluid volumes ranging from picolitres to hundreds of microliters per hour. A 3-dimensional electrode system has been developed capable of handling significantly larger volumes of fluid. Using finite element modeling the electric field distribution within various bore sizes was realized. From these simulations it is possible to optimize bioprocessing factors influencing the performance of a dielectrophoretic separator. Process calculations have shown that flow-rates of 25ml hr/sup -1/ or more can be attained for the separation of heterogeneous populations of bio-particles based on their dielectric properties.

  12. Prototype for Automatable, Dielectrophoretically-Accessed Intracellular Membrane–Potential Measurements by Metal Electrodes

    PubMed Central

    Sukhorukov, Vladimir L.; Zimmermann, Dirk

    2013-01-01

    Abstract Functional access to membrane proteins, for example, ion channels, of individual cells is an important prerequisite in drug discovery studies. The highly sophisticated patch-clamp method is widely used for electrogenic membrane proteins, but is demanding for the operator, and its automation remains challenging. The dielectrophoretically-accessed, intracellular membrane–potential measurement (DAIMM) method is a new technique showing high potential for automation of electrophysiological data recording in the whole-cell configuration. A cell suspension is brought between a mm-scaled planar electrode and a μm-scaled tip electrode, placed opposite to each other. Due to the asymmetric electrode configuration, the application of alternating electric fields (1–5 MHz) provokes a dielectrophoretic force acting on the target cell. As a consequence, the cell is accelerated and pierced by the tip electrode, hence functioning as the internal (working) electrode. We used the light-gated cation channel Channelrhodopsin-2 as a reporter protein expressed in HEK293 cells to characterize the DAIMM method in comparison with the patch-clamp technique. PMID:22994967

  13. Dielectrophoretic behavior of PEGylated RNase A inside a microchannel with diamond-shaped insulating posts.

    PubMed

    Mata-Gómez, Marco A; Gallo-Villanueva, Roberto C; González-Valdez, José; Martínez-Chapa, Sergio O; Rito-Palomares, Marco

    2016-02-01

    Ribonuclease A (RNase A) has proven potential as a therapeutic agent, especially in its PEGylated form. Grafting of PEG molecules to this protein yields mono-PEGylated (mono-PEG) and di-PEGylated (di-PEG) RNase A conjugates, and the unreacted protein. Mono-PEG RNase A is of great interest. The use of electrokinetic forces in microdevices represents a novel alternative to chromatographic methods to separate this specie. This work describes the dielectrophoretic behavior of the main protein products of the RNase A PEGylation inside a microchannel with insulators under direct current electric fields. This approach represents the first step in route to design micro-bioprocesses to separate PEGylated RNase A from unreacted native protein. The three proteins exhibited different dielectrophoretic behaviors. All of them experienced a marked streaming pattern at 3000 V consistent with positive dielectrophoresis. Native protein was not captured at any of the conditions tested, while mono-PEG RNase A and di-PEG RNase A were captured presumably due to positive dielectrophoresis at 4000 and 2500 V, respectively. Concentration of mono-PEG RNase A with a maximal enrichment efficiency of ≈9.6 times the feed concentration was achieved in few seconds. These findings open the possibility of designing novel devices for rapid separation, concentration, and recovery of PEGylated RNase A in a one-step operation.

  14. Dielectrophoretic forces and potentials induced on pairs of cells in an electric field.

    PubMed

    Foster, K R; Sowers, A E

    1995-09-01

    A combined numerical/experimental study is reported of the membrane potentials and dielectrophoretically induced forces between cells, membrane pressures, and velocity of attraction of cells under the influence of an electric field. This study was designed to explore electrical and mechanical effects produced by a field on cells in close proximity or undergoing electrically induced fusion. Laplace's equation for pairs of membrane-covered spheres in close proximity was solved numerically by the boundary element method, and the electrically induced forces on the cells and between cells were obtained by evaluating the Maxwell stress tensor. The velocity of approach of erythrocyte ghosts or fused ghosts in a 60-Hz field of 6 V/mm was measured experimentally, and the data were interpreted by using Batchelor's theory for hydrodynamic interaction of hard spheres. The numerical results show clearly the origin of the dielectrophoretic pressures and forces in fused and unfused cells and the effects of a nearby cell on the induced membrane potentials. The experimental results agree well with predictions based on the simple electrical model of the cell. The analysis shows the strong effect of hydrodynamic interactions between the cells in determining their velocity of approach. PMID:8519978

  15. Dielectrophoretic and electrophoretic force analysis of colloidal fullerenes in a nematic liquid-crystal medium

    NASA Astrophysics Data System (ADS)

    Srivastava, Anoop Kumar; Kim, Miyoung; Kim, Sung Min; Kim, Mi-Kyung; Lee, Kyu; Lee, Young Hee; Lee, Myong-Hoon; Lee, Seung Hee

    2009-11-01

    This research focuses on the electrokinetic motion of fullerenes suspended in liquid crystal host medium, which are investigated in the homogeneously aligned nematic liquid crystal cells driven by in-plane field. We investigated the effect of electrophoretic and dielectrophoretic forces and related parameters of the colloidal fullerenes in liquid crystals. The electrophoretic mobility, zeta potential, and critical voltage have been evaluated. Fullerenes suspended in liquid crystal medium migrated toward the positive electrode, but were pulled back in the opposite direction when the polarity was reversed especially at low frequency range (<5Hz) . At higher electric field and higher frequency ranges, the net displacement of fullerenes has been observed. We demonstrate that the dielectrophoretic force dominated the motion in the colloidal fullerenes by a proper analysis of different electrophoretic parameters. In addition, the electrodynamics of fullerenes was explained by applying the theory of the dielectrophoresis and Schwarz’s formula. We propose a model to estimate the density of fullerenes suspended in liquid crystal medium.

  16. Dielectrophoretic forces and potentials induced on pairs of cells in an electric field.

    PubMed Central

    Foster, K R; Sowers, A E

    1995-01-01

    A combined numerical/experimental study is reported of the membrane potentials and dielectrophoretically induced forces between cells, membrane pressures, and velocity of attraction of cells under the influence of an electric field. This study was designed to explore electrical and mechanical effects produced by a field on cells in close proximity or undergoing electrically induced fusion. Laplace's equation for pairs of membrane-covered spheres in close proximity was solved numerically by the boundary element method, and the electrically induced forces on the cells and between cells were obtained by evaluating the Maxwell stress tensor. The velocity of approach of erythrocyte ghosts or fused ghosts in a 60-Hz field of 6 V/mm was measured experimentally, and the data were interpreted by using Batchelor's theory for hydrodynamic interaction of hard spheres. The numerical results show clearly the origin of the dielectrophoretic pressures and forces in fused and unfused cells and the effects of a nearby cell on the induced membrane potentials. The experimental results agree well with predictions based on the simple electrical model of the cell. The analysis shows the strong effect of hydrodynamic interactions between the cells in determining their velocity of approach. PMID:8519978

  17. Nanopore sensing at ultra-low concentrations using single-molecule dielectrophoretic trapping

    NASA Astrophysics Data System (ADS)

    Freedman, Kevin J.; Otto, Lauren M.; Ivanov, Aleksandar P.; Barik, Avijit; Oh, Sang-Hyun; Edel, Joshua B.

    2016-01-01

    Single-molecule techniques are being developed with the exciting prospect of revolutionizing the healthcare industry by generating vast amounts of genetic and proteomic data. One exceptionally promising route is in the use of nanopore sensors. However, a well-known complexity is that detection and capture is predominantly diffusion limited. This problem is compounded when taking into account the capture volume of a nanopore, typically 108-1010 times smaller than the sample volume. To rectify this disproportionate ratio, we demonstrate a simple, yet powerful, method based on coupling single-molecule dielectrophoretic trapping to nanopore sensing. We show that DNA can be captured from a controllable, but typically much larger, volume and concentrated at the tip of a metallic nanopore. This enables the detection of single molecules at concentrations as low as 5 fM, which is approximately a 103 reduction in the limit of detection compared with existing methods, while still maintaining efficient throughput.

  18. Charged nanoparticle in a nanochannel: Competition between electrostatic and dielectrophoretic forces.

    PubMed

    Hulings, Zachery K; Melnikov, Dmitriy V; Gracheva, Maria E

    2015-06-01

    Nanochannels made in solid-state materials are used for various applications such as nanoparticle separation or DNA manipulation. In this work we examine the effects of the electric and dielectrophoretic forces on a charged nanoparticle confined in a nanochannel. To this end, we solve the Poisson equation for the nanochannel with a wedgelike geometry and consider how channel geometry and electrolyte concentration affect the electrostatic potential distribution and forces acting on nanoparticles of various sizes. On the basis of our calculations, we establish conditions necessary for the particle's attraction to the corners of a channel. We find that for large particles, the net force is attractive only for low concentrations of the electrolyte irrespective of the wedge angle, while small enough particles are attracted to the vertex for either larger electrolyte concentrations or small wedge angle. PMID:26172742

  19. Manipulation of micro-particles by flexible polymer-based optically-induced dielectrophoretic devices.

    PubMed

    Lin, Shu-Ju; Hung, Shih-Hsun; Jeng, Jun-Yuan; Guo, Tzung-Fang; Lee, Gwo-Bin

    2012-01-01

    This study presents a novel technology to manipulate micro-particles with the assistance from flexible polymer-based optically-induced dielectrophoretic (ODEP) devices. Bending the flexible ODEP devices downwards or upwards to create convex or concave curvatures, respectively, enables the more effective separation or collection of micro-particles with different diameters. The travel distances of the polystyrene beads of 40 μm diameter, as induced by the projected light in a given time period was increased by ~100%, which were 43.0 ± 5.0 and 84.6 ± 4.0 μm for flat and convex ODEP devices, respectively. A rapid separation or collection of micro-particles can be achieved with the assistance of gravity because the falling polystyrene beads followed the inclination of the downward and upward bent ODEP devices.

  20. A fouling suppression system in submerged membrane bioreactors using dielectrophoretic forces.

    PubMed

    Hawari, Alaa H; Du, Fei; Baune, Michael; Thöming, Jorg

    2015-03-01

    A novel method was developed to suppress membrane fouling in submerged membrane bioreactors. The method is based on the dielectrophoretic (DEP) motion of particles in an inhomogeneous electrical field. Using a real sample of biomass as feed, the fouling-suppression performance using DEP with different electrical field intensities (60-160 V) and different frequencies (50-1000 Hz) was investigated. The fouling-suppression performance was found to relate closely with the intensity and frequency of the electrical field. A stronger electrical field was found to better recover the filtrate flux. This is because of a stronger DEP force acting on the biomass particles close to the membrane's surface. Above an intensity and frequency value of 130 V and 1 kHz, respectively the permeate flux was reduced due to an electrothermal effect.

  1. Nanopore sensing at ultra-low concentrations using single-molecule dielectrophoretic trapping

    PubMed Central

    Freedman, Kevin J.; Otto, Lauren M.; Ivanov, Aleksandar P.; Barik, Avijit; Oh, Sang-Hyun; Edel, Joshua B.

    2016-01-01

    Single-molecule techniques are being developed with the exciting prospect of revolutionizing the healthcare industry by generating vast amounts of genetic and proteomic data. One exceptionally promising route is in the use of nanopore sensors. However, a well-known complexity is that detection and capture is predominantly diffusion limited. This problem is compounded when taking into account the capture volume of a nanopore, typically 108–1010 times smaller than the sample volume. To rectify this disproportionate ratio, we demonstrate a simple, yet powerful, method based on coupling single-molecule dielectrophoretic trapping to nanopore sensing. We show that DNA can be captured from a controllable, but typically much larger, volume and concentrated at the tip of a metallic nanopore. This enables the detection of single molecules at concentrations as low as 5 fM, which is approximately a 103 reduction in the limit of detection compared with existing methods, while still maintaining efficient throughput. PMID:26732171

  2. Dielectrophoretic bending of directly printed free-standing ultra-soft nanowires

    SciTech Connect

    Galliker, P.; Schneider, J.; Poulikakos, D.

    2014-02-17

    Electrohydrodynamic printing has shown superior resolution compared to conventional ink-jet printing, but the use of electrically charged liquid commonly leads to unwanted repulsion effects posing a threshold to resolution capabilities. However, a recently demonstrated controlled dripping process of nanoscale, particle-laden droplets, could circumvent such resolution obstacles even on insulating substrates. Here, we show that so-printed free-standing nanostructures can be autonomously deformed, and mechanically characterized due to the presence of the electrified nozzle, or, after voltage termination, due to transient charge residuals on the structures themselves. Dielectrophoretic forces, arising between two subsequently printed nanopillars lead to their contactless bending and to the formation of out-of-plane arc structures arising from the connection of the pillar apexes. Once connected, the ultra-soft nanopillars are found to be tightly merged and could, for example, serve in electronics as out of plane nanobonds.

  3. Estimation of Metabolism Characteristics for Heat-Injured Bacteria Using Dielectrophoretic Impedance Measurement Method

    NASA Astrophysics Data System (ADS)

    Amako, Eri; Enjoji, Takaharu; Uchida, Satoshi; Tochikubo, Fumiyoshi

    Constant monitoring and immediate control of fermentation processes have been required for advanced quality preservation in food industry. In the present work, simple estimation of metabolic states for heat-injured Escherichia coli (E. coli) in a micro-cell was investigated using dielectrophoretic impedance measurement (DEPIM) method. Temporal change in the conductance between micro-gap (ΔG) was measured for various heat treatment temperatures. In addition, the dependence of enzyme activity, growth capacity and membrane situation for E. coli on heat treatment temperature was also analyzed with conventional biological methods. Consequently, a correlation between ΔG and those biological properties was obtained quantitatively. This result suggests that DEPIM method will be available for an effective monitoring technique for complex change in various biological states of microorganisms.

  4. Dielectrophoretic spectra of translational velocity and critical frequency for a spheroid in traveling electric field.

    PubMed

    Bunthawin, Sakshin; Wanichapichart, Pikul; Tuantranont, Adisorn; Coster, Hans G L

    2010-01-13

    An analysis has been made of the dielectrophoretic (DEP) forces acting on a spheroidal particle in a traveling alternating electric field. The traveling field can be generated by application of alternating current signals to an octapair electrode array arranged in phase quadrature sequence. The frequency dependent force can be resolved into two orthogonal forces that are determined by the real and the imaginary parts of the Clausius-Mossotti factor. The former is determined by the gradient in the electric field and directs the particle either toward or away from the tip of the electrodes in the electrode array. The force determined by the imaginary component is in a direction along the track of the octapair interdigitated electrode array. The DEP forces are related to the dielectric properties of the particle. Experiments were conducted to determine the DEP forces in such an electrode arrangement using yeast cells (Saccharomyces cervisiate TISTR 5088) with media of various conductivities. Experimental data are presented for both viable and nonviable cells. The dielectric properties so obtained were similar to those previously reported in literature using other DEP techniques.

  5. Design of insulator-based dielectrophoretic devices: Effect of insulator posts characteristics.

    PubMed

    Saucedo-Espinosa, M A; Lapizco-Encinas, B H

    2015-11-27

    Insulator-based dielectrophoresis (iDEP) is a leading technique for the enrichment and manipulation of target bioparticles by exploiting physical and electrical properties of the particles and the suspending medium. Dielectrophoretic forces are produced by employing insulator posts that distort an otherwise uniform electric field. The optimal design for iDEP devices involves a careful balance between electrokinetics (EK) and dielectrophoresis (DEP) in the DEP-active area, where the design of the insulator posts is crucial for their performance. This contribution demonstrates the selection of a geometrical set of parameters that enhances particle capture and enrichment in an iDEP device. Numerical simulations, comprising an average trapping condition (TC) and the average lateral-to-longitudinal force ratio (FR) experienced by particles, were used to determine improved geometrical parameters (e.g., shape, length and width) and arrangement (e.g., lateral and longitudinal spacing) of the insulator posts. Experiments with polystyrene particles demonstrated the enhancement in particle enrichment, validating the employed key output parameters. The fabrication feasibility of the improved devices by a soft-lithographic process was also explored through numerical simulations and experiments. Optimal designs for this study were selected and their capture capacity was examined, demonstrating a decrease up to 84% in the electric potential necessary to generate a clear band of trapped particles. The findings from this study provide a systematic approach toward the design of high performance iDEP devices for their lab-on-a-chip integration.

  6. Computational Fluid Dynamics Modelling of Microfluidic Channel for Dielectrophoretic BioMEMS Application

    PubMed Central

    Low, Wan Shi; Kadri, Nahrizul Adib; Wan Abas, Wan Abu Bakar bin

    2014-01-01

    We propose a strategy for optimizing distribution of flow in a typical benchtop microfluidic chamber for dielectrophoretic application. It is aimed at encouraging uniform flow velocity along the whole analysis chamber in order to ensure DEP force is evenly applied to biological particle. Via the study, we have come up with a constructive strategy in improving the design of microfluidic channel which will greatly facilitate the use of DEP system in laboratory and primarily focus on the relationship between architecture and cell distribution, by resorting to the tubular structure of blood vessels. The design was validated by hydrodynamic flow simulation using COMSOL Multiphysics v4.2a software. Simulations show that the presence of 2-level bifurcation has developed portioning of volumetric flow which produced uniform flow across the channel. However, further bifurcation will reduce the volumetric flow rate, thus causing undesirable deposition of cell suspension around the chamber. Finally, an improvement of microfluidic design with rounded corner is proposed to encourage a uniform cell adhesion within the channel. PMID:25136701

  7. Design of insulator-based dielectrophoretic devices: Effect of insulator posts characteristics.

    PubMed

    Saucedo-Espinosa, M A; Lapizco-Encinas, B H

    2015-11-27

    Insulator-based dielectrophoresis (iDEP) is a leading technique for the enrichment and manipulation of target bioparticles by exploiting physical and electrical properties of the particles and the suspending medium. Dielectrophoretic forces are produced by employing insulator posts that distort an otherwise uniform electric field. The optimal design for iDEP devices involves a careful balance between electrokinetics (EK) and dielectrophoresis (DEP) in the DEP-active area, where the design of the insulator posts is crucial for their performance. This contribution demonstrates the selection of a geometrical set of parameters that enhances particle capture and enrichment in an iDEP device. Numerical simulations, comprising an average trapping condition (TC) and the average lateral-to-longitudinal force ratio (FR) experienced by particles, were used to determine improved geometrical parameters (e.g., shape, length and width) and arrangement (e.g., lateral and longitudinal spacing) of the insulator posts. Experiments with polystyrene particles demonstrated the enhancement in particle enrichment, validating the employed key output parameters. The fabrication feasibility of the improved devices by a soft-lithographic process was also explored through numerical simulations and experiments. Optimal designs for this study were selected and their capture capacity was examined, demonstrating a decrease up to 84% in the electric potential necessary to generate a clear band of trapped particles. The findings from this study provide a systematic approach toward the design of high performance iDEP devices for their lab-on-a-chip integration. PMID:26518498

  8. Dielectrophoretic sample preparation for environmental monitoring of microorganisms: Soil particle removal.

    PubMed

    Fatoyinbo, Henry O; McDonnell, Martin C; Hughes, Michael P

    2014-07-01

    Detection of pathogens from environmental samples is often hampered by sensors interacting with environmental particles such as soot, pollen, or environmental dust such as soil or clay. These particles may be of similar size to the target bacterium, preventing removal by filtration, but may non-specifically bind to sensor surfaces, fouling them and causing artefactual results. In this paper, we report the selective manipulation of soil particles using an AC electrokinetic microfluidic system. Four heterogeneous soil samples (smectic clay, kaolinitic clay, peaty loam, and sandy loam) were characterised using dielectrophoresis to identify the electrical difference to a target organism. A flow-cell device was then constructed to evaluate dielectrophoretic separation of bacteria and clay in a continous flow through mode. The average separation efficiency of the system across all soil types was found to be 68.7% with a maximal separation efficiency for kaolinitic clay at 87.6%. This represents the first attempt to separate soil particles from bacteria using dielectrophoresis and indicate that the technique shows significant promise; with appropriate system optimisation, we believe that this preliminary study represents an opportunity to develop a simple yet highly effective sample processing system. PMID:25379100

  9. Dielectrophoretic applications for disease diagnostics using lab-on-a-chip platforms.

    PubMed

    Adekanmbi, Ezekiel O; Srivastava, Soumya K

    2016-06-21

    Dielectrophoresis is a powerful technique used to distinguish distinct cellular identities in heterogeneous cell populations and to monitor changes in the cell state without the need for biochemical tags, including live and dead cells. Recent studies in the past decade have indicated that dielectrophoresis can be used to discriminate the disease state of cells by exploring the differences in the dielectric polarizabilities of the cells. Factors controlling the dielectric polarizability are dependent on the conductivity and permittivity of the cell and the suspending medium, the cell morphology, the internal structure, and the electric double layer effects associated with the charges on the cell surface. Diseased cells, such as those associated with malaria, cancer, dengue, anthrax and human African trypanosomiasis, could be spatially trapped by positive dielectrophoresis or spatially separated from other healthy cells by negative dielectrophoretic forces. The aim of this review was to provide a better and deeper understanding on how dielectrophoresis can be utilized to manipulate diseased cells. This review compiles and compares the significant findings obtained by researchers in manipulating abnormal or unhealthy cells. PMID:27191245

  10. Real‐time dielectrophoretic signaling and image quantification methods for evaluating electrokinetic properties of nanoparticles

    PubMed Central

    Bailey, Joe; Holmes, David

    2015-01-01

    Real‐time image signaling and quantification methods are described that allow easy‐to‐use, fast extraction of the electrical properties of nanoparticles. Positive dielectrophoretic (pDEP) collection rate analysis enables the dielectric properties of very small samples of nanoparticles to be accurately quantified. Advancing earlier work involving dual‐cycle pulsed pDEP 1 collection experiments, we report the development of a statistical image quantification method that significantly advances the evaluation of nanoparticle dielectric properties. Compared with traditional methods that require information about the geometry of the electrode array to be entered for semiautomated quantification 2, the new statistical approach described does not require a priori knowledge of device geometry. The efficacy of the statistical method is experimentally demonstrated using 200 nm diameter latex nanospheres, suspended in low conductivity medium, that are attracted by pDEP onto planar castellated electrode arrays with 5‐micron‐sized features. The method is shown to yield estimates for the nanoparticle conductivity and surface conductance, σp=25.8 mS/m and KS=1.29 nS, that concur closely with those obtained using traditional geometric methods previously reported 1. Consequently, the statistical method is accurate, fast, robust, supervisor‐free, and useful for determining nanoparticle electrokinetic parameters. PMID:25872874

  11. An Inverted Dielectrophoretic Device for Analysis of Attached Single Cell Mechanics

    PubMed Central

    Urbano, Rebecca Lownes; Clyne, Alisa Morss

    2016-01-01

    Dielectrophoresis (DEP), the force induced on a polarizable body by a non-uniform electric field, has been widely used to manipulate single cells in suspension and analyze their stiffness. However, most cell types do not naturally exist in suspension but instead require attachment to the tissue extracellular matrix in vivo. Cells alter their cytoskeletal structure when they attach to a substrate, which impacts cell stiffness. It is therefore critical to be able to measure mechanical properties of cells attached to a substrate. We present a novel inverted quadrupole dielectrophoretic device capable of measuring changes in the mechanics of single cells attached to a micropatterned polyacrylamide gel. The device is positioned over a cell of defined size, a directed DEP pushing force is applied, and cell centroid displacement is dynamically measured by optical microscopy. Using this device, single endothelial cells showed greater centroid displacement in response to applied DEP pushing force following actin cytoskeleton disruption by cytochalasin D. In addition, transformed mammary epithelial cell (MCF10A-NeuT) showed greater centroid displacement in response to applied DEP pushing force compared to untransformed cells (MCF10A). DEP device measurements were confirmed by showing that the cells with greater centroid displacement also had a lower elastic modulus by atomic force microscopy. The current study demonstrates that an inverted DEP device can determine changes in single attached cell mechanics on varied substrates. PMID:26738543

  12. Correlation between dielectric property by dielectrophoretic levitation and growth activity of cells exposed to electric field.

    PubMed

    Hakoda, Masaru; Hirota, Yusuke

    2013-09-01

    The purpose of this study is to develop a system analyzing cell activity by the dielectrophoresis method. Our previous studies revealed a correlation between the growth activity and dielectric property (Re[K(ω)]) of mouse hybridoma 3-2H3 cells using dielectrophoretic levitation. Furthermore, it was clarified that the differentiation activity of many stem cells could be evaluated by the Re[K(ω)] without differentiation induction. In this paper, 3-2H3 cells exposed to an alternating current (AC) electric field or a direct current (DC) electric field were cultivated, and the influence of damage by the electric field on the growth activity of the cells was examined. To evaluate the activity of the cells by measuring the Re[K(ω)], the correlation between the growth activity and the Re[K(ω)] of the cells exposed to the electric field was examined. The relations between the cell viability, growth activity, and Re[K(ω)] in the cells exposed to the AC electric field were obtained. The growth activity of the cells exposed to the AC electric field could be evaluated by the Re[K(ω)]. Furthermore, it was found that the adverse effects of the electric field on the cell viability and the growth activity were smaller in the AC electric field than the DC electric field.

  13. Dielectrophoretic sample preparation for environmental monitoring of microorganisms: Soil particle removal

    PubMed Central

    Fatoyinbo, Henry O.; McDonnell, Martin C.; Hughes, Michael P.

    2014-01-01

    Detection of pathogens from environmental samples is often hampered by sensors interacting with environmental particles such as soot, pollen, or environmental dust such as soil or clay. These particles may be of similar size to the target bacterium, preventing removal by filtration, but may non-specifically bind to sensor surfaces, fouling them and causing artefactual results. In this paper, we report the selective manipulation of soil particles using an AC electrokinetic microfluidic system. Four heterogeneous soil samples (smectic clay, kaolinitic clay, peaty loam, and sandy loam) were characterised using dielectrophoresis to identify the electrical difference to a target organism. A flow-cell device was then constructed to evaluate dielectrophoretic separation of bacteria and clay in a continous flow through mode. The average separation efficiency of the system across all soil types was found to be 68.7% with a maximal separation efficiency for kaolinitic clay at 87.6%. This represents the first attempt to separate soil particles from bacteria using dielectrophoresis and indicate that the technique shows significant promise; with appropriate system optimisation, we believe that this preliminary study represents an opportunity to develop a simple yet highly effective sample processing system. PMID:25379100

  14. Dielectrophoretic microfluidic device for the continuous sorting of Escherichia coli from blood cells

    PubMed Central

    Kuczenski, Robert Steven; Chang, Hsueh-Chia; Revzin, Alexander

    2011-01-01

    Microfluidic diagnostic devices promise faster disease identification by purifying and concentrating low-abundance analytes from a flowing sample. The diagnosis of sepsis, a whole body inflammatory response often caused by microbial infections of the blood, is a model system for pursuing the advantages of microfluidic devices over traditional diagnostic protocols. Traditional sepsis diagnoses require large blood samples and several days to culture and identify the low concentration microbial agent. During these long delays while culturing, the physician has little or no actionable information to treat this acute illness. We designed a microfluidic chip using dielectrophoresis to sort and concentrate the target microbe from a flowing blood sample. This design was optimized using the applicable electrokinetic and hydrodynamic theories. We quantify the sorting efficiency of this device using growth-based assays which show 30% of injected microbes are recovered viable, consistent with the electroporation of target cells by the dielectrophoretic cell sorters. Finally, the results illustrate the device is capable of a five-fold larger microbe concentration in the target analyte stream compared to the waste stream at a continuous sample flow rate of 35 μl∕h. PMID:22007268

  15. A review of microfabrication techniques and dielectrophoretic microdevices for particle manipulation and separation

    NASA Astrophysics Data System (ADS)

    Li, M.; Li, W. H.; Zhang, J.; Alici, G.; Wen, W.

    2014-02-01

    The development of lab-on-a-chip (LOC) devices over the past decade has attracted growing interest. LOC devices aim to achieve the miniaturization, integration, automation and parallelization of biological and chemical assays. One of the applications, the ability to effectively and accurately manipulate and separate micro- and nano-scale particles in an aqueous solution, is particularly appealing in biological, chemical and medical fields. Among the technologies that have been developed and implemented in microfluidic microsystems for particle manipulation and separation (such as mechanical, inertial, hydrodynamic, acoustic, optical, magnetic and electrical methodologies), dielectrophoresis (DEP) may prove to be the most popular because of its label-free nature, ability to manipulate neutral bioparticles, analyse with high selectivity and sensitivity, compatibility with LOC devices, and easy and direct interface with electronics. The required spatial electric non-uniformities for the DEP effect can be generated by patterning microelectrode arrays within microchannels, or placing insulating obstacles within a microchannel and curving the microchannels. A wide variety of electrode- and insulator-based DEP microdevices have been developed, fabricated, and successfully employed to manipulate and separate bioparticles (i.e. DNA, proteins, bacteria, viruses, mammalian and yeast cells). This review provides an overview of the state-of-the-art of microfabrication techniques and of the structures of dielectrophoretic microdevices aimed towards different applications. The techniques used for particle manipulation and separation based on microfluidics are provided in this paper. In addition, we also present the theoretical background of DEP.

  16. Dielectrophoretic capture voltage spectrum for measurement of dielectric properties and separation of cancer cells.

    PubMed

    Wu, Liqun; Lanry Yung, Lin-Yue; Lim, Kian-Meng

    2012-03-01

    In this paper, a new dielectrophoresis (DEP) method based on capture voltage spectrum is proposed for measuring dielectric properties of biological cells. The capture voltage spectrum can be obtained from the balance of dielectrophoretic force and Stokes drag force acting on the cell in a microfluidic device with fluid flow and strip electrodes. The method was demonstrated with the measurement of dielectric properties of human colon cancer cells (HT-29 cells). From the capture voltage spectrum, the real part of Clausius-Mossotti factor of HT-29 cells for different frequencies of applied electric field was obtained. The dielectric properties of cell interior and plasma membrane were then estimated by using single-shell dielectric model. The cell interior permittivity and conductivity were found to be insensitive to changes in the conductivity of the medium in which the cells are suspended, but the measured permittivity and conductivity of cell membrane were found to increase with the increase of medium conductivity. In addition, the measurement of capture voltage spectrum was found to be useful in providing the optimum operating conditions for separating HT-29 cells from other cells (such as red blood cells) using dielectrophoresis.

  17. Highly efficient single cell arraying by integrating acoustophoretic cell pre-concentration and dielectrophoretic cell trapping.

    PubMed

    Kim, Soo Hyeon; Antfolk, Maria; Kobayashi, Marina; Kaneda, Shohei; Laurell, Thomas; Fujii, Teruo

    2015-11-21

    To array rare cells at the single-cell level, the volumetric throughput may become a bottleneck in the cell trapping and the subsequent single-cell analysis, since the target cells per definition commonly exist in a large sample volume after purification from the original sample. Here, we present a novel approach for high throughput single cell arraying by integrating two original microfluidic devices: an acoustofluidic chip and an electroactive microwell array. The velocity of the cells is geared down in the acoustofluidic chip while maintaining a high volume flow rate at the inlet of the microsystem, and the cells are subsequently trapped one by one into the microwell array using dielectrophoresis. The integrated system exhibited a 10 times improved sample throughput compared to trapping with the electroactive microwell array chip alone, while maintaining a highly efficient cell recovery above 90%. The results indicate that the serial integration of the acoustophoretic pre-concentration with the dielectrophoretic cell trapping drastically improves the performance of the electroactive microwell array for highly efficient single cell analysis. This simple and effective system for high throughput single cell arraying with further possible integration of additional functions, including cell sorting and downstream analysis after cell trapping, has potential for development to a highly integrated and automated platform for single-cell analysis of rare cells.

  18. Modeling and simulation of dielectrophoretic particle-particle interactions and assembly.

    PubMed

    Hossan, Mohammad Robiul; Dillon, Robert; Roy, Ajit K; Dutta, Prashanta

    2013-03-15

    Electric field induced particle-particle interactions and assembly are of great interest due to their useful applications in micro devices. The behavior of particles becomes more complex if multiple particles interact with each other at the same time. In this paper, we present a numerical study of two dimensional DC dielectrophoresis based particle-particle interactions and assembly for multiple particles using a hybrid immersed interface-immersed boundary method. The immersed interface method is employed to capture the physics of electrostatics in a fluid media with suspended particles. Particle interaction based dielectrophoretic forces are obtained using Maxwell's stress tensor without any boundary or volume integration. This electrostatic force distribution mimics the actual physics of the immersed particles in a fluid media. The corresponding particle response and hydrodynamic interactions are captured through the immersed boundary method by solving the transient Navier-Stokes equations. The interaction and assembly of multiple electrically similar and dissimilar particles are studied for various initial positions and orientations. Numerical results show that in a fluid media, similar particles form a chain parallel to the applied electric field, whereas dissimilar particles form a chain perpendicular to the applied electric field. Irrespective of initial position and orientation, particles first align themselves parallel or perpendicular to the electric field depending on the similarity or dissimilarity of particles. The acceleration and deceleration of particles are also observed and analyzed at different phases of the assembly process. This comprehensive study can be used to explain the multiple particle interaction and assembly phenomena observed in experiments.

  19. Flow-through cell electroporation microchip integrating dielectrophoretic viable cell sorting.

    PubMed

    Wei, Zewen; Li, Xueming; Zhao, Deyao; Yan, Hao; Hu, Zhiyuan; Liang, Zicai; Li, Zhihong

    2014-10-21

    Microfluidics based continuous cell electroporation is an appealing approach for high-throughput cell transfection, but cell viability of existing methods is usually compromised by adverse electrical or hydrodynamic effects. Here we present the validation of a flow-through cell electroporation microchip, in which dielectrophoretic force was employed to sort viable cells. By integrating parallel electroporation electrodes and dielectrophoresis sorting electrodes together in a simple straight microfluidic channel, sufficient electrical pulses were applied for efficient electroporation, and a proper sinusoidal electrical field was subsequently utilized to exclude damaged cells by dielectrophoresis. Thus, the difficulties for seeking the fine balance between electrotransfection efficiency and cell viability were steered clear. After careful investigation and optimization of the DEP behaviors of electroporated cells, efficient electrotransfection of plasmid DNA was demonstrated in vulnerable neuron cells and several hard-to-transfect primary cell types with excellent cell viability. This microchip constitutes a novel way of continuous cell transfection to significantly improve the cell viability of existing methodologies.

  20. Dynamic evolution of interacting carbon nanotubes suspended in a fluid using a dielectrophoretic framework

    NASA Astrophysics Data System (ADS)

    Oliva-Avilés, A. I.; Zozulya, V. V.; Gamboa, F.; Avilés, F.

    2016-09-01

    A theoretical investigation of the dynamic response of interacting carbon nanotubes (CNTs) dispersed in a liquid medium under alternating current electric fields is presented. The proposed modeling strategy is based on the dielectrophoretic theory and classical electrodynamics of rigid bodies, and considers the coupled rotation-translation motion of interacting CNTs represented as electrical dipoles. Based on experimental evidence, the parameters which are expected to cause a major contribution to the CNTs' motion are investigated for different initial configurations of CNTs. It is predicted that high electric field frequencies, long CNTs, high values of electrical permittivity and conductivity of the CNTs immersed in solvents of high polarity promote faster equilibrium conditions, achieved by CNT tip-to-tip contact and alignment along the electric field direction. For the majority of the scenarios, CNT alignment along the field direction is predicted as the first event, followed by the translation of aligned CNTs until the tip-to-tip contact condition is reached. For systems with interacting CNTs with different lengths, equilibrium of the shorter CNT is achieved faster. Predictions also show that the initial rotation angles and initial location of CNTs have a paramount influence on the evolution of the system towards the equilibrium configuration.

  1. Polarization behavior of polystyrene particles under direct current and low-frequency (<1 kHz) electric fields in dielectrophoretic systems.

    PubMed

    Saucedo-Espinosa, Mario A; Rauch, Mallory M; LaLonde, Alexandra; Lapizco-Encinas, Blanca H

    2016-02-01

    The relative polarization behavior of micron and submicron polystyrene particles was investigated under direct current and very low frequency (<1 kHz) alternating current electric fields. Relative polarization of particles with respect to the suspending medium is expressed in terms of the Clausius-Mossotti factor, a parameter of crucial importance in dielectrophoretic-based operations. Particle relative polarization was studied by employing insulator-based dielectrophoretic (iDEP) devices. The effects of particle size, medium conductivity, and frequency (10-1000 Hz) of the applied electric potential on particle response were assessed through experiments and mathematical modeling with COMSOL Multiphysics(®). Particles of different sizes (100-1000 nm diameters) were introduced into iDEP devices fabricated from polydimethylsiloxane (PDMS) and their dielectrophoretic responses under direct and alternating current electric fields were recorded and analyzed in the form of images and videos. The results illustrated that particle polarizability and dielectrophoretic response depend greatly on particle size and the frequency of the electric field. Small particles tend to exhibit positive DEP at higher frequencies (200-1000 Hz), while large particles exhibit negative DEP at lower frequencies (20-200 Hz). These differences in relative polarization can be used for the design of iDEP-based separations and analysis of particle mixtures.

  2. Polarization behavior of polystyrene particles under direct current and low-frequency (<1 kHz) electric fields in dielectrophoretic systems.

    PubMed

    Saucedo-Espinosa, Mario A; Rauch, Mallory M; LaLonde, Alexandra; Lapizco-Encinas, Blanca H

    2016-02-01

    The relative polarization behavior of micron and submicron polystyrene particles was investigated under direct current and very low frequency (<1 kHz) alternating current electric fields. Relative polarization of particles with respect to the suspending medium is expressed in terms of the Clausius-Mossotti factor, a parameter of crucial importance in dielectrophoretic-based operations. Particle relative polarization was studied by employing insulator-based dielectrophoretic (iDEP) devices. The effects of particle size, medium conductivity, and frequency (10-1000 Hz) of the applied electric potential on particle response were assessed through experiments and mathematical modeling with COMSOL Multiphysics(®). Particles of different sizes (100-1000 nm diameters) were introduced into iDEP devices fabricated from polydimethylsiloxane (PDMS) and their dielectrophoretic responses under direct and alternating current electric fields were recorded and analyzed in the form of images and videos. The results illustrated that particle polarizability and dielectrophoretic response depend greatly on particle size and the frequency of the electric field. Small particles tend to exhibit positive DEP at higher frequencies (200-1000 Hz), while large particles exhibit negative DEP at lower frequencies (20-200 Hz). These differences in relative polarization can be used for the design of iDEP-based separations and analysis of particle mixtures. PMID:26531799

  3. Lab on a chip for multiplexed immunoassays to detect bladder cancer using multifunctional dielectrophoretic manipulations.

    PubMed

    Chuang, Cheng-Hsin; Wu, Ting-Feng; Chen, Cheng-Ho; Chang, Kai-Chieh; Ju, Jing-Wei; Huang, Yao-Wei; Van Nhan, Vo

    2015-07-21

    A multiplexed immunosensor has been developed for the detection of specific biomarkers Galectin-1 (Gal-1) and Lactate Dehydrogenase B (LDH-B) present in different grades of bladder cancer cell lysates. In order to immobilize nanoprobes with different antibodies on a single chip we employed three-step programmable dielectrophoretic manipulations for focusing, guiding and trapping to enhance the fluorescent response and reduce the interference between the two antibody arrays. The chip consisted of a patterned indium tin oxide (ITO) electrode for sensing and a middle fish bone shaped gold electrode for focusing and guiding. Using ITO electrodes for the sensing area can effectively eliminate the background noise of fluorescence response as compared to metal electrodes. It was also observed that the three step manipulation increased fluorescence response after immunosensing by about 4.6 times as compared to utilizing DEP for just trapping the nanoprobes. Two different-grade bladder cancer cell lysates (grade I: RT4 and grade III: T24) were individually analyzed for detecting the protein expression levels of Gal-1 and LDH-B. The fluorescence intensity observed for Gal-1 is higher than that of LDH-B in the T24 cell lysate; however the response observed in RT4 is higher for LDH-B as compared to Gal-1. Thus we can effectively identify the different grades of bladder cancer cells. In addition, the platform for DEP manipulation developed in this study can enable real time detection of multiple analytes on a single chip and provide more practical benefits for clinical diagnosis. PMID:26087450

  4. Creation of carbon nanotube based bioSensors through dielectrophoretic assembly

    NASA Astrophysics Data System (ADS)

    Mani, Nilan S.; Kim, Steve; Annam, Kaushik; Bane, Danielle; Subramanyam, Guru

    2015-08-01

    Due to their excellent electrical, optical, and mechanical properties, nanosized single wall carbon nanotubes (SWNTs) have attracted significant attention as a transducing element in nano-bio sensor research. Controlled assembly, device fabrication, and bio-functionalization of the SWNTs are crucial in creating the sensors. In this study, working biosensor platforms were created using dielectrophoretic assembly of single wall carbon nanotubes (SWNTs) as a bridge between two gold electrodes. SWNTs in a commercial SDS surfactant solution were dispensed in the gap between the two gold electrodes, followed by applying an ac voltage across the two electrodes. The dielectrophoresis aligns the CNTs and forms a bridge between the two electrodes. A copious washing and a subsequent annealing of the devices at 200 °C remove the surfactants and create an excellent semiconducting (p-type) bridge between the two electrodes. A liquid gated field effect transistor (LGFET) was built using DI water as the gate dielectric and the SWNT bridge as the channel. Negative gate voltages of the FET increased the drain current and applying a positive gate voltage of +0.5V depleted the channel of charges and turned the device off. The biosensor was verified using both the two terminal and three terminal devices. Genomic salmon DNA dissolved in DI water was applied on the SWNT bridge in both type of devices. In the two terminal device, the conductance of the bridge dropped by 65x after the binding of the DNA. In the LGFET, the transconductance of the device decreased 2X after the binding of the DNA. The binding of the DNA also suppressed hysteresis in the Drain Current vs Gate Voltage characteristics of the LGFET.

  5. Capillary-driven microfluidic chips with evaporation-induced flow control and dielectrophoretic microbead trapping

    NASA Astrophysics Data System (ADS)

    Temiz, Yuksel; Skorucak, Jelena; Delamarche, Emmanuel

    2014-07-01

    This work reports our efforts on developing simple-to-use microfluidic devices for point-of-care diagnostic applications with recent extensions that include the trapping of microbeads using dielectrophoresis (DEP) and the modulation of the liquid flow using integrated microheaters. DEP serves the purpose of trapping microbeads coated with receptors and analytes for detection of a fluorescent signal. The microheater is actuated once the chip is filled by capillarity, creating an evaporation-induced flow tuned according to assay conditions. The chips are composed of a glass substrate patterned with 50-nm-thick Pd electrodes and microfluidic structures made using a 20-μm-thick dry-film resist (DFR). Chips are covered/sealed by low temperature (50°C) lamination of a 50-μm-thick DFR layer having excellent optical and mechanical properties. To separate cleaned and sealed chips from the wafer, we used an effective chip singulation technique which we informally call the "chip-olate" process. In the experimental section, we first studied dielectrophoretic trapping of 10-μm beads for flow rates ranging from 80 pL s-1 to 2.5 nL s-1 that are generated by an external syringe pump. Then, we characterized the embedded microheater in DFR-covered chips. Flow rates as high as 8 nL s-1 were generated by evaporation-induced flow when the heater was biased by 10 V, corresponding to 270-mW power. Finally, DEP-based trapping and fluorescent detection of functionalized beads were demonstrated as the flow was generated by evaporation-induced flow after the microfluidic structures were filled by capillarity.

  6. Capillary-driven microfluidic chips with evaporation-induced flow control and dielectrophoretic microbead trapping

    NASA Astrophysics Data System (ADS)

    Temiz, Yuksel; Skorucak, Jelena; Delamarche, Emmanuel

    2014-03-01

    This work reports our efforts on developing simple-to-use microfluidic devices for point-of-care diagnostic applications with recent extensions that include the trapping of microbeads using dielectrophoresis (DEP) and the modulation of capillary-driven flow using integrated microheaters. DEP serves the purpose of trapping microbeads coated with receptors and analytes for detection of a fluorescent signal. The microheater is actuated once the chip is filled by capillarity, creating an evaporation-induced flow tuned according to assay conditions. The chips are composed of a glass substrate patterned with 50-nm-thick Pd electrodes and microfluidic structures made using a 20-μm-thick dry-film resist (DFR). Chips are covered/sealed by low-temperature (50 °C) lamination of a 50-μm-thick DFR layer having excellent optical and mechanical properties. To separate cleaned and sealed chips from the wafer, we used an effective chip singulation technique that we informally call the "chip-olate" process. In the experimental section, we first studied dielectrophoretic trapping of 10 μm beads for flow rates ranging from 80 pL s-1 to 2.5 nL s-1 and that are generated by an external syringe pump. Then, we characterized the embedded microheater in DFR-covered chips. Flow rates as high as 8 nL s-1 were generated by evaporation-induced flow when the heater was biased by 10 V, corresponding to 270 mW power. Finally, DEP-based trapping and fluorescent detection of functionalized beads were demonstrated as the flow was generated by the combination of capillary filling and evaporation-induced flow.

  7. Lab on a chip for multiplexed immunoassays to detect bladder cancer using multifunctional dielectrophoretic manipulations.

    PubMed

    Chuang, Cheng-Hsin; Wu, Ting-Feng; Chen, Cheng-Ho; Chang, Kai-Chieh; Ju, Jing-Wei; Huang, Yao-Wei; Van Nhan, Vo

    2015-07-21

    A multiplexed immunosensor has been developed for the detection of specific biomarkers Galectin-1 (Gal-1) and Lactate Dehydrogenase B (LDH-B) present in different grades of bladder cancer cell lysates. In order to immobilize nanoprobes with different antibodies on a single chip we employed three-step programmable dielectrophoretic manipulations for focusing, guiding and trapping to enhance the fluorescent response and reduce the interference between the two antibody arrays. The chip consisted of a patterned indium tin oxide (ITO) electrode for sensing and a middle fish bone shaped gold electrode for focusing and guiding. Using ITO electrodes for the sensing area can effectively eliminate the background noise of fluorescence response as compared to metal electrodes. It was also observed that the three step manipulation increased fluorescence response after immunosensing by about 4.6 times as compared to utilizing DEP for just trapping the nanoprobes. Two different-grade bladder cancer cell lysates (grade I: RT4 and grade III: T24) were individually analyzed for detecting the protein expression levels of Gal-1 and LDH-B. The fluorescence intensity observed for Gal-1 is higher than that of LDH-B in the T24 cell lysate; however the response observed in RT4 is higher for LDH-B as compared to Gal-1. Thus we can effectively identify the different grades of bladder cancer cells. In addition, the platform for DEP manipulation developed in this study can enable real time detection of multiple analytes on a single chip and provide more practical benefits for clinical diagnosis.

  8. High-throughput particle manipulation by hydrodynamic, electrokinetic, and dielectrophoretic effects in an integrated microfluidic chip

    PubMed Central

    Li, Shunbo; Li, Ming; Bougot-Robin, Kristelle; Cao, Wenbin; Yeung Yeung Chau, Irene; Li, Weihua; Wen, Weijia

    2013-01-01

    Integrating different steps on a chip for cell manipulations and sample preparation is of foremost importance to fully take advantage of microfluidic possibilities, and therefore make tests faster, cheaper and more accurate. We demonstrated particle manipulation in an integrated microfluidic device by applying hydrodynamic, electroosmotic (EO), electrophoretic (EP), and dielectrophoretic (DEP) forces. The process involves generation of fluid flow by pressure difference, particle trapping by DEP force, and particle redirect by EO and EP forces. Both DC and AC signals were applied, taking advantages of DC EP, EO and AC DEP for on-chip particle manipulation. Since different types of particles respond differently to these signals, variations of DC and AC signals are capable to handle complex and highly variable colloidal and biological samples. The proposed technique can operate in a high-throughput manner with thirteen independent channels in radial directions for enrichment and separation in microfluidic chip. We evaluated our approach by collecting Polystyrene particles, yeast cells, and E. coli bacteria, which respond differently to electric field gradient. Live and dead yeast cells were separated successfully, validating the capability of our device to separate highly similar cells. Our results showed that this technique could achieve fast pre-concentration of colloidal particles and cells and separation of cells depending on their vitality. Hydrodynamic, DC electrophoretic and DC electroosmotic forces were used together instead of syringe pump to achieve sufficient fluid flow and particle mobility for particle trapping and sorting. By eliminating bulky mechanical pumps, this new technique has wide applications for in situ detection and analysis. PMID:24404011

  9. Dielectrophoretic lab-on-CMOS platform for trapping and manipulation of cells.

    PubMed

    Park, Kyoungchul; Kabiri, Shideh; Sonkusale, Sameer

    2016-02-01

    Trapping and manipulation of cells are essential operations in numerous studies in biology and life sciences. We discuss the realization of a Lab-on-a-Chip platform for dielectrophoretic trapping and repositioning of cells and microorganisms on a complementary metal oxide semiconductor (CMOS) technology, which we define here as Lab-on-CMOS (LoC). The LoC platform is based on dielectrophoresis (DEP) which is the force experienced by any dielectric particle including biological entities in non-uniform AC electrical field. DEP force depends on the permittivity of the cells, its size and shape and also on the permittivity of the medium and therefore it enables selective targeting of cells based on their phenotype. In this paper, we address an important matter that of electrode design for DEP for which we propose a three-dimensional (3D) octapole geometry to create highly confined electric fields for trapping and manipulation of cells. Conventional DEP-based platforms are implemented stand-alone on glass, silicon or polymers connected to external infrastructure for electronics and optics, making it bulky and expensive. In this paper, the use of CMOS as a platform provides a pathway to truly miniaturized lab-on-CMOS or LoC platform, where DEP electrodes are designed using built-in multiple metal layers of the CMOS process for effective trapping of cells, with built-in electronics for in-situ impedance monitoring of the cell position. We present electromagnetic simulation results of DEP force for this unique 3D octapole geometry on CMOS. Experimental results with yeast cells validate the design. These preliminary results indicate the promise of using CMOS technology for truly compact miniaturized lab-on-chip platform for cell biotechnology applications. PMID:26780441

  10. An integrated acoustic and dielectrophoretic particle manipulation in a microfluidic device for particle wash and separation fabricated by mechanical machining.

    PubMed

    Çetin, Barbaros; Özer, Mehmet Bülent; Çağatay, Erdem; Büyükkoçak, Süleyman

    2016-01-01

    In this study, acoustophoresis and dielectrophoresis are utilized in an integrated manner to combine the two different operations on a single polydimethylsiloxane (PDMS) chip in sequential manner, namely, particle wash (buffer exchange) and particle separation. In the washing step, particles are washed with buffer solution with low conductivity for dielectrophoretic based separation to avoid the adverse effects of Joule heating. Acoustic waves generated by piezoelectric material are utilized for washing, which creates standing waves along the whole width of the channel. Coupled electro-mechanical acoustic 3D multi-physics analysis showed that the position and orientation of the piezoelectric actuators are critical for successful operation. A unique mold is designed for the precise alignment of the piezoelectric materials and 3D side-wall electrodes for a highly reproducible fabrication. To achieve the throughput matching of acoustophoresis and dielectrophoresis in the integration, 3D side-wall electrodes are used. The integrated device is fabricated by PDMS molding. The mold of the integrated device is fabricated using high-precision mechanical machining. With a unique mold design, the placements of the two piezoelectric materials and the 3D sidewall electrodes are accomplished during the molding process. It is shown that the proposed device can handle the wash and dielectrophoretic separation successfully. PMID:26865905

  11. Electrical immunosensor based on dielectrophoretically-deposited carbon nanotubes for detection of influenza virus H1N1.

    PubMed

    Singh, Renu; Sharma, Abhinav; Hong, Seongkyeol; Jang, Jaesung

    2014-11-01

    The influenza virus has received extensive attention due to the recent H1N1 pandemics originating from swine. This study reports a label-free, highly sensitive, and selective electrical immunosensor for the detection of influenza virus H1N1 based on dielectrophoretically deposited single-walled carbon nanotubes (SWCNTs). COOH-functionalized SWCNTs were deposited on a self-assembled monolayer of polyelectrolyte polydiallyldimethyl-ammonium chloride (PDDA) between two gold electrodes by dielectrophoretic and electrostatic forces, which resulted in reproducible, uniform, aligned, and aggregation-free SWCNT channels (2-10 μm in length). Avidin was immobilized onto the PDDA-SWCNT channels, and viral antibodies were immobilized using biotin-avidin coupling. The resistance of the channels increased with the binding of the influenza viruses to the antibodies. These immunosensors showed linear behavior as the virus concentration was varied from 1 to 10(4) PFU ml(-1) along with a detection time of 30 min. The immunosensors with a 2 μm channel length detected 1 PFU ml(-1) of the influenza virus accurately (R(2) = 0.99) and selectively from MS2 bacteriophages. These immunosensors have the potential to become an important component of a point-of-care test kit that will enable a rapid clinical diagnosis.

  12. An integrated acoustic and dielectrophoretic particle manipulation in a microfluidic device for particle wash and separation fabricated by mechanical machining.

    PubMed

    Çetin, Barbaros; Özer, Mehmet Bülent; Çağatay, Erdem; Büyükkoçak, Süleyman

    2016-01-01

    In this study, acoustophoresis and dielectrophoresis are utilized in an integrated manner to combine the two different operations on a single polydimethylsiloxane (PDMS) chip in sequential manner, namely, particle wash (buffer exchange) and particle separation. In the washing step, particles are washed with buffer solution with low conductivity for dielectrophoretic based separation to avoid the adverse effects of Joule heating. Acoustic waves generated by piezoelectric material are utilized for washing, which creates standing waves along the whole width of the channel. Coupled electro-mechanical acoustic 3D multi-physics analysis showed that the position and orientation of the piezoelectric actuators are critical for successful operation. A unique mold is designed for the precise alignment of the piezoelectric materials and 3D side-wall electrodes for a highly reproducible fabrication. To achieve the throughput matching of acoustophoresis and dielectrophoresis in the integration, 3D side-wall electrodes are used. The integrated device is fabricated by PDMS molding. The mold of the integrated device is fabricated using high-precision mechanical machining. With a unique mold design, the placements of the two piezoelectric materials and the 3D sidewall electrodes are accomplished during the molding process. It is shown that the proposed device can handle the wash and dielectrophoretic separation successfully.

  13. Study of Ac Dielectrophoretic Process of SiC Nanowires: A Universal Method for Alignment of Semiconductor Nanowires.

    PubMed

    Yao, Limei; Cui, Yan; Cong, Haining; Zheng, Jinju; Shang, Minghui; Yang, Zuobao; Yang, Weiyou; Wei, Guodong; Gao, Fengmei

    2016-04-01

    In this study, the dielectrophoretic processes of SiC nanowires suspended in three typical solvents, (highly purified water, ethanol and isopropanol) were systematically investigated. Optical microscope and SEM characterizations were used to observe the order of SiC nanowires on the surface of gold microchannels. The gold microchannels were induced by Ac dielectrophoresis of the corresponding dispersion solutions of SiC nanowires, with a concentration of 0.1 mg/mL. The study shows that the dielectrophoresis process is an effective way of synthesizing highly oriented SiC nanoarrays using isopropanol solution. The results also show that the arrangement of SiC nanowires on the interdigital electrode configuration not only depend on the kind of solvent used, but also on the applied frequency (1000 Hz~1 MHz) and voltage (1 V~20 V). PMID:27451739

  14. Simulations of a dielectrophoretic membrane filtration process for removal of water droplets from water-in-oil emulsions.

    PubMed

    Molla, Shahnawaz H; Masliyah, Jacob H; Bhattacharjee, Subir

    2005-07-01

    A novel separation technique based on simultaneous application of AC dielectrophoresis and preferential transport through a semipermeable hydrophilic membrane is proposed for separation of small amounts of emulsified water droplets from a water-in-oil emulsion. Embedding an array of parallel microelectrodes on a membrane matrix, followed by application of an AC potential to these electrodes, can result in capturing the water droplets onto the membranes from the emulsion during a crossflow filtration process. The present paper describes the theoretical principles underlying such a process, and describes a simple mathematical framework based on trajectory analysis for assessing the separation efficiency of such a technique. The results indicate that superimposition of an AC dielectrophoretic field can significantly enhance the preferential transport of the emulsified water through the membrane in a crossflow filtration device. This can lead to a highly efficient continuous separation process for dilute emulsions.

  15. Study of Ac Dielectrophoretic Process of SiC Nanowires: A Universal Method for Alignment of Semiconductor Nanowires.

    PubMed

    Yao, Limei; Cui, Yan; Cong, Haining; Zheng, Jinju; Shang, Minghui; Yang, Zuobao; Yang, Weiyou; Wei, Guodong; Gao, Fengmei

    2016-04-01

    In this study, the dielectrophoretic processes of SiC nanowires suspended in three typical solvents, (highly purified water, ethanol and isopropanol) were systematically investigated. Optical microscope and SEM characterizations were used to observe the order of SiC nanowires on the surface of gold microchannels. The gold microchannels were induced by Ac dielectrophoresis of the corresponding dispersion solutions of SiC nanowires, with a concentration of 0.1 mg/mL. The study shows that the dielectrophoresis process is an effective way of synthesizing highly oriented SiC nanoarrays using isopropanol solution. The results also show that the arrangement of SiC nanowires on the interdigital electrode configuration not only depend on the kind of solvent used, but also on the applied frequency (1000 Hz~1 MHz) and voltage (1 V~20 V).

  16. The development of malaria diagnostic techniques: a review of the approaches with focus on dielectrophoretic and magnetophoretic methods.

    PubMed

    Kasetsirikul, Surasak; Buranapong, Jirayut; Srituravanich, Werayut; Kaewthamasorn, Morakot; Pimpin, Alongkorn

    2016-01-01

    The large number of deaths caused by malaria each year has increased interest in the development of effective malaria diagnoses. At the early-stage of infection, patients show non-specific symptoms or are asymptomatic, which makes it difficult for clinical diagnosis, especially in non-endemic areas. Alternative diagnostic methods that are timely and effective are required to identify infections, particularly in field settings. This article reviews conventional malaria diagnostic methods together with recently developed techniques for both malaria detection and infected erythrocyte separation. Although many alternative techniques have recently been proposed and studied, dielectrophoretic and magnetophoretic approaches are among the promising new techniques due to their high specificity for malaria parasite-infected red blood cells. The two approaches are discussed in detail, including their principles, types, applications and limitations. In addition, other recently developed techniques, such as cell deformability and morphology, are also overviewed in this article. PMID:27405995

  17. Numerical investigation of 22 seconds of convection under the effect of dielectrophoretic force in an annular gap

    NASA Astrophysics Data System (ADS)

    Crumeyrolle, Olivier; Egbers, Christoph; Mutabazi, Innocent; Dahley, M. Norman; Smieszek, Marlene

    2012-07-01

    We investigate numerically the thermal convection of an annular dielectric liquid sheet under the effect of the dielectrophoretic force, as observed when a dielectric liquid is permeated by an inhomogeneous electric field. This is of particular interest for space applications as natural convection cannot appear and forced convection from moving parts such as pumps is undesirable due to the expected wearing and lower reliability. Hence heat exchanger relying on the dielectrophoretic force to create convection could provide light, compact and reliable heat exchanger for aerospace cooling systems \\cite{crumeyrolleP}. We investigate the case of a radius ratio equal to 0.5 and Prandtl number of 65. This setup is under experimental investigation at LAS, BTU Cottbus, both on ground and during parabolic flight. The 3D linear stability analysis, that takes the finite size of the system into account, shows that the critical mode is non-axisymmetric and under the form of two counteroriented helices, rather than under the form of rolls as predicted in past investigations\\cite{crumeyrolleT}. Due to the short duration of microgravity during parabolic flight (22 seconds), 3D time-dependent DNS are required with realistic initial conditions. The simulations show that the helices are difficult to observe, as the flow pattern is dominated by convection plumes. We report that transient thermal transfer at the inner cylinder is strongly enhanced by those structures, while the thermal transfer close to the outer cylinder is weaker. J.S. Paschkewitz and {D.M.} Pratt, Exp. Therm. Fluid Sci., 21,, 187 (2000). M. Takashima, Q. J. Mech. appl. Math. 33,, 93 (1980).

  18. Fractional randomness

    NASA Astrophysics Data System (ADS)

    Tapiero, Charles S.; Vallois, Pierre

    2016-11-01

    The premise of this paper is that a fractional probability distribution is based on fractional operators and the fractional (Hurst) index used that alters the classical setting of random variables. For example, a random variable defined by its density function might not have a fractional density function defined in its conventional sense. Practically, it implies that a distribution's granularity defined by a fractional kernel may have properties that differ due to the fractional index used and the fractional calculus applied to define it. The purpose of this paper is to consider an application of fractional calculus to define the fractional density function of a random variable. In addition, we provide and prove a number of results, defining the functional forms of these distributions as well as their existence. In particular, we define fractional probability distributions for increasing and decreasing functions that are right continuous. Examples are used to motivate the usefulness of a statistical approach to fractional calculus and its application to economic and financial problems. In conclusion, this paper is a preliminary attempt to construct statistical fractional models. Due to the breadth and the extent of such problems, this paper may be considered as an initial attempt to do so.

  19. The patterning mechanism of carbon nanotubes using surface acoustic waves: the acoustic radiation effect or the dielectrophoretic effect

    NASA Astrophysics Data System (ADS)

    Ma, Zhichao; Guo, Jinhong; Liu, Yan Jun; Ai, Ye

    2015-08-01

    In this study, we present a simple technique capable of assembling and patterning suspended CNTs using a standing surface acoustic wave (SSAW) field. Individual CNTs could be assembled into larger CNT bundles and patterned in periodic positions on a substrate surface. The mechanism of the SSAW-based patterning technique has been investigated using both numerical simulation and experimental study. It has been found that the acoustic radiation effect due to the acoustic pressure field and the dielectrophoretic (DEP) effect induced by the electric field co-existing in the patterning process however play different roles depending on the properties of the suspended particles and the suspension medium. In the SSAW-based patterning of highly conductive CNTs with high aspect ratio geometry, the positive DEP effect dominates over the acoustic radiation effect. In contrast, the acoustic radiation effect dominates over the DEP effect when manipulating less conductive, spherical or low aspect ratio particles or biological cells. These results provide a meaningful insight into the mechanism of SSAW-based patterning, which is of great help to guide the effective use of this patterning technique for various applications.In this study, we present a simple technique capable of assembling and patterning suspended CNTs using a standing surface acoustic wave (SSAW) field. Individual CNTs could be assembled into larger CNT bundles and patterned in periodic positions on a substrate surface. The mechanism of the SSAW-based patterning technique has been investigated using both numerical simulation and experimental study. It has been found that the acoustic radiation effect due to the acoustic pressure field and the dielectrophoretic (DEP) effect induced by the electric field co-existing in the patterning process however play different roles depending on the properties of the suspended particles and the suspension medium. In the SSAW-based patterning of highly conductive CNTs with high

  20. Continuous-flow system and monitoring tools for the dielectrophoretic integration of nanowires in light sensor arrays

    NASA Astrophysics Data System (ADS)

    García Marín, A.; García Núñez, C.; Rodríguez, P.; Shen, G.; Kim, S. M.; Kung, P.; Piqueras, J.; Pau, J. L.

    2015-03-01

    Although nanowires (NWs) may improve the performance of many optoelectronic devices such as light emitters and photodetectors, the mass commercialization of these devices is limited by the difficult task of finding reliable and reproducible methods to integrate the NWs on foreign substrates. This work shows the fabrication of zinc oxide NWs photodetectors on conventional glass using transparent conductive electrodes to effectively integrate the NWs at specific locations by dielectrophoresis (DEP). The paper describes the careful preparation of NW dispersions by sedimentation and the dielectrophoretic alignment of NWs in a home-made system. This system includes an impedance technique for the assessment of the alignment quality in real time. Following this procedure, ultraviolet photodetectors based on the electrical contacts formed by the DEP process on the transparent electrodes are fabricated. This cost-effective mean of contacting NWs enables front-and back-illumination operation modes, the latter eliminating shadowing effects caused by the deposition of metals. The electro-optical characterization of the devices shows uniform responsivities in the order of 106 A W-1 below 390 nm under both modes, as well as, time responses of a few seconds.

  1. Rapid identification of bacteria utilizing amplified dielectrophoretic force-assisted nanoparticle-induced surface-enhanced Raman spectroscopy

    PubMed Central

    2014-01-01

    Dielectrophoresis (DEP) has been widely used to manipulate, separate, and concentrate microscale particles. Unfortunately, DEP force is difficult to be used in regard to the manipulation of nanoscale molecules/particles. For manipulation of 50- to 100-nm particles, the electrical field strength must be higher than 3 × 106 V/m, and with a low applied voltage of 10 Vp-p, the electrode gap needs to be reduced to submicrons. Our research consists of a novel and simple approach, using a several tens micrometers scale electrode (low cost and easy to fabricate) to generate a dielectrophoretic microparticle assembly to form nanogaps with a locally amplified alternating current (AC) electric field gradient, which is used to rapidly trap nanocolloids. The results show that the amplified DEP force could effectively trap 20-nm colloids in the nanogaps between the 5-μm particle aggregates. The concentration factor at the local detection region was shown to be approximately 5 orders of magnitude higher than the bulk solution. This approach was also successfully used in bead-based surface-enhanced Raman spectroscopy (SERS) for the rapid identification of bacteria from diluted blood. PMID:25024685

  2. Gravitational Effects on Near Field Flow Structure of Low Density Gas Jets

    NASA Technical Reports Server (NTRS)

    Griffin, D. W.; Yep, T. W.; Agrawal, A. K.

    2005-01-01

    Experiments were conducted in Earth gravity and microgravity to acquire quantitative data on near field flow structure of helium jets injected into air. Microgravity conditions were simulated in the 2.2- second drop tower at NASA Glenn Research Center. The jet flow was observed by quantitative rainbow schlieren deflectometry, a non-intrusive line of site measurement technique for the whole field. The flow structure was characterized by distributions of angular deflection and helium mole percentage obtained from color schlieren images taken at 60 Hz. Results show that the jet in microgravity was up to 70 percent wider than that in Earth gravity. The global jet flow oscillations observed in Earth gravity were absent in microgravity, providing direct experimental evidence that the flow instability in the low density jet was buoyancy induced. The paper provides quantitative details of temporal flow evolution as the experiment undergoes change in gravity in the drop tower.

  3. Gravitational Effects on Near Field Flow Structure of Low Density Gas Jets

    NASA Technical Reports Server (NTRS)

    Yep, Tze-Wing; Agrawal, Ajay K.; Griffin, DeVon; Salzman, Jack (Technical Monitor)

    2001-01-01

    Experiments were conducted in Earth gravity and microgravity to acquire quantitative data on near field flow structure of helium jets injected into air. Microgravity conditions were simulated in the 2.2-second drop tower at NASA Glenn Research Center. The jet flow was observed by quantitative rainbow schlieren deflectometry, a non-intrusive line of site measurement technique for the whole field. The flow structure was characterized by distributions of angular deflection and helium mole percentage obtained from color schlieren images taken at 60 Hz. Results show that the jet flow was significantly influenced by the gravity. The jet in microgravity was up to 70 percent wider than that in Earth gravity. The jet flow oscillations observed in Earth gravity were absent in microgravity, providing direct experimental evidence that the flow instability in the low density jet was buoyancy induced. The paper provides quantitative details of temporal flow evolution as the experiment undergoes a change in gravity in the drop tower.

  4. On-chip SERS analysis for single mimic pathogen detection using Raman-labeled nanoaggregate-embedded beads with a dielectrophoretic chip

    NASA Astrophysics Data System (ADS)

    Huang, Chen-Han; Lin, Hsing-Ying; Kuo, I.-Ting; Hsieh, Wen-Hsin; Huang, Ping-Ji; Yang, Tzyy-Schiuan; Chau, Lai-Kwan

    2012-02-01

    The integration of Raman-labeled nanoaggregate-embedded beads (NAEBs) for high performance SERS analysis of single mimic pathogen on a self-designed dielectrophoretic chip is demonstrated. The Raman tags called NAEBs are silica-coated, dye-induced aggregates of a small number of gold nanoparticles (AuNPs). In this work, NAEBs consisting of a Raman dye tetramethyl-rhodamine-5-isothiosyanate (TRITC) are chemically functionalized with streptavidin to detect biotin-functionalized polystyrene (PS) microspheres which mimic as pathogens. The sample solution of completely mixed streptavidin-functionalized NAEBs and biotin-functionalized PS microspheres is pumped into the microfluidic channel of a dielectrophoretic chip. By giving an AC voltage on the embedded electrodes, a single mimic pathogen can be caught via the non-contact dielectrophoretic force and suspended at the central cross of four aluminum electrodes for subsequent Raman spectroscopic detection. The SERS signal of TRITC is used as a spectral signature of specific mimic pathogen recognition, otherwise only the background Raman signal of a PS microsphere is observed. A pathogen-specific biosensor based on the dielectrophoresis-Raman spectroscopy system is developed, and the proof-ofconcept is confirmed by the specific molecular interaction model of streptavidin with biotin. Therefore, the on-chip multiplex SERS analysis of pathogens can be anticipated by employing different dye-tagged NAEBs simultaneously in a sample solution. We believe this bioassay has the ability to screen and detect multiple pathogens with minimal sample processing and handling even a small number of pathogens is present.

  5. Dynamic drag force based on iterative density mapping: A new numerical tool for three-dimensional analysis of particle trajectories in a dielectrophoretic system.

    PubMed

    Knoerzer, Markus; Szydzik, Crispin; Tovar-Lopez, Francisco Javier; Tang, Xinke; Mitchell, Arnan; Khoshmanesh, Khashayar

    2016-02-01

    Dielectrophoresis is a widely used means of manipulating suspended particles within microfluidic systems. In order to efficiently design such systems for a desired application, various numerical methods exist that enable particle trajectory plotting in two or three dimensions based on the interplay of hydrodynamic and dielectrophoretic forces. While various models are described in the literature, few are capable of modeling interactions between particles as well as their surrounding environment as these interactions are complex, multifaceted, and computationally expensive to the point of being prohibitive when considering a large number of particles. In this paper, we present a numerical model designed to enable spatial analysis of the physical effects exerted upon particles within microfluidic systems employing dielectrophoresis. The model presents a means of approximating the effects of the presence of large numbers of particles through dynamically adjusting hydrodynamic drag force based on particle density, thereby introducing a measure of emulated particle-particle and particle-liquid interactions. This model is referred to as "dynamic drag force based on iterative density mapping." The resultant numerical model is used to simulate and predict particle trajectory and velocity profiles within a microfluidic system incorporating curved dielectrophoretic microelectrodes. The simulated data are compared favorably with experimental data gathered using microparticle image velocimetry, and is contrasted against simulated data generated using traditional "effective moment Stokes-drag method," showing more accurate particle velocity profiles for areas of high particle density.

  6. Effect of Gravity on the Near Field Flow Structure of Helium Jet in Air

    NASA Technical Reports Server (NTRS)

    Agrawal, Ajay K.; Parthasarathy, Ramkumar; Griffin, DeVon

    2002-01-01

    Experiments have shown that a low-density jet injected into a high-density surrounding medium undergoes periodic oscillations in the near field. Although the flow oscillations in these jets at Richardson numbers about unity are attributed to the buoyancy, the direct physical evidence has not been acquired in the experiments. If the instability were indeed caused by buoyancy, the near-field flow structure would undergo drastic changes upon removal of gravity in the microgravity environment. The present study was conducted to investigate this effect by simulating microgravity environment in the 2.2-second drop tower at the NASA Glenn Research Center. The non-intrusive, rainbow schlieren deflectometry technique was used for quantitative measurements of helium concentrations in buoyant and non-buoyant jets. Results in a steady jet show that the radial growth of the jet shear layer in Earth gravity is hindered by the buoyant acceleration. The jet in microgravity was 30 to 70 percent wider than that in Earth gravity. The microgravity jet showed typical growth of a constant density jet shear layer. In case of a self-excited helium jet in Earth gravity, the flow oscillations continued as the jet flow adjusted to microgravity conditions in the drop tower. The flow oscillations were however not present at the end of the drop when steady microgravity conditions were reached.

  7. Fraction Reduction through Continued Fractions

    ERIC Educational Resources Information Center

    Carley, Holly

    2011-01-01

    This article presents a method of reducing fractions without factoring. The ideas presented may be useful as a project for motivated students in an undergraduate number theory course. The discussion is related to the Euclidean Algorithm and its variations may lead to projects or early examples involving efficiency of an algorithm.

  8. Dielectrophoretic Microfluidic Chip Enables Single-Cell Measurements for Multidrug Resistance in Heterogeneous Acute Myeloid Leukemia Patient Samples.

    PubMed

    Khamenehfar, Avid; Gandhi, Maher K; Chen, Yuchun; Hogge, Donna E; Li, Paul C H

    2016-06-01

    The front-line treatment for adult acute myeloid leukemia (AML) is anthracycline-based combination chemotherapy. However, treatment outcomes remain suboptimal with relapses frequently observed. Among the mechanisms of treatment failure is multidrug resistance (MDR) mediated by the ABCB1, ABCC1, and ABCG2 drug-efflux transporters. Although genetic and phenotypic heterogeneity between leukemic blast cells is a well-recognized phenomenon, there remains minimal data on differences in MDR activity at the individual cell level. Specifically, functional assays that can distinguish the variability in MDR activity between individual leukemic blasts are lacking. Here, we outline a new dielectrophoretic (DEP) chip-based assay. This assay permits measurement of drug accumulation in single cells, termed same-single-cell analysis in the accumulation mode (SASCA-A). Initially, the assay was optimized in pretherapy samples from 20 adults with AML whose leukemic blasts had MDR activity against the anthracyline daunorubicin (DNR) tested using multiple MDR inhibitors. Parameters tested were initial drug accumulation, time to achieve signal saturation, fold-increase of DNR accumulation with MDR inhibition, ease of cell trapping, and ease of maintaining the trapped cells stationary. This enabled categorization into leukemic blast cells with MDR activity (MDR(+)) and leukemic blast cells without MDR activity (MDR(-ve)). Leukemic blasts could also be distinguished from benign white blood cells (notably these also lacked MDR activity). MDR(-ve) blasts were observed to be enriched in samples taken from patients who went on to enter complete remission (CR), whereas MDR(+) blasts were frequently observed in patients who failed to achieve CR following front-line chemotherapy. However, pronounced variability in functional MDR activity between leukemic blasts was observed, with MDR(+) cells not infrequently seen in some patients that went on to achieve CR. Next, we tested MDR activity in two

  9. Temporal and Spatial Temperature Measurement in Insulator-Based Dielectrophoretic Devices

    PubMed Central

    2015-01-01

    Insulator-based dielectrophoresis is a relatively new analytical technique with a large potential for a number of applications, such as sorting, separation, purification, fractionation, and preconcentration. The application of insulator-based dielectrophoresis (iDEP) for biological samples, however, requires the precise control of the microenvironment with temporal and spatial resolution. Temperature variations during an iDEP experiment are a critical aspect in iDEP since Joule heating could lead to various detrimental effects hampering reproducibility. Additionally, Joule heating can potentially induce thermal flow and more importantly can degrade biomolecules and other biological species. Here, we investigate temperature variations in iDEP devices experimentally employing the thermosensitive dye Rhodamin B (RhB) and compare the measured results with numerical simulations. We performed the temperature measurement experiments at a relevant buffer conductivity range commonly used for iDEP applications under applied electric potentials. To this aim, we employed an in-channel measurement method and an alternative method employing a thin film located slightly below the iDEP channel. We found that the temperature does not deviate significantly from room temperature at 100 μS/cm up to 3000 V applied such as in protein iDEP experiments. At a conductivity of 300 μS/cm, such as previously used for mitochondria iDEP experiments at 3000 V, the temperature never exceeds 34 °C. This observation suggests that temperature effects for iDEP of proteins and mitochondria under these conditions are marginal. However, at larger conductivities (1 mS/cm) and only at 3000 V applied, temperature increases were significant, reaching a regime in which degradation is likely to occur. Moreover, the thin layer method resulted in lower temperature enhancement which was also confirmed with numerical simulations. We thus conclude that the thin film method is preferable providing closer

  10. Temporal and spatial temperature measurement in insulator-based dielectrophoretic devices.

    PubMed

    Nakano, Asuka; Luo, Jinghui; Ros, Alexandra

    2014-07-01

    Insulator-based dielectrophoresis is a relatively new analytical technique with a large potential for a number of applications, such as sorting, separation, purification, fractionation, and preconcentration. The application of insulator-based dielectrophoresis (iDEP) for biological samples, however, requires the precise control of the microenvironment with temporal and spatial resolution. Temperature variations during an iDEP experiment are a critical aspect in iDEP since Joule heating could lead to various detrimental effects hampering reproducibility. Additionally, Joule heating can potentially induce thermal flow and more importantly can degrade biomolecules and other biological species. Here, we investigate temperature variations in iDEP devices experimentally employing the thermosensitive dye Rhodamin B (RhB) and compare the measured results with numerical simulations. We performed the temperature measurement experiments at a relevant buffer conductivity range commonly used for iDEP applications under applied electric potentials. To this aim, we employed an in-channel measurement method and an alternative method employing a thin film located slightly below the iDEP channel. We found that the temperature does not deviate significantly from room temperature at 100 μS/cm up to 3000 V applied such as in protein iDEP experiments. At a conductivity of 300 μS/cm, such as previously used for mitochondria iDEP experiments at 3000 V, the temperature never exceeds 34 °C. This observation suggests that temperature effects for iDEP of proteins and mitochondria under these conditions are marginal. However, at larger conductivities (1 mS/cm) and only at 3000 V applied, temperature increases were significant, reaching a regime in which degradation is likely to occur. Moreover, the thin layer method resulted in lower temperature enhancement which was also confirmed with numerical simulations. We thus conclude that the thin film method is preferable providing closer

  11. Microfluidic-Based Amplification-Free Bacterial DNA Detection by Dielectrophoretic Concentration and Fluorescent Resonance Energy Transfer Assisted in Situ Hybridization (FRET-ISH) †,‡

    PubMed Central

    Packard, Michelle M.; Shusteff, Maxim; Alocilja, Evangelyn C.

    2012-01-01

    Although real-time PCR (RT-PCR) has become a diagnostic standard for rapid identification of bacterial species, typical methods remain time-intensive due to sample preparation and amplification cycle times. The assay described in this work incorporates on-chip dielectrophoretic capture and concentration of bacterial cells, thermal lysis, cell permeabilization, and nucleic acid denaturation and fluorescence resonance energy transfer assisted in situ hybridization (FRET-ISH) species identification. Combining these techniques leverages the benefits of all of them, allowing identification to be accomplished completely on chip less than thirty minutes after receipt of sample, compared to multiple hours required by traditional RT-PCR and its requisite sample preparation. PMID:25586031

  12. Size Determination of Aqueous C60 by Asymmetric Flow Field-Flow Fractionation (AF4) and in-Line Dynamic Light Scattering

    EPA Science Inventory

    To date, studies on the environmental behaviour of aggregated aqueous fullerene nanomaterials have used the entire size distribution of fullerene aggregates and do not distinguish between different aggregate size classes. This is a direct result of the lack of analytical methods ...

  13. Asymmetric Flow-Field Flow Fractionation (AF4) of Aqueous C60 Aggregates with Dynamic Light Scattering Size and LC-MS

    EPA Science Inventory

    Current methods for the size determination of nanomaterials in aqueous suspension include dynamic or static light scattering and electron or atomic force microscopy techniques. Light scattering techniques are limited by poor resolution and the scattering intensity dependence on p...

  14. Asymmetric Flow Field Flow Fractionation Online with Single Particle – Inductively Coupled Plasma Mass Spectrometry: Detection and Quantification of Silver Nanoparticles in Aqueous Samples

    EPA Science Inventory

    Silver nanoparticles (AgNPs) are increasingly being used in many consumer products as disinfectants. Through the use of these products, AgNPs could likely enter aquatic environments. Because recent studies have shown that AgNPs are toxic to various species, including microorgan...

  15. Instrument and method to determine the electrophoretic mobility of nanoparticles and proteins by combining electrical and flow field-flow fractionation.

    PubMed

    Johann, Christoph; Elsenberg, Stephan; Schuch, Horst; Rösch, Ulrich

    2015-04-21

    A new FFF method is presented which combines asymmetrical flow-FFF (AF4) and electrical FFF (ElFFF) in one channel to electrical asymmetrical flow-FFF (EAF4) to overcome the restrictions of pure ElFFF. It allows for measuring electrophoretic mobility (μ) as a function of size. The method provides an absolute value and does not require calibration. Results of μ for two particle standards are in good agreement with values determined by phase analysis light scattering (PALS). There is no requirement for low ionic strength carriers with EAF4. This overcomes one of the main limitations of ElFFF, making it feasible to measure proteins under physiological conditions. EAF4 has the capability to determine μ for individual populations which are resolved into separate peaks. This is demonstrated for a mixture of three polystyrene latex particles with different sizes as well as for the monomer and dimer of BSA and an antibody. The experimental setup consists of an AF4 channel with added electrodes; one is placed beneath the frit at the bottom wall and the other covers the inside of the upper channel plate. This design minimizes contamination from the electrolysis reactions by keeping the particles distant from the electrodes. In addition the applied voltage range is low (1.5-5 V), which reduces the quantity of gaseous electrolysis products below a threshold that interferes with the laminar flow profile or detector signals. Besides measuring μ, the method can be useful to improve the separation between sample components compared to pure flow-FFF. For two proteins (BSA and a monoclonal antibody), enhanced resolution of the monomer and dimer is achieved by applying an electric field.

  16. Asymmetrical flow field-flow fractionation coupled with multi-angle laser light scattering for stability comparison of virus-like particles in different solution environments.

    PubMed

    Chen, Yi; Zhang, Yan; Zhou, Yuefang; Luo, Jian; Su, Zhiguo

    2016-06-01

    The stabilities of two commercially available virus like particles, CHO-HBsAg expressed by Chinese hamster ovary (CHO) cells and Hans-HBsAg expressed by Hansenula polymorpha (Hans), were compared using AF4-MALLS under different treatment processes. The initial molecular weight and hydrodynamic diameter of CHO-HBsAg measured with AF4-MALLS were 4727kDa and 29.4nm, while those of Hans-HBsAg were 3039kDa and 22.8nm respectively. In salt solution of 2M ammonium sulfate, the molecular weight and size of CHO-HBsAg had little change, and its antigenicity remained 95%, while those of Hans-HBsAg changed greatly, resulting in aggregation and 75% antigenicity loss. In freeze-thaw operations, Hans-HBsAg aggregated heavily. Most of the aggregates precipitated and the rest soluble aggregates reached 10(5)-10(6)kDa in molecular weight. The antigenicity of Hans-HBsAg decreased to 26.9% after five freeze-thaw cycles. For CHO-HBsAg, there was no obvious aggregation in freeze-thaw, and the antigenicity retained above 98%. In heating process, Hans-HBsAg gradually aggregated to large particles with temperature and the antigenicity decreased to 10% when the temperature reached 80°C. In contrast, CHO-HBsAg would not aggregate with temperature, remained 92% antigenicity at 80°C. The study demonstrated that CHO-HBsAg appeared to be a superior vaccine antigen in term of particle stability and constant antigenicity, which are important in production, transportation and storage. PMID:27129428

  17. Selective nanomanipulation of fluorescent polystyrene nano-beads and single quantum dots at gold nanostructures based on the AC-dielectrophoretic force

    NASA Astrophysics Data System (ADS)

    Kim, Jinsik; Hwang, Kyo Seon; Lee, Sangyoup; Park, Jung Ho; Shin, Hyun-Joon

    2015-11-01

    We introduced the selective manipulation of polystyrene (PS) nano-beads and single quantum dots (QDs) at a gold nanostructure by using the AC-dielectrophoretic (DEP) force. Manipulation in three degrees of freedom (end-facet, side, and position-selective manipulation) was accomplished in gold nanostructures between microelectrodes. A 10 μm gap between the microelectrodes, which has a 100 nm-wide nanowire and 200 nm-wide vortex nanostructures at the inside of the gap, was fabricated, and nanostructures were not connected with the electrodes. We also performed theoretical calculations to verify the selective manipulation through the floating AC-DEP force. A sufficiently high gradient of the square of the electric field (∇|E|2, ~1019 V2 m-3) was accomplished and controlled for achieving a strong attaching force of nanoparticles using the gap between microelectrodes and nanostructures as well as the rotation of structures. Fluorescent PS nano-beads and QDs were attached at the designed end facet, side, and position of nanostructures with high selectivity. A single QD attachment was also realized at gold nanostructures, and the attached QDs were verified as single using optical ``blinking'' measurements.We introduced the selective manipulation of polystyrene (PS) nano-beads and single quantum dots (QDs) at a gold nanostructure by using the AC-dielectrophoretic (DEP) force. Manipulation in three degrees of freedom (end-facet, side, and position-selective manipulation) was accomplished in gold nanostructures between microelectrodes. A 10 μm gap between the microelectrodes, which has a 100 nm-wide nanowire and 200 nm-wide vortex nanostructures at the inside of the gap, was fabricated, and nanostructures were not connected with the electrodes. We also performed theoretical calculations to verify the selective manipulation through the floating AC-DEP force. A sufficiently high gradient of the square of the electric field (∇|E|2, ~1019 V2 m-3) was accomplished and

  18. Matrix fractional systems

    NASA Astrophysics Data System (ADS)

    Tenreiro Machado, J. A.

    2015-08-01

    This paper addresses the matrix representation of dynamical systems in the perspective of fractional calculus. Fractional elements and fractional systems are interpreted under the light of the classical Cole-Cole, Davidson-Cole, and Havriliak-Negami heuristic models. Numerical simulations for an electrical circuit enlighten the results for matrix based models and high fractional orders. The conclusions clarify the distinction between fractional elements and fractional systems.

  19. On-chip concentration of bacteria using a 3D dielectrophoretic chip and subsequent laser-based DNA extraction in the same chip

    NASA Astrophysics Data System (ADS)

    Cho, Yoon-Kyoung; Kim, Tae-hyeong; Lee, Jeong-Gun

    2010-06-01

    We report the on-chip concentration of bacteria using a dielectrophoretic (DEP) chip with 3D electrodes and subsequent laser-based DNA extraction in the same chip. The DEP chip has a set of interdigitated Au post electrodes with 50 µm height to generate a network of non-uniform electric fields for the efficient trapping by DEP. The metal post array was fabricated by photolithography and subsequent Ni and Au electroplating. Three model bacteria samples (Escherichia coli, Staphylococcus epidermidis, Streptococcus mutans) were tested and over 80-fold concentrations were achieved within 2 min. Subsequently, on-chip DNA extraction from the concentrated bacteria in the 3D DEP chip was performed by laser irradiation using the laser-irradiated magnetic bead system (LIMBS) in the same chip. The extracted DNA was analyzed with silicon chip-based real-time polymerase chain reaction (PCR). The total process of on-chip bacteria concentration and the subsequent DNA extraction can be completed within 10 min including the manual operation time.

  20. Theoretical and experimental examination of particle-particle interaction effects on induced dipole moments and dielectrophoretic responses of multiple particle chains.

    PubMed

    Moncada-Hernandez, Hector; Nagler, Eliot; Minerick, Adrienne R

    2014-07-01

    Dielectrophoresis (DEP), an electrokinetic phenomenon based on particle polarizations in nonuniform electric fields, is increasingly employed for particle and cell characterizations and manipulations in microdevices. However, particle number densities are rarely varied and particle-particle interactions are largely overlooked, but both affect particle's effective polarizations by changing the local electric field, which directly impacts particle assembly into chains. This work examines theoretical and experimental particle-particle interactions and dielectrophoretic responses in nonuniform electric fields, then presents individual and chain velocities of spherical polystyrene microparticles and red blood cells (RBCs) under DEP forces in a modified quadruple electrode microdevice. Velocities are independently compared between 1, 2, 3, and 4 polystyrene beads and RBCs assembled into chains aligned with the electric field. Simulations compared induced dipole moments for particles experiencing the same (single point) and changing (multiple points) electric fields. Experiments and simulations are compared by plotting DEP velocities versus applied signal frequency from 1 kHz to 80 MHz. Simulations indicate differences in the DEP force exerted on each particle according to chain position. Simulations and experiments show excellent qualitative agreement; chains with more particles experienced a decrease in the DEP response for both polystyrene beads and RBCs. These results advance understanding of the extent that induced dipole polarizations with multiple particle chains affect observed behaviors in electrokinetic cellular diagnostic systems.

  1. Initialized Fractional Calculus

    NASA Technical Reports Server (NTRS)

    Lorenzo, Carl F.; Hartley, Tom T.

    2000-01-01

    This paper demonstrates the need for a nonconstant initialization for the fractional calculus and establishes a basic definition set for the initialized fractional differintegral. This definition set allows the formalization of an initialized fractional calculus. Two basis calculi are considered; the Riemann-Liouville and the Grunwald fractional calculi. Two forms of initialization, terminal and side are developed.

  2. Tempered fractional calculus

    NASA Astrophysics Data System (ADS)

    Sabzikar, Farzad; Meerschaert, Mark M.; Chen, Jinghua

    2015-07-01

    Fractional derivatives and integrals are convolutions with a power law. Multiplying by an exponential factor leads to tempered fractional derivatives and integrals. Tempered fractional diffusion equations, where the usual second derivative in space is replaced by a tempered fractional derivative, govern the limits of random walk models with an exponentially tempered power law jump distribution. The limiting tempered stable probability densities exhibit semi-heavy tails, which are commonly observed in finance. Tempered power law waiting times lead to tempered fractional time derivatives, which have proven useful in geophysics. The tempered fractional derivative or integral of a Brownian motion, called a tempered fractional Brownian motion, can exhibit semi-long range dependence. The increments of this process, called tempered fractional Gaussian noise, provide a useful new stochastic model for wind speed data. A tempered fractional difference forms the basis for numerical methods to solve tempered fractional diffusion equations, and it also provides a useful new correlation model in time series.

  3. Tempered fractional calculus

    SciTech Connect

    Sabzikar, Farzad; Meerschaert, Mark M.; Chen, Jinghua

    2015-07-15

    Fractional derivatives and integrals are convolutions with a power law. Multiplying by an exponential factor leads to tempered fractional derivatives and integrals. Tempered fractional diffusion equations, where the usual second derivative in space is replaced by a tempered fractional derivative, govern the limits of random walk models with an exponentially tempered power law jump distribution. The limiting tempered stable probability densities exhibit semi-heavy tails, which are commonly observed in finance. Tempered power law waiting times lead to tempered fractional time derivatives, which have proven useful in geophysics. The tempered fractional derivative or integral of a Brownian motion, called a tempered fractional Brownian motion, can exhibit semi-long range dependence. The increments of this process, called tempered fractional Gaussian noise, provide a useful new stochastic model for wind speed data. A tempered fractional difference forms the basis for numerical methods to solve tempered fractional diffusion equations, and it also provides a useful new correlation model in time series.

  4. TEMPERED FRACTIONAL CALCULUS

    PubMed Central

    MEERSCHAERT, MARK M.; SABZIKAR, FARZAD; CHEN, JINGHUA

    2014-01-01

    Fractional derivatives and integrals are convolutions with a power law. Multiplying by an exponential factor leads to tempered fractional derivatives and integrals. Tempered fractional diffusion equations, where the usual second derivative in space is replaced by a tempered fractional derivative, govern the limits of random walk models with an exponentially tempered power law jump distribution. The limiting tempered stable probability densities exhibit semi-heavy tails, which are commonly observed in finance. Tempered power law waiting times lead to tempered fractional time derivatives, which have proven useful in geophysics. The tempered fractional derivative or integral of a Brownian motion, called a tempered fractional Brownian motion, can exhibit semi-long range dependence. The increments of this process, called tempered fractional Gaussian noise, provide a useful new stochastic model for wind speed data. A tempered difference forms the basis for numerical methods to solve tempered fractional diffusion equations, and it also provides a useful new correlation model in time series. PMID:26085690

  5. Full field flow visualization and computer-aided velocity measurements in a bank of cylinders in a wind tunnel

    NASA Astrophysics Data System (ADS)

    Braun, M. J.; Canacci, V. A.; Russell, L. M.

    1992-06-01

    The full field flow tracking (FFFT) method that is presented in this paper uses a laser-generated, mechanically strobed planar sheet of light, a low luminosity TV camera coupled with a long distance microscope, and a computer-controlled video recorder to study nonintrusively and qualitatively the flow structures in a bank of cylinders that are placed in a wind tunnel. This setup simulates an upscale version of the geometry of internal cooling passageways characteristic of small air-cooled radial turbines. The qualitative images supplied by the FFFT system are processed by means of a computer-integrated image quantification (CIIQ) method into quantitative information, trajectories and velocities, that describe the flow upstream of and within the bank of cylinders. The tracking method is Lagrangian in concept, and permits identification and tracking of the same particle, thus facilitating construction of time dependent trajectories and the calculation of true velocities and accelerations. The error analysis evaluates the accuracy with which the seed particles follow the flow and the errors incurred during the quantitative processing of the raw data derived from the FFFT/CIIQ method.

  6. Full field flow visualization and computer-aided velocity measurements in a bank of cylinders in a wind tunnel

    NASA Technical Reports Server (NTRS)

    Braun, M. J.; Canacci, V. A.; Russell, L. M.

    1992-01-01

    The full field flow tracking (FFFT) method that is presented in this paper uses a laser-generated, mechanically strobed planar sheet of light, a low luminosity TV camera coupled with a long distance microscope, and a computer-controlled video recorder to study nonintrusively and qualitatively the flow structures in a bank of cylinders that are placed in a wind tunnel. This setup simulates an upscale version of the geometry of internal cooling passageways characteristic of small air-cooled radial turbines. The qualitative images supplied by the FFFT system are processed by means of a computer-integrated image quantification (CIIQ) method into quantitative information, trajectories and velocities, that describe the flow upstream of and within the bank of cylinders. The tracking method is Lagrangian in concept, and permits identification and tracking of the same particle, thus facilitating construction of time dependent trajectories and the calculation of true velocities and accelerations. The error analysis evaluates the accuracy with which the seed particles follow the flow and the errors incurred during the quantitative processing of the raw data derived from the FFFT/CIIQ method.

  7. Influence of induced-charge electrokinetic phenomena on the dielectrophoretic assembly of gold nanoparticles in a conductive-island-based microelectrode system.

    PubMed

    Ding, Haitao; Liu, Weiyu; Shao, Jinyou; Ding, Yucheng; Zhang, Liangliang; Niu, Jiqiang

    2013-10-01

    Metal nanoparticles in a liquid suspension can be assembled dielectrophoretically (DEP) into nanoparticle chains, which can serve as electrical functional microwires connecting isolated and conductive elements to an electrode pair, as used in wet electronics, bioelectronics, and biochemical sensors. The frequency-dependent morphology of these nanoparticle chains assembled between an electrode pair has even been attributed to the decreasing magnitude of alternating current electroosmosis (ACEO) flow velocity with driving frequency. For instance, highly oriented nanoparticle nanowires can be generated by DEP assembly only at a high frequency, which induces a negligible small ACEO above the electrode surface, corresponding to fewer nanoparticles transported to the assembly region. In this study, attention is focused on the formation of nanoparticle chains in a conductive-island-based microelectrode system. It is worth noting that the intrusion of an island entity can bring about further double-layer polarization and induced charge electroosmosis flow (ICEO) around this conductive object, which exerts a significant influence on DEP assembly. In our experiments, the ends of nanoparticle chains are always extended onto the metal surfaces at 50 kHz, and their central parts become slender at 150 kHz. Meanwhile, wire-shaped particle clusters aligned along the direction of local field lines are more densely distributed at the island rims than that growing from the electrode edges. Consequently, a series of numerical modeling based on the theory of induced charge electrokinetic phenomena are introduced to account for these regular experimental results, including the double-layer charging effect at the metal/electrolyte interface, ACEO, ICEO, and electrothermal flow. Mutual DEP is also treated as an important factor affecting DEP behavior when neighboring particles are approaching one another. The results from the theoretical study are in good agreement with the experimental

  8. Dividing Fractions: A Pedagogical Technique

    ERIC Educational Resources Information Center

    Lewis, Robert

    2016-01-01

    When dividing one fraction by a second fraction, invert, that is, flip the second fraction, then multiply it by the first fraction. To multiply fractions, simply multiply across the denominators, and multiply across the numerators to get the resultant fraction. So by inverting the division of fractions it is turned into an easy multiplication of…

  9. Membrane skeleton restraint of surface shape change during fusion of erythrocyte membranes: evidence from use of osmotic and dielectrophoretic microforces as probes.

    PubMed Central

    Sowers, A E

    1995-01-01

    present at the time that erythrocyte ghosts were fused, the fusion zone diameter underwent a greater expansion in the 0-1 s interval after fusion. This suggests that an osmotic pressure-based microforce can be used to experimentally calibrate the dielectrophoretic force. PMID:8599657

  10. An Appetite for Fractions

    ERIC Educational Resources Information Center

    Wilkerson, Trena L.; Bryan, Tommy; Curry, Jane

    2012-01-01

    This article describes how using candy bars as models gives sixth-grade students a taste for learning to represent fractions whose denominators are factors of twelve. Using paper models of the candy bars, students explored and compared fractions. They noticed fewer different representations for one-third than for one-half. The authors conclude…

  11. (Carbon isotope fractionation inplants)

    SciTech Connect

    O'Leary, M.H.

    1990-01-01

    The objectives of this research are: To develop a theoretical and experimental framework for understanding isotope fractionations in plants; and to develop methods for using this isotope fractionation for understanding the dynamics of CO{sub 2} fixation in plants. Progress is described.

  12. The Future of Fractions

    ERIC Educational Resources Information Center

    Usiskin, Zalman P.

    2007-01-01

    In the 1970s, the movement to the metric system (which has still not completely occurred in the United States) and the advent of hand-held calculators led some to speculate that decimal representation of numbers would render fractions obsolete. This provocative proposition stimulated Zalman Usiskin to write "The Future of Fractions" in 1979. He…

  13. Fractional calculus in bioengineering.

    PubMed

    Magin, Richard L

    2004-01-01

    Fractional calculus (integral and differential operations of noninteger order) is not often used to model biological systems. Although the basic mathematical ideas were developed long ago by the mathematicians Leibniz (1695), Liouville (1834), Riemann (1892), and others and brought to the attention of the engineering world by Oliver Heaviside in the 1890s, it was not until 1974 that the first book on the topic was published by Oldham and Spanier. Recent monographs and symposia proceedings have highlighted the application of fractional calculus in physics, continuum mechanics, signal processing, and electromagnetics, but with few examples of applications in bioengineering. This is surprising because the methods of fractional calculus, when defined as a Laplace or Fourier convolution product, are suitable for solving many problems in biomedical research. For example, early studies by Cole (1933) and Hodgkin (1946) of the electrical properties of nerve cell membranes and the propagation of electrical signals are well characterized by differential equations of fractional order. The solution involves a generalization of the exponential function to the Mittag-Leffler function, which provides a better fit to the observed cell membrane data. A parallel application of fractional derivatives to viscoelastic materials establishes, in a natural way, hereditary integrals and the power law (Nutting/Scott Blair) stress-strain relationship for modeling biomaterials. In this review, I will introduce the idea of fractional operations by following the original approach of Heaviside, demonstrate the basic operations of fractional calculus on well-behaved functions (step, ramp, pulse, sinusoid) of engineering interest, and give specific examples from electrochemistry, physics, bioengineering, and biophysics. The fractional derivative accurately describes natural phenomena that occur in such common engineering problems as heat transfer, electrode/electrolyte behavior, and sub

  14. Fractional calculus in bioengineering.

    PubMed

    Magin, Richard L

    2004-01-01

    Fractional calculus (integral and differential operations of noninteger order) is not often used to model biological systems. Although the basic mathematical ideas were developed long ago by the mathematicians Leibniz (1695), Liouville (1834), Riemann (1892), and others and brought to the attention of the engineering world by Oliver Heaviside in the 1890s, it was not until 1974 that the first book on the topic was published by Oldham and Spanier. Recent monographs and symposia proceedings have highlighted the application of fractional calculus in physics, continuum mechanics, signal processing, and electromagnetics, but with few examples of applications in bioengineering. This is surprising because the methods of fractional calculus, when defined as a Laplace or Fourier convolution product, are suitable for solving many problems in biomedical research. For example, early studies by Cole (1933) and Hodgkin (1946) of the electrical properties of nerve cell membranes and the propagation of electrical signals are well characterized by differential equations of fractional order. The solution involves a generalization of the exponential function to the Mittag-Leffler function, which provides a better fit to the observed cell membrane data. A parallel application of fractional derivatives to viscoelastic materials establishes, in a natural way, hereditary integrals and the power law (Nutting/Scott Blair) stress-strain relationship for modeling biomaterials. In this review, I will introduce the idea of fractional operations by following the original approach of Heaviside, demonstrate the basic operations of fractional calculus on well-behaved functions (step, ramp, pulse, sinusoid) of engineering interest, and give specific examples from electrochemistry, physics, bioengineering, and biophysics. The fractional derivative accurately describes natural phenomena that occur in such common engineering problems as heat transfer, electrode/electrolyte behavior, and sub

  15. Stable Chlorine Isotope Fractionation

    NASA Astrophysics Data System (ADS)

    Sharp, Z.

    2006-12-01

    Chlorine isotope partitioning between different phases is not well understood. Pore fluids can have δ37Cl values as low as -8‰, with neoform sediments having strongly positive values. Most strikingly, volcanic gases have δ37Cl values that cover a range in excess of 14‰ (Barnes et al., this meeting). The large range is difficult to explain in terms of equilibrium fractionation, which, although calculated to be very large for Cl in different oxidation states, should be less than 2‰ between chloride species (Schauble et al., 2003, GCA). To address the discrepancy between Nature and theory, we have measured Cl isotope fractionation for selected equilibrium and disequilibrium experiments in order to identify mechanisms that might lead to large fractionations. 1) NaCl (s,l) NaCl (v): NaCl was sealed in an evacuated silica tube and heated at one end, causing vaporization and reprecipitation of NaCl (v) at the cool end of the tube. The fractionation is 0.2‰ at 700°C (halite-vapor) and 0.7‰ at 800°C (liquid-vapor), respectively. The larger fractionation at higher temperature may be related to equilibrium fractionation between liquid and gas vs. `stripping' of the solid in the lower T experiments. 2) Sodalite NaCl(l): Nepheline and excess NaCl were sealed in a Pt crucible at 825°C for 48 hrs producing sodalite. The measured newly-formed sodalite-NaCl fractionation is -0.2‰. 3) Volatilization of HCl: Dry inert gas was bubbled through HCl solutions and the vapor was collected in a downstream water trap. There was no fractionation for 12.4M HCl (HCl fuming) vapor at 25°C. For a 1 M boiling HCl solution, the HCl-vapor fractionation was ~9‰. The difference is probably related to the degree of dissociation in the acid, with HCl dissolved in water for the highly acidic solutions, and dissociated H3O+ and Cl- for lower concentrations. The HCl volatilization experiments are in contrast to earlier vapor-liquid experiments in NaCl-H2O system, where fractionation was

  16. Intracellular Cadmium Isotope Fractionation

    NASA Astrophysics Data System (ADS)

    Horner, T. J.; Lee, R. B.; Henderson, G. M.; Rickaby, R. E.

    2011-12-01

    Recent stable isotope studies into the biological utilization of transition metals (e.g. Cu, Fe, Zn, Cd) suggest several stepwise cellular processes can fractionate isotopes in both culture and nature. However, the determination of fractionation factors is often unsatisfactory, as significant variability can exist - even between different organisms with the same cellular functions. Thus, it has not been possible to adequately understand the source and mechanisms of metal isotopic fractionation. In order to address this problem, we investigated the biological fractionation of Cd isotopes within genetically-modified bacteria (E. coli). There is currently only one known biological use or requirement of Cd, a Cd/Zn carbonic anhydrase (CdCA, from the marine diatom T. weissfloggii), which we introduce into the E. coli genome. We have also developed a cleaning procedure that allows for the treating of bacteria so as to study the isotopic composition of different cellular components. We find that whole cells always exhibit a preference for uptake of the lighter isotopes of Cd. Notably, whole cells appear to have a similar Cd isotopic composition regardless of the expression of CdCA within the E. coli. However, isotopic fractionation can occur within the genetically modified E. coli during Cd use, such that Cd bound in CdCA can display a distinct isotopic composition compared to the cell as a whole. Thus, the externally observed fractionation is independent of the internal uses of Cd, with the largest Cd isotope fractionation occurring during cross-membrane transport. A general implication of these experiments is that trace metal isotopic fractionation most likely reflects metal transport into biological cells (either actively or passively), rather than relating to expression of specific physiological function and genetic expression of different metalloenzymes.

  17. Chromatographic methods of fractionation.

    PubMed

    Friesen, A D

    1987-01-01

    Chromatography's functional versatility, separation efficiency, gentle non-denaturing separating process and ease of automation and scale-up make it attractive for industrial scale protein purification. The Winnipeg Rh Institute's new Plasma Fractionation facility is an example of the use of chromatography for the large scale purification of plasma protein fractions. The fractionation facility has a capacity to process 800 litres of plasma per batch into blood clotting factor VIII and IX, albumin and intravenous immune serum globulin (i.v. ISG). Albumin and i.v. ISG are purified using ion exchange columns of DEAE-Sepharose (230 litre size), DEAE-Biogel (150 litre size) and CM-Sepharose (150 litre size). The chromatographic process is automated using a Modicon 584 Programmable Logic Controller to regulate valves, pumps and sensors which control plasma flow during fractionation. The stainless steel tanks and piping are automatically cleaned-in-place. The high degree of automation and cleaning provides efficient operation and sanitary processing. Chromatographic methods (DEAE-Sepharose and metal chelation) are also being used at the pilot scale to purify the human blood products superoxide dismutase and hemoglobin from outdated red blood cells. Characterization of the protein fractions produced by chromatography has shown them to be of equal or higher quality than fractions produced by other techniques.

  18. soil organic matter fractionation

    NASA Astrophysics Data System (ADS)

    Osat, Maryam; Heidari, Ahmad

    2010-05-01

    Carbon is essential for plant growth, due to its effects on other soil properties like aggregation. Knowledge of dynamics of organic matter in different locations in the soil matrix can provide valuable information which affects carbon sequestration and soil the other soil properties. Extraction of soil organic matter (SOM) fractions has been a long standing approach to elucidating the roles of soil organic matter in soil processes. Several kind fractionation methods are used and all provide information on soil organic matter function. Physical fractionation capture the effects on SOM dynamics of the spatial arrangement of primary and secondary organomineral particles in soil while chemical fractionation can not consider the spatial arrangement but their organic fractions are suitable for advanced chemical characterization. Three method of physical separation of soil have been used, sieving, sedimentation and densitometry. The distribution of organic matter within physical fractions of the soil can be assessed by sieving. Sieving separates soil particles based strictly on size. The study area is located on north central Iran, between 35° 41'- 36° 01' N and 50° 42'- 51° 14' E. Mean annual precipitation about 243.8 mm and mean annual air temperature is about 14.95 °C. The soil moisture and temperature regime vary between aridic-thermic in lower altitudes to xeric-mesic in upper altitudes. More than 36 surface soil samples (0-20 cm) were collected according to land-use map units. After preliminary analyzing of samples 10 samples were selected for further analyses in five size fractions and three different time intervals in September, January and April 2008. Fractionation carried out by dry sieving in five classes, 1-2 mm, 0.5-1 mm, 270 μm-0.5mm, 53-270 μm and <53 μm. Organic matter and C/N ratio were determined for all fractions at different time intervals. Chemical fractionation of organic matter also carried out according to Tan (2003), also Mineralogical

  19. Fractional Noether Theorem Based on Extended Exponentially Fractional Integral

    NASA Astrophysics Data System (ADS)

    Long, Zi-Xuan; Zhang, Yi

    2013-10-01

    Based on the new type of fractional integral definition, namely extended exponentially fractional integral introduced by EI-Nabulsi, we study the fractional Noether symmetries and conserved quantities for both holonomic system and nonholonomic system. First, the fractional variational problem under the sense of extended exponentially fractional integral is established, the fractional d'Alembert-Lagrange principle is deduced, then the fractional Euler-Lagrange equations of holonomic system and the fractional Routh equations of nonholonomic system are given; secondly, the invariance of fractional Hamilton action under infinitesimal transformations of group is also discussed, the corresponding definitions and criteria of fractional Noether symmetric transformations and quasi-symmetric transformations are established; finally, the fractional Noether theorems for both holonomic system and nonholonomic system are explored. What's more, the relationship between the fractional Noether symmetry and conserved quantity are revealed.

  20. FRACTIONAL CRYSTALLIZATION FEED ENVELOPE

    SciTech Connect

    HERTING DL

    2008-03-19

    Laboratory work was completed on a set of evaporation tests designed to establish a feed envelope for the fractional crystallization process. The feed envelope defines chemical concentration limits within which the process can be operated successfully. All 38 runs in the half-factorial design matrix were completed successfully, based on the qualitative definition of success. There is no feed composition likely to be derived from saltcake dissolution that would cause the fractional crystallization process to not meet acceptable performance requirements. However, some compositions clearly would provide more successful operation than other compositions.

  1. Release Fraction Evaluation

    SciTech Connect

    Bamberger, Judith A.; Glissmeyer, John A.

    2004-01-01

    This document presents results of experiments conducted to measure release fractions during certain tank retrieval processes. The tests were performed in a 1/4 scale model of a waste storage tank. The retrieval processes simulated were: (1) Discharging liquid or slurry from the mouth of a vertically oriented two-in. Schedule 40 pipe. The discharging material was in free-fall from the mouth of the pipe near the top of the tank into a liquid or slurry pool at the bottom of the tank. (2) The jet from a 9/16-in.-diameter nozzle transferring liquid or slurry waste from one side of the tank to the other. The discharging liquid was aimed at the opposite side of the tank from the nozzle and either impacted the tank wall or fell into a liquid or slurry pool in the bottom of the tank. (3) A high pressure fan jet of liquid striking a steel plate or simulated waste from a stand-off distance of a few inches. For each process, a water-soluble fluorescent dye was added to the liquid fraction as a tracer. Kaolin clay was used to represent the solids. The tank was covered and there was no forced ventilation in the tank during the tests. Six air samples were collected during each test. The air samples were collected at fixed positions in the tank. The air sample filters were dried and weighed to determine the solids collection. The fluorescent dye was then leached from each filter and quantified with a fluorometer to determine the collection of liquid. Samples of the slurry and liquid simulants were also collected to determine the quantities of simulant used in each test. To calculate the release fraction, the quantity collected on each air sample was adjusted for the fraction of the tank volume sampled and divided by the quantity of material exposed in the simulation. The method was not as sensitive for the solids content as it was for the liquid content, but in those instances where a solids release fraction was determined, it was in relatively good agreement with that of the

  2. Momentum fractionation on superstrata

    DOE PAGES

    Bena, Iosif; Martinec, Emil; Turton, David; Warner, Nicholas P.

    2016-05-11

    Superstrata are bound states in string theory that carry D1, D5, and momentum charges, and whose supergravity descriptions are parameterized by arbitrary functions of (at least) two variables. In the D1-D5 CFT, typical three-charge states reside in highdegree twisted sectors, and their momentum charge is carried by modes that individually have fractional momentum. Understanding this momentum fractionation holographically is crucial for understanding typical black-hole microstates in this system. We use solution-generating techniques to add momentum to a multi-wound supertube and thereby construct the first examples of asymptotically-flat superstrata. The resulting supergravity solutions are horizonless and smooth up to well-understood orbifoldmore » singularities. Upon taking the AdS3 decoupling limit, our solutions are dual to CFT states with momentum fractionation. We give a precise proposal for these dual CFT states. Lastly, our construction establishes the very nontrivial fact that large classes of CFT states with momentum fractionation can be realized in the bulk as smooth horizonless supergravity solutions.« less

  3. Understanding Fraction Multiplication.

    ERIC Educational Resources Information Center

    Bezuk, Nadine S.; Armstrong, Barbara E.

    1992-01-01

    Presents five activities to help students construct meaning for multiplying fractions through real-world problem contexts, physical or pictorial models, the recognition of patterns, and the use of calculators. In the context of a garden plot, worksheets examine various aspects of parts of plots, patterns in plots, and a maximization problem.…

  4. Fractions through Fruit Salad.

    ERIC Educational Resources Information Center

    Lincoln, Lisa

    1987-01-01

    The mathematics concept of fractions was taught to a group of learning disabled, dyslexic, and multiply handicapped students (15-20 years old) by preparing a fruit salad. Enthusiastic student participation and enhanced knowledge illustrated the effectiveness of employing several sensory modes in learning activities. (CB)

  5. Avoidance of Fractions.

    ERIC Educational Resources Information Center

    Hart, Kathleen; Kerslake, Daphne

    The Concepts in Secondary Mathematics and Science (CSMS) and Strategies and Errors in Secondary Mathematics (SESM) research projects based at Chelsa College, England, have shown the marked reluctance of secondary school students to use fractions when solving mathematical problems, even though they have been taught the topic for a number of years.…

  6. Sweet Work with Fractions

    ERIC Educational Resources Information Center

    Vinogradova, Natalya; Blaine, Larry

    2013-01-01

    Almost everyone loves chocolate. However, the same cannot be said about fractions, which are loved by markedly fewer. Middle school students tend to view them with wary respect, but little affection. The authors attempt to sweeten the subject by describing a type of game involving division of chocolate bars. The activity they describe provides a…

  7. Videodisc Instruction in Fractions.

    ERIC Educational Resources Information Center

    Carnine, Douglas; And Others

    1987-01-01

    How laser videodisc technology can be used to improve mathematics instruction is described, with note of the development of a videodisc curriculum on mastering fractions. Relevant research is reviewed, as well as how teachers can use the technology. The instructional design is described, and field-testing and revision reported. (MNS)

  8. Momentum fractionation on superstrata

    NASA Astrophysics Data System (ADS)

    Bena, Iosif; Martinec, Emil; Turton, David; Warner, Nicholas P.

    2016-05-01

    Superstrata are bound states in string theory that carry D1, D5, and momentum charges, and whose supergravity descriptions are parameterized by arbitrary functions of (at least) two variables. In the D1-D5 CFT, typical three-charge states reside in high-degree twisted sectors, and their momentum charge is carried by modes that individually have fractional momentum. Understanding this momentum fractionation holographically is crucial for understanding typical black-hole microstates in this system. We use solution-generating techniques to add momentum to a multi-wound supertube and thereby construct the first examples of asymptotically-flat superstrata. The resulting supergravity solutions are horizonless and smooth up to well-understood orbifold singularities. Upon taking the AdS3 decoupling limit, our solutions are dual to CFT states with momentum fractionation. We give a precise proposal for these dual CFT states. Our construction establishes the very nontrivial fact that large classes of CFT states with momentum fractionation can be realized in the bulk as smooth horizonless supergravity solutions.

  9. Microwave Dielectrophoretic Levitation In Microgravity

    NASA Technical Reports Server (NTRS)

    Watkins, John L.; Jackson, Henry W.; Barmatz, Martin B.

    1993-01-01

    Two reports propose use of dielectrophoresis in microwave resonant cavities to levitate samples of materials for containerless processing in microgravity in vacuum or in any suitable atmosphere. Also describe experiments undertaken to verify feasibility of proposal.

  10. Fractionating nanosilver: importance for determining toxicity to aquatic test organisms.

    PubMed

    Kennedy, Alan J; Hull, Matthew S; Bednar, Anthony J; Goss, Jennifer D; Gunter, Jonas C; Bouldin, Jennifer L; Vikesland, Peter J; Steevens, Jeffery A

    2010-12-15

    This investigation applied novel techniques for characterizing and fractionating nanosilver particles and aggregates and relating these measurements to toxicological endpoints. The acute toxicity of eight nanosilver suspensions of varying primary particle sizes (10-80 nm) and coatings (citrate, polyvinylpyrrolidone, EDTA, proprietary) was assessed using three aquatic test organisms (Daphnia magna, Pimephales promelas, Pseudokirchneriella subcapitata). When 48-h lethal median concentrations (LC50) were expressed as total silver, both D. magna and P. promelas were significantly more sensitive to ionic silver (Ag(+)) as AgNO(3) (mean LC50 = 1.2 and 6.3 μg/L, respectively) relative to a wide range in LC50 values determined for the nanosilver suspensions (2 -126 μg/L). However, when LC50 values for nanosilver suspensions were expressed as fractionated nanosilver (Ag(+) and/or <4 nm particles), determined by ultracentrifugation of particles and confirmed field-flow-fractograms, the LC50 values (0.3-5.6 μg/L) were comparable to the values obtained for ionic Ag(+) as AgNO(3). These results suggest that dissolved Ag(+) plays a critical role in acute toxicity and underscores the importance of characterizing dissolved fractions in nanometal suspensions.

  11. Breakdown of doublet recirculation and direct line drives by far-field flow in reservoirs: implications for geothermal and hydrocarbon well placement

    NASA Astrophysics Data System (ADS)

    Weijermars, R.; van Harmelen, A.

    2016-07-01

    An important real world application of doublet flow occurs in well design of both geothermal and hydrocarbon reservoirs. A guiding principle for fluid management of injection and extraction wells is that mass balance is commonly assumed between the injected and produced fluid. Because the doublets are considered closed loops, the injection fluid is assumed to eventually reach the producer well and all the produced fluid ideally comes from stream tubes connected to the injector of the well pair making up the doublet. We show that when an aquifer background flow occurs, doublets will rarely retain closed loops of fluid recirculation. When the far-field flow rate increases relative to the doublet's strength, the area occupied by the doublet will diminish and eventually vanishes. Alternatively, rather than using a single injector (source) and single producer (sink), a linear array of multiple injectors separated by some distance from a parallel array of producers can be used in geothermal energy projects as well as in waterflooding of hydrocarbon reservoirs. Fluid flow in such an arrangement of parallel source-sink arrays is shown to be macroscopically equivalent to that of a line doublet. Again, any far-field flow that is strong enough will breach through the line doublet, which then splits into two vortices. Apart from fundamental insight into elementary flow dynamics, our new results provide practical clues that may contribute to improve the planning and design of doublets and direct line drives commonly used for flow management of groundwater, geothermal and hydrocarbon reservoirs.

  12. An Introduction to Continued Fractions.

    ERIC Educational Resources Information Center

    Moore, Charles G.

    Provided is an introduction to the properties of continued fractions for the intellectually curious high school student. Among the topics included are (1) Expansion of Rational Numbers into Simple Continued Fractions, (2) Convergents, (3) Continued Fractions and Linear Diophantine Equations of the Type am + bn = c, (4) Continued Fractions and…

  13. Testing fractional action cosmology

    NASA Astrophysics Data System (ADS)

    Shchigolev, V. K.

    2016-08-01

    The present work deals with a combined test of the so-called Fractional Action Cosmology (FAC) on the example of a specific model obtained by the author earlier. In this model, the effective cosmological term is proportional to the Hubble parameter squared through the so-called kinematic induction. The reason of studying this cosmological model could be explained by its ability to describe two periods of accelerated expansion, that is in agreement with the recent observations and the cosmological inflation paradigm. First of all, we put our model through the theoretical tests, which gives a general conception of the influence of the model parameters on its behavior. Then, we obtain some restrictions on the principal parameters of the model, including the fractional index, by means of the observational data. Finally, the cosmography parameters and the observational data compared to the theoretical predictions are presented both analytically and graphically.

  14. [Fractionated P-bilirubins].

    PubMed

    Schou, C S; Mortensen, H

    1989-08-14

    A diazo-based dry film technique for the estimation of different bilirubins in plasma is now available. This procedure separates bilirubins from icteric sera into three separate fractions: bilirubin (unconjugated), bilirubin-glucuronides (mono + diglucuronide) and bilirubin-albumin. In newborns with prolonged jaundice classification of hyperbilirubinemia is of importance for choice of treatment. While binding of bilirubin and bilirubin-glucuronides to albumin is non covalent, reversible, bilirubin-albumin appears to be firmly associated with albumin by covalent bonds. This causes delayed clearance of this bilirubin fraction from plasma as the half-life of albumin is approximately 18 days. Hence the substance concentration of bilirubin-albumin will decrease at a slower rate than will bilirubin and bilirubin-glucuronide, despite hepatobiliary recovery. Bilirubin-albumin may therefore prove of value in the differentiation between different clinical entities with hyperbilirubinemia. PMID:2773134

  15. New Dry Fractionation Methods

    NASA Technical Reports Server (NTRS)

    McKay, David S.; Cooper, Bonnie L.

    2010-01-01

    This slide presentation describes new fractionation methods that are used to create dust that is respirable for testing the effects of inhalation of lunar dust in preparation for future manned lunar exploration. Because lunar dust is a very limited commodity, a method that does not result in loss of the material had to be developed. The dust separation system that is described incorporates some traditional methods, while preventing the dust from being contaminated or changed in reactivity properties while also limiting losses.

  16. Fractional Galilean symmetries

    NASA Astrophysics Data System (ADS)

    Hosseiny, Ali; Rouhani, Shahin

    2016-09-01

    We generalize the differential representation of the operators of the Galilean algebras to include fractional derivatives. As a result a whole new class of scale invariant Galilean algebras are obtained. The first member of this class has dynamical index z = 2 similar to the Schrödinger algebra. The second member of the class has dynamical index z = 3 / 2, which happens to be the dynamical index Kardar-Parisi-Zhang equation.

  17. Model Fractional Chern Insulators.

    PubMed

    Behrmann, Jörg; Liu, Zhao; Bergholtz, Emil J

    2016-05-27

    We devise local lattice models whose ground states are model fractional Chern insulators-Abelian and non-Abelian topologically ordered states characterized by exact ground state degeneracies at any finite size and infinite entanglement gaps. Most saliently, we construct exact parent Hamiltonians for two distinct families of bosonic lattice generalizations of the Z_{k} parafermion quantum Hall states: (i) color-entangled fractional Chern insulators at band filling fractions ν=k/(C+1) and (ii) nematic states at ν=k/2, where C is the Chern number of the lowest band. In spite of a fluctuating Berry curvature, our construction is partially frustration free: the ground states reside entirely within the lowest band and exactly minimize a local (k+1) body repulsion term by term. In addition to providing the first known models hosting intriguing states such as higher Chern number generalizations of the Fibonacci anyon quantum Hall states, the remarkable stability and finite-size properties make our models particularly well suited for the study of novel phenomena involving, e.g., twist defects and proximity induced superconductivity, as well as being a guide for designing experiments.

  18. Model Fractional Chern Insulators

    NASA Astrophysics Data System (ADS)

    Behrmann, Jörg; Liu, Zhao; Bergholtz, Emil J.

    2016-05-01

    We devise local lattice models whose ground states are model fractional Chern insulators—Abelian and non-Abelian topologically ordered states characterized by exact ground state degeneracies at any finite size and infinite entanglement gaps. Most saliently, we construct exact parent Hamiltonians for two distinct families of bosonic lattice generalizations of the Zk parafermion quantum Hall states: (i) color-entangled fractional Chern insulators at band filling fractions ν =k /(C +1 ) and (ii) nematic states at ν =k /2 , where C is the Chern number of the lowest band. In spite of a fluctuating Berry curvature, our construction is partially frustration free: the ground states reside entirely within the lowest band and exactly minimize a local (k +1 ) body repulsion term by term. In addition to providing the first known models hosting intriguing states such as higher Chern number generalizations of the Fibonacci anyon quantum Hall states, the remarkable stability and finite-size properties make our models particularly well suited for the study of novel phenomena involving, e.g., twist defects and proximity induced superconductivity, as well as being a guide for designing experiments.

  19. Model Fractional Chern Insulators.

    PubMed

    Behrmann, Jörg; Liu, Zhao; Bergholtz, Emil J

    2016-05-27

    We devise local lattice models whose ground states are model fractional Chern insulators-Abelian and non-Abelian topologically ordered states characterized by exact ground state degeneracies at any finite size and infinite entanglement gaps. Most saliently, we construct exact parent Hamiltonians for two distinct families of bosonic lattice generalizations of the Z_{k} parafermion quantum Hall states: (i) color-entangled fractional Chern insulators at band filling fractions ν=k/(C+1) and (ii) nematic states at ν=k/2, where C is the Chern number of the lowest band. In spite of a fluctuating Berry curvature, our construction is partially frustration free: the ground states reside entirely within the lowest band and exactly minimize a local (k+1) body repulsion term by term. In addition to providing the first known models hosting intriguing states such as higher Chern number generalizations of the Fibonacci anyon quantum Hall states, the remarkable stability and finite-size properties make our models particularly well suited for the study of novel phenomena involving, e.g., twist defects and proximity induced superconductivity, as well as being a guide for designing experiments. PMID:27284668

  20. [Ablative and fractional lasers].

    PubMed

    Beylot, C; Grognard, C; Michaud, T

    2009-10-01

    The use of pulsed or scanning Carbon Dioxide, and pulsed Erbium-YAG lasers allows the programmable and reproducible photocoagulation of thin layers of the epidermis and superficial dermis. Thermal damage depends on the type of laser and is greater with CO(2) lasers. The degree of neocollagenesis is proportional to the thermal damage and is better with CO(2) lasers. Their main indication is the correction of photoaged facial skin but they can also be used for corrective dermatology, e.g. for scars and genodermatosis. Results are highly satisfactory but the technique is invasive and the patient experiences a social hindrance of around two weeks. Fractionated techniques treat 25% of the defective skin area at each session in noncontiguous microzones; four sessions are therefore necessary to treat the entire cutaneous surface. The treatment is given under topical anesthesia and is much less invasive, particularly with nonablative fractional laser treatment in which photothermolysis does not penetrate below the epidermis and/or the effects are slight, with no or very little social isolation. However, the results are much less satisfactory than the results of ablative laser and there is no firming effect. Other zones than the face can be treated. With the fractional CO(2) and Erbium ablative lasers, which have multiplied over the past 2 years, the much wider impacts cause perforation of the epidermis and there is a zone of ablation by laser photovaporization, with a zone of thermal damage below. The results are better in correcting photoaging of the face, without, however, achieving the efficacy of ablative lasers, which remain the reference technique. However, the effects are not insignificant, requiring at least 5 days of social isolation.

  1. Fractional channel multichannel analyzer

    DOEpatents

    Brackenbush, Larry W.; Anderson, Gordon A.

    1994-01-01

    A multichannel analyzer incorporating the features of the present invention obtains the effect of fractional channels thus greatly reducing the number of actual channels necessary to record complex line spectra. This is accomplished by using an analog-to-digital converter in the asynscronous mode, i.e., the gate pulse from the pulse height-to-pulse width converter is not synchronized with the signal from a clock oscillator. This saves power and reduces the number of components required on the board to achieve the effect of radically expanding the number of channels without changing the circuit board.

  2. What is a fractional derivative?

    NASA Astrophysics Data System (ADS)

    Ortigueira, Manuel D.; Tenreiro Machado, J. A.

    2015-07-01

    This paper discusses the concepts underlying the formulation of operators capable of being interpreted as fractional derivatives or fractional integrals. Two criteria for required by a fractional operator are formulated. The Grünwald-Letnikov, Riemann-Liouville and Caputo fractional derivatives and the Riesz potential are accessed in the light of the proposed criteria. A Leibniz rule is also obtained for the Riesz potential.

  3. Positive fractional linear electrical circuits

    NASA Astrophysics Data System (ADS)

    Kaczorek, Tadeusz

    2013-10-01

    The positive fractional linear systems and electrical circuits are addressed. New classes of fractional asymptotically stable and unstable electrical circuits are introduced. The Caputo and Riemann-Liouville definitions of fractional derivatives are used to analysis of the positive electrical circuits composed of resistors, capacitors, coils and voltage (current) sources. The positive fractional electrical and specially unstable different types electrical circuits are analyzed. Some open problems are formulated.

  4. Experimental observation of fractional echoes

    NASA Astrophysics Data System (ADS)

    Karras, G.; Hertz, E.; Billard, F.; Lavorel, B.; Siour, G.; Hartmann, J.-M.; Faucher, O.; Gershnabel, Erez; Prior, Yehiam; Averbukh, Ilya Sh.

    2016-09-01

    We report the observation of fractional echoes in a double-pulse excited nonlinear system. Unlike standard echoes, which appear periodically at delays which are integer multiples of the delay between the two exciting pulses, the fractional echoes appear at rational fractions of this delay. We discuss the mechanism leading to this phenomenon, and provide experimental demonstration of fractional echoes by measuring third harmonic generation in a thermal gas of CO2 molecules excited by a pair of femtosecond laser pulses.

  5. Fractional diffusion on bounded domains

    SciTech Connect

    Defterli, Ozlem; D'Elia, Marta; Du, Qiang; Gunzburger, Max Donald; Lehoucq, Richard B.; Meerschaert, Mark M.

    2015-03-13

    We found that the mathematically correct specification of a fractional differential equation on a bounded domain requires specification of appropriate boundary conditions, or their fractional analogue. In this paper we discuss the application of nonlocal diffusion theory to specify well-posed fractional diffusion equations on bounded domains.

  6. Fractionation of Subcellular Organelles.

    PubMed

    Graham, John M

    2015-01-01

    This unit provides both a theoretical and a practical background to all the techniques associated with the application of differential and density gradient centrifugation for the analysis of subcellular membranes. The density gradient information focuses on the use of the modern gradient solute iodixanol, chosen for its ease of use, versatility, and compatibility with biological particles. Its use in both pre-formed discontinuous and continuous gradients and in self-generated gradients is discussed. Considerable emphasis is given to selection of the appropriate centrifuge rotors and tubes and their influence on the methods used for creation, fractionation, and analysis of density gradients. Without proper consideration of these critical ancillary procedures, the resolving power of the gradient can be easily compromised. PMID:26621372

  7. Fractionation of Subcellular Organelles.

    PubMed

    Graham, John M

    2015-12-01

    This unit provides both a theoretical and a practical background to all the techniques associated with the application of differential and density gradient centrifugation for the analysis of subcellular membranes. The density gradient information focuses on the use of the modern gradient solute iodixanol, chosen for its ease of use, versatility, and compatibility with biological particles. Its use in both pre-formed discontinuous and continuous gradients and in self-generated gradients is discussed. Considerable emphasis is given to selection of the appropriate centrifuge rotors and tubes and their influence on the methods used for creation, fractionation, and analysis of density gradients. Without proper consideration of these critical ancillary procedures, the resolving power of the gradient can be easily compromised.

  8. Soot Volume Fraction Imaging

    NASA Technical Reports Server (NTRS)

    Greenberg, Paul S.; Ku, Jerry C.

    1994-01-01

    A new technique is described for the full-field determination of soot volume fractions via laser extinction measurements. This technique differs from previously reported point-wise methods in that a two-dimensional array (i.e., image) of data is acquired simultaneously. In this fashion, the net data rate is increased, allowing the study of time-dependent phenomena and the investigation of spatial and temporal correlations. A telecentric imaging configuration is employed to provide depth-invariant magnification and to permit the specification of the collection angle for scattered light. To improve the threshold measurement sensitivity, a method is employed to suppress undesirable coherent imaging effects. A discussion of the tomographic inversion process is provided, including the results obtained from numerical simulation. Results obtained with this method from an ethylene diffusion flame are shown to be in close agreement with those previously obtained by sequential point-wise interrogation.

  9. CHARACTERIZATION OF SUB-MICRON AQUEOUS IRON(III) COLLOIDS FORMED IN THE PRESENCE OF PHOSPHATE BY SEDIMENTATION FIELD FLOW FRACTIONATION WITH MULTI-ANGLE LASER LIGHT SCATTERING DETECTION

    EPA Science Inventory

    Iron colloids play a major role in the water chemistry of natural watersheds and of engineered drinking water distribution systems. Phosphate is frequently added to distribution systems to control corrosion problems, so iron-phosphate colloids may form through reaction of iron in...

  10. Fractionally charged skyrmions in fractional quantum Hall effect

    NASA Astrophysics Data System (ADS)

    Balram, Ajit C.; Wurstbauer, U.; Wójs, A.; Pinczuk, A.; Jain, J. K.

    2015-11-01

    The fractional quantum Hall effect has inspired searches for exotic emergent topological particles, such as fractionally charged excitations, composite fermions, abelian and nonabelian anyons and Majorana fermions. Fractionally charged skyrmions, which support both topological charge and topological vortex-like spin structure, have also been predicted to occur in the vicinity of 1/3 filling of the lowest Landau level. The fractional skyrmions, however, are anticipated to be exceedingly fragile, suppressed by very small Zeeman energies. Here we show that, slightly away from 1/3 filling, the smallest manifestations of the fractional skyrmion exist in the excitation spectrum for a broad range of Zeeman energies, and appear in resonant inelastic light scattering experiments as well-defined resonances slightly below the long wavelength spin wave mode. The spectroscopy of these exotic bound states serves as a sensitive tool for investigating the residual interaction between composite fermions, responsible for delicate new fractional quantum Hall states in this filling factor region.

  11. Fractionally charged skyrmions in fractional quantum Hall effect.

    PubMed

    Balram, Ajit C; Wurstbauer, U; Wójs, A; Pinczuk, A; Jain, J K

    2015-01-01

    The fractional quantum Hall effect has inspired searches for exotic emergent topological particles, such as fractionally charged excitations, composite fermions, abelian and nonabelian anyons and Majorana fermions. Fractionally charged skyrmions, which support both topological charge and topological vortex-like spin structure, have also been predicted to occur in the vicinity of 1/3 filling of the lowest Landau level. The fractional skyrmions, however, are anticipated to be exceedingly fragile, suppressed by very small Zeeman energies. Here we show that, slightly away from 1/3 filling, the smallest manifestations of the fractional skyrmion exist in the excitation spectrum for a broad range of Zeeman energies, and appear in resonant inelastic light scattering experiments as well-defined resonances slightly below the long wavelength spin wave mode. The spectroscopy of these exotic bound states serves as a sensitive tool for investigating the residual interaction between composite fermions, responsible for delicate new fractional quantum Hall states in this filling factor region. PMID:26608906

  12. Fractionally charged skyrmions in fractional quantum Hall effect

    PubMed Central

    Balram, Ajit C.; Wurstbauer, U.; Wójs, A.; Pinczuk, A.; Jain, J. K.

    2015-01-01

    The fractional quantum Hall effect has inspired searches for exotic emergent topological particles, such as fractionally charged excitations, composite fermions, abelian and nonabelian anyons and Majorana fermions. Fractionally charged skyrmions, which support both topological charge and topological vortex-like spin structure, have also been predicted to occur in the vicinity of 1/3 filling of the lowest Landau level. The fractional skyrmions, however, are anticipated to be exceedingly fragile, suppressed by very small Zeeman energies. Here we show that, slightly away from 1/3 filling, the smallest manifestations of the fractional skyrmion exist in the excitation spectrum for a broad range of Zeeman energies, and appear in resonant inelastic light scattering experiments as well-defined resonances slightly below the long wavelength spin wave mode. The spectroscopy of these exotic bound states serves as a sensitive tool for investigating the residual interaction between composite fermions, responsible for delicate new fractional quantum Hall states in this filling factor region. PMID:26608906

  13. Fractionally charged skyrmions in fractional quantum Hall effect.

    PubMed

    Balram, Ajit C; Wurstbauer, U; Wójs, A; Pinczuk, A; Jain, J K

    2015-11-26

    The fractional quantum Hall effect has inspired searches for exotic emergent topological particles, such as fractionally charged excitations, composite fermions, abelian and nonabelian anyons and Majorana fermions. Fractionally charged skyrmions, which support both topological charge and topological vortex-like spin structure, have also been predicted to occur in the vicinity of 1/3 filling of the lowest Landau level. The fractional skyrmions, however, are anticipated to be exceedingly fragile, suppressed by very small Zeeman energies. Here we show that, slightly away from 1/3 filling, the smallest manifestations of the fractional skyrmion exist in the excitation spectrum for a broad range of Zeeman energies, and appear in resonant inelastic light scattering experiments as well-defined resonances slightly below the long wavelength spin wave mode. The spectroscopy of these exotic bound states serves as a sensitive tool for investigating the residual interaction between composite fermions, responsible for delicate new fractional quantum Hall states in this filling factor region.

  14. Fractionally charged skyrmions in fractional quantum Hall effect

    SciTech Connect

    Balram, Ajit C.; Wurstbauer, U.; Wójs, A.; Pinczuk, A.; Jain, J. K.

    2015-11-26

    The fractional quantum Hall effect has inspired searches for exotic emergent topological particles, such as fractionally charged excitations, composite fermions, abelian and nonabelian anyons and Majorana fermions. Fractionally charged skyrmions, which support both topological charge and topological vortex-like spin structure, have also been predicted to occur in the vicinity of 1/3 filling of the lowest Landau level. The fractional skyrmions, however, are anticipated to be exceedingly fragile, suppressed by very small Zeeman energies. Here we show that, slightly away from 1/3 filling, the smallest manifestations of the fractional skyrmion exist in the excitation spectrum for a broad range of Zeeman energies, and appear in resonant inelastic light scattering experiments as well-defined resonances slightly below the long wavelength spin wave mode. The spectroscopy of these exotic bound states serves as a sensitive tool for investigating the residual interaction between composite fermions, responsible for delicate new fractional quantum Hall states in this filling factor region.

  15. Field Flows of Dark Energy

    SciTech Connect

    Cahn, Robert N.; de Putter, Roland; Linder, Eric V.

    2008-07-08

    Scalar field dark energy evolving from a long radiation- or matter-dominated epoch has characteristic dynamics. While slow-roll approximations are invalid, a well defined field expansion captures the key aspects of the dark energy evolution during much of the matter-dominated epoch. Since this behavior is determined, it is not faithfully represented if priors for dynamical quantities are chosen at random. We demonstrate these features for both thawing and freezing fields, and for some modified gravity models, and unify several special cases in the literature.

  16. Fractional telegrapher's equation from fractional persistent random walks

    NASA Astrophysics Data System (ADS)

    Masoliver, Jaume

    2016-05-01

    We generalize the telegrapher's equation to allow for anomalous transport. We derive the space-time fractional telegrapher's equation using the formalism of the persistent random walk in continuous time. We also obtain the characteristic function of the space-time fractional process and study some particular cases and asymptotic approximations. Similarly to the ordinary telegrapher's equation, the time-fractional equation also presents distinct behaviors for different time scales. Specifically, transitions between different subdiffusive regimes or from superdiffusion to subdiffusion are shown by the fractional equation as time progresses.

  17. Fractional telegrapher's equation from fractional persistent random walks.

    PubMed

    Masoliver, Jaume

    2016-05-01

    We generalize the telegrapher's equation to allow for anomalous transport. We derive the space-time fractional telegrapher's equation using the formalism of the persistent random walk in continuous time. We also obtain the characteristic function of the space-time fractional process and study some particular cases and asymptotic approximations. Similarly to the ordinary telegrapher's equation, the time-fractional equation also presents distinct behaviors for different time scales. Specifically, transitions between different subdiffusive regimes or from superdiffusion to subdiffusion are shown by the fractional equation as time progresses. PMID:27300830

  18. Method development for VOST Fractionator

    SciTech Connect

    St. Germain Wickham, M.E.; Cummins, S.B.; Radolovich, G. )

    1994-01-01

    A VOST Fractionator was designed and tested to fractionate an original VOST sample into two samples: one large and one small sample. The device allows for quantitation of high levels of compounds in the small fraction and trace levels in the large fraction. Several preliminary validation samples were prepared, split, and analyzed to test the feasibility of the VOST Fractionator. These validation samples contained 40,000 ng of three terpene compounds and 100 ng of 42 other volatile target analytes. Analyte recoveries ranged from 70 to 130 percent, except for five water-soluble compounds. Recovery for the terpene compounds was 110 to 118 percent. Precision for triplicate spiked samples was less than 30 percent relative standard deviation (%RSD) for most compounds. Results indicate that the VOST Fractionator accurately splits the sample and allows quantitation of extremely high levels of compounds without sacrificing sensitivity for trace compounds. 3 refs., 1 fig., 3 tabs.

  19. Rapid flow fractionation of particles combining liquid and particulate dielectrophoresis

    NASA Technical Reports Server (NTRS)

    King, Michael R. (Inventor); Lomakin, Oleg (Inventor); Jones, Thomas B. (Inventor); Ahmed, Rajib (Inventor)

    2007-01-01

    Rapid, size-based, deposition of particles from liquid suspension is accomplished using a nonuniform electric field created by coplanar microelectrode strips patterned on an insulating substrate. The scheme uses the dielectrophoretic force both to distribute aqueous liquid containing particles and, simultaneously, to separate the particles. Size-based separation is found within nanoliter droplets formed along the structure after voltage removal. Bioparticles or macromolecules of similar size can also be separated based on subtle differences in dielectric property, by controlling the frequency of the AC current supplied to the electrodes.

  20. Nonbiological fractionation of iron isotopes

    NASA Technical Reports Server (NTRS)

    Anbar, A. D.; Roe, J. E.; Barling, J.; Nealson, K. H.

    2000-01-01

    Laboratory experiments demonstrate that iron isotopes can be chemically fractionated in the absence of biology. Isotopic variations comparable to those seen during microbially mediated reduction of ferrihydrite are observed. Fractionation may occur in aqueous solution during equilibration between inorganic iron complexes. These findings provide insight into the mechanisms of iron isotope fractionation and suggest that nonbiological processes may contribute to iron isotope variations observed in sediments.

  1. Trigonometric Integrals via Partial Fractions

    ERIC Educational Resources Information Center

    Chen, H.; Fulford, M.

    2005-01-01

    Parametric differentiation is used to derive the partial fractions decompositions of certain rational functions. Those decompositions enable us to integrate some new combinations of trigonometric functions.

  2. Rational Exponentials and Continued Fractions

    ERIC Educational Resources Information Center

    Denny, J. K.

    2012-01-01

    Using continued fraction expansions, we can approximate constants, such as pi and e, using an appropriate integer n raised to the power x[superscript 1/x], x a suitable rational. We review continued fractions and give an algorithm for producing these approximations.

  3. Multiple fractional Fourier transform holography

    NASA Astrophysics Data System (ADS)

    Zeng, Yangsu; Zhang, Yixiao; Gao, Feng; Gao, Fuhua; Huang, Xiaoyang; Guo, Yongkang

    2002-04-01

    In this paper, we introduce the recording and reconstruction theories of the multiple fractional Fourier transform hologram (M-FRTH). We fabricated a multiple fractional Fourier transform hologram, and obtained satisfying reconstruction results. The experimental result shows that the M-FRTH has a high anti-counterfeiting capacity and can be used in the fabrication of the trademark, ID, and the notes.

  4. Fractionation process for petroleum wax

    SciTech Connect

    Jones, R.L.; Mitchael, M.R.; Krenowicz, R.A.; Southard, W.M.

    1991-07-16

    This patent describes a process which comprises separating a petroleum wax into a lower boiling wax fraction of a narrow melting range and a higher boiling wax fraction of wider melting range by subjecting the petroleum wax to distillation in a wiped film evaporator.

  5. Understanding Magnitudes to Understand Fractions

    ERIC Educational Resources Information Center

    Gabriel, Florence

    2016-01-01

    Fractions are known to be difficult to learn and difficult to teach, yet they are vital for students to have access to further mathematical concepts. This article uses evidence to support teachers employing teaching methods that focus on the conceptual understanding of the magnitude of fractions.

  6. Investigations on Multiplication of Fractions.

    ERIC Educational Resources Information Center

    Sai, Khoo Phon; Inder, Walter R. D.

    1984-01-01

    Three different models with continuous materials, discontinuous materials, and number lines were used to study the operation concept in six investigations on multiplication with fractions with pupils aged 11-12 in a Penang International School. All approaches could be understood by pupils, but they preferred the area and fractional models. (MNS)

  7. Radiating subdispersive fractional optical solitons

    SciTech Connect

    Fujioka, J. Espinosa, A.; Rodríguez, R. F.; Malomed, B. A.

    2014-09-01

    It was recently found [Fujioka et al., Phys. Lett. A 374, 1126 (2010)] that the propagation of solitary waves can be described by a fractional extension of the nonlinear Schrödinger (NLS) equation which involves a temporal fractional derivative (TFD) of order α > 2. In the present paper, we show that there is also another fractional extension of the NLS equation which contains a TFD with α < 2, and in this case, the new equation describes the propagation of radiating solitons. We show that the emission of the radiation (when α < 2) is explained by resonances at various frequencies between the pulses and the linear modes of the system. It is found that the new fractional NLS equation can be derived from a suitable Lagrangian density, and a fractional Noether's theorem can be applied to it, thus predicting the conservation of the Hamiltonian, momentum and energy.

  8. Relationship between fractional calculus and fractional Fourier transform

    NASA Astrophysics Data System (ADS)

    Zhang, Yanshan; Zhang, Feng; Lu, Mingfeng

    2015-09-01

    The fractional calculus (FC) deals with integrals and derivatives of arbitrary (i.e., non-integer) order, and shares its origins with classical integral and differential calculus. The fractional Fourier transform (FRFT), which has been found having many applications in optics and other areas, is a generalization of the usual Fourier transform. The FC and the FRFT are two of the most interesting and useful fractional areas. In recent years, it appears many papers on the FC and FRFT, however, few of them discuss the connection of the two fractional areas. We study their relationship. The relational expression between them is deduced. The expectation of interdisciplinary cross fertilization is our motivation. For example, we can use the properties of the FC (non-locality, etc.) to solve the problem which is difficult to be solved by the FRFT in optical engineering; we can also through the physical meaning of the FRFT optical implementation to explain the physical meaning of the FC. The FC and FRFT approaches can be transposed each other in the two fractional areas. It makes that the success of the fractional methodology is unquestionable with a lot of applications, namely in nonlinear and complex system dynamics and image processing.

  9. Fractionally charged skyrmions in fractional quantum Hall effect

    DOE PAGES

    Balram, Ajit C.; Wurstbauer, U.; Wójs, A.; Pinczuk, A.; Jain, J. K.

    2015-11-26

    The fractional quantum Hall effect has inspired searches for exotic emergent topological particles, such as fractionally charged excitations, composite fermions, abelian and nonabelian anyons and Majorana fermions. Fractionally charged skyrmions, which support both topological charge and topological vortex-like spin structure, have also been predicted to occur in the vicinity of 1/3 filling of the lowest Landau level. The fractional skyrmions, however, are anticipated to be exceedingly fragile, suppressed by very small Zeeman energies. Here we show that, slightly away from 1/3 filling, the smallest manifestations of the fractional skyrmion exist in the excitation spectrum for a broad range of Zeemanmore » energies, and appear in resonant inelastic light scattering experiments as well-defined resonances slightly below the long wavelength spin wave mode. The spectroscopy of these exotic bound states serves as a sensitive tool for investigating the residual interaction between composite fermions, responsible for delicate new fractional quantum Hall states in this filling factor region.« less

  10. Fractional trajectories: Decorrelation versus friction

    NASA Astrophysics Data System (ADS)

    Svenkeson, A.; Beig, M. T.; Turalska, M.; West, B. J.; Grigolini, P.

    2013-11-01

    The fundamental connection between fractional calculus and subordination processes is explored and affords a physical interpretation of a fractional trajectory, that being an average over an ensemble of stochastic trajectories. Heretofore what has been interpreted as intrinsic friction, a form of non-Markovian dissipation that automatically arises from adopting the fractional calculus, is shown to be a manifestation of decorrelations between trajectories. We apply the general theory developed herein to the Lotka-Volterra ecological model, providing new insight into the final equilibrium state. The relaxation time to achieve this state is also considered.

  11. Arsenic speciation in the dispersible colloidal fraction of soils from a mine-impacted creek.

    PubMed

    Serrano, Susana; Gomez-Gonzalez, Miguel Angel; O'Day, Peggy A; Laborda, Francisco; Bolea, Eduardo; Garrido, Fernando

    2015-04-01

    Arsenic and iron speciation in the dispersible colloid fraction (DCF; 10-1000 nm) from an As-rich mine waste pile, sediments of a streambed that collects runoff from waste pile, the streambed subsoil, and the sediments of a downstream pond were investigated by combining asymmetrical-flow field-flow fractionation (AsFlFFF)/inductively-coupled plasma-mass spectrometry (ICP-MS), transmission electron microscopy (TEM) and X-ray absorption (XAS) spectroscopy. Calcium, Fe and As (Fe/As molar ratio ∼ 1) were the main components of the DCF from waste pile. TEM/EDS and As and Fe XAS analysis revealed the presence of nanoparticle scorodite in this same DCF, as well as Fe nanoparticles in all samples downstream of the waste pile. Arsenic and Fe XAS showed As(V) adsorbed onto nanoparticulate ferrihydrite in the DCF of downstream samples. Micro-X-ray fluorescence indicated a strong correlation between Fe and As in phyllosilicate/Fe(3+) (oxi) hydroxide aggregates from the sediment pond. Fractionation analysis showed the mean particle size of the DCF from the streambed sample to be smaller than that of the streambed subsoil and sediment ponds samples. These results show that an important and variable fraction of As may be bound to dispersible colloids that can be released from contaminated soils and transported downstream in natural systems.

  12. Australia's Next Top Fraction Model

    ERIC Educational Resources Information Center

    Gould, Peter

    2013-01-01

    Peter Gould suggests Australia's next top fraction model should be a linear model rather than an area model. He provides a convincing argument and gives examples of ways to introduce a linear model in primary classrooms.

  13. Ejection Fraction Heart Failure Measurement

    MedlinePlus

    ... 70. You can have a normal ejection fraction reading and still have heart failure (called HFpEF or ... to be made. Here we delve into the importance of shared decision making. HF Resources For Life ...

  14. Commercial SNF Accident Release Fractions

    SciTech Connect

    J. Schulz

    2004-11-05

    The purpose of this analysis is to specify and document the total and respirable fractions for radioactive materials that could be potentially released from an accident at the repository involving commercial spent nuclear fuel (SNF) in a dry environment. The total and respirable release fractions are used to support the preclosure licensing basis for the repository. The total release fraction is defined as the fraction of total commercial SNF assembly inventory, typically expressed as an activity inventory (e.g., curies), of a given radionuclide that is released to the environment from a waste form. Radionuclides are released from the inside of breached fuel rods (or pins) and from the detachment of radioactive material (crud) from the outside surfaces of fuel rods and other components of fuel assemblies. The total release fraction accounts for several mechanisms that tend to retain, retard, or diminish the amount of radionuclides that are available for transport to dose receptors or otherwise can be shown to reduce exposure of receptors to radiological releases. The total release fraction includes a fraction of airborne material that is respirable and could result in inhalation doses; this subset of the total release fraction is referred to as the respirable release fraction. Accidents may involve waste forms characterized as: (1) bare unconfined intact fuel assemblies, (2) confined intact fuel assemblies, or (3) canistered failed commercial SNF. Confined intact commercial SNF assemblies at the repository are contained in shipping casks, canisters, or waste packages. Four categories of failed commercial SNF are identified: (1) mechanically and cladding-penetration damaged commercial SNF, (2) consolidated/reconstituted assemblies, (3) fuel rods, pieces, and debris, and (4) nonfuel components. It is assumed that failed commercial SNF is placed into waste packages with a mesh screen at each end (CRWMS M&O 1999). In contrast to bare unconfined fuel assemblies, the

  15. Xenon fractionation in porous planetesimals

    NASA Technical Reports Server (NTRS)

    Zahnle, Kevin; Pollack, James B.; Kasting, James F.

    1990-01-01

    The distinctively fractionated Xe on Mars and earth may have its root in a common source from which both planets accreted. Beginning with Ozima and Nakazawa's (1980) hypothesis that terrestrial Xe fractionation was caused by gravitational separation of adsorbed solar nebular gases inside large porous planetesimals, it is pointed out that Xe would have been trapped as the planetesimal grew and pores were squeezed shut by lithostatic pressure. It is shown that enough fractionated Xe to supply the earth could have been trapped this way. The degree of fractionation is controlled by the lithostatic pressure at the pore-closing front and so would have been roughly the same for all large planetesimals. The predicted degree of fractionation agrees well with that preserved in terrestrial and Martian Xe. Relative to Xe, this source is strongly depleted in other noble gases. In contrast to the original Ozima and Nakazawa hypothesis, the present hypothesis predicts the observed fractionation, and it allows planetary accretion to occur after the dissipation of the solar nebula.

  16. Xenon fractionation in porous planetesimals.

    PubMed

    Zahnle, K; Pollack, J B; Kasting, J F

    1990-01-01

    The distinctively fractionated Xe on Mars and Earth may have its root in a common source from which both planets accreted. We begin with Ozima and Nakazawa's hypothesis that terrestrial Xe fractionation was caused by gravitational separation of adsorbed solar nebular gases inside large porous planetesimals. We point out that Xe would have been trapped as the planetesimal grew and pores were squeezed shut by lithostatic pressure. We show that enough fractionated Xe to supply the Earth could have been trapped this way. The degree of fractionation is controlled by the lithostatic pressure at the pore-closing front and so would have been roughly the same for all large planetesimals. The predicted degree of fractionation agrees well with that preserved in terrestrial and martian Xe. Relative to Xe, this source is strongly depleted in other noble gases. In contrast to the original Ozima and Nakazawa hypothesis, our hypothesis predicts the observed fractionation, and it allows planetary accretion to occur after the dissipation of the solar nebula. The required planetesimals are large, representing a class of object now extinct in the solar system.

  17. Xenon fractionation in porous planetesimals.

    PubMed

    Zahnle, K; Pollack, J B; Kasting, J F

    1990-01-01

    The distinctively fractionated Xe on Mars and Earth may have its root in a common source from which both planets accreted. We begin with Ozima and Nakazawa's hypothesis that terrestrial Xe fractionation was caused by gravitational separation of adsorbed solar nebular gases inside large porous planetesimals. We point out that Xe would have been trapped as the planetesimal grew and pores were squeezed shut by lithostatic pressure. We show that enough fractionated Xe to supply the Earth could have been trapped this way. The degree of fractionation is controlled by the lithostatic pressure at the pore-closing front and so would have been roughly the same for all large planetesimals. The predicted degree of fractionation agrees well with that preserved in terrestrial and martian Xe. Relative to Xe, this source is strongly depleted in other noble gases. In contrast to the original Ozima and Nakazawa hypothesis, our hypothesis predicts the observed fractionation, and it allows planetary accretion to occur after the dissipation of the solar nebula. The required planetesimals are large, representing a class of object now extinct in the solar system. PMID:11537194

  18. Fractional characteristic times and dissipated energy in fractional linear viscoelasticity

    NASA Astrophysics Data System (ADS)

    Colinas-Armijo, Natalia; Di Paola, Mario; Pinnola, Francesco P.

    2016-08-01

    In fractional viscoelasticity the stress-strain relation is a differential equation with non-integer operators (derivative or integral). Such constitutive law is able to describe the mechanical behavior of several materials, but when fractional operators appear, the elastic and the viscous contribution are inseparable and the characteristic times (relaxation and retardation time) cannot be defined. This paper aims to provide an approach to separate the elastic and the viscous phase in the fractional stress-strain relation with the aid of an equivalent classical model (Kelvin-Voigt or Maxwell). For such equivalent model the parameters are selected by an optimization procedure. Once the parameters of the equivalent model are defined, characteristic times of fractional viscoelasticity are readily defined as ratio between viscosity and stiffness. In the numerical applications, three kinds of different excitations are considered, that is, harmonic, periodic, and pseudo-stochastic. It is shown that, for any periodic excitation, the equivalent models have some important features: (i) the dissipated energy per cycle at steady-state coincides with the Staverman-Schwarzl formulation of the fractional model, (ii) the elastic and the viscous coefficients of the equivalent model are strictly related to the storage and the loss modulus, respectively.

  19. Isotope fractionation studies of molybdenum

    NASA Astrophysics Data System (ADS)

    Wieser, M. E.; de Laeter, J. R.; Varner, M. D.

    2007-08-01

    Mass spectrometric studies of the isotopic composition of molybdenum have become an active area of research in stable isotope geochemistry, biogeochemistry and cosmochemistry. The redox chemistry of Mo, together with its proclivity for covalent bonding, indicates its importance in isotope fractionation studies such as palaeoceanography. The measurement of the magnitude of isotope fractionation of Mo in natural systems is a challenging task, in that natural fractionation has to be carefully distinguished from chemical and instrumental isotope fractionation. An ion exchange chemical separation procedure has been developed with high efficiency and low blank, to ensure that the isobaric elements Zr and Ru are removed from the samples before mass spectrometric analysis. The isotope fractionation resulting from this procedure is 0.14[per mille sign] per u. The isotopic composition of Mo of a Laboratory Standard has been measured by positive and negative thermal ionization mass spectrometry (P-TIMS and N-TIMS, respectively), to give an isotope fractionation of 6.4[per mille sign] and 0.5[per mille sign] per u, respectively, with respect to the absolute isotope abundances of Mo. In both cases the lighter isotopes are enhanced with respect to the heavier isotopes. An ascorbic acid activator has enabled the sensitivity of P-TIMS to be improved as compared to traditional methods. The same experiment was repeated using a multiple collector-inductively coupled plasma-mass spectrometer (MC-ICP-MS) to give an isotope fractionation of approximately 17.0[per mille sign] per u. In this case the heavier isotopes are enhanced with respect to the lighter isotopes. The strengths and weaknesses of these three mass spectrometric techniques are evaluated. We conclude that MC-ICP-MS is the optimum mass spectrometric method for accurately measuring the isotope fractionation of Mo in natural materials, provided chemical and instrumental isotope fractionation can be resolved from naturally

  20. Fractional Brownian motion, fractional Gaussian noise, and Tsallis permutation entropy

    NASA Astrophysics Data System (ADS)

    Zunino, L.; Pérez, D. G.; Kowalski, A.; Martín, M. T.; Garavaglia, M.; Plastino, A.; Rosso, O. A.

    2008-10-01

    In this work, we analyze two important stochastic processes, the fractional Brownian motion and fractional Gaussian noise, within the framework of the Tsallis permutation entropy. This entropic measure, evaluated after using the Bandt & Pompe method to extract the associated probability distribution, is shown to be a powerful tool to characterize fractal stochastic processes. It allows for a better discrimination of the processes than the Shannon counterpart for appropriate ranges of values of the entropic index. Moreover, we find the optimum value of this entropic index for the stochastic processes under study.

  1. Delayed coker fractionator advanced control

    SciTech Connect

    Jaisinghani, R.; Minter, B. ); Tica, A.; Puglesi, A.; Ojeda, R. )

    1993-08-01

    In a delayed coking process, as coke drum switches are made, rapid changes occur in both the fractionator feed rate and composition. With conventional control, it is not unusual to see long transient behavior of large swings in both quality and flowrates of coker gas oils. This can extract a heavy economic toll, not only in coker operation, but in the operation of downstream units as the upset is propagated. An advanced process control application (APC) was recently implemented on the coker fractionator at the Yacimentos Petroliferos Fiscales (YPF), Lujan de Cuyo Refinery, in Mendoza, Argentina. This coker fractionator control design was unique as it handled two different operating objectives: control of product qualities via tower temperature profile during normal operation and control of gas oil product flow ratio during drum switch. This combination of control objectives in one multivariable predictive control program was achieved by including special logic to decouple the individual tuning requirements. Also, additional logic was included to unambiguously detect and identify drum switch and drum steam out as discrete events within 30 seconds of their actual occurrence. These discrete events were then used as disturbance variables to minimize fractionator transient behavior. As a performance measure, the overhead temperature was controlled within 2 C to 2.5 C of its target, gas oil flows were stabilized during drum switches and steam generation via pump around was maximized. Overall, implementing advanced control for the delayed coker fractionator resulted in substantial benefits from product quality control, product flow control and minimized energy consumption.

  2. Search for fractionally charged particles

    SciTech Connect

    Lackner, K.S.; Zweig, G.

    1982-01-01

    Quarks, the constituents of hadrons and fermion fields of quantum chromodynamics, have fractional charges -1/3e and 2/3e. All charges are integral multiples of 1/3e and not e, as was previously believed. Therefore it is natural to ask if isolated particles of fractional charge exist, either as an intrinsic part of matter, or as particles that can be produced at high energy accelerators. This question can only be answered by experiment, and remains interesting even if quantum chromodynamics turns out to be an absolutely confining theory of quarks. For example, small deviations from the standard version of quantum chromodynamics, or the incorporation of quantum chromodynamics into a more comprehensive theory, could require the existence of free fractionally charged particles.

  3. REFractions: The Representing Equivalent Fractions Game

    ERIC Educational Resources Information Center

    Tucker, Stephen I.

    2014-01-01

    Stephen Tucker presents a fractions game that addresses a range of fraction concepts including equivalence and computation. The REFractions game also improves students' fluency with representing, comparing and adding fractions.

  4. Fractional Derivatives in Dengue Epidemics

    NASA Astrophysics Data System (ADS)

    Pooseh, Shakoor; Rodrigues, Helena Sofia; Torres, Delfim F. M.

    2011-09-01

    We introduce the use of fractional calculus, i.e., the use of integrals and derivatives of non-integer (arbitrary) order, in epidemiology. The proposed approach is illustrated with an outbreak of dengue disease, which is motivated by the first dengue epidemic ever recorded in the Cape Verde islands off the coast of west Africa, in 2009. Numerical simulations show that in some cases the fractional models fit better the reality when compared with the standard differential models. The classical results are obtained as particular cases by considering the order of the derivatives to take an integer value.

  5. On fractional Model Reference Adaptive Control.

    PubMed

    Shi, Bao; Yuan, Jian; Dong, Chao

    2014-01-01

    This paper extends the conventional Model Reference Adaptive Control systems to fractional ones based on the theory of fractional calculus. A control law and an incommensurate fractional adaptation law are designed for the fractional plant and the fractional reference model. The stability and tracking convergence are analyzed using the frequency distributed fractional integrator model and Lyapunov theory. Moreover, numerical simulations of both linear and nonlinear systems are performed to exhibit the viability and effectiveness of the proposed methodology. PMID:24574897

  6. Isotopic Fractionation in Interstellar Chemistry

    NASA Technical Reports Server (NTRS)

    Charnley, Steven

    2009-01-01

    Isotopically fractionated material is found in many solar system objects, including meteorites and comets. It is thought, in some cases, to trace interstellar material that was incorporated into the solar sys tem without undergoing significant processing. In this poster, we sho w the results of several models of the nitrogen, oxygen, and carbon f ractionation in proto-stellar cores.

  7. Pythagorean Approximations and Continued Fractions

    ERIC Educational Resources Information Center

    Peralta, Javier

    2008-01-01

    In this article, we will show that the Pythagorean approximations of [the square root of] 2 coincide with those achieved in the 16th century by means of continued fractions. Assuming this fact and the known relation that connects the Fibonacci sequence with the golden section, we shall establish a procedure to obtain sequences of rational numbers…

  8. Continued Fractions and Iterative Processes.

    ERIC Educational Resources Information Center

    Bevis, Jean H.; Boal, Jan L.

    1982-01-01

    Continued fractions and associated sequences are viewed to constitute a rich area of study for mathematics students, by supporting instruction on algebraic and computational skills, mathematical induction, convergence of sequences, and interpretation of function graphs. An iterative method of approximating square roots opens suggestions for…

  9. Math Fair: Focus on Fractions

    ERIC Educational Resources Information Center

    Mokashi, Neelima A.

    2009-01-01

    This article depicts the rewarding experience of creating mathematical environments for kindergarten and elementary students by focusing on one of the most important and often difficult-to-grasp concepts (fractions) through play methods incorporated into a math fair. The basic concept of a math fair is threefold: (1) to create preplanned,…

  10. Optimization in fractional aircraft ownership

    NASA Astrophysics Data System (ADS)

    Septiani, R. D.; Pasaribu, H. M.; Soewono, E.; Fayalita, R. A.

    2012-05-01

    Fractional Aircraft Ownership is a new concept in flight ownership management system where each individual or corporation may own a fraction of an aircraft. In this system, the owners have privilege to schedule their flight according to their needs. Fractional management companies (FMC) manages all aspects of aircraft operations, including utilization of FMC's aircraft in combination of outsourced aircrafts. This gives the owners the right to enjoy the benefits of private aviations. However, FMC may have complicated business requirements that neither commercial airlines nor charter airlines faces. Here, optimization models are constructed to minimize the number of aircrafts in order to maximize the profit and to minimize the daily operating cost. In this paper, three kinds of demand scenarios are made to represent different flight operations from different types of fractional owners. The problems are formulated as an optimization of profit and a daily operational cost to find the optimum flight assignments satisfying the weekly and daily demand respectively from the owners. Numerical results are obtained by Genetic Algorithm method.

  11. Staircase and Fractional Part Functions

    ERIC Educational Resources Information Center

    Amram, Meirav; Dagan, Miriam; Ioshpe, Michael; Satianov, Pavel

    2016-01-01

    The staircase and fractional part functions are basic examples of real functions. They can be applied in several parts of mathematics, such as analysis, number theory, formulas for primes, and so on; in computer programming, the floor and ceiling functions are provided by a significant number of programming languages--they have some basic uses in…

  12. Fun with Fractions and Algebra.

    ERIC Educational Resources Information Center

    Chandler, Jane

    1997-01-01

    Presents two games that provide practice with equivalent fractions, that were produced at three levels of difficulty, Level 1 being the simplest. Also describes another game for practice in solving simple linear equations. Appendices contain examples of materials used in the games. (ASK)

  13. The Bootstrap Fraction in TFTR

    SciTech Connect

    Hoang, G. T.

    1997-04-15

    The TRANSP plasma analysis code is used to calculate the bootstrap current generated during neutral-beam injection and ion cyclotron resonance frequency heating for a wide variety of TFTR discharges. An empirical scaling relation is given for the bootstrap current fraction using the ratio of the peakedness of the thermal pressure and the total current density.

  14. Fractions, trees and unfinished business

    NASA Astrophysics Data System (ADS)

    Shraiman, Boris

    In this talk, mourning the loss of a teacher and a dear friend, I would like to share some unfinished thoughts loosely connecting - via Farey fraction trees - Kadanoff's study of universality of quasi-periodic route to chaos with the effort to understand universal features of genealogical trees.

  15. Evaluating fractionated space systems - Status

    NASA Astrophysics Data System (ADS)

    Cornford, S.; Jenkins, S.; Wall, S.; Cole, B.; Bairstow, B.; Rouquette, N.; Dubos, G.; Ryan, T.; Zarifian, P.; Boutwell, J.

    DARPA has funded a number of teams to further refine its Fractionated Spacecraft vision. Several teams, including this team led by JPL, have been tasked to develop a tool for the evaluation of the Business case for a fractionated system architecture. This evaluation is to understand under what conditions and constraints the fractionated architecture make more sense (in a cost/benefit sense) than the traditional monolithic paradigm. Our approach to this evaluation is to generate and evaluate a variety of trade space options. These options include various sets of stimuli, various degrees of fractionation and various subsystem element properties. The stimuli include many not normally modeled such as technology obsolescence, funding profile changes and changes in mission objectives during the mission itself. The degrees of fractionation enable various traditional subsystem elements to be distributed across different free flyers which then act in concert as needed. This will enable key technologies to be updated as need dictates and availability allows. We have described our approach in a previous IEEE Aerospace conference paper but will briefly summarize here. Our approach to generate the Business Case evaluation is to explicitly model both the implementation and operation phases for the life cycle of a fractionated constellation. A variety of models are integrated into the Phoenix ModelCenter framework and are used to generate various intermediate data which is aggregated into the Present Strategic Value (PSV). The PSV is essentially the value (including the value of the embedded real options) minus the cost. These PSVs are calculated for a variety of configurations and scenarios including variations of various stimuli or uncertainties (e.g. supply chain delays, launch vehicle failures and orbital debris events). There are various decision options (e.g. delay, accelerate, cancel) which can now be exercised for each stimulus. We can compute the PSV for the various comb

  16. STOCHASTIC INTEGRATION FOR TEMPERED FRACTIONAL BROWNIAN MOTION.

    PubMed

    Meerschaert, Mark M; Sabzikar, Farzad

    2014-07-01

    Tempered fractional Brownian motion is obtained when the power law kernel in the moving average representation of a fractional Brownian motion is multiplied by an exponential tempering factor. This paper develops the theory of stochastic integrals for tempered fractional Brownian motion. Along the way, we develop some basic results on tempered fractional calculus.

  17. STOCHASTIC INTEGRATION FOR TEMPERED FRACTIONAL BROWNIAN MOTION.

    PubMed

    Meerschaert, Mark M; Sabzikar, Farzad

    2014-07-01

    Tempered fractional Brownian motion is obtained when the power law kernel in the moving average representation of a fractional Brownian motion is multiplied by an exponential tempering factor. This paper develops the theory of stochastic integrals for tempered fractional Brownian motion. Along the way, we develop some basic results on tempered fractional calculus. PMID:24872598

  18. Using Number Sense to Compare Fractions

    ERIC Educational Resources Information Center

    Bray, Wendy S.; Abreu-Sanchez, Laura

    2010-01-01

    One mathematical focus for third graders is to develop deep understanding of fractions and fraction equivalence, including comparing fractions through use of models and reasoning strategies. Before reading further, consider how you might solve the following problem: Which fraction is greater, 14/24 or 17/36? The initial impulse of many adults is…

  19. Note on fractional Mellin transform and applications.

    PubMed

    Kılıçman, Adem; Omran, Maryam

    2016-01-01

    In this article, we define the fractional Mellin transform by using Riemann-Liouville fractional integral operator and Caputo fractional derivative of order [Formula: see text] and study some of their properties. Further, some properties are extended to fractional way for Mellin transform.

  20. Nitrogen fractionation in Titan's aerosols

    NASA Astrophysics Data System (ADS)

    Carrasco, Nathalie; Kuga, Maia; Marty, Bernard; Fleury, Benjamin; Marrocchi, Yves

    2016-06-01

    A strong nitrogen fractionation is found by Cassini in Titan's atmosphere with the detection of 15N-rich HCN relative to N2. Photodissociation of N2 associated or not to self-shielding might involve 15N-rich radicals prone to incorporation into forming organics. However the isotopic composition is only available for very simple gaseous N-bearing compounds, and the propagation and conservation of such a large N-isotopic fractionation upon polymerization is actually out of reach with the instruments onboard Cassini. We will therefore present a first laboratory investigation of the possible enrichment in the solid organic aerosols. We will also discuss the space instrumention required in the future to answer this pending issue on Titan.

  1. Astrophysical Applications of Fractional Calculus

    NASA Astrophysics Data System (ADS)

    Stanislavsky, Aleksander A.

    The paradigm of fractional calculus occupies an important place for the macroscopic description of subdiffusion. Its advance in theoretical astrophysics is expected to be very attractive too. In this report we discuss a recent development of the idea to some astrophysical problems. One of them is connected with a random migration of bright points associated with magnetic fields at the solar photosphere. The transport of the bright points has subdiffusive features that require the fractional generalization of the Leighton's model. Another problem is related to the angular distribution of radio beams, being propagated through a medium with random inhomogeneities. The peculiarity of this medium is that radio beams are trapped because of random wave localization. This idea can be useful for the diagnostics of interplanetary and interstellar turbulent media.

  2. Electrochemically controlled iron isotope fractionation

    NASA Astrophysics Data System (ADS)

    Black, Jay R.; Young, Edward D.; Kavner, Abby

    2010-02-01

    Variations in the stable isotope abundances of transition metals have been observed in the geologic record and trying to understand and reconstruct the physical/environmental conditions that produced these signatures is an area of active research. It is clear that changes in oxidation state lead to large fractionations of the stable isotopes of many transition metals such as iron, suggesting that transition metal stable isotope signatures could be used as a paleo-redox proxy. However, the factors contributing to these observed stable isotope variations are poorly understood. Here we investigate how the kinetics of iron redox electrochemistry generates isotope fractionation. Through a combination of electrodeposition experiments and modeling of electrochemical processes including mass-transport, we show that electron transfer reactions are the cause of a large isotope separation, while mass transport-limited supply of reactant to the electrode attenuates the observed isotopic fractionation. Furthermore, the stable isotope composition of electroplated transition metals can be tuned in the laboratory by controlling parameters such as solution chemistry, reaction overpotential, and solution convection. These methods are potentially useful for generating isotopically-marked metal surfaces for tracking and forensic purposes. In addition, our studies will help interpret stable isotope data in terms of identifying underlying electron transfer processes in laboratory and natural samples.

  3. Fire effects on silica fractionation

    NASA Astrophysics Data System (ADS)

    Unzué-Belmonte, Dácil; Schaller, Jörg; Vandevenne, Floor; Barao, Lúcia; Struyf, Eric; Meire, Patrick

    2015-04-01

    Fire events are expected to increase due to climate change, both in number and intensity Effects range from changes in soil biogeochemistry up to the whole ecosystem functioning and morphology. While N, P and C cycling have received quite some attention, little attention was paid to fire effects on the biogeochemical Si cycle and the consequences after a fire event. The Si cycle is a globally important biogeochemical cycle, with strong connections to other biogeochemical cycles, including C. Dissolved silica is taken up by plants to form protective structures called phytoliths, which become a part of the soil and contribute strongly to soil Si cycling upon litter burial. Different silica fractions are found in soils, with phytoliths among the most easily soluble, especially compared to silicate minerals. A whole set of secondary non-biogenic fractions exist, that also have a high reactivity (adsorbed Si, reactive secondary minerals…). Biogenic and other pedogenic secondary Si stocks form an important filter between weathering of mineral silicates and eventual transport of dissolved Si to rivers and the coastal zone. We used a new method to analyze the different reactive fractions of silica in the litter layer of 3 ecosystems after different fire treatments. Using a continuous extraction of Si and Al in 0.5M NaOH at 85°C, biogenic and non-biogenic alkaline reactive Si fractions can be separated based on their Si/Al ratios and their reactivity. We analyzed the silica fractionation after two burning treatments (no heating, 350°C and 550°C) from three types of litter (spruce forest, beech forest and Sphagnum peat). Reactive Si from litter of spruce and beech forest was purely biogenic, based on the observed Si/Al ratio. Beech litter (~2.2 % BSi) had two different biogenic silica pools, one reactive and one more refractory. Spruce litter (~1.5% BSi) showed only one fraction of biogenic Si. There was negligible biogenic Si present in the peat samples (<0.1%). While

  4. Adaptive fractionation therapy: II. Biological effective dose

    NASA Astrophysics Data System (ADS)

    Chen, Mingli; Lu, Weiguo; Chen, Quan; Ruchala, Kenneth; Olivera, Gustavo

    2008-10-01

    Radiation therapy is fractionized to differentiate the cell killing between the tumor and organ at risk (OAR). Conventionally, fractionation is done by dividing the total dose into equal fraction sizes. However, as the relative positions (configurations) between OAR and the tumor vary from fractions to fractions, intuitively, we want to use a larger fraction size when OAR and the tumor are far apart and a smaller fraction size when OAR and the tumor are close to each other. Adaptive fractionation accounts for variations of configurations between OAR and the tumor. In part I of this series, the adaptation minimizes the OAR (physical) dose and maintains the total tumor (physical) dose. In this work, instead, the adaptation is based on the biological effective dose (BED). Unlike the linear programming approach in part I, we build a fraction size lookup table using mathematical induction. The lookup table essentially describes the fraction size as a function of the remaining tumor BED, the OAR/tumor dose ratio and the remaining number of fractions. The lookup table is calculated by maximizing the expected survival of OAR and preserving the tumor cell kill. Immediately before the treatment of each fraction, the OAR-tumor configuration and thus the dose ratio can be obtained from the daily setup image, and then the fraction size can be determined by the lookup table. Extensive simulations demonstrate the effectiveness of our method compared with the conventional fractionation method.

  5. Conformable Fractional Nikiforov—Uvarov Method

    NASA Astrophysics Data System (ADS)

    Karayer, H.; Demirhan, D.; Büyükkılıç, F.

    2016-07-01

    We introduce conformable fractional Nikiforov—Uvarov (NU) method by means of conformable fractional derivative which is the most natural definition in non-integer calculus. Since, NU method gives exact eigenstate solutions of Schrödinger equation (SE) for certain potentials in quantum mechanics, this method is carried into the domain of fractional calculus to obtain the solutions of fractional SE. In order to demonstrate the applicability of the conformable fractional NU method, we solve fractional SE for harmonic oscillator potential, Woods—Saxon potential, and Hulthen potential.

  6. Gene expression and fractionation resistance

    PubMed Central

    2014-01-01

    Background Previous work on whole genome doubling in plants established the importance of gene functional category in provoking or suppressing duplicate gene loss, or fractionation. Other studies, particularly in Paramecium have correlated levels of gene expression with vulnerability or resistance to duplicate loss. Results Here we analyze the simultaneous effect of function category and expression in two plant data sets, rosids and asterids. Conclusion We demonstrate function category and expression level have independent effects, though expression does not play the dominant role it does in Paramecium. PMID:25573431

  7. Tunable fractionation of nucleic acids.

    PubMed

    Salimullah, Md; Kato, Sachiko; Murata, Mitsuyoshi; Kawazu, Chika; Plessy, Charles; Carninci, Piero

    2009-12-01

    We developed a method for selective purification of DNA using the cationic detergent, cetyltrimethylammonium bromide (CTAB), accompanied with urea and controlled high-salt (NaCl) concentration. This method is effective for rapid separation of DNA fragments from artifacts such as PCR primer dimers or ligation adapters. The CTAB-associated purification completely removed the short PCR artifacts and primers, as well as enzymes and buffer, while recovering a sufficient quantity of amplicons for subsequent experiments such as preparation of libraries. This method could also be applied to the fractionation of nucleic acids generated by other types of reactions.

  8. FRACTIONATING COLUMN PRODUCT COLLECTOR CONTROL

    DOEpatents

    Paxson, G.D. Jr.

    1964-03-10

    Means for detecting minute fluid products from a chemical separation column and for advancing a collector tube rack in order to automatically separate and collect successive fractionated products are described. A charge is imposed on the forming drops at the column orifice to create an electric field as the drop falls in the vicinity of a sensing plate. The field is detected by an electrometer tube coupled to the plate causing an output signal to actuate rotation of a collector turntable rack, thereby positioning new collectors under the orifice. The invention provides reliable automatic collection independent of drop size, rate of fall, or chemical composition. (AEC)

  9. Staircase and fractional part functions

    NASA Astrophysics Data System (ADS)

    Amram, Meirav; Dagan, Miriam; Ioshpe, Michael; Satianov, Pavel

    2016-10-01

    The staircase and fractional part functions are basic examples of real functions. They can be applied in several parts of mathematics, such as analysis, number theory, formulas for primes, and so on; in computer programming, the floor and ceiling functions are provided by a significant number of programming languages - they have some basic uses in various programming tasks. In this paper, we view the staircase and fractional part functions as a classical example of non-continuous real functions. We introduce some of their basic properties, present some interesting constructions concerning them, and explore some intriguing interpretations of such functions. Throughout the paper, we use these functions in order to explain basic concepts in a first calculus course, such as domain of definition, discontinuity, and oddness of functions. We also explain in detail how, after researching the properties of such functions, one can draw their graph; this is a crucial part in the process of understanding their nature. In the paper, we present some subjects that the first-year student in the exact sciences may not encounter. We try to clarify those subjects and show that such ideas are important in the understanding of non-continuous functions, as a part of studying analysis in general.

  10. Dean flow fractionation of chromosomes

    NASA Astrophysics Data System (ADS)

    Hockin, Matt; Sant, Himanshu J.; Capecchi, Mario; Gale, Bruce K.

    2016-03-01

    Efforts to transfer intact mammalian chromosomes between cells have been attempted for more than 50 years with the consistent result being transfer of sub unit length pieces regardless of method. Inertial microfluidics is a new field that has shown much promise in addressing the fractionation of particles in the 2-20 μm size range (with unknown limits) and separations are based upon particles being carried by curving confined flows (within a spiral shaped, often rectangular flow chamber) and migrating to stable "equilibrium" positions of varying distance from a chamber wall depending on the balance of dean and lift forces. We fabricated spiral channels for inertial microfluidic separations using a standard soft lithography process. The concentration of chromosomes, small contaminant DNA and large cell debris in each outlets were evaluated using microscope (60X) and a flow cytometer. Using Dean Flow Fractionation, we were able to focus 4.5 times more chromosomes in outlet 2 compared to outlet 4 where most of the large debris is found. We recover 16% of the chromosomes in outlet #1- 50% in 2, 23% in 3 and 11% in 4. It should be noted that these estimates of recovery do not capture one piece of information- it actually may be that the chromosomes at each outlet are physically different and work needs to be done to verify this potential.

  11. Dielectrophoretic concentration of particles under electrokinetic flow

    DOEpatents

    Miles, Robin R.; Bettencourt, Kerry A.; Fuller, Christopher K.

    2004-09-07

    The use of dielectrophoresis to collect particles under the conditions of electrokinetically-driven flow. Dielectrophortic concentration of particles under electrokinetic flow is accomplished by interdigitated electrodes patterned on an inner surface of a microfluid channel, a DC voltage is applied across the ends to the channel, and an AC voltage is applied across the electrodes, and particles swept down the channel electrokinetically are trapped within the field established by the electrodes. The particles can be released when the voltage to the electrodes is released.

  12. Microfluidic dielectrophoretic sorter using gel vertical electrodes

    PubMed Central

    Luo, Jason; Nelson, Edward L.; Li, G. P.; Bachman, Mark

    2014-01-01

    We report the development and results of a two-step method for sorting cells and small particles in a microfluidic device. This approach uses a single microfluidic channel that has (1) a microfabricated sieve which efficiently focuses particles into a thin stream, followed by (2) a dielectrophoresis (DEP) section consisting of electrodes along the channel walls for efficient continuous sorting based on dielectric properties of the particles. For our demonstration, the device was constructed of polydimethylsiloxane, bonded to a glass surface, and conductive agarose gel electrodes. Gold traces were used to make electrical connections to the conductive gel. The device had several novel features that aided performance of the sorting. These included a sieving structure that performed continuous displacement of particles into a single stream within the microfluidic channel (improving the performance of downstream DEP, and avoiding the need for additional focusing flow inlets), and DEP electrodes that were the full height of the microfluidic walls (“vertical electrodes”), allowing for improved formation and control of electric field gradients in the microfluidic device. The device was used to sort polymer particles and HeLa cells, demonstrating that this unique combination provides improved capability for continuous DEP sorting of particles in a microfluidic device. PMID:24926390

  13. Microfluidic dielectrophoretic sorter using gel vertical electrodes.

    PubMed

    Luo, Jason; Nelson, Edward L; Li, G P; Bachman, Mark

    2014-05-01

    We report the development and results of a two-step method for sorting cells and small particles in a microfluidic device. This approach uses a single microfluidic channel that has (1) a microfabricated sieve which efficiently focuses particles into a thin stream, followed by (2) a dielectrophoresis (DEP) section consisting of electrodes along the channel walls for efficient continuous sorting based on dielectric properties of the particles. For our demonstration, the device was constructed of polydimethylsiloxane, bonded to a glass surface, and conductive agarose gel electrodes. Gold traces were used to make electrical connections to the conductive gel. The device had several novel features that aided performance of the sorting. These included a sieving structure that performed continuous displacement of particles into a single stream within the microfluidic channel (improving the performance of downstream DEP, and avoiding the need for additional focusing flow inlets), and DEP electrodes that were the full height of the microfluidic walls ("vertical electrodes"), allowing for improved formation and control of electric field gradients in the microfluidic device. The device was used to sort polymer particles and HeLa cells, demonstrating that this unique combination provides improved capability for continuous DEP sorting of particles in a microfluidic device.

  14. Fractional topological insulators in three dimensions.

    PubMed

    Maciejko, Joseph; Qi, Xiao-Liang; Karch, Andreas; Zhang, Shou-Cheng

    2010-12-10

    Topological insulators can be generally defined by a topological field theory with an axion angle θ of 0 or π. In this work, we introduce the concept of fractional topological insulator defined by a fractional axion angle and show that it can be consistent with time reversal T invariance if ground state degeneracies are present. The fractional axion angle can be measured experimentally by the quantized fractional bulk magnetoelectric polarization P₃, and a "halved" fractional quantum Hall effect on the surface with Hall conductance of the form σH=p/q e²/2h with p, q odd. In the simplest of these states the electron behaves as a bound state of three fractionally charged "quarks" coupled to a deconfined non-Abelian SU(3) "color" gauge field, where the fractional charge of the quarks changes the quantization condition of P₃ and allows fractional values consistent with T invariance.

  15. Generation of optical vortices by fractional derivative

    NASA Astrophysics Data System (ADS)

    Preda, L.

    2014-03-01

    This paper presents a new method of vortex generation using two-dimensional fractional derivative. The characteristics of vortices obtained using this method from Gaussian and Hermite-Gauss distributions are presented. Changing the parameters of fractional derivative such as the fractional order, r, and the direction, θ, the positions of the vortex centers can be changed. The method can be used to design a filter for vortex generation. The analysis of an experimental vortex pattern using fractional derivative is also demonstrated.

  16. Fractional Levy motion through path integrals

    SciTech Connect

    Calvo, Ivan; Sanchez, Raul; Carreras, Benjamin A

    2009-01-01

    Fractional Levy motion (fLm) is the natural generalization of fractional Brownian motion in the context of self-similar stochastic processes and stable probability distributions. In this paper we give an explicit derivation of the propagator of fLm by using path integral methods. The propagators of Brownian motion and fractional Brownian motion are recovered as particular cases. The fractional diffusion equation corresponding to fLm is also obtained.

  17. Lyapunov functions for fractional order systems

    NASA Astrophysics Data System (ADS)

    Aguila-Camacho, Norelys; Duarte-Mermoud, Manuel A.; Gallegos, Javier A.

    2014-09-01

    A new lemma for the Caputo fractional derivatives, when 0<α<1, is proposed in this paper. This result has proved to be useful in order to apply the fractional-order extension of Lyapunov direct method, to demonstrate the stability of many fractional order systems, which can be nonlinear and time varying.

  18. Early Predictors of Middle School Fraction Knowledge

    ERIC Educational Resources Information Center

    Bailey, Drew H.; Siegler, Robert S.; Geary, David C.

    2014-01-01

    Recent findings that earlier fraction knowledge predicts later mathematics achievement raise the question of what predicts later fraction knowledge. Analyses of longitudinal data indicated that whole number magnitude knowledge in first grade predicted knowledge of fraction magnitudes in middle school, controlling for whole number arithmetic…

  19. Stretching Student Teachers' Understanding of Fractions

    ERIC Educational Resources Information Center

    Harvey, Roger

    2012-01-01

    The teaching of fractions in elementary school is known to be challenging. Literature indicates that teachers' and prospective teachers' lack of depth of fraction content knowledge and associated pedagogical knowledge is of concern. This study investigated the fraction content knowledge of prospective teachers and their ability to use that…

  20. STOCHASTIC SOLUTIONS FOR FRACTIONAL WAVE EQUATIONS

    PubMed Central

    MEERSCHAERT, MARK M.; SCHILLING, RENÉ L.; SIKORSKII, ALLA

    2014-01-01

    A fractional wave equation replaces the second time derivative by a Caputo derivative of order between one and two. In this paper, we show that the fractional wave equation governs a stochastic model for wave propagation, with deterministic time replaced by the inverse of a stable subordinator whose index is one half the order of the fractional time derivative. PMID:26146456

  1. Take a Bite out of Fraction Division

    ERIC Educational Resources Information Center

    Cengiz, Nesrin; Rathouz, Margaret

    2011-01-01

    Division of fractions is often considered the most mechanical and least understood topic in elementary school. Enacting fraction division tasks in meaningful ways requires that teachers know not only "how" fraction division works but also "why" it works. The authors have created materials to help preservice teachers develop that knowledge. To…

  2. The Area Model of Multiplication of Fractions

    ERIC Educational Resources Information Center

    Tsankova, Jenny K.; Pjanic, Karmen

    2009-01-01

    Teaching students how to multiply fractions is challenging, not so much from a computational point of view but from a conceptual one. The algorithm for multiplying fractions is much easier to learn than many other algorithms, such as subtraction with regrouping, long division, and certainly addition of fractions with unlike denominators. However,…

  3. An Alternative Starting Point for Fraction Instruction

    ERIC Educational Resources Information Center

    Cortina, José Luis; Višnovská, Jana; Zúñiga, Claudia

    2015-01-01

    We analyze the results of a study conducted for the purpose of assessing the viability of an alternative starting point for teaching fractions. The alternative is based on Freudenthal's insights about fraction as comparison. It involves portraying the entities that unit fractions quantify as always being apart from the reference unit, instead of…

  4. Identifying Fractions on a Number Line

    ERIC Educational Resources Information Center

    Wong, Monica

    2013-01-01

    Fractions are generally introduced to students using the part--whole model. Yet the number line is another important representation which can be used to build fraction concepts (Australian Curriculum Assessment and Reporting Authority [ACARA], 2012). Number lines are recognised as key in students' number development not only of fractions, but…

  5. Fractional-calculus diffusion equation

    PubMed Central

    2010-01-01

    Background Sequel to the work on the quantization of nonconservative systems using fractional calculus and quantization of a system with Brownian motion, which aims to consider the dissipation effects in quantum-mechanical description of microscale systems. Results The canonical quantization of a system represented classically by one-dimensional Fick's law, and the diffusion equation is carried out according to the Dirac method. A suitable Lagrangian, and Hamiltonian, describing the diffusive system, are constructed and the Hamiltonian is transformed to Schrodinger's equation which is solved. An application regarding implementation of the developed mathematical method to the analysis of diffusion, osmosis, which is a biological application of the diffusion process, is carried out. Schrödinger's equation is solved. Conclusions The plot of the probability function represents clearly the dissipative and drift forces and hence the osmosis, which agrees totally with the macro-scale view, or the classical-version osmosis. PMID:20492677

  6. Copolyamino acid fractionation and protobiochemistry

    NASA Technical Reports Server (NTRS)

    Fox, S. W.

    1981-01-01

    Investigation of the origins of living things by the uniquely appropriate method of successive approximation in attempted retracement of steps in molecular evolution has yielded: a comprehensive theoretical flowsheet from archaic inanimate matter to an infrastructured, microscopic, protoreproductive, protometabolic protocell; a laboratory model of the same; and an explanatory assessment of the natural variation component of Darwinian evolution. For each of these, the significance is dependent upon awareness of the intrinsic tendency of amino acids, in mixed sets, to order themselves. Without such awareness, it is believed these vistas would have been delayed for decades. Selfordering would have in turn been difficult to recognize and support were it not for the chromatographic developments in fractionation of copolyamino acids.

  7. Hydrologic transport and partitioning of phosphorus fractions

    NASA Astrophysics Data System (ADS)

    Berretta, C.; Sansalone, J.

    2011-06-01

    SummaryPhosphorus (P) in rainfall-runoff partitions between dissolved and particulate matter (PM) bound phases. This study investigates the transport and partitioning of P to PM fractions in runoff from a landscaped and biogenically-loaded carpark in Gainesville, FL (GNV). Additionally, partitioning and concentration results are compared to a similarly-sized concrete-paved source area of a similar rainfall depth frequency distribution in Baton Rouge, LA (BTR), where in contrast vehicular traffic represents the main source of pollutants. Results illustrate that concentrations of P fractions (dissolved, suspended, settleable and sediment) for GNV are one to two orders of magnitude higher than BTR. Despite these differences the dissolved fraction ( f d) and partitioning coefficient ( K d) distributions are similar, illustrating that P is predominantly bound to PM fractions. Examining PM size fractions, specific capacity for P (PSC) indicates that the P concentration order is suspended > settleable > sediment for GNV, similarly to BTR. For GNV the dominant PM mass fraction is sediment (>75 μm), while the mass of P is distributed predominantly between sediment and suspended (<25 μm) fractions since these PM mass fractions dominated the settleable one. With respect to transport of PM and P fractions the predominance of events for both areas is mass-limited first-flush, although each fraction illustrated unique washoff parameters. However, while transport is predominantly mass-limited, the transport of each PM and P fraction is influenced by separate hydrologic parameters.

  8. Fractional variational integrators for fractional Euler-Lagrange equations with holonomic constraints

    NASA Astrophysics Data System (ADS)

    Wang, Dongling; Xiao, Aiguo

    2013-04-01

    In this paper, the fractional variational integrators developed by Wang and Xiao (2012) [28] are extended to the fractional Euler-Lagrange (E-L) equations with holonomic constraints. The corresponding fractional discrete E-L equations are derived, and their local convergence is discussed. Some fractional variational integrators are presented. The suggested methods are shown to be efficient by some numerical examples.

  9. WATER FRACTIONS IN EXTRASOLAR PLANETESIMALS

    SciTech Connect

    Jura, M.; Xu, S. E-mail: sxu@astro.ucla.edu

    2012-01-15

    With the goal of using externally polluted white dwarfs to investigate the water fractions of extrasolar planetesimals, we assemble from the literature a sample that we estimate to be more than 60% complete of DB white dwarfs warmer than 13,000 K, more luminous than 3 Multiplication-Sign 10{sup -3} L{sub Sun }, and within 80 pc of the Sun. When considering all the stars together, we find that the summed mass accretion rate of heavy atoms exceeds that of hydrogen by over a factor of 1000. If so, this sub-population of extrasolar asteroids treated as an ensemble has little water and is at least a factor of 20 drier than CI chondrites, the most primitive meteorites. Furthermore, while an apparent 'excess' of oxygen in a single DB can be interpreted as evidence that the accreted material originated in a water-rich parent body, we show that at least in some cases, there can be sufficient uncertainties in the time history of the accretion rate that such an argument may be ambiguous. Regardless of the difficulty associated with interpreting the results from an individual object, our analysis of the population of polluted DBs provides indirect observational support for the theoretical view that a snow line is important in disks where rocky planetesimals form.

  10. Coaltar fractionation with a wide range of fractions. 3. Removal of high-boiling fractions from coaltar distillate

    SciTech Connect

    Gogoleva, T.Ya.; Krasulya, M.A.; Achkasova, G.G.; Butsinskaya, L.I.

    1992-12-31

    The high-boiling fractions of coaltar include the anthracene, phenanthrene-carbazole, fluoranthene, pyrene and chrysene cuts. At present, the anthracene fraction, containing 6.3-9.4% anthracene, is taken directly from the coaltar in single-column tube stills, whereas the phenanthrene-carbazole fractions are a by-product in the production of high-grade anthracene by the acetone process. Coke-oven plants in other countries do not recover the fluoranthene fraction from coaltar. There are known methods of recovering technical fluoranthene from the II-nd anthracene fraction or pitch distillates. The pyrene fraction is recovered from heavy pitch distillates containing up to 8% pyrene, or from a mixture of these distillates and pitch tar. The chrysene fraction, containing 9.8% chrysene, can be recovered from the pyrene fraction first taken from pitch distillates. However, there is no published information on the yields and qualities of the various high-boiling fractions obtainable from different feedstocks, and what few data there are relate to the 1960s-1970s. The purpose of this work was to recover narrow high-boiling cuts from the >290 {degrees}centigrade residue which was recovered from a coal tar distillate. 6 refs., 3 tabs.

  11. Review of Some Promising Fractional Physical Models

    NASA Astrophysics Data System (ADS)

    Tarasov, Vasily E.

    2013-04-01

    Fractional dynamics is a field of study in physics and mechanics investigating the behavior of objects and systems that are characterized by power-law nonlocality, power-law long-term memory or fractal properties by using integrations and differentiation of non-integer orders, i.e., by methods in the fractional calculus. This paper is a review of physical models that look very promising for future development of fractional dynamics. We suggest a short introduction to fractional calculus as a theory of integration and differentiation of noninteger order. Some applications of integro-differentiations of fractional orders in physics are discussed. Models of discrete systems with memory, lattice with long-range inter-particle interaction, dynamics of fractal media are presented. Quantum analogs of fractional derivatives and model of open nano-system systems with memory are also discussed.

  12. Generalized hydrodynamic correlations and fractional memory functions

    NASA Astrophysics Data System (ADS)

    Rodríguez, Rosalio F.; Fujioka, Jorge

    2015-12-01

    A fractional generalized hydrodynamic (GH) model of the longitudinal velocity fluctuations correlation, and its associated memory function, for a complex fluid is analyzed. The adiabatic elimination of fast variables introduces memory effects in the transport equations, and the dynamic of the fluctuations is described by a generalized Langevin equation with long-range noise correlations. These features motivate the introduction of Caputo time fractional derivatives and allows us to calculate analytic expressions for the fractional longitudinal velocity correlation function and its associated memory function. Our analysis eliminates a spurious constant term in the non-fractional memory function found in the non-fractional description. It also produces a significantly slower power-law decay of the memory function in the GH regime that reduces to the well-known exponential decay in the non-fractional Navier-Stokes limit.

  13. Possible isotopic fractionation effects in sputtered minerals

    NASA Technical Reports Server (NTRS)

    Haff, P. K.; Watson, C. C.; Tombrello, T. A.

    1980-01-01

    A model which makes definite predictions for the fractionation of isotopes in sputtered material is discussed. The fractionation patterns are nonlinear, and the pattern for a particular set of isotopes depends on the chemical matrix within which those isotopes are contained. Calculations are presented for all nonmonoisotopic elements contained in the minerals perovskite, anorthite, ackermanite, enstatite, and troilite. All isotopes are fractionated at the level of approximately 4-6 deg/o per atomic mass unit. Oxygen is always positively fractionated (heavier isotopes sputtered preferentially), and heavier elements are generally negatively fractioned (light isotopes sputtered preferentially). The value of Delta (O-18:O-16) is always less by about 1.8 deg/o than a linear extrapolation based upon the calculated delta (O-17:O-16) value would suggest. The phenomenon of both negative and positive fractionation patterns from a single target mineral are used to make an experimental test of the proposed model.

  14. Space–time fractional Zener wave equation

    PubMed Central

    Atanackovic, T.M.; Janev, M.; Oparnica, Lj.; Pilipovic, S.; Zorica, D.

    2015-01-01

    The space–time fractional Zener wave equation, describing viscoelastic materials obeying the time-fractional Zener model and the space-fractional strain measure, is derived and analysed. This model includes waves with finite speed, as well as non-propagating disturbances. The existence and the uniqueness of the solution to the generalized Cauchy problem are proved. Special cases are investigated and numerical examples are presented. PMID:25663807

  15. Complex order fractional derivatives in viscoelasticity

    NASA Astrophysics Data System (ADS)

    Atanacković, Teodor M.; Konjik, Sanja; Pilipović, Stevan; Zorica, Dušan

    2016-06-01

    We introduce complex order fractional derivatives in models that describe viscoelastic materials. This cannot be carried out unrestrictedly, and therefore we derive, for the first time, real valued compatibility constraints, as well as physical constraints that lead to acceptable models. As a result, we introduce a new form of complex order fractional derivative. Also, we consider a fractional differential equation with complex derivatives, and study its solvability. Results obtained for stress relaxation and creep are illustrated by several numerical examples.

  16. Unpacking the Division Interpretation of a Fraction

    ERIC Educational Resources Information Center

    Poon, Rebecca C.; Lewis, Priscilla Eide

    2015-01-01

    One of the challenges in learning fractions is understanding how and why a fraction can have multiple interpretations. As presented in one textbook, a fraction is "a symbol, such as 2/3, 5/1, or 8/5, used to name a part of a whole, a part of a set, a location on a number line, or a division of whole numbers" (Charles et al. 2012, p.…

  17. Oxygen isotope fractionation in double carbonates.

    PubMed

    Zheng, Yong-Fei; Böttcher, Michael E

    2016-01-01

    Oxygen isotope fractionations in double carbonates of different crystal structures were calculated by the increment method. Synthesis experiments were performed at 60 °C and 100 °C to determine oxygen and carbon isotope fractionations involving PbMg[CO3]2. The calculations suggest that the double carbonates of calcite structure are systematically enriched in (18)O relative to those of aragonite and mixture structures. Internally consistent oxygen isotope fractionation factors are obtained for these minerals with respect to quartz, calcite and water at a temperature range of 0-1200 °C. The calculated fractionation factors for double carbonate-water systems are generally consistent with the data available from laboratory experiments. The experimentally determined fractionation factors for PbMg[CO3]2, BaMg[CO3]2 and CaMg[CO3]2 against H2O not only fall between fractionation factors involving pure carbonate end-members but are also close to the calculated fractionation factors. In contrast, experimentally determined carbon isotope fractionation factors between PbMg[CO3]2 and CO2 are much closer to theoretical predictions for the cerussite-CO2 system than for the magnesite-CO2 system, similar to the fractionation behavior for BaMg[CO3]2. Therefore, the combined theoretical and experimental results provide insights into the effects of crystal structure and exchange kinetics on oxygen isotope partitioning in double carbonates.

  18. Lymphocyte stimulation by soluble subcellular fractions.

    PubMed

    Pegrum, G D; Thompson, E A; Lewis, C M; Grant, V A

    1976-04-01

    Nuclear material can produce inhibition or stimulation of healty leucocytes under different experimental conditions, Reactivity could not be produced in cultures using intact nuclei and allogeneic lymphocytes. The effect of nuclear and cytoplasm fractions was compared with that of whole cells on intact healthy lymphocytes. The HLA activity in the individual fractions was assessed. Stimulation was produced by certain nuclear and cytoplasmic fractions and these were closely related to the peaks of HLA activity. The response to these fractions showed less activity than that achieved in conventional one way MLC tests.

  19. Fractionalized topological defects in optical lattices

    NASA Astrophysics Data System (ADS)

    Zhang, Xing-Hai; Fan, Wen-Jun; Shi, Jin-Wei; Kou, Su-Peng

    2015-10-01

    Topological objects are interesting topics in various fields of physics ranging from condensed matter physics to the grand unified and superstring theories. Among those, ultracold atoms provide a playground to study the complex topological objects. In this paper we present a proposal to realize an optical lattice with stable fractionalized topological objects. In particular, we generate the fractionalized topological fluxes and fractionalized skyrmions on two-dimensional optical lattices and fractionalized monopoles on three-dimensional optical lattices. These results offer a new approach to study the quantum many-body systems on optical lattices of ultracold quantum gases with controllable topological defects, including dislocations, topological fluxes and monopoles.

  20. Lie symmetry theorem of fractional nonholonomic systems

    NASA Astrophysics Data System (ADS)

    Sun, Yi; Chen, Ben-Yong; Fu, Jing-Li

    2014-11-01

    The Lie symmetry theorem of fractional nonholonomic systems in terms of combined fractional derivatives is established, and the fractional Lagrange equations are obtained by virtue of the d'Alembert—Lagrange principle with fractional derivatives. As the Lie symmetry theorem is based on the invariance of differential equations under infinitesimal transformations, by introducing the differential operator of infinitesimal generators, the determining equations are obtained. Furthermore, the limit equations, the additional restriction equations, the structural equations, and the conserved quantity of Lie symmetry are acquired. An example is presented to illustrate the application of results.

  1. Fractionation and utilization of gossypol resin

    SciTech Connect

    Tursunov, A.K.; Dzhailov, A.T.; Fatkhullaev, E.; Sadykov, A.A.

    1985-10-01

    Gossypol resin is formed as a secondary waste product during distillation of fatty acides isolated from cottonseed oil soap stocks; it is insoluble in water but soluble in products of petroleum distillation. For fractionation, gossypol resin was saponified with caustic soda or caustic potash. Using this method, the resin was separated into unsaponifiable (21-24%) and saponifiable (76-79%) parts. Details of the individual fractions of gossypol resin are presented. The unsaponifiable fraction contains hydrocarbons, alcohols, beta-sito-sterol, beta-amyrin, and vitamin E. The fatty acid fraction of the resin is a mixture of fatty acids and lactones.

  2. THEORETICAL AND EXPERIMENTAL ASPECTS OF ISOTOPIC FRACTIONATION.

    USGS Publications Warehouse

    O'Neil, James R.

    1986-01-01

    Essential to the interpretation of natural variations of light stable isotope ratios is knowledge of the magnitude and temperature dependence of isotopic fractionation factors between the common minerals and fluids. These fractionation factors are obtained in three ways: (1) Semi-empirical calculations using spectroscopic data and the methods of statistical mechanics. (2) Laboratory calibration studies. (3) Measurements of natural samples whose formation conditions are well-known or highly constrained. In this chapter methods (1) and (2) are evaluated and a review is given of the present state of knowledge of the theory of isotopic fractionation and the fraction that influence the isotopic properties of minerals.

  3. Control of Initialized Fractional-Order Systems

    NASA Technical Reports Server (NTRS)

    Hartly, Tom T.; Lorenzo, Carl F.

    2002-01-01

    Due to the importance of historical effects in fractional-order systems, this paper presents a general fractional-order control theory that includes the time-varying initialization response. Previous studies have not properly accounted for these historical effects. The initialization response, along with the forced response, for fractional-order systems is determined. Stability properties of fractional-order systems are presented in the complex Airplane, which is a transformation of the s-plane. Time responses are discussed with respect to pole positions in the complex Airplane and frequency response behavior is included. A fractional-order vector space representation, which is a generalization of the state space concept, is presented including the initialization response. Control methods for vector representations of initialized fractional-order systems are shown. Nyquist, root-locus, and other input-output control methods are adapted to the control of fractional-order systems. Finally, the fractional-order differintegral is generalized to continuous order-distributions that have the possibility of including a continuum of fractional orders in a system element.

  4. The derivative of a continued fraction

    SciTech Connect

    Bowman, Kimiko o

    2009-01-01

    The paper considers second order continued fractions associated with (I) the Psi function {psi}(z), (II) the continued fraction component in ln {Gamma}(z) due to Stieltjes. The second order sequences k*{sub s}/k{sub s} provide approximants, some of which are remarkably close. In addition a series form for the convergent {chi}{sub s}={omega}{sub s} associated with a continued fraction provides an expression for the derivatives of a continued fraction. The implementation uses a Maple code for derivatives.

  5. Control of Initialized Fractional-Order Systems

    NASA Technical Reports Server (NTRS)

    Hartley, Tom T.; Lorenzo, Carl F.

    2004-01-01

    Fractional-Order systems, or systems containing fractional derivatives and integrals, have been studied by many in the engineering area. Additionally, very readable discussions, devoted specifically to the subject, are presented by Oldham and Spanier, Miller and Ross, and Pudlubny (1999a). It should be noted that there are a growing number of physical systems whose behavior can be compactly described using fractional system theory. Of specific interest to electrical engineers are long lines, electrochemical processes, dielectric polarization, colored noise, viscoelastic materials, and chaos. With the growing number of applications, it is important to establish a theory of control for these fractional-order systems, and for the potential use of fractional-order systems as feedback compensators. This topic is addressed in this paper. The first section discusses the control of fractional-order systems using a vector space representation, where initialization is included in the discussion. It should be noted that Bagley and Calico and Padovan and Sawicki both present a fractional state-space representation, which do not include the important historic effects. Incorporation of these effects based on the initialized fractional calculus is presented . The control methods presented in this paper are based on the initialized fractional order system theory. The second section presents an input-output approach. Some of the problems encountered in these sections are: a) the need to introduce a new complex plane to study the dynamics of fractional-order systems, b) the need to properly define the Laplace transform of the fractional derivative, and c) the proper inclusion of the initialization response in the system and control formulation. Following this, the next section generalizes the proportional-plus-integral-control (PI-control) and PID-control (PI-plus- derivative) concepts using fractional integrals. This is then further generalized using general fractional- order

  6. Tin isotope fractionation in terrestrial cassiterites

    SciTech Connect

    McNaughton, N.J. ); Rosman, K.J.R. )

    1991-02-01

    The isotopic composition of tin has been measured in a range of cassiterites and pure reagents to assess the extent to which this element is isotopically fractionated in natural processes. Only two samples showed evidence of isotopic fractionation, and it is concluded that natural Sn isotope fractionation is small and uncommon. This feature reflects the world dominance of Sn-oxide ores Sn-sulfide ores, and the highly efficient processes of Sn dissolution and precipitation which negate equilibrium and kinetic fractionation of Sn isotopes, respectively. The two samples which show slight fractionation are a highly purified and cassiterite from the Archaean Greenbushes pegmatite, Western Australia. The latter Sn is 0.15{per thousand} per mass unit heavier than the authors laboratory standard, whereas the former is 0.12{per thousand} per mass unit lighter. Although the cassiterite fractionation is considered to result from natural geological processes, the fractionation of purified Sn may be either natural or relate to the purification process, the fractionation of this magnitude has a negligible effect on the current best estimate of the atomic weight of Sn, but it does place a lower limit on its associated accuracy.

  7. Fractions Learning in Children with Mathematics Difficulties

    ERIC Educational Resources Information Center

    Tian, Jing; Siegler, Robert S.

    2016-01-01

    Learning of fractions is difficult for children in general and especially difficult for children with mathematics difficulties (MD). Recent research on developmental and individual differences in fraction knowledge of MD and typically achieving (TA) children has demonstrated that U.S. children with MD start middle school behind TA peers in…

  8. Engaging Students with Multiple Models of Fractions

    ERIC Educational Resources Information Center

    Zhang, Xiaofen; Clements, M. A.; Ellerton, Nerida F.

    2015-01-01

    An understanding of unit fractions, and especially of one-half, one-third, and one-fourth, is crucially important for elementary school children's development of number sense (CCSSI 2010). We describe multimodal activities designed to assist elementary school students in gaining a rich understanding of unit fractions. Research has shown (Zhang,…

  9. Making Sense of Fractions and Percentages

    ERIC Educational Resources Information Center

    Whitin, David J.; Whitin, Phyllis

    2012-01-01

    Because fractions and percentages can be difficult for children to grasp, connecting them whenever possible is beneficial. Linking them can foster representational fluency as children simultaneously see the part-whole relationship expressed numerically (as a fraction and as a percentage) and visually (as a pie chart). NCTM advocates these…

  10. Fractional populations in sex-linked inheritance

    NASA Astrophysics Data System (ADS)

    Pyo Lee, Seung; Chung, Myung-Hoon; Koo Kim, Chul; Nahm, Kyun

    2001-03-01

    We study the fractional populations in chromosome inherited diseases. The governing equations for the fractional populations are found and solved in the presence of mutation and selection. The physical fixed points obtained are used to discuss the cases of color blindness and hemophilia.

  11. Fractions Instruction: Linking Concepts and Procedures

    ERIC Educational Resources Information Center

    Pitsolantis, Nicole; Osana, Helena P.

    2013-01-01

    It is not surprising, as research has shown, that fractions are one of the most difficult of the elementary school math topics to teach and learn in ways that are meaningful. The authors reference a work by James Hiebert, "Mathematical, Cognitive, and Instructional Analyses of Decimal Fractions" (1992), that mathematical concepts should…

  12. Procedural and Conceptual Knowledge: Adults Reviewing Fractions

    ERIC Educational Resources Information Center

    Baker, William J.; Czarnocha, Bronislaw; Dias, Olen; Doyle, Kathleen; Kennis, James R.

    2012-01-01

    In the United States a majority of the students who enroll in community colleges require a review of secondary math before they are eligible for college level mathematics. In the pre-algebra course, that has a high drop-out rate, the most difficult topic for students is fractions. In order to better understand the fraction concept, Kieren…

  13. Unpacking Referent Units in Fraction Operations

    ERIC Educational Resources Information Center

    Philipp, Randolph A.; Hawthorne, Casey

    2015-01-01

    Although fraction operations are procedurally straightforward, they are complex, because they require learners to conceptualize different units and view quantities in multiple ways. Prospective secondary school teachers sometimes provide an algebraic explanation for inverting and multiplying when dividing fractions. That authors of this article…

  14. 9 CFR 113.7 - Multiple fractions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Multiple fractions. 113.7 Section 113.7 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE... § 113.7 Multiple fractions. (a) When a biological product contains more than one immunogenic...

  15. In Search of the Prototypical Fraction

    ERIC Educational Resources Information Center

    Wright, Vince

    2013-01-01

    Vince Wright makes a convincing argument for presenting children with a different "prototype" of a fraction to the typical one-half. Consider how the prototype that Wright mentions may be applied to a variety of fraction concepts. We are sure that you will never look at a doughnut in quite the same way.

  16. The Whole Story: Understanding Fraction Computation

    ERIC Educational Resources Information Center

    Dixon, Juli K.; Tobias, Jennifer M.

    2013-01-01

    What does it look like to "understand" operations with fractions? The Common Core State Standards for Mathematics (CCSSM) uses the term "understand" when describing expectations for students' knowledge related to each of the fraction operations within grades 4 through 6 (CCSSI 2010). Furthermore, CCSSM elaborates that…

  17. Nonlinear Filtering with Fractional Brownian Motion

    SciTech Connect

    Amirdjanova, A.

    2002-12-19

    Our objective is to study a nonlinear filtering problem for the observation process perturbed by a Fractional Brownian Motion (FBM) with Hurst index 1/2 fractional' Zakai equation for the unnormalized optimal filter is derived.

  18. [Carbon isotope fractionation inplants]. Final report

    SciTech Connect

    O`Leary, M.H.

    1990-12-31

    The objectives of this research are: To develop a theoretical and experimental framework for understanding isotope fractionations in plants; and to develop methods for using this isotope fractionation for understanding the dynamics of CO{sub 2} fixation in plants. Progress is described.

  19. Mathematical Analogs and the Teaching of Fractions.

    ERIC Educational Resources Information Center

    Charles, Kathy; Nason, Rod; Cooper, Tom

    The literature has noted that some mathematical analogs are more effective than others for the teaching of fractions. This study aimed to evaluate the efficacy of seven mathematical analogs commonly used in the teaching of the partitive quotient fraction construct. A sample of twelve purposively selected Year Three children were presented with…

  20. Representations of the Magnitudes of Fractions

    ERIC Educational Resources Information Center

    Schneider, Michael; Siegler, Robert S.

    2010-01-01

    We tested whether adults can use integrated, analog, magnitude representations to compare the values of fractions. The only previous study on this question concluded that even college students cannot form such representations and instead compare fraction magnitudes by representing numerators and denominators as separate whole numbers. However,…

  1. Exact fractional revival in spin chains

    NASA Astrophysics Data System (ADS)

    Genest, Vincent X.; Vinet, Luc; Zhedanov, Alexei

    2016-09-01

    The occurrence of fractional revival in quantum spin chains is examined. Analytic models where this phenomenon can be exhibited in exact solutions are provided. It is explained that spin chains with fractional revival can be obtained by isospectral deformations of spin chains with perfect state transfer.

  2. Using Technology Effectively to Teach about Fractions

    ERIC Educational Resources Information Center

    Hensberry, Karina K. R.; Moore, Emily B.; Perkins, Katherine

    2015-01-01

    In this article, the authors describe classroom use of technology that successfully engaged fourth grade students (typically aged 9-10) in the United States in learning about fractions. The activities involved the use of an interactive simulation designed to support student learning of fractions, and whole-class discussion where students were…

  3. Void Fraction Instrument operation and maintenance manual

    SciTech Connect

    Borgonovi, G.; Stokes, T.I.; Pearce, K.L.; Martin, J.D.; Gimera, M.; Graves, D.B.

    1994-09-01

    This Operations and Maintenance Manual (O&MM) addresses riser installation, equipment and personnel hazards, operating instructions, calibration, maintenance, removal, and other pertinent information necessary to safely operate and store the Void Fraction Instrument. Final decontamination and decommissioning of the Void Fraction Instrument are not covered in this document.

  4. Dividing Fractions: What Is the Divisor's Role?

    ERIC Educational Resources Information Center

    Coughlin, Heather A.

    2010-01-01

    Dividing by fractions is considered by many to be one of the most complicated procedures in elementary mathematics. The computations are not only complicated but also challenging to explain in the context of a word problem. In this article, the author discusses the role of the divisor in the concept of division by fractions. She examines three…

  5. Volume Fraction Effects in Electroacoustic Measurements.

    PubMed

    Rasmusson, Mikael

    2001-08-15

    We measured the dynamic mobility of a polystyrene latex at 1 MHz as a function of volume fraction using the ESA-8000. The volume fraction dependence is compared with a semiempirical equation as well as with some theoretical predictions. It turns out that our polystyrene latex exhibits a volume fraction dependence much weaker than that predicted by any of the theories. This suggests that (polystyrene) latices may not be the ideal model system and that the centrifugation process may influence the surface structure of the particles. We also measured the dynamic mobility spectrum of a silica sol as a function of volume fraction using the Acoustosizer. The experimental spectrum of the silica sol was found to agree reasonably well with the semiempirical and theoretical spectra, especially below φ=0.144. At higher volume fractions we observed positive phase angles that were not predicted by the semiempirical method nor the cell model. Copyright 2001 Academic Press. PMID:11482951

  6. Neutron Imaging Calibration to Measure Void Fraction

    SciTech Connect

    Geoghegan, Patrick J; Bilheux, Hassina Z; Sharma, Vishaldeep; Fricke, Brian A

    2015-01-01

    Void fraction is an intuitive parameter that describes the fraction of vapor in a two-phase flow. It appears as a key variable in most heat transfer and pressure drop correlations used to design evaporating and condensing heat exchangers, as well as determining charge inventory in refrigeration systems. Void fraction measurement is not straightforward, however, and assumptions on the invasiveness of the measuring technique must be made. Neutron radiography or neutron imaging has the potential to be a truly non-invasive void fraction measuring technique but has until recently only offered qualitative descriptions of two-phase flow, in terms of flow maldistributions, for example. This paper describes the calibration approach necessary to employ neutron imaging to measure steady-state void fraction. Experiments were conducted at the High Flux Isotope Reactor (HFIR) Cold Guide 1D neutron imaging facility at Oak Ridge National Laboratory (ORNL), Oak Ridge, TN, USA.

  7. Reply to "Comment on 'Fractional quantum mechanics' and 'Fractional Schrödinger equation' ".

    PubMed

    Laskin, Nick

    2016-06-01

    The fractional uncertainty relation is a mathematical formulation of Heisenberg's uncertainty principle in the framework of fractional quantum mechanics. Two mistaken statements presented in the Comment have been revealed. The origin of each mistaken statement has been clarified and corrected statements have been made. A map between standard quantum mechanics and fractional quantum mechanics has been presented to emphasize the features of fractional quantum mechanics and to avoid misinterpretations of the fractional uncertainty relation. It has been shown that the fractional probability current equation is correct in the area of its applicability. Further studies have to be done to find meaningful quantum physics problems with involvement of the fractional probability current density vector and the extra term emerging in the framework of fractional quantum mechanics.

  8. Reply to "Comment on 'Fractional quantum mechanics' and 'Fractional Schrödinger equation' ".

    PubMed

    Laskin, Nick

    2016-06-01

    The fractional uncertainty relation is a mathematical formulation of Heisenberg's uncertainty principle in the framework of fractional quantum mechanics. Two mistaken statements presented in the Comment have been revealed. The origin of each mistaken statement has been clarified and corrected statements have been made. A map between standard quantum mechanics and fractional quantum mechanics has been presented to emphasize the features of fractional quantum mechanics and to avoid misinterpretations of the fractional uncertainty relation. It has been shown that the fractional probability current equation is correct in the area of its applicability. Further studies have to be done to find meaningful quantum physics problems with involvement of the fractional probability current density vector and the extra term emerging in the framework of fractional quantum mechanics. PMID:27415398

  9. Reply to "Comment on `Fractional quantum mechanics' and `Fractional Schrödinger equation' "

    NASA Astrophysics Data System (ADS)

    Laskin, Nick

    2016-06-01

    The fractional uncertainty relation is a mathematical formulation of Heisenberg's uncertainty principle in the framework of fractional quantum mechanics. Two mistaken statements presented in the Comment have been revealed. The origin of each mistaken statement has been clarified and corrected statements have been made. A map between standard quantum mechanics and fractional quantum mechanics has been presented to emphasize the features of fractional quantum mechanics and to avoid misinterpretations of the fractional uncertainty relation. It has been shown that the fractional probability current equation is correct in the area of its applicability. Further studies have to be done to find meaningful quantum physics problems with involvement of the fractional probability current density vector and the extra term emerging in the framework of fractional quantum mechanics.

  10. Fractional kinetics in multi-compartmental systems.

    PubMed

    Dokoumetzidis, Aristides; Magin, Richard; Macheras, Panos

    2010-10-01

    Fractional calculus, the branch of calculus dealing with derivatives of non-integer order (e.g., the half-derivative) allows the formulation of fractional differential equations (FDEs), which have recently been applied to pharmacokinetics (PK) for one-compartment models. In this work we extend that theory to multi-compartmental models. Unlike systems defined by a single ordinary differential equation (ODE), considering fractional multi-compartmental models is not as simple as changing the order of the ordinary derivatives of the left-hand side of the ODEs to fractional orders. The latter may produce inconsistent systems which violate mass balance. We present a rationale for fractionalization of ODEs, which produces consistent systems and allows processes of different fractional orders in the same system. We also apply a method of solving such systems based on a numerical inverse Laplace transform algorithm, which we demonstrate that is consistent with analytical solutions when these are available. As examples of our approach, we consider two cases of a basic two-compartment PK model with a single IV dose and multiple oral dosing, where the transfer from the peripheral to the central compartment is of fractional order α < 1, accounting for anomalous kinetics and deep tissue trapping, while all other processes are of the usual order 1. Simulations with the studied systems are performed using the numerical inverse Laplace transform method. It is shown that the presence of a transfer rate of fractional order produces a non-exponential terminal phase, while multiple dose and constant infusion systems never reach steady state and drug accumulation carries on indefinitely. The IV fractional system is also fitted to PK data and parameter values are estimated. In conclusion, our approach allows the formulation of systems of FDEs, mixing different fractional orders, in a consistent manner and also provides a method for the numerical solution of these systems. PMID

  11. CCII based fractional filters of different orders

    PubMed Central

    Soltan, Ahmed; Radwan, Ahmed G.; Soliman, Ahmed M.

    2013-01-01

    This paper aims to generalize the design of continuous-time filters to the fractional domain with different orders and validates the theoretical results with two different CCII based filters. In particular, the proposed study introduces the generalized formulas for the previous fractional-order analysis of equal orders. The fractional-order filters enhance the design flexibility and prove that the integer-order performance is a very narrow subset from the fractional-order behavior due to the extra degrees of freedom. The general fundamentals of these filters are presented by calculating the maximum and minimum frequencies, the half power frequency and the right phase frequency which are considered a critical issue for the filter design. Different numerical solutions for the generalized fractional order low pass filters with two different fractional order elements are introduced and verified by the circuit simulations of two fractional-order filters: Kerwin–Huelsman–Newcomb (KHN) and Tow-Tomas CCII-based filters, showing great matching. PMID:25685483

  12. Fractional Modeling of Viscoelasticity in Brain Aneurysms

    NASA Astrophysics Data System (ADS)

    Yu, Yue; Karniadakis, George

    2014-11-01

    We develop fundamental new numerical methods for fractional order PDEs, and investigate corresponding models for arterial walls. Specifically, the arterial wall is a heterogeneous soft tissue with complex biomechanical properties, and its constitutive laws are typically derived using integer-order differential equations. However, recent simulations on 1D model have indicated that fractional order models may offer a more powerful alternative for describing arterial wall mechanics, because they are less sensitive to the parameter estimation compared with the integer-calculus-based models. We study the specific fractional PDEs that better model the properties of the 3D arterial walls, and for the first time employ them in simulating flow structure interactions for patient-specific brain aneurysms. A comparison study indicates that for the integer order models, the viscous behavior strongly depends on the relaxation parameters while the fractional order models are less sensitive. This finding is consistent with what is observed in the 1D models for arterial networks (Perdikaris & Karniadakis, 2014), except that when the fractional order is small, the 3D fractional-order models are more sensitive to the fractional order compared to the 1D models.

  13. Isotopic fractionation by diffusion in groundwater

    NASA Astrophysics Data System (ADS)

    Labolle, Eric M.; Fogg, Graham E.; Eweis, Juana B.; Gravner, Janko; Leaist, Derek G.

    2008-07-01

    During the last decade, isotopic fractionation has gained acceptance as an indicator of microbiological and chemical transformations of contaminants in groundwater. These transformation processes typically favor isotopically light, compared to isotopically heavy, contaminants, resulting in enrichment of the latter in the residual aqueous phase. In these isotope applications, it has been generally presumed that physical transport processes in groundwater have a negligible effect on isotopic enrichment. It is well known, however, that aqueous phase diffusion generally proceeds faster for isotopically light, compared to isotopically heavy, solute molecules, often resulting in isotopic fractionation in groundwater. This paper considers the potential for isotopic fractionation during transport in groundwater resulting from minute isotopic effects on aqueous diffusion coefficients. Analyses of transport in heterogeneous systems delimit the viable range of isotopic fractionation by diffusion in groundwater. Results show that diffusion can result in similar degrees of depletion and enrichment of isotopically heavy solutes during transport in heterogeneous systems with significant diffusion rate-limited mass transfer between fast- and slow-flow zones. Additional analyses and examples explore conditions that attenuate the development of significant fractionation. Examples are presented for 13C methyl tertiary butyl ether and deuterated and nondeuterated isopropanol and tertiary butyl alcohol using aqueous diffusion coefficients measured by the Taylor dispersion method with refractive index profiling as a part of this study. Examples elucidate the potential for diffusive fractionation as a confounder in isotope applications and emphasize the importance of hydrogeologic analysis for assessing the role of diffusive fractionation in isotope applications at contaminant field sites.

  14. A New Fractional Projective Riccati Equation Method for Solving Fractional Partial Differential Equations

    NASA Astrophysics Data System (ADS)

    Feng, Qing-Hua

    2014-08-01

    In this paper, a new fractional projective Riccati equation method is proposed to establish exact solutions for fractional partial differential equations in the sense of modified Riemann—Liouville derivative. This method can be seen as the fractional version of the known projective Riccati equation method. For illustrating the validity of this method, we apply this method to solve the space-time fractional Whitham—Broer—Kaup (WBK) equations and the nonlinear fractional Sharma—Tasso—Olever (STO) equation, and as a result, some new exact solutions for them are obtained.

  15. Quantum spin chains with fractional revival

    NASA Astrophysics Data System (ADS)

    Genest, Vincent X.; Vinet, Luc; Zhedanov, Alexei

    2016-08-01

    A systematic study of fractional revival at two sites in XX quantum spin chains is presented. Analytic models with this phenomenon are obtained by combining two basic ways of realizing fractional revival in a spin chain. The first proceeds through isospectral deformations of spin chains with perfect state transfer. The second makes use of couplings provided by the recurrence coefficients of polynomials with a bi-lattice orthogonality grid. The latter method leads to analytic models previously identified that can exhibit perfect state transfer in addition to fractional revival.

  16. The Riesz-Bessel Fractional Diffusion Equation

    SciTech Connect

    Anh, V.V. McVinish, R.

    2004-05-15

    This paper examines the properties of a fractional diffusion equation defined by the composition of the inverses of the Riesz potential and the Bessel potential. The first part determines the conditions under which the Green function of this equation is the transition probability density function of a Levy motion. This Levy motion is obtained by the subordination of Brownian motion, and the Levy representation of the subordinator is determined. The second part studies the semigroup formed by the Green function of the fractional diffusion equation. Applications of these results to certain evolution equations is considered. Some results on the numerical solution of the fractional diffusion equation are also provided.

  17. Fractional calculus in bioengineering, part 3.

    PubMed

    Magin, Richard L

    2004-01-01

    Fractional calculus (integral and differential operations of noninteger order) is not often used to model biological systems. Although the basic mathematical ideas were developed long ago by the mathematicians Leibniz (1695), Liouville (1834), Riemann (1892), and others and brought to the attention of the engineering world by Oliver Heaviside in the 1890s, it was not until 1974 that the first book on the topic was published by Oldham and Spanier. Recent monographs and symposia proceedings have highlighted the application of fractional calculus in physics, continuum mechanics, signal processing, and electromagnetics, but with few examples of applications in bioengineering. This is surprising because the methods of fractional calculus, when defined as a Laplace or Fourier convolution product, are suitable for solving many problems in biomedical research. For example, early studies by Cole (1933) and Hodgkin (1946) of the electrical properties of nerve cell membranes and the propagation of electrical signals are well characterized by differential equations of fractional order. The solution involves a generalization of the exponential function to the Mittag-Leffler function, which provides a better fit to the observed cell membrane data. A parallel application of fractional derivatives to viscoelastic materials establishes, in a natural way, hereditary integrals and the power law (Nutting/Scott Blair) stress-strain relationship for modeling biomaterials. In this review, I will introduce the idea of fractional operations by following the original approach of Heaviside, demonstrate the basic operations of fractional calculus on well-behaved functions (step, ramp, pulse, sinusoid) of engineering interest, and give specific examples from electrochemistry, physics, bioengineering, and biophysics. The fractional derivative accurately describes natural phenomena that occur in such common engineering problems as heat transfer, electrode/electrolyte behavior, and sub

  18. Light SOM fraction in postpyrogenic soils

    NASA Astrophysics Data System (ADS)

    Maksimova, Ekaterina; Abakumov, Evgeny

    2014-05-01

    Soils affected by forest wildfires in 2010 in Russia were studied on postfire and mature plots near the Togljatty city, Samara region. This investigation showed that wildfires cause the serious changes in a soil profile. A soil organic matter content as a key component of the carbon cycle of forest ecosystem is of special interest in pyrogenic soil-plant associations. The most intensive were the processes of soil organic matter losses that result from burning of a forest floor and sod (humic) horizon. The content of a humus in the top horizons of soils in 2010 at a local fire (2,08±0,85%) is less, than at riding (2,45±0,53%), and is much lower than in case of unaffected (control) site (3,35±2,32%). These data confirm the fact of a dehumification of soils after wildfires and proof the idea that more intensive losses of a humus are occured under the local wildfire (which result in full burning out of a laying and the top horizon). The above mentioned processes were confirmed by results of the light SOM fraction evaluation. The light SOM fraction was studied in order to specify the origin of soil organic matter. This fraction is presented by free organic matter of slightly decomposed organic remnants either by black carbon fraction. Light SOM fraction was evaluated by density fractionation method. The content of light fraction in the solum in 2010 after wildfires was less, than in control plot. The average content of the light fraction in soil organic matter varies from 12 to 20%. It testifies that well-decomposed forms of humus predominate in the organic matter of the studied soils. The light fraction content in the solum in 2010 at a local fire (9-13%) is less, than at riding (12-16%), and is much lower than in case of unaffected (control) site (16-19%). Therefore, black carbon was possibly present in the light SOM fraction. The light SOM fraction is the essential indication of SOM system in case of postfire demutation change. Data obtained shows that the light

  19. Fractional calculus in bioengineering, part 3.

    PubMed

    Magin, Richard L

    2004-01-01

    Fractional calculus (integral and differential operations of noninteger order) is not often used to model biological systems. Although the basic mathematical ideas were developed long ago by the mathematicians Leibniz (1695), Liouville (1834), Riemann (1892), and others and brought to the attention of the engineering world by Oliver Heaviside in the 1890s, it was not until 1974 that the first book on the topic was published by Oldham and Spanier. Recent monographs and symposia proceedings have highlighted the application of fractional calculus in physics, continuum mechanics, signal processing, and electromagnetics, but with few examples of applications in bioengineering. This is surprising because the methods of fractional calculus, when defined as a Laplace or Fourier convolution product, are suitable for solving many problems in biomedical research. For example, early studies by Cole (1933) and Hodgkin (1946) of the electrical properties of nerve cell membranes and the propagation of electrical signals are well characterized by differential equations of fractional order. The solution involves a generalization of the exponential function to the Mittag-Leffler function, which provides a better fit to the observed cell membrane data. A parallel application of fractional derivatives to viscoelastic materials establishes, in a natural way, hereditary integrals and the power law (Nutting/Scott Blair) stress-strain relationship for modeling biomaterials. In this review, I will introduce the idea of fractional operations by following the original approach of Heaviside, demonstrate the basic operations of fractional calculus on well-behaved functions (step, ramp, pulse, sinusoid) of engineering interest, and give specific examples from electrochemistry, physics, bioengineering, and biophysics. The fractional derivative accurately describes natural phenomena that occur in such common engineering problems as heat transfer, electrode/electrolyte behavior, and sub

  20. Matrix approach to discrete fractional calculus II: Partial fractional differential equations

    NASA Astrophysics Data System (ADS)

    Podlubny, Igor; Chechkin, Aleksei; Skovranek, Tomas; Chen, YangQuan; Vinagre Jara, Blas M.

    2009-05-01

    A new method that enables easy and convenient discretization of partial differential equations with derivatives of arbitrary real order (so-called fractional derivatives) and delays is presented and illustrated on numerical solution of various types of fractional diffusion equation. The suggested method is the development of Podlubny's matrix approach [I. Podlubny, Matrix approach to discrete fractional calculus, Fractional Calculus and Applied Analysis 3 (4) (2000) 359-386]. Four examples of numerical solution of fractional diffusion equation with various combinations of time-/space-fractional derivatives (integer/integer, fractional/integer, integer/fractional, and fractional/fractional) with respect to time and to the spatial variable are provided in order to illustrate how simple and general is the suggested approach. The fifth example illustrates that the method can be equally simply used for fractional differential equations with delays. A set of MATLAB routines for the implementation of the method as well as sample code used to solve the examples have been developed.

  1. Evaluation of a combined fractionation and speciation approach for study of size-based distribution of organotin species on environmental colloids.

    PubMed

    Dubascoux, Stéphane; Heroult, Julien; Le Hécho, Isabelle; Potin-Gautier, Martine; Lespes, Gaëtane

    2008-04-01

    Results relating to the first original application of an analytical approach combining asymmetric flow field-flow fractionation (As-Fl-FFF) with multi-detection and chemical speciation for determination of organotins in a landfill leachate sample are presented. The speciation analysis involved off-line head-space solid-phase microextraction (HS-SPME)-gas chromatography with pulsed-flame photometric detection (GC-PFPD) performed after three consecutive collections of five different fractions of interest from the As-Fl-FFF system and cross-flow part (assumed to be representative of the <10 kDa phase). After 0.45 microm filtration and without preconcentration before fractionation and speciation analysis, limits of detection (LOD) were 4-45 ng (Sn) L(-1) in the sample, with relative standard deviations (RSD) of 3-23%. The As-Fl-FFF fractionation of this sample enables characterization of two distinct populations-organic-rich and inorganic colloids with gyration radius up to 120 nm. Total Sn and mono and dibutyltins (MBT and DBT) appear to be distributed over the whole colloidal phase. Tributyl, monomethyl, monooctyl, and diphenyltins (TBT, MMT, MOcT, and DPhT) were also detected. Quantitative speciation analysis performed on the two colloidal populations and in the <10 kDa phase revealed concentrations from 130 +/- 10 (MMT) to 560 +/- 50 ng (Sn) L(-1) (DPhT). PMID:18273605

  2. Evaluation of a combined fractionation and speciation approach for study of size-based distribution of organotin species on environmental colloids.

    PubMed

    Dubascoux, Stéphane; Heroult, Julien; Le Hécho, Isabelle; Potin-Gautier, Martine; Lespes, Gaëtane

    2008-04-01

    Results relating to the first original application of an analytical approach combining asymmetric flow field-flow fractionation (As-Fl-FFF) with multi-detection and chemical speciation for determination of organotins in a landfill leachate sample are presented. The speciation analysis involved off-line head-space solid-phase microextraction (HS-SPME)-gas chromatography with pulsed-flame photometric detection (GC-PFPD) performed after three consecutive collections of five different fractions of interest from the As-Fl-FFF system and cross-flow part (assumed to be representative of the <10 kDa phase). After 0.45 microm filtration and without preconcentration before fractionation and speciation analysis, limits of detection (LOD) were 4-45 ng (Sn) L(-1) in the sample, with relative standard deviations (RSD) of 3-23%. The As-Fl-FFF fractionation of this sample enables characterization of two distinct populations-organic-rich and inorganic colloids with gyration radius up to 120 nm. Total Sn and mono and dibutyltins (MBT and DBT) appear to be distributed over the whole colloidal phase. Tributyl, monomethyl, monooctyl, and diphenyltins (TBT, MMT, MOcT, and DPhT) were also detected. Quantitative speciation analysis performed on the two colloidal populations and in the <10 kDa phase revealed concentrations from 130 +/- 10 (MMT) to 560 +/- 50 ng (Sn) L(-1) (DPhT).

  3. Connecting to Develop Computational Fluency with Fractions

    ERIC Educational Resources Information Center

    Mack, Nancy K.

    2004-01-01

    Students should be encouraged to focus on a big mathematical idea and to look for connections between problems and solution strategies. This unified view suggests that the students are developing computational fluency with fractions.

  4. Colloidal component of granulodensimetric soil fractions

    NASA Astrophysics Data System (ADS)

    Fedotov, G. N.; Artem'eva, Z. S.

    2015-01-01

    Granulodensimetric soil fractions isolated from chernozem, gray forest soil, and soddy-podzolic soil have been studied using a scanning electron microscope. The studies confirmed that the light fractions with density <1.8 g/cm3 and particle size >53 μm mainly consists of plant residues; however, they also contain mineral particles covered with relatively thick organomineral films and carbonaceous substances. It has been shown that the clay fraction consists of a mixture of ultramicroaggregates of clay minerals ≤1 μm in size covered with a hydrophilic organomineral gel, and the organic matter of the residual fraction includes a stable highly aromatized (lignin-like) material, as well as coals and coal-like materials.

  5. Preface: Recent Advances in Fractional Dynamics.

    PubMed

    Srivastava, H M; Baleanu, Dumitru; Li, Changpin

    2016-08-01

    This Special Focus Issue contains several recent developments and advances on the subject of Fractional Dynamics and its widespread applications in various areas of the mathematical, physical, and engineering sciences. PMID:27586617

  6. Preface: Recent Advances in Fractional Dynamics

    NASA Astrophysics Data System (ADS)

    Srivastava, H. M.; Baleanu, Dumitru; Li, Changpin

    2016-08-01

    This Special Focus Issue contains several recent developments and advances on the subject of Fractional Dynamics and its widespread applications in various areas of the mathematical, physical, and engineering sciences.

  7. ON THE FRACTION OF BARRED SPIRAL GALAXIES

    SciTech Connect

    Nair, Preethi B.; Abraham, Roberto G. E-mail: abraham@astro.utoronto.c

    2010-05-10

    We investigate the stellar masses of strongly barred spiral galaxies. Our analysis is based on a sample of {approx}14,000 visually classified nearby galaxies given by Nair and Abraham. The fraction of barred spiral galaxies is found to be a strong function of stellar mass and star formation history, with a minimum near the characteristic mass at which bimodality is seen in the stellar populations of galaxies. We also find that bar fractions are very sensitive to the central concentration of galaxies below the transition mass but not above it. This suggests that whatever process is causing the creation of the red and blue sequences is either influencing, or being influenced by, structural changes which manifest themselves in the absence of bars. As a consequence of strong bar fractions being sensitive to the mass range probed, our analysis helps resolve discrepant results on the reported evolution of bar fractions with redshift.

  8. Exact solution to fractional logistic equation

    NASA Astrophysics Data System (ADS)

    West, Bruce J.

    2015-07-01

    The logistic equation is one of the most familiar nonlinear differential equations in the biological and social sciences. Herein we provide an exact solution to an extension of this equation to incorporate memory through the use of fractional derivatives in time. The solution to the fractional logistic equation (FLE) is obtained using the Carleman embedding technique that allows the nonlinear equation to be replaced by an infinite-order set of linear equations, which we then solve exactly. The formal series expansion for the initial value solution of the FLE is shown to be expressed in terms of a series of weighted Mittag-Leffler functions that reduces to the well known analytic solution in the limit where the fractional index for the derivative approaches unity. The numerical integration to the FLE provides an excellent fit to the analytic solution. We propose this approach as a general technique for solving a class of nonlinear fractional differential equations.

  9. Bio-oil fractionation and condensation

    DOEpatents

    Brown, Robert C; Jones, Samuel T; Pollard, Anthony

    2013-07-02

    A method of fractionating bio-oil vapors which involves providing bio-oil vapors comprising bio-oil constituents is described. The bio-oil vapors are cooled in a first stage which comprises a condenser having passages for the bio-oil separated by a heat conducting wall from passages for a coolant. The coolant in the condenser of the first stage is maintained at a substantially constant temperature, set at a temperature in the range of 75 to 100.degree. C., to condense a first liquid fraction of liquefied bio-oil constituents in the condenser of the first stage. The first liquid fraction of liquified bio-oil constituents from the condenser in the first stage is collected. Also described are steps for subsequently recovering further liquid fractions of liquefied bio-oil constituents. Particular compositions of bio-oil condensation products are also described.

  10. Developmental predictors of fraction concepts and procedures.

    PubMed

    Jordan, Nancy C; Hansen, Nicole; Fuchs, Lynn S; Siegler, Robert S; Gersten, Russell; Micklos, Deborah

    2013-09-01

    Developmental predictors of children's fraction concepts and procedures at the end of fourth grade were investigated in a 2-year longitudinal study. Participants were 357 children who started the study in third grade. Attentive behavior, language, nonverbal reasoning, number line estimation, calculation fluency, and reading fluency each contributed uniquely to later conceptual understanding of fractions. Number line estimation, attentive behavior, calculation fluency, and working memory made unique contributions to acquisition of fraction arithmetic procedures. Notably, number line estimation made the largest independent contribution in both models. The results suggest that although there is considerable shared variance among the predictors, both general and number-related competencies are uniquely important for explaining why some children struggle with fractions. PMID:23506808

  11. Early predictors of middle school fraction knowledge.

    PubMed

    Bailey, Drew H; Siegler, Robert S; Geary, David C

    2014-09-01

    Recent findings that earlier fraction knowledge predicts later mathematics achievement raise the question of what predicts later fraction knowledge. Analyses of longitudinal data indicated that whole number magnitude knowledge in first grade predicted knowledge of fraction magnitudes in middle school, controlling for whole number arithmetic proficiency, domain general cognitive abilities, parental income and education, race, and gender. Similarly, knowledge of whole number arithmetic in first grade predicted knowledge of fraction arithmetic in middle school, controlling for whole number magnitude knowledge in first grade and the other control variables. In contrast, neither type of early whole number knowledge uniquely predicted middle school reading achievement. We discuss the implications of these findings for theories of numerical development and for improving mathematics learning.

  12. Fractionalized Majorana modes in ultracold bosonic systems

    NASA Astrophysics Data System (ADS)

    Maghrebi, Mohammad F.; Ganeshan, Sriram; Clarke, David; Gorshkov, Alexey; Sau, Jay Deep

    2015-03-01

    Fractionalized Majorana fermions, also known as parafermions, are exotic topologically protected modes that go beyond the simplest non-Abelian anyons, Majorana fermions. They commute up to a nontrivial phase factor in contrast to the minus sign for fermions. These modes are proposed to emerge in devices fabricated from a fractional quantum Hall system and a superconductor. With recent advances towards the realization of fractional quantum Hall states of bosonic ultracold atoms, we propose a realization of parafermions in a system consisting of two Bose-Einstein-condensate trenches within a bosonic fractional quantum Hall state. We show that parafermionic zero modes emerge at the endpoints of the trench and give rise to a topologically protected degeneracy. We also discuss methods for preparing and detecting these modes. University of Maryland for start-up support, and NSF PFC at the JQI.

  13. Edge excitations in fractional Chern insulators

    NASA Astrophysics Data System (ADS)

    Luo, Wei-Wei; Chen, Wen-Chao; Wang, Yi-Fei; Gong, Chang-De

    2013-10-01

    Recent theoretical papers have demonstrated the realization of fractional quantum anomalous Hall states (also called fractional Chern insulators) in topological flat band lattice models without an external magnetic field. Such newly proposed lattice systems play a vital role in obtaining a large class of fractional topological phases. Here we report the exact numerical studies of edge excitations for such systems in a disk geometry loaded with hard-core bosons, which will serve as a more viable experimental probe for such topologically ordered states. We find convincing numerical evidence of a series of edge excitations characterized by the chiral Luttinger liquid theory for the bosonic fractional Chern insulators in both the honeycomb disk Haldane model and the kagome-lattice disk model. We further verify these current-carrying chiral edge states by inserting a central flux to test their compressibility.

  14. Heart failure with preserved ejection fraction

    PubMed Central

    Gladden, James D.; Linke, Wolfgang A.

    2014-01-01

    As part of this series devoted to heart failure (HF), we review the epidemiology, diagnosis, pathophysiology, and treatment of HF with preserved ejection fraction (HFpEF). Gaps in knowledge and needed future research are discussed. PMID:24663384

  15. A fractional-order infectivity SIR model

    NASA Astrophysics Data System (ADS)

    Angstmann, C. N.; Henry, B. I.; McGann, A. V.

    2016-06-01

    Fractional-order SIR models have become increasingly popular in the literature in recent years, however unlike the standard SIR model, they often lack a derivation from an underlying stochastic process. Here we derive a fractional-order infectivity SIR model from a stochastic process that incorporates a time-since-infection dependence on the infectivity of individuals. The fractional derivative appears in the generalised master equations of a continuous time random walk through SIR compartments, with a power-law function in the infectivity. We show that this model can also be formulated as an infection-age structured Kermack-McKendrick integro-differential SIR model. Under the appropriate limit the fractional infectivity model reduces to the standard ordinary differential equation SIR model.

  16. Fractional calculus in bioengineering, part 2.

    PubMed

    Magin, Richard L

    2004-01-01

    Fractional calculus (integral and differential operations of noninteger order) is not often used to model biological systems. Although the basic mathematical ideas were developed long ago by the mathematicians Leibniz (1695), Liouville (1834), Riemann (1892), and others and brought to the attention of the engineering world by Oliver Heaviside in the 1890s, it was not until 1974 that the first book on the topic was published by Oldham and Spanier. Recent monographs and symposia proceedings have highlighted the application of fractional calculus in physics, continuum mechanics, signal processing, and electromagnetics, but with few examples of applications in bioengineering. This is surprising because the methods of fractional calculus, when defined as a Laplace or Fourier convolution product, are suitable for solving many problems in biomedical research. For example, early studies by Cole (1933) and Hodgkin (1946) of the electrical properties of nerve cell membranes and the propagation of electrical signals are well characterized by differential equations of fractional order. The solution involves a generalization of the exponential function to the Mittag-Leffler function, which provides a better fit to the observed cell membrane data. A parallel application of fractional derivatives to viscoelastic materials establishes, in a natural way, hereditary integrals and the power law (Nutting/Scott Blair) stress-strain relationship for modeling biomaterials. In this review, I will introduce the idea of fractional operations by following the original approach of Heaviside, demonstrate the basic operations of fractional calculus on well-behaved functions (step, ramp, pulse, sinusoid) of engineering interest, and give specific examples from electrochemistry, physics, bioengineering, and biophysics. The fractional derivative accurately describes natural phenomena that occur in such common engineering problems as heat transfer, electrode/electrolyte behavior, and sub

  17. Fractional calculus in bioengineering, part 2.

    PubMed

    Magin, Richard L

    2004-01-01

    Fractional calculus (integral and differential operations of noninteger order) is not often used to model biological systems. Although the basic mathematical ideas were developed long ago by the mathematicians Leibniz (1695), Liouville (1834), Riemann (1892), and others and brought to the attention of the engineering world by Oliver Heaviside in the 1890s, it was not until 1974 that the first book on the topic was published by Oldham and Spanier. Recent monographs and symposia proceedings have highlighted the application of fractional calculus in physics, continuum mechanics, signal processing, and electromagnetics, but with few examples of applications in bioengineering. This is surprising because the methods of fractional calculus, when defined as a Laplace or Fourier convolution product, are suitable for solving many problems in biomedical research. For example, early studies by Cole (1933) and Hodgkin (1946) of the electrical properties of nerve cell membranes and the propagation of electrical signals are well characterized by differential equations of fractional order. The solution involves a generalization of the exponential function to the Mittag-Leffler function, which provides a better fit to the observed cell membrane data. A parallel application of fractional derivatives to viscoelastic materials establishes, in a natural way, hereditary integrals and the power law (Nutting/Scott Blair) stress-strain relationship for modeling biomaterials. In this review, I will introduce the idea of fractional operations by following the original approach of Heaviside, demonstrate the basic operations of fractional calculus on well-behaved functions (step, ramp, pulse, sinusoid) of engineering interest, and give specific examples from electrochemistry, physics, bioengineering, and biophysics. The fractional derivative accurately describes natural phenomena that occur in such common engineering problems as heat transfer, electrode/electrolyte behavior, and sub

  18. Volatile fractionation and tektite source material

    SciTech Connect

    Walter, L.S. )

    1989-09-01

    In discounting the possibility that vapor fractionation played a part in the origin of bediasites, it has been assumed that Na and K are lost to the vapor phase. Experimental work shows, however, that, under oxidizing conditions, neither Na nor K exhibit particularly volatile behavior. Indeed, the compositional variations exhibited by bediasites are very similar to those obtained during experimental high-temperature vapor fractionation of a high-silica melt.

  19. Laser Resurfacing: Full Field and Fractional.

    PubMed

    Pozner, Jason N; DiBernardo, Barry E

    2016-07-01

    Laser resurfacing is a very popular procedure worldwide. Full field and fractional lasers are used in many aesthetic practices. There have been significant advances in laser resurfacing in the past few years, which make patient treatments more efficacious and with less downtime. Erbium and carbon dioxide and ablative, nonablative, and hybrid fractional lasers are all extremely effective and popular tools that have a place in plastic surgery and dermatology offices. PMID:27363765

  20. The Vertical Linear Fractional Initialization Problem

    NASA Technical Reports Server (NTRS)

    Lorenzo, Carl F.; Hartley, Tom T.

    1999-01-01

    This paper presents a solution to the initialization problem for a system of linear fractional-order differential equations. The scalar problem is considered first, and solutions are obtained both generally and for a specific initialization. Next the vector fractional order differential equation is considered. In this case, the solution is obtained in the form of matrix F-functions. Some control implications of the vector case are discussed. The suggested method of problem solution is shown via an example.

  1. Technical characteristics of fractional light devices.

    PubMed

    Smith, Kevin C; Schachter, G Daniel

    2011-05-01

    This article deals with the technical characteristics of fractional light devices, fractional lasers, and light sources that cause their biologic effects by increasing the temperature of the target tissues to the point where the target is either killed, or in other cases where the temperature of the target tissue is increased to the point where repair and remodeling systems are turned on but tissue is not killed. Resurfacing devices act by causing ablation and/or coagulation. PMID:21763984

  2. Water dynamics in different biochar fractions.

    PubMed

    Conte, Pellegrino; Nestle, Nikolaus

    2015-09-01

    Biochar is a carbonaceous porous material deliberately applied to soil to improve its fertility. The mechanisms through which biochar acts on fertility are still poorly understood. The effect of biochar texture size on water dynamics was investigated here in order to provide information to address future research on nutrient mobility towards plant roots as biochar is applied as soil amendment. A poplar biochar has been stainless steel fractionated in three different textured fractions (1.0-2.0 mm, 0.3-1.0 mm and <0.3 mm, respectively). Water-saturated fractions were analyzed by fast field cycling (FFC) NMR relaxometry. Results proved that 3D exchange between bound and bulk water predominantly occurred in the coarsest fraction. However, as porosity decreased, water motion was mainly associated to a restricted 2D diffusion among the surface-site pores and the bulk-site ones. The X-ray μ-CT imaging analyses on the dry fractions revealed the lowest surface/volume ratio for the coarsest fraction, thereby corroborating the 3D water exchange mechanism hypothesized by FFC NMR relaxometry. However, multi-micrometer porosity was evidenced in all the samples. The latter finding suggested that the 3D exchange mechanism cannot even be neglected in the finest fraction as previously excluded only on the basis of NMR relaxometry results. X-ray μ-CT imaging showed heterogeneous distribution of inorganic materials inside all the fractions. The mineral components may contribute to the water relaxation mechanisms by FFC NMR relaxometry. Further studies are needed to understand the role of the inorganic particles on water dynamics. PMID:25594163

  3. Masses and branching fractions at CDF

    SciTech Connect

    S. D'Auria

    2003-10-30

    The authors present a collection of new results on b-meson and {Lambda}{sub b} masses and branching fractions measured at CDF. They have improved the measurement of the {Lambda}{sub b} and B{sub s} mass and they have measured the branching fractions of B{sub s} {yields} D{sub s}{pi}, {Lambda}{sub b} {yields} {Lambda}{sub c}{pi} and B{sub u} {yields} {Phi}K{sup {+-}}.

  4. Partial oxidation of heavy refinery fractions

    SciTech Connect

    Dille, R.M.; Rhodes, H.A.; Wallon, S.B.

    1984-07-31

    This is a partial oxidation process in which heavy hydrocarbonaceous fractions from a petroleum refinery and light liquid paraffinic hydrocarbon extractants are used in the production of synthesis gas, reducing gas, or fuel gas i.e., gaseous mixtures comprising H/sub 2/ and CO. In the process, substantially all of the particulate carbon and soot that are simultaneously produced are recovered and recycled to the reaction zone. A dispersion of carbon-soot-light paraffinic hydrocarbon extractant from the decanting zone is combined with a heavy refinery fraction in admixture with a liquid aromatic-rich hydrocarbon to produce a pumpable single liquid phase mixture which is introduced into a fractionation zone where the following streams are separated from each other: (a) a stream of light paraffinic hydrocarbon extractant which is recycled to the decanting zone, (b) a stream comprising at least a portion of the aromatic-rich hydrocarbon which is recycled for mixing with the heavy refinery fraction, and (c) a stream of pumpable dispersion of carbon-soot heavy refinery fraction and any remaining aromatic-rich hydrocarbon which may be used as fuel in the system or exported. Troublesome asphaltene precipitation that causes operational problems and increased viscosity is avoided by the subject process. Comparatively low cost heavy refinery fractions which ordinarily are difficult to handle may be now used along with light liquid paraffinic hydrocarbon extractants.

  5. Maximizing Tumor Immunity With Fractionated Radiation

    SciTech Connect

    Schaue, Doerthe; Ratikan, Josephine A.; Iwamoto, Keisuke S.; McBride, William H.

    2012-07-15

    Purpose: Technologic advances have led to increased clinical use of higher-sized fractions of radiation dose and higher total doses. How these modify the pathways involved in tumor cell death, normal tissue response, and signaling to the immune system has been inadequately explored. Here we ask how radiation dose and fraction size affect antitumor immunity, the suppression thereof, and how this might relate to tumor control. Methods and Materials: Mice bearing B16-OVA murine melanoma were treated with up to 15 Gy radiation given in various-size fractions, and tumor growth followed. The tumor-specific immune response in the spleen was assessed by interferon-{gamma} enzyme-linked immunospot (ELISPOT) assay with ovalbumin (OVA) as the surrogate tumor antigen and the contribution of regulatory T cells (Tregs) determined by the proportion of CD4{sup +}CD25{sup hi}Foxp3{sup +} T cells. Results: After single doses, tumor control increased with the size of radiation dose, as did the number of tumor-reactive T cells. This was offset at the highest dose by an increase in Treg representation. Fractionated treatment with medium-size radiation doses of 7.5 Gy/fraction gave the best tumor control and tumor immunity while maintaining low Treg numbers. Conclusions: Radiation can be an immune adjuvant, but the response varies with the size of dose per fraction. The ultimate challenge is to optimally integrate cancer immunotherapy into radiation therapy.

  6. Milk fat and primary fractions obtained by dry fractionation 1. Chemical composition and crystallisation properties.

    PubMed

    Lopez, Christelle; Bourgaux, Claudie; Lesieur, Pierre; Riaublanc, Alain; Ollivon, Michel

    2006-10-01

    The chemical composition and crystallisation properties of milk fat and its primary fractions, obtained by dry fractionation at 21 degrees C, were investigated. The solid fraction (stearin) and the liquid fraction (olein) displayed a different triacylglycerol (TG) composition. Stearin fraction was enriched in long-chain fatty acids, whereas olein fraction was enriched in short-chain and unsaturated fatty acids. Crystallisation properties of milk fat, and both the stearin and olein fractions were studied on cooling at |dT/dt|=1 degrees C min(-1) by differential scanning calorimetry and time-resolved synchrotron X-ray diffraction (XRD) at small and wide angles. Two main types of crystals corresponding to double chain length structures were characterised in the stearin fraction: alpha 2L(1) (47.5 Angstrom) and beta' 2L(2) (41.7 Angstrom). A triple chain length structure was formed in the olein fraction: alpha 3L (72.1 Angstrom). Crystallization of milk fat showed the formation of two 2L (47.3 and 41.6 Angstrom) and one 3L (72.1 Angstrom) lamellar structures with an hexagonal packing (alpha form). A schematic representation of the 3L packing of olein fraction was proposed to explain how a wide diversity of TG can accommodate to form a lamellar structure with a thickness of 72 Angstrom. Furthermore, the sharpness of the small-angle XRD lines associated to the alpha form was explained by the formation of liquid crystals of smectic type.

  7. The relative roles of boundary layer fractionation and homogeneous fractionation in cooling basaltic magma chambers

    NASA Astrophysics Data System (ADS)

    Kuritani, Takeshi

    2009-06-01

    In a cooling magma chamber, magmatic differentiation can proceed both by fractionation of crystals from the main molten part of the magma body (homogeneous fractionation) and by mixing of the main magma with fractionated melt derived from low-temperature mush zones (boundary layer fractionation). In this study, the relative roles of boundary layer fractionation and homogeneous fractionation in basaltic magma bodies were examined using a thermodynamics-based mass balance model. Model calculations show that boundary layer fractionation cannot be a dominant fractionation mechanism when magma chambers are located at low pressures (< ~ 50 MPa) or when magmas are less hydrous (< ~ 1 wt.%), such as mid-ocean ridge basalt and intraplate basalt, because of the low efficiency of melt transport from the mush zones to the main magma. Therefore, magmas evolve principally by homogeneous fractionation. If crystal-melt separation does not occur effectively in the main magma, the magma becomes crystal-rich in the early stages of magmatic evolution. On the other hand, boundary layer fractionation can occur effectively when magmas are hydrous (> ~ 2 wt.%), such as arc basalt, and the magma chambers are located at depth (> ~ 100 MPa). Because the melt derived from mush zones is enriched in alkalis and H 2O, crystallization from the main magma is suppressed by mixing with the mush melt as a consequence of depression of the liquidus temperature. Therefore, homogeneous fractionation is more effectively suppressed in magma chambers in which boundary layer fractionation is more active. If magmatic differentiation proceeds primarily by boundary layer fractionation, magmas can remain free of crystals for long periods during magmatic evolution.

  8. Fractions as percepts? Exploring cross-format distance effects for fractional magnitudes.

    PubMed

    Matthews, Percival G; Chesney, Dana L

    2015-05-01

    This study presents evidence that humans have intuitive, perceptually based access to the abstract fraction magnitudes instantiated by nonsymbolic ratio stimuli. Moreover, it shows these perceptually accessed magnitudes can be easily compared with symbolically represented fractions. In cross-format comparisons, participants picked the larger of two ratios. Ratios were presented either symbolically as fractions or nonsymbolically as paired dot arrays or as paired circles. Response patterns were consistent with participants comparing specific analog fractional magnitudes independently of the particular formats in which they were presented. These results pose a challenge to accounts that argue human cognitive architecture is ill-suited for processing fractions. Instead, it seems that humans can process nonsymbolic ratio magnitudes via perceptual routes and without recourse to conscious symbolic algorithms, analogous to the processing of whole number magnitudes. These findings have important implications for theories regarding the nature of human number sense - they imply that fractions may in some sense be natural numbers, too.

  9. Impact of variable RBE on proton fractionation

    SciTech Connect

    Dasu, Alexandru; Toma-Dasu, Iuliana

    2013-01-15

    Purpose: To explore the impact of variable proton relative biological effectiveness (RBE) on dose fractionation for clinically relevant situations. A generic RBE = 1.1 is generally used for isoeffect calculations, while experimental studies showed that proton RBE varies with tissue type, dose, and linear energy transfer (LET). Methods: An analytical expression for the LET and {alpha}/{beta} dependence of the linear-quadratic (LQ) model has been used for proton simulations in parallel with the assumption of a generic RBE = 1.1. Calculations have been performed for ranges of LET values and fractionation sensitivities to describe clinically relevant cases, such as the treatment of head and neck and prostate tumors. Isoeffect calculations were compared with predictions from a generic RBE value and reported clinical results. Results: The generic RBE = 1.1 appears to be a reasonable estimate for the proton RBE of rapidly growing tissues irradiated with low LET radiation. However, the use of a variable RBE predicts larger differences for tissues with low {alpha}/{beta} (both tumor and normal) and at low doses per fraction. In some situations these differences may appear in contrast to the findings from photon studies highlighting the importance of accurate accounting for the radiobiological effectiveness of protons. Furthermore, the use of variable RBE leads to closer predictions to clinical results. Conclusions: The LET dependence of the RBE has a strong impact on the predicted effectiveness of fractionated proton radiotherapy. The magnitude of the effect is modulated by the fractionation sensitivity and the fractional dose indicating the need for accurate analyses both in the target and around it. Care should therefore be employed for changing clinical fractionation patterns or when analyzing results from clinical studies for this type of radiation.

  10. A two-sided fractional conservation of mass equation

    NASA Astrophysics Data System (ADS)

    Olsen, Jeffrey S.; Mortensen, Jeff; Telyakovskiy, Aleksey S.

    2016-05-01

    A two-sided fractional conservation of mass equation is derived by using left and right fractional Mean Value Theorems. This equation extends the one-sided fractional conservation of mass equation of Wheatcraft and Meerschaert. Also, a two-sided fractional advection-dispersion equation is derived. The derivations are based on Caputo fractional derivatives.

  11. Fractional charge revealed in computer simulations of resonant tunneling in the fractional quantum Hall regime.

    PubMed

    Tsiper, E V

    2006-08-18

    The concept of fractional charge is central to the theory of the fractional quantum Hall effect. Here I use exact diagonalization as well as configuration space renormalization to study finite clusters which are large enough to contain two independent edges. I analyze the conditions of resonant tunneling between the two edges. The "computer experiment" reveals a periodic sequence of resonant tunneling events consistent with the experimentally observed fractional quantization of electric charge in units of e/3 and e/5.

  12. Fractional Adams-Bashforth/Moulton methods: An application to the fractional Keller-Segel chemotaxis system

    NASA Astrophysics Data System (ADS)

    Zayernouri, Mohsen; Matzavinos, Anastasios

    2016-07-01

    We first formulate a fractional class of explicit Adams-Bashforth (A-B) and implicit Adams-Moulton (A-M) methods of first- and second-order accuracy for the time-integration of 0 CD t τ u (x , t) = g (t ; u), τ ∈ (0 , 1 ], where 0 CD t τ denotes the fractional derivative in the Caputo sense. In this fractional setting and in contrast to the standard Adams methods, an extra history load term emerges and the associated weight coefficients are τ-dependent. However when τ = 1, the developed schemes reduce to the well-known A-B and A-M methods with standard coefficients. Hence, in terms of scientific computing, our approach constitutes a minimal modification of the existing Adams libraries. Next, we develop an implicit-explicit (IMEX) splitting scheme for linear and nonlinear fractional PDEs of a general advection-reaction-diffusion type, and we apply our scheme to the time-space fractional Keller-Segel chemotaxis system. In this context, we evaluate the nonlinear advection term explicitly, employing the fractional A-B method in the prediction step, and we treat the corresponding diffusion term implicitly in the correction step using the fractional A-M scheme. Moreover, we perform the corresponding spatial discretization by employing an efficient and spectrally-accurate fractional spectral collocation method. Our numerical experiments exhibit the efficiency of the proposed IMEX scheme in solving nonlinear fractional PDEs.

  13. On the origins of generalized fractional calculus

    NASA Astrophysics Data System (ADS)

    Kiryakova, Virginia

    2015-11-01

    In Fractional Calculus (FC), as in the (classical) Calculus, the notions of derivatives and integrals (of first, second, etc. or arbitrary, incl. non-integer order) are basic and co-related. One of the most frequent approach in FC is to define first the Riemann-Liouville (R-L) integral of fractional order, and then by means of suitable integer-order differentiation operation applied over it (or under its sign) a fractional derivative is defined - in the R-L sense (or in Caputo sense). The first mentioned (R-L type) is closer to the theoretical studies in analysis, but has some shortages - from the point of view of interpretation of the initial conditions for Cauchy problems for fractional differential equations (stated also by means of fractional order derivatives/ integrals), and also for the analysts' confusion that such a derivative of a constant is not zero in general. The Caputo (C-) derivative, arising first in geophysical studies, helps to overcome these problems and to describe models of applied problems with physically consistent initial conditions. The operators of the Generalized Fractional Calculus - GFC (integrals and derivatives) are based on commuting m-tuple (m = 1, 2, 3, …) compositions of operators of the classical FC with power weights (the so-called Erdélyi-Kober operators), but represented in compact and explicit form by means of integral, integro-differential (R-L type) or differential-integral (C-type) operators, where the kernels are special functions of most general hypergeometric kind. The foundations of this theory are given in Kiryakova 18. In this survey we present the genesis of the definitions of the GFC - the generalized fractional integrals and derivatives (of fractional multi-order) of R-L type and Caputo type, analyze their properties and applications. Their special cases are all the known operators of classical FC, their generalizations introduced by other authors, the hyper-Bessel differential operators of higher integer

  14. Minimizing metastatic risk in radiotherapy fractionation schedules

    NASA Astrophysics Data System (ADS)

    Badri, Hamidreza; Ramakrishnan, Jagdish; Leder, Kevin

    2015-11-01

    Metastasis is the process by which cells from a primary tumor disperse and form new tumors at distant anatomical locations. The treatment and prevention of metastatic cancer remains an extremely challenging problem. This work introduces a novel biologically motivated objective function to the radiation optimization community that takes into account metastatic risk instead of the status of the primary tumor. In this work, we consider the problem of developing fractionated irradiation schedules that minimize production of metastatic cancer cells while keeping normal tissue damage below an acceptable level. A dynamic programming framework is utilized to determine the optimal fractionation scheme. We evaluated our approach on a breast cancer case using the heart and the lung as organs-at-risk (OAR). For small tumor α /β values, hypo-fractionated schedules were optimal, which is consistent with standard models. However, for relatively larger α /β values, we found the type of schedule depended on various parameters such as the time when metastatic risk was evaluated, the α /β values of the OARs, and the normal tissue sparing factors. Interestingly, in contrast to standard models, hypo-fractionated and semi-hypo-fractionated schedules (large initial doses with doses tapering off with time) were suggested even with large tumor α/β values. Numerical results indicate the potential for significant reduction in metastatic risk.

  15. Attitude Estimation in Fractionated Spacecraft Cluster Systems

    NASA Technical Reports Server (NTRS)

    Hadaegh, Fred Y.; Blackmore, James C.

    2011-01-01

    An attitude estimation was examined in fractioned free-flying spacecraft. Instead of a single, monolithic spacecraft, a fractionated free-flying spacecraft uses multiple spacecraft modules. These modules are connected only through wireless communication links and, potentially, wireless power links. The key advantage of this concept is the ability to respond to uncertainty. For example, if a single spacecraft module in the cluster fails, a new one can be launched at a lower cost and risk than would be incurred with onorbit servicing or replacement of the monolithic spacecraft. In order to create such a system, however, it is essential to know what the navigation capabilities of the fractionated system are as a function of the capabilities of the individual modules, and to have an algorithm that can perform estimation of the attitudes and relative positions of the modules with fractionated sensing capabilities. Looking specifically at fractionated attitude estimation with startrackers and optical relative attitude sensors, a set of mathematical tools has been developed that specify the set of sensors necessary to ensure that the attitude of the entire cluster ( cluster attitude ) can be observed. Also developed was a navigation filter that can estimate the cluster attitude if these conditions are satisfied. Each module in the cluster may have either a startracker, a relative attitude sensor, or both. An extended Kalman filter can be used to estimate the attitude of all modules. A range of estimation performances can be achieved depending on the sensors used and the topology of the sensing network.

  16. Capacity expansion options for NGL fractionation

    SciTech Connect

    Manley, D.B.

    1998-12-31

    Mixtures of liquid hydrocarbons recovered from natural gas are commercially separated in fractionator plants to produce higher value ethane, propane, isobutane, normal butane and gasoline products. Figure 1 shows a conventional fractionator with deethanizer, depropanizer, debutanizer and deisobutanizer columns. As demand for natural gas liquids grows, it may be cost effective to expand the capacity of an existing fractionator rather than building a new one. In this case, it may be difficult or expensive to add new distillation columns; and it is advantageous to find ways to increase the capacity of existing columns with as little disturbance of the surrounding infrastructure as possible. Distillation column capacity can sometimes be incrementally increased by replacing the existing column trays with more modern, higher capacity internals. However, when this is done the energy efficiency of the process is not improved, and large increases in capacity are generally precluded. It has been shown that fractionator energy consumption may be reduced by as much as 60% by using distributed distillation combined with careful heat integration. The present discussion shows how large increases in fractionator capacity may be achieved, while also significantly reducing energy consumption, by incorporating several new process improvements. The front end deethanizer shown in a figure is chosen as an example, but the same improvements may be used in the other columns to achieve increased capacity and reduced energy consumption.

  17. Variable Order and Distributed Order Fractional Operators

    NASA Technical Reports Server (NTRS)

    Lorenzo, Carl F.; Hartley, Tom T.

    2002-01-01

    Many physical processes appear to exhibit fractional order behavior that may vary with time or space. The continuum of order in the fractional calculus allows the order of the fractional operator to be considered as a variable. This paper develops the concept of variable and distributed order fractional operators. Definitions based on the Riemann-Liouville definitions are introduced and behavior of the operators is studied. Several time domain definitions that assign different arguments to the order q in the Riemann-Liouville definition are introduced. For each of these definitions various characteristics are determined. These include: time invariance of the operator, operator initialization, physical realization, linearity, operational transforms. and memory characteristics of the defining kernels. A measure (m2) for memory retentiveness of the order history is introduced. A generalized linear argument for the order q allows the concept of "tailored" variable order fractional operators whose a, memory may be chosen for a particular application. Memory retentiveness (m2) and order dynamic behavior are investigated and applications are shown. The concept of distributed order operators where the order of the time based operator depends on an additional independent (spatial) variable is also forwarded. Several definitions and their Laplace transforms are developed, analysis methods with these operators are demonstrated, and examples shown. Finally operators of multivariable and distributed order are defined in their various applications are outlined.

  18. On sampling fractions and electron shower shapes

    SciTech Connect

    Peryshkin, Alexander; Raja, Rajendran; /Fermilab

    2011-12-01

    We study the usage of various definitions of sampling fractions in understanding electron shower shapes in a sampling multilayer electromagnetic calorimeter. We show that the sampling fractions obtained by the conventional definition (I) of (average observed energy in layer)/(average deposited energy in layer) will not give the best energy resolution for the calorimeter. The reason for this is shown to be the presence of layer by layer correlations in an electromagnetic shower. The best resolution is obtained by minimizing the deviation from the total input energy using a least squares algorithm. The 'sampling fractions' obtained by this method (II) are shown to give the best resolution for overall energy. We further show that the method (II) sampling fractions are obtained by summing the columns of a non-local {lambda} tensor that incorporates the correlations. We establish that the sampling fractions (II) cannot be used to predict the layer by layer energies and that one needs to employ the full {lambda} tensor for this purpose. This effect is again a result of the correlations.

  19. Hamiltonian theory of fractionally filled Chern bands

    NASA Astrophysics Data System (ADS)

    Murthy, Ganpathy; Shankar, R.

    2012-11-01

    There is convincing numerical evidence that fractional quantum-Hall-like ground states arise in fractionally filled Chern bands. Here, we show that the Hamiltonian theory of composite fermions (CF) can be as useful in describing these states as it was in describing the fractional quantum Hall effect (FQHE) in the continuum. We are able to introduce CFs into the fractionally filled Chern-band problem in two stages. First, we construct an algebraically exact mapping which expresses the electron density projected to the Chern band ρFCB as a sum of Girvin-MacDonald-Platzman density operators ρGMP that obey the magnetic translation algebra. Next, following our Hamiltonian treatment of the FQH problem, we rewrite the operators ρGMP in terms of CF variables which reproduce the same algebra. This naturally produces a unique Hartree-Fock ground state for the CFs, which can be used as a springboard for computing gaps, response functions, temperature-dependent phenomena, and the influence of disorder. We give two concrete examples, one of which has no analog in the continuum FQHE with ν=(1)/(5) and σxy=(2)/(5). Our approach can be easily extended to fractionally filled, strongly interacting two-dimensional time-reversal-invariant topological insulators.

  20. Downstream alterations in biodegradability and optical characteristics of dissolved and particulate organic carbon fractions exported during storm events in a mixed land-use watershed

    NASA Astrophysics Data System (ADS)

    Jung, Byung-Joon; Yang, Boram; Park, Ji-Hyung

    2014-05-01

    Although storm pulses of dissolved organic carbon (DOC) and particulate organic carbon (POC) can account for a significant C loss from the terrestrial sink of atmospheric CO2, there have been rare attempts to compare the biodegradation and chemical transformation of terrestrially derived DOC and POC in receiving waters. Short-term laboratory incubations were performed with water and sediment samples collected during intense monsoon rainfalls at four stream locations in a mountainous, mixed land-use watershed, Korea to compare biodegradation and optical properties of DOC and POC exported from different sources. Biodegradable DOC (BDOC) and fluorescence EEMs coupled with PARAFAC modeling in either bulk or flow field-flow fractionated samples were measured to track changes in biodegradation and optical characteristics of DOC and suspended sediment-derived DOC (SS-DOC). During a 30 day incubation at 25 °C, both DOC and POC from a forested headwater stream initially exhibited rapid biodegradation of labile components, whereas sediment-derived materials increased continuously not just DOC concentrations, but also fulvic- and humic-like fluorescent components. In the second 13-day incubation with DOC and POC samples from a forest stream, an agricultural stream, and two downstream rivers, the BDOC of filtered waters differed little between sites, whereas the BDOC of SS-DOC was higher in downstream rivers. Higher ratios of protein- to fuvic- or humic-like fluorescence in the SS-DOC from two downstream rivers compared to upstream measurements pointed to a higher contribution of labile organic components to the biodegradation of SS-DOC from the downstream rivers. Downstream increases in labile moieties of SS-DOC were also observed in fluorescence measurements of field-flow fractionated samples. The results suggest that storm pulses of POC contain labile organic components that are increasingly released from downstream sources and can rapidly change in optical properties

  1. Catalyzed modified clean fractionation of switchgrass.

    PubMed

    Cybulska, Iwona; Brudecki, Grzegorz P; Hankerson, Brett R; Julson, James L; Lei, Hanwu

    2013-01-01

    Switchgrass was used as a lignocellulosic feedstock for second generation ethanol production, after pretreatment using sulfuric acid-catalyzed modified clean fractionation based on NREL's (National Renewable Energy Laboratory) original procedure. Optimization of temperature, catalyst concentration and solvent composition was performed using Response Surface Methodology, and 59.03 ± 7.01% lignin recovery, 84.85 ± 1.34% glucose, and 44.11 ± 3.44% aqueous fraction xylose yields were obtained at 140.00 °C, 0.46% w/w catalyst concentration, 36.71% w/w ethyl acetate concentration, and 25.00% w/w ethanol concentration. The cellulose fraction did not inhibit the fermentation performance of Saccharomyces cerevisiae and resulted in an ethanol yield of 89.60 ± 2.1%.

  2. Oxygen isotope fractionation in divalent metal carbonates

    USGS Publications Warehouse

    O'Neil, J.R.; Clayton, R.N.; Mayeda, T.K.

    1969-01-01

    Equilibrium fractionation factors for the distribution of 18O between alkaline-earth carbonates and water have been measured over the temperature range 0-500??C. The fractionation factors ?? can be represented by the equations CaCO3-H2O, 1000 ln??=2.78(106 T-2)-3.39, SrCO3-H 2O, 1000 ln??=2.69(106 T-2)-3.74, BaCO3-H2O, 1000 ln??=2.57(106 T -2)-4.73. Measurements on MnCO3, CdCO3, and PbCO3 were made at isolated temperatures. A statistical-mechanical calculation of the isotopic partition function ratios gives reasonably good agreement with experiment. Both cationic size and mass are important in isotopic fractionation, the former predominantly in its effect on the internal vibrations of the anion, the latter in its effect on the lattice vibrations.

  3. Models of Isotopic Fractionation in Prestellar Cores

    NASA Technical Reports Server (NTRS)

    Charnley, Steven B.

    2012-01-01

    Anomalously fractionated isotopic material is found in many primitive Solar System objects, such as meteorites and comets. It is thought, in some cases, to trace interstellar matter that was incorporated into the Solar Nebula without undergoing significant processing. We will present the results of models of the nitrogen, oxygen, and carbon fractionation chemistry in dense molecular clouds, particularly in cores where substantial freeze-out of molecules on to dust has occurred. The range of fractionation ratios expected in different interstellar molecules will be discussed and compared to the ratios measured in molecular clouds, comets and meteoritic material. These studies make several predictions that can be tested in the near future by high-resolution molecular line observations with ALMA.

  4. Models of Isotopic Fractionation in Prestellar Cores

    NASA Technical Reports Server (NTRS)

    Charnley, Steven B.; Cordiner, Martin A.

    2011-01-01

    Anomalously fractionated isotopic material is found in many primitive Solar System objects, such as meteorites and comets. It is thought, in some cases, to trace interstellar matter that was incorporated into the Solar Nebula without undergoing significant processing. We will present the results of models of the nitrogen, oxygen, and carbon fractionation chemistry in dense molecular clouds, particularly in cores where substantial freeze-out of molecules on to dust has occurred. The range of fractionation ratios expected in different interstellar molecules will be discussed and compared to the ratios measured in molecular clouds, comets and meteoritic material. These studies make several predictions that can be tested in the near future by high-resolution molecular line observations with ALMA.

  5. Isotope Fractionation in the Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Charnley, Steven

    2011-01-01

    Anomalously fractionated isotopic material is found in many primitive Solar System objects, such as meteorites and comets. It is thought, in some cases, to trace interstellar matter that was incorporated into the Solar Nebula without undergoing significant processing. We will present the results of models of the nitrogen, oxygen, and carbon fractionation chemistry in dense molecular clouds, particularly in cores where substantial freeze-out of molecules on to dust has occurred. The range of fractionation ratios expected in different interstellar molecules will be discussed and compared to the ratios measured in molecular clouds, comets and meteoritic material. These models make several predictions that can be tested in the near future by molecular line observations, particularly with ALMA.

  6. Fractional quantum Hall states of Rydberg polaritons

    NASA Astrophysics Data System (ADS)

    Maghrebi, Mohammad F.; Yao, Norman Y.; Hafezi, Mohammad; Pohl, Thomas; Firstenberg, Ofer; Gorshkov, Alexey V.

    2015-03-01

    We propose a scheme for realizing fractional quantum Hall states of light. In our scheme, photons of two polarizations are coupled to different atomic Rydberg states to form two flavors of Rydberg polaritons that behave as an effective spin. An array of optical cavity modes overlapping with the atomic cloud enables the realization of an effective spin-1 /2 lattice. We show that the dipolar interaction between such polaritons, inherited from the Rydberg states, can be exploited to create a flat, topological band for a single spin-flip excitation. At half filling, this gives rise to a photonic (or polaritonic) fractional Chern insulator—a lattice-based, fractional quantum Hall state of light.

  7. Plutonium fractionation in southern Baltic Sea sediments.

    PubMed

    Strumińska-Parulska, Dagmara I; Skwarzec, Bogdan; Pawlukowska, Magdalena

    2012-01-01

    In this study, different chemical plutonium fractions (dissolved in water, connected to carbonates, connected to oxides, complexed with organic matter, mineral acids soluble and the rest) in sediments from the Vistula River estuary, the Gdańsk Basin and the Bornholm Deep were determined. The distribution of (239+240)Pu in analysed sediments samples was not uniform but dependent on its chemical form, depth and the sediment geomorphology. The highest amount of plutonium exists in middle parts of sediments and comes from the global atmospheric fallout from nuclear tests in 1958-1961. According to all analysed fractions, the biggest amount of (239+240)Pu was in the mobile form, connected to carbonate fractions from the Vistula River estuary, the Gulf of Gdańsk and the Bornholm Deep sediments. PMID:22612422

  8. Volatile fractionation and tektite source material

    NASA Technical Reports Server (NTRS)

    Walter, Louis S.

    1989-01-01

    The arguments used by Love and Woronow (1988) to assess the role played in the origin of bediasites by extensive volatile fractionation are critically examined. Using the ratios of 'refractory' oxides, CaO, Al2O3, and MgO, to the 'volatile' oxides, Na2O and K2O, these authors concluded that vapor fractionation did not play a significant role. In this paper, experimental evidence is presented that shows that the assumption of volatility for the alkali elements (as least with respect to silica) to be not valid under the conditions under which tektites formed. It is shown that the results of vapor fractionation in experiments on glasses of tektite composition are approximately parallel the trends seen in bediasite analysis.

  9. The Integer and Fractional Quantum Hall Effects.

    NASA Astrophysics Data System (ADS)

    Usher, Alan

    Available from UMI in association with The British Library. Requires signed TDF. This thesis reports investigations of the electrical conductivity of two-dimensional electron systems in high magnetic fields. Studies of the activated longitudinal conductivity associated with the integer quantum Hall effect reveal a large enhancement of the electronic g-factor, caused by the electron-electron interaction. A similar enhancement is observed in the Landau level separation. The magnetic field dependences of both effects are influenced by sample disorder. The activation data are analysed using three models for the shape of the extended state regions of disorder -broadened Landau levels. Only a small fraction of the electrons are found to occupy extended states. Values of the minimum metallic conductivity of electrons in broadened Landau levels are sample- and electron concentration-dependent. The fractional quantum Hall effect is a property of electrons in an incompressible quantum fluid state. The highest quality samples with low electron concentrations exhibit the effect in the manner predicted by simple theories involving spinless electrons. However, the influence of spin becomes apparent at higher electron concentrations, and in tilted field experiments. The effects of disorder are evident in measurements of the quasiparticle energy gap associated with the fractional quantum Hall effect. The experimental gap energies reported in this thesis are considerably smaller than those of theoretical studies, and they tend to zero at a non-zero magnetic field threshold. Simple theories predict that the fractional quantum Hall effect occurs only at odd denominator fractional occupancies. This thesis reports the first observations of the even denominator fractional quantum Hall effect. Persistent photoconductivity is a useful tool for increasing the concentration of two-dimensional electrons in GaAs-AlGaAs heterojunctions. A new photodeexcitation effect is reported, and possible

  10. Isotopic fractionation of Cu in tektites

    NASA Astrophysics Data System (ADS)

    Moynier, Frederic; Koeberl, Christian; Beck, Pierre; Jourdan, Fred; Telouk, Philippe

    2010-01-01

    Tektites are terrestrial natural glasses of up to a few centimeters in size that were produced during hypervelocity impacts on the Earth's surface. It is well established that the chemical and isotopic composition of tektites is generally identical to that of the upper terrestrial continental crust. Tektites typically have very low water content, which has generally been explained by volatilization at high temperature; however, the exact mechanism is still debated. Because volatilization can fractionate isotopes, comparing the isotopic composition of volatile elements in tektites with those of their source rocks may help to understand the physical conditions during tektite formation. Interestingly, volatile chalcophile elements (e.g., Cd and Zn) seem to be the only elements for which isotopic fractionation is known so far in tektites. Here, we extend this study to Cu, another volatile chalcophile element. We have measured the Cu isotopic composition for 20 tektite samples from the four known different strewn fields. All of the tektites (except the Muong Nong-types) are enriched in the heavy isotopes of Cu (1.98 < δ 65Cu < 6.99) in comparison to the terrestrial crust (δ 65Cu ≈ 0) with no clear distinction between the different groups. The Muong Nong-type tektites and a Libyan Desert Glass sample are not fractionated (δ 65Cu ≈ 0) in comparison to the terrestrial crust. To refine the Cu isotopic composition of the terrestrial crust, we also present data for three geological reference materials (δ 65Cu ≈ 0). An increase of δ 65Cu with decreasing Cu abundance probably reflects that the isotopic fractionation occurred by evaporation during heating. A simple Rayleigh distillation cannot explain the Cu isotopic data and we suggest that the isotopic fractionation is governed by a diffusion-limited regime. Copper is isotopically more fractionated than the more volatile element Zn (δ 66/64Zn up to 2.49‰). This difference of behavior between Cu and Zn is

  11. [Soil particle size fractionation with centrifugation method].

    PubMed

    Wu, Tianyun; Schoenau, Jeff J; Li, Fengmin; Qian, Peiyuan; Wang, Fang; Malhi, Sukhadev S

    2004-03-01

    According to the rotor size of Mandal RC5C and Stoks' law, a segregation procedure for soil particle size fractionation was designed, and used for the particle separation of Huangmian soil(Calcaric cambisols, FAO), Huihe soil (Haplic greyxems, FAO), and Helu soil(Calcic kastanozems, FAO) in the Loess Plateau of China, and of Orthic Brown Chernozem, and Orthic Black Chernozem in Canadian Prairie. The fractionation results of the 5 soils by using this procedure were in line with those of the standard pipette method. PMID:15228001

  12. Fractional diffusion equations coupled by reaction terms

    NASA Astrophysics Data System (ADS)

    Lenzi, E. K.; Menechini Neto, R.; Tateishi, A. A.; Lenzi, M. K.; Ribeiro, H. V.

    2016-09-01

    We investigate the behavior for a set of fractional reaction-diffusion equations that extend the usual ones by the presence of spatial fractional derivatives of distributed order in the diffusive term. These equations are coupled via the reaction terms which may represent reversible or irreversible processes. For these equations, we find exact solutions and show that the spreading of the distributions is asymptotically governed by the same the long-tailed distribution. Furthermore, we observe that the coupling introduced by reaction terms creates an interplay between different diffusive regimes leading us to a rich class of behaviors related to anomalous diffusion.

  13. Chaos in a Fractional Order Chua System

    NASA Technical Reports Server (NTRS)

    Lorenzo, Carl F.; Hartley, Tom T.; Qammar, Helen Killory

    1996-01-01

    This report studies the effects of fractional dynamics in chaotic systems. In particular, Chua's system is modified to include fractional order elements. Varying the total system order incrementally from 2.6 to 3.7 demonstrates that systems of 'order' less than three can exhibit chaos as well as other nonlinear behavior. This effectively forces a clarification of the definition of order which can no longer be considered only by the total number of differentiations or by the highest power of the Laplace variable.

  14. Adsorption and isotopic fractionation of Xe

    NASA Technical Reports Server (NTRS)

    Bernatowicz, T. J.; Podosek, F. A.

    1986-01-01

    A theoretical description of the mechanisms of isotopic fractionation arising during adsorption of noble gases in a Henry's Law pressure regime is given. Experimental data on the isotopic composition of Xe adsorbed on activated charcoal in the temperature range 220 K to 350 K are presented. Both theoretical considerations and the experimental data indicate that equilibrium adsorption does not significantly alter the isotopic structure of adsorbed structure of adsorbed noble gases. Therefore, if adsorption is responsible for the elemental noble gas pattern in meteorites and the earth, the heavy noble gas isotopic fractionation between them must have been produced prior to and by a different process than equilibrium adsorption.

  15. Limited Intervention at Sub Concept of Fractions in the Object Conversion into Fractions

    ERIC Educational Resources Information Center

    Kurniawan, Henry; Nusantara, Toto; Subanji; Susiswo; Setiawan, Iwan; Sutawidjaja, Akbar; As'ari, Abdur Rahman; Muksar, Makbul

    2016-01-01

    This research is an exploratory study with a qualitative approach, which is based on interviews with a task-based the purpose of this study is to describe the understanding of elementary school students in interpreting sub concept fractions in changing of the object is given to fractions with limit intervention. While intervention on problems…

  16. Method and apparatus for multi-component fractionation

    SciTech Connect

    Harandi, M.N.

    1986-08-19

    A fractionation method is described comprising passing a feedstream to be fractionated to a first fractionator and (a) withdrawing bottoms product from the first fractionator and introducing the withdrawn bottoms product into a second fractionator operating in a predetermined moderate pressure range sufficient to provide integration of the second fractionator with the first fractionator and to allow transfer of overhead product from the second fractionator into a stripper zone and thereafter into the first fractionator; (b) separating the withdrawn bottoms product into relatively light ends and relatively heavy ends by introducing stripping vapor into the second fractionator; (c) introducing a controlled stream of light product quench comprising bottoms product from the stripper zone at a predetermined low temperature and variable flow rate into the second fractionator to adjust an end point of overhead products existing the second fractionator; (d) passing the overhead products exiting the second fractionator into the stripper and introducing relatively lighter product components from the first fractionator into the stripper zone, the overhead products from the second fractionator stripping light ends from the relatively lighter product components; and (e) separating overhead product from the stripper zone into relatively light ends and relatively heavy ends by introducing overhead product from the stripper into the first fractionator, such that the stripper overhead product is further fractionated in the first fractionator.

  17. Isotope fractionation of zinc during electroplating

    NASA Astrophysics Data System (ADS)

    Kavner, A.; Sass, S.; John, S.; Boyle, E.

    2006-12-01

    We have discovered a voltage-dependent isotope fractionation during electroplating of metal zinc from a zinc sulfate solution. Variations in transition metal stable isotope ratios variations are potentially valuable geochemical tracers, with applications spanning cosmochemistry, solid Earth geochemistry, ocean geochemistry, and biogeochemistry. However, the physical mechanisms underlying their isotope fractionation are not well understood. Here we report recent results from an experimental program designed to examine the isotope effect associated with electrochemical (redox) processes in aqueous solutions. Zinc metal was electrodeposited under potentiosatic conditions from a plating bath consisting of an acidified solution of zinc sulfate. The zinc metal was removed from each glassy carbon electrode, and the δ66Zn isotope abundance was analyzed using an IsoProbe multicollector plasma mass spectrometer. A first set of experiments were designed to examine two variables: electroplating voltage, and amount of Zn deposited (measured in total Coulombs). In these experiments, ~1-5 mg of zinc was electroplated from fresh 20 ml aliquots of the starting solution at overpotentials from 25 mV to 800 mV, with respect to the Zn/Zn^{+2} equilibrium. The resulting fractionation effect is severe, with Δδ66Zn = -3.60 (±.05) ‰ (with respect to starting solution) at the lowest overpotential, 25 mV. The isotope fractionation has a significant voltage effect; the fractionation becomes less severe with increasing overpotential, with Δδ66Zn = -2.48 (±.06) ‰ at 800 mV. Four experiments were performed at 100 mV, with plating times varying from 10 to 50 Coulombs. The average Δδ66Zn value was 3.20 (±.10) ‰, with no observed coulomb-dependent isotope effect. A second set of experiments was designed to examine the isotope evolution and mass balance relationship by Rayleigh distillation between the electroplated zinc and the increasingly depleted electroplating bath as zinc is

  18. Fraction Photo Frenzy: A New Exploration

    ERIC Educational Resources Information Center

    Canada, Daniel L.

    2009-01-01

    This article relates how a class of elementary preservice teachers used technology to share their thinking about a topic that is traditionally difficult to model and discuss--dividing fractions. One type of technology they used, a digital camera, was familiar to most students, but the other type, a SMART Board[TM], was relatively unfamiliar.…

  19. 9 CFR 113.7 - Multiple fractions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... production make provisions and set forth conditions for use of the same animals for testing different... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Multiple fractions. 113.7 Section 113.7 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF...

  20. 9 CFR 113.7 - Multiple fractions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... production make provisions and set forth conditions for use of the same animals for testing different... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Multiple fractions. 113.7 Section 113.7 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF...

  1. 9 CFR 113.7 - Multiple fractions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... production make provisions and set forth conditions for use of the same animals for testing different... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Multiple fractions. 113.7 Section 113.7 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF...

  2. Folate in oats and its milling fractions.

    PubMed

    Edelmann, Minnamari; Kariluoto, Susanna; Nyström, Laura; Piironen, Vieno

    2012-12-01

    Total folate content in oat varieties from three harvesting years (2006-2008), and in oats milling fractions, was determined using microbiological assay. Furthermore, folate vitamer distribution in milling fractions were examined with the UPLC method, which was taken in use and validated. The total folate content of the cultivars varied moderately within each year. The average content in the 2008 samples was 685ng/gdm. The UPLC method proved fast and sensitive for determining seven folate monoglutamates in cereal samples. Folate content in fractions, which are normally discarded, such as flour from oat cutting and flaking, were 1.5- to 2.5-fold higher than in native grain. The main folate vitamers found in the oat fractions were 5-CH(3)-H(4)folate, 5-HCO-H(4)folate, and 5,10-CH(+)-H(4)folate. The UPLC results more closely matched the microbiological results compared to those that are usually achieved with HPLC methods. This study illustrates that oats and, especially, by-products of milling are good sources of folate.

  3. Composite fermions for fractionally filled Chern bands

    NASA Astrophysics Data System (ADS)

    Shankar, R.

    2012-02-01

    We consider fractionally filled bands with a non-zero Chern index that exhibit the Fractional Quantum Hall Effect in zero external fieldootnotetextR. Roy and S. Sondhi, Physics 4, 46 (2011) and papers reviewed therein. a possibility supported by numerical work.ootnotetextIbid. Analytic treatments are complicated by a non-constant Berry flux and the absence of Composite Fermions (CF), which would not only single out preferred fractions, but also allow us compute numerous response functions at nonzero frequencies, wavelengths and temperature using either Chern-Simons field theory or our Hamiltonian formalism.ootnotetextG. Murthy and R. Shankar, Rev. Mod. Phys., 75, 1101, (2003) We describe a way to introduce CF's by embedding the Chern band in an auxiliary problem involving Landau levels. The embedded band can be designed to approximate a prescribed Chern density in k space which determines the commutation relations of the charge densities and hence preserve all dynamical and algebraic aspects of the original problem. We find some states for which the filling fraction and dimensionless Hall conductance are not equal. The approach extends to two-dimensional time-reversal invariant topological insulators and to composite bosons.

  4. Dean's Great Discovery: Multiplication, Division and Fractions

    ERIC Educational Resources Information Center

    Vale, Colleen; Davies, Anne

    2007-01-01

    Multiplication, division and fractions are "hotspots" for students in the middle years with many students experiencing difficulty with these concepts. Arrays effectively model multiplication and help children develop multiplicative thinking and learn multiplication facts. In this article the authors show how an open-ended array problem enabled a…

  5. Goldstone bosons as fractional cosmic neutrinos.

    PubMed

    Weinberg, Steven

    2013-06-14

    It is suggested that Goldstone bosons may be masquerading as fractional cosmic neutrinos, contributing about 0.39 to what is reported as the effective number of neutrino types in the era before recombination. The broken symmetry associated with these Goldstone bosons is further speculated to be the conservation of the particles of dark matter. PMID:25165907

  6. Modeling Students' Mathematics Using Steffe's Fraction Schemes

    ERIC Educational Resources Information Center

    Norton, Anderson H.; McCloskey, Andrea V.

    2008-01-01

    Each year, more teachers learn about the successful intervention program known as Math Recovery (USMRC 2008; Wright 2003). The program uses Steffe's whole-number schemes to model, understand, and support children's development of whole-number reasoning. Readers are probably less familiar with Steffe's fraction schemes, which have proven similarly…

  7. Fractional Quantization of the Hall Effect

    DOE R&D Accomplishments Database

    Laughlin, R. B.

    1984-02-27

    The Fractional Quantum Hall Effect is caused by the condensation of a two-dimensional electron gas in a strong magnetic field into a new type of macroscopic ground state, the elementary excitations of which are fermions of charge 1/m, where m is an odd integer. A mathematical description is presented.

  8. Introducing the fractional order robotic Darwinian PSO

    NASA Astrophysics Data System (ADS)

    Couceiro, Micael S.; Martins, Fernando M. L.; Rocha, Rui P.; Ferreira, Nuno M. F.

    2012-11-01

    The Darwinian Particle Swarm Optimization (DPSO) is an evolutionary algorithm that extends the Particle Swarm Optimization using natural selection to enhance the ability to escape from sub-optimal solutions. An extension of the DPSO to multi-robot applications has been recently proposed and denoted as Robotic Darwinian PSO (RDPSO), benefiting from the dynamical partitioning of the whole population of robots, hence decreasing the amount of required information exchange among robots. This paper further extends the previously proposed algorithm using fractional calculus concepts to control the convergence rate, while considering the robot dynamical characteristics. Moreover, to improve the convergence analysis of the RDPSO, an adjustment of the fractional coefficient based on mobile robot constraints is presented and experimentally assessed with 2 real platforms. Afterwards, this novel fractional-order RDPSO is evaluated in 12 physical robots being further explored using a larger population of 100 simulated mobile robots within a larger scenario. Experimental results show that changing the fractional coefficient does not significantly improve the final solution but presents a significant influence in the convergence time because of its inherent memory property.

  9. Fractional calculus in viscoelasticity: An experimental study

    NASA Astrophysics Data System (ADS)

    Meral, F. C.; Royston, T. J.; Magin, R.

    2010-04-01

    Viscoelastic properties of soft biological tissues provide information that may be useful in medical diagnosis. Noninvasive elasticity imaging techniques, such as Magnetic Resonance Elastography (MRE), reconstruct viscoelastic material properties from dynamic displacement images. The reconstruction algorithms employed in these techniques assume a certain viscoelastic material model and the results are sensitive to the model chosen. Developing a better model for the viscoelasticity of soft tissue-like materials could improve the diagnostic capability of MRE. The well known "integer derivative" viscoelastic models of Voigt and Kelvin, and variations of them, cannot represent the more complicated rate dependency of material behavior of biological tissues over a broad spectral range. Recently the "fractional derivative" models have been investigated by a number of researchers. Fractional order models approximate the viscoelastic material behavior of materials through the corresponding fractional differential equations. This paper focuses on the tissue mimicking materials CF-11 and gelatin, and compares fractional and integer order models to describe their behavior under harmonic mechanical loading. Specifically, Rayleigh (surface) waves on CF-11 and gelatin phantoms are studied, experimentally and theoretically, in order to develop an independent test bed for assessing viscoelastic material models that will ultimately be used in MRE reconstruction algorithms.

  10. Pseudochromatic encoding fractional Fourier transform rainbow hologram

    NASA Astrophysics Data System (ADS)

    Guo, Yongkang; Huang, Qizhong; Du, Jinglei

    1998-08-01

    The FRTH is presented in this paper and its properties are discussed. Then we make a pseudo chromatic encoding fractional Fourier transform rainbow hologram, based on its specialty in its reconstruction and that the encoding color has relationship with the order of the reconstruction FRT system, a new type of anti-counterfeiting hologram is introduced.

  11. Cellulose fractionation with IONCELL-P.

    PubMed

    Stepan, A M; Monshizadeh, A; Hummel, M; Roselli, A; Sixta, H

    2016-10-01

    IONCELL-P is a solvent fractionation process, which can separate pulps almost quantitatively into pure cellulose and hemicellulose fractions using IL-water mixtures. In this work the role of the molecular weight of cellulose on its solubility in ionic liquid-water mixtures is studied. The aim of this study was to understand and identify the determining factors of this IONCELL-P fractionation. Cotton linters (CL) served as model cellulose substrate and was degraded by ozone treatment to adjust the molecular weight to that of hemicelluloses and low molar mass cellulose in commercial pulps. The ozone treated CLs were subjected to the IONCELL-P process using 1-ethyl-3-methylimidazolium acetate ([emim][OAc]) and water mixtures with a water content between 13.5 and 19wt%. Based on the molar mass distributions of dissolved and undissolved cellulose the effect of the molecular weight of cellulose in IL-water mixture appears to be a key factor in the fractionation process. PMID:27312618

  12. Addition of Fractions--The Unrecognized Problem.

    ERIC Educational Resources Information Center

    Howard, Arthur C.

    1991-01-01

    Discussed is why students have the tendency to apply an "add the numerators and add the denominators" approach to adding fractions. Suggested is providing examples exemplifying this intuitive approach from ratio, concentration, and distance problems to demonstrate under what conditions it is applicable in contrast to the addition algorithm. (MDH)

  13. Elementary School Students' Mental Representation of Fractions

    ERIC Educational Resources Information Center

    Pitta-Pantazi, Demetra; Gray, Eddie M.; Christou, Constantinos

    2004-01-01

    Based on psychological approaches that evoke mental representations through verbal and visual cues, this paper investigates the different kinds of mental representations projected by 8 to 11 year old children of identified arithmetical achievement when responding to verbal and visual stimuli associated with fractions. It examines how the visual…

  14. Theory of Nematic Fractional Quantum Hall States

    NASA Astrophysics Data System (ADS)

    You, Yizhi; Cho, Gil Young; Fradkin, Eduardo

    2014-10-01

    We derive an effective field theory for the isotropic-nematic quantum phase transition of fractional quantum Hall states. We demonstrate that for a system with an isotropic background the low-energy effective theory of the nematic order parameter has z =2 dynamical scaling exponent, due to a Berry phase term of the order parameter, which is related to the nondissipative Hall viscosity. Employing the composite fermion theory with a quadrupolar interaction between electrons, we show that a sufficiently attractive quadrupolar interaction triggers a phase transition from the isotropic fractional quantum Hall fluid into a nematic fractional quantum Hall phase. By investigating the spectrum of collective excitations, we demonstrate that the mass gap of the Girvin-MacDonald-Platzman mode collapses at the isotropic-nematic quantum phase transition. On the other hand, Laughlin quasiparticles and the Kohn collective mode remain gapped at this quantum phase transition, and Kohn's theorem is satisfied. The leading couplings between the nematic order parameter and the gauge fields include a term of the same form as the Wen-Zee term. A disclination of the nematic order parameter carries an unquantized electric charge. We also discuss the relation between nematic degrees of freedom and the geometrical response of the fractional quantum Hall fluid.

  15. 9 CFR 113.7 - Multiple fractions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Multiple fractions. 113.7 Section 113.7 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS STANDARD REQUIREMENTS...

  16. FRACTIONAL PENETRATION OF PAINT OVERSPRAY ARRESTORS

    EPA Science Inventory

    The report describes the development of fractional penetration curves for liquid droplet penetration of overspray arrestors for discrete droplet diameters from 0.3 to 10 micrometers. (NOTE: Fine particulates are particles with diameters of 10 micrometers or less.) These data poin...

  17. Students' Distributive Reasoning with Fractions and Unknowns

    ERIC Educational Resources Information Center

    Hackenberg, Amy J.; Lee, Mi Yeon

    2016-01-01

    To understand relationships between students' quantitative reasoning with fractions and their algebraic reasoning, a clinical interview study was conducted with 18 middle and high school students. The study included six students with each of three different multiplicative concepts, which are based on how students create and coordinate composite…

  18. Generalized Functions for the Fractional Calculus

    NASA Technical Reports Server (NTRS)

    Lorenzo, Carl F.; Hartley, Tom T.

    1999-01-01

    Previous papers have used two important functions for the solution of fractional order differential equations, the Mittag-Leffler functionE(sub q)[at(exp q)](1903a, 1903b, 1905), and the F-function F(sub q)[a,t] of Hartley & Lorenzo (1998). These functions provided direct solution and important understanding for the fundamental linear fractional order differential equation and for the related initial value problem (Hartley and Lorenzo, 1999). This paper examines related functions and their Laplace transforms. Presented for consideration are two generalized functions, the R-function and the G-function, useful in analysis and as a basis for computation in the fractional calculus. The R-function is unique in that it contains all of the derivatives and integrals of the F-function. The R-function also returns itself on qth order differ-integration. An example application of the R-function is provided. A further generalization of the R-function, called the G-function brings in the effects of repeated and partially repeated fractional poles.

  19. Manufacture and use of dairy protein fractions.

    PubMed

    Etzel, Mark R

    2004-04-01

    Fractionation of the mixture of proteins found in milk and whey to form pure, individual dairy protein fractions might allow individuals with special nutritional needs to tailor their diet to improve health. Ion exchange process chromatography was examined for this purpose using selective elution to release separately the proteins bound from whey and produce several protein fractions. Alternatively, bound proteins were released all at once to make a whey protein isolate. Prototype beverages containing these proteins were examined for clarity before and after thermal processing. Beverages containing whey protein isolate were clear at pH 2-7 before heating, but only beverages at pH fractions known to be high in essential amino acids and branched-chain amino acids. PMID:15051860

  20. A Statistical Treatment of Bioassay Pour Fractions

    NASA Technical Reports Server (NTRS)

    Barengoltz, Jack; Hughes, David W.

    2014-01-01

    The binomial probability distribution is used to treat the statistics of a microbiological sample that is split into two parts, with only one part evaluated for spore count. One wishes to estimate the total number of spores in the sample based on the counts obtained from the part that is evaluated (pour fraction). Formally, the binomial distribution is recharacterized as a function of the observed counts (successes), with the total number (trials) an unknown. The pour fraction is the probability of success per spore (trial). This distribution must be renormalized in terms of the total number. Finally, the new renormalized distribution is integrated and mathematically inverted to yield the maximum estimate of the total number as a function of a desired level of confidence ( P(fraction. The extension to recovery efficiency corrections is also presented. Now the product of recovery efficiency and pour fraction may be small enough that the likely value may be much larger than the usual calculation: the number of spores divided by that product. The use of this analysis would not be limited to microbiological data.