Sample records for diesel engine program

  1. Lightweight, low compression aircraft diesel engine. [converting a spark ignition engine to the diesel cycle

    NASA Technical Reports Server (NTRS)

    Gaynor, T. L.; Bottrell, M. S.; Eagle, C. D.; Bachle, C. F.

    1977-01-01

    The feasibility of converting a spark ignition aircraft engine to the diesel cycle was investigated. Procedures necessary for converting a single cylinder GTS10-520 are described as well as a single cylinder diesel engine test program. The modification of the engine for the hot port cooling concept is discussed. A digital computer graphics simulation of a twin engine aircraft incorporating the diesel engine and Hot Fort concept is presented showing some potential gains in aircraft performance. Sample results of the computer program used in the simulation are included.

  2. Documentation of the Benson Diesel Engine Simulation Program

    NASA Technical Reports Server (NTRS)

    Vangerpen, Jon

    1988-01-01

    This report documents the Benson Diesel Engine Simulation Program and explains how it can be used to predict the performance of diesel engines. The program was obtained from the Garrett Turbine Engine Company but has been extensively modified since. The program is a thermodynamic simulation of the diesel engine cycle which uses a single zone combustion model. It can be used to predict the effect of changes in engine design and operating parameters such as valve timing, speed and boost pressure. The most significan change made to this program is the addition of a more detailed heat transfer model to predict metal part temperatures. This report contains a description of the sub-models used in the Benson program, a description of the input parameters and sample program runs.

  3. 40 CFR 80.501 - What fuel is subject to the provisions of this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for use as fuel in diesel motor vehicles or nonroad diesel engines or is blended with diesel fuel for use in diesel motor vehicles or nonroad diesel engines, including locomotive and marine diesel engines... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel...

  4. 40 CFR 80.501 - What fuel is subject to the provisions of this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for use as fuel in diesel motor vehicles or nonroad diesel engines or is blended with diesel fuel for use in diesel motor vehicles or nonroad diesel engines, including locomotive and marine diesel engines... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel...

  5. 40 CFR 80.501 - What fuel is subject to the provisions of this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for use as fuel in diesel motor vehicles or nonroad diesel engines or is blended with diesel fuel for use in diesel motor vehicles or nonroad diesel engines, including locomotive and marine diesel engines... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel...

  6. 40 CFR 80.501 - What fuel is subject to the provisions of this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for use as fuel in diesel motor vehicles or nonroad diesel engines or is blended with diesel fuel for use in diesel motor vehicles or nonroad diesel engines, including locomotive and marine diesel engines... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel...

  7. 40 CFR 80.501 - What fuel is subject to the provisions of this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for use as fuel in diesel motor vehicles or nonroad diesel engines or is blended with diesel fuel for use in diesel motor vehicles or nonroad diesel engines, including locomotive and marine diesel engines... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel...

  8. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXX, I--CATERPILLAR DIESEL ENGINE MAINTENANCE SUMMARY, II--REIEWING FACTS ABOUT ALTERNATORS.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO PROVIDE A SUMMARY OF DIESEL ENGINE MAINTENANCE FACTORS AND A REVIEW OF DIESEL ENGINE ALTERNATOR OPERATION. THE SEVEN SECTIONS COVER DIESEL ENGINE TROUBLESHOOTING AND THE OPERATION, TESTING, AND ADJUSTING OF ALTERNATORS. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING FILM…

  9. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT VII, ENGINE TUNE-UP--DETROIT DIESEL ENGINE.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF TUNE-UP PROCEDURES FOR DIESEL ENGINES. TOPICS ARE SCHEDULING TUNE-UPS, AND TUNE-UP PROCEDURES. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING FILM "ENGINE TUNE-UP--DETROIT DIESEL ENGINE" AND OTHER MATERIALS. SEE VT 005 655 FOR FURTHER INFORMATION.…

  10. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XX, CUMMINS DIESEL ENGINE, MAINTENANCE SUMMARY.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO PROVIDE A SUMMARY OF THE REASONS AND PROCEDURES FOR DIESEL ENGINE MAINTENANCE. TOPICS ARE WHAT ENGINE BREAK-IN MEANS, ENGINE BREAK-IN, TORQUING BEARINGS (TEMPLATE METHOD), AND THE NEED FOR MAINTENANCE. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING FILM "CUMMINS DIESEL ENGINE…

  11. Standardized Curriculum for Diesel Engine Mechanics.

    ERIC Educational Resources Information Center

    Mississippi State Dept. of Education, Jackson. Office of Vocational, Technical and Adult Education.

    Standardized curricula are provided for two courses for the secondary vocational education program in Mississippi: diesel engine mechanics I and II. The eight units in diesel engine mechanics I are as follows: orientation; shop safety; basic shop tools; fasteners; measurement; engine operating principles; engine components; and basic auxiliary…

  12. Mississippi Curriculum Framework for Diesel Equipment Repair & Service (Program CIP: 47.0605--Diesel Engine Mechanic & Repairer). Secondary Programs.

    ERIC Educational Resources Information Center

    Mississippi Research and Curriculum Unit for Vocational and Technical Education, State College.

    This document, which reflects Mississippi's statutory requirement that instructional programs be based on core curricula and performance-based assessment, contains outlines of the instructional units required in local instructional management plans and daily lesson plans for diesel engine mechanics I and II. Presented first are a program…

  13. 40 CFR 80.502 - What definitions apply for purposes of this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... (h) Marine diesel engine. For the purposes of this subpart I only, marine diesel engine means a diesel engine installed on a Category 1 (C1) or Category 2 (C2) marine vessel. [69 FR 39168, June 29... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel...

  14. Heavy Vehicle Propulsion System Materials Program Semiannual Progress Report for April 2000 Through September 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, DR

    2000-12-11

    The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1-3 trucks to realize a 35% fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7-8 trucks. The Office of Transportation Technologies, Office of Heavy Vehicle Technologies (OTT OHVT) has an active program to develop the technology for advantages LE-55 diesel engines with 55% efficiency and low emissions levels of 2.0 g/bhp-h NOx and 0.05 g/bhp-h particulates. The goal ismore » also for the LE-55 engine to run on natural gas with efficiency approaching that of diesel fuel. The LE-55 program is being completed in FY 1997 and, after approximately 10 years of effort, has largely met the program goals of 55% efficiency and low emissions. However, the commercialization of the LE-55 technology requires more durable materials than those that have been used to demonstrate the goals. Heavy Vehicle Propulsion System Materials will, in concert with the heavy duty diesel engine companies, develop the durable materials required to commercialize the LE-55 technologies. OTT OHVT also recognizes a significant opportunity for reduction in petroleum consumption by dieselization of pickup trucks, vans, and sport utility vehicles. Application of the diesel engine to class 1, 2, and 3 trucks is expected to yield a 35% increase in fuel economy per vehicle. The foremost barrier to diesel use in this market is emission control. Once an engine is made certifiable, subsequent challenges will be in cost; noise, vibration, and harshness (NVH); and performance. The design of advanced components for high-efficiency diesel engines has, in some cases, pushed the performance envelope for materials of construction past the point of reliable operation. Higher mechanical and tribological stresses and higher temperatures of advanced designs limit the engine designer; advanced materials allow the design of components that may operate reliably at higher stresses and temperatures, thus enabling more efficient engine designs. Advanced materials also offer the opportunity to improve the emissions, NVH, and performance of diesel engines for pickup trucks, vans, and sport utility vehicles.« less

  15. Development of OTM Syngas Process and Testing of Syngas Derived Ultra-clean Fuels in Diesel Engines and Fuel Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E.T.; James P. Meagher; Prasad Apte

    2002-12-31

    This topical report summarizes work accomplished for the Program from November 1, 2001 to December 31, 2002 in the following task areas: Task 1: Materials Development; Task 2: Composite Development; Task 4: Reactor Design and Process Optimization; Task 8: Fuels and Engine Testing; 8.1 International Diesel Engine Program; 8.2 Nuvera Fuel Cell Program; and Task 10: Program Management. Major progress has been made towards developing high temperature, high performance, robust, oxygen transport elements. In addition, a novel reactor design has been proposed that co-produces hydrogen, lowers cost and improves system operability. Fuel and engine testing is progressing well, but wasmore » delayed somewhat due to the hiatus in program funding in 2002. The Nuvera fuel cell portion of the program was completed on schedule and delivered promising results regarding low emission fuels for transportation fuel cells. The evaluation of ultra-clean diesel fuels continues in single cylinder (SCTE) and multiple cylinder (MCTE) test rigs at International Truck and Engine. FT diesel and a BP oxygenate showed significant emissions reductions in comparison to baseline petroleum diesel fuels. Overall through the end of 2002 the program remains under budget, but behind schedule in some areas.« less

  16. High Fidelity Simulation of Atomization in Diesel Engine Sprays

    DTIC Science & Technology

    2015-09-01

    ARL-RP-0555 ● SEP 2015 US Army Research Laboratory High Fidelity Simulation of Atomization in Diesel Engine Sprays by L Bravo...ARL-RP-0555 ● SEP 2015 US Army Research Laboratory High Fidelity Simulation of Atomization in Diesel Engine Sprays by L...Simulation of Atomization in Diesel Engine Sprays 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) L Bravo, CB Ivey, D

  17. Clean-Burning Diesel Engines.

    DTIC Science & Technology

    1986-03-01

    Dietzmann L.R. Smith Engines, Emissions, and Vehicle Research Division Southwest Research Institute San Antonio, Texas Prepared for Belvoir Fuels and...replacing the currently used electric forklift with diesel engine-powered forklifts in handling hazardous materials. Electric -powered forklifts have no...diesel engines considered as potential candidates for forklift vehicles used to handle hazardous materials. The first program was conducted to

  18. Lightweight two-stroke cycle aircraft diesel engine technology enablement program, volume 3

    NASA Technical Reports Server (NTRS)

    Freen, P. D.; Berenyi, S. G.; Brouwers, A. P.; Moynihan, M. E.

    1985-01-01

    An experimental Single Cylinder Test Engine Program is conducted to confirm the analytically projected performance of a two-stroke cycle diesel engine for aircraft applications. Testing confirms the ability of a proposed 4-cylinder version of such an engine to reach the target power at altitude in a highly turbocharged configuration. The experimental program defines all necessary parameters to permit design of a multicylinder engine for eventual flight applications.

  19. Lightweight two-stroke cycle aircraft diesel engine technology enablement program, volume 2

    NASA Technical Reports Server (NTRS)

    Freen, P. D.; Berenyi, S. G.; Brouwers, A. P.; Moynihan, M. E.

    1985-01-01

    An experimental Single Cylinder Test Engine Program is conducted to confirm the analytically projected performance of a two-stroke cycle diesel engine for aircraft applications. Testing confirms the ability of a proposed 4-cylinder version of such an engine to reach the target power at altitude in a highly turbocharged configuration. The experimental program defines all necessary parameters to permit a design of a multicylinder engine for eventual flight applications.

  20. 40 CFR 86.336-79 - Diesel engine test cycle.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Diesel engine test cycle. 86.336-79 Section 86.336-79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... Diesel engine test cycle. (a) The following 13-mode cycle shall be followed in dynamometer operation...

  1. Evaluation Tests of Select Fuel Additives for Potential Use in U.S. Army Corps of Engineers Diesel Engines

    DTIC Science & Technology

    2016-07-01

    DOER) program, diesel fuel additives were tested to evaluate their potential for reducing diesel fuel consumption and cost. Four fuel additives were...tested to evaluate their potential for reducing diesel fuel consumption and cost: • An ethanol injection system • Envirofuels Diesel Fuel Catalyst...reduction in select operation conditions, only the ethanol injection system consistently showed potential to reduce diesel fuel consumption , which may be

  2. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: NEW CONDENSATOR, INC.--THE CONDENSATOR DIESEL ENGINE RETROFIT CRANKCASE VENTILATION SYSTEM

    EPA Science Inventory

    EPA's Environmental Technology Verification Program has tested New Condensator Inc.'s Condensator Diesel Engine Retrofit Crankcase Ventilation System. Brake specific fuel consumption (BSFC), the ratio of engine fuel consumption to the engine power output, was evaluated for engine...

  3. Heavy vehicle propulsion system materials program: Semiannual progress report, April 1996--September 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, D.R.

    1997-04-01

    The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1-3 trucks to realize a 35% fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7-8 trucks. The Office of Transportation Technologies, Office of Heavy Vehicle Technologies (OTT OHVT) has an active program to develop the technology for advanced LE-55 diesel engines with 55% efficiency and low emissions levels of 2.0 g/bhp-h NO{sub x} and 0.05 g/bhp-h particulates. The goalmore » is also for the LE-55 engine to run on natural gas with efficiency approaching that of diesel fuel. The LE-55 program is being completed in FY 1997 and, after approximately 10 years of effort, has largely met the program goals of 55% efficiency and low emissions. However, the commercialization of the LE-55 technology requires more durable materials than those that have been used to demonstrate the goals. Heavy Vehicle Propulsion System Materials will, in concert with the heavy duty diesel engine companies, develop the durable materials required to commercialize the LE-55 technologies. OTT OHVT also recognizes a significant opportunity for reduction in petroleum consumption by dieselization of pickup trucks, vans, and sport utility vehicles. Application of the diesel engine to class 1, 2, and 3 trucks is expected to yield a 35% increase in fuel economy per vehicle. The foremost barrier to diesel use in this market is emission control. Once an engine is made certifiable, subsequent challenges will be in cost; noise, vibration, and harshness (NVH); and performance. Separate abstracts have been submitted to the database for contributions to this report.« less

  4. Advanced automotive diesel assessment program

    NASA Technical Reports Server (NTRS)

    Sekar, R.; Tozzi, L.

    1983-01-01

    Cummins Engine Company completed an analytical study to identify an advanced automotive (light duty) diesel (AAD) power plant for a 3,000-pound passenger car. The study resulted in the definition of a revolutionary diesel engine with several novel features. A 3,000-pound car with this engine is predicted to give 96.3, 72.2, and 78.8 MPG in highway, city, and combined highway-city driving, respectively. This compares with current diesel powered cars yielding 41.7, 35.0, and 37.7 MPG. The time for 0-60 MPH acceleration is 13.9 sec. compared to the baseline of 15.2 sec. Four technology areas were identified as crucial in bringing this concept to fruition. They are: (1) part-load preheating, (2) positive displacement compounding, (3) spark assisted diesel combustion system, and (4) piston development for adiabatic, oilless diesel engine. Marketing and planning studies indicate that an aggressive program with significant commitment could result in a production car in 10 years from the date of commencement.

  5. 40 CFR 86.1863-07 - Optional chassis certification for diesel vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... be tested using the test fuels, sampling systems, or analytical systems specified for diesel engines... diesel vehicles. 86.1863-07 Section 86.1863-07 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES...

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, R.D.

    The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1-3 trucks to realize a 35% fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7-8 trucks. The Office of Transportation Technologies, Office of Heavy Vehicle Technologies (OIT OHVT) has an active program to develop the technology for advanced LE-55 diesel engines with 55% efficiency and low emissions levels of 2.0 g/bhp-h NOX and 0.05 g/bhp-h particulate. The goal ismore » also for the LE-55 engine to run on natural gas with efficiency approaching that of diesel fuel. The LE-55 program is being completed in FY 1997 and, after approximately 10 years of effort, has largely met the program goals of 55% efficiency and low emissions. However, the commercialization of the LE-55 technology requires more durable materials than those that have been used to demonstrate the goals. Heavy Vehicle Propulsion System Materials will, in concert with the heavy duty diesel engine companies, develop the durable materials required to commercialize the LE-55 technologies. OIT OHVT also recognizes a significant opportunity for reduction in petroleum consumption by dieselization of pickup trucks, vans, and sport utility vehicles. Application of the diesel engine to class 1,2, and 3 trucks is expected to yield a 35% increase in fuel economy per vehicle. The foremost barrier to diesel use in this market is emission control. Once an engine is made certifiable, subsequent challenges will be in cost; noise, vibration, and harshness (NVH); and performance. The design of advanced components for high-efficiency diesel engines has, in some cases, pushed the performance envelope for materials of construction past the point of reliable operation. Higher mechanical and tribological stresses and higher temperatures of advanced designs limit the engine designer; advanced materials allow the design of components that may operate reliably at higher stresses and temperatures, thus enabling more efficient engine designs. Advanced materials also offer the opportunity to improve the emissions, NVH, and performance of diesel engines for pickup trucks, vans, and sport utility vehicles. The principal areas of research are: (1) Cost Effective High Performance Materials and Processing; (2) Advanced Manufacturing Technology; (3)Testing and Characterization; and (4) Materials and Testing Standards.« less

  7. Fine urban and precursor emissions control for diesel urban transit buses.

    PubMed

    Lanni, Thomas

    2003-01-01

    Particulate emission from diesel engines is one of the most important pollutants in urban areas. As a result, particulate emission control from urban bus diesel engines using particle filter technology is being evaluated at several locations in the US. A project entitled "Clean Diesel Air Quality Demonstration Program" has been initiated by the New York City Metropolitan Transit Authority (MTA) under the supervision of New York State Department of Environmental Conservation and with active participation from Johnson Matthey, Corning, Equilon, Environment Canada and RAD Energy. Under this program, several MTA transit buses with DDC Series 50 engines were equipped with Continuously Regenerating Technology (CRTTM) particulate filter systems and have been operated with ultra low sulfur diesel (<30 ppm S) in transit service in Manhattan since February 2000. These buses were evaluated over a 9-month period for durability and maintainability of the particulate filter. In addition, an extensive emissions testing program was carried out using transient cycles on a chassis dynamometer to evaluate the emissions reductions obtained with the particle filter. In this paper, the emissions testing data from the Clean Diesel Air Quality Demonstration Program are discussed in detail.

  8. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXIII, I--MAINTAINING THE FUEL SYSTEM, PART II--CATERPILLAR DIESEL ENGINE, II--UNDERSTANDING STEERING SYSTEMS.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE FUEL INJECTION SYSTEM AND THE STEERING SYSTEM OF DIESEL POWERED VEHICLES. TOPICS ARE FUEL INJECTION SECTION, AND DESCRIPTION OF THE STEERING SYSTEM. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING…

  9. Development of Diesel Diagnostics for U.S. Coast Guard Cutters

    DOT National Transportation Integrated Search

    1981-07-01

    This program involved an investigation of techniques to perform engine fuel diagnosis on the large medium-speed diesel engines used as main propulsion power plants in medium- and high-endurance Coast Guard cutters. Two engine diagnostic parameters we...

  10. Diesel Engine Mechanics.

    ERIC Educational Resources Information Center

    Foutes, William A.

    Written in student performance terms, this curriculum guide on diesel engine repair is divided into the following eight sections: an orientation to the occupational field and instructional program; instruction in operating principles; instruction in engine components; instruction in auxiliary systems; instruction in fuel systems; instruction in…

  11. 40 CFR 86.1901 - What testing requirements apply to my engines that have gone into service?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... VEHICLES AND ENGINES (CONTINUED) Manufacturer-Run In-Use Testing Program for Heavy-Duty Diesel Engines § 86... diesel heavy-duty engines above 8,500 lbs. GVWR that are subject to engine-based exhaust emission... engines that have gone into service? 86.1901 Section 86.1901 Protection of Environment ENVIRONMENTAL...

  12. 40 CFR 86.1901 - What testing requirements apply to my engines that have gone into service?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... VEHICLES AND ENGINES (CONTINUED) Manufacturer-Run In-Use Testing Program for Heavy-Duty Diesel Engines § 86... diesel heavy-duty engines above 8500 lbs. GVWR that are subject to engine-based exhaust emission... engines that have gone into service? 86.1901 Section 86.1901 Protection of Environment ENVIRONMENTAL...

  13. 40 CFR 86.1901 - What testing requirements apply to my engines that have gone into service?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... VEHICLES AND ENGINES (CONTINUED) Manufacturer-Run In-Use Testing Program for Heavy-Duty Diesel Engines § 86... diesel heavy-duty engines above 8,500 lbs. GVWR that are subject to engine-based exhaust emission... engines that have gone into service? 86.1901 Section 86.1901 Protection of Environment ENVIRONMENTAL...

  14. 40 CFR 86.1901 - What testing requirements apply to my engines that have gone into service?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... VEHICLES AND ENGINES (CONTINUED) Manufacturer-Run In-Use Testing Program for Heavy-Duty Diesel Engines § 86... diesel heavy-duty engines above 8,500 lbs. GVWR that are subject to engine-based exhaust emission... engines that have gone into service? 86.1901 Section 86.1901 Protection of Environment ENVIRONMENTAL...

  15. 40 CFR 86.1333-2010 - Transient test cycle generation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate... cycles. The heavy-duty transient engine cycles for Otto-cycle and diesel engines are listed in appendix I...

  16. 40 CFR 86.1333-2010 - Transient test cycle generation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate... cycles. The heavy-duty transient engine cycles for Otto-cycle and diesel engines are listed in appendix I...

  17. 40 CFR 86.1333-2010 - Transient test cycle generation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate... cycles. The heavy-duty transient engine cycles for Otto-cycle and diesel engines are listed in appendix I...

  18. Heavy-Duty Diesel Fuel Analysis

    EPA Pesticide Factsheets

    EPA's heavy-duty diesel fuel analysis program sought to quantify the hydrocarbon, NOx, and PM emission effects of diesel fuel parameters (such as cetane number, aromatics content, and fuel density) on various nonroad and highway heavy-duty diesel engines.

  19. Program Guide for Diesel Engine Mechanics 8742000 (IN47.060500) and Heavy Duty Truck and Bus Mechanics DIM0991 (IN47.060501).

    ERIC Educational Resources Information Center

    University of South Florida, Tampa. Coll. of Education.

    This competency-based program guide provides course content information and procedures for secondary schools, postsecondary vocational schools, and community colleges in Florida that conduct programs in diesel engine mechanics and heavy duty truck and bus mechanics. The first section is on legal authority, which applies to all vocational education…

  20. AUTOMOTIVE DIESEL MAINTENANCE, UNIT V, MAINTAINING THE LUBRICATION SYSTEM--DETROIT DIESEL ENGINE.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE LUBRICATION SYSTEM. TOPICS ARE LUBE OILS USED, MAINTENANCE OF THE LUBRICATION SYSTEM, AND CRANKCASE VENTILATION COMPONENTS. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING FILM "BASIC ENGINE…

  1. Mississippi Curriculum Framework for Diesel Equipment Technology (CIP: 47.0605--Diesel Engine Mechanic & Repairer). Postsecondary Programs.

    ERIC Educational Resources Information Center

    Mississippi Research and Curriculum Unit for Vocational and Technical Education, State College.

    This document, which is intended for use by community and junior colleges throughout Mississippi, contains curriculum frameworks for the course sequences in the diesel equipment technology programs cluster. Presented in the introductory section are a description of the program and suggested course sequence. Section I lists baseline competencies,…

  2. U.S. Coast Guard Pollution Abatement Program : A Preliminary Report on the Emissions Testing of Boat Diesel Engines

    DOT National Transportation Integrated Search

    1973-11-01

    The exhaust emission concentrations from three GM6-71's and a Cummins VT-350 diesel engines were measured on a dynamometer as a function of engine load. The GM6-71 engines were newly rebuilt by the Coast Guard; the Cummins Engine was in used conditio...

  3. 40 CFR 86.1901 - What testing requirements apply to my engines that have gone into service?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... VEHICLES AND ENGINES Manufacturer-Run In-Use Testing Program for Heavy-Duty Diesel Engines § 86.1901 What testing requirements apply to my engines that have gone into service? (a) If you manufacture diesel heavy... engines that have gone into service? 86.1901 Section 86.1901 Protection of Environment ENVIRONMENTAL...

  4. An experimental investigation of performance of diesel to CNG engine

    NASA Astrophysics Data System (ADS)

    Misra, Sheelam; Gupta, Ayush; Garg, Ashutosh

    2018-05-01

    Over the past few decades, diesel engines are widely used in automobiles which is responsible for hazardous increase in pollution. Around the world, many countries are trying to reduce it by replacing diesel with CNG as a fuel which is more economical and leads to pollution free environment. Engineers came up with an idea to convert diesel engine to CNG engine. This conversion is possible by doing some alteration of engine components and it also include adding some extra components to the system which includes spark plug, valves etc. and by decreasing the compression ratio of the engine. It is used worldwide today and many countries have many programs to convert older, polluting diesel vehicles to CNG enable vehicles so that they can run on clean, economical natural gas. This is, an excellent way to reduce fuel cost, reduce pollution, reduce noise with minimum possible capital costs.first, second, and third level headings.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, D.R.

    The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1--3 trucks to realize a 35{percent} fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7--8 trucks. The Office of Transportation Technologies, Office of Heavy Vehicle Technologies (OTT OHVT) has an active program to develop the technology for advanced LE-55 diesel engines with 55{percent} efficiency and low emissions levels of 2.0 g/bhp-h NO{sub x} and 0.05 g/bhp-h particulates. The goalmore » is also for the LE-55 engine to run on natural gas with efficiency approaching that of diesel fuel. The LE-55 program is being completed in FY 1997 and, after approximately 10 years of effort, has largely met the program goals of 55{percent} efficiency and low emissions. However, the commercialization of the LE-55 technology requires more durable materials than those that have been used to demonstrate the goals. Heavy Vehicle Propulsion System Materials will, in concert with the heavy-duty diesel engine companies, develop the durable materials required to commercialize the LE-55 technologies.« less

  6. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT IV, MAINTAINING THE COOLING SYSTEM--DETROIT DIESEL ENGINES.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE COOLING SYSTEM. TOPICS ARE PURPOSE OF THE COOLING SYSTEM, CARE MAINTENANCE OF THE COOLING SYSTEM, COOLING SYSTEM COMPONENTS, AND TROUBLESHOOTING TIPS. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING…

  7. 40 CFR 86.306-79 - Equipment required and specifications; overview.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test... for both gasoline-fueled and Diesel engine gaseous emission tests. Generally, the equipment required...

  8. 40 CFR 86.306-79 - Equipment required and specifications; overview.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test... for both gasoline-fueled and Diesel engine gaseous emission tests. Generally, the equipment required...

  9. 40 CFR 86.306-79 - Equipment required and specifications; overview.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test... for both gasoline-fueled and Diesel engine gaseous emission tests. Generally, the equipment required...

  10. 40 CFR 86.306-79 - Equipment required and specifications; overview.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test... for both gasoline-fueled and Diesel engine gaseous emission tests. Generally, the equipment required...

  11. Clean Diesel

    EPA Pesticide Factsheets

    The Clean Diesel Program offers DERA funding in the form of grants and rebates as well as other support for projects that protect human health and improve air quality by reducing harmful emissions from diesel engines.

  12. Autoignition Characteristics of Low Cetane Number JP-8 and Approaches for Improved Operation in Military Diesel Engines

    DTIC Science & Technology

    2011-08-09

    OPERATION IN MILITARY DIESEL ENGINES Naeim Henein, PhD Walter Bryzik, Ph.D. Chandrasekharan Jayakumar Department of Mechanical Engineering...the use of Computational Fluid Dynamics (CFD) diesel cycle simulation codes to gain more insight and a better understanding of the processes that...PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Naeim Henein; Walter Bryzik; Chandrasekharan Jayakumar ; Eric R. Sattler; Nicholas C. Johnson; Nichole K. Hubble

  13. Learn About Clean Diesel

    EPA Pesticide Factsheets

    The clean diesel program is designed to aggressively reduce the pollution emitted from diesel engines across the country through the implementation of varied control strategies and the aggressive involvement of national, state, and local partners.

  14. DELTA-DIESEL ENGINE LIGHT TRUCK APPLICATION Contract DE-FC05-97OR22606 Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hakim, Nabil Balnaves, Mike

    2003-05-27

    DELTA Diesel Engine Light Truck Application End of Contract Report DE-FC05-97-OR22606 EXECUTIVE SUMMARY This report is the final technical report of the Diesel Engine Light Truck Application (DELTA) program under contract DE-FC05-97-OR22606. During the course of this contract, Detroit Diesel Corporation analyzed, designed, tooled, developed and applied the ''Proof of Concept'' (Generation 0) 4.0L V-6 DELTA engine and designed the successor ''Production Technology Demonstration'' (Generation 1) 4.0L V-6 DELTA engine. The objectives of DELTA Program contract DE-FC05-97-OR22606 were to: Demonstrate production-viable diesel engine technologies, specifically intended for the North American LDT and SUV markets; Demonstrate emissions compliance with significant fuelmore » economy advantages. With a clean sheet design, DDC produced the DELTA engine concept promising the following attributes: 30-50% improved fuel economy; Low cost; Good durability and reliability; Acceptable noise, vibration and harshness (NVH); State-of-the-art features; Even firing, 4 valves per cylinder; High pressure common rail fuel system; Electronically controlled; Turbocharged, intercooled, cooled EGR; Extremely low emissions via CLEAN Combustion{copyright} technology. To demonstrate the engine technology in the SUV market, DDC repowered a 1999 Dodge Durango with the DELTA Generation 0 engine. Fuel economy improvements were approximately 50% better than the gasoline engine replaced in the vehicle.« less

  15. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: ENVIROFUELS DIESEL FUEL CATALYZER FUEL ADDITIVE

    EPA Science Inventory

    EPA's Environmental Technology Verification Program has tested EnviroFuels diesel fuel additive, called the Diesel Fuel Catalyzer. EnviroFuels has stated that heavy-duty on and off road diesel engines are the intended market for the catalyzer. Preliminary tests conducted indicate...

  16. Thick thermal barrier coatings for diesel engines

    NASA Technical Reports Server (NTRS)

    Beardsley, M. Brad

    1995-01-01

    Caterpillar's approach to applying thick thermal barrier coatings (TTBC's) to diesel engine combustion chambers has been to use advanced modeling techniques to predict engine conditions and combine this information with fundamental property evaluation of TTBC systems to predict engine performance and TTBC stress states. Engine testing has been used to verify the predicted performance of the TTBC systems and provide information on failure mechanisms. The objective Caterpillar's program to date has been to advance the fundamental understanding of thick thermal barrier coating systems. Previous reviews of thermal barrier coating technology concluded that the current level of understanding of coating system behavior is inadequate and the lack of fundamental understanding may impeded the application of TTBC's to diesel engines. Areas of TTBC technology being examined in this program include powder characteristics and chemistry; bond coat composition; coating design, microstructure, and thickness as they affect properties, durability, and reliability; and TTBC 'aging' effects (microstructural and property changes) under diesel engine operating conditions. Methods to evaluate the reliability and durability of TTBC's have been developed that attempt to understand the fundamental strength of TTBC's for particular stress states.

  17. The Cummins advanced turbocompound diesel engine evaluation

    NASA Technical Reports Server (NTRS)

    Hoehne, J. L.; Werner, J. R.

    1982-01-01

    An advanced turbocompound diesel engine program was initiated to improve the tank mileage of the turbocompound engine by 5% over the vehicle test engines. Engine improvements could be realized by increasing the available energy of the exhaust gas at the turbine inlet, incorporating gas turbine techniques into improving the turbomachinery efficiencies, and through refined engine system optimization. The individual and cumulative performance gains achieved with the advanced turbocompound engine improvements are presented.

  18. Effects of water-emulsified fuel on a diesel engine generator's thermal efficiency and exhaust.

    PubMed

    Syu, Jin-Yuan; Chang, Yuan-Yi; Tseng, Chao-Heng; Yan, Yeou-Lih; Chang, Yu-Min; Chen, Chih-Chieh; Lin, Wen-Yinn

    2014-08-01

    Water-emulsified diesel has proven itself as a technically sufficient improvement fuel to improve diesel engine fuel combustion emissions and engine performance. However, it has seldom been used in light-duty diesel engines. Therefore, this paper focuses on an investigation into the thermal efficiency and pollution emission analysis of a light-duty diesel engine generator fueled with different water content emulsified diesel fuels (WD, including WD-0, WD-5, WD-10, and WD-15). In this study, nitric oxide, carbon monoxide, hydrocarbons, and carbon dioxide were analyzed by a vehicle emission gas analyzer and the particle size and number concentration were measured by an electrical low-pressure impactor. In addition, engine loading and fuel consumption were also measured to calculate the thermal efficiency. Measurement results suggested that water-emulsified diesel was useful to improve the thermal efficiency and the exhaust emission of a diesel engine. Obviously, the thermal efficiency was increased about 1.2 to 19.9%. In addition, water-emulsified diesel leads to a significant reduction of nitric oxide emission (less by about 18.3 to 45.4%). However the particle number concentration emission might be increased if the loading of the generator becomes lower than or equal to 1800 W. In addition, exhaust particle size distributions were shifted toward larger particles at high loading. The consequence of this research proposed that the water-emulsified diesel was useful to improve the engine performance and some of exhaust emissions, especially the NO emission reduction. Implications: The accumulated test results provide a good basis to resolve the corresponding pollutants emitted from a light-duty diesel engine generator. By measuring and analyzing transforms of exhaust pollutant from this engine generator, the effects of water-emulsified diesel fuel and loading on emission characteristics might be more clear. Understanding reduction of pollutant emissions during the use of water-emulsified diesel helps improve the effectiveness of the testing program. The analyzed consequences provide useful information to the government for setting policies to curb pollutant emissions from a light-duty diesel engine generator more effectively.

  19. Diesel Engine Services. An Instructor's Guide for a Program in Trade and Technical Education. Automotive Industries Occupations.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Bureau of Secondary Curriculum Development.

    Designed to prepare students to be engine mechanics working on automotive and large stationary diesel engines, this instructor's guide contains eight units arranged from simple to complex to facilitate student learning. Each contains behavioral objectives, a content outline, understandings and teaching approaches necessary to develop the content,…

  20. Emissions of PCDD/Fs, PCBs, and PAHs from a modern diesel engine equipped with catalyzed emission control systems.

    PubMed

    Laroo, Christopher A; Schenk, Charles R; Sanchez, L James; McDonald, Joseph

    2011-08-01

    Exhaust emissions of 17 2,3,7,8-substituted chlorinated dibenzo-p-dioxin/furan (CDD/F) congeners, tetra-octa CDD/F homologues, 12 2005 WHO chlorinated biphenyls (CB) congeners, mono-nona CB homologues, and 19 polycyclic aromatic hydrocarbons (PAHs) from a model year 2008 Cummins ISB engine were investigated. Testing included configurations composed of different combinations of aftertreatment including a diesel oxidation catalyst (DOC), catalyzed diesel particulate filter (CDPF), copper zeolite urea selective catalytic reduction (SCR), iron zeolite SCR, and ammonia slip catalyst. Results were compared to a baseline engine out configuration. Testing included the use of fuel that contained the maximum expected chlorine (Cl) concentration of U.S. highway diesel fuel and a Cl level 1.5 orders of magnitude above. Results indicate there is no risk for an increase in polychlorinated dibenzo-p-dioxin/furan and polychlorinated biphenyl emissions from modern diesel engines with catalyzed aftertreatment when compared to engine out emissions for configurations tested in this program. These results, along with PAH results, compare well with similar results from modern diesel engines in the literature. The results further indicate that polychlorinated dibenzo-p-dioxin/furan emissions from modern diesel engines both with and without aftertreatment are below historical values reported in the literature as well as the current inventory value.

  1. Study of Fuel Economy and Emission Reduction Methods for Marine and Locomotive Diesel Engines

    DOT National Transportation Integrated Search

    1975-09-01

    This interim report presents the results of the first phase of a two-part program to investigate methods of improving fuel consumption and reducing exhaust emissions for in-service diesel engines used as prime movers in locomotives and several classe...

  2. Methods for heat transfer and temperature field analysis of the insulated diesel

    NASA Technical Reports Server (NTRS)

    Morel, T.; Blumberg, P. N.; Fort, E. F.; Keribar, R.

    1984-01-01

    Work done during phase 1 of a three-year program aimed at developing a comprehensive heat transfer and thermal analysis methodology oriented specifically to the design requirements of insulated diesel engines is reported. The technology developed in this program makes possible a quantitative analysis of the low heat rejection concept. The program is comprehensive in that it addresses all the heat transfer issues that are critical to the successful development of the low heat rejection diesel engine: (1) in-cylinder convective and radiative heat transfer; (2) cyclic transient heat transfer in thin solid layers at component surfaces adjacent to the combustion chamber; and (3) steady-state heat conduction in the overall engine structure. The Integral Technologies, Inc. (ITI) program is comprised of a set of integrated analytical and experimental tasks. A detailed review of the ITI program approach is provided, including the technical issues which underlie it and a summay of the methods that were developed.

  3. 40 CFR 86.136-90 - Engine starting and restarting.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... started. If necessary, braking may be employed to keep the drive wheels from turning. (c) If the vehicle... petroleum-fueled diesel vehicles and the particulate sampling system when testing methanol-fueled diesel... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission...

  4. Improvement of ecological characteristics of the hydrogen diesel engine

    NASA Astrophysics Data System (ADS)

    Natriashvili, T.; Kavtaradze, R.; Glonti, M.

    2018-02-01

    In the article are considered the questions of influence of a swirl intensity of the shot and injector design on the ecological indices of the hydrogen diesel, little-investigated till now. The necessity of solution of these problems arises at conversion of the serial diesel engine into the hydrogen diesel. The mathematical model consists of the three-dimensional non-stationary equations of transfer and also models of turbulence and combustion. The numerical experiments have been carried out with the use of program code FIRE. The optimal values of parameters of the working process, ensuring improvement of the effective and ecological indices of the hydrogen diesel are determined.

  5. General Aviation Propulsion

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Programs exploring and demonstrating new technologies in general aviation propulsion are considered. These programs are the quiet, clean, general aviation turbofan (QCGAT) program; the general aviation turbine engine (GATE) study program; the general aviation propeller technology program; and the advanced rotary, diesel, and reciprocating engine programs.

  6. Test/QA plan for the verification testing of alternative or reformulated liquid fuels, fuel additives, fuel emulsions, and lubricants for highway and nonroad use heavy-duty diesel engines

    EPA Science Inventory

    This Environmental Technology Verification Program test/QA plan for heavy-duty diesel engine testing at the Southwest Research Institute’s Department of Emissions Research describes how the Federal Test Procedure (FTP), as listed in 40 CFR Part 86 for highway engines and 40 CFR P...

  7. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT VIII. ENGINE COMPONENTS--PART I.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE CONSTRUCTION AND MAINTENANCE OF DIESEL ENGINE CYLINDER HEADS AND CYLINDER ASSEMBLIES. TOPICS ARE CYLINDER ASSEMBLY (LINERS), CYLINDER HEADS, VALVES AND VALVE MECHANISMS, AND PISTON AND PISTON RINGS. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING…

  8. Heat engines

    NASA Astrophysics Data System (ADS)

    Rekos, N. F., Jr.; Parsons, E. L., Jr.

    1989-09-01

    For the past decade, the Department of Energy (DOE) has sponsored projects to develop diesel and gas turbine engines capable of operating on low-cost, coal-based fuels. Much of the current work addresses the use of coal-water fuel (CWF) in diesel and turbines, although there is some work with dry coal feed and other coal fuels. Both the diesel and gas turbine portions of the program include proof-of-concept and support projects. Specific highlights of the program include: engine tests and economic analyses have shown that CWF can replace 70 percent of the diesel oil used in the duty cycle of a typical main-line locomotive; A. D. Little and Cooper-Bessemer completed a system and economic study of coal-fueled diesel engines for modular power and industrial cogeneration markets. The coal-fueled diesel was found to be competitive at fuel oil prices of $5.50 per million British thermal units (MBtu); Over 200 hours of testing have been completed using CWF in full-scale, single-cylinder diesel engines. Combustion efficiencies have exceeded 99 percent; Both CWF and dry coal fuel forms can be burned in short residence time in-line combustors and in off-base combustors with a combustion efficiency of over 99 percent; Rich/lean combustion systems employed by the three major DOE contractors have demonstrated low NO(sub x) emissions levels; Contractors have also achieved promising results for controlling sulfur oxide (SO(sub x)) emissions using calcium-based sorbents; Slagging combustors have achieved between 65 and 95 percent slag capture, which will limit particulate loading on pre-turbine cleanup devices. For many of the gas turbine and diesel applications emission standards do not exist. Our goal is to develop coal-fueled diesels and gas turbines that not only meet all applicable emission standards that do exist, but also are capable of meeting possible future standards.

  9. 40 CFR 86.1905 - How does this program work?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Manufacturer-Run In-Use Testing Program for Heavy-Duty Diesel Engines § 86.1905 How does this program work? (a) You must test in-use engines from the families we select. We may select the following number of engine...

  10. 40 CFR 86.1905 - How does this program work?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Manufacturer-Run In-Use Testing Program for Heavy-Duty Diesel Engines § 86.1905 How does this program work? (a) You must test in-use engines from the families we select. We may select the following number of engine families for...

  11. 40 CFR 86.1905 - How does this program work?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Manufacturer-Run In-Use Testing Program for Heavy-Duty Diesel Engines § 86.1905 How does this program work? (a) You must test in-use engines from the families we select. We may select the following number of engine...

  12. Thermal barrier coatings application in diesel engines

    NASA Technical Reports Server (NTRS)

    Fairbanks, J. W.

    1995-01-01

    Commercial use of thermal barrier coatings in diesel engines began in the mid 70's by Dr. Ingard Kvernes at the Central Institute for Industrial Research in Oslo, Norway. Dr. Kvernes attributed attack on diesel engine valves and piston crowns encountered in marine diesel engines in Norwegian ships as hot-corrosion attributed to a reduced quality of residual fuel. His solution was to coat these components to reduce metal temperature below the threshold of aggressive hot-corrosion and also provide protection. Roy Kamo introduced thermal barrier coatings in his 'Adiabatic Diesel Engine' in the late 70's. Kamo's concept was to eliminate the engine block water cooling system and reduce heat losses. Roy reported significant performance improvements in his thermally insulated engine at the SAE Congress in 1982. Kamo's work stimulates major programs with insulated engines, particularly in Europe. Most of the major diesel engine manufacturers conducted some level of test with insulated combustion chamber components. They initially ran into increased fuel consumption. The German engine consortium had Prof. Woschni of the Technical Institute in Munich. Woschni conducted testing with pistons with air gaps to provide the insulation effects. Woschni indicated the hot walls of the insulated engine created a major increase in heat transfer he refers to as 'convection vive.' Woschni's work was a major factor in the abrupt curtailment of insulated diesel engine work in continental Europe. Ricardo in the UK suggested that combustion should be reoptimized for the hot-wall effects of the insulated combustion chamber and showed under a narrow range of conditions fuel economy could be improved. The Department of Energy has supported thermal barrier coating development for diesel engine applications. In the Clean Diesel - 50 Percent Efficient (CD-50) engine for the year 2000, thermal barrier coatings will be used on piston crowns and possibly other components. The primary purpose of the thermal barrier coatings will be to reduce thermal fatigue as the engine peak cylinder pressure will nearly be doubled. As the coatings result in higher available energy in the exhaust gas, efficiency gains are achieved through use of this energy by turbochargers, turbocompounding or thermoelectric generators.

  13. High Efficiency, Low Emissions Homogeneous Charge Compression Ignition (HCCI) Engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gravel, Roland; Maronde, Carl; Gehrke, Chris

    2010-10-30

    This is the final report of the High Efficiency Clean Combustion (HECC) Research Program for the U.S. Department of Energy. Work under this co-funded program began in August 2005 and finished in July 2010. The objective of this program was to develop and demonstrate a low emission, high thermal efficiency engine system that met 2010 EPA heavy-duty on-highway truck emissions requirements (0.2g/bhp-hr NOx, 0.14g/bhp-hr HC and 0.01g/bhp-hr PM) with a thermal efficiency of 46%. To achieve this goal, development of diesel homogenous charge compression ignition (HCCI) combustion was the chosen approach. This report summarizes the development of diesel HCCI combustionmore » and associated enabling technologies that occurred during the HECC program between August 2005 and July 2010. This program showed that although diesel HCCI with conventional US diesel fuel was not a feasible means to achieve the program objectives, the HCCI load range could be increased with a higher volatility, lower cetane number fuel, such as gasoline, if the combustion rate could be moderated to avoid excessive cylinder pressure rise rates. Given the potential efficiency and emissions benefits, continued research of combustion with low cetane number fuels and the effects of fuel distillation are recommended. The operation of diesel HCCI was only feasible at part-load due to a limited fuel injection window. A 4% fuel consumption benefit versus conventional, low-temperature combustion was realized over the achievable operating range. Several enabling technologies were developed under this program that also benefited non-HCCI combustion. The development of a 300MPa fuel injector enabled the development of extended lifted flame combustion. A design methodology for minimizing the heat transfer to jacket water, known as precision cooling, will benefit conventional combustion engines, as well as HCCI engines. An advanced combustion control system based on cylinder pressure measurements was developed. A Well-to-wheels analysis of the energy flows in a mobile vehicle system and a 2nd Law thermodynamic analysis of the engine system were also completed under this program.« less

  14. An Overview of NASA Research on Positive Displacement Type General Aviation Engines

    NASA Technical Reports Server (NTRS)

    Kempke, E. E.; Willis, E. A.

    1979-01-01

    The general aviation positive displacement engine program encompassing conventional, lightweight diesel, and rotary combustion engines is described. Lean operation of current production type spark ignition engines and advanced alternative engine concepts are emphasized.

  15. Thick thermal barrier coatings for diesel engines

    NASA Technical Reports Server (NTRS)

    Beardsley, M. B.

    1995-01-01

    Caterpillar's approach to applying Thick Thermal Barrier Coatings (TTBC's) to diesel engine combustion chambers has been to use advanced modeling techniques to predict engine conditions and combine this information with fundamental property evaluation of TTBC systems to predict engine performance and TTBC stress states. Engine testing has been used to verify the predicted performance of the TTBC systems and provide information on failure mechanisms. The objective of Caterpillar's subcontract with ORNL is to advance the fundamental understanding of thick thermal barrier coating systems. Previous reviews of thermal barrier coating technology concluded that the current level of understanding of coating system behavior is inadequate and the lack of fundamental understanding may impede the application of TTBC's to diesel engines. Areas of TTBC technology being examined in this program include powder characteristics and chemistry; bond coat composition; coating design, microstructure, and thickness as they affect properties, durability, and reliability; and TTBC 'aging' effects (microstructural and property changes) under diesel engine operating conditions. Methods to evaluate the reliability and durability of TTBC's have been developed that attempt to understand the fundamental strength of TTBC's for particular stress states.

  16. Methods for heat transfer and temperature field analysis of the insulated diesel, phase 3

    NASA Technical Reports Server (NTRS)

    Morel, Thomas; Wahiduzzaman, Syed; Fort, Edward F.; Keribar, Rifat; Blumberg, Paul N.

    1988-01-01

    Work during Phase 3 of a program aimed at developing a comprehensive heat transfer and thermal analysis methodology for design analysis of insulated diesel engines is described. The overall program addresses all the key heat transfer issues: (1) spatially and time-resolved convective and radiative in-cylinder heat transfer, (2) steady-state conduction in the overall structure, and (3) cyclical and load/speed temperature transients in the engine structure. These are all accounted for in a coupled way together with cycle thermodynamics. This methodology was developed during Phases 1 and 2. During Phase 3, an experimental program was carried out to obtain data on heat transfer under cooled and insulated engine conditions and also to generate a database to validate the developed methodology. A single cylinder Cummins diesel engine was instrumented for instantaneous total heat flux and heat radiation measurements. Data were acquired over a wide range of operating conditions in two engine configurations. One was a cooled baseline. The other included ceramic coated components (0.050 inches plasma sprayed zirconia)-piston, head and valves. The experiments showed that the insulated engine has a smaller heat flux than the cooled one. The model predictions were found to be in very good agreement with the data.

  17. The influence of the biofuel blends on the energetic and ecological performances of the Diesel engine

    NASA Astrophysics Data System (ADS)

    Benea, B. C.

    2016-08-01

    This study presents the influence of the diesel fuel blended with biodiesel fuel obtained from sunflower oil, corn oil and peanut oil on the energetic performances, combustion process and pollutant emissions. This research was done virtually and experimentally. In this study pure diesel fuel and two concentrations (6% and 10%) of blends with biofuels were used for experimentally tests on a Renault K9K diesel engine. Five parameters were observed during experimental tests: engine power, fuel consumption, cylinder pressure, and the amount of CO and NOx emissions. The same five parameters were simulated using AVL Boost program. The variations of effective power and maximal cylinder pressure are caused due to the lower calorific value of the tested fuels. Better oxidation of the biofuels induces a better combustion in cylinder and less CO and NOx emissions. The CO emissions are either influence by the lower carbon content of biofuels. The results of this study sustain that using 6% and 10% of blended biofuels with diesel fuel decrease the pollutant emissions of the diesel engine. Deviations between experimental and the simulation results confirm the validity of the mathematical model adopted for the simulation.

  18. Diesel Cylinder Gas-Side Heat Flux to a Ceramic Surface

    DTIC Science & Technology

    1986-06-01

    developed a flameless method of lean premixed combustion which would provide a much better test medium. If the wall jet instrument is to ever work, it will...collected by use of the flameless - combustion -engine or by use of methanol in a diesel engine. Neither of these options were available during the contract...Borman DAAG29-81-K-0082 Jeffrey C. Huang 9. PERFORMING ORGANIZATION NAME AND ADORESS 10. PROGRAM ELEMENT, PROJECT, TASK Engine Combustion Laboratory

  19. Development of Radio Frequency Diesel Particulate Filter Sensor and Controls for Advanced Low Pressure Drop Systems to Reduce Engine Fuel Consumption (06B)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sappok, Alexander; Ragaller, Paul; Bromberg, Leslie

    This project developed a radio frequencybased sensor for accurate measurement of diesel particulate filter (DPF) loading with advanced low pressuredrop aftertreatment systems. The resulting technology demonstrated engine efficiency improvements through optimization of the combined engineaftertreatment system while reducing emissions, system cost, and complexity to meet the DOE program objectives.

  20. A nonlinear Kalman filtering approach to embedded control of turbocharged diesel engines

    NASA Astrophysics Data System (ADS)

    Rigatos, Gerasimos; Siano, Pierluigi; Arsie, Ivan

    2014-10-01

    The development of efficient embedded control for turbocharged Diesel engines, requires the programming of elaborated nonlinear control and filtering methods. To this end, in this paper nonlinear control for turbocharged Diesel engines is developed with the use of Differential flatness theory and the Derivative-free nonlinear Kalman Filter. It is shown that the dynamic model of the turbocharged Diesel engine is differentially flat and admits dynamic feedback linearization. It is also shown that the dynamic model can be written in the linear Brunovsky canonical form for which a state feedback controller can be easily designed. To compensate for modeling errors and external disturbances the Derivative-free nonlinear Kalman Filter is used and redesigned as a disturbance observer. The filter consists of the Kalman Filter recursion on the linearized equivalent of the Diesel engine model and of an inverse transformation based on differential flatness theory which enables to obtain estimates for the state variables of the initial nonlinear model. Once the disturbances variables are identified it is possible to compensate them by including an additional control term in the feedback loop. The efficiency of the proposed control method is tested through simulation experiments.

  1. Design and operation of a medium speed 12-cylinder coal-fueled diesel engine. Phase 2: Improvements

    NASA Astrophysics Data System (ADS)

    Confer, G. L.; Hsu, B. D.; McDowell, R. E.; Gal, E.; Vankleunen, W.; Kaldor, S.; Mengel, M.

    Under the sponsorship of the US Department of Energy, General Electric has been pioneering the development of a coal fired diesel engine to power a locomotive. The feasibility of using a coal water slurry (CWS) mixture as a fuel in a medium speed diesel engine has been demonstrated with the first successful locomotive systems test in 1991 on the GE Transportation Systems test track in Erie, PA. Phase 2 of the development process incorporates the results of the programs research in durable engine parts, improved combustion efficiency, and emissions reduction. A GE 7FDL12 engine has been built using diamond insert injector nozzles, tungsten carbide coated piston rings, and tungsten carbide coated liners to overcome power assembly wear. Electronic controlled fuel injection for both diesel pilot and main CWS injector were incorporated to control injection timing. An envelop filter and copper oxide sorbent system were used to cleanup engine emissions. The system is capable of removing over 99% of the particulates, 90% of the SO2, and 85% of NO(x).

  2. Lightweight two-stroke cycle aircraft diesel engine technology enablement program, volume 1

    NASA Technical Reports Server (NTRS)

    Freen, P. D.; Berenyi, S. G.; Brouwers, A. P.; Moynihan, M. E.

    1985-01-01

    An experimental Single Cylinder Test Engine Program is conducted to confirm the analytically projected performance of a two-stroke cycle diesel engine for aircraft applications. The test engine delivered 78kW indicated power from 1007cc displacement, operating at 3500 RPM on Schnuerle loop scavenged two-stroke cycle. Testing confirms the ability of a proposed 4-cylinder version of such an engine to reach the target power at altitude, in a highly turbocharged configuration. The experimental program defines all necessary parameters to permit design of a multicylinder engine for eventual flight applications; including injection system requirement, turbocharging, heat rejection, breathing, scavenging, and structural requirements. The multicylinder engine concept is configured to operate with an augmented turbocharger, but with no primary scavenge blower. The test program is oriented to provide a balanced turbocharger compressor to turbine power balance without an auxiliary scavenging system. Engine cylinder heat rejection to the ambient air has been significantly reduced and the minimum overall turbocharger efficiency required is within the range of commercially available turbochargers. Analytical studies and finite element modeling is made of insulated configurations of the engines - including both ceramic and metallic versions. A second generation test engine is designed based on current test results.

  3. 40 CFR 86.348-79 - Alternative to fuel H/C analysis.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission... average H/C ratios are used for all calculations. (1) #1B1 Diesel: 1:93 (2) #1B2 Diesel: 1:80 (3) Gasoline...

  4. Effects of Retrofitting Emission Control Systems on all In-Use Heavy Diesel Trucks

    NASA Astrophysics Data System (ADS)

    Millstein, D.; Harley, R. A.

    2009-12-01

    Diesel exhaust is now the largest source of nitrogen oxide (NOx) emissions nationally in the US, and contributes significantly to emissions of fine particulate black carbon (soot) as well. New national standards call for dramatically lower emissions of exhaust particulate matter (PM) and NOx from new diesel engines starting in 2007 and 2010, respectively. Unfortunately it will take decades for the cleaner new engines to replace those currently in service on existing heavy-duty trucks. The state of California recently adopted a rule to accelerate fleet turnover in the heavy-duty truck sector, requiring that all in-use trucks meet the new exhaust PM standards by 2014. This will entail retrofit of diesel particle filters or replacement for over a million existing diesel engines. Diesel particle filters can replace the muffler on existing trucks, and there is extensive experience with retrofit of this control equipment on public sector fleets such as diesel-powered transit buses. Nitrogen dioxide (NO2) is used as an oxidizing agent to remove carbon particles from the particle filter, to prevent it from becoming plugged. To create the needed NO2, NOx already present in engine exhaust as nitric oxide (NO) is deliberately oxidized to NO2 upstream of the particle filter using a platinum catalyst. The NO2/NOx ratio in exhaust emissions therefore increases to ~35% in comparison to much lower values (~5%) typical of older engines without particle filters. We evaluate the effects on air quality of increased use of diesel particle traps and NOx controls in southern California using the Community Multiscale Air Quality (CMAQ) model. Compared to a reference scenario without the retrofit program, we found black carbon concentrations decreased by ~20%, with small increases (4%) in ambient ozone concentrations. During summer, average NO2 concentrations decrease despite the increase in primary NO2 emissions - because total NOx emissions are reduced as part of a parallel but more gradual program to retrofit NOx control systems on in-use engines. During winter, NO2 concentrations increase by 1-2% at locations with high diesel truck traffic, and larger increases may occur if diesel trucks outfitted with particle traps do not meet the in-use NOx emission reduction requirements. Small changes to fine particulate nitrate are seen as well with increases over the Los Angeles area of 3 and 6% during the summer and fall, respectively. During the summer, but not the fall, downwind nitrate decreased by 2% east of Los Angeles near Riverside. Emissions reductions due to fleet turnover in the reference scenario (without retrofit) may be optimistic, and the air quality benefits of retrofits could therefore be understated, due to slow sales of new engines in recent years. In any case, significant changes in diesel engine emissions of NOx and PM are expected to occur over the next 5 years in California.

  5. Effects of retrofitting emission control systems on in-use heavy diesel vehicles.

    PubMed

    Millstein, Dev E; Harley, Robert A

    2010-07-01

    Diesel engines are now the largest source of nitrogen oxides (NO(x)) and fine particulate black carbon (soot) emissions in California. The California Air Resources Board recently adopted a rule requiring that by 2014 all in-use heavy trucks and buses meet current (2007) exhaust particulate matter (PM) emission standards. Also by 2023 all in-use heavy-duty vehicles will have to meet current NO(x) emission standards, with significant progress in achieving the requirements for NO(x) control expected by 2014. This will require retrofit or replacement of older in-use engines. Diesel particle filters (DPF) reduce PM emissions but may increase the NO(2)/NO(x) emission ratio to approximately 35%, compared to approximately 5% typical of diesel engines without particle filters. Additionally, DPF with high oxidative capacity reduce CO and hydrocarbon emissions. We evaluate the effects of retrofitting trucks with DPF on air quality in southern California, using an Eulerian photochemical air quality model. Compared to a 2014 reference scenario without the retrofit program, black carbon concentrations decreased by 12 +/- 2% and 14 +/- 2% during summer and fall, respectively, with corresponding increases in ambient ozone concentrations of 3 +/- 2% and 7 +/- 3%. NO(2) concentrations decreased by 2-4% overall despite the increase in primary NO(2) emissions because total NO(x) emissions were reduced as part of the program to retrofit NO(x) control systems on in-use engines. However, in some cases NO(2) concentrations may increase at locations with high diesel truck traffic.

  6. 40 CFR 86.1920 - What in-use testing information must I report to EPA?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Manufacturer-Run In-Use Testing Program for Heavy-Duty Diesel Engines § 86.1920 What in-use testing information... engine for which testing was completed during the calendar quarter. Alternatively, you may separately...

  7. 40 CFR 86.1920 - What in-use testing information must I report to EPA?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Manufacturer-Run In-Use Testing Program for Heavy-Duty Diesel Engines § 86.1920 What in-use... data from each engine for which testing was completed during the calendar quarter. Alternatively, you...

  8. 40 CFR 86.1920 - What in-use testing information must I report to EPA?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Manufacturer-Run In-Use Testing Program for Heavy-Duty Diesel Engines § 86.1920 What in-use... data from each engine for which testing was completed during the calendar quarter. Alternatively, you...

  9. Turbocharged Diesels

    NASA Technical Reports Server (NTRS)

    1984-01-01

    In a number of feasibility studies of turbine rotor designs, engineers of Cummins Engine Company, Inc.'s turbocharger group have utilized a computer program from COSMIC. Part of Cummins research effort is aimed toward introduction of advanced turbocharged engines that deliver extra power with greater fuel efficiency. Company claims use of COSMIC program substantially reduced software development costs.

  10. 40 CFR 86.1930 - What special provisions apply from 2005 through 2010?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Manufacturer-Run In-Use Testing Program for Heavy-Duty Diesel Engines § 86.1930 What special provisions apply from 2005 through 2010? (a) We may direct you to test engines under this subpart for...

  11. 40 CFR 86.1930 - What special provisions apply from 2005 through 2010?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Manufacturer-Run In-Use Testing Program for Heavy-Duty Diesel Engines § 86.1930 What special provisions apply from 2005 through 2010? (a) We may direct you to test engines under this subpart for...

  12. 40 CFR 86.1930 - What special provisions apply from 2005 through 2010?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Manufacturer-Run In-Use Testing Program for Heavy-Duty Diesel Engines § 86.1930 What special provisions apply from 2005 through 2010? (a) We may direct you to test engines under this subpart for...

  13. 40 CFR 86.1920 - What in-use testing information must I report to EPA?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Manufacturer-Run In-Use Testing Program for Heavy-Duty Diesel Engines § 86.1920 What in-use... data from each engine for which testing was completed during the calendar quarter. Alternatively, you...

  14. 40 CFR 80.522 - May used motor oil be dispensed into diesel motor vehicles or nonroad diesel engines?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... diesel motor vehicles or nonroad diesel engines? 80.522 Section 80.522 Protection of Environment... vehicles or nonroad diesel engines? No person may introduce used motor oil, or used motor oil blended with... later nonroad diesel engines (not including locomotive or marine diesel engines), unless both of the...

  15. 40 CFR 80.522 - May used motor oil be dispensed into diesel motor vehicles or nonroad diesel engines?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... diesel motor vehicles or nonroad diesel engines? 80.522 Section 80.522 Protection of Environment... vehicles or nonroad diesel engines? No person may introduce used motor oil, or used motor oil blended with... later nonroad diesel engines (not including locomotive or marine diesel engines), unless both of the...

  16. 40 CFR 80.522 - May used motor oil be dispensed into diesel motor vehicles or nonroad diesel engines?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... diesel motor vehicles or nonroad diesel engines? 80.522 Section 80.522 Protection of Environment... vehicles or nonroad diesel engines? No person may introduce used motor oil, or used motor oil blended with... later nonroad diesel engines (not including locomotive or marine diesel engines), unless both of the...

  17. Compound cycle engine program

    NASA Technical Reports Server (NTRS)

    Bobula, G. A.; Wintucky, W. T.; Castor, J. G.

    1987-01-01

    The Compound Cycle Engine (CCE) is a highly turbocharged, power compounded power plant which combines the lightweight pressure rise capability of a gas turbine with the high efficiency of a diesel. When optimized for a rotorcraft, the CCE will reduce fuel burn for a typical 2 hr (plus 30 min reserve) mission by 30 to 40 percent when compared to a conventional advanced technology gas turbine. The CCE can provide a 50 percent increase in range-payload product on this mission. A program to establish the technology base for a Compound Cycle Engine is presented. The goal of this program is to research and develop those technologies which are barriers to demonstrating a multicylinder diesel core in the early 1990's. The major activity underway is a three-phased contract with the Garrett Turbine Engine Company to perform: (1) a light helicopter feasibility study, (2) component technology development, and (3) lubricant and material research and development. Other related activities are also presented.

  18. Compound cycle engine program

    NASA Technical Reports Server (NTRS)

    Bobula, G. A.; Wintucky, W. T.; Castor, J. G.

    1986-01-01

    The Compound Cycle Engine (CCE) is a highly turbocharged, power compounded power plant which combines the lightweight pressure rise capability of a gas turbine with the high efficiency of a diesel. When optimized for a rotorcraft, the CCE will reduce fuel burned for a typical 2 hr (plus 30 min reserve) mission by 30 to 40 percent when compared to a conventional advanced technology gas turbine. The CCE can provide a 50 percent increase in range-payload product on this mission. A program to establish the technology base for a Compound Cycle Engine is presented. The goal of this program is to research and develop those technologies which are barriers to demonstrating a multicylinder diesel core in the early 1990's. The major activity underway is a three-phased contract with the Garrett Turbine Engine Company to perform: (1) a light helicopter feasibility study, (2) component technology development, and (3) lubricant and material research and development. Other related activities are also presented.

  19. Proposed Rule and Related Materials for Heavy-Duty Highway Program: Revisions for Emergency Vehicles and SCR Maintenance

    EPA Pesticide Factsheets

    May 23, 2012, Notice of Proposed Rulemaking with revisions related to emissions controls on diesel-powered emergency vehicles and revisions related to scheduled maintenance intervals for diesel engines and vehicles using Selective Catalytic Reduction (SCR)

  20. Partial Withdrawal and Final Rule for Nonroad Technical Amendments

    EPA Pesticide Factsheets

    Amendments to the technical hardship provisions under the Transition Program for Equipment Manufacturers related to the Tier 4 standards for nonroad diesel engines, and to the replacement engine exemption generally applicable to new nonroad engines.

  1. 30 CFR 250.610 - Diesel engine air intakes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Diesel engine air intakes. 250.610 Section 250... Operations § 250.610 Diesel engine air intakes. No later than May 31, 1989, diesel engine air intakes shall be equipped with a device to shut down the diesel engine in the event of runaway. Diesel engines...

  2. 30 CFR 250.610 - Diesel engine air intakes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Diesel engine air intakes. 250.610 Section 250... Operations § 250.610 Diesel engine air intakes. No later than May 31, 1989, diesel engine air intakes shall be equipped with a device to shut down the diesel engine in the event of runaway. Diesel engines...

  3. General aviation internal-combustion engine research programs at NASA-Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Willis, E. A.

    1978-01-01

    An update is presented of non-turbine general aviation engine programs. The program encompasses conventional, lightweight diesel and rotary engines. It's three major thrusts are: (1) reduced SFC's; (2) improved fuels tolerance; and (3) reduced emissions. Current and planned future programs in such areas as lean operation, improved fuel management, advanced cooling techniques and advanced engine concepts, are described. These are expected to lay the technology base, by the mid to latter 1980's, for engines whose life cycle fuel costs are 30 to 50% lower than today's conventional engines.

  4. Support and power-plant documentation for the gas-turbine-powered-bus demonstration program. Final report, 1 January 1980-30 September 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nigro, D.N.; Stewart, R.G.; Apple, S.A.

    1982-03-01

    The operational experience obtained for the GT404-4 gas turbine engines in the Intercity and Intracity Bus Demonstration Programs is described for the period January 1980 through September 1981. Support for the engines and automatic transmissions involved in this program provided engineering and field service, spare parts and tools, training, and factory overhauls. The Greyhound (intercity) coaches accumulated 183,054 mi (294,595 km) and 5154 hr of total operation. The Baltimore Transit (intracity) coaches accumulated 40,567 mi (65,285 km) and 1840 hr of total operation. In service, the turbine-powered Greyhound and Transit coaches achieved approximately 25% and 40% lower fuel mileage, respectively,more » than did the production diesel-powered coaches. The gas turbine engine will require the advanced ceramic development currently being sponsored by the DOE and NASA to achieve fuel economy equivalent not only to that of today's diesel engines but also to the projected fuel economy of the advanced diesel engines of the 1990s. Sufficient experience was not achieved with the coaches prior to the start of service to identify and eliminate many of the problems associated with the startup of new equipment. Because of these problems, the mean miles between incident were unacceptably low. The future gas turbine system should be developed sufficiently to establish satisfactory durability prior to evaluation in revenue service. Commercialization of the gas turbine bus engine remains a viable goal for the future.« less

  5. Support and power plant documentation for the gas turbine powered bus demonstration program

    NASA Technical Reports Server (NTRS)

    Nigro, D. N.; Stewart, R. G.; Apple, S. A.

    1982-01-01

    The operational experience obtained for the GT404-4 gas turbine engines in the intercity and intracity Bus Demonstration Programs is described for the period January 1980 through September 1981. Support for the engines and automatic transmissions involved in this program provided engineering and field service, spare parts and tools, training, and factory overhauls. the Greyhound (intercity) coaches accumulated 183,054 mi (294,595 km) and 5154 hr of total operation. The Baltimore Transit (intracity) coaches accumulated 40,567 mi (65,285 km) and 1840 hr of total operation. In service, the turbine powered Greyhound and Transit coaches achieved approximately 25% and 40% lower fuel mileage, respectively, than did the production diesel powered coaches. The gas turbine engine will require the advanced ceramic development currently being sponsored by the DOE and NASA to achieve fuel economy equivalent not only to that of today's diesel engines but also to the projected fuel economy of the advanced diesel engines of the 1990s. Sufficient experience was not achieved with the coaches prior to the start of service to identify and eliminate many of the problems associated with the startup of new equipment. Because of these problems, the mean miles between incident were unacceptably low. The future gas turbine system should be developed sufficiently to establish satisfactory durability prior to evaluation in revenue service. Commercialization of the gas turbine bus engine remains a viable goal for the future.

  6. 40 CFR 69.52 - Non-motor vehicle diesel fuel.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... diesel vehicles and engines Its use may damage these vehicles and engines. For use in all other diesel vehicles and engines. (ii) 15 ppm sulfur diesel fuel. From June 1, 2006 through May 31, 2010. ULTRA-LOW... and engines. Recommended for use in all diesel vehicles and engines. (iii) 15 ppm sulfur diesel fuel...

  7. Analysis of thermal stress of the piston during non-stationary heat flow in a turbocharged Diesel engine

    NASA Astrophysics Data System (ADS)

    Gustof, P.; Hornik, A.

    2016-09-01

    In the paper, numeric calculations of thermal stresses of the piston in a turbocharged Diesel engine in the initial phase of its work were carried out based on experimental studies and the data resulting from them. The calculations were made using a geometrical model of the piston in a five-cylinder turbocharged Diesel engine with a capacity of about 2300 cm3, with a direct fuel injection to the combustion chamber and a power rating of 85 kW. In order to determine the thermal stress, application of own mathematical models of the heat flow in characteristic surfaces of the piston was required to show real processes occurring on the surface of the analysed component. The calculations were performed using a Geostar COSMOS/M program module. A three-dimensional geometric model of the piston was created in this program based on a real component, in order to enable the calculations and analysis of thermal stresses during non-stationary heat flow. Modelling of the thermal stresses of the piston for the engine speed n=4250 min-1 and engine load λ=1.69 was carried out.

  8. 40 CFR 86.347-79 - Alternative calculations for diesel engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.347-79 Alternative calculations for diesel engines. (a) This section applies to Diesel engines only. Gasoline-fueled engines must use the calculations in § 86.345. (b) For Diesel engines, the...

  9. 40 CFR 86.347-79 - Alternative calculations for diesel engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.347-79 Alternative calculations for diesel engines. (a) This section applies to Diesel engines only. Gasoline-fueled engines must use the calculations in § 86.345. (b) For Diesel engines, the...

  10. Ceramics potential in automotive powerplants

    NASA Technical Reports Server (NTRS)

    Mclean, A. F.

    1983-01-01

    The paper addresses the potential that ceramic materials can play an important role in future automotive powerplants - both advanced heat engines and advanced battery systems. A number of related experimental programs are reviewed including ceramics for gasoline and diesel piston engines, gas turbine and Stirling Engines and sodium-sulfur batteries. A strong integrated program to develop ceramics technology is recommended.

  11. 40 CFR 86.1930 - What special provisions apply from 2005 through 2010?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Manufacturer-Run In-Use Testing Program for Heavy-Duty Diesel Engines § 86.1930 What special provisions apply from 2005 through 2010? (a) We may direct you to test engines under this subpart for emissions other...

  12. 40 CFR 86.1935 - What special provisions may apply as a consequence of a delay in the particulate matter accuracy...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Manufacturer-Run In-Use Testing Program for Heavy-Duty Diesel Engines § 86.1935 What special provisions may... attributable to engine manufacturers failing to meet their commitments under that agreement, the following...

  13. Pilot Field Demonstration of Alternative Fuels in Force Projection Petroleum and Water Distribution Equipment

    DTIC Science & Technology

    2014-09-04

    They included two Force Projection Technology (FPT) diesel driven pumping assemblies of 350 and 600 gallons per minute (GPM), and the Advanced...Army Tank Automotive Research Development and Engineering Center (TARDEC). They included two Force Projection Technology (FPT) diesel driven...research programs. The first two systems identified were Force Projection Technology (FPT) diesel -driven pumping assemblies of 350 and 600 gallons per

  14. Research and Development for Robotic Transportable Waste to Energy System (TWES)

    DTIC Science & Technology

    2012-01-01

    Engineers, April 2003. NFESC UG-2039-ENV, Qualified Recycling Program (QRP) Guide; July 2000 (NOTAL) Paisley, M.A., Anson, D., “ Biomass Gasification ...Full Load Biomass Simulation .............................19 Figure 9. Spreadsheet-Based Heat and Mass Balance—Diesel Operation at 5:00 p.m...diesel fuel. Based on simulation of full-load biomass operation, the diesel-fueled test was expected to demonstrate a 75% net fuel-to-steam efficiency

  15. 40 CFR 86.1318-84 - Engine dynamometer system calibrations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Engine dynamometer system calibrations...) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate...

  16. 40 CFR 86.1318-84 - Engine dynamometer system calibrations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Engine dynamometer system calibrations...) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate...

  17. 40 CFR 86.1318-84 - Engine dynamometer system calibrations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 20 2013-07-01 2013-07-01 false Engine dynamometer system calibrations...) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate...

  18. 40 CFR 86.1318-84 - Engine dynamometer system calibrations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 20 2012-07-01 2012-07-01 false Engine dynamometer system calibrations...) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate...

  19. Conventional engine technology. Volume 2: Status of diesel engine technology

    NASA Technical Reports Server (NTRS)

    Schneider, H. W.

    1981-01-01

    The engines of diesel cars marketed in the United States were examined. Prominent design features, performance characteristics, fuel economy and emissions data were compared. Specific problems, in particular those of NO and smoke emissions, the effects of increasing dieselization on diesel fuel price and availability, current R&D work and advanced diesel concepts are discussed. Diesel cars currently have a fuel economy advantage over gasoline engine powered cars. Diesel drawbacks (noise and odor) were reduced to a less objectionable level. An equivalent gasoline engine driveability was obtained with turbocharging. Diesel manufacturers see a growth in the diesel market for the next ten years. Uncertainties regarding future emission regulation may inhibit future diesel production investments. With spark ignition engine technology advancing in the direction of high compression ratios, the fuel economy advantages of the diesel car is expected to diminish. To return its fuel economy lead, the diesel's potential for future improvement must be used.

  20. Department of Defense Program Solicitation 94; Small Business Technology Transfer (STTR) Program; Fiscal Year 1994.

    DTIC Science & Technology

    1994-01-01

    advanced diesel engine components; high-temperature titanium aluminide and Al-Fe alloys for aircraft and missile engines; environmentally compliant...gun-chamber liners and KE penetrator stabilizer fins, tips, and leading edges; low cost, ceramic thermal barrier coatings for gas turbine blades and

  1. Experimental clean combustor program: Diesel no. 2 fuel addendum, phase 3

    NASA Technical Reports Server (NTRS)

    Gleason, C. C.; Bahr, D. W.

    1979-01-01

    A CF6-50 engine equipped with an advanced, low emission, double annular combustor was operated 4.8 hours with No. 2 diesel fuel. Fourteen steady-state operating conditions ranging from idle to full power were investigated. Engine/combustor performance and exhaust emissions were obtained and compared to JF-5 fueled test results. With one exception, fuel effects were very small and in agreement with previously obtained combustor test rig results. At high power operating condition, the two fuels produced virtually the same peak metal temperatures and exhaust emission levels. At low power operating conditions, where only the pilot stage was fueled, smoke levels tended to be significantly higher with No. 2 diesel fuel. Additional development of this combustor concept is needed in the areas of exit temperature distribution, engine fuel control, and exhaust emission levels before it can be considered for production engine use.

  2. Biodiesel Emissions Analysis Program

    EPA Pesticide Factsheets

    Using existing data, the EPA's biodiesel emissions analysis program sought to quantify the air pollution emission effects of biodiesel for diesel engines that have not been specifically modified to operate on biodiesel.

  3. 40 CFR 86.1915 - What are the requirements for Phase 1 and Phase 2 testing?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Manufacturer-Run In-Use Testing Program for Heavy-Duty Diesel Engines § 86.1915 What are the requirements for Phase 1 and Phase 2 testing? For all selected engine families, you must do the following: (a...

  4. 40 CFR 86.1915 - What are the requirements for Phase 1 and Phase 2 testing?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Manufacturer-Run In-Use Testing Program for Heavy-Duty Diesel Engines § 86.1915 What are the requirements for Phase 1 and Phase 2 testing? For all selected engine families, you must do the following: (a...

  5. 40 CFR 86.1915 - What are the requirements for Phase 1 and Phase 2 testing?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Manufacturer-Run In-Use Testing Program for Heavy-Duty Diesel Engines § 86.1915 What are the requirements for Phase 1 and Phase 2 testing? For all selected engine families, you must do the following: (a...

  6. 40 CFR 86.1915 - What are the requirements for Phase 1 and Phase 2 testing?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Manufacturer-Run In-Use Testing Program for Heavy-Duty Diesel Engines § 86.1915 What are the requirements for Phase 1 and Phase 2 testing? For all selected engine families, you must do the following: (a...

  7. 40 CFR 86.1915 - What are the requirements for Phase 1 and Phase 2 testing?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Manufacturer-Run In-Use Testing Program for Heavy-Duty Diesel Engines § 86.1915 What are the requirements for Phase 1 and Phase 2 testing? For all selected engine families, you must do the following: (a) To...

  8. 40 CFR 86.090-2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Light heavy-duty diesel engines usually are non-sleeved and not designed for rebuild; their rated... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF... any motor vehicle (or motor vehicle engine) engineered and designed to be operated using a single fuel...

  9. 40 CFR 86.090-2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Light heavy-duty diesel engines usually are non-sleeved and not designed for rebuild; their rated... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF... any motor vehicle (or motor vehicle engine) engineered and designed to be operated using a single fuel...

  10. 40 CFR 86.1809-10 - Prohibition of defeat devices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... programs, engineering evaluations, design specifications, calibrations, on-board computer algorithms, and..., with the Part II certification application, an engineering evaluation demonstrating to the satisfaction... not occur in the temperature range of 20 to 86 °F. For diesel vehicles, the engineering evaluation...

  11. 76 FR 7194 - California State Nonroad Engine Pollution Control Standards; Request for Authorization of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-09

    ... Standards; Authorization of State Standards for 1996 and later New Diesel Cycle Engines 175 Horsepower and... ENVIRONMENTAL PROTECTION AGENCY [FRL-9264-3] California State Nonroad Engine Pollution Control... program that allows for the registration of nonroad engines and equipment units that operate at multiple...

  12. 40 CFR 86.1308-84 - Dynamometer and engine equipment specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Dynamometer and engine equipment... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate...

  13. 30 CFR 250.610 - Diesel engine air intakes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Diesel engine air intakes. 250.610 Section 250... Well-Workover Operations § 250.610 Diesel engine air intakes. No later than May 31, 1989, diesel engine air intakes shall be equipped with a device to shut down the diesel engine in the event of runaway...

  14. Advanced Automotive Diesel Assessment Program, executive summary

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The objectives of this analytical study were: to select one advanced automotive diesel engine (AAD) concept which would increase the tank mileage of a 3,000 pound passenger car from the present 35 mpg to at least 52 mpg; to identify long term component research and development work required to bring the selected concept to fruition; and to prepare a development strategy that will bring the selected concept to a prototype testing phase. Cummins Engine Company has completed this study. The selected concept is a 4 stroke cycle, direct injection, spark assisted, advanced adiabatic diesel engine with positive displacement compounding plus expander and part load air preheating. The engine does not use a liquid coolant nor liquid lubricants. It is a 4 cylinder, in-line, 77 mm bore x 77 mm stroke, 1.434 liters displacement engine weighing 300 lb, and rated at 70 BHP at 3000 rpm. Installation dimensions are 621 mm length x 589 mm width x 479 mm height (24.4 inch x 22 inch x 18.9 inch).

  15. 40 CFR 89.410 - Engine test cycle.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., except constant speed engines, engines rated under 19 kW, and propulsion marine diesel engines. (2) The 5... this subpart shall be used for propulsion marine diesel engines. (5) Notwithstanding the provisions of... rated under 19 kW; or (B) Propulsion marine diesel engines, provided the propulsion marine diesel...

  16. Energy and Greenhouse Gas Emission Reduction Opportunities for Civil Works Projects Unique to the US Army Corps of Engineers

    DTIC Science & Technology

    2012-10-26

    3600 hp diesel engine .................................................................................. 24 20 Diesel engine turbocharger ...ERDC/CERL TR-12-19 24 Figure 19. Fairbanks Morse 3600 hp diesel engine. Figure 20. Diesel engine turbocharger . Table 7. Energy consuming

  17. Emission rates of particulate matter and elemental and organic carbon from in-use diesel engines.

    PubMed

    Shah, Sandip D; Cocker, David R; Miller, J Wayne; Norbeck, Joseph M

    2004-05-01

    Elemental carbon (EC), organic carbon (OC), and particulate matter (PM) emission rates are reported for a number of heavy heavy-duty diesel trucks (HHDDTs) and back-up generators (BUGs) operating under real-world conditions. Emission rates were determined using a unique mobile emissions laboratory (MEL) equipped with a total capture full-scale dilution tunnel connected directly to the diesel engine via a snorkel. This paper shows that PM, EC, and OC emission rates are strongly dependent on the mode of vehicle operation; highway, arterial, congested, and idling conditions were simulated by following the speed trace from the California Air Resources Board HHDDT cycle. Emission rates for BUGs are reported as a function of engine load at constant speed using the ISO 8178B Cycle D2. The EC, OC, and PM emission rates were determined to be highly variable for the HHDDTs. It was determined that the per mile emission rate of OC from a HHDDT in congested traffic is 8.1 times higher than that of an HHDDT in cruise or highway speed conditions and 1.9 times higher for EC. EC/OC ratios for BUGs (which generally operate at steady states) and HHDDTs show marked differences, indicating that the transient nature of engine operation dictates the EC/OC ratio. Overall, this research shows that the EC/OC ratio varies widely for diesel engines in trucks and BUGs and depends strongly on the operating cycle. The findings reported here have significant implications in the application of chemical mass balance modeling, diesel risk assessment, and control strategies such as the Diesel Risk Reduction Program.

  18. 30 CFR 250.405 - What are the safety requirements for diesel engines used on a drilling rig?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false What are the safety requirements for diesel... are the safety requirements for diesel engines used on a drilling rig? You must equip each diesel engine with an air take device to shut down the diesel engine in the event of a runaway. (a) For a diesel...

  19. TKKMOD: A computer simulation program for an integrated wind diesel system. Version 1.0: Document and user guide

    NASA Astrophysics Data System (ADS)

    Manninen, L. M.

    1993-12-01

    The document describes TKKMOD, a simulation model developed at Helsinki University of Technology for a specific wind-diesel system layout, with special emphasis on the battery submodel and its use in simulation. The model has been included into the European wind-diesel modeling software package WDLTOOLS under the CEC JOULE project 'Engineering Design Tools for Wind-Diesel Systems' (JOUR-0078). WDLTOOLS serves as the user interface and processes the input and output data of different logistic simulation models developed by the project participants. TKKMOD cannot be run without this shell. The report only describes the simulation principles and model specific parameters of TKKMOD and gives model specific user instructions. The input and output data processing performed outside this model is described in the documentation of the shell. The simulation model is utilized for calculation of long-term performance of the reference system configuration for given wind and load conditions. The main results are energy flows, losses in the system components, diesel fuel consumption, and the number of diesel engine starts.

  20. General aviation internal combustion engine research programs at NASA-Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Willis, E. A.

    1978-01-01

    An update is presented of non-turbine general aviation engine programs underway at the NASA-Lewis Research Center in Cleveland, Ohio. The program encompasses conventional, lightweight diesel and rotary engines. Its three major thrusts are: (a) reduced SFC's; (b) improved fuels tolerance; and (c) reducing emissions. Current and planned future programs in such areas as lean operation, improved fuel management, advanced cooling techniques and advanced engine concepts, are described. These are expected to lay the technology base, by the mid to late 1980's, for engines whose life cycle fuel costs are 30 to 50% lower than today's conventional engines.

  1. Health Assessment Document for Diesel Exhaust (Revised ...

    EPA Pesticide Factsheets

    This External Review Draft version of this assessment updates three earlier drafts (1999, 1998 and 1994) that were reviewed by the Clean Air Scientific Advisory Committee (CASAC) of the Agency's Science Advisory Board (SAB). The assessment characterizes the possible human health hazards and related exposure-response aspects of those hazards related to environmental exposure to diesel exhaust. The final assessment will incorporate peer review comments provided by the CASAC in 2000 and will take acount of public comments received during the public review period. This is a health hazard assessment. The purpose of the assessment is to identify the key health hazards associated with environmental exposure to diesel exhaust. Information from earlier draft versions of this assessment were used to support EPA regulatory decision making about emission controls for On Road Heavy Duty Diesel Engines and Off Road Diesel Engine Emissions. Also information from the assessment contributes to a nationwide analysis of air toxics to determine the highest public health priorities for future air pollution control programs.

  2. 40 CFR 80.590 - What are the product transfer document requirements for motor vehicle diesel fuel, NRLM diesel...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... such fuel is dispensed into motor vehicles or nonroad equipment, locomotives, marine diesel engines or...) Undyed Ultra-Low Sulfur Diesel Fuel. For use in all diesel vehicles and engines.” From June 1, 2006... (maximum) Dyed Ultra-Low Sulfur Diesel Fuel. For use in all nonroad diesel engines. Not for use in highway...

  3. 40 CFR 80.590 - What are the product transfer document requirements for motor vehicle diesel fuel, NRLM diesel...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... such fuel is dispensed into motor vehicles or nonroad equipment, locomotives, marine diesel engines or...) Undyed Ultra-Low Sulfur Diesel Fuel. For use in all diesel vehicles and engines.” From June 1, 2006... (maximum) Dyed Ultra-Low Sulfur Diesel Fuel. For use in all nonroad diesel engines. Not for use in highway...

  4. 40 CFR 80.590 - What are the product transfer document requirements for motor vehicle diesel fuel, NRLM diesel...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... such fuel is dispensed into motor vehicles or nonroad equipment, locomotives, marine diesel engines or...) Undyed Ultra-Low Sulfur Diesel Fuel. For use in all diesel vehicles and engines.” From June 1, 2006... (maximum) Dyed Ultra-Low Sulfur Diesel Fuel. For use in all nonroad diesel engines. Not for use in highway...

  5. 40 CFR 80.590 - What are the product transfer document requirements for motor vehicle diesel fuel, NRLM diesel...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... such fuel is dispensed into motor vehicles or nonroad equipment, locomotives, marine diesel engines or...) Undyed Ultra-Low Sulfur Diesel Fuel. For use in all diesel vehicles and engines.” From June 1, 2006... (maximum) Dyed Ultra-Low Sulfur Diesel Fuel. For use in all nonroad diesel engines. Not for use in highway...

  6. 40 CFR 80.590 - What are the product transfer document requirements for motor vehicle diesel fuel, NRLM diesel...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... such fuel is dispensed into motor vehicles or nonroad equipment, locomotives, marine diesel engines or...) Undyed Ultra-Low Sulfur Diesel Fuel. For use in all diesel vehicles and engines.” From June 1, 2006... (maximum) Dyed Ultra-Low Sulfur Diesel Fuel. For use in all nonroad diesel engines. Not for use in highway...

  7. Regulated and unregulated emissions from modern 2010 emissions-compliant heavy-duty on-highway diesel engines

    PubMed Central

    Khalek, Imad A.; Blanks, Matthew G.; Merritt, Patrick M.; Zielinska, Barbara

    2015-01-01

    The U.S. Environmental Protection Agency (EPA) established strict regulations for highway diesel engine exhaust emissions of particulate matter (PM) and nitrogen oxides (NOx) to aid in meeting the National Ambient Air Quality Standards. The emission standards were phased in with stringent standards for 2007 model year (MY) heavy-duty engines (HDEs), and even more stringent NOX standards for 2010 and later model years. The Health Effects Institute, in cooperation with the Coordinating Research Council, funded by government and the private sector, designed and conducted a research program, the Advanced Collaborative Emission Study (ACES), with multiple objectives, including detailed characterization of the emissions from both 2007- and 2010-compliant engines. The results from emission testing of 2007-compliant engines have already been reported in a previous publication. This paper reports the emissions testing results for three heavy-duty 2010-compliant engines intended for on-highway use. These engines were equipped with an exhaust diesel oxidation catalyst (DOC), high-efficiency catalyzed diesel particle filter (DPF), urea-based selective catalytic reduction catalyst (SCR), and ammonia slip catalyst (AMOX), and were fueled with ultra-low-sulfur diesel fuel (~6.5 ppm sulfur). Average regulated and unregulated emissions of more than 780 chemical species were characterized in engine exhaust under transient engine operation using the Federal Test Procedure cycle and a 16-hr duty cycle representing a wide dynamic range of real-world engine operation. The 2010 engines’ regulated emissions of PM, NOX, nonmethane hydrocarbons, and carbon monoxide were all well below the EPA 2010 emission standards. Moreover, the unregulated emissions of polycyclic aromatic hydrocarbons (PAHs), nitroPAHs, hopanes and steranes, alcohols and organic acids, alkanes, carbonyls, dioxins and furans, inorganic ions, metals and elements, elemental carbon, and particle number were substantially (90 to >99%) lower than pre-2007-technology engine emissions, and also substantially (46 to >99%) lower than the 2007-technology engine emissions characterized in the previous study. Implications: Heavy-duty on-highway diesel engines equipped with DOC/DPF/SCR/AMOX and fueled with ultra-low-sulfur diesel fuel produced lower emissions than the stringent 2010 emission standards established by the U.S. Environmental Protection Agency. They also resulted in significant reductions in a wide range of unregulated toxic emission compounds relative to older technology engines. The increased use of newer technology (2010+) diesel engines in the on-highway sector and the adaptation of such technology by other sectors such as nonroad, displacing older, higher emissions engines, will have a positive impact on ambient levels of PM, NOx, and volatile organic compounds, in addition to many other toxic compounds. PMID:26037832

  8. Regulated and unregulated emissions from modern 2010 emissions-compliant heavy-duty on-highway diesel engines.

    PubMed

    Khalek, Imad A; Blanks, Matthew G; Merritt, Patrick M; Zielinska, Barbara

    2015-08-01

    The U.S. Environmental Protection Agency (EPA) established strict regulations for highway diesel engine exhaust emissions of particulate matter (PM) and nitrogen oxides (NOx) to aid in meeting the National Ambient Air Quality Standards. The emission standards were phased in with stringent standards for 2007 model year (MY) heavy-duty engines (HDEs), and even more stringent NOX standards for 2010 and later model years. The Health Effects Institute, in cooperation with the Coordinating Research Council, funded by government and the private sector, designed and conducted a research program, the Advanced Collaborative Emission Study (ACES), with multiple objectives, including detailed characterization of the emissions from both 2007- and 2010-compliant engines. The results from emission testing of 2007-compliant engines have already been reported in a previous publication. This paper reports the emissions testing results for three heavy-duty 2010-compliant engines intended for on-highway use. These engines were equipped with an exhaust diesel oxidation catalyst (DOC), high-efficiency catalyzed diesel particle filter (DPF), urea-based selective catalytic reduction catalyst (SCR), and ammonia slip catalyst (AMOX), and were fueled with ultra-low-sulfur diesel fuel (~6.5 ppm sulfur). Average regulated and unregulated emissions of more than 780 chemical species were characterized in engine exhaust under transient engine operation using the Federal Test Procedure cycle and a 16-hr duty cycle representing a wide dynamic range of real-world engine operation. The 2010 engines' regulated emissions of PM, NOX, nonmethane hydrocarbons, and carbon monoxide were all well below the EPA 2010 emission standards. Moreover, the unregulated emissions of polycyclic aromatic hydrocarbons (PAHs), nitroPAHs, hopanes and steranes, alcohols and organic acids, alkanes, carbonyls, dioxins and furans, inorganic ions, metals and elements, elemental carbon, and particle number were substantially (90 to >99%) lower than pre-2007-technology engine emissions, and also substantially (46 to >99%) lower than the 2007-technology engine emissions characterized in the previous study.

  9. Diesel Emission Control -- Sulfur Effects (DECSE) Program; Phase I Interim Data Report No. 2: NO{sub x} Adsorber Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DOE; ORNL; NREL

    1999-10-15

    The Diesel Emission Control-Sulfur Effects (DECSE) is a joint government/industry program to determine the impact of diesel fuel sulfur levels on emission control systems whose use could lower emissions of nitrogen oxides (NOx) and particulate matter (PM) from on-highway trucks in the 2002--2004 model years. Phase 1 of the program was developed with the following objectives in mind: (1) evaluate the effects of varying the level of sulfur content in the fuel on the emission reduction performance of four emission control technologies; and (2) measure and compare the effects of up to 250 hours of aging on selected devices formore » multiple levels of fuel sulfur content. This interim report discusses the results of the DECSE test program that demonstrates the potential of NOx adsorber catalyst technology across the range of diesel engine operation with a fuel economy penalty less than 4%.« less

  10. Lightweight diesel aircraft engines for general aviation

    NASA Technical Reports Server (NTRS)

    Berenyi, S. G.; Brouwers, A. P.

    1980-01-01

    A methodical design study was conducted to arrive at new diesel engine configurations and applicable advanced technologies. Two engines are discussed and the description of each engine includes concept drawings. A performance analysis, stress and weight prediction, and a cost study were also conducted. This information was then applied to two airplane concepts, a six-place twin and a four-place single engine aircraft. The aircraft study consisted of installation drawings, computer generated performance data, aircraft operating costs and drawings of the resulting airplanes. The performance data shows a vast improvement over current gasoline-powered aircraft. At the completion of this basic study, the program was expanded to evaluate a third engine configuration. This third engine incorporates the best features of the original two, and its design is currently in progress. Preliminary information on this engine is presented.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, D.R.

    The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1-3 trucks to realize a 35% fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7-8 trucks.

  12. Proceedings of the 1998 diesel engine emissions reduction workshop [DEER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This workshop was held July 6--9, 1998 in Castine, Maine. The purpose of this workshop was to provide a multidisciplinary forum for exchange of state-of-the-art information on reduction of diesel engine emissions. Attention was focused on the following: agency/organization concerns on engine emissions; diesel engine issues and challenges; health risks from diesel engines emissions; fuels and lubrication technologies; non-thermal plasma and urea after-treatment technologies; and diesel engine technologies for emission reduction 1 and 2.

  13. 40 CFR 86.1920 - What in-use testing information must I report to EPA?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... type or application (such as delivery, line haul, or dump truck). Also, identify the type of trailer... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Manufacturer-Run In-Use Testing Program for Heavy-Duty Diesel Engines § 86.1920 What in-use...

  14. 46 CFR 58.10-10 - Diesel engine installations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Diesel engine installations. 58.10-10 Section 58.10-10... MACHINERY AND RELATED SYSTEMS Internal Combustion Engine Installations § 58.10-10 Diesel engine installations. (a) The requirements of § 58.10-5 (a), (c), and (d) shall apply to diesel engine installations...

  15. 46 CFR 58.10-10 - Diesel engine installations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Diesel engine installations. 58.10-10 Section 58.10-10... MACHINERY AND RELATED SYSTEMS Internal Combustion Engine Installations § 58.10-10 Diesel engine installations. (a) The requirements of § 58.10-5 (a), (c), and (d) shall apply to diesel engine installations...

  16. 46 CFR 58.10-10 - Diesel engine installations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Diesel engine installations. 58.10-10 Section 58.10-10... MACHINERY AND RELATED SYSTEMS Internal Combustion Engine Installations § 58.10-10 Diesel engine installations. (a) The requirements of § 58.10-5 (a), (c), and (d) shall apply to diesel engine installations...

  17. 46 CFR 58.10-10 - Diesel engine installations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Diesel engine installations. 58.10-10 Section 58.10-10... MACHINERY AND RELATED SYSTEMS Internal Combustion Engine Installations § 58.10-10 Diesel engine installations. (a) The requirements of § 58.10-5 (a), (c), and (d) shall apply to diesel engine installations...

  18. Development of high temperature liquid lubricants for low-heat rejection: Heavy duty diesel engines

    NASA Technical Reports Server (NTRS)

    Wiczynski, P. D.; Marolewski, T. A.

    1993-01-01

    The objective of this DOE program was to develop a liquid lubricant that will allow advanced diesel engines to operate at top ring reversal temperatures approaching 500 C and sump temperatures approaching 250 C. The lubricants developed demonstrated at marginal increase in sump temperature capability, approximately 15 C, and an increase in top ring reversal temperature. A 15W-40 synthetic lubricant designated HTL-4 was the best lubricant developed in terms of stability, wear control, deposit control dispersancy, and particulate emissions.

  19. 46 CFR 182.465 - Ventilation of spaces containing diesel machinery.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Ventilation of spaces containing diesel machinery. 182... Ventilation of spaces containing diesel machinery. (a) A space containing diesel machinery must be fitted with... operation of main engines and auxiliary engines. (b) Air-cooled propulsion and auxiliary diesel engines...

  20. 40 CFR 86.347-79 - Alternative calculations for diesel engines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Alternative calculations for diesel... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.347-79 Alternative calculations for diesel engines. (a) This section applies to Diesel...

  1. 46 CFR 182.465 - Ventilation of spaces containing diesel machinery.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Ventilation of spaces containing diesel machinery. 182... Ventilation of spaces containing diesel machinery. (a) A space containing diesel machinery must be fitted with... operation of main engines and auxiliary engines. (b) Air-cooled propulsion and auxiliary diesel engines...

  2. 40 CFR 86.347-79 - Alternative calculations for diesel engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Alternative calculations for diesel... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.347-79 Alternative calculations for diesel engines. (a) This section applies to Diesel...

  3. Volatile organic compounds and particulates as components of diesel engine exhaust gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulz, H.; Bandeira de Melo, G.; Ousmanov, F.

    1999-07-01

    Volatile organic compounds (VOC) and soot particles have been determined in a Diesel`s exhaust gas. A new sampling method allowed the measurement of emissions of organic compounds (C{sub 1} to C{sub 20}) in a gas chromatogram at a detection limit of ca. 0.2 mg/m{sup 3}. Particles were collected with a filter bed of ceramic particles and characterized by temperature programmed desorption (TPD) and oxidation (TPO). Engine runs were always performed at a fixed and constant air to fuel equivalence ratio ({lambda}) and with a constant volumetric efficiency, because these parameters strongly influenced the emissions in terms of both composition andmore » order of magnitude. The effective combustion temperature again strongly governed the nature of the emissions. Model fuels, composed of individual paraffins and aromatics and additions of sulfur compounds and an organic nitrate (for cetane number enhancement) were used. The results contribute to the understanding of the origin of specific emissions from Diesel engines. These newly developed methods are recommended for further application.« less

  4. Verification of a level-3 diesel emissions control strategy for transport refrigeration units

    NASA Astrophysics Data System (ADS)

    Shewalla, Umesh

    Transport Refrigeration Units (TRUs) are refrigeration systems used to control the environment of temperature sensitive products while they are being transported from one place to another in trucks, trailers or shipping containers. The TRUs typically use an internal combustion engine to power the compressor of the refrigeration unit. In the United States TRUs are most commonly powered by diesel engines which vary from 9 to 40 horsepower. TRUs are capable of both heating and cooling. The TRU engines are relatively small, inexpensive and do not use emissions reduction techniques such as exhaust gas recirculation (EGR). A significant number of these engines operate in highly populated areas like distribution centers, truck stops, and other facilities which make them one of the potential causes for health risks to the people who live and work nearby. Diesel particulate matter (PM) is known for its adverse effects on both human beings and the environment. Considering these effects, regulatory bodies have imposed limitations on the PM emissions from a TRU engine. The objective of this study was to measure and analyze the regulated emissions from a TRU engine under both engine out and particulate filter system out conditions during pre-durability (when the filter system was new) and post-durability test (after the filter system was subjected to 1000 hours in-field trial). The verification program was performed by the Center for Alternative Fuel, Engines and Emissions (CAFEE) at West Virginia University (WVU). In this program, a catalyzed silicon carbide (SiC) diesel particulate filter (DPF) was evaluated and verified as a Level-3 Verified Diesel Emissions Control Strategy (VDECS) (. 85% PM reduction) under California Air Resources Board (CARB) regulations 2702 [1]. The emissions result showed that the filter system reduced diesel PM by a percentage of 96 +/- 1 over ISO 8178-C1 [2] cycle and 92 +/- 5 over EPA TRU [3] cycle, qualifying as a Level 3 VDECS. The percentage emission reduction in hydrocarbons (HC) and carbon monoxide (CO) was 76.8 +/- 4.8 and 72.2 +/- 5.2, respectively over both ISO 8178-C1 [2] and EPA TRU [3] cycles. It was also observed that there was 3.6 +/- 2.9 and 7.2 +/- 3.1 percentage reduction in oxides of nitrogen (NOx) and nitric oxide (NO), respectively with a slight increase in fuel consumption and carbon dioxide as a consequence of increased exhaust back pressure. It is required by the CARB regulations that the diesel emissions control strategy must not increase emissions of NO2 by more than 20% by mass over the baseline value. In this study, it was observed that the total increase in NO2 level was 5.6 +/- 2.6 percent, well within the limit specified by the CARB.

  5. Performance of diesel engine using diesel B3 mixed with crude palm oil.

    PubMed

    Namliwan, Nattapong; Wongwuttanasatian, Tanakorn

    2014-01-01

    The objective of this study was to test the performance of diesel engine using diesel B3 mixed with crude palm oil in ratios of 95 : 5, 90 : 10, and 85 : 15, respectively, and to compare the results with diesel B3. According to the tests, they showed that the physical properties of the mixed fuel in the ratio of 95 : 5 were closest to those of diesel B3. The performance of the diesel engine that used mixed fuels had 5-17% lower torque and power than that of diesel B3. The specific fuel consumption of mixed fuels was 7-33% higher than using diesel B3. The components of gas emissions by using mixed fuel had 1.6-52% fewer amount of carbon monoxide (CO), carbon dioxide (CO2), sulfur dioxide (SO2), and oxygen (O2) than those of diesel B3. On the other hand, nitric oxide (NO) and nitrogen oxides (NO X ) emissions when using mixed fuels were 10-39% higher than diesel B3. By comparing the physical properties, the performance of the engine, and the amount of gas emissions of mixed fuel, we found out that the 95 : 5 ratio by volume was a suitable ratio for agricultural diesel engine (low-speed diesel engine).

  6. 30 CFR 250.610 - Diesel engine air intakes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Diesel engine air intakes. 250.610 Section 250.610 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR... Operations § 250.610 Diesel engine air intakes. No later than May 31, 1989, diesel engine air intakes shall...

  7. 40 CFR 86.313-79 - Air flow measurement specifications; diesel engines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...; diesel engines. 86.313-79 Section 86.313-79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.313-79 Air flow measurement specifications; diesel engines. (a) The air flow measurement...

  8. 40 CFR 86.313-79 - Air flow measurement specifications; diesel engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...; diesel engines. 86.313-79 Section 86.313-79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.313-79 Air flow measurement specifications; diesel engines. (a) The air flow measurement...

  9. 30 CFR 250.510 - Diesel engine air intakes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Diesel engine air intakes. 250.510 Section 250.510 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF... Well-Completion Operations § 250.510 Diesel engine air intakes. Diesel engine air intakes must be...

  10. 30 CFR 250.510 - Diesel engine air intakes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Diesel engine air intakes. 250.510 Section 250.510 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR... Operations § 250.510 Diesel engine air intakes. Diesel engine air intakes must be equipped with a device to...

  11. 30 CFR 250.510 - Diesel engine air intakes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Diesel engine air intakes. 250.510 Section 250.510 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR... Operations § 250.510 Diesel engine air intakes. Diesel engine air intakes must be equipped with a device to...

  12. 30 CFR 250.510 - Diesel engine air intakes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Diesel engine air intakes. 250.510 Section 250.510 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR... Operations § 250.510 Diesel engine air intakes. Diesel engine air intakes must be equipped with a device to...

  13. 40 CFR 86.313-79 - Air flow measurement specifications; diesel engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...; diesel engines. 86.313-79 Section 86.313-79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.313-79 Air flow measurement specifications; diesel engines. (a) The air flow measurement...

  14. 40 CFR 86.313-79 - Air flow measurement specifications; diesel engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...; diesel engines. 86.313-79 Section 86.313-79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.313-79 Air flow measurement specifications; diesel engines. (a) The air flow measurement...

  15. Study of alcohol fuel of butanol and ethanol effect on the compression ignition (CI) engine performance, combustion and emission characteristic

    NASA Astrophysics Data System (ADS)

    Aziz, M. A.; Yusop, A. F.; Mat Yasin, M. H.; Hamidi, M. A.; Alias, A.; Hussin, H.; Hamri, S.

    2017-10-01

    Diesel engine which is one of the larger contributors to total consumption for petroleum is an attractive power unit used widely in many fields. However, diesel engines are among the main contributors to air pollutions for the large amount of emissions, such as CO, CO2 and NOx lead to an adverse effect on human health. Many researches have been done to find alternative fuels that are clean and efficient. Biodiesel is preferred as an alternative source for diesel engine which produces lower emission of pollutants. This study has focused on the evaluation of diesel and alcohol-diesel fuel properties and also the performance, combustion and exhaust emission from diesel engine fuelled with diesel and alcohol. Butanol and ethanol is blend with diesel fuel at 1:9 ratio. There are three test fuel that is tested which Diesel (100% diesel), D90BU10 (10% Butanol and 90% diesel) and D90E10 (10% Ethanol and 90% diesel). The comparison between diesel and alcohol-diesel blend has been made in terms of fuel properties characterization, engine performance such as brake power (BP) and brake specific fuel consumption (BSFC) also the in cylinder maximum pressure characteristic. Thus, exhaust gas emission of CO, CO2, NOx and O2 emission also has been observed at constant load of 50% but in different operating engine speed (1100 rpm, 1400 rpm, 1700 rpm, 2000 rpm and 2300 rpm). The results show the addition of 10% of each butanol and ethanol to diesel fuel had decreased the fuel density about 0.3% to 0.5% compared to mineral diesel. In addition, viscosity and energy content are also decrease. The addition of 10% butanol had improved the fuel cetane number however the ethanol blends react differently. In term of engine performance, as the engine speed increased, BP output also increase respectively. Hence, the alcohol blends fuel generates lower BP compared to diesel, plus BSFC for all test fuel shows decreasing trend at low and medium speed, however increased gradually at higher engine speed. Thus, D90BU10 had higher BSFC compared to mineral diesel and D90E10. In general, the addition of alcohol blend in diesel fuel had increase the BSFC. In term of in cylinder pressure, as the engine speed is increased, the crank angle noted to move away from TDC for all test fuel. The maximum cylinder pressure increased at low and medium speed, but decrease in higher engine speed. The addition of 10% of butanol and ethanol in the mineral diesel decreased the maximum cylinder pressure. Meanwhile, O2 emission of D90E10 is higher compared to D90BU10 due to higher oxygen content found in ethanol. The CO2 emission of D90BU10 recorded higher compared to mineral diesel due to the high oxygen contents in the alcohol. CO emission of alcohol blend on the other hand had lower emission at higher engine speed compared to mineral diesel. As engine speed is increased, NOx emission of mineral diesel and D90E10 had decreased gradually. However, D90BU10 had increased of NOx emission at lower to medium engine speed, than gradually decreased at higher engine speed.

  16. Advanced vehicle emission reduction sensor program (FED-SAVER).

    DOT National Transportation Integrated Search

    2008-09-01

    The FED-SAVER program refined and continued the development of an in-cylinder, high temperature pressure sensor by demonstrating that it can be successfully inserted into diesel engines for routine feedback control of each individual cylinder. There ...

  17. A probabilistic maintenance model for diesel engines

    NASA Astrophysics Data System (ADS)

    Pathirana, Shan; Abeygunawardane, Saranga Kumudu

    2018-02-01

    In this paper, a probabilistic maintenance model is developed for inspection based preventive maintenance of diesel engines based on the practical model concepts discussed in the literature. Developed model is solved using real data obtained from inspection and maintenance histories of diesel engines and experts' views. Reliability indices and costs were calculated for the present maintenance policy of diesel engines. A sensitivity analysis is conducted to observe the effect of inspection based preventive maintenance on the life cycle cost of diesel engines.

  18. The Australian Work Exposures Study: prevalence of occupational exposure to diesel engine exhaust.

    PubMed

    Peters, Susan; Carey, Renee N; Driscoll, Timothy R; Glass, Deborah C; Benke, Geza; Reid, Alison; Fritschi, Lin

    2015-06-01

    Diesel engines are widely used in occupational settings. Diesel exhaust has been classified as a lung carcinogen, but data on number of workers exposed to different levels of diesel exhaust are not available in Australia. The aim of this study was to estimate the current prevalence of exposure to diesel engine exhaust in Australian workplaces. A cross-sectional survey of Australian males and females (18-65 years old) in current paid employment was undertaken. Information about the respondents' current job and various demographic factors was collected in a telephone interview using the web-based tool OccIDEAS. Semi-quantitative occupational exposure levels to diesel exhaust were assigned using programmed decision rules and numbers of workers exposed in Australia in 2011 were estimated. We defined substantial exposure as exposed at a medium or high level, for at least 5h per week. Substantial occupational exposure to diesel exhaust was experienced by 13.4% of the respondents in their current job. Exposure prevalence varied across states, ranging from 6.4% in the Australian Capital Territory to 17.0% in Western Australia. Exposures occurred mainly in the agricultural, mining, transport and construction industries, and among mechanics. Men (20.4%) were more often exposed than women (4.7%). Extrapolation to the total working population indicated that 13.8% (95% confidence interval 10.0-20.4) of the 2011 Australian workforce were estimated to be substantially exposed to diesel exhaust, and 1.8% of the workers were estimated to experience high levels of exposures in their current job. About 1.2 million Australian workers were estimated to have been exposed to diesel exhaust in their workplace in 2011. This is the first study to describe the prevalence of occupational diesel exhaust exposure in Australia and will enable estimation of the number of lung cancers attributable to diesel exhaust exposure in the workplace. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  19. 75 FR 3183 - Approval and Promulgation of Air Quality Implementation Plan: Kentucky; Approval Section 110(a)(1...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-20

    ...) Federal motor vehicle control program; (2) fleet turnover of automobiles; (3) low reid vapor pressure of... vehicles standard; (6) large nonroad diesel engines rule; (7) nonroad spark ignition engines and recreational engines standard; (8) point source emission reductions; (9) Air Products and Chemicals -21-157...

  20. Performance Characteristics of Automotive Engines in the United States, Third Series - Report No. 6, 1978 Volkswagen Diesel, 90 CID (1.5 Liter), F.I.

    DOT National Transportation Integrated Search

    1979-02-01

    Experimental data were obtained in dynamometer tests of a 1978 VW 90 CID engine to determine fuel consumption and emissions (hydrocarbon, carbon monoxide, oxides of nitrogen) at steady-state engine operating modes. The objective of the program is to ...

  1. 40 CFR 86.336-79 - Diesel engine test cycle.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Diesel engine test cycle. 86.336-79... New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.336-79 Diesel engine test cycle. (a) The following 13-mode cycle shall be followed in dynamometer operation...

  2. 30 CFR 250.510 - Diesel engine air intakes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Diesel engine air intakes. 250.510 Section 250.510 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND... engine air intakes. Diesel engine air intakes must be equipped with a device to shut down the diesel...

  3. 40 CFR 86.096-2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... first. (4) For a diesel heavy-duty engine family: (i) For light heavy-duty diesel engines, period of use of 8 years or 110,000 miles, whichever occurs first. (ii) For medium heavy-duty diesel engines, a... paragraph (4)(iv) of this definition. (iv) For heavy heavy-duty diesel engines used in urban buses, for the...

  4. 40 CFR 86.096-2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... first. (4) For a diesel heavy-duty engine family: (i) For light heavy-duty diesel engines, period of use of 8 years or 110,000 miles, whichever occurs first. (ii) For medium heavy-duty diesel engines, a... paragraph (4)(iv) of this definition. (iv) For heavy heavy-duty diesel engines used in urban buses, for the...

  5. 40 CFR 86.096-2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... first. (4) For a diesel heavy-duty engine family: (i) For light heavy-duty diesel engines, period of use of 8 years or 110,000 miles, whichever occurs first. (ii) For medium heavy-duty diesel engines, a... paragraph (4)(iv) of this definition. (iv) For heavy heavy-duty diesel engines used in urban buses, for the...

  6. Diesel Engine Valve Clearance Fault Diagnosis Based on Features Extraction Techniques and FastICA-SVM

    NASA Astrophysics Data System (ADS)

    Jing, Ya-Bing; Liu, Chang-Wen; Bi, Feng-Rong; Bi, Xiao-Yang; Wang, Xia; Shao, Kang

    2017-07-01

    Numerous vibration-based techniques are rarely used in diesel engines fault diagnosis in a direct way, due to the surface vibration signals of diesel engines with the complex non-stationary and nonlinear time-varying features. To investigate the fault diagnosis of diesel engines, fractal correlation dimension, wavelet energy and entropy as features reflecting the diesel engine fault fractal and energy characteristics are extracted from the decomposed signals through analyzing vibration acceleration signals derived from the cylinder head in seven different states of valve train. An intelligent fault detector FastICA-SVM is applied for diesel engine fault diagnosis and classification. The results demonstrate that FastICA-SVM achieves higher classification accuracy and makes better generalization performance in small samples recognition. Besides, the fractal correlation dimension and wavelet energy and entropy as the special features of diesel engine vibration signal are considered as input vectors of classifier FastICA-SVM and could produce the excellent classification results. The proposed methodology improves the accuracy of feature extraction and the fault diagnosis of diesel engines.

  7. 40 CFR 80.522 - May used motor oil be dispensed into diesel motor vehicles or nonroad diesel engines?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... diesel motor vehicles or nonroad diesel engines? 80.522 Section 80.522 Protection of Environment... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Motor Vehicle Diesel Fuel Standards and Requirements § 80.522 May used motor oil be dispensed into diesel motor...

  8. 40 CFR 80.522 - May used motor oil be dispensed into diesel motor vehicles or nonroad diesel engines?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... diesel motor vehicles or nonroad diesel engines? 80.522 Section 80.522 Protection of Environment... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Motor Vehicle Diesel Fuel Standards and Requirements § 80.522 May used motor oil be dispensed into diesel motor...

  9. Petroleum Diesel Fuel and Linseed Oil Mixtures as Engine Fuels

    NASA Astrophysics Data System (ADS)

    Markov, V. A.; Kamaltdinov, V. G.; Savastenko, A. A.

    2018-01-01

    The actual problem is the use of alternative biofuels in automotive diesel engines. Insufficiently studied are the indicators of toxicity of exhaust gases of these engines operating on biofuel. The aim of the study is to identify indicators of the toxicity of exhaust gases when using of petroleum diesel fuel and linseed oil mixtures as a fuel for automotive diesel engines. Physical and chemical properties of linseed oil and its mixtures with petroleum diesel fuel are considered. Experimental researches of D-245.12C diesel are carried out on mixtures of diesel fuel and corn oil with a different composition. An opportunity of exhaust toxicity indexes improvement using these mixtures as a fuel for automobiles engine is shown.

  10. AUTOMOTIVE DIESEL MAINTENANCE L. UNIT XII, PART I--MAINTAINING THE FUEL SYSTEM (PART II), CUMMINS DIESEL ENGINE, PART II--UNIT INSTALLATION (ENGINE).

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE FUEL SYSTEM AND THE PROCEDURES FOR DIESEL ENGINE INSTALLATION. TOPICS ARE FUEL FLOW CHARACTERISTICS, PTG FUEL PUMP, PREPARATION FOR INSTALLATION, AND INSTALLING ENGINE. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH…

  11. Evaluation of a disposable diesel exhaust filter for permissible mining machines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ambs, J.L.; Cantrell, B.K.; Watts, W.F.

    1994-01-01

    The US Bureau of Mines (USBM) Diesel Research Program emphasizes the development and evaluation of emission control devices to reduce exposure of miners to diesel exhaust pollutants. Studies by the USBM have shown that diesel exhaust aerosol (DEA) contributes a substantial portion of the respirable aerosol in underground coal mines using diesel equipment not equipped with emission controls. The USBM and the Donaldson Co., Inc., Minneapolis, MN, have developed a low-temperature, disposable diesel exhaust filter (DDEF) for use on permissible diesel haulage vehicles equipped with waterbath exhaust conditioners. These were evaluated in three underground mines to determine their effectiveness inmore » reducing DEA concentrations. The DDEF reduced DEA concentrations from 70 to 90% at these mines. The usable life of the filter ranged from 10 to 32 h, depending on factors that affect DEA output, such as mine altitude, engine type, and duty-cycle. Cost per filter is approximately $40.« less

  12. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XI, PART I--MAINTAINING THE FUEL SYSTEM (PART I), CUMMINS DIESEL ENGINES, PART II--UNIT REPLACEMENT (ENGINE).

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF DIFFERENCES BETWEEN TWO AND FOUR CYCLE ENGINES, THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE FUEL SYSTEM, AND THE PROCEDURES FOR DIESEL ENGINE REMOVAL. TOPICS ARE (1) REVIEW OF TWO CYCLE AND FOUR CYCLE CONCEPT, (2) SOME BASIC CHARACTERISTICS OF FOUR CYCLE ENGINES,…

  13. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XIX, I--ENGINE TUNE-UP--CUMMINS DIESEL ENGINE, II--FRONT END SUSPENSION AND AXLES.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF DIESEL ENGINE TUNE-UP PROCEDURES AND THE DESIGN OF FRONT END SUSPENSION AND AXLES USED ON DIESEL ENGINE EQUIPMENT. TOPICS ARE (1) PRE-TUNE-UP CHECKS, (2) TIMING THE ENGINE, (3) INJECTOR PLUNGER AND VALVE ADJUSTMENTS, (4) FUEL PUMP ADJUSTMENTS ON THE ENGINE (PTR AND PTG),…

  14. Performance of Diesel Engine Using Diesel B3 Mixed with Crude Palm Oil

    PubMed Central

    Namliwan, Nattapong; Wongwuttanasatian, Tanakorn

    2014-01-01

    The objective of this study was to test the performance of diesel engine using diesel B3 mixed with crude palm oil in ratios of 95 : 5, 90 : 10, and 85 : 15, respectively, and to compare the results with diesel B3. According to the tests, they showed that the physical properties of the mixed fuel in the ratio of 95 : 5 were closest to those of diesel B3. The performance of the diesel engine that used mixed fuels had 5–17% lower torque and power than that of diesel B3. The specific fuel consumption of mixed fuels was 7–33% higher than using diesel B3. The components of gas emissions by using mixed fuel had 1.6–52% fewer amount of carbon monoxide (CO), carbon dioxide (CO2), sulfur dioxide (SO2), and oxygen (O2) than those of diesel B3. On the other hand, nitric oxide (NO) and nitrogen oxides (NOX) emissions when using mixed fuels were 10–39% higher than diesel B3. By comparing the physical properties, the performance of the engine, and the amount of gas emissions of mixed fuel, we found out that the 95 : 5 ratio by volume was a suitable ratio for agricultural diesel engine (low-speed diesel engine). PMID:24688402

  15. Adaptive neuro-fuzzy inference system (ANFIS) to predict CI engine parameters fueled with nano-particles additive to diesel fuel

    NASA Astrophysics Data System (ADS)

    Ghanbari, M.; Najafi, G.; Ghobadian, B.; Mamat, R.; Noor, M. M.; Moosavian, A.

    2015-12-01

    This paper studies the use of adaptive neuro-fuzzy inference system (ANFIS) to predict the performance parameters and exhaust emissions of a diesel engine operating on nanodiesel blended fuels. In order to predict the engine parameters, the whole experimental data were randomly divided into training and testing data. For ANFIS modelling, Gaussian curve membership function (gaussmf) and 200 training epochs (iteration) were found to be optimum choices for training process. The results demonstrate that ANFIS is capable of predicting the diesel engine performance and emissions. In the experimental step, Carbon nano tubes (CNT) (40, 80 and 120 ppm) and nano silver particles (40, 80 and 120 ppm) with nanostructure were prepared and added as additive to the diesel fuel. Six cylinders, four-stroke diesel engine was fuelled with these new blended fuels and operated at different engine speeds. Experimental test results indicated the fact that adding nano particles to diesel fuel, increased diesel engine power and torque output. For nano-diesel it was found that the brake specific fuel consumption (bsfc) was decreased compared to the net diesel fuel. The results proved that with increase of nano particles concentrations (from 40 ppm to 120 ppm) in diesel fuel, CO2 emission increased. CO emission in diesel fuel with nano-particles was lower significantly compared to pure diesel fuel. UHC emission with silver nano-diesel blended fuel decreased while with fuels that contains CNT nano particles increased. The trend of NOx emission was inverse compared to the UHC emission. With adding nano particles to the blended fuels, NOx increased compared to the net diesel fuel. The tests revealed that silver & CNT nano particles can be used as additive in diesel fuel to improve combustion of the fuel and reduce the exhaust emissions significantly.

  16. [Preparation of ethanol-diesel fuel blends and exhausts emission characteristics in diesel engine].

    PubMed

    Zhang, Runduo; He, Hong; Zhang, Changbin; Shi, Xiaoyan

    2003-07-01

    The technology that diesel oil is partly substituted by ethanol can reduce diesel engine exhausts emission, especially fuel soot. This research is concentrated on preparation of ethanol-diesel blend fuel and exhausts emission characteristics using diesel engine bench. Absolute ethanol can dissolve into diesel fuel at an arbitrary ratio. However, a trace of water (0.2%) addition can lead to the phase separation of blends. Organic additive synthesized during this research can develop the ability of resistance to water and maintain the stability of ethanol-diesel-trace amounts of water system. The effects of 10%, 20%, and 30% ethanol-diesel fuel blends on exhausts emission, were compared with that of diesel fuel in direct injection (DI) diesel engine. The optimum ethanol percentage for ethanol-diesel fuel blends was 20%. Using 20% ethanol-diesel fuel blend with 2% additive of the total volume, bench diesel engine showed a large amount decrease of exhaust gas, e.g. 55% of Bosch smoke number, 70% of HC emission, and 45% of CO emission at 13 kW and 1540 r/min. Without the addition of additive, the blend of ethanol produced new organic compounds such as ethanol and acetaldehyde in tail gas. However, the addition of additive obviously reduced the emission of ethanol and acetaldehyde.

  17. 40 CFR 80.572 - What labeling requirements apply to retailers and wholesale purchaser-consumers of Motor Vehicle...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... engines. Recommended for use in all diesel vehicles and engines. (b) From June 1, 2010, through September... and later nonroad diesel engines. Recommended for use in all other non-highway diesel engines. WARNING... retailers and wholesale purchaser-consumers of Motor Vehicle, NR, LM and NRLM diesel fuel and heating oil...

  18. 40 CFR 80.572 - What labeling requirements apply to retailers and wholesale purchaser-consumers of Motor Vehicle...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... engines. Recommended for use in all diesel vehicles and engines. (b) From June 1, 2010, through September... and later nonroad diesel engines. Recommended for use in all other non-highway diesel engines. WARNING... retailers and wholesale purchaser-consumers of Motor Vehicle, NR, LM and NRLM diesel fuel and heating oil...

  19. Investigation of diesel-powered vehicle emissions. Part VII. Final report Jun 74--Nov 76

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Springer, K.J.

    Five light duty diesel vehicles and five heavy duty diesel engines were tested over various test cycles for both regulated and unregulated emissions. A Mercedes 220 D, Mercedes 240 D, Mercedes 300 D, Peugeot 2040, and an International Harvester pick-up truck with a Perkins 6-247 engine were the light duty diesel vehicles tested. The heavy duty diesels included a Detroit Diesel 6V-71 city bus engine with two injector designs, a Cummins NTC-290 truck engine operated with and without variable timing, and a Detroit Diesel 8V-71TA truck engine. Emissions measured included HC, CO, NOx, CO2, smoke, aldehydes, exhaust odor, benzo (a)more » pyrene, sulfate, sulfur dioxide, and particulate mass.« less

  20. Overview of thermal barrier coatings in diesel engines

    NASA Technical Reports Server (NTRS)

    Yonushonis, Thomas M.

    1995-01-01

    An understanding of delamination mechanisms in thermal barrier coatings has been developed for diesel engine applications through rig tests, structural analysis modeling, nondestructive evaluation, and engine evaluation of various thermal barrier coatings. This knowledge has resulted in improved thermal barrier coatings which survive abusive cyclic fatigue tests in high output diesel engines. Although much conflicting literature now exists regarding the impact of thermal barrier coatings on engine performance and fuel consumption, the changes in fuel consumption appear to be less than a few percent and can be negative for state-of-the-art diesel engines. The ability of the thermal barrier coating to improve fuel economy tends to be dependent on a number of factors including the fuel injection system, combustion chamber design, and the initial engine fuel economy. Limited investigations on state-of-the-art diesel engines have indicated that the surface connected porosity and coating surface roughness may influence engine fuel economy. Current research efforts on thermal barrier coatings are primarily directed at reducing in-cylinder heat rejection, thermal fatigue protection of underlying metal surfaces and a possible reduction in diesel engine emissions. Significant efforts are still required to improve the plasma spray processing capability and the economics for complex geometry diesel engine components.

  1. Diesel Technology: Engines. [Teacher and Student Editions.

    ERIC Educational Resources Information Center

    Barbieri, Dave; Miller, Roger; Kellum, Mary

    Competency-based teacher and student materials on diesel engines are provided for a diesel technology curriculum. Seventeen units of instruction cover the following topics: introduction to engine principles and procedures; engine systems and components; fuel systems; engine diagnosis and maintenance. The materials are based on the…

  2. Tailpipe emissions and engine performance of a light-duty diesel engine operating on petro- and bio-diesel fuel blends.

    DOT National Transportation Integrated Search

    2014-06-01

    This report summarizes the experimental apparatus developed in the Transportation Air Quality Laboratory (TAQ Lab) at the University of Vermont to compare light-duty diesel engine performance and exhaust emissions when operating on petroleum diesel (...

  3. Overview of thermal barrier coatings in diesel engines

    NASA Technical Reports Server (NTRS)

    Yonushonis, T. M.

    1995-01-01

    An understanding of delamination mechanisms in thermal barrier coatings has been developed for diesel applications through nondestructive evaluation, structural analysis modeling and engine evaluation of various thermal barrier coatings. This knowledge has resulted in improved thermal barrier coatings which survive abusive cyclic fatigue tests in high output diesel engines. Significant efforts are still required to improve the plasma spray processing capability and the economics for complex geometry diesel engine components. Data obtained from advanced diesel engines on the effect of thermal barrier coatings on engine fuel economy and emission has not been encouraging. Although the underlying metal component temperatures have been reduced through the use of thermal barrier coating, engine efficiency and emission trends have not been promising.

  4. Effect ofHydrogen Use on Diesel Engine Performance

    NASA Astrophysics Data System (ADS)

    Ceraat, A.; Pana, C.; Negurescu, N.; Nutu, C.; Mirica, I.; Fuiorescu, D.

    2016-11-01

    Necessity of pollutant emissions decreasing, a great interest aspect discussed at 2015 Paris Climate Conference, highlights the necessity of alternative fuels use at diesel engines. Hydrogen is considered a future fuel for the automotive industry due to its properties which define it as the cleanest fuel and due to the production unlimited sources. The use of hydrogen as fuel for diesel engines has a higher degree of complexity because of some hydrogen particularities which lead to specific issues of the hydrogen use at diesel engine: tendency of uncontrolled ignition with inlet backfire, in-cylinder combustion with higher heat release rates and with high NOx level, storage difficulties. Because hydrogen storing on vehicle board implies important difficulties in terms of safety and automotive range, the partial substitution of diesel fuel by hydrogen injected into the inlet manifold represents the most efficient method. The paper presents the results of the experimental researches carried on a truck diesel engine fuelled with diesel fuel and hydrogen, in-cylinder phenomena's study showing the influence of some parameters on combustion, engine performance and pollutant emissions. The paper novelty is defined by the hydrogen fuelling method applied to diesel engine and the efficient control of the engine running.

  5. Combustion performance and exhaust emissions fuelled with non-surfactant water-in-diesel emulsion fuel made from different water sources.

    PubMed

    Ahmad, Mohamad Azrin; Yahya, Wira Jazair; Ithnin, Ahmad Muhsin; Hasannuddin, A K; Bakar, Muhammad Aiman Abu; Fatah, Abdul Yasser Abd; Sidik, Nor Azwadi Che; Noge, Hirofumi

    2018-06-14

    Non-surfactant water-in-diesel emulsion fuel (NWD) is an alternative fuel that has the potential to reduce major exhaust emissions while simultaneously improving the combustion performance of a diesel engine. NWD comprises of diesel fuel and water (about 5% in volume) without any additional surfactants. This emulsion fuel is produced through an in-line mixing system that is installed very close to the diesel engine. This study focuses mainly on the performance and emission of diesel engine fuelled with NWD made from different water sources. The engine used in this study is a direct injection diesel engine with loads varying from 1 to 4 kW. The result shows that NWD made from tap water helps the engine to reduce nitrogen oxide (NO x ) by 32%. Rainwater reduced it by 29% and seawater by 19%. In addition, all NWDs show significant improvements in engine performance as compared to diesel fuel, especially in the specific fuel consumption that indicates an average reduction of 6%. It is observed that all NWDs show compelling positive effects on engine performance, which is caused by the optimum water droplet size inside NWD.

  6. Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stang, John H.

    2005-12-19

    Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS -- NOx = 0.50 g/mi; PM = 0.05 g/mi; CO = 2.8 g/mi; and NMHC = 0.07 g/mi. California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lowermore » Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NOx = 0.07 g/mi; and PM = 0.01 g/mi. (2) FUEL ECONOMY -- The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT -- Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full chassis dynamometer FTP-75 test procedure that allowed compliance with the Tier 2 Interim Bin 10 Standards and would apply to vehicles in MY2004 through MY2007 timeframe. In further technology development with active aftertreatment management, Cummins has been able to report that the emissions goals for the Tier 2 Bin 5 standards were met on an engine running the full FTP-75 test procedure. The fuel economy on the chassis tests was measured at over 59 percent MPG improvement over the gasoline engines that are offered in typical SUVs and light trucks. The above demonstration used only in-cylinder fueling for management of the aftertreatment system.« less

  7. Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John H. Stang

    2005-12-31

    Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS--NO{sub x} = 0.50 g/mi; PM = 0.05 g/mi; CO = 2.8 g/mi; and NMHC = 0.07 g/mi. California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tiermore » 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NO{sub x} = 0.07 g/mi; and PM = 0.01 g/mi. (2) FUEL ECONOMY--The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT--Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full chassis dynamometer FTP-75 test procedure that allowed compliance with the Tier 2 Interim Bin 10 Standards and would apply to vehicles in MY2004 through MY2007 timeframe. In further technology development with active aftertreatment management, Cummins has been able to report that the emissions goals for the Tier 2 Bin 5 standards were met on an engine running the full FTP-75 test procedure. The fuel economy on the chassis tests was measured at over 59 percent MPG improvement over the gasoline engines that are offered in typical SUVs and light trucks. The above demonstration used only in-cylinder fueling for management of the aftertreatment system.« less

  8. Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stang, John H.

    1997-12-01

    Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS NOx = 0.50 g/mi PM = 0.05 g/mi CO = 2.8 g/mi NMHC = 0.07 g/mi California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2more » regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NOx = 0.07 g/mi PM = 0.01 g/mi (2) FUEL ECONOMY The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG improvement, even with the emissions goal revisions. (3) COOPERATIVE DEVELOPMENT Regular design reviews of the engine program will be conducted with a vehicle manufacturer to insure that the concepts and design specifics are commercially feasible. (DaimlerChrysler has provided Cummins with this design review input.) Cummins has essentially completed a demonstration of proof-of-principle for a diesel engine platform using advanced combustion and fuel system technologies. Cummins reported very early progress in this project, evidence that new diesel engine technology had been developed that demonstrated the feasibility of the above emissions goals. Emissions levels of NOx = 0.4 g/mi and PM = 0.06 g/mi were demonstrated for a 5250 lb. test weight vehicle with passive aftertreatment only. These results were achieved using the full chassis dynamometer FTP-75 test procedure that allowed compliance with the Tier 2 Interim Bin 10 Standards and would apply to vehicles in MY2004 through MY2007 timeframe. In further technology development with active aftertreatment management, Cummins has been able to report that the emissions goals for the Tier 2 Bin 5 standards were met on an engine running the full FTP-75 test procedure. The fuel economy on the chassis tests was measured at over 59 percent MPG improvement over the gasoline engines that are offered in typical SUVs and light trucks. The above demonstration used only in-cylinder fueling for management of the aftertreatment system.« less

  9. Propulsion Systems for Aircraft. Aerospace Education II.

    ERIC Educational Resources Information Center

    Mackin, T. E.

    This is a revised text used for the Air Force ROTC program. The main part of the book centers on the discussion of the engines in an airplane. After describing the terms and concepts of power, jets, and rockets, the author describes reciprocating engines. The description of diesel engines helps to explain why these are not used in airplanes. The…

  10. Rapid engine test to measure injector fouling in diesel engines using vegetable oil fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korus, R.A.; Jaiduk, J.; Peterson, C.L.

    1985-11-01

    Short engine tests were used to determine the rate of carbon deposition on direct injection diesel nozzles. Winter rape, high-oleic and high-linoleic safflower blends with 50% diesel were tested for carbon deposit and compared to that with D-2 Diesel Control Fuel. Deposits were greatest with the most unsaturated fuel, high-linoleic safflower, and least with winter rape. All vegetable oil blends developed power similar to diesel fueled engines with a 6 to 8% greater fuel consumption. 8 references.

  11. 77 FR 34129 - Heavy-Duty Highway Program: Revisions for Emergency Vehicles

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-08

    ... diesel vehicles, including emergency vehicles. Some control system designs and implementation strategies... broad engine families and vehicle test groups that are defined by similar emissions and performance... public safety issue related to design of engines and emission control systems on emergency vehicles that...

  12. Development of OTM Syngas Process and Testing of Syngas Derived Ultra-clean Fuels in Diesel Engines and Fuel Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E.T. Robinson; John Sirman; Prasad Apte

    2005-05-01

    This final report summarizes work accomplished in the Program from January 1, 2001 through December 31, 2004. Most of the key technical objectives for this program were achieved. A breakthrough material system has lead to the development of an OTM (oxygen transport membrane) compact planar reactor design capable of producing either syngas or hydrogen. The planar reactor shows significant advantages in thermal efficiency and a step change reduction in costs compared to either autothermal reforming or steam methane reforming with CO{sub 2} recovery. Syngas derived ultra-clean transportation fuels were tested in the Nuvera fuel cell modular pressurized reactor and inmore » International Truck and Engine single cylinder test engines. The studies compared emission and engine performance of conventional base fuels to various formulations of ultra-clean gasoline or diesel fuels. A proprietary BP oxygenate showed significant advantage in both applications for reducing emissions with minimal impact on performance. In addition, a study to evaluate new fuel formulations for an HCCI engine was completed.« less

  13. A Feasibility Study for Advanced Technology Integration for General Aviation.

    DTIC Science & Technology

    1980-05-01

    154 4.5.9.4 Stratified Charge Reciprocating Engine ..... .. 155 4.5.9.5 Advanced Diesel Engine . ... 158 4.5.9.6 Liquid Cooling ... ........ 159... diesel , rotary combustion engine, advanced reciprocating engine concepts. (7) Powerplant control - integrated controls, microprocessor- based controls...Research Center Topics. (1) GATE (2) Positive displacement engines (a) Advanced reciprocating engines. (b) Alternative engine systems Diesel engines

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, Rodney

    The objective of this project was to define the scope and cost of a technology research and development program that will demonstrate the feasibility of using an off-the-shelf, unmodified, large bore diesel powered generator in a grid-connected application, utilizing various blends of BioDiesel as fuel. Furthermore, the objective of project was to develop an emissions control device that uses a catalytic process and BioDiesel (without the presence of Ammonia or Urea)to reduce NOx and other pollutants present in a reciprocating engine exhaust stream with the goal of redefining the highest emission reduction efficiencies possible for a diesel reciprocating generator. Process:more » Caterpillar Power Generation adapted an off-the-shelf Diesel Generator to run on BioDiesel and various Petroleum Diesel/BioDiesel blends. EmeraChem developed and installed an exhaust gas cleanup system to reduce NOx, SOx, volatile organics, and particulates. The system design and function was optimized for emissions reduction with results in the 90-95% range;« less

  15. Experimental Investigations on Conventional and Semi-Adiabatic Diesel Engine Using Simarouba Biodiesel as Fuel

    NASA Astrophysics Data System (ADS)

    Ravi, M. U.; Reddy, C. P.; Ravindranath, K.

    2013-04-01

    In view of fast depletion of fossil fuels and the rapid rate at which the fuel consumption is taking place all over the world, scientists are searching for alternate fuels for maintaining the growth industrially and economically. Hence search for alternate fuel(s) has become imminent. Out of the limited options for internal combustion engines, the bio diesel fuel appears to be the best. Many advanced countries are implementing several biodiesel initiatives and developmental programmes in order to become self sufficient and reduce the import bills. Biodiesel is biodegradable and renewable fuel with the potential to enhance the performance and reduce engine exhaust emissions. This is due to ready usage of existing diesel engines, fuel distribution pattern, reduced emission profiles, and eco-friendly properties of biodiesel. Simarouba biodiesel (SBD), the methyl ester of Simarouba oil is one such alternative fuel which can be used as substitute to conventional petro-diesel. The present work involves experimental investigation on the use of SBD blends as fuel in conventional diesel engine and semi-adiabatic diesel engine. The oil was triple filtered to eliminate particulate matter and then transesterified to obtain biodiesel. The project envisaged aims at conducting analysis of diesel with SBD blends (10, 20, 30 and 40 %) in conventional engine and semi-adiabatic engine. Also it was decided to vary the injection pressure (180, 190 and 200 bar) and observe its effect on performance and also suggest better value of injection pressure. The engine was made semi adiabatic by coating the piston crown with partially stabilized zirconia (PSZ). Kirloskar AV I make (3.67 kW) vertical, single cylinder, water cooled diesel engine coupled to an eddy current dynamometer with suitable measuring instrumentation/accessories used for the study. Experiments were initially carried out using pure diesel fuel to provide base line data. The test results were compared based on the performance parameters including power output, fuel consumption, brake thermal efficiency, brake specific fuel consumption etc. Exhaust emissions were also measured. The results obtained confirmed that the blends of SBD with petro-diesel can be successfully employed as an alternate fuel in diesel engines. Also engine with coated piston crown gave better break thermal efficiency for blends of Simarouba and diesel compared with diesel fuel. Significant improvements in engine performance characteristics were observed for a blend containing 20 % SBD. The emissions for 20 % biodiesel blend for the standard engine were less when compared with diesel fuel emissions. Contrary to expectations the injection pressure of 180 bar proved to be better than 190 and 200 bar.

  16. An overview of general aviation propulsion research programs at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Willis, E. A.; Strack, W. C.

    1981-01-01

    The review covers near-term improvements for current-type piston engines, as well as studies and limited corroborative research on several advanced g/a engine concepts, including diesels, small turboprops and both piston and rotary stratified-charge engines. Also described is basic combustion research, cycle modeling and diagnostic instrumentation work that is required to make new engines a reality.

  17. Supercritical and Transcritical Real-Fluid Mixing in Diesel Engine Applications

    DTIC Science & Technology

    2015-09-01

    ARL-RP-0551 ● SEP 2015 US Army Research Laboratory Supercritical and Transcritical Real-Fluid Mixing in Diesel Engine...ARL-RP-0551 ● SEP 2015 US Army Research Laboratory Supercritical and Transcritical Real-Fluid Mixing in Diesel Engine Applications by...COVERED (From - To) 1 January 2014–30 September 2014 4. TITLE AND SUBTITLE Supercritical and Transcritical Real-Fluid Mixing in Diesel Engine

  18. Final Rule for Control of Air Pollution From New Motor Vehicles and New Motor Vehicle Engines; Non-Conformance Penalties for 2004 and later Model Year Emission Standards for Heavy-Duty Diesel Engines and Heavy-Duty Diesel Vehicles

    EPA Pesticide Factsheets

    Final Rule for Control of Air Pollution From New Motor Vehicles and New Motor Vehicle Engines; Non-Conformance Penalties for 2004 and later Model Year Emission Standards for Heavy-Duty Diesel Engines and Heavy-Duty Diesel Vehicles

  19. 78 FR 28719 - Special Conditions: Cessna Aircraft Company, Model J182T; Diesel Cycle Engine Installation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-16

    ...; Special Conditions No. 23-259-SC] Special Conditions: Cessna Aircraft Company, Model J182T; Diesel Cycle..., air cooled, diesel cycle engine that uses turbine (jet) fuel. The Model No. J182T, which is a... engine airplane with a cantilever high wing, with the SMA SR305- 230E-C1 diesel cycle engine and...

  20. Evaluation of carcinogenic hazard of diesel engine exhaust needs to consider revolutionary changes in diesel technology.

    PubMed

    McClellan, Roger O; Hesterberg, Thomas W; Wall, John C

    2012-07-01

    Diesel engines, a special type of internal combustion engine, use heat of compression, rather than electric spark, to ignite hydrocarbon fuels injected into the combustion chamber. Diesel engines have high thermal efficiency and thus, high fuel efficiency. They are widely used in commerce prompting continuous improvement in diesel engines and fuels. Concern for health effects from exposure to diesel exhaust arose in the mid-1900s and stimulated development of emissions regulations and research to improve the technology and characterize potential health hazards. This included epidemiological, controlled human exposure, laboratory animal and mechanistic studies to evaluate potential hazards of whole diesel exhaust. The International Agency for Research on Cancer (1989) classified whole diesel exhaust as - "probably carcinogenic to humans". This classification stimulated even more stringent regulations for particulate matter that required further technological developments. These included improved engine control, improved fuel injection system, enhanced exhaust cooling, use of ultra low sulfur fuel, wall-flow high-efficiency exhaust particulate filters, exhaust catalysts, and crankcase ventilation filtration. The composition of New Technology Diesel Exhaust (NTDE) is qualitatively different and the concentrations of particulate constituents are more than 90% lower than for Traditional Diesel Exhaust (TDE). We recommend that future reviews of carcinogenic hazards of diesel exhaust evaluate NTDE separately from TDE. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Potential of Diesel Engine, Diesel Engine Design Concepts, Control Strategy and Implementation

    DOT National Transportation Integrated Search

    1980-03-01

    Diesel engine design concepts and control system strategies are surveyed with application to passenger cars and light trucks. The objective of the study is to indicate the fuel economy potential of the technologies investigated. The engine design par...

  2. 40 CFR 86.315-79 - General analyzer specifications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86... range used. The analyzer span is defined as the difference between the span-response and the zero...

  3. 40 CFR 86.315-79 - General analyzer specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86... range used. The analyzer span is defined as the difference between the span-response and the zero...

  4. 40 CFR 86.315-79 - General analyzer specifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86... range used. The analyzer span is defined as the difference between the span-response and the zero...

  5. 40 CFR 86.331-79 - Hydrocarbon analyzer calibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86... difference between the span-gas response and the zero-gas response. Incrementally adjust the fuel flow above...

  6. 40 CFR 86.315-79 - General analyzer specifications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86... range used. The analyzer span is defined as the difference between the span-response and the zero...

  7. 40 CFR 86.331-79 - Hydrocarbon analyzer calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86... difference between the span-gas response and the zero-gas response. Incrementally adjust the fuel flow above...

  8. 40 CFR 86.329-79 - System response time; check procedure.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86... in step (i). (2) Capillary flow analyzers. This procedure is applicable only to analyzers that have...

  9. 40 CFR 86.1925 - What records must I keep?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Manufacturer-Run In-Use Testing Program for Heavy-Duty Diesel Engines § 86.1925 What records must I keep? (a) Organize and... important to keep required information readily available. (b) Keep the following paper or electronic records...

  10. 40 CFR 86.004-15 - NOX plus NMHC and particulate averaging, trading, and banking for heavy-duty engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... all diesel-cycle engine families within the same primary service class is allowed. (ii) Urban buses... averaging set from all other heavy-duty engines. Averaging and trading between diesel cycle bus engine... heavy-duty engines, the equivalent mileage is 6.3 miles. For diesel heavy-duty engines, the equivalent...

  11. 40 CFR 86.004-15 - NOX plus NMHC and particulate averaging, trading, and banking for heavy-duty engines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... all diesel-cycle engine families within the same primary service class is allowed. (ii) Urban buses... averaging set from all other heavy-duty engines. Averaging and trading between diesel cycle bus engine... heavy-duty engines, the equivalent mileage is 6.3 miles. For diesel heavy-duty engines, the equivalent...

  12. 76 FR 19903 - Special Conditions: Diamond Aircraft Industry Model DA-40NG; Diesel Cycle Engine

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-11

    ... DA-40NG the Austro Engine GmbH model E4 aircraft diesel engine (ADE) using turbine (jet) fuel. This... engine utilizing turbine (jet) fuel. The applicable airworthiness regulations do not contain adequate or...: Installation of the Austro Engine GmbH Model E4 ADE diesel engine utilizing turbine (jet) fuel. Discussion...

  13. Advanced Boost System Developing for High EGR Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Harold

    2012-09-30

    To support industry efforts of clean and efficient internal combustion engine development for passenger and commercial applications • This program focuses on turbocharger improvement for medium and light duty diesel applications, from complete system optimization percepective to enable commercialization of advanced diesel combustion technologies, such as HCCI/LTC. • Improve combined turbocharger efficiency up to 10% or fuel economy by 3% on FTP cycle at Tier II Bin 5 emission level.

  14. Mathematical model of marine diesel engine simulator for a new methodology of self propulsion tests

    NASA Astrophysics Data System (ADS)

    Izzuddin, Nur; Sunarsih, Priyanto, Agoes

    2015-05-01

    As a vessel operates in the open seas, a marine diesel engine simulator whose engine rotation is controlled to transmit through propeller shaft is a new methodology for the self propulsion tests to track the fuel saving in a real time. Considering the circumstance, this paper presents the real time of marine diesel engine simulator system to track the real performance of a ship through a computer-simulated model. A mathematical model of marine diesel engine and the propeller are used in the simulation to estimate fuel rate, engine rotating speed, thrust and torque of the propeller thus achieve the target vessel's speed. The input and output are a real time control system of fuel saving rate and propeller rotating speed representing the marine diesel engine characteristics. The self-propulsion tests in calm waters were conducted using a vessel model to validate the marine diesel engine simulator. The simulator then was used to evaluate the fuel saving by employing a new mathematical model of turbochargers for the marine diesel engine simulator. The control system developed will be beneficial for users as to analyze different condition of vessel's speed to obtain better characteristics and hence optimize the fuel saving rate.

  15. Assessment of a 40-kilowatt stirling engine for underground mining applications

    NASA Technical Reports Server (NTRS)

    Cairelli, J. E.; Kelm, G. G.; Slaby, J. G.

    1982-01-01

    An assessment of alternative power souces for underground mining applications was performed. A 40-kW Stirling research engine was tested to evaluate its performance and emission characteristics when operated with helium working gas and diesel fuel. The engine, the test facility, and the test procedures are described. Performance and emission data for the engine operating with helium working gas and diesel fuel are reported and compared with data obtained with hydrogen working gas and unleaded gasoline fuel. Helium diesel test results are compared with the characteristics of current diesel engines and other Stirling engines. External surface temperature data are also presented. Emission and temperature results are compared with the Federal requirements for diesel underground mine engines. The durability potential of Stirling engines is discussed on the basis of the experience gaind during the engine tests.

  16. Increase of diesel car raises health risk in spite of recent development in engine technology.

    PubMed

    Leem, Jong Han; Jang, Young-Kee

    2014-01-01

    Diesel exhaust particles (DEP) contain elemental carbon, organic compounds including Polyaromatic hydrocarbons (PAHs), metals, and other trace compounds. Diesel exhaust is complex mixture of thousands of chemicals. Over forty air contaminants are recognized as toxicants, such as carcinogens. Most diesel exhaust particles have aerodynamic diameters falling within a range of 0.1 to 0.25 μm. DEP was classified as a definite human carcinogen (group 1) by the International Agency for Research on Cancer at 2012 based on recently sufficient epidemiological evidence for lung cancer. Significant decreases in DEP and other diesel exhaust constituents will not be evident immediately, and outworn diesel car having longer mileage still threatens health of people in spite of recent remarkable development in diesel engine technology. Policy change in South Korea, such as introduction of diesel taxi, may raise health risk of air pollution in metropolitan area with these limitations of diesel engine. To protect people against DEP in South Korea, progressive strategies are needed, including disallowance of diesel taxi, more strict regulation of diesel engine emission, obligatory diesel particulate filter attachment in outworn diesel car, and close monitoring about health effects of DEP.

  17. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XVII, I--MAINTAINING THE LUBRICATION SYSTEM--CUMMINS DIESEL ENGINE, II--UNIT INSTALLATION AND REMOVAL--DRIVE LINES.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE DIESEL ENGINE LUBRICATION SYSTEM AND THE PROCEDURES FOR REMOVAL AND INSTALLATION OF THE DRIVE LINE USED IN DIESEL ENGINE POWER DISTRIBUTION. TOPICS ARE (1) PROLONGING ENGINE LIFE, (2) FUNCTIONS OF THE LUBRICATING SYSTEM, (3) TRACING THE LUBRICANT FLOW, (4) DETERMINING…

  18. Carbonyls emission from ethanol-blended gasoline and biodiesel-ethanol-diesel used in engines

    NASA Astrophysics Data System (ADS)

    Pang, Xiaobing; Mu, Yujing; Yuan, Juan; He, Hong

    Detailed carbonyls emissions from ethanol-blended gasoline (containing 10% v/v, ethanol, E-10) and biodiesel-ethanol-diesel (BE-diesel) were carefully investigated on an EQ491i gasoline engine equipped with a three-way-catalyst (TWC) and a Commins-4B diesel engine. In engine-out emissions for the gasoline engine, total carbonyls from E-10 varied in the range of 66.7-99.4 mg kW -1 h -1, which was 3.1-8.2% less than those from fossil gasoline (E-0). In tailpipe emissions, total carbonyls from E-10 varied in the range of 9.2-20.7 mg kW -1 h -1, which were 3.0-61.7% higher than those from E-0. The total carbonyls emissions from BE-diesel were 1-22% higher than those from diesel at different engine operating conditions. Compared with fossil fuels, E-10 can slightly reduce CO emission, and BE-diesel can substantially decrease PM emission, while both alternative fuels increased slightly NO x emission.

  19. Emissions of Transport Refrigeration Units with CARB Diesel, Gas-to-Liquid Diesel, and Emissions Control Devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnitt, R. A.; Chernich, D.; Burnitzki, M.

    2010-05-01

    A novel in situ method was used to measure emissions and fuel consumption of transport refrigeration units (TRUs). The test matrix included two fuels, two exhaust configurations, and two TRU engine operating speeds. Test fuels were California ultra low sulfur diesel and gas-to-liquid (GTL) diesel. Exhaust configurations were a stock muffler and a Thermo King pDPF diesel particulate filter. The TRU engine operating speeds were high and low, controlled by the TRU user interface. Results indicate that GTL diesel fuel reduces all regulated emissions at high and low engine speeds. Application of a Thermo King pDPF reduced regulated emissions, sometimesmore » almost entirely. The application of both GTL diesel and a Thermo King pDPF reduced regulated emissions at high engine speed, but showed an increase in oxides of nitrogen at low engine speed.« less

  20. 40 CFR 89.204 - Averaging.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... are defined as follows: (1) Eligible engines rated at or above 19 kW, other than marine diesel engines, constitute an averaging set. (2) Eligible engines rated under 19 kW, other than marine diesel engines, constitute an averaging set. (3) Marine diesel engines rated at or above 19 kW constitute an averaging set...

  1. 40 CFR 89.204 - Averaging.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... are defined as follows: (1) Eligible engines rated at or above 19 kW, other than marine diesel engines, constitute an averaging set. (2) Eligible engines rated under 19 kW, other than marine diesel engines, constitute an averaging set. (3) Marine diesel engines rated at or above 19 kW constitute an averaging set...

  2. 40 CFR 89.204 - Averaging.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... are defined as follows: (1) Eligible engines rated at or above 19 kW, other than marine diesel engines, constitute an averaging set. (2) Eligible engines rated under 19 kW, other than marine diesel engines, constitute an averaging set. (3) Marine diesel engines rated at or above 19 kW constitute an averaging set...

  3. 40 CFR 89.204 - Averaging.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... are defined as follows: (1) Eligible engines rated at or above 19 kW, other than marine diesel engines, constitute an averaging set. (2) Eligible engines rated under 19 kW, other than marine diesel engines, constitute an averaging set. (3) Marine diesel engines rated at or above 19 kW constitute an averaging set...

  4. Recent Developments in BMW's Diesel Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinparzer, F

    2003-08-24

    The image of BMW is very strongly associated to high power, sports biased, luxury cars in the premium car segment, however, particularly in the United States and some parts of Asia, the combination of a car in this segment with a diesel engine was up until now almost unthinkable. I feel sure that many people in the USA are not even aware that BMW produces diesel-powered cars. In Europe there is a completely contrary situation which, driven by the relative high fuel price, and the noticeable difference between gasoline and diesel prices, there has been a continuous growth in themore » diesel market since the early eighties. During this time BMW has accumulated more then 20 years experience in developing and producing powerful diesel engines for sports and luxury cars. BMW started the production of its 1st generation diesel engine in 1983 with a 2,4 l, turbocharged IDI engine in the 5 series model range. With a specific power of 35 kW/l, this was the most powerful diesel engine on the market at this time. In 1991 BMW introduced the 2nd generation diesel engine, beginning with a 2,5 l inline six, followed in 1994 by a 1,7 l inline four. All engines of this 2nd BMW diesel engine family were turbocharged and utilized an indirect injection combustion system. With the availability of high-pressure injection systems such as the common rail system, BMW developed its 3rd diesel engine family which consists of four different engines. The first was the 4-cylinder for the 3 series car in the spring of 1998, followed by the 6-cylinder in the fall of 1998 and then in mid 1999 by the worlds first V8 passenger car diesel with direct injection. Beginning in the fall of 2001 with the 4-cylinder, BMW reworked this DI engine family fundamentally. Key elements are an improved core engine design, the use of the common rail system of the 2nd generation and a new engine control unit with even better performance. Step by step, these technological improvements were introduce d to production for all members of this engine family and in all the different vehicle applications. In the next slide you can see the production volume of diesel engines by BMW. From the 1st family we produced {approx} 260,000 units over eight years and from the 2nd family {approx} 630,000 units were produced also during an eight year period. How successful the actual engine family with direct injection is can be seen in the increase of the production volume to 330,000 units for the year 2002 alone. The reason for this is that, in addition to the very low fuel consumption, this new engines provide excellent driving characteristics and a significant improvement in the level of noise and vibration. Page 2 of 5 In 2002, 26% of all BMW cars worldwide, and nearly 40% in Europe, were produced with a diesel engine under the hood. In the X5 we can see the biggest diesel success rate. Of all the X5 vehicles produced, 35% Worldwide and 68% in Europe are powered by a diesel engine.« less

  5. Nitroaromatic carcinogens in diesel soot: a review of laboratory findings.

    PubMed Central

    Wei, E T; Shu, H P

    1983-01-01

    The automobile industry plans to increase production of diesel-powered passenger cars because diesel engines provide better fuel economy than conventional gasoline engines. Diesel engines, however, produce more soot, and increased use of diesel cars will result in more discharge of diesel soot into the atmosphere. Recently, a new class of chemicals, called nitroaromatic compounds, have been identified in chemical extracts of diesel soot. Some of these nitroaromatic compounds produce mutations when tested in in vitro bacterial and mammalian cell assays, and cancer when tested in animals. Here, we review the relevance of these new laboratory findings to current deliberations over emission standards for particles from diesel cars. PMID:6192732

  6. Control of aldehyde emissions in the diesel engines with alcoholic fuels.

    PubMed

    Krishna, M V S Murali; Varaprasad, C M; Reddy, C Venkata Ramana

    2006-01-01

    The major pollutants emitted from compression ignition (CI) engine with diesel as fuel are smoke and nitrogen oxides (NOx). When the diesel engine is run with alternate fuels, there is need to check alcohols (methanol or ethanol) and aldehydes also. Alcohols cannot be used directly in diesel engine and hence engine modification is essential as alcohols have low cetane number and high latent hear of vaporization. Hence, for use of alcohol in diesel engine, it needs hot combustion chamber, which is provided by low heat rejection (LHR) diesel engine with an air gap insulated piston with superni crown and air gap insulated liner with superni insert. In the present study, the pollution levels of aldehydes are reported with the use of methanol and ethanol as alternate fuels in LHR diesel engine with varying injection pressure, injection timings with different percentage of alcohol induction. The aldehydes (formaldehyde and acetaldehyde) in the exhaust were estimated by wet chemical technique with high performance liquid chromatograph (HPLC). Aldehyde emissions increased with an increase in alcohol induction. The LHR engine showed a decrease in aldehyde emissions when compared to conventional engine. However, the variation of injection pressure showed a marginal effect in reducing aldehydes, while advancing the injection timing reduced aldehyde emissions.

  7. Comparison of exhaust emissions from Swedish environmental classified diesel fuel (MK1) and European Program on Emissions, Fuels and Engine Technologies (EPEFE) reference fuel: a chemical and biological characterization, with viewpoints on cancer risk.

    PubMed

    Westerholm, R; Christensen, A; Törnqvist, M; Ehrenberg, L; Rannug, U; Sjögren, M; Rafter, J; Soontjens, C; Almén, J; Grägg, K

    2001-05-01

    Diesel fuels, classified as environmentally friendly, have been available on the Swedish market since 1991. The Swedish diesel fuel classification is based upon the specification of selected fuel composition and physical properties to reduce potential environmental and health effects from direct human exposure to exhaust. The objective of the present investigation was to compare the most stringent, environmentally classified Swedish diesel fuel (MK1) to the reference diesel fuel used in the "European Program on Emissions, Fuels and Engine Technologies" (EPEFE) program. The study compares measurements of regulated emissions, unregulated emissions, and biological tests from a Volvo truck using these fuels. The regulated emissions from these two fuels (MK1 vs EPEFE) were CO (-2.2%), HC (12%), NOx (-11%), and particulates (-11%). The emissions of aldehydes, alkenes, and carbon dioxide were basically equivalent. The emissions of particle-associated polycyclic aromatic hydrocarbons (PAHs) and 1-nitropyrene were 88% and 98% lower than those of the EPEFE fuel, respectively. The emissions of semi-volatile PAHs and 1-nitropyrene were 77% and 80% lower than those from the EPEFE fuel, respectively. The reduction in mutagenicity of the particle extract varied from -75 to -90%, depending on the tester strain. The reduction of mutagenicity of the semi-volatile extract varied between -40 and -60%. Furthermore, the dioxin receptor binding activity was a factor of 8 times lower in the particle extracts and a factor of 4 times lower in the semi-volatile extract than that of the EPEFE fuel. In conclusion, the MK1 fuel was found to be more environmentally friendly than the EPEFE fuel.

  8. High Resolution Numerical Simulations of Primary Atomization in Diesel Sprays with Single Component Reference Fuels

    DTIC Science & Technology

    2015-09-01

    NC. 14. ABSTRACT A high-resolution numerical simulation of jet breakup and spray formation from a complex diesel fuel injector at diesel engine... diesel fuel injector at diesel engine type conditions has been performed. A full understanding of the primary atomization process in diesel fuel... diesel liquid sprays the complexity is further compounded by the physical attributes present including nozzle turbulence, large density ratios

  9. 40 CFR 80.571 - What labeling requirements apply to retailers and wholesale purchaser-consumers of NRLM diesel...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Required for use in all model year 2011 and newer nonroad diesel engines. Recommended for use in all nonroad, locomotive, and marine diesel engines. WARNING Federal Law prohibits use in highway vehicles or engines. (b) From June 1, 2007, through September 30, 2010, for pumps dispensing NRLM diesel fuel meeting...

  10. 40 CFR 80.571 - What labeling requirements apply to retailers and wholesale purchaser-consumers of NRLM diesel...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Required for use in all model year 2011 and newer nonroad diesel engines. Recommended for use in all nonroad, locomotive, and marine diesel engines. WARNING Federal Law prohibits use in highway vehicles or engines. (b) From June 1, 2007, through September 30, 2010, for pumps dispensing NRLM diesel fuel meeting...

  11. 40 CFR 80.571 - What labeling requirements apply to retailers and wholesale purchaser-consumers of NRLM diesel...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Required for use in all model year 2011 and newer nonroad diesel engines. Recommended for use in all nonroad, locomotive, and marine diesel engines. WARNING Federal Law prohibits use in highway vehicles or engines. (b) From June 1, 2007, through September 30, 2010, for pumps dispensing NRLM diesel fuel meeting...

  12. 40 CFR 80.571 - What labeling requirements apply to retailers and wholesale purchaser-consumers of NRLM diesel...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Required for use in all model year 2011 and newer nonroad diesel engines. Recommended for use in all nonroad, locomotive, and marine diesel engines. WARNING Federal Law prohibits use in highway vehicles or engines. (b) From June 1, 2007, through September 30, 2010, for pumps dispensing NRLM diesel fuel meeting...

  13. High Efficiency, Clean Combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donald Stanton

    2010-03-31

    Energy use in trucks has been increasing at a faster rate than that of automobiles within the U.S. transportation sector. According to the Energy Information Administration (EIA) Annual Energy Outlook (AEO), a 23% increase in fuel consumption for the U.S. heavy duty truck segment is expected between 2009 to 2020. The heavy duty vehicle oil consumption is projected to grow between 2009 and 2050 while light duty vehicle (LDV) fuel consumption will eventually experience a decrease. By 2050, the oil consumption rate by LDVs is anticipated to decrease below 2009 levels due to CAFE standards and biofuel use. In contrast,more » the heavy duty oil consumption rate is anticipated to double. The increasing trend in oil consumption for heavy trucks is linked to the vitality, security, and growth of the U.S. economy. An essential part of a stable and vibrant U.S. economy is a productive U.S. trucking industry. Studies have shown that the U.S. gross domestic product (GDP) is strongly correlated to freight transport. Over 90% of all U.S. freight tonnage is transported by diesel power and over 75% is transported by trucks. Given the vital role that the trucking industry plays in the economy, improving the efficiency of the transportation of goods was a central focus of the Cummins High Efficient Clean Combustion (HECC) program. In a commercial vehicle, the diesel engine remains the largest source of fuel efficiency loss, but remains the greatest opportunity for fuel efficiency improvements. In addition to reducing oil consumption and the dependency on foreign oil, this project will mitigate the impact on the environment by meeting US EPA 2010 emissions regulations. Innovation is a key element in sustaining a U.S. trucking industry that is competitive in global markets. Unlike passenger vehicles, the trucking industry cannot simply downsize the vehicle and still transport the freight with improved efficiency. The truck manufacturing and supporting industries are faced with numerous challenges to reduce oil consumption and greenhouse gases, meet stringent emissions regulations, provide customer value, and improve safety. The HECC program successfully reduced engine fuel consumption and greenhouse gases while providing greater customer valve. The US EPA 2010 emissions standard poses a significant challenge for developing clean diesel powertrains that meet the DoE Vehicle Technologies Multi-Year Program Plan (MYPP) for fuel efficiency improvement while remaining affordable. Along with exhaust emissions, an emphasis on heavy duty vehicle fuel efficiency is being driven by increased energy costs as well as the potential regulation of greenhouse gases. An important element of the success of meeting emissions while significantly improving efficiency is leveraging Cummins component technologies such as fuel injection equipment, aftertreatment, turbomahcinery, electronic controls, and combustion systems. Innovation in component technology coupled with system integration is enabling Cummins to move forward with the development of high efficiency clean diesel products with a long term goal of reaching a 55% peak brake thermal efficiency for the engine plus aftertreatment system. The first step in developing high efficiency clean products has been supported by the DoE co-sponsored HECC program. The objectives of the HECC program are: (1) To design and develop advanced diesel engine architectures capable of achieving US EPA 2010 emission regulations while improving the brake thermal efficiency by 10% compared to the baseline (a state of the art 2007 production diesel engine). (2) To design and develop components and subsystems (fuel systems, air handling, controls, etc) to enable construction and development of multi-cylinder engines. (3) To perform an assessment of the commercial viability of the newly developed engine technology. (4) To specify fuel properties conducive to improvements in emissions, reliability, and fuel efficiency for engines using high-efficiency clean combustion (HECC) technologies. To demonstrate the technology is compatible with B20 (biodiesel). (5) To further improve the brake thermal efficiency of the engine as integrated into the vehicle. To demonstrate robustness and commercial viability of the HECC engine technology as integrated into the vehicles. The Cummins HECC program supported the Advanced Combustion Engine R&D and Fuels Technology initiatives of the DoE Vehicle Technologies Multi-Year Program Plan (MYPP). In particular, the HECC project goals enabled the DoE Vehicle Technologies Program (VTP) to meet energy-efficiency improvement targets for advanced combustion engines suitable for passenger and commercial vehicles, as well as addressing technology barriers and R&D needs that are common between passenger and commercial vehicle applications of advanced combustion engines.« less

  14. Experimental investigation of performance and emissions of a VCR diesel engine fuelled with n-butanol diesel blends under varying engine parameters.

    PubMed

    Nayyar, Ashish; Sharma, Dilip; Soni, Shyam Lal; Mathur, Alok

    2017-09-01

    The continuous rise in the cost of fossil fuels as well as in environmental pollution has attracted research in the area of clean alternative fuels for improving the performance and emissions of internal combustion (IC) engines. In the present work, n-butanol is treated as a bio-fuel and investigations have been made to evaluate the feasibility of replacing diesel with a suitable n-butanol-diesel blend. In the current research, an experimental investigation was carried out on a variable compression ratio CI engine with n-butanol-diesel blends (10-25% by volume) to determine the optimum blending ratio and optimum operating parameters of the engine for reduced emissions. The best results of performance and emissions were observed for 20% n-butanol-diesel blend (B20) at a higher compression ratio as compared to diesel while keeping the other parameters unchanged. The observed deterioration in engine performance was within tolerable limits. The reductions in smoke, nitrogen oxides (NO x ), and carbon monoxide (CO) were observed up to 56.52, 17.19, and 30.43%, respectively, for B20 in comparison to diesel at rated power. However, carbon dioxide (CO 2 ) and hydrocarbons (HC) were found to be higher by 17.58 and 15.78%, respectively, for B20. It is concluded that n-butanol-diesel blend would be a potential fuel to control emissions from diesel engines. Graphical abstract ᅟ.

  15. Effect of Alcohol on Diesel Engine Combustion Operating with Biodiesel-Diesel Blend at Idling Conditions

    NASA Astrophysics Data System (ADS)

    Mahmudul, H. M.; Hagos, Ftwi. Y.; A, M. Mukhtar N.; Mamat, Rizalman; Abdullah, A. Adam

    2018-03-01

    Biodiesel is a promising alternative fuel to run the automotive engine. However, its blends have not been properly investigated during idling as it is the main problem to run the vehicles in a big city. The purpose of this study is to evaluate the impact of alcohol additives such as butanol and ethanol on combustion parameters under idling conditions when a single cylinder diesel engine operates with diesel, diesel-biodiesel blends, and diesel biodiesel-alcohol blends. The engine combustion parameters such as peak pressure, heat release rate and ignition delay were computed. This investigation has revealed that alcohol blends with diesel and biodiesel, BU20 blend yield higher maximum peak cylinder pressure than diesel. B5 blend was found with the lowest energy release among all. B20 was slightly lower than diesel. BU20 blend was seen with the highest peak energy release where E20 blend was found advance than diesel. Among all, the blends alcohol component revealed shorter ignition delay. B5 and B20 blends were influenced by biodiesel interference and the burning fraction were found slightly slower than conventional diesel where BU20 and E20 blends was found slightly faster than diesel So, based on the result, it can be said that among the alcohol blends butanol and ethanol can be promising alternative at idling conditions and can be used without any engine modifications.

  16. Concentration measurements of biodiesel in engine oil and in diesel fuel

    NASA Astrophysics Data System (ADS)

    Mäder, A.; Eskiner, M.; Burger, C.; Ruck, W.; Rossner, M.; Krahl, J.

    2012-05-01

    This work comprised a method for concentration measurements of biodiesel in engine oil as well as biodiesel in diesel fuel by a measurement of the permittivity of the mixture at a frequency range from 100 Hz to 20 kHz. For this purpose a special designed measurement cell with high sensitivity was designed. The results for the concentration measurements of biodiesel in the engine oil and diesel fuel shows linearity to the measurement cell signal for the concentration of biodiesel in the engine oil between 0.5% Vol. to 10% Vol. and for biodiesel in the diesel fuel between 0% Vol. to 100% Vol. The method to measure the concentration of biodiesel in the engine oil or the concentration of biodiesel in the diesel fuel is very accurate and low concentration of about 0.5% Vol. biodiesel in engine oil or in diesel fuel can be measured with high accuracy.

  17. Mutagenicity of diesel exhaust particles from an engine with differing exhaust after treatments.

    PubMed

    Shi, X-C; Keane, M J; Ong, T; Li, S-Q; Bugarski, A B

    2010-01-01

    This study was conducted to investigate the effects of engine operating conditions and exhaust aftertreatments on the mutagenicity of diesel particulate matter (DPM) collected directly in an underground mine environment. A number of after-treatment devices are currently used on diesel engines in mines, but it is critical to determine whether reductions in DPM concentrations result in a corresponding decrease in adverse health effects. An eddy-current dynamometer was used to operate naturally aspirated mechanically controlled engine at several steady-state conditions. The samples were collected when the engine was equipped with a standard muffler, a diesel oxidation catalytic converter, two types of uncatalyzed diesel particulate filter systems, and three types of disposable diesel particulate filter elements. Bacterial gene mutation activity of DPM was tested on acetone extracts using the Ames Salmonella assay. The results indicated strong correlation between engine operating conditions and mutagenic activity of DPM. When the engine was fitted with muffler, the mutagenic activity was observed for the samples collected from light-load, but not heavy-load operating conditions. When the engine was equipped with a diesel oxidation catalyst, the samples did not exhibit mutagenic activity for any of four engine operating conditions. Mutagenic activity was observed for the samples collected when the engine was retrofitted with three types of disposable filters and sintered metal diesel particulate filter and operated at light load conditions. However, those filtration systems substantially reduced the concentration-normalized mutagenic activity from the levels observed for the muffler.

  18. 77 FR 75868 - Regulation of Fuels and Fuel Additives: Modifications to the Transmix Provisions Under the Diesel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-26

    ...EPA is amending the requirements under EPA's diesel sulfur program related to the sulfur content of locomotive and marine (LM) diesel fuel produced by transmix processors and pipeline facilities. These amendments will reinstate the ability of locomotive and marine diesel fuel produced from transmix by transmix processors and pipeline operators to meet a maximum 500 parts per million (ppm) sulfur standard outside of the Northeast Mid-Atlantic Area and Alaska and expand this ability to within the Northeast Mid-Atlantic Area provided that: the fuel is used in older technology locomotive and marine engines that do not require 15 ppm sulfur diesel fuel, and the fuel is kept segregated from other fuel. These amendments will provide significant regulatory relief for transmix processors and pipeline operators to allow the petroleum distribution system to function efficiently while continuing to transition the market to virtually all ultra-low sulfur diesel fuel (ULSD, i.e. 15 ppm sulfur diesel fuel) and the environmental benefits it provides.

  19. Evaluation of a disposable diesel exhaust filter for permissible mining machines. Report of investigations/1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ambs, J.L.; Cantrell, B.K.; Watts, W.F.

    1994-01-01

    The U.S. Bureau of Mines (USBM) Diesel Research Program emphasizes the development and evaluation of emission control devices to reduce exposure of miners to diesel exhaust pollutants. Studies by the USBM have shown that diesel exhaust aerosol (DEA) contributes a substantial portion of the respirable aerosol in underground coal mining using diesel equipment not equipped with emission controls. The USBM and the Donaldson Co., Inc., Minneapolis, MN, have developed a low-temperature, disposable diesel exhaust filter (DDEF) for use on permissible diesel haulage vehicles equipped with waterban exhaust conditioners. These were evaluated in three underground mines to determine their effectiveness inmore » reducing DEA concentrations. The DDEF reduced DEA concentrations from 70 to 90 pct at these mines. The usable life of the filter ranged from 10 to 32 h, depending on factors that affect DEA output, such as mine altitude, engine type, and duty-cycle. Cost per filter is approximately $40.« less

  20. Estimation of CO2 reduction by parallel hard-type power hybridization for gasoline and diesel vehicles.

    PubMed

    Oh, Yunjung; Park, Junhong; Lee, Jong Tae; Seo, Jigu; Park, Sungwook

    2017-10-01

    The purpose of this study is to investigate possible improvements in ICEVs by implementing fuzzy logic-based parallel hard-type power hybrid systems. Two types of conventional ICEVs (gasoline and diesel) and two types of HEVs (gasoline-electric, diesel electric) were generated using vehicle and powertrain simulation tools and a Matlab-Simulink application programming interface. For gasoline and gasoline-electric HEV vehicles, the prediction accuracy for four types of LDV models was validated by conducting comparative analysis with the chassis dynamometer and OBD test data. The predicted results show strong correlation with the test data. The operating points of internal combustion engines and electric motors are well controlled in the high efficiency region and battery SOC was well controlled within ±1.6%. However, for diesel vehicles, we generated virtual diesel-electric HEV vehicle because there is no available vehicles with similar engine and vehicle specifications with ICE vehicle. Using a fuzzy logic-based parallel hybrid system in conventional ICEVs demonstrated that HEVs showed superior performance in terms of fuel consumption and CO 2 emission in most driving modes. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Development of the Junkers-diesel Aircraft Engine

    NASA Technical Reports Server (NTRS)

    Gasterstadt,

    1930-01-01

    The working process of the Junkers engine has resulted from a series of attempts to attain high performance and to control the necessarily rapid and complete combustion at extremely high speeds. The two main problems of Diesel engines in aircraft are addressed; namely, incomplete combustion and the greater weight of Diesel engine parts compared to gasoline engines.

  2. 30 CFR 57.5067 - Engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Engines. 57.5067 Section 57.5067 Mineral... Agents, and Diesel Particulate Matter Diesel Particulate Matter-Underground Only § 57.5067 Engines. (a) Any diesel engine introduced into an underground area of a mine covered by this part after July 5...

  3. 30 CFR 57.5067 - Engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Engines. 57.5067 Section 57.5067 Mineral... Agents, and Diesel Particulate Matter Diesel Particulate Matter-Underground Only § 57.5067 Engines. (a) Any diesel engine introduced into an underground area of a mine covered by this part after July 5...

  4. 30 CFR 57.5067 - Engines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Engines. 57.5067 Section 57.5067 Mineral... Agents, and Diesel Particulate Matter Diesel Particulate Matter-Underground Only § 57.5067 Engines. (a) Any diesel engine introduced into an underground area of a mine covered by this part after July 5...

  5. Numerical investigation of exhaust gas emissions for a dual fuel engine configuration using diesel and pongamia oil.

    PubMed

    Mohamed Ibrahim, N H; Udayakumar, M

    2016-12-01

    The investigation presented in this paper focuses on determination of gaseous exhaust emissions by computational simulation during combustion in compression ignition engine with pongamia oil substitution. Combustion is modeled using Equilibrium Constants Method (ECM) with MATLAB program to calculate the mole fraction of 10 combustion products when pongamia oil is burnt along with diesel at variable equivalence ratio and blend ratio. It had been observed that pongamia oil substitution causes decrease in the CO emission and increase in the NO x emission as the blend ratio as well as equivalence ratio increases. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Thermal barrier coatings application in diesel engines

    NASA Technical Reports Server (NTRS)

    Fairbanks, J. W.

    1995-01-01

    Commercial use of thermal barrier coatings in diesel engines began in the mid 70's by Dr,. Ingard Kvernes at the Central Institute for Industrial Research in Oslo, Norway. Dr. Kvernes attributed attack on diesel engine valves and piston crowns encountered in marine diesel engines in Norwegian ships as hot-corrosion attributed to a reduced quality of residual fuel. His solution was to coat these components to reduce metal temperature below the threshold of aggressive hot-corrosion and also to provide protection. The Department of Energy has supported thermal barrier coating development for diesel engine applications. In the Clean Diesel - 50 Percent Efficient (CD-50) engine for the year 2000, thermal barrier coatings will be used on piston crowns and possibly other components. The primary purpose of the thermal barrier coatings will be to reduce thermal fatigue as the engine peak cylinder pressure will nearly be doubled. As the coatings result in higher available energy in the exhaust gas, efficiency gains are achieved through use of this energy by turbochargers, turbocompounding or thermoelectric generators.

  7. Design and optimization of smart grid system based on renewable energy in Nyamuk Island, Karimunjawa district, Central Java

    NASA Astrophysics Data System (ADS)

    Novitasari, D.; Indartono, Y. S.; Rachmidha, T. D.; Reksowardojo, I. K.; Irsyad, M.

    2017-03-01

    Nyamuk Island in Karimunjawa District is one of the regions in Java that has no access to electricity grid. The electricity in Nyamuk Island relies on diesel engine which is managed by local government and only operated for 6 hours per day. It occurs as a consequence of high fuel cost. A study on smart micro grid system based on renewable energy was conducted in Combustion Engine and Propulsion System Laboratory of Institut Teknologi Bandung by using 1 kWp solar panels and a 3 kW bio based diesel engine. The fuels used to run the bio based diesel engine were diesel, virgin coconut oil and pure palm oil. The results show that the smart grid system run well at varying load and also with different fuel. Based on the experiments, average inverter efficiency was about 87%. This experiments proved that the use of biofuels had no effects to the overall system performance. Based on the results of prototype experiments, this paper will focus on design and optimization of smart micro grid system using HOMER software for Nyamuk Island. The design consists of (1) a diesel engine existing in Nyamuk Island whose fuel was diesel, (2) a lister engine whose fuel was from vegetable oil from Callophyllum inophyllum, (3) solar panels, (4) batteries and (5) converter. In this simulation, the existing diesel engine was set to operate 2 hours per day, while operating time of the lister engine has been varied with several scenarios. In scenario I, the lister engine was operated 5 hours per day, in scenario II the lister engine was operated 24 hours per day and in scenario III the lister engine was operated 8 hours per week in the weekend. In addition, a design using a modified diesel engine was conducted as well with an assumption that the modified cost was about 10% of new diesel engine cost. By modifying the diesel engine, the system will not need a lister engine. Assessments has been done to evaluate the designs, and the result shows that the optimal value obtains by the lister engine being operated for 24 hours a day in which the capacity of each component was 27 kWp PV, 7 kW lister engine, 26 kVA existing diesel engine, 40 kW converter and 128 batteries. The result is based on the lowest value of Net Present Cost (NPC) of 542.682 and Cost Of Electricity (COE) of 0.49.

  8. Mathematical model of marine diesel engine simulator for a new methodology of self propulsion tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izzuddin, Nur; Sunarsih,; Priyanto, Agoes

    As a vessel operates in the open seas, a marine diesel engine simulator whose engine rotation is controlled to transmit through propeller shaft is a new methodology for the self propulsion tests to track the fuel saving in a real time. Considering the circumstance, this paper presents the real time of marine diesel engine simulator system to track the real performance of a ship through a computer-simulated model. A mathematical model of marine diesel engine and the propeller are used in the simulation to estimate fuel rate, engine rotating speed, thrust and torque of the propeller thus achieve the targetmore » vessel’s speed. The input and output are a real time control system of fuel saving rate and propeller rotating speed representing the marine diesel engine characteristics. The self-propulsion tests in calm waters were conducted using a vessel model to validate the marine diesel engine simulator. The simulator then was used to evaluate the fuel saving by employing a new mathematical model of turbochargers for the marine diesel engine simulator. The control system developed will be beneficial for users as to analyze different condition of vessel’s speed to obtain better characteristics and hence optimize the fuel saving rate.« less

  9. Investigation of engine performance and emissions of a diesel engine with a blend of marine gas oil and synthetic diesel fuel.

    PubMed

    Nabi, Md Nurun; Hustad, Johan Einar

    2012-01-01

    This paper investigates diesel engine performance and exhaust emissions with marine gas oil (MGO) and a blend of MGO and synthetic diesel fuel. Ten per cent by volume of Fischer-Tropsch (FT), a synthetic diesel fuel, was added to MGO to investigate its influence on the diesel engine performance and emissions. The blended fuel was termed as FT10 fuel, while the neat (100 vol%) MGO was termed as MGO fuel. The experiments were conducted with a fourstroke, six-cylinder, turbocharged, direct injection, Scania DC 1102 diesel engine. It is interesting to note that all emissions including smoke (filter smoke number), total particulate matter (TPM), carbon monoxide (CO), total unburned hydrocarbon (THC), oxides of nitrogen (NOx) and engine noise were reduced with FT10 fuel compared with the MGO fuel. Diesel fine particle number and mass emissions were measured with an electrical low pressure impactor. Like other exhaust emissions, significant reductions in fine particles and mass emissions were observed with the FT10 fuel. The reduction was due to absence of sulphur and aromatic compounds in the FT fuel. In-cylinder gas pressure and engine thermal efficiency were identical for both FT10 and MGO fuels.

  10. DI Diesel Performance and Emissions Model

    DTIC Science & Technology

    1998-03-31

    Skeletal mechanism for NOx chemistry in Diesel engines ," SAE Paper 981450. Mori, K. (1997), "Worldwide...Based on the review discussed above, Mellor et al. (1998) postulate a skeletal mechanism for NO chemistry in DI Diesel engines . This mechanism is... mechanism for NOx chemistry in Diesel engines ," SAE Paper 981450. Various Internal Ford Reports, Ford Motor Company, Dearborn, MI. 29

  11. 40 CFR 80.573 - What labeling requirements apply to retailers and wholesale purchaser-consumers of NRLM diesel...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Maximum) Required for use in all model year 2011 and later nonroad diesel engines. Recommended for use in all other non-highway diesel engines. WARNING Federal law prohibits use in highway vehicles or engines... retailers and wholesale purchaser-consumers of NRLM diesel fuel and heating oil beginning June 1, 2012? 80...

  12. 40 CFR 80.573 - What labeling requirements apply to retailers and wholesale purchaser-consumers of NRLM diesel...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Maximum) Required for use in all model year 2011 and later nonroad diesel engines. Recommended for use in all other non-highway diesel engines. WARNING Federal law prohibits use in highway vehicles or engines... retailers and wholesale purchaser-consumers of NRLM diesel fuel and heating oil beginning June 1, 2012? 80...

  13. 40 CFR 80.573 - What labeling requirements apply to retailers and wholesale purchaser-consumers of NRLM diesel...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Maximum) Required for use in all model year 2011 and later nonroad diesel engines. Recommended for use in all other non-highway diesel engines. WARNING Federal law prohibits use in highway vehicles or engines... retailers and wholesale purchaser-consumers of NRLM diesel fuel and heating oil beginning June 1, 2012? 80...

  14. 40 CFR 80.573 - What labeling requirements apply to retailers and wholesale purchaser-consumers of NRLM diesel...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Maximum) Required for use in all model year 2011 and later nonroad diesel engines. Recommended for use in all other non-highway diesel engines. WARNING Federal law prohibits use in highway vehicles or engines... retailers and wholesale purchaser-consumers of NRLM diesel fuel and heating oil beginning June 1, 2012? 80...

  15. 40 CFR 80.572 - What labeling requirements apply to retailers and wholesale purchaser-consumers of NR and NRLM...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Maximum) Required for use in all highway diesel vehicles and engines. Recommended for use in all diesel vehicles and engines. (b) From June 1, 2010, through September 30, 2012, for pumps dispensing NR diesel... ppm Sulfur Maximum) Required for use in all model year 2011 and later nonroad diesel engines...

  16. 30 CFR 250.405 - What are the safety requirements for diesel engines used on a drilling rig?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What are the safety requirements for diesel... Gas Drilling Operations General Requirements § 250.405 What are the safety requirements for diesel engines used on a drilling rig? You must equip each diesel engine with an air take device to shut down the...

  17. Spherical Joint Piston and Connecting Rod Developed

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Under an interagency agreement with the Department of Energy, the NASA Lewis Research Center manages a Heavy-Duty Diesel Engine Technology (HDET) research program. The overall program objectives are to reduce fuel consumption through increased engine efficiency, reduce engine exhaust emissions, and provide options for the use of alternative fuels. The program is administered with a balance of research contracts, university research grants, and focused in-house research. The Cummins Engine Company participates in the HDET program under a cost-sharing research contract. Cummins is researching and developing in-cylinder component technologies for heavy-duty diesel engines. An objective of the Cummins research is to develop technologies for a low-emissions, 55-percent thermal efficiency (LE-55) engine. The best current-production engines in this class achieve about 46-percent thermal efficiency. Federal emissions regulations are driving this technology. Regulations for heavy duty diesel engines were tightened in 1994, more demanding emissions regulations are scheduled for 1998, and another step is planned for 2002. The LE-55 engine emissions goal is set at half of the 1998 regulation level and is consistent with plans for 2002 emissions regulations. LE-55 engine design requirements to meet the efficiency target dictate a need to operate at higher peak cylinder pressures. A key technology being developed and evaluated under the Cummins Engine Company LE-55 engine concept is the spherical joint piston and connecting rod. Unlike conventional piston and connecting rod arrangements which are joined by a pin forming a hinged joint, the spherical joint piston and connecting rod use a ball-and-socket joint. The ball-and-socket arrangement enables the piston to have an axisymmetric design allowing rotation within the cylinder. The potential benefits of piston symmetry and rotation are reduced scuffing, improved piston ring sealing, improved lubrication, mechanical and thermal load symmetry, reduced bearing stresses, reduced running clearances, and reduced oil consumption. The spherical joint piston is a monolithic, squeeze-cast, fiber-reinforced aluminum piston. The connecting rod has a ball end that seats on a spherical saddle within the piston and is retained by a pair of aluminum bronze holder rings. The holder rings are secured by a threaded ring that mates with the piston. As part of the ongoing research and development activity, the Cummins Engine Company successfully completed a 100-hr test of the spherical joint piston and connecting rod at LE- 55 peak steady-state engine conditions. In addition, a 100-hr transient cycle test that varied engine conditions between LE-55 no-load and LE-55 full-load was successfully completed.

  18. LPG as a Fuel for Diesel Engines-Experimental Investigations

    NASA Astrophysics Data System (ADS)

    Cristian Nutu, Nikolaos; Pana, Constantin; Negurescu, Niculae; Cernat, Alexandru; Mirica, Ionel

    2017-10-01

    The main objective of the paper is to reduce the pollutant emissions of a compression ignition engine, fuelling the engine with liquefied petroleum gas (LPG), aiming to maintain the energetic performances of the engine. To optimise the engine operation a corelation between the substitute ratio of the diesel fuel with LPG and the adjustments for the investigated regimens must be made in order to limit the maximum pressure and smoke level, knock and rough engine functioning, fuel consumption and the level of the pollutant emissions. The test bed situated in the Thermotechnics, Engines, Thermal Equipments and Refrigeration Instalations Department was adapted to be fuelled with liquefied petroleum gas. A conventional LPG fuelling instalation was adopted, consisting of a LPG tank, a vaporiser, conections between the tank and the vaporiser and a valve to adjust the gaseous fuel flow. Using the diesel-gas methode, in the intake manifold of the engine is injected LPG in gaseous aggregation state and the airr-LPG homogeneous mixture is ignited from the flame appeared in the diesel fuel sprays. To maintain the engine power at the same level like in the standard case of fuelling only with diesel fuel, for each investigated operate regimen the diesel fuel dose was reduced, being energetically substituted with LPG. The engine used for experimental investigations is a turbocharged truck diesel engine with a 10.34 dm3 displacement. The investigated working regimen was 40% load and 1750 rpm and the energetic substitute ratios of the diesel fuel with LPG was situated between [0-25%].

  19. Development of naval diesel engine duty cycles for air exhaust emission environmental impact analysis. Master's thesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Markle, S.P.

    1994-05-01

    A strategy for testing naval diesel engines for exhaust emissions was developed. A survey of existing international and national standard diesel engine duty cycles was conducted. All were found to be inadequate for testing and certification of engine exhaust emissions from naval diesel powered ships. Naval ship data covering 11,500 hours of engine operation of four U.S. Navy LSD 41 Class amphibious ships was analyzed to develop a 27 point class operating profile. A procedure combining ship hull form characteristics, ship propulsion plant parameters, and ship operating profile was detailed to derive an 11-Mode duty cycle representative for testing LSDmore » 41 Class propulsion diesel engines. A similar procedure was followed for ship service diesel engines. Comparisons with industry accepted duty cycles were conducted using exhaust emission contour plots for the Colt-Pielstick PC-4B diesel engines. Results showed the 11-Mode LSD 41 Class Duty Cycle best predicted ship propulsion engine emissions compared to the 27 point operating profile propeller curve. The procedure was applied to T-AO 187 Class with similar results. The application of civilian industry standards to measure naval diesel ship propulsion engine exhaust emissions was found to be inadequate. Engine exhaust flow chemistry post turbocharger was investigated using the SANDIA Lab computer tool CHEMKIN. Results showed oxidation and reduction reactions within exhaust gases are quenched in the exhaust stack. Since the exhaust stream in the stack is unreactive, emission sampling may be performed where most convenient. A proposed emission measurement scheme for LSD 41 Class ships was presented.« less

  20. Design and Performance of LPG Fuel Mixer for Dual Fuel Diesel Engine

    NASA Astrophysics Data System (ADS)

    Desrial; Saputro, W.; Garcia, P. P.

    2018-05-01

    Small horizontal diesel engines are commonly used for agricultural machinery, however, availability of diesel fuel become one of big problems especially in remote area. Conversely, in line with government policy for conversion of kerosene into LPG for cooking, then LPG become more popular and available even in remote area. Therefore, LPG is potential fuel to replace the shortage of diesel fuel for operating diesel engine in remote area. The purpose of this study was to design mixing device for using dual fuel i.e. LPG and diesel fuel and evaluate its performance accordingly. Simulation by using CFD was done in order to analyze mixture characteristics of LPG in air intake manifold. The performance test was done by varying the amount of LPG injected in intake air at 20%, 25%, 30%, 35%, until 40%, respectively. Result of CFD contour simulation showed the best combination when mixing 30% LPG into the intake air. Performance test of this research revealed that mixing LPG in air intake can reduce the diesel fuel consumption about 0.7 l/hour (without load) and 1.14 l/hour (with load). Diesel engine revolution increases almost 300 rpm faster than when using diesel fuel only. Based on economic analysis, using the fuel combination (diesel fuel – LPG) is not recommended in the area near SPBU where the price of diesel fuel is standard. However, using the fuel combination LPG-diesel fuel is highly recommended in the remote areas in Indonesia where price of diesel fuel is comparatively expensive which will provide cheaper total fuel cost for diesel engine operation.

  1. Experimental Validation and Combustion Modeling of a JP-8 Surrogate in a Single Cylinder Diesel Engine

    DTIC Science & Technology

    2014-04-15

    SINGLE CYLINDER DIESEL ENGINE Amit Shrestha, Umashankar Joshi, Ziliang Zheng, Tamer Badawy, Naeim A. Henein, Wayne State University, Detroit, MI, USA...13-03-2014 4. TITLE AND SUBTITLE EXPERIMENTAL VALIDATION AND COMBUSTION MODELING OF A JP-8 SURROGATE IN A SINGLE CYLINDER DIESEL ENGINE 5a...INTERNATIONAL UNCLASSIFIED • Validate a two-component JP-8 surrogate in a single cylinder diesel engine. Validation parameters include – Ignition delay

  2. The Effect of Fuel Injector Nozzle Configuration on JP-8 Sprays at Diesel Engine Conditions

    DTIC Science & Technology

    2014-10-01

    The Effect of Fuel Injector Nozzle Configuration on JP-8 Sprays at Diesel Engine Conditions by Matthew Kurman, Luis Bravo, Chol-Bum Kweon...Fuel Injector Nozzle Configuration on JP-8 Sprays at Diesel Engine Conditions Matthew Kurman, Luis Bravo, and Chol-Bum Kweon Vehicle Technology...March 2014 4. TITLE AND SUBTITLE The Effect of Fuel Injector Nozzle Configuration on JP-8 Sprays at Diesel Engine Conditions 5a. CONTRACT NUMBER 5b

  3. Fuel system for diesel engine with multi-stage heated

    NASA Astrophysics Data System (ADS)

    Ryzhov, Yu N.; Kuznetsov, Yu A.; Kolomeichenko, A. V.; Kuznetsov, I. S.; Solovyev, R. Yu; Sharifullin, S. N.

    2017-09-01

    The article describes a fuel system of a diesel engine with a construction tractor multistage heating, allowing the use of pure rapeseed oil as a diesel engine fuel. The paper identified the kinematic viscosity depending on the temperature and composition of the mixed fuel, supplemented by the existing recommendations on the use of mixed fuels based on vegetable oils and developed the device allowing use as fuel for diesel engines of biofuels based on vegetable oils.

  4. One dimensional modeling of a diesel-CNG dual fuel engine

    NASA Astrophysics Data System (ADS)

    Azman, Putera Adam; Fawzi, Mas; Ismail, Muammar Mukhsin; Osman, Shahrul Azmir

    2017-04-01

    Some of the previous studies have shown that the use of compressed natural gas (CNG) in diesel engines potentially produce engine performance improvement and exhaust gas emission reduction, especially nitrogen oxides, unburned hydrocarbons, and carbon dioxide. On the other hand, there are other researchers who claimed that the use of CNG increases exhaust gas emissions, particularly nitrogen oxides. In this study, a one-dimensional model of a diesel-CNG dual fuel engine was made based on a 4-cylinder 2.5L common rail direct injection diesel engine. The software used is GT-Power, and it was used to analyze the engine performance and exhaust gas emissions of several diesel-CNG dual fuel blend ratios, i.e. 100:0, 90:10, 80:20, 70:30, 60:40 and 50:50. The effect of 100%, 75%, 50% engine loads on the exhaust gas emissions were also studied. The result shows that all diesel-CNG fuel blends produces higher brake torque and brake power at engine speed of 2000-3000 rpm compared with 100% diesel. The 50:50 diesel-CNG blend produces the highest brake torque and brake power, but also has the highest brake specific fuel consumption. As a higher percentage of CNG added to the dual fuel blend, unburned hydrocarbons and carbon monoxide emission increased while carbon dioxide emission decreased. The nitrogen oxides emission concentration is generally unaffected by any change of the dual fuel ratio.

  5. 40 CFR 86.884-5 - Test procedures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 20 2012-07-01 2012-07-01 false Test procedures. 86.884-5 Section 86... New Diesel Heavy-Duty Engines; Smoke Exhaust Test Procedure § 86.884-5 Test procedures. The procedures described in this and subsequent sections will be the test program to determine the conformity of engines...

  6. 40 CFR 86.1925 - What records must I keep?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Manufacturer-Run In-Use Testing Program for Heavy-Duty Diesel Engines § 86.1925 What records must I keep? (a... electronic records of your in-use testing for five years after you complete all the testing required for an...

  7. 40 CFR 86.1925 - What records must I keep?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Manufacturer-Run In-Use Testing Program for Heavy-Duty Diesel Engines § 86.1925 What records must I keep? (a... electronic records of your in-use testing for five years after you complete all the testing required for an...

  8. 40 CFR 86.1925 - What records must I keep?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Manufacturer-Run In-Use Testing Program for Heavy-Duty Diesel Engines § 86.1925 What records must I keep? (a... electronic records of your in-use testing for five years after you complete all the testing required for an...

  9. A review on the engine performance and exhaust emission characteristics of diesel engines fueled with biodiesel blends.

    PubMed

    Damanik, Natalina; Ong, Hwai Chyuan; Tong, Chong Wen; Mahlia, Teuku Meurah Indra; Silitonga, Arridina Susan

    2018-06-01

    Biodiesels have gained much popularity because they are cleaner alternative fuels and they can be used directly in diesel engines without modifications. In this paper, a brief review of the key studies pertaining to the engine performance and exhaust emission characteristics of diesel engines fueled with biodiesel blends, exhaust aftertreatment systems, and low-temperature combustion technology is presented. In general, most biodiesel blends result in a significant decrease in carbon monoxide and total unburned hydrocarbon emissions. There is also a decrease in carbon monoxide, nitrogen oxide, and total unburned hydrocarbon emissions while the engine performance increases for diesel engines fueled with biodiesels blended with nano-additives. The development of automotive technologies, such as exhaust gas recirculation systems and low-temperature combustion technology, also improves the thermal efficiency of diesel engines and reduces nitrogen oxide and particulate matter emissions.

  10. Future fuels and engines for railroad locomotives. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    Liddle, S. G.; Bonzo, B. B.; Purohit, G. P.; Stallkamp, J. A.

    1981-01-01

    The potential for reducing the dependence of railroads on petroleum fuel, particularly Diesel No. 2 was investigated. Two approaches are studied: (1) to determine how the use of Diesel No. 2 can be reduced through increased efficiency and conservation, and (2) to use fuels other than Diesel No. 2 both in Diesel and other types of engines. Because synthetic hydrocarbon fuels are particularly suited to medium speed diesel engines, the first commercial application of these fuels may be by the railroad industry.

  11. Demonstration of diesel fired coolant heaters in school bus applications : final report.

    DOT National Transportation Integrated Search

    2010-04-01

    Engine block pre-heating can reduce fuel consumption, decrease pollution, extend engine life, and it is often necessary for reliably starting diesel engines in cold climates. This report describes the application and experience of applying 36 diesel ...

  12. Diesel engine exhaust oxidizer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kammel, R.A.

    1992-06-16

    This patent describes a diesel engine exhaust oxidizing device. It comprises: an enclosure having an inlet for receiving diesel engine exhaust, a main flow path through the enclosure to an outlet of the enclosure, a by-ass through the enclosure, and a microprocessor control means.

  13. 40 CFR 86.085-2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... represents the manufacturer's total diesel light-duty vehicle production for those engine families being... standard. PRODLDT represents the manufacturer's total diesel light-duty truck production for those engine... average particulate emission level, for certification purposes, of all of its diesel engine families...

  14. Diesel engine exhaust and lung cancer: an unproven association.

    PubMed Central

    Muscat, J E; Wynder, E L

    1995-01-01

    The risk of lung cancer associated with diesel exhaust has been calculated from 14 case-control or cohort studies. We evaluated the findings from these studies to determine whether there is sufficient evidence to implicate diesel exhaust as a human lung carcinogen. Four studies found increased risks associated with long-term exposure, although two of the four studies were based on the same cohort of railroad workers. Six studies were inconclusive due to missing information on smoking habits, internal inconsistencies, or inadequate characterization of diesel exposure. Four studies found no statistically significant associations. It can be concluded that short-term exposure to diesel engine exhaust (< 20 years) does not have a causative role in human lung cancer. There is statistical but not causal evidence that long-term exposure to diesel exhaust (> 20 years) increases the risk of lung cancer for locomotive engineers, brakemen, and diesel engine mechanics. There is inconsistent evidence on the effects of long-term exposure to diesel exhaust in the trucking industry. There is no evidence for a joint effect of diesel exhaust and cigarette smoking on lung cancer risk. Using common criteria for determining causal associations, the epidemiologic evidence is insufficient to establish diesel engine exhaust as a human lung carcinogen. Images p812-a PMID:7498093

  15. Regulated and unregulated emissions from a diesel engine fueled with biodiesel and biodiesel blended with methanol

    NASA Astrophysics Data System (ADS)

    Cheung, C. S.; Zhu, Lei; Huang, Zhen

    Experiments were carried out on a diesel engine operating on Euro V diesel fuel, pure biodiesel and biodiesel blended with methanol. The blended fuels contain 5%, 10% and 15% by volume of methanol. Experiments were conducted under five engine loads at a steady speed of 1800 rev min -1 to assess the performance and the emissions of the engine associated with the application of the different fuels. The results indicate an increase of brake specific fuel consumption and brake thermal efficiency when the diesel engine was operated with biodiesel and the blended fuels, compared with the diesel fuel. The blended fuels could lead to higher CO and HC emissions than biodiesel, higher CO emission but lower HC emission than the diesel fuel. There are simultaneous reductions of NO x and PM to a level below those of the diesel fuel. Regarding the unregulated emissions, compared with the diesel fuel, the blended fuels generate higher formaldehyde, acetaldehyde and unburned methanol emissions, lower 1,3-butadiene and benzene emissions, while the toluene and xylene emissions not significantly different.

  16. Virtual Instrument for Emissions Measurement of Internal Combustion Engines

    PubMed Central

    Pérez, Armando; Montero, Gisela; Coronado, Marcos; García, Conrado; Pérez, Rubén

    2016-01-01

    The gases emissions measurement systems in internal combustion engines are strict and expensive nowadays. For this reason, a virtual instrument was developed to measure the combustion emissions from an internal combustion diesel engine, running with diesel-biodiesel mixtures. This software is called virtual instrument for emissions measurement (VIEM), and it was developed in the platform of LabVIEW 2010® virtual programming. VIEM works with sensors connected to a signal conditioning system, and a data acquisition system is used as interface for a computer in order to measure and monitor in real time the emissions of O2, NO, CO, SO2, and CO2 gases. This paper shows the results of the VIEM programming, the integrated circuits diagrams used for the signal conditioning of sensors, and the sensors characterization of O2, NO, CO, SO2, and CO2. VIEM is a low-cost instrument and is simple and easy to use. Besides, it is scalable, making it flexible and defined by the user. PMID:27034893

  17. Approach for energy saving and pollution reducing by fueling diesel engines with emulsified biosolution/ biodiesel/diesel blends.

    PubMed

    Lin, Yuan-Chung; Lee, Wen-Jhy; Chao, How-Ran; Wang, Shu-Li; Tsou, Tsui-Chun; Chang-Chien, Guo-Ping; Tsai, Perng-Jy

    2008-05-15

    The developments of both biodiesel and emulsified diesel are being driven by the need for reducing emissions from diesel engines and saving energy. Artificial chemical additives are also being used in diesel engines for increasing their combustion efficiencies. But the effects associated with the use of emulsified additive/biodiesel/diesel blends in diesel engines have never been assessed. In this research, the premium diesel fuel (PDF) was used as the reference fuel. A soy-biodiesel was selected as the test biodiesel. A biosolution made of 96.5 wt % natural organic enzyme-7F (NOE-7F) and 3.5 wt % water (NOE-7F water) was used as the fuel additive. By adding additional 1 vol % of surfactant into the fuel blend, a nanotechnology was used to form emulsified biosolution/soy-biodiesel/PDF blends for fueling the diesel engine. We found that the emulsified biosolution/soy-biodiesel/PDF blends did not separate after being kept motionless for 30 days. The above stability suggests that the above combinations are suitable for diesel engines as alternative fuels. Particularly, we found that the emulsified biosolution/soy-biodiesel/PDF blends did have the advantage in saving energy and reducing the emissions of both particulate matters (PM) and polycyclic aromatic hydrocarbons (PAHs) from diesel engines as compared with PDF, soy-biodiesel/PDF blends, and emulsified soy-biodiesel/ PDF blends. The results obtained from this study will provide useful approaches for reducing the petroleum reliance, pollution, and global warming. However, it should be noted that NO(x) emissions were not measured in the present study which warrants the need for future investigation.

  18. Comparative evaluation of the effect of sweet orange oil-diesel blend on performance and emissions of a multi-cylinder compression ignition engine

    NASA Astrophysics Data System (ADS)

    Rahman, S. M. Ashrafur; Hossain, F. M.; Van, Thuy Chu; Dowell, Ashley; Islam, M. A.; Rainey, Thomas J.; Ristovski, Zoran D.; Brown, Richard J.

    2017-06-01

    In 2014, global demand for essential oils was 165 kt and it is expected to grow 8.5% per annum up to 2022. Every year Australia produces approximately 1.5k tonnes of essential oils such as tea tree, orange, lavender, eucalyptus oil, etc. Usually essential oils come from non-fatty areas of plants such as the bark, roots, heartwood, leaves and the aromatic portions (flowers, fruits) of the plant. For example, orange oil is derived from orange peel using various extraction methods. Having similar properties to diesel, essential oils have become promising alternate fuels for diesel engines. The present study explores the opportunity of using sweet orange oil in a compression ignition engine. Blends of sweet orange oil-diesel (10% sweet orange oil, 90% diesel) along with neat diesel fuel were used to operate a six-cylinder diesel engine (5.9 litres, common rail, Euro-III, compression ratio 17.3:1). Some key fuel properties such as: viscosity, density, heating value, and surface tension are presented. Engine performance (brake specific fuel consumption) and emission parameters (CO, NOX, and Particulate Matter) were measured to evaluate running with the blends. The engine was operated at 1500 rpm (maximum torque condition) with different loads. The results from the property analysis showed that sweet orange oil-diesel blend exhibits lower density, viscosity and surface tension and slightly higher calorific value compared to neat diesel fuel. Also, from the engine test, the sweet orange oil-diesel blend exhibited slightly higher brake specific fuel consumption, particulate mass and particulate number; however, the blend reduced the brake specific CO emission slightly and brake specific NOX emission significantly compared to that of neat diesel.

  19. Advanced Collaborative Emissions Study Auxiliary Findings on 2007-Compliant Diesel Engines: A Comparison With Diesel Exhaust Genotoxicity Effects Prior to 2007

    PubMed Central

    Hallberg, Lance M; Ward, Jonathan B; Wickliffe, Jeffrey K; Ameredes, Bill T

    2017-01-01

    Since its beginning, more than 117 years ago, the compression-ignition engine, or diesel engine, has grown to become a critically important part of industry and transportation. Public concerns over the health effects from diesel emissions have driven the growth of regulatory development, implementation, and technological advances in emission controls. In 2001, the United States Environmental Protection Agency and California Air Resources Board issued new diesel fuel and emission standards for heavy-duty engines. To meet these stringent standards, manufacturers used new emission after-treatment technology, and modified fuel formulations, to bring about reductions in particulate matter and nitrogen oxides within the exhaust. To illustrate the impact of that technological transition, a brief overview of pre-2007 diesel engine exhaust biomarkers of genotoxicity and health-related concerns is provided, to set the context for the results of our research findings, as part of the Advanced Collaborative Emissions Study (ACES), in which the effects of a 2007-compliant diesel engine were examined. In agreement with ACES findings reported in other tissues, we observed a lack of measurable 2007-compliant diesel treatment–associated DNA damage, in lung tissue (comet assay), blood serum (8-hydroxy-2′-deoxyguanosine [8-OHdG] assay), and hippocampus (lipid peroxidation assay), across diesel exhaust exposure levels. A time-dependent assessment of 8-OHdG and lipid peroxidation also suggested no differences in responses across diesel exhaust exposure levels more than 24 months of exposure. These results indicated that the 2007-compliant diesel engine reduced measurable reactive oxygen species–associated tissue derangements and suggested that the 2007 standards–based mitigation approaches were effective. PMID:28659715

  20. Design and testing of an independently controlled urea SCR retrofit system for the reduction of NOx emissions from marine diesels.

    PubMed

    Johnson, Derek R; Bedick, Clinton R; Clark, Nigel N; McKain, David L

    2009-05-15

    Diesel engine emissions for on-road, stationary and marine applications are regulated in the United States via standards set by the Environmental Protection Agency (EPA). A major component of diesel exhaust that is difficult to reduce is nitrogen oxides (NOx). Selective catalytic reduction (SCR) has been in use for many years for stationary applications, including external combustion boilers, and is promising for NOx abatement as a retrofit for mobile applications where diesel compression ignition engines are used. The research presented in this paper is the first phase of a program focused on the reduction of NOx by use of a stand-alone urea injection system, applicable to marine diesel engines typical of work boats (e.g., tugs). Most current urea SCR systems communicate with engine controls to predict NOx emissions based on signals such as torque and engine speed, however many marine engines in use still employ mechanical injection technology and lack electronic communication abilities. The system developed and discussed in this paper controls NOx emissions independentof engine operating parameters and measures NOx and exhaust flow using the following exhaust sensor inputs: absolute pressure, differential pressure, temperature, and NOx concentration. These sensor inputs were integrated into an independent controller and open loop architecture to estimate the necessary amount of urea needed, and the controller uses pulse width modulation (PWM) to power an automotive fuel injector for airless urea delivery. The system was tested in a transient test cell on a 350 hp engine certified at 4 g/bhp-hr of NOx, with a goal of reducing the engine out NOx levels by 50%. NOx reduction capabilities of 41-67% were shown on the non road transient cycle (NRTC) and ICOMIA E5 steady state cycles with system optimization during testing to minimize the dilute ammonia slip to cycle averages of 5-7 ppm. The goal of 50% reduction of NOx can be achieved dependent upon cycle. Further research with control optimization, urea distribution and possible use of oxidation catalysts is recommended to improve the NOx reduction capabilities while minimizing ammonia slip.

  1. APBF-DEC NOx Adsorber/DPF Project: SUV / Pick-up Truck Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webb, C; Weber, P; Thornton,M

    2003-08-24

    The objective of this project is to determine the influence of diesel fuel composition on the ability of NOX adsorber catalyst (NAC) technology, in conjunction with diesel particle filters (DPFs), to achieve stringent emissions levels with a minimal fuel economy impact. The test bed for this project was intended to be a light-duty sport utility vehicle (SUV) with a goal of achieving light-duty Tier 2-Bin 5 tail pipe emission levels (0.07 g/mi. NOX and 0.01 g/mi. PM). However, with the current US market share of light-duty diesel applications being so low, no US 2002 model year (MY) light-duty truck (LDT)more » or SUV platforms equipped with a diesel engine and having a gross vehicle weight rating (GVWR) less than 8500 lb exist. While the current level of diesel engine use is relatively small in the light-duty class, there exists considerable potential for the diesel engine to gain a much larger market share in the future as manufacturers of heavy light-duty trucks (HLDTs) attempt to offset the negative impact on cooperate average fuel economy (CAFE) that the recent rise in market share of the SUVs and LDTs has caused. The US EPA Tier 2 emission standards also contain regulation to prevent the migration of heavy light-duty trucks and SUV's to the medium duty class. This preventive measure requires that all medium duty trucks, SUV's and vans in the 8,500 to 10,000 lb GVWR range being used as passenger vehicles, meet light-duty Tier 2 standards. In meeting the Tier 2 emission standards, the HLDTs and medium-duty passenger vehicles (MDPVs) will face the greatest technological challenges. Because the MDPV is the closest weight class and application relative to the potential upcoming HLDTs and SUV's, a weight class compromise was made in this program to allow the examination of using a diesel engine with a NAC-DPF system on a 2002 production vehicle. The test bed for this project is a 2500 series Chevrolet Silverado equipped with a 6.6L Duramax diesel engine certified to 2002 MY Federal heavy-duty and 2002 MY California medium-duty emission standards. The stock vehicle included cooled air charge (CAC), turbocharger (TC), direct fuel injection (DFI), oxidation catalyst (OC), and exhaust gas recirculation (EGR)« less

  2. Prospects of pyrolysis oil from plastic waste as fuel for diesel engines: A review

    NASA Astrophysics Data System (ADS)

    Mangesh, V. L.; Padmanabhan, S.; Ganesan, S.; PrabhudevRahul, D.; Reddy, T. Dinesh Kumar

    2017-05-01

    The purpose ofthis study is to review the existing literature about chemical recycling of plastic waste and its potential as fuel for diesel engines. This is a review covering on the field of converting waste plastics into liquid hydrocarbon fuels for diesel engines. Disposal and recycling of waste plastics have become an incremental problem and environmental threat with increasing demand for plastics. One of the effective measures is by converting waste plastic into combustible hydrocarbon liquid as an alternative fuel for running diesel engines. Continued research efforts have been taken by researchers to convert waste plastic in to combustible pyrolysis oil as alternate fuel for diesel engines. An existing literature focuses on the study of chemical structure of the waste plastic pyrolysis compared with diesel oil. Converting waste plastics into fuel oil by different catalysts in catalytic pyrolysis process also reviewed in this paper. The methodology with subsequent hydro treating and hydrocracking of waste plastic pyrolysis oil can reduce unsaturated hydrocarbon bonds which would improve the combustion performance in diesel engines as an alternate fuel.

  3. 76 FR 77521 - California State Nonroad Engine Pollution Control Standards; Commercial Harbor Craft Regulations...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-13

    ... emissions of particulate matter and oxides of nitrogen from new and in-use diesel-fueled engines on... enforcement provisions. The requirements are applicable to diesel propulsion and auxiliary engines on new and... operating in California are previously unregulated diesel engines, accounting for approximately 3.3 tons per...

  4. 30 CFR 250.610 - Diesel engine air intakes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Diesel engine air intakes. 250.610 Section 250.610 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND... engine air intakes. No later than May 31, 1989, diesel engine air intakes shall be equipped with a device...

  5. 46 CFR 58.10-10 - Diesel engine installations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Diesel engine installations. 58.10-10 Section 58.10-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY... installations. (a) The requirements of § 58.10-5 (a), (c), and (d) shall apply to diesel engine installations...

  6. 40 CFR 86.1105-87 - Emission standards for which nonconformance penalties are available.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... VEHICLES AND ENGINES (CONTINUED) Nonconformance Penalties for Gasoline-Fueled and Diesel Heavy-Duty Engines...-fueled light heavy-duty diesel engines: (A) The following values shall be used to calculate an NCP in... heavy-duty diesel engines: (A) The following values shall be used to calculate an NCP in accordance with...

  7. 40 CFR 86.1105-87 - Emission standards for which nonconformance penalties are available.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... VEHICLES AND ENGINES (CONTINUED) Nonconformance Penalties for Gasoline-Fueled and Diesel Heavy-Duty Engines...-fueled light heavy-duty diesel engines: (A) The following values shall be used to calculate an NCP in... heavy-duty diesel engines: (A) The following values shall be used to calculate an NCP in accordance with...

  8. 40 CFR 86.336-79 - Diesel engine test cycle.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Diesel engine test cycle. 86.336-79... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.336-79...

  9. 40 CFR 86.336-79 - Diesel engine test cycle.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Diesel engine test cycle. 86.336-79... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.336-79...

  10. Performance and emission characteristics of a low heat rejection engine with different air gap thicknesses with Jatropha oil based bio-diesel.

    PubMed

    Murali Krishna, M V S; Sarita, G; Seshagiri Rao, V V R; Chowdary, R P; Ramana Reddy, Ch V

    2010-04-01

    The research work on alternate fuels has been the topic of wider interest in the context of depletion of fossil fuels and increasing of pollution levels of the engines with conventional fossil fuels. Alcohols and vegetable oils are considered to replace diesel fuels as they are renewable in nature. However, use of alcohols in internal combustion engines is limited in India, as these fuels are diverted to PetroChemical industries and hence much emphasis is given to the non-edible vegetable oils as alternate fuels in internal combustion engines. However, the drawbacks of low volatility and high viscosity associated with non-edible vegetable oils call for hot combustion chamber, provided by low heat rejection (LHR) diesel engine. Investigations are carried out on a LHR diesel engine with varied air gap thicknesses and injection pressures with jatropha oil based bio-diesel at normal temperature. Performance is improved with high degree of insulation with LHR engine with vegetable oil in comparison with conventional engine (CE) with pure diesel operation.

  11. Identification and quantification analysis of nonlinear dynamics properties of combustion instability in a diesel engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Li-Ping, E-mail: yangliping302@hrbeu.edu.cn; Ding, Shun-Liang; Song, En-Zhe

    The cycling combustion instabilities in a diesel engine have been analyzed based on chaos theory. The objective was to investigate the dynamical characteristics of combustion in diesel engine. In this study, experiments were performed under the entire operating range of a diesel engine (the engine speed was changed from 600 to 1400 rpm and the engine load rate was from 0% to 100%), and acquired real-time series of in-cylinder combustion pressure using a piezoelectric transducer installed on the cylinder head. Several methods were applied to identify and quantitatively analyze the combustion process complexity in the diesel engine including delay-coordinate embedding, recurrencemore » plot (RP), Recurrence Quantification Analysis, correlation dimension (CD), and the largest Lyapunov exponent (LLE) estimation. The results show that the combustion process exhibits some determinism. If LLE is positive, then the combustion system has a fractal dimension and CD is no more than 1.6 and within the diesel engine operating range. We have concluded that the combustion system of diesel engine is a low-dimensional chaotic system and the maximum values of CD and LLE occur at the lowest engine speed and load. This means that combustion system is more complex and sensitive to initial conditions and that poor combustion quality leads to the decrease of fuel economy and the increase of exhaust emissions.« less

  12. Identification and quantification analysis of nonlinear dynamics properties of combustion instability in a diesel engine.

    PubMed

    Yang, Li-Ping; Ding, Shun-Liang; Litak, Grzegorz; Song, En-Zhe; Ma, Xiu-Zhen

    2015-01-01

    The cycling combustion instabilities in a diesel engine have been analyzed based on chaos theory. The objective was to investigate the dynamical characteristics of combustion in diesel engine. In this study, experiments were performed under the entire operating range of a diesel engine (the engine speed was changed from 600 to 1400 rpm and the engine load rate was from 0% to 100%), and acquired real-time series of in-cylinder combustion pressure using a piezoelectric transducer installed on the cylinder head. Several methods were applied to identify and quantitatively analyze the combustion process complexity in the diesel engine including delay-coordinate embedding, recurrence plot (RP), Recurrence Quantification Analysis, correlation dimension (CD), and the largest Lyapunov exponent (LLE) estimation. The results show that the combustion process exhibits some determinism. If LLE is positive, then the combustion system has a fractal dimension and CD is no more than 1.6 and within the diesel engine operating range. We have concluded that the combustion system of diesel engine is a low-dimensional chaotic system and the maximum values of CD and LLE occur at the lowest engine speed and load. This means that combustion system is more complex and sensitive to initial conditions and that poor combustion quality leads to the decrease of fuel economy and the increase of exhaust emissions.

  13. 40 CFR 86.085-2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... represents the manufacturer's total diesel light-duty vehicle production for those engine families being... standard. PRODLDT represents the manufacturer's total diesel light-duty truck production for those engine... particulate emission level, for certification purposes, of all of its diesel engine families included in the...

  14. Baumot BA-B Diesel Particulate Filter with Pre-Catalyst (ETV Mobile Source Emissions Control Devices) Verification Report

    EPA Science Inventory

    The Baumot BA-B Diesel Particulate Filter with Pre-Catalyst is a diesel engine retrofit device for light, medium, and heavy heavy-duty diesel on-highway engines for use with commercial ultra-low-sulfur diesel (ULSD) fuel. The BA-B particulate filter is composed of a pre-catalyst ...

  15. Experimental investigation on NOx and green house gas emissions from a marine auxiliary diesel engine using ultralow sulfur light fuel.

    PubMed

    Geng, Peng; Tan, Qinming; Zhang, Chunhui; Wei, Lijiang; He, Xianzhong; Cao, Erming; Jiang, Kai

    2016-12-01

    In recent years, marine auxiliary diesel engine has been widely used to produce electricity in the large ocean-going ship. One of the main technical challenges for ocean-going ship is to reduce pollutant emissions from marine auxiliary diesel engine and to meet the criteria of disposal on ships pollutants of IMO (International Maritime Organization). Different technical changes have been introduced in marine auxiliary diesel engine to apply clean fuels to reduce pollutant emissions. The ultralow sulfur light fuel will be applied in diesel engine for emission reductions in China. This study is aimed to investigate the impact of fuel (ultralow sulfur light fuel) on the combustion characteristic, NOx and green house gas emissions in a marine auxiliary diesel engine, under the 50%-90% engine speeds and the 25%-100% engine torques. The experimental results show that, in the marine auxiliary diesel engine, the cylinder pressure and peak heat release rate increase slightly with the increase of engine torques, while the ignition advances and combustion duration become longer. With the increases of the engine speed and torque, the fuel consumption decreases significantly, while the temperature of the exhaust manifold increases. The NOx emissions increase significantly with the increases of the engine speed and torque. The NO emission increases with the increases of the engine speed and torque, while the NO 2 emission decreases. Meanwhile, the ratio of NO 2 and NO is about 1:1 when the diesel engine operated in the low speed and load, while the ratio increases significantly with the increases of engine speed and torque, due to the increase of the cylinder temperature in the diffusive combustion mode. Moreover, the CO 2 emission increases with the increases of engine speed and torque by the use of ultralow sulfur light fuel. Copyright © 2016. Published by Elsevier B.V.

  16. Methods for heat transfer and temperature field analysis of the insulated diesel phase 2 progress report

    NASA Technical Reports Server (NTRS)

    Morel, T.; Kerlbar, R.; Fort, E. F.; Blumberg, P. N.

    1985-01-01

    This report describes work done during Phase 2 of a 3 year program aimed at developing a comprehensive heat transfer and thermal analysis methodology for design analysis of insulated diesel engines. The overall program addresses all the key heat transfer issues: (1) spatially and time-resolved convective and radiative in-cylinder heat transfer, (2) steady-state conduction in the overall structure, and (3) cyclical and load/speed temperature transients in the engine structure. During Phase 2, radiation heat transfer model was developed, which accounts for soot formation and burn up. A methodology was developed for carrying out the multi-dimensional finite-element heat conduction calculations within the framework of thermodynamic cycle codes. Studies were carried out using the integrated methodology to address key issues in low heat rejection engines. A wide ranging design analysis matrix was covered, including a variety of insulation strategies, recovery devices and base engine configurations. A single cylinder Cummins engine was installed at Purdue University, and it was brought to a full operational status. The development of instrumentation was continued, concentrating on radiation heat flux detector, total heat flux probe, and accurate pressure-crank angle data acquisition.

  17. Performance of a small compression ignition engine fuelled by liquified petroleum gas

    NASA Astrophysics Data System (ADS)

    Ambarita, Himsar; Yohanes Setyawan, Eko; Ginting, Sibuk; Naibaho, Waldemar

    2017-09-01

    In this work, a small air cooled single cylinder of diesel engine with a rated power of 2.5 kW at 3000 rpm is tested in two different modes. In the first mode, the CI engines run on diesel fuel mode. In the second mode, the CI engine run on liquified petroleum gas (LPG) mode. In order to simulate the load, a generator is employed. The load is fixed at 800 W and engine speed varies from 2400 rpm to 3400 rpm. The out power, specific fuel consumption, and brake thermal efficiency resulted from the engine in both modes are compared. The results show that the output power of the CI engine run on LPG fuel is comparable with the engine run on diesel fuel. However, the specific fuel consumption of the CI engine with LPG fuel is higher 17.53% in average in comparison with the CI engine run on diesel fuel. The efficiency of the CI engine with LPG fuel is lower 21.43% in average in comparison with the CI engine run on diesel fuel.

  18. Test/QA plan for the verification testing of diesel exhaust catalysts, particulate filters and engine modification control technologies for highway and nonroad use diesel engines

    EPA Science Inventory

    This ETV test/QA plan for heavy-duty diesel engine testing at the Southwest Research Institute’s Department of Emissions Research (DER) describes how the Federal Test Procedure (FTP), as listed in 40 CFR Part 86 for highway engines and 40 CFR Part 89 for nonroad engines, will be ...

  19. 40 CFR 86.007-15 - NOX and particulate averaging, trading, and banking for heavy-duty engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... discount factor of 0.8 (0.9 × 0.888 = 0.8). (5) For diesel engine families, the combined number of engines... heavy-duty diesel engine families for that model year. (6) The FEL must be expressed to the same number... 2007 and later model year diesel engine families, or generated for 2008 and later model year Otto-cycle...

  20. Computer simulation of the heavy-duty turbo-compounded diesel cycle for studies of engine efficiency and performance

    NASA Technical Reports Server (NTRS)

    Assanis, D. N.; Ekchian, J. A.; Heywood, J. B.; Replogle, K. K.

    1984-01-01

    Reductions in heat loss at appropriate points in the diesel engine which result in substantially increased exhaust enthalpy were shown. The concepts for this increased enthalpy are the turbocharged, turbocompounded diesel engine cycle. A computer simulation of the heavy duty turbocharged turbo-compounded diesel engine system was undertaken. This allows the definition of the tradeoffs which are associated with the introduction of ceramic materials in various parts of the total engine system, and the study of system optimization. The basic assumptions and the mathematical relationships used in the simulation of the model engine are described.

  1. Diesel Powered School Buses: An Update.

    ERIC Educational Resources Information Center

    Gresham, Robert

    1984-01-01

    Because diesel engines are more economical and longer-lasting than gasoline engines, school districts are rapidly increasing their use of diesel buses. Dependence on diesel power, however, entails vulnerability to cost increases due to the unreliability of crude oil supplies and contributes to air pollution. (MCG)

  2. Alternative Fuels Data Center

    Science.gov Websites

    National Clean Diesel Campaign (NCDC) The U.S. Environmental Protection Agency established the NCDC to reduce pollution emitted from diesel engines through the implementation of varied control existing diesel fleets, regulations for clean diesel engines and fuels, and regional collaborations and

  3. 40 CFR 94.108 - Test fuels.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) instead of or in addition to distillate diesel fuel (e.g., natural gas, methanol, or nondistillate diesel... Category 1 or Category 2 engines without exhaust aftertreatment obtained using a diesel fuel containing... Category 2 engines without exhaust aftertreatment obtained using diesel fuel containing less than 0.03...

  4. 40 CFR 94.108 - Test fuels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) instead of or in addition to distillate diesel fuel (e.g., natural gas, methanol, or nondistillate diesel... Category 1 or Category 2 engines without exhaust aftertreatment obtained using a diesel fuel containing... Category 2 engines without exhaust aftertreatment obtained using diesel fuel containing less than 0.03...

  5. Single-Cylinder Diesel Engine Tests with Unstabilized Water-in-Fuel Emulsions

    DOT National Transportation Integrated Search

    1978-08-01

    A single-cylinder, four-stroke cycle diesel engine was operated on unstabilized water-in-fuel emulsions. Two prototype devices were used to produce the emulsions on-line with the engine. More than 350 test points were run with baseline diesel fuel an...

  6. Study on production of biodiesel from Jatropha oil and the performance and emission of a diesel engine

    NASA Astrophysics Data System (ADS)

    Nor, N. F. M.; Hafidzal, M. H. M.; Shamsuddin, S. A.; Ismail, M. S.; Hashim, A. H.

    2015-05-01

    The use of nonedible oil as a feedstock is needed to replace edible oil as an alternative fuel for diesel engine. This nonedible oils in diesel engine however leads to low performance and higher emission due to its high viscosity. The characteristics of the fuel can be improved through transesterification process. The yield of biodiesel from Jatropha oil using potassium hydroxide catalyst concentration of 1%, reaction temperature 60°C, reaction time 40 minutes and molar ratio methanol to oil 6:1 was 70.1% from the lab scale. The experimental study on the performances and emissions of a diesel engine is carried out using the Jatropha biodiesel produced from the transesterification process and compared with pure diesel. Results show that B20 has closer performance to diesel and lower emission compared to B5 and diesel in terms of CO2 and HC.

  7. The performance and emissions of diesel engines with biodiesel of sunan pecan seed and diesel oil blends

    NASA Astrophysics Data System (ADS)

    Ariani, F.; Sitorus, T. B.; Ginting, E.

    2017-12-01

    An observation was performed to evaluate the performance of direct injection stationary diesel engine which used a blends of biodiesel of Sunan pecan seed. The experiments were done with diesel oil, B5, B10, B15 and B20 in the engine speed variety. Results showed that the values of torque, power and thermal efficiency tend to decrease when the engine is using B5, B10, B15 and B20, compared to diesel oil. It also shown that the specific fuel consumption is increased when using B5, B10, B15 and B20. From the results of experiments and calculations, the maximum power of 3.08 kW, minimum specific fuel consumption of 189.93 g/kWh and maximum thermal efficiency of 45.53% when engine using diesel oil. However, exhaust gases were measured include opacity, carbon monoxide and hydrocarbon when the engine using biodiesel B5, B10, B15 and B20 decreased.

  8. A Mathematical Model of Marine Diesel Engine Speed Control System

    NASA Astrophysics Data System (ADS)

    Sinha, Rajendra Prasad; Balaji, Rajoo

    2018-02-01

    Diesel engine is inherently an unstable machine and requires a reliable control system to regulate its speed for safe and efficient operation. Also, the diesel engine may operate at fixed or variable speeds depending upon user's needs and accordingly the speed control system should have essential features to fulfil these requirements. This paper proposes a mathematical model of a marine diesel engine speed control system with droop governing function. The mathematical model includes static and dynamic characteristics of the control loop components. Model of static characteristic of the rotating fly weights speed sensing element provides an insight into the speed droop features of the speed controller. Because of big size and large time delay, the turbo charged diesel engine is represented as a first order system or sometimes even simplified to a pure integrator with constant gain which is considered acceptable in control literature. The proposed model is mathematically less complex and quick to use for preliminary analysis of the diesel engine speed controller performance.

  9. HAARP diesel engine-generator(s) noise study

    DOT National Transportation Integrated Search

    2005-01-07

    This document presents the results and corresponding analysis of an outdoor noise measurement program conducted by the John A. Volpe National Transportation Systems Centers Acoustic Facility (Volpe Center) at the United States Air Forces High F...

  10. Biofuel Mixture Composition and Parameters of Exhaust Gases Toxicity

    NASA Astrophysics Data System (ADS)

    Markov, V. A.; Kamaltdinov, V. G.; Loboda, S. S.

    2018-03-01

    Advantages of using fuels of vegetable origin as motor fuels are shown. Possible ways of using cameline oil as a fuel for a diesel engine are considered. Experimental research of diesel engine D-245.12S functioning on mixtures of diesel fuel and cameline oil of various percentage is given. Parameters of exhaust gases toxicity of the diesel engine by using these mixtures of various compositions are analyzed.

  11. Analysis of pre-heated fuel combustion and heat-emission dynamics in a diesel engine

    NASA Astrophysics Data System (ADS)

    Plotnikov, S. A.; Kartashevich, A. N.; Buzikov, S. V.

    2018-01-01

    The article explores the feasibility of diesel fuel pre-heating. The research goal was to obtain and analyze the performance diagrams of a diesel engine fed with pre-heated fuel. The engine was tested in two modes: at rated RPMs and at maximum torque. To process the diagrams the authors used technique developed by the Central Diesel Research Institute (CDRI). The diesel engine’s heat emission curves were obtained. The authors concluded that fuel pre-heating shortened the initial phase of the combustion process and moderated the loads, thus making it possible to boost a diesel engine’s mean effective pressure.

  12. 30 CFR 7.90 - Approval marking.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Diesel Engines Intended for Use in Underground Coal Mines § 7.90 Approval marking. Each approved diesel engine shall be identified by a legible and... diesel engine. The marking shall also contain the following information: (a) Ventilation rate. (b) Rated...

  13. 30 CFR 7.90 - Approval marking.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Diesel Engines Intended for Use in Underground Coal Mines § 7.90 Approval marking. Each approved diesel engine shall be identified by a legible and... diesel engine. The marking shall also contain the following information: (a) Ventilation rate. (b) Rated...

  14. 30 CFR 7.90 - Approval marking.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Diesel Engines Intended for Use in Underground Coal Mines § 7.90 Approval marking. Each approved diesel engine shall be identified by a legible and... diesel engine. The marking shall also contain the following information: (a) Ventilation rate. (b) Rated...

  15. 30 CFR 7.90 - Approval marking.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Diesel Engines Intended for Use in Underground Coal Mines § 7.90 Approval marking. Each approved diesel engine shall be identified by a legible and... diesel engine. The marking shall also contain the following information: (a) Ventilation rate. (b) Rated...

  16. 30 CFR 7.90 - Approval marking.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... MINING PRODUCTS TESTING BY APPLICANT OR THIRD PARTY Diesel Engines Intended for Use in Underground Coal Mines § 7.90 Approval marking. Each approved diesel engine shall be identified by a legible and... diesel engine. The marking shall also contain the following information: (a) Ventilation rate. (b) Rated...

  17. Assessment of n-pentanol/Calophyllum inophyllum/diesel blends on the performance, emission, and combustion characteristics of a constant-speed variable compression ratio direct injection diesel engine.

    PubMed

    Ramakrishnan, Purnachandran; Kasimani, Ramesh; Peer, Mohamed Shameer; Rajamohan, Sakthivel

    2018-05-01

    Alcohol is used as an additive for a long time with the petroleum-based fuels. In this study, the higher alcohol, n-pentanol, was used as an additive to Calophyllum inophyllum (CI) biodiesel/diesel blends at 10, 15, and 20% by volume. In all blends, the ratio of CI was maintained at 20% by volume. The engine characteristics of the pentanol fuel blends were compared with the diesel and CI20 (Calophyllum inophyllum 20% and diesel 80%) biodiesel blend. The nitrogen oxide (NO) emission of the pentanol fuel blends showed an increased value than CI20 and neat diesel fuel. The carbon dioxide (CO 2 ) also increased with increase in pentanol addition with the fuel blends than CI20 fuel blend and diesel. The carbon monoxide (CO) and hydrocarbon (HC) emissions were decreased with increase in pentanol proportion in the blend than the CI20 fuel and diesel. The smoke emission was reduced and the combustion characteristics of the engine were also improved by using pentanol blended fuels. From this investigation, it is suggested that 20% pentanol addition with the biodiesel/diesel fuel is suitable for improved performance and combustion characteristics of a diesel engine without any engine modifications, whereas CO 2 and NO emissions increased with addition of pentanol due to effective combustion.

  18. Advanced diesel electronic fuel injection and turbocharging

    NASA Astrophysics Data System (ADS)

    Beck, N. J.; Barkhimer, R. L.; Steinmeyer, D. C.; Kelly, J. E.

    1993-12-01

    The program investigated advanced diesel air charging and fuel injection systems to improve specific power, fuel economy, noise, exhaust emissions, and cold startability. The techniques explored included variable fuel injection rate shaping, variable injection timing, full-authority electronic engine control, turbo-compound cooling, regenerative air circulation as a cold start aid, and variable geometry turbocharging. A Servojet electronic fuel injection system was designed and manufactured for the Cummins VTA-903 engine. A special Servojet twin turbocharger exhaust system was also installed. A series of high speed combustion flame photos was taken using the single cylinder optical engine at Michigan Technological University. Various fuel injection rate shapes and nozzle configurations were evaluated. Single-cylinder bench tests were performed to evaluate regenerative inlet air heating techniques as an aid to cold starting. An exhaust-driven axial cooling air fan was manufactured and tested on the VTA-903 engine.

  19. Comparative study of performance and emissions of a CI engine using biodiesel of microalgae, macroalgae and rice bran

    NASA Astrophysics Data System (ADS)

    Jayaprabakar, J.; Karthikeyan, A.; Saikiran, K.; Beemkumar, N.; Joy, Nivin

    2017-05-01

    Biodiesel is an alternative and safe fuel to replace conventional petroleum diesel. With high-lubricity and clean-burning ability the biodiesel can be a better fuel component for use in existing diesel engines without any modifications. The aim of this Research was to study the potential use of Macro algae oil, Micro algae oil, Rice Bran oil methyl ester as a substitute for diesel fuel in diesel engine. B10 and B20 blends of these three types of fuels are prepared by transesterification process. The blends on volume basis were used to test them in a four stroke single cylinder diesel engine to study the performance and emission characteristics of these fuels and compared with neat diesel fuel. Also, the property testing of these biofuels were carried out. The biodiesel blends in this study substantially reduces the emission of unburnt hydro carbons and smoke opacity and increases the emission of NOx emission in exhaust gases. These biodiesel blends were consumed more by the engine during testing than Diesel and the brake thermal efficiency and volumetric efficiency for the blends was identical with the Diesel.

  20. Energy and Exergy Analysis of a Diesel Engine Fuelled with Diesel and Simarouba Biodiesel Blends

    NASA Astrophysics Data System (ADS)

    Panigrahi, Nabnit; Mohanty, Mahendra Kumar; Mishra, Sruti Ranjan; Mohanty, Ramesh Chandra

    2018-02-01

    This article intends to determine the available work and various losses of a diesel engine fuelled with diesel and SB20 (20 % Simarouba biodiesel by volume blended with 80 % diesel by volume). The energy and exergy analysis were carried out by using first law and second law of thermodynamics respectively. The experiments were carried out on a 3.5 kW compression ignition engine. The analysis was conducted on per mole of fuel basis. The energy analysis indicates that about 37.23 and 37.79 % of input energy is converted into the capacity to do work for diesel and SB20 respectively. The exergetic efficiency was 34.8 and 35 % for diesel and Simarouba respectively. Comparative study indicates that the energetic and exergetic performance of SB20 resembles with that of diesel fuel.

  1. Annual Technical Symposium (28th): Achieving Technical and Management Excellence. Held in Arlington, Virginia on April 11, 1991,

    DTIC Science & Technology

    1991-04-11

    Perplexed: Think Energy Again. Video Enhanced SECAT - An Energy Program; Quality Ship Service Power with an Integrated Diesel Electric Propulsion...DIesign Branch (5011), NAVSEA * "Think Energy Again! Video Enhanced SECAT - 5 An Energy Program"’ Hasan Pehlivan, Mechanical Engineer/Ship Trials, Surface...1.015, or 1.5% increase.) Association of Scientists and Engineers 28th Annual Technical Symposium, 11 April 1991 THINK ENERGY AGAIN! A VIDEO ENHANCED

  2. Methane - fuel for the future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGeer, P.; Durbin, E.

    1982-01-01

    The 20 invited papers presented at the world conference on alternative fuel entitled 'Methane - fuel for the future' form the basis of this book. Papers discuss: the availability of alternative fuels (natural gas, biomass conversion to methane, methane from coal conversion); technological adaptions for alternative fuels (e.g. natural gas fueled engines, methane and diesel engines); commercial experience with alternative fuel programs. (e.g. retailing of methane); and some national programs for alternative fuels. One paper has been abstracted separately.

  3. 40 CFR 79.50 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... commonly used in heavy-duty engine evaluation. The EDS for heavy-duty diesel engines is specified in 40 CFR part 86, appendix I(f)(2). Evaporative Emission Generator (EEG) means a fuel tank or vessel to which...-fueled vehicles, Otto cycle methanol-fueled vehicles, diesel cycle diesel-fueled vehicles, and diesel...

  4. 40 CFR 79.50 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... commonly used in heavy-duty engine evaluation. The EDS for heavy-duty diesel engines is specified in 40 CFR part 86, appendix I(f)(2). Evaporative Emission Generator (EEG) means a fuel tank or vessel to which...-fueled vehicles, Otto cycle methanol-fueled vehicles, diesel cycle diesel-fueled vehicles, and diesel...

  5. Generation and characterization of diesel engine combustion emissions from petroleum diesel and soybean biodiesel fuels and application for inhalation exposure studies

    EPA Science Inventory

    Biodiesel made from the transesterification of plant- and anmal-derived oils is an important alternative fuel source for diesel engines. Although numerous studies have reported health effects associated with petroleum diesel emissions, information on biodiesel emissions are more ...

  6. Experimental Study of Effect of EGR Rates on NOx and Smoke Emission of LHR Diesel Engine Fueled with Blends of Diesel and Neem Biodiesel

    NASA Astrophysics Data System (ADS)

    Modi, Ashishkumar Jashvantlal; Gosai, Dipak Chimangiri; Solanki, Chandresh Maheshchandra

    2018-04-01

    Energy conservation and efficiency have been the quest of engineers concerned with internal combustion engine. Theoretically, if the heat rejected could be reduced, then the thermal efficiency would be improved, at least up to the limit set by the second law of thermodynamics. For current work a ceramic coated twin cylinder water-cooled diesel engine using blends of diesel and Neem biodiesel as fuel was evaluated for its performance and exhaust emissions. Multi cylinder vertical water cooled self-governed diesel engine, piston, top surface of cylinder head and liners were fully coated with partially stabilized zirconia as ceramic material attaining an adiabatic condition. Previous studies have reported that combustion of Neem biodiesel emitted higher NOx, while hydrocarbon and smoke emissions were lower than conventional diesel fuel. Exhaust gas recirculation (EGR) is one of the techniques being used to reduce NOx emission from diesel engines; because it decreases both flame temperature and oxygen concentration in the combustion chamber. The stationary diesel engine was run in laboratory at a high load condition (85% of maximum load), fixed speed (2000 rpm) and various EGR rates of 5-40% (with 5% increment). Various measurements like fuel flow, exhaust temperature, exhaust emission measurement and exhaust smoke test were carried out. The results indicate improved fuel economy and reduced pollution levels for the low heat rejection (LHR) engine. The results showed that, at 5% EGR with TB10, both NOx and smoke opacity were reduced by 26 and 15%, respectively. Furthermore, TB20 along with 10% EGR was also able to reduce both NOx and smoke emission by 34 and 30%, respectively compared to diesel fuel without EGR.

  7. Attempts to minimize nitrogen oxide emission from diesel engine by using antioxidant-treated diesel-biodiesel blend.

    PubMed

    Rashedul, Hasan Khondakar; Kalam, Md Abdul; Masjuki, Haji Hassan; Teoh, Yew Heng; How, Heoy Geok; Monirul, Islam Mohammad; Imdadul, Hassan Kazi

    2017-04-01

    The study represents a comprehensive analysis of engine exhaust emission variation from a compression ignition (CI) diesel engine fueled with diesel-biodiesel blends. Biodiesel used in this investigation was produced through transesterification procedure from Moringa oleifera oil. A single cylinder, four-stroke, water-cooled, naturally aspirated diesel engine was used for this purpose. The pollutants from the exhaust of the engine that are monitored in this study are nitrogen oxide (NO), carbon monoxide (CO), hydrocarbon (HC), and smoke opacity. Engine combustion and performance parameters are also measured together with exhaust emission data. Some researchers have reported that the reason for higher NO emission of biodiesel is higher prompt NO formation. The use of antioxidant-treated biodiesel in a diesel engine is a promising approach because antioxidants reduce the formation of free radicals, which are responsible for the formation of prompt NO during combustion. Two different antioxidant additives namely 2,6-di-tert-butyl-4-methylphenol (BHT) and 2,2'-methylenebis(4-methyl-6-tert-butylphenol) (MBEBP) were individually dissolved at a concentration of 1% by volume in MB30 (30% moringa biodiesel with 70% diesel) fuel blend to investigate and compare NO as well as other emissions. The result shows that both antioxidants reduced NO emission significantly; however, HC, CO, and smoke were found slightly higher compared to pure biodiesel blends, but not more than the baseline fuel diesel. The result also shows that both antioxidants were quite effective in reducing peak heat release rate (HRR) and brake-specific fuel consumption (BSFC) as well as improving brake thermal efficiency (BTE) and oxidation stability. Based on this study, antioxidant-treated M. oleifera biodiesel blend (MB30) can be used as a very promising alternative source of fuel in diesel engine without any modifications.

  8. Will future helicopters be diesel powered

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-05-01

    An investigator has found that, if current gas turbine engines in helicopters are replaced by compound adiabatic diesel engines, fuel savings of 40% are possible. This would hold true if the diesel engines are retrofitted to the current helicopter fleet or adapted to new helicopter designs. Problems such as engine placement, weight, and lubrication exist but may be surmountable with proper design.

  9. Truck Noise VIB : A Baseline Study of the Parameters Affecting Diesel Engine Intake and Exhaust Silencer Design

    DOT National Transportation Integrated Search

    1974-01-01

    A survey of diesel engine, truck, intake system, and exhaust system manufacturers was made for the purpose of compiling detailed information on all major mass-produced diesel engines currently used in the United States for trucks and buses, and on ex...

  10. REDUCING DIESEL NOX AND SOOT EMISSIONS VIA PARTICLE-FREE EXHAUST GAS RECIRCULATION - PHASE I

    EPA Science Inventory

    Diesel engines play an important role in the United States economy for power generation and transportation. However, NOx and soot emissions from both stationary and mobile diesel engines are a major contributor to air pollution. Many engine modifications and exhaust-after-t...

  11. 40 CFR 86.001-2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... use of 10 years or 110,000 miles, whichever occurs first. (4) For a diesel heavy-duty engine family: (i) For light heavy-duty diesel engines, for hydrocarbon, carbon monoxide, and particulate standards... diesel engines, for the oxides of nitrogen standard, a period of use of 10 years or 110,000 miles...

  12. 40 CFR 86.098-2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... use of 10 years or 110,000 miles, whichever occurs first. (4) For a diesel heavy-duty engine family: (i) For light heavy-duty diesel engines, for hydrocarbon, carbon monoxide, and particulate standards... diesel engines, for the oxides of nitrogen standard, a period of use of 10 years or 110,000 miles...

  13. 30 CFR 7.96 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... diesel engine with an intake system, exhaust system, and a safety shutdown system installed. Dry exhaust.... A system connected to the outlet of the diesel engine which includes, but is not limited to, the... constructed that flame or sparks from the diesel engine cannot propagate an explosion of a flammable mixture...

  14. 40 CFR 86.098-2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... use of 10 years or 110,000 miles, whichever occurs first. (4) For a diesel heavy-duty engine family: (i) For light heavy-duty diesel engines, for hydrocarbon, carbon monoxide, and particulate standards... diesel engines, for the oxides of nitrogen standard, a period of use of 10 years or 110,000 miles...

  15. 40 CFR 86.001-2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... use of 10 years or 110,000 miles, whichever occurs first. (4) For a diesel heavy-duty engine family: (i) For light heavy-duty diesel engines, for hydrocarbon, carbon monoxide, and particulate standards... diesel engines, for the oxides of nitrogen standard, a period of use of 10 years or 110,000 miles...

  16. 40 CFR 86.098-2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... use of 10 years or 110,000 miles, whichever occurs first. (4) For a diesel heavy-duty engine family: (i) For light heavy-duty diesel engines, for hydrocarbon, carbon monoxide, and particulate standards... diesel engines, for the oxides of nitrogen standard, a period of use of 10 years or 110,000 miles...

  17. 40 CFR 86.001-2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... use of 10 years or 110,000 miles, whichever occurs first. (4) For a diesel heavy-duty engine family: (i) For light heavy-duty diesel engines, for hydrocarbon, carbon monoxide, and particulate standards... diesel engines, for the oxides of nitrogen standard, a period of use of 10 years or 110,000 miles...

  18. 30 CFR 7.96 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... diesel engine with an intake system, exhaust system, and a safety shutdown system installed. Dry exhaust.... A system connected to the outlet of the diesel engine which includes, but is not limited to, the... constructed that flame or sparks from the diesel engine cannot propagate an explosion of a flammable mixture...

  19. Emissions and Fuel Economy of a Detroit Diesel 6-71 Engine Burning a 10-Percent Water-In-Fuel Emission

    DOT National Transportation Integrated Search

    1978-07-01

    Initial efforts with water/fuel emulsions in diesel engines were directed toward the control of NOx. More recent studies emphasized the use of emulsions to improve fuel economy. It is believed that in a diesel engine combustion process, emulsified fu...

  20. Greener, meaner diesels sport thermal barrier coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winkler, M.F.; Parker, D.W.

    1992-05-01

    The highly reliable diesel engine has long been the workhorse of the transportation, industrial power, utility, and marine industries. Demand for diesels is expected to accelerate well into the next century, driven by the engine's ability to economically produce power in almost any environment. Increasingly stringent environmental, efficiency, and durability requirements, however, present new challenges to diesel engine manufacturers and operators. This paper reports that many of these challenges can be met entirely, or in part, by thermal barrier coatings (TBCs). Diesel engine TBCs are plasma-spray-applied ceramics, which insulate combustion system components, such as pistons, valves, and piston fire decks,more » from heat and thermal shock.« less

  1. Performance and Durability Assessment of Two Emission Control Technologies Installed on a Legacy High-Speed Marine Diesel Engine

    DTIC Science & Technology

    2015-11-05

    program investigated cost- effective technologies to reduce emissions from legacy marine engines. High-speed, high-population engine models in both...respectively) were driven by health effects and environmental impacts. The U.S. Navy assessed its contribution to the domestic marine emission inventory...greatest potential. A laboratory developmental assessment was followed by a shipboard evaluation. Effective technology concepts applied to high

  2. 40 CFR 86.1917 - How does in-use testing under this subpart relate to the emission-related warranty in Section 207...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Manufacturer-Run In-Use Testing Program for Heavy-Duty Diesel Engines § 86.1917 How does in-use testing under this subpart relate... would also require one of the following things: (1) That, at the time of sale, the engine or vehicle was...

  3. 40 CFR 86.1917 - How does in-use testing under this subpart relate to the emission-related warranty in Section 207...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Manufacturer-Run In-Use Testing Program for Heavy-Duty Diesel Engines § 86.1917 How does in-use testing under this subpart relate... would also require one of the following things: (1) That, at the time of sale, the engine or vehicle was...

  4. 40 CFR 86.1917 - How does in-use testing under this subpart relate to the emission-related warranty in Section 207...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Manufacturer-Run In-Use Testing Program for Heavy-Duty Diesel Engines § 86.1917 How does in-use testing under this subpart relate to the... require one of the following things: (1) That, at the time of sale, the engine or vehicle was designed...

  5. 40 CFR 86.1917 - How does in-use testing under this subpart relate to the emission-related warranty in Section 207...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Manufacturer-Run In-Use Testing Program for Heavy-Duty Diesel Engines § 86.1917 How does in-use testing under this subpart relate... would also require one of the following things: (1) That, at the time of sale, the engine or vehicle was...

  6. 40 CFR 86.1917 - How does in-use testing under this subpart relate to the emission-related warranty in Section 207...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Manufacturer-Run In-Use Testing Program for Heavy-Duty Diesel Engines § 86.1917 How does in-use testing under this subpart relate... would also require one of the following things: (1) That, at the time of sale, the engine or vehicle was...

  7. [FTIR detection of unregulated emissions from a diesel engine with biodiesel fuel].

    PubMed

    Tan, Pi-qiang; Hu, Zhi-yuan; Lou, Di-ming

    2012-02-01

    Biodiesel, as one of the most promising alternative fuels, has received more attention because of limited fossil fuels. A comparison of biodiesel and petroleum diesel fuel is discussed as regards engine unregulated exhaust emissions. A diesel fuel, a pure biodiesel fuel, and fuel with 20% V/V biodiesel blend ratio were tested without engine modification The present study examines six typical unregulated emissions by Fourier transform infrared spectroscopy (FTIR) method: formaldehyde (HCHO), acetaldehyde (C2 H4 O), acetone (C3 H6 O), toluene (C7 H8), sulfur dioxide (SO2), and carbon dioxide (CO2). The results show addition of biodiesel fuel increases the formaldehyde emission, and B20 fuel has little change, but the formaldehyde emission of pure biodiesel shows a clear trend of addition. Compared with the pure diesel fuel, the acetaldehyde of B20 fuel has a distinct decrease, and the acetaldehyde emission of pure biodiesel is lower than that of the pure diesel fuel at low and middle engine loads, but higher at high engine load. The acetone emission is very low, and increases for B20 and pure biodiesel fuels as compared to diesel fuel. Compared with the diesel fuel, the toluene and sulfur dioxide values of the engine show a distinct decrease with biodiesel blend ratio increasing. It is clear that the biodiesel could reduce aromatic compounds and emissions of diesel engines. The carbon dioxide emission of pure biodiesel has a little lower value than diesel, showing that the biodiesel benefits control of greenhouse gas.

  8. Dual-fuel natural gas/diesel engines: Technology, performance, and emissions

    NASA Astrophysics Data System (ADS)

    Turner, S. H.; Weaver, C. S.

    1994-11-01

    An investigation of current dual-fuel natural gas/diesel engine design, performance, and emissions was conducted. The most pressing technological problems associated with dual-fuel engine use were identified along with potential solutions. It was concluded that dual-fuel engines can achieve low NO(sub x) and particulate emissions while retaining fuel-efficiency and BMEP levels comparable to those of diesel engines. The investigation also examined the potential economic impact of dual-fuel engines in diesel-electric locomotives, marine vessels, farm equipment, construction, mining, and industrial equipment, and stand-alone electricity generation systems. Recommendations for further additional funding to support research, development, and demonstration in these applications were then presented.

  9. Comparative Studies on Performance Characteristics of CI Engine Fuelled with Neem Methyl Ester and Mahua Methyl Ester and Its Respective Blends with Diesel Fuel.

    PubMed

    Ragit, S S; Mohapatra, S K; Kundu, K

    2014-01-01

    In the present investigation, neem and mahua methyl ester were prepared by transesterification using potassium hydroxide as a catalyst and tested in 4-stroke single cylinder water cooled diesel engine. Tests were carried out at constant speed of 1500 rev/min at different brake mean effective pressures. A series of tests were conducted which worked at different brake mean effective pressures, OkPa, 1kPa, 2kPa, 3kPa, 4kPa, 5kPa, 6kPa and 6.5kPa. The performance and exhaust emission characteristics of the diesel engine were analyzed and compared with diesel fuel. Results showed that BTE of NME was comparable with diesel and it was noted that the BTE of N0100 is 63.11% higher than that of diesel at part load whereas it reduces 11.2% with diesel fuel at full load. In case of full load, NME showed decreasing trend with diesel fuel. BTE of diesel was 15.37% and 36.89% at part load and full load respectively. The observation indicated that BTE for MME 100 was slightly higher than diesel at part loads. The specific fuel consumption (SFC) was more for almost all blends at all loads, compared to diesel. At part load, the EGT of MME and its blends were showing similar trend to diesel fuel and at full load, the exhaust gas temperature of MME and blends were higher than diesel. Based on this study, NME could be a substitute for diesel fuel in diesel engine.

  10. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XIV, I--MAINTAINING THE AIR SYSTEM, CUMMINS DIESEL ENGINE, II--UNIT REMOVAL--TRANSMISSION.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATING PRINCIPLES AND MAINTENANCE OF THE DIESEL ENGINE AIR SYSTEM AND THE PROCEDURES FOR TRANSMISSION REMOVAL. TOPICS ARE (1) DEFINITION OF TERMS RELATED TO THE DIESEL AIR SYSTEM, (2) PRNCIPLES OF DIESEL AIR COMPRESSORS, (3) PRINCIPLES OF AIR STARTING MOTORS, (4)…

  11. Effects of mixing system and pilot fuel quality on diesel-biogas dual fuel engine performance.

    PubMed

    Bedoya, Iván Darío; Arrieta, Andrés Amell; Cadavid, Francisco Javier

    2009-12-01

    This paper describes results obtained from CI engine performance running on dual fuel mode at fixed engine speed and four loads, varying the mixing system and pilot fuel quality, associated with fuel composition and cetane number. The experiments were carried out on a power generation diesel engine at 1500 m above sea level, with simulated biogas (60% CH(4)-40% CO(2)) as primary fuel, and diesel and palm oil biodiesel as pilot fuels. Dual fuel engine performance using a naturally aspirated mixing system and diesel as pilot fuel was compared with engine performance attained with a supercharged mixing system and biodiesel as pilot fuel. For all loads evaluated, was possible to achieve full diesel substitution using biogas and biodiesel as power sources. Using the supercharged mixing system combined with biodiesel as pilot fuel, thermal efficiency and substitution of pilot fuel were increased, whereas methane and carbon monoxide emissions were reduced.

  12. Alternative fuel properties of tall oil fatty acid methyl ester-diesel fuel blends.

    PubMed

    Altiparmak, Duran; Keskin, Ali; Koca, Atilla; Gürü, Metin

    2007-01-01

    In this experimental work, tall oil methyl ester-diesel fuel blends as alternative fuels for diesel engines were studied. Tall oil methyl ester was produced by reacting tall oil fatty acids with methyl alcohol under optimum conditions. The blends of tall oil methyl ester-diesel fuel were tested in a direct injection diesel engine at full load condition. The effects of the new fuel blends on the engine performance and exhaust emission were tested. It was observed that the engine torque and power output with tall oil methyl ester-diesel fuel blends increased up to 6.1% and 5.9%, respectively. It was also seen that CO emissions decreased to 38.9% and NO(x) emissions increased up to 30% with the new fuel blends. The smoke opacity did not vary significantly.

  13. Evaluation of Hydroprocessed Renewable Diesel (HRD) Fuel in a Caterpillar Engine Using the 210 Hour TWV Cycle

    DTIC Science & Technology

    2014-05-01

    TERMS Hydroprocessed Renewable Diesel , Reference Diesel Fuel, C7, emissions, power, performance, deposition, ambient, desert, synthetic fuel injector ...the engine run-in, the engine was disassembled to determine injector nozzle tip deposits, and the piston crowns and engine combustion chamber deposits...removed from the test cell and disassembled to determine injector nozzle tip and piston crown and engine combustion chamber deposits. Post- test

  14. Diesel Engine Technology Update

    DTIC Science & Technology

    1987-07-01

    AFWAL-TR-87-20 54 83-021-DET DIESEL ENGINE TECHNOLOGY UPDATE Kaupert, Andrew W., Lt. Col. USAFR Air Force Reserves Detroit Detachment 2 Ann Arbor, MI...sponsored adiabatic turbocompound diesel engine . One goal was the use of no water or air cooling for the engine to enable the minimized heat transfer from...sector with severe • impact on the stationary engine segment of the marketplace. The effect of this proposed legislation on Air Force fuel quality is

  15. Particulate emissions from diesel engines: correlation between engine technology and emissions.

    PubMed

    Fiebig, Michael; Wiartalla, Andreas; Holderbaum, Bastian; Kiesow, Sebastian

    2014-03-07

    In the last 30 years, diesel engines have made rapid progress to increased efficiency, environmental protection and comfort for both light- and heavy-duty applications. The technical developments include all issues from fuel to combustion process to exhaust gas aftertreatment. This paper provides a comprehensive summary of the available literature regarding technical developments and their impact on the reduction of pollutant emission. This includes emission legislation, fuel quality, diesel engine- and exhaust gas aftertreatment technologies, as well as particulate composition, with a focus on the mass-related particulate emission of on-road vehicle applications. Diesel engine technologies representative of real-world on-road applications will be highlighted.Internal engine modifications now make it possible to minimize particulate and nitrogen oxide emissions with nearly no reduction in power. Among these modifications are cooled exhaust gas recirculation, optimized injections systems, adapted charging systems and optimized combustion processes with high turbulence. With introduction and optimization of exhaust gas aftertreatment systems, such as the diesel oxidation catalyst and the diesel particulate trap, as well as NOx-reduction systems, pollutant emissions have been significantly decreased. Today, sulfur poisoning of diesel oxidation catalysts is no longer considered a problem due to the low-sulfur fuel used in Europe. In the future, there will be an increased use of bio-fuels, which generally have a positive impact on the particulate emissions and do not increase the particle number emissions.Since the introduction of the EU emissions legislation, all emission limits have been reduced by over 90%. Further steps can be expected in the future. Retrospectively, the particulate emissions of modern diesel engines with respect to quality and quantity cannot be compared with those of older engines. Internal engine modifications lead to a clear reduction of the particulate emissions without a negative impact on the particulate-size distribution towards smaller particles. The residual particles can be trapped in a diesel particulate trap independent of their size or the engine operating mode. The usage of a wall-flow diesel particulate filter leads to an extreme reduction of the emitted particulate mass and number, approaching 100%. A reduced particulate mass emission is always connected to a reduced particle number emission.

  16. Particulate emissions from diesel engines: correlation between engine technology and emissions

    PubMed Central

    2014-01-01

    In the last 30 years, diesel engines have made rapid progress to increased efficiency, environmental protection and comfort for both light- and heavy-duty applications. The technical developments include all issues from fuel to combustion process to exhaust gas aftertreatment. This paper provides a comprehensive summary of the available literature regarding technical developments and their impact on the reduction of pollutant emission. This includes emission legislation, fuel quality, diesel engine- and exhaust gas aftertreatment technologies, as well as particulate composition, with a focus on the mass-related particulate emission of on-road vehicle applications. Diesel engine technologies representative of real-world on-road applications will be highlighted. Internal engine modifications now make it possible to minimize particulate and nitrogen oxide emissions with nearly no reduction in power. Among these modifications are cooled exhaust gas recirculation, optimized injections systems, adapted charging systems and optimized combustion processes with high turbulence. With introduction and optimization of exhaust gas aftertreatment systems, such as the diesel oxidation catalyst and the diesel particulate trap, as well as NOx-reduction systems, pollutant emissions have been significantly decreased. Today, sulfur poisoning of diesel oxidation catalysts is no longer considered a problem due to the low-sulfur fuel used in Europe. In the future, there will be an increased use of bio-fuels, which generally have a positive impact on the particulate emissions and do not increase the particle number emissions. Since the introduction of the EU emissions legislation, all emission limits have been reduced by over 90%. Further steps can be expected in the future. Retrospectively, the particulate emissions of modern diesel engines with respect to quality and quantity cannot be compared with those of older engines. Internal engine modifications lead to a clear reduction of the particulate emissions without a negative impact on the particulate-size distribution towards smaller particles. The residual particles can be trapped in a diesel particulate trap independent of their size or the engine operating mode. The usage of a wall-flow diesel particulate filter leads to an extreme reduction of the emitted particulate mass and number, approaching 100%. A reduced particulate mass emission is always connected to a reduced particle number emission. PMID:24606725

  17. Complete modeling for systems of a marine diesel engine

    NASA Astrophysics Data System (ADS)

    Nahim, Hassan Moussa; Younes, Rafic; Nohra, Chadi; Ouladsine, Mustapha

    2015-03-01

    This paper presents a simulator model of a marine diesel engine based on physical, semi-physical, mathematical and thermodynamic equations, which allows fast predictive simulations. The whole engine system is divided into several functional blocks: cooling, lubrication, air, injection, combustion and emissions. The sub-models and dynamic characteristics of individual blocks are established according to engine working principles equations and experimental data collected from a marine diesel engine test bench for SIMB Company under the reference 6M26SRP1. The overall engine system dynamics is expressed as a set of simultaneous algebraic and differential equations using sub-blocks and S-Functions of Matlab/Simulink. The simulation of this model, implemented on Matlab/Simulink has been validated and can be used to obtain engine performance, pressure, temperature, efficiency, heat release, crank angle, fuel rate, emissions at different sub-blocks. The simulator will be used, in future work, to study the engine performance in faulty conditions, and can be used to assist marine engineers in fault diagnosis and estimation (FDI) as well as designers to predict the behavior of the cooling system, lubrication system, injection system, combustion, emissions, in order to optimize the dimensions of different components. This program is a platform for fault simulator, to investigate the impact on sub-blocks engine's output of changing values for faults parameters such as: faulty fuel injector, leaky cylinder, worn fuel pump, broken piston rings, a dirty turbocharger, dirty air filter, dirty air cooler, air leakage, water leakage, oil leakage and contamination, fouling of heat exchanger, pumps wear, failure of injectors (and many others).

  18. Method for removing soot from exhaust gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suib, Steven L.; Dharmarathna, D. A. Saminda; Pahalagedara, Lakshitha R.

    A method for oxidizing soot from diesel exhaust gas from a diesel engine. The method involves providing a diesel particulate filter for receiving the diesel exhaust gas; coating a catalyst composition on the diesel particulate filter; and contacting the soot from the diesel exhaust gas with the catalyst coated diesel particulate filter at a temperature sufficient to oxidize the soot to carbon dioxide. The catalyst composition is a doped or undoped manganese oxide octahedral molecular sieve (OMS-2) material. A diesel exhaust gas treatment system that includes a diesel particulate filter for receiving diesel exhaust gas from a diesel engine andmore » collecting soot; and a catalyst composition coated on the diesel particulate filter. The catalyst composition is a doped or undoped manganese oxide octahedral molecular sieve (OMS-2).« less

  19. Diesel Combustion and Emission Using High Boost and High Injection Pressure in a Single Cylinder Engine

    NASA Astrophysics Data System (ADS)

    Aoyagi, Yuzo; Kunishima, Eiji; Asaumi, Yasuo; Aihara, Yoshiaki; Odaka, Matsuo; Goto, Yuichi

    Heavy-duty diesel engines have adopted numerous technologies for clean emissions and low fuel consumption. Some are direct fuel injection combined with high injection pressure and adequate in-cylinder air motion, turbo-intercooler systems, and strong steel pistons. Using these technologies, diesel engines have achieved an extremely low CO2 emission as a prime mover. However, heavy-duty diesel engines with even lower NOx and PM emission levels are anticipated. This study achieved high-boost and lean diesel combustion using a single cylinder engine that provides good engine performance and clean exhaust emission. The experiment was done under conditions of intake air quantity up to five times that of a naturally aspirated (NA) engine and 200MPa injection pressure. The adopted pressure booster is an external supercharger that can control intake air temperature. In this engine, the maximum cylinder pressure was increased and new technologies were adopted, including a monotherm piston for endurance of Pmax =30MPa. Moreover, every engine part is newly designed. As the boost pressure increases, the rate of heat release resembles the injection rate and becomes sharper. The combustion and brake thermal efficiency are improved. This high boost and lean diesel combustion creates little smoke; ISCO and ISTHC without the ISNOx increase. It also yields good thermal efficiency.

  20. Noise source separation of diesel engine by combining binaural sound localization method and blind source separation method

    NASA Astrophysics Data System (ADS)

    Yao, Jiachi; Xiang, Yang; Qian, Sichong; Li, Shengyang; Wu, Shaowei

    2017-11-01

    In order to separate and identify the combustion noise and the piston slap noise of a diesel engine, a noise source separation and identification method that combines a binaural sound localization method and blind source separation method is proposed. During a diesel engine noise and vibration test, because a diesel engine has many complex noise sources, a lead covering method was carried out on a diesel engine to isolate other interference noise from the No. 1-5 cylinders. Only the No. 6 cylinder parts were left bare. Two microphones that simulated the human ears were utilized to measure the radiated noise signals 1 m away from the diesel engine. First, a binaural sound localization method was adopted to separate the noise sources that are in different places. Then, for noise sources that are in the same place, a blind source separation method is utilized to further separate and identify the noise sources. Finally, a coherence function method, continuous wavelet time-frequency analysis method, and prior knowledge of the diesel engine are combined to further identify the separation results. The results show that the proposed method can effectively separate and identify the combustion noise and the piston slap noise of a diesel engine. The frequency of the combustion noise and the piston slap noise are respectively concentrated at 4350 Hz and 1988 Hz. Compared with the blind source separation method, the proposed method has superior separation and identification effects, and the separation results have fewer interference components from other noise.

  1. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXVII, I--CATERPILLAR STARTING (PONEY) ENGINE (PART I), II--LEARNING ABOUT BRAKES (PART II).

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE CONSTRUCTION AND OPERATION OF DIESEL ENGINE STARTING ENGINES AND BRAKE SYSTEMS USED ON DIESEL POWERED VEHICLES. TOPICS ARE (1) GENERAL DESCRIPTION, (2) OPERATION, (3) COMBUSTION SPACE AND VALVE ARRANGEMENT (STARTING ENGINES), (4) TYPES OF BRAKES, AND (5) DOUBLE…

  2. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XVIII, I--UNDERSTAND ENGINE GEARS AND GEARING PRINCIPLES, II--MACK INTER-AXLE POWER DIVIDER.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF DIESEL ENGINE GEARS AND GEARING PRINCIPLES AND THE OPERATING PRINCIPLES AND MAINTENANCE OF POWER DIVIDERS (GEAR BOXES) USED IN DIESEL ENGINE POWER TRANSMISSION. TOPICS ARE (1) THE PURPOSE OF THE ENGINE GEARS, (2) INSPECTING FOR GEAR FAILURES, (3) INSPECTING FOR SHAFT…

  3. 30 CFR 57.19013 - Diesel- and other fuel-injection-powered hoists.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Diesel- and other fuel-injection-powered hoists... NONMETAL MINES Personnel Hoisting Hoists § 57.19013 Diesel- and other fuel-injection-powered hoists. Where any diesel or similar fuel-injection engine is used to power a hoist, the engine shall be equipped...

  4. 30 CFR 57.19013 - Diesel- and other fuel-injection-powered hoists.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Diesel- and other fuel-injection-powered hoists... NONMETAL MINES Personnel Hoisting Hoists § 57.19013 Diesel- and other fuel-injection-powered hoists. Where any diesel or similar fuel-injection engine is used to power a hoist, the engine shall be equipped...

  5. Vegetable Oil-based Diesel Fuels From 1900 to the Present

    USDA-ARS?s Scientific Manuscript database

    The diesel engine, invented and developed by Rudolf Diesel in the 1890's, was displayed at the Paris World Exposition in 1900. At that occasion, one of the displayed diesel engines ran on peanut oil. This event marks the beginning of the use of vegetable oils and, later, derivatives thereof as die...

  6. 30 CFR 57.19013 - Diesel- and other fuel-injection-powered hoists.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Diesel- and other fuel-injection-powered hoists... NONMETAL MINES Personnel Hoisting Hoists § 57.19013 Diesel- and other fuel-injection-powered hoists. Where any diesel or similar fuel-injection engine is used to power a hoist, the engine shall be equipped...

  7. 30 CFR 57.19013 - Diesel- and other fuel-injection-powered hoists.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Diesel- and other fuel-injection-powered hoists... NONMETAL MINES Personnel Hoisting Hoists § 57.19013 Diesel- and other fuel-injection-powered hoists. Where any diesel or similar fuel-injection engine is used to power a hoist, the engine shall be equipped...

  8. 30 CFR 57.19013 - Diesel- and other fuel-injection-powered hoists.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Diesel- and other fuel-injection-powered hoists... NONMETAL MINES Personnel Hoisting Hoists § 57.19013 Diesel- and other fuel-injection-powered hoists. Where any diesel or similar fuel-injection engine is used to power a hoist, the engine shall be equipped...

  9. Defense Small Business Innovation Research Program (SBIR). Volume 4. Defense Agencies Abstracts of Phase 1 Awards from FY 1988 SBIR Solicitation

    DTIC Science & Technology

    1989-05-01

    FORMULATION -- FLOQUET-GALERKIN. DELPHI RESEARCH INC 701 HAINES AVE NW ALBUQUERQUE, NM 87102 CONTRACT NUMBER: PATRICK M DHOOGE TITLE: RESEARCH ON A...MEASURE THE DIELECTRIC RESPONSE OF A DIAMOND FILM AS IT GROWNS. DIESEL DYNE CORP 3044 MIDDLEBORO RD MORROW, OH 45152 CONTRACT NUMBER: RICHARD P JOHNSTON...TITLE: A STUDY OF AN ADVANCED VARIABLE CYCLE DIESEL ENGINE FOR USE IN A REMOTELY PILOTED VEHICLE TOPIC# 18 OFFICE: ASTO IDENT#: 22796 THIS STUDY IS

  10. [Experimental study on the characteristics polycyclic aromatic hydrocarbon emissions of diesel engine burnt by different fuels].

    PubMed

    Wang, Zhong; An, Yu-Guang; Xu, Guang-Ju; Wang, Xiao-Zhe

    2011-07-01

    The polycyclic aromatic hydrocarbons (PAHs) were measured by glass fiber filter and XAD-2 collector, ultrasonic extraction, soxhlet extraction and GC-MS analysis equipment. The exhaust emission of the DI single cylinder diesel engine fueled with pure diesel, biodiesel and biodiesel blends of 50% (B50) were measured. The results indicate that the particle-phase PAHs emissions of diesel engine decrease with the increasing of load. The gas-phase PAHs emissions of diesel engine decrease with the increasing of load in the beginning and it turns to going up with further increasing of load. The particle-phase and gas-phase PAHs emissions of biodiesel decrease and mean concentration are lower than that of diesel. The total PAHs emission concentration of biodisesl is 41.1-70.1 microg/m3. Total PAHs mean concentration emissions of biodiesel is decreased 33.3% than that of diesel. The mass proportion of three-ring PAHs emissions of those 3 kinds tested fuels is about 44% in the total PAHs. Biodiesel can increase the proportion of three-ring PAHs. Toxic equivalence of PAHs emissions of biodiesel are greatly lower than that of diesel. It is less harmful to human than diesel fuel.

  11. Performance and Emission Characteristics of Diesel Engine Fueled with Ethanol-Diesel Blends in Different Altitude Regions

    PubMed Central

    Lei, Jilin; Bi, Yuhua; Shen, Lizhong

    2011-01-01

    In order to investigate the effects ethanol-diesel blends and altitude on the performance and emissions of diesel engine, the comparative experiments were carried out on the bench of turbo-charged diesel engine fueled with pure diesel (as prototype) and ethanol-diesel blends (E10, E15, E20 and E30) under different atmospheric pressures (81 kPa, 90 kPa and 100 kPa). The experimental results indicate that the equivalent brake-specific fuel consumption (BSFC) of ethanol-diesel blends are better than that of diesel under different atmospheric pressures and that the equivalent BSFC gets great improvement with the rise of atmospheric pressure when the atmospheric pressure is lower than 90 kPa. At 81 kPa, both HC and CO emissions rise greatly with the increasing engine speeds and loads and addition of ethanol, while at 90 kPa and 100 kPa their effects on HC and CO emissions are slightest. The changes of atmospheric pressure and mix proportion of ethanol have no obvious effect on NOx emissions. Smoke emissions decrease obviously with the increasing percentage of ethanol in blends, especially atmospheric pressure below 90 kPa. PMID:21234367

  12. Performance and emission characteristics of diesel engine fueled with ethanol-diesel blends in different altitude regions.

    PubMed

    Lei, Jilin; Bi, Yuhua; Shen, Lizhong

    2011-01-01

    In order to investigate the effects ethanol-diesel blends and altitude on the performance and emissions of diesel engine, the comparative experiments were carried out on the bench of turbo-charged diesel engine fueled with pure diesel (as prototype) and ethanol-diesel blends (E10, E15, E20 and E30) under different atmospheric pressures (81 kPa, 90 kPa and 100 kPa). The experimental results indicate that the equivalent brake-specific fuel consumption (BSFC) of ethanol-diesel blends are better than that of diesel under different atmospheric pressures and that the equivalent BSFC gets great improvement with the rise of atmospheric pressure when the atmospheric pressure is lower than 90 kPa. At 81 kPa, both HC and CO emissions rise greatly with the increasing engine speeds and loads and addition of ethanol, while at 90 kPa and 100 kPa their effects on HC and CO emissions are slightest. The changes of atmospheric pressure and mix proportion of ethanol have no obvious effect on NO(x) emissions. Smoke emissions decrease obviously with the increasing percentage of ethanol in blends, especially atmospheric pressure below 90 kPa.

  13. Oxidative Stress and Aromatic Hydrocarbon Response of Human Bronchial Epithelial Cells Exposed to Petro- or Biodiesel Exhaust Treated with a Diesel Particulate Filter

    PubMed Central

    Hawley, Brie; L'Orange, Christian; Olsen, Dan B.; Marchese, Anthony J.; Volckens, John

    2014-01-01

    The composition of diesel exhaust has changed over the past decade due to the increased use of alternative fuels, like biodiesel, and to new regulations on diesel engine emissions. Given the changing nature of diesel fuels and diesel exhaust emissions, a need exists to understand the human health implications of switching to “cleaner” diesel engines run with particulate filters and engines run on alternative fuels like biodiesel. We exposed well-differentiated normal human bronchial epithelial cells to fresh, complete exhaust from a diesel engine run (1) with and without a diesel particulate filter and (2) using either traditional petro- or alternative biodiesel. Despite the lowered emissions in filter-treated exhaust (a 91–96% reduction in mass), significant increases in transcripts associated with oxidative stress and polycyclic aromatic hydrocarbon response were observed in all exposure groups and were not significantly different between exposure groups. Our results suggest that biodiesel and filter-treated diesel exhaust elicits as great, or greater a cellular response as unfiltered, traditional petrodiesel exhaust in a representative model of the bronchial epithelium. PMID:25061111

  14. Adaptation of Advanced Diesel Engines for Military Requirements Under Severe Environmental Conditions

    DTIC Science & Technology

    2004-10-15

    Fuel Injection," SAE 910489. Density and Vaporization on Penetration and 7. Shundoh, S., Komori, M., Tsujimura , K., and Dispersion of Diesel Sprays...of a 3-D Engines", SAE 920725. multi-zone combustion model for the prediction 12. Kakegawa, T., Suzuki, T., Tsujimura , K., of a DI diesel engines

  15. Construction Mechanic, Engine Tune-Up II (Diesel), 8-8. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This course, adapted from military curriculum materials for vocational and technical education, teaches students to restore diesel engine performance to the manufacturer's specifications through troubleshooting and analyzing diesel engine fuel systems and to make minor and major adjustments to those components that directly affect engine…

  16. The Diesel as a Vehicle Engine

    NASA Technical Reports Server (NTRS)

    Neumann, Kurt

    1928-01-01

    The thorough investigation of a Dorner four-cylinder, four-stroke-cycle Diesel engine with mechanical injection led me to investigate more thoroughly the operation of the Diesel as a vehicle engine. Aside from the obvious need of reliability of functioning, a high rotative speed, light weight and economy in heat consumption per horsepower are also indispensable requirements.

  17. 40 CFR 86.093-2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... a passenger-carrying vehicle powered by a heavy heavy-duty diesel engine, or of a type normally powered by a heavy heavy-duty diesel engine, with a load capacity of fifteen or more passengers and... urban buses is the same as the useful life for other heavy heavy-duty diesel engines. [58 FR 15795, Mar...

  18. 40 CFR 86.1108-87 - Maintenance of records.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Penalties for Gasoline-Fueled and Diesel Heavy-Duty Engines and Heavy-Duty Vehicles, Including Light-Duty... requirements specified in 40 CFR part 1065, subparts B and C; (ii) If testing heavy-duty diesel engines, the... heavy-duty diesel engines, the record requirements specified in 40 CFR 1065.695; (C) If testing light...

  19. 40 CFR 86.334-79 - Test procedure overview.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.334-79... cycle and 1 hot cycle. The Diesel engine test consists of 3 idle modes and 5 power modes at each of 2 speeds which span the typical operating range of Diesel engines. These procedures require the...

  20. 40 CFR 86.1108-87 - Maintenance of records.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for Gasoline-Fueled and Diesel Heavy-Duty Engines and Heavy-Duty Vehicles, Including Light-Duty Trucks... requirements specified in 40 CFR part 1065, subparts B and C; (ii) If testing heavy-duty diesel engines, the... heavy-duty diesel engines, the record requirements specified in 40 CFR 1065.695; (C) If testing light...

  1. 40 CFR 86.093-2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... a passenger-carrying vehicle powered by a heavy heavy-duty diesel engine, or of a type normally powered by a heavy heavy-duty diesel engine, with a load capacity of fifteen or more passengers and... urban buses is the same as the useful life for other heavy heavy-duty diesel engines. [58 FR 15795, Mar...

  2. 40 CFR 86.334-79 - Test procedure overview.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.334-79... cycle and 1 hot cycle. The Diesel engine test consists of 3 idle modes and 5 power modes at each of 2 speeds which span the typical operating range of Diesel engines. These procedures require the...

  3. 40 CFR 86.093-2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... a passenger-carrying vehicle powered by a heavy heavy-duty diesel engine, or of a type normally powered by a heavy heavy-duty diesel engine, with a load capacity of fifteen or more passengers and... urban buses is the same as the useful life for other heavy heavy-duty diesel engines. [58 FR 15795, Mar...

  4. 40 CFR 86.1108-87 - Maintenance of records.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Penalties for Gasoline-Fueled and Diesel Heavy-Duty Engines and Heavy-Duty Vehicles, Including Light-Duty... requirements specified in 40 CFR part 1065, subparts B and C; (ii) If testing heavy-duty diesel engines, the... heavy-duty diesel engines, the record requirements specified in 40 CFR 1065.695; (C) If testing light...

  5. 40 CFR 86.334-79 - Test procedure overview.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.334-79... cycle and 1 hot cycle. The Diesel engine test consists of 3 idle modes and 5 power modes at each of 2 speeds which span the typical operating range of Diesel engines. These procedures require the...

  6. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT VI, MAINTAINING MECHANICAL GOVERNORS--DETROIT DIESEL ENGINES.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF MECHANICAL GOVERNORS USED ON DIESEL ENGINES. TOPICS ARE (1) TYPES OF GOVERNORS AND ENGINE LOCATION, (2) GOVERNOR APPLICATIONS, (3) LIMITING SPEED MECHANICAL GOVERNOR, (4) VARIABLE SPEED MECHANICAL GOVERNOR, AND (5) CONSTANT SPEED…

  7. Detection of unburned fuel as contaminant in engine oil by a gas microsensor array

    NASA Astrophysics Data System (ADS)

    Capone, Simonetta; Zuppa, Marzia; Presicce, Dominique S.; Epifani, Mauro; Francioso, Luca; Siciliano, Pietro; Distante, C.

    2007-05-01

    We developed a novel method to detect the presence of unburned diesel fuel in used diesel fuel engine oil. The method is based on the use of an array of different gas microsensors based on metal oxide thin films deposited by sol-gel technique on Si substrates. The sensor array, exposed to the volatile chemical species of different diesel fuel engine oil samples contaminated in different percentages by diesel fuel, resulted to be appreciable sensitive to them. Principal Component Analysis (PCA) and Self-Organizing Map (SOM) applied to the sensor response data-set gave a first proof of the sensor array ability to discriminate among the different diesel fuel diluted lubricating oils. Moreover, in order to get information about the headspace composition of the diesel fuel-contaminated engine oils used for gas-sensing tests, we analyzed the engine oil samples by Static Headspace Solid Phase Micro Extraction/Gas Chromatograph/Mass Spectrometer (SHS-SPME/ GC/MS).

  8. In vitro genotoxicity of exhaust emissions of diesel and gasoline engine vehicles operated on a unified driving cycle.

    PubMed

    Liu, Yu-Qing; Keane, Michael; Ensell, Mang; Miller, William; Kashon, Michael; Ong, Tong-man; Mauderly, Joe; Lawson, Doug; Gautam, Mridul; Zielinska, Barbara; Whitney, Kevin; Eberhardt, James; Wallace, William

    2005-01-01

    Acetone extracts of engine exhaust particulate matter (PM) and of vapor-phase semi-volatile organic compounds (SVOCs) collected from a set of 1998-2000 model year normal emitter diesel engine automobile or light trucks and from a set of 1982-1996 normal emitter gasoline engine automobiles or light trucks operated on the California Unified Driving Cycle at 22 [degree]C were assayed for in vitro genotoxic activities. Gasoline and diesel PM were comparably positive mutagens for Salmonella typhimurium strains YG1024 and YG1029 on a mass of PM extract basis with diesel higher on a mileage basis; gasoline SVOC was more active than diesel on an extracted-mass basis, with diesel SVOC more active on a mileage basis. For chromosomal damage indicated by micronucleus induction in Chinese hamster lung fibroblasts (V79 cells), diesel PM expressed about one-tenth that of gasoline PM on a mass of extract basis, but was comparably active on a mileage basis; diesel SVOC was inactive. For DNA damage in V79 cells indicated by the single cell gel electrophoresis (SCGE) assay, gasoline PM was positive while diesel PM was active at the higher doses; gasoline SVOC was active with toxicity preventing measurement at high doses, while diesel SVOC was inactive at all but the highest dose.

  9. Emissions from diesel versus biodiesel fuel used in a CRDI SUV engine: PM mass and chemical composition.

    PubMed

    Gangwar, Jitendra; Gupta, Tarun; Gupta, Sudhir; Agarwal, Avinash K

    2011-07-01

    The diesel tailpipe emissions typically undergo substantial physical and chemical transformations while traveling through the tailpipe, which tend to modify the original characteristics of the diesel exhaust. Most of the health-related attention for diesel exhaust has focused on the carcinogenic potential of inhaled exhaust components, particularly the highly respirable diesel particulate matter (DPM). In the current study, parametric investigations were made using a modern automotive common rail direct injection (CRDI) sports utility vehicle (SUV) diesel engine operated at different loads at constant engine speed (2400 rpm), employing diesel and 20% biodiesel blends (B20) produced from karanja oil. A partial flow dilution tunnel was employed to measure the mass of the primary particulates from diesel and biodiesel blend on a 47-mm quartz substrate. This was followed by chemical analysis of the particulates collected on the substrate for benzene-soluble organic fraction (BSOF) (marker of toxicity). BSOF results showed decrease in its level with increasing engine load for both diesel and biodiesel. In addition, real-time measurements for organic carbon/elemental carbon (OC/EC), and polycyclic aromatic hydrocarbons (PAHs) (marker of toxicity) were carried out on the diluted primary exhaust coming out of the partial flow dilution tunnel. PAH concentrations were found to be the maximum at 20% rated engine load for both the fuels. The collected particulates from diesel and biodiesel-blend exhaust were also analyzed for concentration of trace metals (marker of toxicity), which revealed some interesting results.

  10. Combustion Performance and Exhaust Emission of DI Diesel Engine Using Various Sources of Waste Cooking Oil

    NASA Astrophysics Data System (ADS)

    Afiq, Mohd; Azuhairi, Mohd; Jazair, Wira

    2010-06-01

    In Malaysia, more than 200-tone of cooking oil are used by domestic users everyday. After frying process, about a quarter of these cooking oil was remained and drained into sewage system. This will pollutes waterways and affects the ecosystem. The use of waste cooking oil (WCO) for producing bio-diesel was considered in economical factor which current production cost of bio-diesel production is higher in Malaysia due to higher price of palm oil. Thus, the aim of this study is to investigate the most suitable source of WCO to become a main source of bio-diesel for bio-diesel production in this country. To perform this research, three type of WCO were obtained from house's kitchen, cafeteria and mamak's restaurant. In this study, prospect of these bio-diesel source was evaluated based on its combustion performance and exhaust emissions operated in diesel engine in the form of waste cooking oil methyl ester (WCOME) and have been compared with pure diesel fuel. A 0.6 liter, single-cylinder, air-cooled direct injection diesel engine was used to perform this experiment. Experiment was done at variable engine loads and constant engine speed. As the result, among three stated WCOMEs, the one collected from house's kitchen gives the best performance in term of brake specific fuel consumption (bsfc) and brake power (BP) with lowest soot emission.

  11. A Study on Performance, Combustion and Emission Characteristics of Compression Ignition Engine Using Fish Oil Biodiesel Blends

    NASA Astrophysics Data System (ADS)

    Ramesha, D. K.; Thimmannachar, Rajiv K.; Simhasan, R.; Nagappa, Manjunath; Gowda, P. M.

    2012-07-01

    Bio-fuel is a clean burning fuel made from natural renewable energy resource; it operates in C. I. engine similar to the petroleum diesel. The rising cost of diesel and the danger caused to the environment has led to an intensive and desperate search for alternative fuels. Among them, animal fats like the fish oil have proven to be a promising substitute to diesel. In this experimental study, A computerized 4-stroke, single cylinder, constant speed, direct injection diesel engine was operated on fish oil-biodiesel of different blends. Three different blends of 10, 20, and 30 % by volume were used for this study. Various engine performance, combustion and emission parameters such as Brake Thermal Efficiency, Brake Specific Fuel Consumption, Heat Release Rate, Peak Pressure, Exhaust Gas Temperature, etc. were recorded from the acquired data. The data was recorded with the help of an engine analysis software. The recorded parameters were studied for varying loads and their corresponding graphs have been plotted for comparison purposes. Petroleum Diesel has been used as the reference. From the properties and engine test results it has been established that fish oil biodiesel is a better replacement for diesel without any engine modification.

  12. Experimental investigations of the hydrogen addition effects on diesel engine performance

    NASA Astrophysics Data System (ADS)

    Mirica, I.; Pana, C.; Negurescu, N.; Cernat, A.; Nutu, C.

    2016-08-01

    In the global content regarding the impact on the environmental of the gases emissions resulted from the fossil fuels combustion, an interest aspect discussed on the 21st Session of the Conference of the Parties from the 2015 Paris Climate Conference and the gradual diminution of the worldwide oil reserves contribute to the necessity of searching of alternative energy from durable and renewable resources. At the use of hydrogen as addition in air to diesel engine, the level of CO, HC and smoke from the exhaust gases will decrease due to the improvement of the combustion process. At low and medium partial loads and low hydrogen energetic ratios used the NOX emission level can decrease comparative to classic diesel engine. The hydrogen use as fuel for diesel engine leads to the improving of the energetic and emissions performance of the engine due to combustion improvement and reduction of carbon content. The paper presents, in a comparative way, results of the experimental researches carried on a truck compression ignition engine fuelled with diesel fuel and with hydrogen diesel fuel and hydrogen as addition in air at different engine operation regimes. The results obtained during experimental investigations show better energetic and pollution performance of the engine fuelled with hydrogen as addition in air comparative to classic engine. The influences of hydrogen addition on engine operation are shown.

  13. Ethanol used as an environmentally sustainable energy resource for thermal power plants

    NASA Astrophysics Data System (ADS)

    Markov, V. A.; Biryukov, V. V.; Kas'kov, S. I.

    2016-09-01

    Justification of using renewable energy sources and a brief analysis of their application prospects is given. The most common renewable energy sources for mobile thermal power plants are presented. The possibilities and ways of using ethanol as an energy source for such plants with diesel engines are analyzed. It is shown that it is feasible to add small amounts of ethanol to oil diesel fuel (DF) for obtaining an environmentally sustainable energy source for diesel engines. Therewith, a stable mixture of components can be obtained by adding anhydrous (absolute) ethanol to the oil fuel. The authors studied a mixture containing 4% (by volume) of absolute ethanol and 96% of oil DF. The physicochemical properties of the mixture and each of its components are presented. Diesel engine of the type D-245.12S has been experimentally studied using the mixture of DF and ethanol. The possibility of reducing the toxicity level of the exhaust emissions when using this mixture as an energy source for diesel engines of mobile power plants is shown. Transition of the studied diesel engine from oil DF to its mixture with ethanol made it possible to reduce the smoke capacity of the exhaust gases by 15-25% and to decrease the specific mass emissions of nitrogen oxides by 17.4%. In this case, we observed a slight increase in the exhaust gas emissions of carbon monoxide and light unburned hydrocarbons, which, however, can easily be eliminated by providing the exhaust system of a diesel engine with a catalytic converter. It is noted that the studied mixture composition should be optimized. The conclusion is made that absolute ethanol is a promising ecofriendly additive to oil diesel fuel and should be used in domestic diesel engines.

  14. Influence of maladjustment on emissions from two heavy-duty diesel bus engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ullman, T.L.; Hare, C.T.; Baines, T.M.

    1984-01-01

    Diesel engines are adjusted to manufacturers' specifications when produced and placed in service, but varying degrees of maintenance and wear cause changes in engine performance and exhaust emissions. Maladjustments were made on two heavy-duty diesel engines typically used in buses in an effort to simulate some degree of wear and/or lack of maintenance. Emissions were characterized over steady-state and transient engine operation, in both baseline and maladjusted configurations. Selected maladjustments of the Cummins VTB-903 substantially increased HC, smoke and particulate emission levels. Maladjustments of the Detroit Diesel 6V-71 coach engine resulted in lower HC and NO/sup x/ emission levels, butmore » higher CO emissions, smoke, and particulate.« less

  15. Preliminary evaluation of a compound cycle engine for shipboard gensets

    NASA Technical Reports Server (NTRS)

    Castor, J. G.; Wintucky, W. T.

    1986-01-01

    The results of a thermodynamic cycle (SFC) and weight analysis performed to establish engine configuration, size, weight and performance are reported. Baseline design configuration was a 2,000 hour MTBO Compound Cycle Engine (CCE) for a helicopter application. The CCE configuration was extrapolated out to a 10,000 MTBO for a shipboard genset application. The study showed that an advanced diesel engine design (CCE) could be substantially lighter and smaller (79% and 82% respectively) than todays contemporary genset diesel engine. Although the CCE was not optimized, it had about a 7% reduction in mission fuel consumption over today's genset diesels. The CCE is a turbocharged, power-compounded, high power density, low-compression ratio diesel engine. Major technology development areas are presented.

  16. [Particulate distribution characteristics of Chinese phrase V diesel engine based on butanol-diesel blends].

    PubMed

    Lou, Di-Ming; Xu, Ning; Fan, Wen-Jia; Zhang, Tao

    2014-02-01

    With a common rail diesel engine without any modification and the engine exhaust particle number and particle size analyzer EEPS, this study used the air-fuel ratio to investigate the particulate number concentration, mass concentration and number distribution characteristics of a diesel engine fueled with butanol-diesel blends (Bu10, Bu15, Bu20, Bu30 and Bu40) and petroleum diesel. The results show: for all test fuels, the particle number distributions turn to be unimodal. With the increasing of butanol, numbers of nucleation mode particles and small accumulation mode particle decrease. At low speed and low load conditions, the number of large accumulation mode particle increases slightly, but under higher speed and load conditions, the number does not increase. When the fuels contain butanol, the total particle number concentration and mass concentration in all conditions decrease and that is more obvious at high speed load.

  17. Particulate matter in new technology diesel exhaust (NTDE) is quantitatively and qualitatively very different from that found in traditional diesel exhaust (TDE).

    PubMed

    Hesterberg, Thomas W; Long, Christopher M; Sax, Sonja N; Lapin, Charles A; McClellan, Roger O; Bunn, William B; Valberg, Peter A

    2011-09-01

    Diesel exhaust (DE) characteristic of pre-1988 engines is classified as a "probable" human carcinogen (Group 2A) by the International Agency for Research on Cancer (IARC), and the U.S. Environmental Protection Agency has classified DE as "likely to be carcinogenic to humans." These classifications were based on the large body of health effect studies conducted on DE over the past 30 or so years. However, increasingly stringent U.S. emissions standards (1988-2010) for particulate matter (PM) and nitrogen oxides (NOx) in diesel exhaust have helped stimulate major technological advances in diesel engine technology and diesel fuel/lubricant composition, resulting in the emergence of what has been termed New Technology Diesel Exhaust, or NTDE. NTDE is defined as DE from post-2006 and older retrofit diesel engines that incorporate a variety of technological advancements, including electronic controls, ultra-low-sulfur diesel fuel, oxidation catalysts, and wall-flow diesel particulate filters (DPFs). As discussed in a prior review (T. W. Hesterberg et al.; Environ. Sci. Technol. 2008, 42, 6437-6445), numerous emissions characterization studies have demonstrated marked differences in regulated and unregulated emissions between NTDE and "traditional diesel exhaust" (TDE) from pre-1988 diesel engines. Now there exist even more data demonstrating significant chemical and physical distinctions between the diesel exhaust particulate (DEP) in NTDE versus DEP from pre-2007 diesel technology, and its greater resemblance to particulate emissions from compressed natural gas (CNG) or gasoline engines. Furthermore, preliminary toxicological data suggest that the changes to the physical and chemical composition of NTDE lead to differences in biological responses between NTDE versus TDE exposure. Ongoing studies are expected to address some of the remaining data gaps in the understanding of possible NTDE health effects, but there is now sufficient evidence to conclude that health effects studies of pre-2007 DE likely have little relevance in assessing the potential health risks of NTDE exposures.

  18. Generation and characterization of diesel engine combustion emissions from petroleum diesel and soybean biodiesel fuels and application for inhalation exposure studies.

    PubMed

    Mutlu, Esra; Nash, David G; King, Charly; Krantz, Todd Q; Preston, William T; Kooter, Ingeborg M; Higuchi, Mark; DeMarini, David; Linak, William P; Gilmour, M Ian

    2015-01-01

    Biodiesel made from the transesterification of plant- and animal-derived oils is an important alternative fuel source for diesel engines. Although numerous studies have reported health effects associated with petroleum diesel emissions, information on biodiesel emissions are more limited. To this end, a program at the U.S. EPA assessed health effects of biodiesel emissions in rodent inhalation models. Commercially obtained soybean biodiesel (B100) and a 20% blend with petroleum diesel (B20) were compared to pure petroleum diesel (B0). Rats and mice were exposed independently for 4 h/day, 5 days/week for up to 6 weeks. Exposures were controlled by dilution air to obtain low (50 µg/m(3)), medium (150 µg/m(3)) and high (500 µg/m(3)) diesel particulate mass (PM) concentrations, and compared to filtered air. This article provides details on facilities, fuels, operating conditions, emission factors and physico-chemical characteristics of the emissions used for inhalation exposures and in vitro studies. Initial engine exhaust PM concentrations for the B100 fuel (19.7 ± 0.7 mg/m(3)) were 30% lower than those of the B0 fuel (28.0 ± 1.5 mg/m(3)). When emissions were diluted with air to control equivalent PM mass concentrations, B0 exposures had higher CO and slightly lower NO concentrations than B100. Organic/elemental carbon ratios and oxygenated methyl esters and organic acids were higher for the B100 than B0. Both the B0 and B100 fuels produced unimodal-accumulation mode particle-size distributions, with B0 producing lower concentrations of slightly larger particles. Subsequent papers in this series will describe the effects of these atmospheres on cardiopulmonary responses and in vitro genotoxicity studies.

  19. TEST/QA PLAN FOR THE VERIFICATION TESTING OF ALTERNATIVES OR REFORMULATED LIQUID FUELS, FUEL ADDITIVES, FUEL EMULSONS, AND LUBRICANTS FOR HIGHWAY AND NONROAD USE HEAVY DUTY DIESEL ENGINES AND LIGHT DUTY GASOLINE ENGINES AND VEHICLES

    EPA Science Inventory

    The U.S. Environmental Protection Agency established the Environmental Technology Verification Program to accelerate the development and commercialization of improved environmental technology through third party verification and reporting of product performance. Research Triangl...

  20. Thermal barrier coatings for gas turbine and diesel engines

    NASA Technical Reports Server (NTRS)

    Miller, Robert A.; Brindley, William J.; Bailey, M. Murray

    1989-01-01

    The present state of development of thin thermal barrier coatings for aircraft gas turbine engines and thick thermal barrier coatings for truck diesel engines is assessed. Although current thermal barrier coatings are flying in certain gas turbine engines, additional advances will be needed for future engines. Thick thermal barrier coatings for truck diesel engines have advanced to the point where they are being seriously considered for the next generation of engine. Since coatings for truck engines is a young field of inquiry, continued research and development efforts will be required to help bring this technology to commercialization.

  1. NASA Research on General Aviation Power Plants

    NASA Technical Reports Server (NTRS)

    Stewart, W. L.; Weber, R. J.; Willis, E. A.; Sievers, G. K.

    1978-01-01

    Propulsion systems are key factors in the design and performance of general aviation airplanes. NASA research programs that are intended to support improvements in these engines are described. Reciprocating engines are by far the most numerous powerplants in the aviation fleet; near-term efforts are being made to lower their fuel consumption and emissions. Longer-term work includes advanced alternatives, such as rotary and lightweight diesel engines. Work is underway on improved turbofans and turboprops.

  2. The Effect of Back Pressure on the Operation of a Diesel Engine

    DTIC Science & Technology

    2011-02-01

    increased back pressure on a turbocharged diesel engine. Steady state and varying back pressure are considered. The results show that high back...a turbocharged diesel engine using the Ricardo Wave engine modelling software, to gain understanding of the problem and provide a good base for...higher pressure. The pressure ratios across the turbocharger compressor and turbine decrease, reducing the mass flow of air through these components

  3. Testing Ceramics for Diesel Engines

    NASA Technical Reports Server (NTRS)

    Schneider, H. W.

    1985-01-01

    Adaptation of diesel engine allows prestressed ceramic materials evaluated under realistic pressure, temperature, and stress without introducing extraneous stress. Ceramic specimen part of prechamber of research engine. Specimen held in place by clamp, introduces required axial compressive stress. Specimen -- cylindrical shell -- surrounded by chamber vented or pressurized to introduce requisite radial stress in ceramic. Pressure chamber also serves as safety shield in case speimen disintegrates. Materials under consideration as cylinder liners for diesel engines.

  4. Evaluation of fuel equipment operability of diesel locomotive engine with use of infrared receivers

    NASA Astrophysics Data System (ADS)

    Ovcharenko, S. M.; Balagin, O. V.; Balagin, D. V.

    2018-03-01

    This paper provides results of modelling the heat liberation in high-pressure pipeline of fuel equipment of diesel locomotive engines. Functional relationships between the technical state of fuel equipment and temperature of the outer surface of the high-pressure fuel pipeline are presented using the example of diesel locomotive engine 1-PD4D. The paper shows results of operational tests of the developed method for control of fuel equipment operability of diesel locomotive.

  5. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT I, GENERAL INTRODUCTION TO DIESEL ENGINES.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    ONE OF A 30-MODULE COURSE DESIGNED TO UPGRADE THE JOB SKILLS AND TECHNICAL KNOWLEDGE OF DIESEL MAINTENANCE MECHANICS, THIS MATERIAL WAS DEVELOPED BY INDUSTRIAL TRAINING AND SUBJECT-MATTER SPECIALISTS AND TESTED IN INDUSTRIAL TRAINING SITUATIONS. THE PURPOSE OF THIS FIRST UNIT IS TO PROVIDE AN INTRODUCTION TO DIESEL ENGINES BY DEVELOPING AN…

  6. 30 CFR 56.19013 - Diesel- and other fuel-injection-powered hoists.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Diesel- and other fuel-injection-powered hoists... MINES Personnel Hoisting Hoists § 56.19013 Diesel- and other fuel-injection-powered hoists. Where any diesel or similar fuel-injection engine is used to power a hoist, the engine shall be equipped with a...

  7. 30 CFR 56.19013 - Diesel- and other fuel-injection-powered hoists.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Diesel- and other fuel-injection-powered hoists... MINES Personnel Hoisting Hoists § 56.19013 Diesel- and other fuel-injection-powered hoists. Where any diesel or similar fuel-injection engine is used to power a hoist, the engine shall be equipped with a...

  8. 30 CFR 56.19013 - Diesel- and other fuel-injection-powered hoists.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Diesel- and other fuel-injection-powered hoists... MINES Personnel Hoisting Hoists § 56.19013 Diesel- and other fuel-injection-powered hoists. Where any diesel or similar fuel-injection engine is used to power a hoist, the engine shall be equipped with a...

  9. 30 CFR 56.19013 - Diesel- and other fuel-injection-powered hoists.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Diesel- and other fuel-injection-powered hoists... MINES Personnel Hoisting Hoists § 56.19013 Diesel- and other fuel-injection-powered hoists. Where any diesel or similar fuel-injection engine is used to power a hoist, the engine shall be equipped with a...

  10. 30 CFR 56.19013 - Diesel- and other fuel-injection-powered hoists.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Diesel- and other fuel-injection-powered hoists... MINES Personnel Hoisting Hoists § 56.19013 Diesel- and other fuel-injection-powered hoists. Where any diesel or similar fuel-injection engine is used to power a hoist, the engine shall be equipped with a...

  11. Carbon nanotube-like materials in the exhaust from a diesel engine using gas oil/ethanol mixing fuel with catalysts and sulfur.

    PubMed

    Suzuki, Shunsuke; Mori, Shinsuke

    2017-08-01

    Particulate matter from a diesel engine, including soot and carbon nanomaterials, was collected on a sampling holder and the structure of the materials was studied by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). As a result of employing gas oil/ethanol mixing fuel with sulfur and ferrocene/molybdenum as catalyst sources, formation of carbon nanotubes (CNT)-like materials in addition to soot was observed in the exhaust gas from a diesel engine. It was revealed that CNT-like materials were included among soot in our system only when the following three conditions were satisfied simultaneously: high ethanol fraction in fuel, high sulfur loading, and presence of catalyst sources in fuel. This study confirmed that if at least one of these three conditions was not satisfied, CNT-like materials were not observed in the exhaust from a diesel engine. These experimental results shown in this work provide insights into understanding CNT-like material formation mechanism in a diesel engine. Recent papers reported that carbon nanotube-like materials were included in the exhaust gas from engines, but conditions for carbon nanotube-like material formation have not been well studied. This work provides the required conditions for carbon nanotube-like material growth in a diesel engine, and this will be helpful for understanding the carbon nanotube-like material formation mechanism and taking countermeasures to preventing carbon nanotube-like material formation in a diesel engine.

  12. Role of engine age and lubricant chemistry on the characteristics of EGR soot

    NASA Astrophysics Data System (ADS)

    Adeniran, Olusanmi Adeniji

    Exhaust products of Diesel Engines serves as an environmental hazard, and to curtail this problem a Tier 3 emission standard was introduced which involves change in engine designs and introduction of EGR systems in Diesel engines. EGR systems, however has the challenge of generating soot which are abrasive and are major causes of wear in Diesel engines. This work has studied the characteristics of EGR soot formed in different range of engine age and in different lubricant chemistries of Mineral and Synthetic based diesel Oils. It is found that lubricant degradation is encouraged by less efficient combustion as engine age increases, and these are precursors to formation of crystalline and amorphous particles that are causes of wear in Diesel Engines. It is found that soot from new engine is dominated by calcium based crystals which are from calcium sulfonate detergent, which reduces formation of second phase particles that can be abrasive. Diversity and peak intensity is seen to increase in soot samples as engine age increases. This understanding of second phase particles formed in engines across age ranges can help in the durability development of engine, improvement of Oil formulation for EGR engines, and in development of chemistries for after-treatment Oil solutions that can combat formation of abrasive particles in Oils.

  13. Experimental studies on natural aspirated diesel engine fuelled with corn seed oil methyl ester as a bio-diesel.

    NASA Astrophysics Data System (ADS)

    Rama Krishna Reddy, E.; Dhana Raju, V.

    2018-03-01

    This paper evaluates the possibilities of using corn seed oil methyl ester as a fuel for compression ignition engines. The biodiesels are contained high oxygen content, and high Cetane number, due to this properties efficiency of biodiesel is higher than diesel fuel. The experiments were conducted with different biodiesel blends of (B10, B15, B20 and B25) corn seed oil on single cylinder four stroke natural aspirated diesel engines. Performance parameters and exhaust emissions are investigated in this experimental with the blends of the corn seed oil methyl ester and diesel fuel. The test results showed that the bio-diesel blends gives improved results for brake thermal efficiency and specific fuel consumption when compared with the diesel fuel. The emissions of corn seed methyl esters follow the same trend of diesel but the smoke opacity was reduces for all blends. From the investigation, corn seed methyl ester is also having the properties similar to diesel fuel; it is biodegradable and renewable fuel, so it will be used as an alternative for diesel fuel.

  14. Low Emissions Aftertreatment and Diesel Emissions Reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2005-05-27

    Detroit Diesel Corporation (DDC) has successfully completed a five-year Low Emissions Aftertreatment and Diesel Emissions Reduction (LEADER) program under a DOE project entitled: ''Research and Development for Compression-Ignition Direct-Injection Engines (CIDI) and Aftertreatment Sub-Systems''. The objectives of the LEADER Program were to: Demonstrate technologies that will achieve future federal Tier 2 emissions targets; and Demonstrate production-viable technical targets for engine out emissions, efficiency, power density, noise, durability, production cost, aftertreatment volume and weight. These objectives were successfully met during the course of the LEADER program The most noteworthy achievements in this program are listed below: (1) Demonstrated Tier 2 Binmore » 3 emissions target over the FTP75 cycle on a PNGV-mule Neon passenger car, utilizing a CSF + SCR system These aggressive emissions were obtained with no ammonia (NH{sub 3}) slip and a combined fuel economy of 63 miles per gallon, integrating FTP75 and highway fuel economy transient cycle test results. Demonstrated feasibility to achieve Tier 2 Bin 8 emissions levels without active NOx aftertreatment. (2) Demonstrated Tier 2 Bin 3 emissions target over the FTP75 cycle on a light-duty truck utilizing a CSF + SCR system, synergizing efforts with the DOE-DDC DELTA program. This aggressive reduction in tailpipe out emissions was achieved with no ammonia slip and a 41% fuel economy improvement, compared to the equivalent gasoline engine-equipped vehicle. (3) Demonstrated Tier 2 near-Bin 9 emissions compliance on a light-duty truck, without active NOx aftertreatment devices, in synergy with the DOE-DDC DELTA program. (4) Developed and applied advanced combustion technologies such as ''CLEAN Combustion{copyright}'', which yields simultaneous reduction in engine out NOx and PM emissions while also improving engine and aftertreatment integration by providing favorable exhaust species and temperature characteristics. These favorable emissions characteristics were obtained while maintaining performance and fuel economy. These aggressive emissions and performance results were achieved by applying a robust systems technology development methodology. This systems approach benefits substantially from an integrated experimental and analytical approach to technology development, which is one of DDCs core competencies Also, DDC is uniquely positioned to undertake such a systems technology development approach, given its vertically integrated commercial structure within the DaimlerChrysler organization. State-of-the-art analytical tools were developed targeting specific LEADER program objectives and were applied to guide system enhancements and to provide testing directions, resulting in a shortened and efficient development cycle. Application examples include ammonia/NO{sub x} distribution improvement and urea injection controls development, and were key contributors to significantly reduce engine out as well as tailpipe out emissions. Successful cooperation between DDC and Engelhard Corporation, the major subcontractor for the LEADER program and provider of state-of-the-art technologies on various catalysts, was another contributing factor to ensure that both passenger car and LD truck applications achieved Tier 2 Bin 3 emissions levels. Significant technical challenges, which highlight barriers of commercialization of diesel technology for passenger cars and LD truck applications, are presented at the end of this report.« less

  15. Potential of Diesel Engine, 1979 Summary Source Document

    DOT National Transportation Integrated Search

    1980-03-01

    This document assesses the fuel economy potential of diesel engines in future passenger cars and light trucks. The primary technologies evaluated include: (1) engine control strategy and implementation, (2) the engine design variables, (3) emissions ...

  16. Comparison of carbonyl compounds emissions from diesel engine fueled with biodiesel and diesel

    NASA Astrophysics Data System (ADS)

    He, Chao; Ge, Yunshan; Tan, Jianwei; You, Kewei; Han, Xunkun; Wang, Junfang; You, Qiuwen; Shah, Asad Naeem

    The characteristics of carbonyl compounds emissions were investigated on a direct injection, turbocharged diesel engine fueled with pure biodiesel derived from soybean oil. The gas-phase carbonyls were collected by 2,4-dinitrophenylhydrazine (DNPH)-coated silica cartridges from diluted exhaust and analyzed by HPLC with UV detector. A commercial standard mixture including 14 carbonyl compounds was used for quantitative analysis. The experimental results indicate that biodiesel-fueled engine almost has triple carbonyls emissions of diesel-fueled engine. The weighted carbonyls emission of 8-mode test cycle of biodiesel is 90.8 mg (kW h) -1 and that of diesel is 30.7 mg (kW h) -1. The formaldehyde is the most abundant compound of carbonyls for both biodiesel and diesel, taking part for 46.2% and 62.7% respectively. The next most significant compounds are acetaldehyde, acrolein and acetone for both fuels. The engine fueled with biodiesel emits a comparatively high content of propionaldehyde and methacrolein. Biodiesel, as an alternative fuel, has lower specific reactivity (SR) caused by carbonyls compared with diesel. When fueled with biodiesel, carbonyl compounds make more contribution to total hydrocarbon emission.

  17. Eucalyptus Biodiesel as an Alternative to Diesel Fuel: Preparation and Tests on DI Diesel Engine

    PubMed Central

    Tarabet, Lyes; Loubar, Khaled; Lounici, Mohand Said; Hanchi, Samir; Tazerout, Mohand

    2012-01-01

    Nowadays, the increasing oil consumption throughout the world induces crucial economical, security, and environmental problems. As a result, intensive researches are undertaken to find appropriate substitution to fossil fuels. In view of the large amount of eucalyptus trees present in arid areas, we focus in this study on the investigation of using eucalyptus biodiesel as fuel in diesel engine. Eucalyptus oil is converted by transesterification into biodiesel. Eucalyptus biodiesel characterization shows that the physicochemical properties are comparable to those of diesel fuel. In the second phase, a single cylinder air-cooled, DI diesel engine was used to test neat eucalyptus biodiesel and its blends with diesel fuel in various ratios (75, 50, and 25 by v%) at several engine loads. The engine combustion parameters such as peak pressure, rate of pressure rise, and heat release rate are determined. Performances and exhaust emissions are also evaluated at all operating conditions. Results show that neat eucalyptus biodiesel and its blends present significant improvements of carbon monoxide, unburned hydrocarbon, and particulates emissions especially at high loads with equivalent performances to those of diesel fuel. However, the NOx emissions are slightly increased when the biodiesel content is increased in the blend. PMID:22675246

  18. A perspective on the potential development of environmentally acceptable light-duty diesel vehicles.

    PubMed Central

    Hammerle, R; Schuetzle, D; Adams, W

    1994-01-01

    Between 1979 and 1985, an international technical focus was placed upon potential human health effects associated with exposure to diesel emissions. A substantial data base was developed on the composition of diesel emissions; the fate of these emissions in the atmosphere; and the effects of whole particles and their chemical constituents on microorganisms, cells, and animals. Since that time, a number of significant developments have been made in diesel engine technology that require a new look at the future acceptability of introducing significant numbers of light-duty diesel automobiles into the European and American markets. Significant engineering improvements have been made in engine design, catalysts, and traps. As a result, particle emissions and particle associated organic emissions have been reduced by about 10 and 30 times, respectively, during the past 10 years. Research studies to help assess the environmental acceptability of these fuel-efficient engines include the development of an emissions data base for current and advanced diesel engines, the effect of diesel emissions on urban ozone formation and atmospheric particle concentrations, the effect of fuel composition, e.g., lower sulfur and additives on emissions, animal inhalation toxicology studies, and fundamental molecular biology studies. PMID:7529704

  19. Eucalyptus biodiesel as an alternative to diesel fuel: preparation and tests on DI diesel engine.

    PubMed

    Tarabet, Lyes; Loubar, Khaled; Lounici, Mohand Said; Hanchi, Samir; Tazerout, Mohand

    2012-01-01

    Nowadays, the increasing oil consumption throughout the world induces crucial economical, security, and environmental problems. As a result, intensive researches are undertaken to find appropriate substitution to fossil fuels. In view of the large amount of eucalyptus trees present in arid areas, we focus in this study on the investigation of using eucalyptus biodiesel as fuel in diesel engine. Eucalyptus oil is converted by transesterification into biodiesel. Eucalyptus biodiesel characterization shows that the physicochemical properties are comparable to those of diesel fuel. In the second phase, a single cylinder air-cooled, DI diesel engine was used to test neat eucalyptus biodiesel and its blends with diesel fuel in various ratios (75, 50, and 25 by v%) at several engine loads. The engine combustion parameters such as peak pressure, rate of pressure rise, and heat release rate are determined. Performances and exhaust emissions are also evaluated at all operating conditions. Results show that neat eucalyptus biodiesel and its blends present significant improvements of carbon monoxide, unburned hydrocarbon, and particulates emissions especially at high loads with equivalent performances to those of diesel fuel. However, the NOx emissions are slightly increased when the biodiesel content is increased in the blend.

  20. Researches on direct injection in internal-combustion engines

    NASA Technical Reports Server (NTRS)

    Tuscher, Jean E

    1941-01-01

    These researches present a solution for reducing the fatigue of the Diesel engine by permitting the preservation of its components and, at the same time, raising its specific horsepower to a par with that of carburetor engines, while maintaining for the Diesel engine its perogative of burning heavy fuel under optimum economical conditions. The feeding of Diesel engines by injection pumps actuated by engine compression achieves the required high speeds of injection readily and permits rigorous control of the combustible charge introduced into each cylinder and of the peak pressure in the resultant cycle.

  1. Research on H2 speed governor for diesel engine of marine power station

    NASA Astrophysics Data System (ADS)

    Huang, Man-Lei

    2007-09-01

    The frequency stability of a marine power system is determined by the dynamic characteristic of the diesel engine speed regulation system in a marine power station. In order to reduce the effect of load disturbances and improve the dynamic precision of a diesel engine speed governor, a controller was designed for a diesel engine speed regulation system using H2 control theory. This transforms the specifications of the system into a standard H2 control problem. Firstly, the mathematical model of a diesel engine speed regulation system using an H2 speed governor is presented. To counter external disturbances and model uncertainty, the design of an H2 speed governor rests on the problem of mixed sensitivity. Computer simulation verified that the H2 speed governor improves the dynamic precision of a system and the ability to adapt to load disturbances, thus enhancing the frequency stability of marine power systems.

  2. Trend and future of diesel engine: Development of high efficiency and low emission low temperature combustion diesel engine

    NASA Astrophysics Data System (ADS)

    Ho, R. J.; Yusoff, M. Z.; Palanisamy, K.

    2013-06-01

    Stringent emission policy has put automotive research & development on developing high efficiency and low pollutant power train. Conventional direct injection diesel engine with diffused flame has reached its limitation and has driven R&D to explore other field of combustion. Low temperature combustion (LTC) and homogeneous charge combustion ignition has been proven to be effective methods in decreasing combustion pollutant emission. Nitrogen Oxide (NOx) and Particulate Matter (PM) formation from combustion can be greatly suppressed. A review on each of method is covered to identify the condition and processes that result in these reductions. The critical parameters that allow such combustion to take place will be highlighted and serves as emphasis to the direction of developing future diesel engine system. This paper is written to explore potential of present numerical and experimental methods in optimizing diesel engine design through adoption of the new combustion technology.

  3. Utilization of waste heat in trucks for increased fuel economy

    NASA Technical Reports Server (NTRS)

    Leising, C. J.; Purohit, G. P.; Degrey, S. P.; Finegold, J. G.

    1978-01-01

    The waste heat utilization concepts include preheating, regeneration, turbocharging, turbocompounding, and Rankine engine compounding. Predictions are based on fuel-air cycle analyses, computer simulation, and engine test data. All options are evaluated in terms of maximum theoretical improvements, but the Diesel and adiabatic Diesel are also compared on the basis of maximum expected improvement and expected improvement over a driving cycle. The study indicates that Diesels should be turbocharged and aftercooled to the maximum possible level. The results reveal that Diesel driving cycle performance can be increased by 20% through increased turbocharging, turbocompounding, and Rankine engine compounding. The Rankine engine compounding provides about three times as much improvement as turbocompounding but also costs about three times as much. Performance for either can be approximately doubled if applied to an adiabatic Diesel.

  4. Diesel exhaust, diesel fumes, and laryngeal cancer.

    PubMed

    Muscat, J E; Wynder, E L

    1995-03-01

    A hospital-based, case-control study of 235 male patients with laryngeal cancer and 205 male control patients was conducted to determine the effects of exposure to diesel engine exhaust and diesel fumes and the risk of laryngeal cancer. All patients were interviewed directly in the hospital with a standardized questionnaire that gathered information on smoking habits, alcohol consumption, employment history, and occupational exposures. Occupations that involve substantial exposure to diesel engine exhaust include mainly truck drivers, as well as mine workers, firefighters, and railroad workers. The odds ratio for laryngeal cancer associated with these occupations was 0.96 (95% confidence interval, 0.5 to 1.8). The odds ratio for self-reported exposure to diesel exhaust was 1.47 (95% confidence interval, 0.5 to 4.1). An elevated risk was found for self-reported exposure to diesel fumes (odds ratio, 6.4; 95% confidence interval, 1.8 to 22.6). No association was observed between jobs that entail exposure to diesel fumes, such as automobile mechanics, and the risk of laryngeal cancer. These results show that diesel engine exhaust is unrelated to laryngeal cancer risk. The different findings for self-reported diesel fumes and occupations that involve exposure to diesel fumes could reflect a recall bias.

  5. Virtual engine management simulator for educational purposes

    NASA Astrophysics Data System (ADS)

    Drosescu, R.

    2017-10-01

    This simulator was conceived as a software program capable of generating complex control signals, identical to those in the electronic management systems of modern spark ignition or diesel engines. Speed in rpm and engine load percentage defined by throttle opening angle represent the input variables in the simulation program and are graphically entered by two-meter instruments from the simulator central block diagram. The output signals are divided into four categories: synchronization and position of each cylinder, spark pulses for spark ignition engines, injection pulses and, signals for generating the knock window for each cylinder in the case of a spark ignition engine. The simulation program runs in real-time so each signal evolution reflects the real behavior on a physically thermal engine. In this way, the generated signals (ignition or injection pulses) can be used with additionally drivers to control an engine on the test bench.

  6. Direct Final Rule for Heavy-Duty Highway Program: Revisions for Emergency Vehicles

    EPA Pesticide Factsheets

    Revises the heavy-duty diesel regulations to enable emergency vehicles to perform mission-critical life-saving work without risking that abnormal conditions of the emission control system could lead to decreased engine power, speed or torque.

  7. On the Ignition and Combustion Variances of Jet Propellant-8 and Diesel Fuel in Military Diesel Engines

    DTIC Science & Technology

    2008-09-22

    NA Displacement (cc) 1357 6468 Operating speeds (rpm) 800 – 3000 1500 – 3400 IMEP range (bar) 5 – 27 2 – 10 Boost system Shop air Turbocharger ...Council Diesel Fuel Workshop. Pickett, L.M. and Hoogterp, L., “ Fundamental Spray and Combustion Measurements of JP-8 at Diesel Conditions”, SAE...N., 1981, "Transient Performance Simulation and Analysis of Turbocharged Diesel Engines", SAE Paper 810338.

  8. Future fuels and engines for railroad locomotives. Volume 2: Technical document

    NASA Technical Reports Server (NTRS)

    Liddle, S. G.

    1981-01-01

    The potential for reducing the dependence of railroads on petroleum fuel, particularly Diesel No. 2 was studied. The study takes two approaches: to determine the use of Diesel No. 2 can be reduced through increased efficiency and conservation, and to use fuels other than Diesel No. 2 both in Diesel and other types of engines. Synthetic hydrocarbon fuels, probably derived from oil shale, will be needed if present diesel-electric locomotives continue to be used.

  9. Research on EHN additive on the diesel engine combustion characteristics in plateau environment

    NASA Astrophysics Data System (ADS)

    Sun, Zhixin; Li, Ruoting; Wang, Xiancheng; Hu, Chuan

    2017-03-01

    Aiming at the combustion deterioration problem of diesel engine in plateau environment, a bench test was carried out for the effects of EHN additive on combustion characteristics of the diesel engine with intake pressure of 0.68 kPa. Test results showed that with the full load working condition of 1 400 r/min: Cylinder pressure and pressure uprising rate decreased with EHN additive added in, mechanical load on the engine could be relieved; peak value of the heat release rate decreased and its occurrence advanced, ignition delay and combustion duration were shortened; cylinder temperature and exhaust gas temperature declined, thermal load on the engine could be relieved, output torque increased while specific oil consumption decreased, and effective thermal efficiency of diesel engine increased.

  10. Combination of biodiesel-ethanol-diesel fuel blend and SCR catalyst assembly to reduce emissions from a heavy-duty diesel engine.

    PubMed

    Shi, Xiaoyan; Yu, Yunbo; He, Hong; Shuai, Shijin; Dong, Hongyi; Li, Rulong

    2008-01-01

    In this study, the efforts to reduce NOx and particulate matter (PM) emissions from a diesel engine using both ethanol-selective catalytic reduction (SCR) of NOx over an Ag/Al2O3 catalyst and a biodiesel-ethanol-diesel fuel blend (BE-diesel) on an engine bench test are discussed. Compared with diesel fuel, use of BE-diesel increased PM emissions by 14% due to the increase in the soluble organic fraction (SOF) of PM, but it greatly reduced the Bosch smoke number by 60%-80% according to the results from 13-mode test of European Stationary Cycle (ESC) test. The SCR catalyst was effective in NOx reduction by ethanol, and the NOx conversion was approximately 73%. Total hydrocarbons (THC) and CO emissions increased significantly during the SCR of NOx process. Two diesel oxidation catalyst (DOC) assemblies were used after Ag/Al2O3 converter to remove CO and HC. Different oxidation catalyst showed opposite effect on PM emission. The PM composition analysis revealed that the net effect of oxidation catalyst on total PM was an integrative effect on SOF reduction and sulfate formation of PM. The engine bench test results indicated that the combination of BE-diesel and a SCR catalyst assembly could provide benefits for NOx and PM emissions control even without using diesel particle filters (DPFs).

  11. Diesel engine torsional vibration control coupling with speed control system

    NASA Astrophysics Data System (ADS)

    Guo, Yibin; Li, Wanyou; Yu, Shuwen; Han, Xiao; Yuan, Yunbo; Wang, Zhipeng; Ma, Xiuzhen

    2017-09-01

    The coupling problems between shafting torsional vibration and speed control system of diesel engine are very common. Neglecting the coupling problems sometimes lead to serious oscillation and vibration during the operation of engines. For example, during the propulsion shafting operation of a diesel engine, the oscillation of engine speed and the severe vibration of gear box occur which cause the engine is unable to operate. To find the cause of the malfunctions, a simulation model coupling the speed control system with the torsional vibration of deformable shafting is proposed and investigated. In the coupling model, the shafting is simplified to be a deformable one which consists of several inertias and shaft sections and with characteristics of torsional vibration. The results of instantaneous rotation speed from this proposed model agree with the test results very well and are successful in reflecting the real oscillation state of the engine operation. Furthermore, using the proposed model, the speed control parameters can be tuned up to predict the diesel engine a stable and safe running. The results from the tests on the diesel engine with a set of tuned control parameters are consistent with the simulation results very well.

  12. An experimental study of gaseous exhaust emissions of diesel engine using blend of natural fatty acid methyl ester

    NASA Astrophysics Data System (ADS)

    Sudrajad, Agung; Ali, Ismail; Samo, Khalid; Faturachman, Danny

    2012-09-01

    Vegetable oil form in Natural Fatty Acid Methyl Ester (FAME) has their own advantages: first of all they are available everywhere in the world. Secondly, they are renewable as the vegetables which produce oil seeds can be planted year after year. Thirdly, they are friendly with our environment, as they seldom contain sulphur element in them. This makes vegetable fuel studies become current among the various popular investigations. This study is attempt to optimization of using blend FAME on diesel engine by experimental laboratory. The investigation experimental project is comparison between using blend FAME and base diesel fuel. The engine experiment is conducted with YANMAR TF120M single cylinder four stroke diesel engine set-up at variable engine speed with constant load. The data have been taken at each point of engine speed during the stabilized engine-operating regime. Measurement of emissions parameters at difference engine speed conditions have generally indicated lower in emission NOx, but slightly higher on CO2 emission. The result also shown that the blends FAME are good in fuel consumption and potentially good substitute fuels for diesel engine

  13. Experimental Investigations on Diesel engine using Methyl esters of Jatropha oil and fish oil

    NASA Astrophysics Data System (ADS)

    Karthikeyan, A.; Jayaprabakar, J.; Dude Williams, Richard

    2017-05-01

    The aim of the study is to use fish oil methyl ester (FME) and Jatropha oil methyl ester (JME) as a substitute for diesel in compression ignition engine. Experiments were conducted when the engine was fuelled with Diesel, Fish oil methyl ester and Jatropha oil methyl ester. The experiment covered a range of loads. An AVL smoke meter was used to measure the smoke density in HSU (Hatridge Smoke Unit). The exhaust emissions were measured using exhaust gas analyzer. High volume sampler was employed to measure the particulate matter in exhaust. The performance of the engine was evaluated in terms of brake specific fuel consumption, brake thermal efficiency. The combustion characteristics of the engine were studied in terms of cylinder pressure with respect to crank angle. The emissions of the engine were studied in terms of concentration of CO, NOx, particulate matter and smoke density. The results obtained for Fish oil methyl ester, Jatropha oil methyl ester, were compared with the results of diesel. Bio-diesel, which can be used as an alternate diesel fuel, is made from vegetable oil and animal fats. It is renewable, non-toxic and possesses low emission profiles.

  14. A comparative study of almond biodiesel-diesel blends for diesel engine in terms of performance and emissions.

    PubMed

    Abu-Hamdeh, Nidal H; Alnefaie, Khaled A

    2015-01-01

    This paper investigates the opportunity of using almond oil as a renewable and alternative fuel source. Different fuel blends containing 10, 30, and 50% almond biodiesel (B10, B30, and B50) with diesel fuel (B0) were prepared and the influence of these blends on emissions and some performance parameters under various load conditions were inspected using a diesel engine. Measured engine performance parameters have generally shown a slight increase in exhaust gas temperature and in brake specific fuel consumption and a slight decrease in brake thermal efficiency. Gases investigated were carbon monoxide (CO) and oxides of nitrogen (NOx). Furthermore, the concentration of the total particulate and the unburned fuel emissions in the exhaust gas were tested. A blend of almond biodiesel with diesel fuel gradually reduced the engine CO and total particulate emissions compared to diesel fuel alone. This reduction increased with more almond biodiesel blended into the fuel. Finally, a slight increase in engine NO x using blends of almond biodiesel was measured.

  15. A Comparative Study of Almond Biodiesel-Diesel Blends for Diesel Engine in Terms of Performance and Emissions

    PubMed Central

    Alnefaie, Khaled A.

    2015-01-01

    This paper investigates the opportunity of using almond oil as a renewable and alternative fuel source. Different fuel blends containing 10, 30, and 50% almond biodiesel (B10, B30, and B50) with diesel fuel (B0) were prepared and the influence of these blends on emissions and some performance parameters under various load conditions were inspected using a diesel engine. Measured engine performance parameters have generally shown a slight increase in exhaust gas temperature and in brake specific fuel consumption and a slight decrease in brake thermal efficiency. Gases investigated were carbon monoxide (CO) and oxides of nitrogen (NOx). Furthermore, the concentration of the total particulate and the unburned fuel emissions in the exhaust gas were tested. A blend of almond biodiesel with diesel fuel gradually reduced the engine CO and total particulate emissions compared to diesel fuel alone. This reduction increased with more almond biodiesel blended into the fuel. Finally, a slight increase in engine NOx using blends of almond biodiesel was measured. PMID:25874218

  16. Experimental investigation of regulated and unregulated emissions from a diesel engine fueled with ultralow-sulfur diesel fuel blended with ethanol and dodecanol

    NASA Astrophysics Data System (ADS)

    Cheung, C. S.; Di, Yage; Huang, Zuohua

    Experiments were conducted on a four-cylinder direct-injection diesel engine using ultralow-sulfur diesel as the main fuel, ethanol as the oxygenate additive and dodecanol as the solvent, to investigate the regulated and unregulated emissions of the engine under five engine loads at an engine speed of 1800 rev min -1. Blended fuels containing 6.1%, 12.2%, 18.2% and 24.2% by volume of ethanol, corresponding to 2%, 4%, 6% and 8% by mass of oxygen in the blended fuel, were used. The results indicate that with an increase in ethanol in the fuel, the brake specific fuel consumption becomes higher while there is little change in the brake thermal efficiency. Regarding the regulated emissions, HC and CO increase significantly at low engine load but might decrease at high engine load, NO x emission slightly decreases at low engine load but slightly increases at high engine load, while particulate mass decreases significantly at high engine load. For the unregulated gaseous emissions, unburned ethanol and acetaldehyde increase but formaldehyde, ethene, ethyne, 1,3-butadiene and BTX (benzene, toluene and xylene) in general decrease, especially at high engine load. A diesel oxidation catalyst (DOC) is found to reduce significantly most of the pollutants, including the air toxics.

  17. Performance and Emissions of a Small Compression Ignition Engine Run on Dual-fuel Mode (Diesel-Raw biogas)

    NASA Astrophysics Data System (ADS)

    Ambarita, H.; Sinulingga, E. P.; Nasution, M. KM; Kawai, H.

    2017-03-01

    In this work, a compression ignition (CI) engine is tested in dual-fuel mode (Diesel-Raw biogas). The objective is to examine the performance and emission characteristics of the engine when some of the diesel oil is replaced by biogas. The specifications of the CI engine are air cooled single horizontal cylinder, four strokes, and maximum output power of 4.86 kW. It is coupled with a synchronous three phase generator. The load, engine revolution, and biogas flow rate are varied from 600 W to 1500 W, 1000 rpm to 1500 rpm, 0 to 6 L/minute, respectively. The electric power, specific fuel consumption, thermal efficiency, gas emission, and diesel replacement ratio are analyzed. The results show that there is no significant difference of the power resulted by CI run on dual-fuel mode in comparison with pure diesel mode. However, the specific fuel consumption and efficiency decrease significantly as biogas flow rate increases. On the other hand, emission of the engine on dual-fuel mode is better. The main conclusion can be drawn is that CI engine without significant modification can be operated perfectly in dual-fuel mode and diesel oil consumption can be decreased up to 87.5%.

  18. Emission reduction from diesel engine using fumigation methanol and diesel oxidation catalyst.

    PubMed

    Zhang, Z H; Cheung, C S; Chan, T L; Yao, C D

    2009-07-15

    This study is aimed to investigate the combined application of fumigation methanol and a diesel oxidation catalyst for reducing emissions of an in-use diesel engine. Experiments were performed on a 4-cylinder naturally-aspirated direct-injection diesel engine operating at a constant speed of 1800 rev/min for five engine loads. The experimental results show that at low engine loads, the brake thermal efficiency decreases with increase in fumigation methanol; but at high loads, it slightly increases with increase in fumigation methanol. The fumigation method results in a significant increase in hydrocarbon (HC), carbon monoxide (CO), and nitrogen dioxide (NO(2)) emissions, but decrease in nitrogen oxides (NO(x)), smoke opacity and the particulate mass concentration. For the submicron particles, the total number of particles decreases. In all cases, there is little change in geometrical mean diameter of the particles. After catalytic conversion, the HC, CO, NO(2), particulate mass and particulate number concentrations were significantly reduced at medium to high engine loads; while the geometrical mean diameter of the particles becomes larger. Thus, the combined use of fumigation methanol and diesel oxidation catalyst leads to a reduction of HC, CO, NO(x), particulate mass and particulate number concentrations at medium to high engine loads.

  19. Effects of diesel/ethanol dual fuel on emission characteristics in a heavy-duty diesel engine

    NASA Astrophysics Data System (ADS)

    Liu, Junheng; Sun, Ping; Zhang, Buyun

    2017-09-01

    In order to reduce emissions and diesel consumption, the gas emissions characteris-tics of diesel/aqueous ethanol dual fuel combustion (DFC) were carried out on a heavy-duty turbocharged and intercooled automotive diesel engine. The aqueous ethanol is prepared by a blend of anhydrous ethanol and water in certain volume proportion. In DFC mode, aqueous ethanol is injected into intake port to form homogeneous charge, and then ignited by the diesel fuel. Results show that DFC can reduce NOx emissions but increase HC and CO emissions, and this trend becomes more prominent with the increase of water blending ratio. Increased emissions of HC and CO could be efficiently cleaned by diesel oxidation catalytic converter (DOC), even better than those of diesel fuel. It is also found that DFC mode reduces smoke remarkably, while increases some unconventional emissions such as formaldehyde and acetal-dehyde. However, unconventional emissions could be reduced approximately to the level of baseline engine with a DOC.

  20. Experimental investigation on performance and exhaust emissions of castor oil biodiesel from a diesel engine.

    PubMed

    Shojaeefard, M H; Etgahni, M M; Meisami, F; Barari, A

    2013-01-01

    Biodiesel, produced from plant and animal oils, is an important alternative to fossil fuels because, apart from dwindling supply, the latter are a major source of air pollution. In this investigation, effects of castor oil biodiesel blends have been examined on diesel engine performance and emissions. After producing castor methyl ester by the transesterification method and measuring its characteristics, the experiments were performed on a four cylinder, turbocharged, direct injection, diesel engine. Engine performance (power, torque, brake specific fuel consumption and thermal efficiency) and exhaust emissions were analysed at various engine speeds. All the tests were done under 75% full load. Furthermore, the volumetric blending ratios of biodiesel with conventional diesel fuel were set at 5, 10, 15, 20 and 30%. The results indicate that lower blends of biodiesel provide acceptable engine performance and even improve it. Meanwhile, exhaust emissions are much decreased. Finally, a 15% blend of castor oil-biodiesel was picked as the optimized blend of biodiesel-diesel. It was found that lower blends of castor biodiesel are an acceptable fuel alternative for the engine.

  1. Emission reduction potential of using gas-to-liquid and dimethyl ether fuels on a turbocharged diesel engine.

    PubMed

    Xinling, Li; Zhen, Huang

    2009-03-15

    A study of engine performance characteristics and both of regulated (CO, HC, NO(x), and smoke) and unregulated (ultrafine particle number, mass concentrations and size distribution) emissions for a turbocharged diesel engine fueled with conventional diesel, gas-to-liquid (GTL) and dimethyl ether (DME) fuels respectively at different engine loads and speeds have been carried out. The results indicated that fuel components significantly affected the engine performance and regulated/unregulated emissions. GTL exhibited almost the same power and torque output as diesel, while improved fuel economy. GTL significantly reduced regulated emissions with average reductions of 21.2% in CO, 15.7% in HC, 15.6% in NO(x) and 22.1% in smoke in comparison to diesel, as well as average reductions in unregulated emissions of total ultrafine particle number (N(tot)) and mass (M(tot)) emissions by 85.3% and 43.9%. DME can significantly increase torque and power, compared with the original diesel engine, as well as significantly reduced regulated emissions of 40.1% in HC, 48.2% in NO(x) and smoke free throughout all the engine conditions. However, N(tot) for DME is close to that for diesel. The reason is that the accumulation mode particle number emissions for DME are very low due to the characteristics of oxygen content and no C-C bond, which promotes the processes of nucleation and condensation of the semi-volatile compounds in the exhaust gas, as a result, a lot of nucleation mode particles produce.

  2. Evaluation of Future Fuels in a High Pressure Common Rail System - Part 2. 2011 Ford 6.7L Diesel Engine

    DTIC Science & Technology

    2013-01-01

    An injector needle is shown for each test in Figure 41. UNCLASSIFIED 37 UNCLASSIFIED Full Needle 60°C Ultra Low Sulfur Diesel 60°C...UNCLASSIFIED EVALUATION OF FUTURE FUELS IN A HIGH PRESSURE COMMON RAIL SYSTEM – PART 2 2011 FORD 6.7L DIESEL ENGINE INTERIM REPORT TFLRF...UNCLASSIFIED UNCLASSIFIED EVALUATION OF FUTURE FUELS IN A HIGH PRESSURE COMMON RAIL SYSTEM – PART 2 2011 FORD 6.7L DIESEL ENGINE INTERIM REPORT TFLRF

  3. Onboard Plasmatron Hydrogen Production for Improved Vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel R. Cohn; Leslie Bromberg; Kamal Hadidi

    2005-12-31

    A plasmatron fuel reformer has been developed for onboard hydrogen generation for vehicular applications. These applications include hydrogen addition to spark-ignition internal combustion engines, NOx trap and diesel particulate filter (DPF) regeneration, and emissions reduction from spark ignition internal combustion engines First, a thermal plasmatron fuel reformer was developed. This plasmatron used an electric arc with relatively high power to reform fuels such as gasoline, diesel and biofuels at an oxygen to carbon ratio close to 1. The draw back of this device was that it has a high electric consumption and limited electrode lifetime due to the high temperaturemore » electric arc. A second generation plasmatron fuel reformer was developed. It used a low-current high-voltage electric discharge with a completely new electrode continuation. This design uses two cylindrical electrodes with a rotating discharge that produced low temperature volumetric cold plasma., The lifetime of the electrodes was no longer an issue and the device was tested on several fuels such as gasoline, diesel, and biofuels at different flow rates and different oxygen to carbon ratios. Hydrogen concentration and yields were measured for both the thermal and non-thermal plasmatron reformers for homogeneous (non-catalytic) and catalytic reforming of several fuels. The technology was licensed to an industrial auto part supplier (ArvinMeritor) and is being implemented for some of the applications listed above. The Plasmatron reformer has been successfully tested on a bus for NOx trap regeneration. The successful development of the plasmatron reformer and its implementation in commercial applications including transportation will bring several benefits to the nation. These benefits include the reduction of NOx emissions, improving engine efficiency and reducing the nation's oil consumption. The objective of this program has been to develop attractive applications of plasmatron fuel reformer technology for onboard applications in internal combustion engine vehicles using diesel, gasoline and biofuels. This included the reduction of NOx and particulate matter emissions from diesel engines using plasmatron reformer generated hydrogen-rich gas, conversion of ethanol and bio-oils into hydrogen rich gas, and the development of new concepts for the use of plasmatron fuel reformers for enablement of HCCI engines.« less

  4. An overview of NASA research on positive displacement general-aviation engines

    NASA Technical Reports Server (NTRS)

    Kempke, E. E., Jr.

    1980-01-01

    The research and technology program related to improved and advanced general aviation engines is described. Current research is directed at the near-term improvement of conventional air-cooled spark-ignition piston engines and at future alternative engine systems based on all-new spark-ignition piston engines, lightweight diesels, and rotary combustion engines that show potential for meeting program goals in the midterm and long-term future. The conventional piston engine activities involve efforts on applying existing technology to improve fuel economy, investigation of key processes to permit leaner operation and reduce drag, and the development of cost effective technology to permit flight at high-altitudes where fuel economy and safety are improved. The advanced engine concepts activities include engine conceptual design studies and enabling technology efforts on the critical or key technology items.

  5. Analysis of noise emitted from diesel engines

    NASA Astrophysics Data System (ADS)

    Narayan, S.

    2015-12-01

    In this work combustion noise produced in diesel engines has been investigated. In order to reduce the exhaust emissions various injection parameters need to be studied and optimized. The noise has been investigated by mean of data obtained from cylinder pressure measurements using piezo electric transducers and microphones on a dual cylinder diesel engine test rig. The engine was run under various operating conditions varying various injection parameters to investigate the effects of noise emissions under various testing conditions.

  6. 40 CFR 86.1910 - How must I prepare and test my in-use engines?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... In this case, only the post-repair test results would be used in the vehicle-pass determination as... 40 Protection of Environment 19 2014-07-01 2014-07-01 false How must I prepare and test my in-use... In-Use Testing Program for Heavy-Duty Diesel Engines § 86.1910 How must I prepare and test my in-use...

  7. 40 CFR 86.1910 - How must I prepare and test my in-use engines?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... new test. In this case, only the post-repair test results would be used in the vehicle-pass... 40 Protection of Environment 20 2012-07-01 2012-07-01 false How must I prepare and test my in-use...) Manufacturer-Run In-Use Testing Program for Heavy-Duty Diesel Engines § 86.1910 How must I prepare and test my...

  8. Improvement of engine emissions with conventional diesel fuel and diesel-biodiesel blends.

    PubMed

    Nabi, Md Nurun; Akhter, Md Shamim; Zaglul Shahadat, Mhia Md

    2006-02-01

    In this report combustion and exhaust emissions with neat diesel fuel and diesel-biodiesel blends have been investigated. In the investigation, firstly biodiesel from non-edible neem oil has been made by esterification. Biodiesel fuel (BDF) is chemically known as mono-alkyl fatty acid ester. It is renewable in nature and is derived from plant oils including vegetable oils. BDF is non-toxic, biodegradable, recycled resource and essentially free from sulfur and carcinogenic benzene. In the second phase of this investigation, experiment has been conducted with neat diesel fuel and diesel-biodiesel blends in a four stroke naturally aspirated (NA) direct injection (DI) diesel engine. Compared with conventional diesel fuel, diesel-biodiesel blends showed lower carbon monoxide (CO), and smoke emissions but higher oxides of nitrogen (NOx) emission. However, compared with the diesel fuel, NOx emission with diesel-biodiesel blends was slightly reduced when EGR was applied.

  9. Small engine technology programs

    NASA Technical Reports Server (NTRS)

    Niedzwiecki, Richard W.

    1990-01-01

    Described here is the small engine technology program being sponsored at the Lewis Research Center. Small gas turbine research is aimed at general aviation, commuter aircraft, rotorcraft, and cruise missile applications. The Rotary Engine program is aimed at supplying fuel flexible, fuel efficient technology to the general aviation industry, but also has applications to other missions. The Automotive Gas Turbine (AGT) and Heavy-Duty Diesel Transport Technology (HDTT) programs are sponsored by DOE. The Compound Cycle Engine program is sponsored by the Army. All of the programs are aimed towards highly efficient engine cycles, very efficient components, and the use of high temperature structural ceramics. This research tends to be generic in nature and has broad applications. The HDTT, rotary technology, and the compound cycle programs are all examining approaches to minimum heat rejection, or 'adiabatic' systems employing advanced materials. The AGT program is also directed towards ceramics application to gas turbine hot section components. Turbomachinery advances in the gas turbine programs will benefit advanced turbochargers and turbocompounders for the intermittent combustion systems, and the fundamental understandings and analytical codes developed in the research and technology programs will be directly applicable to the system projects.

  10. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXI, I--MAINTAINING THE AIR SYSTEM--CATERPILLAR DIESEL ENGINE, II--UNDERSTANDING REAR END SUSPENSION.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE AIR SYSTEM AND REAR AXLE SUSPENSION USED ON DIESEL POWERED VEHICLES. TOPICS ARE (1) AIR INDUCTION AND EXHAUST SYSTEM, (2) VALVE MECHANISM, (3) TROUBLESHOOTING THE AIR SYSTEM, (4) PURPOSE OF VEHICLE SUSPENSION, (5) TANDEM…

  11. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXII, I--MAINTAINING THE FUEL SYSTEM (PART I)--CUMMINS DIESEL ENGINE, II--UNDERSTANDING THE DIFFERENTIAL.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE FUNCTION AND MAINTENANCE OF THE DIESEL ENGINE FUEL SYSTEM AND DIFFERENTIAL DRIVE UNITS USED IN DIESEL POWERED VEHICLES. TOPICS ARE (1) FUEL SYSTEM COMPARISONS, (2) FUEL SYSTEM SUPPLY COMPONENTS, (3) FUEL SUPPLY SECTION MAINTENANCE, (4) FUNCTION OF THE DIFFERENTIAL,…

  12. Experimental investigation on Performance and Emission Characteristics of J20, P20, N20 Biodiesel blends and Sound Characteristics of P20 Biodiesel blend Used in Single Cylinder Diesel Engine

    NASA Astrophysics Data System (ADS)

    rajasekar, R.; karthik, N.; Xavier, Goldwin

    2017-05-01

    Present work provides the effect of biodiesel blends and Sound Characteristics of P20 Biodiesel blend compared with Performance and emission Characteristics of diesel. Methods and analysis biodiesel blends was prepared by the Transesterification Process. Experiments were conducted in single cylinder constant speed direct injection diesel engine for various test fuels. Research is mainly focused on pongamia oil. It was observed that a 20% Pongamia oil blends and its properties were similar to diesel. The results showed that 20% Pongamia oil blends gave better performance, less in noise and emission compared with ester of Jatropha and neem oil blends. Hence Pongamia blends can be used in existing diesel engine without compromising the engine performance.

  13. Modeling and Control Systems Design for Air Intake System of Diesel Engines for Improvement of Transient Characteristic

    NASA Astrophysics Data System (ADS)

    Ejiri, Arata; Sasaki, Jun; Kinoshita, Yusuke; Fujimoto, Junya; Maruyama, Tsugito; Shimotani, Keiji

    For the purpose of contributing to global environment protection, several research studies have been conducted involving clean-burning diesel engines. In recent diesel engines with Exhaust Gas Recirculation (EGR) systems and a Variable Nozzle Turbocharger (VNT), mutual interference between EGR and VNT has been noted. Hence, designing and adjusting control of the conventional PID controller is particularly difficult at the transient state in which the engine speed and fuel injection rate change. In this paper, we formulate 1st principal model of air intake system of diesel engines and transform it to control oriented model including an engine steady state model and a transient model. And we propose a model-based control system with the LQR Controller, Saturation Compensator, the Dynamic Feed-forward and Disturbance Observer using a transient model. Using this method, we achieved precise reference tracking and emission reduction in transient mode test with the real engine evaluations.

  14. Engine Performance Test of the 1975 Chrysler - Nissan Model CN633 Diesel Engine

    DOT National Transportation Integrated Search

    1975-09-01

    An engine test of the Chrysler-Nissan Model CN633 diesel engine was performed to determine its steady-state fuel consumption and emissions (HC, CO, NOx) maps. The data acquired are summarized in this report.

  15. Effect of compression ratio, nozzle opening pressure, engine load, and butanol addition on nanoparticle emissions from a non-road diesel engine.

    PubMed

    Maurya, Rakesh Kumar; Saxena, Mohit Raj; Rai, Piyush; Bhardwaj, Aashish

    2018-05-01

    Currently, diesel engines are more preferred over gasoline engines due to their higher torque output and fuel economy. However, diesel engines confront major challenge of meeting the future stringent emission norms (especially soot particle emissions) while maintaining the same fuel economy. In this study, nanosize range soot particle emission characteristics of a stationary (non-road) diesel engine have been experimentally investigated. Experiments are conducted at a constant speed of 1500 rpm for three compression ratios and nozzle opening pressures at different engine loads. In-cylinder pressure history for 2000 consecutive engine cycles is recorded and averaged data is used for analysis of combustion characteristics. An electrical mobility-based fast particle sizer is used for analyzing particle size and mass distributions of engine exhaust particles at different test conditions. Soot particle distribution from 5 to 1000 nm was recorded. Results show that total particle concentration decreases with an increase in engine operating loads. Moreover, the addition of butanol in the diesel fuel leads to the reduction in soot particle concentration. Regression analysis was also conducted to derive a correlation between combustion parameters and particle number emissions for different compression ratios. Regression analysis shows a strong correlation between cylinder pressure-based combustion parameters and particle number emission.

  16. Ceramic Technology Project semiannual progress report, April 1992--September 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, D.R.

    1993-07-01

    This project was developed to meet the ceramic technology requirements of the DOE Office of Transportation Systems` automotive technology programs. Significant progress in fabricating ceramic components for DOE, NASA, and DOE advanced heat engine programs show that operation of ceramic parts in high-temperature engines is feasible; however, addition research is needed in materials and processing, design, and data base and life prediction before industry will have a sufficient technology base for producing reliable cost-effective ceramic engine components commercially. A 5-yr project plan was developed, with focus on structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments,more » and ceramic coatings for thermal barrier and wear applications in these engines.« less

  17. Demonstration and evaluation of gas turbine transit buses

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The Gas Turbine Transit Bus Demonstration Program was designed to demonstrate and evaluate the operation of gas turbine engines in transit coaches in revenue service compared with diesel powered coaches. The main objective of the program was to accelerate development and commercialization of automotive gas turbines. The benefits from the installation of this engine in a transit coach were expected to be reduced weight, cleaner exhaust emissions, lower noise levels, reduced engine vibration and maintenance requirements, improved reliability and vehicle performance, greater engine braking capability, and superior cold weather starting. Four RTS-II advanced design transit coaches were converted to gas turbine power using engines and transmissions. Development, acceptance, performance and systems tests were performed on the coaches prior to the revenue service demonstration.

  18. Experimental study on particulate and NOx emissions of a diesel engine fueled with ultra low sulfur diesel, RME-diesel blends and PME-diesel blends.

    PubMed

    Zhu, Lei; Zhang, Wugao; Liu, Wei; Huang, Zhen

    2010-02-01

    Ultra low sulfur diesel and two different kinds of biodiesel fuels blended with baseline diesel fuel in 5% and 20% v/v were tested in a Cummins 4BTA direct injection diesel engine, with a turbocharger and an intercooler. Experiments were conducted under five engine loads at two steady speeds (1500 rpm and 2500 rpm). The study aims at investigating the engine performance, NO(x) emission, smoke opacity, PM composition, PM size distribution and comparing the impacts of low sulfur content of biodiesel with ULSD on the particulate emission. The results indicate that, compared to base diesel fuel, the increase of biodiesel in blends could cause certain increase in both brake specific fuel consumption and brake thermal efficiency. Compared with baseline diesel fuel, the biodiesel blends bring about more NO(x) emissions. With the proportion of biodiesel increase in blends, the smoke opacity decreases, while total particle number concentration increases. Meanwhile the ULSD gives lower NO(x) emissions, smoke opacity and total number concentration than those of baseline diesel fuel. In addition, the percentages of SOF and sulfate in particulates increase with biodiesel in blends, while the dry soot friction decreases obviously. Compared with baseline diesel fuel, the biodiesel blends increase the total nucleation number concentration, while ULSD reduces the total nucleation number concentration effectively, although they all have lower sulfur content. It means that, for ULSD, the lower sulfur content is the dominant factor for suppressing nucleation particles formation, while for biodiesel blends, lower volatile, lower aromatic content and higher oxygen content of biodiesel are key factors for improving the nucleation particles formation. The results demonstrate that the higher NO(x) emission and total nucleation number concentration are considered as the big obstacles of the application of biodiesel in diesel engine. Copyright 2009 Elsevier B.V. All rights reserved.

  19. Effect of Cetane Improver on Autoignition Characteristics of Low Cetane Sasol IPK Using Ignition Quality Tester (IQT)

    DTIC Science & Technology

    2013-10-13

    Part IV”. SAE Technical Paper. 2001-01-3527. (2001). DOI: 10.4271/2001-01-3527. [21] International Standard, “ Diesel engines ------ Calibrating ... diesel engines. The ignition quality of a fuel is rated by its cetane number (CN) measured in a Cooperative Fuel Research (CFR) engine according to...measure the DCN of fuels for diesel engines. Also, DCN is considered as one of the critical properties in the investigation of surrogates for

  20. Lubricity of biobased diesel fuels and additives

    USDA-ARS?s Scientific Manuscript database

    Modern diesel engines rely on the fuel itself to lubricate moving parts in the fuel and engine systems. Prior to the late 1990s, diesel fuel from petroleum provided sufficient lubricity to effectively reduce wear in injectors and fuel pumps. Increasingly stringent limitations on the sulfur content o...

  1. Effects of Aftermarket Control Technologies on Gas and Particle Phase Oxidative Potential from Diesel Engine Emissions

    EPA Science Inventory

    Particulate matter (PM) originating from diesel combustion is a public health concern due to its association with adverse effects on respiratory and cardiovascular diseases and lung cancer. This study investigated emissions from three stationary diesel engines (gensets) with var...

  2. Analysis of unregulated emissions from an off-road diesel engine during realistic work operations

    NASA Astrophysics Data System (ADS)

    Lindgren, Magnus; Arrhenius, Karine; Larsson, Gunnar; Bäfver, Linda; Arvidsson, Hans; Wetterberg, Christian; Hansson, Per-Anders; Rosell, Lars

    2011-09-01

    Emissions from vehicle diesel engines constitute a considerable share of anthropogenic emissions of pollutants, including many non-regulated compounds such as aromatic hydrocarbons and alkenes. One way to reduce these emissions might be to use fuels with low concentrations of aromatic hydrocarbons, such as Fischer-Tropsch (F-T) diesels. Therefore this study compared Swedish Environmental Class 1 diesel (EC1) with the F-T diesel fuel Ecopar™ in terms of emissions under varied conditions (steady state, controlled transients and realistic work operations) in order to identify factors influencing emissions in actual operation. Using F-T diesel reduced emissions of aromatic hydrocarbons, but not alkenes. Emissions were equally dependent on work operation character (load, engine speed, occurrence of transients) for both fuels. There were indications that the emissions originated from unburnt fuel, rather than from combustion products.

  3. Influence of polymethyl acrylate additive on the formation of particulate matter and NOX emission of a biodiesel-diesel-fueled engine.

    PubMed

    Monirul, Islam Mohammad; Masjuki, Haji Hassan; Kalam, Mohammad Abdul; Zulkifli, Nurin Wahidah Mohd; Shancita, Islam

    2017-08-01

    The aim of this study is to investigate the effect of the polymethyl acrylate (PMA) additive on the formation of particulate matter (PM) and nitrogen oxide (NO X ) emission from a diesel coconut and/or Calophyllum inophyllum biodiesel-fueled engine. The physicochemical properties of 20% of coconut and/or C. inophyllum biodiesel-diesel blend (B20), 0.03 wt% of PMA with B20 (B20P), and diesel fuel were measured and compared to ASTM D6751, D7467, and EN 14214 standard. The test results showed that the addition of PMA additive with B20 significantly improves the cold-flow properties such as pour point (PP), cloud point (CP), and cold filter plugging point (CFPP). The addition of PMA additives reduced the engine's brake-specific energy consumption of all tested fuels. Engine emission results showed that the additive-added fuel reduce PM concentration than B20 and diesel, whereas the PM size and NO X emission both increased than B20 fuel and baseline diesel fuel. Also, the effect of adding PMA into B20 reduced Carbon (C), Aluminum (Al), Potassium (K), and volatile materials in the soot, whereas it increased Oxygen (O), Fluorine (F), Zinc (Zn), Barium (Ba), Chlorine (Cl), Sodium (Na), and fixed carbon. The scanning electron microscope (SEM) results for B20P showed the lower agglomeration than B20 and diesel fuel. Therefore, B20P fuel can be used as an alternative to diesel fuel in diesel engines to lower the harmful emissions without compromising the fuel quality.

  4. Effects of Alumina Nano Metal Oxide Blended Palm Stearin Methyl Ester Bio-Diesel on Direct Injection Diesel Engine Performance and Emissions

    NASA Astrophysics Data System (ADS)

    Krishna, K.; Kumar, B. Sudheer Prem; Reddy, K. Vijaya Kumar; Charan Kumar, S.; Kumar, K. Ravi

    2017-08-01

    The Present Investigation was carried out to study the effect of Alumina Metal Oxide (Al2O3) Nano Particles as additive for Palm Stearin Methyl Ester Biodiesel (B 100) and their blends as an alternate fuel in four stroke single cylinder water cooled, direct injection diesel engine. Alumina Nano Particles has high calorific value and relatively high thermal conductivity (30-1 W m K-1) compare to diesel, which helps to promote more combustion in engines due to their higher thermal efficiency. In the experimentation Al2O3 were doped in various proportions with the Palm Stearin Methyl Ester Biodiesel (B-100) using an ultrasonicator and a homogenizer with cetyl trimethyl ammonium bromide (CTAB) as the cationic surfactant. The test were performed on a Kirsloskar DI diesel engine at constant speed of 1500 rpm using different Nano Biodiesel Fuel blends (psme+50 ppm, psme+150 ppm, and psme+200 ppm) and results were compared with those of neat conventional diesel and Palm Stearin Methyl Ester Bio diesel. It was observed that for Nano Biodiesel Fuel blend (psme+50ppm) there is an significant reduction in carbon monoxide (CO) emissions and Nox emissions compared to diesel and the brake thermal efficiency for (psme+50ppm) was almost same as diesel.

  5. Effects of fuels, engine load and exhaust after-treatment on diesel engine SVOC emissions and development of SVOC profiles for receptor modeling

    PubMed Central

    Huang, Lei; Bohac, Stanislav V.; Chernyak, Sergei M.; Batterman, Stuart A.

    2015-01-01

    Diesel exhaust emissions contain numerous semivolatile organic compounds (SVOCs) for which emission information is limited, especially for idling conditions, new fuels and the new after-treatment systems. This study investigates exhaust emissions of particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs (NPAHs), and sterane and hopane petroleum biomarkers from a heavy-duty (6.4 L) diesel engine at various loads (idle, 600 and 900 kPa BMEP), with three types of fuel (ultra-low sulfur diesel or ULSD, Swedish low aromatic diesel, and neat soybean biodiesel), and with and without a diesel oxidation catalyst (DOC) and diesel particulate filter (DPF). Swedish diesel and biodiesel reduced emissions of PM2.5, Σ15PAHs, Σ11NPAHs, Σ5Hopanes and Σ6Steranes, and biodiesel resulted in the larger reductions. However, idling emissions increased for benzo[k]fluoranthene (Swedish diesel), 5-nitroacenaphthene (biodiesel) and PM2.5 (biodiesel), a significant result given the attention to exposures from idling vehicles and the toxicity of high-molecular-weight PAHs and NPAHs. The DOC + DPF combination reduced PM2.5 and SVOC emissions during DPF loading (>99% reduction) and DPF regeneration (83–99%). The toxicity of diesel exhaust, in terms of the estimated carcinogenic risk, was greatly reduced using Swedish diesel, biodiesel fuels and the DOC + DPF. PAH profiles showed high abundances of three and four ring compounds as well as naphthalene; NPAH profiles were dominated by nitro-naphthalenes, 1-nitropyrene and 9-nitroanthracene. Both the emission rate and the composition of diesel exhaust depended strongly on fuel type, engine load and after-treatment system. The emissions data and chemical profiles presented are relevant to the development of emission inventories and exposure and risk assessments. PMID:25709535

  6. Effects of fuels, engine load and exhaust after-treatment on diesel engine SVOC emissions and development of SVOC profiles for receptor modeling.

    PubMed

    Huang, Lei; Bohac, Stanislav V; Chernyak, Sergei M; Batterman, Stuart A

    2015-02-01

    Diesel exhaust emissions contain numerous semivolatile organic compounds (SVOCs) for which emission information is limited, especially for idling conditions, new fuels and the new after-treatment systems. This study investigates exhaust emissions of particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs (NPAHs), and sterane and hopane petroleum biomarkers from a heavy-duty (6.4 L) diesel engine at various loads (idle, 600 and 900 kPa BMEP), with three types of fuel (ultra-low sulfur diesel or ULSD, Swedish low aromatic diesel, and neat soybean biodiesel), and with and without a diesel oxidation catalyst (DOC) and diesel particulate filter (DPF). Swedish diesel and biodiesel reduced emissions of PM 2.5 , Σ 15 PAHs, Σ 11 NPAHs, Σ 5 Hopanes and Σ 6 Steranes, and biodiesel resulted in the larger reductions. However, idling emissions increased for benzo[k]fluoranthene (Swedish diesel), 5-nitroacenaphthene (biodiesel) and PM 2.5 (biodiesel), a significant result given the attention to exposures from idling vehicles and the toxicity of high-molecular-weight PAHs and NPAHs. The DOC + DPF combination reduced PM 2.5 and SVOC emissions during DPF loading (>99% reduction) and DPF regeneration (83-99%). The toxicity of diesel exhaust, in terms of the estimated carcinogenic risk, was greatly reduced using Swedish diesel, biodiesel fuels and the DOC + DPF. PAH profiles showed high abundances of three and four ring compounds as well as naphthalene; NPAH profiles were dominated by nitro-naphthalenes, 1-nitropyrene and 9-nitroanthracene. Both the emission rate and the composition of diesel exhaust depended strongly on fuel type, engine load and after-treatment system. The emissions data and chemical profiles presented are relevant to the development of emission inventories and exposure and risk assessments.

  7. Development of Advanced In-Cylinder Components and Tribological Systems for Low Heat Rejection Diesel Engines

    NASA Technical Reports Server (NTRS)

    Yonushonis, T. M.; Wiczynski, P. D.; Myers, M. R.; Anderson, D. D.; McDonald, A. C.; Weber, H. G.; Richardson, D. E.; Stafford, R. J.; Naylor, M. G.

    1999-01-01

    In-cylinder components and tribological system concepts were designed, fabricated and tested at conditions anticipated for a 55% thermal efficiency heavy duty diesel engine for the year 2000 and beyond. A Cummins L10 single cylinder research engine was used to evaluate a spherical joint piston and connecting rod with 19.3 MPa (2800 psi) peak cylinder pressure capability, a thermal fatigue resistant insulated cylinder head, radial combustion seal cylinder liners, a highly compliant steel top compression ring, a variable geometry turbocharger, and a microwave heated particulate trap. Components successfully demonstrated in the final test included spherical joint connecting rod with a fiber reinforced piston, high conformability steel top rings with wear resistant coatings, ceramic exhaust ports with strategic oil cooling and radial combustion seal cylinder liner with cooling jacket transfer fins. A Cummins 6B diesel was used to develop the analytical methods, materials, manufacturing technology and engine components for lighter weight diesel engines without sacrificing performance or durability. A 6B diesel engine was built and tested to calibrate analytical models for the aluminum cylinder head and aluminum block.

  8. Discriminative non-negative matrix factorization (DNMF) and its application to the fault diagnosis of diesel engine

    NASA Astrophysics Data System (ADS)

    Yang, Yong-sheng; Ming, An-bo; Zhang, You-yun; Zhu, Yong-sheng

    2017-10-01

    Diesel engines, widely used in engineering, are very important for the running of equipments and their fault diagnosis have attracted much attention. In the past several decades, the image based fault diagnosis methods have provided efficient ways for the diesel engine fault diagnosis. By introducing the class information into the traditional non-negative matrix factorization (NMF), an improved NMF algorithm named as discriminative NMF (DNMF) was developed and a novel imaged based fault diagnosis method was proposed by the combination of the DNMF and the KNN classifier. Experiments performed on the fault diagnosis of diesel engine were used to validate the efficacy of the proposed method. It is shown that the fault conditions of diesel engine can be efficiently classified by the proposed method using the coefficient matrix obtained by DNMF. Compared with the original NMF (ONMF) and principle component analysis (PCA), the DNMF can represent the class information more efficiently because the class characters of basis matrices obtained by the DNMF are more visible than those in the basis matrices obtained by the ONMF and PCA.

  9. Submarine Construction (Unterseebootsbau)

    DTIC Science & Technology

    1972-08-01

    PIPE FOR THE SNORKEL EXHAUST MAST 11 AIR EXIT (GENERALLY TO MAIN AIR INDUCTION LINE) 12 EXHAUST GAS INLET FROM EXHAUST GAS LINE SIDE VIEW (MAST...Electric Engine 76 Diesel Engines 79 Air Intake and Gas Exhaust Systems for the Diesel Engines 79 Diesel Fuel and Pressurized Water System 82...Lines of a Submarine ■. 31 Figure 6 - Lines of a Submersible 31 Figure 7 - Twin- Screw Stern Configurations 34 Figure 8 - Single- Screw Stern

  10. Dynamics of Supercritical Flows

    DTIC Science & Technology

    2012-08-26

    to Supercritical Environment of Relevance to Rocket, Gas turbine , and Diesel Engines,” 37th AIAA Aerospace Science Meeting and Exhibit, AIAA...Visual Characteristics of a Round Jet into a Sub- to Supercritical Environment of Relevance to Rocket, Gas turbine , and Diesel Engines,” 37th AIAA...Relevance to Rocket, Gas turbine , and Diesel Engines,” 37th AIAA Aerospace Science Meeting and Exhibit, AIAA, Washington, DC, 11-14 Jan. 1999. 26Chehroudi

  11. Reduction of diesel engine exhaust noise in the petroleum mining industry. [by resonator type diffuser

    NASA Technical Reports Server (NTRS)

    Marinov, T.

    1974-01-01

    An important noise source in a drilling plant is Diesel engine exhaust. In order to reduce this noise, a reactive silencer of the derivative resonator type was proposed, calculated from the acoustic and design point of view and applied. As a result of applying such a silencer on the exhaust conduit of a Diesel engine the noise level dropped down to 18 db.

  12. Training Civil Engineering Enlisted Personnel Past, Present and Future

    DTIC Science & Technology

    1989-09-01

    engines, 90; diesel fuel injector systems, 60; exciters and alternators, 60; power plant installation, 60; power plant maintenance, 30; power centers, 30...ENGINEERING COURSES AND STUDENTS GRADUATED, MAY-JUNE 1946. Course Titles Weeks’ No. of Length Grads. Diesel Mechanic 8 58 Auto Equipment Mechanic 8 116...134 Power Shovel 105 Crawler Tractor 315 Miscellaneous and Well Driller 87 *Construction Technician 235 Crane Operator 66 * Diesel Mechanic 252

  13. 40 CFR 86.884-6 - Fuel specifications.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 19 2014-07-01 2014-07-01 false Fuel specifications. 86.884-6 Section 86.884-6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... New Diesel Heavy-Duty Engines; Smoke Exhaust Test Procedure § 86.884-6 Fuel specifications. The...

  14. Hydraulics.

    ERIC Educational Resources Information Center

    Decker, Robert L.

    Designed for use in courses where students are expected to become proficient in the area of hydraulics, including diesel engine mechanic programs, this curriculum guide is comprised of fourteen units of instruction. Unit titles include (1) Introduction, (2) Fundamentals of Hydraulics, (3) Reservoirs, (4) Lines, Fittings, and Couplers, (5) Seals,…

  15. Transformation toughened ceramics for the heavy duty diesel engine technology program

    NASA Technical Reports Server (NTRS)

    Musikant, S.; Feingold, E.; Rauch, H.; Samanta, S.

    1984-01-01

    The objective of this program is to develop an advanced high temperature oxide structural ceramic for application to the heavy duty diesel engine. The approach is to employ transformation toughening by additions of ZrO.5HfO.5O2 solid solution to the oxide ceramics, mullite (2Al2O3S2SiO2) and alumina (Al2O3). The study is planned for three phases, each 12 months in duration. This report covers Phase 1. During this period, processing techniques were developed to incorporate the ZrO.5HfO.5O2 solid solution in the matrices while retaining the necessary metastable tetragonal phase. Modulus of rupture and of elasticity, coefficient of thermal expansion, fracture toughness by indent technique and thermal diffusivity of representative specimens were measured. In Phase 2, the process will be improved to provide higher mechanical strength and to define the techniques for scale up to component size. In Phase 3, full scale component prototypes will be fabri-]cated.

  16. Transformation toughened ceramics for the heavy duty diesel engine technology program, phase 2

    NASA Technical Reports Server (NTRS)

    Musikant, S.; Samanta, S. C.; Architetto, P.; Feingold, E.

    1985-01-01

    The objective of this program is to develop an insulating structural ceramic for application in a heavy duty adiabatic diesel engine. The approach is to employ transformation toughening (TT) by additions of zirconia-hafnia solid solution (ZHSS). The feasibility of using ZHSS as a toughening agent in mullite and alumina has been demonstrated in Phase 1 of this work. Based on Phase 1 results, a decision was made to concentrate the Phase 2 effort on process optimization of the TT mullite. A strong factor in that decision was the low thermal conductivity and high thermal shock resistance of the mullite. Results of the Phase 2 effort indicate that optimum toughening of mullite by additions of ZHSS is difficult to achieve due to apparent sensitivity to morphology. The 48 ksi room temperature modulus-of-rupture (MOR) achieved in selected specimens is approximately 50% of the original strength target. The MOR deteriorated to 34 ksi at 800 C.

  17. Impact of oxygenated additives to diesel-biodiesel blends in the context of performance and emissions characteristics of a CI engine

    NASA Astrophysics Data System (ADS)

    Mahmudul, H. M.; Hagos, Ftwi Y.; Mamat, Rizalman; Abdullah, Abdul A.

    2016-11-01

    Butanol is receiving huge interest in the area of alternative fuel in the compression ignition (CI) engines. In this work, butanol is used as an oxygenated additive to diesel and biodiesel blend fuels to evaluate the performance and emission of CI engine. The commercially available pure diesel fuel (D100) and 80% commercially available diesel- biodiesel bled (5% biodiesel and 95% by volume) and 20% butanol (BU20) fuels were investigated to evaluate the effects of the fuel blends on the performance and exhaust emissions of a single cylinder diesel engine. The experiment was conducted at fixed load of 75% with the five engine speeds (from 1200-2400 rpm with an interval of 300 rpm). The engine performance parameters such as power, torque, fuel consumption and thermal efficiency and exhaust gas emissions such as nitrogen oxides, carbon monoxide, and exhaust gas temperature were analysed from the experimental data. The results shows that although butanol addition has caused a slight reduction in power and torque values (11.1% and 3.5%, respectively), the emission values of the engine were improved. With respect to the exhaust gas temperature, CO and NOx emissions, of BU20 is reported to have reduction by 17.7%, 20% and 3%, respectively than the B100. Therefore, butanol can be used as a fuel additive to diesel-biodiesel blends.

  18. Fundamentals of Diesel Engines.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    This student guide, one of a series of correspondence training courses designed to improve the job performance of members of the Marine Corps, deals with the fundamentals of diesel engine mechanics. Addressed in the three individual units of the course are the following topics: basic principles of diesel mechanics; principles, mechanics, and…

  19. Alternative Fuels Data Center: Dimethyl Ether

    Science.gov Websites

    Hydrocarbon Biofuels Dimethyl Ether Dimethyl ether (DME) is a synthetically produced alternative to diesel for use in specially designed compression ignition diesel engines. Under normal atmospheric conditions ether has several fuel properties that make it attractive for use in diesel engines. It has a very high

  20. ENVIRONMENTAL TECHNOLOGY VERIFICATION OF EMISSION CONTROLS FOR HEAVY-DUTY DIESEL ENGINES

    EPA Science Inventory

    While lower emissions limits that took effect in 2004 and reduced sulfur content in diesel fuels will reduce emissions from new heavy-duty engines, the existing diesel fleet, which pollutes at much higher levels, may still have a lifetime of 20 to 30 years. Fleet operators seekin...

Top