Sample records for diesel engine generator

  1. Effects of water-emulsified fuel on a diesel engine generator's thermal efficiency and exhaust.

    PubMed

    Syu, Jin-Yuan; Chang, Yuan-Yi; Tseng, Chao-Heng; Yan, Yeou-Lih; Chang, Yu-Min; Chen, Chih-Chieh; Lin, Wen-Yinn

    2014-08-01

    Water-emulsified diesel has proven itself as a technically sufficient improvement fuel to improve diesel engine fuel combustion emissions and engine performance. However, it has seldom been used in light-duty diesel engines. Therefore, this paper focuses on an investigation into the thermal efficiency and pollution emission analysis of a light-duty diesel engine generator fueled with different water content emulsified diesel fuels (WD, including WD-0, WD-5, WD-10, and WD-15). In this study, nitric oxide, carbon monoxide, hydrocarbons, and carbon dioxide were analyzed by a vehicle emission gas analyzer and the particle size and number concentration were measured by an electrical low-pressure impactor. In addition, engine loading and fuel consumption were also measured to calculate the thermal efficiency. Measurement results suggested that water-emulsified diesel was useful to improve the thermal efficiency and the exhaust emission of a diesel engine. Obviously, the thermal efficiency was increased about 1.2 to 19.9%. In addition, water-emulsified diesel leads to a significant reduction of nitric oxide emission (less by about 18.3 to 45.4%). However the particle number concentration emission might be increased if the loading of the generator becomes lower than or equal to 1800 W. In addition, exhaust particle size distributions were shifted toward larger particles at high loading. The consequence of this research proposed that the water-emulsified diesel was useful to improve the engine performance and some of exhaust emissions, especially the NO emission reduction. Implications: The accumulated test results provide a good basis to resolve the corresponding pollutants emitted from a light-duty diesel engine generator. By measuring and analyzing transforms of exhaust pollutant from this engine generator, the effects of water-emulsified diesel fuel and loading on emission characteristics might be more clear. Understanding reduction of pollutant emissions during the use of water-emulsified diesel helps improve the effectiveness of the testing program. The analyzed consequences provide useful information to the government for setting policies to curb pollutant emissions from a light-duty diesel engine generator more effectively.

  2. Stationary diesel engines for use with generators to supply electric power

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The procurement of stationary diesel engines for on-site generation of electric power deals with technical criteria and policy relating to federal agency, not electrical components of diesel-generator sets or for the design of electric-power generating plants or their air-pollution or noise control equipment.

  3. IET. Diesel engine for emergency generator is headed for installation ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    IET. Diesel engine for emergency generator is headed for installation in shielded control building (TAN-620). Date: September 21, 1954. INEEL negative no. 12145 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  4. 40 CFR 1039.135 - How must I label and identify the engines I produce?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... enough room for it and you put it in the owners manual instead. (9) For diesel-fueled engines, unless...). (12) State: “THIS ENGINE COMPLIES WITH U.S. EPA REGULATIONS FOR [MODEL YEAR] NONROAD DIESEL ENGINES... standards for generator-set engines, add the phrase “FOR GENERATOR SETS AND OTHER APPLICATIONS”. (ii) For...

  5. 40 CFR 1039.135 - How must I label and identify the engines I produce?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... enough room for it and you put it in the owners manual instead. (9) For diesel-fueled engines, unless...). (12) State: “THIS ENGINE COMPLIES WITH U.S. EPA REGULATIONS FOR [MODEL YEAR] NONROAD DIESEL ENGINES... standards for generator-set engines, add the phrase “FOR GENERATOR SETS AND OTHER APPLICATIONS”. (ii) For...

  6. 40 CFR 79.50 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... commonly used in heavy-duty engine evaluation. The EDS for heavy-duty diesel engines is specified in 40 CFR part 86, appendix I(f)(2). Evaporative Emission Generator (EEG) means a fuel tank or vessel to which...-fueled vehicles, Otto cycle methanol-fueled vehicles, diesel cycle diesel-fueled vehicles, and diesel...

  7. 40 CFR 79.50 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... commonly used in heavy-duty engine evaluation. The EDS for heavy-duty diesel engines is specified in 40 CFR part 86, appendix I(f)(2). Evaporative Emission Generator (EEG) means a fuel tank or vessel to which...-fueled vehicles, Otto cycle methanol-fueled vehicles, diesel cycle diesel-fueled vehicles, and diesel...

  8. Generation and characterization of diesel engine combustion emissions from petroleum diesel and soybean biodiesel fuels and application for inhalation exposure studies

    EPA Science Inventory

    Biodiesel made from the transesterification of plant- and anmal-derived oils is an important alternative fuel source for diesel engines. Although numerous studies have reported health effects associated with petroleum diesel emissions, information on biodiesel emissions are more ...

  9. REDUCING DIESEL NOX AND SOOT EMISSIONS VIA PARTICLE-FREE EXHAUST GAS RECIRCULATION - PHASE I

    EPA Science Inventory

    Diesel engines play an important role in the United States economy for power generation and transportation. However, NOx and soot emissions from both stationary and mobile diesel engines are a major contributor to air pollution. Many engine modifications and exhaust-after-t...

  10. More diesel generation could further fossil fuel economy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeffs, E.

    1976-05-01

    Following the introduction last year of their Seahorse medium-speed diesel engine, the manufacturers, Hawthorn Leslie (Engineers) Ltd., of Newcastle upon Tyne, have made an extensive analysis of the resource effectiveness of diesel-driven generating sets. Though directed towards the raising of funds to construct a demonstration power plant in the UK, the analysis is relevant elsewhere. In addition, the firm has now developed an energy recovery package for use with the basic engine to further improve the overall thermal efficiency of the system. Looked at in a British context, the basis of Hawthorn Leslie's case is this. The importance of coalmore » in electicity generation is evidence of its value as a national resource. Now that North Sea oil has emerged as a national energy resource, it must be used to the greatest effect; this means building diesel power stations to take over the mid-load cycle of utility operations. The analysis compares five prime movers: gas turbines, diesel engines, and steam turbines powered by oil- or coal-fired boilers, or thermal reactors. Capital and fixed running costs are shown. The diesel engine is the most efficient prime mover for electricity generation. With this novel energy recovery principle, greater utilization of fuel energy can be realized if direct heating is not required. (MCW)« less

  11. 40 CFR 86.007-15 - NOX and particulate averaging, trading, and banking for heavy-duty engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... discount factor of 0.8 (0.9 × 0.888 = 0.8). (5) For diesel engine families, the combined number of engines... heavy-duty diesel engine families for that model year. (6) The FEL must be expressed to the same number... 2007 and later model year diesel engine families, or generated for 2008 and later model year Otto-cycle...

  12. DELTA-DIESEL ENGINE LIGHT TRUCK APPLICATION Contract DE-FC05-97OR22606 Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hakim, Nabil Balnaves, Mike

    2003-05-27

    DELTA Diesel Engine Light Truck Application End of Contract Report DE-FC05-97-OR22606 EXECUTIVE SUMMARY This report is the final technical report of the Diesel Engine Light Truck Application (DELTA) program under contract DE-FC05-97-OR22606. During the course of this contract, Detroit Diesel Corporation analyzed, designed, tooled, developed and applied the ''Proof of Concept'' (Generation 0) 4.0L V-6 DELTA engine and designed the successor ''Production Technology Demonstration'' (Generation 1) 4.0L V-6 DELTA engine. The objectives of DELTA Program contract DE-FC05-97-OR22606 were to: Demonstrate production-viable diesel engine technologies, specifically intended for the North American LDT and SUV markets; Demonstrate emissions compliance with significant fuelmore » economy advantages. With a clean sheet design, DDC produced the DELTA engine concept promising the following attributes: 30-50% improved fuel economy; Low cost; Good durability and reliability; Acceptable noise, vibration and harshness (NVH); State-of-the-art features; Even firing, 4 valves per cylinder; High pressure common rail fuel system; Electronically controlled; Turbocharged, intercooled, cooled EGR; Extremely low emissions via CLEAN Combustion{copyright} technology. To demonstrate the engine technology in the SUV market, DDC repowered a 1999 Dodge Durango with the DELTA Generation 0 engine. Fuel economy improvements were approximately 50% better than the gasoline engine replaced in the vehicle.« less

  13. The experimental studies of operating modes of a diesel-generator set at variable speed

    NASA Astrophysics Data System (ADS)

    Obukhov, S. G.; Plotnikov, I. A.; Surkov, M. A.; Sumarokova, L. P.

    2017-02-01

    A diesel generator set working at variable speed to save fuel is studied. The results of experimental studies of the operating modes of an autonomous diesel generator set are presented. Areas for regulating operating modes are determined. It is demonstrated that the transfer of the diesel generator set to variable speed of the diesel engine makes it possible to improve the energy efficiency of the autonomous generator source, as well as the environmental and ergonomic performance of the equipment as compared with general industrial analogues.

  14. Research on fuzzy PID control to electronic speed regulator

    NASA Astrophysics Data System (ADS)

    Xu, Xiao-gang; Chen, Xue-hui; Zheng, Sheng-guo

    2007-12-01

    As an important part of diesel engine, the speed regulator plays an important role in stabilizing speed and improving engine's performance. Because there are so many model parameters of diesel-engine considered in traditional PID control and these parameters present non-linear characteristic.The method to adjust engine speed using traditional PID is not considered as a best way. Especially for the diesel-engine generator set. In this paper, the Fuzzy PID control strategy is proposed. Some problems about its utilization in electronic speed regulator are discussed. A mathematical model of electric control system for diesel-engine generator set is established and the way of the PID parameters in the model to affect the function of system is analyzed. And then it is proposed the differential coefficient must be applied in control design for reducing dynamic deviation of system and adjusting time. Based on the control theory, a study combined control with PID calculation together for turning fuzzy PID parameter is implemented. And also a simulation experiment about electronic speed regulator system was conducted using Matlab/Simulink and the Fuzzy-Toolbox. Compared with the traditional PID Algorithm, the simulated results presented obvious improvements in the instantaneous speed governing rate and steady state speed governing rate of diesel-engine generator set when the fuzzy logic control strategy used.

  15. Recent Developments in BMW's Diesel Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinparzer, F

    2003-08-24

    The image of BMW is very strongly associated to high power, sports biased, luxury cars in the premium car segment, however, particularly in the United States and some parts of Asia, the combination of a car in this segment with a diesel engine was up until now almost unthinkable. I feel sure that many people in the USA are not even aware that BMW produces diesel-powered cars. In Europe there is a completely contrary situation which, driven by the relative high fuel price, and the noticeable difference between gasoline and diesel prices, there has been a continuous growth in themore » diesel market since the early eighties. During this time BMW has accumulated more then 20 years experience in developing and producing powerful diesel engines for sports and luxury cars. BMW started the production of its 1st generation diesel engine in 1983 with a 2,4 l, turbocharged IDI engine in the 5 series model range. With a specific power of 35 kW/l, this was the most powerful diesel engine on the market at this time. In 1991 BMW introduced the 2nd generation diesel engine, beginning with a 2,5 l inline six, followed in 1994 by a 1,7 l inline four. All engines of this 2nd BMW diesel engine family were turbocharged and utilized an indirect injection combustion system. With the availability of high-pressure injection systems such as the common rail system, BMW developed its 3rd diesel engine family which consists of four different engines. The first was the 4-cylinder for the 3 series car in the spring of 1998, followed by the 6-cylinder in the fall of 1998 and then in mid 1999 by the worlds first V8 passenger car diesel with direct injection. Beginning in the fall of 2001 with the 4-cylinder, BMW reworked this DI engine family fundamentally. Key elements are an improved core engine design, the use of the common rail system of the 2nd generation and a new engine control unit with even better performance. Step by step, these technological improvements were introduce d to production for all members of this engine family and in all the different vehicle applications. In the next slide you can see the production volume of diesel engines by BMW. From the 1st family we produced {approx} 260,000 units over eight years and from the 2nd family {approx} 630,000 units were produced also during an eight year period. How successful the actual engine family with direct injection is can be seen in the increase of the production volume to 330,000 units for the year 2002 alone. The reason for this is that, in addition to the very low fuel consumption, this new engines provide excellent driving characteristics and a significant improvement in the level of noise and vibration. Page 2 of 5 In 2002, 26% of all BMW cars worldwide, and nearly 40% in Europe, were produced with a diesel engine under the hood. In the X5 we can see the biggest diesel success rate. Of all the X5 vehicles produced, 35% Worldwide and 68% in Europe are powered by a diesel engine.« less

  16. 65. FORWARD EMERGENCY DIESEL GENERATOR SET AFT LOOKING FORWARD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    65. FORWARD EMERGENCY DIESEL GENERATOR SET - AFT LOOKING FORWARD SHOWING TOP HALF OF FAIRBANKS MORSE 36D81/8 TEN CYLINDER DIESEL ENGINE SERIAL #951230 AND EXHAUST SYSTEM. - U.S.S. HORNET, Puget Sound Naval Shipyard, Sinclair Inlet, Bremerton, Kitsap County, WA

  17. ETR ELECTRICAL BUILDING, TRA648. EMERGENCY STANDBY GENERATOR AND DIESEL UNIT. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR ELECTRICAL BUILDING, TRA-648. EMERGENCY STANDBY GENERATOR AND DIESEL UNIT. METAL ROOF AND PUMICE BLOCK WALLS. CAMERA FACING SOUTHWEST. INL NEGATIVE NO. 56-3708. R.G. Larsen, Photographer, 11/13/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  18. 64. FORWARD EMERGENCY DIESEL GENERATOR SET STARBOARD LOOKING TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    64. FORWARD EMERGENCY DIESEL GENERATOR SET - STARBOARD LOOKING TO PORT SHOWING BOTTOM HALF OF FAIRBANKS MORSE 36D81/8 TEN CYLINDER DIESEL ENGINE SERIAL #951230 AND GENERAL ELECTRIC 1,000KW GENERATOR KVA 1250, RPM 720, SERIAL #6920274. - U.S.S. HORNET, Puget Sound Naval Shipyard, Sinclair Inlet, Bremerton, Kitsap County, WA

  19. Method for reduction of the NOX emissions in marine auxiliary diesel engine using the fuel mixtures containing biodiesel using HCCI combustion.

    PubMed

    Puškár, Michal; Kopas, Melichar; Puškár, Dušan; Lumnitzer, Ján; Faltinová, Eva

    2018-02-01

    The marine auxiliary diesel engines installed in the large transoceanic ships are used in order to generate the electricity but at the same time these engines are able to produce a significant amount of the harmful exhaust gas emissions. Therefore the International Maritime Organisation (IMO) concluded an agreement, which has to control generating of gaseous emissions in maritime transport. From this reason started to be used some of the alternative fuels in this branch. There was performed a study, which investigated emissions of the auxiliary marine diesel engine during application of the experimental fuels. The different testing fuels were created using the ratios 0%, 50%, 80% and 100% between the biodiesel and the ULSDF (Ultra Low Sulphur Diesel Fuel). The experimental measurements were performed at the different engine loading levels and various engine speeds in order to investigate an influence of the mixed fuels on the engine operational characteristics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. 40 CFR 86.1333-2010 - Transient test cycle generation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate... cycles. The heavy-duty transient engine cycles for Otto-cycle and diesel engines are listed in appendix I...

  1. 40 CFR 86.1333-2010 - Transient test cycle generation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate... cycles. The heavy-duty transient engine cycles for Otto-cycle and diesel engines are listed in appendix I...

  2. 40 CFR 86.1333-2010 - Transient test cycle generation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate... cycles. The heavy-duty transient engine cycles for Otto-cycle and diesel engines are listed in appendix I...

  3. Installation, Operation, and Operator's Maintenance of Diesel-Engine-Driven Generator Sets.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    This student guide, one of a series of correspondence training courses designed to improve the job performance of members of the Marine Corps, contains three study units dealing with the skills needed by individuals responsible for the installation, operation, and maintenance of diesel engine-driven generator sets. The first two units cover…

  4. Dual-fuel natural gas/diesel engines: Technology, performance, and emissions

    NASA Astrophysics Data System (ADS)

    Turner, S. H.; Weaver, C. S.

    1994-11-01

    An investigation of current dual-fuel natural gas/diesel engine design, performance, and emissions was conducted. The most pressing technological problems associated with dual-fuel engine use were identified along with potential solutions. It was concluded that dual-fuel engines can achieve low NO(sub x) and particulate emissions while retaining fuel-efficiency and BMEP levels comparable to those of diesel engines. The investigation also examined the potential economic impact of dual-fuel engines in diesel-electric locomotives, marine vessels, farm equipment, construction, mining, and industrial equipment, and stand-alone electricity generation systems. Recommendations for further additional funding to support research, development, and demonstration in these applications were then presented.

  5. Thermal barrier coatings for gas turbine and diesel engines

    NASA Technical Reports Server (NTRS)

    Miller, Robert A.; Brindley, William J.; Bailey, M. Murray

    1989-01-01

    The present state of development of thin thermal barrier coatings for aircraft gas turbine engines and thick thermal barrier coatings for truck diesel engines is assessed. Although current thermal barrier coatings are flying in certain gas turbine engines, additional advances will be needed for future engines. Thick thermal barrier coatings for truck diesel engines have advanced to the point where they are being seriously considered for the next generation of engine. Since coatings for truck engines is a young field of inquiry, continued research and development efforts will be required to help bring this technology to commercialization.

  6. Thermal barrier coatings application in diesel engines

    NASA Technical Reports Server (NTRS)

    Fairbanks, J. W.

    1995-01-01

    Commercial use of thermal barrier coatings in diesel engines began in the mid 70's by Dr,. Ingard Kvernes at the Central Institute for Industrial Research in Oslo, Norway. Dr. Kvernes attributed attack on diesel engine valves and piston crowns encountered in marine diesel engines in Norwegian ships as hot-corrosion attributed to a reduced quality of residual fuel. His solution was to coat these components to reduce metal temperature below the threshold of aggressive hot-corrosion and also to provide protection. The Department of Energy has supported thermal barrier coating development for diesel engine applications. In the Clean Diesel - 50 Percent Efficient (CD-50) engine for the year 2000, thermal barrier coatings will be used on piston crowns and possibly other components. The primary purpose of the thermal barrier coatings will be to reduce thermal fatigue as the engine peak cylinder pressure will nearly be doubled. As the coatings result in higher available energy in the exhaust gas, efficiency gains are achieved through use of this energy by turbochargers, turbocompounding or thermoelectric generators.

  7. Effective hydrogen generator testing for on-site small engine

    NASA Astrophysics Data System (ADS)

    Chaiwongsa, Praitoon; Pornsuwancharoen, Nithiroth; Yupapin, Preecha P.

    2009-07-01

    We propose a new concept of hydrogen generator testing for on-site small engine. In general, there is a trade-off between simpler vehicle design and infrastructure issues, for instance, liquid fuels such as gasoline and methanol for small engine use. In this article we compare the hydrogen gases combination the gasoline between normal systems (gasoline only) for small engine. The advantage of the hydrogen combines gasoline for small engine saving the gasoline 25%. Furthermore, the new concept of hydrogen combination for diesel engine, bio-diesel engine, liquid petroleum gas (LPG), natural gas vehicle (NGV), which is discussed in details.

  8. Evaluation of the impacts of biodiesel and second generation biofuels on NO(x) emissions for CARB diesel fuels.

    PubMed

    Hajbabaei, Maryam; Johnson, Kent C; Okamoto, Robert A; Mitchell, Alexander; Pullman, Marcie; Durbin, Thomas D

    2012-08-21

    The impact of biodiesel and second generation biofuels on nitrogen oxides (NO(x)) emissions from heavy-duty engines was investigated using a California Air Resources Board (CARB) certified diesel fuel. Two heavy-duty engines, a 2006 engine with no exhaust aftertreatment, and a 2007 engine with a diesel particle filter (DPF), were tested on an engine dynamometer over four different test cycles. Emissions from soy- and animal-based biodiesels, a hydrotreated renewable diesel, and a gas to liquid (GTL) fuel were evaluated at blend levels from 5 to 100%. NO(x) emissions consistently increased with increasing biodiesel blend level, while increasing renewable diesel and GTL blends showed NO(x) emissions reductions with blend level. NO(x) increases ranged from 1.5% to 6.9% for B20, 6.4% to 18.2% for B50, and 14.1% to 47.1% for B100. The soy-biodiesel showed higher NO(x) emissions increases compared to the animal-biodiesel. NO(x) emissions neutrality with the CARB diesel was achieved by blending GTL or renewable diesel fuels with various levels of biodiesel or by using di-tert-butyl peroxide (DTBP). It appears that the impact of biodiesel on NO(x) emissions might be a more important consideration when blended with CARB diesel or similar fuels, and that some form of NO(x) mitigation might be needed for biodiesel blends with such fuels.

  9. Regulated and unregulated emissions from a diesel engine fueled with biodiesel and biodiesel blended with methanol

    NASA Astrophysics Data System (ADS)

    Cheung, C. S.; Zhu, Lei; Huang, Zhen

    Experiments were carried out on a diesel engine operating on Euro V diesel fuel, pure biodiesel and biodiesel blended with methanol. The blended fuels contain 5%, 10% and 15% by volume of methanol. Experiments were conducted under five engine loads at a steady speed of 1800 rev min -1 to assess the performance and the emissions of the engine associated with the application of the different fuels. The results indicate an increase of brake specific fuel consumption and brake thermal efficiency when the diesel engine was operated with biodiesel and the blended fuels, compared with the diesel fuel. The blended fuels could lead to higher CO and HC emissions than biodiesel, higher CO emission but lower HC emission than the diesel fuel. There are simultaneous reductions of NO x and PM to a level below those of the diesel fuel. Regarding the unregulated emissions, compared with the diesel fuel, the blended fuels generate higher formaldehyde, acetaldehyde and unburned methanol emissions, lower 1,3-butadiene and benzene emissions, while the toluene and xylene emissions not significantly different.

  10. Effects of mixing system and pilot fuel quality on diesel-biogas dual fuel engine performance.

    PubMed

    Bedoya, Iván Darío; Arrieta, Andrés Amell; Cadavid, Francisco Javier

    2009-12-01

    This paper describes results obtained from CI engine performance running on dual fuel mode at fixed engine speed and four loads, varying the mixing system and pilot fuel quality, associated with fuel composition and cetane number. The experiments were carried out on a power generation diesel engine at 1500 m above sea level, with simulated biogas (60% CH(4)-40% CO(2)) as primary fuel, and diesel and palm oil biodiesel as pilot fuels. Dual fuel engine performance using a naturally aspirated mixing system and diesel as pilot fuel was compared with engine performance attained with a supercharged mixing system and biodiesel as pilot fuel. For all loads evaluated, was possible to achieve full diesel substitution using biogas and biodiesel as power sources. Using the supercharged mixing system combined with biodiesel as pilot fuel, thermal efficiency and substitution of pilot fuel were increased, whereas methane and carbon monoxide emissions were reduced.

  11. Particulate Emissions from a Stationary Engine Fueled with Ultra-Low-Sulfur Diesel and Waste-Cooking-Oil-Derived Biodiesel.

    PubMed

    Betha, Raghu; Balasubramanian, Rajasekhar

    2011-10-01

    Stationary diesel engines, especially diesel generators, are increasingly being used in both developing countries and developed countries because of increased power demand. Emissions from such engines can have adverse effects on the environment and public health. In this study, particulate emissions from a domestic stationary diesel generator running on ultra-low-sulfur diesel (ULSD) and biodiesel derived from waste cooking oil were characterized for different load conditions. Results indicated a reduction in particulate matter (PM) mass and number emissions while switching diesel to biodiesel. With increase in engine load, it was observed that particle mass increased, although total particle counts decreased for all the fuels. The reduction in total number concentration at higher loads was, however, dependent on percentage of biodiesel in the diesel-biodiesel blend. For pure biodiesel (B100), the reduction in PM emissions for full load compared to idle mode was around 9%, whereas for ULSD the reduction was 26%. A large fraction of ultrafine particles (UFPs) was found in the emissions from biodiesel compared to ULSD. Nearly 90% of total particle concentration in biodiesel emissions comprised ultrafine particles. Particle peak diameter shifted from a smaller to a lower diameter with increase in biodiesel percentage in the fuel mixture. [Box: see text].

  12. Particulate emissions from a stationary engine fueled with ultra-low-sulfur diesel and waste-cooking-oil-derived biodiesel.

    PubMed

    Betha, Raghu; Balasubramanian, Rajasekhar

    2011-10-01

    Stationary diesel engines, especially diesel generators, are increasingly being used in both developing countries and developed countries because of increased power demand. Emissions from such engines can have adverse effects on the environment and public health. In this study, particulate emissions from a domestic stationary diesel generator running on ultra-low-sulfur diesel (ULSD) and biodiesel derived from waste cooking oil were characterized for different load conditions. Results indicated a reduction in particulate matter (PM) mass and number emissions while switching diesel to biodiesel. With increase in engine load, it was observed that particle mass increased, although total particle counts decreased for all the fuels. The reduction in total number concentration at higher loads was, however, dependent on percentage of biodiesel in the diesel-biodiesel blend. For pure biodiesel (B100), the reduction in PM emissions for full load compared to idle mode was around 9%, whereas for ULSD the reduction was 26%. A large fraction of ultrafine particles (UFPs) was found in the emissions from biodiesel compared to ULSD. Nearly 90% of total particle concentration in biodiesel emissions comprised ultrafine particles. Particle peak diameter shifted from a smaller to a lower diameter with increase in biodiesel percentage in the fuel mixture.

  13. Performance of a small compression ignition engine fuelled by liquified petroleum gas

    NASA Astrophysics Data System (ADS)

    Ambarita, Himsar; Yohanes Setyawan, Eko; Ginting, Sibuk; Naibaho, Waldemar

    2017-09-01

    In this work, a small air cooled single cylinder of diesel engine with a rated power of 2.5 kW at 3000 rpm is tested in two different modes. In the first mode, the CI engines run on diesel fuel mode. In the second mode, the CI engine run on liquified petroleum gas (LPG) mode. In order to simulate the load, a generator is employed. The load is fixed at 800 W and engine speed varies from 2400 rpm to 3400 rpm. The out power, specific fuel consumption, and brake thermal efficiency resulted from the engine in both modes are compared. The results show that the output power of the CI engine run on LPG fuel is comparable with the engine run on diesel fuel. However, the specific fuel consumption of the CI engine with LPG fuel is higher 17.53% in average in comparison with the CI engine run on diesel fuel. The efficiency of the CI engine with LPG fuel is lower 21.43% in average in comparison with the CI engine run on diesel fuel.

  14. 21. POWER ROOM INTERIOR, DETAIL OF CATERPILLAR DIESEL ENGINE DIRECTLY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. POWER ROOM INTERIOR, DETAIL OF CATERPILLAR DIESEL ENGINE DIRECTLY CONNECTED TO GENERAL ELECTRIC 15 KW DC GENERATOR (ON LEFT), 110 VOLTS, 136 AMPS, 1200 RPM. INSTALLED 1942. - Death Valley Ranch, Power House, Death Valley Junction, Inyo County, CA

  15. 23. POWER ROOM INTERIOR, DETAIL OF FAIRBANKSMORSE DIESEL ENGINE, DIRECTLY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. POWER ROOM INTERIOR, DETAIL OF FAIRBANKS-MORSE DIESEL ENGINE, DIRECTLY CONNECTED TO FAIRBANKS-MORSE 30 KW DC GENERATOR, 125 VOLTS, 240 AMPS, 800 RPM. INSTALLED 1930. - Death Valley Ranch, Power House, Death Valley Junction, Inyo County, CA

  16. Effect of biodiesel fuel on "real-world", nonroad heavy duty diesel engine particulate matter emissions, composition and cytotoxicity.

    PubMed

    Martin, Nathan; Lombard, Melissa; Jensen, Kirk R; Kelley, Patrick; Pratt, Tara; Traviss, Nora

    2017-05-15

    Biodiesel is regarded by many as a "greener" alternative fuel to petroleum diesel with potentially lower health risk. However, recent studies examining biodiesel particulate matter (PM) characteristics and health effects are contradictive, and typically utilize PM generated by passenger car engines in laboratory settings. There is a critical need to analyze diesel and biodiesel PM generated in a "real-world" setting where heavy duty-diesel (HDD) engines and commercially purchased fuel are utilized. This study compares the mass concentrations, chemical composition and cytotoxicity of real-world PM from combustion of both petroleum diesel and a waste grease 20% biodiesel blend (B20) at a community recycling center operating HDD nonroad equipment. PM was analyzed for metals, elemental/organic carbon (EC/OC), polycyclic aromatic hydrocarbons (PAHs), and nitro-polycyclic aromatic hydrocarbons (N-PAHs). Cytotoxicity in a human lung epithelial cell line (BEAS-2B) following 24h exposure to the real-world particles was also evaluated. On average, higher concentrations for both EC and OC were measured in diesel PM. B20 PM contained significantly higher levels of Cu and Mo whereas diesel PM contained significantly higher concentrations of Pb. Principal component analysis determined Mo, Cu, and Ni were the metals with the greatest loading factor, suggesting a unique pattern related to the B20 fuel source. Total PAH concentration during diesel fuel use was 1.9 times higher than during B20 operations; however, total N-PAH concentration was 3.3 times higher during B20 use. Diesel PM cytotoxicity was 8.5 times higher than B20 PM (p<0.05) in a BEAS-2B cell line. This study contributes novel data on real-world, nonroad engine sources of metals, PAH and N-PAH species, comparing tailpipe PM vs. PM collected inside the equipment cabin. Results suggest PM generated from burning petroleum diesel in nonroad engines may be more harmful to human health, but the links between exposure, composition and toxicity are not straightforward. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. 46 CFR 112.35-1 - General.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Manually Controlled Emergency Systems Having a Storage Battery or a Diesel Engine or Gas Turbine Driven Generator as the Sole Emergency Power Source § 112.35-1 General. This subpart contains requirements applicable to emergency power installations having a manually controlled storage battery, diesel engine, or...

  18. 46 CFR 112.35-1 - General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Manually Controlled Emergency Systems Having a Storage Battery or a Diesel Engine or Gas Turbine Driven Generator as the Sole Emergency Power Source § 112.35-1 General. This subpart contains requirements applicable to emergency power installations having a manually controlled storage battery, diesel engine, or...

  19. Measurements of ion concentration in gasoline and diesel engine exhaust

    NASA Astrophysics Data System (ADS)

    Yu, Fangqun; Lanni, Thomas; Frank, Brian P.

    The nanoparticles formed in motor vehicle exhaust have received increasing attention due to their potential adverse health effects. It has been recently proposed that combustion-generated ions may play a critical role in the formation of these volatile nanoparticles. In this paper, we design an experiment to measure the total ion concentration in motor vehicle engine exhaust, and report some preliminary measurements in the exhaust of a gasoline engine (K-car) and a diesel engine (diesel generator). Under the experimental set-up reported in this study and for the specific engines used, the total ion concentration is ca. 3.3×10 6 cm -3 with almost all of the ions smaller than 3 nm in the gasoline engine exhaust, and is above 2.7×10 8 cm -3 with most of the ions larger than 3 nm in the diesel engine exhaust. This difference in the measured ion properties is interpreted as a result of the different residence times of exhaust inside the tailpipe/connecting pipe and the different concentrations of soot particles in the exhaust. The measured ion concentrations appear to be within the ranges predicted by a theoretical model describing the evolution of ions inside a pipe.

  20. 46 CFR 112.50-7 - Compressed air starting.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... AND POWER SYSTEMS Emergency Diesel and Gas Turbine Engine Driven Generator Sets § 112.50-7 Compressed... emergency generator room and a handcranked, diesel-powered air compressor for recharging the air receiver..., and energy storing devices must be in the emergency generator room, except for the main or auxiliary...

  1. 46 CFR 112.50-7 - Compressed air starting.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... AND POWER SYSTEMS Emergency Diesel and Gas Turbine Engine Driven Generator Sets § 112.50-7 Compressed... emergency generator room and a handcranked, diesel-powered air compressor for recharging the air receiver..., and energy storing devices must be in the emergency generator room, except for the main or auxiliary...

  2. Efficiency of Respirator Filter Media against Diesel Particulate Matter: A Comparison Study Using Two Diesel Particulate Sources.

    PubMed

    Burton, Kerrie A; Whitelaw, Jane L; Jones, Alison L; Davies, Brian

    2016-07-01

    Diesel engines have been a mainstay within many industries since the early 1900s. Exposure to diesel particulate matter (DPM) is a major issue in many industrial workplaces given the potential for serious health impacts to exposed workers; including the potential for lung cancer and adverse irritant and cardiovascular effects. Personal respiratory protective devices are an accepted safety measure to mitigate worker exposure against the potentially damaging health impacts of DPM. To be protective, they need to act as effective filters against carbon and other particulates. In Australia, the filtering efficiency of respiratory protective devices is determined by challenging test filter media with aerosolised sodium chloride to determine penetration at designated flow rates. The methodology outlined in AS/NZS1716 (Standards Australia International Ltd and Standards New Zealand 2012. Respiratory protective devices. Sydney/Wellington: SAI Global Limited/Standards New Zealand) does not account for the differences between characteristics of workplace contaminants like DPM and sodium chloride such as structure, composition, and particle size. This study examined filtering efficiency for three commonly used AS/NZS certified respirator filter models, challenging them with two types of diesel emissions; those from a diesel generator and a diesel engine. Penetration through the filter media of elemental carbon (EC), total carbon (TC), and total suspended particulate (TSP) was calculated. Results indicate that filtering efficiency assumed by P2 certification in Australia was achieved for two of the three respirator models for DPM generated using the small diesel generator, whilst when the larger diesel engine was used, filtering efficiency requirements were met for all three filter models. These results suggest that the testing methodology specified for certification of personal respiratory protective devices by Standards Australia may not ensure adequate protection for respirator users against DPM under all circumstances of diesel generated particles. © The Author 2016. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  3. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXIV, I--MAINTAINING THE FUEL SYSTEM PART III--CATERPILLAR DIESEL ENGINE, II--UNDERSTANDING THE VOLTAGE REGULATOR/ALTERNATOR.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE FUEL AND BATTERY CHARGING SYSTEM. TOPICS ARE (1) INJECTION TIMING CONTROLS, (2) GOVERNOR, (3) FUEL SYSTEM MAINTENANCE TIPS, (4) THE CHARGING SYSTEM, (5) REGULATING THE GENERATOR/ALTERNATOR, AND (6) CHARGING SYSTEM SERVICE…

  4. Application of an EGR system in a direct injection diesel engine to reduce NOx emissions

    NASA Astrophysics Data System (ADS)

    De Serio, D.; De Oliveira, A.; Sodré, J. R.

    2016-09-01

    This work presents the application of an exhaust gas recirculation (EGR) system in a direct injection diesel engine operating with diesel oil containing 7% biodiesel (B7). EGR rates of up to 10% were applied with the primary aim to reduce oxides of nitrogen (NOx) emissions. The experiments were conducted in a 44 kW diesel power generator to evaluate engine performance and emissions for different load settings. The use of EGR caused a peak pressure reduction during the combustion process and a decrease in thermal efficiency, mainly at high engine loads. A reduction of NOx emissions of up to 26% was achieved, though penalizing carbon monoxide (CO) and total hydrocarbons (THC) emissions.

  5. Electrical diesel particulate filter (DPF) regeneration

    DOEpatents

    Gonze, Eugene V; Ament, Frank

    2013-12-31

    An exhaust system that processes exhaust generated by an engine includes a diesel particulate filter (DPF) that is disposed downstream of the engine and that filters particulates from the exhaust. An electrical heater is disposed upstream of the DPF and selectively heats the exhaust to initiate combustion of the particulates within the exhaust as it passes therethrough. Heat generated by combustion of the particulates induces combustion of particulates within the DPF.

  6. Impaired vascular function after exposure to diesel exhaust generated at urban transient running conditions

    PubMed Central

    2010-01-01

    Background Traffic emissions including diesel engine exhaust are associated with increased respiratory and cardiovascular morbidity and mortality. Controlled human exposure studies have demonstrated impaired vascular function after inhalation of exhaust generated by a diesel engine under idling conditions. Objectives To assess the vascular and fibrinolytic effects of exposure to diesel exhaust generated during urban-cycle running conditions that mimic ambient 'real-world' exposures. Methods In a randomised double-blind crossover study, eighteen healthy male volunteers were exposed to diesel exhaust (approximately 250 μg/m3) or filtered air for one hour during intermittent exercise. Diesel exhaust was generated during the urban part of the standardized European Transient Cycle. Six hours post-exposure, vascular vasomotor and fibrinolytic function was assessed during venous occlusion plethysmography with intra-arterial agonist infusions. Measurements and Main Results Forearm blood flow increased in a dose-dependent manner with both endothelial-dependent (acetylcholine and bradykinin) and endothelial-independent (sodium nitroprusside and verapamil) vasodilators. Diesel exhaust exposure attenuated the vasodilatation to acetylcholine (P < 0.001), bradykinin (P < 0.05), sodium nitroprusside (P < 0.05) and verapamil (P < 0.001). In addition, the net release of tissue plasminogen activator during bradykinin infusion was impaired following diesel exhaust exposure (P < 0.05). Conclusion Exposure to diesel exhaust generated under transient running conditions, as a relevant model of urban air pollution, impairs vasomotor function and endogenous fibrinolysis in a similar way as exposure to diesel exhaust generated at idling. This indicates that adverse vascular effects of diesel exhaust inhalation occur over different running conditions with varying exhaust composition and concentrations as well as physicochemical particle properties. Importantly, exposure to diesel exhaust under ETC conditions was also associated with a novel finding of impaired of calcium channel-dependent vasomotor function. This implies that certain cardiovascular endpoints seem to be related to general diesel exhaust properties, whereas the novel calcium flux-related effect may be associated with exhaust properties more specific for the ETC condition, for example a higher content of diesel soot particles along with their adsorbed organic compounds. PMID:20653945

  7. 78 FR 38970 - California State Nonroad Engine Pollution Control Standards; Within-the-Scope Determination for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-28

    ... Control Measure for In-Use Diesel-Fueled Transport Refrigeration Units (TRU) and TRU Generator Sets and... Control Measure for In-Use Diesel-Fueled Transport Refrigeration Units (TRU) and TRU Generator Sets and...-Fueled Transport Refrigeration Units (TRU) and TRU Generator Sets and Facilities Where TRUs Operate Be...

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, Rodney

    The objective of this project was to define the scope and cost of a technology research and development program that will demonstrate the feasibility of using an off-the-shelf, unmodified, large bore diesel powered generator in a grid-connected application, utilizing various blends of BioDiesel as fuel. Furthermore, the objective of project was to develop an emissions control device that uses a catalytic process and BioDiesel (without the presence of Ammonia or Urea)to reduce NOx and other pollutants present in a reciprocating engine exhaust stream with the goal of redefining the highest emission reduction efficiencies possible for a diesel reciprocating generator. Process:more » Caterpillar Power Generation adapted an off-the-shelf Diesel Generator to run on BioDiesel and various Petroleum Diesel/BioDiesel blends. EmeraChem developed and installed an exhaust gas cleanup system to reduce NOx, SOx, volatile organics, and particulates. The system design and function was optimized for emissions reduction with results in the 90-95% range;« less

  9. 46 CFR 112.15-5 - Final emergency loads.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... reduction gear, propulsion diesel reduction gear, and ship's service generator turbine which needs external...) Each charging panel for: (1) Temporary emergency batteries; (2) Starting batteries for diesel engines or gas turbines that drive emergency generators; and (3) General alarm batteries. (d) One of the...

  10. 46 CFR 112.15-5 - Final emergency loads.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... reduction gear, propulsion diesel reduction gear, and ship's service generator turbine which needs external...) Each charging panel for: (1) Temporary emergency batteries; (2) Starting batteries for diesel engines or gas turbines that drive emergency generators; and (3) General alarm batteries. (d) One of the...

  11. Fuel Consumption Reduction for Diesel Power Generator Sets through the Application of an Advanced Turbocharger Operating at Constant Speed.

    DTIC Science & Technology

    1982-10-01

    engine driven, precision, 30KW-400Iz gen set. Similar calculations were made for the current, naturally aspirally , six cylinder diesel driving the same...turbocharged engine re- placing the current six cylinder, naturally aspirated , engine. Data from the engine model calculations was used to design a...VATN control rod so as to hold nearly a constant manifold pressure. Therefore the engine operates essentially like a naturally aspirated engine i.e

  12. Comparison of two total energy systems for a diesel power generation plant. [deep space network

    NASA Technical Reports Server (NTRS)

    Chai, V. W.

    1979-01-01

    The capabilities and limitations, as well as the associated costs for two total energy systems for a diesel power generation plant are compared. Both systems utilize waste heat from engine cooling water and waste heat from exhaust gases. Pressurized water heat recovery system is simple in nature and requires no engine modifications, but operates at lower temperature ranges. On the other hand, a two-phase ebullient system operates the engine at constant temperature, provides higher temperature water or steam to the load, but is more expensive.

  13. Role of engine age and lubricant chemistry on the characteristics of EGR soot

    NASA Astrophysics Data System (ADS)

    Adeniran, Olusanmi Adeniji

    Exhaust products of Diesel Engines serves as an environmental hazard, and to curtail this problem a Tier 3 emission standard was introduced which involves change in engine designs and introduction of EGR systems in Diesel engines. EGR systems, however has the challenge of generating soot which are abrasive and are major causes of wear in Diesel engines. This work has studied the characteristics of EGR soot formed in different range of engine age and in different lubricant chemistries of Mineral and Synthetic based diesel Oils. It is found that lubricant degradation is encouraged by less efficient combustion as engine age increases, and these are precursors to formation of crystalline and amorphous particles that are causes of wear in Diesel Engines. It is found that soot from new engine is dominated by calcium based crystals which are from calcium sulfonate detergent, which reduces formation of second phase particles that can be abrasive. Diversity and peak intensity is seen to increase in soot samples as engine age increases. This understanding of second phase particles formed in engines across age ranges can help in the durability development of engine, improvement of Oil formulation for EGR engines, and in development of chemistries for after-treatment Oil solutions that can combat formation of abrasive particles in Oils.

  14. Effect of first and second generation biodiesel blends on engine performance and emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azad, A. K., E-mail: azad.cqu@gmail.com, E-mail: a.k.azad@cqu.edu.au; Rasul, M. G., E-mail: m.rasul@cqu.edu.au; Bhuiya, M. M. K., E-mail: m.bhuiya@cqu.edu.au

    The biodiesel is a potential source of alternative fuel which can be used at different proportions with diesel fuel. This study experimentally investigated the effect of blend percentage on diesel engine performance and emission using first generation (soybean) and second generation (waste cooking) biodiesel. The characterization of the biodiesel was done according to ASTM and EN standards and compared with ultralow sulfur diesel (ULSD) fuel. A multi-cylinder test bed engine coupled with electromagnetic dynamometer and 5 gas analyzer were used for engine performance and emission test. The investigation was made using B5, B10 and B15 blends for both biodiesels. Themore » study found that brake power (BP) and brake torque (BT) slightly decreases and brake specific fuel consumption (BSFC) slightly increases with an increase in biodiesel blends ratio. Besides, a significant reduction in exhaust emissions (except NO{sub x} emission) was found for both biodiesels compared to ULSD. Soybean biodiesel showed better engine performance and emissions reduction compared with waste cooking biodiesel. However, NO{sub x} emission for B5 waste cooking biodiesel was lower than soybean biodiesel.« less

  15. Study of alcohol fuel of butanol and ethanol effect on the compression ignition (CI) engine performance, combustion and emission characteristic

    NASA Astrophysics Data System (ADS)

    Aziz, M. A.; Yusop, A. F.; Mat Yasin, M. H.; Hamidi, M. A.; Alias, A.; Hussin, H.; Hamri, S.

    2017-10-01

    Diesel engine which is one of the larger contributors to total consumption for petroleum is an attractive power unit used widely in many fields. However, diesel engines are among the main contributors to air pollutions for the large amount of emissions, such as CO, CO2 and NOx lead to an adverse effect on human health. Many researches have been done to find alternative fuels that are clean and efficient. Biodiesel is preferred as an alternative source for diesel engine which produces lower emission of pollutants. This study has focused on the evaluation of diesel and alcohol-diesel fuel properties and also the performance, combustion and exhaust emission from diesel engine fuelled with diesel and alcohol. Butanol and ethanol is blend with diesel fuel at 1:9 ratio. There are three test fuel that is tested which Diesel (100% diesel), D90BU10 (10% Butanol and 90% diesel) and D90E10 (10% Ethanol and 90% diesel). The comparison between diesel and alcohol-diesel blend has been made in terms of fuel properties characterization, engine performance such as brake power (BP) and brake specific fuel consumption (BSFC) also the in cylinder maximum pressure characteristic. Thus, exhaust gas emission of CO, CO2, NOx and O2 emission also has been observed at constant load of 50% but in different operating engine speed (1100 rpm, 1400 rpm, 1700 rpm, 2000 rpm and 2300 rpm). The results show the addition of 10% of each butanol and ethanol to diesel fuel had decreased the fuel density about 0.3% to 0.5% compared to mineral diesel. In addition, viscosity and energy content are also decrease. The addition of 10% butanol had improved the fuel cetane number however the ethanol blends react differently. In term of engine performance, as the engine speed increased, BP output also increase respectively. Hence, the alcohol blends fuel generates lower BP compared to diesel, plus BSFC for all test fuel shows decreasing trend at low and medium speed, however increased gradually at higher engine speed. Thus, D90BU10 had higher BSFC compared to mineral diesel and D90E10. In general, the addition of alcohol blend in diesel fuel had increase the BSFC. In term of in cylinder pressure, as the engine speed is increased, the crank angle noted to move away from TDC for all test fuel. The maximum cylinder pressure increased at low and medium speed, but decrease in higher engine speed. The addition of 10% of butanol and ethanol in the mineral diesel decreased the maximum cylinder pressure. Meanwhile, O2 emission of D90E10 is higher compared to D90BU10 due to higher oxygen content found in ethanol. The CO2 emission of D90BU10 recorded higher compared to mineral diesel due to the high oxygen contents in the alcohol. CO emission of alcohol blend on the other hand had lower emission at higher engine speed compared to mineral diesel. As engine speed is increased, NOx emission of mineral diesel and D90E10 had decreased gradually. However, D90BU10 had increased of NOx emission at lower to medium engine speed, than gradually decreased at higher engine speed.

  16. Diesel particulate filter (DPF) regeneration by electrical heating of resistive coatings

    DOEpatents

    Williamson, Weldon S [Malibu, CA; Gonze, Eugene V [Pinckney, MI

    2008-12-30

    An exhaust system that processes exhaust generated by an engine includes a diesel particulate filter (DPF) that is disposed downstream of the engine and that filters particulates from the exhaust. An electrical heater is integrally formed in an upstream end of the DPF and selectively heats the exhaust to initiate combustion of the particulates within the exhaust as it passes therethrough. Heat generated by combustion of the particulates induces combustion of particulates within the DPF.

  17. STEAM PLANT, TRA609. SECTION A SHOWS FEATURES OF NORTH/SOUTH AXIS: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    STEAM PLANT, TRA-609. SECTION A SHOWS FEATURES OF NORTH/SOUTH AXIS: STEAM GENERATOR AND CATWALK, STACK, DEGREASER FEED WATER HEATER IN PENTHOUSE, MEZZANINE, SURGE TANK PIT (BELOW GROUND LEVEL). UTILITY ROOM SHOWS DIESEL ENGINE GENERATORS, AIR TANKS, STARTING AIR COMPRESSORS. OUTSIDE SOUTH END ARE EXHAUST MUFFLER, AIR INTAKE OIL FILTER, RADIATOR COOLING UNIT, AIR SURGE TANK. SECTION B CROSSES WEST TO EAST NEAR SOUTH END OF BUILDING TO SHOW ARRANGEMENT OF DIESEL ENGINE GENERATOR, AIR DRIER, AFTER COOLER, AIR COMPRESSOR, AND BLOWDOWN TANK. BLAW-KNOX 3150-9-2, 6/1950. INL INDEX NO. 431-0609-00-098-100018, REV. 3. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  18. Performance and Emissions of a Small Compression Ignition Engine Run on Dual-fuel Mode (Diesel-Raw biogas)

    NASA Astrophysics Data System (ADS)

    Ambarita, H.; Sinulingga, E. P.; Nasution, M. KM; Kawai, H.

    2017-03-01

    In this work, a compression ignition (CI) engine is tested in dual-fuel mode (Diesel-Raw biogas). The objective is to examine the performance and emission characteristics of the engine when some of the diesel oil is replaced by biogas. The specifications of the CI engine are air cooled single horizontal cylinder, four strokes, and maximum output power of 4.86 kW. It is coupled with a synchronous three phase generator. The load, engine revolution, and biogas flow rate are varied from 600 W to 1500 W, 1000 rpm to 1500 rpm, 0 to 6 L/minute, respectively. The electric power, specific fuel consumption, thermal efficiency, gas emission, and diesel replacement ratio are analyzed. The results show that there is no significant difference of the power resulted by CI run on dual-fuel mode in comparison with pure diesel mode. However, the specific fuel consumption and efficiency decrease significantly as biogas flow rate increases. On the other hand, emission of the engine on dual-fuel mode is better. The main conclusion can be drawn is that CI engine without significant modification can be operated perfectly in dual-fuel mode and diesel oil consumption can be decreased up to 87.5%.

  19. EVALUATION OF METHODS FOR THE DETERMINATION OF DIESEL-GENERATED FINE PARTICULATE MATTER: PHYSICAL CHARACTERIZATION OF RESULTS

    EPA Science Inventory

    A multi-phase instrument comparison study was conducted on two different diesel engines on a dynamometer to compare commonly used particulate matter (PM) measurement techniques while sampling the same diesel exhaust aerosol and to evaluate inter- and intra-method variability. In...

  20. Near-Road Modeling and Measurement of Particles Generated by Nanoparticle Diesel Fuel Additive Use

    EPA Science Inventory

    Cerium oxide (ceria) nanoparticles (n-Ce) are used as a fuel-borne catalyst in diesel engines to reduce particulate emissions, yet the environmental and human health impacts of the ceria-doped diesel exhaust aerosols are not well understood. To bridge the gap between emission mea...

  1. 77 FR 41814 - Entergy Operations, Inc.; Grand Gulf Nuclear Station, Unit 1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-16

    ... Unit 1 result primarily from periodic testing of diesel generators and fire water pump diesel engines... rural. GGNS Unit 1 is a General Electric Mark 3 boiling-water reactor. Identification of the Proposed... following: replacing the reactor feed pump turbine rotors; replacing the main generator current transformers...

  2. Thermal barrier coatings application in diesel engines

    NASA Technical Reports Server (NTRS)

    Fairbanks, J. W.

    1995-01-01

    Commercial use of thermal barrier coatings in diesel engines began in the mid 70's by Dr. Ingard Kvernes at the Central Institute for Industrial Research in Oslo, Norway. Dr. Kvernes attributed attack on diesel engine valves and piston crowns encountered in marine diesel engines in Norwegian ships as hot-corrosion attributed to a reduced quality of residual fuel. His solution was to coat these components to reduce metal temperature below the threshold of aggressive hot-corrosion and also provide protection. Roy Kamo introduced thermal barrier coatings in his 'Adiabatic Diesel Engine' in the late 70's. Kamo's concept was to eliminate the engine block water cooling system and reduce heat losses. Roy reported significant performance improvements in his thermally insulated engine at the SAE Congress in 1982. Kamo's work stimulates major programs with insulated engines, particularly in Europe. Most of the major diesel engine manufacturers conducted some level of test with insulated combustion chamber components. They initially ran into increased fuel consumption. The German engine consortium had Prof. Woschni of the Technical Institute in Munich. Woschni conducted testing with pistons with air gaps to provide the insulation effects. Woschni indicated the hot walls of the insulated engine created a major increase in heat transfer he refers to as 'convection vive.' Woschni's work was a major factor in the abrupt curtailment of insulated diesel engine work in continental Europe. Ricardo in the UK suggested that combustion should be reoptimized for the hot-wall effects of the insulated combustion chamber and showed under a narrow range of conditions fuel economy could be improved. The Department of Energy has supported thermal barrier coating development for diesel engine applications. In the Clean Diesel - 50 Percent Efficient (CD-50) engine for the year 2000, thermal barrier coatings will be used on piston crowns and possibly other components. The primary purpose of the thermal barrier coatings will be to reduce thermal fatigue as the engine peak cylinder pressure will nearly be doubled. As the coatings result in higher available energy in the exhaust gas, efficiency gains are achieved through use of this energy by turbochargers, turbocompounding or thermoelectric generators.

  3. Development and characterization of a mobile photoacoustic sensor for on-line soot emission monitoring in diesel exhaust gas.

    PubMed

    Beck, H A; Niessner, R; Haisch, C

    2003-04-01

    Upcoming regulations for vehicle exhaust emission demand substantial reduction of particle emission in diesel exhaust. To achieve these emission levels, the car manufacturing industry is developing new combustion concepts and exhaust after-treatment techniques such as the use of catalysts and particle filters. Many of the state-of-the-art analytical instruments do not meet the required detection limits, in combination with a high temporal resolution necessary for engine optimization. This paper reports a new detection system and the first results of its application to on-line diesel exhaust soot measurements on a engine test bench (MAN diesel engine facility Nürnberg, Germany). The instrument is based on differential photoacoustic (PA) spectroscopy of black carbon aerosol. It contains two identical PA cells, one for the measurement of the aerosol particles and one which analyses the particle-free gas. Thus, a potential cross-sensitivity to gaseous absorbers in the exhaust gas can be excluded. The PA cells were characterized in a laboratory set-up, with water vapor as reference gas and artificial soot generated by a spark discharge generator. The detection limit was found to be 2 microg m(-3) BC (for diesel soot) with a sampling rate of 3 Hz. The temporal response of the system was found to be in the order of 1 s. After full characterization of the cells, the system was transferred into a mobile 19"-rack. Characterization of the mobile sensor system under real-world conditions was performed during several measurement campaigns at an engine test bench for heavy-duty diesel engines. Results for the limit of detection, the time resolution, accuracy, repeatability, and robustness of the sensor system are very promising with regards to a routine application of the system in engine development.

  4. Temperature field measurement research in high-speed diesel engine using laser induced fluorescence technology

    NASA Astrophysics Data System (ADS)

    Liu, Yongfeng; Zhang, You-tong; Gou, Chenhua; Tian, Hongsen

    2008-12-01

    Temperature laser- induced- fluorescence (LIF) 2-D imaging measurements using a new multi-spectral detection strategy are reported for high pressure flames in high-speed diesel engine. Schematic of the experimental set-up is outlined and the experimental data on the diesel engine is summarized. Experiment injection system is a third generation Bosch high-pressure common rail featuring a maximum pressure of 160 MPa. The injector is equipped with a six-hole nozzle, where each hole has a diameter of 0.124 mm. and slightly offset (by 1.0 mm) to the center of the cylinder axis to allow a better cooling of the narrow bridge between the exhaust valves. The measurement system includes a blower, which supplied the intake flow rate, and a prototype single-valve direct injection diesel engine head modified to lay down the swirled-type injector. 14-bit digital CCD cameras are employed to achieve a greater level of accuracy in comparison to the results of previous measurements. The temperature field spatial distributions in the cylinder for different crank angle degrees are carried out in a single direct-injection diesel engine.

  5. Evaluation of Potential Military Applications of Stirling Engines

    DTIC Science & Technology

    1988-07-01

    ES- 1 C. Generator Sn-,s (Mobile Electric Power) ..................................... ES-3 1. General Purpose...ES-2 ES-2. General Purpose Generator Sets in the US DoD Inventory ..................... ES-4 ES-3. Comparison of Typical Diesel Engines Used in DoD...Standard Family Generator Sets and Stirling Engines ....................................... ES-4 ES-4. Underwater Energy Storage

  6. Recycled diesel carbon nanoparticles for nanostructured battery anodes

    NASA Astrophysics Data System (ADS)

    Chen, Yuming; Liu, Chang; Sun, Xiaoxuan; Ye, Han; Cheung, Chunshun; Zhou, Limin

    2015-02-01

    Considerable attention has been devoted to using rational nanostructure design to address critical carbonaceous anode material issues for next-generation lithium-ion batteries (LIBs). However, the fabrication of nanostructured carbonaceous anode materials often involves complex processes and expensive starting materials. Diesel engine is an important source of nanostructured carbon particles with diameters ranging 20 nm-60 nm suspended in air, resulting in a serious scourge of global climate and a series of diseases such as lung cancer, asthma, and cardiovascular disease. Here, we show that diesel carbon nanoparticles collected from diesel engines can be chemically activated to create a porous structure. The resulting nanostructured carbon electrodes have a high specific capacity of 936 mAh g-1 after 40 cycles at 0.05 A/g, and excellent cycle stability while retaining a capacity of ∼210 mAh g-1 after 1200 cycles at 5 A/g. As recycled diesel carbon nanoparticles are readily available due to the several billion tons of diesel fuel consumed every year by diesel engines, their use represents an exciting source for nanostructured carbonaceous anode materials for high-performance LIBs and improves our environment and health.

  7. Dynamic Test Bed Analysis of Gas Energy Balance for a Diesel Exhaust System Fit with a Thermoelectric Generator

    NASA Astrophysics Data System (ADS)

    Fuc, Pawel; Lijewski, Piotr; Ziolkowski, Andrzej; Dobrzyński, Michal

    2017-05-01

    Analysis of the energy balance for an exhaust system of a diesel engine fit with an automotive thermoelectric generator (ATEG) of our own design has been carried out. A special measurement system and dedicated software were developed to measure the power generated by the modules. The research object was a 1.3-l small diesel engine with power output of 66 kW. The tests were carried out on a dynamic engine test bed that allows reproduction of an actual driving cycle expressed as a function V = f( t), simulating drivetrain (clutch, transmission) operating characteristics, vehicle geometrical parameters, and driver behavior. Measurements of exhaust gas thermodynamic parameters (temperature, pressure, and mass flow) as well as the voltage and current generated by the thermoelectric modules were performed during tests of our own design. Based on the results obtained, the flow of exhaust gas energy in the entire exhaust system was determined along with the ATEG power output. The ideal area of the exhaust system for location of the ATEG was defined to ensure the highest thermal energy recovery efficiency.

  8. Effect of diesel exhaust generated by a city bus engine on stress responses and innate immunity in primary bronchial epithelial cell cultures.

    PubMed

    Zarcone, M C; Duistermaat, E; Alblas, M J; van Schadewijk, A; Ninaber, D K; Clarijs, V; Moerman, M M; Vaessen, D; Hiemstra, P S; Kooter, I M

    2018-04-01

    Harmful effects of diesel emissions can be investigated via exposures of human epithelial cells, but most of previous studies have largely focused on the use of diesel particles or emission sources that are poorly representative of engines used in current traffic. We studied the cellular response of primary bronchial epithelial cells (PBECs) at the air-liquid interface (ALI) to the exposure to whole diesel exhaust (DE) generated by a Euro V bus engine, followed by treatment with UV-inactivated non-typeable Haemophilus influenzae (NTHi) bacteria to mimic microbial exposure. The effect of prolonged exposures was investigated, as well as the difference in the responses of cells from COPD and control donors and the effect of emissions generated during a cold start. HMOX1 and NQO1 expression was transiently induced after DE exposure. DE inhibited the NTHi-induced expression of human beta-defensin-2 (DEFB4A) and of the chaperone HSPA5/BiP. In contrast, expression of the stress-induced PPP1R15A/GADD34 and the chemokine CXCL8 was increased in cells exposed to DE and NTHi. HMOX1 induction was significant in both COPD and controls, while inhibition of DEFB4A expression by DE was significant only in COPD cells. No significant differences were observed when comparing cellular responses to cold engine start and prewarmed engine emissions. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Research on the 2nd generation biofuel BIOXDIESEL in aspects of emission of toxic substances in exhaust gases

    NASA Astrophysics Data System (ADS)

    Struś, M. S.; Poprawski, W.; Rewolte, M.

    2016-09-01

    This paper presents results of research of Diesel engines emission of toxic substances in exhaust gases fuelled with a second generation biofuel BIOXDIESEL, which is a blend of Fatty Acid Ethyl Esters obtained from waste resources such waste vegetable and animal fats, bioethanol and standard Diesel fuel. Presented results are very promising, showing that the emission of toxic substances in exhaust gases are significantly reduced when fuelling with BIOXDIESEL fuel in comparison with standard Diesel fuel.

  10. Study of emissions for a compression ignition engine fueled with a mix of DME and diesel

    NASA Astrophysics Data System (ADS)

    Jurchiş, Bogdan; Nicolae, Burnete; Călin, Iclodean; Nicolae Vlad, Burnete

    2017-10-01

    Currently, there is a growing demand for diesel engines, primarily due to the relatively low fuel consumption compared to spark-ignition engines. However, these engines have a great disadvantage in terms of pollution because they produce solid particles that ultimately form particulate matter (PM), which has harmful effects on human health and also on the environment. The toxic emissions from the diesel engine exhaust, like particulate matter (PM) and NOx, generated by the combustion of fossil fuels, lead to the necessity to develop green fuels which on one hand should be obtained from regenerative resources and on the other hand less polluting. In this paper, the authors focused on the amount of emissions produced by a diesel engine when running with a fuel mixture consisting of diesel and DME. Dimethyl ether (DME) is developed mainly by converting natural gas or biomass to synthesis gas (syngas). It is an extremely attractive resource for the future used in the transport industry, given that it can be obtained at low costs from renewable resources. Using DME mixed with diesel for the combustion process, besides the fact that it produces less smoke, the emission levels of particulate matter is reduced compared to diesel and in some situations, NOx emissions may decrease. DME has a high enough cetane number to perform well as a compression-ignition fuel but due to the poor lubrication and viscosity, it is difficult to be used as the main fuel for combustion

  11. Emission Characteristics of a Diesel Engine Operating with In-Cylinder Gasoline and Diesel Fuel Blending

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prikhodko, Vitaly Y; Curran, Scott; Barone, Teresa L

    2010-01-01

    Advanced combustion regimes such as homogeneous charge compression ignition (HCCI) and premixed charge compression ignition (PCCI) offer benefits of reduced nitrogen oxides (NOx) and particulate matter (PM) emissions. However, these combustion strategies often generate higher carbon monoxide (CO) and hydrocarbon (HC) emissions. In addition, aldehydes and ketone emissions can increase in these modes. In this study, the engine-out emissions of a compression-ignition engine operating in a fuel reactivity- controlled PCCI combustion mode using in-cylinder blending of gasoline and diesel fuel have been characterized. The work was performed on a 1.9-liter, 4-cylinder diesel engine outfitted with a port fuel injection systemmore » to deliver gasoline to the engine. The engine was operated at 2300 rpm and 4.2 bar brake mean effective pressure (BMEP) with the ratio of gasoline to diesel fuel that gave the highest engine efficiency and lowest emissions. Engine-out emissions for aldehydes, ketones and PM were compared with emissions from conventional diesel combustion. Sampling and analysis was carried out following micro-tunnel dilution of the exhaust. Particle geometric mean diameter, number-size distribution, and total number concentration were measured by a scanning mobility particle sizer (SMPS). For the particle mass measurements, samples were collected on Teflon-coated quartz-fiber filters and analyzed gravimetrically. Gaseous aldehydes and ketones were sampled using dinitrophenylhydrazine-coated solid phase extraction cartridges and the extracts were analyzed by liquid chromatography/mass spectrometry (LC/MS). In addition, emissions after a diesel oxidation catalyst (DOC) were also measured to investigate the destruction of CO, HC and formaldehydes by the catalyst.« less

  12. Analysis of Efficiency of the Ship Propulsion System with Thermochemical Recuperation of Waste Heat

    NASA Astrophysics Data System (ADS)

    Cherednichenko, Oleksandr; Serbin, Serhiy

    2018-03-01

    One of the basic ways to reduce polluting emissions of ship power plants is application of innovative devices for on-board energy generation by means of secondary energy resources. The combined gas turbine and diesel engine plant with thermochemical recuperation of the heat of secondary energy resources has been considered. It is suggested to conduct the study with the help of mathematical modeling methods. The model takes into account basic physical correlations, material and thermal balances, phase equilibrium, and heat and mass transfer processes. The paper provides the results of mathematical modeling of the processes in a gas turbine and diesel engine power plant with thermochemical recuperation of the gas turbine exhaust gas heat by converting a hydrocarbon fuel. In such a plant, it is possible to reduce the specific fuel consumption of the diesel engine by 20%. The waste heat potential in a gas turbine can provide efficient hydrocarbon fuel conversion at the ratio of powers of the diesel and gas turbine engines being up to 6. When the diesel engine and gas turbine operate simultaneously with the use of the LNG vapor conversion products, the efficiency coefficient of the plant increases by 4-5%.

  13. Diesels in combined cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuehn, S.E.

    1995-03-01

    This article examines why the diesel engine is a very attractive choice for producing power in the combined-cycle configuration. The medium-speed diesel is already one of the most efficient simple cycle sources of electricity, especially with lower grade fuels. Large units have heat-rate efficiencies as high as 45%, equating to a heat rate of 7,580 Btu/k Whr, and no other power production prime mover can match this efficiency. Diesels also offer designers fuel flexibility and can burn an extreme variety of fuels without sacrificing many of its positive operating attributes. Diesels are the first building block in a highly efficientmore » combined cycle system that relies on the hot gas and oxygen in the diesel`s exhaust to combust either natural gas, light distillate oil, heavy oil or coal, in a boiler. By using a fired boiler, steam can be generated at sufficient temperature and pressure to operate a Rankine steam cycle efficiently. Diesel combined-cycle plants can be configured in much the same way a gas turbine plant would be. However, the diesel combined-cycle scheme requires supplemental firing to generate appropriate steam conditions. The most efficient cycle, therefore, would not be achieved until combustion air and supplemental fuel are minimized to levels that satisfy steam conditions, steam generation and power generation constraints.« less

  14. Effect of Operating and Sampling Conditions on the Exhaust Gas Composition of Small-Scale Power Generators

    PubMed Central

    Smits, Marianne; Vanpachtenbeke, Floris; Horemans, Benjamin; De Wael, Karolien; Hauchecorne, Birger; Van Langenhove, Herman; Demeestere, Kristof; Lenaerts, Silvia

    2012-01-01

    Small stationary diesel engines, like in generator sets, have limited emission control measures and are therefore responsible for 44% of the particulate matter (PM) emissions in the United States. The diesel exhaust composition depends on operating conditions of the combustion engine. Furthermore, the measurements are influenced by the used sampling method. This study examines the effect of engine loading and exhaust gas dilution on the composition of small-scale power generators. These generators are used in different operating conditions than road-transport vehicles, resulting in different emission characteristics. Experimental data were obtained for gaseous volatile organic compounds (VOC) and PM mass concentration, elemental composition and nitrate content. The exhaust composition depends on load condition because of its effect on fuel consumption, engine wear and combustion temperature. Higher load conditions result in lower PM concentration and sharper edged particles with larger aerodynamic diameters. A positive correlation with load condition was found for K, Ca, Sr, Mn, Cu, Zn and Pb adsorbed on PM, elements that originate from lubricating oil or engine corrosion. The nitrate concentration decreases at higher load conditions, due to enhanced nitrate dissociation to gaseous NO at higher engine temperatures. Dilution on the other hand decreases PM and nitrate concentration and increases gaseous VOC and adsorbed metal content. In conclusion, these data show that operating and sampling conditions have a major effect on the exhaust gas composition of small-scale diesel generators. Therefore, care must be taken when designing new experiments or comparing literature results. PMID:22442670

  15. 4. Engine room, east end looking east toward engine #4 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Engine room, east end looking east toward engine #4 (Enterprise Diesel; reduction gear in foreground; in left rear, two D.C. generators with Ames Ironworks horizontal engine and sturtevant vertical engine - East Boston Pumping Station, Chelsea Street at Chelsea Creek, Boston, Suffolk County, MA

  16. Regulated and non-regulated emissions from in-use diesel-electric switching locomotives.

    PubMed

    Sawant, Aniket A; Nigam, Abhilash; Miller, J Wayne; Johnson, Kent C; Cocker, David R

    2007-09-01

    Diesel-electric locomotives are vital to the operation of freight railroads in the United States, and emissions from this source category have generated interest in recent years. They are also gaining attention as an important emission source under the larger set of nonroad sources, both from a regulated emissions and health effects standpoint. The present work analyzes regulated (NOx, PM, THC, CO) and non-regulated emissions from three in-use diesel-electric switching locomotives using standardized sampling and analytical techniques. The engines tested in this work were from 1950, 1960, and 1970 and showed a range of NOx and PM emissions. In general, non-regulated gaseous emissions showed a sharp increase as engines shifted from non-idle to idle operating modes. This is interesting from an emissions perspective since activity data shows that these locomotives spend around 60% of their time idling. In terms of polycyclicaromatic hydrocarbon (PAH) contributions, the dominance of naphthalene and its derivatives over the total PAH emissions was apparent, similar to observations for on-road diesel tractors. Among nonnaphthalenic species, itwas observed that lower molecular weight PAHs and n-alkanes dominated their respective compound classes. Regulated emissions from a newer technology engine used in a back-up generator (BUG) application were also compared againstthe present engines; it was determined that use of the newer engine may lower NOx and PM emissions by up to 30%. Another area of interest to regulators is better estimation of the marine engine inventory for port operations. Toward that end, a comparison of emissions from these engines with engine manufacturer data and the newer technology BUG engine was also performed for a marine duty cycle, another application where these engines are used typically with little modifications.

  17. Fault detection and diagnosis of diesel engine valve trains

    NASA Astrophysics Data System (ADS)

    Flett, Justin; Bone, Gary M.

    2016-05-01

    This paper presents the development of a fault detection and diagnosis (FDD) system for use with a diesel internal combustion engine (ICE) valve train. A novel feature is generated for each of the valve closing and combustion impacts. Deformed valve spring faults and abnormal valve clearance faults were seeded on a diesel engine instrumented with one accelerometer. Five classification methods were implemented experimentally and compared. The FDD system using the Naïve-Bayes classification method produced the best overall performance, with a lowest detection accuracy (DA) of 99.95% and a lowest classification accuracy (CA) of 99.95% for the spring faults occurring on individual valves. The lowest DA and CA values for multiple faults occurring simultaneously were 99.95% and 92.45%, respectively. The DA and CA results demonstrate the accuracy of our FDD system for diesel ICE valve train fault scenarios not previously addressed in the literature.

  18. Effects of FAME biodiesel and HVORD on emissions from an older-technology diesel engine.

    PubMed

    Bugarski, A D; Hummer, J A; Vanderslice, S E

    2017-12-01

    The results of laboratory evaluations were used to compare the potential of two alternative, biomass-derived fuels as a control strategy to reduce the exposure of underground miners to aerosols and gases emitted by diesel-powered equipment. The effects of fatty acid methyl ester (FAME) biodiesel and hydrotreated vegetable oil renewable diesel (HVORD) on criteria aerosol and gaseous emissions from an older-technology, naturally aspirated, mechanically controlled engine equipped with a diesel oxidation catalytic converter were compared with those of widely used petroleum-derived, ultralow-sulfur diesels (ULSDs). The emissions were characterized for four selected steady-state conditions. When fueled with FAME biodiesel and HVORD, the engine emitted less aerosols by total particulate mass, total carbon mass, elemental carbon mass and total number than when it was fueled with ULSDs. Compared with ULSDs, FAME biodiesel and HVORD produced aerosols that were characterized by single modal distributions, smaller count median diameters, and lower total and peak concentrations. For the majority of test cases, FAME biodiesel and HVORD favorably affected nitric oxide (NO) and adversely affected nitrogen dioxide (NO 2 ) generation. Therefore, the use of these alternative fuels appears to be a viable tool for the underground mining industry to address the issues related to emissions from diesel engines, and to transition toward more universal solutions provided by advanced engines with integrated exhaust after treatment technologies.

  19. Effects of FAME biodiesel and HVORD on emissions from an older-technology diesel engine

    PubMed Central

    Bugarski, A.D.; Hummer, J.A.; Vanderslice, S.E.

    2017-01-01

    The results of laboratory evaluations were used to compare the potential of two alternative, biomass-derived fuels as a control strategy to reduce the exposure of underground miners to aerosols and gases emitted by diesel-powered equipment. The effects of fatty acid methyl ester (FAME) biodiesel and hydrotreated vegetable oil renewable diesel (HVORD) on criteria aerosol and gaseous emissions from an older-technology, naturally aspirated, mechanically controlled engine equipped with a diesel oxidation catalytic converter were compared with those of widely used petroleum-derived, ultralow-sulfur diesels (ULSDs). The emissions were characterized for four selected steady-state conditions. When fueled with FAME biodiesel and HVORD, the engine emitted less aerosols by total particulate mass, total carbon mass, elemental carbon mass and total number than when it was fueled with ULSDs. Compared with ULSDs, FAME biodiesel and HVORD produced aerosols that were characterized by single modal distributions, smaller count median diameters, and lower total and peak concentrations. For the majority of test cases, FAME biodiesel and HVORD favorably affected nitric oxide (NO) and adversely affected nitrogen dioxide (NO2) generation. Therefore, the use of these alternative fuels appears to be a viable tool for the underground mining industry to address the issues related to emissions from diesel engines, and to transition toward more universal solutions provided by advanced engines with integrated exhaust after treatment technologies. PMID:29348698

  20. Effect of small proportion of butanol additive on the performance, emission, and combustion of Australian native first- and second-generation biodiesel in a diesel engine.

    PubMed

    Rahman, Md Mofijur; Rasul, Mohammad Golam; Hassan, Nur Md Sayeed; Azad, Abul Kalam; Uddin, Md Nasir

    2017-10-01

    This paper aims to investigate the effect of the addition of 5% alcohol (butanol) with biodiesel-diesel blends on the performance, emissions, and combustion of a naturally aspirated four stroke multi-cylinder diesel engine at different engine speeds (1200 to 2400 rpm) under full load conditions. Three types of local Australian biodiesel, namely macadamia biodiesel (MB), rice bran biodiesel (RB), and waste cooking oil biodiesel (WCB), were used for this study, and the data was compared with results for conventional diesel fuel (B0). Performance results showed that the addition of butanol with diesel-biodiesel blends slightly lowers the engine efficiency. The emission study revealed that the addition of butanol additive with diesel-biodiesel blends lowers the exhaust gas temperature (EGT), carbon monoxide (CO), nitrogen oxide (NOx), and particulate matter (PM) emissions whereas it increases hydrocarbon (HC) emissions compared to B0. The combustion results indicated that in-cylinder pressure (CP) for additive added fuel is higher (0.45-1.49%), while heat release rate (HRR) was lower (2.60-9.10%) than for B0. Also, additive added fuel lowers the ignition delay (ID) by 23-30% than for B0. Finally, it can be recommended that the addition of 5% butanol with Australian biodiesel-diesel blends can significantly lower the NOx and PM emissions.

  1. A 150 and 300 kW lightweight diesel aircraft engine design study

    NASA Technical Reports Server (NTRS)

    Brouwers, A. P.

    1980-01-01

    The diesel engine was reinvestigated as an aircraft powerplant through design study conducted to arrive at engine configurations and applicable advanced technologies. Two engines are discussed, a 300 kW six-cylinder engine for twin engine general aviation aircraft and a 150 kW four-cylinder engine for single engine aircraft. Descriptions of each engine include concept drawings, a performance analysis, stress and weight data, and a cost study. This information was used to develop two airplane concepts, a six-place twin and a four-place single engine aircraft. The aircraft study consists of installation drawings, computer generated performance data, aircraft operating costs, and drawings of the resulting airplanes. The performance data show a vast improvement over current gasoline-powered aircraft.

  2. 40 CFR 86.1333-90 - Transient test cycle generation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Transient test cycle generation. 86...) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate Exhaust Test Procedures § 86.1333-90 Transient test cycle generation. (a) The heavy-duty transient engine cycles for Otto...

  3. 2D temperature field measurement in a direct-injection engine using LIF technology

    NASA Astrophysics Data System (ADS)

    Liu, Yongfeng; Tian, Hongsen; Yang, Jianwei; Sun, Jianmin; Zhu, Aihua

    2011-12-01

    A new multi-spectral detection strategy for temperature laser- induced- fluorescence (LIF) 2-D imaging measurements is reported for high pressure flames in high-speed diesel engine. Schematic of the experimental set-up is outlined and the experimental data on the diesel engine is summarized. Experiment injection system is a third generation Bosch high-pressure common rail featuring a maximum pressure of 160MPa. The injector is equipped with a six-hole nozzle, where each hole has a diameter of 0.124 mm. and slightly offset to the center of the cylinder axis to allow a better cooling of the narrow bridge between the exhaust valves. The measurement system includes a blower, which supplied the intake flow rate, and a prototype single-valve direct injection diesel engine head modified to lay down the swirled-type injector. 14-bit digital CCD cameras are employed to achieve a greater level of accuracy in comparison to the results of previous measurements. The temperature field spatial distributions in the cylinder for different crank angle degrees are carried out in a single direct-injection diesel engine.

  4. Characteristics of particulate emissions from a diesel generator fueled with varying blends of biodiesel and fossil diesel.

    PubMed

    Tsai, Jen-Hsiung; Chen, Shui-Jen; Huang, Kuo-Lin; Lee, Wen-Jhy; Kuo, Wen-Chien; Lin, Wen-Yinn

    2011-01-01

    This study investigated the particulate matter (PM), particle-bound carbons, and polycyclic aromatic hydrocarbons (PAHs) emitted from a diesel-engine generator fuelled with blends of pure fossil diesel oil (D100) and varying percentages of waste-edible-oil biodiesel (W10, 10 vol %; W20, 20 vol %; W30, 30 vol %; and W50, 50 vol %) under generator loads of 0, 1.5, and 3 kW. On average, the PM emission factors of all blends was 30.5 % (range, 13.7-52.3 %) lower than that of D100 under the tested loads. Substituting pure fossil diesel oil with varying percentages of waste-edible-oil biodiesel reduced emissions of particle-bound total carbon (TC) and elemental carbon (EC). The W20 blend had the lowest particle-bound organic carbon (OC) emissions. Notably, W10, W20, and W30 also had lower Total-PAH emissions and lower total equivalent toxicity (Total-BaP(eq)) compared to D100. Additionally, the brake-specific fuel consumption of the generator correlated positively with the ratio of waste-edible-oil biodiesel to pure fossil diesel. However, generator energy efficiency correlated negatively with the ratio of waste-edible-oil biodiesel to pure fossil diesel.

  5. Investigations upon the effects of an auxiliary brake system on the working parameters of diesel engines

    NASA Astrophysics Data System (ADS)

    Suciu, Cornel; Mihai, Ioan

    2016-12-01

    Classical systems have the main disadvantage of being unable to ensure that high load diesel engine vehicles are slowed in good conditions, for the entire range of combinations of inclinations and lengths of sloped public roads. On such roads, where brakes are used repeatedly and for long periods, friction components that enter classical braking systems will overheat and lead to failure. The present paper aims to investigate, the efficiency of a braking system based on compression release, called a Jake Brake. In such a system, the exhaust valve is actuated at a certain predetermined angle of the crankshaft. The presented research was conducted on an experimental rig based on a four-stroke mono-cylinder diesel engine model Lombardini 6 LD400. Pressure and temperature evolutions were monitored before and during the use of the Jake Brake system. As the generated phonic pollution is the main disadvantage of such systems, noise generated in the vicinity of the engine was monitored as well. The monitored parameters were then plotted in diagrams that allowed evaluating the performances of the system.

  6. Systems and methods for controlling diesel engine emissions

    DOEpatents

    Webb, Cynthia Chaffin; Weber, Phillip Anthony; Khair, Magdi K.

    2004-06-01

    Systems and methods for controlling diesel engine emissions, including, for example, oxides of nitrogen emissions, particulate matter emissions, and the like. The emission control system according to this invention is provided in the exhaust passageway of a diesel engine and includes a catalyst-based particulate filter; and first and second lean NO.sub.x trap systems coupled to the catalyst-based particulate filter. The first and second lean NO.sub.x trap systems are arranged in a parallel flow configuration with each other. Each of the first and second lean NO.sub.x trap systems include a carbon monoxide generating catalyst device, a sulfur trap device, a lean NO.sub.x device, a supplemental fuel injector device, and a plurality of flow diverter devices.

  7. PM, carbon, and PAH emissions from a diesel generator fuelled with soy-biodiesel blends.

    PubMed

    Tsai, Jen-Hsiung; Chen, Shui-Jen; Huang, Kuo-Lin; Lin, Yuan-Chung; Lee, Wen-Jhy; Lin, Chih-Chung; Lin, Wen-Yinn

    2010-07-15

    Biodiesels have received increasing attention as alternative fuels for diesel engines and generators. This study investigates the emissions of particulate matter (PM), total carbon (TC), e.g., organic/elemental carbons, and polycyclic aromatic hydrocarbons (PAHs) from a diesel generator fuelled with soy-biodiesel blends. Among the tested diesel blends (B0, B10 (10 vol% soy-biodiesel), B20, and B50), B20 exhibited the lowest PM emission concentration despite the loads (except the 5 kW case), whereas B10 displayed lower PM emission factors when operating at 0 and 10 kW than the other fuel blends. The emission concentrations or factors of EC, OC, and TC were the lowest when B10 or B20 was used regardless of the loading. Under all tested loads, the average concentrations of total-PAHs emitted from the generator using the B10 and B20 were lower (by 38% and 28%, respectively) than those using pure petroleum diesel fuel (B0), while the emission factors of total-PAHs decreased with an increasing ratio of biodiesel to premium diesel. With an increasing loading, although the brake specific fuel consumption decreased, the energy efficiency increased despite the bio/petroleum diesel ratio. Therefore, soy-biodiesel is promising for use as an alternative fuel for diesel generators to increase energy efficiency and reduce the PM, carbon, and PAH emissions. 2010 Elsevier B.V. All rights reserved.

  8. 78 FR 721 - California State Nonroad Engine Pollution Control Standards; Transport Refrigeration Units...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-04

    ...; Transport Refrigeration Units; Request for Authorization; Opportunity for Public Hearing and Comment AGENCY... Diesel-Fueled Transport Refrigeration Units (TRU) and TRU Generator Sets and Facilities Where TRUs...''), regarding its ``Airborne Toxic Control Measure for In-Use Diesel-Fueled Transport Refrigeration Units (TRU...

  9. Emission factors and congener-specific characterization of PCDD/Fs, PCBs, PBDD/Fs and PBDEs from an off-road diesel engine using waste cooking oil-based biodiesel blends.

    PubMed

    Chen, Shui-Jen; Tsai, Jen-Hsiung; Chang-Chien, Guo-Ping; Huang, Kuo-Lin; Wang, Lin-Chi; Lin, Wen-Yinn; Lin, Chih-Chung; Yeh, C Kuei-Jyum

    2017-10-05

    Few studies have been performed up to now on the emission factors and congener profiles of persistent organic pollutants (POPs) emitted from off-road diesel engines. This investigation elucidates the emission factors and congener profiles of various POPs, namely polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), polychlorinated biphenyl (PCBs), polybrominated dibenzo-p-dioxins and polybrominated dibenzofurans (PBDD/Fs) and polybrominated diphenyl ethers (PBDEs), in the exhausts of a diesel generator fueled with different waste cooking oil-based biodiesel (WCO-based biodiesel) blends. The PCDD/Fs contributed 87.2% of total dioxin-like toxicity (PCDD/Fs+PCBs+PBDD/Fs) in the exhaust, while the PCBs and PBDD/Fs only contributed 8.2% and 4.6%, respectively. Compared with petroleum diesel, B20 (20vol% WCO-based biodiesel+80vol% diesel) reduced total toxicity by 46.5% for PCDD/Fs, 47.1% for PCBs, and 24.5% for PBDD/Fs, while B40 (40vol% WCO-based biodiesel+60vol% diesel) reduced it by 89.5% for PCDD/Fs, 57.1% for PCBs, and 63.2% for PBDD/Fs in POP emission factors. The use of WCO-based biodiesel not only solves the problem of waste oil disposal, but also lowers POP emissions from diesel generators. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Cleaner, More Efficient Diesel Engines

    ScienceCinema

    Musculus, Mark

    2018-01-16

    Mark Musculus, an engine combustion scientist at Sandia National Laboratories, led a study that outlines the science base for auto and engine manufacturers to build the next generation of cleaner, more efficient engines using low-temperature combustion. Here, Musculus discusses the work at Sandia's Combustion Research Facility.

  11. 40 CFR 80.522 - May used motor oil be dispensed into diesel motor vehicles or nonroad diesel engines?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... diesel motor vehicles or nonroad diesel engines? 80.522 Section 80.522 Protection of Environment... vehicles or nonroad diesel engines? No person may introduce used motor oil, or used motor oil blended with... later nonroad diesel engines (not including locomotive or marine diesel engines), unless both of the...

  12. 40 CFR 80.522 - May used motor oil be dispensed into diesel motor vehicles or nonroad diesel engines?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... diesel motor vehicles or nonroad diesel engines? 80.522 Section 80.522 Protection of Environment... vehicles or nonroad diesel engines? No person may introduce used motor oil, or used motor oil blended with... later nonroad diesel engines (not including locomotive or marine diesel engines), unless both of the...

  13. 40 CFR 80.522 - May used motor oil be dispensed into diesel motor vehicles or nonroad diesel engines?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... diesel motor vehicles or nonroad diesel engines? 80.522 Section 80.522 Protection of Environment... vehicles or nonroad diesel engines? No person may introduce used motor oil, or used motor oil blended with... later nonroad diesel engines (not including locomotive or marine diesel engines), unless both of the...

  14. 30 CFR 250.610 - Diesel engine air intakes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Diesel engine air intakes. 250.610 Section 250... Operations § 250.610 Diesel engine air intakes. No later than May 31, 1989, diesel engine air intakes shall be equipped with a device to shut down the diesel engine in the event of runaway. Diesel engines...

  15. 30 CFR 250.610 - Diesel engine air intakes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Diesel engine air intakes. 250.610 Section 250... Operations § 250.610 Diesel engine air intakes. No later than May 31, 1989, diesel engine air intakes shall be equipped with a device to shut down the diesel engine in the event of runaway. Diesel engines...

  16. SAMPLE CHARACTERIZATION OF AUTOMOBILE AND FORKLIFT DIESEL EXHAUST PARTICLES AND COMPARATIVE PULMONARY TOXICITY IN MICE

    EPA Science Inventory


    Abstract

    Two samples of diesel exhaust particles (DEP) predominate in DEP health effects research: an automobile-source DEP (A-DEP) sample and the National Institute of Standards Technology (NIST) standard reference material (SRM 2975) generated from a forklift engine...

  17. Estimation of CO2 reduction by parallel hard-type power hybridization for gasoline and diesel vehicles.

    PubMed

    Oh, Yunjung; Park, Junhong; Lee, Jong Tae; Seo, Jigu; Park, Sungwook

    2017-10-01

    The purpose of this study is to investigate possible improvements in ICEVs by implementing fuzzy logic-based parallel hard-type power hybrid systems. Two types of conventional ICEVs (gasoline and diesel) and two types of HEVs (gasoline-electric, diesel electric) were generated using vehicle and powertrain simulation tools and a Matlab-Simulink application programming interface. For gasoline and gasoline-electric HEV vehicles, the prediction accuracy for four types of LDV models was validated by conducting comparative analysis with the chassis dynamometer and OBD test data. The predicted results show strong correlation with the test data. The operating points of internal combustion engines and electric motors are well controlled in the high efficiency region and battery SOC was well controlled within ±1.6%. However, for diesel vehicles, we generated virtual diesel-electric HEV vehicle because there is no available vehicles with similar engine and vehicle specifications with ICE vehicle. Using a fuzzy logic-based parallel hybrid system in conventional ICEVs demonstrated that HEVs showed superior performance in terms of fuel consumption and CO 2 emission in most driving modes. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Chronic Obstructive Pulmonary Disease Mortality in Diesel-Exposed Railroad Workers

    PubMed Central

    Hart, Jaime E.; Laden, Francine; Schenker, Marc B.; Garshick, Eric

    2006-01-01

    Diesel exhaust is a mixture of combustion gases and ultrafine particles coated with organic compounds. There is concern whether exposure can result in or worsen obstructive airway diseases, but there is only limited information to assess this risk. U.S. railroad workers have been exposed to diesel exhaust since diesel locomotives were introduced after World War II, and by 1959, 95% of the locomotives were diesel. We conducted a case–control study of railroad worker deaths between 1981 and 1982 using U.S. Railroad Retirement Board job records and next-of-kin smoking, residential, and vitamin use histories. There were 536 cases with chronic obstructive pulmonary disease (COPD) and 1,525 controls with causes of death not related to diesel exhaust or fine particle exposure. After adjustment for age, race, smoking, U.S. Census region of death, vitamin use, and total years off work, engineers and conductors with diesel-exhaust exposure from operating trains had an increased risk of COPD mortality. The odds of COPD mortality increased with years of work in these jobs, and those who had worked ≥ 16 years as an engineer or conductor after 1959 had an odds ratio of 1.61 (95% confidence interval, 1.12–2.30). These results suggest that diesel-exhaust exposure contributed to COPD mortality in these workers. Further study is needed to assess whether this risk is observed after exposure to exhaust from later-generation diesel engines with modern emission controls. PMID:16835052

  19. 40 CFR 69.52 - Non-motor vehicle diesel fuel.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... diesel vehicles and engines Its use may damage these vehicles and engines. For use in all other diesel vehicles and engines. (ii) 15 ppm sulfur diesel fuel. From June 1, 2006 through May 31, 2010. ULTRA-LOW... and engines. Recommended for use in all diesel vehicles and engines. (iii) 15 ppm sulfur diesel fuel...

  20. Onboard Plasmatron Hydrogen Production for Improved Vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel R. Cohn; Leslie Bromberg; Kamal Hadidi

    2005-12-31

    A plasmatron fuel reformer has been developed for onboard hydrogen generation for vehicular applications. These applications include hydrogen addition to spark-ignition internal combustion engines, NOx trap and diesel particulate filter (DPF) regeneration, and emissions reduction from spark ignition internal combustion engines First, a thermal plasmatron fuel reformer was developed. This plasmatron used an electric arc with relatively high power to reform fuels such as gasoline, diesel and biofuels at an oxygen to carbon ratio close to 1. The draw back of this device was that it has a high electric consumption and limited electrode lifetime due to the high temperaturemore » electric arc. A second generation plasmatron fuel reformer was developed. It used a low-current high-voltage electric discharge with a completely new electrode continuation. This design uses two cylindrical electrodes with a rotating discharge that produced low temperature volumetric cold plasma., The lifetime of the electrodes was no longer an issue and the device was tested on several fuels such as gasoline, diesel, and biofuels at different flow rates and different oxygen to carbon ratios. Hydrogen concentration and yields were measured for both the thermal and non-thermal plasmatron reformers for homogeneous (non-catalytic) and catalytic reforming of several fuels. The technology was licensed to an industrial auto part supplier (ArvinMeritor) and is being implemented for some of the applications listed above. The Plasmatron reformer has been successfully tested on a bus for NOx trap regeneration. The successful development of the plasmatron reformer and its implementation in commercial applications including transportation will bring several benefits to the nation. These benefits include the reduction of NOx emissions, improving engine efficiency and reducing the nation's oil consumption. The objective of this program has been to develop attractive applications of plasmatron fuel reformer technology for onboard applications in internal combustion engine vehicles using diesel, gasoline and biofuels. This included the reduction of NOx and particulate matter emissions from diesel engines using plasmatron reformer generated hydrogen-rich gas, conversion of ethanol and bio-oils into hydrogen rich gas, and the development of new concepts for the use of plasmatron fuel reformers for enablement of HCCI engines.« less

  1. Truck Thermoacoustic Generator and Chiller

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keolian, Robert

    2011-03-31

    This Final Report describes the accomplishments of the US Department of Energy (DOE) cooperative agreement project DE-FC26-04NT42113 - Truck Thermoacoustic Generator and Chiller - whose goal is to design, fabricate and test a thermoacoustic piezoelectric generator and chiller system for use on over-the-road heavy-duty-diesel trucks, driven alternatively by the waste heat of the main diesel engine exhaust or by a burner integrated into the thermoacoustic system. The thermoacoustic system would utilize engine exhaust waste heat to generate electricity and cab air conditioning, and would also function as an auxiliary power unit (APU) for idle reduction. The unit was to bemore » tested in Volvo engine performance and endurance test cells and then integrated onto a Class 8 over-the-road heavy-duty-diesel truck for further testing on the road. The project has been a collaboration of The Pennsylvania State University Applied Research Laboratory, Los Alamos National Laboratory, Clean Power Resources Inc., and Volvo Powertrain (Mack Trucks Inc.). Cost share funding was provided by Applied Research Laboratory, and by Clean Power Resources Inc via its grant from Innovation Works - funding that was derived from the Commonwealth of Pennsylvania. Los Alamos received its funding separately through DOE Field Work Proposal 04EE09.« less

  2. Safe harbor: protecting ports with shipboard fuel cells.

    PubMed

    Taylor, David A

    2006-04-01

    With five of the largest harbors in the United States, California is beginning to take steps to manage the large amounts of pollution generated by these bustling centers of transport and commerce. One option for reducing diesel emissions is the use of fuel cells, which run cleaner than diesel and other internal combustion engines. Other technologies being explored by harbor officials are diesel-electric hybrid and gas turbine locomotives for moving freight within port complexes.

  3. 40 CFR 86.347-79 - Alternative calculations for diesel engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.347-79 Alternative calculations for diesel engines. (a) This section applies to Diesel engines only. Gasoline-fueled engines must use the calculations in § 86.345. (b) For Diesel engines, the...

  4. 40 CFR 86.347-79 - Alternative calculations for diesel engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.347-79 Alternative calculations for diesel engines. (a) This section applies to Diesel engines only. Gasoline-fueled engines must use the calculations in § 86.345. (b) For Diesel engines, the...

  5. Operating results of a KU30 diesel cogeneration plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shioda, Kiyoshi; Kakinuma, Takashi; Nishido, Takashi

    1995-11-01

    Diesel cogeneration plants provide high generation ratios, the ability to operate on heavy fuel oil, small space requirements, short delivery terms and easy starting and stopping. The Mitsubishi type KU30 diesel engine is well-suited for meeting the demands of these applications. The KU30 engine (bore 300 x stroke 380 mm) covers an output range from 3500 to 5000 kW at 720 or 750 r/min. Performance results show that total power failures have completely disappeared, thanks to improvements in stable power supply and the reliability of the power source. They also show that the rate of private power generation has accountedmore » for more than 90% of total power consumption in the plant, and that the unit cost of electric power could be reduced by three yen (per kilowatt hour) compared with that of purchased power. This paper describes the design and operating results from a typical plant.« less

  6. Biological activity of particle exhaust emissions from light-duty diesel engines.

    PubMed

    Carraro, E; Locatelli, A L; Ferrero, C; Fea, E; Gilli, G

    1997-01-01

    Whole diesel exhaust has been classified recently as a probable carcinogen, and several genotoxicity studies have found particulate exhaust to be clearly mutagenic. Moreover, genotoxicity of diesel particulate is greatly influenced by fuel nature and type of combustion. In order to obtain an effective environmental pollution control, combustion processes using alternative fuels are being analyzed presently. The goal of this study is to determine whether the installation of exhaust after treatment-devices on two light-duty, exhaust gas recirculation (EGR) valve-equipped diesel engines (1930 cc and 2500 cc) can reduce the mutagenicity associated with particles collected during U.S.A. and European driving cycles. Another interesting object was to compare the ability of alternative biodiesel and conventional diesel fuels to reduce the mutagenic activity associated with collected particles from two light duty diesel engines (both 1930 cc) during the European driving cycle. SOF mutagenicity was assayed using the Salmonella/microsome test (TA 98 and TA 100 strains, +/- S9 fraction). In the first part of our study, the highest mutagenicity was revealed by TA98 strain without enzymatic activation, suggesting a direct-acting mutagenicity prevalence in diesel particulate. The 2500 cc engine revealed twofold mutagenic activity compared with the 1930 cc engine (both EGR valve equipped), whereas an opposite result was found in particulate matter amount. The use of a noncatalytic ceramic trap produced a decrease of particle mutagenic activity in the 2500 cc car, whereas an enhancement in the 1930 cc engine was found. The catalytic converter and the electrostatic filter installed on the 2500 cc engine yielded a light particle amount and an SOF mutagenicity decrease. A greater engine stress was obtained using European driving cycles, which caused the strongest mutagenicity/km compared with the U.S.A. cycles. In the second part of the investigation, even though a small number of assays were available, exhaust emission generation by biodiesel fuel seemed to yield a smaller environmental impact than that of the referenced diesel fuel. The results point out the usefulness of mutagenicity testing in the research of both newer, more efficient automotive aftertreatment devices and less polluting fuels.

  7. Investigating the pros and cons of browns gas and varying EGR on combustion, performance, and emission characteristics of diesel engine.

    PubMed

    Thangaraj, Suja; Govindan, Nagarajan

    2018-01-01

    The significance of mileage to the fruitful operation of a trucking organization cannot be downplayed. Fuel is one of the biggest variable expenses in a trucking wander. An attempt is made in this research to improve the combustion efficiency of a diesel engine for better fuel economy by introducing hydroxy gas which is also called browns gas or HHO gas in the suction line, without compromising performance and emission. Brown's gas facilitates the air-fuel mixture to ignite faster and efficient combustion. By considering safety and handling issues in automobiles, HHO gas generation by electrolysis of water in the presence of sodium bicarbonate electrolytes (NaHCO 3 ) and usage was explored in this research work over compressed pure hydrogen, due to generation and capacity of immaculate hydrogen as of now confines the application in diesel engine operation. Brown's gas was utilized as a supplementary fuel in a single-cylinder, four-stroke compression ignition (CI) engine. Experiments were carried out on a constant speed engine at 1500 rpm, result shows at constant HHO flow rate of 0.73 liter per minute (LPM), brake specific fuel consumption (BSFC) decreases by 7% at idle load to 16% at full load, and increases brake thermal efficiency (BTE) by 8.9% at minimum load to 19.7% at full load. In the dual fuel (diesel +HHO) operation, CO emissions decreases by 19.4, 64.3, and 34.6% at 25, 50, and 75% load, respectively, and unburned hydrocarbon (UHC) emissions decreased by 11.3% at minimum load to 33.5% at maximum load at the expense of NO x emission increases by 1.79% at 75% load and 1.76% at full load than neat diesel operation. The negative impact of an increase in NO x is reduced by adding EGR. It was evidenced in this experimental work that the use of Brown's gas with EGR in the dual fuel mode in a diesel engine improves the fuel efficiency, performance, and reduces the exhaust emissions.

  8. Near-road modeling and measurement of cerium-containing particles generated by nanoparticle diesel fuel additive use

    EPA Science Inventory

    Cerium oxide nanoparticles (nCe) are used as a fuel-borne catalyst in diesel engines to reduce particulate emissions, yet the environmental and human health impacts of the exhaust particles are not well understood. To bridge the gap between emission measurements and ambient impac...

  9. Thermal efficiency and environmental performances of a biogas-diesel stationary engine.

    PubMed

    Bilcan, A; Le Corre, O; Delebarre, A

    2003-09-01

    Municipal and agricultural waste, and sludge from wastewater treatment represent a large source of pollution. Gaseous fuels can be produced from waste decomposition and then used to run internal combustion engines for power and heat generation. The present paper focuses on thermal efficiency and environmental performances of dual-fuel engines fuelled with biogas. Experiments have been carried out on a Lister-Petter single cylinder diesel engine, modified for dual-fuel operation. Natural gas was first used as the primary fuel. An empirical correlation was determined to predict the engine load for a given mass flow rate for the pilot fuel (diesel) and for the primary fuel (natural gas). That correlation has then been tested for three synthesized biogas compositions. Computations were performed and the error was estimated to be less than 10%. Additionally, NOx and CO2 contents were measured from exhaust gases. Based on exhausts gas temperature, the activation energy and the pre-exponential factor of an Arrhenius law were then proposed, resulting in a simpler mean to predict NOx.

  10. Evaluation Of Rotation Frequency Gas-Diesel Engines When Using Automatic Control System

    NASA Astrophysics Data System (ADS)

    Zhilenkov, A.; Efremov, A.

    2017-01-01

    A possibility of quality improvement of stabilization of rotation frequency of the gas-diesels used as prime mover of generator set in the multigenerator units working for abruptly variable load of large power is considered. An evaluation is made on condition of fuzzy controller use developed and described by the authors in a number of articles. An evaluation has shown that theoretically, the revolution range of gas-diesel engine may be reduced at 25-30 times at optimal settings of the controller in all the power range. The results of modeling showing a considerable quality improvement of transient processes in the investigated system at a sharp change of loading are presented in this article.

  11. Maritime Fuel Cell Generator Project.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pratt, Joseph William

    Fuel costs and emissions in maritime ports are an opportunity for transportation energy efficiency improvement and emissions reduction efforts. Ocean-going vessels, harbor craft, and cargo handling equipment are still major contributors to air pollution in and around ports. Diesel engine costs continually increase as tighter criteria pollutant regulations come into effect and will continue to do so with expected introduction of carbon emission regulations. Diesel fuel costs will also continue to rise as requirements for cleaner fuels are imposed. Both aspects will increase the cost of diesel-based power generation on the vessel and on shore. Although fuel cells have beenmore » used in many successful applications, they have not been technically or commercially validated in the port environment. One opportunity to do so was identified in Honolulu Harbor at the Young Brothers Ltd. wharf. At this facility, barges sail regularly to and from neighbor islands and containerized diesel generators provide power for the reefers while on the dock and on the barge during transport, nearly always at part load. Due to inherent efficiency characteristics of fuel cells and diesel generators, switching to a hydrogen fuel cell power generator was found to have potential emissions and cost savings.« less

  12. Conventional engine technology. Volume 2: Status of diesel engine technology

    NASA Technical Reports Server (NTRS)

    Schneider, H. W.

    1981-01-01

    The engines of diesel cars marketed in the United States were examined. Prominent design features, performance characteristics, fuel economy and emissions data were compared. Specific problems, in particular those of NO and smoke emissions, the effects of increasing dieselization on diesel fuel price and availability, current R&D work and advanced diesel concepts are discussed. Diesel cars currently have a fuel economy advantage over gasoline engine powered cars. Diesel drawbacks (noise and odor) were reduced to a less objectionable level. An equivalent gasoline engine driveability was obtained with turbocharging. Diesel manufacturers see a growth in the diesel market for the next ten years. Uncertainties regarding future emission regulation may inhibit future diesel production investments. With spark ignition engine technology advancing in the direction of high compression ratios, the fuel economy advantages of the diesel car is expected to diminish. To return its fuel economy lead, the diesel's potential for future improvement must be used.

  13. The physics of pulsed streamer discharge in high pressure air and applications to engine techonologies

    NASA Astrophysics Data System (ADS)

    Lin, Yung-Hsu

    The goal of this dissertation is to study high pressure streamers in air and apply it to diesel engine technologies. Nanosecond scale pulsed high voltage discharges in air/fuel mixtures can generate radicals which in turn have been shown to improve combustion efficiency in gasoline fueled internal combustion engines. We are exploring the possibility to extend such transient plasma generation and expected radical species generation to the range of pressures encountered in compression-ignition (diesel) engines having compression ratios of ˜20:1, thereby improving lean burning efficiency and extending the range of lean combustion. At the beginning of this dissertation, research into streamer discharges is reviewed. Then, we conducted experiments of streamer propagation at high pressures, calculated the streamer velocity based on both optical and electrical measurements, and the similarity law was checked by analyzing the streamer velocity as a function of the reduced electric field, E/P. Our results showed that the similarity law is invalid, and an empirical scaling factor, E/√P, is obtained and verified by dimensional analysis. The equation derived from the dimensional analysis will be beneficial to proper electrode and pulse generator design for transient plasma assisted internal engine experiments. Along with the high pressure study, we applied such technique on diesel engine to improve the fuel efficiency and exhaust treatment. We observed a small effect of transient plasma on peak pressure, which implied that transient plasma has the capability to improve the fuel consumption. In addition, the NO can be reduced effectively by the same technique and the energy cost is 30 eV per NO molecule.

  14. Emission rates of particulate matter and elemental and organic carbon from in-use diesel engines.

    PubMed

    Shah, Sandip D; Cocker, David R; Miller, J Wayne; Norbeck, Joseph M

    2004-05-01

    Elemental carbon (EC), organic carbon (OC), and particulate matter (PM) emission rates are reported for a number of heavy heavy-duty diesel trucks (HHDDTs) and back-up generators (BUGs) operating under real-world conditions. Emission rates were determined using a unique mobile emissions laboratory (MEL) equipped with a total capture full-scale dilution tunnel connected directly to the diesel engine via a snorkel. This paper shows that PM, EC, and OC emission rates are strongly dependent on the mode of vehicle operation; highway, arterial, congested, and idling conditions were simulated by following the speed trace from the California Air Resources Board HHDDT cycle. Emission rates for BUGs are reported as a function of engine load at constant speed using the ISO 8178B Cycle D2. The EC, OC, and PM emission rates were determined to be highly variable for the HHDDTs. It was determined that the per mile emission rate of OC from a HHDDT in congested traffic is 8.1 times higher than that of an HHDDT in cruise or highway speed conditions and 1.9 times higher for EC. EC/OC ratios for BUGs (which generally operate at steady states) and HHDDTs show marked differences, indicating that the transient nature of engine operation dictates the EC/OC ratio. Overall, this research shows that the EC/OC ratio varies widely for diesel engines in trucks and BUGs and depends strongly on the operating cycle. The findings reported here have significant implications in the application of chemical mass balance modeling, diesel risk assessment, and control strategies such as the Diesel Risk Reduction Program.

  15. Economic analysis of biomass gasification for generating electricity in rural areas in Indonesia

    NASA Astrophysics Data System (ADS)

    Susanto, H.; Suria, T.; Pranolo, S. H.

    2018-03-01

    The gaseous fuel from biomass gasification might reduce the consumption of diesel fuel by 70%. The investment cost of the whole unit with a capacity of 45 kWe was about IDR 220 million in 2008 comprised of 24% for gasification unit, 54% for diesel engine and electric generator, 22% for transportation of the whole unit from Bandung to the site in South Borneo. The gasification unit was made in local workshop in Bandung, while the diesel-generator was purchased also in a local market. To anticipate the development of biomass based electricity in remote areas, an economic analysis has been made for implementations in 2019. A specific investment cost of 600 USD/kW has been estimated taking account to the escalation and capacity factors. Using a discounted factor of 11% and biomass cost in the range of 0.03-0.07 USD/kg, the production cost of electricity would be in the range of 0.09-0.16 USD/kWh. This production cost was lower than that of diesel engine fueled with full oil commonly implemented in many remote areas in Indonesia at this moment. This production cost was also lower than the Feed in Tariff in some regions established by Indonesian government in 2017.

  16. Annual Report: DOE Advanced Combustion Systems & Fuels R&D; Light-Duty Diesel Combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Busch, Stephen

    Despite compliance issues in previous years, automakers have demonstrated that the newest generation of diesel power trains are capable of meeting all federal and state regulations (EPA, 2016). Diesels continue to be a cost-effective, efficient, powerful propulsion source for many light- and medium-duty vehicle applications (Martec, 2016). Even modest reductions in the fuel consumption of light- and medium duty diesel vehicles in the U.S. will eliminate millions of tons of CO2 emissions per year. Continued improvement of diesel combustion systems will play an important role in reducing fleet fuel consumption, but these improvements will require an unprecedented scientific understanding ofmore » how changes in engine design and calibration affect the mixture preparation, combustion, and pollutant formation processes that take place inside the cylinder. The focus of this year’s research is to provide insight into the physical mechanisms responsible for improved thermal efficiency observed with a stepped-lip piston. Understanding how piston design can influence efficiency will help engineers develop and optimize new diesel combustion systems.« less

  17. 30 CFR 250.610 - Diesel engine air intakes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Diesel engine air intakes. 250.610 Section 250... Well-Workover Operations § 250.610 Diesel engine air intakes. No later than May 31, 1989, diesel engine air intakes shall be equipped with a device to shut down the diesel engine in the event of runaway...

  18. 40 CFR 80.501 - What fuel is subject to the provisions of this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for use as fuel in diesel motor vehicles or nonroad diesel engines or is blended with diesel fuel for use in diesel motor vehicles or nonroad diesel engines, including locomotive and marine diesel engines... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel...

  19. 40 CFR 80.501 - What fuel is subject to the provisions of this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for use as fuel in diesel motor vehicles or nonroad diesel engines or is blended with diesel fuel for use in diesel motor vehicles or nonroad diesel engines, including locomotive and marine diesel engines... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel...

  20. 40 CFR 80.501 - What fuel is subject to the provisions of this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for use as fuel in diesel motor vehicles or nonroad diesel engines or is blended with diesel fuel for use in diesel motor vehicles or nonroad diesel engines, including locomotive and marine diesel engines... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel...

  1. 40 CFR 80.501 - What fuel is subject to the provisions of this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for use as fuel in diesel motor vehicles or nonroad diesel engines or is blended with diesel fuel for use in diesel motor vehicles or nonroad diesel engines, including locomotive and marine diesel engines... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel...

  2. 40 CFR 80.501 - What fuel is subject to the provisions of this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for use as fuel in diesel motor vehicles or nonroad diesel engines or is blended with diesel fuel for use in diesel motor vehicles or nonroad diesel engines, including locomotive and marine diesel engines... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel...

  3. 31. ENGINE ROOM LOOKING AFT ON STARBOARD SIDE SHOWING BOTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. ENGINE ROOM LOOKING AFT ON STARBOARD SIDE SHOWING BOTH CATERPILLAR DIESELS AND ONE GENERATOR. - U.S. Coast Guard Cutter WHITE PINE, U.S. Coast Guard 8th District Base, South Broad Street, Mobile, Mobile County, AL

  4. REAL-TIME EMISSION CHARACTERIZATION OF ORGANIC AIR TOXIC POLLUTANTS DURING STEADY STATE AND TRANSIENT OPERATION OF A MEDIUM DUTY DIESEL ENGINE

    EPA Science Inventory

    An on-line monitoring method, jet resonance-enhanced multi-photon ionization (REMPI) with time-of-flight mass spectrometry (TOFMS) was used to measure emissions of organic air toxics from a medium-duty (60 kW)diesel generator during transient and steady state operations. Emission...

  5. Lightweight diesel aircraft engines for general aviation

    NASA Technical Reports Server (NTRS)

    Berenyi, S. G.; Brouwers, A. P.

    1980-01-01

    A methodical design study was conducted to arrive at new diesel engine configurations and applicable advanced technologies. Two engines are discussed and the description of each engine includes concept drawings. A performance analysis, stress and weight prediction, and a cost study were also conducted. This information was then applied to two airplane concepts, a six-place twin and a four-place single engine aircraft. The aircraft study consisted of installation drawings, computer generated performance data, aircraft operating costs and drawings of the resulting airplanes. The performance data shows a vast improvement over current gasoline-powered aircraft. At the completion of this basic study, the program was expanded to evaluate a third engine configuration. This third engine incorporates the best features of the original two, and its design is currently in progress. Preliminary information on this engine is presented.

  6. 40 CFR 89.410 - Engine test cycle.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., except constant speed engines, engines rated under 19 kW, and propulsion marine diesel engines. (2) The 5... this subpart shall be used for propulsion marine diesel engines. (5) Notwithstanding the provisions of... rated under 19 kW; or (B) Propulsion marine diesel engines, provided the propulsion marine diesel...

  7. Energy and Greenhouse Gas Emission Reduction Opportunities for Civil Works Projects Unique to the US Army Corps of Engineers

    DTIC Science & Technology

    2012-10-26

    3600 hp diesel engine .................................................................................. 24 20 Diesel engine turbocharger ...ERDC/CERL TR-12-19 24 Figure 19. Fairbanks Morse 3600 hp diesel engine. Figure 20. Diesel engine turbocharger . Table 7. Energy consuming

  8. Supplement B to compilation of air pollutant emission factors, volume 1. Stationary point and area sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This document contains emission factors and process information for more than 200 air pollution source categories. This Supplement to AP-42 addresses pollutant-generating activity from Bituminous And Subbituminous Coal Combustion, Anthracite Coal Combustion, Fuel Oil Combustion, Natural Gas Combustion, Liquefied Petroleum Gas Combustion, Wood Waste Combustion In Boilers, Lignite Combustion, Bagasse Combustion In Sugar Mills, Residential Fireplaces, Residential Wood Stoves, Waste Oil Combustion, Stationary Gas Turbines For Electricity Generation, Heavy-duty Natural Gas-fired Pipeline Compressor Engines And Turbines, Gasoline and Diesel Industrial Engines, Large Stationary Diesel And All Stationary Dual-fuel Engines, Adipic Acid, Cotton Ginning, Alfafalfa Dehydrating, Malt Beverages, Ceramic Products Manufacturing,more » Electroplating, Wildfires And Prescribed Burning, Emissions From Soils-Greenhouse Gases, Termites-Greenhouse Gases, and Lightning Emissions-Greenhouse Gases.« less

  9. 30 CFR 250.405 - What are the safety requirements for diesel engines used on a drilling rig?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false What are the safety requirements for diesel... are the safety requirements for diesel engines used on a drilling rig? You must equip each diesel engine with an air take device to shut down the diesel engine in the event of a runaway. (a) For a diesel...

  10. Bio-electricity Generation using Jatropha Oil Seed Cake.

    PubMed

    Raheman, Hifjur; Padhee, Debasish

    2016-01-01

    The review of patents reveals that Handling of Jatropha seed cake after extraction of oil is essential as it contains toxic materials which create environmental pollution. The goal of this work is complete utilisation of Jatropha seeds. For this purpose, Jatropha oil was used for producing biodiesel and the byproduct Jatropha seed cake was gasified to obtain producer gas. Both biodiesel and producer gas were used to generate electricity. To achieve this, a system comprising gasifier, briquetting machine, diesel engine and generator was developed. Biodiesel was produced successfully using the method patented for biodiesel production and briquettes of Jatropha seed cake were made using a vertical extruding machine. Producer gas was obtained by gasifying these briquettes in a downdraft gasifier. A diesel engine was then run in dual fuel mode with biodiesel and producer gas instead of only diesel. Electricity was generated by coupling it to a generator. The cost of producing kilowatthour of electricity with biodiesel and diesel in dual fuel mode with producer gas was found to be 0.84 $ and 0.75 $, respectively as compared to 0.69 $ and 0.5 $ for the same fuels in single fuel mode resulting in up to 48 % saving of pilot fuel. Compared to singlefuel mode, there was 25-32 % reduction in system and brake thermal efficiency along with significantly lower NOx, higher CO and CO2 emissions when the bio-electricity generating system was operated in dual fuel mode. Overall, the developed system could produce electricity successfully by completely uti- lising Jatropha seeds without leaving any seed cake to cause environmental pollution.

  11. 46 CFR 112.35-1 - General.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS... Generator as the Sole Emergency Power Source § 112.35-1 General. This subpart contains requirements applicable to emergency power installations having a manually controlled storage battery, diesel engine, or...

  12. 46 CFR 112.35-1 - General.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS... Generator as the Sole Emergency Power Source § 112.35-1 General. This subpart contains requirements applicable to emergency power installations having a manually controlled storage battery, diesel engine, or...

  13. 46 CFR 112.35-1 - General.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS... Generator as the Sole Emergency Power Source § 112.35-1 General. This subpart contains requirements applicable to emergency power installations having a manually controlled storage battery, diesel engine, or...

  14. Usability of food industry waste oils as fuel for diesel engines.

    PubMed

    Winfried, Russ; Roland, Meyer-Pittroff; Alexander, Dobiasch; Jürgen, Lachenmaier-Kölch

    2008-02-01

    Two cogeneration units were each fitted with a prechamber (IDI) diesel engine in order to test the feasibility of using waste oils from the food industry as a fuel source, and additionally to test emissions generated by the combustion of these fuels. Esterified waste oils and animal fats as well as mustard oil were tested and compared to the more or less "common" fuels: diesel, rapeseed oil and rapeseed methyl ester. The results show that, in principle, each of these fuels is suitable for use in a prechamber diesel engine. Engine performance can be maintained at a constant level. Without catalytic conversion, the nitrogen oxides emissions were comparable. A significant reduction in NO(x) was achieved through the injection of urea. Combining a urea injection with the SCR catalytic converter reduced NO(x) emissions between 53% and 67%. The carbon monoxide emissions from waste oils are not significantly different from those of "common" fuels and can be reduced the same way as of hydrocarbon emissions, through utilization of a catalytic converter. The rate of carbon monoxide reduction by catalytic conversion was 84-86%. A lower hydrocarbon concentration was associated with fuels of agricultural origin. With the catalytic converter a reduction of 29-42% achieved. Each prechamber diesel engine exhibited its own characteristic exhaust, which was independent of fuel type. The selective catalytic reduction of the exhaust emissions can be realized without restriction using fuels of agricultural origin.

  15. 40 CFR 80.590 - What are the product transfer document requirements for motor vehicle diesel fuel, NRLM diesel...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... such fuel is dispensed into motor vehicles or nonroad equipment, locomotives, marine diesel engines or...) Undyed Ultra-Low Sulfur Diesel Fuel. For use in all diesel vehicles and engines.” From June 1, 2006... (maximum) Dyed Ultra-Low Sulfur Diesel Fuel. For use in all nonroad diesel engines. Not for use in highway...

  16. 40 CFR 80.590 - What are the product transfer document requirements for motor vehicle diesel fuel, NRLM diesel...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... such fuel is dispensed into motor vehicles or nonroad equipment, locomotives, marine diesel engines or...) Undyed Ultra-Low Sulfur Diesel Fuel. For use in all diesel vehicles and engines.” From June 1, 2006... (maximum) Dyed Ultra-Low Sulfur Diesel Fuel. For use in all nonroad diesel engines. Not for use in highway...

  17. 40 CFR 80.590 - What are the product transfer document requirements for motor vehicle diesel fuel, NRLM diesel...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... such fuel is dispensed into motor vehicles or nonroad equipment, locomotives, marine diesel engines or...) Undyed Ultra-Low Sulfur Diesel Fuel. For use in all diesel vehicles and engines.” From June 1, 2006... (maximum) Dyed Ultra-Low Sulfur Diesel Fuel. For use in all nonroad diesel engines. Not for use in highway...

  18. 40 CFR 80.590 - What are the product transfer document requirements for motor vehicle diesel fuel, NRLM diesel...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... such fuel is dispensed into motor vehicles or nonroad equipment, locomotives, marine diesel engines or...) Undyed Ultra-Low Sulfur Diesel Fuel. For use in all diesel vehicles and engines.” From June 1, 2006... (maximum) Dyed Ultra-Low Sulfur Diesel Fuel. For use in all nonroad diesel engines. Not for use in highway...

  19. 40 CFR 80.590 - What are the product transfer document requirements for motor vehicle diesel fuel, NRLM diesel...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... such fuel is dispensed into motor vehicles or nonroad equipment, locomotives, marine diesel engines or...) Undyed Ultra-Low Sulfur Diesel Fuel. For use in all diesel vehicles and engines.” From June 1, 2006... (maximum) Dyed Ultra-Low Sulfur Diesel Fuel. For use in all nonroad diesel engines. Not for use in highway...

  20. Development of an on-line exposure system to determine freshly produced diesel engine emission-induced cellular effects.

    PubMed

    Oostingh, Gertie J; Papaioannou, Eleni; Chasapidis, Leonidas; Akritidis, Theofylaktos; Konstandopoulos, Athanasios G; Duschl, Albert

    2013-09-01

    Diesel engine emission particle filters are often placed at exhaust outlets to remove particles from the exhaust. The use of filters results in the exposure to a reduced number of nanometer-sized particles, which might be more harmful than the exposure to a larger number of micrometer-sized particles. An in vitro exposure system was established to expose human alveolar epithelial cells to freshly generated exhaust. Computer simulations were used to determine the optimal flow characteristics and ensure equal exposure conditions for each well of a 6-well plate. A selective particle size sampler was used to continuously deliver diesel soot particles with different particle size distributions to cells in culture. To determine, whether the system could be used for cellular assays, alterations in cytokine production and cell viability of human alveolar A549 cells were determined after 3h on-line exposure followed by a 21-h conventional incubation period. Data indicated that complete diesel engine emission slightly affected pre-stimulated cells, but naive cells were not affected. The fractions containing large or small particles never affected the cells. The experimental set-up allowed a reliable exposure of the cells to the complete exhaust fraction or to the fractions containing either large or small diesel engine emission particles. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. 40 CFR 86.1333-2010 - Transient test cycle generation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Transient test cycle generation. 86... (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate Exhaust Test Procedures § 86.1333-2010 Transient test cycle generation. (a) Generating transient test...

  2. Development of Kinetic Mechanisms for Next-Generation Fuels and CFD Simulation of Advanced Combustion Engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pitz, William J.; McNenly, Matt J.; Whitesides, Russell

    Predictive chemical kinetic models are needed to represent next-generation fuel components and their mixtures with conventional gasoline and diesel fuels. These kinetic models will allow the prediction of the effect of alternative fuel blends in CFD simulations of advanced spark-ignition and compression-ignition engines. Enabled by kinetic models, CFD simulations can be used to optimize fuel formulations for advanced combustion engines so that maximum engine efficiency, fossil fuel displacement goals, and low pollutant emission goals can be achieved.

  3. Black carbon emissions from diesel sources in Russia. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kholod, Nazar; Evans, Meredydd

    This report presents a detailed inventory of Russian BC emissions from diesel sources. Drawing on a complete Russian vehicle registry with detailed information about vehicle types and emission standards, this report analyzes BC emissions from diesel on-road vehicles. On-road diesel vehicles emitted 21 Gg of BC in 2014: heavy-duty trucks account for 60% of the on-road BC emissions, while cars represent only 5% (light commercial vehicles and buses account for the remainder). Using Russian activity data and fuel-based emission factors, the report also presents BC emissions from diesel locomotives and ships, off-road engines in industry, construction and agriculture, and generators.more » The total emissions from diesel sources in Russia are estimated to be 49 Gg of BC in 2014.« less

  4. Metal nanoparticles in diesel exhaust derived by in-cylinder melting of detached engine fragments

    NASA Astrophysics Data System (ADS)

    Liati, Anthi; Pandurangi, Sushant Sunil; Boulouchos, Konstantinos; Schreiber, Daniel; Arroyo Rojas Dasilva, Yadira

    2015-01-01

    A wide range of environmental and health effects are linked to combustion-generated pollutants related to traffic. Nanoparticles, in particular, are a major concern for humans since they can be inhaled and have potentially toxic effects. The variability and sources of combustion-related nanoparticle pollutants remain inadequately investigated. Here we report the presence of ca. 5-100 nm large Fe3O4 nanoparticles, in form of agglomerates, in diesel exhaust. The mode of occurrence of these nanoparticles, in combination with their chemical composition matching that of steel indicate that they derive by melting of engine fragments in the combustion chamber and subsequent crystallization during cooling. To evaluate this hypothesis, we applied CFD simulations of material transport in the cylinder of a diesel engine, assuming detachment of steel fragments from various sites of the cylinder. The CFD results show that fragments ≤20 μm in size dislodged from the piston surface or from the fuel nozzle interior can be indeed transported to such hot areas of the combustion chamber where they can melt. The simulation results concur with the experimental observations and point out that metal nanoparticle formation by in-cylinder melting of engine fragments can occur in diesel engines. The present study proposes a hitherto neglected formation mechanism of metal nanoparticle emissions from internal combustion engines raising possible environmental and health concerns, especially in urban areas.

  5. PV system field experience and reliability

    NASA Astrophysics Data System (ADS)

    Durand, Steven; Rosenthal, Andrew; Thomas, Mike

    1997-02-01

    Hybrid power systems consisting of battery inverters coupled with diesel, propane, or gasoline engine-driven electrical generators, and photovoltaic arrays are being used in many remote locations. The potential cost advantages of hybrid systems over simple engine-driven generator systems are causing hybrid systems to be considered for numerous applications including single-family residential, communications, and village power. This paper discusses the various design constraints of such systems and presents one technique for reducing hybrid system losses. The Southwest Technology Development Institute under contract to the National Renewable Energy Laboratory and Sandia National Laboratories has been installing data acquisition systems (DAS) on a number of small and large hybrid PV systems. These systems range from small residential systems (1 kW PV - 7 kW generator), to medium sized systems (10 kW PV - 20 kW generator), to larger systems (100 kW PV - 200 kW generator). Even larger systems are being installed with hundreds of kilowatts of PV modules, multiple wind machines, and larger diesel generators.

  6. [Polycyclic aromatic hydrocarbons in ultrafine particles of diesel exhaust fumes--the use of ultrafast liquid chromatography].

    PubMed

    Małgorzata Szewczyńska; Małgorzata Pośniak

    2014-01-01

    The article presents the results of the determination of polycyclic aromatic hydrocarbons (PAHs) in the fine par ticles fraction emitted from 3 types of diesel fuels using ultra-high pressure liquid chromatography. Samples of diesel Eco, Verwa and Bio exhaust combustion fumes were generated at the model station which consisted of a diesel engine from the 2007 Diesel TDI 2.0. Personal Cascade Sioutas Impactor (IPCSI) with Teflon filters was used to collect samples of exhaust fume ultrafine particles. PAHs adsorbed on particulate fractions were analyzed by ultra-high pressure liquid chromatography with fluorescence detection (UHPLC/FL). Phenanthrene, fluoranthene, pyrene and chrysene present the highest concentration in the particulate matter emitted by an engine. The total contents of fine particles collected during engine operation on fuels Eco, Verwa and Bio were 134.2 μg/g, 183.8 μg/g and 153.4 μg/g, respectively, which makes 75%, 90% and 83% of the total PAHs, respectively. The highest content of benzo(a)pyrene determined in particles emitted during the combustion of fuels Eco and Bio was 1.5 μg/g and 1 μg/g, respectively. The study of the PAH concentration in the particles of fine fraction below 0.25 μm emitted from different fuels designed for diesel engines indicate that the exhaust gas content of carcinogens, including PAHs deposited on particulates, is still significant, regardless of the fuel. Application of ultrahigh pressure liquid chromatography with fluorescence detection for the analysis ofPAHs in the particles emitted in the fine fraction of diesel exhaust allowed to shorten the analysis time from 35 min to 8 min.

  7. Development and validation of spray models for investigating diesel engine combustion and emissions

    NASA Astrophysics Data System (ADS)

    Som, Sibendu

    Diesel engines intrinsically generate NOx and particulate matter which need to be reduced significantly in order to comply with the increasingly stringent regulations worldwide. This motivates the diesel engine manufacturers to gain fundamental understanding of the spray and combustion processes so as to optimize these processes and reduce engine emissions. Strategies being investigated to reduce engine's raw emissions include advancements in fuel injection systems, efficient nozzle orifice design, injection and combustion control strategies, exhaust gas recirculation, use of alternative fuels such as biodiesel etc. This thesis explores several of these approaches (such as nozzle orifice design, injection control strategy, and biodiesel use) by performing computer modeling of diesel engine processes. Fuel atomization characteristics are known to have a significant effect on the combustion and emission processes in diesel engines. Primary fuel atomization is induced by aerodynamics in the near nozzle region as well as cavitation and turbulence from the injector nozzle. The breakup models that are currently used in diesel engine simulations generally consider aerodynamically induced breakup using the Kelvin-Helmholtz (KH) instability model, but do not account for inner nozzle flow effects. An improved primary breakup (KH-ACT) model incorporating cavitation and turbulence effects along with aerodynamically induced breakup is developed and incorporated in the computational fluid dynamics code CONVERGE. The spray simulations using KH-ACT model are "quasi-dynamically" coupled with inner nozzle flow (using FLUENT) computations. This presents a novel tool to capture the influence of inner nozzle flow effects such as cavitation and turbulence on spray, combustion, and emission processes. Extensive validation is performed against the non-evaporating spray data from Argonne National Laboratory. Performance of the KH and KH-ACT models is compared against the evaporating and combusting data from Sandia National Laboratory. The KH-ACT model is observed to provide better predictions for spray dispersion, axial velocity decay, sauter mean diameter, and liquid and lift-off length interplay which is attributed to the enhanced primary breakup predicted by this model. In addition, experimentally observed trends with changing nozzle conicity could only be captured by the KH-ACT model. Results further indicate that the combustion under diesel engine conditions is characterized by a double-flame structure with a rich premixed reaction zone near the flame stabilization region and a non-premixed reaction zone further downstream. Finally, the differences in inner nozzle flow and spray characteristics of petrodiesel and biodiesel are quantified. The improved modeling capability developed in this work can be used for extensive diesel engine simulations to further optimize injection, spray, combustion, and emission processes.

  8. The Stirling Project

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Stirling Engine's advanced technology engine offers multiple advantages, principal among them reduced fuel consumption and lower exhaust emissions than comparable internal combustion auto engines, plus multifuel capability. Stirling can use gasoline, kerosene, diesel fuel, jet fuel, alcohol, methanol, butane and that's not the whole list. Applications include irrigation pumping, heat pumps, and electricity generation for submarine, Earth and space systems.

  9. 40 CFR 86.334-79 - Test procedure overview.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... cycle and 1 hot cycle. The Diesel engine test consists of 3 idle modes and 5 power modes at each of 2... to be conducted on an engine dynamometer. The exhaust gases generated during engine operation are... determination of the concentration of each pollutant, the fuel flow and the power output during each mode. The...

  10. Proceedings of the 1998 diesel engine emissions reduction workshop [DEER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This workshop was held July 6--9, 1998 in Castine, Maine. The purpose of this workshop was to provide a multidisciplinary forum for exchange of state-of-the-art information on reduction of diesel engine emissions. Attention was focused on the following: agency/organization concerns on engine emissions; diesel engine issues and challenges; health risks from diesel engines emissions; fuels and lubrication technologies; non-thermal plasma and urea after-treatment technologies; and diesel engine technologies for emission reduction 1 and 2.

  11. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXX, I--CATERPILLAR DIESEL ENGINE MAINTENANCE SUMMARY, II--REIEWING FACTS ABOUT ALTERNATORS.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO PROVIDE A SUMMARY OF DIESEL ENGINE MAINTENANCE FACTORS AND A REVIEW OF DIESEL ENGINE ALTERNATOR OPERATION. THE SEVEN SECTIONS COVER DIESEL ENGINE TROUBLESHOOTING AND THE OPERATION, TESTING, AND ADJUSTING OF ALTERNATORS. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING FILM…

  12. 46 CFR 58.10-10 - Diesel engine installations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Diesel engine installations. 58.10-10 Section 58.10-10... MACHINERY AND RELATED SYSTEMS Internal Combustion Engine Installations § 58.10-10 Diesel engine installations. (a) The requirements of § 58.10-5 (a), (c), and (d) shall apply to diesel engine installations...

  13. 46 CFR 58.10-10 - Diesel engine installations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Diesel engine installations. 58.10-10 Section 58.10-10... MACHINERY AND RELATED SYSTEMS Internal Combustion Engine Installations § 58.10-10 Diesel engine installations. (a) The requirements of § 58.10-5 (a), (c), and (d) shall apply to diesel engine installations...

  14. 46 CFR 58.10-10 - Diesel engine installations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Diesel engine installations. 58.10-10 Section 58.10-10... MACHINERY AND RELATED SYSTEMS Internal Combustion Engine Installations § 58.10-10 Diesel engine installations. (a) The requirements of § 58.10-5 (a), (c), and (d) shall apply to diesel engine installations...

  15. 46 CFR 58.10-10 - Diesel engine installations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Diesel engine installations. 58.10-10 Section 58.10-10... MACHINERY AND RELATED SYSTEMS Internal Combustion Engine Installations § 58.10-10 Diesel engine installations. (a) The requirements of § 58.10-5 (a), (c), and (d) shall apply to diesel engine installations...

  16. Diesel engine catalytic combustor system. [aircraft engines

    NASA Technical Reports Server (NTRS)

    Ream, L. W. (Inventor)

    1984-01-01

    A low compression turbocharged diesel engine is provided in which the turbocharger can be operated independently of the engine to power auxiliary equipment. Fuel and air are burned in a catalytic combustor to drive the turbine wheel of turbine section which is initially caused to rotate by starter motor. By opening a flapper value, compressed air from the blower section is directed to catalytic combustor when it is heated and expanded, serving to drive the turbine wheel and also to heat the catalytic element. To start, engine valve is closed, combustion is terminated in catalytic combustor, and the valve is then opened to utilize air from the blower for the air driven motor. When the engine starts, the constituents in its exhaust gas react in the catalytic element and the heat generated provides additional energy for the turbine section.

  17. Chemical characterization and in vitro toxicity of diesel exhaust particulate matter generated under varying conditions

    PubMed Central

    Cox, David P.; Drury, Bertram E.; Gould, Timothy R.; Kavanagh, Terrance J.; Paulsen, Michael H.; Sheppard, Lianne; Simpson, Christopher D.; Stewart, James A.; Larson, Timothy V.; Kaufman, Joel D.

    2014-01-01

    Epidemiologic studies have linked diesel exhaust (DE) to cardiovascular and respiratory morbidity and mortality, as well as lung cancer. DE composition is known to vary with many factors, although it is unclear how this influences toxicity. We generated eight DE atmospheres by applying a 2×2×2 factorial design and altering three parameters in a controlled exposure facility: (1) engine load (27 vs 82 %), (2) particle aging (residence time ~5 s vs ~5 min prior to particle collection), and (3) oxidation (with or without ozonation during dilution). Selected exposure concentrations of both diesel exhaust particles (DEPs) and DE gases, DEP oxidative reactivity via DTT activity, and in vitro DEP toxicity in murine endothelial cells were measured for each DE atmosphere. Cell toxicity was assessed via measurement of cell proliferation (colony formation assay), cell viability (MTT assay), and wound healing (scratch assay). Differences in DE composition were observed as a function of engine load. The mean 1-nitropyrene concentration was 15 times higher and oxidative reactivity was two times higher for low engine load versus high load. There were no substantial differences in measured toxicity among the three DE exposure parameters. These results indicate that alteration of applied engine load shifts the composition and can modify the biological reactivity of DE. While engine conditions did not affect the selected in vitro toxicity measures, the change in oxidative reactivity suggests that toxicological studies with DE need to take into account engine conditions in characterizing biological effects. PMID:26539254

  18. 46 CFR 182.465 - Ventilation of spaces containing diesel machinery.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Ventilation of spaces containing diesel machinery. 182... Ventilation of spaces containing diesel machinery. (a) A space containing diesel machinery must be fitted with... operation of main engines and auxiliary engines. (b) Air-cooled propulsion and auxiliary diesel engines...

  19. 40 CFR 86.347-79 - Alternative calculations for diesel engines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Alternative calculations for diesel... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.347-79 Alternative calculations for diesel engines. (a) This section applies to Diesel...

  20. 46 CFR 182.465 - Ventilation of spaces containing diesel machinery.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Ventilation of spaces containing diesel machinery. 182... Ventilation of spaces containing diesel machinery. (a) A space containing diesel machinery must be fitted with... operation of main engines and auxiliary engines. (b) Air-cooled propulsion and auxiliary diesel engines...

  1. 40 CFR 86.347-79 - Alternative calculations for diesel engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Alternative calculations for diesel... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.347-79 Alternative calculations for diesel engines. (a) This section applies to Diesel...

  2. Performance of diesel engine using diesel B3 mixed with crude palm oil.

    PubMed

    Namliwan, Nattapong; Wongwuttanasatian, Tanakorn

    2014-01-01

    The objective of this study was to test the performance of diesel engine using diesel B3 mixed with crude palm oil in ratios of 95 : 5, 90 : 10, and 85 : 15, respectively, and to compare the results with diesel B3. According to the tests, they showed that the physical properties of the mixed fuel in the ratio of 95 : 5 were closest to those of diesel B3. The performance of the diesel engine that used mixed fuels had 5-17% lower torque and power than that of diesel B3. The specific fuel consumption of mixed fuels was 7-33% higher than using diesel B3. The components of gas emissions by using mixed fuel had 1.6-52% fewer amount of carbon monoxide (CO), carbon dioxide (CO2), sulfur dioxide (SO2), and oxygen (O2) than those of diesel B3. On the other hand, nitric oxide (NO) and nitrogen oxides (NO X ) emissions when using mixed fuels were 10-39% higher than diesel B3. By comparing the physical properties, the performance of the engine, and the amount of gas emissions of mixed fuel, we found out that the 95 : 5 ratio by volume was a suitable ratio for agricultural diesel engine (low-speed diesel engine).

  3. A quality evaluation of stabilization of rotation frequency of gas-diesel engines when using an adaptive automatic control system

    NASA Astrophysics Data System (ADS)

    Zhilenkov, A. A.; Efremov, A. A.

    2017-02-01

    A possibility of quality improvement of stabilization of rotation frequency of the gas-diesels used as prime mover of generator set in the multigenerator units working for abruptly variable load of large power is considered. An evaluation is made on the condition of fuzzy controller use developed and described by the authors in a number of articles. An evaluation has shown that theoretically, the revolution range of a gas-diesel engine may be reduced 25-30 times in case of optimal settings of the controller in the whole power range. The results of modelling showing a considerable quality improvement of transient processes in the investigated system during a sharp change of loading are presented in this article.

  4. 30 CFR 250.610 - Diesel engine air intakes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Diesel engine air intakes. 250.610 Section 250.610 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR... Operations § 250.610 Diesel engine air intakes. No later than May 31, 1989, diesel engine air intakes shall...

  5. 40 CFR 86.313-79 - Air flow measurement specifications; diesel engines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...; diesel engines. 86.313-79 Section 86.313-79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.313-79 Air flow measurement specifications; diesel engines. (a) The air flow measurement...

  6. 40 CFR 86.313-79 - Air flow measurement specifications; diesel engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...; diesel engines. 86.313-79 Section 86.313-79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.313-79 Air flow measurement specifications; diesel engines. (a) The air flow measurement...

  7. 30 CFR 250.510 - Diesel engine air intakes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Diesel engine air intakes. 250.510 Section 250.510 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF... Well-Completion Operations § 250.510 Diesel engine air intakes. Diesel engine air intakes must be...

  8. 30 CFR 250.510 - Diesel engine air intakes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Diesel engine air intakes. 250.510 Section 250.510 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR... Operations § 250.510 Diesel engine air intakes. Diesel engine air intakes must be equipped with a device to...

  9. 30 CFR 250.510 - Diesel engine air intakes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Diesel engine air intakes. 250.510 Section 250.510 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR... Operations § 250.510 Diesel engine air intakes. Diesel engine air intakes must be equipped with a device to...

  10. 30 CFR 250.510 - Diesel engine air intakes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Diesel engine air intakes. 250.510 Section 250.510 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR... Operations § 250.510 Diesel engine air intakes. Diesel engine air intakes must be equipped with a device to...

  11. 40 CFR 86.313-79 - Air flow measurement specifications; diesel engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...; diesel engines. 86.313-79 Section 86.313-79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.313-79 Air flow measurement specifications; diesel engines. (a) The air flow measurement...

  12. 40 CFR 86.313-79 - Air flow measurement specifications; diesel engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...; diesel engines. 86.313-79 Section 86.313-79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.313-79 Air flow measurement specifications; diesel engines. (a) The air flow measurement...

  13. Lightweight, low compression aircraft diesel engine. [converting a spark ignition engine to the diesel cycle

    NASA Technical Reports Server (NTRS)

    Gaynor, T. L.; Bottrell, M. S.; Eagle, C. D.; Bachle, C. F.

    1977-01-01

    The feasibility of converting a spark ignition aircraft engine to the diesel cycle was investigated. Procedures necessary for converting a single cylinder GTS10-520 are described as well as a single cylinder diesel engine test program. The modification of the engine for the hot port cooling concept is discussed. A digital computer graphics simulation of a twin engine aircraft incorporating the diesel engine and Hot Fort concept is presented showing some potential gains in aircraft performance. Sample results of the computer program used in the simulation are included.

  14. A probabilistic maintenance model for diesel engines

    NASA Astrophysics Data System (ADS)

    Pathirana, Shan; Abeygunawardane, Saranga Kumudu

    2018-02-01

    In this paper, a probabilistic maintenance model is developed for inspection based preventive maintenance of diesel engines based on the practical model concepts discussed in the literature. Developed model is solved using real data obtained from inspection and maintenance histories of diesel engines and experts' views. Reliability indices and costs were calculated for the present maintenance policy of diesel engines. A sensitivity analysis is conducted to observe the effect of inspection based preventive maintenance on the life cycle cost of diesel engines.

  15. Physicochemical and optical properties of combustion-generated particles from Ship Diesel Engines

    NASA Astrophysics Data System (ADS)

    Kim, H.; Jeong, S.; Jin, H. C.; Kim, J. Y.

    2015-12-01

    Shipping contributes significantly to the anthropogenic burden of particulate matter (PM), and is among the world's highest polluting combustion sources per fuel consumed. Moreover, ships are a highly concentrated source of pollutants which are emitted into clean marine environments (e.g., Artic region). Shipping utilizes heavy fuel oil (HFO) which is less distilled compared to fuels used on land and few investigations on shipping related PM properties are available. BC is one of the dominant combustion products of ship diesel engines and its chemical and microphysical properties have a significant impact on climate by influencing the amount of albedo reduction on bright surfaces such as in polar regions. We have carried out a campaign to characterize the PM emissions from medium-sized marine engines in Gunsan, Jeonbuk Institute of Automotive Technology. The properties of ship-diesel PM have characterized depending on (1) fuel sulfur content (HFO vs. ULSD) and (2) engine conditions (Running state vs. Idling state). Scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectroscopy (EDX) equipped with HRTEM and Raman spectroscopy were used for physicochemical analysis. Optical properties, which are ultimately linked to the snow/ice albedo decrease impacting climate, were assessed as well. PM generated under high engine temperature conditions had typical features of soot, e.g., concentric circles comprised of closely packed graphene layers, however PM generated by the idling state at low combustion temperature was characterized by amorphous and droplet-like carbonaceous particles with no crystalline structure. Significant differences in optical properties depending on the combustion conditions were also observed. Particles from running conditions showed wavelength-independent absorbing properties, whereas the particles from idling conditions showed enhanced absorption at shorter wavelengths, which is characteristic of brown carbon. Regarding different fuel types, distinctive structure differences were not observed, but EDX results showed that PM generated by HFO combustion has sulfur content in PM whereas ULSD generated 100% carbon composed PM.

  16. 46 CFR 112.05-5 - Emergency power source.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... generator must be either a diesel engine or a gas turbine. [CGD 74-125A, 47 FR 15267, Apr. 8, 1982, as... power source (automatically connected storage battery or an automatically started generator) 36 hours.1... power source (automatically connected storage battery or an automatically started generator) 8 hours or...

  17. 46 CFR 112.05-5 - Emergency power source.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... generator must be either a diesel engine or a gas turbine. [CGD 74-125A, 47 FR 15267, Apr. 8, 1982, as... power source (automatically connected storage battery or an automatically started generator) 36 hours.1... power source (automatically connected storage battery or an automatically started generator) 8 hours or...

  18. Experimental evaluation of oxygen-enriched air and emulsified fuels in a six-cylinder diesel engine

    NASA Astrophysics Data System (ADS)

    Sekar, R. R.; Marr, W. W.; Cole, R. L.; Marciniak, T. J.; Longman, D. E.

    1993-01-01

    The objectives of this investigation are to (1) determine the technical feasibility of using oxygen-enriched air to increase the efficiency of and reduce emissions from diesel engines, (2) examine the effects of water-emulsified fuel on the formation of nitrogen oxides in oxygen-enriched combustion, and (3) investigate the use of lower-grade fuels in high-speed diesel engines by emulsifying the fuel with water. These tests, completed on a Caterpillar model 3406B, six-cylinder engine are a scale-up from previous, single-cylinder-engine tests. The engine was tested with (1) intake-air oxygen levels up to 30%, (2) water content up to 20% of the fuel, (3) three fuel-injection timings, and (4) three fuel-flow rates (power levels). The Taguchi technique for experimental design was used to minimize the number of experimental points in the test matrix. Four separate test matrices were run to cover two different fuel-flow-rate strategies and two different fuels (No. 2 diesel and No. 6 diesel). A liquid-oxygen tank located outside the test cell supplied the oxygen for the tests. The only modification of the engine was installation of a pressure transducer in one cylinder. All tests were run at 1800 rpm, which corresponds to the synchronous speed of a 60-Hz generator. Test results show that oxygen enrichment results in power increases of 50% or more while significantly decreasing the levels of smoke and particulates emitted. The increase in power was accompanied by a small increase in thermal efficiency. Maximum engine power was limited by the test-cell dynamometer capacity and the capacity of the fuel-injection pump. Oxygen enrichment increases nitrogen-oxide emissions significantly. No adverse effects of oxygen enrichment on the turbocharger were observed. The engine operated successfully with No. 6 fuel, but it operated at a lower thermal efficiency and emitted more smoke and particulates than with No. 2 fuel.

  19. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT VII, ENGINE TUNE-UP--DETROIT DIESEL ENGINE.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF TUNE-UP PROCEDURES FOR DIESEL ENGINES. TOPICS ARE SCHEDULING TUNE-UPS, AND TUNE-UP PROCEDURES. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING FILM "ENGINE TUNE-UP--DETROIT DIESEL ENGINE" AND OTHER MATERIALS. SEE VT 005 655 FOR FURTHER INFORMATION.…

  20. 46 CFR 112.35-5 - Manually started emergency systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ....35-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Manually Controlled Emergency Systems Having a Storage Battery or a Diesel Engine or Gas Turbine Driven Generator as the Sole Emergency Power Source § 112.35-5 Manually...

  1. 46 CFR 112.35-5 - Manually started emergency systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ....35-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Manually Controlled Emergency Systems Having a Storage Battery or a Diesel Engine or Gas Turbine Driven Generator as the Sole Emergency Power Source § 112.35-5 Manually...

  2. 46 CFR 112.35-5 - Manually started emergency systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ....35-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Manually Controlled Emergency Systems Having a Storage Battery or a Diesel Engine or Gas Turbine Driven Generator as the Sole Emergency Power Source § 112.35-5 Manually...

  3. 46 CFR 112.35-5 - Manually started emergency systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ....35-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Manually Controlled Emergency Systems Having a Storage Battery or a Diesel Engine or Gas Turbine Driven Generator as the Sole Emergency Power Source § 112.35-5 Manually...

  4. 46 CFR 112.50-7 - Compressed air starting.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Diesel and Gas Turbine Engine Driven Generator Sets § 112.50-7 Compressed... emergency power source. If this compressor supplies other auxiliaries, there must be a non-return valve at...

  5. 46 CFR 112.35-5 - Manually started emergency systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ....35-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Manually Controlled Emergency Systems Having a Storage Battery or a Diesel Engine or Gas Turbine Driven Generator as the Sole Emergency Power Source § 112.35-5 Manually...

  6. 46 CFR 112.50-3 - Hydraulic starting.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Hydraulic starting. 112.50-3 Section 112.50-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Diesel and Gas Turbine Engine Driven Generator Sets § 112.50-3 Hydraulic...

  7. 46 CFR 112.50-3 - Hydraulic starting.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Hydraulic starting. 112.50-3 Section 112.50-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Diesel and Gas Turbine Engine Driven Generator Sets § 112.50-3 Hydraulic...

  8. 40 CFR 86.336-79 - Diesel engine test cycle.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Diesel engine test cycle. 86.336-79... New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.336-79 Diesel engine test cycle. (a) The following 13-mode cycle shall be followed in dynamometer operation...

  9. 30 CFR 250.510 - Diesel engine air intakes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Diesel engine air intakes. 250.510 Section 250.510 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND... engine air intakes. Diesel engine air intakes must be equipped with a device to shut down the diesel...

  10. 40 CFR 86.096-2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... first. (4) For a diesel heavy-duty engine family: (i) For light heavy-duty diesel engines, period of use of 8 years or 110,000 miles, whichever occurs first. (ii) For medium heavy-duty diesel engines, a... paragraph (4)(iv) of this definition. (iv) For heavy heavy-duty diesel engines used in urban buses, for the...

  11. 40 CFR 86.096-2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... first. (4) For a diesel heavy-duty engine family: (i) For light heavy-duty diesel engines, period of use of 8 years or 110,000 miles, whichever occurs first. (ii) For medium heavy-duty diesel engines, a... paragraph (4)(iv) of this definition. (iv) For heavy heavy-duty diesel engines used in urban buses, for the...

  12. 40 CFR 86.096-2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... first. (4) For a diesel heavy-duty engine family: (i) For light heavy-duty diesel engines, period of use of 8 years or 110,000 miles, whichever occurs first. (ii) For medium heavy-duty diesel engines, a... paragraph (4)(iv) of this definition. (iv) For heavy heavy-duty diesel engines used in urban buses, for the...

  13. Diesel Engine Valve Clearance Fault Diagnosis Based on Features Extraction Techniques and FastICA-SVM

    NASA Astrophysics Data System (ADS)

    Jing, Ya-Bing; Liu, Chang-Wen; Bi, Feng-Rong; Bi, Xiao-Yang; Wang, Xia; Shao, Kang

    2017-07-01

    Numerous vibration-based techniques are rarely used in diesel engines fault diagnosis in a direct way, due to the surface vibration signals of diesel engines with the complex non-stationary and nonlinear time-varying features. To investigate the fault diagnosis of diesel engines, fractal correlation dimension, wavelet energy and entropy as features reflecting the diesel engine fault fractal and energy characteristics are extracted from the decomposed signals through analyzing vibration acceleration signals derived from the cylinder head in seven different states of valve train. An intelligent fault detector FastICA-SVM is applied for diesel engine fault diagnosis and classification. The results demonstrate that FastICA-SVM achieves higher classification accuracy and makes better generalization performance in small samples recognition. Besides, the fractal correlation dimension and wavelet energy and entropy as the special features of diesel engine vibration signal are considered as input vectors of classifier FastICA-SVM and could produce the excellent classification results. The proposed methodology improves the accuracy of feature extraction and the fault diagnosis of diesel engines.

  14. 40 CFR 80.522 - May used motor oil be dispensed into diesel motor vehicles or nonroad diesel engines?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... diesel motor vehicles or nonroad diesel engines? 80.522 Section 80.522 Protection of Environment... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Motor Vehicle Diesel Fuel Standards and Requirements § 80.522 May used motor oil be dispensed into diesel motor...

  15. 40 CFR 80.522 - May used motor oil be dispensed into diesel motor vehicles or nonroad diesel engines?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... diesel motor vehicles or nonroad diesel engines? 80.522 Section 80.522 Protection of Environment... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Motor Vehicle Diesel Fuel Standards and Requirements § 80.522 May used motor oil be dispensed into diesel motor...

  16. Fuel properties and engine performance of biodiesel from waste cooking oil collected in Dhaka city

    NASA Astrophysics Data System (ADS)

    Islam, R. B.; Islam, R.; Uddin, M. N.; Ehsan, Md.

    2016-07-01

    Waste cooking oil can be a potential source of biodiesel that has least effect on the edible oil consumption. Increasing number of hotel-restaurants and more active monitoring by health authorities have increased the generation of waste cooking oil significantly in densely populated cities like Dhaka. If not used or disposed properly, waste cooking oil itself may generate lot of environmental issues. In this work, waste cooking oils from different restaurants within Dhaka City were collected and some relevant properties of these waste oils were measured. Based on the samples studied one with the highest potential as biodiesel feed was identified and processed for engine performance. Standard trans-esterification process was used to produce biodiesel from the selected waste cooking oil. Biodiesel blends of B20 and B40 category were made and tested on a single cylinder direct injection diesel engine. Engine performance parameters included - bhp, bsfc and exhaust emission for rated and part load conditions. Results give a quantitative assessment of the potential of using biodiesel from waste cooking oil as fuel for diesel engines in Bangladesh.

  17. Petroleum Diesel Fuel and Linseed Oil Mixtures as Engine Fuels

    NASA Astrophysics Data System (ADS)

    Markov, V. A.; Kamaltdinov, V. G.; Savastenko, A. A.

    2018-01-01

    The actual problem is the use of alternative biofuels in automotive diesel engines. Insufficiently studied are the indicators of toxicity of exhaust gases of these engines operating on biofuel. The aim of the study is to identify indicators of the toxicity of exhaust gases when using of petroleum diesel fuel and linseed oil mixtures as a fuel for automotive diesel engines. Physical and chemical properties of linseed oil and its mixtures with petroleum diesel fuel are considered. Experimental researches of D-245.12C diesel are carried out on mixtures of diesel fuel and corn oil with a different composition. An opportunity of exhaust toxicity indexes improvement using these mixtures as a fuel for automobiles engine is shown.

  18. AUTOMOTIVE DIESEL MAINTENANCE L. UNIT XII, PART I--MAINTAINING THE FUEL SYSTEM (PART II), CUMMINS DIESEL ENGINE, PART II--UNIT INSTALLATION (ENGINE).

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE FUEL SYSTEM AND THE PROCEDURES FOR DIESEL ENGINE INSTALLATION. TOPICS ARE FUEL FLOW CHARACTERISTICS, PTG FUEL PUMP, PREPARATION FOR INSTALLATION, AND INSTALLING ENGINE. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH…

  19. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XI, PART I--MAINTAINING THE FUEL SYSTEM (PART I), CUMMINS DIESEL ENGINES, PART II--UNIT REPLACEMENT (ENGINE).

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF DIFFERENCES BETWEEN TWO AND FOUR CYCLE ENGINES, THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE FUEL SYSTEM, AND THE PROCEDURES FOR DIESEL ENGINE REMOVAL. TOPICS ARE (1) REVIEW OF TWO CYCLE AND FOUR CYCLE CONCEPT, (2) SOME BASIC CHARACTERISTICS OF FOUR CYCLE ENGINES,…

  20. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XIX, I--ENGINE TUNE-UP--CUMMINS DIESEL ENGINE, II--FRONT END SUSPENSION AND AXLES.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF DIESEL ENGINE TUNE-UP PROCEDURES AND THE DESIGN OF FRONT END SUSPENSION AND AXLES USED ON DIESEL ENGINE EQUIPMENT. TOPICS ARE (1) PRE-TUNE-UP CHECKS, (2) TIMING THE ENGINE, (3) INJECTOR PLUNGER AND VALVE ADJUSTMENTS, (4) FUEL PUMP ADJUSTMENTS ON THE ENGINE (PTR AND PTG),…

  1. Performance of Diesel Engine Using Diesel B3 Mixed with Crude Palm Oil

    PubMed Central

    Namliwan, Nattapong; Wongwuttanasatian, Tanakorn

    2014-01-01

    The objective of this study was to test the performance of diesel engine using diesel B3 mixed with crude palm oil in ratios of 95 : 5, 90 : 10, and 85 : 15, respectively, and to compare the results with diesel B3. According to the tests, they showed that the physical properties of the mixed fuel in the ratio of 95 : 5 were closest to those of diesel B3. The performance of the diesel engine that used mixed fuels had 5–17% lower torque and power than that of diesel B3. The specific fuel consumption of mixed fuels was 7–33% higher than using diesel B3. The components of gas emissions by using mixed fuel had 1.6–52% fewer amount of carbon monoxide (CO), carbon dioxide (CO2), sulfur dioxide (SO2), and oxygen (O2) than those of diesel B3. On the other hand, nitric oxide (NO) and nitrogen oxides (NOX) emissions when using mixed fuels were 10–39% higher than diesel B3. By comparing the physical properties, the performance of the engine, and the amount of gas emissions of mixed fuel, we found out that the 95 : 5 ratio by volume was a suitable ratio for agricultural diesel engine (low-speed diesel engine). PMID:24688402

  2. Adaptive neuro-fuzzy inference system (ANFIS) to predict CI engine parameters fueled with nano-particles additive to diesel fuel

    NASA Astrophysics Data System (ADS)

    Ghanbari, M.; Najafi, G.; Ghobadian, B.; Mamat, R.; Noor, M. M.; Moosavian, A.

    2015-12-01

    This paper studies the use of adaptive neuro-fuzzy inference system (ANFIS) to predict the performance parameters and exhaust emissions of a diesel engine operating on nanodiesel blended fuels. In order to predict the engine parameters, the whole experimental data were randomly divided into training and testing data. For ANFIS modelling, Gaussian curve membership function (gaussmf) and 200 training epochs (iteration) were found to be optimum choices for training process. The results demonstrate that ANFIS is capable of predicting the diesel engine performance and emissions. In the experimental step, Carbon nano tubes (CNT) (40, 80 and 120 ppm) and nano silver particles (40, 80 and 120 ppm) with nanostructure were prepared and added as additive to the diesel fuel. Six cylinders, four-stroke diesel engine was fuelled with these new blended fuels and operated at different engine speeds. Experimental test results indicated the fact that adding nano particles to diesel fuel, increased diesel engine power and torque output. For nano-diesel it was found that the brake specific fuel consumption (bsfc) was decreased compared to the net diesel fuel. The results proved that with increase of nano particles concentrations (from 40 ppm to 120 ppm) in diesel fuel, CO2 emission increased. CO emission in diesel fuel with nano-particles was lower significantly compared to pure diesel fuel. UHC emission with silver nano-diesel blended fuel decreased while with fuels that contains CNT nano particles increased. The trend of NOx emission was inverse compared to the UHC emission. With adding nano particles to the blended fuels, NOx increased compared to the net diesel fuel. The tests revealed that silver & CNT nano particles can be used as additive in diesel fuel to improve combustion of the fuel and reduce the exhaust emissions significantly.

  3. [Preparation of ethanol-diesel fuel blends and exhausts emission characteristics in diesel engine].

    PubMed

    Zhang, Runduo; He, Hong; Zhang, Changbin; Shi, Xiaoyan

    2003-07-01

    The technology that diesel oil is partly substituted by ethanol can reduce diesel engine exhausts emission, especially fuel soot. This research is concentrated on preparation of ethanol-diesel blend fuel and exhausts emission characteristics using diesel engine bench. Absolute ethanol can dissolve into diesel fuel at an arbitrary ratio. However, a trace of water (0.2%) addition can lead to the phase separation of blends. Organic additive synthesized during this research can develop the ability of resistance to water and maintain the stability of ethanol-diesel-trace amounts of water system. The effects of 10%, 20%, and 30% ethanol-diesel fuel blends on exhausts emission, were compared with that of diesel fuel in direct injection (DI) diesel engine. The optimum ethanol percentage for ethanol-diesel fuel blends was 20%. Using 20% ethanol-diesel fuel blend with 2% additive of the total volume, bench diesel engine showed a large amount decrease of exhaust gas, e.g. 55% of Bosch smoke number, 70% of HC emission, and 45% of CO emission at 13 kW and 1540 r/min. Without the addition of additive, the blend of ethanol produced new organic compounds such as ethanol and acetaldehyde in tail gas. However, the addition of additive obviously reduced the emission of ethanol and acetaldehyde.

  4. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XX, CUMMINS DIESEL ENGINE, MAINTENANCE SUMMARY.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO PROVIDE A SUMMARY OF THE REASONS AND PROCEDURES FOR DIESEL ENGINE MAINTENANCE. TOPICS ARE WHAT ENGINE BREAK-IN MEANS, ENGINE BREAK-IN, TORQUING BEARINGS (TEMPLATE METHOD), AND THE NEED FOR MAINTENANCE. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING FILM "CUMMINS DIESEL ENGINE…

  5. 40 CFR 80.572 - What labeling requirements apply to retailers and wholesale purchaser-consumers of Motor Vehicle...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... engines. Recommended for use in all diesel vehicles and engines. (b) From June 1, 2010, through September... and later nonroad diesel engines. Recommended for use in all other non-highway diesel engines. WARNING... retailers and wholesale purchaser-consumers of Motor Vehicle, NR, LM and NRLM diesel fuel and heating oil...

  6. 40 CFR 80.572 - What labeling requirements apply to retailers and wholesale purchaser-consumers of Motor Vehicle...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... engines. Recommended for use in all diesel vehicles and engines. (b) From June 1, 2010, through September... and later nonroad diesel engines. Recommended for use in all other non-highway diesel engines. WARNING... retailers and wholesale purchaser-consumers of Motor Vehicle, NR, LM and NRLM diesel fuel and heating oil...

  7. 46 CFR 112.35-3 - Normal source for emergency loads.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ....35-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Manually Controlled Emergency Systems Having a Storage Battery or a Diesel Engine or Gas Turbine Driven Generator as the Sole Emergency Power Source § 112.35-3 Normal source...

  8. 46 CFR 112.35-3 - Normal source for emergency loads.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ....35-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Manually Controlled Emergency Systems Having a Storage Battery or a Diesel Engine or Gas Turbine Driven Generator as the Sole Emergency Power Source § 112.35-3 Normal source...

  9. 46 CFR 112.35-3 - Normal source for emergency loads.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ....35-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Manually Controlled Emergency Systems Having a Storage Battery or a Diesel Engine or Gas Turbine Driven Generator as the Sole Emergency Power Source § 112.35-3 Normal source...

  10. 46 CFR 112.35-3 - Normal source for emergency loads.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ....35-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Manually Controlled Emergency Systems Having a Storage Battery or a Diesel Engine or Gas Turbine Driven Generator as the Sole Emergency Power Source § 112.35-3 Normal source...

  11. 46 CFR 112.35-3 - Normal source for emergency loads.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ....35-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Manually Controlled Emergency Systems Having a Storage Battery or a Diesel Engine or Gas Turbine Driven Generator as the Sole Emergency Power Source § 112.35-3 Normal source...

  12. 46 CFR 112.50-5 - Electric starting.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Electric starting. 112.50-5 Section 112.50-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Diesel and Gas Turbine Engine Driven Generator Sets § 112.50-5 Electric starting...

  13. 46 CFR 112.50-5 - Electric starting.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Electric starting. 112.50-5 Section 112.50-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Diesel and Gas Turbine Engine Driven Generator Sets § 112.50-5 Electric starting...

  14. 46 CFR 112.50-5 - Electric starting.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Electric starting. 112.50-5 Section 112.50-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Diesel and Gas Turbine Engine Driven Generator Sets § 112.50-5 Electric starting...

  15. 46 CFR 112.50-5 - Electric starting.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Electric starting. 112.50-5 Section 112.50-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Diesel and Gas Turbine Engine Driven Generator Sets § 112.50-5 Electric starting...

  16. 46 CFR 112.50-5 - Electric starting.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Electric starting. 112.50-5 Section 112.50-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING EMERGENCY LIGHTING AND POWER SYSTEMS Emergency Diesel and Gas Turbine Engine Driven Generator Sets § 112.50-5 Electric starting...

  17. Investigation of diesel-powered vehicle emissions. Part VII. Final report Jun 74--Nov 76

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Springer, K.J.

    Five light duty diesel vehicles and five heavy duty diesel engines were tested over various test cycles for both regulated and unregulated emissions. A Mercedes 220 D, Mercedes 240 D, Mercedes 300 D, Peugeot 2040, and an International Harvester pick-up truck with a Perkins 6-247 engine were the light duty diesel vehicles tested. The heavy duty diesels included a Detroit Diesel 6V-71 city bus engine with two injector designs, a Cummins NTC-290 truck engine operated with and without variable timing, and a Detroit Diesel 8V-71TA truck engine. Emissions measured included HC, CO, NOx, CO2, smoke, aldehydes, exhaust odor, benzo (a)more » pyrene, sulfate, sulfur dioxide, and particulate mass.« less

  18. Overview of thermal barrier coatings in diesel engines

    NASA Technical Reports Server (NTRS)

    Yonushonis, Thomas M.

    1995-01-01

    An understanding of delamination mechanisms in thermal barrier coatings has been developed for diesel engine applications through rig tests, structural analysis modeling, nondestructive evaluation, and engine evaluation of various thermal barrier coatings. This knowledge has resulted in improved thermal barrier coatings which survive abusive cyclic fatigue tests in high output diesel engines. Although much conflicting literature now exists regarding the impact of thermal barrier coatings on engine performance and fuel consumption, the changes in fuel consumption appear to be less than a few percent and can be negative for state-of-the-art diesel engines. The ability of the thermal barrier coating to improve fuel economy tends to be dependent on a number of factors including the fuel injection system, combustion chamber design, and the initial engine fuel economy. Limited investigations on state-of-the-art diesel engines have indicated that the surface connected porosity and coating surface roughness may influence engine fuel economy. Current research efforts on thermal barrier coatings are primarily directed at reducing in-cylinder heat rejection, thermal fatigue protection of underlying metal surfaces and a possible reduction in diesel engine emissions. Significant efforts are still required to improve the plasma spray processing capability and the economics for complex geometry diesel engine components.

  19. Diesel Technology: Engines. [Teacher and Student Editions.

    ERIC Educational Resources Information Center

    Barbieri, Dave; Miller, Roger; Kellum, Mary

    Competency-based teacher and student materials on diesel engines are provided for a diesel technology curriculum. Seventeen units of instruction cover the following topics: introduction to engine principles and procedures; engine systems and components; fuel systems; engine diagnosis and maintenance. The materials are based on the…

  20. Tailpipe emissions and engine performance of a light-duty diesel engine operating on petro- and bio-diesel fuel blends.

    DOT National Transportation Integrated Search

    2014-06-01

    This report summarizes the experimental apparatus developed in the Transportation Air Quality Laboratory (TAQ Lab) at the University of Vermont to compare light-duty diesel engine performance and exhaust emissions when operating on petroleum diesel (...

  1. Overview of thermal barrier coatings in diesel engines

    NASA Technical Reports Server (NTRS)

    Yonushonis, T. M.

    1995-01-01

    An understanding of delamination mechanisms in thermal barrier coatings has been developed for diesel applications through nondestructive evaluation, structural analysis modeling and engine evaluation of various thermal barrier coatings. This knowledge has resulted in improved thermal barrier coatings which survive abusive cyclic fatigue tests in high output diesel engines. Significant efforts are still required to improve the plasma spray processing capability and the economics for complex geometry diesel engine components. Data obtained from advanced diesel engines on the effect of thermal barrier coatings on engine fuel economy and emission has not been encouraging. Although the underlying metal component temperatures have been reduced through the use of thermal barrier coating, engine efficiency and emission trends have not been promising.

  2. 46 CFR 112.50-1 - General.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Emergency Diesel and Gas Turbine Engine Driven Generator Sets § 112.50-1 General. (a) The prime mover of a generator set must have: (1) All accessories necessary for operation and protection of the prime mover; and... degrees C). (c) The room that has the generator set must have intake and exhaust ducts to supply adequate...

  3. Effect ofHydrogen Use on Diesel Engine Performance

    NASA Astrophysics Data System (ADS)

    Ceraat, A.; Pana, C.; Negurescu, N.; Nutu, C.; Mirica, I.; Fuiorescu, D.

    2016-11-01

    Necessity of pollutant emissions decreasing, a great interest aspect discussed at 2015 Paris Climate Conference, highlights the necessity of alternative fuels use at diesel engines. Hydrogen is considered a future fuel for the automotive industry due to its properties which define it as the cleanest fuel and due to the production unlimited sources. The use of hydrogen as fuel for diesel engines has a higher degree of complexity because of some hydrogen particularities which lead to specific issues of the hydrogen use at diesel engine: tendency of uncontrolled ignition with inlet backfire, in-cylinder combustion with higher heat release rates and with high NOx level, storage difficulties. Because hydrogen storing on vehicle board implies important difficulties in terms of safety and automotive range, the partial substitution of diesel fuel by hydrogen injected into the inlet manifold represents the most efficient method. The paper presents the results of the experimental researches carried on a truck diesel engine fuelled with diesel fuel and hydrogen, in-cylinder phenomena's study showing the influence of some parameters on combustion, engine performance and pollutant emissions. The paper novelty is defined by the hydrogen fuelling method applied to diesel engine and the efficient control of the engine running.

  4. Combustion performance and exhaust emissions fuelled with non-surfactant water-in-diesel emulsion fuel made from different water sources.

    PubMed

    Ahmad, Mohamad Azrin; Yahya, Wira Jazair; Ithnin, Ahmad Muhsin; Hasannuddin, A K; Bakar, Muhammad Aiman Abu; Fatah, Abdul Yasser Abd; Sidik, Nor Azwadi Che; Noge, Hirofumi

    2018-06-14

    Non-surfactant water-in-diesel emulsion fuel (NWD) is an alternative fuel that has the potential to reduce major exhaust emissions while simultaneously improving the combustion performance of a diesel engine. NWD comprises of diesel fuel and water (about 5% in volume) without any additional surfactants. This emulsion fuel is produced through an in-line mixing system that is installed very close to the diesel engine. This study focuses mainly on the performance and emission of diesel engine fuelled with NWD made from different water sources. The engine used in this study is a direct injection diesel engine with loads varying from 1 to 4 kW. The result shows that NWD made from tap water helps the engine to reduce nitrogen oxide (NO x ) by 32%. Rainwater reduced it by 29% and seawater by 19%. In addition, all NWDs show significant improvements in engine performance as compared to diesel fuel, especially in the specific fuel consumption that indicates an average reduction of 6%. It is observed that all NWDs show compelling positive effects on engine performance, which is caused by the optimum water droplet size inside NWD.

  5. Engine-Operating Load Influences Diesel Exhaust Composition and Cardiopulmonary and Immune Responses

    PubMed Central

    Campen, Matthew J.; Harrod, Kevin S.; Seagrave, JeanClare; Seilkop, Steven K.; Mauderly, Joe L.

    2011-01-01

    Background: The composition of diesel engine exhaust (DEE) varies by engine type and condition, fuel, engine operation, and exhaust after treatment such as particle traps. DEE has been shown to increase inflammation, susceptibility to infection, and cardiovascular responses in experimentally exposed rodents and humans. Engines used in these studies have been operated at idle, at different steady-state loads, or on variable-load cycles, but exposures are often reported only as the mass concentration of particulate matter (PM), and the effects of different engine loads and the resulting differences in DEE composition are unknown. Objectives: We assessed the impacts of load-related differences in DEE composition on models of inflammation, susceptibility to infection, and cardiovascular toxicity. Methods: We assessed inflammation and susceptibility to viral infection in C57BL/6 mice and cardiovascular toxicity in APOE–/– mice after being exposed to DEE generated from a single-cylinder diesel generator operated at partial or full load. Results: At the same PM mass concentration, partial load resulted in higher proportions of particle organic carbon content and a smaller particle size than did high load. Vapor-phase hydrocarbon content was greater at partial load. Compared with high-load DEE, partial-load DEE caused greater responses in heart rate and T-wave morphology, in terms of both magnitude and rapidity of onset of effects, consistent with previous findings that systemic effects may be driven largely by the gas phase of the exposure atmospheres. However, high-load DEE caused more lung inflammation and greater susceptibility to viral infection than did partial load. Conclusions: Differences in engine load, as well as other operating variables, are important determinants of the type and magnitude of responses to inhaled DEE. PM mass concentration alone is not a sufficient basis for comparing or combining results from studies using DEE generated under different conditions. PMID:21524982

  6. Rapid engine test to measure injector fouling in diesel engines using vegetable oil fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korus, R.A.; Jaiduk, J.; Peterson, C.L.

    1985-11-01

    Short engine tests were used to determine the rate of carbon deposition on direct injection diesel nozzles. Winter rape, high-oleic and high-linoleic safflower blends with 50% diesel were tested for carbon deposit and compared to that with D-2 Diesel Control Fuel. Deposits were greatest with the most unsaturated fuel, high-linoleic safflower, and least with winter rape. All vegetable oil blends developed power similar to diesel fueled engines with a 6 to 8% greater fuel consumption. 8 references.

  7. A Feasibility Study for Advanced Technology Integration for General Aviation.

    DTIC Science & Technology

    1980-05-01

    154 4.5.9.4 Stratified Charge Reciprocating Engine ..... .. 155 4.5.9.5 Advanced Diesel Engine . ... 158 4.5.9.6 Liquid Cooling ... ........ 159... diesel , rotary combustion engine, advanced reciprocating engine concepts. (7) Powerplant control - integrated controls, microprocessor- based controls...Research Center Topics. (1) GATE (2) Positive displacement engines (a) Advanced reciprocating engines. (b) Alternative engine systems Diesel engines

  8. Standardized Curriculum for Diesel Engine Mechanics.

    ERIC Educational Resources Information Center

    Mississippi State Dept. of Education, Jackson. Office of Vocational, Technical and Adult Education.

    Standardized curricula are provided for two courses for the secondary vocational education program in Mississippi: diesel engine mechanics I and II. The eight units in diesel engine mechanics I are as follows: orientation; shop safety; basic shop tools; fasteners; measurement; engine operating principles; engine components; and basic auxiliary…

  9. Continuous reduction of cyclic adsorbed and desorbed NO(x) in diesel emission using nonthermal plasma.

    PubMed

    Kuwahara, Takuya; Nakaguchi, Harunobu; Kuroki, Tomoyuki; Okubo, Masaaki

    2016-05-05

    Considering the recent stringent regulations governing diesel NO(x) emission, an aftertreatment system for the reduction of NO(x) in the exhaust gas has been proposed and studied. The proposed system is a hybrid method combining nonthermal plasma and NOx adsorbent. The system does not require precious metal catalysts or harmful chemicals such as urea and ammonia. In the present system, NO(x) in diesel emission is treated by adsorption and desorption by adsorbent as well as nonthermal plasma reduction. In addition, the remaining NO(x) in the adsorbent is desorbed again in the supplied air by residual heat. The desorbed NO(x) in air recirculates into the intake of the engine, and this process, i.e., exhaust gas components' recirculation (EGCR) achieves NO(x) reduction. Alternate utilization of two adsorption chambers in the system can achieve high-efficiency NO(x) removal continuously. An experiment with a stationary diesel engine for electric power generation demonstrates an energy efficiency of 154 g(NO2)/kWh for NO(x) removal and continuous NO(x) reduction of 70.3%. Considering the regulation against diesel emission in Japan, i.e., the new regulation to be imposed on vehicles of 3.5-7.5 ton since 2016, the present aftertreatment system fulfills the requirement with only 1.0% of engine power. Copyright © 2016. Published by Elsevier B.V.

  10. Understanding the difference in oxidative properties between flame and diesel soot nanoparticles: the role of metals.

    PubMed

    Kim, S H; Fletcher, R A; Zachariah, M R

    2005-06-01

    The purpose of this paper is to address the differences observed in the oxidative kinetics between flame and diesel derived soots. In particular, it has been observed that flame soot has a significantly higher activation energy for oxidation than does diesel soot. The hypothesis tested in this paper is that metals, possibly coming from lubricating oils, within diesel generated soot particles may be responsible for this effect. This is supported by the fact that addition of metal additives to diesel fuel is shown to have no effect on the activation energy of soot oxidation. The subject of this paper lies in testing the hypothesis by adding metal directly to a flame and extracting oxidation kinetics. Using a high temperature oxidation tandem differential mobility analyzer (HTO-TDMA) we extract particle size dependent kinetics for the oxidation of flame-derived soot doped with and without iron. We found that indeed addition of iron to a flame reduced the activation energy significantly from approximately 162 +/- 3 kJ/mol to approximately 116 +/- 3 kJ/mol, comparable with diesel engine generated soot with an activation energy approximately 110 kJ/mol. These results are consistent with the idea that small quantities of metals during diesel combustion may play an important role in soot abatement.

  11. Experimental Investigations on Conventional and Semi-Adiabatic Diesel Engine Using Simarouba Biodiesel as Fuel

    NASA Astrophysics Data System (ADS)

    Ravi, M. U.; Reddy, C. P.; Ravindranath, K.

    2013-04-01

    In view of fast depletion of fossil fuels and the rapid rate at which the fuel consumption is taking place all over the world, scientists are searching for alternate fuels for maintaining the growth industrially and economically. Hence search for alternate fuel(s) has become imminent. Out of the limited options for internal combustion engines, the bio diesel fuel appears to be the best. Many advanced countries are implementing several biodiesel initiatives and developmental programmes in order to become self sufficient and reduce the import bills. Biodiesel is biodegradable and renewable fuel with the potential to enhance the performance and reduce engine exhaust emissions. This is due to ready usage of existing diesel engines, fuel distribution pattern, reduced emission profiles, and eco-friendly properties of biodiesel. Simarouba biodiesel (SBD), the methyl ester of Simarouba oil is one such alternative fuel which can be used as substitute to conventional petro-diesel. The present work involves experimental investigation on the use of SBD blends as fuel in conventional diesel engine and semi-adiabatic diesel engine. The oil was triple filtered to eliminate particulate matter and then transesterified to obtain biodiesel. The project envisaged aims at conducting analysis of diesel with SBD blends (10, 20, 30 and 40 %) in conventional engine and semi-adiabatic engine. Also it was decided to vary the injection pressure (180, 190 and 200 bar) and observe its effect on performance and also suggest better value of injection pressure. The engine was made semi adiabatic by coating the piston crown with partially stabilized zirconia (PSZ). Kirloskar AV I make (3.67 kW) vertical, single cylinder, water cooled diesel engine coupled to an eddy current dynamometer with suitable measuring instrumentation/accessories used for the study. Experiments were initially carried out using pure diesel fuel to provide base line data. The test results were compared based on the performance parameters including power output, fuel consumption, brake thermal efficiency, brake specific fuel consumption etc. Exhaust emissions were also measured. The results obtained confirmed that the blends of SBD with petro-diesel can be successfully employed as an alternate fuel in diesel engines. Also engine with coated piston crown gave better break thermal efficiency for blends of Simarouba and diesel compared with diesel fuel. Significant improvements in engine performance characteristics were observed for a blend containing 20 % SBD. The emissions for 20 % biodiesel blend for the standard engine were less when compared with diesel fuel emissions. Contrary to expectations the injection pressure of 180 bar proved to be better than 190 and 200 bar.

  12. Brassica carinata as an alternative oil crop for the production of biodiesel in Italy: engine performance and regulated and unregulated exhaust emissions.

    PubMed

    Cardone, Massimo; Prati, Maria Vittoria; Rocco, Vittorio; Seggiani, Maurizia; Senatore, Adolfo; Vitoloi, Sandra

    2002-11-01

    A comparison of the performance of Brassica carinata oil-derived biodiesel with a commercial rapeseed oil-derived biodiesel and petroleum diesel fuel is discussed as regards engine performance and regulated and unregulated exhaust emissions. B. carinata is an oil crop that can be cultivated in coastal areas of central-southern Italy, where it is more difficult to achieve the productivity potentials of Brassica napus (by far the most common rapeseed cultivated in continental Europe). Experimental tests were carried out on a turbocharged direct injection passenger car diesel engine fueled with 100% biodiesel. The unregulated exhaust emissions were characterized by determining the SOOT and soluble organic fraction content in the particulate matter, together with analysis of the content and speciation of polycyclic aromatic hydrocarbons, some of which are potentially carcinogenic, and of carbonyl compounds (aldehydes, ketones) that act as ozone precursors. B. carinata and commercial biodiesel behaved similarly as far as engine performance and regulated and unregulated emissions were concerned. When compared with petroleum diesel fuel, the engine test bench analysis did not show any appreciable variation of output engine torque values, while there was a significant difference in specific fuel consumption data at the lowest loads for the biofuels and petroleum diesel fuel. The biofuels were observed to produce higher levels of NOx concentrations and lower levels of PM with respect to the diesel fuel. The engine heat release analysis conducted shows that there is a potential for increased thermal NOx generation when firing biodiesel with no prior modification to the injection timing. It seems that, for both the biofuels, this behavior is caused by an advanced combustion evolution, which is particularly apparent at the higher loads. When compared with petroleum diesel fuel, biodiesel emissions contain less SOOT, and a greater fraction of the particulate was soluble. The analysis and speciation of the soluble organic fraction of biodiesel particulate suggest that the carcinogenic potential of the biodiesel emissions is probably lower than that of petroleum diesel. Its better adaptivity and productivity in clay and sandy-type soils and in semiarid temperate climate and the fact that the performance of its derived biodiesel is quite similar to commercial biodiesel make B. carinata a promising oil crop that could offer the possibility of exploiting the Mediterranean marginal areas for energetic purposes.

  13. Supercritical and Transcritical Real-Fluid Mixing in Diesel Engine Applications

    DTIC Science & Technology

    2015-09-01

    ARL-RP-0551 ● SEP 2015 US Army Research Laboratory Supercritical and Transcritical Real-Fluid Mixing in Diesel Engine...ARL-RP-0551 ● SEP 2015 US Army Research Laboratory Supercritical and Transcritical Real-Fluid Mixing in Diesel Engine Applications by...COVERED (From - To) 1 January 2014–30 September 2014 4. TITLE AND SUBTITLE Supercritical and Transcritical Real-Fluid Mixing in Diesel Engine

  14. Final Rule for Control of Air Pollution From New Motor Vehicles and New Motor Vehicle Engines; Non-Conformance Penalties for 2004 and later Model Year Emission Standards for Heavy-Duty Diesel Engines and Heavy-Duty Diesel Vehicles

    EPA Pesticide Factsheets

    Final Rule for Control of Air Pollution From New Motor Vehicles and New Motor Vehicle Engines; Non-Conformance Penalties for 2004 and later Model Year Emission Standards for Heavy-Duty Diesel Engines and Heavy-Duty Diesel Vehicles

  15. 78 FR 28719 - Special Conditions: Cessna Aircraft Company, Model J182T; Diesel Cycle Engine Installation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-16

    ...; Special Conditions No. 23-259-SC] Special Conditions: Cessna Aircraft Company, Model J182T; Diesel Cycle..., air cooled, diesel cycle engine that uses turbine (jet) fuel. The Model No. J182T, which is a... engine airplane with a cantilever high wing, with the SMA SR305- 230E-C1 diesel cycle engine and...

  16. Evaluation of carcinogenic hazard of diesel engine exhaust needs to consider revolutionary changes in diesel technology.

    PubMed

    McClellan, Roger O; Hesterberg, Thomas W; Wall, John C

    2012-07-01

    Diesel engines, a special type of internal combustion engine, use heat of compression, rather than electric spark, to ignite hydrocarbon fuels injected into the combustion chamber. Diesel engines have high thermal efficiency and thus, high fuel efficiency. They are widely used in commerce prompting continuous improvement in diesel engines and fuels. Concern for health effects from exposure to diesel exhaust arose in the mid-1900s and stimulated development of emissions regulations and research to improve the technology and characterize potential health hazards. This included epidemiological, controlled human exposure, laboratory animal and mechanistic studies to evaluate potential hazards of whole diesel exhaust. The International Agency for Research on Cancer (1989) classified whole diesel exhaust as - "probably carcinogenic to humans". This classification stimulated even more stringent regulations for particulate matter that required further technological developments. These included improved engine control, improved fuel injection system, enhanced exhaust cooling, use of ultra low sulfur fuel, wall-flow high-efficiency exhaust particulate filters, exhaust catalysts, and crankcase ventilation filtration. The composition of New Technology Diesel Exhaust (NTDE) is qualitatively different and the concentrations of particulate constituents are more than 90% lower than for Traditional Diesel Exhaust (TDE). We recommend that future reviews of carcinogenic hazards of diesel exhaust evaluate NTDE separately from TDE. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Methods for heat transfer and temperature field analysis of the insulated diesel, phase 3

    NASA Technical Reports Server (NTRS)

    Morel, Thomas; Wahiduzzaman, Syed; Fort, Edward F.; Keribar, Rifat; Blumberg, Paul N.

    1988-01-01

    Work during Phase 3 of a program aimed at developing a comprehensive heat transfer and thermal analysis methodology for design analysis of insulated diesel engines is described. The overall program addresses all the key heat transfer issues: (1) spatially and time-resolved convective and radiative in-cylinder heat transfer, (2) steady-state conduction in the overall structure, and (3) cyclical and load/speed temperature transients in the engine structure. These are all accounted for in a coupled way together with cycle thermodynamics. This methodology was developed during Phases 1 and 2. During Phase 3, an experimental program was carried out to obtain data on heat transfer under cooled and insulated engine conditions and also to generate a database to validate the developed methodology. A single cylinder Cummins diesel engine was instrumented for instantaneous total heat flux and heat radiation measurements. Data were acquired over a wide range of operating conditions in two engine configurations. One was a cooled baseline. The other included ceramic coated components (0.050 inches plasma sprayed zirconia)-piston, head and valves. The experiments showed that the insulated engine has a smaller heat flux than the cooled one. The model predictions were found to be in very good agreement with the data.

  18. Potential of Diesel Engine, Diesel Engine Design Concepts, Control Strategy and Implementation

    DOT National Transportation Integrated Search

    1980-03-01

    Diesel engine design concepts and control system strategies are surveyed with application to passenger cars and light trucks. The objective of the study is to indicate the fuel economy potential of the technologies investigated. The engine design par...

  19. Development of Advanced High Strength Cast Alloys for Heavy Duty Engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barlow, James

    Gray iron has been the primary alloy for heavy duty diesel engine core castings for decades. During recent decades the limitations of gray iron have been reached in some applications, leading to the use of compacted graphite iron in engine blocks and heads. Caterpillar has had compacted graphite designs in continuous production since the late 1980’s. Due to the drive for higher power density, decreased emissions and increased fuel economy, cylinder pressures and temperatures continue to increase. Currently no viable replacement for today’s compacted graphite irons exist at an acceptable cost level. This project explored methods to develop the nextmore » generation of heavy duty diesel engine materials as well as demonstrated some results on new alloy designs although cost targets will likely not be met.« less

  20. 40 CFR 86.004-15 - NOX plus NMHC and particulate averaging, trading, and banking for heavy-duty engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... all diesel-cycle engine families within the same primary service class is allowed. (ii) Urban buses... averaging set from all other heavy-duty engines. Averaging and trading between diesel cycle bus engine... heavy-duty engines, the equivalent mileage is 6.3 miles. For diesel heavy-duty engines, the equivalent...

  1. 40 CFR 86.004-15 - NOX plus NMHC and particulate averaging, trading, and banking for heavy-duty engines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... all diesel-cycle engine families within the same primary service class is allowed. (ii) Urban buses... averaging set from all other heavy-duty engines. Averaging and trading between diesel cycle bus engine... heavy-duty engines, the equivalent mileage is 6.3 miles. For diesel heavy-duty engines, the equivalent...

  2. 76 FR 19903 - Special Conditions: Diamond Aircraft Industry Model DA-40NG; Diesel Cycle Engine

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-11

    ... DA-40NG the Austro Engine GmbH model E4 aircraft diesel engine (ADE) using turbine (jet) fuel. This... engine utilizing turbine (jet) fuel. The applicable airworthiness regulations do not contain adequate or...: Installation of the Austro Engine GmbH Model E4 ADE diesel engine utilizing turbine (jet) fuel. Discussion...

  3. Mathematical model of marine diesel engine simulator for a new methodology of self propulsion tests

    NASA Astrophysics Data System (ADS)

    Izzuddin, Nur; Sunarsih, Priyanto, Agoes

    2015-05-01

    As a vessel operates in the open seas, a marine diesel engine simulator whose engine rotation is controlled to transmit through propeller shaft is a new methodology for the self propulsion tests to track the fuel saving in a real time. Considering the circumstance, this paper presents the real time of marine diesel engine simulator system to track the real performance of a ship through a computer-simulated model. A mathematical model of marine diesel engine and the propeller are used in the simulation to estimate fuel rate, engine rotating speed, thrust and torque of the propeller thus achieve the target vessel's speed. The input and output are a real time control system of fuel saving rate and propeller rotating speed representing the marine diesel engine characteristics. The self-propulsion tests in calm waters were conducted using a vessel model to validate the marine diesel engine simulator. The simulator then was used to evaluate the fuel saving by employing a new mathematical model of turbochargers for the marine diesel engine simulator. The control system developed will be beneficial for users as to analyze different condition of vessel's speed to obtain better characteristics and hence optimize the fuel saving rate.

  4. Assessment of a 40-kilowatt stirling engine for underground mining applications

    NASA Technical Reports Server (NTRS)

    Cairelli, J. E.; Kelm, G. G.; Slaby, J. G.

    1982-01-01

    An assessment of alternative power souces for underground mining applications was performed. A 40-kW Stirling research engine was tested to evaluate its performance and emission characteristics when operated with helium working gas and diesel fuel. The engine, the test facility, and the test procedures are described. Performance and emission data for the engine operating with helium working gas and diesel fuel are reported and compared with data obtained with hydrogen working gas and unleaded gasoline fuel. Helium diesel test results are compared with the characteristics of current diesel engines and other Stirling engines. External surface temperature data are also presented. Emission and temperature results are compared with the Federal requirements for diesel underground mine engines. The durability potential of Stirling engines is discussed on the basis of the experience gaind during the engine tests.

  5. 46 CFR 112.35-7 - Activating means.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... POWER SYSTEMS Manually Controlled Emergency Systems Having a Storage Battery or a Diesel Engine or Gas Turbine Driven Generator as the Sole Emergency Power Source § 112.35-7 Activating means. The activating...

  6. 46 CFR 112.35-7 - Activating means.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... POWER SYSTEMS Manually Controlled Emergency Systems Having a Storage Battery or a Diesel Engine or Gas Turbine Driven Generator as the Sole Emergency Power Source § 112.35-7 Activating means. The activating...

  7. Increase of diesel car raises health risk in spite of recent development in engine technology.

    PubMed

    Leem, Jong Han; Jang, Young-Kee

    2014-01-01

    Diesel exhaust particles (DEP) contain elemental carbon, organic compounds including Polyaromatic hydrocarbons (PAHs), metals, and other trace compounds. Diesel exhaust is complex mixture of thousands of chemicals. Over forty air contaminants are recognized as toxicants, such as carcinogens. Most diesel exhaust particles have aerodynamic diameters falling within a range of 0.1 to 0.25 μm. DEP was classified as a definite human carcinogen (group 1) by the International Agency for Research on Cancer at 2012 based on recently sufficient epidemiological evidence for lung cancer. Significant decreases in DEP and other diesel exhaust constituents will not be evident immediately, and outworn diesel car having longer mileage still threatens health of people in spite of recent remarkable development in diesel engine technology. Policy change in South Korea, such as introduction of diesel taxi, may raise health risk of air pollution in metropolitan area with these limitations of diesel engine. To protect people against DEP in South Korea, progressive strategies are needed, including disallowance of diesel taxi, more strict regulation of diesel engine emission, obligatory diesel particulate filter attachment in outworn diesel car, and close monitoring about health effects of DEP.

  8. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XVII, I--MAINTAINING THE LUBRICATION SYSTEM--CUMMINS DIESEL ENGINE, II--UNIT INSTALLATION AND REMOVAL--DRIVE LINES.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE DIESEL ENGINE LUBRICATION SYSTEM AND THE PROCEDURES FOR REMOVAL AND INSTALLATION OF THE DRIVE LINE USED IN DIESEL ENGINE POWER DISTRIBUTION. TOPICS ARE (1) PROLONGING ENGINE LIFE, (2) FUNCTIONS OF THE LUBRICATING SYSTEM, (3) TRACING THE LUBRICANT FLOW, (4) DETERMINING…

  9. Carbonyls emission from ethanol-blended gasoline and biodiesel-ethanol-diesel used in engines

    NASA Astrophysics Data System (ADS)

    Pang, Xiaobing; Mu, Yujing; Yuan, Juan; He, Hong

    Detailed carbonyls emissions from ethanol-blended gasoline (containing 10% v/v, ethanol, E-10) and biodiesel-ethanol-diesel (BE-diesel) were carefully investigated on an EQ491i gasoline engine equipped with a three-way-catalyst (TWC) and a Commins-4B diesel engine. In engine-out emissions for the gasoline engine, total carbonyls from E-10 varied in the range of 66.7-99.4 mg kW -1 h -1, which was 3.1-8.2% less than those from fossil gasoline (E-0). In tailpipe emissions, total carbonyls from E-10 varied in the range of 9.2-20.7 mg kW -1 h -1, which were 3.0-61.7% higher than those from E-0. The total carbonyls emissions from BE-diesel were 1-22% higher than those from diesel at different engine operating conditions. Compared with fossil fuels, E-10 can slightly reduce CO emission, and BE-diesel can substantially decrease PM emission, while both alternative fuels increased slightly NO x emission.

  10. Emissions of Transport Refrigeration Units with CARB Diesel, Gas-to-Liquid Diesel, and Emissions Control Devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnitt, R. A.; Chernich, D.; Burnitzki, M.

    2010-05-01

    A novel in situ method was used to measure emissions and fuel consumption of transport refrigeration units (TRUs). The test matrix included two fuels, two exhaust configurations, and two TRU engine operating speeds. Test fuels were California ultra low sulfur diesel and gas-to-liquid (GTL) diesel. Exhaust configurations were a stock muffler and a Thermo King pDPF diesel particulate filter. The TRU engine operating speeds were high and low, controlled by the TRU user interface. Results indicate that GTL diesel fuel reduces all regulated emissions at high and low engine speeds. Application of a Thermo King pDPF reduced regulated emissions, sometimesmore » almost entirely. The application of both GTL diesel and a Thermo King pDPF reduced regulated emissions at high engine speed, but showed an increase in oxides of nitrogen at low engine speed.« less

  11. 40 CFR 89.204 - Averaging.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... are defined as follows: (1) Eligible engines rated at or above 19 kW, other than marine diesel engines, constitute an averaging set. (2) Eligible engines rated under 19 kW, other than marine diesel engines, constitute an averaging set. (3) Marine diesel engines rated at or above 19 kW constitute an averaging set...

  12. 40 CFR 89.204 - Averaging.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... are defined as follows: (1) Eligible engines rated at or above 19 kW, other than marine diesel engines, constitute an averaging set. (2) Eligible engines rated under 19 kW, other than marine diesel engines, constitute an averaging set. (3) Marine diesel engines rated at or above 19 kW constitute an averaging set...

  13. 40 CFR 89.204 - Averaging.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... are defined as follows: (1) Eligible engines rated at or above 19 kW, other than marine diesel engines, constitute an averaging set. (2) Eligible engines rated under 19 kW, other than marine diesel engines, constitute an averaging set. (3) Marine diesel engines rated at or above 19 kW constitute an averaging set...

  14. 40 CFR 89.204 - Averaging.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... are defined as follows: (1) Eligible engines rated at or above 19 kW, other than marine diesel engines, constitute an averaging set. (2) Eligible engines rated under 19 kW, other than marine diesel engines, constitute an averaging set. (3) Marine diesel engines rated at or above 19 kW constitute an averaging set...

  15. Nitroaromatic carcinogens in diesel soot: a review of laboratory findings.

    PubMed Central

    Wei, E T; Shu, H P

    1983-01-01

    The automobile industry plans to increase production of diesel-powered passenger cars because diesel engines provide better fuel economy than conventional gasoline engines. Diesel engines, however, produce more soot, and increased use of diesel cars will result in more discharge of diesel soot into the atmosphere. Recently, a new class of chemicals, called nitroaromatic compounds, have been identified in chemical extracts of diesel soot. Some of these nitroaromatic compounds produce mutations when tested in in vitro bacterial and mammalian cell assays, and cancer when tested in animals. Here, we review the relevance of these new laboratory findings to current deliberations over emission standards for particles from diesel cars. PMID:6192732

  16. Integration of real-time non-surfactant emulsion fuel system on light duty lorry

    NASA Astrophysics Data System (ADS)

    Rashid, Muhammad Adib Abdul; Muhsin Ithnin, Ahmad; Jazair Yahya, Wira; Atiqah Ramlan, Nur; Aiyshah Mazlan, Nurul; Avianto Sugeng, Dhani

    2017-10-01

    Interest in water-in-diesel emulsion fuel (W/D) grows because of its advantages in improving fuel efficiency, reducing greenhouse emissions and retaining the quality of the lubrication oil. Recently, a device called Real-Time Non-Surfactant Emulsion Fuel System (RTES) have successfully created an emulsion without surfactant for a 5kW single-cylinder diesel engine generator. This study integrates the RTES into a light duty lorry, and the effect of the integration is investigated. The lorry was tested on a chassis dynamometer with a controlled 16.6% water ratio. The results show how fuel consumption is reduced by 7.1% compared to neat diesel. Moreover, the exhaust emission of Nitrogen Oxides (NOx) is reduced by 52%, while as observed in other works, carbon monoxides (CO) emission also increased, in this case by 41.6%. This integration concluded to retain similar benefits and disadvantages as tested on the 5.5kW diesel generator.

  17. Control of aldehyde emissions in the diesel engines with alcoholic fuels.

    PubMed

    Krishna, M V S Murali; Varaprasad, C M; Reddy, C Venkata Ramana

    2006-01-01

    The major pollutants emitted from compression ignition (CI) engine with diesel as fuel are smoke and nitrogen oxides (NOx). When the diesel engine is run with alternate fuels, there is need to check alcohols (methanol or ethanol) and aldehydes also. Alcohols cannot be used directly in diesel engine and hence engine modification is essential as alcohols have low cetane number and high latent hear of vaporization. Hence, for use of alcohol in diesel engine, it needs hot combustion chamber, which is provided by low heat rejection (LHR) diesel engine with an air gap insulated piston with superni crown and air gap insulated liner with superni insert. In the present study, the pollution levels of aldehydes are reported with the use of methanol and ethanol as alternate fuels in LHR diesel engine with varying injection pressure, injection timings with different percentage of alcohol induction. The aldehydes (formaldehyde and acetaldehyde) in the exhaust were estimated by wet chemical technique with high performance liquid chromatograph (HPLC). Aldehyde emissions increased with an increase in alcohol induction. The LHR engine showed a decrease in aldehyde emissions when compared to conventional engine. However, the variation of injection pressure showed a marginal effect in reducing aldehydes, while advancing the injection timing reduced aldehyde emissions.

  18. High Resolution Numerical Simulations of Primary Atomization in Diesel Sprays with Single Component Reference Fuels

    DTIC Science & Technology

    2015-09-01

    NC. 14. ABSTRACT A high-resolution numerical simulation of jet breakup and spray formation from a complex diesel fuel injector at diesel engine... diesel fuel injector at diesel engine type conditions has been performed. A full understanding of the primary atomization process in diesel fuel... diesel liquid sprays the complexity is further compounded by the physical attributes present including nozzle turbulence, large density ratios

  19. 40 CFR 80.571 - What labeling requirements apply to retailers and wholesale purchaser-consumers of NRLM diesel...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Required for use in all model year 2011 and newer nonroad diesel engines. Recommended for use in all nonroad, locomotive, and marine diesel engines. WARNING Federal Law prohibits use in highway vehicles or engines. (b) From June 1, 2007, through September 30, 2010, for pumps dispensing NRLM diesel fuel meeting...

  20. 40 CFR 80.502 - What definitions apply for purposes of this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... (h) Marine diesel engine. For the purposes of this subpart I only, marine diesel engine means a diesel engine installed on a Category 1 (C1) or Category 2 (C2) marine vessel. [69 FR 39168, June 29... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel...

  1. 40 CFR 80.571 - What labeling requirements apply to retailers and wholesale purchaser-consumers of NRLM diesel...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Required for use in all model year 2011 and newer nonroad diesel engines. Recommended for use in all nonroad, locomotive, and marine diesel engines. WARNING Federal Law prohibits use in highway vehicles or engines. (b) From June 1, 2007, through September 30, 2010, for pumps dispensing NRLM diesel fuel meeting...

  2. 40 CFR 80.571 - What labeling requirements apply to retailers and wholesale purchaser-consumers of NRLM diesel...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Required for use in all model year 2011 and newer nonroad diesel engines. Recommended for use in all nonroad, locomotive, and marine diesel engines. WARNING Federal Law prohibits use in highway vehicles or engines. (b) From June 1, 2007, through September 30, 2010, for pumps dispensing NRLM diesel fuel meeting...

  3. 40 CFR 80.571 - What labeling requirements apply to retailers and wholesale purchaser-consumers of NRLM diesel...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Required for use in all model year 2011 and newer nonroad diesel engines. Recommended for use in all nonroad, locomotive, and marine diesel engines. WARNING Federal Law prohibits use in highway vehicles or engines. (b) From June 1, 2007, through September 30, 2010, for pumps dispensing NRLM diesel fuel meeting...

  4. Off-Highway Heavy Vehicle Diesel Efficiency Improvement and Emissions Reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jennifer Rumsey

    2005-12-31

    Cummins Inc. is a world leader in the development and production of diesel engines for on-highway vehicles, off-highway industrial machines, and power generation units. Cummins Inc. diesel products cover a 50-3000 HP range. The power range for this project includes 174-750 HP to achieve EPA's Tier 3 emission levels of 4.0 NOx+NMHC gm/kW-hr and 0.2 PM gm/kWhr and Tier 4 Interim emission levels of 2.0 gm/kW-hr NOx and 0.02 gm/kW-hr PM. Cummins' anticipated product offerings for Tier 4 in this range include the following: QSB6.7, QSC8.3, QSL9, QSM11, QSX15, QSK19. (For reference, numerical values indicate engine displacement in liters, themore » letter designation ns indicate the product model). A summary of the EPA's mobile off-highway emissions requirements is given in Figure 1.« less

  5. Experimental investigation of performance and emissions of a VCR diesel engine fuelled with n-butanol diesel blends under varying engine parameters.

    PubMed

    Nayyar, Ashish; Sharma, Dilip; Soni, Shyam Lal; Mathur, Alok

    2017-09-01

    The continuous rise in the cost of fossil fuels as well as in environmental pollution has attracted research in the area of clean alternative fuels for improving the performance and emissions of internal combustion (IC) engines. In the present work, n-butanol is treated as a bio-fuel and investigations have been made to evaluate the feasibility of replacing diesel with a suitable n-butanol-diesel blend. In the current research, an experimental investigation was carried out on a variable compression ratio CI engine with n-butanol-diesel blends (10-25% by volume) to determine the optimum blending ratio and optimum operating parameters of the engine for reduced emissions. The best results of performance and emissions were observed for 20% n-butanol-diesel blend (B20) at a higher compression ratio as compared to diesel while keeping the other parameters unchanged. The observed deterioration in engine performance was within tolerable limits. The reductions in smoke, nitrogen oxides (NO x ), and carbon monoxide (CO) were observed up to 56.52, 17.19, and 30.43%, respectively, for B20 in comparison to diesel at rated power. However, carbon dioxide (CO 2 ) and hydrocarbons (HC) were found to be higher by 17.58 and 15.78%, respectively, for B20. It is concluded that n-butanol-diesel blend would be a potential fuel to control emissions from diesel engines. Graphical abstract ᅟ.

  6. Effect of Alcohol on Diesel Engine Combustion Operating with Biodiesel-Diesel Blend at Idling Conditions

    NASA Astrophysics Data System (ADS)

    Mahmudul, H. M.; Hagos, Ftwi. Y.; A, M. Mukhtar N.; Mamat, Rizalman; Abdullah, A. Adam

    2018-03-01

    Biodiesel is a promising alternative fuel to run the automotive engine. However, its blends have not been properly investigated during idling as it is the main problem to run the vehicles in a big city. The purpose of this study is to evaluate the impact of alcohol additives such as butanol and ethanol on combustion parameters under idling conditions when a single cylinder diesel engine operates with diesel, diesel-biodiesel blends, and diesel biodiesel-alcohol blends. The engine combustion parameters such as peak pressure, heat release rate and ignition delay were computed. This investigation has revealed that alcohol blends with diesel and biodiesel, BU20 blend yield higher maximum peak cylinder pressure than diesel. B5 blend was found with the lowest energy release among all. B20 was slightly lower than diesel. BU20 blend was seen with the highest peak energy release where E20 blend was found advance than diesel. Among all, the blends alcohol component revealed shorter ignition delay. B5 and B20 blends were influenced by biodiesel interference and the burning fraction were found slightly slower than conventional diesel where BU20 and E20 blends was found slightly faster than diesel So, based on the result, it can be said that among the alcohol blends butanol and ethanol can be promising alternative at idling conditions and can be used without any engine modifications.

  7. High Fidelity Simulation of Atomization in Diesel Engine Sprays

    DTIC Science & Technology

    2015-09-01

    ARL-RP-0555 ● SEP 2015 US Army Research Laboratory High Fidelity Simulation of Atomization in Diesel Engine Sprays by L Bravo...ARL-RP-0555 ● SEP 2015 US Army Research Laboratory High Fidelity Simulation of Atomization in Diesel Engine Sprays by L...Simulation of Atomization in Diesel Engine Sprays 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) L Bravo, CB Ivey, D

  8. Concentration measurements of biodiesel in engine oil and in diesel fuel

    NASA Astrophysics Data System (ADS)

    Mäder, A.; Eskiner, M.; Burger, C.; Ruck, W.; Rossner, M.; Krahl, J.

    2012-05-01

    This work comprised a method for concentration measurements of biodiesel in engine oil as well as biodiesel in diesel fuel by a measurement of the permittivity of the mixture at a frequency range from 100 Hz to 20 kHz. For this purpose a special designed measurement cell with high sensitivity was designed. The results for the concentration measurements of biodiesel in the engine oil and diesel fuel shows linearity to the measurement cell signal for the concentration of biodiesel in the engine oil between 0.5% Vol. to 10% Vol. and for biodiesel in the diesel fuel between 0% Vol. to 100% Vol. The method to measure the concentration of biodiesel in the engine oil or the concentration of biodiesel in the diesel fuel is very accurate and low concentration of about 0.5% Vol. biodiesel in engine oil or in diesel fuel can be measured with high accuracy.

  9. Control of diesel gaseous and particulate emissions with a tube-type wet electrostatic precipitator.

    PubMed

    Saiyasitpanich, Phirun; Keener, Tim C; Lu, Mingming; Liang, Fuyan; Khang, Soon-Jai

    2008-10-01

    In this study, experiments were performed with a bench-scale tube-type wet electrostatic precipitator (wESPs) to investigate its effectiveness for the removal of mass- and number-based diesel particulate matter (DPM), hydrocarbons (HCs), carbon monoxide (CO), and oxides of nitrogen (NOx) from diesel exhaust emissions. The concentration of ozone (O3) present in the exhaust that underwent a nonthermal plasma treatment process inside the wESP was also measured. A nonroad diesel generator operating at varying load conditions was used as a stationary diesel emission source. The DPM mass analysis was conducted by means of isokinetic sampling and the DPM mass concentration was determined by a gravimetric method. An electrical low-pressure impactor (ELPI) was used to quantify the DPM number concentration. The HC compounds, n-alkanes, and polycyclic aromatic hydrocarbons (PAHs) were collected on a moisture-free quartz filter together with a PUF/XAD/PUF cartridge and extracted in dichloromethane with sonication. Gas chromatography (GC)/mass spectroscopy (MS) was used to determine HC concentrations in the extracted solution. A calibrated gas combustion analyzer (Testo 350) and an O3 analyzer were used for quantifying the inlet and outlet concentrations of CO and NOx (nitric oxide [NO] + nitrogen dioxide [NO2]), and O3 in the diesel exhaust stream. The wESP was capable of removing approximately 67-86% of mass- and number-based DPM at a 100% exhaust volumetric flow rate generated from 0- to 75-kW engine loads. At 75-kW engine load, increasing gas residence time from approximately 0.1 to 0.4 sec led to a significant increase of DPM removal efficiency from approximately 67 to more than 90%. The removal of n-alkanes, 16 PAHs, and CO in the wESP ranged from 31 to 57% and 5 to 38%, respectively. The use of the wESP did not significantly affect NOx concentration in diesel exhaust. The O3 concentration in diesel exhaust was measured to be less than 1 ppm. The main mechanisms responsible for the removal of these pollutants from diesel exhaust are discussed.

  10. Mutagenicity of diesel exhaust particles from an engine with differing exhaust after treatments.

    PubMed

    Shi, X-C; Keane, M J; Ong, T; Li, S-Q; Bugarski, A B

    2010-01-01

    This study was conducted to investigate the effects of engine operating conditions and exhaust aftertreatments on the mutagenicity of diesel particulate matter (DPM) collected directly in an underground mine environment. A number of after-treatment devices are currently used on diesel engines in mines, but it is critical to determine whether reductions in DPM concentrations result in a corresponding decrease in adverse health effects. An eddy-current dynamometer was used to operate naturally aspirated mechanically controlled engine at several steady-state conditions. The samples were collected when the engine was equipped with a standard muffler, a diesel oxidation catalytic converter, two types of uncatalyzed diesel particulate filter systems, and three types of disposable diesel particulate filter elements. Bacterial gene mutation activity of DPM was tested on acetone extracts using the Ames Salmonella assay. The results indicated strong correlation between engine operating conditions and mutagenic activity of DPM. When the engine was fitted with muffler, the mutagenic activity was observed for the samples collected from light-load, but not heavy-load operating conditions. When the engine was equipped with a diesel oxidation catalyst, the samples did not exhibit mutagenic activity for any of four engine operating conditions. Mutagenic activity was observed for the samples collected when the engine was retrofitted with three types of disposable filters and sintered metal diesel particulate filter and operated at light load conditions. However, those filtration systems substantially reduced the concentration-normalized mutagenic activity from the levels observed for the muffler.

  11. Development of the Junkers-diesel Aircraft Engine

    NASA Technical Reports Server (NTRS)

    Gasterstadt,

    1930-01-01

    The working process of the Junkers engine has resulted from a series of attempts to attain high performance and to control the necessarily rapid and complete combustion at extremely high speeds. The two main problems of Diesel engines in aircraft are addressed; namely, incomplete combustion and the greater weight of Diesel engine parts compared to gasoline engines.

  12. 30 CFR 57.5067 - Engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Engines. 57.5067 Section 57.5067 Mineral... Agents, and Diesel Particulate Matter Diesel Particulate Matter-Underground Only § 57.5067 Engines. (a) Any diesel engine introduced into an underground area of a mine covered by this part after July 5...

  13. 30 CFR 57.5067 - Engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Engines. 57.5067 Section 57.5067 Mineral... Agents, and Diesel Particulate Matter Diesel Particulate Matter-Underground Only § 57.5067 Engines. (a) Any diesel engine introduced into an underground area of a mine covered by this part after July 5...

  14. 30 CFR 57.5067 - Engines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Engines. 57.5067 Section 57.5067 Mineral... Agents, and Diesel Particulate Matter Diesel Particulate Matter-Underground Only § 57.5067 Engines. (a) Any diesel engine introduced into an underground area of a mine covered by this part after July 5...

  15. HAARP diesel engine-generator(s) noise study

    DOT National Transportation Integrated Search

    2005-01-07

    This document presents the results and corresponding analysis of an outdoor noise measurement program conducted by the John A. Volpe National Transportation Systems Centers Acoustic Facility (Volpe Center) at the United States Air Forces High F...

  16. 46 CFR 12.15-9 - Examination requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... X X X 18. The procedure in preparing a turbine, reciprocating, or Diesel engine for standby; also... various types of generators and motors, both A.C. and D.C X X X 27. Operation, installation, and...

  17. Suresh K. AggarwalQuantified Analysis of a Production Diesel Injector Using X-Ray Radiography and Engine Diagnostics

    NASA Astrophysics Data System (ADS)

    Ramirez, Anita I.

    The work presented in this thesis pursues further the understanding of fuel spray, combustion, performance, and emissions in an internal combustion engine. Various experimental techniques including x-ray radiography, injection rate measurement, and in-cylinder endoscopy are employed in this work to characterize the effects of various upstream conditions such as injection rate profile and fuel physical properties. A single non-evaporating spray from a 6-hole full-production Hydraulically Actuated Electronically Controlled Unit Injector (HEUI) nozzle is studied under engine-like ambient densities with x-ray radiography at the Advanced Photon Source (APS) of Argonne National Laboratory (ANL). Two different injection pressures were investigated and parameters such as fuel mass distribution, spray penetration, cone angle, and spray velocity were obtained. The data acquired with x-ray radiography is used for the development and validation of improved Computational Fluid Dynamic (CFD) models. Rate of injection is studied using the same HEUI in a single cylinder Caterpillar test engine. The injection rate profile is altered to have three levels of initial injection pressure rise. Combustion behavior, engine performance, and emissions information was acquired for three rate profile variations. It is found that NOx emission reduction is achieved when the SOI timing is constant at the penalty of lower power generated in the cycle. However, if CA50 is aligned amongst the three profiles, the NOx emissions and power are constant with a slight penalty in CO emissions. The influence of physical and chemical parameters of fuel is examined in a study of the heavy alcohol, phytol (C20H40O), in internal combustion engine application. Phytol is blended with diesel in 5%, 10%, and 20% by volume. Combustion behavior is similar between pure diesel and the phytol/diesel blends with small differences noted in peak cylinder pressure, ignition delay, and heat release rate in the premix burn phase. Diesel/phytol blends yield marginally lower power values. In-cylinder soot radiation images show combustion instability at the start of the event for the 20% phytol/diesel blend. Overall, NOx emissions are comparable across the different fuels used and no discernible trend is found in CO emissions.

  18. Design and optimization of smart grid system based on renewable energy in Nyamuk Island, Karimunjawa district, Central Java

    NASA Astrophysics Data System (ADS)

    Novitasari, D.; Indartono, Y. S.; Rachmidha, T. D.; Reksowardojo, I. K.; Irsyad, M.

    2017-03-01

    Nyamuk Island in Karimunjawa District is one of the regions in Java that has no access to electricity grid. The electricity in Nyamuk Island relies on diesel engine which is managed by local government and only operated for 6 hours per day. It occurs as a consequence of high fuel cost. A study on smart micro grid system based on renewable energy was conducted in Combustion Engine and Propulsion System Laboratory of Institut Teknologi Bandung by using 1 kWp solar panels and a 3 kW bio based diesel engine. The fuels used to run the bio based diesel engine were diesel, virgin coconut oil and pure palm oil. The results show that the smart grid system run well at varying load and also with different fuel. Based on the experiments, average inverter efficiency was about 87%. This experiments proved that the use of biofuels had no effects to the overall system performance. Based on the results of prototype experiments, this paper will focus on design and optimization of smart micro grid system using HOMER software for Nyamuk Island. The design consists of (1) a diesel engine existing in Nyamuk Island whose fuel was diesel, (2) a lister engine whose fuel was from vegetable oil from Callophyllum inophyllum, (3) solar panels, (4) batteries and (5) converter. In this simulation, the existing diesel engine was set to operate 2 hours per day, while operating time of the lister engine has been varied with several scenarios. In scenario I, the lister engine was operated 5 hours per day, in scenario II the lister engine was operated 24 hours per day and in scenario III the lister engine was operated 8 hours per week in the weekend. In addition, a design using a modified diesel engine was conducted as well with an assumption that the modified cost was about 10% of new diesel engine cost. By modifying the diesel engine, the system will not need a lister engine. Assessments has been done to evaluate the designs, and the result shows that the optimal value obtains by the lister engine being operated for 24 hours a day in which the capacity of each component was 27 kWp PV, 7 kW lister engine, 26 kVA existing diesel engine, 40 kW converter and 128 batteries. The result is based on the lowest value of Net Present Cost (NPC) of 542.682 and Cost Of Electricity (COE) of 0.49.

  19. Mathematical model of marine diesel engine simulator for a new methodology of self propulsion tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izzuddin, Nur; Sunarsih,; Priyanto, Agoes

    As a vessel operates in the open seas, a marine diesel engine simulator whose engine rotation is controlled to transmit through propeller shaft is a new methodology for the self propulsion tests to track the fuel saving in a real time. Considering the circumstance, this paper presents the real time of marine diesel engine simulator system to track the real performance of a ship through a computer-simulated model. A mathematical model of marine diesel engine and the propeller are used in the simulation to estimate fuel rate, engine rotating speed, thrust and torque of the propeller thus achieve the targetmore » vessel’s speed. The input and output are a real time control system of fuel saving rate and propeller rotating speed representing the marine diesel engine characteristics. The self-propulsion tests in calm waters were conducted using a vessel model to validate the marine diesel engine simulator. The simulator then was used to evaluate the fuel saving by employing a new mathematical model of turbochargers for the marine diesel engine simulator. The control system developed will be beneficial for users as to analyze different condition of vessel’s speed to obtain better characteristics and hence optimize the fuel saving rate.« less

  20. Investigation of engine performance and emissions of a diesel engine with a blend of marine gas oil and synthetic diesel fuel.

    PubMed

    Nabi, Md Nurun; Hustad, Johan Einar

    2012-01-01

    This paper investigates diesel engine performance and exhaust emissions with marine gas oil (MGO) and a blend of MGO and synthetic diesel fuel. Ten per cent by volume of Fischer-Tropsch (FT), a synthetic diesel fuel, was added to MGO to investigate its influence on the diesel engine performance and emissions. The blended fuel was termed as FT10 fuel, while the neat (100 vol%) MGO was termed as MGO fuel. The experiments were conducted with a fourstroke, six-cylinder, turbocharged, direct injection, Scania DC 1102 diesel engine. It is interesting to note that all emissions including smoke (filter smoke number), total particulate matter (TPM), carbon monoxide (CO), total unburned hydrocarbon (THC), oxides of nitrogen (NOx) and engine noise were reduced with FT10 fuel compared with the MGO fuel. Diesel fine particle number and mass emissions were measured with an electrical low pressure impactor. Like other exhaust emissions, significant reductions in fine particles and mass emissions were observed with the FT10 fuel. The reduction was due to absence of sulphur and aromatic compounds in the FT fuel. In-cylinder gas pressure and engine thermal efficiency were identical for both FT10 and MGO fuels.

  1. DI Diesel Performance and Emissions Model

    DTIC Science & Technology

    1998-03-31

    Skeletal mechanism for NOx chemistry in Diesel engines ," SAE Paper 981450. Mori, K. (1997), "Worldwide...Based on the review discussed above, Mellor et al. (1998) postulate a skeletal mechanism for NO chemistry in DI Diesel engines . This mechanism is... mechanism for NOx chemistry in Diesel engines ," SAE Paper 981450. Various Internal Ford Reports, Ford Motor Company, Dearborn, MI. 29

  2. 40 CFR 80.573 - What labeling requirements apply to retailers and wholesale purchaser-consumers of NRLM diesel...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Maximum) Required for use in all model year 2011 and later nonroad diesel engines. Recommended for use in all other non-highway diesel engines. WARNING Federal law prohibits use in highway vehicles or engines... retailers and wholesale purchaser-consumers of NRLM diesel fuel and heating oil beginning June 1, 2012? 80...

  3. 40 CFR 80.573 - What labeling requirements apply to retailers and wholesale purchaser-consumers of NRLM diesel...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Maximum) Required for use in all model year 2011 and later nonroad diesel engines. Recommended for use in all other non-highway diesel engines. WARNING Federal law prohibits use in highway vehicles or engines... retailers and wholesale purchaser-consumers of NRLM diesel fuel and heating oil beginning June 1, 2012? 80...

  4. 40 CFR 80.573 - What labeling requirements apply to retailers and wholesale purchaser-consumers of NRLM diesel...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Maximum) Required for use in all model year 2011 and later nonroad diesel engines. Recommended for use in all other non-highway diesel engines. WARNING Federal law prohibits use in highway vehicles or engines... retailers and wholesale purchaser-consumers of NRLM diesel fuel and heating oil beginning June 1, 2012? 80...

  5. 40 CFR 80.573 - What labeling requirements apply to retailers and wholesale purchaser-consumers of NRLM diesel...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Maximum) Required for use in all model year 2011 and later nonroad diesel engines. Recommended for use in all other non-highway diesel engines. WARNING Federal law prohibits use in highway vehicles or engines... retailers and wholesale purchaser-consumers of NRLM diesel fuel and heating oil beginning June 1, 2012? 80...

  6. 40 CFR 80.572 - What labeling requirements apply to retailers and wholesale purchaser-consumers of NR and NRLM...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Maximum) Required for use in all highway diesel vehicles and engines. Recommended for use in all diesel vehicles and engines. (b) From June 1, 2010, through September 30, 2012, for pumps dispensing NR diesel... ppm Sulfur Maximum) Required for use in all model year 2011 and later nonroad diesel engines...

  7. 30 CFR 250.405 - What are the safety requirements for diesel engines used on a drilling rig?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What are the safety requirements for diesel... Gas Drilling Operations General Requirements § 250.405 What are the safety requirements for diesel engines used on a drilling rig? You must equip each diesel engine with an air take device to shut down the...

  8. LPG as a Fuel for Diesel Engines-Experimental Investigations

    NASA Astrophysics Data System (ADS)

    Cristian Nutu, Nikolaos; Pana, Constantin; Negurescu, Niculae; Cernat, Alexandru; Mirica, Ionel

    2017-10-01

    The main objective of the paper is to reduce the pollutant emissions of a compression ignition engine, fuelling the engine with liquefied petroleum gas (LPG), aiming to maintain the energetic performances of the engine. To optimise the engine operation a corelation between the substitute ratio of the diesel fuel with LPG and the adjustments for the investigated regimens must be made in order to limit the maximum pressure and smoke level, knock and rough engine functioning, fuel consumption and the level of the pollutant emissions. The test bed situated in the Thermotechnics, Engines, Thermal Equipments and Refrigeration Instalations Department was adapted to be fuelled with liquefied petroleum gas. A conventional LPG fuelling instalation was adopted, consisting of a LPG tank, a vaporiser, conections between the tank and the vaporiser and a valve to adjust the gaseous fuel flow. Using the diesel-gas methode, in the intake manifold of the engine is injected LPG in gaseous aggregation state and the airr-LPG homogeneous mixture is ignited from the flame appeared in the diesel fuel sprays. To maintain the engine power at the same level like in the standard case of fuelling only with diesel fuel, for each investigated operate regimen the diesel fuel dose was reduced, being energetically substituted with LPG. The engine used for experimental investigations is a turbocharged truck diesel engine with a 10.34 dm3 displacement. The investigated working regimen was 40% load and 1750 rpm and the energetic substitute ratios of the diesel fuel with LPG was situated between [0-25%].

  9. Development of naval diesel engine duty cycles for air exhaust emission environmental impact analysis. Master's thesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Markle, S.P.

    1994-05-01

    A strategy for testing naval diesel engines for exhaust emissions was developed. A survey of existing international and national standard diesel engine duty cycles was conducted. All were found to be inadequate for testing and certification of engine exhaust emissions from naval diesel powered ships. Naval ship data covering 11,500 hours of engine operation of four U.S. Navy LSD 41 Class amphibious ships was analyzed to develop a 27 point class operating profile. A procedure combining ship hull form characteristics, ship propulsion plant parameters, and ship operating profile was detailed to derive an 11-Mode duty cycle representative for testing LSDmore » 41 Class propulsion diesel engines. A similar procedure was followed for ship service diesel engines. Comparisons with industry accepted duty cycles were conducted using exhaust emission contour plots for the Colt-Pielstick PC-4B diesel engines. Results showed the 11-Mode LSD 41 Class Duty Cycle best predicted ship propulsion engine emissions compared to the 27 point operating profile propeller curve. The procedure was applied to T-AO 187 Class with similar results. The application of civilian industry standards to measure naval diesel ship propulsion engine exhaust emissions was found to be inadequate. Engine exhaust flow chemistry post turbocharger was investigated using the SANDIA Lab computer tool CHEMKIN. Results showed oxidation and reduction reactions within exhaust gases are quenched in the exhaust stack. Since the exhaust stream in the stack is unreactive, emission sampling may be performed where most convenient. A proposed emission measurement scheme for LSD 41 Class ships was presented.« less

  10. Ultrafine particle emissions by in-use diesel buses of various generations at low-load regimes

    NASA Astrophysics Data System (ADS)

    Tartakovsky, L.; Baibikov, V.; Comte, P.; Czerwinski, J.; Mayer, A.; Veinblat, M.; Zimmerli, Y.

    2015-04-01

    Ultrafine particles (UFP) are major contributors to air pollution due to their easy gas-like penetration into the human organism, causing adverse health effects. This study analyzes UFP emissions by buses of different technologies (from Euro II till Euro V EEV - Enhanced Environmentally-friendly Vehicle) at low-load regimes. Additionally, the emission-reduction potential of retrofitting with a diesel particle filter (DPF) is demonstrated. A comparison of the measured, engine-out, particle number concentrations (PNC) for buses of different technological generations shows that no substantial reduction of engine-out emissions at low-load operating modes is observed for newer bus generations. Retrofitting the in-use urban and interurban buses of Euro II till Euro IV technologies by the VERT-certified DPF confirmed its high efficiency in reduction of UFP emissions. Particle-count filtration efficiency values of the retrofit DPF were found to be extremely high - greater than 99.8%, similar to that of the OEM filter in the Euro V bus.

  11. Study on Drive System of Hybrid Tree Harvester.

    PubMed

    Rong-Feng, Shen; Xiaozhen, Zhang; Chengjun, Zhou

    2017-01-01

    Hybrid tree harvester with a 60 kW diesel engine combined with a battery pile could be a "green" forest harvesting and transportation system. With the new design, the diesel engine maintains a constant engine speed, keeping fuel consumption low while charging the batteries that drive the forwarder. As an additional energy saving method, the electric motors work as generators to charge the battery pile when the vehicle moves downhill. The vehicle is equipped with six large wheels providing high clearance over uneven terrain while reducing ground pressure. Each wheel is driven via a hub gear by its own alternating current motor, and each of the three wheel pairs can be steered independently. The combination of the diesel engine and six electric motors provides plenty of power for heavy lifting and pulling. The main component parameters of the drive system are calculated and optimized with a set of dynamics and simulated with AVL Cruise software. The results provide practical insights for the fuel tree harvester and are helpful to reduce the structure and size of the tree harvester. Advantage Environment provides information about existing and future products designed to reduce environmental impacts.

  12. Study on Drive System of Hybrid Tree Harvester

    PubMed Central

    Xiaozhen, Zhang; Chengjun, Zhou

    2017-01-01

    Hybrid tree harvester with a 60 kW diesel engine combined with a battery pile could be a “green” forest harvesting and transportation system. With the new design, the diesel engine maintains a constant engine speed, keeping fuel consumption low while charging the batteries that drive the forwarder. As an additional energy saving method, the electric motors work as generators to charge the battery pile when the vehicle moves downhill. The vehicle is equipped with six large wheels providing high clearance over uneven terrain while reducing ground pressure. Each wheel is driven via a hub gear by its own alternating current motor, and each of the three wheel pairs can be steered independently. The combination of the diesel engine and six electric motors provides plenty of power for heavy lifting and pulling. The main component parameters of the drive system are calculated and optimized with a set of dynamics and simulated with AVL Cruise software. The results provide practical insights for the fuel tree harvester and are helpful to reduce the structure and size of the tree harvester. Advantage Environment provides information about existing and future products designed to reduce environmental impacts. PMID:28634596

  13. Design and Performance of LPG Fuel Mixer for Dual Fuel Diesel Engine

    NASA Astrophysics Data System (ADS)

    Desrial; Saputro, W.; Garcia, P. P.

    2018-05-01

    Small horizontal diesel engines are commonly used for agricultural machinery, however, availability of diesel fuel become one of big problems especially in remote area. Conversely, in line with government policy for conversion of kerosene into LPG for cooking, then LPG become more popular and available even in remote area. Therefore, LPG is potential fuel to replace the shortage of diesel fuel for operating diesel engine in remote area. The purpose of this study was to design mixing device for using dual fuel i.e. LPG and diesel fuel and evaluate its performance accordingly. Simulation by using CFD was done in order to analyze mixture characteristics of LPG in air intake manifold. The performance test was done by varying the amount of LPG injected in intake air at 20%, 25%, 30%, 35%, until 40%, respectively. Result of CFD contour simulation showed the best combination when mixing 30% LPG into the intake air. Performance test of this research revealed that mixing LPG in air intake can reduce the diesel fuel consumption about 0.7 l/hour (without load) and 1.14 l/hour (with load). Diesel engine revolution increases almost 300 rpm faster than when using diesel fuel only. Based on economic analysis, using the fuel combination (diesel fuel – LPG) is not recommended in the area near SPBU where the price of diesel fuel is standard. However, using the fuel combination LPG-diesel fuel is highly recommended in the remote areas in Indonesia where price of diesel fuel is comparatively expensive which will provide cheaper total fuel cost for diesel engine operation.

  14. Experimental Validation and Combustion Modeling of a JP-8 Surrogate in a Single Cylinder Diesel Engine

    DTIC Science & Technology

    2014-04-15

    SINGLE CYLINDER DIESEL ENGINE Amit Shrestha, Umashankar Joshi, Ziliang Zheng, Tamer Badawy, Naeim A. Henein, Wayne State University, Detroit, MI, USA...13-03-2014 4. TITLE AND SUBTITLE EXPERIMENTAL VALIDATION AND COMBUSTION MODELING OF A JP-8 SURROGATE IN A SINGLE CYLINDER DIESEL ENGINE 5a...INTERNATIONAL UNCLASSIFIED • Validate a two-component JP-8 surrogate in a single cylinder diesel engine. Validation parameters include – Ignition delay

  15. The Effect of Fuel Injector Nozzle Configuration on JP-8 Sprays at Diesel Engine Conditions

    DTIC Science & Technology

    2014-10-01

    The Effect of Fuel Injector Nozzle Configuration on JP-8 Sprays at Diesel Engine Conditions by Matthew Kurman, Luis Bravo, Chol-Bum Kweon...Fuel Injector Nozzle Configuration on JP-8 Sprays at Diesel Engine Conditions Matthew Kurman, Luis Bravo, and Chol-Bum Kweon Vehicle Technology...March 2014 4. TITLE AND SUBTITLE The Effect of Fuel Injector Nozzle Configuration on JP-8 Sprays at Diesel Engine Conditions 5a. CONTRACT NUMBER 5b

  16. Fuel system for diesel engine with multi-stage heated

    NASA Astrophysics Data System (ADS)

    Ryzhov, Yu N.; Kuznetsov, Yu A.; Kolomeichenko, A. V.; Kuznetsov, I. S.; Solovyev, R. Yu; Sharifullin, S. N.

    2017-09-01

    The article describes a fuel system of a diesel engine with a construction tractor multistage heating, allowing the use of pure rapeseed oil as a diesel engine fuel. The paper identified the kinematic viscosity depending on the temperature and composition of the mixed fuel, supplemented by the existing recommendations on the use of mixed fuels based on vegetable oils and developed the device allowing use as fuel for diesel engines of biofuels based on vegetable oils.

  17. One dimensional modeling of a diesel-CNG dual fuel engine

    NASA Astrophysics Data System (ADS)

    Azman, Putera Adam; Fawzi, Mas; Ismail, Muammar Mukhsin; Osman, Shahrul Azmir

    2017-04-01

    Some of the previous studies have shown that the use of compressed natural gas (CNG) in diesel engines potentially produce engine performance improvement and exhaust gas emission reduction, especially nitrogen oxides, unburned hydrocarbons, and carbon dioxide. On the other hand, there are other researchers who claimed that the use of CNG increases exhaust gas emissions, particularly nitrogen oxides. In this study, a one-dimensional model of a diesel-CNG dual fuel engine was made based on a 4-cylinder 2.5L common rail direct injection diesel engine. The software used is GT-Power, and it was used to analyze the engine performance and exhaust gas emissions of several diesel-CNG dual fuel blend ratios, i.e. 100:0, 90:10, 80:20, 70:30, 60:40 and 50:50. The effect of 100%, 75%, 50% engine loads on the exhaust gas emissions were also studied. The result shows that all diesel-CNG fuel blends produces higher brake torque and brake power at engine speed of 2000-3000 rpm compared with 100% diesel. The 50:50 diesel-CNG blend produces the highest brake torque and brake power, but also has the highest brake specific fuel consumption. As a higher percentage of CNG added to the dual fuel blend, unburned hydrocarbons and carbon monoxide emission increased while carbon dioxide emission decreased. The nitrogen oxides emission concentration is generally unaffected by any change of the dual fuel ratio.

  18. A review on the engine performance and exhaust emission characteristics of diesel engines fueled with biodiesel blends.

    PubMed

    Damanik, Natalina; Ong, Hwai Chyuan; Tong, Chong Wen; Mahlia, Teuku Meurah Indra; Silitonga, Arridina Susan

    2018-06-01

    Biodiesels have gained much popularity because they are cleaner alternative fuels and they can be used directly in diesel engines without modifications. In this paper, a brief review of the key studies pertaining to the engine performance and exhaust emission characteristics of diesel engines fueled with biodiesel blends, exhaust aftertreatment systems, and low-temperature combustion technology is presented. In general, most biodiesel blends result in a significant decrease in carbon monoxide and total unburned hydrocarbon emissions. There is also a decrease in carbon monoxide, nitrogen oxide, and total unburned hydrocarbon emissions while the engine performance increases for diesel engines fueled with biodiesels blended with nano-additives. The development of automotive technologies, such as exhaust gas recirculation systems and low-temperature combustion technology, also improves the thermal efficiency of diesel engines and reduces nitrogen oxide and particulate matter emissions.

  19. Future fuels and engines for railroad locomotives. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    Liddle, S. G.; Bonzo, B. B.; Purohit, G. P.; Stallkamp, J. A.

    1981-01-01

    The potential for reducing the dependence of railroads on petroleum fuel, particularly Diesel No. 2 was investigated. Two approaches are studied: (1) to determine how the use of Diesel No. 2 can be reduced through increased efficiency and conservation, and (2) to use fuels other than Diesel No. 2 both in Diesel and other types of engines. Because synthetic hydrocarbon fuels are particularly suited to medium speed diesel engines, the first commercial application of these fuels may be by the railroad industry.

  20. Demonstration of diesel fired coolant heaters in school bus applications : final report.

    DOT National Transportation Integrated Search

    2010-04-01

    Engine block pre-heating can reduce fuel consumption, decrease pollution, extend engine life, and it is often necessary for reliably starting diesel engines in cold climates. This report describes the application and experience of applying 36 diesel ...

  1. Diesel engine exhaust oxidizer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kammel, R.A.

    1992-06-16

    This patent describes a diesel engine exhaust oxidizing device. It comprises: an enclosure having an inlet for receiving diesel engine exhaust, a main flow path through the enclosure to an outlet of the enclosure, a by-ass through the enclosure, and a microprocessor control means.

  2. 40 CFR 86.085-2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... represents the manufacturer's total diesel light-duty vehicle production for those engine families being... standard. PRODLDT represents the manufacturer's total diesel light-duty truck production for those engine... average particulate emission level, for certification purposes, of all of its diesel engine families...

  3. Diesel engine exhaust and lung cancer: an unproven association.

    PubMed Central

    Muscat, J E; Wynder, E L

    1995-01-01

    The risk of lung cancer associated with diesel exhaust has been calculated from 14 case-control or cohort studies. We evaluated the findings from these studies to determine whether there is sufficient evidence to implicate diesel exhaust as a human lung carcinogen. Four studies found increased risks associated with long-term exposure, although two of the four studies were based on the same cohort of railroad workers. Six studies were inconclusive due to missing information on smoking habits, internal inconsistencies, or inadequate characterization of diesel exposure. Four studies found no statistically significant associations. It can be concluded that short-term exposure to diesel engine exhaust (< 20 years) does not have a causative role in human lung cancer. There is statistical but not causal evidence that long-term exposure to diesel exhaust (> 20 years) increases the risk of lung cancer for locomotive engineers, brakemen, and diesel engine mechanics. There is inconsistent evidence on the effects of long-term exposure to diesel exhaust in the trucking industry. There is no evidence for a joint effect of diesel exhaust and cigarette smoking on lung cancer risk. Using common criteria for determining causal associations, the epidemiologic evidence is insufficient to establish diesel engine exhaust as a human lung carcinogen. Images p812-a PMID:7498093

  4. An Evaluation of the Potential Phototoxicity of CeO2 Nanoparticles in Retinal Pigment Epithelial Cells in-vitro

    EPA Science Inventory

    Cerium dioxide (CeO2) engineered nanoparticles (NP) are used as fuel-borne catalysts in off-road diesel engines, which can lead to exhaust emissions of respirable CeO2 NP. Other metal oxides may act as photo-catalysts which induce the generation of free radicals upon exposure to ...

  5. Approach for energy saving and pollution reducing by fueling diesel engines with emulsified biosolution/ biodiesel/diesel blends.

    PubMed

    Lin, Yuan-Chung; Lee, Wen-Jhy; Chao, How-Ran; Wang, Shu-Li; Tsou, Tsui-Chun; Chang-Chien, Guo-Ping; Tsai, Perng-Jy

    2008-05-15

    The developments of both biodiesel and emulsified diesel are being driven by the need for reducing emissions from diesel engines and saving energy. Artificial chemical additives are also being used in diesel engines for increasing their combustion efficiencies. But the effects associated with the use of emulsified additive/biodiesel/diesel blends in diesel engines have never been assessed. In this research, the premium diesel fuel (PDF) was used as the reference fuel. A soy-biodiesel was selected as the test biodiesel. A biosolution made of 96.5 wt % natural organic enzyme-7F (NOE-7F) and 3.5 wt % water (NOE-7F water) was used as the fuel additive. By adding additional 1 vol % of surfactant into the fuel blend, a nanotechnology was used to form emulsified biosolution/soy-biodiesel/PDF blends for fueling the diesel engine. We found that the emulsified biosolution/soy-biodiesel/PDF blends did not separate after being kept motionless for 30 days. The above stability suggests that the above combinations are suitable for diesel engines as alternative fuels. Particularly, we found that the emulsified biosolution/soy-biodiesel/PDF blends did have the advantage in saving energy and reducing the emissions of both particulate matters (PM) and polycyclic aromatic hydrocarbons (PAHs) from diesel engines as compared with PDF, soy-biodiesel/PDF blends, and emulsified soy-biodiesel/ PDF blends. The results obtained from this study will provide useful approaches for reducing the petroleum reliance, pollution, and global warming. However, it should be noted that NO(x) emissions were not measured in the present study which warrants the need for future investigation.

  6. Comparative evaluation of the effect of sweet orange oil-diesel blend on performance and emissions of a multi-cylinder compression ignition engine

    NASA Astrophysics Data System (ADS)

    Rahman, S. M. Ashrafur; Hossain, F. M.; Van, Thuy Chu; Dowell, Ashley; Islam, M. A.; Rainey, Thomas J.; Ristovski, Zoran D.; Brown, Richard J.

    2017-06-01

    In 2014, global demand for essential oils was 165 kt and it is expected to grow 8.5% per annum up to 2022. Every year Australia produces approximately 1.5k tonnes of essential oils such as tea tree, orange, lavender, eucalyptus oil, etc. Usually essential oils come from non-fatty areas of plants such as the bark, roots, heartwood, leaves and the aromatic portions (flowers, fruits) of the plant. For example, orange oil is derived from orange peel using various extraction methods. Having similar properties to diesel, essential oils have become promising alternate fuels for diesel engines. The present study explores the opportunity of using sweet orange oil in a compression ignition engine. Blends of sweet orange oil-diesel (10% sweet orange oil, 90% diesel) along with neat diesel fuel were used to operate a six-cylinder diesel engine (5.9 litres, common rail, Euro-III, compression ratio 17.3:1). Some key fuel properties such as: viscosity, density, heating value, and surface tension are presented. Engine performance (brake specific fuel consumption) and emission parameters (CO, NOX, and Particulate Matter) were measured to evaluate running with the blends. The engine was operated at 1500 rpm (maximum torque condition) with different loads. The results from the property analysis showed that sweet orange oil-diesel blend exhibits lower density, viscosity and surface tension and slightly higher calorific value compared to neat diesel fuel. Also, from the engine test, the sweet orange oil-diesel blend exhibited slightly higher brake specific fuel consumption, particulate mass and particulate number; however, the blend reduced the brake specific CO emission slightly and brake specific NOX emission significantly compared to that of neat diesel.

  7. Advanced Collaborative Emissions Study Auxiliary Findings on 2007-Compliant Diesel Engines: A Comparison With Diesel Exhaust Genotoxicity Effects Prior to 2007

    PubMed Central

    Hallberg, Lance M; Ward, Jonathan B; Wickliffe, Jeffrey K; Ameredes, Bill T

    2017-01-01

    Since its beginning, more than 117 years ago, the compression-ignition engine, or diesel engine, has grown to become a critically important part of industry and transportation. Public concerns over the health effects from diesel emissions have driven the growth of regulatory development, implementation, and technological advances in emission controls. In 2001, the United States Environmental Protection Agency and California Air Resources Board issued new diesel fuel and emission standards for heavy-duty engines. To meet these stringent standards, manufacturers used new emission after-treatment technology, and modified fuel formulations, to bring about reductions in particulate matter and nitrogen oxides within the exhaust. To illustrate the impact of that technological transition, a brief overview of pre-2007 diesel engine exhaust biomarkers of genotoxicity and health-related concerns is provided, to set the context for the results of our research findings, as part of the Advanced Collaborative Emissions Study (ACES), in which the effects of a 2007-compliant diesel engine were examined. In agreement with ACES findings reported in other tissues, we observed a lack of measurable 2007-compliant diesel treatment–associated DNA damage, in lung tissue (comet assay), blood serum (8-hydroxy-2′-deoxyguanosine [8-OHdG] assay), and hippocampus (lipid peroxidation assay), across diesel exhaust exposure levels. A time-dependent assessment of 8-OHdG and lipid peroxidation also suggested no differences in responses across diesel exhaust exposure levels more than 24 months of exposure. These results indicated that the 2007-compliant diesel engine reduced measurable reactive oxygen species–associated tissue derangements and suggested that the 2007 standards–based mitigation approaches were effective. PMID:28659715

  8. Prospects of pyrolysis oil from plastic waste as fuel for diesel engines: A review

    NASA Astrophysics Data System (ADS)

    Mangesh, V. L.; Padmanabhan, S.; Ganesan, S.; PrabhudevRahul, D.; Reddy, T. Dinesh Kumar

    2017-05-01

    The purpose ofthis study is to review the existing literature about chemical recycling of plastic waste and its potential as fuel for diesel engines. This is a review covering on the field of converting waste plastics into liquid hydrocarbon fuels for diesel engines. Disposal and recycling of waste plastics have become an incremental problem and environmental threat with increasing demand for plastics. One of the effective measures is by converting waste plastic into combustible hydrocarbon liquid as an alternative fuel for running diesel engines. Continued research efforts have been taken by researchers to convert waste plastic in to combustible pyrolysis oil as alternate fuel for diesel engines. An existing literature focuses on the study of chemical structure of the waste plastic pyrolysis compared with diesel oil. Converting waste plastics into fuel oil by different catalysts in catalytic pyrolysis process also reviewed in this paper. The methodology with subsequent hydro treating and hydrocracking of waste plastic pyrolysis oil can reduce unsaturated hydrocarbon bonds which would improve the combustion performance in diesel engines as an alternate fuel.

  9. 76 FR 77521 - California State Nonroad Engine Pollution Control Standards; Commercial Harbor Craft Regulations...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-13

    ... emissions of particulate matter and oxides of nitrogen from new and in-use diesel-fueled engines on... enforcement provisions. The requirements are applicable to diesel propulsion and auxiliary engines on new and... operating in California are previously unregulated diesel engines, accounting for approximately 3.3 tons per...

  10. 30 CFR 250.610 - Diesel engine air intakes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Diesel engine air intakes. 250.610 Section 250.610 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND... engine air intakes. No later than May 31, 1989, diesel engine air intakes shall be equipped with a device...

  11. 46 CFR 58.10-10 - Diesel engine installations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Diesel engine installations. 58.10-10 Section 58.10-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY... installations. (a) The requirements of § 58.10-5 (a), (c), and (d) shall apply to diesel engine installations...

  12. 40 CFR 86.1105-87 - Emission standards for which nonconformance penalties are available.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... VEHICLES AND ENGINES (CONTINUED) Nonconformance Penalties for Gasoline-Fueled and Diesel Heavy-Duty Engines...-fueled light heavy-duty diesel engines: (A) The following values shall be used to calculate an NCP in... heavy-duty diesel engines: (A) The following values shall be used to calculate an NCP in accordance with...

  13. 40 CFR 86.1105-87 - Emission standards for which nonconformance penalties are available.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... VEHICLES AND ENGINES (CONTINUED) Nonconformance Penalties for Gasoline-Fueled and Diesel Heavy-Duty Engines...-fueled light heavy-duty diesel engines: (A) The following values shall be used to calculate an NCP in... heavy-duty diesel engines: (A) The following values shall be used to calculate an NCP in accordance with...

  14. 40 CFR 86.336-79 - Diesel engine test cycle.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Diesel engine test cycle. 86.336-79... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.336-79...

  15. 40 CFR 86.336-79 - Diesel engine test cycle.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Diesel engine test cycle. 86.336-79... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.336-79...

  16. Performance and emission characteristics of a low heat rejection engine with different air gap thicknesses with Jatropha oil based bio-diesel.

    PubMed

    Murali Krishna, M V S; Sarita, G; Seshagiri Rao, V V R; Chowdary, R P; Ramana Reddy, Ch V

    2010-04-01

    The research work on alternate fuels has been the topic of wider interest in the context of depletion of fossil fuels and increasing of pollution levels of the engines with conventional fossil fuels. Alcohols and vegetable oils are considered to replace diesel fuels as they are renewable in nature. However, use of alcohols in internal combustion engines is limited in India, as these fuels are diverted to PetroChemical industries and hence much emphasis is given to the non-edible vegetable oils as alternate fuels in internal combustion engines. However, the drawbacks of low volatility and high viscosity associated with non-edible vegetable oils call for hot combustion chamber, provided by low heat rejection (LHR) diesel engine. Investigations are carried out on a LHR diesel engine with varied air gap thicknesses and injection pressures with jatropha oil based bio-diesel at normal temperature. Performance is improved with high degree of insulation with LHR engine with vegetable oil in comparison with conventional engine (CE) with pure diesel operation.

  17. Identification and quantification analysis of nonlinear dynamics properties of combustion instability in a diesel engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Li-Ping, E-mail: yangliping302@hrbeu.edu.cn; Ding, Shun-Liang; Song, En-Zhe

    The cycling combustion instabilities in a diesel engine have been analyzed based on chaos theory. The objective was to investigate the dynamical characteristics of combustion in diesel engine. In this study, experiments were performed under the entire operating range of a diesel engine (the engine speed was changed from 600 to 1400 rpm and the engine load rate was from 0% to 100%), and acquired real-time series of in-cylinder combustion pressure using a piezoelectric transducer installed on the cylinder head. Several methods were applied to identify and quantitatively analyze the combustion process complexity in the diesel engine including delay-coordinate embedding, recurrencemore » plot (RP), Recurrence Quantification Analysis, correlation dimension (CD), and the largest Lyapunov exponent (LLE) estimation. The results show that the combustion process exhibits some determinism. If LLE is positive, then the combustion system has a fractal dimension and CD is no more than 1.6 and within the diesel engine operating range. We have concluded that the combustion system of diesel engine is a low-dimensional chaotic system and the maximum values of CD and LLE occur at the lowest engine speed and load. This means that combustion system is more complex and sensitive to initial conditions and that poor combustion quality leads to the decrease of fuel economy and the increase of exhaust emissions.« less

  18. Identification and quantification analysis of nonlinear dynamics properties of combustion instability in a diesel engine.

    PubMed

    Yang, Li-Ping; Ding, Shun-Liang; Litak, Grzegorz; Song, En-Zhe; Ma, Xiu-Zhen

    2015-01-01

    The cycling combustion instabilities in a diesel engine have been analyzed based on chaos theory. The objective was to investigate the dynamical characteristics of combustion in diesel engine. In this study, experiments were performed under the entire operating range of a diesel engine (the engine speed was changed from 600 to 1400 rpm and the engine load rate was from 0% to 100%), and acquired real-time series of in-cylinder combustion pressure using a piezoelectric transducer installed on the cylinder head. Several methods were applied to identify and quantitatively analyze the combustion process complexity in the diesel engine including delay-coordinate embedding, recurrence plot (RP), Recurrence Quantification Analysis, correlation dimension (CD), and the largest Lyapunov exponent (LLE) estimation. The results show that the combustion process exhibits some determinism. If LLE is positive, then the combustion system has a fractal dimension and CD is no more than 1.6 and within the diesel engine operating range. We have concluded that the combustion system of diesel engine is a low-dimensional chaotic system and the maximum values of CD and LLE occur at the lowest engine speed and load. This means that combustion system is more complex and sensitive to initial conditions and that poor combustion quality leads to the decrease of fuel economy and the increase of exhaust emissions.

  19. An EGR performance evaluation and decision-making approach based on grey theory and grey entropy analysis

    PubMed Central

    2018-01-01

    Exhaust gas recirculation (EGR) is one of the main methods of reducing NOX emissions and has been widely used in marine diesel engines. This paper proposes an optimized comprehensive assessment method based on multi-objective grey situation decision theory, grey relation theory and grey entropy analysis to evaluate the performance and optimize rate determination of EGR, which currently lack clear theoretical guidance. First, multi-objective grey situation decision theory is used to establish the initial decision-making model according to the main EGR parameters. The optimal compromise between diesel engine combustion and emission performance is transformed into a decision-making target weight problem. After establishing the initial model and considering the characteristics of EGR under different conditions, an optimized target weight algorithm based on grey relation theory and grey entropy analysis is applied to generate the comprehensive evaluation and decision-making model. Finally, the proposed method is successfully applied to a TBD234V12 turbocharged diesel engine, and the results clearly illustrate the feasibility of the proposed method for providing theoretical support and a reference for further EGR optimization. PMID:29377956

  20. An EGR performance evaluation and decision-making approach based on grey theory and grey entropy analysis.

    PubMed

    Zu, Xianghuan; Yang, Chuanlei; Wang, Hechun; Wang, Yinyan

    2018-01-01

    Exhaust gas recirculation (EGR) is one of the main methods of reducing NOX emissions and has been widely used in marine diesel engines. This paper proposes an optimized comprehensive assessment method based on multi-objective grey situation decision theory, grey relation theory and grey entropy analysis to evaluate the performance and optimize rate determination of EGR, which currently lack clear theoretical guidance. First, multi-objective grey situation decision theory is used to establish the initial decision-making model according to the main EGR parameters. The optimal compromise between diesel engine combustion and emission performance is transformed into a decision-making target weight problem. After establishing the initial model and considering the characteristics of EGR under different conditions, an optimized target weight algorithm based on grey relation theory and grey entropy analysis is applied to generate the comprehensive evaluation and decision-making model. Finally, the proposed method is successfully applied to a TBD234V12 turbocharged diesel engine, and the results clearly illustrate the feasibility of the proposed method for providing theoretical support and a reference for further EGR optimization.

  1. Effects of the biodiesel blend fuel on aldehyde emissions from diesel engine exhaust

    NASA Astrophysics Data System (ADS)

    Peng, Chiung-Yu; Yang, Hsi-Hsien; Lan, Cheng-Hang; Chien, Shu-Mei

    Interest in use of biodiesel fuels derived from vegetable oils or animal fats as alternative fuels for petroleum-based diesels has increased due to biodiesels having similar properties of those of diesels, and characteristics of renewability, biodegradability and potential beneficial effects on exhaust emissions. Generally, exhaust emissions of regulated pollutants are widely studied and the results favor biodiesels on CO, HC and particulate emissions; however, limited and inconsistent data are showed for unregulated pollutants, such as carbonyl compounds, which are also important indicators for evaluating available vehicle fuels. For better understanding biodiesel, this study examines the effects of the biodiesel blend fuel on aldehyde chemical emissions from diesel engine exhausts in comparison with those from the diesel fuel. Test engines (Mitsubishi 4M40-2AT1) with four cylinders, a total displacement of 2.84 L, maximum horsepower of 80.9 kW at 3700 rpm, and maximum torque of 217.6 N m at 2000 rpm, were mounted and operated on a Schenck DyNAS 335 dynamometer. Exhaust emission tests were performed several times for each fuel under the US transient cycle protocol from mileages of 0-80,000 km with an interval of 20,000 km, and two additional measurements were carried out at 40,000 and 80,000 km after maintenance, respectively. Aldehyde samples were collected from diluted exhaust by using a constant volume sampling system. Samples were extracted and analyzed by the HPLC/UV system. Dominant aldehydes of both fuels' exhausts are formaldehyde and acetaldehyde. These compounds together account for over 75% of total aldehyde emissions. Total aldehyde emissions for B20 (20% waste cooking oil biodiesel and 80% diesel) and diesel fuels are in the ranges of 15.4-26.9 mg bhp-h -1 and 21.3-28.6 mg bhp-h -1, respectively. The effects of increasing mileages and maintenance practice on aldehyde emissions are insignificant for both fuels. B20 generates slightly less emission than diesel does. Major difference in both fuels is formaldehyde emission which drops by 23% on the average. Lower aldehyde emissions found in B20 correspond to lower ozone formation potentials. As a result, use of biodiesel in diesel engines has the beneficial effect in terms of aldehyde emissions.

  2. 36. SITE BUILDING 004 ELECTRIC POWER STATION CLOSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. SITE BUILDING 004 - ELECTRIC POWER STATION - CLOSE UP VIEW OF 1200 HORSEPOWER STANDBY POWER DIESEL ENGINE/GENERATOR SETS. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  3. 37. SITE BUILDING 004 ELECTRIC POWER STATION ELEVATED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. SITE BUILDING 004 - ELECTRIC POWER STATION - ELEVATED VIEW OF FIVE (5) 1200 HORSEPOWER STANDBY - POWER DIESEL ENGINE/GENERATOR SETS. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  4. Generation and characterization of four dilutions of diesel engine exhaust for a subchronic inhalation study.

    PubMed

    McDonald, Jacob D; Barr, Edward B; White, Richard K; Chow, Judith C; Schauer, James J; Zielinska, Barbara; Grosjean, Eric

    2004-05-01

    Exposure atmospheres for a rodent inhalation toxicology study were generated from the exhaust of a 2000 Cummins ISB 5.9L diesel engine coupled to a dynamometer and operated on a slightly modified heavy-duty Federal Test Procedure cycle. Exposures were conducted to one clean air control and four diesel exhaust levels maintained at four different dilution rates (300:1, 100:1, 30:1, 10:1) that yielded particulate mass concentrations of 30, 100, 300, and 1000 microg/m3. Exposures at the four dilutions were characterized for particle mass, particle size distribution (reported elsewhere), detailed chemical speciation of gaseous, semivolatile, and particle-phase inorganic and organic compounds. Target analytes included metals, inorganic ions and gases, organic and elemental carbon, alkanes, alkenes, aromatic and aliphatic acids, aromatic hydrocarbons, polycyclic aromatic hydrocarbons (PAH), oxygenated PAH, nitrogenated PAH, isoprenoids, carbonyls, methoxyphenols, sugar derivatives, and sterols. The majority of the mass of material in the exposure atmospheres was gaseous nitrogen oxides and carbon monoxide, with lesser amounts of volatile organics and particle mass (PM) composed of carbon (approximately 90% of PM) and ions (approximately 10% of PM). Measured particle organic species accounted for about 10% of total organic particle mass and were mostly alkanes and aliphatic acids. Several of the components in the exposure atmosphere scaled in concentration with dilution but did not scale precisely with the dilution rate because of background from the rodents and scrubbed dilution air, interaction of animal derived emissions with diesel exhaust components, and day-to-day variability in the output of the engine. Rodent-derived ammonia reacted with exhaust to form secondary inorganic particles (at different rates dependent on dilution), and rodent respiration accounted for volatile organics (especially carbonyls and acids) in the same range as the diesel exhaust at the lowest exhaust exposure concentrations. Day-to-day variability in the engine output was implicated partially for differences of several components, including some of the particle bound organics. Though these observations have likely occurred in nearly all inhalation exposure atmospheres that contain complex mixtures of material, the speciations conducted here illustrate many of them for the first time.

  5. USAF bioenvironmental noise data handbook. Volume 161: A/M32A-86 generator set, diesel engine driven

    NASA Astrophysics Data System (ADS)

    Rau, T. H.

    1982-05-01

    The A/M32A-86 generator set is a diesel engine driven source of electrical power used for the starting of aircraft, and for ground maintenance. This report provides measured and extrapolated data defining the bioacoustic environments produced by this unit operating outdoors on a concrete apron at normal rated/loaded conditions. Near-field data are reported for 37 locations in a wide variety of physical and psychoacoustic measures: overall and band sound pressure levels, C-weighted and A-weighted sound levels, preferred speech interference level, perceived noise level, and limiting times for total daily exposure of personnel with and without standard Air Force ear protectors. Far-field data measured at 36 locations are normalized to standard meteorological conditions and extrapolated from 10 - 1600 meters to derive sets of equal-value contours for these same seven acoustic measures as functions of angle and distance from the source.

  6. 40 CFR 86.085-2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... represents the manufacturer's total diesel light-duty vehicle production for those engine families being... standard. PRODLDT represents the manufacturer's total diesel light-duty truck production for those engine... particulate emission level, for certification purposes, of all of its diesel engine families included in the...

  7. Baumot BA-B Diesel Particulate Filter with Pre-Catalyst (ETV Mobile Source Emissions Control Devices) Verification Report

    EPA Science Inventory

    The Baumot BA-B Diesel Particulate Filter with Pre-Catalyst is a diesel engine retrofit device for light, medium, and heavy heavy-duty diesel on-highway engines for use with commercial ultra-low-sulfur diesel (ULSD) fuel. The BA-B particulate filter is composed of a pre-catalyst ...

  8. 40 CFR 86.332-79 - Oxides of nitrogen analyzer calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test.... (2) Zero the oxides of nitrogen analyzer. (3) Connect the outlet of the NOX generator (see Figure D79... operating range. (4) Introduce into the NOX generator-analyzer system a span gas with a NO concentration...

  9. 40 CFR 86.332-79 - Oxides of nitrogen analyzer calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test.... (2) Zero the oxides of nitrogen analyzer. (3) Connect the outlet of the NOX generator (see Figure D79... operating range. (4) Introduce into the NOX generator-analyzer system a span gas with a NO concentration...

  10. Experimental investigation on NOx and green house gas emissions from a marine auxiliary diesel engine using ultralow sulfur light fuel.

    PubMed

    Geng, Peng; Tan, Qinming; Zhang, Chunhui; Wei, Lijiang; He, Xianzhong; Cao, Erming; Jiang, Kai

    2016-12-01

    In recent years, marine auxiliary diesel engine has been widely used to produce electricity in the large ocean-going ship. One of the main technical challenges for ocean-going ship is to reduce pollutant emissions from marine auxiliary diesel engine and to meet the criteria of disposal on ships pollutants of IMO (International Maritime Organization). Different technical changes have been introduced in marine auxiliary diesel engine to apply clean fuels to reduce pollutant emissions. The ultralow sulfur light fuel will be applied in diesel engine for emission reductions in China. This study is aimed to investigate the impact of fuel (ultralow sulfur light fuel) on the combustion characteristic, NOx and green house gas emissions in a marine auxiliary diesel engine, under the 50%-90% engine speeds and the 25%-100% engine torques. The experimental results show that, in the marine auxiliary diesel engine, the cylinder pressure and peak heat release rate increase slightly with the increase of engine torques, while the ignition advances and combustion duration become longer. With the increases of the engine speed and torque, the fuel consumption decreases significantly, while the temperature of the exhaust manifold increases. The NOx emissions increase significantly with the increases of the engine speed and torque. The NO emission increases with the increases of the engine speed and torque, while the NO 2 emission decreases. Meanwhile, the ratio of NO 2 and NO is about 1:1 when the diesel engine operated in the low speed and load, while the ratio increases significantly with the increases of engine speed and torque, due to the increase of the cylinder temperature in the diffusive combustion mode. Moreover, the CO 2 emission increases with the increases of engine speed and torque by the use of ultralow sulfur light fuel. Copyright © 2016. Published by Elsevier B.V.

  11. Large gas injection engine nearing completion in Japan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, K.

    1994-04-01

    One of the world's largest diesel engines to be operated on methane gas under pressure injection is now nearing completion at the Chiba works of Mitsui, in Japan. The MAN B W-designed 12K80MC-GI-S engine - built by Mitsui Engineering and Shipbuilding Co., in Tamano, Japan - will develop a total of 40,680 kW when operating at 103.4 r/min. It will drive an electrical generator of 39,740 kW output to provide power to Mitsui's Chiba works. The arrangement will be such that excess electrical energy can be taken into the local electrical supply system. Since the engine will be operating inmore » an area of strict emission control, the exhaust gas from the engine will pass through a large SCR before reaching the main chimney. Low-sulfur diesel oil will be used as the pilot fuel, and will amount to only eight percent of the fuel charge at full load. The MC-GI series of engines can be used as main propulsion engines in LNG carriers or stationary power plants. 3 figs.« less

  12. Test/QA plan for the verification testing of diesel exhaust catalysts, particulate filters and engine modification control technologies for highway and nonroad use diesel engines

    EPA Science Inventory

    This ETV test/QA plan for heavy-duty diesel engine testing at the Southwest Research Institute’s Department of Emissions Research (DER) describes how the Federal Test Procedure (FTP), as listed in 40 CFR Part 86 for highway engines and 40 CFR Part 89 for nonroad engines, will be ...

  13. Computer simulation of the heavy-duty turbo-compounded diesel cycle for studies of engine efficiency and performance

    NASA Technical Reports Server (NTRS)

    Assanis, D. N.; Ekchian, J. A.; Heywood, J. B.; Replogle, K. K.

    1984-01-01

    Reductions in heat loss at appropriate points in the diesel engine which result in substantially increased exhaust enthalpy were shown. The concepts for this increased enthalpy are the turbocharged, turbocompounded diesel engine cycle. A computer simulation of the heavy duty turbocharged turbo-compounded diesel engine system was undertaken. This allows the definition of the tradeoffs which are associated with the introduction of ceramic materials in various parts of the total engine system, and the study of system optimization. The basic assumptions and the mathematical relationships used in the simulation of the model engine are described.

  14. Diesel Powered School Buses: An Update.

    ERIC Educational Resources Information Center

    Gresham, Robert

    1984-01-01

    Because diesel engines are more economical and longer-lasting than gasoline engines, school districts are rapidly increasing their use of diesel buses. Dependence on diesel power, however, entails vulnerability to cost increases due to the unreliability of crude oil supplies and contributes to air pollution. (MCG)

  15. Alternative Fuels Data Center

    Science.gov Websites

    National Clean Diesel Campaign (NCDC) The U.S. Environmental Protection Agency established the NCDC to reduce pollution emitted from diesel engines through the implementation of varied control existing diesel fleets, regulations for clean diesel engines and fuels, and regional collaborations and

  16. 40 CFR 94.108 - Test fuels.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) instead of or in addition to distillate diesel fuel (e.g., natural gas, methanol, or nondistillate diesel... Category 1 or Category 2 engines without exhaust aftertreatment obtained using a diesel fuel containing... Category 2 engines without exhaust aftertreatment obtained using diesel fuel containing less than 0.03...

  17. 40 CFR 94.108 - Test fuels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) instead of or in addition to distillate diesel fuel (e.g., natural gas, methanol, or nondistillate diesel... Category 1 or Category 2 engines without exhaust aftertreatment obtained using a diesel fuel containing... Category 2 engines without exhaust aftertreatment obtained using diesel fuel containing less than 0.03...

  18. Single-Cylinder Diesel Engine Tests with Unstabilized Water-in-Fuel Emulsions

    DOT National Transportation Integrated Search

    1978-08-01

    A single-cylinder, four-stroke cycle diesel engine was operated on unstabilized water-in-fuel emulsions. Two prototype devices were used to produce the emulsions on-line with the engine. More than 350 test points were run with baseline diesel fuel an...

  19. An experimental investigation of performance of diesel to CNG engine

    NASA Astrophysics Data System (ADS)

    Misra, Sheelam; Gupta, Ayush; Garg, Ashutosh

    2018-05-01

    Over the past few decades, diesel engines are widely used in automobiles which is responsible for hazardous increase in pollution. Around the world, many countries are trying to reduce it by replacing diesel with CNG as a fuel which is more economical and leads to pollution free environment. Engineers came up with an idea to convert diesel engine to CNG engine. This conversion is possible by doing some alteration of engine components and it also include adding some extra components to the system which includes spark plug, valves etc. and by decreasing the compression ratio of the engine. It is used worldwide today and many countries have many programs to convert older, polluting diesel vehicles to CNG enable vehicles so that they can run on clean, economical natural gas. This is, an excellent way to reduce fuel cost, reduce pollution, reduce noise with minimum possible capital costs.first, second, and third level headings.

  20. Study on production of biodiesel from Jatropha oil and the performance and emission of a diesel engine

    NASA Astrophysics Data System (ADS)

    Nor, N. F. M.; Hafidzal, M. H. M.; Shamsuddin, S. A.; Ismail, M. S.; Hashim, A. H.

    2015-05-01

    The use of nonedible oil as a feedstock is needed to replace edible oil as an alternative fuel for diesel engine. This nonedible oils in diesel engine however leads to low performance and higher emission due to its high viscosity. The characteristics of the fuel can be improved through transesterification process. The yield of biodiesel from Jatropha oil using potassium hydroxide catalyst concentration of 1%, reaction temperature 60°C, reaction time 40 minutes and molar ratio methanol to oil 6:1 was 70.1% from the lab scale. The experimental study on the performances and emissions of a diesel engine is carried out using the Jatropha biodiesel produced from the transesterification process and compared with pure diesel. Results show that B20 has closer performance to diesel and lower emission compared to B5 and diesel in terms of CO2 and HC.

  1. The performance and emissions of diesel engines with biodiesel of sunan pecan seed and diesel oil blends

    NASA Astrophysics Data System (ADS)

    Ariani, F.; Sitorus, T. B.; Ginting, E.

    2017-12-01

    An observation was performed to evaluate the performance of direct injection stationary diesel engine which used a blends of biodiesel of Sunan pecan seed. The experiments were done with diesel oil, B5, B10, B15 and B20 in the engine speed variety. Results showed that the values of torque, power and thermal efficiency tend to decrease when the engine is using B5, B10, B15 and B20, compared to diesel oil. It also shown that the specific fuel consumption is increased when using B5, B10, B15 and B20. From the results of experiments and calculations, the maximum power of 3.08 kW, minimum specific fuel consumption of 189.93 g/kWh and maximum thermal efficiency of 45.53% when engine using diesel oil. However, exhaust gases were measured include opacity, carbon monoxide and hydrocarbon when the engine using biodiesel B5, B10, B15 and B20 decreased.

  2. A Mathematical Model of Marine Diesel Engine Speed Control System

    NASA Astrophysics Data System (ADS)

    Sinha, Rajendra Prasad; Balaji, Rajoo

    2018-02-01

    Diesel engine is inherently an unstable machine and requires a reliable control system to regulate its speed for safe and efficient operation. Also, the diesel engine may operate at fixed or variable speeds depending upon user's needs and accordingly the speed control system should have essential features to fulfil these requirements. This paper proposes a mathematical model of a marine diesel engine speed control system with droop governing function. The mathematical model includes static and dynamic characteristics of the control loop components. Model of static characteristic of the rotating fly weights speed sensing element provides an insight into the speed droop features of the speed controller. Because of big size and large time delay, the turbo charged diesel engine is represented as a first order system or sometimes even simplified to a pure integrator with constant gain which is considered acceptable in control literature. The proposed model is mathematically less complex and quick to use for preliminary analysis of the diesel engine speed controller performance.

  3. The assessment of engine losses due to friction and lubricant limitations. Final report May 80-Mar 81

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, C.F.; Taylor, T. Jr; Kallin, R.L.

    A major area for improving the efficiency of spark ignition and diesel engines is a reduction of frictional losses. Existing literature on engine friction was used as a basis for estimating possible gains in engine fuel economy which look promising within the constraints of modern practice. The means considered include reduction in oil viscosity, increase in bearing and piston clearances, possible changes in piston and valve gear design, and reduction of pumping losses. Estimates indicate potential fuel consumption improvements of 3 to 4% for Otto-Cycle at wide open throttle, 7 to 9% for Otto-Cycle at road load, 4 to 5%more » for diesel at wide open throttle, and 6% for diesel at road-load. Much larger gains at road load could be obtained by using a stratified charge system which requires no air throttling. A literature search on techniques for measuring engine friction under firing conditions was also performed and various concepts employing Pressure-Volume Indicator Diagrams were assessed. Balanced pressure and direct pressure measurement in concert with instantaneous measurement of piston position provide the most reliable and repeatable assessment of engine efficiency. Pressure measurements in the range of 1/2 to 1% are achievable with digital processing techniques reducing dramatically the time and effort to generate P-V Indicator Diagrams.« less

  4. Clean-Burning Diesel Engines.

    DTIC Science & Technology

    1986-03-01

    Dietzmann L.R. Smith Engines, Emissions, and Vehicle Research Division Southwest Research Institute San Antonio, Texas Prepared for Belvoir Fuels and...replacing the currently used electric forklift with diesel engine-powered forklifts in handling hazardous materials. Electric -powered forklifts have no...diesel engines considered as potential candidates for forklift vehicles used to handle hazardous materials. The first program was conducted to

  5. Biofuel Mixture Composition and Parameters of Exhaust Gases Toxicity

    NASA Astrophysics Data System (ADS)

    Markov, V. A.; Kamaltdinov, V. G.; Loboda, S. S.

    2018-03-01

    Advantages of using fuels of vegetable origin as motor fuels are shown. Possible ways of using cameline oil as a fuel for a diesel engine are considered. Experimental research of diesel engine D-245.12S functioning on mixtures of diesel fuel and cameline oil of various percentage is given. Parameters of exhaust gases toxicity of the diesel engine by using these mixtures of various compositions are analyzed.

  6. Analysis of pre-heated fuel combustion and heat-emission dynamics in a diesel engine

    NASA Astrophysics Data System (ADS)

    Plotnikov, S. A.; Kartashevich, A. N.; Buzikov, S. V.

    2018-01-01

    The article explores the feasibility of diesel fuel pre-heating. The research goal was to obtain and analyze the performance diagrams of a diesel engine fed with pre-heated fuel. The engine was tested in two modes: at rated RPMs and at maximum torque. To process the diagrams the authors used technique developed by the Central Diesel Research Institute (CDRI). The diesel engine’s heat emission curves were obtained. The authors concluded that fuel pre-heating shortened the initial phase of the combustion process and moderated the loads, thus making it possible to boost a diesel engine’s mean effective pressure.

  7. Evaluation Tests of Select Fuel Additives for Potential Use in U.S. Army Corps of Engineers Diesel Engines

    DTIC Science & Technology

    2016-07-01

    DOER) program, diesel fuel additives were tested to evaluate their potential for reducing diesel fuel consumption and cost. Four fuel additives were...tested to evaluate their potential for reducing diesel fuel consumption and cost: • An ethanol injection system • Envirofuels Diesel Fuel Catalyst...reduction in select operation conditions, only the ethanol injection system consistently showed potential to reduce diesel fuel consumption , which may be

  8. An Operating Method Using Prediction of Photovoltaic Power for a Photovoltaic-Diesel Hybrid Power Generation System

    NASA Astrophysics Data System (ADS)

    Yamamoto, Shigehiro; Sumi, Kazuyoshi; Nishikawa, Eiichi; Hashimoto, Takeshi

    This paper describes a novel operating method using prediction of photovoltaic (PV) power for a photovoltaic-diesel hybrid power generation system. The system is composed of a PV array, a storage battery, a bi-directional inverter and a diesel engine generator (DG). The proposed method enables the system to save fuel consumption by using PV energy effectively, reducing charge and discharge energy of the storage battery, and avoiding low-load operation of the DG. The PV power is simply predicted from a theoretical equation of solar radiation and the observed PV energy for a constant time before the prediction. The amount of fuel consumption of the proposed method is compared with that of other methods by a simulation based on measurement data of the PV power at an actual PV generation system for one year. The simulation results indicate that the amount of fuel consumption of the proposed method is smaller than that of any other methods, and is close to that of the ideal operation of the DG.

  9. 30 CFR 7.90 - Approval marking.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Diesel Engines Intended for Use in Underground Coal Mines § 7.90 Approval marking. Each approved diesel engine shall be identified by a legible and... diesel engine. The marking shall also contain the following information: (a) Ventilation rate. (b) Rated...

  10. 30 CFR 7.90 - Approval marking.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Diesel Engines Intended for Use in Underground Coal Mines § 7.90 Approval marking. Each approved diesel engine shall be identified by a legible and... diesel engine. The marking shall also contain the following information: (a) Ventilation rate. (b) Rated...

  11. 30 CFR 7.90 - Approval marking.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Diesel Engines Intended for Use in Underground Coal Mines § 7.90 Approval marking. Each approved diesel engine shall be identified by a legible and... diesel engine. The marking shall also contain the following information: (a) Ventilation rate. (b) Rated...

  12. 30 CFR 7.90 - Approval marking.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Diesel Engines Intended for Use in Underground Coal Mines § 7.90 Approval marking. Each approved diesel engine shall be identified by a legible and... diesel engine. The marking shall also contain the following information: (a) Ventilation rate. (b) Rated...

  13. 30 CFR 7.90 - Approval marking.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Diesel Engines Intended for Use in Underground Coal Mines § 7.90 Approval marking. Each approved diesel engine shall be identified by a legible and... diesel engine. The marking shall also contain the following information: (a) Ventilation rate. (b) Rated...

  14. Assessment of n-pentanol/Calophyllum inophyllum/diesel blends on the performance, emission, and combustion characteristics of a constant-speed variable compression ratio direct injection diesel engine.

    PubMed

    Ramakrishnan, Purnachandran; Kasimani, Ramesh; Peer, Mohamed Shameer; Rajamohan, Sakthivel

    2018-05-01

    Alcohol is used as an additive for a long time with the petroleum-based fuels. In this study, the higher alcohol, n-pentanol, was used as an additive to Calophyllum inophyllum (CI) biodiesel/diesel blends at 10, 15, and 20% by volume. In all blends, the ratio of CI was maintained at 20% by volume. The engine characteristics of the pentanol fuel blends were compared with the diesel and CI20 (Calophyllum inophyllum 20% and diesel 80%) biodiesel blend. The nitrogen oxide (NO) emission of the pentanol fuel blends showed an increased value than CI20 and neat diesel fuel. The carbon dioxide (CO 2 ) also increased with increase in pentanol addition with the fuel blends than CI20 fuel blend and diesel. The carbon monoxide (CO) and hydrocarbon (HC) emissions were decreased with increase in pentanol proportion in the blend than the CI20 fuel and diesel. The smoke emission was reduced and the combustion characteristics of the engine were also improved by using pentanol blended fuels. From this investigation, it is suggested that 20% pentanol addition with the biodiesel/diesel fuel is suitable for improved performance and combustion characteristics of a diesel engine without any engine modifications, whereas CO 2 and NO emissions increased with addition of pentanol due to effective combustion.

  15. 35. SITE BUILDING 004 ELECTRIC POWER STATION CONTROL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. SITE BUILDING 004 - ELECTRIC POWER STATION - CONTROL ROOM OF ELECTRIC POWER STATION WITH DIESEL ENGINE POWERED ELECTRIC GENERATION EQUIPMENT IN BACKGROUND. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  16. 38. SITE BUILDING 004 ELECTRIC POWER STATION AT INTERIOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. SITE BUILDING 004 - ELECTRIC POWER STATION AT INTERIOR - OBLIQUE VIEW AT FLOOR LEVEL SHOWING DIESEL ENGINE/GENERATOR SET NUMBER 5. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  17. Comparative study of performance and emissions of a CI engine using biodiesel of microalgae, macroalgae and rice bran

    NASA Astrophysics Data System (ADS)

    Jayaprabakar, J.; Karthikeyan, A.; Saikiran, K.; Beemkumar, N.; Joy, Nivin

    2017-05-01

    Biodiesel is an alternative and safe fuel to replace conventional petroleum diesel. With high-lubricity and clean-burning ability the biodiesel can be a better fuel component for use in existing diesel engines without any modifications. The aim of this Research was to study the potential use of Macro algae oil, Micro algae oil, Rice Bran oil methyl ester as a substitute for diesel fuel in diesel engine. B10 and B20 blends of these three types of fuels are prepared by transesterification process. The blends on volume basis were used to test them in a four stroke single cylinder diesel engine to study the performance and emission characteristics of these fuels and compared with neat diesel fuel. Also, the property testing of these biofuels were carried out. The biodiesel blends in this study substantially reduces the emission of unburnt hydro carbons and smoke opacity and increases the emission of NOx emission in exhaust gases. These biodiesel blends were consumed more by the engine during testing than Diesel and the brake thermal efficiency and volumetric efficiency for the blends was identical with the Diesel.

  18. Energy and Exergy Analysis of a Diesel Engine Fuelled with Diesel and Simarouba Biodiesel Blends

    NASA Astrophysics Data System (ADS)

    Panigrahi, Nabnit; Mohanty, Mahendra Kumar; Mishra, Sruti Ranjan; Mohanty, Ramesh Chandra

    2018-02-01

    This article intends to determine the available work and various losses of a diesel engine fuelled with diesel and SB20 (20 % Simarouba biodiesel by volume blended with 80 % diesel by volume). The energy and exergy analysis were carried out by using first law and second law of thermodynamics respectively. The experiments were carried out on a 3.5 kW compression ignition engine. The analysis was conducted on per mole of fuel basis. The energy analysis indicates that about 37.23 and 37.79 % of input energy is converted into the capacity to do work for diesel and SB20 respectively. The exergetic efficiency was 34.8 and 35 % for diesel and Simarouba respectively. Comparative study indicates that the energetic and exergetic performance of SB20 resembles with that of diesel fuel.

  19. Study on performance of blended fuel PPO - Diesel at generator

    NASA Astrophysics Data System (ADS)

    Prasetyo, Joni; Prasetyo, Dwi Husodo; Murti, S. D. Sumbogo; Adiarso, Priyanto, Unggul

    2018-02-01

    Bio-energy is renewable energy made from plant. Biomass-based energy sources are potentially CO2 neutral and recycle the same carbon atoms. In order to reduce pollution caused by fossil fuel combustion either for mechanical or electrical energy generation, the performance characteristic of purified palm oil blends are analyzed at various ratios. Bio-energy, Pure Plant Oil, represent a sustainable solution.A generator has been modified due to adapt the viscosity ofblended fuel, PPO - diesel, by pre-heating. Several PPO - diesel composition and injection timing were tested in order to investigate the characteristic of mixed fuel with and without pre-heating. The term biofuel refers to liquid or gaseous fuels for the internal combustion engines that are predominantly produced fro m biomass. Surprising result showed that BSFC of blended PPO - diesel was more efficient when injection timing set more than 15° BTDC. The mixed fuel produced power with less mixed fuel even though the calorie content of diesel is higher than PPO. The most efficient was 20% PPO in diesel with BSFC 296 gr fuel / kwh rather than 100% diesel with BSFC 309 gr fuel / kwh at the same injection timing 18° BTDC with pre-heating. The improvement of BSFC is caused by heating up of mixed fuel which it added calorie in the mixed fuel. Therefore, the heating up of blended PPO - diesel is not only to adapt the viscosity but also improving the efficiency of fuel usage representing by lower BSFC. In addition, torque of the 20% PPO was also as smooth as 100% diesel representing by almost the same torqueat injection timing 15° BTDC. The AIP Proceedings article template has many predefined paragraph styles for you to use/apply as you write your paper. To format your abstract, use the Microsoft Word template style: Abstract. Each paper must include an abstract. Begin the abstract with the word "Abstract" followed by a period in bold font, and then continue with a normal 9 point font.

  20. Experimental Study of Effect of EGR Rates on NOx and Smoke Emission of LHR Diesel Engine Fueled with Blends of Diesel and Neem Biodiesel

    NASA Astrophysics Data System (ADS)

    Modi, Ashishkumar Jashvantlal; Gosai, Dipak Chimangiri; Solanki, Chandresh Maheshchandra

    2018-04-01

    Energy conservation and efficiency have been the quest of engineers concerned with internal combustion engine. Theoretically, if the heat rejected could be reduced, then the thermal efficiency would be improved, at least up to the limit set by the second law of thermodynamics. For current work a ceramic coated twin cylinder water-cooled diesel engine using blends of diesel and Neem biodiesel as fuel was evaluated for its performance and exhaust emissions. Multi cylinder vertical water cooled self-governed diesel engine, piston, top surface of cylinder head and liners were fully coated with partially stabilized zirconia as ceramic material attaining an adiabatic condition. Previous studies have reported that combustion of Neem biodiesel emitted higher NOx, while hydrocarbon and smoke emissions were lower than conventional diesel fuel. Exhaust gas recirculation (EGR) is one of the techniques being used to reduce NOx emission from diesel engines; because it decreases both flame temperature and oxygen concentration in the combustion chamber. The stationary diesel engine was run in laboratory at a high load condition (85% of maximum load), fixed speed (2000 rpm) and various EGR rates of 5-40% (with 5% increment). Various measurements like fuel flow, exhaust temperature, exhaust emission measurement and exhaust smoke test were carried out. The results indicate improved fuel economy and reduced pollution levels for the low heat rejection (LHR) engine. The results showed that, at 5% EGR with TB10, both NOx and smoke opacity were reduced by 26 and 15%, respectively. Furthermore, TB20 along with 10% EGR was also able to reduce both NOx and smoke emission by 34 and 30%, respectively compared to diesel fuel without EGR.

  1. Attempts to minimize nitrogen oxide emission from diesel engine by using antioxidant-treated diesel-biodiesel blend.

    PubMed

    Rashedul, Hasan Khondakar; Kalam, Md Abdul; Masjuki, Haji Hassan; Teoh, Yew Heng; How, Heoy Geok; Monirul, Islam Mohammad; Imdadul, Hassan Kazi

    2017-04-01

    The study represents a comprehensive analysis of engine exhaust emission variation from a compression ignition (CI) diesel engine fueled with diesel-biodiesel blends. Biodiesel used in this investigation was produced through transesterification procedure from Moringa oleifera oil. A single cylinder, four-stroke, water-cooled, naturally aspirated diesel engine was used for this purpose. The pollutants from the exhaust of the engine that are monitored in this study are nitrogen oxide (NO), carbon monoxide (CO), hydrocarbon (HC), and smoke opacity. Engine combustion and performance parameters are also measured together with exhaust emission data. Some researchers have reported that the reason for higher NO emission of biodiesel is higher prompt NO formation. The use of antioxidant-treated biodiesel in a diesel engine is a promising approach because antioxidants reduce the formation of free radicals, which are responsible for the formation of prompt NO during combustion. Two different antioxidant additives namely 2,6-di-tert-butyl-4-methylphenol (BHT) and 2,2'-methylenebis(4-methyl-6-tert-butylphenol) (MBEBP) were individually dissolved at a concentration of 1% by volume in MB30 (30% moringa biodiesel with 70% diesel) fuel blend to investigate and compare NO as well as other emissions. The result shows that both antioxidants reduced NO emission significantly; however, HC, CO, and smoke were found slightly higher compared to pure biodiesel blends, but not more than the baseline fuel diesel. The result also shows that both antioxidants were quite effective in reducing peak heat release rate (HRR) and brake-specific fuel consumption (BSFC) as well as improving brake thermal efficiency (BTE) and oxidation stability. Based on this study, antioxidant-treated M. oleifera biodiesel blend (MB30) can be used as a very promising alternative source of fuel in diesel engine without any modifications.

  2. Will future helicopters be diesel powered

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-05-01

    An investigator has found that, if current gas turbine engines in helicopters are replaced by compound adiabatic diesel engines, fuel savings of 40% are possible. This would hold true if the diesel engines are retrofitted to the current helicopter fleet or adapted to new helicopter designs. Problems such as engine placement, weight, and lubrication exist but may be surmountable with proper design.

  3. Truck Noise VIB : A Baseline Study of the Parameters Affecting Diesel Engine Intake and Exhaust Silencer Design

    DOT National Transportation Integrated Search

    1974-01-01

    A survey of diesel engine, truck, intake system, and exhaust system manufacturers was made for the purpose of compiling detailed information on all major mass-produced diesel engines currently used in the United States for trucks and buses, and on ex...

  4. 40 CFR 86.001-2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... use of 10 years or 110,000 miles, whichever occurs first. (4) For a diesel heavy-duty engine family: (i) For light heavy-duty diesel engines, for hydrocarbon, carbon monoxide, and particulate standards... diesel engines, for the oxides of nitrogen standard, a period of use of 10 years or 110,000 miles...

  5. 40 CFR 86.098-2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... use of 10 years or 110,000 miles, whichever occurs first. (4) For a diesel heavy-duty engine family: (i) For light heavy-duty diesel engines, for hydrocarbon, carbon monoxide, and particulate standards... diesel engines, for the oxides of nitrogen standard, a period of use of 10 years or 110,000 miles...

  6. 30 CFR 7.96 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... diesel engine with an intake system, exhaust system, and a safety shutdown system installed. Dry exhaust.... A system connected to the outlet of the diesel engine which includes, but is not limited to, the... constructed that flame or sparks from the diesel engine cannot propagate an explosion of a flammable mixture...

  7. 40 CFR 86.098-2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... use of 10 years or 110,000 miles, whichever occurs first. (4) For a diesel heavy-duty engine family: (i) For light heavy-duty diesel engines, for hydrocarbon, carbon monoxide, and particulate standards... diesel engines, for the oxides of nitrogen standard, a period of use of 10 years or 110,000 miles...

  8. 40 CFR 86.001-2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... use of 10 years or 110,000 miles, whichever occurs first. (4) For a diesel heavy-duty engine family: (i) For light heavy-duty diesel engines, for hydrocarbon, carbon monoxide, and particulate standards... diesel engines, for the oxides of nitrogen standard, a period of use of 10 years or 110,000 miles...

  9. 40 CFR 86.098-2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... use of 10 years or 110,000 miles, whichever occurs first. (4) For a diesel heavy-duty engine family: (i) For light heavy-duty diesel engines, for hydrocarbon, carbon monoxide, and particulate standards... diesel engines, for the oxides of nitrogen standard, a period of use of 10 years or 110,000 miles...

  10. 40 CFR 86.001-2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... use of 10 years or 110,000 miles, whichever occurs first. (4) For a diesel heavy-duty engine family: (i) For light heavy-duty diesel engines, for hydrocarbon, carbon monoxide, and particulate standards... diesel engines, for the oxides of nitrogen standard, a period of use of 10 years or 110,000 miles...

  11. 30 CFR 7.96 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... diesel engine with an intake system, exhaust system, and a safety shutdown system installed. Dry exhaust.... A system connected to the outlet of the diesel engine which includes, but is not limited to, the... constructed that flame or sparks from the diesel engine cannot propagate an explosion of a flammable mixture...

  12. 40 CFR 86.336-79 - Diesel engine test cycle.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Diesel engine test cycle. 86.336-79 Section 86.336-79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... Diesel engine test cycle. (a) The following 13-mode cycle shall be followed in dynamometer operation...

  13. Emissions and Fuel Economy of a Detroit Diesel 6-71 Engine Burning a 10-Percent Water-In-Fuel Emission

    DOT National Transportation Integrated Search

    1978-07-01

    Initial efforts with water/fuel emulsions in diesel engines were directed toward the control of NOx. More recent studies emphasized the use of emulsions to improve fuel economy. It is believed that in a diesel engine combustion process, emulsified fu...

  14. Emissions of PCDD/Fs, PCBs, and PAHs from a modern diesel engine equipped with catalyzed emission control systems.

    PubMed

    Laroo, Christopher A; Schenk, Charles R; Sanchez, L James; McDonald, Joseph

    2011-08-01

    Exhaust emissions of 17 2,3,7,8-substituted chlorinated dibenzo-p-dioxin/furan (CDD/F) congeners, tetra-octa CDD/F homologues, 12 2005 WHO chlorinated biphenyls (CB) congeners, mono-nona CB homologues, and 19 polycyclic aromatic hydrocarbons (PAHs) from a model year 2008 Cummins ISB engine were investigated. Testing included configurations composed of different combinations of aftertreatment including a diesel oxidation catalyst (DOC), catalyzed diesel particulate filter (CDPF), copper zeolite urea selective catalytic reduction (SCR), iron zeolite SCR, and ammonia slip catalyst. Results were compared to a baseline engine out configuration. Testing included the use of fuel that contained the maximum expected chlorine (Cl) concentration of U.S. highway diesel fuel and a Cl level 1.5 orders of magnitude above. Results indicate there is no risk for an increase in polychlorinated dibenzo-p-dioxin/furan and polychlorinated biphenyl emissions from modern diesel engines with catalyzed aftertreatment when compared to engine out emissions for configurations tested in this program. These results, along with PAH results, compare well with similar results from modern diesel engines in the literature. The results further indicate that polychlorinated dibenzo-p-dioxin/furan emissions from modern diesel engines both with and without aftertreatment are below historical values reported in the literature as well as the current inventory value.

  15. Greener, meaner diesels sport thermal barrier coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winkler, M.F.; Parker, D.W.

    1992-05-01

    The highly reliable diesel engine has long been the workhorse of the transportation, industrial power, utility, and marine industries. Demand for diesels is expected to accelerate well into the next century, driven by the engine's ability to economically produce power in almost any environment. Increasingly stringent environmental, efficiency, and durability requirements, however, present new challenges to diesel engine manufacturers and operators. This paper reports that many of these challenges can be met entirely, or in part, by thermal barrier coatings (TBCs). Diesel engine TBCs are plasma-spray-applied ceramics, which insulate combustion system components, such as pistons, valves, and piston fire decks,more » from heat and thermal shock.« less

  16. [FTIR detection of unregulated emissions from a diesel engine with biodiesel fuel].

    PubMed

    Tan, Pi-qiang; Hu, Zhi-yuan; Lou, Di-ming

    2012-02-01

    Biodiesel, as one of the most promising alternative fuels, has received more attention because of limited fossil fuels. A comparison of biodiesel and petroleum diesel fuel is discussed as regards engine unregulated exhaust emissions. A diesel fuel, a pure biodiesel fuel, and fuel with 20% V/V biodiesel blend ratio were tested without engine modification The present study examines six typical unregulated emissions by Fourier transform infrared spectroscopy (FTIR) method: formaldehyde (HCHO), acetaldehyde (C2 H4 O), acetone (C3 H6 O), toluene (C7 H8), sulfur dioxide (SO2), and carbon dioxide (CO2). The results show addition of biodiesel fuel increases the formaldehyde emission, and B20 fuel has little change, but the formaldehyde emission of pure biodiesel shows a clear trend of addition. Compared with the pure diesel fuel, the acetaldehyde of B20 fuel has a distinct decrease, and the acetaldehyde emission of pure biodiesel is lower than that of the pure diesel fuel at low and middle engine loads, but higher at high engine load. The acetone emission is very low, and increases for B20 and pure biodiesel fuels as compared to diesel fuel. Compared with the diesel fuel, the toluene and sulfur dioxide values of the engine show a distinct decrease with biodiesel blend ratio increasing. It is clear that the biodiesel could reduce aromatic compounds and emissions of diesel engines. The carbon dioxide emission of pure biodiesel has a little lower value than diesel, showing that the biodiesel benefits control of greenhouse gas.

  17. Comparative Studies on Performance Characteristics of CI Engine Fuelled with Neem Methyl Ester and Mahua Methyl Ester and Its Respective Blends with Diesel Fuel.

    PubMed

    Ragit, S S; Mohapatra, S K; Kundu, K

    2014-01-01

    In the present investigation, neem and mahua methyl ester were prepared by transesterification using potassium hydroxide as a catalyst and tested in 4-stroke single cylinder water cooled diesel engine. Tests were carried out at constant speed of 1500 rev/min at different brake mean effective pressures. A series of tests were conducted which worked at different brake mean effective pressures, OkPa, 1kPa, 2kPa, 3kPa, 4kPa, 5kPa, 6kPa and 6.5kPa. The performance and exhaust emission characteristics of the diesel engine were analyzed and compared with diesel fuel. Results showed that BTE of NME was comparable with diesel and it was noted that the BTE of N0100 is 63.11% higher than that of diesel at part load whereas it reduces 11.2% with diesel fuel at full load. In case of full load, NME showed decreasing trend with diesel fuel. BTE of diesel was 15.37% and 36.89% at part load and full load respectively. The observation indicated that BTE for MME 100 was slightly higher than diesel at part loads. The specific fuel consumption (SFC) was more for almost all blends at all loads, compared to diesel. At part load, the EGT of MME and its blends were showing similar trend to diesel fuel and at full load, the exhaust gas temperature of MME and blends were higher than diesel. Based on this study, NME could be a substitute for diesel fuel in diesel engine.

  18. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XIV, I--MAINTAINING THE AIR SYSTEM, CUMMINS DIESEL ENGINE, II--UNIT REMOVAL--TRANSMISSION.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATING PRINCIPLES AND MAINTENANCE OF THE DIESEL ENGINE AIR SYSTEM AND THE PROCEDURES FOR TRANSMISSION REMOVAL. TOPICS ARE (1) DEFINITION OF TERMS RELATED TO THE DIESEL AIR SYSTEM, (2) PRNCIPLES OF DIESEL AIR COMPRESSORS, (3) PRINCIPLES OF AIR STARTING MOTORS, (4)…

  19. Alternative fuel properties of tall oil fatty acid methyl ester-diesel fuel blends.

    PubMed

    Altiparmak, Duran; Keskin, Ali; Koca, Atilla; Gürü, Metin

    2007-01-01

    In this experimental work, tall oil methyl ester-diesel fuel blends as alternative fuels for diesel engines were studied. Tall oil methyl ester was produced by reacting tall oil fatty acids with methyl alcohol under optimum conditions. The blends of tall oil methyl ester-diesel fuel were tested in a direct injection diesel engine at full load condition. The effects of the new fuel blends on the engine performance and exhaust emission were tested. It was observed that the engine torque and power output with tall oil methyl ester-diesel fuel blends increased up to 6.1% and 5.9%, respectively. It was also seen that CO emissions decreased to 38.9% and NO(x) emissions increased up to 30% with the new fuel blends. The smoke opacity did not vary significantly.

  20. Virtual engine management simulator for educational purposes

    NASA Astrophysics Data System (ADS)

    Drosescu, R.

    2017-10-01

    This simulator was conceived as a software program capable of generating complex control signals, identical to those in the electronic management systems of modern spark ignition or diesel engines. Speed in rpm and engine load percentage defined by throttle opening angle represent the input variables in the simulation program and are graphically entered by two-meter instruments from the simulator central block diagram. The output signals are divided into four categories: synchronization and position of each cylinder, spark pulses for spark ignition engines, injection pulses and, signals for generating the knock window for each cylinder in the case of a spark ignition engine. The simulation program runs in real-time so each signal evolution reflects the real behavior on a physically thermal engine. In this way, the generated signals (ignition or injection pulses) can be used with additionally drivers to control an engine on the test bench.

  1. Three-dimensional modeling of diesel engine intake flow, combustion and emissions-2

    NASA Technical Reports Server (NTRS)

    Reitz, R. D.; Rutland, C. J.

    1993-01-01

    A three-dimensional computer code, KIVA, is being modified to include state-of-the-art submodels for diesel engine flow and combustion. Improved and/or new submodels which have already been implemented and previously reported are: wall heat transfer with unsteadiness and compressibility, laminar-turbulent characteristic time combustion with unburned HC and Zeldo'vich NO(x), and spray/wall impingement with rebounding and sliding drops. Progress on the implementation of improved spray drop drag and drop breakup models, the formulation and testing of a multistep kinetics ignition model, and preliminary soot modeling results are described. In addition, the use of a block structured version of KIVA to model the intake flow process is described. A grid generation scheme was developed for modeling realistic (complex) engine geometries, and computations were made of intake flow in the ports and combustion chamber of a two-intake-value engine. The research also involves the use of the code to assess the effects of subprocesses on diesel engine performance. The accuracy of the predictions is being tested by comparisons with engine experiments. To date, comparisons were made with measured engine cylinder pressure, temperature and heat flux data, and the model results are in good agreement with the experiments. Work is in progress that will allow validation of in-cylinder flow and soot formation predictions. An engine test facility is described that is being used to provide the needed validation data. Test results were obtained showing the effect of injection rate and split injections on engine performance and emissions.

  2. Lightweight two-stroke cycle aircraft diesel engine technology enablement program, volume 1

    NASA Technical Reports Server (NTRS)

    Freen, P. D.; Berenyi, S. G.; Brouwers, A. P.; Moynihan, M. E.

    1985-01-01

    An experimental Single Cylinder Test Engine Program is conducted to confirm the analytically projected performance of a two-stroke cycle diesel engine for aircraft applications. The test engine delivered 78kW indicated power from 1007cc displacement, operating at 3500 RPM on Schnuerle loop scavenged two-stroke cycle. Testing confirms the ability of a proposed 4-cylinder version of such an engine to reach the target power at altitude, in a highly turbocharged configuration. The experimental program defines all necessary parameters to permit design of a multicylinder engine for eventual flight applications; including injection system requirement, turbocharging, heat rejection, breathing, scavenging, and structural requirements. The multicylinder engine concept is configured to operate with an augmented turbocharger, but with no primary scavenge blower. The test program is oriented to provide a balanced turbocharger compressor to turbine power balance without an auxiliary scavenging system. Engine cylinder heat rejection to the ambient air has been significantly reduced and the minimum overall turbocharger efficiency required is within the range of commercially available turbochargers. Analytical studies and finite element modeling is made of insulated configurations of the engines - including both ceramic and metallic versions. A second generation test engine is designed based on current test results.

  3. Evaluation of Hydroprocessed Renewable Diesel (HRD) Fuel in a Caterpillar Engine Using the 210 Hour TWV Cycle

    DTIC Science & Technology

    2014-05-01

    TERMS Hydroprocessed Renewable Diesel , Reference Diesel Fuel, C7, emissions, power, performance, deposition, ambient, desert, synthetic fuel injector ...the engine run-in, the engine was disassembled to determine injector nozzle tip deposits, and the piston crowns and engine combustion chamber deposits...removed from the test cell and disassembled to determine injector nozzle tip and piston crown and engine combustion chamber deposits. Post- test

  4. Diesel Engine Technology Update

    DTIC Science & Technology

    1987-07-01

    AFWAL-TR-87-20 54 83-021-DET DIESEL ENGINE TECHNOLOGY UPDATE Kaupert, Andrew W., Lt. Col. USAFR Air Force Reserves Detroit Detachment 2 Ann Arbor, MI...sponsored adiabatic turbocompound diesel engine . One goal was the use of no water or air cooling for the engine to enable the minimized heat transfer from...sector with severe • impact on the stationary engine segment of the marketplace. The effect of this proposed legislation on Air Force fuel quality is

  5. Particulate emissions from diesel engines: correlation between engine technology and emissions.

    PubMed

    Fiebig, Michael; Wiartalla, Andreas; Holderbaum, Bastian; Kiesow, Sebastian

    2014-03-07

    In the last 30 years, diesel engines have made rapid progress to increased efficiency, environmental protection and comfort for both light- and heavy-duty applications. The technical developments include all issues from fuel to combustion process to exhaust gas aftertreatment. This paper provides a comprehensive summary of the available literature regarding technical developments and their impact on the reduction of pollutant emission. This includes emission legislation, fuel quality, diesel engine- and exhaust gas aftertreatment technologies, as well as particulate composition, with a focus on the mass-related particulate emission of on-road vehicle applications. Diesel engine technologies representative of real-world on-road applications will be highlighted.Internal engine modifications now make it possible to minimize particulate and nitrogen oxide emissions with nearly no reduction in power. Among these modifications are cooled exhaust gas recirculation, optimized injections systems, adapted charging systems and optimized combustion processes with high turbulence. With introduction and optimization of exhaust gas aftertreatment systems, such as the diesel oxidation catalyst and the diesel particulate trap, as well as NOx-reduction systems, pollutant emissions have been significantly decreased. Today, sulfur poisoning of diesel oxidation catalysts is no longer considered a problem due to the low-sulfur fuel used in Europe. In the future, there will be an increased use of bio-fuels, which generally have a positive impact on the particulate emissions and do not increase the particle number emissions.Since the introduction of the EU emissions legislation, all emission limits have been reduced by over 90%. Further steps can be expected in the future. Retrospectively, the particulate emissions of modern diesel engines with respect to quality and quantity cannot be compared with those of older engines. Internal engine modifications lead to a clear reduction of the particulate emissions without a negative impact on the particulate-size distribution towards smaller particles. The residual particles can be trapped in a diesel particulate trap independent of their size or the engine operating mode. The usage of a wall-flow diesel particulate filter leads to an extreme reduction of the emitted particulate mass and number, approaching 100%. A reduced particulate mass emission is always connected to a reduced particle number emission.

  6. Particulate emissions from diesel engines: correlation between engine technology and emissions

    PubMed Central

    2014-01-01

    In the last 30 years, diesel engines have made rapid progress to increased efficiency, environmental protection and comfort for both light- and heavy-duty applications. The technical developments include all issues from fuel to combustion process to exhaust gas aftertreatment. This paper provides a comprehensive summary of the available literature regarding technical developments and their impact on the reduction of pollutant emission. This includes emission legislation, fuel quality, diesel engine- and exhaust gas aftertreatment technologies, as well as particulate composition, with a focus on the mass-related particulate emission of on-road vehicle applications. Diesel engine technologies representative of real-world on-road applications will be highlighted. Internal engine modifications now make it possible to minimize particulate and nitrogen oxide emissions with nearly no reduction in power. Among these modifications are cooled exhaust gas recirculation, optimized injections systems, adapted charging systems and optimized combustion processes with high turbulence. With introduction and optimization of exhaust gas aftertreatment systems, such as the diesel oxidation catalyst and the diesel particulate trap, as well as NOx-reduction systems, pollutant emissions have been significantly decreased. Today, sulfur poisoning of diesel oxidation catalysts is no longer considered a problem due to the low-sulfur fuel used in Europe. In the future, there will be an increased use of bio-fuels, which generally have a positive impact on the particulate emissions and do not increase the particle number emissions. Since the introduction of the EU emissions legislation, all emission limits have been reduced by over 90%. Further steps can be expected in the future. Retrospectively, the particulate emissions of modern diesel engines with respect to quality and quantity cannot be compared with those of older engines. Internal engine modifications lead to a clear reduction of the particulate emissions without a negative impact on the particulate-size distribution towards smaller particles. The residual particles can be trapped in a diesel particulate trap independent of their size or the engine operating mode. The usage of a wall-flow diesel particulate filter leads to an extreme reduction of the emitted particulate mass and number, approaching 100%. A reduced particulate mass emission is always connected to a reduced particle number emission. PMID:24606725

  7. Method for removing soot from exhaust gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suib, Steven L.; Dharmarathna, D. A. Saminda; Pahalagedara, Lakshitha R.

    A method for oxidizing soot from diesel exhaust gas from a diesel engine. The method involves providing a diesel particulate filter for receiving the diesel exhaust gas; coating a catalyst composition on the diesel particulate filter; and contacting the soot from the diesel exhaust gas with the catalyst coated diesel particulate filter at a temperature sufficient to oxidize the soot to carbon dioxide. The catalyst composition is a doped or undoped manganese oxide octahedral molecular sieve (OMS-2) material. A diesel exhaust gas treatment system that includes a diesel particulate filter for receiving diesel exhaust gas from a diesel engine andmore » collecting soot; and a catalyst composition coated on the diesel particulate filter. The catalyst composition is a doped or undoped manganese oxide octahedral molecular sieve (OMS-2).« less

  8. Generation and characterization of diesel engine combustion emissions from petroleum diesel and soybean biodiesel fuels and application for inhalation exposure studies.

    PubMed

    Mutlu, Esra; Nash, David G; King, Charly; Krantz, Todd Q; Preston, William T; Kooter, Ingeborg M; Higuchi, Mark; DeMarini, David; Linak, William P; Gilmour, M Ian

    2015-01-01

    Biodiesel made from the transesterification of plant- and animal-derived oils is an important alternative fuel source for diesel engines. Although numerous studies have reported health effects associated with petroleum diesel emissions, information on biodiesel emissions are more limited. To this end, a program at the U.S. EPA assessed health effects of biodiesel emissions in rodent inhalation models. Commercially obtained soybean biodiesel (B100) and a 20% blend with petroleum diesel (B20) were compared to pure petroleum diesel (B0). Rats and mice were exposed independently for 4 h/day, 5 days/week for up to 6 weeks. Exposures were controlled by dilution air to obtain low (50 µg/m(3)), medium (150 µg/m(3)) and high (500 µg/m(3)) diesel particulate mass (PM) concentrations, and compared to filtered air. This article provides details on facilities, fuels, operating conditions, emission factors and physico-chemical characteristics of the emissions used for inhalation exposures and in vitro studies. Initial engine exhaust PM concentrations for the B100 fuel (19.7 ± 0.7 mg/m(3)) were 30% lower than those of the B0 fuel (28.0 ± 1.5 mg/m(3)). When emissions were diluted with air to control equivalent PM mass concentrations, B0 exposures had higher CO and slightly lower NO concentrations than B100. Organic/elemental carbon ratios and oxygenated methyl esters and organic acids were higher for the B100 than B0. Both the B0 and B100 fuels produced unimodal-accumulation mode particle-size distributions, with B0 producing lower concentrations of slightly larger particles. Subsequent papers in this series will describe the effects of these atmospheres on cardiopulmonary responses and in vitro genotoxicity studies.

  9. Diesel Combustion and Emission Using High Boost and High Injection Pressure in a Single Cylinder Engine

    NASA Astrophysics Data System (ADS)

    Aoyagi, Yuzo; Kunishima, Eiji; Asaumi, Yasuo; Aihara, Yoshiaki; Odaka, Matsuo; Goto, Yuichi

    Heavy-duty diesel engines have adopted numerous technologies for clean emissions and low fuel consumption. Some are direct fuel injection combined with high injection pressure and adequate in-cylinder air motion, turbo-intercooler systems, and strong steel pistons. Using these technologies, diesel engines have achieved an extremely low CO2 emission as a prime mover. However, heavy-duty diesel engines with even lower NOx and PM emission levels are anticipated. This study achieved high-boost and lean diesel combustion using a single cylinder engine that provides good engine performance and clean exhaust emission. The experiment was done under conditions of intake air quantity up to five times that of a naturally aspirated (NA) engine and 200MPa injection pressure. The adopted pressure booster is an external supercharger that can control intake air temperature. In this engine, the maximum cylinder pressure was increased and new technologies were adopted, including a monotherm piston for endurance of Pmax =30MPa. Moreover, every engine part is newly designed. As the boost pressure increases, the rate of heat release resembles the injection rate and becomes sharper. The combustion and brake thermal efficiency are improved. This high boost and lean diesel combustion creates little smoke; ISCO and ISTHC without the ISNOx increase. It also yields good thermal efficiency.

  10. Noise source separation of diesel engine by combining binaural sound localization method and blind source separation method

    NASA Astrophysics Data System (ADS)

    Yao, Jiachi; Xiang, Yang; Qian, Sichong; Li, Shengyang; Wu, Shaowei

    2017-11-01

    In order to separate and identify the combustion noise and the piston slap noise of a diesel engine, a noise source separation and identification method that combines a binaural sound localization method and blind source separation method is proposed. During a diesel engine noise and vibration test, because a diesel engine has many complex noise sources, a lead covering method was carried out on a diesel engine to isolate other interference noise from the No. 1-5 cylinders. Only the No. 6 cylinder parts were left bare. Two microphones that simulated the human ears were utilized to measure the radiated noise signals 1 m away from the diesel engine. First, a binaural sound localization method was adopted to separate the noise sources that are in different places. Then, for noise sources that are in the same place, a blind source separation method is utilized to further separate and identify the noise sources. Finally, a coherence function method, continuous wavelet time-frequency analysis method, and prior knowledge of the diesel engine are combined to further identify the separation results. The results show that the proposed method can effectively separate and identify the combustion noise and the piston slap noise of a diesel engine. The frequency of the combustion noise and the piston slap noise are respectively concentrated at 4350 Hz and 1988 Hz. Compared with the blind source separation method, the proposed method has superior separation and identification effects, and the separation results have fewer interference components from other noise.

  11. 15. SITE BUILDING 004 ELECTRIC POWER STATION VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. SITE BUILDING 004 - ELECTRIC POWER STATION - VIEW IS LOOKING SOUTH 55° EAST AT FIVE DIESEL ENGINE/ GENERATOR SILENCER SYSTEM EXHAUST STACKS. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  12. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXVII, I--CATERPILLAR STARTING (PONEY) ENGINE (PART I), II--LEARNING ABOUT BRAKES (PART II).

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE CONSTRUCTION AND OPERATION OF DIESEL ENGINE STARTING ENGINES AND BRAKE SYSTEMS USED ON DIESEL POWERED VEHICLES. TOPICS ARE (1) GENERAL DESCRIPTION, (2) OPERATION, (3) COMBUSTION SPACE AND VALVE ARRANGEMENT (STARTING ENGINES), (4) TYPES OF BRAKES, AND (5) DOUBLE…

  13. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XVIII, I--UNDERSTAND ENGINE GEARS AND GEARING PRINCIPLES, II--MACK INTER-AXLE POWER DIVIDER.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF DIESEL ENGINE GEARS AND GEARING PRINCIPLES AND THE OPERATING PRINCIPLES AND MAINTENANCE OF POWER DIVIDERS (GEAR BOXES) USED IN DIESEL ENGINE POWER TRANSMISSION. TOPICS ARE (1) THE PURPOSE OF THE ENGINE GEARS, (2) INSPECTING FOR GEAR FAILURES, (3) INSPECTING FOR SHAFT…

  14. 30 CFR 57.19013 - Diesel- and other fuel-injection-powered hoists.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Diesel- and other fuel-injection-powered hoists... NONMETAL MINES Personnel Hoisting Hoists § 57.19013 Diesel- and other fuel-injection-powered hoists. Where any diesel or similar fuel-injection engine is used to power a hoist, the engine shall be equipped...

  15. 30 CFR 57.19013 - Diesel- and other fuel-injection-powered hoists.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Diesel- and other fuel-injection-powered hoists... NONMETAL MINES Personnel Hoisting Hoists § 57.19013 Diesel- and other fuel-injection-powered hoists. Where any diesel or similar fuel-injection engine is used to power a hoist, the engine shall be equipped...

  16. Vegetable Oil-based Diesel Fuels From 1900 to the Present

    USDA-ARS?s Scientific Manuscript database

    The diesel engine, invented and developed by Rudolf Diesel in the 1890's, was displayed at the Paris World Exposition in 1900. At that occasion, one of the displayed diesel engines ran on peanut oil. This event marks the beginning of the use of vegetable oils and, later, derivatives thereof as die...

  17. 30 CFR 57.19013 - Diesel- and other fuel-injection-powered hoists.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Diesel- and other fuel-injection-powered hoists... NONMETAL MINES Personnel Hoisting Hoists § 57.19013 Diesel- and other fuel-injection-powered hoists. Where any diesel or similar fuel-injection engine is used to power a hoist, the engine shall be equipped...

  18. 30 CFR 57.19013 - Diesel- and other fuel-injection-powered hoists.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Diesel- and other fuel-injection-powered hoists... NONMETAL MINES Personnel Hoisting Hoists § 57.19013 Diesel- and other fuel-injection-powered hoists. Where any diesel or similar fuel-injection engine is used to power a hoist, the engine shall be equipped...

  19. 30 CFR 57.19013 - Diesel- and other fuel-injection-powered hoists.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Diesel- and other fuel-injection-powered hoists... NONMETAL MINES Personnel Hoisting Hoists § 57.19013 Diesel- and other fuel-injection-powered hoists. Where any diesel or similar fuel-injection engine is used to power a hoist, the engine shall be equipped...

  20. [Experimental study on the characteristics polycyclic aromatic hydrocarbon emissions of diesel engine burnt by different fuels].

    PubMed

    Wang, Zhong; An, Yu-Guang; Xu, Guang-Ju; Wang, Xiao-Zhe

    2011-07-01

    The polycyclic aromatic hydrocarbons (PAHs) were measured by glass fiber filter and XAD-2 collector, ultrasonic extraction, soxhlet extraction and GC-MS analysis equipment. The exhaust emission of the DI single cylinder diesel engine fueled with pure diesel, biodiesel and biodiesel blends of 50% (B50) were measured. The results indicate that the particle-phase PAHs emissions of diesel engine decrease with the increasing of load. The gas-phase PAHs emissions of diesel engine decrease with the increasing of load in the beginning and it turns to going up with further increasing of load. The particle-phase and gas-phase PAHs emissions of biodiesel decrease and mean concentration are lower than that of diesel. The total PAHs emission concentration of biodisesl is 41.1-70.1 microg/m3. Total PAHs mean concentration emissions of biodiesel is decreased 33.3% than that of diesel. The mass proportion of three-ring PAHs emissions of those 3 kinds tested fuels is about 44% in the total PAHs. Biodiesel can increase the proportion of three-ring PAHs. Toxic equivalence of PAHs emissions of biodiesel are greatly lower than that of diesel. It is less harmful to human than diesel fuel.

  1. Performance and Emission Characteristics of Diesel Engine Fueled with Ethanol-Diesel Blends in Different Altitude Regions

    PubMed Central

    Lei, Jilin; Bi, Yuhua; Shen, Lizhong

    2011-01-01

    In order to investigate the effects ethanol-diesel blends and altitude on the performance and emissions of diesel engine, the comparative experiments were carried out on the bench of turbo-charged diesel engine fueled with pure diesel (as prototype) and ethanol-diesel blends (E10, E15, E20 and E30) under different atmospheric pressures (81 kPa, 90 kPa and 100 kPa). The experimental results indicate that the equivalent brake-specific fuel consumption (BSFC) of ethanol-diesel blends are better than that of diesel under different atmospheric pressures and that the equivalent BSFC gets great improvement with the rise of atmospheric pressure when the atmospheric pressure is lower than 90 kPa. At 81 kPa, both HC and CO emissions rise greatly with the increasing engine speeds and loads and addition of ethanol, while at 90 kPa and 100 kPa their effects on HC and CO emissions are slightest. The changes of atmospheric pressure and mix proportion of ethanol have no obvious effect on NOx emissions. Smoke emissions decrease obviously with the increasing percentage of ethanol in blends, especially atmospheric pressure below 90 kPa. PMID:21234367

  2. Performance and emission characteristics of diesel engine fueled with ethanol-diesel blends in different altitude regions.

    PubMed

    Lei, Jilin; Bi, Yuhua; Shen, Lizhong

    2011-01-01

    In order to investigate the effects ethanol-diesel blends and altitude on the performance and emissions of diesel engine, the comparative experiments were carried out on the bench of turbo-charged diesel engine fueled with pure diesel (as prototype) and ethanol-diesel blends (E10, E15, E20 and E30) under different atmospheric pressures (81 kPa, 90 kPa and 100 kPa). The experimental results indicate that the equivalent brake-specific fuel consumption (BSFC) of ethanol-diesel blends are better than that of diesel under different atmospheric pressures and that the equivalent BSFC gets great improvement with the rise of atmospheric pressure when the atmospheric pressure is lower than 90 kPa. At 81 kPa, both HC and CO emissions rise greatly with the increasing engine speeds and loads and addition of ethanol, while at 90 kPa and 100 kPa their effects on HC and CO emissions are slightest. The changes of atmospheric pressure and mix proportion of ethanol have no obvious effect on NO(x) emissions. Smoke emissions decrease obviously with the increasing percentage of ethanol in blends, especially atmospheric pressure below 90 kPa.

  3. Oxidative Stress and Aromatic Hydrocarbon Response of Human Bronchial Epithelial Cells Exposed to Petro- or Biodiesel Exhaust Treated with a Diesel Particulate Filter

    PubMed Central

    Hawley, Brie; L'Orange, Christian; Olsen, Dan B.; Marchese, Anthony J.; Volckens, John

    2014-01-01

    The composition of diesel exhaust has changed over the past decade due to the increased use of alternative fuels, like biodiesel, and to new regulations on diesel engine emissions. Given the changing nature of diesel fuels and diesel exhaust emissions, a need exists to understand the human health implications of switching to “cleaner” diesel engines run with particulate filters and engines run on alternative fuels like biodiesel. We exposed well-differentiated normal human bronchial epithelial cells to fresh, complete exhaust from a diesel engine run (1) with and without a diesel particulate filter and (2) using either traditional petro- or alternative biodiesel. Despite the lowered emissions in filter-treated exhaust (a 91–96% reduction in mass), significant increases in transcripts associated with oxidative stress and polycyclic aromatic hydrocarbon response were observed in all exposure groups and were not significantly different between exposure groups. Our results suggest that biodiesel and filter-treated diesel exhaust elicits as great, or greater a cellular response as unfiltered, traditional petrodiesel exhaust in a representative model of the bronchial epithelium. PMID:25061111

  4. Adaptation of Advanced Diesel Engines for Military Requirements Under Severe Environmental Conditions

    DTIC Science & Technology

    2004-10-15

    Fuel Injection," SAE 910489. Density and Vaporization on Penetration and 7. Shundoh, S., Komori, M., Tsujimura , K., and Dispersion of Diesel Sprays...of a 3-D Engines", SAE 920725. multi-zone combustion model for the prediction 12. Kakegawa, T., Suzuki, T., Tsujimura , K., of a DI diesel engines

  5. Construction Mechanic, Engine Tune-Up II (Diesel), 8-8. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This course, adapted from military curriculum materials for vocational and technical education, teaches students to restore diesel engine performance to the manufacturer's specifications through troubleshooting and analyzing diesel engine fuel systems and to make minor and major adjustments to those components that directly affect engine…

  6. The Diesel as a Vehicle Engine

    NASA Technical Reports Server (NTRS)

    Neumann, Kurt

    1928-01-01

    The thorough investigation of a Dorner four-cylinder, four-stroke-cycle Diesel engine with mechanical injection led me to investigate more thoroughly the operation of the Diesel as a vehicle engine. Aside from the obvious need of reliability of functioning, a high rotative speed, light weight and economy in heat consumption per horsepower are also indispensable requirements.

  7. 40 CFR 86.093-2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... a passenger-carrying vehicle powered by a heavy heavy-duty diesel engine, or of a type normally powered by a heavy heavy-duty diesel engine, with a load capacity of fifteen or more passengers and... urban buses is the same as the useful life for other heavy heavy-duty diesel engines. [58 FR 15795, Mar...

  8. 40 CFR 86.1108-87 - Maintenance of records.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Penalties for Gasoline-Fueled and Diesel Heavy-Duty Engines and Heavy-Duty Vehicles, Including Light-Duty... requirements specified in 40 CFR part 1065, subparts B and C; (ii) If testing heavy-duty diesel engines, the... heavy-duty diesel engines, the record requirements specified in 40 CFR 1065.695; (C) If testing light...

  9. 40 CFR 86.334-79 - Test procedure overview.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.334-79... cycle and 1 hot cycle. The Diesel engine test consists of 3 idle modes and 5 power modes at each of 2 speeds which span the typical operating range of Diesel engines. These procedures require the...

  10. 40 CFR 86.1108-87 - Maintenance of records.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for Gasoline-Fueled and Diesel Heavy-Duty Engines and Heavy-Duty Vehicles, Including Light-Duty Trucks... requirements specified in 40 CFR part 1065, subparts B and C; (ii) If testing heavy-duty diesel engines, the... heavy-duty diesel engines, the record requirements specified in 40 CFR 1065.695; (C) If testing light...

  11. 40 CFR 86.093-2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... a passenger-carrying vehicle powered by a heavy heavy-duty diesel engine, or of a type normally powered by a heavy heavy-duty diesel engine, with a load capacity of fifteen or more passengers and... urban buses is the same as the useful life for other heavy heavy-duty diesel engines. [58 FR 15795, Mar...

  12. 40 CFR 86.334-79 - Test procedure overview.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.334-79... cycle and 1 hot cycle. The Diesel engine test consists of 3 idle modes and 5 power modes at each of 2 speeds which span the typical operating range of Diesel engines. These procedures require the...

  13. 40 CFR 86.093-2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... a passenger-carrying vehicle powered by a heavy heavy-duty diesel engine, or of a type normally powered by a heavy heavy-duty diesel engine, with a load capacity of fifteen or more passengers and... urban buses is the same as the useful life for other heavy heavy-duty diesel engines. [58 FR 15795, Mar...

  14. 40 CFR 86.1108-87 - Maintenance of records.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Penalties for Gasoline-Fueled and Diesel Heavy-Duty Engines and Heavy-Duty Vehicles, Including Light-Duty... requirements specified in 40 CFR part 1065, subparts B and C; (ii) If testing heavy-duty diesel engines, the... heavy-duty diesel engines, the record requirements specified in 40 CFR 1065.695; (C) If testing light...

  15. 40 CFR 86.334-79 - Test procedure overview.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.334-79... cycle and 1 hot cycle. The Diesel engine test consists of 3 idle modes and 5 power modes at each of 2 speeds which span the typical operating range of Diesel engines. These procedures require the...

  16. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT VI, MAINTAINING MECHANICAL GOVERNORS--DETROIT DIESEL ENGINES.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF MECHANICAL GOVERNORS USED ON DIESEL ENGINES. TOPICS ARE (1) TYPES OF GOVERNORS AND ENGINE LOCATION, (2) GOVERNOR APPLICATIONS, (3) LIMITING SPEED MECHANICAL GOVERNOR, (4) VARIABLE SPEED MECHANICAL GOVERNOR, AND (5) CONSTANT SPEED…

  17. Detection of unburned fuel as contaminant in engine oil by a gas microsensor array

    NASA Astrophysics Data System (ADS)

    Capone, Simonetta; Zuppa, Marzia; Presicce, Dominique S.; Epifani, Mauro; Francioso, Luca; Siciliano, Pietro; Distante, C.

    2007-05-01

    We developed a novel method to detect the presence of unburned diesel fuel in used diesel fuel engine oil. The method is based on the use of an array of different gas microsensors based on metal oxide thin films deposited by sol-gel technique on Si substrates. The sensor array, exposed to the volatile chemical species of different diesel fuel engine oil samples contaminated in different percentages by diesel fuel, resulted to be appreciable sensitive to them. Principal Component Analysis (PCA) and Self-Organizing Map (SOM) applied to the sensor response data-set gave a first proof of the sensor array ability to discriminate among the different diesel fuel diluted lubricating oils. Moreover, in order to get information about the headspace composition of the diesel fuel-contaminated engine oils used for gas-sensing tests, we analyzed the engine oil samples by Static Headspace Solid Phase Micro Extraction/Gas Chromatograph/Mass Spectrometer (SHS-SPME/ GC/MS).

  18. In vitro genotoxicity of exhaust emissions of diesel and gasoline engine vehicles operated on a unified driving cycle.

    PubMed

    Liu, Yu-Qing; Keane, Michael; Ensell, Mang; Miller, William; Kashon, Michael; Ong, Tong-man; Mauderly, Joe; Lawson, Doug; Gautam, Mridul; Zielinska, Barbara; Whitney, Kevin; Eberhardt, James; Wallace, William

    2005-01-01

    Acetone extracts of engine exhaust particulate matter (PM) and of vapor-phase semi-volatile organic compounds (SVOCs) collected from a set of 1998-2000 model year normal emitter diesel engine automobile or light trucks and from a set of 1982-1996 normal emitter gasoline engine automobiles or light trucks operated on the California Unified Driving Cycle at 22 [degree]C were assayed for in vitro genotoxic activities. Gasoline and diesel PM were comparably positive mutagens for Salmonella typhimurium strains YG1024 and YG1029 on a mass of PM extract basis with diesel higher on a mileage basis; gasoline SVOC was more active than diesel on an extracted-mass basis, with diesel SVOC more active on a mileage basis. For chromosomal damage indicated by micronucleus induction in Chinese hamster lung fibroblasts (V79 cells), diesel PM expressed about one-tenth that of gasoline PM on a mass of extract basis, but was comparably active on a mileage basis; diesel SVOC was inactive. For DNA damage in V79 cells indicated by the single cell gel electrophoresis (SCGE) assay, gasoline PM was positive while diesel PM was active at the higher doses; gasoline SVOC was active with toxicity preventing measurement at high doses, while diesel SVOC was inactive at all but the highest dose.

  19. Emissions from diesel versus biodiesel fuel used in a CRDI SUV engine: PM mass and chemical composition.

    PubMed

    Gangwar, Jitendra; Gupta, Tarun; Gupta, Sudhir; Agarwal, Avinash K

    2011-07-01

    The diesel tailpipe emissions typically undergo substantial physical and chemical transformations while traveling through the tailpipe, which tend to modify the original characteristics of the diesel exhaust. Most of the health-related attention for diesel exhaust has focused on the carcinogenic potential of inhaled exhaust components, particularly the highly respirable diesel particulate matter (DPM). In the current study, parametric investigations were made using a modern automotive common rail direct injection (CRDI) sports utility vehicle (SUV) diesel engine operated at different loads at constant engine speed (2400 rpm), employing diesel and 20% biodiesel blends (B20) produced from karanja oil. A partial flow dilution tunnel was employed to measure the mass of the primary particulates from diesel and biodiesel blend on a 47-mm quartz substrate. This was followed by chemical analysis of the particulates collected on the substrate for benzene-soluble organic fraction (BSOF) (marker of toxicity). BSOF results showed decrease in its level with increasing engine load for both diesel and biodiesel. In addition, real-time measurements for organic carbon/elemental carbon (OC/EC), and polycyclic aromatic hydrocarbons (PAHs) (marker of toxicity) were carried out on the diluted primary exhaust coming out of the partial flow dilution tunnel. PAH concentrations were found to be the maximum at 20% rated engine load for both the fuels. The collected particulates from diesel and biodiesel-blend exhaust were also analyzed for concentration of trace metals (marker of toxicity), which revealed some interesting results.

  20. Combustion Performance and Exhaust Emission of DI Diesel Engine Using Various Sources of Waste Cooking Oil

    NASA Astrophysics Data System (ADS)

    Afiq, Mohd; Azuhairi, Mohd; Jazair, Wira

    2010-06-01

    In Malaysia, more than 200-tone of cooking oil are used by domestic users everyday. After frying process, about a quarter of these cooking oil was remained and drained into sewage system. This will pollutes waterways and affects the ecosystem. The use of waste cooking oil (WCO) for producing bio-diesel was considered in economical factor which current production cost of bio-diesel production is higher in Malaysia due to higher price of palm oil. Thus, the aim of this study is to investigate the most suitable source of WCO to become a main source of bio-diesel for bio-diesel production in this country. To perform this research, three type of WCO were obtained from house's kitchen, cafeteria and mamak's restaurant. In this study, prospect of these bio-diesel source was evaluated based on its combustion performance and exhaust emissions operated in diesel engine in the form of waste cooking oil methyl ester (WCOME) and have been compared with pure diesel fuel. A 0.6 liter, single-cylinder, air-cooled direct injection diesel engine was used to perform this experiment. Experiment was done at variable engine loads and constant engine speed. As the result, among three stated WCOMEs, the one collected from house's kitchen gives the best performance in term of brake specific fuel consumption (bsfc) and brake power (BP) with lowest soot emission.

  1. A Study on Performance, Combustion and Emission Characteristics of Compression Ignition Engine Using Fish Oil Biodiesel Blends

    NASA Astrophysics Data System (ADS)

    Ramesha, D. K.; Thimmannachar, Rajiv K.; Simhasan, R.; Nagappa, Manjunath; Gowda, P. M.

    2012-07-01

    Bio-fuel is a clean burning fuel made from natural renewable energy resource; it operates in C. I. engine similar to the petroleum diesel. The rising cost of diesel and the danger caused to the environment has led to an intensive and desperate search for alternative fuels. Among them, animal fats like the fish oil have proven to be a promising substitute to diesel. In this experimental study, A computerized 4-stroke, single cylinder, constant speed, direct injection diesel engine was operated on fish oil-biodiesel of different blends. Three different blends of 10, 20, and 30 % by volume were used for this study. Various engine performance, combustion and emission parameters such as Brake Thermal Efficiency, Brake Specific Fuel Consumption, Heat Release Rate, Peak Pressure, Exhaust Gas Temperature, etc. were recorded from the acquired data. The data was recorded with the help of an engine analysis software. The recorded parameters were studied for varying loads and their corresponding graphs have been plotted for comparison purposes. Petroleum Diesel has been used as the reference. From the properties and engine test results it has been established that fish oil biodiesel is a better replacement for diesel without any engine modification.

  2. Investigation of the cavitating flow in injector nozzles for diesel and biodiesel

    NASA Astrophysics Data System (ADS)

    Zhong, Wenjun; He, Zhixia; Wang, Qian; Jiang, Zhaochen; Fu, Yanan

    2013-07-01

    In diesel engines, the cavitating flow in nozzles greatly affects the fuel atomization characteristics and then the subsequent combustion and exhaust emissions. At present the biodiesel is a kind of prospective alternative fuel in diesel engines, the flow characteristics for the biodiesel fuel need to be investigated. In this paper, based on the third-generation synchrotrons of Shanghai Synchrotron Radiation facility (SSRF), a high-precision three-dimension structure of testing nozzle with detailed internal geometry information was obtained using X-ray radiography for a more accurate physical model. A flow visualization experiment system with a transparent scaled-up vertical multi-hole injector nozzle tip was setup. A high resolution and speed CCD camera equipped with a long distance microscope device was used to acquire flow images of diesel and biodiesel fuel, respectively. Then, the characteristics of cavitating flow and their effects on the fuel atomization characteristics were investigated. The experimental results show that the nozzle cavitating flow of both the diesel and biodiesel fuel could be divided into four regimes: turbulent flow, cavitation inception, development of cavitation and hydraulic flip. The critical pressures of both the cavitating flow and hydraulic flip of biodiesel are higher than those of diesel. The spray cone angle increases as the cavitation occurs, but it decreases when the hydraulic flip appears. Finally, it can be concluded that the Reynolds number decreases with the increase of cavitation number, and the discharge coefficient increases with the increase of cavitation number.

  3. Diesel fumes do kill: a case of fatal carbon monoxide poisoning directly attributed to diesel fuel exhaust with a 10-year retrospective case and literature review*.

    PubMed

    Griffin, Sean M; Ward, Michael K; Terrell, Andrea R; Stewart, Donna

    2008-09-01

    While it is known that diesel fuel combustion engines produce much lower concentrations of carbon monoxide (CO) than gasoline engines, these emissions could certainly generate lethal ambient concentrations given a sufficient amount of time in an enclosed space and under suitable environmental conditions. The authors report a case of CO poisoning which was initially referred for autopsy as a presumed natural death of a truck driver found in the secure cab of a running diesel tractor trailer truck. Completion of the preliminary investigation ascribed death to complications of ischemic heart disease (IHD), pending toxicological analysis that included quantification of CO. When the toxicology results showed lethal blood COHbg, the cause of death was re-certified as CO intoxication secondary to inhalation of (diesel) vehicular exhaust fumes. Because of the unique source of fatal CO intoxication in this case, the contributory IHD and the possible contaminants in the putrefied blood, a 10-year retrospective review was conducted on all nonfire related CO deaths autopsied (n = 94) at the Office of the Chief Medical Examiner in Louisville, KY from 1994 to 2003. For validation of the COHbg detection method used by the Kentucky Office of Forensic Toxicology (KYOFT), blood samples from these cases along with controls were submitted to three laboratories using various analytical methods yielding no statistically significant differences. Lastly, an extensive literature review produced no scientifically reported cases of fatal CO poisoning attributed to diesel fuel exhaust.

  4. Experimental investigations of the hydrogen addition effects on diesel engine performance

    NASA Astrophysics Data System (ADS)

    Mirica, I.; Pana, C.; Negurescu, N.; Cernat, A.; Nutu, C.

    2016-08-01

    In the global content regarding the impact on the environmental of the gases emissions resulted from the fossil fuels combustion, an interest aspect discussed on the 21st Session of the Conference of the Parties from the 2015 Paris Climate Conference and the gradual diminution of the worldwide oil reserves contribute to the necessity of searching of alternative energy from durable and renewable resources. At the use of hydrogen as addition in air to diesel engine, the level of CO, HC and smoke from the exhaust gases will decrease due to the improvement of the combustion process. At low and medium partial loads and low hydrogen energetic ratios used the NOX emission level can decrease comparative to classic diesel engine. The hydrogen use as fuel for diesel engine leads to the improving of the energetic and emissions performance of the engine due to combustion improvement and reduction of carbon content. The paper presents, in a comparative way, results of the experimental researches carried on a truck compression ignition engine fuelled with diesel fuel and with hydrogen diesel fuel and hydrogen as addition in air at different engine operation regimes. The results obtained during experimental investigations show better energetic and pollution performance of the engine fuelled with hydrogen as addition in air comparative to classic engine. The influences of hydrogen addition on engine operation are shown.

  5. Ethanol used as an environmentally sustainable energy resource for thermal power plants

    NASA Astrophysics Data System (ADS)

    Markov, V. A.; Biryukov, V. V.; Kas'kov, S. I.

    2016-09-01

    Justification of using renewable energy sources and a brief analysis of their application prospects is given. The most common renewable energy sources for mobile thermal power plants are presented. The possibilities and ways of using ethanol as an energy source for such plants with diesel engines are analyzed. It is shown that it is feasible to add small amounts of ethanol to oil diesel fuel (DF) for obtaining an environmentally sustainable energy source for diesel engines. Therewith, a stable mixture of components can be obtained by adding anhydrous (absolute) ethanol to the oil fuel. The authors studied a mixture containing 4% (by volume) of absolute ethanol and 96% of oil DF. The physicochemical properties of the mixture and each of its components are presented. Diesel engine of the type D-245.12S has been experimentally studied using the mixture of DF and ethanol. The possibility of reducing the toxicity level of the exhaust emissions when using this mixture as an energy source for diesel engines of mobile power plants is shown. Transition of the studied diesel engine from oil DF to its mixture with ethanol made it possible to reduce the smoke capacity of the exhaust gases by 15-25% and to decrease the specific mass emissions of nitrogen oxides by 17.4%. In this case, we observed a slight increase in the exhaust gas emissions of carbon monoxide and light unburned hydrocarbons, which, however, can easily be eliminated by providing the exhaust system of a diesel engine with a catalytic converter. It is noted that the studied mixture composition should be optimized. The conclusion is made that absolute ethanol is a promising ecofriendly additive to oil diesel fuel and should be used in domestic diesel engines.

  6. Influence of maladjustment on emissions from two heavy-duty diesel bus engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ullman, T.L.; Hare, C.T.; Baines, T.M.

    1984-01-01

    Diesel engines are adjusted to manufacturers' specifications when produced and placed in service, but varying degrees of maintenance and wear cause changes in engine performance and exhaust emissions. Maladjustments were made on two heavy-duty diesel engines typically used in buses in an effort to simulate some degree of wear and/or lack of maintenance. Emissions were characterized over steady-state and transient engine operation, in both baseline and maladjusted configurations. Selected maladjustments of the Cummins VTB-903 substantially increased HC, smoke and particulate emission levels. Maladjustments of the Detroit Diesel 6V-71 coach engine resulted in lower HC and NO/sup x/ emission levels, butmore » higher CO emissions, smoke, and particulate.« less

  7. Preliminary evaluation of a compound cycle engine for shipboard gensets

    NASA Technical Reports Server (NTRS)

    Castor, J. G.; Wintucky, W. T.

    1986-01-01

    The results of a thermodynamic cycle (SFC) and weight analysis performed to establish engine configuration, size, weight and performance are reported. Baseline design configuration was a 2,000 hour MTBO Compound Cycle Engine (CCE) for a helicopter application. The CCE configuration was extrapolated out to a 10,000 MTBO for a shipboard genset application. The study showed that an advanced diesel engine design (CCE) could be substantially lighter and smaller (79% and 82% respectively) than todays contemporary genset diesel engine. Although the CCE was not optimized, it had about a 7% reduction in mission fuel consumption over today's genset diesels. The CCE is a turbocharged, power-compounded, high power density, low-compression ratio diesel engine. Major technology development areas are presented.

  8. Emissions from a Diesel Engine using Fe-based Fuel Additives and a Sintered Metal Filtration System.

    PubMed

    Bugarski, Aleksandar D; Hummer, Jon A; Stachulak, Jozef S; Miller, Arthur; Patts, Larry D; Cauda, Emanuele G

    2016-03-01

    A series of laboratory tests were conducted to assess the effects of Fe-containing fuel additives on aerosols emitted by a diesel engine retrofitted with a sintered metal filter (SMF) system. Emission measurements performed upstream and downstream of the SMF system were compared, for cases when the engine was fueled with neat ultralow sulfur diesel (ULSD) and with ULSD treated with two formulations of additives containing Fe-based catalysts. The effects were assessed for four steady-state engine operating conditions and one transient cycle. The results showed that the SMF system reduced the average total number and surface area concentrations of aerosols by more than 100-fold. The total mass and elemental carbon results confirmed that the SMF system was indeed very effective in the removal of diesel aerosols. When added at the recommended concentrations (30 p.p.m. of iron), the tested additives had minor adverse impacts on the number, surface area, and mass concentrations of filter-out (FOut) aerosols. For one of the test cases, the additives may have contributed to measurable concentrations of engine-out (EOut) nucleation mode aerosols. The additives had only a minor impact on the concentration and size distribution of volatile and semi-volatile FOut aerosols. Metal analysis showed that the introduction of Fe with the additives substantially increased Fe concentration in the EOut, but the SMF system was effective in removal of Fe-containing aerosols. The FOut Fe concentrations for all three tested fuels were found to be much lower than the corresponding EOut Fe concentrations for the case of untreated ULSD fuel. The results support recommendations that these additives should not be used in diesel engines unless they are equipped with exhaust filtration systems. Since the tested SMF system was found to be very efficient in removing Fe introduced by the additives, the use of these additives should not result in a measurable increase in emissions of de novo generated Fe-containing aerosols. The findings from this study should promote a better understanding of the benefits and challenges of using sintered metal systems and fuel additives to control the exposure of underground miners and other workers to diesel aerosols and gases. Published by Oxford University Press on behalf of the British Occupational Hygiene Society 2015.

  9. Emissions from a Diesel Engine using Fe-based Fuel Additives and a Sintered Metal Filtration System

    PubMed Central

    Bugarski, Aleksandar D.; Hummer, Jon A.; Stachulak, Jozef S.; Miller, Arthur; Patts, Larry D.; Cauda, Emanuele G.

    2015-01-01

    A series of laboratory tests were conducted to assess the effects of Fe-containing fuel additives on aerosols emitted by a diesel engine retrofitted with a sintered metal filter (SMF) system. Emission measurements performed upstream and downstream of the SMF system were compared, for cases when the engine was fueled with neat ultralow sulfur diesel (ULSD) and with ULSD treated with two formulations of additives containing Fe-based catalysts. The effects were assessed for four steady-state engine operating conditions and one transient cycle. The results showed that the SMF system reduced the average total number and surface area concentrations of aerosols by more than 100-fold. The total mass and elemental carbon results confirmed that the SMF system was indeed very effective in the removal of diesel aerosols. When added at the recommended concentrations (30 p.p.m. of iron), the tested additives had minor adverse impacts on the number, surface area, and mass concentrations of filter-out (FOut) aerosols. For one of the test cases, the additives may have contributed to measurable concentrations of engine-out (EOut) nucleation mode aerosols. The additives had only a minor impact on the concentration and size distribution of volatile and semi-volatile FOut aerosols. Metal analysis showed that the introduction of Fe with the additives substantially increased Fe concentration in the EOut, but the SMF system was effective in removal of Fe-containing aerosols. The FOut Fe concentrations for all three tested fuels were found to be much lower than the corresponding EOut Fe concentrations for the case of untreated ULSD fuel. The results support recommendations that these additives should not be used in diesel engines unless they are equipped with exhaust filtration systems. Since the tested SMF system was found to be very efficient in removing Fe introduced by the additives, the use of these additives should not result in a measurable increase in emissions of de novo generated Fe-containing aerosols. The findings from this study should promote a better understanding of the benefits and challenges of using sintered metal systems and fuel additives to control the exposure of underground miners and other workers to diesel aerosols and gases. PMID:26424805

  10. [Particulate distribution characteristics of Chinese phrase V diesel engine based on butanol-diesel blends].

    PubMed

    Lou, Di-Ming; Xu, Ning; Fan, Wen-Jia; Zhang, Tao

    2014-02-01

    With a common rail diesel engine without any modification and the engine exhaust particle number and particle size analyzer EEPS, this study used the air-fuel ratio to investigate the particulate number concentration, mass concentration and number distribution characteristics of a diesel engine fueled with butanol-diesel blends (Bu10, Bu15, Bu20, Bu30 and Bu40) and petroleum diesel. The results show: for all test fuels, the particle number distributions turn to be unimodal. With the increasing of butanol, numbers of nucleation mode particles and small accumulation mode particle decrease. At low speed and low load conditions, the number of large accumulation mode particle increases slightly, but under higher speed and load conditions, the number does not increase. When the fuels contain butanol, the total particle number concentration and mass concentration in all conditions decrease and that is more obvious at high speed load.

  11. Particulate matter in new technology diesel exhaust (NTDE) is quantitatively and qualitatively very different from that found in traditional diesel exhaust (TDE).

    PubMed

    Hesterberg, Thomas W; Long, Christopher M; Sax, Sonja N; Lapin, Charles A; McClellan, Roger O; Bunn, William B; Valberg, Peter A

    2011-09-01

    Diesel exhaust (DE) characteristic of pre-1988 engines is classified as a "probable" human carcinogen (Group 2A) by the International Agency for Research on Cancer (IARC), and the U.S. Environmental Protection Agency has classified DE as "likely to be carcinogenic to humans." These classifications were based on the large body of health effect studies conducted on DE over the past 30 or so years. However, increasingly stringent U.S. emissions standards (1988-2010) for particulate matter (PM) and nitrogen oxides (NOx) in diesel exhaust have helped stimulate major technological advances in diesel engine technology and diesel fuel/lubricant composition, resulting in the emergence of what has been termed New Technology Diesel Exhaust, or NTDE. NTDE is defined as DE from post-2006 and older retrofit diesel engines that incorporate a variety of technological advancements, including electronic controls, ultra-low-sulfur diesel fuel, oxidation catalysts, and wall-flow diesel particulate filters (DPFs). As discussed in a prior review (T. W. Hesterberg et al.; Environ. Sci. Technol. 2008, 42, 6437-6445), numerous emissions characterization studies have demonstrated marked differences in regulated and unregulated emissions between NTDE and "traditional diesel exhaust" (TDE) from pre-1988 diesel engines. Now there exist even more data demonstrating significant chemical and physical distinctions between the diesel exhaust particulate (DEP) in NTDE versus DEP from pre-2007 diesel technology, and its greater resemblance to particulate emissions from compressed natural gas (CNG) or gasoline engines. Furthermore, preliminary toxicological data suggest that the changes to the physical and chemical composition of NTDE lead to differences in biological responses between NTDE versus TDE exposure. Ongoing studies are expected to address some of the remaining data gaps in the understanding of possible NTDE health effects, but there is now sufficient evidence to conclude that health effects studies of pre-2007 DE likely have little relevance in assessing the potential health risks of NTDE exposures.

  12. Emission and performance analysis on the effect of exhaust gas recirculation in alcohol-biodiesel aspirated research diesel engine.

    PubMed

    Mahalingam, Arulprakasajothi; Munuswamy, Dinesh Babu; Devarajan, Yuvarajan; Radhakrishnan, Santhanakrishnan

    2018-05-01

    In this study, the effect of blending pentanol to biodiesel derived from mahua oil on emissions and performance pattern of a diesel engine under exhaust gas recirculation (EGR) mode was examined and compared with diesel. The purpose of this study is to improve the feasibility of employing biofuels as a potential alternative in an unmodified diesel engine. Two pentanol-biodiesel blends denoted as MOBD90P10 and MOBD80P20 which matches to 10 and 20 vol% of pentanol in biodiesel, respectively, were used as fuel in research engine at 10 and 20% EGR rates. Pentanol is chosen as a higher alcohol owing to its improved in-built properties than the other first-generation alcohols such as ethanol or methanol. Experimental results show that the pentanol and biodiesel blends (MOBD90P10 and MOBD80P20) have slightly higher brake thermal efficiency (0.2-0.4%) and lower brake-specific fuel consumption (0.6 to 1.1%) than that of neat biodiesel (MOBD100) at all engine loads. Nitrogen oxide (NOx) emission and smoke emission are reduced by 3.3-3.9 and 5.1-6.4% for pentanol and biodiesel blends compared to neat biodiesel. Introduction of pentanol to biodiesel reduces the unburned hydrocarbon (2.1-3.6%) and carbon monoxide emissions (3.1-4.2%) considerably. In addition, at 20% EGR rate, smoke, NO X emissions, and BTE drop by 7.8, 5.1, and 4.4% respectively. However, CO, HC emissions, and BSFC increased by 2.1, 2.8, and 3.8%, respectively, when compared to 0% EGR rate.

  13. The Effect of Back Pressure on the Operation of a Diesel Engine

    DTIC Science & Technology

    2011-02-01

    increased back pressure on a turbocharged diesel engine. Steady state and varying back pressure are considered. The results show that high back...a turbocharged diesel engine using the Ricardo Wave engine modelling software, to gain understanding of the problem and provide a good base for...higher pressure. The pressure ratios across the turbocharger compressor and turbine decrease, reducing the mass flow of air through these components

  14. Testing Ceramics for Diesel Engines

    NASA Technical Reports Server (NTRS)

    Schneider, H. W.

    1985-01-01

    Adaptation of diesel engine allows prestressed ceramic materials evaluated under realistic pressure, temperature, and stress without introducing extraneous stress. Ceramic specimen part of prechamber of research engine. Specimen held in place by clamp, introduces required axial compressive stress. Specimen -- cylindrical shell -- surrounded by chamber vented or pressurized to introduce requisite radial stress in ceramic. Pressure chamber also serves as safety shield in case speimen disintegrates. Materials under consideration as cylinder liners for diesel engines.

  15. Evaluation of fuel equipment operability of diesel locomotive engine with use of infrared receivers

    NASA Astrophysics Data System (ADS)

    Ovcharenko, S. M.; Balagin, O. V.; Balagin, D. V.

    2018-03-01

    This paper provides results of modelling the heat liberation in high-pressure pipeline of fuel equipment of diesel locomotive engines. Functional relationships between the technical state of fuel equipment and temperature of the outer surface of the high-pressure fuel pipeline are presented using the example of diesel locomotive engine 1-PD4D. The paper shows results of operational tests of the developed method for control of fuel equipment operability of diesel locomotive.

  16. Zone heated inlet ignited diesel particulate filter regeneration

    DOEpatents

    Gonze, Eugene V [Pinckney, MI; Ament, Frank [Troy, MI

    2012-06-26

    An exhaust system that processes exhaust generated by an engine is provided. The system includes: a particulate filter (PF) that is disposed downstream of the engine and that filters particulates from the exhaust; and a grid that includes electrically resistive material that is segmented by non-conductive material into a plurality of zones and wherein the grid is applied to an exterior upstream surface of the PF.

  17. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT I, GENERAL INTRODUCTION TO DIESEL ENGINES.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    ONE OF A 30-MODULE COURSE DESIGNED TO UPGRADE THE JOB SKILLS AND TECHNICAL KNOWLEDGE OF DIESEL MAINTENANCE MECHANICS, THIS MATERIAL WAS DEVELOPED BY INDUSTRIAL TRAINING AND SUBJECT-MATTER SPECIALISTS AND TESTED IN INDUSTRIAL TRAINING SITUATIONS. THE PURPOSE OF THIS FIRST UNIT IS TO PROVIDE AN INTRODUCTION TO DIESEL ENGINES BY DEVELOPING AN…

  18. 30 CFR 56.19013 - Diesel- and other fuel-injection-powered hoists.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Diesel- and other fuel-injection-powered hoists... MINES Personnel Hoisting Hoists § 56.19013 Diesel- and other fuel-injection-powered hoists. Where any diesel or similar fuel-injection engine is used to power a hoist, the engine shall be equipped with a...

  19. 30 CFR 56.19013 - Diesel- and other fuel-injection-powered hoists.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Diesel- and other fuel-injection-powered hoists... MINES Personnel Hoisting Hoists § 56.19013 Diesel- and other fuel-injection-powered hoists. Where any diesel or similar fuel-injection engine is used to power a hoist, the engine shall be equipped with a...

  20. 30 CFR 56.19013 - Diesel- and other fuel-injection-powered hoists.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Diesel- and other fuel-injection-powered hoists... MINES Personnel Hoisting Hoists § 56.19013 Diesel- and other fuel-injection-powered hoists. Where any diesel or similar fuel-injection engine is used to power a hoist, the engine shall be equipped with a...

  1. 30 CFR 56.19013 - Diesel- and other fuel-injection-powered hoists.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Diesel- and other fuel-injection-powered hoists... MINES Personnel Hoisting Hoists § 56.19013 Diesel- and other fuel-injection-powered hoists. Where any diesel or similar fuel-injection engine is used to power a hoist, the engine shall be equipped with a...

  2. 30 CFR 56.19013 - Diesel- and other fuel-injection-powered hoists.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Diesel- and other fuel-injection-powered hoists... MINES Personnel Hoisting Hoists § 56.19013 Diesel- and other fuel-injection-powered hoists. Where any diesel or similar fuel-injection engine is used to power a hoist, the engine shall be equipped with a...

  3. Carbon nanotube-like materials in the exhaust from a diesel engine using gas oil/ethanol mixing fuel with catalysts and sulfur.

    PubMed

    Suzuki, Shunsuke; Mori, Shinsuke

    2017-08-01

    Particulate matter from a diesel engine, including soot and carbon nanomaterials, was collected on a sampling holder and the structure of the materials was studied by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). As a result of employing gas oil/ethanol mixing fuel with sulfur and ferrocene/molybdenum as catalyst sources, formation of carbon nanotubes (CNT)-like materials in addition to soot was observed in the exhaust gas from a diesel engine. It was revealed that CNT-like materials were included among soot in our system only when the following three conditions were satisfied simultaneously: high ethanol fraction in fuel, high sulfur loading, and presence of catalyst sources in fuel. This study confirmed that if at least one of these three conditions was not satisfied, CNT-like materials were not observed in the exhaust from a diesel engine. These experimental results shown in this work provide insights into understanding CNT-like material formation mechanism in a diesel engine. Recent papers reported that carbon nanotube-like materials were included in the exhaust gas from engines, but conditions for carbon nanotube-like material formation have not been well studied. This work provides the required conditions for carbon nanotube-like material growth in a diesel engine, and this will be helpful for understanding the carbon nanotube-like material formation mechanism and taking countermeasures to preventing carbon nanotube-like material formation in a diesel engine.

  4. Experimental studies on natural aspirated diesel engine fuelled with corn seed oil methyl ester as a bio-diesel.

    NASA Astrophysics Data System (ADS)

    Rama Krishna Reddy, E.; Dhana Raju, V.

    2018-03-01

    This paper evaluates the possibilities of using corn seed oil methyl ester as a fuel for compression ignition engines. The biodiesels are contained high oxygen content, and high Cetane number, due to this properties efficiency of biodiesel is higher than diesel fuel. The experiments were conducted with different biodiesel blends of (B10, B15, B20 and B25) corn seed oil on single cylinder four stroke natural aspirated diesel engines. Performance parameters and exhaust emissions are investigated in this experimental with the blends of the corn seed oil methyl ester and diesel fuel. The test results showed that the bio-diesel blends gives improved results for brake thermal efficiency and specific fuel consumption when compared with the diesel fuel. The emissions of corn seed methyl esters follow the same trend of diesel but the smoke opacity was reduces for all blends. From the investigation, corn seed methyl ester is also having the properties similar to diesel fuel; it is biodegradable and renewable fuel, so it will be used as an alternative for diesel fuel.

  5. Potential of Diesel Engine, 1979 Summary Source Document

    DOT National Transportation Integrated Search

    1980-03-01

    This document assesses the fuel economy potential of diesel engines in future passenger cars and light trucks. The primary technologies evaluated include: (1) engine control strategy and implementation, (2) the engine design variables, (3) emissions ...

  6. In-vehicle measurement of ultrafine particles on compressed natural gas, conventional diesel, and oxidation-catalyst diesel heavy-duty transit buses.

    PubMed

    Hammond, Davyda; Jones, Steven; Lalor, Melinda

    2007-02-01

    Many metropolitan transit authorities are considering upgrading transit bus fleets to decrease ambient criteria pollutant levels. Advancements in engine and fuel technology have lead to a generation of lower-emission buses in a variety of fuel types. Dynamometer tests show substantial reductions in particulate mass emissions for younger buses (<10 years) over older models, but particle number reduction has not been verified in the research. Recent studies suggest that particle number is a more important factor than particle mass in determining health effects. In-vehicle particle number concentration measurements on conventional diesel, oxidation-catalyst diesel and compressed natural gas transit buses are compared to estimate relative in-vehicle particulate exposures. Two primary consistencies are observed from the data: the CNG buses have average particle count concentrations near the average concentrations for the oxidation-catalyst diesel buses, and the conventional diesel buses have average particle count concentrations approximately three to four times greater than the CNG buses. Particle number concentrations are also noticeably affected by bus idling behavior and ventilation options, such as, window position and air conditioning.

  7. Comparison of carbonyl compounds emissions from diesel engine fueled with biodiesel and diesel

    NASA Astrophysics Data System (ADS)

    He, Chao; Ge, Yunshan; Tan, Jianwei; You, Kewei; Han, Xunkun; Wang, Junfang; You, Qiuwen; Shah, Asad Naeem

    The characteristics of carbonyl compounds emissions were investigated on a direct injection, turbocharged diesel engine fueled with pure biodiesel derived from soybean oil. The gas-phase carbonyls were collected by 2,4-dinitrophenylhydrazine (DNPH)-coated silica cartridges from diluted exhaust and analyzed by HPLC with UV detector. A commercial standard mixture including 14 carbonyl compounds was used for quantitative analysis. The experimental results indicate that biodiesel-fueled engine almost has triple carbonyls emissions of diesel-fueled engine. The weighted carbonyls emission of 8-mode test cycle of biodiesel is 90.8 mg (kW h) -1 and that of diesel is 30.7 mg (kW h) -1. The formaldehyde is the most abundant compound of carbonyls for both biodiesel and diesel, taking part for 46.2% and 62.7% respectively. The next most significant compounds are acetaldehyde, acrolein and acetone for both fuels. The engine fueled with biodiesel emits a comparatively high content of propionaldehyde and methacrolein. Biodiesel, as an alternative fuel, has lower specific reactivity (SR) caused by carbonyls compared with diesel. When fueled with biodiesel, carbonyl compounds make more contribution to total hydrocarbon emission.

  8. Eucalyptus Biodiesel as an Alternative to Diesel Fuel: Preparation and Tests on DI Diesel Engine

    PubMed Central

    Tarabet, Lyes; Loubar, Khaled; Lounici, Mohand Said; Hanchi, Samir; Tazerout, Mohand

    2012-01-01

    Nowadays, the increasing oil consumption throughout the world induces crucial economical, security, and environmental problems. As a result, intensive researches are undertaken to find appropriate substitution to fossil fuels. In view of the large amount of eucalyptus trees present in arid areas, we focus in this study on the investigation of using eucalyptus biodiesel as fuel in diesel engine. Eucalyptus oil is converted by transesterification into biodiesel. Eucalyptus biodiesel characterization shows that the physicochemical properties are comparable to those of diesel fuel. In the second phase, a single cylinder air-cooled, DI diesel engine was used to test neat eucalyptus biodiesel and its blends with diesel fuel in various ratios (75, 50, and 25 by v%) at several engine loads. The engine combustion parameters such as peak pressure, rate of pressure rise, and heat release rate are determined. Performances and exhaust emissions are also evaluated at all operating conditions. Results show that neat eucalyptus biodiesel and its blends present significant improvements of carbon monoxide, unburned hydrocarbon, and particulates emissions especially at high loads with equivalent performances to those of diesel fuel. However, the NOx emissions are slightly increased when the biodiesel content is increased in the blend. PMID:22675246

  9. A perspective on the potential development of environmentally acceptable light-duty diesel vehicles.

    PubMed Central

    Hammerle, R; Schuetzle, D; Adams, W

    1994-01-01

    Between 1979 and 1985, an international technical focus was placed upon potential human health effects associated with exposure to diesel emissions. A substantial data base was developed on the composition of diesel emissions; the fate of these emissions in the atmosphere; and the effects of whole particles and their chemical constituents on microorganisms, cells, and animals. Since that time, a number of significant developments have been made in diesel engine technology that require a new look at the future acceptability of introducing significant numbers of light-duty diesel automobiles into the European and American markets. Significant engineering improvements have been made in engine design, catalysts, and traps. As a result, particle emissions and particle associated organic emissions have been reduced by about 10 and 30 times, respectively, during the past 10 years. Research studies to help assess the environmental acceptability of these fuel-efficient engines include the development of an emissions data base for current and advanced diesel engines, the effect of diesel emissions on urban ozone formation and atmospheric particle concentrations, the effect of fuel composition, e.g., lower sulfur and additives on emissions, animal inhalation toxicology studies, and fundamental molecular biology studies. PMID:7529704

  10. Eucalyptus biodiesel as an alternative to diesel fuel: preparation and tests on DI diesel engine.

    PubMed

    Tarabet, Lyes; Loubar, Khaled; Lounici, Mohand Said; Hanchi, Samir; Tazerout, Mohand

    2012-01-01

    Nowadays, the increasing oil consumption throughout the world induces crucial economical, security, and environmental problems. As a result, intensive researches are undertaken to find appropriate substitution to fossil fuels. In view of the large amount of eucalyptus trees present in arid areas, we focus in this study on the investigation of using eucalyptus biodiesel as fuel in diesel engine. Eucalyptus oil is converted by transesterification into biodiesel. Eucalyptus biodiesel characterization shows that the physicochemical properties are comparable to those of diesel fuel. In the second phase, a single cylinder air-cooled, DI diesel engine was used to test neat eucalyptus biodiesel and its blends with diesel fuel in various ratios (75, 50, and 25 by v%) at several engine loads. The engine combustion parameters such as peak pressure, rate of pressure rise, and heat release rate are determined. Performances and exhaust emissions are also evaluated at all operating conditions. Results show that neat eucalyptus biodiesel and its blends present significant improvements of carbon monoxide, unburned hydrocarbon, and particulates emissions especially at high loads with equivalent performances to those of diesel fuel. However, the NOx emissions are slightly increased when the biodiesel content is increased in the blend.

  11. Removal properties of diesel exhaust particles by a dielectric barrier discharge reactor.

    PubMed

    Suzuki, Ken-ichiro; Takeuchi, Naomi; Madokoro, Kazuhiko; Fushimi, Chihiro; Yao, Shuiliang; Fujioka, Yuichi; Nihei, Yoshimasa

    2008-02-01

    The removal properties of diesel exhaust particles (DEP) were investigated using an engine exhaust particle size spectrometer (EEPS), field emission-type scanning electron microscopy (FE-SEM) and time-of-flight secondary ion mass spectrometry (TOF-SIMS). DEP were treated using a dielectric barrier discharge (DBD) reactor installed in the tail pipe of a diesel engine, and a model DBD reactor fed with DEP in the mixture of N(2) and O(2). When changing the experimental parameters of both the plasma conditions and the engine load conditions, we obtained characteristic information of DEP treated with plasma discharges from the particle diameter and the composition. In evaluating the model DBD reactor, it became clear that there were two types of plasma processes (reactions with active oxygen species to yield CO(2) and reactions with active nitrogen species to yield nitrogen containing compounds). Moreover, from the result of a TOF-SIMS analysis, the characteristic secondary ions, such as C(2)H(6)N(+), C(4)H(12)N(+), and C(10)H(20)N(2)(+), were strongly detected from the DEP surfaces during the plasma discharges. This indicates that the nitrogen contained hydrocarbons were generated by plasma reactions.

  12. Impact of rail pressure and biodiesel fueling on the particulate morphology and soot nanostructures from a common-rail turbocharged direct injection diesel engine

    DOE PAGES

    Ye, Peng; Vander Wal, Randy; Boehman, Andre L.; ...

    2014-12-26

    The effect of rail pressure and biodiesel fueling on the morphology of exhaust particulate agglomerates and the nanostructure of primary particles (soot) was investigated with a common-rail turbocharged direct injection diesel engine. The engine was operated at steady state on a dynamometer running at moderate speed with both low (30%) and medium–high (60%) fixed loads, and exhaust particulate was sampled for analysis. Ultra-low sulfur diesel and its 20% v/v blends with soybean methyl ester biodiesel were used. Fuel injection occurred in a single event around top dead center at three different injection pressures. Exhaust particulate samples were characterized with TEMmore » imaging, scanning mobility particle sizing, thermogravimetric analysis, Raman spectroscopy, and XRD analysis. Particulate morphology and oxidative reactivity were found to vary significantly with rail pressure and with biodiesel blend level. Higher biodiesel content led to increases in the primary particle size and oxidative reactivity but did not affect nanoscale disorder in the as-received samples. For particulates generated with higher injection pressures, the initial oxidative reactivity increased, but there was no detectable correlation with primary particle size or nanoscale disorder.« less

  13. Impact of rail pressure and biodiesel fueling on the particulate morphology and soot nanostructures from a common-rail turbocharged direct injection diesel engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Peng; Vander Wal, Randy; Boehman, Andre L.

    The effect of rail pressure and biodiesel fueling on the morphology of exhaust particulate agglomerates and the nanostructure of primary particles (soot) was investigated with a common-rail turbocharged direct injection diesel engine. The engine was operated at steady state on a dynamometer running at moderate speed with both low (30%) and medium–high (60%) fixed loads, and exhaust particulate was sampled for analysis. Ultra-low sulfur diesel and its 20% v/v blends with soybean methyl ester biodiesel were used. Fuel injection occurred in a single event around top dead center at three different injection pressures. Exhaust particulate samples were characterized with TEMmore » imaging, scanning mobility particle sizing, thermogravimetric analysis, Raman spectroscopy, and XRD analysis. Particulate morphology and oxidative reactivity were found to vary significantly with rail pressure and with biodiesel blend level. Higher biodiesel content led to increases in the primary particle size and oxidative reactivity but did not affect nanoscale disorder in the as-received samples. For particulates generated with higher injection pressures, the initial oxidative reactivity increased, but there was no detectable correlation with primary particle size or nanoscale disorder.« less

  14. Experiments on Induction Times of Diesel-Fuels and its Surrogates

    NASA Astrophysics Data System (ADS)

    Eigenbrod, Christian; Reimert, Manfredo; Marks, Guenther; Rickmers, Peter; Klinkov, Konstantin; Moriue, Osamu

    Aiming for as low polluting combustion control as possible in Diesel-engines or gas-turbines, pre-vaporized and pre-mixed combustion at low mean temperature levels marks the goal. Low-est emissions of nitric-oxides are achievable at combustion temperatures associated to mixture ratios close to the lean flammability limit. In order to prevent local mixture ratios to be below the flammability limit (resulting in flame extinction or generation of unburned hydrocarbons and carbon-monoxide) or to be richer than required (resulting in more nitric-oxide than possi-ble), well-stirred conditioning is required. The time needed for spray generation, vaporization and turbulent mixing is limited through the induction time to self-ignition in a hot high-pressure ambiance. Therefore, detailed knowledge about the autoignition of fuels is a pre-requisit. Experiments were performed at the Bremen drop tower to investigate the self-ignition behavior of single droplets of fossil-Diesel oil, rapeseed-oil, Gas-to-Liquid (GTL) synthetic Diesel-oil and the fossil Diesel surrogates n-heptane, n-tetradecane, 50 n-tetradecane/ 50 1-methylnaphthalene as well as on the GTL-surrogates n-tetradecane / bicyclohexyl and n-tetradecane / 2,2,4,4,6,8,8-heptamethylnonane (iso-cetane). The rules for selection of the above fuels and the experimental results are presented and dis-cussed.

  15. Researches on direct injection in internal-combustion engines

    NASA Technical Reports Server (NTRS)

    Tuscher, Jean E

    1941-01-01

    These researches present a solution for reducing the fatigue of the Diesel engine by permitting the preservation of its components and, at the same time, raising its specific horsepower to a par with that of carburetor engines, while maintaining for the Diesel engine its perogative of burning heavy fuel under optimum economical conditions. The feeding of Diesel engines by injection pumps actuated by engine compression achieves the required high speeds of injection readily and permits rigorous control of the combustible charge introduced into each cylinder and of the peak pressure in the resultant cycle.

  16. Research on H2 speed governor for diesel engine of marine power station

    NASA Astrophysics Data System (ADS)

    Huang, Man-Lei

    2007-09-01

    The frequency stability of a marine power system is determined by the dynamic characteristic of the diesel engine speed regulation system in a marine power station. In order to reduce the effect of load disturbances and improve the dynamic precision of a diesel engine speed governor, a controller was designed for a diesel engine speed regulation system using H2 control theory. This transforms the specifications of the system into a standard H2 control problem. Firstly, the mathematical model of a diesel engine speed regulation system using an H2 speed governor is presented. To counter external disturbances and model uncertainty, the design of an H2 speed governor rests on the problem of mixed sensitivity. Computer simulation verified that the H2 speed governor improves the dynamic precision of a system and the ability to adapt to load disturbances, thus enhancing the frequency stability of marine power systems.

  17. Trend and future of diesel engine: Development of high efficiency and low emission low temperature combustion diesel engine

    NASA Astrophysics Data System (ADS)

    Ho, R. J.; Yusoff, M. Z.; Palanisamy, K.

    2013-06-01

    Stringent emission policy has put automotive research & development on developing high efficiency and low pollutant power train. Conventional direct injection diesel engine with diffused flame has reached its limitation and has driven R&D to explore other field of combustion. Low temperature combustion (LTC) and homogeneous charge combustion ignition has been proven to be effective methods in decreasing combustion pollutant emission. Nitrogen Oxide (NOx) and Particulate Matter (PM) formation from combustion can be greatly suppressed. A review on each of method is covered to identify the condition and processes that result in these reductions. The critical parameters that allow such combustion to take place will be highlighted and serves as emphasis to the direction of developing future diesel engine system. This paper is written to explore potential of present numerical and experimental methods in optimizing diesel engine design through adoption of the new combustion technology.

  18. Russia's black carbon emissions: focus on diesel sources

    NASA Astrophysics Data System (ADS)

    Kholod, Nazar; Evans, Meredydd; Kuklinski, Teresa

    2016-09-01

    Black carbon (BC) is a significant climate forcer with a particularly pronounced forcing effect in polar regions such as the Russian Arctic. Diesel combustion is a major global source of BC emissions, accounting for 25-30 % of all BC emissions. While the demand for diesel is growing in Russia, the country's diesel emissions are poorly understood. This paper presents a detailed inventory of Russian BC emissions from diesel sources. Drawing on a complete Russian vehicle registry with detailed information about vehicle types and emission standards, this paper analyzes BC emissions from diesel on-road vehicles. We use the COPERT emission model (COmputer Programme to calculate Emissions from Road Transport) with Russia-specific emission factors for all types of on-road vehicles. On-road diesel vehicles emitted 21 Gg of BC in 2014: heavy-duty trucks account for 60 % of the on-road BC emissions, while cars represent only 5 % (light commercial vehicles and buses account for the remainder). Using Russian activity data and fuel-based emission factors, the paper also presents BC emissions from diesel locomotives and ships, off-road engines in industry, construction and agriculture, and generators. The study also factors in the role of superemitters in BC emissions from diesel on-road vehicles and off-road sources. The total emissions from diesel sources in Russia are estimated to be 49 Gg of BC and 17 Gg of organic carbon (OC) in 2014. Off-road diesel sources emitted 58 % of all diesel BC in Russia.

  19. Russia's black carbon emissions: focus on diesel sources

    DOE PAGES

    Kholod, Nazar; Evans, Meredydd; Kuklinski, Teresa

    2016-09-12

    Black carbon (BC) is a significant climate forcer with a particularly pronounced forcing effect in polar regions such as the Russian Arctic. Diesel combustion is a major global source of BC emissions, accounting for 25–30 % of all BC emissions. While the demand for diesel is growing in Russia, the country's diesel emissions are poorly understood. This paper presents a detailed inventory of Russian BC emissions from diesel sources. Drawing on a complete Russian vehicle registry with detailed information about vehicle types and emission standards, this paper analyzes BC emissions from diesel on-road vehicles. We use the COPERT emission modelmore » (COmputer Programme to calculate Emissions from Road Transport) with Russia-specific emission factors for all types of on-road vehicles. On-road diesel vehicles emitted 21 Gg of BC in 2014: heavy-duty trucks account for 60% of the on-road BC emissions, while cars represent only 5% (light commercial vehicles and buses account for the remainder). Using Russian activity data and fuel-based emission factors, the paper also presents BC emissions from diesel locomotives and ships, off-road engines in industry, construction and agriculture, and generators. The study also factors in the role of superemitters in BC emissions from diesel on-road vehicles and off-road sources. The total emissions from diesel sources in Russia are estimated to be 49 Gg of BC and 17 Gg of organic carbon (OC) in 2014. Off-road diesel sources emitted 58% of all diesel BC in Russia.« less

  20. Russia's black carbon emissions: focus on diesel sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kholod, Nazar; Evans, Meredydd; Kuklinski, Teresa

    Black carbon (BC) is a significant climate forcer with a particularly pronounced forcing effect in polar regions such as the Russian Arctic. Diesel combustion is a major global source of BC emissions, accounting for 25–30 % of all BC emissions. While the demand for diesel is growing in Russia, the country's diesel emissions are poorly understood. This paper presents a detailed inventory of Russian BC emissions from diesel sources. Drawing on a complete Russian vehicle registry with detailed information about vehicle types and emission standards, this paper analyzes BC emissions from diesel on-road vehicles. We use the COPERT emission modelmore » (COmputer Programme to calculate Emissions from Road Transport) with Russia-specific emission factors for all types of on-road vehicles. On-road diesel vehicles emitted 21 Gg of BC in 2014: heavy-duty trucks account for 60% of the on-road BC emissions, while cars represent only 5% (light commercial vehicles and buses account for the remainder). Using Russian activity data and fuel-based emission factors, the paper also presents BC emissions from diesel locomotives and ships, off-road engines in industry, construction and agriculture, and generators. The study also factors in the role of superemitters in BC emissions from diesel on-road vehicles and off-road sources. The total emissions from diesel sources in Russia are estimated to be 49 Gg of BC and 17 Gg of organic carbon (OC) in 2014. Off-road diesel sources emitted 58% of all diesel BC in Russia.« less

  1. Russia's black carbon emissions: focus on diesel sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kholod, Nazar; Evans, Meredydd; Kuklinski, Teresa

    Black carbon (BC) is a significant climate forcer with a particularly pronounced forcing effect in polar regions such as the Russian Arctic. Diesel combustion is a major global source of BC emissions, accounting for 25–30% of all BC emissions. While the demand for diesel is growing in Russia, the country's diesel emissions are poorly understood. This paper presents a detailed inventory of Russian BC emissions from diesel sources. Drawing on a complete Russian vehicle registry with detailed information about vehicle types and emission standards, this paper analyzes BC emissions from diesel on-road vehicles. We use the COPERT emission model (COmputermore » Programme to calculate Emissions from Road Transport) with Russia-specific emission factors for all types of on-road vehicles. On-road diesel vehicles emitted 21 Gg of BC in 2014: heavy-duty trucks account for 60% of the on-road BC emissions, while cars represent only 5% (light commercial vehicles and buses account for the remainder). Using Russian activity data and fuel-based emission factors, the paper also presents BC emissions from diesel locomotives and ships, off-road engines in industry, construction and agriculture, and generators. The study also factors in the role of superemitters in BC emissions from diesel on-road vehicles and off-road sources. The total emissions from diesel sources in Russia are estimated to be 49 Gg of BC and 17 Gg of organic carbon (OC) in 2014. Off-road diesel sources emitted 58% of all diesel BC in Russia.« less

  2. Utilization of waste heat in trucks for increased fuel economy

    NASA Technical Reports Server (NTRS)

    Leising, C. J.; Purohit, G. P.; Degrey, S. P.; Finegold, J. G.

    1978-01-01

    The waste heat utilization concepts include preheating, regeneration, turbocharging, turbocompounding, and Rankine engine compounding. Predictions are based on fuel-air cycle analyses, computer simulation, and engine test data. All options are evaluated in terms of maximum theoretical improvements, but the Diesel and adiabatic Diesel are also compared on the basis of maximum expected improvement and expected improvement over a driving cycle. The study indicates that Diesels should be turbocharged and aftercooled to the maximum possible level. The results reveal that Diesel driving cycle performance can be increased by 20% through increased turbocharging, turbocompounding, and Rankine engine compounding. The Rankine engine compounding provides about three times as much improvement as turbocompounding but also costs about three times as much. Performance for either can be approximately doubled if applied to an adiabatic Diesel.

  3. Diesel exhaust, diesel fumes, and laryngeal cancer.

    PubMed

    Muscat, J E; Wynder, E L

    1995-03-01

    A hospital-based, case-control study of 235 male patients with laryngeal cancer and 205 male control patients was conducted to determine the effects of exposure to diesel engine exhaust and diesel fumes and the risk of laryngeal cancer. All patients were interviewed directly in the hospital with a standardized questionnaire that gathered information on smoking habits, alcohol consumption, employment history, and occupational exposures. Occupations that involve substantial exposure to diesel engine exhaust include mainly truck drivers, as well as mine workers, firefighters, and railroad workers. The odds ratio for laryngeal cancer associated with these occupations was 0.96 (95% confidence interval, 0.5 to 1.8). The odds ratio for self-reported exposure to diesel exhaust was 1.47 (95% confidence interval, 0.5 to 4.1). An elevated risk was found for self-reported exposure to diesel fumes (odds ratio, 6.4; 95% confidence interval, 1.8 to 22.6). No association was observed between jobs that entail exposure to diesel fumes, such as automobile mechanics, and the risk of laryngeal cancer. These results show that diesel engine exhaust is unrelated to laryngeal cancer risk. The different findings for self-reported diesel fumes and occupations that involve exposure to diesel fumes could reflect a recall bias.

  4. On the Ignition and Combustion Variances of Jet Propellant-8 and Diesel Fuel in Military Diesel Engines

    DTIC Science & Technology

    2008-09-22

    NA Displacement (cc) 1357 6468 Operating speeds (rpm) 800 – 3000 1500 – 3400 IMEP range (bar) 5 – 27 2 – 10 Boost system Shop air Turbocharger ...Council Diesel Fuel Workshop. Pickett, L.M. and Hoogterp, L., “ Fundamental Spray and Combustion Measurements of JP-8 at Diesel Conditions”, SAE...N., 1981, "Transient Performance Simulation and Analysis of Turbocharged Diesel Engines", SAE Paper 810338.

  5. Future fuels and engines for railroad locomotives. Volume 2: Technical document

    NASA Technical Reports Server (NTRS)

    Liddle, S. G.

    1981-01-01

    The potential for reducing the dependence of railroads on petroleum fuel, particularly Diesel No. 2 was studied. The study takes two approaches: to determine the use of Diesel No. 2 can be reduced through increased efficiency and conservation, and to use fuels other than Diesel No. 2 both in Diesel and other types of engines. Synthetic hydrocarbon fuels, probably derived from oil shale, will be needed if present diesel-electric locomotives continue to be used.

  6. Research on EHN additive on the diesel engine combustion characteristics in plateau environment

    NASA Astrophysics Data System (ADS)

    Sun, Zhixin; Li, Ruoting; Wang, Xiancheng; Hu, Chuan

    2017-03-01

    Aiming at the combustion deterioration problem of diesel engine in plateau environment, a bench test was carried out for the effects of EHN additive on combustion characteristics of the diesel engine with intake pressure of 0.68 kPa. Test results showed that with the full load working condition of 1 400 r/min: Cylinder pressure and pressure uprising rate decreased with EHN additive added in, mechanical load on the engine could be relieved; peak value of the heat release rate decreased and its occurrence advanced, ignition delay and combustion duration were shortened; cylinder temperature and exhaust gas temperature declined, thermal load on the engine could be relieved, output torque increased while specific oil consumption decreased, and effective thermal efficiency of diesel engine increased.

  7. Documentation of the Benson Diesel Engine Simulation Program

    NASA Technical Reports Server (NTRS)

    Vangerpen, Jon

    1988-01-01

    This report documents the Benson Diesel Engine Simulation Program and explains how it can be used to predict the performance of diesel engines. The program was obtained from the Garrett Turbine Engine Company but has been extensively modified since. The program is a thermodynamic simulation of the diesel engine cycle which uses a single zone combustion model. It can be used to predict the effect of changes in engine design and operating parameters such as valve timing, speed and boost pressure. The most significan change made to this program is the addition of a more detailed heat transfer model to predict metal part temperatures. This report contains a description of the sub-models used in the Benson program, a description of the input parameters and sample program runs.

  8. Combination of biodiesel-ethanol-diesel fuel blend and SCR catalyst assembly to reduce emissions from a heavy-duty diesel engine.

    PubMed

    Shi, Xiaoyan; Yu, Yunbo; He, Hong; Shuai, Shijin; Dong, Hongyi; Li, Rulong

    2008-01-01

    In this study, the efforts to reduce NOx and particulate matter (PM) emissions from a diesel engine using both ethanol-selective catalytic reduction (SCR) of NOx over an Ag/Al2O3 catalyst and a biodiesel-ethanol-diesel fuel blend (BE-diesel) on an engine bench test are discussed. Compared with diesel fuel, use of BE-diesel increased PM emissions by 14% due to the increase in the soluble organic fraction (SOF) of PM, but it greatly reduced the Bosch smoke number by 60%-80% according to the results from 13-mode test of European Stationary Cycle (ESC) test. The SCR catalyst was effective in NOx reduction by ethanol, and the NOx conversion was approximately 73%. Total hydrocarbons (THC) and CO emissions increased significantly during the SCR of NOx process. Two diesel oxidation catalyst (DOC) assemblies were used after Ag/Al2O3 converter to remove CO and HC. Different oxidation catalyst showed opposite effect on PM emission. The PM composition analysis revealed that the net effect of oxidation catalyst on total PM was an integrative effect on SOF reduction and sulfate formation of PM. The engine bench test results indicated that the combination of BE-diesel and a SCR catalyst assembly could provide benefits for NOx and PM emissions control even without using diesel particle filters (DPFs).

  9. Diesel engine torsional vibration control coupling with speed control system

    NASA Astrophysics Data System (ADS)

    Guo, Yibin; Li, Wanyou; Yu, Shuwen; Han, Xiao; Yuan, Yunbo; Wang, Zhipeng; Ma, Xiuzhen

    2017-09-01

    The coupling problems between shafting torsional vibration and speed control system of diesel engine are very common. Neglecting the coupling problems sometimes lead to serious oscillation and vibration during the operation of engines. For example, during the propulsion shafting operation of a diesel engine, the oscillation of engine speed and the severe vibration of gear box occur which cause the engine is unable to operate. To find the cause of the malfunctions, a simulation model coupling the speed control system with the torsional vibration of deformable shafting is proposed and investigated. In the coupling model, the shafting is simplified to be a deformable one which consists of several inertias and shaft sections and with characteristics of torsional vibration. The results of instantaneous rotation speed from this proposed model agree with the test results very well and are successful in reflecting the real oscillation state of the engine operation. Furthermore, using the proposed model, the speed control parameters can be tuned up to predict the diesel engine a stable and safe running. The results from the tests on the diesel engine with a set of tuned control parameters are consistent with the simulation results very well.

  10. An experimental study of gaseous exhaust emissions of diesel engine using blend of natural fatty acid methyl ester

    NASA Astrophysics Data System (ADS)

    Sudrajad, Agung; Ali, Ismail; Samo, Khalid; Faturachman, Danny

    2012-09-01

    Vegetable oil form in Natural Fatty Acid Methyl Ester (FAME) has their own advantages: first of all they are available everywhere in the world. Secondly, they are renewable as the vegetables which produce oil seeds can be planted year after year. Thirdly, they are friendly with our environment, as they seldom contain sulphur element in them. This makes vegetable fuel studies become current among the various popular investigations. This study is attempt to optimization of using blend FAME on diesel engine by experimental laboratory. The investigation experimental project is comparison between using blend FAME and base diesel fuel. The engine experiment is conducted with YANMAR TF120M single cylinder four stroke diesel engine set-up at variable engine speed with constant load. The data have been taken at each point of engine speed during the stabilized engine-operating regime. Measurement of emissions parameters at difference engine speed conditions have generally indicated lower in emission NOx, but slightly higher on CO2 emission. The result also shown that the blends FAME are good in fuel consumption and potentially good substitute fuels for diesel engine

  11. Experimental Investigations on Diesel engine using Methyl esters of Jatropha oil and fish oil

    NASA Astrophysics Data System (ADS)

    Karthikeyan, A.; Jayaprabakar, J.; Dude Williams, Richard

    2017-05-01

    The aim of the study is to use fish oil methyl ester (FME) and Jatropha oil methyl ester (JME) as a substitute for diesel in compression ignition engine. Experiments were conducted when the engine was fuelled with Diesel, Fish oil methyl ester and Jatropha oil methyl ester. The experiment covered a range of loads. An AVL smoke meter was used to measure the smoke density in HSU (Hatridge Smoke Unit). The exhaust emissions were measured using exhaust gas analyzer. High volume sampler was employed to measure the particulate matter in exhaust. The performance of the engine was evaluated in terms of brake specific fuel consumption, brake thermal efficiency. The combustion characteristics of the engine were studied in terms of cylinder pressure with respect to crank angle. The emissions of the engine were studied in terms of concentration of CO, NOx, particulate matter and smoke density. The results obtained for Fish oil methyl ester, Jatropha oil methyl ester, were compared with the results of diesel. Bio-diesel, which can be used as an alternate diesel fuel, is made from vegetable oil and animal fats. It is renewable, non-toxic and possesses low emission profiles.

  12. Performance Guaranteed Inertia Emulation forDiesel-Wind System Feed Microgrid via ModelReference Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melin, Alexander M.; Zhang, Yichen; Djouadi, Seddik

    In this paper, a model reference control based inertia emulation strategy is proposed. Desired inertia can be precisely emulated through this control strategy so that guaranteed performance is ensured. A typical frequency response model with parametrical inertia is set to be the reference model. A measurement at a specific location delivers the information of disturbance acting on the diesel-wind system to the referencemodel. The objective is for the speed of the diesel-wind system to track the reference model. Since active power variation is dominantly governed by mechanical dynamics and modes, only mechanical dynamics and states, i.e., a swing-engine-governor system plusmore » a reduced-order wind turbine generator, are involved in the feedback control design. The controller is implemented in a three-phase diesel-wind system feed microgrid. The results show exact synthetic inertia is emulated, leading to guaranteed performance and safety bounds.« less

  13. Heavy Vehicle Propulsion System Materials Program Semiannual Progress Report for April 2000 Through September 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, DR

    2000-12-11

    The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1-3 trucks to realize a 35% fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7-8 trucks. The Office of Transportation Technologies, Office of Heavy Vehicle Technologies (OTT OHVT) has an active program to develop the technology for advantages LE-55 diesel engines with 55% efficiency and low emissions levels of 2.0 g/bhp-h NOx and 0.05 g/bhp-h particulates. The goal ismore » also for the LE-55 engine to run on natural gas with efficiency approaching that of diesel fuel. The LE-55 program is being completed in FY 1997 and, after approximately 10 years of effort, has largely met the program goals of 55% efficiency and low emissions. However, the commercialization of the LE-55 technology requires more durable materials than those that have been used to demonstrate the goals. Heavy Vehicle Propulsion System Materials will, in concert with the heavy duty diesel engine companies, develop the durable materials required to commercialize the LE-55 technologies. OTT OHVT also recognizes a significant opportunity for reduction in petroleum consumption by dieselization of pickup trucks, vans, and sport utility vehicles. Application of the diesel engine to class 1, 2, and 3 trucks is expected to yield a 35% increase in fuel economy per vehicle. The foremost barrier to diesel use in this market is emission control. Once an engine is made certifiable, subsequent challenges will be in cost; noise, vibration, and harshness (NVH); and performance. The design of advanced components for high-efficiency diesel engines has, in some cases, pushed the performance envelope for materials of construction past the point of reliable operation. Higher mechanical and tribological stresses and higher temperatures of advanced designs limit the engine designer; advanced materials allow the design of components that may operate reliably at higher stresses and temperatures, thus enabling more efficient engine designs. Advanced materials also offer the opportunity to improve the emissions, NVH, and performance of diesel engines for pickup trucks, vans, and sport utility vehicles.« less

  14. Enhanced Component Performance Study. Emergency Diesel Generators 1998–2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schroeder, John Alton

    2014-11-01

    This report presents an enhanced performance evaluation of emergency diesel generators (EDGs) at U.S. commercial nuclear power plants. This report evaluates component performance over time using Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES) data from 1998 through 2013 and maintenance unavailability (UA) performance data using Mitigating Systems Performance Index (MSPI) Basis Document data from 2002 through 2013. The objective is to present an analysis of factors that could influence the system and component trends in addition to annual performance trends of failure rates and probabilities. The factors analyzed for the EDG component are the differences in failuresmore » between all demands and actual unplanned engineered safety feature (ESF) demands, differences among manufacturers, and differences among EDG ratings. Statistical analyses of these differences are performed and results showing whether pooling is acceptable across these factors. In addition, engineering analyses were performed with respect to time period and failure mode. The factors analyzed are: sub-component, failure cause, detection method, recovery, manufacturer, and EDG rating.« less

  15. A comparative study of almond biodiesel-diesel blends for diesel engine in terms of performance and emissions.

    PubMed

    Abu-Hamdeh, Nidal H; Alnefaie, Khaled A

    2015-01-01

    This paper investigates the opportunity of using almond oil as a renewable and alternative fuel source. Different fuel blends containing 10, 30, and 50% almond biodiesel (B10, B30, and B50) with diesel fuel (B0) were prepared and the influence of these blends on emissions and some performance parameters under various load conditions were inspected using a diesel engine. Measured engine performance parameters have generally shown a slight increase in exhaust gas temperature and in brake specific fuel consumption and a slight decrease in brake thermal efficiency. Gases investigated were carbon monoxide (CO) and oxides of nitrogen (NOx). Furthermore, the concentration of the total particulate and the unburned fuel emissions in the exhaust gas were tested. A blend of almond biodiesel with diesel fuel gradually reduced the engine CO and total particulate emissions compared to diesel fuel alone. This reduction increased with more almond biodiesel blended into the fuel. Finally, a slight increase in engine NO x using blends of almond biodiesel was measured.

  16. A Comparative Study of Almond Biodiesel-Diesel Blends for Diesel Engine in Terms of Performance and Emissions

    PubMed Central

    Alnefaie, Khaled A.

    2015-01-01

    This paper investigates the opportunity of using almond oil as a renewable and alternative fuel source. Different fuel blends containing 10, 30, and 50% almond biodiesel (B10, B30, and B50) with diesel fuel (B0) were prepared and the influence of these blends on emissions and some performance parameters under various load conditions were inspected using a diesel engine. Measured engine performance parameters have generally shown a slight increase in exhaust gas temperature and in brake specific fuel consumption and a slight decrease in brake thermal efficiency. Gases investigated were carbon monoxide (CO) and oxides of nitrogen (NOx). Furthermore, the concentration of the total particulate and the unburned fuel emissions in the exhaust gas were tested. A blend of almond biodiesel with diesel fuel gradually reduced the engine CO and total particulate emissions compared to diesel fuel alone. This reduction increased with more almond biodiesel blended into the fuel. Finally, a slight increase in engine NOx using blends of almond biodiesel was measured. PMID:25874218

  17. Experimental investigation of regulated and unregulated emissions from a diesel engine fueled with ultralow-sulfur diesel fuel blended with ethanol and dodecanol

    NASA Astrophysics Data System (ADS)

    Cheung, C. S.; Di, Yage; Huang, Zuohua

    Experiments were conducted on a four-cylinder direct-injection diesel engine using ultralow-sulfur diesel as the main fuel, ethanol as the oxygenate additive and dodecanol as the solvent, to investigate the regulated and unregulated emissions of the engine under five engine loads at an engine speed of 1800 rev min -1. Blended fuels containing 6.1%, 12.2%, 18.2% and 24.2% by volume of ethanol, corresponding to 2%, 4%, 6% and 8% by mass of oxygen in the blended fuel, were used. The results indicate that with an increase in ethanol in the fuel, the brake specific fuel consumption becomes higher while there is little change in the brake thermal efficiency. Regarding the regulated emissions, HC and CO increase significantly at low engine load but might decrease at high engine load, NO x emission slightly decreases at low engine load but slightly increases at high engine load, while particulate mass decreases significantly at high engine load. For the unregulated gaseous emissions, unburned ethanol and acetaldehyde increase but formaldehyde, ethene, ethyne, 1,3-butadiene and BTX (benzene, toluene and xylene) in general decrease, especially at high engine load. A diesel oxidation catalyst (DOC) is found to reduce significantly most of the pollutants, including the air toxics.

  18. Emission reduction from diesel engine using fumigation methanol and diesel oxidation catalyst.

    PubMed

    Zhang, Z H; Cheung, C S; Chan, T L; Yao, C D

    2009-07-15

    This study is aimed to investigate the combined application of fumigation methanol and a diesel oxidation catalyst for reducing emissions of an in-use diesel engine. Experiments were performed on a 4-cylinder naturally-aspirated direct-injection diesel engine operating at a constant speed of 1800 rev/min for five engine loads. The experimental results show that at low engine loads, the brake thermal efficiency decreases with increase in fumigation methanol; but at high loads, it slightly increases with increase in fumigation methanol. The fumigation method results in a significant increase in hydrocarbon (HC), carbon monoxide (CO), and nitrogen dioxide (NO(2)) emissions, but decrease in nitrogen oxides (NO(x)), smoke opacity and the particulate mass concentration. For the submicron particles, the total number of particles decreases. In all cases, there is little change in geometrical mean diameter of the particles. After catalytic conversion, the HC, CO, NO(2), particulate mass and particulate number concentrations were significantly reduced at medium to high engine loads; while the geometrical mean diameter of the particles becomes larger. Thus, the combined use of fumigation methanol and diesel oxidation catalyst leads to a reduction of HC, CO, NO(x), particulate mass and particulate number concentrations at medium to high engine loads.

  19. Effects of diesel/ethanol dual fuel on emission characteristics in a heavy-duty diesel engine

    NASA Astrophysics Data System (ADS)

    Liu, Junheng; Sun, Ping; Zhang, Buyun

    2017-09-01

    In order to reduce emissions and diesel consumption, the gas emissions characteris-tics of diesel/aqueous ethanol dual fuel combustion (DFC) were carried out on a heavy-duty turbocharged and intercooled automotive diesel engine. The aqueous ethanol is prepared by a blend of anhydrous ethanol and water in certain volume proportion. In DFC mode, aqueous ethanol is injected into intake port to form homogeneous charge, and then ignited by the diesel fuel. Results show that DFC can reduce NOx emissions but increase HC and CO emissions, and this trend becomes more prominent with the increase of water blending ratio. Increased emissions of HC and CO could be efficiently cleaned by diesel oxidation catalytic converter (DOC), even better than those of diesel fuel. It is also found that DFC mode reduces smoke remarkably, while increases some unconventional emissions such as formaldehyde and acetal-dehyde. However, unconventional emissions could be reduced approximately to the level of baseline engine with a DOC.

  20. Experimental investigation on performance and exhaust emissions of castor oil biodiesel from a diesel engine.

    PubMed

    Shojaeefard, M H; Etgahni, M M; Meisami, F; Barari, A

    2013-01-01

    Biodiesel, produced from plant and animal oils, is an important alternative to fossil fuels because, apart from dwindling supply, the latter are a major source of air pollution. In this investigation, effects of castor oil biodiesel blends have been examined on diesel engine performance and emissions. After producing castor methyl ester by the transesterification method and measuring its characteristics, the experiments were performed on a four cylinder, turbocharged, direct injection, diesel engine. Engine performance (power, torque, brake specific fuel consumption and thermal efficiency) and exhaust emissions were analysed at various engine speeds. All the tests were done under 75% full load. Furthermore, the volumetric blending ratios of biodiesel with conventional diesel fuel were set at 5, 10, 15, 20 and 30%. The results indicate that lower blends of biodiesel provide acceptable engine performance and even improve it. Meanwhile, exhaust emissions are much decreased. Finally, a 15% blend of castor oil-biodiesel was picked as the optimized blend of biodiesel-diesel. It was found that lower blends of castor biodiesel are an acceptable fuel alternative for the engine.

  1. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: NEW CONDENSATOR, INC.--THE CONDENSATOR DIESEL ENGINE RETROFIT CRANKCASE VENTILATION SYSTEM

    EPA Science Inventory

    EPA's Environmental Technology Verification Program has tested New Condensator Inc.'s Condensator Diesel Engine Retrofit Crankcase Ventilation System. Brake specific fuel consumption (BSFC), the ratio of engine fuel consumption to the engine power output, was evaluated for engine...

  2. Emission reduction potential of using gas-to-liquid and dimethyl ether fuels on a turbocharged diesel engine.

    PubMed

    Xinling, Li; Zhen, Huang

    2009-03-15

    A study of engine performance characteristics and both of regulated (CO, HC, NO(x), and smoke) and unregulated (ultrafine particle number, mass concentrations and size distribution) emissions for a turbocharged diesel engine fueled with conventional diesel, gas-to-liquid (GTL) and dimethyl ether (DME) fuels respectively at different engine loads and speeds have been carried out. The results indicated that fuel components significantly affected the engine performance and regulated/unregulated emissions. GTL exhibited almost the same power and torque output as diesel, while improved fuel economy. GTL significantly reduced regulated emissions with average reductions of 21.2% in CO, 15.7% in HC, 15.6% in NO(x) and 22.1% in smoke in comparison to diesel, as well as average reductions in unregulated emissions of total ultrafine particle number (N(tot)) and mass (M(tot)) emissions by 85.3% and 43.9%. DME can significantly increase torque and power, compared with the original diesel engine, as well as significantly reduced regulated emissions of 40.1% in HC, 48.2% in NO(x) and smoke free throughout all the engine conditions. However, N(tot) for DME is close to that for diesel. The reason is that the accumulation mode particle number emissions for DME are very low due to the characteristics of oxygen content and no C-C bond, which promotes the processes of nucleation and condensation of the semi-volatile compounds in the exhaust gas, as a result, a lot of nucleation mode particles produce.

  3. Evaluation of Future Fuels in a High Pressure Common Rail System - Part 2. 2011 Ford 6.7L Diesel Engine

    DTIC Science & Technology

    2013-01-01

    An injector needle is shown for each test in Figure 41. UNCLASSIFIED 37 UNCLASSIFIED Full Needle 60°C Ultra Low Sulfur Diesel 60°C...UNCLASSIFIED EVALUATION OF FUTURE FUELS IN A HIGH PRESSURE COMMON RAIL SYSTEM – PART 2 2011 FORD 6.7L DIESEL ENGINE INTERIM REPORT TFLRF...UNCLASSIFIED UNCLASSIFIED EVALUATION OF FUTURE FUELS IN A HIGH PRESSURE COMMON RAIL SYSTEM – PART 2 2011 FORD 6.7L DIESEL ENGINE INTERIM REPORT TFLRF

  4. Analysis of noise emitted from diesel engines

    NASA Astrophysics Data System (ADS)

    Narayan, S.

    2015-12-01

    In this work combustion noise produced in diesel engines has been investigated. In order to reduce the exhaust emissions various injection parameters need to be studied and optimized. The noise has been investigated by mean of data obtained from cylinder pressure measurements using piezo electric transducers and microphones on a dual cylinder diesel engine test rig. The engine was run under various operating conditions varying various injection parameters to investigate the effects of noise emissions under various testing conditions.

  5. Improvement of engine emissions with conventional diesel fuel and diesel-biodiesel blends.

    PubMed

    Nabi, Md Nurun; Akhter, Md Shamim; Zaglul Shahadat, Mhia Md

    2006-02-01

    In this report combustion and exhaust emissions with neat diesel fuel and diesel-biodiesel blends have been investigated. In the investigation, firstly biodiesel from non-edible neem oil has been made by esterification. Biodiesel fuel (BDF) is chemically known as mono-alkyl fatty acid ester. It is renewable in nature and is derived from plant oils including vegetable oils. BDF is non-toxic, biodegradable, recycled resource and essentially free from sulfur and carcinogenic benzene. In the second phase of this investigation, experiment has been conducted with neat diesel fuel and diesel-biodiesel blends in a four stroke naturally aspirated (NA) direct injection (DI) diesel engine. Compared with conventional diesel fuel, diesel-biodiesel blends showed lower carbon monoxide (CO), and smoke emissions but higher oxides of nitrogen (NOx) emission. However, compared with the diesel fuel, NOx emission with diesel-biodiesel blends was slightly reduced when EGR was applied.

  6. Combustion noise

    NASA Technical Reports Server (NTRS)

    Strahle, W. C.

    1977-01-01

    A review of the subject of combustion generated noise is presented. Combustion noise is an important noise source in industrial furnaces and process heaters, turbopropulsion and gas turbine systems, flaring operations, Diesel engines, and rocket engines. The state-of-the-art in combustion noise importance, understanding, prediction and scaling is presented for these systems. The fundamentals and available theories of combustion noise are given. Controversies in the field are discussed and recommendations for future research are made.

  7. Boston Community Energy Study - Zonal Analysis for Urban Microgrids

    DTIC Science & Technology

    2016-03-01

    ordinarily rural systems that have generation assets such as wind turbines (WTs) [14] or photovoltaic (PV) panels [15] that power loads such as lights and...movers powered by internal combustion engines, diesel engines, microturbines, geothermal systems, hydro systems, or wind turbines ; they also could include...can have on urban areas such as New York City. While flooding and wind damaged or destroyed some of the energy infrastructure, all installed

  8. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXIII, I--MAINTAINING THE FUEL SYSTEM, PART II--CATERPILLAR DIESEL ENGINE, II--UNDERSTANDING STEERING SYSTEMS.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE FUEL INJECTION SYSTEM AND THE STEERING SYSTEM OF DIESEL POWERED VEHICLES. TOPICS ARE FUEL INJECTION SECTION, AND DESCRIPTION OF THE STEERING SYSTEM. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING…

  9. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXI, I--MAINTAINING THE AIR SYSTEM--CATERPILLAR DIESEL ENGINE, II--UNDERSTANDING REAR END SUSPENSION.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE AIR SYSTEM AND REAR AXLE SUSPENSION USED ON DIESEL POWERED VEHICLES. TOPICS ARE (1) AIR INDUCTION AND EXHAUST SYSTEM, (2) VALVE MECHANISM, (3) TROUBLESHOOTING THE AIR SYSTEM, (4) PURPOSE OF VEHICLE SUSPENSION, (5) TANDEM…

  10. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXII, I--MAINTAINING THE FUEL SYSTEM (PART I)--CUMMINS DIESEL ENGINE, II--UNDERSTANDING THE DIFFERENTIAL.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE FUNCTION AND MAINTENANCE OF THE DIESEL ENGINE FUEL SYSTEM AND DIFFERENTIAL DRIVE UNITS USED IN DIESEL POWERED VEHICLES. TOPICS ARE (1) FUEL SYSTEM COMPARISONS, (2) FUEL SYSTEM SUPPLY COMPONENTS, (3) FUEL SUPPLY SECTION MAINTENANCE, (4) FUNCTION OF THE DIFFERENTIAL,…

  11. Experimental investigation on Performance and Emission Characteristics of J20, P20, N20 Biodiesel blends and Sound Characteristics of P20 Biodiesel blend Used in Single Cylinder Diesel Engine

    NASA Astrophysics Data System (ADS)

    rajasekar, R.; karthik, N.; Xavier, Goldwin

    2017-05-01

    Present work provides the effect of biodiesel blends and Sound Characteristics of P20 Biodiesel blend compared with Performance and emission Characteristics of diesel. Methods and analysis biodiesel blends was prepared by the Transesterification Process. Experiments were conducted in single cylinder constant speed direct injection diesel engine for various test fuels. Research is mainly focused on pongamia oil. It was observed that a 20% Pongamia oil blends and its properties were similar to diesel. The results showed that 20% Pongamia oil blends gave better performance, less in noise and emission compared with ester of Jatropha and neem oil blends. Hence Pongamia blends can be used in existing diesel engine without compromising the engine performance.

  12. Modeling and Control Systems Design for Air Intake System of Diesel Engines for Improvement of Transient Characteristic

    NASA Astrophysics Data System (ADS)

    Ejiri, Arata; Sasaki, Jun; Kinoshita, Yusuke; Fujimoto, Junya; Maruyama, Tsugito; Shimotani, Keiji

    For the purpose of contributing to global environment protection, several research studies have been conducted involving clean-burning diesel engines. In recent diesel engines with Exhaust Gas Recirculation (EGR) systems and a Variable Nozzle Turbocharger (VNT), mutual interference between EGR and VNT has been noted. Hence, designing and adjusting control of the conventional PID controller is particularly difficult at the transient state in which the engine speed and fuel injection rate change. In this paper, we formulate 1st principal model of air intake system of diesel engines and transform it to control oriented model including an engine steady state model and a transient model. And we propose a model-based control system with the LQR Controller, Saturation Compensator, the Dynamic Feed-forward and Disturbance Observer using a transient model. Using this method, we achieved precise reference tracking and emission reduction in transient mode test with the real engine evaluations.

  13. Advanced automotive diesel assessment program

    NASA Technical Reports Server (NTRS)

    Sekar, R.; Tozzi, L.

    1983-01-01

    Cummins Engine Company completed an analytical study to identify an advanced automotive (light duty) diesel (AAD) power plant for a 3,000-pound passenger car. The study resulted in the definition of a revolutionary diesel engine with several novel features. A 3,000-pound car with this engine is predicted to give 96.3, 72.2, and 78.8 MPG in highway, city, and combined highway-city driving, respectively. This compares with current diesel powered cars yielding 41.7, 35.0, and 37.7 MPG. The time for 0-60 MPH acceleration is 13.9 sec. compared to the baseline of 15.2 sec. Four technology areas were identified as crucial in bringing this concept to fruition. They are: (1) part-load preheating, (2) positive displacement compounding, (3) spark assisted diesel combustion system, and (4) piston development for adiabatic, oilless diesel engine. Marketing and planning studies indicate that an aggressive program with significant commitment could result in a production car in 10 years from the date of commencement.

  14. Engine Performance Test of the 1975 Chrysler - Nissan Model CN633 Diesel Engine

    DOT National Transportation Integrated Search

    1975-09-01

    An engine test of the Chrysler-Nissan Model CN633 diesel engine was performed to determine its steady-state fuel consumption and emissions (HC, CO, NOx) maps. The data acquired are summarized in this report.

  15. Effect of compression ratio, nozzle opening pressure, engine load, and butanol addition on nanoparticle emissions from a non-road diesel engine.

    PubMed

    Maurya, Rakesh Kumar; Saxena, Mohit Raj; Rai, Piyush; Bhardwaj, Aashish

    2018-05-01

    Currently, diesel engines are more preferred over gasoline engines due to their higher torque output and fuel economy. However, diesel engines confront major challenge of meeting the future stringent emission norms (especially soot particle emissions) while maintaining the same fuel economy. In this study, nanosize range soot particle emission characteristics of a stationary (non-road) diesel engine have been experimentally investigated. Experiments are conducted at a constant speed of 1500 rpm for three compression ratios and nozzle opening pressures at different engine loads. In-cylinder pressure history for 2000 consecutive engine cycles is recorded and averaged data is used for analysis of combustion characteristics. An electrical mobility-based fast particle sizer is used for analyzing particle size and mass distributions of engine exhaust particles at different test conditions. Soot particle distribution from 5 to 1000 nm was recorded. Results show that total particle concentration decreases with an increase in engine operating loads. Moreover, the addition of butanol in the diesel fuel leads to the reduction in soot particle concentration. Regression analysis was also conducted to derive a correlation between combustion parameters and particle number emissions for different compression ratios. Regression analysis shows a strong correlation between cylinder pressure-based combustion parameters and particle number emission.

  16. A Mathematical Model for the Exhaust Gas Temperature Profile of a Diesel Engine

    NASA Astrophysics Data System (ADS)

    Brito, C. H. G.; Maia, C. B.; Sodré, J. R.

    2015-09-01

    This work presents a heat transfer model for the exhaust gas of a diesel power generator to determine the gas temperature profile in the exhaust pipe. The numerical methodology to solve the mathematical model was developed using a finite difference method approach for energy equation resolution and determination of temperature profiles considering turbulent fluid flow and variable fluid properties. The simulation was carried out for engine operation under loads from 0 kW to 40 kW. The model was compared with results obtained using the multidimensional Ansys CFX software, which was applied to solve the governor equations of turbulent fluid flow. The results for the temperature profiles in the exhaust pipe show a good proximity between the mathematical model developed and the multidimensional software.

  17. Toxicity of inhaled traffic related particulate matter

    NASA Astrophysics Data System (ADS)

    Gerlofs-Nijland, Miriam E.; Campbell, Arezoo; Miller, Mark R.; Newby, David E.; Cassee, Flemming R.

    2009-02-01

    Traffic generated ultrafine particulates may play a major role in the development of adverse health effects. However, little is known about harmful effects caused by recurring exposure. We hypothesized that repeated exposure to particulate matter results in adverse pulmonary and systemic toxic effects. Exposure to diesel engine exhaust resulted in signs of oxidative stress in the lung, impaired coagulation, and changes in the immune system. Pro-inflammatory cytokine levels were decreased in some regions of the brain but increased in the striatum implying that exposure to diesel engine exhaust may selectively aggravate neurological impairment. Data from these three studies suggest that exposure to traffic related PM can mediate changes in the vasculature and brain of healthy rats. To what extent these changes may contribute to chronic neurodegenerative or vascular diseases is at present unclear.

  18. Progress in energy generation for Canadian remote sites

    NASA Astrophysics Data System (ADS)

    Saad, Y.; Younes, R.; Abboudi, S.; Ilinca, A.; Nohra, C.

    2016-07-01

    Many remote areas around the world are isolated, for various reasons, from electricity networks. They are usually supplied with electricity through diesel generators. The cost of operation and transportation of diesel fuel in addition to its price have led to the procurement of a more efficient and environmentally greener method of supply. Various studies have shown that a wind-diesel hybrid system with compressed air storage (WDCAS) seems to be one of the best solutions, and presents itself as an optimal configuration for the electrification of isolated sites. This system allows significant fuel savings to be made because the stored compressed air is used to supercharge the engine. In order to optimize system performance and minimize fuel consumption, installation of a system for recovering and storing the heat of compression (TES) seems necessary. In addition, the use of hydro-pneumatic energy storage systems that use the same machine as the hydraulic pump and turbine allow us to store energy in tight spaces and, if possible, contribute to power generation. The scrupulous study of this technical approach will be the focus of our research which will validate (or not) the use of such a system for the regulation of frequency of electrical networks. In this article we will skim through the main research that recently examined the wind-diesel hybrid system which addressed topics such as adiabatic compression and hydro-pneumatic storage. Instead, we will offer (based on existing studies) a new ACP-WDCAS (wind-diesel hybrid system with adiabatic air compression and storage at constant pressure), which combines these three concepts in one system for the optimization of wind-diesel hybrid system.

  19. Experimental study on particulate and NOx emissions of a diesel engine fueled with ultra low sulfur diesel, RME-diesel blends and PME-diesel blends.

    PubMed

    Zhu, Lei; Zhang, Wugao; Liu, Wei; Huang, Zhen

    2010-02-01

    Ultra low sulfur diesel and two different kinds of biodiesel fuels blended with baseline diesel fuel in 5% and 20% v/v were tested in a Cummins 4BTA direct injection diesel engine, with a turbocharger and an intercooler. Experiments were conducted under five engine loads at two steady speeds (1500 rpm and 2500 rpm). The study aims at investigating the engine performance, NO(x) emission, smoke opacity, PM composition, PM size distribution and comparing the impacts of low sulfur content of biodiesel with ULSD on the particulate emission. The results indicate that, compared to base diesel fuel, the increase of biodiesel in blends could cause certain increase in both brake specific fuel consumption and brake thermal efficiency. Compared with baseline diesel fuel, the biodiesel blends bring about more NO(x) emissions. With the proportion of biodiesel increase in blends, the smoke opacity decreases, while total particle number concentration increases. Meanwhile the ULSD gives lower NO(x) emissions, smoke opacity and total number concentration than those of baseline diesel fuel. In addition, the percentages of SOF and sulfate in particulates increase with biodiesel in blends, while the dry soot friction decreases obviously. Compared with baseline diesel fuel, the biodiesel blends increase the total nucleation number concentration, while ULSD reduces the total nucleation number concentration effectively, although they all have lower sulfur content. It means that, for ULSD, the lower sulfur content is the dominant factor for suppressing nucleation particles formation, while for biodiesel blends, lower volatile, lower aromatic content and higher oxygen content of biodiesel are key factors for improving the nucleation particles formation. The results demonstrate that the higher NO(x) emission and total nucleation number concentration are considered as the big obstacles of the application of biodiesel in diesel engine. Copyright 2009 Elsevier B.V. All rights reserved.

  20. Composition and Integrity of PAHs, Nitro-PAHs, Hopanes and Steranes In Diesel Exhaust Particulate Matter.

    PubMed

    Huang, Lei; Bohac, Stanislav V; Chernyak, Sergei M; Batterman, Stuart A

    2013-08-01

    Diesel exhaust particulate matter contains many semivolatile organic compounds (SVOCs) of environmental and health significance. This study investigates the composition, emission rates, and integrity of 25 SVOCs, including polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs (NPAHs), and diesel biomarkers hopanes and steranes. Diesel engine particulate matter (PM), generated using an engine test bench, three engine conditions, and ultra-low sulfur diesel (ULSD), was collected on borosilicate glass fiber filters. Under high engine load, the PM emission rate was 0.102 g/kWh, and emission rate of ΣPAHs (10 compounds), ΣNPAHs (6 compounds), Σhopanes (2 compounds), and Σsteranes (2 compounds) were 2.52, 0.351, 0.02 ~ 2 and 1μg/kWh, respectively. Storage losses were evaluated for three cases: conditioning filters in clean air at 25 °C and 33% relative humidity (RH) for 24 h; storing filter samples (without extraction) wrapped in aluminum foil at 4 °C for up to one month; and storing filter extracts in glass vials capped with Teflon crimp seals at 4 °C for up to six months. After conditioning filters for 24 h, 30% of the more volatile PAHs were lost, but lower volatility NPAHs, hopanes and steranes showed negligible changes. Storing wrapped filters and extracts at 4 °C for up to one month did not lead to significant losses, but storing extracts for five months led to significant losses of PAHs and NPAHs; hopanes and steranes demonstrated greater integrity. These results suggest that even relatively brief filter conditioning periods, needed for gravimetric measurements of PM mass, and extended storage of filter extracts can lead to underestimates of SVOC concentrations. Thus, SVOC sampling and analysis protocols should utilize stringent criteria and performance checks to identify and limit possible biases occurring during filter and extract processing.

Top