Science.gov

Sample records for diesel fuel sprays

  1. High Speed Imaging of Diesel Fuel Sprays

    NASA Astrophysics Data System (ADS)

    Jackson, Ja'kira; Bittle, Joshua

    2016-11-01

    Fuel sprays primarily serve as methods for fuel distribution, fuel/air mixing, and atomization. In this research, a constant pressure flow rig vessel is being tested at various pressures and temperatures using n-heptane. The experiment requires two imaging techniques: color Schlieren and Mie-scatter. Schlieren captures density gradients in a spray which includes both liquid and vapor phases while Mie-scatter is only sensitive to the liquid phase of the fuel spray. Essentially, studies are mainly focused on extracting the liquid boundary from the Schlieren to possibly eliminate the need for acquiring the Mie-Scatter technique. Four test conditions (combination of low and high pressure and temperatures) are used in the application to attempt to find the liquid boundary independent of the Mie-scatter technique. In this pursuit the following methods were used: a color threshold, a value threshold, and the time variation in color. All methods provided some indication of the liquid region but none were able to capture the full liquid boundary as obtained by the Mie-scatter results. Funding from NSF REU site Grant EEC 1358991 is greatly appreciated.

  2. High Resolution Numerical Simulations of Primary Atomization in Diesel Sprays with Single Component Reference Fuels

    DTIC Science & Technology

    2015-09-01

    ARL-RP-0549 ● SEP 2015 US Army Research Laboratory High Resolution Numerical Simulations of Primary Atomization in Diesel Sprays...0549 ● SEP 2015 US Army Research Laboratory High Resolution Numerical Simulations of Primary Atomization in Diesel Sprays with Single...AND SUBTITLE High Resolution Numerical Simulations of Primary Atomization in Diesel Sprays with Single Component Reference Fuels 5a. CONTRACT NUMBER

  3. Air/fuel ratio visualization in a diesel spray

    NASA Astrophysics Data System (ADS)

    Carabell, Kevin David

    1993-01-01

    To investigate some features of high pressure diesel spray ignition, we have applied a newly developed planar imaging system to a spray in an engine-fed combustion bomb. The bomb is designed to give flow characteristics similar to those in a direct injection diesel engine yet provide nearly unlimited optical access. A high pressure electronic unit injector system with on-line manually adjustable main and pilot injection features was used. The primary scalar of interest was the local air/fuel ratio, particularly near the spray plumes. To make this measurement quantitative, we have developed a calibration LIF technique. The development of this technique is the key contribution of this dissertation. The air/fuel ratio measurement was made using biacetyl as a seed in the air inlet to the engine. When probed by a tripled Nd:YAG laser the biacetyl fluoresces, with a signal proportional to the local biacetyl concentration. This feature of biacetyl enables the fluorescent signal to be used as as indicator of local fuel vapor concentration. The biacetyl partial pressure was carefully controlled, enabling estimates of the local concentration of air and the approximate local stoichiometry in the fuel spray. The results indicate that the image quality generated with this method is sufficient for generating air/fuel ratio contours. The processes during the ignition delay have a marked effect on ignition and the subsequent burn. These processes, vaporization and pre-flame kinetics, very much depend on the mixing of the air and fuel. This study has shown that poor mixing and over-mixing of the air and fuel will directly affect the type of ignition. An optimal mixing arrangement exists and depends on the swirl ratio in the engine, the number of holes in the fuel injector and the distribution of fuel into a pilot and main injection. If a short delay and a diffusion burn is desired, the best mixing parameters among those surveyed would be a high swirl ratio, a 4-hole nozzle and a

  4. The Effect of Fuel Injector Nozzle Configuration on JP-8 Sprays at Diesel Engine Conditions

    DTIC Science & Technology

    2014-10-01

    CFD study was conducted to compare modeling to experimental results. Fuel spray studies investigating liquid and vapor penetrations lengths can be...injectors tested. In addition, a 3D CFD study was conducted to compare modeling to experimental results. Fuel spray studies investigating liquid and...with six fuels including conventional (No. 2 Diesel, JP-8, Jet -A), alternative fuels, and a surrogate with the objective of assessing the performance

  5. Planar Laser-Induced Fluorescence fuel concentration measurements in isothermal Diesel sprays.

    PubMed

    Pastor, José; López, José; Juliá, J; Benajes, Jesús

    2002-04-08

    This paper presents a complete methodology to perform fuel concentration measurements of Diesel sprays in isothermal conditions using the Planar Laser-Induced Fluorescence (PLIF) technique. The natural fluorescence of a commercial Diesel fuel is used with an excitation wavelength of 355 nm. The correction and calibration procedures to perform accurate measurements are studied. These procedures include the study of the fluorescence characteristics of the fuel as well as the correction of the laser sheet non-homogeneities and the losses due to Mie scattering, absorption and autoabsorption. The results obtained are compared with theoretical models and other experimental techniques.

  6. Characterization of coal-water slurry fuel sprays from diesel engine injectors

    SciTech Connect

    Caton, J.A.; Kihm, K.D.

    1993-06-01

    Experiments were conducted to characterize coal-water slurry fuel sprays from diesel engine injectors. Since the combustion event is a strong function of the fuel spray, full characterization of the spray is a necessity for successful engine design and for modeling of the combustion process. Two experimental facilities were used at TAMU to study the injection of coal slurry fuels. The first experimental facility incorporates General Electric locomotive engine components (injection pump, fuel line, and nozzle) and a specially designed diaphragm to separate the abrasive coal slurry fuel from the moving parts of the pump. The second experimental facility is based on an accumulator injector from General Electric. Instrumentation includes instantaneous needle lift and fuel line pressure. A pressurized visualization chamber was used to provide a spray environment which simulated the engine gas density and permitted the use of spray diagnostic techniques. The study was divided into two phases: (1) overall characterization of the spray, and (2) detailed droplet size and size distribution characterization. In addition to this overall characterization of the spray, the second phase of this study characterized the details of the atomization quality.

  7. Investigation of spray dispersion and particulate formation in diesel fuel flames

    NASA Technical Reports Server (NTRS)

    Back, L. H.; Bankston, C. P.; Kwack, E. Y.; Bellan, J.; Harstad, K.

    1988-01-01

    An experimental study of electrostatical atomized and dispersed diesel fuel jets was conducted at various back pressures to 40 atm. A new electrostatic injection technique was utilized to generate continuous, stable fuel sprays at charge densities of 1.5 to 2.0 C/m3 of fluid at one atm, and about 1.0 C/m3 at 40 atm. Flowrates were varied from 0.5 to 2.5 ml/s and electric potentials to -18 kV. Visual observations showed that significant enhanced dispersion of charged fuel jets occurred at high back pressures compared to aerodynamic breakup and dispersion. The average drop size was about the same as the spray triode orifice diameter, and was between the Kelly theory and the Rayleigh limit. The ignition tests, done only at one atm, indicated stable combustion of the electrostatically dispersed fuel jets.

  8. Flame structure of wall-impinging diesel fuel sprays injected by group-hole nozzles

    SciTech Connect

    Gao, Jian; Moon, Seoksu; Nishida, Keiya; Matsumoto, Yuhei; Zhang, Yuyin

    2009-06-15

    This paper describes an investigation of the flame structure of wall-impinging diesel sprays injected by group-hole nozzles in a constant-volume combustion vessel at experimental conditions typical of a diesel engine. The particular emphasis was on the effect of the included angle between two orifices (0-15 deg. in current study) on the flame structure and combustion characteristics under various simulated engine load conditions. The laser absorption scattering (LAS) technique was applied to analyze the spray and mixture properties. Direct flame imaging and OH chemiluminescence imaging were utilized to quantify the ignition delay, flame geometrical parameters, and OH chemiluminescence intensity. The images show that the asymmetric flame structure emerges in wall-impinging group-hole nozzle sprays as larger included angle and higher engine load conditions are applied, which is consistent with the spray shape observed by LAS. Compared to the base nozzle, group-hole nozzles with large included angles yield higher overall OH chemiluminescence intensity, wider flame area, and greater proportion of high OH intensity, implying the better fuel/air mixing and improved combustion characteristics. The advantages of group-hole nozzle are more pronounced under high load conditions. Based on the results, the feasibility of group-hole nozzle for practical direct injection diesel engines is also discussed. It is concluded that the asymmetric flame structure of a group-hole nozzle spray is favorable to reduce soot formation over wide engine loads. However, the hole configuration of the group-hole nozzle should be carefully considered so as to achieve proper air utilization in the combustion chamber. Stoichiometric diesel combustion is another promising application of group-hole nozzle. (author)

  9. Imaging of Droplets and Vapor Distributions in a Diesel Fuel Spray by Means of a Laser Absorption Scattering Technique

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-Yin; Yoshizaki, Takuo; Nishida, Keiya

    2000-11-01

    The droplets and vapor distributions in a fuel spray were imaged by a dual-wavelength laser absorption scattering technique. 1,3-dimethylnaphthalene, which has physical properties similar to those of Diesel fuel, strongly absorbs the ultraviolet light near the fourth harmonic (266 nm) of a Nd:YAG laser but is nearly transparent to the visible light near the second harmonic (532 nm) of a Nd:YAG laser. Therefore, droplets and vapor distributions in a Diesel spray can be visualized by an imaging system that uses a Nd:YAG laser as the incident light and 1,3-dimethylnaphthalene as the test fuel. For a quantitative application consideration, the absorption coefficients of dimethylnapthalene vapor at different temperatures and pressures were examined with an optical spectrometer. The findings of this study suggest that this imaging technique has great promise for simultaneously obtaining quantitative information of droplet density and vapor concentration in Diesel fuel spray.

  10. Imaging of droplets and vapor distributions in a diesel fuel spray by means of a laser absorption-scattering technique.

    PubMed

    Zhang, Y Y; Yoshizaki, T; Nishida, K

    2000-11-20

    The droplets and vapor distributions in a fuel spray were imaged by a dual-wavelength laser absorption-scattering technique. 1,3-dimethylnaphthalene, which has physical properties similar to those of Diesel fuel, strongly absorbs the ultraviolet light near the fourth harmonic (266 nm) of a Nd:YAG laser but is nearly transparent to the visible light near the second harmonic (532 nm) of a Nd:YAG laser. Therefore, droplets and vapor distributions in a Diesel spray can be visualized by an imaging system that uses a Nd:YAG laser as the incident light and 1,3-dimethylnaphthalene as the test fuel. For a quantitative application consideration, the absorption coefficients of dimethylnapthalene vapor at different temperatures and pressures were examined with an optical spectrometer. The findings of this study suggest that this imaging technique has great promise for simultaneously obtaining quantitative information of droplet density and vapor concentration in Diesel fuel spray.

  11. Interior flow and near-nozzle spray development in a marine-engine diesel fuel injector

    NASA Astrophysics Data System (ADS)

    Hult, J.; Simmank, P.; Matlok, S.; Mayer, S.; Falgout, Z.; Linne, M.

    2016-04-01

    A consolidated effort at optically characterising flow patterns, in-nozzle cavitation, and near-nozzle jet structure of a marine diesel fuel injector is presented. A combination of several optical techniques was employed to fully transparent injector models, compound metal-glass and full metal injectors. They were all based on a common real-scale dual nozzle hole geometry for a marine two-stroke diesel engine. In a stationary flow rig, flow velocities in the sac-volume and nozzle holes were measured using PIV, and in-nozzle cavitation visualized using high-resolution shadowgraphs. The effect of varying cavitation number was studied and results compared to CFD predictions. In-nozzle cavitation and near-nozzle jet structure during transient operation were visualized simultaneously, using high-speed imaging in an atmospheric pressure spray rig. Near-nozzle spray formation was investigated using ballistic imaging. Finally, the injector geometry was tested on a full-scale marine diesel engine, where the dynamics of near-nozzle jet development was visualized using high-speed shadowgraphy. The range of studies focused on a single common geometry allows a comprehensive survey of phenomena ranging from first inception of cavitation under well-controlled flow conditions to fuel jet structure at real engine conditions.

  12. Effects of fuel cetane number on the structure of diesel spray combustion: An accelerated Eulerian stochastic fields method

    NASA Astrophysics Data System (ADS)

    Jangi, Mehdi; Lucchini, Tommaso; Gong, Cheng; Bai, Xue-Song

    2015-09-01

    An Eulerian stochastic fields (ESF) method accelerated with the chemistry coordinate mapping (CCM) approach for modelling spray combustion is formulated, and applied to model diesel combustion in a constant volume vessel. In ESF-CCM, the thermodynamic states of the discretised stochastic fields are mapped into a low-dimensional phase space. Integration of the chemical stiff ODEs is performed in the phase space and the results are mapped back to the physical domain. After validating the ESF-CCM, the method is used to investigate the effects of fuel cetane number on the structure of diesel spray combustion. It is shown that, depending of the fuel cetane number, liftoff length is varied, which can lead to a change in combustion mode from classical diesel spray combustion to fuel-lean premixed burned combustion. Spray combustion with a shorter liftoff length exhibits the characteristics of the classical conceptual diesel combustion model proposed by Dec in 1997 (http://dx.doi.org/10.4271/970873), whereas in a case with a lower cetane number the liftoff length is much larger and the spray combustion probably occurs in a fuel-lean-premixed mode of combustion. Nevertheless, the transport budget at the liftoff location shows that stabilisation at all cetane numbers is governed primarily by the auto-ignition process.

  13. Measurements in liquid fuel sprays

    NASA Technical Reports Server (NTRS)

    Chigier, N.

    1984-01-01

    Techniques for studying the events directly preceding combustion in the liquid fuel sprays are being used to provide information as a function of space and time on droplet size, shape, number density, position, angle of flight and velocity. Spray chambers were designed and constructed for: (1) air-assist liquid fuel research sprays; (2) high pressure and temperature chamber for pulsed diesel fuel sprays; and (3) coal-water slurry sprays. Recent results utilizing photography, cinematography, and calibration of the Malvern particle sizer are reported. Systems for simultaneous measurement of velocity and particle size distributions using laser Doppler anemometry interferometry and the application of holography in liquid fuel sprays are being calibrated.

  14. Synchronized droplet size measurements for Coal-Water-Slurry (CWS) diesel sprays of an electronically-controlled fuel injection system

    NASA Astrophysics Data System (ADS)

    Kihm, K. D.; Terracina, D. P.; Payne, S. E.; Caton, J. A.

    Experiments were completed to study intermittent coal-water slurry (CWS) fuel sprays injected from an electronically-controlled accumulator injector system. A laser diffraction particle analyzing (LDPA) technique was used to measure the spray diameters (Sauter mean diameter, SMD) assuming the Rosin-Rammler two parameter model. In order to ensure an accurate synchronization of the measurement with the intermittent sprays, a new synchronization technique was developed using the light extinction signal as a triggering source for the data taking initiation. This technique allowed measurement of SMD's near the spray tip where the light extinction was low and the data were free from the multiscattering bias. Coal-water slurry fuel with 50% coal loading in mass containing 5 (mu)m mass median diameter coal particulates was considered. Injection pressures ranging from 28 to 110 MPa, two different nozzle orifice diameters, 0.2 ad 0.4 mm, and four axial measurement locations from 60 to 120 mm from the nozzle orifice were studied. Measurements were made for pressurized (2.0 MPa in gauge) and for ambient chamber conditions. The spray SMD showed an increase with the distance of the axial measurement location and with the ambient gas density, and showed a decrease with increasing injection pressure. A correlation of the Sauter mean diameter with the injection conditions was determined. The results were also compared with previous SMD correlations that were available only for diesel fuel sprays.

  15. Synchronized droplet size measurements for coal-water-slurry (CWS) diesel sprays of an electronically-controlled fuel injection system

    SciTech Connect

    Kihm, K.D.; Terracina, D.P.; Payne, S.E.; Caton, J.A.

    1993-12-31

    Experiments were completed to study intermittent coal-water slurry (CWS) fuel sprays injected from an electronically-controlled accumulator injector system. A laser diffraction particle analyzing (LDPA) technique was used to measure the spray diameters (Sauter mean diameter, SMD) assuming the Rosin-Rammler two parameter model. In order to ensure an accurate synchronization of the measurement with the intermittent sprays, a new synchronization technique was developed using the light extinction signal as a triggering source for the data taking initiation. This technique allowed measurement of SMDs near the spray tip where the light extinction was low and the data were free from the multiscattering bias. Coal-water slurry fuel with 50% coal loading in mass containing 5 {mu}m mass median diameter coal particulates was considered. Injection pressures ranging from 28 to 110 MPa, two different nozzle orifice diameters, 0.2 ad 0.4 mm, and four axial measurement locations from 60 to 120 mm from the nozzle orifice were studied. Measurements were made for pressurized (2.0 MPa in gauge) and for ambient chamber conditions. The spray SMD showed an increase with the distance of the axial measurement location and with the ambient gas density, and showed a decrease with increasing injection pressure. A correlation of the Sauter mean diameter with the injection conditions was determined. The results were also compared with previous SMD correlations that were available only for diesel fuel sprays.

  16. Reformulated diesel fuel

    DOEpatents

    McAdams, Hiramie T [Carrollton, IL; Crawford, Robert W [Tucson, AZ; Hadder, Gerald R [Oak Ridge, TN; McNutt, Barry D [Arlington, VA

    2006-03-28

    Reformulated diesel fuels for automotive diesel engines which meet the requirements of ASTM 975-02 and provide significantly reduced emissions of nitrogen oxides (NO.sub.x) and particulate matter (PM) relative to commercially available diesel fuels.

  17. Comparision on dynamic behavior of diesel spray and rapeseed oil spray in diesel engine

    NASA Astrophysics Data System (ADS)

    Sapit, Azwan; Azahari Razali, Mohd; Faisal Hushim, Mohd; Jaat, Norrizam; Nizam Mohammad, Akmal; Khalid, Amir

    2017-04-01

    Fuel-air mixing is important process in diesel combustion. It significantly affects the combustion and emission of diesel engine. Biomass fuel has high viscosity and high distillation temperature and may negatively affect the fuel-air mixing process. Thus, study on the spray development and atomization of this type of fuel is important. This study investigates the atomization characteristics and droplet dynamic behaviors of diesel engine spray fuelled by rapeseed oil (RO) and comparison to diesel fuel (GO). Optical observation of RO spray was carried out using shadowgraph photography technique. Single nano-spark photography technique was used to study the characteristics of the spray while dual nano-spark shadowgraph technique was used to study the spray droplet behavior. Using in-house image processing algorithm, the images were processed and the boundary condition of each spray was also studied. The results show that RO has very poor atomization due to the high viscosity nature of the fuel when compared to GO. This is in agreement with the results from spray droplet dynamic behavior studies that shows due to the high viscosity, the RO spray droplets are large in size and travel downward, with very little influence of entrainment effect due to its large kinematic energy.

  18. Low emissions diesel fuel

    DOEpatents

    Compere, A.L.; Griffith, W.L.; Dorsey, G.F.; West, B.H.

    1998-05-05

    A method and matter of composition for controlling NO{sub x} emissions from existing diesel engines. The method is achieved by adding a small amount of material to the diesel fuel to decrease the amount of NO{sub x} produced during combustion. Specifically, small amounts, less than about 1%, of urea or a triazine compound (methylol melamines) are added to diesel fuel. Because urea and triazine compounds are generally insoluble in diesel fuel, microemulsion technology is used to suspend or dissolve the urea or triazine compound in the diesel fuel. A typical fuel formulation includes 5% t-butyl alcohol, 4.5% water, 0.5% urea or triazine compound, 9% oleic acid, and 1% ethanolamine. The subject invention provides improved emissions in heavy diesel engines without the need for major modifications.

  19. Low emissions diesel fuel

    DOEpatents

    Compere, Alicia L.; Griffith, William L.; Dorsey, George F.; West, Brian H.

    1998-01-01

    A method and matter of composition for controlling NO.sub.x emissions from existing diesel engines. The method is achieved by adding a small amount of material to the diesel fuel to decrease the amount of NO.sub.x produced during combustion. Specifically, small amounts, less than about 1%, of urea or a triazine compound (methylol melamines) are added to diesel fuel. Because urea and triazine compounds are generally insoluble in diesel fuel, microemulsion technology is used to suspend or dissolve the urea or triazine compound in the diesel fuel. A typical fuel formulation includes 5% t-butyl alcohol, 4.5% water, 0.5% urea or triazine compound, 9% oleic acid, and 1% ethanolamine. The subject invention provides improved emissions in heavy diesel engines without the need for major modifications.

  20. Transportation fuels: Desulfurizing diesel

    NASA Astrophysics Data System (ADS)

    Lamonier, Carole

    2017-02-01

    Transportation fuels such as diesel contain organosulfur molecules that, when combusted, form sulfur oxides that are toxic and poison vehicles' catalytic convertors. Now, a method is demonstrated that can reduce the sulfur concentration of diesel fuel to very low levels at low temperatures and pressures.

  1. 47. Diesel generator room, diesel motor generator, diesel fuel day ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    47. Diesel generator room, diesel motor generator, diesel fuel day tank at right rear, looking northwest - Ellsworth Air Force Base, Delta Flight, Launch Control Facility, County Road CS23A, North of Exit 127, Interior, Jackson County, SD

  2. Diesel fuel additive

    SciTech Connect

    Carr, R.P.; Corpuz, M.Y.

    1987-04-28

    This patent describes an improved cold weather diesel fuel treatment of the type comprising the ingredients % by weight: wax crystal modifier 10 to 50%; sludge dispersant and stabilizer 1 to 10%; hydrocarbon solvent 15 to 40%; oil-soluble water solvent 15 to 40%. The ingredients comprise a low molecular weight organic compound containing from 1 to 3 structural units having formula: -CH/sub 2/CH/sub 2/O-. The improved cold weather diesel fuel treatment is capable of dispersing or dissolving water contained in diesel fuels.

  3. DIESEL FUEL LUBRICATION

    SciTech Connect

    Qu, Jun

    2012-01-01

    The diesel fuel injector and pump systems contain many sliding interfaces that rely for lubrication upon the fuels. The combination of the poor fuel lubricity and extremely tight geometric clearance between the plunger and bore makes the diesel fuel injector vulnerable to scuffing damage that severely limits the engine life. In order to meet the upcoming stricter diesel emission regulations and higher engine efficiency requirements, further fuel refinements that will result in even lower fuel lubricity due to the removal of essential lubricating compounds, more stringent operation conditions, and tighter geometric clearances are needed. These are expected to increase the scuffing and wear vulnerability of the diesel fuel injection and pump systems. In this chapter, two approaches are discussed to address this issue: (1) increasing fuel lubricity by introducing effective lubricity additives or alternative fuels, such as biodiesel, and (2) improving the fuel injector scuffing-resistance by using advanced materials and/or surface engineering processes. The developing status of the fuel modification approach is reviewed to cover topics including fuel lubricity origins, lubricity improvers, alternative fuels, and standard fuel lubricity tests. The discussion of the materials approach is focused on the methodology development for detection of the onset of scuffing and evaluation of the material scuffing characteristics.

  4. Diesel Mechanics: Fuel Systems.

    ERIC Educational Resources Information Center

    Foutes, William

    This publication is the third in a series of three texts for a diesel mechanics curriculum. Its purpose is to teach the concepts related to fuel injection systems in a diesel trade. The text contains eight units. Each instructional unit includes some or all of these basic components: unit and specific (performance) objectives, suggested activities…

  5. Feasibility Demonstration of Exciplex Fluorescence Measurements in Evaporating Laminar Sprays of Diesel Fuel

    DTIC Science & Technology

    2011-05-15

    Next, we introduce PDPA measurements of the droplet size and velocity distributions to correlate them with the spectroscopic ones. Ultimately we...reflection from a dye cell used for intensity calibration of the laser beam. A TSI Phase Doppler Particle Analyzer ( PDPA ) is used to measure the...temperature temperature. PDPA Measurements Figure 6 shows histograms of the droplet diameter at different fuel flow rates. The droplet diameter

  6. Dynamic characteristics of pulsed supersonic fuel sprays

    NASA Astrophysics Data System (ADS)

    Pianthong, K.; Matthujak, A.; Takayama, K.; Milton, B. E.; Behnia, M.

    2008-06-01

    This paper describes the dynamic characteristics of pulsed, supersonic liquid fuel sprays or jets injected into ambient air. Simple, single hole nozzles were employed with the nozzle sac geometries being varied. Different fuel types, diesel fuel, bio-diesel, kerosene, and gasoline were used to determine the effects of fuel properties on the spray characteristics. A vertical two-stage light gas gun was employed as a projectile launcher to provide a high velocity impact to produce the liquid jet. The injection pressure was around 0.88-1.24 GPa in all cases. The pulsed, supersonic fuel sprays were visualized by using a high-speed video camera and shadowgraph method. The spray tip penetration and velocity attenuation and other characteristics were examined and are described here. An instantaneous spray tip velocity of 1,542 m/s (Mach number 4.52) was obtained. However, this spray tip velocity can be sustained for only a very short period (a few microseconds). It then attenuates very quickly. The phenomenon of multiple high frequency spray pulses generated by a single shot impact and the changed in the angle of the shock structure during the spray flight, which had already been observed in previous studies, is again noted. Multiple shock waves from the conical nozzle spray were also clearly captured.

  7. Fuel for diesel engine

    SciTech Connect

    Mori, M.

    1983-09-20

    A fuel is disclosed for a diesel engine which comprises a mixture of (A) an alcohol, (B) gas oil and (C) castor oil, wherein the contents of the respective components satisfy requirements represented by the following formulae: 0% by volume < A 80% by volume, 10% by volume B < 50% by volume, and 10% by volume C < 50% by volume.

  8. Estimation of equivalence ratio distribution in diesel spray using a computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Suzuki, Yasumasa; Tsujimura, Taku; Kusaka, Jin

    2014-08-01

    It is important to understand the mechanism of mixing and atomization of the diesel spray. In addition, the computational prediction of mixing behavior and internal structure of a diesel spray is expected to promote the further understanding about a diesel spray and development of the diesel engine including devices for fuel injection. In this study, we predicted the formation of diesel fuel spray with 3D-CFD code and validated the application by comparing experimental results of the fuel spray behavior and the equivalence ratio visualized by Layleigh-scatter imaging under some ambient, injection and fuel conditions. Using the applicable constants of KH-RT model, we can predict the liquid length spray on a quantitative level. under various fuel injection, ambient and fuel conditions. On the other hand, the change of the vapor penetration and the fuel mass fraction and equivalence ratio distribution with change of fuel injection and ambient conditions quantitatively. The 3D-CFD code used in this study predicts the spray cone angle and entrainment of ambient gas are predicted excessively, therefore there is the possibility of the improvement in the prediction accuracy by the refinement of fuel droplets breakup and evaporation model and the quantitative prediction of spray cone angle.

  9. 'Vegetable' substitutes for diesel fuel

    SciTech Connect

    Not Available

    1981-07-22

    Research programs in the US, Brazil, South Africa and the Philippines on efforts to find a vegetable oil substitute for diesel fuel are reported. A narrowing price gap with diesel fuel and a favourable energy balance improve the prospects for such fuels. Much of the current work is centered on blends, rather than the use of the pure oil.

  10. Fuel injection system for diesel engines

    SciTech Connect

    Holmer, H.E.

    1981-06-16

    A fuel injection system is disclosed for direct injection diesel engines with a depression in the tops of the pistons. A first injection pump has a regulator and accompanying first injector for each cylinder , the injectors being disposed to spray the fuel in a zone around the center axis of the respective piston depression. A second injection pump has a regulator and accompanying second injector for each cylinder, the second injectors being disposed to inject fuel obliquely from the side into the respective piston depression in a direction counter to the rotation of the intake air before the fuel from the first injectors is injected.

  11. Study on diesel-DME spray using open-source CFD (OpenFoam)

    NASA Astrophysics Data System (ADS)

    Fajar, Rizqon; Sugiarto, Bambang; Darsono, Dody

    2012-06-01

    In this work, a numerical study has been performed to evaluate the fuel spray of diesel, dimethyl ether (DME) and its mixture using CFD code OpenFoam. This study uses a general method, based on simulating fuel sprays injected into a constant volume vessel. Calculations results are presented as profiles of diameter (MD) and temperature of fuel droplets as function of fuel type. The results have shown that the diameter of fuel droplet decreased as the fraction of DME in the mixture is higher. Fuel properties affected the atomization and evaporation process. The SMD increased with viscosity and the evaporation rate of fuel spray increased with fuel volatility.

  12. High Fidelity Simulation of Primary Atomization in Diesel Engine Sprays

    NASA Astrophysics Data System (ADS)

    Ivey, Christopher; Bravo, Luis; Kim, Dokyun

    2014-11-01

    A high-fidelity numerical simulation of jet breakup and spray formation from a complex diesel fuel injector at ambient conditions has been performed. A full understanding of the primary atomization process in fuel injection of diesel has not been achieved for several reasons including the difficulties accessing the optically dense region. Due to the recent advances in numerical methods and computing resources, high fidelity simulations of atomizing flows are becoming available to provide new insights of the process. In the present study, an unstructured un-split Volume-of-Fluid (VoF) method coupled to a stochastic Lagrangian spray model is employed to simulate the atomization process. A common rail fuel injector is simulated by using a nozzle geometry available through the Engine Combustion Network. The working conditions correspond to a single orifice (90 μm) JP-8 fueled injector operating at an injection pressure of 90 bar, ambient condition at 29 bar, 300 K filled with 100% nitrogen with Rel = 16,071, Wel = 75,334 setting the spray in the full atomization mode. The experimental dataset from Army Research Lab is used for validation in terms of spray global parameters and local droplet distributions. The quantitative comparison will be presented and discussed. Supported by Oak Ridge Associated Universities and the Army Research Laboratory.

  13. Reformulated diesel fuel and method

    DOEpatents

    McAdams, Hiramie T [Carrollton, IL; Crawford, Robert W [Tucson, AZ; Hadder, Gerald R [Oak Ridge, TN; McNutt, Barry D [Arlington, VA

    2006-08-22

    A method for mathematically identifying at least one diesel fuel suitable for combustion in an automotive diesel engine with significantly reduced emissions and producible from known petroleum blendstocks using known refining processes, including the use of cetane additives (ignition improvers) and oxygenated compounds.

  14. Liquid sprays and flow studies in the direct-injection diesel engine under motored conditions

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung Lee; Carpenter, Mark H.; Ramos, Juan I.; Schock, Harold J.; Stegeman, James D.

    1988-01-01

    A two dimensional, implicit finite difference method of the control volume variety, a two equation model of turbulence, and a discrete droplet model were used to study the flow field, turbulence levels, fuel penetration, vaporization, and mixing in diesel engine environments. The model was also used to study the effects of engine speed, injection angle, spray cone angle, droplet distribution, and intake swirl angle on the flow field, spray penetration and vaporization, and turbulence in motored two-stroke diesel engines. It is shown that there are optimum conditions for injection, which depend on droplet distribution, swirl, spray cone angle, and injection angle. The optimum conditions result in good spray penetration and vaporization and in good fuel mixing. The calculation presented clearly indicates that internal combustion engine models can be used to assess, at least qualitatively, the effects of injection characteristics and engine operating conditions on the flow field and on the spray penetration and vaporization in diesel engines.

  15. Measurement of biodiesel blend and conventional diesel spray structure using x-ray radiography.

    SciTech Connect

    Kastengren, A. L.; Powell, C. F.; Wang, Y. J.; IM, K. S.; Wang, J.

    2009-11-01

    The near-nozzle structure of several nonevaporating biodiesel-blend sprays has been studied using X-ray radiography. Radiography allows quantitative measurements of the fuel distribution in sprays to be made with high temporal and spatial resolution. Measurements have been made at different values of injection pressure, ambient density, and with two different nozzle geometries to understand the influences of these parameters on the spray structure of the biodiesel blend. These measurements have been compared with corresponding measurements of Viscor, a diesel calibration fluid, to demonstrate the fuel effects on the spray structure. Generally, the biodiesel-blend spray has a similar structure to the spray of Viscor. For the nonhydroground nozzle used in this study, the biodiesel-blend spray has a slightly slower penetration into the ambient gas than the Viscor spray. The cone angle of the biodiesel-blend spray is generally smaller than that of the Viscor spray, indicating that the biodiesel-blend spray is denser than the Viscor spray. For the hydroground nozzle, both fuels produce sprays with initially wide cone angles that transition to narrow sprays during the steady-state portion of the injection event. These variations in cone angle with time occur later for the biodiesel-blend spray than for the Viscor spray, indicating that the dynamics of the injector needle as it opens are somewhat different for the two fuels.

  16. High Fidelity Simulation of Atomization in Diesel Engine Sprays

    DTIC Science & Technology

    2015-09-01

    ARL-RP-0555 ● SEP 2015 US Army Research Laboratory High Fidelity Simulation of Atomization in Diesel Engine Sprays by L Bravo...ARL-RP-0555 ● SEP 2015 US Army Research Laboratory High Fidelity Simulation of Atomization in Diesel Engine Sprays by L...Simulation of Atomization in Diesel Engine Sprays 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) L Bravo, CB Ivey, D

  17. Effects of physical properties of fuels on diesel injection

    SciTech Connect

    Henein, N.A.; Jawad, B.; Gulari, E. )

    1990-07-01

    This paper reports on the physical properties of the fuel, such as density, viscosity, surface tension, and bulk modulus of elasticity that affect many aspects of the diesel injection process. The effects of these fuel properties on the fuel pressure in the high-pressure line, rate of injection, leakage, spray penetration, and droplet size distribution were determined experimentally. The mechanism of spray development was investigated by injecting the fuel into a high-pressure chamber. A pulsed Malvern drop-size analyzer, based on Fraunhofer diffraction, was utilized to determine droplet size ranges for various fuels.

  18. The study on injection parameters of selected alternative fuels used in diesel engines

    NASA Astrophysics Data System (ADS)

    Balawender, K.; Kuszewski, H.; Lejda, K.; Lew, K.

    2016-09-01

    The paper presents selected results concerning fuel charging and spraying process for selected alternative fuels, including regular diesel fuel, rape oil, FAME, blends of these fuels in various proportions, and blends of rape oil with diesel fuel. Examination of the process included the fuel charge measurements. To this end, a set-up for examination of Common Rail-type injection systems was used constructed on the basis of Bosch EPS-815 test bench, from which the high-pressure pump drive system was adopted. For tests concerning the spraying process, a visualisation chamber with constant volume was utilised. The fuel spray development was registered with the use of VisioScope (AVL).

  19. Diesel fuels from vegetable oils

    SciTech Connect

    Schwab, A.W.; Bagby, M.O.; Freedman, B.

    1986-03-01

    Vegetable oils have heat contents approximately 90% that of diesel fuel and are potential alternate fuel candidates. A major obstacle deterring their use in the direct-injection diesel engine is their inherent high viscosities which are nearly 10 times that of diesel fuel. Solution to the viscosity problem has been approached in three ways: 1) microemulsification, 2) pyrolysis, and 3) transesterification. Microemulsification with short chain alcohols such as methanol and ethanol yields fuels that are clear, thermodynamically stable liquid systems with viscosities near the ASTM specified range for number2 diesel fuel. These micellar systems may be formulated ionically or nonionically. The alcohols are attractive from an economic as well as a renewable resource viewpoint. Methanol has an economic advantage over ethanol, and it can be derived from a large variety of base stocks. These include biomass, municipal waste, natural gas being flared at refineries and from coal. Pyrolysis of vegetable oils is another approach to lowering their viscosity. Soybean and safflower oils were thermally decomposed in both air and nitrogen to obtain fuels for the diesel engine. Using standard ASTM distillation conditions, yields of pyrolysis products were about 75%. GS-MS analysis of the distillates showed the presence of alkanes, alkenes, aromatics, and carboxylic acids with carbon numbers ranging from 4 to more than 20. Fuel properties of the thermal decomposition products were substantially improved as evaluated by lower viscosities and higher cetane numbers compared to the unpyrrolyzed vegetable oils. Simple esters from transesterification of vegetable oils perform well in engine tests, and thus show good promise as an alternative or emergency fuel for diesel engines.

  20. Gasoline and diesel fuel additive

    SciTech Connect

    Cox, C.P.

    1981-10-13

    A gasoline and diesel fuel additive is composed of a mixture of alcohol, toluene, and hydrogen peroxide. The preferred ratio of these substances is 16/8/1. Also for the purpose of quality control, when the additive is to be used with diesel fuel, a few drops of diesel fuel and several drops of glycerin are added to the additive mixture to determine if the proper mixture and blending has been achieved. The process of making this additive includes vigorous agitation of the substances as they are blended together in the order of a predetermined amount of toluene being added to a predetermined quantity of alcohol, and then a chosen amount of hydrogen peroxide being added thereafter. Followed by the vigorous blending of these substances, and then immediate putting of the mixture into suitable containers, and tightly sealing the containers to prevent deterioration of the additive mixture.

  1. Vegetable oils: Precombustion characteristics and performance as diesel fuels

    SciTech Connect

    Bagby, M.O.

    1986-03-01

    Vegetable oils show technical promise as alternative fuels for diesel engines and have good potential as emergency fuels. Realistically, vegetable oils cause a number of problems when used in direct-injection diesel engines, generally attributable to inefficient combustion. At least partially responsible for poor combustion of neat vegetable oils are their high viscosity and non-volatility. To improve combustion several somewhat empirical approaches involving both chemical and physical modifications have been investigated by endurance tests in a variety of engines. Using the EMA 200 h engine screening test, several fuels show technical promise. These include methyl, ethyl, and butyl esters; high-oleic oils:diesel blend (1:3); diesel:soybean oil:butanol:cetane improver (33:33:33:1); and microemulsion fuels (diesel:soybean oil:190 proff ethanol:butanol, 50:25:5:20) and (soybean oil:methanol:2-octanol:cetane improver, 53:13:33:1). Using a pressure vessel, fuel injection system, and high speed motion picture camera, fuel injection characteristics of vegetable oils, e.g., soybean, sunflower, cottonseed, and peanut, have been observed in a quiescent nitrogen atmosphere at 480/sup 0/C and 4.1MPa. Their injection and atomization characteristics are markedly different from those of petroleum derived diesel fuels. Heating the vegetable oils to lower their viscosities increased spray penetration rate, reduced spray cone angles, and resulted in spray characteristics resembling those of diesel fuel. Significant chemical changes occurred following injection. Samples collected at about 400 microseconds after the injection event consisted of appreciable quantities of C/sub 4/-C/sub 16/ hydrocarbons, and free carboxyl groups were present.

  2. Heavy-Duty Diesel Fuel Analysis

    EPA Pesticide Factsheets

    EPA's heavy-duty diesel fuel analysis program sought to quantify the hydrocarbon, NOx, and PM emission effects of diesel fuel parameters (such as cetane number, aromatics content, and fuel density) on various nonroad and highway heavy-duty diesel engines.

  3. Development and application of a high-speed planar laser-induced fluorescence imaging system to evaluate liquid and vapor phases of sprays from a multi-hole diesel fuel injector

    NASA Astrophysics Data System (ADS)

    Parrish, S. E.; Zink, R. J.

    2013-02-01

    A high-speed imaging system capable of acquiring elastic scattering images and planar laser-induced fluorescence (PLIF) images in a near-simultaneous fashion has been developed. Acquiring both elastic scattering and PLIF images enables the liquid phase to be discriminated from the vapor phase. High-speed imaging allows the temporal evolution of flow structures to be evaluated. Images of sprays from a multi-hole diesel fuel injector operating under engine-like conditions were acquired. The vapor phase images reveal intricate fluid dynamic structures that exhibit a high degree of variability, indicative of a turbulent gas jet.

  4. Effects of fuel variables on diesel emissions

    SciTech Connect

    Baines, T.M.; Somers, J.H.; Hellman, K.H.

    1982-08-01

    Recent data obtained by EPA on identification and quantification of different emissions (i.e., characterization) from a variety of diesel engines is summarized. Extensive work has been done comparing emissions from some light duty diesel and gasoline passenger cars. The work on the diesel vehicles was expanded to include tests with five different diesel fuels to determine how fuel composition affects emissions. This work showed that use of a poorer quality fuel frequently made emissions worse. The investigation of fuel composition continued with a project in which specific fuel parameters were systematically varied to determine their effect on emissions. EPA is presently testing a variety of fuels derived from coal and oil shale to determine their effects on emissions. EPA has also tested a heavy duty Volvo diesel bus engine designed to run on methanol and diesel fuel, each injected through its own injection system. The use of the dual fuel resulted in a reduction in particlates and NO/sub x/ but an increase in HC and CO compared to a baseline Volvo diesel engine running on pure diesel fuel. Finally, some Ames bioassay tests have been performed on samples from the diesel passenger cars operated on various fuels and blends. An increase in Ames test response (mutagenicity) was seen when the higher aromatic blend was used and also when a commercial cetane improver was used. Samples from the Volvo diesel bus engine fueled with methanol and diesel fuel showed that use of a catalyst increased the Ames response.

  5. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: ENVIROFUELS DIESEL FUEL CATALYZER FUEL ADDITIVE

    EPA Science Inventory

    EPA's Environmental Technology Verification Program has tested EnviroFuels diesel fuel additive, called the Diesel Fuel Catalyzer. EnviroFuels has stated that heavy-duty on and off road diesel engines are the intended market for the catalyzer. Preliminary tests conducted indicate...

  6. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: ENVIROFUELS DIESEL FUEL CATALYZER FUEL ADDITIVE

    EPA Science Inventory

    EPA's Environmental Technology Verification Program has tested EnviroFuels diesel fuel additive, called the Diesel Fuel Catalyzer. EnviroFuels has stated that heavy-duty on and off road diesel engines are the intended market for the catalyzer. Preliminary tests conducted indicate...

  7. Diesel engine combustion of sunflower oil fuels

    SciTech Connect

    Zubik, J.; Sorenson, S.C.; Goering, C.E.

    1984-09-01

    The performance, combustion, and exhaust emissions of diesel fuel, a blend of 25% sunflower oil in diesel fuel, and sunflower oil methyl ester have been compared. All fuels performed satisfactorily in a direct injection diesel engine, with the fuels derived from sunflower oil giving somewhat higher cylinder pressures and rates of pressure rise due to a higher percentage of 'premixed' burning than the diesel fuel. General performance and emissions characteristics of the two fuels were comparable, with the oil based fuels giving lower smoke readings. 15 references.

  8. Industrial fermentation of renewable diesel fuels.

    PubMed

    Westfall, Patrick J; Gardner, Timothy S

    2011-06-01

    In commodity chemicals, cost drives everything. A working class family of four drives up to the gas pumps and faces a choice of a renewable diesel or petroleum diesel. Renewable diesel costs $0.50 more per gallon. Which fuel do they pick? Petroleum diesel will be the winner every time, unless the renewable fuel can achieve cost and performance parity with petrol. Nascent producers of advanced biofuels, including Amyris, LS9, Neste and Solazyme, aim to deliver renewable diesel fuels that not only meet the cost challenge, but also exceed the storage, transport, engine performance and emissions properties of petroleum diesel.

  9. Fuel property effects on fuel/air mixing in an experimental diesel engine

    SciTech Connect

    Browne, K.R.; Patridge, I.M.; Greeves, G.

    1986-01-01

    Fuels of widely varying properties are studied by injection of a single and well defined spray into an experimental diesel engine. Three optical techniques were developed to visualise liquid fuel, fuel vapour, flame, soot and individual droplets and their associated vapour trails. Liquid core length measurements are presented for diesel fuel, toluene, ethanol and sunflower oil. Computer model predictions show that an increase of the fuel mid-boiling point by 40/sup 0/C gives a similar effect on liquid core length to an increase of 0.03mm in the nozzle hole diameter.

  10. Optimal feature extraction for segmentation of Diesel spray images.

    PubMed

    Payri, Francisco; Pastor, José V; Palomares, Alberto; Juliá, J Enrique

    2004-04-01

    A one-dimensional simplification, based on optimal feature extraction, of the algorithm based on the likelihood-ratio test method (LRT) for segmentation in colored Diesel spray images is presented. If the pixel values of the Diesel spray and the combustion images are represented in RGB space, in most cases they are distributed in an area with a given so-called privileged direction. It is demonstrated that this direction permits optimal feature extraction for one-dimensional segmentation in the Diesel spray images, and some of its advantages compared with more-conventional one-dimensional simplification methods, including considerably reduced computational cost while accuracy is maintained within more than reasonable limits, are presented. The method has been successfully applied to images of Diesel sprays injected at room temperature as well as to images of sprays with evaporation and combustion. It has proved to be valid for several cameras and experimental arrangements.

  11. Diesel fuel injection system

    SciTech Connect

    Schechter, M.M.; Simko, A.O.

    1986-04-22

    A fuel injection pump is described of the multiple plunger spill port type for an automotive type internal combustion engine, the pump including at least four axially spaced engine camshaft driven pump plungers grouped in pairs and sequentially and in succession moved in one direction through a fuel pumping stroke and oppositely through a fuel intake stroke. A fuel pressurization/supply chamber is contiquous to the end of each plunger for pressurization of the fuel therein or supply of fuel thereto from a supply passage upon coordinate movement of the plunger, fill/spill passage means connected to a single fuel return spill port and in parallel flow relationship to each of the plunger bores as a function of the position of the plungers, each plunger having a pair of internal passages connected at all times to its chamber and alternately alignable with the supply or fill/spill passage means as a function of the position of the plunger. A fuel discharge passage is operatively connecting each of the chambers to an individual engine cylinder, a single spill port control valve movable to block or permit the spill of fuel through the spill port to a return line to control the pressurization of fuel in all of the fuel chambers and associated discharge passages, a single solenoid connected to the spill control valve for moving it to block or unblock the spill port, and a single shuttle valve operatively associated with all of the fill/spill passage means and spill port reciprocably movable between positions to sequentially connect the plunger chambers one at a time in succession to the spill port during the pumping pressurization stroke of its plunger for the injection of fuel to an individual cylinder while the other chambers are in various stages of being refilled with fuel and preparing for pressurization upon successive actuation of the plungers by the camshaft.

  12. Photomicrographic Studies of Fuel Sprays

    NASA Technical Reports Server (NTRS)

    Lee, Dana W; Spencer, Robert C

    1934-01-01

    A large number of photomicrographs of fuel sprays were taken for the purpose of studying the spray structure and the process of spray formation. They were taken at magnifying powers of 2.5, 3.25, and 10, using a spark discharge of very short duration for illumination. Several types and sizes of nozzles were investigated, different liquids were used, and a wide range of injection pressures was employed. The sprays were photographed as they were injected into a glass-walled chamber in which the air density was varied from 14 atmospheres to 0.0013 atmosphere.

  13. Biodiesel and Other Renewable Diesel Fuels

    SciTech Connect

    Not Available

    2006-11-01

    Present federal tax incentives apply to certain types of biomass-derived diesel fuels, which in energy policy and tax laws are described either as renewable diesel or biodiesel. To understand the distinctions between these diesel types it is necessary to understand the technologies used to produce them and the properties of the resulting products. This fact sheet contains definitions of renewable and biodiesel and discusses the processes used to convert biomass to diesel fuel and the properties of biodiesel and renewable diesel fuels.

  14. Gaseous simulation of diesel-type sprays in a motored engine

    SciTech Connect

    Arcoumanis, C.; Whitelaw, J.H.; Wong, K.Y.

    1989-01-01

    The effect of fuel injection on the flow and the spray/swirl and spray/piston interactions in direct-injection diesel engines have been investigated by simulating diesel sprays with gaseous jet(s) injected through centrally located, single- and multi-hole nozzles into the quiescent and swirling air of a motored engine running at 200rpm and incorporating a flat piston and a re-entrant piston-bowl. The axisymmetric velocity field with and without 'fuel' injection was characterised by laser velocimetry near TDC of compression in terms of spatially-resolved ensemble-averaged axial and swirl velocities, the 'fuel' concentration field was quantified by laser Rayleigh scattering and the two-dimensional flow was visualised by gated still photography using hollow microballoons as light scatterers.

  15. Investigation of particulate formation during diesel spray combustion: CARS for diesel spray combustion. Final technical report

    SciTech Connect

    Boedeker, L.R.

    1991-09-01

    An experimental and analytical research program has been carried out whose objectives were to investigate strategies for using coherent anti-Stokes Raman spectroscopy (CARS) laser diagnostic techniques for detecting the vapor phase of liquid fuel sprays, determining fuel-air ratio and the degree of fuel pyrolysis. The extent to which CARS can provide valid vapor phase fuel measurements in the presence of droplets within the CARS resolution volume will determine its ultimate utility for engine measurements. Hence, the priority in this program was maintained toward investigating possible adverse droplet effects on CARS measurements. Droplets in a relevant size range (25-- 50 microns) were generated for convenience with a spray nozzle. Tests were conducted in a spray chamber at 1 atm pressure under near- saturated fuel vapor pressure conditions, with and without a toluene fuel spray turned on. For reasons of safety an inert gas, CO{sub 2}, was used to simulate O{sub 2}. It was necessary to provide reliable vapor phase CARS reference spectra for these spray studies in order to insure that spurious liquid effects were not present and known vapor phase spectra were attained. To provide these reference spectra the capability was developed of isolating, in a CARS test cell, the vapor phase of fuels that are normally liquids at room temperature and pressure. The cell could be evacuated with a vacuum pump and heated uniformly up to about 100 C. Hence, a capability was established to measure nonresonant and resonant vapor phase CARS features of normally liquid fuels over wide pressure and temperature range, needed for evaluating CARS fuel-air analysis strategies.

  16. Comparison on Piston Bowl Shape Effect to Diesel Spray Development

    NASA Astrophysics Data System (ADS)

    Sapit, Azwan; Azahari Razali, Mohd; Nizam Mohammed, Akmal; Faisal Hushim, Mohd; Sadikin, Azmahani Binti; Norrizam Mohmad Ja'at, Md; Khalid, Amir

    2017-08-01

    Piston bowl geometry plays an important role on the combustion characteristics of diesel engine. There are various design of piston bowl in which each utilize the shape geometry to obtaining the specific required combustion characteristics. This objective of this study is to compare the effect of certain piston bowl shapes, namely Toroidal and Flat Bottom to diesel spray development. Simulation were done using ANSYS FLUENT 16.1 software Computing Fluid Dynamics (CFD). The simulation was performed on different injection pressure of 40 MPa and 100 MPa, with the ambient temperature in the combustion chamber that holding the piston is at 500K and 900K. Results showed that if the pressure and ambient temperature increases, the spray body expand outward from the spray center axis with wider spray cone angle. In addition, the geometry shape of the piston bowl influences the spray velocity distribution and the spray propagation path, indirectly effect the spray area and mass fraction distribution.

  17. Diesel fuel additive

    SciTech Connect

    Jenkins, R.H. Jr.; Sweeney, W.M.

    1984-02-07

    The invention relates to a novel compound comprising the reaction product of a benzophenonetetracarboxylic dianhydride or a benzophenonetetracarboxylic acid, in particular, 3,3'4,4'-benzophenonetetracarboxylic dianhydride, and a polyol, and the use of this novel compound as a stabilizer for middle distillate fuels extended with non-petroleum distillates.

  18. Detailed fuel spray analysis techniques

    NASA Technical Reports Server (NTRS)

    Mularz, E. J.; Bosque, M. A.; Humenik, F. M.

    1983-01-01

    Detailed fuel spray analyses are a necessary input to the analytical modeling of the complex mixing and combustion processes which occur in advanced combustor systems. It is anticipated that by controlling fuel-air reaction conditions, combustor temperatures can be better controlled, leading to improved combustion system durability. Thus, a research program is underway to demonstrate the capability to measure liquid droplet size, velocity, and number density throughout a fuel spray and to utilize this measurement technique in laboratory benchmark experiments. The research activities from two contracts and one grant are described with results to data. The experiment to characterize fuel sprays is also described. These experiments and data should be useful for application to and validation of turbulent flow modeling to improve the design systems of future advanced technology engines.

  19. 30 CFR 75.1906 - Transport of diesel fuel.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Transport of diesel fuel. 75.1906 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1906 Transport of diesel fuel. (a) Diesel fuel shall be transported only by diesel fuel transportation units or in...

  20. A constant volume diesel spray combustion facility and the corresponding experimental diagnostics

    NASA Astrophysics Data System (ADS)

    Labs, J. E.; Filley, J.; Jepsen, E.; Parker, T. E.

    2005-03-01

    A facility was built to examine the diesel spray/combustion process. The facility centers around a constant volume vessel, which consists of a visible and infrared optically accessible cold-wall, heated-interior pressure vessel coupled to an injection system. The combustion vessel is capable of operation at 50atm and 1000K (before injection), was used to simulate preinjection diesel in-cylinder conditions, and was coupled to a repeatable (for each fuel type), single shot, high pressure, metering fuel injection system. A number of experimental diagnostics have been applied to the facility and will be briefly discussed and examples of typical results offered. These diagnostics include: extractive post-combustion gas concentration experiments, droplet sizing measurements, and emission/absorption temperature measurements. Results from this facility capture the critical aspects of diesel spray combustion but do not include the change in pressure associated with heat release in a small volume and volume expansion due to piston motion.

  1. LES of Diesel and Gasoline Sprays with Validation against X-Ray Radiography Data

    SciTech Connect

    Wang, Zihan; Swantek, Andrew; Scarcelli, Riccardo; Duke, Daniel; Kastengren, Alan; Powell, Christopher F.; Som, Sibendu; Reese, Ron; Freeman, Kevin; Zhu, York

    2015-04-14

    This paper focuses on detailed numerical simulations of direct injection diesel and gasoline sprays from production grade, multi-hole injectors. In a dual-fuel engine the direct injection of both the fuels can facilitate appropriate mixture preparation prior to ignition and combustion. Diesel and gasoline sprays were simulated using high-fidelity Large Eddy Simulations (LES) with the dynamic structure sub-grid scale model. Numerical predictions of liquid penetration, fuel density distribution as well as transverse integrated mass (TIM) at different axial locations versus time were compared against x-ray radiography data obtained from Argonne National Laboratory. A necessary, but often overlooked, criterion of grid-convergence is ensured by using Adaptive Mesh Refinement (AMR) for both diesel and gasoline. Nine different realizations were performed and the effects of random seeds on spray behavior were investigated. Additional parametric studies under different ambient and injection conditions were performed to study their influence on global and local flow structures for gasoline sprays. It is concluded that LES can generally well capture all experimental trends and comes close to matching the x-ray data. Discrepancies between experimental and simulation results can be correlated to uncertainties in boundary and initial conditions such as rate of injection and spray and turbulent dispersion sub-model constants.

  2. 30 CFR 75.1906 - Transport of diesel fuel.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Transport of diesel fuel. 75.1906 Section 75... diesel fuel. (a) Diesel fuel shall be transported only by diesel fuel transportation units or in safety... fuel storage facilities. (c) Safety cans that leak must be promptly removed from the mine. (d)...

  3. Development and validation of spray models for investigating diesel engine combustion and emissions

    NASA Astrophysics Data System (ADS)

    Som, Sibendu

    Diesel engines intrinsically generate NOx and particulate matter which need to be reduced significantly in order to comply with the increasingly stringent regulations worldwide. This motivates the diesel engine manufacturers to gain fundamental understanding of the spray and combustion processes so as to optimize these processes and reduce engine emissions. Strategies being investigated to reduce engine's raw emissions include advancements in fuel injection systems, efficient nozzle orifice design, injection and combustion control strategies, exhaust gas recirculation, use of alternative fuels such as biodiesel etc. This thesis explores several of these approaches (such as nozzle orifice design, injection control strategy, and biodiesel use) by performing computer modeling of diesel engine processes. Fuel atomization characteristics are known to have a significant effect on the combustion and emission processes in diesel engines. Primary fuel atomization is induced by aerodynamics in the near nozzle region as well as cavitation and turbulence from the injector nozzle. The breakup models that are currently used in diesel engine simulations generally consider aerodynamically induced breakup using the Kelvin-Helmholtz (KH) instability model, but do not account for inner nozzle flow effects. An improved primary breakup (KH-ACT) model incorporating cavitation and turbulence effects along with aerodynamically induced breakup is developed and incorporated in the computational fluid dynamics code CONVERGE. The spray simulations using KH-ACT model are "quasi-dynamically" coupled with inner nozzle flow (using FLUENT) computations. This presents a novel tool to capture the influence of inner nozzle flow effects such as cavitation and turbulence on spray, combustion, and emission processes. Extensive validation is performed against the non-evaporating spray data from Argonne National Laboratory. Performance of the KH and KH-ACT models is compared against the evaporating and

  4. 30 CFR 75.1901 - Diesel fuel requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Diesel fuel requirements. 75.1901 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1901 Diesel fuel requirements. (a) Diesel-powered equipment shall be used underground only with a diesel fuel having a...

  5. 30 CFR 75.1901 - Diesel fuel requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Diesel fuel requirements. 75.1901 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1901 Diesel fuel requirements. (a) Diesel-powered equipment shall be used underground only with a diesel fuel having a sulfur...

  6. 30 CFR 75.1901 - Diesel fuel requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Diesel fuel requirements. 75.1901 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1901 Diesel fuel requirements. (a) Diesel-powered equipment shall be used underground only with a diesel fuel having a sulfur...

  7. Fabrication of small-orifice fuel injectors for diesel engines.

    SciTech Connect

    Woodford, J. B.; Fenske, G. R.

    2005-04-08

    Diesel fuel injector nozzles with spray hole diameters of 50-75 {micro}m have been fabricated via electroless nickel plating of conventionally made nozzles. Thick layers of nickel are deposited onto the orifice interior surfaces, reducing the diameter from {approx}200 {micro}m to the target diameter. The nickel plate is hard, smooth, and adherent, and covers the orifice interior surfaces uniformly.

  8. 40 CFR 79.33 - Motor vehicle diesel fuel.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Motor vehicle diesel fuel. 79.33... (CONTINUED) REGISTRATION OF FUELS AND FUEL ADDITIVES Designation of Fuels and Additives § 79.33 Motor vehicle diesel fuel. (a) The following fuels commonly or commercially known or sold as motor vehicle diesel fuel...

  9. 40 CFR 79.33 - Motor vehicle diesel fuel.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Motor vehicle diesel fuel. 79.33... (CONTINUED) REGISTRATION OF FUELS AND FUEL ADDITIVES Designation of Fuels and Additives § 79.33 Motor vehicle diesel fuel. (a) The following fuels commonly or commercially known or sold as motor vehicle diesel fuel...

  10. 40 CFR 80.521 - What are the standards and identification requirements for diesel fuel additives?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... consumer in diesel motor vehicles or nonroad diesel engines. ... identification requirements for diesel fuel additives? 80.521 Section 80.521 Protection of Environment... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel...

  11. 40 CFR 80.521 - What are the standards and identification requirements for diesel fuel additives?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... consumer in diesel motor vehicles or nonroad diesel engines. ... identification requirements for diesel fuel additives? 80.521 Section 80.521 Protection of Environment... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel...

  12. 40 CFR 80.521 - What are the standards and identification requirements for diesel fuel additives?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... consumer in diesel motor vehicles or nonroad diesel engines. ... identification requirements for diesel fuel additives? 80.521 Section 80.521 Protection of Environment... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel...

  13. 40 CFR 80.521 - What are the standards and identification requirements for diesel fuel additives?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... consumer in diesel motor vehicles or nonroad diesel engines. ... identification requirements for diesel fuel additives? 80.521 Section 80.521 Protection of Environment... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel...

  14. 40 CFR 80.521 - What are the standards and identification requirements for diesel fuel additives?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... consumer in diesel motor vehicles or nonroad diesel engines. ... identification requirements for diesel fuel additives? 80.521 Section 80.521 Protection of Environment... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel...

  15. Natural gas fueling of diesel engines

    SciTech Connect

    1996-11-01

    The focus of work performed by University of British Columbia researchers was on high-pressure (late cycle) injection of NG ignited by a pilot diesel-liquid injection(diesel/gas combustion). This was compared to the case of 100% liquid diesel (baseline diesel) fueling at the same load and speed. In typical direct-injected and conventionally fueled diesel engines, fuel is injected a few degrees before the end of the compression stroke into 750--900 K air in which it vaporizes, mixed with air, and auto ignites less than 2 ms after injection begins. The objectives of the researchers` work were to investigate the ignition delay and combustion duration of diesel/gas combustion by observing diesel and diesel/gas ignition sites and flame structure; determining ignition delay and combustion duration with pilot-diesel and natural gas injections; determining whether the pilot liquid flame is substantially influenced by the gas injection; and considering whether pilot-diesel/gas combustion is dominated by premixed or diffusion combustion.

  16. Fuel Surrogate Physical Property Effects on Direct Injection Spray and Ignition Behavior

    DTIC Science & Technology

    2015-09-01

    emissions, and spray characteristics to the properties of alternative diesel fuels, such as dimethyl ether ( DME ), biodiesel, and jet fuel, which are... kinetic energy flow rate from the fuel injection (Ėkinetic,injection) as follows: fuel fuelU ρ 1 ∝ (Eq. 5) fuelfuelm ρ∝ (Eq. 6) ( ) fuel...fuelfuelinjectionkinetic UmE ρ 12 , ∝∝  (Eq. 7) 15 UNCLASSIFIED UNCLASSIFIED As indicated by Equation 7, the kinetic energy introduced by the fuel

  17. Quantitative characterization of diesel sprays using digital imaging techniques

    NASA Astrophysics Data System (ADS)

    Shao, J.; Yan, Y.; Greeves, G.; Smith, S.

    2003-07-01

    This paper presents the application of digital imaging and image processing techniques for the quantitative characterization of diesel sprays. An optically accessible, constant volume chamber was configured to allow direct photographic imaging of diesel sprays, which were generated from a six-hole nozzle in a non-evaporating and pressurized environment. A high-resolution CCD camera and a flash light source were used to capture the images of the sprays. Dedicated image processing software has been developed to quantify a set of macroscopic, characteristic parameters of the sprays including tip penetration, near-and far-field angles. The spray parameters produced using this software are compared with those obtained using manual methods. The results obtained under typical spray conditions demonstrate that the software is capable of producing more accurate, consistent and efficient results than the manual methods. An application of the imaging processing software to the characterization of diesel sprays for a valve covered orifice nozzle is also presented and discussed.

  18. 40 CFR 79.33 - Motor vehicle diesel fuel.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Motor vehicle diesel fuel. 79.33... (CONTINUED) REGISTRATION OF FUELS AND FUEL ADDITIVES Designation of Fuels and Additives § 79.33 Motor vehicle diesel fuel. (a) The following fuels commonly or commercially known or sold as motor vehicle diesel...

  19. 40 CFR 79.33 - Motor vehicle diesel fuel.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Motor vehicle diesel fuel. 79.33... (CONTINUED) REGISTRATION OF FUELS AND FUEL ADDITIVES Designation of Fuels and Additives § 79.33 Motor vehicle diesel fuel. (a) The following fuels commonly or commercially known or sold as motor vehicle diesel...

  20. 40 CFR 79.33 - Motor vehicle diesel fuel.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Motor vehicle diesel fuel. 79.33... (CONTINUED) REGISTRATION OF FUELS AND FUEL ADDITIVES Designation of Fuels and Additives § 79.33 Motor vehicle diesel fuel. (a) The following fuels commonly or commercially known or sold as motor vehicle diesel...

  1. Oxidation and Gum Formation in Diesel Fuels.

    DTIC Science & Technology

    2014-09-26

    AD A157 41@ OX<IDATION AND GUM FORMATION IN DIESEL FUELS(U) SRI i/i INTERNATIONAL MENLO PARK CA CHEMISTRY LAB F R MAYO 0MAY 85 ARO-2i65 2-EG DRA29-84...REPORT & PERIOD COVERED Interim Technical No. 2 oxidation and Gum Formation in Diesel Fuels 9/10/84 to 4/30/85 7. AUTHOR(s) S OTATO RNrNME0 Frank R. Mayo...oxidation and gum and deposit formation from n-dodecage, tetralin’, 2-ethylnaphthalene, and diesel fuels at 430, 600 100 0, and 130 C and discusses their

  2. 40 CFR 80.602 - What records must be kept by entities in the NRLM diesel fuel, ECA marine fuel, and diesel fuel...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... in the NRLM diesel fuel, ECA marine fuel, and diesel fuel additive production, importation, and...; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Recordkeeping and Reporting Requirements § 80.602 What records must be kept by entities in the NRLM diesel fuel, ECA marine fuel, and...

  3. Utilization of alternative fuels in diesel engines

    NASA Technical Reports Server (NTRS)

    Lestz, S. A.

    1984-01-01

    Performance and emission data are collected for various candidate alternate fuels and compare these data to that for a certified petroleum based number two Diesel fuel oil. Results for methanol, ethanol, four vegetable oils, two shale derived oils, and two coal derived oils are reported. Alcohol fumigation does not appear to be a practical method for utilizing low combustion quality fuels in a Diesel engine. Alcohol fumigation enhances the bioactivity of the emitted exhaust particles. While it is possible to inject many synthetic fuels using the engine stock injection system, wholly acceptable performance is only obtained from a fuel whose specifications closely approach those of a finished petroleum based Diesel oil. This is illustrated by the contrast between the poor performance of the unupgraded coal derived fuel blends and the very good performance of the fully refined shale derived fuel.

  4. The effect of nozzle diameter, injection pressure and ambient temperature on spray characteristics in diesel engine

    NASA Astrophysics Data System (ADS)

    Rhaodah Andsaler, Adiba; Khalid, Amir; Sharifhatul Adila Abdullah, Nor; Sapit, Azwan; Jaat, Norrizam

    2017-04-01

    Mixture formation of the ignition process is a key element in the diesel combustion as it influences the combustion process and exhaust emission. Aim of this study is to elucidate the effects of nozzle diameter, injection pressure and ambient temperature to the formation of spray. This study investigated diesel formation spray using Computational Fluid Dynamics. Multiphase volume of fluid (VOF) behaviour in the chamber are determined by means of transient simulation, Eulerian of two phases is used for implementation of mixing fuel and air. The detail behaviour of spray droplet diameter, spray penetration and spray breakup length was visualised using the ANSYS 16.1. This simulation was done in different nozzle diameter 0.12 mm and 0.2 mm performed at the ambient temperature 500 K and 700 K with different injection pressure 40 MPa, 70 MPa and 140 MPa. Results show that high pressure influence droplet diameter become smaller and the penetration length longer with the high injection pressure apply. Smaller nozzle diameter gives a shorter length of the breakup. It is necessary for nozzle diameter and ambient temperature condition to improve the formation of spray. High injection pressure is most effective in improvement of formation spray under higher ambient temperature and smaller nozzle diameter.

  5. 40 CFR 80.554 - What compliance options are available to NRLM diesel fuel small refiners?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Small Refiner Hardship... volume of locomotive and marine diesel fuel produced. (2) The volume of NRLM diesel fuel that may...

  6. Ignition of Fuel Sprays.

    DTIC Science & Technology

    1986-06-01

    bidisperse distribution, k = 2. For a continuous size distribution such as Rosin - Rammler distribution [15], k will be infinite and the summation in Eq...with do = 50 microns. In Figure 2, the ignition time delays are plotted versus the overall equivalence ratios for decane fuel. Note that for the...ignition-delay plots in Figures 1-4, we could have plotted ignition energies, but the conclusions would be the same. 15.0 ~~~Q( ,) .._ 10.0 A - do - 100

  7. Diesel injector carbonization by three alternative fuels

    SciTech Connect

    Goodrum, J.W.; Patel, V.C.; McClendon, R.W.

    1996-05-01

    Three alternative diesel fuels were screened by analysis of fuel injector tip deposits. The test engines were operated on the Peterson (torque) test cycle; the average carbon deposit volume on an injector tip was measured by a computer vision method. Relative coke deposit quantity was obtained by area analysis of injector tip images. Repetitive image areas varied less than 1%. Coke deposit areas for repetitive fuel tests also varied less than 1%. Injector coking tendencies of tested fuels decreased in the following order: peanut oil, no. 2 diesel, tricaprylin, and tributyrin/no. 2 diesel blend. The observed dependence of the relative coke quantity on fuel type was consistent with the results from a photographic technique used previously for fuel screening. 10 refs., 2 figs., 2 tabs.

  8. Setting up a PDPA system for measurements in a Diesel spray

    NASA Astrophysics Data System (ADS)

    Araneo, L.; Soare, V.; Payri, R.; Shakal, J.

    2006-07-01

    A PDPA system was set up, optimised and used to measure the time resolved characteristics of the droplets inside a spray produced by a common-rail diesel fuel injection system. Some preliminary tests are performed with gas flows to optimise the optical set-up. Parametric studies are performed to gain an understanding of the particle density limits of the system, and their dependence on PDPA system parameters. Then the diesel spray produced by a single-hole injector is measured, with the fuel pressure ranging from 500 to 1300 bar, gas density in the test chamber ranging from ambient conditions to 40 kg/m3. Fuel and gas temperature were 25 °C. Beam waist size is reduced to the minimum value allowed by the optical stand-off of the spray enclosure. Receiver lens focal length is similarly reduced. Receiver slit width, which is found to have a dramatic effect on the detection of droplets during the injection period, was tested in the range from 100um to 25um. Tests performed with two different slit heights are tested, respectively 1mm and 50 µm, show that this parameter has minimal effect on performance. PMT voltage (gain) is held to a moderately low value between 400 and 500 volt and the laser power between 400 and 800 mW in the green line. Optimum burst threshold is found to obtain the best quality data regardless of background level, which varies greatly in high-density pulsed sprays.

  9. Diesel spray interaction with highly porous structures for supporting of liquid distribution in space and its vaporization

    NASA Astrophysics Data System (ADS)

    Weclas, M.; Cypris, J.; Maksoud, T. M. A.

    2012-05-01

    If a free high velocity jet (Diesel spray) propagating in space outwards of the nozzle exit collides (impinges onto) with highly porous structure (PM) the results of such an interaction is characterized by significant radial spreading of the spray, reduced axial penetration length, significantly increase spray surface area, reduced propagating velocity after interaction with PM and enhanced vaporization if the porous structure is hot. Due to those effects a very quick spray distribution in space is observed. This effect can, for example, be used for mixture homogenization for a clean combustion process. The rapid radial spreading of the spray by interaction with a porous structure is a result of multi-jet splitting. To some extent, Diesel jet interaction with a three-dimensional porous structure could be simulated by jet interaction with small cylindrical obstacles simulating wall junctions of a real porous medium. Based on the principles of spray interaction with porous structure there are two different cases to be considered: 1-porous medium in the form of thin ring positioned around the fuel nozzle (called distribution nozzle); 2-porous medium in the form of three-dimensional volumetric reactor. In the case of the distribution nozzle the target is to distribute fuel in space outside the porous ring and to enhance the vaporization process. In the case of combustion reactor the spray interacts with a number of wall junctions inside the porous structure and the main target is to homogeneously distribute the spray in PM volume, to evaporate the fuel and to mix with combustion air. The jets leaving diesel nozzle very early interact with porous ring resulting in a shining-like fuel distribution in space: for a cold ring a multi-jet splitting is responsible for observed fuel distribution in space; for a hot porous ring a superposition of fuel distribution and fuel vaporization must be considered.

  10. Coal-water slurry spray characteristics of a positive displacement fuel injection system

    SciTech Connect

    Seshadri, A.K.; Caton, J.A.; Kihm, K.D.

    1992-12-31

    Experiments have been completed to characterized coal-water slurry sprays from a modified positive displacement fuel injection system of a diesel engine. The injection system includes an injection jerk pump driven by an electric motor, a specially designed diaphragm to separate the abrasive coal from the pump, and a single-hole fuel nozzle. The sprays were injected into a pressurized chamber equipped with windows. High speed movies and instantaneous fuel line pressures were obtained. For injection pressures of order 30 MPa or higher, the sprays were similar for coal-water slurry, diesel fuel and water. The time until the center core of the spray broke-up (break-up time) was determined from both the movies and from a model using the fuel line pressures. Results from these two independent procedures were in good agreement. For the base conditions, the break-up time was 0.58 and 0.50 ms for coal-water slurry and diesel fuel, respectively. The break-up times increased with increasing nozzle orifice size and with decreasing chamber density. The break-up time was not a function of coal loading for coal loadings up to 53%. Cone angles of the sprays were dependent on the operating conditions and fluid, as well as on the time and location of the measurement. For one set of cases studied, the time-averaged cone angle was 15.9{degree} and 16.3{degree} for coal-water slurry and diesel fuel, respectively.

  11. 46 CFR 169.615 - Diesel fuel systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Diesel fuel systems. 169.615 Section 169.615 Shipping... Machinery and Electrical Fuel Systems § 169.615 Diesel fuel systems. (a) Except as provided in paragraph (b) each diesel fuel system must meet the requirements of § 56.50-75 of this chapter. (b) Each vessel of...

  12. 46 CFR 169.615 - Diesel fuel systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Diesel fuel systems. 169.615 Section 169.615 Shipping... Machinery and Electrical Fuel Systems § 169.615 Diesel fuel systems. (a) Except as provided in paragraph (b) each diesel fuel system must meet the requirements of § 56.50-75 of this chapter. (b) Each vessel of...

  13. 30 CFR 75.1905-1 - Diesel fuel piping systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Diesel fuel piping systems. 75.1905-1 Section... Diesel fuel piping systems. (a) Diesel fuel piping systems from the surface must be designed and operated... spillage of fuel and that activates an alarm system. (b) All piping, valves and fittings must be—...

  14. 46 CFR 169.615 - Diesel fuel systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Diesel fuel systems. 169.615 Section 169.615 Shipping... Machinery and Electrical Fuel Systems § 169.615 Diesel fuel systems. (a) Except as provided in paragraph (b) each diesel fuel system must meet the requirements of § 56.50-75 of this chapter. (b) Each vessel of...

  15. 46 CFR 169.615 - Diesel fuel systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Diesel fuel systems. 169.615 Section 169.615 Shipping... Machinery and Electrical Fuel Systems § 169.615 Diesel fuel systems. (a) Except as provided in paragraph (b) each diesel fuel system must meet the requirements of § 56.50-75 of this chapter. (b) Each vessel of...

  16. Peanut, soybean and cottonseed oil as diesel fuels

    SciTech Connect

    Mazed, M.A.; Summers, J.D.; Batchelder, D.G.

    1985-09-01

    Two single cylinder diesel engines burning three vegetable oils, and their blends with diesel fuel, were evaluated and compared to engines burning a reference diesel fuel (Phillips No. 2). Tests were conducted determining power output, fuel consumption, thermal efficiency and exhaust smoke. Using the three vegetable oils and their blends with No. 2 diesel fuel, maximum changes of 5%, 14%, 10%, and 40% were observed in power, fuel consumption by mass, thermal efficiency, and exhaust smoke, respectively. 41 references.

  17. Combustion of liquid fuels in diesel engine

    NASA Technical Reports Server (NTRS)

    Alt, Otto

    1924-01-01

    Hitherto, definite specifications have always been made for fuel oils and they have been classified as more or less good or non-utilizable. The present aim, however, is to build Diesel engines capable of using even the poorest liquid fuels and especially the waste products of the oil industry, without special chemical or physical preparation.

  18. Peanut oil as an emergency diesel fuel

    SciTech Connect

    Goodrum, J.W.

    1983-06-01

    Two elements of an emergency fuel system are discussed. A CeCoCo mechanical oil expeller's efficiency is related to temperature, moisture, and pressure conditions. Durability test on 20:80 and 80:20 peanut oil: diesel blends show injector coking and effects on exhaust temperature, specific fuel, and crankcase oil.

  19. Used sunflower oil as an alternative fuel for diesel engines

    SciTech Connect

    Cigizoglu, K.B.; Oezaktas, T.; Karaosmanoglu, F.

    1997-07-01

    Used sunflower oil was blended with grade No. 2-D diesel fuel at a ratio of 20/80 (v/v). The fuel blend was tested in a diesel engine with a precombustion chamber at speeds between 1,200 and 2,100 rpm. The fuel blend and the diesel fuel were rated according to standard test methods. It was found that for short-term use the fuel blend has characteristics similar to those of the baseline diesel fuel and that it displayed less smoke emission than the diesel fuel.

  20. Ethanol-diesel fuel blends -- a review.

    PubMed

    Hansen, Alan C; Zhang, Qin; Lyne, Peter W L

    2005-02-01

    Ethanol is an attractive alternative fuel because it is a renewable bio-based resource and it is oxygenated, thereby providing the potential to reduce particulate emissions in compression-ignition engines. In this review the properties and specifications of ethanol blended with diesel fuel are discussed. Special emphasis is placed on the factors critical to the potential commercial use of these blends. These factors include blend properties such as stability, viscosity and lubricity, safety and materials compatibility. The effect of the fuel on engine performance, durability and emissions is also considered. The formulation of additives to correct certain key properties and maintain blend stability is suggested as a critical factor in ensuring fuel compatibility with engines. However, maintaining vehicle safety with these blends may entail fuel tank modifications. Further work is required in specifying acceptable fuel characteristics, confirming the long-term effects on engine durability, and ensuring safety in handling and storing ethanol-diesel blends.

  1. The droplet group microexplosions in water-in-oil emulsion sprays and their effects on diesel engine combustion

    SciTech Connect

    Sheng, H.Z.; Chen, L.; Zhang, Z.P.; Wu, C.K.; An, C.; Cheng, C.Q.

    1994-12-31

    To clarify the combustion mechanism of water-in-diesel fuel emulsion sprays and to evaluate the possible benefit of emulsions in practical usage, combustion bomb experiments, dynamic engine tests, and computer simulation were carried out, and some useful conclusions have been reached. The droplet group (lump-fashioned) microexplosions in water-in-diesel fuel emulsion sprays on an eddy-size scale during the atomization, evaporation, and combustion processes in a high-pressure, high-temperature bomb were observed with a multipulsed, off-axis, image-plane, ruby laser holocamera and a high-speed camera. The explosions eject droplet fragments from the spray region to several millimeters away, improving the fuel-air mixing process and speeding up the flame propagation. A no-water layer formed by a Hill vortex was also observed in emulsion droplets. The ambient temperature has the most important influence on the occurrence and violence of the microexplosion. Road-load-simulation engine tests were carried out on a dynamic engine test bed. The experimental results show that emulsion fuels have no significant influence on fuel consumption and reduce engine torque if no adjustment is made for the injection system, but that smoke emission is much improved when emulsion fuel is used. The combustion characteristics and the rate of heat release are also analyzed to reveal the difference between emulsion and diesel fuel. The relationships between the optimum water percentages and fuel consumption under various operating conditions were analyzed by numerical combustion modeling.

  2. Experiments on the Distribution of Fuel in Fuel Sprays

    NASA Technical Reports Server (NTRS)

    Lee, Dana W

    1933-01-01

    The distribution of fuel in sprays for compression-ignition engines was investigated by taking high-speed spark photographs of fuel sprays reproduced under a wide variety of conditions, and also by injecting them against pieces of plasticine. A photographic study was made of sprays injected into evacuated chambers, into the atmosphere, into compressed air, and into transparent liquids. Pairs of identical sprays were injected counter to each other and their behavior analyzed. Small high velocity air jets were directed normally to the axes of fuel sprays, with the result that the envelope of spray which usually obscures the core was blown aside, leaving the core exposed on one side. The results showed that the distribution of the fuel within the sprays was very uneven.

  3. Shock tube studies of thermal radiation of diesel-spray combustion under a range of spray conditions

    NASA Astrophysics Data System (ADS)

    Tsuboi, T.; Kurihara, Y.; Takasaki, M.; Katoh, R.; Ishii, K.

    2007-05-01

    A tailored interface shock tube and an over-tailored interface shock tube were used to measure the thermal energy radiated during diesel-spray combustion of light oil, α-methylnaphthalene and cetane by changing the injection pressure. The ignition delay of methanol and the thermal radiation were also measured. Experiments were performed in a steel shock tube with a 7 m low-pressure section filled with air and a 6 m high-pressure section. Pre-compressed fuel was injected through a throttle nozzle into air behind a reflected shock wave. Monochromatic emissive power and the power emitted across all infrared wavelengths were measured with IR-detectors set along the central axis of the tube. Time-dependent radii where soot particles radiated were also determined, and the results were as follows. For diesel spray combustion with high injection pressures (from 10 to 80 MPa), the thermal radiation energy of light oil per injection increased with injection pressure from 10 to 30 MPa. The energy was about 2% of the heat of combustion of light oil at P inj = about 30 MPa. At injection pressure above 30 MPa the thermal radiation decreased with increasing injection pressure. This profile agreed well with the combustion duration, the flame length, the maximum amount of soot in the flame, the time-integrated soot volume and the time-integrated flame volume. The ignition delay of light oil was observed to decrease monotonically with increasing fuel injection pressure. For diesel spray combustion of methanol, the thermal radiation including that due to the gas phase was 1% of the combustion heat at maximum, and usually lower than 1%. The thermal radiation due to soot was lower than 0.05% of the combustion heat. The ignition delays were larger (about 50%) than those of light oil. However, these differences were within experimental error.

  4. 7 CFR 3201.13 - Diesel fuel additives.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Diesel fuel additives. 3201.13 Section 3201.13... Designated Items § 3201.13 Diesel fuel additives. (a) Definition. (1) Any substance, other than one composed solely of carbon and/or hydrogen, that is intentionally added to diesel fuel (including any added to...

  5. 7 CFR 3201.13 - Diesel fuel additives.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Diesel fuel additives. 3201.13 Section 3201.13... Designated Items § 3201.13 Diesel fuel additives. (a) Definition. (1) Any substance, other than one composed solely of carbon and/or hydrogen, that is intentionally added to diesel fuel (including any added to...

  6. 7 CFR 2902.13 - Diesel fuel additives.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Diesel fuel additives. 2902.13 Section 2902.13... Items § 2902.13 Diesel fuel additives. (a) Definition. (1) Any substance, other than one composed solely of carbon and/or hydrogen, that is intentionally added to diesel fuel (including any added to a...

  7. 40 CFR 69.51 - Motor vehicle diesel fuel.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the sulfur standard of 40 CFR 80.29(a)(1), the dye provisions of 40 CFR 80.29(a)(3) and (b) and the motor vehicle diesel fuel standards and dye provisions under 40 CFR 80.520 and associated requirements... highway diesel fuel and red dye requirements applicable to non-highway diesel fuel only if it is used...

  8. 46 CFR 169.627 - Compartments containing diesel fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Compartments containing diesel fuel tanks. 169.627... SCHOOL VESSELS Machinery and Electrical Ventilation § 169.627 Compartments containing diesel fuel tanks. Unless they are adequately ventilated, enclosed compartments or spaces containing diesel fuel tanks and...

  9. Isoprenoid based alternative diesel fuel

    DOEpatents

    Lee, Taek Soon; Peralta-Yahya, Pamela; Keasling, Jay D.

    2015-08-18

    Fuel compositions are provided comprising a hydrogenation product of a monocyclic sesquiterpene (e.g., hydrogenated bisabolene) and a fuel additive. Methods of making and using the fuel compositions are also disclosed. ##STR00001##

  10. IMPACT OF DME-DIESEL FUEL BLEND PROPERTIES ON DIESEL FUEL INJECTION SYSTEMS

    SciTech Connect

    Elana M. Chapman; Andre L. Boehman; Kimberly Wain; Wallis Lloyd; Joseph M. Perez; Donald Stiver; Joseph Conway

    2002-07-01

    The objectives of this research program are to develop information on lubricity and viscosity improvers and their impact on the wear mechanisms in fuel injectors operating on blends of dimethyl ether (DME) and diesel fuel. This project complements another ongoing project titled ''Development of a Dimethyl Ether (DME)-Fueled Shuttle Bus Demonstration Project''. The objectives of that research and demonstration program are to convert a campus shuttle bus to operation on dimethyl ether, a potential ultra-clean alternative diesel fuel. To accomplish this objective, this project includes laboratory evaluation of a fuel conversion strategy, as well as, field demonstration of the DME-fueled shuttle bus. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In the shuttle bus project, they have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. The strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. In this project, they have sought to develop methods for extending the permissible DME content in the DME-diesel blends without experiencing rapid injector failure due to wear. To date, the activities have covered two areas: development of a high-pressure lubricity test apparatus for studies of lubricity and viscosity improvers and development of an injector durability stand for evaluation of wear rates in fuel injectors. This report provides summaries of the progress toward completion of both experimental systems and a summary of the plan for completion of the project objectives.

  11. Dual fuel diesel engine operation using LPG

    NASA Astrophysics Data System (ADS)

    Mirica, I.; Pana, C.; Negurescu, N.; Cernat, Al; Nutu, N. C.

    2016-08-01

    Diesel engine fuelling with LPG represents a good solution to reduce the pollutant emissions and to improve its energetic performances. The high autoignition endurance of LPG requires specialized fuelling methods. From all possible LPG fuelling methods the authors chose the diesel-gas method because of the following reasons: is easy to be implemented even at already in use engines; the engine does not need important modifications; the LPG-air mixture has a high homogeneity with favorable influences over the combustion efficiency and over the level of the pollutant emissions, especially on the nitrogen oxides emissions. This paper presents results of the theoretical and experimental investigations on operation of a LPG fuelled heavy duty diesel engine at two operating regimens, 40% and 55%. For 55% engine load is also presented the exhaust gas recirculation influence on the pollutant emission level. Was determined the influence of the diesel fuel with LPG substitution ratio on the combustion parameters (rate of heat released, combustion duration, maximum pressure, maximum pressure rise rate), on the energetic parameters (indicate mean effective pressure, effective efficiency, energetic specific fuel consumption) and on the pollutant emissions level. Therefore with increasing substitute ratio of the diesel fuel with LPG are obtained the following results: the increase of the engine efficiency, the decrease of the specific energetic consumption, the increase of the maximum pressure and of the maximum pressure rise rate (considered as criteria to establish the optimum substitute ratio), the accentuated reduction of the nitrogen oxides emissions level.

  12. Flow, spray and combustion analysis by laser techniques in the combustion chamber of a direct-injection diesel engine

    NASA Astrophysics Data System (ADS)

    Hentschel, W.; Schindler, K.-P.

    1996-12-01

    The purpose of this paper is to show how the analysis of in -cylinder flow, fuel injection, and combustion by means of state-of-the-art optical techniques, as laser light-sheet, laser doppler anemometry and laser shadowgraphy, can help to support the understanding of the interaction of swirl flow development, spray formation, auto-ignition and combustion in near production-line direct-injection diesel engines and thus advances the development of engines with lower fuel consumption and emissions.

  13. Coal-fueled diesel technology development -- Fuel injection equipment for coal-fueled diesel engines

    SciTech Connect

    Johnson, R.N.; Hayden, H.L.

    1994-01-01

    Because of the abrasive and corrosive nature of coal water slurries, the development of coal-fueled diesel engine technology by GE-Transportation Systems (GE-TS) required special fuel injection equipment. GE-Corporate Research and Development (GE-CRD) undertook the design and development of fuel injectors, piston pumps, and check valves for this project. Components were tested at GE-CRD on a simulated engine cylinder, which included a cam-actuated jerk pump, prior to delivery to GE-TS for engine testing.

  14. 40 CFR 80.8 - Sampling methods for gasoline, diesel fuel, fuel additives, and renewable fuels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... fuel, fuel additives, and renewable fuels. 80.8 Section 80.8 Protection of Environment ENVIRONMENTAL... Provisions § 80.8 Sampling methods for gasoline, diesel fuel, fuel additives, and renewable fuels. The..., blendstocks, fuel additives and renewable fuels for purposes of determining compliance with the...

  15. Field endurance test of diesel engines fueled with sunflower oil/diesel fuel blends

    SciTech Connect

    German, T.J.; Kaufman, K.R.; Pratt, G.L.; Derry, J.

    1985-01-01

    Four John Deere and two J.I. Case tractors were fueled with 25% or 50% blends of alkali-refined, winterized sunflower oil and No. 2 diesel fuel while in farm service. All engines were turbocharged, direct injection diesel engines and each was operated for approximately 1000 hours. No power losses were detected during the test period. However, one engine experienced camshaft/valve train failure while in service. Engine deposits were measured according to the CRC Diesel Engine Rating system after the test period was completed. Statistical analysis revealed heavier deposits in most areas of the combustion chamber of the three engines fueled with the 50% sunflower oil/50% No. 2 diesel fuel blend. No detrimental engine deposits due to differences in engine size were observed. No injector coking problems or ring sticking problems were encountered. Bearing wear was normal.

  16. Effects of Injector Conditions on the Flame Lift-Off Length of DI Diesel Sprays

    SciTech Connect

    D. L. Siebers; B. S. Higgins

    2000-07-01

    The effects of injection pressure and orifice diameter on the lift-off length of a direct-injection (DI) diesel spray (defined as the farthest upstream location of high temperature combustion) were investigated using a natural light emission imaging technique. The lift-off length experiments were conducted in a constant-volume combustion vessel under quiescent, heavy-duty DI diesel engine conditions using a Phillips research grade No.2 diesel fuel. The results show that natural light emission at 310 nm provides an excellent marker of the lift-off length. At this location, natural light emission at 310 nm is dominated by OH chemiluminescence generated by high-temperature combustion chemistry. Lift-off lengths determined from images of natural light emission at 310 nm show that as either injection pressure (i.e., injection velocity) or orifice diameter increase, the lift-off length increases. The observed lift-off length increase was linearly dependent on injection velocity, the same dependency as previously noted for gas jets. The lift-off length increase with increasing orifice diameter, however, is different than the independence of lift-off length on orifice diameter noted for gas jets An important overall observation was made by considering the lift-off length data in conjunction with data from recent investigations of liquid-phase fuel penetration and spray development. The combined data suggests that a systematic evolution of the relationship and interaction between various processes in a DI diesel spray has been occurring over time, as injection pressures have been increased and orifice diameters reduced as part of efforts to meet emissions regulations. The trends observed may eventually help explain effects of parameters such as injection pressure and orifice diameter on emissions.

  17. 40 CFR 80.581 - What are the batch testing and sample retention requirements for motor vehicle diesel fuel, NRLM...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel... retention requirements for motor vehicle diesel fuel, NRLM diesel fuel, and ECA marine fuel? 80.581 Section... requirements for motor vehicle diesel fuel, NRLM diesel fuel, and ECA marine fuel? (a) Beginning on June...

  18. Determination of dyes in diesel fuels

    SciTech Connect

    Sweeney, E.G.; Schmidt, C.H.; Zimin, A.; Caputo, P.A.; Anderson, P.M.

    1994-10-01

    On November 24, 1993, the Internal Revenue Service issued a `Notice of Proposed Rule Making` relating taxation of on-road diesel fuels and policing by means of a dyeing program. Based on the proposed regulation, various qualitative and quantitative methods were developed by two laboratories to identify and determine concentration of various dyes in No. 1 and No. 2 diesel fuels. A simple qualitative method was devised which consists of extracting the dye out of the fuel and identifying dye composition by thin layer chromatography. Quantitative methods were also developed based on spectrophometric evaluation of dyed fuel. The quantitative methods are designed for use with low cost single beam spectrophometers. Independent results based on a nine terminal sampling program are included. 5 refs., 2 figs., 13 tabs.

  19. Diesel Fuel Systems. Teacher Edition (Revised).

    ERIC Educational Resources Information Center

    Clark, Elton; Huston, Jane, Ed.

    This module is one of a series of teaching guides that cover diesel mechanics. The module contains six instructional units that cover the following topics: (1) introduction to fuel injection systems and components; (2) injection nozzles; (3) distributor type injection pumps; (4) unit injectors; (5) in-line injection pumps; and (6) pressure timed…

  20. 40 CFR 80.590 - What are the product transfer document requirements for motor vehicle diesel fuel, NRLM diesel...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... such fuel is dispensed into motor vehicles or nonroad equipment, locomotives, marine diesel engines or...) Undyed Ultra-Low Sulfur Diesel Fuel. For use in all diesel vehicles and engines.” From June 1, 2006... (maximum) Dyed Ultra-Low Sulfur Diesel Fuel. For use in all nonroad diesel engines. Not for use in...

  1. Evaporation And Ignition Of Dense Fuel Sprays

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Harstad, Kenneth G.

    1988-01-01

    Simple theoretical model makes useful predictions of trends. Pair of reports presents theoretical model of evaporation and ignition of sprayed liquid fuel. Developed as part of research in combustion of oil and liquid fuels derived from coal, tar sand, and shale in furnace. Work eventually contributes to increase efficiency of combustion and decrease pollution generated by burning of such fuels.

  2. 26 CFR 48.4082-1T - Diesel fuel and kerosene; exemption for dyed fuel (temporary).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 16 2010-04-01 2010-04-01 true Diesel fuel and kerosene; exemption for dyed... Vehicles, Tires, Tubes, Tread Rubber, and Taxable Fuel Taxable Fuel § 48.4082-1T Diesel fuel and kerosene... section, diesel fuel or kerosene satisfies the dyeing requirements of this paragraph (d) only if the dye...

  3. Diesel fueled ship propulsion fuel cell demonstration project

    SciTech Connect

    Kumm, W.H.

    1996-12-31

    The paper describes the work underway to adapt a former US Navy diesel electric drive ship as a 2.4 Megawatt fuel cell powered, US Coast Guard operated, demonstrator. The Project will design the new configuration, and then remove the four 600 kW diesel electric generators and auxiliaries. It will design, build and install fourteen or more nominal 180 kW diesel fueled molten carbonate internal reforming direct fuel cells (DFCs). The USCG cutter VINDICATOR has been chosen. The adaptation will be carried out at the USCG shipyard at Curtis Bay, MD. A multi-agency (state and federal) cooperative project is now underway. The USCG prime contractor, AEL, is performing the work under a Phase III Small Business Innovation Research (SBIR) award. This follows their successful completion of Phases I and II under contract to the US Naval Sea Systems (NAVSEA) from 1989 through 1993 which successfully demonstrated the feasibility of diesel fueled DFCs. The demonstrated marine propulsion of a USCG cutter will lead to commercial, naval ship and submarine applications as well as on-land applications such as diesel fueled locomotives.

  4. Coal-fueled diesel locomotive test

    SciTech Connect

    Hsu, B.D.; McDowell, R.E.; Confer, G.L.; Basic, S.L.

    1993-01-01

    The biggest challenges to the development of a commercially-acceptable coal-fueled diesel-electric locomotive are integrating all systems into a working unit that can be operated in railroad service. This involves mainly the following three systems: (1) the multi-cylinder coal-fueled diesel engine, (2) the locomotive and engine controls, and (3) the CWS fuel supply system. Consequently, a workable 12-cylinder coal-fueled diesel engine was considered necessary at this stage to evolve the required locomotive support systems, in addition to gaining valuable multi-cylinder engine operating experience. The CWS fuel used during this project was obtained from Otisca, Inc. (Syracuse, NY). It was prepared from micronized and deashed Kentucky Blue Gem coal to 49.0% coal loading by weight, with less than 1% ash and 5 micron mean diameter particle size. Its higher heating value was analyzed at approximately 34630 kJ/k. Anti-agglomerating additive Triton X-114 was added to the CWS at GE Transportation Systems at 2% of coal weight. The nature of the Otisca CWS fuel makes it inherently more difficult to store, pump, and inject than diesel fuel, since concepts which govern Newtonian or normally viscous liquids do not apply entirely to CWS. Otisca CWS tends to be unstable and to settle in tanks and lines after a period of time, making it necessary to provide a means of agitation during storage. To avoid long term settling problems and to minimize losses, piping velocities were designed to be in the 60-90 m/min range.

  5. Investigation of particulate formation during diesel spray combustion: CARS for diesel spray combustion. [Coherent Anti-Stokes Raman Spectroscopy (CARS)

    SciTech Connect

    Boedeker, L.R.

    1991-09-01

    An experimental and analytical research program has been carried out whose objectives were to investigate strategies for using coherent anti-Stokes Raman spectroscopy (CARS) laser diagnostic techniques for detecting the vapor phase of liquid fuel sprays, determining fuel-air ratio and the degree of fuel pyrolysis. The extent to which CARS can provide valid vapor phase fuel measurements in the presence of droplets within the CARS resolution volume will determine its ultimate utility for engine measurements. Hence, the priority in this program was maintained toward investigating possible adverse droplet effects on CARS measurements. Droplets in a relevant size range (25-- 50 microns) were generated for convenience with a spray nozzle. Tests were conducted in a spray chamber at 1 atm pressure under near- saturated fuel vapor pressure conditions, with and without a toluene fuel spray turned on. For reasons of safety an inert gas, CO{sub 2}, was used to simulate O{sub 2}. It was necessary to provide reliable vapor phase CARS reference spectra for these spray studies in order to insure that spurious liquid effects were not present and known vapor phase spectra were attained. To provide these reference spectra the capability was developed of isolating, in a CARS test cell, the vapor phase of fuels that are normally liquids at room temperature and pressure. The cell could be evacuated with a vacuum pump and heated uniformly up to about 100 C. Hence, a capability was established to measure nonresonant and resonant vapor phase CARS features of normally liquid fuels over wide pressure and temperature range, needed for evaluating CARS fuel-air analysis strategies.

  6. Surfactant remediation of diesel fuel polluted soil.

    PubMed

    Khalladi, Razika; Benhabiles, Ouassila; Bentahar, Fatiha; Moulai-Mostefa, Naji

    2009-05-30

    Soil contamination with petroleum hydrocarbons has caused critical environmental and health defects and increasing attention has been paid for developing innovative technology for cleaning up this contamination. In this work, the washing process of a soil column by ionic surfactant sodium dodecyl sulfate (SDS) was investigated. Water flow rate and the contamination duration (age) have been studied. The performance of water in the removal of diesel fuel was found to be non-negligible, while water contributed by 24.7% in the global elimination of n-alkanes. The effect of SDS is significant beyond a concentration of 8mM. After 4h of treatment with surfactant solution, the diesel soil content remains constant, which shows the existence of a necessary contact time needed to the surfactant to be efficient. The soil washing process at a rate of 3.2 mL/min has removed 97% of the diesel fuel. This surfactant soil remediation process was shown to be governed by the first-order kinetics. These results are of practical interest in developing effective surfactant remediation technology of diesel fuel contaminated soils.

  7. Diesel fuel detergent additive performance and assessment

    SciTech Connect

    Vincent, M.W.; Papachristos, M.J.; Williams, D.; Burton, J.

    1994-10-01

    Diesel fuel detergent additives are increasingly linked with high quality automotive diesel fuels. Both in Europe and in the USA, field problems associated with fuel injector coking or fouling have been experienced. In Europe indirect injection (IDI) light duty engines used in passenger cars were affected, while in the USA, a direct injection (DI) engine in heavy duty truck applications experienced field problems. In both cases, a fuel additive detergent performance test has evolved using an engine linked with the original field problem, although engine design modifications employed by the manufacturers have ensured improved operation in service. Increasing awareness of the potential for injector nozzle coking to cause deterioration in engine performance is coupled with a need to meet ever more stringent exhaust emissions legislation. These two requirements indicate that the use of detergency additives will continue to be associated with high quality diesel fuels. The paper examines detergency performance evaluated in a range of IDI and DI engines and correlates performance in the two most widely recognised test engines, namely the Peugeot 1.9 litre IDI, and Cummins L10 DI engines. 17 refs., 18 figs., 5 tabs.

  8. PCR+ In Diesel Fuels and Emissions Research

    SciTech Connect

    McAdams, H.T.

    2002-04-15

    In past work for the U.S. Department of Energy (DOE) and Oak Ridge National Laboratory (ORNL), PCR+ was developed as an alternative methodology for building statistical models. PCR+ is an extension of Principal Components Regression (PCR), in which the eigenvectors resulting from Principal Components Analysis (PCA) are used as predictor variables in regression analysis. The work was motivated by the observation that most heavy-duty diesel (HDD) engine research was conducted with test fuels that had been ''concocted'' in the laboratory to vary selected fuel properties in isolation from each other. This approach departs markedly from the real world, where the reformulation of diesel fuels for almost any purpose leads to changes in a number of interrelated properties. In this work, we present new information regarding the problems encountered in the conventional approach to model-building and how the PCR+ method can be used to improve research on the relationship between fuel characteristics and engine emissions. We also discuss how PCR+ can be applied to a variety of other research problems related to diesel fuels.

  9. Rapeseed and safflower oils as diesel fuels

    SciTech Connect

    Peterson, C.L.; Haines, H.; Chase, C.

    1993-12-31

    During the past decade the US has become increasingly dependent upon imported oil to meet our energy demands. Nearly 50 percent of our US consumption of petroleum is imported. Research has shown that agricultural crops can be used to reduce this dependence. Vegetable oil as an alternative fuel has been under study at the Univ. of Idaho since 1979. Since then the Idaho research team has pioneered the use of rapeseed oil as a diesel fuel substitute. Idaho`s interdisciplinary team includes plant breeding, plant modification, process development and scale-up, engine testing, and economics. Researchers in Montana have studied safflower oil as a potential diesel fuel replacement since 1983. This project, aimed for use of safflower oil in railroad engines, involves genetics, agronomics, economics and contract engine testing.

  10. 40 CFR 69.51 - Motor vehicle diesel fuel.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Motor vehicle diesel fuel. 69.51... (CONTINUED) SPECIAL EXEMPTIONS FROM REQUIREMENTS OF THE CLEAN AIR ACT Alaska § 69.51 Motor vehicle diesel... motor vehicle diesel fuel standards and dye provisions under 40 CFR 80.520 and associated...

  11. 40 CFR 69.51 - Motor vehicle diesel fuel.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 15 2011-07-01 2011-07-01 false Motor vehicle diesel fuel. 69.51... (CONTINUED) SPECIAL EXEMPTIONS FROM REQUIREMENTS OF THE CLEAN AIR ACT Alaska § 69.51 Motor vehicle diesel... motor vehicle diesel fuel standards and dye provisions under 40 CFR 80.520 and associated...

  12. Support vector machine to predict diesel engine performance and emission parameters fueled with nano-particles additive to diesel fuel

    NASA Astrophysics Data System (ADS)

    Ghanbari, M.; Najafi, G.; Ghobadian, B.; Mamat, R.; Noor, M. M.; Moosavian, A.

    2015-12-01

    This paper studies the use of adaptive Support Vector Machine (SVM) to predict the performance parameters and exhaust emissions of a diesel engine operating on nanodiesel blended fuels. In order to predict the engine parameters, the whole experimental data were randomly divided into training and testing data. For SVM modelling, different values for radial basis function (RBF) kernel width and penalty parameters (C) were considered and the optimum values were then found. The results demonstrate that SVM is capable of predicting the diesel engine performance and emissions. In the experimental step, Carbon nano tubes (CNT) (40, 80 and 120 ppm) and nano silver particles (40, 80 and 120 ppm) with nanostructure were prepared and added as additive to the diesel fuel. Six cylinders, four-stroke diesel engine was fuelled with these new blended fuels and operated at different engine speeds. Experimental test results indicated the fact that adding nano particles to diesel fuel, increased diesel engine power and torque output. For nano-diesel it was found that the brake specific fuel consumption (bsfc) was decreased compared to the net diesel fuel. The results proved that with increase of nano particles concentrations (from 40 ppm to 120 ppm) in diesel fuel, CO2 emission increased. CO emission in diesel fuel with nano-particles was lower significantly compared to pure diesel fuel. UHC emission with silver nano-diesel blended fuel decreased while with fuels that contains CNT nano particles increased. The trend of NOx emission was inverse compared to the UHC emission. With adding nano particles to the blended fuels, NOx increased compared to the net diesel fuel. The tests revealed that silver & CNT nano particles can be used as additive in diesel fuel to improve complete combustion of the fuel and reduce the exhaust emissions significantly.

  13. IMPACT OF DME-DIESEL FUEL BLEND PROPERTIES ON DIESEL FUEL INJECTION SYSTEMS

    SciTech Connect

    Elana M. Chapman; Andre Boehman; Kimberly Wain; Wallis Lloyd; Joseph M. Perez; Donald Stiver; Joseph Conway

    2004-04-01

    The objectives of this research program are to develop information on lubricity and viscosity improvers and their impact on the wear mechanisms in fuel injectors operating on blends of dimethyl ether (DME) and diesel fuel. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In the shuttle bus project, we have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. Our strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. In this project, we have sought to develop methods for extending the permissible DME content in the DME-diesel blends without experiencing rapid injector failure due to wear. Our activities have covered three areas: examination of the impact of lubricity additives on the viscosity of DME, development of a high-pressure lubricity test apparatus for studies of lubricity and viscosity improvers and development of an injector durability stand for evaluation of wear rates in fuel injectors. The first two of these areas have resulted in valuable information about the limitations of lubricity and viscosity additives that are presently available in terms of their impact on the viscosity of DME and on wear rates on injector hardware. The third area, that of development of an injector durability test stand, has not resulted in a functioning experiment. Some information is provided in this report to identify the remaining tasks that need to be performed to make the injector stand operational. The key observations from the work are that when blended at 25 wt.% in either diesel fuel or Biodiesel fuel, DME requires more than 5 wt

  14. Exhaust emissions of DI diesel engine using unconventional fuels

    NASA Astrophysics Data System (ADS)

    Sudrajad, Agung; Ali, Ismail; Hamdan, Hazmie; Hamzah, Mohd. Herzwan

    2012-06-01

    Optimization of using waste plastic and tire disposal fuel on diesel engine were observed. The experimental project was comparison between using both of unconventional fuel and base diesel fuel. The engine experiment was conducted with YANMAR TF120 single cylinder four stroke diesel engine set-up at variable engine speed at 2100, 1900, 1700, 1500 and 1300 rpm. The data have been taken at each point of engine speed during the stabilized engine-operating regime. Measurement of emissions parameters at different engine speed conditions have generally indicated lower in emission COfor waste plastic fuel, lower NOx for tire disposal fuel and lower SOx for diesel fuel.

  15. Preliminary Photomicrographic Studies of Fuel Sprays

    NASA Technical Reports Server (NTRS)

    Lee, Dana W; Spencer, Robert C

    1932-01-01

    Photomicrographs were taken of fuel sprays injected into air at various densities for the purpose of studying the spray structure and the stages in the atomization of the fuel. The photomicrographs were taken at magnifying powers of 2.5, 3.25, and 10, using a spark discharge of very short duration for illumination. The results indicate that the theory advanced by Dr. R. A. Castleman, Jr., on the atomization of fuel in carburetors may also be applied to the atomization of fuel sprays of the solid-injection type. The fuel leaves the nozzle as a solid column, is ruffled and then torn into small, irregular ligaments by the action of the air. These ligaments are then quickly broken up into drops by the surface tension of the fuel. The photomicrographs also show that the dispersion of a fuel spray at a given distance from the nozzle increases with an increase in the jet velocity or an increase in the air density. The first portions of fuel sprays injected from an automatic injection valve into air at atmospheric density have a much greater dispersion than the later portions, but this difference decreases rapidly as the air density is increased.

  16. [Preparation of ethanol-diesel fuel blends and exhausts emission characteristics in diesel engine].

    PubMed

    Zhang, Runduo; He, Hong; Zhang, Changbin; Shi, Xiaoyan

    2003-07-01

    The technology that diesel oil is partly substituted by ethanol can reduce diesel engine exhausts emission, especially fuel soot. This research is concentrated on preparation of ethanol-diesel blend fuel and exhausts emission characteristics using diesel engine bench. Absolute ethanol can dissolve into diesel fuel at an arbitrary ratio. However, a trace of water (0.2%) addition can lead to the phase separation of blends. Organic additive synthesized during this research can develop the ability of resistance to water and maintain the stability of ethanol-diesel-trace amounts of water system. The effects of 10%, 20%, and 30% ethanol-diesel fuel blends on exhausts emission, were compared with that of diesel fuel in direct injection (DI) diesel engine. The optimum ethanol percentage for ethanol-diesel fuel blends was 20%. Using 20% ethanol-diesel fuel blend with 2% additive of the total volume, bench diesel engine showed a large amount decrease of exhaust gas, e.g. 55% of Bosch smoke number, 70% of HC emission, and 45% of CO emission at 13 kW and 1540 r/min. Without the addition of additive, the blend of ethanol produced new organic compounds such as ethanol and acetaldehyde in tail gas. However, the addition of additive obviously reduced the emission of ethanol and acetaldehyde.

  17. Regulated and unregulated emissions from a diesel engine fueled with diesel fuel blended with diethyl adipate

    NASA Astrophysics Data System (ADS)

    Zhu, Ruijun; Cheung, C. S.; Huang, Zuohua; Wang, Xibin

    2011-04-01

    Experiments were carried out on a four-cylinder direct-injection diesel engine operating on Euro V diesel fuel blended with diethyl adipate (DEA). The blended fuels contain 8.1%, 16.4%, 25% and 33.8% by volume fraction of DEA, corresponding to 3%, 6%, 9% and 12% by mass of oxygen in the blends. The engine performance and exhaust gas emissions of the different fuels were investigated at five engine loads at a steady speed of 1800 rev/min. The results indicated an increase of brake specific fuel consumption and brake thermal efficiency when the engine was fueled with the blended fuels. In comparison with diesel fuel, the blended fuels resulted in an increase in hydrocarbon (HC) and carbon monoxide (CO), but a decrease in particulate mass concentrations. The nitrogen oxides (NO x) emission experienced a slight variation among the test fuels. In regard to the unregulated gaseous emissions, formaldehyde and acetaldehyde increased, while 1,3-butadiene, ethene, ethyne, propylene and BTX (benzene, toluene and xylene) in general decreased. A diesel oxidation catalyst (DOC) was found to reduce significantly most of the investigated unregulated pollutants when the exhaust gas temperature was sufficiently high.

  18. Straight Vegetable Oil as a Diesel Fuel?

    SciTech Connect

    2014-01-01

    Biodiesel, a renewable fuel produced from animal fats or vegetable oils, is popular among many vehicle owners and fleet managers seeking to reduce emissions and support U.S. energy security. Questions sometimes arise about the viability of fueling vehicles with straight vegetable oil (SVO), or waste oils from cooking and other processes, without intermediate processing. But SVO and waste oils differ from biodiesel (and conventional diesel) in some important ways and are generally not considered acceptable vehicle fuels for large-scale or long-term use.

  19. 40 CFR 80.592 - What records must be kept by entities in the motor vehicle diesel fuel and diesel fuel additive...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Recordkeeping and Reporting Requirements § 80.592 What records must be kept by entities...

  20. The development and application of an automatic boundary segmentation methodology to evaluate the vaporizing characteristics of diesel spray under engine-like conditions

    NASA Astrophysics Data System (ADS)

    Ma, Y. J.; Huang, R. H.; Deng, P.; Huang, S.

    2015-04-01

    Studying the vaporizing characteristics of diesel spray could greatly help to reduce engine emission and improve performance. The high-speed schlieren imaging method is an important optical technique for investigating the macroscopic vaporizing morphological evolution of liquid fuel, and pre-combustion constant volume combustion bombs are often used to simulate the high pressure and high temperature conditions occurring in diesel engines. Complicated background schlieren noises make it difficult to segment the spray region in schlieren spray images. To tackle this problem, this paper develops a vaporizing spray boundary segmentation methodology based on an automatic threshold determination algorithm. The methodology was also used to quantify the macroscopic characteristics of vaporizing sprays including tip penetration, near-field and far-field angles, and projected spray area and spray volume. The spray boundary segmentation methodology was realized in a MATLAB-based program. Comparisons were made between the spray characteristics obtained using the program method and those acquired using a manual method and the Hiroyasu prediction model. It is demonstrated that the methodology can segment and measure vaporizing sprays precisely and efficiently. Furthermore, the experimental results show that the spray angles were slightly affected by the injection pressure at high temperature and high pressure and under inert conditions. A higher injection pressure leads to longer spray tip penetration and a larger projected area and volume, while elevating the temperature of the environment can significantly promote the evaporation of cold fuel.

  1. 40 CFR 80.590 - What are the product transfer document requirements for motor vehicle diesel fuel, NRLM diesel...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements for motor vehicle diesel fuel, NRLM diesel fuel, heating oil, ECA marine fuel, and other..., and Marine Diesel Fuel; and ECA Marine Fuel Recordkeeping and Reporting Requirements § 80.590 What are... oil, ECA marine fuel, and other distillates? (a) This paragraph (a) applies on each occasion that any...

  2. Spray flow structure from twin-hole diesel injector nozzles

    DOE PAGES

    Nguyen, D.; Duke, D.; Kastengren, A.; ...

    2017-04-18

    Two techniques were used to study non-evaporating diesel sprays from common rail injectors which were equipped with twin-hole and single-hole nozzles for comparison. To characterise the sprays, high speed optical imaging and x-ray radiography were used. The former was performed at the LTRAC laboratory at Monash University, while the latter was performed at the 7-BM beamline of the Advanced Photon Source at Argonne National Laboratory. The optical imaging made use of high temporal, high spatial resolution spray recordings on a digital camera from which peripheral parameters in the initial injection phase were investigated based on edge detection. The x-ray radiographymore » was used to explore quantitative mass distributions, which were measured on a point-wise basis at roughly similar sampling rate. Three twin-hole nozzles of different subtended angles and a single-hole nozzle were investigated at injection pressure of 1000 bar in environments of 20 bar back pressure. Evidence of strong cavitation was found for all nozzles examined with their CD ranging from 0.62 to 0.69. Penetration of the twin-hole nozzles was found to lag the single-hole nozzle, even before the sprays merged. Finally, switching in hole dominance was observed from one twin-hole nozzle, and this was accompanied by greater instability in mass flow during the transient opening phase of the injector.« less

  3. Phytoremediation of subarctic soil contaminated with diesel fuel.

    PubMed

    Palmroth, Marja R T; Pichtel, John; Puhakka, Jaakko A

    2002-09-01

    The effects of several plant species, native to northern latitudes, and different soil amendments, on diesel fuel removal from soil were studied. Plant treatments included Scots Pine (Pinus sylvestris), Poplar (Populus deltoides x Wettsteinii), a grass mixture (Red fescue, Fesuca rubra; Smooth meadowgrass, Poa pratensis and Perennial ryegrass, Lolium perenne) and a legume mixture (White clover, Trifolium repens and Pea, Pisum sativum). Soil amendments included NPK fertiliser, a compost extract and a microbial enrichment culture. Diesel fuel disappeared more rapidly in the legume treatment than in other plant treatments. The presence of poplar and pine enhanced removal of diesel fuel, but removal under grass was similar to that with no vegetation. Soil amendments did not enhance diesel fuel removal significantly. Grass roots accumulated diesel-range compounds. This study showed that utilisation of selected plants accelerates removal of diesel fuel in soil and may serve as a viable, low-cost remedial technology for diesel-contaminated soils in subarctic regions.

  4. 7 CFR 3201.13 - Diesel fuel additives.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... biodiesel, also referred to as B100, when used as an additive. Diesel fuel additive does not mean neat biodiesel when used as a fuel or blended biodiesel fuel (e.g., B20). (b) Minimum biobased content....

  5. Advanced diesel electronic fuel injection and turbocharging

    NASA Astrophysics Data System (ADS)

    Beck, N. J.; Barkhimer, R. L.; Steinmeyer, D. C.; Kelly, J. E.

    1993-12-01

    The program investigated advanced diesel air charging and fuel injection systems to improve specific power, fuel economy, noise, exhaust emissions, and cold startability. The techniques explored included variable fuel injection rate shaping, variable injection timing, full-authority electronic engine control, turbo-compound cooling, regenerative air circulation as a cold start aid, and variable geometry turbocharging. A Servojet electronic fuel injection system was designed and manufactured for the Cummins VTA-903 engine. A special Servojet twin turbocharger exhaust system was also installed. A series of high speed combustion flame photos was taken using the single cylinder optical engine at Michigan Technological University. Various fuel injection rate shapes and nozzle configurations were evaluated. Single-cylinder bench tests were performed to evaluate regenerative inlet air heating techniques as an aid to cold starting. An exhaust-driven axial cooling air fan was manufactured and tested on the VTA-903 engine.

  6. IMPACT OF DME-DIESEL FUEL BLEND PROPERTIES ON DIESEL FUEL INJECTION SYSTEMS

    SciTech Connect

    Elana M. Chapman; Andre Boehman; Kimberly Wain; Wallis Lloyd; Joseph M. Perez; Donald Stiver; Joseph Conway

    2003-06-01

    The objectives of this research program are to develop information on lubricity and viscosity improvers and their impact on the wear mechanisms in fuel injectors operating on blends of dimethyl ether (DME) and diesel fuel. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In the shuttle bus project, we have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. Our strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. In this project, we have sought to develop methods for extending the permissible DME content in the DME-diesel blends without experiencing rapid injector failure due to wear. To date, our activities have covered three areas: examination of the impact of lubricity additives on the viscosity of DME, development of a high-pressure lubricity test apparatus for studies of lubricity and viscosity improvers and development of an injector durability stand for evaluation of wear rates in fuel injectors. This report provides summaries of the progress toward evaluation of the viscosity impacts of lubricity additives, completion of both experimental systems and a summary of the plan for completion of the project objectives.

  7. Research on Fire-Resistant Diesel Fuel.

    DTIC Science & Technology

    1981-12-01

    dielectric loss measurement to monitor the water content of these emulsions . Microwave dielectric loss at a fre- quency of about 23 to 24 GHz is specific...diesel fuel micro- emulsions could be prepared and that they exhibit reduced mist flammability and self-extinguishing pool fires at temperatures...68 21 Transient NMR Data for an FRF and Its Components. . . . 76 22 Typical Effects of Aging on Dielectric Constant of W/O Emulsions

  8. 40 CFR 80.512 - May an importer treat diesel fuel as blendstock?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive... fuel under §§ 80.593, 80.601, and 80.604. (4) If previously designated motor vehicle diesel fuel having... redesignate all the diesel fuel as 500 ppm sulfur motor vehicle diesel fuel for purposes of the...

  9. 40 CFR 80.512 - May an importer treat diesel fuel as blendstock?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive... fuel under §§ 80.593, 80.601, and 80.604. (4) If previously designated motor vehicle diesel fuel having... redesignate all the diesel fuel as 500 ppm sulfur motor vehicle diesel fuel for purposes of the temporary...

  10. Characterization of Droplets and Vapor Concentration Distributions in Split-Injection Diesel Sprays by Processing UV and Visible Images

    NASA Astrophysics Data System (ADS)

    Zhang, Yuyin; Nishida, Keiya; Yoshizaki, Takuo

    Recent experimental studies have shown that with split injection strategy, the soot and NOx emissions from a diesel engine can be reduced significantly in comparison with a conventional non-split injection. To understand the mechanism of emissions reduction, it is essential to clarify the process of mixture formation in the diesel spray. For characterizing the droplets and vapor concentration distributions inside a fuel spray, a dual-wavelength laser absorption-scattering technique (LAS) was developed by using the 2nd harmonic (532nm) and the 4th harmonic (266nm) of an Nd: YAG laser and using dimethylnaphthalene as a test fuel. By applying the ultraviolet-visible LAS imaging technique, the distributions of droplets and vapor concentrations in the spray, which was injected into a high-temperature and high-pressure nitrogen ambient in a constant volume vessel by a common-rail diesel injection system, were measured and quantitatively analyzed. The effect of injection mass ratio of double-pulse injections on distributions of equivalence ratios of vapor and droplets in the sprays was examined.

  11. Sunflower oil methyl ester as diesel fuel

    SciTech Connect

    Hassett, D.J.; Hasan, R.A.

    1982-01-01

    Methyl ester formation represents one approach to overcome the problems associated with the relatively high viscosity of sunflower oil when used as a diesel fuel replacement. Sunflower oil methyl ester is being prepared at the University of North Dakota Engieering Experiment Station. Physical and chemical properties of this material at varying levels of refinement and purity will be used to define fuel properties. Engine testing is being carried out to determine if the fouling characteristics of methyl ester are significantly less than those of sunflower oil. 1 figure, 1 table.

  12. Thermal stability of diesel fuels by quantitative gravimetric JFTOT

    SciTech Connect

    Beal, E.J.; Hardy, D.R.

    1995-04-01

    The gravimetric jet fuel total oxidation tester (JFTOT) was developed several years ago to provide JFTOT conditions which measure quantitatively the solid/deposit products formed in aviation fuels. The gravimetric JFTOT has now been used to measure these products in a small set of typical diesel fuels. These baseline data are compared to a much larger data base of jet fuels and also several pure compounds. Results from the diesels indicate that the gravimetric JFTOT is a useful concept for ranking fuels for their thermal stability. The diesels ranged from quite low (better than jet) to quite high (an order of magnitude greater than jet fuel) in their deposit forming tendencies. Properly ranked fuels can be used in device tests such as diesel injectors and gas turbine nozzles to assess deposition. In addition, diesels with appropriate viscosities may be able to be used as aviation fuels provided the gravimetric JFTOT gives a low deposition rating.

  13. 40 CFR 69.51 - Motor vehicle diesel fuel.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 16 2012-07-01 2012-07-01 false Motor vehicle diesel fuel. 69.51... fuel. (a) Definitions. (1) Areas accessible by the Federal Aid Highway System are the geographical.... (b) Diesel fuel that is designated for use only in Alaska and is used only in Alaska, is exempt...

  14. Biodiesel: The clean, green fuel for diesel engines (fact sheet)

    SciTech Connect

    Tyson, K.S.

    2000-04-11

    Natural, renewable resources such as vegetable oils and recycled restaurant greases can be chemically transformed into clean-burning biodiesel fuels. As its name implies, biodiesel is like diesel fuel except that it's organically produced. It's also safe for the environment, biodegradable, and produces significantly less air pollution than diesel fuel.

  15. 26 CFR 48.4082-1 - Diesel fuel and kerosene; exemption for dyed fuel.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 16 2010-04-01 2010-04-01 true Diesel fuel and kerosene; exemption for dyed..., Tread Rubber, and Taxable Fuel Taxable Fuel § 48.4082-1 Diesel fuel and kerosene; exemption for dyed... fuel or kerosene if— (1) The person otherwise liable for tax is a taxable fuel registrant; (2) In the...

  16. Modeling of gas turbine fuel nozzle spray

    SciTech Connect

    Rizk, N.K.; Chin, J.S.; Razdan, M.K.

    1997-01-01

    Satisfactory performance of the gas turbine combustor relies on the careful design of various components, particularly the fuel injector. It is, therefore, essential to establish a fundamental basis for fuel injection modeling that involves various atomization processes. A two-dimensional fuel injection model has been formulated to simulate the airflow within and downstream of the atomizer and address the formation and breakup of the liquid sheet formed at the atomizer exit. The sheet breakup under the effects of airblast, fuel pressure, or the combined atomization mode of the air-assist type is considered in the calculation. The model accounts for secondary breakup of drops and the stochastic Lagrangian treatment of spray. The calculation of spray evaporation addresses both droplet heat-up and steady-state mechanisms, and fuel vapor concentration is based on the partial pressure concept. An enhanced evaporation model has been developed that accounts for multicomponent, finite mass diffusivity and conductivity effects, and addresses near-critical evaporation. The present investigation involved predictions of flow and spray characteristics of two distinctively different fuel atomizers under both nonreacting and reacting conditions. The predictions of the continuous phase velocity components and the spray mean drop sizes agree well with the detailed measurements obtained for the two atomizers, which indicates the model accounts for key aspects of atomization. The model also provides insight into ligament formation and breakup at the atomizer exit and the initial drop sizes formed in the atomizer near field region where measurements are difficult to obtain. The calculations of the reacting spray show the fuel-rich region occupied most of the spray volume with two-peak radial gas temperature profiles. The results also provided local concentrations of unburned hydrocarbon and CO in atomizer flowfield.

  17. Preparation and emission characteristics of ethanol-diesel fuel blends.

    PubMed

    Zhang, Run-Duo; He, Hong; Shi, Xiao-Yan; Zhang, Chang-Bin; He, Bang-Quan; Wang, Jian-Xin

    2004-01-01

    The preparation of ethanol-diesel fuel blends and their emission characteristics were investigated. Results showed the absolute ethanol can dissolve in diesel fuel at an arbitrary ratio and a small quantity of water(0.2%) addition can lead to the phase separation of blends. An organic additive was synthesized and it can develop the ability of resistance to water and maintain the stability of ethanol-diesel-trace amounts of water system. The emission characteristics of 10%, 20%, and 30% ethanol-diesel fuel blends, with or without additives, were compared with those of diesel fuel in a direct injection (DI) diesel engine. The experimental results indicated that the blend of ethanol with diesel fuel significantly reduced the concentrations of smoke, hydrocarbon (HC), and carbon monoxide (CO) in exhaust gas. Using 20% ethanol-diesel fuel blend with the additive of 2% of the total volume, the optimum mixing ratio was achieved, at which the bench diesel engine testing showed a significant decrease in exhaust gas. Bosch smoke number was reduced by 55%, HC emission by 70%, and CO emission by 45%, at 13 kW/1540 r/min. However, ethanol-diesel fuel blends produced a few ppm acetaldehydes and more ethanol in exhaust gas.

  18. 30 CFR 75.1905 - Dispensing of diesel fuel.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....1905 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1905 Dispensing of diesel fuel. (a) Diesel-powered equipment in underground coal mines may be refueled only from safety...

  19. 30 CFR 75.1905 - Dispensing of diesel fuel.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....1905 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1905 Dispensing of diesel fuel. (a) Diesel-powered equipment in underground coal mines may be refueled only from safety...

  20. 30 CFR 75.1905 - Dispensing of diesel fuel.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....1905 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1905 Dispensing of diesel fuel. (a) Diesel-powered equipment in underground coal mines may be refueled only from safety...

  1. 30 CFR 75.1905 - Dispensing of diesel fuel.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....1905 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1905 Dispensing of diesel fuel. (a) Diesel-powered equipment in underground coal mines may be refueled only from safety...

  2. 30 CFR 75.1905 - Dispensing of diesel fuel.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....1905 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1905 Dispensing of diesel fuel. (a) Diesel-powered equipment in underground coal mines may be refueled only from safety...

  3. Study of ethanol and gasoline fuel sprays using mie-scatter and schlieren imaging

    NASA Astrophysics Data System (ADS)

    Bouchard, Lauren; Bittle, Joshua; Puzinauskas, Paul

    2016-11-01

    Many cars today are capable of running on both gasoline and ethanol, however it is not clear how well optimized the engines are for the multiple fuels. This experiment looks specifically at the fuel spray in a direct injection system. The length and angle of direct injection sprays were characterized and a comparison between ethanol and gasoline sprays was made. Fuels were tested using a modified diesel injector in a test chamber at variable ambient pressures and temperatures in order to simulate both high and low load combustion chamber conditions. Rainbow schlieren and mie-scatter imaging were both used to investigate the liquid and vapor portions of the sprays. The sprays behaved as expected with temperature and pressure changes. There was no noticeable fuel effect on the liquid portion of the spray (mie-scatter), though the gasoline vapor spray angles were wider than ethanol spray angles (possible a result of the distillation curves of the two fuels). Funding from NSF REU site Grant EEC 1358991 is greatly appreciated.

  4. Combustion Characteristics of a Diesel Engine Using Propanol Diesel Fuel Blends

    NASA Astrophysics Data System (ADS)

    Muthaiyan, Pugazhvadivu; Gomathinayagam, Sankaranarayanan

    2016-07-01

    The objective of the work is to study the use of propanol diesel blends as alternative fuel in a single cylinder diesel engine. In this work, four different propanol diesel blends containing 10, 15, 20 and 25 % propanol in diesel by volume were used as fuels. Load tests were conducted on the diesel engine and the combustion parameters such as cylinder gas pressure, ignition delay, rate of heat release and rate of pressure rise were investigated. The engine performance and emission characteristics were also studied. The propanol diesel blends showed longer ignition delay, higher rates of heat release and pressure rise. The thermal efficiency of the engine decreased marginally with the use of fuel blends. The propanol diesel blends decreased the CO, NOX and smoke emissions of the engine considerably.

  5. Droplet size and morphology characterization for dense sprays by image processing: application to the Diesel spray

    NASA Astrophysics Data System (ADS)

    Blaisot, J. B.; Yon, J.

    2005-12-01

    Up to now, measurement of drop size remains difficult in dense sprays such as those encountered in Diesel applications. Commonly used diagnostics are often limited due to multi-scattering effects, high drop velocity and concentration and also nonspherical shapes. The advantage of image-based techniques on the others is its ability to describe the shape of liquid particles that are not fully atomized or relaxed. In the present study, a model is developed to correct the main drawbacks of imaging. It permits to define criteria for the correction of the apparent size of an unfocused drop and to determine a measurement volume independent of the drop size. This considerably reduces the over-estimation of large drops in the drop size distribution. Drop shapes are also characterized by four morphological parameters. The image-based granulometer is satisfactorily compared to a PDPA and a diffraction-based granulometer for measurements on an ultrasonic spray. Then, the new granulometer is applied to a diesel spray. One of the results of the analysis is that even if mean drop size distributions are stable 30 mm downstream from the nozzle outlet, the shape of the drops is still evolving towards the spherical shape. The atomization process is thus not totally established at this position in opposition to what can be deduced from the drop size distribution alone.

  6. Computational and Experimental Investigation of Interfacial Area in Near-Field Diesel Spray Simulations

    DOE PAGES

    Pandal, Adrian; Pastor, Jose Marie; Kastengren, A.; ...

    2017-03-28

    The dense spray region in the near-field of diesel fuel injection remains an enigma. This region is difficult to interrogate with light in the visible range and difficult to model due to the rapid interaction between liquid and gas. In particular, modeling strategies that rely on Lagrangian particle tracking of droplets have struggled in this area. To better represent the strong interaction between phases, Eulerian modeling has proven particularly useful. Models built on the concept of surface area density are advantageous where primary and secondary atomization have not yet produced droplets, but rather form more complicated liquid structures. Surface areamore » density, a more general concept than Lagrangian droplets, naturally represents liquid structures, no matter how complex. These surface area density models, however, have not been directly experimentally validated in the past due to the inability of optical methods to elucidate such a quantity. Optical diagnostics traditionally measure near-spherical droplet size far downstream, where the spray is optically thin. Using ultra-small-angle x-ray scattering (USAXS) measurements to measure the surface area and x-ray radiography to measure the density, we have been able to test one of the more speculative parts of Eulerian spray modeling. The modeling and experimental results have been combined to provide insight into near-field spray dynamics.« less

  7. Computational and Experimental Investigation of Interfacial Area in Near-Field Diesel Spray Simulation

    DOE PAGES

    Pandal, Adrian; Pastor, Jose M.; Payri, Raul; ...

    2017-03-28

    The dense spray region in the near-field of diesel fuel injection remains an enigma. This region is difficult to interrogate with light in the visible range and difficult to model due to the rapid interaction between liquid and gas. In particular, modeling strategies that rely on Lagrangian particle tracking of droplets have struggled in this area. To better represent the strong interaction between phases, Eulerian modeling has proven particularly useful. Models built on the concept of surface area density are advantageous where primary and secondary atomization have not yet produced droplets, but rather form more complicated liquid structures. Surface areamore » density, a more general concept than Lagrangian droplets, naturally represents liquid structures, no matter how complex. These surface area density models, however, have not been directly experimentally validated in the past due to the inability of optical methods to elucidate such a quantity. Optical diagnostics traditionally measure near-spherical droplet size far downstream, where the spray is optically thin. Using ultra-small-angle x-ray scattering (USAXS) measurements to measure the surface area and x-ray radiography to measure the density, we have been able to test one of the more speculative parts of Eulerian spray modeling. In conclusion, the modeling and experimental results have been combined to provide insight into near-field spray dynamics.« less

  8. Properties and performance testing with blends of biomass alcohols, vegetable oils and diesel fuel

    SciTech Connect

    Vinyard, S.; Hawkins, L.; Renoll, E.S.; Bunt, R.C.; Goodling, J.S.

    1982-01-01

    This paper is a presentation of results from three related efforts to determine the technical feasibility of using alcohols and vegetable oils blended with Diesel oil as fuel for unmodified compression ignition engines. Several different vegetable oils were successfully tested in a single cylinder engine. Sunflower oil was blended from 50% to 80% by volume with Diesel fuel and used in a multicylinder engine. Thermophysical property data were gathered on pure and blended fuels and are reported. A spray parameter, epsilon, was found which would predict the necessary change in valve opening pressure to render the atomization of the new fuel similar to that for which the injection system was designed. Engine testing showed that fuel consumption was substantially reduced upon setting the injectors at the new VOP. 2 figures, 1 table.

  9. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT III, MAINTAINING THE FUEL SYSTEM--DETROIT DIESEL ENGINE.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE FUEL SYSTEM. TOPICS ARE (1) PURPOSE OF THE FUEL SYSTEM, (2) TRACING THE FUEL FLOW, (3) MINOR COMPONENTS OF THE FUEL SYSTEM, (4) MAINTENANCE TIPS, (5) CONSTRUCTION AND FUNCTION OF THE FUEL INJECTORS, AND (6)…

  10. Renewable synthetic diesel fuel from triglycerides and organic waste materials

    SciTech Connect

    Hillard, J.C.; Strassburger, R.S.

    1986-03-01

    A renewable, synthetic diesel fuel has been developed that employs ethanol and organic waste materials. These organic materials, such as soybean oil or animal fats, are hydrolized to yield a mixture of solid soap like materials and glycerol. These soaps, now soluble in ethanol, are blended with ethanol; the glycerol is nitrated and added as well as castor oil when necessary. The synthetic fuel is tailored to match petroleum diesel fuel in viscosity, lubricity and cetane quality and, therefore, does not require any engine modifications. Testing in a laboratory engine and in a production Oldsmobile Cutlass has revealed that this synthetic fuel is superior to petroleum diesel fuel in vehicle efficiency, cetane quality, combustion noise, cold start characteristics, exhaust odor and emissions. Performance characteristics are indistinguishable from those of petroleum diesel fuel. These soaps are added to improve the calorific value, lubricity and cetane quality of the ethanol. The glycerol from the hydrolysis process is nitrated and added to the ethanol as an additional cetane quality improver. Caster oil is added to the fuel when necessary to match the viscosity and lubricity of petroleum diesel fuel as well as to act as a corrosion inhibitor, thereby, precluding any engine modifications. The cetane quality of the synthetic fuel is better than that of petroleum diesel as the fuel carries its own oxygen. The synthetic fuel is also completely miscible with petroleum diesel.

  11. Coal-water slurry spray characteristics of an electronically-controlled accumulator fuel injection system

    SciTech Connect

    Caton, J.A.; Payne, S.E.; Terracina, D.P.; Kihm, K.D.

    1993-12-31

    Experiments have been complete to characterize coal-water slurry sprays from a electronically-controlled accumulator fuel injection system of diesel engine. The sprays were injected into a pressurized chamber equipped with windows. High speed movies, fuel pressures and needle lifts were obtained as a function of time, orifice diameter, coal loading, gas density in the chamber, and accumulator fuel pressure. For the base conditions 50% (by mass) coal loading, 0.4 mm diameter nozzle hole, coal-water slurry pressure of 82 MPa (12,000 psi), and a chamber density of 25 kg/m{sup 3}, the break-up time was 0. 30 ms. An empirical correlation for both spray tip penetration and initial jet velocity was developed. For the conditions of this study, the spray tip penetration and initial jet velocity were 15% greater for coal-water slurry than for diesel fuel or water. Cone angles of the sprays were dependent on the operating conditions and fluid, as well as the time and locations of the measurement. The time-averaged cone angle for the base case conditions was 13.6{degree}. Results of this study and the correlation are specific to the tested coal-water slurry and are not general for other coal-water slurry fuels.

  12. Effect of nozzle orifice geometry on spray, combustion, and emission characteristics under diesel engine conditions.

    SciTech Connect

    Som, S.; Longman, D. E; Ramirez, A. I.; Aggarwal, S. K.

    2011-03-01

    Diesel engine performance and emissions are strongly coupled with fuel atomization and spray processes, which in turn are strongly influenced by injector flow dynamics. Modern engines employ micro-orifices with different orifice designs. It is critical to characterize the effects of various designs on engine performance and emissions. In this study, a recently developed primary breakup model (KH-ACT), which accounts for the effects of cavitation and turbulence generated inside the injector nozzle is incorporated into a CFD software CONVERGE for comprehensive engine simulations. The effects of orifice geometry on inner nozzle flow, spray, and combustion processes are examined by coupling the injector flow and spray simulations. Results indicate that conicity and hydrogrinding reduce cavitation and turbulence inside the nozzle orifice, which slows down primary breakup, increasing spray penetration, and reducing dispersion. Consequently, with conical and hydroground nozzles, the vaporization rate and fuel air mixing are reduced, and ignition occurs further downstream. The flame lift-off lengths are the highest and lowest for the hydroground and conical nozzles, respectively. This can be related to the rate of fuel injection, which is higher for the hydroground nozzle, leading to richer mixtures and lower flame base speeds. A modified flame index is employed to resolve the flame structure, which indicates a dual combustion mode. For the conical nozzle, the relative role of rich premixed combustion is enhanced and that of diffusion combustion reduced compared to the other two nozzles. In contrast, for the hydroground nozzle, the role of rich premixed combustion is reduced and that of non-premixed combustion is enhanced. Consequently, the amount of soot produced is the highest for the conical nozzle, while the amount of NOx produced is the highest for the hydroground nozzle, indicating the classical tradeoff between them.

  13. 30 CFR 75.1905-1 - Diesel fuel piping systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Capable of withstanding working pressures and stresses; (2) Capable of withstanding four times the static... broken fuel lines. (j) Diesel fuel piping systems must be protected and located to prevent...

  14. 30 CFR 75.1905-1 - Diesel fuel piping systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Capable of withstanding working pressures and stresses; (2) Capable of withstanding four times the static... broken fuel lines. (j) Diesel fuel piping systems must be protected and located to prevent...

  15. 30 CFR 75.1905-1 - Diesel fuel piping systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Capable of withstanding working pressures and stresses; (2) Capable of withstanding four times the static... broken fuel lines. (j) Diesel fuel piping systems must be protected and located to prevent...

  16. 30 CFR 75.1905-1 - Diesel fuel piping systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Capable of withstanding working pressures and stresses; (2) Capable of withstanding four times the static... broken fuel lines. (j) Diesel fuel piping systems must be protected and located to prevent...

  17. IMPACT OF OXYGENATED FUEL ON DIESEL ENGINE PERFORMANCE AND EMISSIONS

    SciTech Connect

    Boehman, Andre L.

    2000-08-20

    As evidenced by recent lawsuits brought against operators of large diesel truck fleets [1] and by the Consent Decree brought against the heavy-duty diesel manufacturers [2], the environmental and health effects of diesel engine emissions continue to be a significant concern. Reduction of diesel engine emissions has traditionally been achieved through a combination of fuel system, combustion chamber, and engine control modifications [3]. Catalytic aftertreatment has become common on modern diesel vehicles, with the predominant device being the diesel oxidation catalytic converter [3]. To enable advanced after-treatment devices and to directly reduce emissions, significant recent interest has focused on reformulation of diesel fuel, particularly the reduction of sulfur content. The EPA has man-dated that diesel fuel will have only 15 ppm sulfur content by 2007, with current diesel specifications requiring around 300 ppm [4]. Reduction of sulfur will permit sulfur-sensitive aftertreatment devices, continuously regenerating particulate traps, NOx control catalysts, and plasma assisted catalysts to be implemented on diesel vehicles [4]. Another method of reformulating diesel fuel to reduce emissions is to incorporate oxygen in the fuel, as was done in the reformulation of gasoline. The use of methyl tertiary butyl ether (MTBE) in reformulated gasoline has resulted in contamination of water resources across the country [5]. Nonetheless, by relying on the lessons learned from MTBE, oxygenation of diesel fuel may be accomplished without compromising water quality. Oxygenation of diesel fuel offers the possibility of reducing particulate matter emissions significantly, even for the current fleet of diesel vehicles. The mechanism by which oxygen content leads to particulate matter reductions is still under debate, but recent evidence shows clearly that ''smokeless'' engine operation is possible when the oxygen content of diesel fuel reaches roughly 38% by weight [6]. The

  18. A multidimensional data set for diesel combustion model validation: I - Initial conditions, pressure history and spray shapes

    SciTech Connect

    Durrett, R.P.; Oren, D.C.; Ferguson, C.R.

    1987-01-01

    Time and spatially resolved measurements have been made of the tangential gas velocity component and the gas temperature at the time of fuel injection in a diesel combustion bomb. Velocities were measured using a laser doppler velocimeter and temperatures were measured using a fine wire thermocouple. Turbulence measurements are also presented and they indicate that at the time of fuel injection the turbulence field is approximately homogeneous and isotropic. An integral length scale of 15 mm is deduced from the decay rate. The pressure during the diesel burn is time resolved using a piezoelectric pressure transducer. High speed color schlieren photographs provide information about the fuel spray trajectory and the shape of the burning plume. Luminous photography is used to discover the time and place of the first ignition site.

  19. Modeling JP-8 Fuel Effects on Diesel Combustion Systems

    DTIC Science & Technology

    2006-09-24

    curve, and cetane number) that may result in fuel-affected varying combustion behavior in diesel engines under various operating conditions. Since... engine manufacturers rely solely on DF- 2 for commercial vehicle applications most domestic industry, university, and national laboratory lead diesel... engine combustion system research activities have not encompassed JP fuels. Instead, much effort has been spent exploring DF-2 evaporation behavior

  20. Modeling JP-8 Fuel Effects on Diesel Combustion Systems

    DTIC Science & Technology

    2006-11-01

    curve, and cetane number) that may result in fuel-affected varying combustion behavior in diesel engines under various operating conditions. Since... engine manufacturers rely solely on DF- 2 for commercial vehicle applications most domestic industry, university, and national laboratory led diesel... engine combustion system research activities have not encompassed JP fuels. Instead, much effort has been spent exploring DF-2 evaporation behavior

  1. Maximizing the stability of pyrolysis oil/diesel fuel emulsions

    USDA-ARS?s Scientific Manuscript database

    Several emulsions consisting of biomass pyrolysis oil (bio-oil) in diesel fuel were produced and analyzed for stability over time. An ultrasonic probe was used to generate microscopic droplets of bio-oil suspended in diesel fuel, and this emulsion was stabilized using surfactant chemicals. The most...

  2. Analysis of polydisperse fuel spray flame

    NASA Astrophysics Data System (ADS)

    Nave, Ophir; Lehavi, Yaron; Ajadi, Suraju; Gol'dshtein, Vladimir

    2017-02-01

    In this paper we analyzed the model of polydisperse fuel spray flame by using the sectional approach to describe the droplet-droplet interaction within the spray. The radii of the droplets are described by a probability density function. Our numerical simulations include a comparative analysis between three empirical droplet size distributions: the Rosin-Rammler distribution, the log-normal distribution and the Nakiyama-Tanasawa distribution. The log-normal distribution was found to produce a reasonable approximation to both the number and volume size distribution function. In addition our comparative analysis includes the application of the homotopy analysis method which yields convergent solutions for all values of the relevant parameters. We compared the above results to experimental fuel spray data such as {it{Tetralin}}, n-{it{Decane}}, and n-{it{Heptane}}.

  3. Carbonyl compound emissions from a heavy-duty diesel engine fueled with diesel fuel and ethanol-diesel blend.

    PubMed

    Song, Chonglin; Zhao, Zhuang; Lv, Gang; Song, Jinou; Liu, Lidong; Zhao, Ruifen

    2010-05-01

    This paper presents an investigation of the carbonyl emissions from a direct injection heavy-duty diesel engine fueled with pure diesel fuel (DF) and blended fuel containing 15% by volume of ethanol (E/DF). The tests have been conducted under steady-state operating conditions at 1200, 1800, 2600 rpm and idle speed. The experimental results show that acetaldehyde is the most predominant carbonyl, followed by formaldehyde, acrolein, acetone, propionaldehyde and crotonaldehyde, produced from both fuels. The emission factors of total carbonyls vary in the range 13.8-295.9 mg(kWh)(-1) for DF and 17.8-380.2mg(kWh)(-1) for E/DF, respectively. The introduction of ethanol into diesel fuel results in a decrease in acrolein emissions, while the other carbonyls show general increases: at low engine speed (1200 rpm), 0-55% for formaldehyde, 4-44% for acetaldehyde, 38-224% for acetone, and 5-52% for crotonaldehyde; at medium engine speed (1800 rpm), 106-413% for formaldehyde, 4-143% for acetaldehyde, 74-113% for acetone, 114-1216% for propionaldehyde, and 15-163% for crotonaldehyde; at high engine speed (2600 rpm), 36-431% for formaldehyde, 18-61% for acetaldehyde, 22-241% for acetone, and 6-61% for propionaldehyde. A gradual reduction in the brake specific emissions of each carbonyl compound from both fuels is observed with increase in engine load. Among three levels of engine speed employed, both DF and E/DF emit most CBC emissions at high engine speed. On the whole, the presence of ethanol in diesel fuel leads to an increase in aldehyde emissions.

  4. 40 CFR 80.590 - What are the product transfer document requirements for motor vehicle diesel fuel, NRLM diesel...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... such fuel is dispensed into motor vehicles or nonroad equipment, locomotives, marine diesel engines or... under § 80.598(a) and (b), for example, “500 ppm sulfur NRLM diesel fuel”, or “jet fuel”; and whether...) Undyed Ultra-Low Sulfur Diesel Fuel. For use in all diesel vehicles and engines.” From June 1, 2006...

  5. 40 CFR 80.590 - What are the product transfer document requirements for motor vehicle diesel fuel, NRLM diesel...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... such fuel is dispensed into motor vehicles or nonroad equipment, locomotives, marine diesel engines or... under § 80.598(a) and (b), for example, “500 ppm sulfur NRLM diesel fuel”, or “jet fuel”; and whether...) Undyed Ultra-Low Sulfur Diesel Fuel. For use in all diesel vehicles and engines.” From June 1, 2006...

  6. 40 CFR 80.590 - What are the product transfer document requirements for motor vehicle diesel fuel, NRLM diesel...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... such fuel is dispensed into motor vehicles or nonroad equipment, locomotives, marine diesel engines or... under § 80.598(a) and (b), for example, “500 ppm sulfur NRLM diesel fuel”, or “jet fuel”; and whether...) Undyed Ultra-Low Sulfur Diesel Fuel. For use in all diesel vehicles and engines.” From June 1, 2006...

  7. Coal-fueled diesel technology development: Nozzle development for coal-fueled diesel engines

    SciTech Connect

    Johnson, R.N.; Lee, M.; White, R.A.

    1994-01-01

    Direct injection of a micronized coal water mixture fuel into the combustion chambers of a diesel engine requires atomizing an abrasive slurry fuel with accurately sized orifices. Five injector orifice materials were evaluated: diamond compacts, chemical vapor deposited diamond tubes, thermally stabilized diamond, tungsten carbide with cobalt binder, and tungsten carbide with nickel binder with brazed and mechanically mounted orifice inserts. Nozzle bodies were fabricated of Armco 17-4 precipitation hardening stainless steel and Stellite 6B in order to withstand cyclic injection pressures and elevated temperatures. Based on a total of approximately 200 cylinder hours of engine operation with coal water mixture fuel diamond compacts were chosen for the orifice material.

  8. 40 CFR 80.610 - What acts are prohibited under the diesel fuel sulfur program?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Violation Provisions § 80.610... supply, store or transport motor vehicle diesel fuel, NRLM diesel fuel, ECA marine fuel or heating oil... under this subpart I and 40 CFR part 69, except as allowed by 40 CFR part 1043 for ECA marine fuel....

  9. Numerical Simulation of the Effect of 3D Needle Movement on Cavitation and Spray Formation in a Diesel Injector

    NASA Astrophysics Data System (ADS)

    Mandumpala Devassy, B.; Edelbauer, W.; Greif, D.

    2015-12-01

    Cavitation and its effect on spray formation and its dispersion play a crucial role in proper engine combustion and controlled emission. This study focuses on these effects in a typical common rail 6-hole diesel injector accounting for 3D needle movement and flow compressibility effects. Coupled numerical simulations using 1D and 3D CFD codes are used for this investigation. Previous studies in this direction have already presented a detailed structure of the adopted methodology. Compared to the previous analysis, the present study investigates the effect of 3D needle movement and cavitation on the spray formation for pilot and main injection events for a typical diesel engine operating point. The present setup performs a 3D compressible multiphase simulation coupled with a standalone 1D high pressure flow simulation. The simulation proceeds by the mutual communication between 1D and 3D solvers. In this work a typical common rail injector with a mini-sac nozzle is studied. The lateral and radial movement of the needle and its effect on the cavitation generation and the subsequent spray penetration are analyzed. The result indicates the effect of compressibility of the liquid on damping the needle forces, and also the difference in the spray penetration levels due to the asymmetrical flow field. Therefore, this work intends to provide an efficient and user-friendly engineering tool for simulating a complete fuel injector including spray propagation.

  10. Use of ASTM D5304 in assessing unstable diesel fuel

    SciTech Connect

    Turner, L.M.; Martin, C.J.; Beal, E.J.; Hardy, D.R.

    1995-05-01

    The storage stability, or the length of time a fuel can be stored, is of great concern to diesel fuel users. This paper reports on the use of the new ASTM accelerated test for storage stability by oxygen overpressure (D5304) to predict future storage life span of 63,000,000 gallons of a diesel fuel for US Naval vessel use. This paper demonstrates the use of ASTM D5304 at storage times of 16, 40 and 96 hours to accurately determine the length of time that this large quantity of diesel fuel could be stored at ambient temperatures before the maximum allowable amount of particulate contamination was reached.

  11. 26 CFR 48.4082-2 - Diesel fuel and kerosene; notice required for dyed fuel.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 16 2010-04-01 2010-04-01 true Diesel fuel and kerosene; notice required for..., Tires, Tubes, Tread Rubber, and Taxable Fuel Taxable Fuel § 48.4082-2 Diesel fuel and kerosene; notice... “DYED KEROSENE, NONTAXABLE USE ONLY, PENALTY FOR TAXABLE USE” must be posted by a seller on any retail...

  12. 26 CFR 48.4082-2 - Diesel fuel and kerosene; notice required for dyed fuel.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... dyed fuel. 48.4082-2 Section 48.4082-2 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE... required for dyed fuel. (a) In general. A legible and conspicuous notice stating “DYED DIESEL FUEL... facility where it sells dyed diesel fuel for use by its buyer. A legible and conspicuous notice...

  13. 26 CFR 48.4082-1 - Diesel fuel and kerosene; exemption for dyed fuel.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 16 2013-04-01 2013-04-01 false Diesel fuel and kerosene; exemption for dyed..., Tread Rubber, and Taxable Fuel Taxable Fuel § 48.4082-1 Diesel fuel and kerosene; exemption for dyed... kerosene satisfies the dyeing and marking requirements of paragraphs (b), (c), and (d) of this section....

  14. 26 CFR 48.4082-1 - Diesel fuel and kerosene; exemption for dyed fuel.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 16 2011-04-01 2011-04-01 false Diesel fuel and kerosene; exemption for dyed..., Tread Rubber, and Taxable Fuel Taxable Fuel § 48.4082-1 Diesel fuel and kerosene; exemption for dyed... kerosene satisfies the dyeing and marking requirements of paragraphs (b), (c), and (d) of this section....

  15. 26 CFR 48.4082-2 - Diesel fuel and kerosene; notice required for dyed fuel.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... dyed fuel. 48.4082-2 Section 48.4082-2 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE... required for dyed fuel. (a) In general. A legible and conspicuous notice stating “DYED DIESEL FUEL... facility where it sells dyed diesel fuel for use by its buyer. A legible and conspicuous notice...

  16. 26 CFR 48.4082-1 - Diesel fuel and kerosene; exemption for dyed fuel.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 16 2012-04-01 2012-04-01 false Diesel fuel and kerosene; exemption for dyed..., Tread Rubber, and Taxable Fuel Taxable Fuel § 48.4082-1 Diesel fuel and kerosene; exemption for dyed... kerosene satisfies the dyeing and marking requirements of paragraphs (b), (c), and (d) of this section....

  17. 40 CFR 80.510 - What are the standards and marker requirements for NRLM diesel fuel and ECA marine fuel?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... yellow 124 shall be considered motor vehicle diesel fuel or NRLM diesel fuel, as appropriate. (5) Any... of marker solvent yellow 124. (2) All motor vehicle and NRLM diesel fuel shall be free of solvent yellow 124. (3) Any diesel fuel that contains greater than or equal to 0.10 milligrams per liter...

  18. 40 CFR 80.510 - What are the standards and marker requirements for NRLM diesel fuel and ECA marine fuel?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... yellow 124 shall be considered motor vehicle diesel fuel or NRLM diesel fuel, as appropriate. (5) Any... of marker solvent yellow 124. (2) All motor vehicle and NRLM diesel fuel shall be free of solvent yellow 124. (3) Any diesel fuel that contains greater than or equal to 0.10 milligrams per liter...

  19. Rheological Properties of Vegetable Oil-Diesel Fuel Blends

    NASA Astrophysics Data System (ADS)

    Franco, Z.; Nguyen, Q. D.

    2008-07-01

    Straight vegetable oils provide cleaner burning and renewable alternatives to diesel fuels, but their inherently high viscosities compared to diesel are undesirable for diesel engines. Lowering the viscosity can be achieved by either increasing the temperature of the oil or by blending it with diesel fuel, or both. In this work the viscosity of diesel fuel and vegetable oil mixtures at differing compositions is measured as a function of temperature to determine a viscosity-temperature-composition relationship for use in design and optimization of heating and fuel injection systems. The oils used are olive, soybean, canola and peanut oils which are commercially available. All samples tested between 20°C and 80°C exhibit time-independent Newtonian behaviour. A modified Arrhenius relationship has been developed to predict the viscosity of the mixtures as functions of temperature and composition.

  20. 40 CFR 80.602 - What records must be kept by entities in the NRLM diesel fuel, ECA marine fuel, and diesel fuel...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... yellow 124. (5) For foreign refiners and importers of their fuel, the designations and other records... yellow 124 content or dye solvent red 164 content of NRLM diesel fuel, ECA marine fuel, NRLM diesel fuel... index or aromatics content, dye solvent red 164, marker solvent yellow 124 (as applicable), and...

  1. 77 FR 61281 - Regulation of Fuels and Fuel Additives: Modifications to Renewable Fuel Standard and Diesel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-09

    ... and Diesel Sulfur Programs AGENCY: Environmental Protection Agency (EPA). ACTION: Direct final rule... the RFS regulations. This amendment will not modify or limit fuel included in the current definition of heating oil. EPA is also amending the requirements under EPA's diesel sulfur program related...

  2. 77 FR 61313 - Regulation of Fuels and Fuel Additives: Modifications to Renewable Fuel Standard and Diesel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-09

    ... and Diesel Sulfur Programs AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule... amendment would not modify or limit fuel included in the current definition of heating oil. We are also proposing amendments to the diesel sulfur program to provide additional flexibility for transmix...

  3. 7 CFR 2902.13 - Diesel fuel additives.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... vehicle's fuel system) and that is not intentionally removed prior to sale or use. (2) Neat biodiesel, also referred to as B100, when used as an additive. Diesel fuel additive does not mean neat biodiesel when used as a fuel or blended biodiesel fuel (e.g., B20). (b) Minimum biobased content. The minimum...

  4. 40 CFR 80.608 - What requirements apply to diesel fuel and ECA marine fuel for use in the Territories?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and ECA marine fuel for use in the Territories? 80.608 Section 80.608 Protection of Environment... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Exemptions § 80.608 What requirements apply to diesel fuel and ECA marine fuel for use in the Territories?...

  5. 40 CFR 80.608 - What requirements apply to diesel fuel and ECA marine fuel for use in the Territories?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and ECA marine fuel for use in the Territories? 80.608 Section 80.608 Protection of Environment... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Exemptions § 80.608 What requirements apply to diesel fuel and ECA marine fuel for use in the Territories? The...

  6. Fractionation of Diesel Fuel from Petroleum and Paraho Shale Oils.

    DTIC Science & Technology

    1981-10-01

    Maryland 20084 z FRACTIONATION OF DIESEL FUEL FROM PETROLEUM AND PARAHO SHALE OILS by Dr. Charles F. Hammer Department of Chemistry Georgetown University...been develope.-d to separate diesel fuels into neutral water soluhieus. acidic components, basic components, saturated hydro- carhons, substituted...benzenes, polycyclic aromatic hydrocarbons, and polar neutrals. A samp1jl e of conventitonal petroleum d iesel fuel and a sample o~f di(LSt- fulj der ive

  7. Effect of sunflower oil on a diesel fuel system

    SciTech Connect

    Kucera, H.; Schunk, S.; Pratt, G.

    1982-05-01

    A typical farm tractor diesel fuel system (injection pump, fuel lines, filters and injectors) was tested on a test stand at various temperatures using sunflower oil, diesel fuel, and mixtures of the two as fuels. Measurements taken included fuel volume delivered by the injector line pressure at the injector, pressure drop across the filter, transfer pump pressure, and fuel injection timing. Results indicate that low percentages of sunflower oil may be used successfully in the system under summer conditions. Design changes to the system may be necessary for higher percentages of sunflower oil and cold conditions.

  8. Emission reduction potential of using ethanol-biodiesel-diesel fuel blend on a heavy-duty diesel engine

    NASA Astrophysics Data System (ADS)

    Shi, Xiaoyan; Pang, Xiaobing; Mu, Yujing; He, Hong; Shuai, Shijin; Wang, Jianxin; Chen, Hu; Li, Rulong

    Oxygenated diesel fuel blends have a potential to reduce the emission of particulate matter (PM) and to be an alternative to diesel fuel. This paper describes the emission characteristics of a three compounds oxygenated diesel fuel blend (BE-diesel), on a Cummins-4B diesel engine. BE-diesel is a new form of oxygenated diesel fuel blends consisted of ethanol, methyl soyate and petroleum diesel fuel. The blend ratio used in this study was 5:20:75 (ethanol: methyl soyate: diesel fuel) by volume. The results from the operation of diesel engine with BE-diesel showed a significant reduction in PM emissions and 2%-14% increase of NO x emissions. The change of CO emission was not conclusive and depended on operating conditions. Total hydrocarbon (THC) from BE-diesel was lower than that from diesel fuel under most tested conditions. Formaldehyde, acetaldehyde, propionaldehyde and acetone in the exhaust were measured, and the results indicated that use of BE-diesel led to a slight increase of acetaldehyde, propionaldehyde and acetone emissions. A small amount of ethanol was also detected in the exhaust from burning BE-diesel.

  9. Compression ignition engine fuel properties of a used sunflower oil-diesel fuel blend

    SciTech Connect

    Oezaktas, T.

    2000-05-01

    Vegetable oils may be used with dilution modification technique as an alternative diesel fuel. In this study, a used sunflower oil-diesel fuel blend (20:80 {nu}/{nu}%) was investigated in a Pancar Motor E-108-type diesel engine to observe engine characteristics and exhaust emission. The effect of the compression ratio on ignition delay characteristics and smoke emissions of blend fuel was determined in this CFR engine. The results of fuel blends were compared with the reference grade No. 2-D diesel fuel.

  10. Infrared measurements of soot formation and droplet sizes in diesel sprays. Final report, June 6, 1987--December 31, 1990

    SciTech Connect

    Parker, T.E.; Morency, J.R.; Foutter, R.R.; Rawlins, W.T.

    1992-07-01

    This report describes an investigation of diesel sprays using a combination of infrared wavelength optical diagnostics to probe the high droplet number density region surrounding the injector tip. Infrared wavelengths were shown to be more effective than visible or ultraviolet wavelength light at penetrating this region of the spray. This success is easily explained by the decrease in optical cross section of small diameter drops (less than 10 {mu}m) for a wavelength shift from the visible to wavelengths near 10 {mu}m. Two types of diagnostics were implemented. First, a custom manufactured, high speed infrared spectrometer was used to monitor the spectral region between 6 and 12 {mu}m in 0.5 {mu}m intervals. Spectra from this instrument, for specific locations in the combusting spray were used to monitor the development of soot in the spray. The second diagnostic technique used three collinear laser beams focussed into a 0.25 mm beam to monitor the droplet size in the spray. This measurement uses a ratio of signals to remove the droplet number density as a variable and the observed signal ratio is a direct indication of the average (using an approximate radius to the fourth power weighting function) droplet size. The experiments were performed using a shock tube to simulate the conditions typical of diesel combustion (700 to 900 K in temperature and approximately 3.0 MPa in pressure) and a custom manufactured single shot fuel injection system. Optical access in the shock tube included visible and infrared transmissive windows arranged to provide orthogonal access in two directions and perpendicular to the spray axis. The fuel injection system for this work was configured to produce approximately 20 MPa of injection pressure and produced a single injection approximately 2 ms after the injection trigger. This system could therefore be controlled to inject into the quiescent reflected region of the shock tube after the incident shock reflection from the end wall.

  11. Production of diesel fuel from light olefins

    SciTech Connect

    Tabak, S.A.; Krambeck, F.J.

    1986-03-01

    Mobile Research and Development Corporation has developed a catalytic process for converting light olefinic compounds to high quality gasoline and distillate. The process has been named Mobil Olefin to Gasoline and Distillate (MOGD) Process. Based on the Mobile zeolite catalyst ZSM-5, light olefins can be shape selectively oligomerized to higher molecular weight iso-olefins. In the gasoline boiling range, these olefins have a high octane number and for the diesel fuel range product a high cetane number and low pour point following hydrogenation. Through normally designed to process propylene or butylene, MOGD is applicable to a wide range of feed streams ranging from ethylene to 400/sup 0/F endpoint olefinic naphtha. The process has been tested using commercially-produced catalyst in refinery scale equipment.

  12. Aerosol emissions of a ship diesel engine operated with diesel fuel or heavy fuel oil.

    PubMed

    Streibel, Thorsten; Schnelle-Kreis, Jürgen; Czech, Hendryk; Harndorf, Horst; Jakobi, Gert; Jokiniemi, Jorma; Karg, Erwin; Lintelmann, Jutta; Matuschek, Georg; Michalke, Bernhard; Müller, Laarnie; Orasche, Jürgen; Passig, Johannes; Radischat, Christian; Rabe, Rom; Reda, Ahmed; Rüger, Christopher; Schwemer, Theo; Sippula, Olli; Stengel, Benjamin; Sklorz, Martin; Torvela, Tiina; Weggler, Benedikt; Zimmermann, Ralf

    2017-04-01

    Gaseous and particulate emissions from a ship diesel research engine were elaborately analysed by a large assembly of measurement techniques. Applied methods comprised of offline and online approaches, yielding averaged chemical and physical data as well as time-resolved trends of combustion by-products. The engine was driven by two different fuels, a commonly used heavy fuel oil (HFO) and a standardised diesel fuel (DF). It was operated in a standardised cycle with a duration of 2 h. Chemical characterisation of organic species and elements revealed higher concentrations as well as a larger number of detected compounds for HFO operation for both gas phase and particulate matter. A noteworthy exception was the concentration of elemental carbon, which was higher in DF exhaust aerosol. This may prove crucial for the assessment and interpretation of biological response and impact via the exposure of human lung cell cultures, which was carried out in parallel to this study. Offline and online data hinted at the fact that most organic species in the aerosol are transferred from the fuel as unburned material. This is especially distinctive at low power operation of HFO, where low volatility structures are converted to the particulate phase. The results of this study give rise to the conclusion that a mere switching to sulphur-free fuel is not sufficient as remediation measure to reduce health and environmental effects of ship emissions.

  13. DEEP DESULFURIZATION OF DIESEL FUELS BY A NOVEL INTEGRATED APPROACH

    SciTech Connect

    Xiaoliang Ma; Michael Sprague; Lu Sun; Chunshan Song

    2002-10-01

    In order to reduce the sulfur level in liquid hydrocarbon fuels for environmental protection and fuel cell applications, deep desulfurization of a model diesel fuel and a real diesel fuel was conducted by our SARS (selective adsorption for removing sulfur) process using the adsorbent A-2. Effect of temperature on the desulfurization process was examined. Adsorption desulfurization at ambient temperature, 24 h{sup -1} of LHSV over A-2 is efficient to remove dibenzothiophene (DBT) in the model diesel fuel, but difficult to remove 4-methyldibenzothiophene (4-MDBT) and 4,6-dimethyl-dibenzothiophene (4,6-DMDBT). Adsorption desulfurization at 150 C over A-2 can efficiently remove DBT, 4-MDBT and 4,6-DMDBT in the model diesel fuel. The sulfur content in the model diesel fuel can be reduced to less than 1 ppmw at 150 C without using hydrogen gas. The adsorption capacity corresponding to the break-through point is 6.9 milligram of sulfur per gram of A-2 (mg-S/g-A-2), and the saturate capacity is 13.7 mg-S/g-A-2. Adsorption desulfurization of a commercial diesel fuel with a total sulfur level of 47 ppmw was also performed at ambient temperature and 24 h{sup -1} of LHSV over the adsorbent A-2. The results show that only part of the sulfur compounds existing in the low sulfur diesel can be removed by adsorption over A-2 at such operating conditions, because (1) the all sulfur compounds in the low sulfur diesel are the refractory sulfur compounds that have one or two alkyl groups at the 4- and/or 6-positions of DBT, which inhibit the approach of the sulfur atom to the adsorption site; (2) some compounds coexisting in the commercial low sulfur diesel probably inhibit the interaction between the sulfur compounds and the adsorbent. Further work in determining the optimum operating conditions and screening better adsorbent is desired.

  14. 26 CFR 48.4082-4 - Diesel fuel and kerosene; back-up tax.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... available to the general public if the bus is available for hire to more than a limited number of persons... propulsion engine of a diesel-powered highway vehicle (other than a diesel-powered bus) of— (i) Any diesel... imposed on diesel fuel by section 4081(a). (b) Tax on diesel fuel and kerosene; buses and trains—(1) In...

  15. The effect of ethanol blended diesel fuels on emissions from a diesel engine

    NASA Astrophysics Data System (ADS)

    He, Bang-Quan; Shuai, Shi-Jin; Wang, Jian-Xin; He, Hong

    The addition of ethanol to diesel fuel simultaneously decreases cetane number, high heating value, aromatics fractions and kinematic viscosity of ethanol blended diesel fuels and changes distillation temperatures. An additive used to keep the blends homogenous and stable, and an ignition improver, which can enhance cetane number of the blends, have favorable effects on the physicochemical properties related to ignition and combustion of the blends with 10% and 30% ethanol by volume. The emission characteristics of five fuels were conducted on a diesel engine. At high loads, the blends reduce smoke significantly with a small penalty on CO, acetaldehyde and unburned ethanol emissions compared to diesel fuel. NO x and CO 2 emissions of the blends are decreased somewhat. At low loads, the blends have slight effects on smoke reduction due to overall leaner mixture. With the aid of additive and ignition improver, CO, unburned ethanol and acetaldehyde emissions of the blends can be decreased moderately, even total hydrocarbon emissions are less than those of diesel fuel. The results indicate the potential of diesel reformation for clean combustion in diesel engines.

  16. 40 CFR 80.581 - What are the batch testing and sample retention requirements for motor vehicle diesel fuel, NRLM...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... retention requirements for motor vehicle diesel fuel, NRLM diesel fuel, and ECA marine fuel? 80.581 Section...) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Sampling and Testing § 80.581 What are the batch testing and sample...

  17. Sunflower oil methyl ester as a diesel fuel

    SciTech Connect

    Hassett, D.J.; Hasan, A.R.

    1983-06-01

    The University of North Dakota Engineering Experiment Station is currently engaged in research to investigate the chemistry, fuel performance, and economics of chemically modified sunflower oil for use as an emergency replacement diesel fuel Physical and chemical properties of this fuel at varying levels of refinement are being used to determine fuel properties. Engine testing carried out to date indicates that unrefined methyl ester, defined as at least 90 percent methyl ester with unreacted or partially reacted sunflower oil as the remainder, has about the same tendency to foul engines as Number 2 diesel fuel.

  18. High-alcohol microemulsion fuel performance in a diesel engine

    SciTech Connect

    West, B.H.; Compere, A.L.; Griffith, W.L.

    1990-01-01

    Incidence of methanol use in diesel engines is increasing rapidly due to the potential to reduce both diesel particulate emissions and petroleum consumption. Because simple alcohols and conventional diesel fuel are normally immiscible, most tests to date have used neat to near-neat alcohol, or blends incorporating surfactants or other alcohols. Alcohol's poor ignition quality usually necssitates the use of often expensive cetane enhancers, full-time glow plugs, or spark assist. Reported herein are results of screening tests of clear microemulsion and micellar fuels which contain 10 to 65% C{sub 1}--C{sub 4} alcohol. Ignition performance and NO emissions were measured for clear, stable fuel blends containing alcohols, diesel fuel and additives such as alkyl nitrates, acrylic acids, and several vegetable oil derivatives. Using a diesel engine calibrated with reference fuels, cetane numbers for fifty four blends were estimated. The apparent cetane numbers ranged from around 20 to above 50 with the majority between 30 and 45. Emissions of nitric oxide were measured for a few select fuels and were found to be 10 to 20% lower than No. 2 diesel fuel. 36 refs., 87 figs., 8 tabs.

  19. 40 CFR 80.602 - What records must be kept by entities in the NRLM diesel fuel, ECA marine fuel, and diesel fuel...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... yellow 124 content or dye solvent red 164 content of NRLM diesel fuel, ECA marine fuel, NRLM diesel fuel... index or aromatics content, dye solvent red 164, marker solvent yellow 124 (as applicable), and the... applicable standard. (iii) Dyed or undyed with visible evidence of solvent red 164. (iv) Marked or...

  20. 40 CFR 80.602 - What records must be kept by entities in the NRLM diesel fuel, ECA marine fuel, and diesel fuel...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... yellow 124 content or dye solvent red 164 content of NRLM diesel fuel, ECA marine fuel, NRLM diesel fuel... index or aromatics content, dye solvent red 164, marker solvent yellow 124 (as applicable), and the... applicable standard. (iii) Dyed or undyed with visible evidence of solvent red 164. (iv) Marked or...

  1. Fabrication and characterization of micro-orifices for diesel fuel injectors.

    SciTech Connect

    Fenske, G.; Woodford, J.; Wang, J.; El-Hannouny, E.; Schaefer, R.; Hamady, F.; National Vehicle and Fuel Emissions Lab.

    2007-04-01

    Stringent emission standards are driving the development of diesel-fuel injection concepts to mitigate in-cylinder formation of particulates. While research has demonstrated significant reduction in particulate formation using micro-orifice technology, implementation requires development of industrial processes to fabricate micro-orifices with diameters as low as 50 gmm and with large length-to-diameter ratios. This paper reviews the different processes being pursued to fabricate micro-orifices and the advanced techniques applied to characterize the performance of micro-orifices. The latter include the use of phase-contrast x-ray imaging of electroless nickel-plated, micro-orifices and laser imaging of fuel sprays at elevated pressures. The experimental results demonstrate an industrially viable process to create small uniform orifices that improve spray formation for fuel injection.

  2. 30. Launch Area, Generator Building, interior view showing diesel fuel ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. Launch Area, Generator Building, interior view showing diesel fuel tank, fuel pump (foreground) and fuel lines leading to power-generating units (removed) VIEW NORTHWEST - NIKE Missile Battery PR-79, Launch Area, East Windsor Road south of State Route 101, Foster, Providence County, RI

  3. 46 CFR 58.50-10 - Diesel fuel tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Independent Fuel Tanks § 58.50-10 Diesel fuel tanks. (a) Construction. (1) Tanks... allowed in the construction of independent fuel tanks shall be as indicated in Table 58.50-10(a), except...

  4. 46 CFR 58.50-10 - Diesel fuel tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Independent Fuel Tanks § 58.50-10 Diesel fuel tanks. (a) Construction. (1) Tanks... allowed in the construction of independent fuel tanks shall be as indicated in Table 58.50-10(a), except...

  5. Effect of carbon coating on scuffing performance in diesel fuels

    SciTech Connect

    Ajayi, O. O.; Alzoubi, M. F.; Erdemir, A.; Fenske, G. R.

    2000-06-29

    Low-sulfur and low-aromatic diesel fuels are being introduced in order to reduce various types of emissions in diesel engines to levels in compliance with current and impending US federal regulations. The low lubricity of these fuels, however, poses major reliability and durability problems for fuel injection components that depend on diesel fuel for their lubrication. In the present study, the authors evaluated the scuff resistance of surfaces in regular diesel fuel containing 500 ppm sulfur and in Fischer-Tropsch synthetic diesel fuel containing no sulfur or aromatics. Tests were conducted with the high frequency reciprocating test rig (HFRR) using 52100 steel balls and H-13 tool-steel flats with and without Argonne's special carbon coatings. Test results showed that the sulfur-containing fuels provide about 20% higher scuffing resistance than does fuel without sulfur. Use of the carbon coating on the flat increased scuffing resistance in both regular and synthetic fuels by about ten times, as measured by the contact severity index at scuffing. Scuffing failure in tests conducted with coated surfaces did not occur until the coating had been removed by the two distinct mechanisms of spalling and wear.

  6. Effects of mixing system and pilot fuel quality on diesel-biogas dual fuel engine performance.

    PubMed

    Bedoya, Iván Darío; Arrieta, Andrés Amell; Cadavid, Francisco Javier

    2009-12-01

    This paper describes results obtained from CI engine performance running on dual fuel mode at fixed engine speed and four loads, varying the mixing system and pilot fuel quality, associated with fuel composition and cetane number. The experiments were carried out on a power generation diesel engine at 1500 m above sea level, with simulated biogas (60% CH(4)-40% CO(2)) as primary fuel, and diesel and palm oil biodiesel as pilot fuels. Dual fuel engine performance using a naturally aspirated mixing system and diesel as pilot fuel was compared with engine performance attained with a supercharged mixing system and biodiesel as pilot fuel. For all loads evaluated, was possible to achieve full diesel substitution using biogas and biodiesel as power sources. Using the supercharged mixing system combined with biodiesel as pilot fuel, thermal efficiency and substitution of pilot fuel were increased, whereas methane and carbon monoxide emissions were reduced.

  7. Waste Vegetable Oil as an Alternative Fuel for Diesel Vehicles

    DTIC Science & Technology

    2009-03-01

    the technology is many years from maturity and a full working system is even further away. Prototype electric vehicles from General Motors , Smart...diesel fuel or alternative fuel if the fuel is used in an on- road motor vehicle (Defense Energy Support Center, 2008). The only exemption is for...inside the fuel tanker trucks and on base storage tanks is the property of DESC. The Air Force owns the fuel when it is pumped into an airplane, motor

  8. 30 CFR 75.1912 - Fire suppression systems for permanent underground diesel fuel storage facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... underground diesel fuel storage facilities. 75.1912 Section 75.1912 Mineral Resources MINE SAFETY AND HEALTH... Diesel-Powered Equipment § 75.1912 Fire suppression systems for permanent underground diesel fuel storage... permanent underground diesel fuel storage facility. (1) Alternate types of fire suppression systems shall...

  9. 30 CFR 75.1903 - Underground diesel fuel storage facilities and areas; construction and safety precautions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Underground diesel fuel storage facilities and...-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1903 Underground diesel fuel storage facilities and areas; construction and safety precautions. (a) Permanent underground diesel fuel storage facilities must be— (1...

  10. 40 CFR 69.52 - Non-motor vehicle diesel fuel.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Non-motor vehicle diesel fuel. 69.52... (CONTINUED) SPECIAL EXEMPTIONS FROM REQUIREMENTS OF THE CLEAN AIR ACT Alaska § 69.52 Non-motor vehicle diesel... NRLM diesel fuel. (5) Exempt NRLM diesel fuel and heating oil must be segregated from motor...

  11. 26 CFR 48.4082-5 - Diesel fuel and kerosene; Alaska.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 16 2010-04-01 2010-04-01 true Diesel fuel and kerosene; Alaska. 48.4082-5..., and Taxable Fuel Taxable Fuel § 48.4082-5 Diesel fuel and kerosene; Alaska. (a) Application. This section applies to diesel fuel or kerosene removed, entered, or sold in Alaska for ultimate sale or use in...

  12. 26 CFR 48.4082-5 - Diesel fuel and kerosene; Alaska.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 16 2011-04-01 2011-04-01 false Diesel fuel and kerosene; Alaska. 48.4082-5..., and Taxable Fuel Taxable Fuel § 48.4082-5 Diesel fuel and kerosene; Alaska. (a) Application. This section applies to diesel fuel or kerosene removed, entered, or sold in Alaska for ultimate sale or use in...

  13. 26 CFR 48.4082-5 - Diesel fuel and kerosene; Alaska.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 16 2013-04-01 2013-04-01 false Diesel fuel and kerosene; Alaska. 48.4082-5..., and Taxable Fuel Taxable Fuel § 48.4082-5 Diesel fuel and kerosene; Alaska. (a) Application. This section applies to diesel fuel or kerosene removed, entered, or sold in Alaska for ultimate sale or use in...

  14. 26 CFR 48.4082-5 - Diesel fuel and kerosene; Alaska.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 16 2012-04-01 2012-04-01 false Diesel fuel and kerosene; Alaska. 48.4082-5..., and Taxable Fuel Taxable Fuel § 48.4082-5 Diesel fuel and kerosene; Alaska. (a) Application. This section applies to diesel fuel or kerosene removed, entered, or sold in Alaska for ultimate sale or use in...

  15. 40 CFR 80.535 - How are NRLM diesel fuel credits generated?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive... the standards of § 80.510(a) or (b). V520 = The total volume of motor vehicle diesel fuel produced or... generated by both a foreign refiner and by an importer for the same motor vehicle diesel fuel. (iii)...

  16. 40 CFR 80.596 - How is a refinery motor vehicle diesel fuel volume baseline calculated?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false How is a refinery motor vehicle diesel... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Recordkeeping and...

  17. Investigation of the spray characteristics for a secondary fuel injection nozzle using a digital image processing method

    NASA Astrophysics Data System (ADS)

    Jeong, Haeyoung; Lee, Kihyung; Ikeda, Yuji

    2007-05-01

    There are many ways to reduce diesel engine exhaust emissions. However, NOx emission is difficult to reduce because the hydrocarbon (HC) concentration in a diesel engine is not sufficient for NOx conversion. Therefore, in order to create stoichiometric conditions in the De-NOx catalyst, a secondary injection system is designed to inject liquid HC into the exhaust pipe. The atomization and distribution characteristics of the HC injected from a secondary injector are key technologies to obtain a high NOx conversion because inhomogeneous droplets of injected HC cause not only high fuel consumption but also deterioration of NOx emission. This paper describes the spray characteristics of a secondary injector including the spray angle, penetration length and breakup behaviour of the spray to optimize the reduction rate of the NOx catalyst. In this study, various optical diagnostics were applied to investigate these spray characteristics, the atomization mechanism and spray developing process. The visualization and image processing method for the spray pulsation were developed by high speed photography. The influence of the fuel supply pressure on the spray behaviour and a more detailed spray developing process have been analysed experimentally using image processing. Finally, the experimental results were used to correlate the spray structure to the injection system performance and to provide a design guide for a secondary injector nozzle.

  18. First results of the delayed fluorescence velocimetry as applied to diesel spray diagnostics

    NASA Astrophysics Data System (ADS)

    Megahed, M.; Roosen, P.

    1993-08-01

    One of the main parameters governing diesel spray formation is the fuel's velocity just beneath the nozzle. The high density of the injected liquid within the first few millimeters under the injector prohibits accurate measurements of this velocity. The liquid's velocity in this region has been mainly measured using intrusive methods and has been numerically calculated without considering the complex flow fields in the nozzle. A new optical method based on laser induced delayed fluorescence allowing the measurement of the fuel's velocity close to the nozzle is reported. The results are accurate to about 14% and represent the velocities of heavy oils within the first 2 - 5 mm beneath the nozzle. The development of the velocity over the injection period showed a drastic deceleration of the fuel within the first 3 mm beneath the nozzle. This is assumed to be due to the complex interaction of cavitation in the injection hole and pressure waves in the injection system which causes the start of atomization in the nozzle hole.

  19. 40 CFR 600.206-93 - Calculation and use of fuel economy values for gasoline-fueled, diesel-fueled, electric, alcohol...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... values for gasoline-fueled, diesel-fueled, electric, alcohol-fueled, natural gas-fueled, alcohol dual fuel, and natural gas dual fuel vehicle configurations. 600.206-93 Section 600.206-93 Protection of... for gasoline-fueled, diesel-fueled, electric, alcohol-fueled, natural gas-fueled, alcohol dual...

  20. Impact of High Sulfur Military JP-8 Fuel on Heavy Duty Diesel Engine EGR Cooler Condensate

    DTIC Science & Technology

    2008-04-14

    2008-01-1081 Impact of High Sulfur Military JP-8 Fuel on Heavy Duty Diesel Engine EGR Cooler Condensate Michael Mosburger, Jerry Fuschetto, Dennis...International ABSTRACT Low-sulfur “clean” diesel fuel has been mandated in the US and Europe. However, quality of diesel fuel, particularly the sulfur...on local fuel supplies, which exposes vehicles to diesel fuel or jet fuel (JP-8) with elevated levels of sulfur. Modern engines typically use

  1. 40 CFR 80.524 - What sulfur content standard applies to motor vehicle diesel fuel downstream of the refinery or...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to motor vehicle diesel fuel downstream of the refinery or importer? 80.524 Section 80.524 Protection... FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Motor Vehicle Diesel Fuel Standards and Requirements § 80.524 What sulfur content...

  2. 40 CFR 80.524 - What sulfur content standard applies to motor vehicle diesel fuel downstream of the refinery or...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... to motor vehicle diesel fuel downstream of the refinery or importer? 80.524 Section 80.524 Protection... FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Motor Vehicle Diesel Fuel Standards and Requirements § 80.524 What sulfur content...

  3. 40 CFR 80.524 - What sulfur content standard applies to motor vehicle diesel fuel downstream of the refinery or...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to motor vehicle diesel fuel downstream of the refinery or importer? 80.524 Section 80.524 Protection... FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Motor Vehicle Diesel Fuel Standards and Requirements § 80.524 What sulfur content...

  4. 40 CFR 80.524 - What sulfur content standard applies to motor vehicle diesel fuel downstream of the refinery or...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... to motor vehicle diesel fuel downstream of the refinery or importer? 80.524 Section 80.524 Protection... FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Motor Vehicle Diesel Fuel Standards and Requirements § 80.524 What sulfur content...

  5. Improvement of fuel injection system of locomotive diesel engine.

    PubMed

    Li, Minghai; Cui, Hongjiang; Wang, Juan; Guan, Ying

    2009-01-01

    The traditional locomotive diesels are usually designed for the performance of rated condition and much fuel will be consumed. A new plunger piston matching parts of fuel injection pump and injector nozzle matching parts were designed. The experimental results of fuel injection pump test and diesel engine show that the fuel consumption rate can be decreased a lot in the most of the working conditions. The forced lubrication is adopted for the new injector nozzle matching parts, which can reduce failure rate and increase service life. The design has been patented by Chinese State Patent Office.

  6. Detailed chemical kinetic modeling of diesel combustion with oxygenated fuels

    SciTech Connect

    Pitz, W J; Curran, H J; Fisher, E; Glaude, P A; Marinov, N M; Westbrook, C K

    1999-10-28

    The influence of oxygenated hydrocarbons as additives to diesel fuels on ignition, NOx emissions and soot production has been examined using a detailed chemical kinetic reaction mechanism. N-heptane was used as a representative diesel fuel, and methanol, ethanol, dimethyl ether and dimethoxymethane were used as oxygenated fuel additives. It was found that addition of oxygenated hydrocarbons reduced NOx levels and reduced the production of soot precursors. When the overall oxygen content in the fuel reached approximately 25% by mass, production of soot precursors fell effectively to zero, in agreement with experimental studies. The kinetic factors responsible for these observations are discussed.

  7. Comparison of carbonyl compounds emissions from diesel engine fueled with biodiesel and diesel

    NASA Astrophysics Data System (ADS)

    He, Chao; Ge, Yunshan; Tan, Jianwei; You, Kewei; Han, Xunkun; Wang, Junfang; You, Qiuwen; Shah, Asad Naeem

    The characteristics of carbonyl compounds emissions were investigated on a direct injection, turbocharged diesel engine fueled with pure biodiesel derived from soybean oil. The gas-phase carbonyls were collected by 2,4-dinitrophenylhydrazine (DNPH)-coated silica cartridges from diluted exhaust and analyzed by HPLC with UV detector. A commercial standard mixture including 14 carbonyl compounds was used for quantitative analysis. The experimental results indicate that biodiesel-fueled engine almost has triple carbonyls emissions of diesel-fueled engine. The weighted carbonyls emission of 8-mode test cycle of biodiesel is 90.8 mg (kW h) -1 and that of diesel is 30.7 mg (kW h) -1. The formaldehyde is the most abundant compound of carbonyls for both biodiesel and diesel, taking part for 46.2% and 62.7% respectively. The next most significant compounds are acetaldehyde, acrolein and acetone for both fuels. The engine fueled with biodiesel emits a comparatively high content of propionaldehyde and methacrolein. Biodiesel, as an alternative fuel, has lower specific reactivity (SR) caused by carbonyls compared with diesel. When fueled with biodiesel, carbonyl compounds make more contribution to total hydrocarbon emission.

  8. Simulation of fundamental atomization mechanisms in fuel sprays

    NASA Technical Reports Server (NTRS)

    Childs, Robert, E.; Mansour, Nagi N.

    1988-01-01

    Growth of instabilities on the liquid/gas interface in the initial region of fuel sprays is studied by means of numerical simulations. The simulations are based on solutions of the variable-density incompressible Navier-Stokes equations, which are obtained with a new numerical algorithm. The simulations give good agreement with analytical results for the instabilities on a liquid cylinder induced by surface tension and wind-induced instabilities. The effects of boundary layers on the wind-induced instabilities are investigated. It is found that a boundary layer reduces the growth rate for a single interface, and a comparison with inviscid theory suggests that boundary layer effects may be significantly more important than surface tension effects. The results yield a better estimate than inviscid theory for the drop sizes as reported for diesel sprays. Results for the planar jet show that boundary layer effects hasten the growth of Squire's 'symmetric' mode, which is responsible for jet disintegration. This result helps explain the rapid atomization which occurs in swirl and air-blast atomizers.

  9. Hydrogen Gas as a Fuel in Direct Injection Diesel Engine

    NASA Astrophysics Data System (ADS)

    Dhanasekaran, Chinnathambi; Mohankumar, Gabriael

    2016-04-01

    Hydrogen is expected to be one of the most important fuels in the near future for solving the problem caused by the greenhouse gases, for protecting environment and saving conventional fuels. In this study, a dual fuel engine of hydrogen and diesel was investigated. Hydrogen was conceded through the intake port, and simultaneously air and diesel was pervaded into the cylinder. Using electronic gas injector and electronic control unit, the injection timing and duration varied. In this investigation, a single cylinder, KIRLOSKAR AV1, DI Diesel engine was used. Hydrogen injection timing was fixed at TDC and injection duration was timed for 30°, 60°, and 90° crank angles. The injection timing of diesel was fixed at 23° BTDC. When hydrogen is mixed with inlet air, emanation of HC, CO and CO2 decreased without any emission (exhaustion) of smoke while increasing the brake thermal efficiency.

  10. Alternative fuel properties of tall oil fatty acid methyl ester-diesel fuel blends.

    PubMed

    Altiparmak, Duran; Keskin, Ali; Koca, Atilla; Gürü, Metin

    2007-01-01

    In this experimental work, tall oil methyl ester-diesel fuel blends as alternative fuels for diesel engines were studied. Tall oil methyl ester was produced by reacting tall oil fatty acids with methyl alcohol under optimum conditions. The blends of tall oil methyl ester-diesel fuel were tested in a direct injection diesel engine at full load condition. The effects of the new fuel blends on the engine performance and exhaust emission were tested. It was observed that the engine torque and power output with tall oil methyl ester-diesel fuel blends increased up to 6.1% and 5.9%, respectively. It was also seen that CO emissions decreased to 38.9% and NO(x) emissions increased up to 30% with the new fuel blends. The smoke opacity did not vary significantly.

  11. Control of autothermal reforming reactor of diesel fuel

    NASA Astrophysics Data System (ADS)

    Dolanc, Gregor; Pregelj, Boštjan; Petrovčič, Janko; Pasel, Joachim; Kolb, Gunther

    2016-05-01

    In this paper a control system for autothermal reforming reactor for diesel fuel is presented. Autothermal reforming reactors and the pertaining purification reactors are used to convert diesel fuel into hydrogen-rich reformate gas, which is then converted into electricity by the fuel cell. The purpose of the presented control system is to control the hydrogen production rate and the temperature of the autothermal reforming reactor. The system is designed in such a way that the two control loops do not interact, which is required for stable operation of the fuel cell. The presented control system is a part of the complete control system of the diesel fuel cell auxiliary power unit (APU).

  12. Vegetable oil or diesel fuel-a flexible option

    SciTech Connect

    Suda, K.J.

    1984-02-01

    Vegetable oils provide diesel engine performance similar to that obtained with diesel fuel, and this has been documented in many prior publications. Because they are potentially interchangeable with diesel fuel, interest has focused on vegetable oils as short-range alternate fuels. However, engine durability when burning vegetable oils may be adversely affected depending on the type of combustion system employed. Laboratory and field experimental tests have identified the prechamber engine as having the greatest short-range potential for using vegetable oil fuels. Performance and durability at low engine ratings are essentially the same as expected for operation on diesel fuel. However, at high engine ratings piston ring and cylinder linear wear are greater than expected for operation on diesel fuel. A laboratory program was successfully completed which resulted in a combustion system that would allow the higher rated prechamber engines to achieve normal life when burning 100% soybean oil. Fluid model tests utilizing high speed photography, single-cylinder engine tests utilizing fuel tracers, and a 200-hour multicylinder durability test were included. Extended endurance tests and experience with other vegetable oils are still required.

  13. 40 CFR 80.550 - What is the definition of a motor vehicle diesel fuel small refiner or a NRLM diesel fuel small...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false What is the definition of a motor...) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Small Refiner Hardship Provisions § 80.550 What is the definition of a...

  14. 40 CFR 80.550 - What is the definition of a motor vehicle diesel fuel small refiner or a NRLM diesel fuel small...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false What is the definition of a motor...) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Small Refiner Hardship Provisions § 80.550 What is the definition of a...

  15. 40 CFR 80.510 - What are the standards and marker requirements for NRLM diesel fuel and ECA marine fuel?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... vehicle or nonroad diesel engine (including locomotive, or marine diesel engines). (4) Except as provided for in paragraph (i) of this section, any diesel fuel, other than jet fuel or kerosene that is... engine (except for locomotive or marine diesel engines). (4) Except as provided for in paragraph (i) of...

  16. 40 CFR 80.510 - What are the standards and marker requirements for NRLM diesel fuel and ECA marine fuel?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... vehicle or nonroad diesel engine (including locomotive, or marine diesel engines). (4) Except as provided for in paragraph (i) of this section, any diesel fuel, other than jet fuel or kerosene that is... engine (except for locomotive or marine diesel engines). (4) Except as provided for in paragraph (i) of...

  17. 40 CFR 80.510 - What are the standards and marker requirements for NRLM diesel fuel and ECA marine fuel?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... vehicle or nonroad diesel engine (including locomotive, or marine diesel engines). (4) Except as provided for in paragraph (i) of this section, any diesel fuel, other than jet fuel or kerosene that is... engine (except for locomotive or marine diesel engines). (4) Except as provided for in paragraph (i) of...

  18. Determination of sulfur content of diesel fuels and diesel fuel-like fractions of waste polymer cracking.

    PubMed

    Miskolczi, N; Bartha, L; Borszéki, J; Halmos, P

    2006-05-15

    The element content of low and high sulfur containing diesel fuels was measured by different analytical methods: energy-dispersive X-ray fluorescent (EDXRF) and inductively coupled plasma atomic emission (ICP-OES) spectroscopy methods. Then results were compared. High sulfur containing diesel fuels were from heavy diesel engines and diesel fuel-like liquids obtained by thermal degradation of waste polymers. In case of X-ray analysis also the effect of the used thin foils with different chemical compositions (polypropylene, polycarbonate, polyester) on the accuracy was investigated. According to data considerable differences and deterioration of accuracy was observed in the respect of foils in case of both low and high sulfur containing hydrocarbons. Results indicated appropriate correlation between experimental results measured by both two methods, but differences could be observed in the correlation, which could be explained with different ratio of C/H of samples.

  19. Eulerian CFD modeling and X-ray validation of non-evaporating diesel spray

    NASA Astrophysics Data System (ADS)

    Xue, Qingluan; Som, Sibendu; Quan, Shaoping; Pomraning, Eric; Senecal, P. K.

    2013-11-01

    This work implemented an Eulerian single-phase approach by Vallet et al. into CFD software (Convergent) for diesel spray simulations. This Eulerian approach considers liquid and gas phase as a complex mixture of a single flow with a highly variable density to describe the near nozzle dense sprays. The mean density is obtained form the Favre-averaged liquid mass fraction. Liquid mass fraction is transported with a model for the turbulent liquid diffusion flux into the gas. A mean gradient-based model is employed for the diffusion flux in this study. A non-evaporating diesel spray was measured using x-ray radiography at Argonne National Laboratory. The quantitative and time-resolved data of liquid penetration and mass distribution in the dense spray region are used to validate this approach. The different turbulence models are also used for the simulations. The comparison between the simulated results and experimental data and the turbulence model effect are discussed.

  20. 40 CFR 80.531 - How are motor vehicle diesel fuel credits generated?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel... diesel fuel meeting the sulfur content standard in § 80.520(a)(1) that is used in vehicles with engines... 40 Protection of Environment 17 2014-07-01 2014-07-01 false How are motor vehicle diesel...

  1. 40 CFR 80.531 - How are motor vehicle diesel fuel credits generated?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel... diesel fuel meeting the sulfur content standard in § 80.520(a)(1) that is used in vehicles with engines... 40 Protection of Environment 17 2012-07-01 2012-07-01 false How are motor vehicle diesel...

  2. 40 CFR 80.531 - How are motor vehicle diesel fuel credits generated?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel... diesel fuel meeting the sulfur content standard in § 80.520(a)(1) that is used in vehicles with engines... 40 Protection of Environment 17 2013-07-01 2013-07-01 false How are motor vehicle diesel...

  3. 40 CFR 80.532 - How are motor vehicle diesel fuel credits used and transferred?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false How are motor vehicle diesel fuel... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel....532 How are motor vehicle diesel fuel credits used and transferred? (a) Credit use stipulations. Motor...

  4. 40 CFR 80.532 - How are motor vehicle diesel fuel credits used and transferred?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false How are motor vehicle diesel fuel... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel....532 How are motor vehicle diesel fuel credits used and transferred? (a) Credit use stipulations. Motor...

  5. High-pressure fuel injection system for diesel engine

    SciTech Connect

    Hoshi, Y.

    1986-01-21

    This patent describes a high-pressure fuel injection system for a diesel engine. This system consists of: (a) main pumps for injecting fuel each located at one of cylinders of the engine and formed with a fuel injecting port, a discharge valve located in a path connecting the first injected fuel space with the fuel injecting port. The discharge valve is opened when the fuel to be injected reaches a predetermined pressure level. A first injection timing fuel space fluidly connected with the first injected fuel space through a movable shuttle is filled with injection timing fuel, and a plunger varies the volume of the first injection timing fuel space; (b) a metering and distributing pump formed with injection fuel outputs and injection timing fuel outlets corresponding in number to the cylinders of the engine for discharging fuel in timed relation to the rotation of the engine; (c) fuel metering valves for metering fuel flowing into the second injected fuel space and second injection timing fuel space respectively; (d) pipes for fluidly connecting the first injected fuel space and first injection timing fuel space of the main pump for injecting fuel with the injected fuel outlets and injection timing fuel outlets of the metering and distributing pump respectively; and (e) a rocker arm mechanism for driving the plunger of the main pump for injecting fuel in timed relation to the rotation of the engine.

  6. Pyrolytic Waste Plastic Oil and Its Diesel Blend: Fuel Characterization

    PubMed Central

    Sultana, M.; Al-Mamun, M. R.; Hasan, M. R.

    2016-01-01

    The authors introduced waste plastic pyrolysis oil (WPPO) as an alternative fuel characterized in detail and compared with conventional diesel. High density polyethylene, HDPE, was pyrolyzed in a self-designed stainless steel laboratory reactor to produce useful fuel products. HDPE waste was completely pyrolyzed at 330–490°C for 2-3 hours to obtain solid residue, liquid fuel oil, and flammable gaseous hydrocarbon products. Comparison of the fuel properties to the petrodiesel fuel standards ASTM D 975 and EN 590 revealed that the synthetic product was within all specifications. Notably, the fuel properties included a kinematic viscosity (40°C) of 1.98 cSt, density of 0.75 gm/cc, sulphur content of 0.25 (wt%), and carbon residue of 0.5 (wt%), and high calorific value represented significant enhancements over those of conventional petroleum diesel fuel. PMID:27433168

  7. Pyrolytic Waste Plastic Oil and Its Diesel Blend: Fuel Characterization.

    PubMed

    Khan, M Z H; Sultana, M; Al-Mamun, M R; Hasan, M R

    2016-01-01

    The authors introduced waste plastic pyrolysis oil (WPPO) as an alternative fuel characterized in detail and compared with conventional diesel. High density polyethylene, HDPE, was pyrolyzed in a self-designed stainless steel laboratory reactor to produce useful fuel products. HDPE waste was completely pyrolyzed at 330-490°C for 2-3 hours to obtain solid residue, liquid fuel oil, and flammable gaseous hydrocarbon products. Comparison of the fuel properties to the petrodiesel fuel standards ASTM D 975 and EN 590 revealed that the synthetic product was within all specifications. Notably, the fuel properties included a kinematic viscosity (40°C) of 1.98 cSt, density of 0.75 gm/cc, sulphur content of 0.25 (wt%), and carbon residue of 0.5 (wt%), and high calorific value represented significant enhancements over those of conventional petroleum diesel fuel.

  8. Determination of polycyclic aromatic hydrocarbons in diesel exhaust particulate matter and diesel fuel oil.

    PubMed

    Obuchi, A; Aoyama, H; Ohi, A; Ohuchi, H

    1984-11-16

    Clean-up procedures were developed for a method for determining the amount of polycyclic aromatic hydrocarbons (PAHs) in diesel exhaust particulate matter and in diesel fuel oils using reversed-phase high-performance liquid chromatography (HPLC). They were based mainly on the elimination of insoluble matter and aliphatic compounds that affect the performance of HPLC, from the dichloromethane extracts of particulate matter or from oils, with the aid of a disposable preparation column containing reversed-phase packings (Sep-Pak C18). Using these procedures, it is possible to detect 1 ng of benzo(a)pyrene in 30 mg of particulate matter with more than a 97% recovery or 0.5 ng in 50 microliters of oil with 91% recovery. Examples of analyses are given for particulate matter emitted from a diesel test engine and for diesel fuel oils, such as gas oil, residual oil and coal-liquefied oil.

  9. 40 CFR 69.52 - Non-motor vehicle diesel fuel.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... diesel vehicles and engines Its use may damage these vehicles and engines. For use in all other diesel vehicles and engines. (ii) 15 ppm sulfur diesel fuel. From June 1, 2006 through May 31, 2010. ULTRA-LOW... and engines. Recommended for use in all diesel vehicles and engines. (iii) 15 ppm sulfur diesel...

  10. Diesel fuel containing wax oxidates to reduce particulate emissions

    SciTech Connect

    Sprague, H.G.; Sweeney, W.M.

    1980-09-16

    Addition of 0.1 to 1.5 percent by weight of wax oxidates to a diesel fuel is found to reduce the amount of soot and invisible particles produced when the fuel is used in a diesel engine. The wax oxidates act synergistically with fuel-soluble organometallic compounds such as alkyl cyclopentadienyl manganese tricarbonyl complex salts in reducing particulates. The wax oxidates used have a ratio of neutralization number to saponification number below about 0.40 and a saybolt universal viscosity at 210* F. Higher than 1600.

  11. Utilization of Alcohol Fuel in Spark Ignition and Diesel Engines.

    ERIC Educational Resources Information Center

    Berndt, Don; Stengel, Ron

    These five units comprise a course intended to prepare and train students to conduct alcohol fuel utilization seminars in spark ignition and diesel engines. Introductory materials include objectives and a list of instructor requirements. The first four units cover these topics: ethanol as an alternative fuel (technical and economic advantages,…

  12. Nitrogen oxide removal using diesel fuel and a catalyst

    DOEpatents

    Vogtlin, George E.; Goerz, David A.; Hsiao, Mark; Merritt, Bernard T.; Penetrante, Bernie M.; Reynolds, John G.; Brusasco, Ray

    2000-01-01

    Hydrocarbons, such as diesel fuel, are added to internal combustion engine exhaust to reduce exhaust NO.sub.x in the presence of a amphoteric catalyst support material. Exhaust NO.sub.x reduction of at least 50% in the emissions is achieved with the addition of less than 5% fuel as a source of the hydrocarbons.

  13. Utilization of Alcohol Fuel in Spark Ignition and Diesel Engines.

    ERIC Educational Resources Information Center

    Berndt, Don; Stengel, Ron

    These five units comprise a course intended to prepare and train students to conduct alcohol fuel utilization seminars in spark ignition and diesel engines. Introductory materials include objectives and a list of instructor requirements. The first four units cover these topics: ethanol as an alternative fuel (technical and economic advantages,…

  14. Viscosity of diesel engine fuel oil under pressure

    NASA Technical Reports Server (NTRS)

    Hersey, Mayo D

    1929-01-01

    In the development of Diesel engine fuel injection systems it is necessary to have an approximate knowledge of the absolute viscosity of the fuel oil under high hydrostatic pressures. This report presents the results of experimental tests conducted by Mr. Jackson Newton Shore, utilizing the A.S.M.E. high pressure equipment.

  15. Five Kilowatt Solid Oxide Fuel Cell/Diesel Reformer

    SciTech Connect

    Dennis Witmer; Thomas Johnson

    2008-12-31

    Reducing fossil fuel consumption both for energy security and for reduction in global greenhouse emissions has been a major goal of energy research in the US for many years. Fuel cells have been proposed as a technology that can address both these issues--as devices that convert the energy of a fuel directly into electrical energy, they offer low emissions and high efficiencies. These advantages are of particular interest to remote power users, where grid connected power is unavailable, and most electrical power comes from diesel electric generators. Diesel fuel is the fuel of choice because it can be easily transported and stored in quantities large enough to supply energy for small communities for extended periods of time. This projected aimed to demonstrate the operation of a solid oxide fuel cell on diesel fuel, and to measure the resulting efficiency. Results from this project have been somewhat encouraging, with a laboratory breadboard integration of a small scale diesel reformer and a Solid Oxide Fuel Cell demonstrated in the first 18 months of the project. This initial demonstration was conducted at INEEL in the spring of 2005 using a small scale diesel reformer provided by SOFCo and a fuel cell provided by Acumentrics. However, attempts to integrate and automate the available technology have not proved successful as yet. This is due both to the lack of movement on the fuel processing side as well as the rather poor stack lifetimes exhibited by the fuel cells. Commercial product is still unavailable, and precommercial devices are both extremely expensive and require extensive field support.

  16. Eucalyptus biodiesel as an alternative to diesel fuel: preparation and tests on DI diesel engine.

    PubMed

    Tarabet, Lyes; Loubar, Khaled; Lounici, Mohand Said; Hanchi, Samir; Tazerout, Mohand

    2012-01-01

    Nowadays, the increasing oil consumption throughout the world induces crucial economical, security, and environmental problems. As a result, intensive researches are undertaken to find appropriate substitution to fossil fuels. In view of the large amount of eucalyptus trees present in arid areas, we focus in this study on the investigation of using eucalyptus biodiesel as fuel in diesel engine. Eucalyptus oil is converted by transesterification into biodiesel. Eucalyptus biodiesel characterization shows that the physicochemical properties are comparable to those of diesel fuel. In the second phase, a single cylinder air-cooled, DI diesel engine was used to test neat eucalyptus biodiesel and its blends with diesel fuel in various ratios (75, 50, and 25 by v%) at several engine loads. The engine combustion parameters such as peak pressure, rate of pressure rise, and heat release rate are determined. Performances and exhaust emissions are also evaluated at all operating conditions. Results show that neat eucalyptus biodiesel and its blends present significant improvements of carbon monoxide, unburned hydrocarbon, and particulates emissions especially at high loads with equivalent performances to those of diesel fuel. However, the NOx emissions are slightly increased when the biodiesel content is increased in the blend.

  17. Eucalyptus Biodiesel as an Alternative to Diesel Fuel: Preparation and Tests on DI Diesel Engine

    PubMed Central

    Tarabet, Lyes; Loubar, Khaled; Lounici, Mohand Said; Hanchi, Samir; Tazerout, Mohand

    2012-01-01

    Nowadays, the increasing oil consumption throughout the world induces crucial economical, security, and environmental problems. As a result, intensive researches are undertaken to find appropriate substitution to fossil fuels. In view of the large amount of eucalyptus trees present in arid areas, we focus in this study on the investigation of using eucalyptus biodiesel as fuel in diesel engine. Eucalyptus oil is converted by transesterification into biodiesel. Eucalyptus biodiesel characterization shows that the physicochemical properties are comparable to those of diesel fuel. In the second phase, a single cylinder air-cooled, DI diesel engine was used to test neat eucalyptus biodiesel and its blends with diesel fuel in various ratios (75, 50, and 25 by v%) at several engine loads. The engine combustion parameters such as peak pressure, rate of pressure rise, and heat release rate are determined. Performances and exhaust emissions are also evaluated at all operating conditions. Results show that neat eucalyptus biodiesel and its blends present significant improvements of carbon monoxide, unburned hydrocarbon, and particulates emissions especially at high loads with equivalent performances to those of diesel fuel. However, the NOx emissions are slightly increased when the biodiesel content is increased in the blend. PMID:22675246

  18. Experimental study on particulate and NOx emissions of a diesel engine fueled with ultra low sulfur diesel, RME-diesel blends and PME-diesel blends.

    PubMed

    Zhu, Lei; Zhang, Wugao; Liu, Wei; Huang, Zhen

    2010-02-01

    Ultra low sulfur diesel and two different kinds of biodiesel fuels blended with baseline diesel fuel in 5% and 20% v/v were tested in a Cummins 4BTA direct injection diesel engine, with a turbocharger and an intercooler. Experiments were conducted under five engine loads at two steady speeds (1500 rpm and 2500 rpm). The study aims at investigating the engine performance, NO(x) emission, smoke opacity, PM composition, PM size distribution and comparing the impacts of low sulfur content of biodiesel with ULSD on the particulate emission. The results indicate that, compared to base diesel fuel, the increase of biodiesel in blends could cause certain increase in both brake specific fuel consumption and brake thermal efficiency. Compared with baseline diesel fuel, the biodiesel blends bring about more NO(x) emissions. With the proportion of biodiesel increase in blends, the smoke opacity decreases, while total particle number concentration increases. Meanwhile the ULSD gives lower NO(x) emissions, smoke opacity and total number concentration than those of baseline diesel fuel. In addition, the percentages of SOF and sulfate in particulates increase with biodiesel in blends, while the dry soot friction decreases obviously. Compared with baseline diesel fuel, the biodiesel blends increase the total nucleation number concentration, while ULSD reduces the total nucleation number concentration effectively, although they all have lower sulfur content. It means that, for ULSD, the lower sulfur content is the dominant factor for suppressing nucleation particles formation, while for biodiesel blends, lower volatile, lower aromatic content and higher oxygen content of biodiesel are key factors for improving the nucleation particles formation. The results demonstrate that the higher NO(x) emission and total nucleation number concentration are considered as the big obstacles of the application of biodiesel in diesel engine.

  19. Temperature characteristics for PTC material heating diesel fuel

    NASA Astrophysics Data System (ADS)

    Gu, Lefeng; Li, Xiaolu; Wang, Jun; Li, Ying; Li, Ming

    2010-08-01

    This paper gives a way which utilizes the PTC (Positive Temperature Coefficient) material to preheat diesel fuel in the injector in order to improve the cold starting and emissions of engine. A new injector is also designed. In order to understand the preheating process in this new injector, a dynamic temperature testing system combined with the MSP430F149 data acquisition system is developed for PTC material heating diesel fuel. Especially, the corresponding software and hardware circuits are explained. The temperature of diesel fuel preheating by PTC ceramics is measured under different voltages and distances, which Curie point is 75 °C. Diesel fuel is heated by self-defined temperature around the Curie point of PTC ceramics. The diesel fuel temperature rises rapidly in 2 minutes of the beginning, then can reach 60 °C within 5 minutes as its distance is 5mm away from the surface of PTC ceramics. However, there are a lot of fundamental studies and technology to be resolved in order to apply PTC material in the injector successfully.

  20. A Multicomponent Blend as a Diesel Fuel Surrogate for Compression Ignition Engine Applications

    SciTech Connect

    Pei, Yuanjiang; Mehl, Marco; Liu, Wei; Lu, Tianfeng; Pitz, William J.; Som, Sibendu

    2015-05-12

    A mixture of n-dodecane and m-xylene is investigated as a diesel fuel surrogate for compression ignition engine applications. Compared to neat n-dodecane, this binary mixture is more representative of diesel fuel because it contains an alkyl-benzene which represents an important chemical class present in diesel fuels. A detailed multi-component mechanism for n-dodecane and m-xylene was developed by combining a previously developed n-dodecane mechanism with a recently developed mechanism for xylenes. The xylene mechanism is shown to reproduce experimental ignition data from a rapid compression machine and shock tube, speciation data from the jet stirred reactor and flame speed data. This combined mechanism was validated by comparing predictions from the model with experimental data for ignition in shock tubes and for reactivity in a flow reactor. The combined mechanism, consisting of 2885 species and 11754 reactions, was reduced to a skeletal mechanism consisting 163 species and 887 reactions for 3D diesel engine simulations. The mechanism reduction was performed using directed relation graph (DRG) with expert knowledge (DRG-X) and DRG-aided sensitivity analysis (DRGASA) at a fixed fuel composition of 77% of n-dodecane and 23% m-xylene by volume. The sample space for the reduction covered pressure of 1 – 80 bar, equivalence ratio of 0.5 – 2.0, and initial temperature of 700 – 1600 K for ignition. The skeletal mechanism was compared with the detailed mechanism for ignition and flow reactor predictions. Finally, the skeletal mechanism was validated against a spray flame dataset under diesel engine conditions documented on the Engine Combustion Network (ECN) website. These multi-dimensional simulations were performed using a Representative Interactive Flame (RIF) turbulent combustion model. Encouraging results were obtained compared to the experiments with regards to the predictions of ignition delay and lift-off length at different ambient temperatures.

  1. Oxygenates for Advanced Petroleum-Based Diesel Fuels

    DTIC Science & Technology

    2001-02-01

    Blends,” 219th American Chemical Society Meeting , San Francisco, CA, March 26-30, 2000. 5. Naegeli, D.W. and Moses, C.A., “Effects of Fuel...used to optimize engine performance and lower exhaust emissions. Nevertheless, the diesel engine has yet to meet the very stringent emissions...diesel engine designed to meet 1994 emission standards using a catalytic converter. The tests showed that oxygenates reduced PM emissions by 6 to 7

  2. Characterization of sprays

    NASA Technical Reports Server (NTRS)

    Chigier, N.; Mao, C.-P.

    1984-01-01

    It is pointed out that most practical power generation and propulsion systems involve the burning of different types of fuel sprays, taking into account aircraft propulsion, industrial furnaces, boilers, gas turbines, and diesel engines. There has been a lack of data which can serve as a basis for spray model development and validation. A major aim of the present investigation is to fill this gap. Experimental apparatus and techniques for studying the characteristics of fuel sprays are discussed, taking into account two-dimensional still photography, cinematography, holography, a laser diffraction particle sizer, and a laser anemometer. The considered instruments were used in a number of experiments, taking into account three different types of fuel spray. Attention is given to liquid fuel sprays, high pressure pulsed diesel sprays, and coal-water slurry sprays.

  3. Diesel fuel to dc power: Navy & Marine Corps Applications

    SciTech Connect

    Bloomfield, D.P.

    1996-12-31

    During the past year Analytic Power has tested fuel cell stacks and diesel fuel processors for US Navy and Marine Corps applications. The units are 10 kW demonstration power plants. The USN power plant was built to demonstrate the feasibility of diesel fueled PEM fuel cell power plants for 250 kW and 2.5 MW shipboard power systems. We designed and tested a ten cell, 1 kW USMC substack and fuel processor. The complete 10 kW prototype power plant, which has application to both power and hydrogen generation, is now under construction. The USN and USMC fuel cell stacks have been tested on both actual and simulated reformate. Analytic Power has accumulated operating experience with autothermal reforming based fuel processors operating on sulfur bearing diesel fuel, jet fuel, propane and natural gas. We have also completed the design and fabrication of an advanced regenerative ATR for the USMC. One of the significant problems with small fuel processors is heat loss which limits its ability to operate with the high steam to carbon ratios required for coke free high efficiency operation. The new USMC unit specifically addresses these heat transfer issues. The advances in the mill programs have been incorporated into Analytic Power`s commercial units which are now under test.

  4. Alternative diesel fuel study on four different types of vegetable oils of Turkish origin

    SciTech Connect

    Oezaktas, T.; Cigizoglu, K.B.; Karaosmanoglu, F.

    1997-02-01

    Four different types of vegetable oils of Turkish origin (sunflower, corn, soybean, and olive oil) were blended with grade 2-D diesel fuel at a ratio of 20/80 (v/v). Blends were investigated in a diesel engine with a precombustion chamber at speeds between 1,200 and 2,100 rpm. Vegetable oils, diesel fuel, and fuel blends were characterized according to standard test methods. It was found that for short-term use, the fuel blends have engine characteristics similar to the baseline diesel fuel. Fuel blends also display less smoke emissions than diesel fuel.

  5. Experiments on Induction Times of Diesel-Fuels and its Surrogates

    NASA Astrophysics Data System (ADS)

    Eigenbrod, Christian; Reimert, Manfredo; Marks, Guenther; Rickmers, Peter; Klinkov, Konstantin; Moriue, Osamu

    Aiming for as low polluting combustion control as possible in Diesel-engines or gas-turbines, pre-vaporized and pre-mixed combustion at low mean temperature levels marks the goal. Low-est emissions of nitric-oxides are achievable at combustion temperatures associated to mixture ratios close to the lean flammability limit. In order to prevent local mixture ratios to be below the flammability limit (resulting in flame extinction or generation of unburned hydrocarbons and carbon-monoxide) or to be richer than required (resulting in more nitric-oxide than possi-ble), well-stirred conditioning is required. The time needed for spray generation, vaporization and turbulent mixing is limited through the induction time to self-ignition in a hot high-pressure ambiance. Therefore, detailed knowledge about the autoignition of fuels is a pre-requisit. Experiments were performed at the Bremen drop tower to investigate the self-ignition behavior of single droplets of fossil-Diesel oil, rapeseed-oil, Gas-to-Liquid (GTL) synthetic Diesel-oil and the fossil Diesel surrogates n-heptane, n-tetradecane, 50 n-tetradecane/ 50 1-methylnaphthalene as well as on the GTL-surrogates n-tetradecane / bicyclohexyl and n-tetradecane / 2,2,4,4,6,8,8-heptamethylnonane (iso-cetane). The rules for selection of the above fuels and the experimental results are presented and dis-cussed.

  6. Quantitative imaging of a non-combusting diesel spray using structured laser illumination planar imaging

    NASA Astrophysics Data System (ADS)

    Berrocal, E.; Kristensson, E.; Hottenbach, P.; Aldén, M.; Grünefeld, G.

    2012-12-01

    Due to its transient nature, high atomization process, and rapid generation of fine evaporating droplets, diesel sprays have been, and still remain, one of the most challenging sprays to be fully analyzed and understood by means of non-intrusive diagnostics. The main limitation of laser techniques for quantitative measurements of diesel sprays concerns the detection of the multiple light scattering resulting from the high optical density of such a scattering medium. A second limitation is the extinction of the incident laser radiation as it crosses the spray, as well as the attenuation of the signal which is to be detected. All these issues have strongly motivated, during the past decade, the use of X-ray instead of visible light for dense spray diagnostics. However, we demonstrate in this paper that based on an affordable Nd:YAG laser system, structured laser illumination planar imaging (SLIPI) can provide accurate quantitative description of a non-reacting diesel spray injected at 1,100 bar within a room temperature vessel pressurized at 18.6 bar. The technique is used at λ = 355 nm excitation wavelength with 1.0 mol% TMPD dye concentration, for simultaneous LIF/Mie imaging. Furthermore, a novel dual-SLIPI configuration is tested with Mie scattering detection only. The results confirm that a mapping of both the droplet Sauter mean diameter and extinction coefficient can be obtained by such complementary approaches. These new insights are provided in this article at late times after injection start. It is demonstrated that the application of SLIPI to diesel sprays provides valuable quantitative information which was not previously accessible.

  7. DEEP DESULFURIZATION OF DIESEL FUELS BY A NOVEL INTEGRATED APPROACH

    SciTech Connect

    Xiaoliang Ma; Uday Turaga; Shingo Watanabe; Subramani Velu; Chunshan Song

    2004-05-01

    The overall objective of this project is to explore a new desulfurization system concept, which consists of efficient separation of the refractory sulfur compounds from diesel fuel by selective adsorption, and effective hydrodesulfurization of the concentrated fraction of the refractory sulfur compounds in diesel fuels. Our approaches focused on (1) selecting and developing new adsorbents for selective adsorption of sulfur or sulfur compounds in commercial diesel fuel; (2) conducting the adsorption desulfurization of model fuels and real diesel fuels by the selective-adsorption-for-removing-sulfur (PSUSARS) process over various developed adsorbents, and examining the adsorptive desulfurization performance of various adsorbents; (3) developing and evaluating the regeneration methods for various spent adsorbent; (4) developing new catalysts for hydrodesulfurization of the refractory sulfur existing in the commercial diesel fuel; (5) on the basis of the fundamental understanding of the adsorptive performance and regeneration natures of the adsorbents, further confirming and improving the conceptual design of the novel PSU-SARS process for deep desulfurization of diesel fuel Three types of adsorbents, the metal-chloride-based adsorbents, the activated nickel-based adsorbents and the metal-sulfide-based adsorbents, have been developed for selective adsorption desulfurization of liquid hydrocarbons. All of three types of the adsorbents exhibit the significant selectivity for sulfur compounds, including alkyl dibenzothiophenes (DBTs), in diesel fuel. Adsorption desulfurization of real diesel fuels (regular diesel fuel (DF), S: 325 ppmw; low sulfur diesel fuel (LSD-I), S: 47 ppmw) over the nickel-based adsorbents (A-2 and A-5) has been conducted at different conditions by using a flowing system. The adsorption capacity of DF over A-2 corresponding to an outlet sulfur level of 30 ppmw is 2.8 mg-S/g-A. The adsorption capacity of LSD-I over A-5 corresponding to the break

  8. Fact Sheet: Alternative Low-Sulfur Diesel Fuel Transition Program for Alaska

    EPA Pesticide Factsheets

    This fact sheet summarizes EPA's final rule modifying the diesel fuel regulations to apply an effective date of 6-1-2010 for 15 ppm sulfur requirements for highway, nonroad, locomotive and marine diesel fuel produced/imported for, distributed

  9. Inhaled Diesel Emissions Generated with Cerium Oxide Nanoparticle Fuel Additive Induce Adverse Pulmonary and Systemic Effects

    EPA Science Inventory

    Diesel exhaust (DE) exposure induces adverse cardiopulmonary effects. Cerium oxide nanoparticles added to diesel fuel (DECe) increases fuel burning efficiency but leads to altered emission characteristics and potentially altered health effects. Here, we evaluated whether DECe res...

  10. Inhaled Diesel Emissions Generated with Cerium Oxide Nanoparticle Fuel Additive Induce Adverse Pulmonary and Systemic Effects

    EPA Science Inventory

    Diesel exhaust (DE) exposure induces adverse cardiopulmonary effects. Cerium oxide nanoparticles added to diesel fuel (DECe) increases fuel burning efficiency but leads to altered emission characteristics and potentially altered health effects. Here, we evaluated whether DECe res...

  11. Fuel consumption of freight trains hauled by diesel electric locomotives

    SciTech Connect

    Radford, R.W.

    1983-05-01

    The cost of railway diesel fuel has become an increasingly high proportion of railway operating expenses. The paper analyzes the generation and utilization of rail horsepower in freight train operations. The effects on fuel consumption of variations in several parameters including train consist, car weight, gradient, average speed, meet strategy, throttle control, locomotive axle arrangement, and train marshalling are examined. Estimates are made of the value, in terms of fuel cost, of weight reduction of freight cars and of selective train marshalling.

  12. CFD Modeling of Superheated Fuel Sprays

    NASA Technical Reports Server (NTRS)

    Raju, M. S.

    2008-01-01

    An understanding of fuel atomization and vaporization behavior at superheat conditions is identified to be a topic of importance in the design of modern supersonic engines. As a part of the NASA aeronautics initiative, we have undertaken an assessment study to establish baseline accuracy of existing CFD models used in the evaluation of a ashing jet. In a first attempt towards attaining this goal, we have incorporated an existing superheat vaporization model into our spray solution procedure but made some improvements to combine the existing models valid at superheated conditions with the models valid at stable (non-superheat) evaporating conditions. Also, the paper reports some validation results based on the experimental data obtained from the literature for a superheated spray generated by the sudden release of pressurized R134A from a cylindrical nozzle. The predicted profiles for both gas and droplet velocities show a reasonable agreement with the measured data and exhibit a self-similar pattern similar to the correlation reported in the literature. Because of the uncertainty involved in the specification of the initial conditions, we have investigated the effect of initial droplet size distribution on the validation results. The predicted results were found to be sensitive to the initial conditions used for the droplet size specification. However, it was shown that decent droplet size comparisons could be achieved with properly selected initial conditions, For the case considered, it is reasonable to assume that the present vaporization models are capable of providing a reasonable qualitative description for the two-phase jet characteristics generated by a ashing jet. However, there remains some uncertainty with regard to the specification of certain initial spray conditions and there is a need for experimental data on separate gas and liquid temperatures in order to validate the vaporization models based on the Adachi correlation for a liquid involving R134A.

  13. Emissions of fuel metals content from a diesel vehicle engine

    NASA Astrophysics Data System (ADS)

    Wang, Ya-Fen; Huang, Kuo-Lin; Li, Chun-Teh; Mi, Hsiao-Hsuan; Luo, Jih-Haur; Tsai, Perng-Jy

    This study was set out to assess the characteristics and significance of metal contents emitted from diesel engines. We found that the emitted concentrations of crust elements (including Al, Ca, Fe, Mg, and Si) were much higher than those of anthropogenic elements (including Ag, Ba, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, Sb, Sr, Ti, V, and Zn) from diesel vehicle engine exhausts under the transient-cycle condition. The emission concentrations of particulate matters from diesel vehicle engine were inversely proportional to the specified engine speeds. To the contrary, the increase of engine speeds resulted in increase of fractions of metal contents in particulate matters. We conducted simple linear regression analysis to relate the emission rates of the metal contents in vehicle exhaust to the consumption rates of metal contents in diesel fuel. This study yielded R2=0.999 which suggests that the emission of the metal contents in vehicle exhaust could be fully explained by the consumption of metal contents in diesel fuel. For illustration, we found that the annual emission rates of both crust and anthropogenic elements from all diesel engine vehicles (=269 000 and 58 700 kg yr -1, respectively) were significantly higher than those from the coal power plant, electrical arc furnace, and coke oven (=90 100 and 1660 kg yr -1, 2060 and 173 kg yr -1, and 60 500 and 3740 kg yr -1, respectively) in Taiwan area. The relatively high amount of metal contents emitted from diesel engines strongly suggests that the measurement on the control of metal contents in diesel fuel should be taken in the future.

  14. System for operating solid oxide fuel cell generator on diesel fuel

    NASA Technical Reports Server (NTRS)

    Singh, Prabhu (Inventor); George, Raymond A. (Inventor)

    1997-01-01

    A system is provided for operating a solid oxide fuel cell generator on diesel fuel. The system includes a hydrodesulfurizer which reduces the sulfur content of commercial and military grade diesel fuel to an acceptable level. Hydrogen which has been previously separated from the process stream is mixed with diesel fuel at low pressure. The diesel/hydrogen mixture is then pressurized and introduced into the hydrodesulfurizer. The hydrodesulfurizer comprises a metal oxide such as ZnO which reacts with hydrogen sulfide in the presence of a metal catalyst to form a metal sulfide and water. After desulfurization, the diesel fuel is reformed and delivered to a hydrogen separator which removes most of the hydrogen from the reformed fuel prior to introduction into a solid oxide fuel cell generator. The separated hydrogen is then selectively delivered to the diesel/hydrogen mixer or to a hydrogen storage unit. The hydrogen storage unit preferably comprises a metal hydride which stores hydrogen in solid form at low pressure. Hydrogen may be discharged from the metal hydride to the diesel/hydrogen mixture at low pressure upon demand, particularly during start-up and shut-down of the system.

  15. 40 CFR 80.500 - What are the implementation dates for the motor vehicle diesel fuel sulfur control program?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel General... applicable to motor vehicle diesel fuel at retail outlets and wholesale purchaser-consumer facilities. Except... purchaser-consumer facility. (d) Implementation date for motor vehicle diesel fuel subject to the 500...

  16. 40 CFR 80.500 - What are the implementation dates for the motor vehicle diesel fuel sulfur control program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel General... applicable to motor vehicle diesel fuel at retail outlets and wholesale purchaser-consumer facilities. Except... purchaser-consumer facility. (d) Implementation date for motor vehicle diesel fuel subject to the 500...

  17. 40 CFR 80.552 - What compliance options are available to motor vehicle diesel fuel small refiners?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Small Refiner Hardship Provisions § 80.552 What compliance options are available to motor vehicle diesel fuel... to motor vehicle diesel fuel small refiners? 80.552 Section 80.552 Protection of...

  18. Coal-fueled diesel: Technology development: Final report

    SciTech Connect

    Leonard, G.; Hsu, B.; Flynn, P.

    1989-03-01

    This project consisted of four tasks: (1) to determine if CWM could be ignited and burned rapidly enough for operation in a 1000-rpm diesel engine, (2) to demonstrate that a durable CWM-fueled engine could in principle be developed, (3) to assess current emissions control technology to determine the feasibility of cleaning the exhaust of a CWM-fueled diesel locomotive, and (4) to conduct an economic analysis to determine the attractiveness of powering US locomotives with CWM. 34 refs., 125 figs., 28 tabs.

  19. Long term performance of a sunflower oil/diesel fuel blend

    SciTech Connect

    Ziejewski, M.; Kaufman, K.R.

    1982-05-01

    The purpose of this project was to study the effects of a 50 percent blend by volume of sunflower oil in No. 2 diesel fuel used in a diesel test engine of current design. Specifically, this investigation covered the effect of the fuel blend on engine durability and the functioning of the different fuels in the diesel engine injection system.

  20. 40 CFR 80.554 - What compliance options are available to NRLM diesel fuel small refiners?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... NRLM diesel fuel from crude oil from June 1, 2007 through May 31, 2010, that is exempt from the... refiner under § 80.551(g) may produce NR diesel fuel from crude oil from June 1, 2010, through May 31, 2014, and NRLM diesel fuel from crude oil from June 1, 2012 through May 31, 2014 that is subject to...

  1. 40 CFR 80.554 - What compliance options are available to NRLM diesel fuel small refiners?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... NRLM diesel fuel from crude oil from June 1, 2007 through May 31, 2010, that is exempt from the... refiner under § 80.551(g) may produce NR diesel fuel from crude oil from June 1, 2010, through May 31, 2014, and NRLM diesel fuel from crude oil from June 1, 2012 through May 31, 2014 that is subject to...

  2. 30 CFR 57.19013 - Diesel- and other fuel-injection-powered hoists.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Diesel- and other fuel-injection-powered hoists... NONMETAL MINES Personnel Hoisting Hoists § 57.19013 Diesel- and other fuel-injection-powered hoists. Where any diesel or similar fuel-injection engine is used to power a hoist, the engine shall be equipped...

  3. 30 CFR 56.19013 - Diesel- and other fuel-injection-powered hoists.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Diesel- and other fuel-injection-powered hoists... MINES Personnel Hoisting Hoists § 56.19013 Diesel- and other fuel-injection-powered hoists. Where any diesel or similar fuel-injection engine is used to power a hoist, the engine shall be equipped with a...

  4. 30 CFR 75.1903 - Underground diesel fuel storage facilities and areas; construction and safety precautions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... floor or equivalent to prevent fuel spills from saturating the mine floor. (b) Permanent underground... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Underground diesel fuel storage facilities and...-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1903 Underground diesel fuel storage facilities and areas...

  5. 40 CFR 80.610 - What acts are prohibited under the diesel fuel sulfur program?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... diesel fuel sulfur program? 80.610 Section 80.610 Protection of Environment ENVIRONMENTAL PROTECTION... What acts are prohibited under the diesel fuel sulfur program? No person shall— (a) Standard, dye... milligrams per liter of solvent yellow 124, except for 500 ppm sulfur diesel fuel produced or imported...

  6. 40 CFR 80.610 - What acts are prohibited under the diesel fuel sulfur program?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... diesel fuel sulfur program? 80.610 Section 80.610 Protection of Environment ENVIRONMENTAL PROTECTION... What acts are prohibited under the diesel fuel sulfur program? No person shall— (a) Standard, dye... milligrams per liter of solvent yellow 124, except for 500 ppm sulfur diesel fuel sold, offered for...

  7. 40 CFR 80.610 - What acts are prohibited under the diesel fuel sulfur program?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... diesel fuel sulfur program? 80.610 Section 80.610 Protection of Environment ENVIRONMENTAL PROTECTION... What acts are prohibited under the diesel fuel sulfur program? No person shall— (a) Standard, dye... milligrams per liter of solvent yellow 124, except for 500 ppm sulfur diesel fuel sold, offered for...

  8. 26 CFR 48.4082-4 - Diesel fuel and kerosene; back-up tax.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 16 2010-04-01 2010-04-01 true Diesel fuel and kerosene; back-up tax. 48.4082-4..., and Taxable Fuel Taxable Fuel § 48.4082-4 Diesel fuel and kerosene; back-up tax. (a) Imposition of tax... fuel or kerosene on which tax has not been imposed by section 4081; (ii) Any diesel fuel or kerosene...

  9. Recent Progress in the Development of Diesel Surrogate Fuels

    SciTech Connect

    Pitz, W J; Mueller, C J

    2009-12-09

    There has been much recent progress in the area of surrogate fuels for diesel. In the last few years, experiments and modeling have been performed on higher molecular weight components of relevance to diesel fuel such as n-hexadecane (n-cetane) and 2,2,4,4,6,8,8-heptamethylnonane (iso-cetane). Chemical kinetic models have been developed for all the n-alkanes up to 16 carbon atoms. Also, there has been much experimental and modeling work on lower molecular weight surrogate components such as n-decane and n-dodecane that are most relevant to jet fuel surrogates, but are also relevant to diesel surrogates where simulation of the full boiling point range is desired. For two-ring compounds, experimental work on decalin and tetralin recently has been published. For multi-component surrogate fuel mixtures, recent work on modeling of these mixtures and comparisons to real diesel fuel is reviewed. Detailed chemical kinetic models for surrogate fuels are very large in size. Significant progress also has been made in improving the mechanism reduction tools that are needed to make these large models practicable in multi-dimensional reacting flow simulations of diesel combustion. Nevertheless, major research gaps remain. In the case of iso-alkanes, there are experiments and modeling work on only one of relevance to diesel: iso-cetane. Also, the iso-alkanes in diesel are lightly branched and no detailed chemical kinetic models or experimental investigations are available for such compounds. More components are needed to fill out the iso-alkane boiling point range. For the aromatic class of compounds, there has been no new work for compounds in the boiling point range of diesel. Most of the new work has been on alkyl aromatics that are of the range C7 to C8, below the C10 to C20 range that is needed. For the chemical class of cycloalkanes, experiments and modeling on higher molecular weight components are warranted. Finally for multi-component surrogates needed to treat real

  10. Recent Progress in the Development of Diesel Surrogate Fuels

    SciTech Connect

    Pitz, W J

    2009-09-04

    There has been much recent progress in the area of surrogate fuels for diesel. In the last few years, experiments and modeling have been performed on higher molecular weight components of relevance to diesel fuel such as n-hexadecane (n-cetane) and 2,2,4,4,6,8,8-heptamethylnonane (iso-cetane). Chemical kinetic models have been developed for all the n-alkanes up to 16 carbon atoms. Also, there has been much experimental and modeling work on lower molecular weight surrogate components such as n-decane and do-decane which are most relevant to jet fuel surrogates, but are also relevant to diesel surrogates where simulation of the full boiling point range is desired. For the cycloalkanes, experimental work on decalin and tetralin recently has been published. For multi-component surrogate fuel mixtures, recent work on modeling of these mixtures and comparisons to real diesel fuel is reviewed. Detailed chemical kinetic models for surrogate fuels are very large in size. Significant progress also has been made in improving the mechanism reduction tools that are needed to make these large models practicable in multidimensional reacting flow simulations of diesel combustion. Nevertheless, major research gaps remain. In the case of iso-alkanes, there are experiments and modeling work on only one of relevance to diesel: iso-cetane. Also, the iso-alkanes in diesel are lightly branched and no detailed chemical kinetic models or experimental investigations are available for such compounds. More components are needed to fill out the iso-alkane boiling point range. For the aromatic class of compounds, there has been no new work for compounds in the boiling point range of diesel. Most of the new work has been on alkyl aromatics that are of the range C7 to C8, below the C10 to C20 range that is needed. For the chemical class of cycloalkanes, experiments and modeling on higher molecular weight components are warranted. Finally for multi-component surrogates needed to treat real diesel

  11. Sulfur removal from diesel fuel-contaminated methanol.

    SciTech Connect

    Lee, S. H. D.; Kumar, R.; Krumpelt, M.; Chemical Engineering

    2002-03-01

    Methanol is considered to be a potential on-board fuel for fuel cell-powered vehicles. In current distribution systems for liquid fuels used in the transportation sector, commodity methanol can occasionally become contaminated with the sulfur in diesel fuel or gasoline. This sulfur would poison the catalytic materials used in fuel reformers for fuel cells. We tested the removal of this sulfur by means of ten activated carbons (AC) that are commercially available. Tests were conducted with methanol doped with 1 vol.% grade D-2 diesel fuel containing 0.29% sulfur, which was present essentially as 33-35 wt.% benzothiophenes (BTs) and 65-67 wt.% dibenzothiophenes (DBT). In general, coconut shell-based carbons activated by high-temperature steam were more effective at sulfur removal than coal-based carbons. Equilibrium sorption data showed linear increase in sulfur capture with the increase of sulfur concentration in methanol. Both types of carbons had similar breakthrough characteristics, with the dynamic sorption capacity of each being about one-third of its equilibrium sorption capacity. Results of this study suggest that a fixed-bed sorber of granular AC can be used, such as in refueling stations, for the removal of sulfur in diesel fuel-contaminated methanol.

  12. Pulse sliced picosecond Ballistic Imaging and two planar elastic scattering: Development of the techniques and their application to diesel sprays

    NASA Astrophysics Data System (ADS)

    Duran, Sean Patrick Hynes

    A line of sight imaging technique was developed which utilized pulse slicing of laser pulses to shorten the duration of the parent laser pulse, thereby making time gating more effective at removing multiple scattered light. This included the development of an optical train which utilized a Kerr cell to selectively pass the initial part of the laser pulse while rejecting photons contained later within the pulse. This line of sight ballistic imaging technique was applied to image high-pressure fuel sprays injected into conditions typically encountered in a diesel combustion chamber. Varying the environmental conditions into which the fuel was injected revealed trends in spray behavior which depend on both temperature and pressure. Different fuel types were also studied in this experiment which demonstrated remarkably different shedding structures from one another. Additional experiments were performed to characterize the imaging technique at ambient conditions. The technique was modified to use two wavelengths to allow further rejection of scattered light. The roles of spatial, temporal and polarization filtration were examined by imaging an USAF 1951 line-pair target through a highly scattering field of polystyrene micro-spheres. The optical density of the scattering field was varied by both the optical path length and number densities of the spheres. The equal optical density, but with variable path length results demonstrated the need for an aggressively shorter pulse length to effectively image the distance scales typical encountered in the primary breakup regions of diesel sprays. Results indicate that the system performance improved via the use of two wavelengths. A final investigation was undertaken to image coherent light which has elastically scattered orthogonal to the direction of the laser pulse. Two wavelengths were focused into ˜150 micron sheets via a cylindrical lens and passed under the injector nozzle. The two sheets were adjustable spatially to

  13. Spark Ignition of Monodisperse Fuel Sprays. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Danis, Allen M.; Cernansky, Nicholas P.; Namer, Izak

    1987-01-01

    A study of spark ignition energy requirements was conducted with a monodisperse spray system allowing independent control of droplet size, equivalent ratio, and fuel type. Minimum ignition energies were measured for n-heptane and methanol sprays characterized at the spark gap in terms of droplet diameter, equivalence ratio (number density) and extent of prevaporization. In addition to sprays, minimum ignition energies were measured for completely prevaporized mixtures of the same fuels over a range of equivalence ratios to provide data at the lower limit of droplet size. Results showed that spray ignition was enhanced with decreasing droplet size and increasing equivalence ratio over the ranges of the parameters studied. By comparing spray and prevaporized ignition results, the existence of an optimum droplet size for ignition was indicated for both fuels. Fuel volatility was seen to be a critical factor in spray ignition. The spray ignition results were analyzed using two different empirical ignition models for quiescent mixtures. Both models accurately predicted the experimental ignition energies for the majority of the spray conditions. Spray ignition was observed to be probabilistic in nature, and ignition was quantified in terms of an ignition frequency for a given spark energy. A model was developed to predict ignition frequencies based on the variation in spark energy and equivalence ratio in the spark gap. The resulting ignition frequency simulations were nearly identical to the experimentally observed values.

  14. Velocity measurements in the near field of a diesel fuel injector by ultrafast imagery

    NASA Astrophysics Data System (ADS)

    Sedarsky, David; Idlahcen, Saïd; Rozé, Claude; Blaisot, Jean-Bernard

    2013-02-01

    This paper examines the velocity profile of fuel issuing from a high-pressure single-orifice diesel injector. Velocities of liquid structures were determined from time-resolved ultrafast shadow images, formed by an amplified two-pulse laser source coupled to a double-frame camera. A statistical analysis of the data over many injection events was undertaken to map velocities related to spray formation near the nozzle outlet as a function of time after start of injection. These results reveal a strong asymmetry in the liquid profile of the test injector, with distinct fast and slow regions on opposite sides of the orifice. Differences of ˜100 m/s can be observed between the `fast' and `slow' sides of the jet, resulting in different atomization conditions across the spray. On average, droplets are dispersed at a greater distance from the nozzle on the `fast' side of the flow, and distinct macrostructure can be observed under the asymmetric velocity conditions. The changes in structural velocity and atomization behavior resemble flow structures which are often observed in the presence of string cavitation produced under controlled conditions in scaled, transparent test nozzles. These observations suggest that widely used common-rail supply configurations and modern injectors can potentially generate asymmetric interior flows which strongly influence diesel spray morphology. The velocimetry measurements presented in this work represent an effective and relatively straightforward approach to identify deviant flow behavior in real diesel sprays, providing new spatially resolved information on fluid structure and flow characteristics within the shear layers on the jet periphery.

  15. Novel injector techniques for coal-fueled diesel engines

    SciTech Connect

    Badgley, P.R.

    1992-09-01

    This report, entitled Novel Injector Techniques for Coal-Fueled Diesel Engines,'' describes the progress and findings of a research program aimed at development of a dry coal powder fuel injector in conjunction with the Thermal Ignition Combustion System (TICS) concept to achieve autoignition of dry powdered coal in a single-cylinder high speed diesel engine. The basic program consisted of concept selection, analysis and design, bench testing and single cylinder engine testing. The coal injector concept which was selected was a one moving part dry-coal-powder injector utilizing air blast injection. Adiabatics has had previous experience running high speed diesel engines on both direct injected directed coal-water-slurry (CWS) fuel and also with dry coal powder aspirated into the intake air. The Thermal Ignition Combustion System successfully ignited these fuels at all speeds and loads without requiring auxiliary ignition energy such as pilot diesel fuel, heated intake air or glow or spark plugs. Based upon this prior experience, it was shown that the highest efficiency and fastest combustion was with the dry coal, but that the use of aspiration of coal resulted in excessive coal migration into the engine lubrication system. Based upon a desire of DOE to utilize a more modern test engine, the previous naturally-aspirated Caterpillar model 1Y73 single cylinder engine was replaced with a turbocharged (by use of shop air compressor and back pressure control valve) single cylinder version of the Cummins model 855 engine.

  16. Advanced Diesel Oil Fuel Processor Development

    DTIC Science & Technology

    1986-06-01

    Fuel Cell Power Plants ," EPRI Report EM-2686, Octobe: 1982. 4. R. G. Minet and D. Warren, "Evaluation of Hybrid TER-1,TR Fuel Processor," EPRI Report ...EM-2096, October 1981. 5. R. G. Minet and D. Warren, "Assessment of Fuel Processing aysiems for Dispersed Fuel Cell Power Plants ,’ EPRI Report EM...34Fuel Processor Development for !i.- MW Fuel Cell Power Plants ,4 EPRI Report EM-1123, July 1985. 9. M. HI. Hyman, "Simulate Methane Reformer

  17. Effect of heterogeneous catalyst during combustion of diesel fuel

    NASA Astrophysics Data System (ADS)

    Arefeen, Quamrul

    1999-11-01

    With the increase in number of vehicles using diesel engines, the contributions to environmental pollution made by diesel engines is also on the rise. Carbon monoxide, oxides of nitrogen and sulfur, hydrocarbons, and particulates are currently regulated as harmful emissions from diesel engines. Recent technologies to control harmful engine emissions have been almost exclusively directed towards gasoline engines. It is generally held that fuel quality will have to play an important role with all IC engines to meet future stringent regulations. The objective of the present study was to determine the effects of heterogeneous catalyst on combustion. Micron sized solid catalyst, suspended in a specific organic peroxide, has been found to promote better combustion by modifying kinetics and changing the thermodynamics of the reactions. The catalyst reduces emissions without dramatically changing the properties of the fuel. The characteristic parameters of a baseline fuel, and the same fuel with the additive, were analyzed. The dosage of additive used was found to be compatible with commercial diesel. Diesel vehicles were driven unloaded at normal road conditions during the experiments. Exhaust emissions were measured when the trucks were at static conditions and the engine running on idle and at 2000 rpm. The gaseous components in the exhaust, O2, CO2, CO, NO, NO2, NOx, SO2, and CxH y were monitored. Particulates were trapped on a pre-weighed glass filter. Some of the filters were sent to an independent laboratory for microscopic and elemental analysis of the collected debris. Zinc oxide/peroxide suspended in tert-butyl hydro peroxide were used as the heterogeneous fuel catalyst. This combination increased the cetane rating of a commercial diesel fuel from 45 to a level of 70 depending on treatment ratio. A treatment ratio of one ounce additive per 5 gallons of diesel increased cetane number by an average of 5 points. Road mileage with the additive increased by an average

  18. Diesel fuel burner for diesel emissions control system

    DOEpatents

    Webb, Cynthia C.; Mathis, Jeffrey A.

    2006-04-25

    A burner for use in the emissions system of a lean burn internal combustion engine. The burner has a special burner head that enhances atomization of the burner fuel. Its combustion chamber is designed to be submersed in the engine exhaust line so that engine exhaust flows over the outer surface of the combustion chamber, thereby providing efficient heat transfer.

  19. Preliminary Tests on the Vaporization of Fuel Sprays

    NASA Technical Reports Server (NTRS)

    Rothrock, A M

    1932-01-01

    High-speed motion pictures were taken of fuel sprays injected into the combustion chamber of the N.A.C.A. combustion apparatus. Three fuels, ethyl alcohol, gasoline, and fuel oil, which differed considerably in volatility were tested. By maintaining the engine temperature below that required for ignition the spray could be studied from soon after the start of injection until 130 crank degrees later. The results show that the sprays vaporize appreciably so that it is possible for the ignition in high speed compression-ignition engines to take place from the vapor phase.

  20. Current trends in water-in-diesel emulsion as a fuel.

    PubMed

    Yahaya Khan, Mohammed; Abdul Karim, Z A; Hagos, Ftwi Yohaness; Aziz, A Rashid A; Tan, Isa M

    2014-01-01

    Water-in-diesel emulsion (WiDE) is an alternative fuel for CI engines that can be employed with the existing engine setup with no additional engine retrofitting. It has benefits of simultaneous reduction of both NO x and particulate matters in addition to its impact in the combustion efficiency improvement, although this needs further investigation. This review paper addresses the type of emulsion, the microexplosion phenomenon, emulsion stability and physiochemical improvement, and effect of water content on the combustion and emissions of WiDE fuel. The review also covers the recent experimental methodologies used in the investigation of WiDE for both transport and stationary engine applications. In this review, the fuel injection pump and spray nozzle arrangement has been found to be the most critical components as far as the secondary atomization is concerned and further investigation of the effect of these components in the microexplosion of the emulsion is suggested to be center of focus.

  1. Current Trends in Water-in-Diesel Emulsion as a Fuel

    PubMed Central

    Yahaya Khan, Mohammed; Abdul Karim, Z. A.; Aziz, A. Rashid A.; Tan, Isa M.

    2014-01-01

    Water-in-diesel emulsion (WiDE) is an alternative fuel for CI engines that can be employed with the existing engine setup with no additional engine retrofitting. It has benefits of simultaneous reduction of both NOx and particulate matters in addition to its impact in the combustion efficiency improvement, although this needs further investigation. This review paper addresses the type of emulsion, the microexplosion phenomenon, emulsion stability and physiochemical improvement, and effect of water content on the combustion and emissions of WiDE fuel. The review also covers the recent experimental methodologies used in the investigation of WiDE for both transport and stationary engine applications. In this review, the fuel injection pump and spray nozzle arrangement has been found to be the most critical components as far as the secondary atomization is concerned and further investigation of the effect of these components in the microexplosion of the emulsion is suggested to be center of focus. PMID:24563631

  2. Spray Characterization of Gas-to-Liquid Synthetic Jet Fuels

    NASA Astrophysics Data System (ADS)

    Kannaiyan, Kumaran; Sadr, Reza; GTL jet fuel Consortium Team

    2012-11-01

    Gas-to-Liquid (GTL) Synthetic Paraffinic Kerosene (SPK) fuel obtained from Fischer-Tropsch synthesis has grabbed the global attention due to its cleaner combustion characteristics. GTL fuels are expected to meet the vital qualities such as atomization, combustion and emission characteristics of conventional jet fuels. It is imperative to understand fuel atomization in order to gain insights on the combustion and emission aspects of an alternative fuel. In this work spray characteristics of GTL-SPK, which could be used as a drop-in fuel in aircraft gas turbine engines, is studied. This work outlines the spray experimental facility, the methodology used and the results obtained using two SPK's with different chemical compositions. The spray characteristics, such as droplet size and distribution, are presented at three differential pressures across a simplex nozzle and compared with that of the conventional Jet A-1 fuel. Experimental results clearly show that although the chemical composition is significantly different between SPK's, the spray characteristics are not very different. This could be attributed to the minimal difference in fluid properties between the SPK's. Also, the spray characteristics of SPK's show close resemblance to the spray characteristics of Jet A-1 fuel.

  3. Production, characterization and fuel properties of alternative diesel fuel from pyrolysis of waste plastic grocery bags

    USDA-ARS?s Scientific Manuscript database

    Pyrolysis of HDPE waste grocery bags followed by distillation resulted in a liquid hydrocarbon mixture that consisted of saturated aliphatic paraffins (96.8%), aliphatic olefins (2.6%), and aromatics (0.6%) that corresponded to the boiling range of conventional petroleum diesel fuel (#1 diesel 182–2...

  4. DEEP DESULFURIZATION OF DIESEL FUELS BY A NOVEL INTEGRATED APPROACH

    SciTech Connect

    Xiaoliang Ma; Lu Sun; Chunshan Song

    2001-09-01

    Due to the increasingly stricter regulations for deep reduction of fuel sulfur content, development of new deep desulfurization processes for liquid transport fuels has become one of the major challenges to the refining industry and to the production of hydrocarbon fuels for fuel cell applications. The sulfur compounds in the current transport fuels corresponding to the S level of 350-500 ppm account for only about 0.12-0.25 wt % of the fuel. The conventional hydrotreating approaches will need to increase catalyst bed volume at high-temperature and high-pressure conditions for treating 100 % of the whole fuel in order to convert the fuel mass of less than 0.25 wt %. In the present study, we are exploring a novel adsorption process for desulfurization at low temperatures, which can effectively reduce the sulfur content in gasoline, jet fuel and diesel fuel at low investment and operating cost to meet the needs for ultra-clean transportation fuels and for fuel cell applications. Some adsorbents were prepared in this study for selective adsorption of sulfur compounds in the fuels. The adsorption experiments were conducted by using a model fuel and real fuels. The results show that the adsorbent (A-1) with a transition metal compound has a significant selectivity for sulfur compounds with a saturated adsorption capacity of {approx}0.12 mol of sulfur compounds per mol of the metal compound. Most sulfur compounds existing in the current commercial gasoline, jet fuel and diesel fuel can be removed by the adsorption using adsorbent A-1. On the basis of the preliminary results, a novel concept for integrated process for deep desulfurization of liquid hydrocarbons was proposed.

  5. Ultrafast high-repetition imaging of fuel sprays using picosecond fiber laser.

    PubMed

    Purwar, Harsh; Wang, Hongjie; Tang, Mincheng; Idlahcen, Saïd; Rozé, Claude; Blaisot, Jean-Bernard; Godin, Thomas; Hideur, Ammar

    2015-12-28

    Modern diesel injectors operate at very high injection pressures of about 2000 bar resulting in injection velocities as high as 700 m/s near the nozzle outlet. In order to better predict the behavior of the atomization process at such high pressures, high-resolution spray images at high repetition rates must be recorded. However, due to extremely high velocity in the near-nozzle region, high-speed cameras fail to avoid blurring of the structures in the spray images due to their exposure time. Ultrafast imaging featuring ultra-short laser pulses to freeze the motion of the spray appears as an well suited solution to overcome this limitation. However, most commercial high-energy ultrafast sources are limited to a few kHz repetition rates. In the present work, we report the development of a custom-designed picosecond fiber laser generating ∼ 20 ps pulses with an average power of 2.5 W at a repetition rate of 8.2 MHz, suitable for high-speed imaging of high-pressure fuel jets. This fiber source has been proof tested by obtaining backlight images of diesel sprays issued from a single-orifice injector at an injection pressure of 300 bar. We observed a consequent improvement in terms of image resolution compared to standard white-light illumination. In addition, the compactness and stability against perturbations of our fiber laser system makes it particularly suitable for harsh experimental conditions.

  6. Investigation of the intermediate oxidation regime of Diesel fuel

    SciTech Connect

    Al-Hamamre, Z.; Trimis, D.

    2009-09-15

    A very high temperature fuel-air mixture is necessary for the thermal partial oxidation process of hydrocarbon fuels in order to have a high reaction temperature which accelerate the reaction kinetics. For Diesel fuel and due to the ignition delay time behavior, different oxidation behavior can be realized at different preheating temperatures. In this work, the intermediate oxidation region of Diesel fuel is investigated. By making use of the ignition delay time behavior, an vaporizer like tube reactor is constructed in order to enable a very high preheating temperature without the risk of self-ignition in a time-independent experiment. The oxidation behavior of Diesel fuel in air is investigated numerically and experimentally. In the numerical part, the ignition delay time was estimated using CHEMIKIN tools for different air-fuel mixtures at different temperatures. The evaporation behavior of the Diesel fuel-air mixtures are investigated at relatively high air preheating temperatures ranging from 500 C up to 680 C. The amount of the process air was varied from an air ratio {lambda} = 0.35 to {lambda} = 0.6. The experiments are also performed with N{sub 2} as an evaporation media and compared with those performed with air to detect any temperature increase in the case of Diesel-air mixtures. The amount of heat release in the low chemistry region as well as in the intermediate region is calculated for the case of Diesel/air mixtures. The experiments show that four different oxidation region of Diesel fuel can be distinguished depending on air inlet temperatures and on the air ratio. At a temperature lower than 723 K (450 C), no chemical reaction takes place. The cool flame reactions start at temperatures above 723 K (450 C). However, no stable cool flame can be achieved unless the air preheating temperature reached about 753 K (480 C). The cool flame region is extended up to about 873 K (600 C), at which the intermediate regime started. This regime stabilized to a

  7. Coal-water slurry sprays from an electronically controlled accumulator fuel injection system: Break-up distances and times

    SciTech Connect

    Caton, J.A.; Payne, S.E.; Terracina, D.P.; Kihm, K.D.

    1993-12-31

    Experiments have been completed to characterize coal-water slurry sprays from an electronically-controlled accumulator fuel injection system of a diesel engine. The sprays were injected into a pressurized chamber equipped with windows. High speed movies, fuel pressures and needle lifts were obtained as a function of time, orifice diameter, coal loading, gas density in the chamber, and accumulator fuel pressure. For the base conditions (50% (by man) coal loading, 0.4 mm diameter nozzle hole, coal-water slurry pressure of 82 MPa (12,000 psi), and a chamber density of 25 kg/m{sup 3}), the break-up time was 0.30 ms. An empirical correlation for spray tip penetration, break-up time and initial jet velocity was developed. For the conditions of this study, the spray tip penetration and initial jet velocity were 15% greater for coal-water slurry than for diesel fuel or water. Results of this study and the correlation are specific to the tested coal-water slurry and are not general for other coal-water slurry fuels.

  8. Improvement of test methodology for evaluating diesel fuel stability

    SciTech Connect

    Gutman, M.; Tartakovsky, L.; Kirzhner, Y.; Zvirin, Y.; Luria, D.; Weiss, A.; Shuftan, M.

    1995-05-01

    The storage stability of diesel fuel has been extensively investigated for many years under laboratory conditions. Although continuous efforts have been made to improve testing techniques, there does not yet exist a generally accepted correlation between laboratory methods (such as chemical analysis of the fuel) and actual diesel engine tests. A testing method was developed by the Technion Internal Combustion Engines Laboratory (TICEL), in order to address this problem. The test procedure was designed to simulate diesel engine operation under field conditions. It is based on running a laboratory-modified single cylinder diesel engine for 50 h under cycling operating conditions. The overall rating of each test is based on individual evaluation of the deposits and residue formation in the fuel filter, nozzle body and needle, piston head, piston rings, exhaust valve, and combustion chamber (six parameters). Two methods for analyzing the test results were used: objective, based on measured data, and subjective, based on visual evaluation results of these deposits by a group of experts. Only the residual level in the fuel filter was evaluated quantitatively by measured results. In order to achieve higher accuracy of the method, the test procedure was improved by introducing the measured results of nozzle fouling as an additional objective evaluating (seventh) parameter. This factor is evaluated on the basis of the change in the air flow rate through the nozzle before and after the complete engine test. Other improvements in the method include the use of the nozzle assembly photograph in the test evaluation, and representation of all seven parameters on a continuous scale instead of the discrete scale used anteriorly, in order to achieve higher accuracy. This paper also contains the results obtained by application of this improved fuel stability test for a diesel fuel stored for a five-year period.

  9. Vegetable Oil Derived Fuels for Civil Works Diesel Engine Applications

    DTIC Science & Technology

    1988-07-01

    linseed, peanut, canola (low-eruec rapeseed), safflower , sesame, soybean, and sunflower. 4 Extensive research has been done to determine which...substitutes for conventional petroleum derived diesel fuels. Soybean, sunflower, safflower , and peanut oils were among the potential alternatives. Jn general

  10. Other Alternative Diesel Fuels from Vegetable Oils and Animal Fats

    USDA-ARS?s Scientific Manuscript database

    The energy crises of the 1970’s and early 1980’s provided impetus for developing alternative diesel fuels from vegetable oils and animal fats. Other driving forces may be derived from the Clean Air Act and its amendments and farmers desire to develop new uses for surplus agricultural commodities. ...

  11. Development of Army Fire-Resistant Diesel Fuel.

    DTIC Science & Technology

    1979-12-01

    The prime FRF candidates have comprised diesel fuel with either 10 percent water and 6 percent emulsifier (FRF-A), or 5 percent water, 3 percent...SOURI * Il SOURCE CANVAS I INVESTIGATE SCREENIT WTERT- ERDO FRULANDO COMPOSITION EFFECTSIWTERHNSOURESOFOMLTN LAOATR AND AECHDI-AC I IEEFCSSCE F L-AIIY

  12. 40 CFR 69.51 - Motor vehicle diesel fuel.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 16 2013-07-01 2013-07-01 false Motor vehicle diesel fuel. 69.51 Section 69.51 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) SPECIAL EXEMPTIONS FROM REQUIREMENTS OF THE CLEAN AIR ACT Alaska § 69.51 Motor vehicle...

  13. Spray Characterization of Gas-to-Liquid Synthetic Jet Fuels

    NASA Astrophysics Data System (ADS)

    Kannaiyan, Kumaran; Sadr, Reza

    2011-11-01

    In the recent years, development of alternative jet fuels is gaining importance owing to the demand for cleaner combustion. In addition to having energy density that matches those of conventional fuels, alternate jet fuels need to possess vital qualities such as rapid atomization and vaporization, quick re-ignition at high altitude, less emission, and poses ease of handling. The fuel preparatory steps (atomization and vaporization) and mixing in a combustion chamber play a crucial role on the subsequent combustion and emission characteristics. Gas-to-Liquid (GTL) synthetic jet fuel obtained from Fischer-Tropsch synthesis has grabbed the global attention due to its cleaner combustion characteristics as a result of the absence of aromatics and sulphur. As a part of an on-going joint effort between Texas A&M at Qatar (TAMUQ), Rolls-Royce (UK), and German Aerospace Laboratory (DLR), a spray characterization experimental facility is set up at TAMUQ to study the spray characteristics of GTL fuel and highlights the influence of change in fuel composition on the spray characteristics. In this work, spray characteristics such as droplet size, velocity, and distribution of different GTL fuel blends is investigated and compared with the spray characteristics of conventional JetA1 fuel. Supported by Qatar Science and Technology Park, QSTP.

  14. Multicylinder Diesel Engine Tests with Unstabilized Water-in-Fuel Emulsions.

    DTIC Science & Technology

    1981-06-01

    diesel engines representative of the four -stroke cycle and two-stroke cycle main propulsion units installed in U.S. Coast Guard WPB class cutters were...performance. The test results for the four -stroke cycle engine indicated that an average diesel fuel saving of about 2.5 percent could be obtained at the...CONSUMPTION, DETROIT DIESEL ENGINE, 1000 RPM ................. 39 3-5 FUEL CONSUMPTION, DETROIT DIESEL ENGINE, FOUR SPEEDS .............. 40 3-6 FUEL INJECTION

  15. Performance and emissions characteristics of a naturally aspirated diesel engine with vegetable oil fuels - 2

    SciTech Connect

    Humke, A.L.; Barsic, N.J.

    1981-01-01

    A naturally aspirated, direct injected diesel engine was used to evaluate the performance and emissions characteristics of a crude soybean oil, a 50 percent (by volume) mixture of crude soybean oil and no. 2 diesel fuel, and a degummed soybean oil. The data were compared with previous tests conducted on the same engine using diesel fuel, crude sunflower oil and a 50 percent mixture of crude sunflower oil and diesel fuel. 18 refs.

  16. Long-term storage stability of diesel fuels

    SciTech Connect

    Martin, B.; Bocard, C.; Durand, J.P.; Bigeard, P.H.; Denis, J.; Dorbon, M.; Bernasconi, C.

    1990-01-01

    Storage stability of different diesel fuels containing cat-cracked stocks was examined using various aging conditions. The degradation of fuel during storage was monitored through insoluble formation but also through reaction of nitrogen compounds known to be involved in the fuel degradation process. The influence of aging in injector fouling tendency was also investigated on an IDI engine on test bench. Various stabilizer additives (tertiary amines, dispersant...) were tested. Best results were obtained with dispersant which prevent sediment agglomeration making them able to cross the filter mesh. Additives limit indole evolution without inhibiting completely sediment formation, proving that other reactions take place. This paper shows that fuel oxidability is no modified by additives. None of the tested formulations is effective on fuel darkening. After aging, surfactants remain effective on injector fouling. Another way of improving the storage stability of Diesel fuel is hydrotreatment. A fuel was hydrotreated at different severity levels and the effect on stabilization was shown. It was demonstrated that hydrotreating makes it possible to achieve more complete stabilization than using additives. Particularly color stability is considerably improved after hydrotreatment. Stabilization was achieved for mild operating conditions for which hydrodenitrification is not complete, only indoles are transformed. To inhibit fuel degradation, hydrotreatment should reduce other sediment precursors than nitrogen compounds. The authors demonstrated that hydrotreating renders fuels more sensitive to oxidation.

  17. Effects of diesel/ethanol dual fuel on emission characteristics in a heavy-duty diesel engine

    NASA Astrophysics Data System (ADS)

    Liu, Junheng; Sun, Ping; Zhang, Buyun

    2017-09-01

    In order to reduce emissions and diesel consumption, the gas emissions characteris-tics of diesel/aqueous ethanol dual fuel combustion (DFC) were carried out on a heavy-duty turbocharged and intercooled automotive diesel engine. The aqueous ethanol is prepared by a blend of anhydrous ethanol and water in certain volume proportion. In DFC mode, aqueous ethanol is injected into intake port to form homogeneous charge, and then ignited by the diesel fuel. Results show that DFC can reduce NOx emissions but increase HC and CO emissions, and this trend becomes more prominent with the increase of water blending ratio. Increased emissions of HC and CO could be efficiently cleaned by diesel oxidation catalytic converter (DOC), even better than those of diesel fuel. It is also found that DFC mode reduces smoke remarkably, while increases some unconventional emissions such as formaldehyde and acetal-dehyde. However, unconventional emissions could be reduced approximately to the level of baseline engine with a DOC.

  18. 40 CFR 80.570 - What labeling requirements apply to retailers and wholesale purchaser-consumers of diesel fuel...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... retailers and wholesale purchaser-consumers of diesel fuel beginning June 1, 2006? 80.570 Section 80.570... FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Labeling Requirements § 80.570 What labeling requirements apply to retailers and...

  19. 40 CFR 80.570 - What labeling requirements apply to retailers and wholesale purchaser-consumers of diesel fuel...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... retailers and wholesale purchaser-consumers of diesel fuel beginning June 1, 2006? 80.570 Section 80.570... FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Labeling Requirements § 80.570 What labeling requirements apply to retailers and...

  20. Emission Characteristics of a Diesel Engine Operating with In-Cylinder Gasoline and Diesel Fuel Blending

    SciTech Connect

    Prikhodko, Vitaly Y; Curran, Scott; Barone, Teresa L; Lewis Sr, Samuel Arthur; Storey, John Morse; Cho, Kukwon; Wagner, Robert M; Parks, II, James E

    2010-01-01

    Advanced combustion regimes such as homogeneous charge compression ignition (HCCI) and premixed charge compression ignition (PCCI) offer benefits of reduced nitrogen oxides (NOx) and particulate matter (PM) emissions. However, these combustion strategies often generate higher carbon monoxide (CO) and hydrocarbon (HC) emissions. In addition, aldehydes and ketone emissions can increase in these modes. In this study, the engine-out emissions of a compression-ignition engine operating in a fuel reactivity- controlled PCCI combustion mode using in-cylinder blending of gasoline and diesel fuel have been characterized. The work was performed on a 1.9-liter, 4-cylinder diesel engine outfitted with a port fuel injection system to deliver gasoline to the engine. The engine was operated at 2300 rpm and 4.2 bar brake mean effective pressure (BMEP) with the ratio of gasoline to diesel fuel that gave the highest engine efficiency and lowest emissions. Engine-out emissions for aldehydes, ketones and PM were compared with emissions from conventional diesel combustion. Sampling and analysis was carried out following micro-tunnel dilution of the exhaust. Particle geometric mean diameter, number-size distribution, and total number concentration were measured by a scanning mobility particle sizer (SMPS). For the particle mass measurements, samples were collected on Teflon-coated quartz-fiber filters and analyzed gravimetrically. Gaseous aldehydes and ketones were sampled using dinitrophenylhydrazine-coated solid phase extraction cartridges and the extracts were analyzed by liquid chromatography/mass spectrometry (LC/MS). In addition, emissions after a diesel oxidation catalyst (DOC) were also measured to investigate the destruction of CO, HC and formaldehydes by the catalyst.

  1. 30 CFR 75.1903 - Underground diesel fuel storage facilities and areas; construction and safety precautions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... storage; and (4) Maintained to prevent the accumulation of water. (c) Welding or cutting other than that... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Underground diesel fuel storage facilities and...-UNDERGROUND COAL MINES Diesel-Powered Equipment § 75.1903 Underground diesel fuel storage facilities and...

  2. 30 CFR 75.1902 - Underground diesel fuel storage-general requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... last loading point where equipment is being removed. (3) No more than one diesel fuel transportation... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Underground diesel fuel storage-general... LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Diesel-Powered...

  3. 40 CFR 80.511 - What are the per-gallon and marker requirements that apply to NRLM diesel fuel, ECA marine fuel...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... requirements that apply to NRLM diesel fuel, ECA marine fuel, and heating oil downstream of the refiner or..., and Marine Diesel Fuel; and ECA Marine Fuel General Information § 80.511 What are the per-gallon and marker requirements that apply to NRLM diesel fuel, ECA marine fuel, and heating oil downstream of...

  4. 26 CFR 48.4082-3 - Diesel fuel and kerosene; visual inspection devices. [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 16 2010-04-01 2010-04-01 true Diesel fuel and kerosene; visual inspection devices. 48.4082-3 Section 48.4082-3 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY..., Tread Rubber, and Taxable Fuel Taxable Fuel § 48.4082-3 Diesel fuel and kerosene; visual inspection...

  5. [Effects of fuel properties on the performance of a typical Euro IV diesel engine].

    PubMed

    Chen, Wen-miao; Wang, Jian-xin; Shuai, Shi-jin

    2008-09-01

    With the purpose of establishing diesel fuel standard for China National 4th Emission Standard, as one part of Beijing "Auto-Oil" programme, engine performance test has been done on a typical Euro IV diesel engine using eight diesel fuels with different fuel properties. Test results show that, fuel properties has little effect on power, fuel consumption, and in-cylinder combustion process of tested Euro IV diesel engine; sulfate in PM and gaseous SO2 emissions increase linearly with diesel sulfur content increase; cetane number increase cause BSFC and PM reduce and NOx increase; T90 decrease cause NOx reduce while PM shows trend of reduce. Prediction equations of tested Euro IV diesel engine's ESC cycle NOx and PM emissions before SCR response to diesel fuel sulfur content, cetane number, T90 and aromatics have been obtained using linear regression method on the base of test results.

  6. The relationship between fuel lubricity and diesel injection system wear

    NASA Astrophysics Data System (ADS)

    Lacy, Paul I.

    1992-01-01

    Use of low-lubricity fuel may have contributed to increased failure rates associated with critical fuel injection equipment during the 1991 Operation Desert Storm. However, accurate quantitative analysis of failed components from the field is almost impossible due to the unique service history of each pump. This report details the results of pump stand tests with fuels of equal viscosity, but widely different lubricity. Baseline tests were also performed using reference no. 2 diesel fuel. Use of poor lubricity fuel under these controlled conditions was found to greatly reduce both pump durability and engine performance. However, both improved metallurgy and fuel lubricity additives significantly reduced wear. Good correlation was obtained between standard bench tests and lightly loaded pump components. However, high contact loads on isolated components produced a more severe wear mechanism that is not well reflected by the Ball-on-Cylinder Lubricity Evaluator.

  7. 40 CFR 80.527 - Under what conditions may motor vehicle diesel fuel subject to the 15 ppm sulfur standard be...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Motor Vehicle Diesel Fuel... is subject to the downgrade limitation: Any distributor, retailer, or wholesale purchaser consumer... cause the violation. (e) Special provisions for retail outlets and wholesale...

  8. 40 CFR 80.527 - Under what conditions may motor vehicle diesel fuel subject to the 15 ppm sulfur standard be...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Motor Vehicle Diesel Fuel... is subject to the downgrade limitation: Any distributor, retailer, or wholesale purchaser consumer... cause the violation. (e) Special provisions for retail outlets and wholesale...

  9. 40 CFR 80.527 - Under what conditions may motor vehicle diesel fuel subject to the 15 ppm sulfur standard be...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Motor Vehicle Diesel Fuel... is subject to the downgrade limitation: Any distributor, retailer, or wholesale purchaser consumer... cause the violation. (e) Special provisions for retail outlets and wholesale...

  10. Some Characteristics of Fuel Sprays at Low-injection Pressures

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Waldron, C D

    1931-01-01

    This report presents the results of tests conducted at the Langley Memorial Aeronautical Laboratory, Langley Field, Va., to determine some of the characteristics of the fuel sprays obtained from an 0.008-inch and a 0.020-inch open nozzle when injection pressures from 100 to 500 pounds per square inch were used. Fuel oil and gasoline were injected into air at densities of atmospheric land 0.325 pound per cubic foot. It was found that the penetration rate at these low pressures was about the same as the rate obtained with higher pressures. Spray cone-angles were small and individual oil drops were visible in all the sprays. Gasoline and fuel oil sprays had similar characteristics.

  11. Fuel Lubricity Requirements for Diesel Injection Systems

    DTIC Science & Technology

    1991-02-01

    8. Montemayor , A.F. and Owens, E.C., "Comparison of 6.2L Arctic and Standard Fuel Injection Pumps Using JP-8 Fuel," Interim Report BFLRF No. 218 (AD A...injection pumps. The unitest pump stand and test equipment specification are described in more detail in the report by Montemayor and Owens*. A schematic...operation. * Montemayor , A.F. and Owens, E.C., "Comparison of 6.2L Arctic and Standard Fuel Injection Pumps Using JP-8 Fuel," Interim Report BFLRF No. 218

  12. Experimental study on the effect of nozzle hole-to-hole angle on the near-field spray of diesel injector using fast X-ray phase-contrast imaging

    SciTech Connect

    Zhang, Xusheng; Moon, Seoksu; Gao, Jian; Dufresne, Eric M.; Fezzaa, Kamel; Wang, Jin

    2016-12-01

    Fuel atomization and vaporization process play a critical role in determining the engine combustion and emission. The primary near-nozzle breakup is the vital link between the fuel emerging from the nozzle and the fully atomized spray. In this study, the near-nozzle spray characteristics of diesel injector with different umbrella angle (UA) were investigated using high-speed X-ray phase-contrast imaging and quantitative image processing. A classic ‘dumbbell’ profile of spray width (SW) composed of three stages: opening stage, semisteady stage and closing stage. The SW peak of two-hole injectors was more than twice of that of single-hole injector at the opening and closing stages, corresponding to the hollow-cone spray. This indicated the vortex flow was formed with the increase of the UA. The higher injection pressure had little influence on the SW while led to earlier breakup closer to the nozzle. Significant fuel effect on the SW at higher needle lift was found. However, this effect could be neglect at lower needle lift due to the leading role of internal flow and cavitation on the near-field spray characteristics. In addition, the morphology-based breakup process was observed, which highlighted the important effect of internal flow on the spray development. The possibility of using hollow-cone spray in diesel injector was also discussed.

  13. Innovative coal-fueled diesel engine injector

    SciTech Connect

    Badgley, P.; Doup, D.

    1991-05-01

    The purpose of this research investigation was to develop an electronic coal water slurry injection system in conjunction with the Thermal Ignition Combustion System (TICS) concept to achieve autoignition of CWS at various engine load and speed conditions without external ignition sources. The combination of the new injection system and the TICS is designed to reduce injector nozzle spray orifice wear by lowering the peak injection pressure requirements. (VC)

  14. Diesel Fuel from Used Frying Oil

    PubMed Central

    Buczek, Bronislaw

    2014-01-01

    New conversion technologies of used edible oils and waste animal fats into a biofuel appropriate for use in standard diesel engines have been developed, taking into consideration environmental requirements and improvement in the economics of current trans-esterification technologies. The variation in the properties of substrates made from used rape oil after treatment with mixed adsorbents (active carbon, magnesium silicate) was studied in this work. The obtained results are compared with the quality requirements for the substrates used in Vogel & Noot GmbH technology for transesterification of oils and fats. PMID:24574908

  15. Impacts of Biodiesel Fuel Blends Oil Dilution on Light-Duty Diesel Engine Operation

    SciTech Connect

    Thornton, M. J.; Alleman, T. L.; Luecke, J.; McCormick, R. L.

    2009-08-01

    Assesses oil dilution impacts on a diesel engine operating with a diesel particle filter, NOx storage, a selective catalytic reduction emission control system, and a soy-based 20% biodiesel fuel blend.

  16. Utilization of sunflower seed oil as a renewable fuel for diesel engines

    SciTech Connect

    Bruwer, J.J.; van der Boshoff, B.; Hugo, F.J.C.; Fuls, J.; Hawkins, C.; van der Walt, A.N.; Engelbrecht, A.; du Plessis, L.M.

    1981-01-01

    Research, using several makes of diesel engine, showed that sunflower seed oil, and particularly an ethyl ester mixture, has the potential to extend diesel fuel provided solutions are found for injector coking problems. (MHR)

  17. 40 CFR 80.550 - What is the definition of a motor vehicle diesel fuel small refiner or a NRLM diesel fuel small...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Produces diesel fuel at a refinery by processing crude oil through refinery processing units; and (2... periods from January 1, 1999, to January 1, 2000; and (3) Had an average crude oil capacity less than or... diesel fuel at a refinery by processing crude oil through refinery processing units; (2) Employed...

  18. 40 CFR 80.592 - What records must be kept by entities in the motor vehicle diesel fuel and diesel fuel additive...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 124 content or dye solvent red 164 content of motor vehicle diesel fuel or motor vehicle diesel fuel... 40 Protection of Environment 17 2014-07-01 2014-07-01 false What records must be kept by entities... meeting the 15 ppm sulfur standard; and, (v) A record indicating the volumes that were either taxed,...

  19. 40 CFR 80.592 - What records must be kept by entities in the motor vehicle diesel fuel and diesel fuel additive...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 124 content or dye solvent red 164 content of motor vehicle diesel fuel or motor vehicle diesel fuel... 40 Protection of Environment 17 2013-07-01 2013-07-01 false What records must be kept by entities... meeting the 15 ppm sulfur standard; and, (v) A record indicating the volumes that were either taxed,...

  20. 40 CFR 80.592 - What records must be kept by entities in the motor vehicle diesel fuel and diesel fuel additive...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 124 content or dye solvent red 164 content of motor vehicle diesel fuel or motor vehicle diesel fuel... 40 Protection of Environment 16 2010-07-01 2010-07-01 false What records must be kept by entities... meeting the 15 ppm sulfur standard; and, (v) A record indicating the volumes that were either taxed,...

  1. 40 CFR 80.550 - What is the definition of a motor vehicle diesel fuel small refiner or a NRLM diesel fuel small...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... capacity as specified in paragraph (a) of this section shall include all employees and crude oil production... section and subsequently cease production of diesel fuel from processing crude oil through refinery... small refiners under this section and subsequently cease production of diesel fuel from crude oil,...

  2. 40 CFR 80.550 - What is the definition of a motor vehicle diesel fuel small refiner or a NRLM diesel fuel small...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... capacity as specified in paragraph (a) of this section shall include all employees and crude oil production... section and subsequently cease production of diesel fuel from processing crude oil through refinery... small refiners under this section and subsequently cease production of diesel fuel from crude oil,...

  3. [FTIR detection of unregulated emissions from a diesel engine with biodiesel fuel].

    PubMed

    Tan, Pi-qiang; Hu, Zhi-yuan; Lou, Di-ming

    2012-02-01

    Biodiesel, as one of the most promising alternative fuels, has received more attention because of limited fossil fuels. A comparison of biodiesel and petroleum diesel fuel is discussed as regards engine unregulated exhaust emissions. A diesel fuel, a pure biodiesel fuel, and fuel with 20% V/V biodiesel blend ratio were tested without engine modification The present study examines six typical unregulated emissions by Fourier transform infrared spectroscopy (FTIR) method: formaldehyde (HCHO), acetaldehyde (C2 H4 O), acetone (C3 H6 O), toluene (C7 H8), sulfur dioxide (SO2), and carbon dioxide (CO2). The results show addition of biodiesel fuel increases the formaldehyde emission, and B20 fuel has little change, but the formaldehyde emission of pure biodiesel shows a clear trend of addition. Compared with the pure diesel fuel, the acetaldehyde of B20 fuel has a distinct decrease, and the acetaldehyde emission of pure biodiesel is lower than that of the pure diesel fuel at low and middle engine loads, but higher at high engine load. The acetone emission is very low, and increases for B20 and pure biodiesel fuels as compared to diesel fuel. Compared with the diesel fuel, the toluene and sulfur dioxide values of the engine show a distinct decrease with biodiesel blend ratio increasing. It is clear that the biodiesel could reduce aromatic compounds and emissions of diesel engines. The carbon dioxide emission of pure biodiesel has a little lower value than diesel, showing that the biodiesel benefits control of greenhouse gas.

  4. 40 CFR 80.593 - What are the reporting requirements for refiners and importers of motor vehicle diesel fuel...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive... for refiners and importers of motor vehicle diesel fuel subject to temporary refiner relief standards... the reporting requirements for refiners and importers of motor vehicle diesel fuel subject...

  5. PTV analysis of the entrained air into the diesel spray at high-pressure injection

    NASA Astrophysics Data System (ADS)

    Toda, Naoki; Yamashita, Hayato; Mashida, Makoto

    2014-08-01

    In order to clarify the effect of high-pressure injection on soot reduction in terms of the air entrainment into spray, the air flow surrounding the spray and set-off length indicating the distance from the nozzle tip to the flame region in diffusion diesel combustion were investigated using 300MPa injection of a multi-hole injector. The measurement of the air entrainment flow was carried out at non-evaporating condition using consecutive PTV (particle tracking velocimetry) method with a high-speed camera and a high-frequency pulse YAG laser. The set-off length was measured at highpressure and high-temperature using the combustion bomb of constant volume and optical system of shadow graph method. And the amount of air entrainment into spray until reaching set-off length in diffusion combustion was studied as a factor of soot formation.

  6. 40 CFR 80.527 - Under what conditions may motor vehicle diesel fuel subject to the 15 ppm sulfur standard be...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Motor Vehicle Diesel Fuel... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Under what conditions may motor vehicle diesel fuel subject to the 15 ppm sulfur standard be downgraded to motor vehicle diesel...

  7. 26 CFR 48.4082-1T - Diesel fuel and kerosene; exemption for dyed fuel (temporary).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 16 2013-04-01 2013-04-01 false Diesel fuel and kerosene; exemption for dyed...; exemption for dyed fuel (temporary). (a) through (c) . For further guidance, see § 48.4082-1(a) through (c). (d) Time and method for adding dye—(1) In general. Except as provided by paragraph (d)(6) of...

  8. 26 CFR 48.4082-1T - Diesel fuel and kerosene; exemption for dyed fuel (temporary).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 16 2011-04-01 2011-04-01 false Diesel fuel and kerosene; exemption for dyed...; exemption for dyed fuel (temporary). (a) through (c) . For further guidance, see § 48.4082-1(a) through (c). (d) Time and method for adding dye—(1) In general. Except as provided by paragraph (d)(6) of...

  9. 26 CFR 48.4082-1T - Diesel fuel and kerosene; exemption for dyed fuel (temporary).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 16 2012-04-01 2012-04-01 false Diesel fuel and kerosene; exemption for dyed...; exemption for dyed fuel (temporary). (a) through (c) . For further guidance, see § 48.4082-1(a) through (c). (d) Time and method for adding dye—(1) In general. Except as provided by paragraph (d)(6) of...

  10. Transformation of Cerium Oxide Nanoparticles from a Diesel Fuel Additive during Combustion in a Diesel Engine.

    PubMed

    Dale, James G; Cox, Steven S; Vance, Marina E; Marr, Linsey C; Hochella, Michael F

    2017-02-21

    Nanoscale cerium oxide is used as a diesel fuel additive to reduce particulate matter emissions and increase fuel economy, but its fate in the environment has not been established. Cerium oxide released as a result of the combustion of diesel fuel containing the additive Envirox, which utilizes suspended nanoscale cerium oxide to reduce particulate matter emissions and increase fuel economy, was captured from the exhaust stream of a diesel engine and was characterized using a combination of bulk analytical techniques and high resolution transmission electron microscopy. The combustion process induced significant changes in the size and morphology of the particles; ∼15 nm aggregates consisting of 5-7 nm faceted crystals in the fuel additive became 50-300 nm, near-spherical, single crystals in the exhaust. Electron diffraction identified the original cerium oxide particles as cerium(IV) oxide (CeO2, standard FCC structure) with no detectable quantities of Ce(III), whereas in the exhaust the ceria particles had additional electron diffraction reflections indicative of a CeO2 superstructure containing ordered oxygen vacancies. The surfactant coating present on the cerium oxide particles in the additive was lost during combustion, but in roughly 30% of the observed particles in the exhaust, a new surface coating formed, approximately 2-5 nm thick. The results of this study suggest that pristine, laboratory-produced, nanoscale cerium oxide is not a good substitute for the cerium oxide released from fuel-borne catalyst applications and that future toxicity experiments and modeling will require the use/consideration of more realistic materials.

  11. Simultaneous determination of hydrocarbon renewable diesel, biodiesel and petroleum diesel contents in diesel fuel blends using near infrared (NIR) spectroscopy and chemometrics.

    PubMed

    Alves, Julio Cesar Laurentino; Poppi, Ronei Jesus

    2013-11-07

    Highly polluting fuels based on non-renewable resources such as fossil fuels need to be replaced with potentially less polluting renewable fuels derived from vegetable or animal biomass, these so-called biofuels, are a reality nowadays and many countries have started the challenge of increasing the use of different types of biofuels, such as ethanol and biodiesel (fatty acid alkyl esters), often mixed with petroleum derivatives, such as gasoline and diesel, respectively. The quantitative determination of these fuel blends using simple, fast and low cost methods based on near infrared (NIR) spectroscopy combined with chemometric methods has been reported. However, advanced biofuels based on a mixture of hydrocarbons or a single hydrocarbon molecule, such as farnesane (2,6,10-trimethyldodecane), a hydrocarbon renewable diesel, can also be used in mixtures with biodiesel and petroleum diesel fuel and the use of NIR spectroscopy for the quantitative determination of a ternary fuel blend of these two hydrocarbon-based fuels and biodiesel can be a useful tool for quality control. This work presents a development of an analytical method for the quantitative determination of hydrocarbon renewable diesel (farnesane), biodiesel and petroleum diesel fuel blends using NIR spectroscopy combined with chemometric methods, such as partial least squares (PLS) and support vector machines (SVM). This development leads to a more accurate, simpler, faster and cheaper method when compared to the standard reference method ASTM D6866 and with the main advantage of providing the individual quantification of two different biofuels in a mixture with petroleum diesel fuel. Using the developed PLS model the three fuel blend components were determined simultaneously with values of root mean square error of prediction (RMSEP) of 0.25%, 0.19% and 0.38% for hydrocarbon renewable diesel, biodiesel and petroleum diesel, respectively, the values obtained were in agreement with those suggested by

  12. Diesel Fuel Alternatives for Engines in Civil Works Prime Movers.

    DTIC Science & Technology

    1984-09-01

    8217 ? - 3t.; nr -r n’ [ " :4 iiei n , S ethianoi. r * ’Si , I ~ , : p ~ t ~ r . ...’ ’ ’ J " ;" 7 I )4 " ~ln t q )D, t ! ’ i~v & 0 4: .- M I[ ar Io SAI- No...and thermal efficiency was comparable. On the Leyative side, raster fueling rates led to a BSFC greater than diesel’s, and initial startup required a

  13. Coal-fueled diesels for modular power generation

    SciTech Connect

    Wilson, R.P.; Rao, A.K.; Smith, W.C.

    1993-11-01

    Interest in coal-fueled heat engines revived after the sharp increase in the prices of natural gas and petroleum in the 1970`s. Based on the success of micronized coal water slurry combustion tests in an engine in the 1980`s, Morgantown Energy Technology Center (METC) of the US Department of Energy. initiated several programs for the development of advanced coal-fueled diesel and gas turbine engines for use in cogeneration, small utilities, industrial applications and transportation. Cooper-Bessemer and Arthur D. Little have been developing technology since 1985, under the sponsor of METC, to enable coal water slurry (CWS) to be utilized in large bore, medium-speed diesel engines. Modular power generation applications in the 10--100 MW size (each plant typically using from two to eight engines) are the target applications for the late 1990`s and beyond when, according to the US DOE and other projections, oil and natural gas prices are expected to escalate much more rapidly compared to the price of coal. As part of this program over 7.50 hours of prototype engine operation has been achieved on coal water slurry (CWS), including over 100 hours operation of a six-cylinder full scale engine with Integrated Emissions Control System in 1993. In this paper, the authors described the project cost of the CWS fuel used, the heat rate of the engine operating on CWS, the projected maintenance cost for various engine components, and the demonstrated low emissions characteristics of the coal diesel system.

  14. Coal-fueled diesels for modular power generation

    NASA Astrophysics Data System (ADS)

    Wilson, R. P.; Rao, A. K.; Smith, W. C.

    1993-11-01

    Interest in coal-fueled heat engines revived after the sharp increase in the prices of natural gas and petroleum in the 1970's. Based on the success of micronized coal water slurry combustion tests in an engine in the 1980's, Morgantown Energy Technology Center (METC) of the US Department of Energy initiated several programs for the development of advanced coal-fueled diesel and gas turbine engines for use in cogeneration, small utilities, industrial applications and transportation. Cooper-Bessemer and Arthur D. Little have been developing technology since 1985, under the sponsor of METC, to enable coal water slurry (CWS) to be utilized in large bore, medium-speed diesel engines. Modular power generation applications in the 10-100 MW size (each plant typically using from two to eight engines) are the target applications for the late 1990's and beyond when, according to the US DOE and other projections, oil and natural gas prices are expected to escalate much more rapidly compared to the price of coal. As part of this program over 7.50 hours of prototype engine operation has been achieved on coal water slurry (CWS), including over 100 hours operation of a six-cylinder full scale engine with Integrated Emissions Control System in 1993. In this paper, the authors described the project cost of the CWS fuel used, the heat rate of the engine operating on CWS, the projected maintenance cost for various engine components, and the demonstrated low emissions characteristics of the coal diesel system.

  15. Conversion of wood residues to diesel fuel

    SciTech Connect

    Kuester, J.L.

    1981-01-01

    The basic approach is indirect liquefaction, i.e., thermal gasification followed by catalytic liquefaction. The indirect approach results in separation of the oxygen in the biomass feedstock, i.e., oxygenated compounds do not appear in the liquid hydrocarbon fuel product. The general conversion scheme is shown. The process is capable of accepting a wide variety of feedstocks. Potential products include medium quality gas, normal propanol, paraffinic fuel and/or high octane gasoline. A flow diagram of the continuous laboratory unit is shown. A fluidized bed pyrolysis system is used for gasification. Capacity is about 10 lbs/h of feedstock. The pyrolyzer can be fluidized with recycle pyrolysis gas, steam or recycle liquefaction system off gas or some combination thereof. Tars are removed in a wet scrubber. Unseparated pyrolysis gases are utilized as feed to a modified Fischer-Tropsch reactor. The liquid condensate from the reactor consists of a normal propanol-water phase and a paraffinic hydrocarbon phase. The reactor can be operated to optimize for either product. If a high octane gasoline is desired, the paraffinic fuel is passed through a conventional catalytic reformer. The normal propanol could be used as a fuel extender if blended with the hydrocarbon fuel products. Off gases from the downstream reactors are of high quality due to the accumulation of low molecular weight paraffins.

  16. FUEL FORMULATION EFFECTS ON DIESEL FUEL INJECTION, COMBUSTION, EMISSIONS AND EMISSION CONTROL

    SciTech Connect

    Boehman, A; Alam, M; Song, J; Acharya, R; Szybist, J; Zello, V; Miller, K

    2003-08-24

    This paper describes work under a U.S. DOE sponsored Ultra Clean Fuels project entitled ''Ultra Clean Fuels from Natural Gas,'' Cooperative Agreement No. DE-FC26-01NT41098. In this study we have examined the incremental benefits of moving from low sulfur diesel fuel and ultra low sulfur diesel fuel to an ultra clean fuel, Fischer-Tropsch diesel fuel produced from natural gas. Blending with biodiesel, B100, was also considered. The impact of fuel formulation on fuel injection timing, bulk modulus of compressibility, in-cylinder combustion processes, gaseous and particulate emissions, DPF regeneration temperature and urea-SCR NOx control has been examined. The primary test engine is a 5.9L Cummins ISB, which has been instrumented for in-cylinder combustion analysis and in-cylinder visualization with an engine videoscope. A single-cylinder engine has also been used to examine in detail the impacts of fuel formulation on injection timing in a pump-line-nozzle fueling system, to assist in the interpretation of results from the ISB engine.

  17. Modified Fenton oxidation of diesel fuel in arctic soils rich in organic matter and iron.

    PubMed

    Sherwood, Mary K; Cassidy, Daniel P

    2014-10-01

    Modified Fenton (MF) chemistry was tested in the laboratory to treat three diesel fuel-contaminated soils from the Canadian arctic rich in soil organic matter (SOM) and Fe oxides. Reactors were dosed with hydrogen peroxide (HP), and treatment was compared in reactors with SOM as the only chelate vs. reactors to which ethylenediaminetetraacetate (EDTA) was added. Concentrations of diesel fuel and HP were measured over time, and the oxidation of both diesel fuel and SOM were quantified in each soil. A distinct selectivity for oxidation of diesel fuel over SOM was observed. Reactors with EDTA showed significantly less diesel fuel oxidation and lower oxidant efficiency (diesel fuel oxidized/HP consumed) than reactors with SOM as the only chelate. The results from these studies demonstrate that MF chemistry can be an effective remedial tool for contaminated arctic soils, and challenge the traditional conceptual model that SOM reduces the efficiency of MF treatment through excessive scavenging of oxidant.

  18. Microemulsion-Type Fire-Resistant Diesel Fuel.

    DTIC Science & Technology

    1984-12-31

    Temperature Flow--Minimum Temperatures 2 . Low-Temperature Filtration--Suction Versus Pressure 3. Is FRF Newtonian? 4 . Additive Effects D . Engine...oxyethylene groups (Igepal DM-430) C. H o(C( 2 CH2 0) 7H C H1 9 19 d ) A proprietary anionic phosphate ester derivative of the polyethoxy- lated...AD-A157 i25 MICROEMULSION-TYPE FIRE-RESISTANT DIESEL FUEL(U) i/ 2 SOUTHWEST RESEARCH INST SAN ANTONIO TX ARMY FUELS AND LUBRICANTS RESEARCH LAB W D

  19. Biofouling of Several Marine Diesel Fuels

    DTIC Science & Technology

    2011-03-01

    authors thank Sherry Williams at NAVAIR, Patuxent River Naval Air Station, for technical advice, and for arranging fuel samples for testing. We thank...NAVAIR Patuxent River ( Sherry Williams ). All exposures were in natural seawater collected from the DE shore (29 ppt salinity, pH adjusted to 8.0) at

  20. Approach for energy saving and pollution reducing by fueling diesel engines with emulsified biosolution/ biodiesel/diesel blends.

    PubMed

    Lin, Yuan-Chung; Lee, Wen-Jhy; Chao, How-Ran; Wang, Shu-Li; Tsou, Tsui-Chun; Chang-Chien, Guo-Ping; Tsai, Perng-Jy

    2008-05-15

    The developments of both biodiesel and emulsified diesel are being driven by the need for reducing emissions from diesel engines and saving energy. Artificial chemical additives are also being used in diesel engines for increasing their combustion efficiencies. But the effects associated with the use of emulsified additive/biodiesel/diesel blends in diesel engines have never been assessed. In this research, the premium diesel fuel (PDF) was used as the reference fuel. A soy-biodiesel was selected as the test biodiesel. A biosolution made of 96.5 wt % natural organic enzyme-7F (NOE-7F) and 3.5 wt % water (NOE-7F water) was used as the fuel additive. By adding additional 1 vol % of surfactant into the fuel blend, a nanotechnology was used to form emulsified biosolution/soy-biodiesel/PDF blends for fueling the diesel engine. We found that the emulsified biosolution/soy-biodiesel/PDF blends did not separate after being kept motionless for 30 days. The above stability suggests that the above combinations are suitable for diesel engines as alternative fuels. Particularly, we found that the emulsified biosolution/soy-biodiesel/PDF blends did have the advantage in saving energy and reducing the emissions of both particulate matters (PM) and polycyclic aromatic hydrocarbons (PAHs) from diesel engines as compared with PDF, soy-biodiesel/PDF blends, and emulsified soy-biodiesel/ PDF blends. The results obtained from this study will provide useful approaches for reducing the petroleum reliance, pollution, and global warming. However, it should be noted that NO(x) emissions were not measured in the present study which warrants the need for future investigation.

  1. Rapid engine test to measure injector fouling in diesel engines using vegetable oil fuels

    SciTech Connect

    Korus, R.A.; Jaiduk, J.; Peterson, C.L.

    1985-11-01

    Short engine tests were used to determine the rate of carbon deposition on direct injection diesel nozzles. Winter rape, high-oleic and high-linoleic safflower blends with 50% diesel were tested for carbon deposit and compared to that with D-2 Diesel Control Fuel. Deposits were greatest with the most unsaturated fuel, high-linoleic safflower, and least with winter rape. All vegetable oil blends developed power similar to diesel fueled engines with a 6 to 8% greater fuel consumption. 8 references.

  2. A diesel fuel processor for fuel-cell-based auxiliary power unit applications

    NASA Astrophysics Data System (ADS)

    Samsun, Remzi Can; Krekel, Daniel; Pasel, Joachim; Prawitz, Matthias; Peters, Ralf; Stolten, Detlef

    2017-07-01

    Producing a hydrogen-rich gas from diesel fuel enables the efficient generation of electricity in a fuel-cell-based auxiliary power unit. In recent years, significant progress has been achieved in diesel reforming. One issue encountered is the stable operation of water-gas shift reactors with real reformates. A new fuel processor is developed using a commercial shift catalyst. The system is operated using optimized start-up and shut-down strategies. Experiments with diesel and kerosene fuels show slight performance drops in the shift reactor during continuous operation for 100 h. CO concentrations much lower than the target value are achieved during system operation in auxiliary power unit mode at partial loads of up to 60%. The regeneration leads to full recovery of the shift activity. Finally, a new operation strategy is developed whereby the gas hourly space velocity of the shift stages is re-designed. This strategy is validated using different diesel and kerosene fuels, showing a maximum CO concentration of 1.5% at the fuel processor outlet under extreme conditions, which can be tolerated by a high-temperature PEFC. The proposed operation strategy solves the issue of strong performance drop in the shift reactor and makes this technology available for reducing emissions in the transportation sector.

  3. [Effects of oxygenated fuels on emissions and carbon composition of fine particles from diesel engine].

    PubMed

    Shi, Xiao-Yan; He, Ke-Bin; Zhang, Jie; Ge, Yun-Shan; Tan, Jian-Wei

    2009-06-15

    Acetal (1,1-diethoxyethane) is considered as an alternative to ethanol as bio-derived additive for diesel fuel, which is miscible in diesel fuel. Biodiesel can improve the oxygen content and flash point of the fuel blend of acetal and diesel fuel. Two oxygenated fuels were prepared: a blend of 10% acetal + 90% diesel fuel and 10% acetal + 10% biodiesel + 80% diesel fuel. The emissions of NO(x), HC and PM2.5 from oxygenated fuels were investigated on a diesel engine bench at five modes according to various loads at two steady speeds and compared with base diesel fuel. Additionally, the carbon compositions of PM2.5 were analyzed by DRI thermal/optical carbon analyzer. Oxygenated fuels have unconspicuous effect on NO(x) emission rate but HC emission rate is observed significantly increased at some modes. The emission rate of PM2.5 is decreased by using oxygenated fuels and it decreases with the increase of fuel oxygen content. The emission rates of TC (total carbon) and EC (elemental carbon) in PM2.5 are also decreased by oxygenated fuels. The emission rate of organic carbon (OC) is greatly decreased at modes of higher engine speed. The OC/EC ratios of PM2.5 from oxygenated fuels are higher than that from base diesel fuel at most modes. The carbon compositions fractions of PM2.5 from the three test fuels are similar, and OC1 and EC1 are contributed to the most fractions of OC and EC, respectively. Compared with base diesel fuel, oxygenated fuels decrease emission rate of PM2.5, and have more OC contribution to PM2.5 but have little effect on carbon composition fractions.

  4. Gum and Deposit Formation in Diesel Fuels

    DTIC Science & Technology

    1988-05-15

    this C-C coupling is superseded by the oxidative coupling mechanism above. Still another mechanism is aldol -type condensations and esterifica- tions of...that much more naphthaldehyde than naphthoic acid is formed. Gum formation by aldol condensations and esterifcation of oxida- tion products (Mayo, 1975...propagation and termination during oxidation, (2) a coupling of fuel molecules by decomposing peroxides in the absence of oxygen, and (3) a condensation

  5. Comparison of diesel spray combustion in different high-temperature, high-pressure facilities.

    SciTech Connect

    Christiansen, Caspar; Hermant, Laurent; Malbec, Louis-Marie; Bruneaux, Gilles; Genzale, Caroline L.; Pickett, Lyle M.; Schramm, Jesper

    2010-05-01

    Diesel spray experiments at controlled high-temperature and high-pressure conditions offer the potential for an improved understanding of diesel combustion, and for the development of more accurate CFD models that will ultimately be used to improve engine design. Several spray chamber facilities capable of high-temperature, high-pressure conditions typical of engine combustion have been developed, but uncertainties about their operation exist because of the uniqueness of each facility. For the IMEM meeting, we describe results from comparative studies using constant-volume vessels at Sandia National Laboratories and IFP. Targeting the same ambient gas conditions (900 K, 60 bar, 22.8 kg/m{sup 3}, 15% oxygen) and sharing the same injector (common rail, 1500 bar, KS1.5/86 nozzle, 0.090 mm orifice diameter, n-dodecane, 363 K), we describe detailed measurements of the temperature and pressure boundary conditions at each facility, followed by observations of spray penetration, ignition, and combustion using high-speed imaging. Performing experiments at the same high-temperature, high-pressure operating conditions is an objective of the Engine Combustion Network (http://www.ca.sandia.gov/ECN/), which seeks to leverage the research capabilities and advanced diagnostics of all participants in the ECN. We expect that this effort will generate a high-quality dataset to be used for advanced computational model development at engine conditions.

  6. The emission characteristics of a small D.I. diesel engine using biodiesel blended fuels.

    PubMed

    Lue, Y F; Yeh, Y Y; Wu, C H

    2001-05-01

    Biodiesel and biodiesel blends provide low emissions without modification on the fuel system of conventional diesel engines. This study aims to develop a new domestic biodiesel production procedure which makes use of waste fryer vegetable oil by transesterification method, and further investigates the emission characteristics of a small D.I. diesel engine using biodiesel blends and diesel fuels, respectively. The 20/80 and 30/70 blends of biodiesel to diesel fuel are used in this study. The emission characteristics include smoke emissions, gaseous emissions (CO, HC, NOx and SO2), particle size distributions and number concentrations at a variety of steady state engine speed points. We have found that diesel engine fueled with biodiesel blends emits more PM2 particle number concentrations than those with diesel fuel, and PM2 number concentration increases as biodiesel concentration increases. As for the smoke and gaseous emissions, such as CO, HC, NOx and SO2, the results favored biodiesel blends.

  7. Analytical approximations for temperature dependent thermophysical properties of supercritical diesel fuel surrogates used in combustion modeling

    NASA Astrophysics Data System (ADS)

    Kumar, Abhinav; Saini, Vishnu; Dondapati, Raja Sekhar; Usurumarti, Preeti Rao

    2017-07-01

    Supercritical fluid technology is introduced to combat the critical challenges related with emissions, incomplete and clean diesel fuel combustion. The chemical kinetics of diesel fuel is a strong function of temperature. As surrogate fuels have a potential to represent a real diesel fuel, thermophysical properties of such fuels have been studied in this present work as a function of temperature. Further, two diesel surrogate fuels which have been identified as the components of actual diesel fuel for jet engines are studied and thermophysical properties of these two surrogates are evaluated as a function of temperature at critical pressure. In addition, the accuracy and reliability of the developed correlations is estimated using two statistical parameters such as Absolute Average of Relative Error (AARE) and Sum of Average Residues (SAR). Results show an excellent agreement between the standard data and the correlated property values.

  8. Recovery Act. Solid Oxide Fuel Cell Diesel Auxilliary Power Unit Demonstration

    SciTech Connect

    Geiger, Gail E.

    2013-09-30

    Solid Oxide Fuel Cell Diesel Auxilliary Power Unit Demonstration Project. Summarizing development of Delphi’s next generation SOFC system as the core power plant to prove the viability of the market opportunity for a 3-5 kW diesel SOFC system. Report includes test and demonstration results from testing the diesel APU in a high visibility fleet customer vehicle application.

  9. Effect of some Turkish vegetable oil-diesel fuel blends on exhaust emissions

    SciTech Connect

    Ergeneman, M.; Oezaktas, T.; Cigizoglu, K.B.; Karaosmanoglu, F.; Arslan, E.

    1997-10-01

    For different types of vegetable oils of Turkish origin (sunflower, corn, soybean, and olive oil) were blended with grade No. 2-D diesel fuel at a ratio of 20/80 (v/v). The effect of the compression ratio on exhaust emissions is investigated in an American Society for Testing and Materials (ASTM)-cooperative fuel research (CFR) engine working with the mentioned fuel blends and a baseline diesel fuel. A decrease in soot, CO, CO{sub 2}, and HC emissions and an increase in NO{sub x} emissions have been observed for fuel blends compared to diesel fuel.

  10. A NMR-Based Carbon-Type Analysis of Diesel Fuel Blends From Various Sources

    SciTech Connect

    Bays, J. Timothy; King, David L.

    2013-05-10

    In collaboration with participants of the Coordinating Research Council (CRC) Advanced Vehicle/Fuels/Lubricants (AVFL) Committee, and project AVFL-19, the characteristics of fuels from advanced and renewable sources were compared to commercial diesel fuels. The main objective of this study was to highlight similarities and differences among the fuel types, i.e. ULSD, renewables, and alternative fuels, and among fuels within the different fuel types. This report summarizes the carbon-type analysis from 1H and 13C{1H} nuclear magnetic resonance spectroscopy (NMR) of 14 diesel fuel samples. The diesel fuel samples come from diverse sources and include four commercial ultra-low sulfur diesel fuels (ULSD), one gas-to-liquid diesel fuel (GTL), six renewable diesel fuels (RD), two shale oil-derived diesel fuels, and one oil sands-derived diesel fuel. Overall, the fuels examined fall into two groups. The two shale oil-derived samples and the oil-sand-derived sample closely resemble the four commercial ultra-low sulfur diesels, with SO1 and SO2 most closely matched with ULSD1, ULSD2, and ULSD4, and OS1 most closely matched with ULSD3. As might be expected, the renewable diesel fuels, with the exception of RD3, do not resemble the ULSD fuels because of their very low aromatic content, but more closely resemble the gas-to-liquid sample (GTL) in this respect. RD3 is significantly different from the other renewable diesel fuels in that the aromatic content more closely resembles the ULSD fuels. Fused-ring aromatics are readily observable in the ULSD, SO, and OS samples, as well as RD3, and are noticeably absent in the remaining RD and GTL fuels. Finally, ULSD3 differs from the other ULSD fuels by having a significantly lower aromatic carbon content and higher cycloparaffinic carbon content. In addition to providing important comparative compositional information regarding the various diesel fuels, this report also provides important information about the capabilities of NMR

  11. 40 CFR 80.530 - Under what conditions can 500 ppm motor vehicle diesel fuel be produced or imported after May 31...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Temporary Compliance Option § 80.530 Under what conditions can 500 ppm motor vehicle diesel... motor vehicle diesel fuel be produced or imported after May 31, 2006? 80.530 Section 80.530...

  12. Tribological behavior of near-frictionless carbon coatings in high- and low-sulfur diesel fuels.

    SciTech Connect

    Alzoubi, M. F.; Ajayi, O. O.; Eryilmaz, O. L.; Ozturk, O.; Erdemir, A.; Fenske, G.

    2000-01-19

    The sulfur content in diesel fuel has a significant effect on diesel engine emissions, which are currently subject to environmental regulations. It has been observed that engine particulate and gaseous emissions are directly proportional to fuel sulfur content. With the introduction of low-sulfur fuels, significant reductions in emissions are expected. The process of sulfur reduction in petroleum-based diesel fuels also reduces the lubricity of the fuel, resulting in premature failure of fuel injectors. Thus, another means of preventing injector failures is needed for engines operating with low-sulfur diesel fuels. In this study, the authors evaluated a near-frictionless carbon (NFC) coating (developed at Argonne National Laboratory) as a possible solution to the problems associated with fuel injector failures in low-lubricity fuels. Tribological tests were conducted with NFC-coated and uncoated H13 and 52100 steels lubricated with high- and low- sulfur diesel fuels in a high-frequency reciprocating test machine. The test results showed that the NFC coatings reduced wear rates by a factor of 10 over those of uncoated steel surfaces. In low-sulfur diesel fuel, the reduction in wear rate was even greater (i.e., by a factor of 12 compared to that of uncoated test pairs), indicating that the NFC coating holds promise as a potential solution to wear problems associated with the use of low-lubricity diesel fuels.

  13. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXII, I--MAINTAINING THE FUEL SYSTEM (PART I)--CUMMINS DIESEL ENGINE, II--UNDERSTANDING THE DIFFERENTIAL.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE FUNCTION AND MAINTENANCE OF THE DIESEL ENGINE FUEL SYSTEM AND DIFFERENTIAL DRIVE UNITS USED IN DIESEL POWERED VEHICLES. TOPICS ARE (1) FUEL SYSTEM COMPARISONS, (2) FUEL SYSTEM SUPPLY COMPONENTS, (3) FUEL SUPPLY SECTION MAINTENANCE, (4) FUNCTION OF THE DIFFERENTIAL,…

  14. Comprehensive Fuel Spray Modeling and Impacts on Chamber Acoustics in Combustion Dynamics Simulations

    DTIC Science & Technology

    2013-05-01

    susceptible to thermoacoustic instabilities. Since the LDI engine is operated at fuel-lean conditions, the chemical ki- netics and flame surface are...iments of reacting sprays are used to characterize thermoacoustic instabilities in the LDI gas turbine combustor. Fuel Spray Modeling The fuel spray model

  15. The effects of engine speed and injection characteristics on the flow field and fuel/air mixing in motored two-stroke diesel engines

    NASA Technical Reports Server (NTRS)

    Nguyen, H. L.; Carpenter, M. H.; Ramos, J. I.

    1987-01-01

    A numerical analysis is presented on the effects of the engine speed, injection angle, droplet distribution function, and spray cone angle on the flow field, spray penetration and vaporization, and turbulence in a turbocharged motored two-stroke diesel engine. The results indicate that the spray penetration and vaporization, velocity, and turbulence kinetic energy increase with the intake swirl angle. Good spray penetration, vaporization, and mixing can be achieved by injecting droplets of diameters between 50 and 100 microns along a 120-deg cone at about 315 deg before top-dead-center for an intake swirl angle of 30 deg. The spray penetration and vaporization were found to be insensitive to the turbulence levels within the cylinder. The results have also indicated that squish is necessary in order to increase the fuel vaporization rate and mixing.

  16. Time-Resolved Analysis of Turbulent Mixing Flow Characteristics of Intermittent Multi-Hole Diesel Spray Using 2-D PDPA

    NASA Astrophysics Data System (ADS)

    Lee, Jeekuen; Kang, Shinjae; Rho, Byungjoon

    The turbulent mixing flow characteristics of an intermittent diesel spray were investigated. A 5-hole diesel nozzle (dn=0.32mm) with a 2-spring nozzle holder, which is widely used in heavy-duty diesel engines, was tested. Time-resolved analysis of the turbulent mixing flow characteristics of the spray, injected intermittently into the still ambient air, was made under room temperature by using a 2-D PDPA system. The mean and the fluctuation velocities of the spray were measured. The axial velocity distribution shows similar to that of the free air jets at the downstream of the spray, and the distribution well coincides with the result proposed by Hinze at R/b<1.5. The turbulent intensity of the axial velocity component is high near the spray axis, and it decreases gradually with the increase in the radial distance. The turbulent shear stress increases with proceeding to the trailing edge as well as the downstream of the spray. The maximum value of the turbulent shear stress is observed near R/b≈1.0, regardless of the evolution time. The turbulent shear stress in the central parts of the spray is lower than that of the continuous free air jets, whereas that in the trailing edge is considerably higher.

  17. Laboratory endurance testing of a 25/75 sunflower oil-diesel fuel blend treated with fuel additives

    SciTech Connect

    Ziejewski, M.; Kaufman, K.R.; Tupa, R.C.

    1984-01-01

    The engine performance and durability effects of a barium smoke suppressant additive, Lubrizol 565, and an ashless polymeric additive, Lubrizol 552, in a 25-75 blend (v/v) of alkali refined sunflower oil with diesel fuel were investigated. The study was performed on a direct injected, turbocharged, and intercooled diesel engine. These additives were tested in an attempt to reduce carbon buildup problems observed while using an untreated 25-75 blend of sunflower oil and diesel fuel.

  18. Performance of a diesel engine operating on raw coal-diesel fuel and solvent refined coal-diesel fuel slurries. Final report

    SciTech Connect

    Marshall, H.P.

    1980-03-01

    Performance tests using an 11 kW single cylinder diesel engine were made to determine the effects of three different micronized coal-fuel oil slurries being considered as alternative fuels. Slurries containing 20, 32, and 40%-wt micronized raw coal in No. 2 fuel oil were used. Results are presented indicating the changes in the concentrations of SO/sub X/ and NO/sub X/ in the exhaust, exhaust opacity, power and efficiency, and in wear rates relative to operation on fuel oil No. 2. The engine was operated for 10 h at full load and 1400 rpm on al fuels except the 40%-wt slurry. This test was discontinued because of extremely poor performance.

  19. 40 CFR 80.530 - Under what conditions can 500 ppm motor vehicle diesel fuel be produced or imported after May 31...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive, and Marine Diesel Fuel; and ECA Marine Fuel Temporary Compliance Option § 80.530 Under what conditions can 500 ppm motor vehicle...

  20. High-pressure combustion of binary fuel sprays

    NASA Technical Reports Server (NTRS)

    Mikami, Masato; Kono, Michikata; Sato, Jun'ichi; Dietrich, Daniel L.; Williams, Forman A.

    1995-01-01

    The ultimate objective of this study is to obtain fundamental information relevant to combustion processes that occur in fuel sprays of practical interest at high pressures in internal combustion engines. Since practical fuels are multicomponent and derived from petroleum, the present work involves the model alkane mixture of n-heptane and n-hexadecane. Since burning droplets in sprays can interact with each other, the present work involves investigation of the effects of this interaction on flame shapes and droplet burning times. The small droplets in practical combustion chambers are not significantly influenced by buoyancy. Since such small droplets are difficult to study experimentally, the present work takes advantage of microgravity to lessen buoyancy and enable information about droplet interactions to be obtained by studying larger droplets. The results are intended to provide fundamental understanding that can be used in improving descriptions of practical spray combustion.

  1. Generation and characterization of diesel engine combustion emissions from petroleum diesel and soybean biodiesel fuels and application for inhalation exposure studies

    EPA Science Inventory

    Biodiesel made from the transesterification of plant- and anmal-derived oils is an important alternative fuel source for diesel engines. Although numerous studies have reported health effects associated with petroleum diesel emissions, information on biodiesel emissions are more ...

  2. Generation and characterization of diesel engine combustion emissions from petroleum diesel and soybean biodiesel fuels and application for inhalation exposure studies

    EPA Science Inventory

    Biodiesel made from the transesterification of plant- and anmal-derived oils is an important alternative fuel source for diesel engines. Although numerous studies have reported health effects associated with petroleum diesel emissions, information on biodiesel emissions are more ...

  3. Regulated and unregulated emissions from a diesel engine fueled with biodiesel and biodiesel blended with methanol

    NASA Astrophysics Data System (ADS)

    Cheung, C. S.; Zhu, Lei; Huang, Zhen

    Experiments were carried out on a diesel engine operating on Euro V diesel fuel, pure biodiesel and biodiesel blended with methanol. The blended fuels contain 5%, 10% and 15% by volume of methanol. Experiments were conducted under five engine loads at a steady speed of 1800 rev min -1 to assess the performance and the emissions of the engine associated with the application of the different fuels. The results indicate an increase of brake specific fuel consumption and brake thermal efficiency when the diesel engine was operated with biodiesel and the blended fuels, compared with the diesel fuel. The blended fuels could lead to higher CO and HC emissions than biodiesel, higher CO emission but lower HC emission than the diesel fuel. There are simultaneous reductions of NO x and PM to a level below those of the diesel fuel. Regarding the unregulated emissions, compared with the diesel fuel, the blended fuels generate higher formaldehyde, acetaldehyde and unburned methanol emissions, lower 1,3-butadiene and benzene emissions, while the toluene and xylene emissions not significantly different.

  4. In situ diesel fuel bioremediation: A case history

    SciTech Connect

    Rhodes, D.K.; Burke, G.K.; Smith, N.; Clark, D.

    1995-12-31

    As a result of a ruptured fuel line, the study site had diesel fuel soil contamination and free product more than 2 ft (0.75 m) thick on the groundwater surface. Diesel fuel, which is composed of a high percentage of nonvolatile compounds, has proven difficult to remediate using conventional extraction remediation techniques. A number of remedial alternatives were reviewed, and the patented in situ biodegradation BioSparge{sup SM} technology was selected for the site and performed under license by a specialty contractor. BioSparge{sup SM} is a field-proven closed-loop (no vapor emissions) system that supplies a continuous, steady supply of oxygen, moisture, and additional heat to enhance microorganism activity. The system injects an enriched airstream beneath the groundwater surface elevation and/or within the contaminant plume and removes residual vapors from vadose zone soil within and above the contaminant plume. The technology has no air discharge, which is critical in areas where strict air discharge regulations apply. The focus of this paper is the viability of in situ biodegradation as an effective remediation alternative for reducing nonvolatile petroleum products.

  5. Characterization of vegetable oils for use as fuels in diesel engines

    SciTech Connect

    Ryan, T.W. III.; Callahan, T.J.; Dodge, L.G.

    1982-01-01

    The current specifications for petroleum fuels have evolved over the history of the petroleum industry and the development of the internal combustion engine. Present day fuel specifications are based on a wealth of empirical data and practical experience. A similar data base is only now being developed for the specification of vegetable oil fuels for diesel engines. Four different types of vegetable oil (soy, sunflower, cottonseed and peanut) have been obtained, each in at least three different stages of processing. All of the oils (14) have been characterized with respect to their physical and chemical properties. The spray characteristics of five of the oils have been determined at a variety of fuel temperatures using a high-pressure, high-temperature injection bomb and high-speed motion picture camera. These same oils have been tested in a direct injection farm tractor engine. The engine data consists of the normal performance measurements as well as the determination of heat release rates from cylinder pressure data. 3 figures, 7 tables.

  6. Health Effects Associated with Inhalation Exposure to Diesel Emission Generated with and without CeO2 Nano Fuel Additive

    EPA Science Inventory

    Diesel exhaust (DE) exposure induces adverse cardiopulmonary effects. Addition of nano cerium (Ce) oxide additive to diesel fuel (DECe) increases fuel burning efficiency resulting in altered emission characteristics and potentially altered health effects. We hypothesized that inh...

  7. Health Effects Associated with Inhalation Exposure to Diesel Emission Generated with and without CeO2 Nano Fuel Additive

    EPA Science Inventory

    Diesel exhaust (DE) exposure induces adverse cardiopulmonary effects. Addition of nano cerium (Ce) oxide additive to diesel fuel (DECe) increases fuel burning efficiency resulting in altered emission characteristics and potentially altered health effects. We hypothesized that inh...

  8. Coal-fueled diesel technology development emissions control

    NASA Astrophysics Data System (ADS)

    Vankleunen, W.; Kaldor, S.; Gal, E.; Mengel, M.; Arnold, M.

    1994-01-01

    General Electric Environmental Services, Inc. (GEESI), Emissions Control program activity ranged from control concept testing of 10 CFM slipstream from a coal-water-slurry (CWS) fuel single cylinder research diesel engine to the design, installation, and operation of a full-size emissions control system for a full-size CWS fuel diesel engine designed for locomotive operation. Early 10 CFM slipstream testing program activity was performed to determine emissions characteristics and to evaluate emissions control concepts such a barrier filtration, granular bed filtration, and cyclone particulate collection for reduction of particulate and gaseous emissions. Use of sorbent injection into the engine exhaust gas upstream of the barrier filter or use of sorbent media in the granular bed filter were found to provide reduction of exhaust gas SO2 and NO(x) in addition to collection of ash particulate. Emergence of the use of barrier filtration as a most practical emissions control concept disclosed a need to improve cleanability of the filter media in order to avoid reduction of turbocharger performance by excessive barrier filter pressure drop. The next progression of program activity, after the slipstream feasibility state, was 500 CFM cold flow testing of control system concepts. The successful completion of 500 CFM cold flow testing of the envelope filter led to a subsequent progression to a similar configuration envelope filter designed to operate at 500 CFM hot gas flow from the CWS fuel research diesel engine in the GETS engine test laboratory. This envelope filter included the design aspect proven by cold flow testing as well as optimization of the selection of the installed filter media.

  9. Coal-fueled diesel technology development Emissions Control

    SciTech Connect

    Van Kleunen, W.; Kaldor, S.; Gal, E.; Mengel, M.; Arnold, M.

    1994-01-01

    GEESI Emissions Control program activity ranged from control concept testing of 10 CFM slipstream from a CWS fuel single cylinder research diesel engine to the design, installation, and operation of a full-size Emissions Control system for a full-size CWS fuel diesel engine designed for locomotive operation.Early 10 CFM slipstream testing program activity was performed to determine Emissions Characteristics and to evaluate Emissions Control concepts such a Barrier filtration, Granular bed filtration, and Cyclone particulate collection for reduction of particulate and gaseous emissions. Use of sorbent injection into the engine exhaust gas upstream of the barrier filter or use of sorbent media in the granular bed filter were found to provide reduction of exhaust gas SO{sub 2} and NO{sub x} in addition to collection of ash particulate. Emergence of the use of barrier filtration as a most practical Emissions Control concept disclosed a need to improve cleanability of the filter media in order to avoid reduction of turbocharger performance by excessive barrier filter pressure drop. The next progression of program activity, after the slipstream feasibility state, was 500 CFM cold flow testing of control system concepts. The successful completion of 500 CFM cold flow testing of the Envelope Filter led to a subsequent progression to a similar configuration Envelope Filter designed to operate at 500 CFM hot gas flow from the CWS fuel research diesel engine in the GETS engine test laboratory. This Envelope Filter included the design aspect proven by cold flow testing as well as optimization of the selection of the installed filter media.

  10. 40 CFR 80.610 - What acts are prohibited under the diesel fuel sulfur program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... milligrams per liter of solvent yellow 124, except for 500 ppm sulfur diesel fuel produced or imported from... December 1, 2014, in all other areas. (5) Introduce, or permit the introduction of, fuel into any...

  11. Transition to Ultra-Low-Sulfur Diesel Fuel: Effects on Prices and Supply, The

    EIA Publications

    2001-01-01

    This report discusses the implications of the new regulations for vehicle fuel efficiency and examines the technology, production, distribution, and cost implications of supplying diesel fuel to meet the new standards.

  12. Liquid/Vapour visualization of common rail diesel sprays in different ambient conditions with visible and UV laser light scattering and PLIF

    NASA Astrophysics Data System (ADS)

    Allocca, L.; De Vita, A.; Merola, S. S.; Vaglieco, B. M.

    2005-08-01

    In this paper UV-visible elastic light scattering and Planar Laser Induced Fluorescence (PLIF) have been applied for measuring the vaporization process of a diesel fuel in an optically accessible vessel at engine ambient conditions. The spray has been generated by an electronically controlled Common Rail injection system and emerged from an axial single-hole electroinjector, 0.18 mm in diameter (L/d = 5.55). The injected fluid has been a commercial Diesel fuel and a single strategy (1.0 ms in duration) has been implemented at the injection pressure of 60.0 MPa. The measurements have been carried out in a quiescent bomb filled with SF6 gas at pressures of 0.39 MPa and temperature ranging between 293 to 533 K. The ambient gas densities has varied from 12.64 kg/m3 to 23.0 kg/m3, equivalent to the diesel engine conditions between the Start of Injection (SOI) and the Start of Combustion (SOC). A Nd-YAG pulsed laser sheet has been used for excitation of the spray along its axis at two wavelengths: 532 and 355 nm; the sheet thickness and light pulse duration have been 0.10 mm and 12 ns, respectively. The scattered light has been collected and synchronized at different instant from the SOI. The comparison of the images of the fuel at different instant from the SOI has permitted the analysis of the spray characteristics in terms of tip penetration, cone angle and spray fragmentation. Elastic visible and UV scattering radiation have allowed investigations on the size of the droplets along a plane centered on the spray axis. Planar Laser Induced Fluorescence (PLIF) measurements on the same plane have been carried out exciting the droplets at 355 nm and collecting the light through an interference filter centered at 430 nm. PLIF has allowed a correlation between the liquid and the vapor structures of the jets in all the examined ambient conditions.

  13. The multipoint diesel dual fuel transport engine: Its merits in fuel efficiency, economics and green house gas emission

    SciTech Connect

    Badakhshan, A.; Beck, J.; Beck, P.; Mirosh, E.

    1996-10-01

    Medium and heavy duty bus and truck engines are large energy consumers and therefore, significant green house gas generators. Multipoint diesel dual fuel (MDDF) transport engines which utilize a fuel management system that can easily retrofit diesel engines to use natural gas, combine the cleanliness of the natural gas engine with the high fuel efficiency of the diesel engine. This paper uses both, dynamometer tested and field operating engine data (obtained by AFS) to demonstrate the advantages of multipoint diesel dual fuel engines in fuel consumption, green house gas emission and economics compared to 100% CNG stoichiometric and 100% CNG lean burn Otto cycle, and diesel four stroke engines, during their application in bus fleet operating duty cycles. Multipoint diesel dual fuel engine management systems deliver accurate diesel and natural gas fuel quantities to each cylinder, in the course of engine operations. This accurate mode of fuel delivery in MDDF engines causes better fuel efficiency, lesser green house gas emission and favorable operating economics. It is to be shown that MDDF engines are better in fleet operations because they contribute to energy conservation, higher air quality and lesser operating cost. These engines also require the lowest incremental cost for incremental carbon removal from the atmosphere.

  14. Hydrogen-fueled diesel engine without timed ignition

    NASA Technical Reports Server (NTRS)

    Homan, H. S.; De Boer, P. C. T.; Mclean, W. J.; Reynolds, R. K.

    1979-01-01

    Experiments were carried out to investigate the feasibility of converting a diesel engine to hydrogen-fueled operation without providing a timed ignition system. Use was made of a glow plug and a multiple-strike spark plug. The glow plug was found to provide reliable ignition and smooth engine operation. It caused the hydrogen to ignite almost immediately upon the start of injection. Indicated mean effective pressures were on the order of 1.3 MPa for equivalence ratios between 0.1 and 0.4 at a compression ratio of 18. This is significantly higher than the corresponding result obtained with diesel oil (about 0.6 MPa for equivalence ratios between 0.3 and 0.9). Indicated thermal efficiencies were on the order of 0.4 for hydrogen and 0.20-0.25 for diesel oil. Operation with the multiple-strike spark system yielded similar values for IMEP and efficiency, but gave rise to large cycle-to-cycle variations in the delay between the beginning of injection and ignition. Large ignition delays were associated with large amplitude pressure waves in the combustion chamber. The measured NO(x) concentrations in the exhaust gas were of the order of 50-100 ppm. This is significantly higher than the corresponding results obtained with premixed hydrogen and air at low equivalence ratios. Compression ignition could not be achieved even at a compression ratio of 29.

  15. 26 CFR 48.6427-8 - Diesel fuel and kerosene; claims by ultimate purchasers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 16 2010-04-01 2010-04-01 true Diesel fuel and kerosene; claims by ultimate... kerosene; claims by ultimate purchasers. (a) Overview. This section provides rules under which ultimate purchasers of taxed diesel fuel and kerosene may claim the income tax credits or payments allowed by section...

  16. 40 CFR 69.52 - Non-motor vehicle diesel fuel.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... motor vehicle diesel fuel shall contain the following language for the applicable sulfur level and time... heating oil shall include the language specified in 40 CFR 80.590(a) applicable to undyed diesel fuel for the appropriate sulfur level, and the following additional language as applicable: (1) For exempt NRLM...

  17. 40 CFR 69.52 - Non-motor vehicle diesel fuel.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... motor vehicle diesel fuel shall contain the following language for the applicable sulfur level and time... heating oil shall include the language specified in 40 CFR 80.590(a) applicable to undyed diesel fuel for the appropriate sulfur level, and the following additional language as applicable: (1) For exempt NRLM...

  18. 40 CFR 80.8 - Sampling methods for gasoline and diesel fuel.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Sampling methods for gasoline and... gasoline and diesel fuel. The sampling methods specified in this section shall be used to collect samples of gasoline and diesel fuel for purposes of determining compliance with the requirements of this part...

  19. 40 CFR 80.30 - Liability for violations of diesel fuel control and prohibitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for diesel fuel for use in motor vehicles which contains visible evidence of the dye solvent red 164... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Liability for violations of diesel fuel control and prohibitions. 80.30 Section 80.30 Protection of Environment ENVIRONMENTAL...

  20. 40 CFR 80.30 - Liability for violations of diesel fuel control and prohibitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for diesel fuel for use in motor vehicles which contains visible evidence of the dye solvent red 164... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Liability for violations of diesel fuel control and prohibitions. 80.30 Section 80.30 Protection of Environment ENVIRONMENTAL...

  1. 40 CFR 80.30 - Liability for violations of diesel fuel control and prohibitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for diesel fuel for use in motor vehicles which contains visible evidence of the dye solvent red 164... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Liability for violations of diesel fuel control and prohibitions. 80.30 Section 80.30 Protection of Environment ENVIRONMENTAL...

  2. 40 CFR 80.30 - Liability for violations of diesel fuel control and prohibitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for diesel fuel for use in motor vehicles which contains visible evidence of the dye solvent red 164... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Liability for violations of diesel fuel control and prohibitions. 80.30 Section 80.30 Protection of Environment ENVIRONMENTAL...

  3. 40 CFR 80.30 - Liability for violations of diesel fuel control and prohibitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... monitoring the diesel fuel stored or transported by that carrier, such as periodic sampling and testing of... include periodic sampling and testing of diesel fuel in a tank truck operated by a common carrier, but in... with applicable requirements and the periodic review of records normally received in the ordinary...

  4. 46 CFR 119.470 - Ventilation of spaces containing diesel fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Ventilation of spaces containing diesel fuel tanks. 119... MACHINERY INSTALLATION Specific Machinery Requirements § 119.470 Ventilation of spaces containing diesel fuel tanks. (a) Unless provided with ventilation that complies with § 119.465 of this part, a...

  5. 46 CFR 182.470 - Ventilation of spaces containing diesel fuel tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Ventilation of spaces containing diesel fuel tanks. 182... Ventilation of spaces containing diesel fuel tanks. (a) Unless provided with ventilation that complies with... ventilation installations in accordance with ABYC H-32 (incorporated by reference; see 46 CFR 175.600) will...

  6. 46 CFR 119.470 - Ventilation of spaces containing diesel fuel tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Ventilation of spaces containing diesel fuel tanks. 119... MACHINERY INSTALLATION Specific Machinery Requirements § 119.470 Ventilation of spaces containing diesel fuel tanks. (a) Unless provided with ventilation that complies with § 119.465 of this part, a...

  7. 46 CFR 182.470 - Ventilation of spaces containing diesel fuel tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Ventilation of spaces containing diesel fuel tanks. 182... Ventilation of spaces containing diesel fuel tanks. (a) Unless provided with ventilation that complies with... ventilation installations in accordance with ABYC H-32 (incorporated by reference; see 46 CFR 175.600) will...

  8. 46 CFR 182.470 - Ventilation of spaces containing diesel fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Ventilation of spaces containing diesel fuel tanks. 182... Ventilation of spaces containing diesel fuel tanks. (a) Unless provided with ventilation that complies with... ventilation installations in accordance with ABYC H-32 (incorporated by reference; see 46 CFR 175.600) will...

  9. 46 CFR 182.470 - Ventilation of spaces containing diesel fuel tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Ventilation of spaces containing diesel fuel tanks. 182... Ventilation of spaces containing diesel fuel tanks. (a) Unless provided with ventilation that complies with... ventilation installations in accordance with ABYC H-32 (incorporated by reference; see 46 CFR 175.600) will...

  10. 46 CFR 119.470 - Ventilation of spaces containing diesel fuel tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Ventilation of spaces containing diesel fuel tanks. 119... MACHINERY INSTALLATION Specific Machinery Requirements § 119.470 Ventilation of spaces containing diesel fuel tanks. (a) Unless provided with ventilation that complies with § 119.465 of this part, a...

  11. 46 CFR 119.470 - Ventilation of spaces containing diesel fuel tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Ventilation of spaces containing diesel fuel tanks. 119... MACHINERY INSTALLATION Specific Machinery Requirements § 119.470 Ventilation of spaces containing diesel fuel tanks. (a) Unless provided with ventilation that complies with § 119.465 of this part, a...

  12. 46 CFR 182.470 - Ventilation of spaces containing diesel fuel tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Ventilation of spaces containing diesel fuel tanks. 182... Ventilation of spaces containing diesel fuel tanks. (a) Unless provided with ventilation that complies with... ventilation installations in accordance with ABYC H-32 (incorporated by reference; see 46 CFR 175.600) will...

  13. 40 CFR 80.532 - How are motor vehicle diesel fuel credits used and transferred?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... diesel fuel needed to meet compliance with the volume limit of § 80.530(a)(3). (c) Credit banking. Motor... credits used and transferred? 80.532 Section 80.532 Protection of Environment ENVIRONMENTAL PROTECTION....532 How are motor vehicle diesel fuel credits used and transferred? (a) Credit use stipulations....

  14. Evaluation of Hydroprocessed Renewable Diesel (HRD) Fuel in a Caterpillar Engine Using the 210 Hour TWV Cycle

    DTIC Science & Technology

    2014-05-01

    UNCLASSIFIED UNCLASSIFIED EVALUATION OF HYDROPROCESSED RENEWABLE DIESEL (HRD) FUEL IN A CATERPILLAR ENGINE USING THE 210 HOUR TWV CYCLE...Report 3. DATES COVERED 01-06-2011 to 01-05-2014 4. TITLE AND SUBTITLE EVALUATION OF HYDROPROCESSED RENEWABLE DIESEL (HRD) FUEL IN A CATERPILLAR ...Reference Diesel Fuel (RDF). The use of Hydroprocessed Renewable Diesel fuel in the Caterpillar C7 engine provides adequate performance without any

  15. Guidance Document for Alternative Diesel Fuels Proposed as Drop-In Fuels to Displace Diesel Fuels as Specified By ASTM Specification D975

    DTIC Science & Technology

    2014-07-01

    Interfacial Tension .................................9 3.2.10 Compatibility with Petroleum Diesel and Biodiesel ...Shorthand indication of percentage of biodiesel in a biodiesel blend CFPP – ASTM D6371 Cold Filter Plugging Point DOE – United States Department of...approved in 1949. However, as we have learned with biodiesel , the properties in D975 are not always sufficient to describe a fuel (or fuel component

  16. Experimental Investigations on Conventional and Semi-Adiabatic Diesel Engine Using Simarouba Biodiesel as Fuel

    NASA Astrophysics Data System (ADS)

    Ravi, M. U.; Reddy, C. P.; Ravindranath, K.

    2013-04-01

    In view of fast depletion of fossil fuels and the rapid rate at which the fuel consumption is taking place all over the world, scientists are searching for alternate fuels for maintaining the growth industrially and economically. Hence search for alternate fuel(s) has become imminent. Out of the limited options for internal combustion engines, the bio diesel fuel appears to be the best. Many advanced countries are implementing several biodiesel initiatives and developmental programmes in order to become self sufficient and reduce the import bills. Biodiesel is biodegradable and renewable fuel with the potential to enhance the performance and reduce engine exhaust emissions. This is due to ready usage of existing diesel engines, fuel distribution pattern, reduced emission profiles, and eco-friendly properties of biodiesel. Simarouba biodiesel (SBD), the methyl ester of Simarouba oil is one such alternative fuel which can be used as substitute to conventional petro-diesel. The present work involves experimental investigation on the use of SBD blends as fuel in conventional diesel engine and semi-adiabatic diesel engine. The oil was triple filtered to eliminate particulate matter and then transesterified to obtain biodiesel. The project envisaged aims at conducting analysis of diesel with SBD blends (10, 20, 30 and 40 %) in conventional engine and semi-adiabatic engine. Also it was decided to vary the injection pressure (180, 190 and 200 bar) and observe its effect on performance and also suggest better value of injection pressure. The engine was made semi adiabatic by coating the piston crown with partially stabilized zirconia (PSZ). Kirloskar AV I make (3.67 kW) vertical, single cylinder, water cooled diesel engine coupled to an eddy current dynamometer with suitable measuring instrumentation/accessories used for the study. Experiments were initially carried out using pure diesel fuel to provide base line data. The test results were compared based on the performance

  17. 26 CFR 48.6427-9 - Diesel fuel and kerosene; claims by registered ultimate vendors (farming and State use).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 16 2010-04-01 2010-04-01 true Diesel fuel and kerosene; claims by registered... Manufacturers Taxes § 48.6427-9 Diesel fuel and kerosene; claims by registered ultimate vendors (farming and... taxed diesel fuel and kerosene may claim the income tax credits or payments allowed by section 6427(l)(5...

  18. 26 CFR 48.4041-0 - Applicability of regulations relating to diesel fuel after December 31, 1993.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 16 2010-04-01 2010-04-01 true Applicability of regulations relating to diesel... Special Fuels § 48.4041-0 Applicability of regulations relating to diesel fuel after December 31, 1993. Sections 48.4041-3 through 48.4041-17 do not apply to sales or uses of diesel fuel after December 31, 1993...

  19. Emissions From Various Biodiesel Sources Compared to a Range of Diesel Fuels in DPF Equipped Diesel Engines

    SciTech Connect

    Williams, A.; Burton, J.; Christensen, E.; McCormick, R. L.; Tester, J.

    2011-01-01

    The purpose of this study was to measure the impact of various sources of petroleum-based and bio-based diesel fuels on regulated emissions and fuel economy in diesel particulate filter (DPF) equipped diesel engines. Two model year 2008 diesel engines were tested with nine fuels including a certification ultra-low sulfur diesel (ULSD), local ULSD, high aromatic ULSD, low aromatic ULSD, and twenty percent blends of biodiesel derived from algae, camelina, soy, tallow, and yellow grease. Regulated emissions were measured over the heavy duty diesel transient test cycle. Measurements were also made of DPF-out particle size distribution and total particle count from a 13-mode steady state test using a fast mobility particle sizer. Test engines were a 2008 Cummins ISB and a 2008 International Maxx Force 10, both equipped with actively regenerated DPFs. Fuel consumption was roughly 2% greater over the transient test cycle for the B20 blends versus certification ULSD in both engines, consistent with the slightly lower energy content of biodiesel. Unlike studies conducted on older model engines, these engines equipped with diesel oxidation catalysts and DPFs showed small or no measurable fuel effect on the tailpipe emissions of total hydrocarbons (THC), carbon monoxide (CO) and particulate matter (PM). No differences in particle size distribution or total particle count were seen in a comparison of certification ULSD and B20 soy, with the exception of engine idling conditions where B20 produced a small reduction in the number of nucleation mode particles. In the Cummins engine, B20 prepared from algae, camelina, soy, and tallow resulted in an approximately 2.5% increase in nitrogen oxides (NO{sub x}) compared to the base fuel. The International engine demonstrated a higher degree of variability for NO{sub x} emissions, and fuel effects could not be resolved (p > 0.05). The group of petroleum diesel test fuels produced a range of NO{sub x} emissions very similar to that

  20. Solar Reforming of Carbon Dioxide to Produce Diesel Fuel

    SciTech Connect

    Dennis Schuetzle; Robert Schuetzle

    2010-12-31

    This project focused on the demonstration of an innovative technology, referred to as the Sunexus CO2 Solar Reformer, which utilizes waste CO2 as a feedstock for the efficient and economical production of synthetic diesel fuel using solar thermal energy as the primary energy input. The Sunexus technology employs a two stage process for the conversion of CO2 to diesel fuel. A solar reforming system, including a specially designed reactor and proprietary CO2 reforming catalyst, was developed and used to convert captured CO2 rich gas streams into syngas (primarily hydrogen and carbon monoxide) using concentrated solar energy at high conversion efficiencies. The second stage of the system (which has been demonstrated under other funding) involves the direct conversion of the syngas into synthetic diesel fuel using a proprietary catalyst (Terra) previously developed and validated by Pacific Renewable Fuels and Chemicals (PRFC). The overall system energy efficiency for conversion of CO2 to diesel fuel is 74%, due to the use of solar energy. The results herein describe modeling, design, construction, and testing of the Sunexus CO2 Solar Reformer. Extensive parametric testing of the solar reformer and candidate catalysts was conducted and chemical kinetic models were developed. Laboratory testing of the Solar Reformer was successfully completed using various gas mixtures, temperatures, and gas flow rates/space velocities to establish performance metrics which can be employed for the design of commercial plants. A variety of laboratory tests were conducted including dry reforming (CO2 and CH{sub 4}), combination dry/steam reforming (CO2, CH{sub 4} & H{sub 2}O), and tri-reforming (CO2, CH{sub 4}, H{sub 2}O & O{sub 2}). CH{sub 4} and CO2 conversions averaged 95-100% and 50-90% per reformer cycle, respectively, depending upon the temperatures and gas space velocities. No formation of carbon deposits (coking) on the catalyst was observed in any of these tests. A 16 ft. diameter

  1. Copolymeric pour-point depressant for diesel fuel

    SciTech Connect

    Ivanov, V.I.; Dadyko, V.A.; Dushechkin, A.P.; Shapkina, L.N.

    1984-03-01

    This article considers the use of a pour-point depressant consisting of a mixture of ethylene with methyl methacrylate (EMMA) and ethylene with vinyl acetate (EVA) to improve the low-temperature indexes of diesel fuels. It is determined that the greatest effect with respect to limiting filterability temperature from the addition of EMMA is achieved with an EVA content of approximately 0.04%. The use of both a copolymer promoting the formation of a large number of crystallization centers (EMMA) and a copolymer that is a good modifier of the wax crystal surface (EVA) leads to a limitation of the crystal growth and preservation of the fine-crystal structure as the fuel temperature is lowered.

  2. On the Ignition and Combustion Variances of Jet Propellant-8 and Diesel Fuel in Military Diesel Engines

    DTIC Science & Technology

    2008-09-22

    1 ON THE IGNITION AND COMBUSTION VARIANCES OF JET PROPELLANT-8 AND DIESEL FUEL IN MILITARY DIESEL ENGINES Peter Schihl* and Laura Hoogterp... engines for tactical wheeled vehicles due to a variety of reasons related to Environmental Protection Agency (EPA) emission regulations. Such reasons...JP-8. This submission will briefly discuss these practical engine system issues and then present recent applied research that has focused on

  3. Performance and emission characteristics of diesel engine fueled with ethanol-diesel blends in different altitude regions.

    PubMed

    Lei, Jilin; Bi, Yuhua; Shen, Lizhong

    2011-01-01

    In order to investigate the effects ethanol-diesel blends and altitude on the performance and emissions of diesel engine, the comparative experiments were carried out on the bench of turbo-charged diesel engine fueled with pure diesel (as prototype) and ethanol-diesel blends (E10, E15, E20 and E30) under different atmospheric pressures (81 kPa, 90 kPa and 100 kPa). The experimental results indicate that the equivalent brake-specific fuel consumption (BSFC) of ethanol-diesel blends are better than that of diesel under different atmospheric pressures and that the equivalent BSFC gets great improvement with the rise of atmospheric pressure when the atmospheric pressure is lower than 90 kPa. At 81 kPa, both HC and CO emissions rise greatly with the increasing engine speeds and loads and addition of ethanol, while at 90 kPa and 100 kPa their effects on HC and CO emissions are slightest. The changes of atmospheric pressure and mix proportion of ethanol have no obvious effect on NO(x) emissions. Smoke emissions decrease obviously with the increasing percentage of ethanol in blends, especially atmospheric pressure below 90 kPa.

  4. Performance and Emission Characteristics of Diesel Engine Fueled with Ethanol-Diesel Blends in Different Altitude Regions

    PubMed Central

    Lei, Jilin; Bi, Yuhua; Shen, Lizhong

    2011-01-01

    In order to investigate the effects ethanol-diesel blends and altitude on the performance and emissions of diesel engine, the comparative experiments were carried out on the bench of turbo-charged diesel engine fueled with pure diesel (as prototype) and ethanol-diesel blends (E10, E15, E20 and E30) under different atmospheric pressures (81 kPa, 90 kPa and 100 kPa). The experimental results indicate that the equivalent brake-specific fuel consumption (BSFC) of ethanol-diesel blends are better than that of diesel under different atmospheric pressures and that the equivalent BSFC gets great improvement with the rise of atmospheric pressure when the atmospheric pressure is lower than 90 kPa. At 81 kPa, both HC and CO emissions rise greatly with the increasing engine speeds and loads and addition of ethanol, while at 90 kPa and 100 kPa their effects on HC and CO emissions are slightest. The changes of atmospheric pressure and mix proportion of ethanol have no obvious effect on NOx emissions. Smoke emissions decrease obviously with the increasing percentage of ethanol in blends, especially atmospheric pressure below 90 kPa. PMID:21234367

  5. Heat Transfer to Fuel Sprays Injected into Heated Gases

    NASA Technical Reports Server (NTRS)

    Selden, Robert F; Spencer, Robert C

    1938-01-01

    This report presents the results of a study made of the influence of several variables on the pressure decrease accompanying injection of a relatively cool liquid into a heated compressed gas. Indirectly, this pressure decrease and the time rate of change of it are indicative of the total heat transferred as well as the rate of heat transfer between the gas and the injected liquid. Air, nitrogen, and carbon dioxide were used as ambient gases; diesel fuel and benzene were the injected liquids. The gas densities and gas-fuel ratios covered approximately the range used in compression-ignition engines. The gas temperatures ranged from 150 degrees c. to 350 degrees c.

  6. 500 Watt Diesel Fueled TPV Portable Power Supply

    NASA Astrophysics Data System (ADS)

    Horne, W. E.; Morgan, M. D.; Sundaram, V. S.; Butcher, T.

    2003-01-01

    A test-bed 500 watt diesel fueled thermophotovoltaic (TPV) portable power supply is described. The goal of the design is a compact, rugged field portable unit weighing less than 15 pounds without fuel. The conversion efficiency goal is set at 15% fuel energy to electric energy delivered to an external load at 24 volts. A burner/recuperator system has been developed to meet the objectives of high combustion air preheat temperatures with a compact heat exchanger, low excess air operation, and high convective heat transfer rates to the silicon carbide emitter surface. The burner incorporates a air blast atomizer with 100% of the combustion air passing through the nozzle. Designed firing rate of 2900 watts at 0.07 gallons of oil per hour. This incorporates a single air supply dc motor/fan set and avoids the need for a system air compressor. The recuperator consists of three annular, concentric laminar flow passages. Heat from the combustion of the diesel fuel is both radiantly and convectively coupled to the inside wall of a cylindrical silicon carbide emitter. The outer wall of the emitter then radiates blackbody energy at the design temperature of 1400°C. The cylindrical emitter is enclosed in a quartz envelope that separates it from the photovoltaic (PV) cells. Spectral control is accomplished by a resonant mesh IR band-pass filter placed between the emitter and the PV array. The narrow band of energy transmitted by the filter is intercepted and converted to electricity by an array of GaSb PV cells. The array consists of 216 1-cm × 1-cm GaSb cells arranged into series and parallel arrays. An array of heat pipes couple the PV cell arrays to a heat exchanger which is cooled by forced air convection. A brief status of the key TPV technologies is presented followed by data characterizing the performance of the 500 watt TPV system.

  7. Increase in ozone due to the use of biodiesel fuel rather than diesel fuel.

    PubMed

    Thang, Phan Quang; Muto, Yusuke; Maeda, Yasuaki; Trung, Nguyen Quang; Itano, Yasuyuki; Takenaka, Norimichi

    2016-09-01

    The consumption of fuel by vehicles emits nitrogen oxides (NOx) and non-methane hydrocarbons (NMHCs) into the atmosphere, which are important ozone precursors. Ozone is formed as a secondary pollutant via photochemical processes and is not emitted directly into the atmosphere. In this paper, the ozone increase resulting from the use of biodiesel and diesel fuels was investigated, and the different ozone formation trends were experimentally evaluated. Known amounts of exhaust gas from a power generator operated using biodiesel and diesel fuels were added to ambient air. The quality of the ambient air, such as the initial NMHC and NOx concentrations, and the irradiation intensity have an effect on the ozone levels. When 30 cm(3) of biodiesel fuel exhaust gas (BFEG) or diesel fuel exhausted gas (DFEG) was added to 18 dm(3) of ambient air, the highest ratios of ozone increase from BFEG compared with DFEG in Japan and Vietnam were 31.2 and 42.8%, respectively, and the maximum ozone increases resulting from DFEG and BFEG compared with the ambient air in Japan were 17.4 and 26.4 ppb, respectively. The ozone increase resulting from the use of BFEG was large and significant compared to that from DFEG under all experimental conditions. The ozone concentration increased as the amount of added exhaust gas increased. The ozone increase from the Jatropha-BFEG was slightly higher than that from waste cooking oil-BFEG.

  8. AUTOMOTIVE DIESEL MAINTENANCE L. UNIT XII, PART I--MAINTAINING THE FUEL SYSTEM (PART II), CUMMINS DIESEL ENGINE, PART II--UNIT INSTALLATION (ENGINE).

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE FUEL SYSTEM AND THE PROCEDURES FOR DIESEL ENGINE INSTALLATION. TOPICS ARE FUEL FLOW CHARACTERISTICS, PTG FUEL PUMP, PREPARATION FOR INSTALLATION, AND INSTALLING ENGINE. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH…

  9. Performance, durability and low temperature evaluation of sunflower oil as a diesel fuel extender

    SciTech Connect

    Baranescu, R.A.; Lusco, J.J.

    1982-01-01

    The paper presents the results of a research project to evaluate performance and durability of direct injection turbocharged diesel engines using sunflower oil and blends thereof. Alcaline refined sunflower oil and three different blends of sunflower oil and diesel fuel were comparatively tested against No. 2 diesel fuel for: physical and chemical characteristics, fuel injection system performance, short term engine performance, propensity to nozzle deposits buildup, limited durability operation and low temperature starting capability. Results are presented for the various phases of the project and correlations between the fuel characteristics and engine accept-ability are discussed. 19 figures, 2 tables.

  10. Particulate Emissions from the Combustion of Diesel Fuel with a Fuel-Borne Nanoparticulate Cerium Catalyst

    NASA Astrophysics Data System (ADS)

    Conny, J. M.; Willis, R. D.; Weinstein, J. P.; Krantz, T.; King, C.

    2013-12-01

    To address the adverse impacts on health and climate from the use of diesel-fueled vehicles, a number of technological solutions have been developed for reducing diesel soot emissions and to improve fuel economy. One such solution is the use fuel-borne metal oxide catalysts. Of current interest are commercially-available fuel additives consisting of nanoparticulate cerium oxide (CeO2). In response to the possible use of CeO2-containing fuels in on-road vehicles in the U.S., the Environmental Protection Agency is conducting research to address the potential toxicity and environmental effects of particulate CeO2 emitted with diesel soot. In this study, emissions from a diesel-fueled electric generator were size-segregated on polished silicon wafers in a nanoparticle cascade impactor. The diesel fuel contained 10 ppm Ce by weight in the form of crystalline CeO2 nanoparticles 4 nm to 7.5 nm in size. Primary CeO2 nanoparticles were observed in the diesel emissions as well as CeO2 aggregates encompassing a broad range of sizes up to at least 200 nm. We report the characterization of individual particles from the size-resolved samples with focused ion-beam scanning electron microscopy and energy-dispersive x-ray spectroscopy. Results show a dependency between the impactor size range and CeO2 agglomeration state: in the larger size fractions of the impactor (e.g., 560 nm to 1000 nm) CeO2 nanoparticles were predominantly attached to soot particles. In the smaller size fractions of the impactor (e.g., 100 nm to 320 nm), CeO2 aggregates tended to be larger and unattached to soot. The result is important because the deposition of CeO2 nanoparticles attached to soot particles in the lung or on environmental surfaces such as plant tissue will likely present different consequences than the deposition of unagglomerated CeO2 particles. Disclaimer The U.S. Environmental Protection Agency through its Office of Research and Development funded and collaborated in the research described

  11. Isotopic Tracing of Fuel Components in Particulate Matter from a Compression Ignition Engine Fueled with Ethanol-In-Diesel Blends

    SciTech Connect

    Buchholz, B A; Cheng, A S; Dibble, R W

    2001-03-20

    Accelerator Mass Spectrometry (AMs) was used to investigate the relative contribution to diesel engine particulate matter (PM) from the ethanol and diesel fractions of blended fuels. Four test fuel blends and a control diesel fuel baseline were investigated. The test fuels were comprised of {sup 14}C depleted diesel fuel mixed with contemporary grain ethanol ({approx}400 the {sup 14}C concentration of diesel). An emulsifier (Span 85) or cosolvent (butyl alcohol) was used to facilitate mixing. The experimental test engine was a 1993 Cummins B5.9 diesel rated at 175 hp at 2500 rpm. Test fuels were run at steady-state conditions of 1600 rpm and 210 ft-lbs, and PM samples were collected on quartz filters following dilution of engine exhaust in a mini-dilution tunnel. AMs analysis of the filter samples showed that the ethanol contributed less to PM relative to its fraction in the fuel blend. For the emulsified blends, 6.4% and 10.3% contributions to PM were observed for 11.5% and 23.0% ethanol fuels, respectively. For the cosolvent blends, even lower contributions were observed (3.8% and 6.3% contributions to PM for 12.5% and 25.0.% ethanol fuels, respectively). The distribution of the oxygen, not just the quantity, was an important factor in reducing PM emissions.

  12. Performance and emission parameters of single cylinder diesel engine using castor oil bio-diesel blended fuels

    NASA Astrophysics Data System (ADS)

    Rahimi, A.; Ghobadian, B.; Najafi, G.; Jaliliantabar, F.; Mamat, R.

    2015-12-01

    The purpose of this study is to investigate the performance and emission parameters of a CI single cylinder diesel engine operating on biodiesel-diesel blends (B0, B5, B10, B15 and E20: 20% biodiesel and 80% diesel by volume). A reactor was designed, fabricated and evaluated for biodiesel production. The results showed that increasing the biodiesel content in the blend fuel will increase the performance parameters and decrease the emission parameters. Maximum power was detected for B0 at 2650 rpm and maximum torque was belonged to B20 at 1600 rpm. The experimental results revealed that using biodiesel-diesel blended fuels increased the power and torque output of the engine. For biodiesel blends it was found that the specific fuel consumption (sfc) was decreased. B10 had the minimum amount for sfc. The concentration of CO2 and HC emissions in the exhaust pipe were measured and found to be decreased when biodiesel blends were introduced. This was due to the high oxygen percentage in the biodiesel compared to the net diesel fuel. In contrast, the concentration of CO and NOx was found to be increased when biodiesel is introduced.

  13. Breakup mechanisms of electrostatic atomization of corn oil and diesel fuel

    NASA Astrophysics Data System (ADS)

    Malkawi, G.; Yarin, A. L.; Mashayek, F.

    2010-09-01

    High-viscosity organic oils may be considered as an alternative to the ordinary diesel fuel. These organic oils and the diesel fuel are all Newtonian liquids; however, viscosity values of the organic oils are more than 20 times higher than that of the diesel fuel. In the present work, the electrostatic atomization of corn oil jets is studied and compared to the electrostatic atomization of diesel fuel jets. The experimental data revealed that in addition to the varicose breakup of straight jets, bending modes set in and grow in conjunction with the varicose undulations. Bending instability, kindred to the aerodynamically-driven bending instability of high-speed liquid jets moving in air, and to the electrically-driven bending instability of polymer jets in electrospinning, is significantly more pronounced in the case of the highly-viscous corn oil jets than in diesel jets. The experimental results are interpreted using the theory of bending instability developed previously for electrospinning.

  14. Alternatives to Diesel Fuel in California - Fuel Cycle Energy and Emission Effects of Possible Replacements Due to the TAC Diesel Particulate Decision

    SciTech Connect

    Christopher L. Saraicks; Donald M. Rote; Frank Stodolsky; James J. Eberhardt

    2000-05-01

    Limitations on petroleum-based diesel fuel in California could occur pursuant to the 1998 declaration by California's Air Resources Board (CARB) that the particulate matter component of diesel exhaust is a carcinogen, therefore a toxic air contaminant (TAC) subject to the state's Proposition 65. It is the declared intention of CARB not to ban or restrict diesel fuel, per se, at this time. Assuming no total ban, Argonne National Laboratory (ANL) explored two feasible ''mid-course'' strategies, each of which results in some degree of (conventional) diesel displacement. In the first case, with substantial displacement of compression ignition by spark ignition engines, diesel fuel is assumed admissible for ignition assistance as a pilot fuel in natural gas (NG)-powered heavy-duty vehicles. Gasoline demand in California increases by 32.2 million liters (8.5 million gallons) per day overall, about 21 percent above projected 2010 baseline demand. Natural gas demand increases by 13.6 million diesel liter (3.6 million gallon) equivalents per day, about 7 percent above projected (total) consumption level. In the second case, ressionignition engines utilize substitutes for petroleum-based diesel having similar ignition and performance properties. For each case we estimated localized air emission plus generalized greenhouse gas and energy changes. Fuel replacement by di-methyl ether yields the greatest overall reduction in NOx emissions, though all scenarios bring about PM10 reductions relative to the 2010 baseline, with greatest reductions from the first case described above and the least from fuel replacement by Fischer-Tropsch synthetic diesel. Economic implications of vehicle and engine replacement were not formally evaluated.

  15. 26 CFR 48.4041-5 - Sales of diesel and special motor fuels and fuel for use in aircraft; rules of general application.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 16 2010-04-01 2010-04-01 true Sales of diesel and special motor fuels and fuel for use in aircraft; rules of general application. 48.4041-5 Section 48.4041-5 Internal Revenue... AND RETAILERS EXCISE TAXES Special Fuels § 48.4041-5 Sales of diesel and special motor fuels and fuel...

  16. Influence of diesel fuel sulfur on nanoparticle emissions from city buses.

    PubMed

    Ristovski, Z D; Jayaratne, E R; Lim, M; Ayoko, G A; Morawska, L

    2006-02-15

    Particle emissions from twelve buses, operating alternately on low sulfur (LS; 500 ppm) and ultralow sulfur (ULS; 50 ppm) diesel fuel, were monitored. The buses were 1-19 years old and had no after-treatment devices fitted. Measurements were carried out at four steady-state operational modes on a chassis dynamometer using a mini dilution tunnel (PM mass measurement) and a Dekati ejector diluter as a secondary diluter (SMPS particle number). The mean particle number emission rate (s(-1)) of the buses, in the size range 8-400 nm, using ULS diesel was 31% to 59% lower than the rate using LS diesel in all four modes. The fractional reduction was highest in the newest buses and decreased with mileage upto about 500,000 km, after which no further decrease was apparent. However, the mean total suspended particle (TSP) mass emission rate did not show a systematic difference between the two fuel types. When the fuel was changed from LS to ULS diesel, the reduction in particle number was mainly in the nanoparticle size range. Over all operational modes, 58% of the particles were smaller than 50 nm with LS fuel as opposed to just 45% with ULS fuel, suggesting that sulfur in diesel fuel was playing a major role in the formation of nanoparticles. The greatest influence of the fuel sulfur content was observed at the highest engine load, where 74% of the particles were smaller than 50 nm with LS diesel compared to 43% with ULS diesel.

  17. 77 FR 75868 - Regulation of Fuels and Fuel Additives: Modifications to the Transmix Provisions Under the Diesel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-26

    ...EPA is amending the requirements under EPA's diesel sulfur program related to the sulfur content of locomotive and marine (LM) diesel fuel produced by transmix processors and pipeline facilities. These amendments will reinstate the ability of locomotive and marine diesel fuel produced from transmix by transmix processors and pipeline operators to meet a maximum 500 parts per million (ppm) sulfur standard outside of the Northeast Mid-Atlantic Area and Alaska and expand this ability to within the Northeast Mid-Atlantic Area provided that: the fuel is used in older technology locomotive and marine engines that do not require 15 ppm sulfur diesel fuel, and the fuel is kept segregated from other fuel. These amendments will provide significant regulatory relief for transmix processors and pipeline operators to allow the petroleum distribution system to function efficiently while continuing to transition the market to virtually all ultra-low sulfur diesel fuel (ULSD, i.e. 15 ppm sulfur diesel fuel) and the environmental benefits it provides.

  18. Measurement of fuel spray vaporisation by laser techniques

    NASA Technical Reports Server (NTRS)

    Yule, A. J.; Seng, C. A.; Felton, P. G.; Ungut, A.; Chigier, N. A.

    1980-01-01

    Comparison of fuel spray structures in heated and in cold environments is made by using a new laser tomographic technique and laser anemometry. The tomography technique is shown to give accurate and rapid 'point' measurements of droplet sizes and concentrations. Experimental results show acceleration of droplets to the local gas velocity, preferential vaporisation of the smallest droplets and the dispersion of droplets by the turbulence.

  19. Vacuum plasma spray applications on liquid fuel rocket engines

    NASA Technical Reports Server (NTRS)

    Mckechnie, T. N.; Zimmerman, F. R.; Bryant, M. A.

    1992-01-01

    The vacuum plasma spray process (VPS) has been developed by NASA and Rocketdyne for a variety of applications on liquid fuel rocket engines, including the Space Shuttle Main Engine. These applications encompass thermal barrier coatings which are thermal shock resistant for turbopump blades and nozzles; bond coatings for cryogenic titanium components; wear resistant coatings and materials; high conductivity copper, NaRloy-Z, combustion chamber liners, and structural nickel base material, Inconel 718, for nozzle and combustion chamber support jackets.

  20. Vacuum plasma spray applications on liquid fuel rocket engines

    NASA Astrophysics Data System (ADS)

    McKechnie, T. N.; Zimmerman, F. R.; Bryant, M. A.

    1992-07-01

    The vacuum plasma spray process (VPS) has been developed by NASA and Rocketdyne for a variety of applications on liquid fuel rocket engines, including the Space Shuttle Main Engine. These applications encompass thermal barrier coatings which are thermal shock resistant for turbopump blades and nozzles; bond coatings for cryogenic titanium components; wear resistant coatings and materials; high conductivity copper, NaRloy-Z, combustion chamber liners, and structural nickel base material, Inconel 718, for nozzle and combustion chamber support jackets.

  1. Coal-liquid fuel/diesel engine operating compatibility. Final report

    SciTech Connect

    Hoffman, J.G.; Martin, F.W.

    1983-09-01

    This work is intended to assess the possibilities of using coal-derived liquids (CDL) represented by a specific type (SRC II) and shale-derived distillate fuel in blends of petroleum-derived fuels in medium-speed, high-output, heavy-duty diesel engines. Conclusions are as follows: (1) Blends of solvent refined coal and diesel fuel may be handled safely by experienced diesel engine mechanics. (2) A serious corrosion problem was found in the fuel pump parts when operating with solvent refined coal blended with petroleum. It is expected that a metallurgy change can overcome this problem. (3) Proper selection of materials for the fuel system is required to permit handling coal-derived liquid fuels. (4) A medium speed, high horsepower, 4-cycle diesel engine can be operated on blends of solvent refined coal and petroleum without serious consequences save the fuel system corrosion previously mentioned. This is based on a single, short durability test. (5) As represented by the product evaluated, 100% shale-derived distillate fuel may be used in a medium speed, high horsepower, 4-cycle diesel engine without significant consequences. (6) The shale product evaluated may be blended with petroleum distillate or petroleum residual materials and used as a fuel for medium speed, high horsepower, 4-cycle diesel engines. 7 references, 24 figures, 20 tables.

  2. Experimental investigation on the characteristics of supersonic fuel spray and configurations of induced shock waves

    PubMed Central

    Wang, Yong; Yu, Yu-song; Li, Guo-xiu; Jia, Tao-ming

    2017-01-01

    The macro characteristics and configurations of induced shock waves of the supersonic sprays are investigated by experimental methods. Visualization study of spray shape is carried out with the high-speed camera. The macro characteristics including spray tip penetration, velocity of spray tip and spray angle are analyzed. The configurations of shock waves are investigated by Schlieren technique. For supersonic sprays, the concept of spray front angle is presented. Effects of Mach number of spray on the spray front angle are investigated. The results show that the shape of spray tip is similar to blunt body when fuel spray is at transonic region. If spray entered the supersonic region, the oblique shock waves are induced instead of normal shock wave. With the velocity of spray increasing, the spray front angle and shock wave angle are increased. The tip region of the supersonic fuel spray is commonly formed a cone. Mean droplet diameter of fuel spray is measured using Malvern’s Spraytec. Then the mean droplet diameter results are compared with three popular empirical models (Hiroyasu’s, Varde’s and Merrigton’s model). It is found that the Merrigton’s model shows a relative good correlation between models and experimental results. Finally, exponent of injection velocity in the Merrigton’s model is fitted with experimental results. PMID:28054555

  3. Experimental investigation on the characteristics of supersonic fuel spray and configurations of induced shock waves

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Yu, Yu-Song; Li, Guo-Xiu; Jia, Tao-Ming

    2017-01-01

    The macro characteristics and configurations of induced shock waves of the supersonic sprays are investigated by experimental methods. Visualization study of spray shape is carried out with the high-speed camera. The macro characteristics including spray tip penetration, velocity of spray tip and spray angle are analyzed. The configurations of shock waves are investigated by Schlieren technique. For supersonic sprays, the concept of spray front angle is presented. Effects of Mach number of spray on the spray front angle are investigated. The results show that the shape of spray tip is similar to blunt body when fuel spray is at transonic region. If spray entered the supersonic region, the oblique shock waves are induced instead of normal shock wave. With the velocity of spray increasing, the spray front angle and shock wave angle are increased. The tip region of the supersonic fuel spray is commonly formed a cone. Mean droplet diameter of fuel spray is measured using Malvern’s Spraytec. Then the mean droplet diameter results are compared with three popular empirical models (Hiroyasu’s, Varde’s and Merrigton’s model). It is found that the Merrigton’s model shows a relative good correlation between models and experimental results. Finally, exponent of injection velocity in the Merrigton’s model is fitted with experimental results.

  4. Will Aerosol Hygroscopicity Change with Biodiesel, Renewable Diesel Fuels and Emission Control Technologies?

    PubMed

    Vu, Diep; Short, Daniel; Karavalakis, Georgios; Durbin, Thomas D; Asa-Awuku, Akua

    2017-02-07

    The use of biodiesel and renewable diesel fuels in compression ignition engines and aftertreatment technologies may affect vehicle exhaust emissions. In this study two 2012 light-duty vehicles equipped with direct injection diesel engines, diesel oxidation catalyst (DOC), diesel particulate filter (DPF), and selective catalytic reduction (SCR) were tested on a chassis dynamometer. One vehicle was tested over the Federal Test Procedure (FTP) cycle on seven biodiesel and renewable diesel fuel blends. Both vehicles were exercised over double Environmental Protection Agency (EPA) Highway fuel economy test (HWFET) cycles on ultralow sulfur diesel (ULSD) and a soy-based biodiesel blend to investigate the aerosol hygroscopicity during the regeneration of the DPF. Overall, the apparent hygroscopicity of emissions during nonregeneration events is consistently low (κ < 0.1) for all fuels over the FTP cycle. Aerosol emitted during filter regeneration is significantly more CCN active and hygroscopic; average κ values range from 0.242 to 0.439 and are as high as 0.843. Regardless of fuel, the current classification of "fresh" tailpipe emissions as nonhygroscopic remains true during nonregeneration operation. However, aftertreatment technologies such as DPF, will produce significantly more hygroscopic particles during regeneration. To our knowledge, this is the first study to show a significant enhancement of hygroscopic materials emitted during DPF regeneration of on-road diesel vehicles. As such, the contribution of regeneration emissions from a growing fleet of diesel vehicles will be important.

  5. Spray deposition of Nafion membranes: Electrode-supported fuel cells

    NASA Astrophysics Data System (ADS)

    Bayer, Thomas; Pham, Hung Cuong; Sasaki, Kazunari; Lyth, Stephen Matthew

    2016-09-01

    Fuel cells are a key technology for the successful transition towards a hydrogen society. In order to accelerate fuel cell commercialization, improvements in performance are required. Generally, polymer electrolyte membrane fuel cells (PEFCs) are membrane-supported; the electrocatalyst layer is sprayed onto both sides of the membrane, and sandwiched between carbon-based gas diffusion layers (GDLs). In this work we redesign the membrane electrode assembly (MEA) and fabricate an electrode-supported PEFC. First the electrocatalyst layer is sprayed onto the GDL, and then Nafion dispersion is sprayed over the top of this to form a thin membrane. This method has the advantage of simplifying the fabrication process, allowing the fabrication of extremely thin electrolyte layers (down to ∼10 μm in this case), and reducing the amount of ionomer required in the cell. Electrode-supported PEFCs operate at significantly increased power density compared to conventional membrane-supported PEFCs, with a maximum of 581 mW/cm2 at 80 °C (atmospheric pressure, air at the cathode). Impedance spectroscopy confirmed that the origin of the improved performance was an 80% reduction in the membrane resistance due the thinner Nafion layer. This novel fabrication method is a step towards cheaper, thinner, fully printable PEFCs with high power density and efficiency.

  6. Fuels for Advanced Combustion Engines Research Diesel Fuels: Analysis of Physical and Chemical Properties

    SciTech Connect

    Gallant, Tom; Franz, Jim; Alnajjar, Mikhail; Storey, John Morse; Lewis Sr, Samuel Arthur; Sluder, Scott; Cannella, William C; Fairbridge, Craig; Hager, Darcy; Dettman, Heather; Luecke, Jon; Ratcliff, Matthew A.; Zigler, Brad

    2009-01-01

    The CRC Fuels for Advanced Combustion Engines working group has worked to identify a matrix of research diesel fuels for use in advanced combustion research applications. Nine fuels were specified and formulated to investigate the effects of cetane number aromatic content and 90% distillation fraction. Standard ASTM analyses were performed on the fuels as well as GC/MS and /u1H//u1/u3C NMR analyses and thermodynamic characterizations. Details of the actual results of the fuel formulations compared with the design values are presented, as well as results from standard analyses, such as heating value, viscosity and density. Cetane number characterizations were accomplished by using both the engine method and the Ignition Quality Tester (IQT/sT) apparatus.

  7. Characterization of polycyclic aromatic hydrocarbons from the diesel engine by adding light cycle oil to premium diesel fuel.

    PubMed

    Lin, Yuan-Chung; Lee, Wen-Jhy; Chen, Chung-Bang

    2006-06-01

    Diesel fuels governed by U.S. regulations are based on the index of the total aromatic contents. Three diesel fuels, containing various fractions of light cycle oil (LCO) and various sulfur, total polyaromatic, and total aromatic contents, were used in a heavy-duty diesel engine (HDDE) under transient cycle test to assess the feasibility of using current indices in managing the emissions of polycyclic aromatic hydrocarbons (PAHs) from HDDE. The mean sulfur content in LCO is 20.8 times as much as that of premium diesel fuel (PDF). The mean total polyaromatic content in LCO is 28.7 times as much as that of PDF, and the mean total aromatic content in LCO is 2.53 times as much as that of PDF. The total polyaromatic hydrocarbon emission factors in the exhaust from the diesel engine, as determined using PDF L3.5 (3.5% LCO and 96.5% PDF), L7.5 (7.5% LCO and 92.5% PDF), and L15 (15% LCO and 85% PDF) were 14.3, 25.8, 44, and 101 mg L(-1), respectively. The total benzo(a)pyrene equivalent (BaPeq) emission factors in the exhaust from PDF, L3.5, L7.5, and L15 were 0.0402, 0.121, 0.219, and 0.548 mg L(-1), respectively. Results indicated that using L3.5 instead of PDF will result in an 80.4% and a 201% increase of emission for total PAHs and total BaPeq, respectively. The relationships between the total polyaromatic hydrocarbon emission factor and the two emission control indices, including fuel polyaromatic content and fuel aromatic content, suggest that both indices could be used feasibly to regulate total PAH emissions. These results strongly suggest that LCO used in the traveling diesel vehicles significantly influences PAH emissions.

  8. Fuel Property, Emission Test, and Operability Results from a Fleet of Class 6 Vehicles Operating on Gas-to-Liquid Fuel and Catalyzed Diesel Particle Filters

    SciTech Connect

    Alleman, T. L.; Eudy, L.; Miyasato, M.; Oshinuga, A.; Allison, S.; Corcoran, T.; Chatterjee, S.; Jacobs, T.; Cherrillo, R. A.; Clark, R.; Virrels, I.; Nine, R.; Wayne, S.; Lansing, R.

    2005-11-01

    A fleet of six 2001 International Class 6 trucks operating in southern California was selected for an operability and emissions study using gas-to-liquid (GTL) fuel and catalyzed diesel particle filters (CDPF). Three vehicles were fueled with CARB specification diesel fuel and no emission control devices (current technology), and three vehicles were fueled with GTL fuel and retrofit with Johnson Matthey's CCRT diesel particulate filter. No engine modifications were made.

  9. Spray sealing: A breakthrough in integral fuel tank sealing technology

    NASA Astrophysics Data System (ADS)

    Richardson, Martin D.; Zadarnowski, J. H.

    1989-11-01

    In a continuing effort to increase readiness, a new approach to sealing integral fuel tanks is being developed. The technique seals potential leak sources by spraying elastomeric materials inside the tank cavity. Laboratory evaluations project an increase in aircraft supportability and reliability, an improved maintainability, decreasing acquisition and life cycle costs. Increased usable fuel volume and lower weight than conventional bladders improve performance. Concept feasibility was demonstrated on sub-scale aircraft fuel tanks. Materials were selected by testing sprayable elastomers in a fuel tank environment. Chemical stability, mechanical properties, and dynamic durability of the elastomer are being evaluated at the laboratory level and in sub-scale and full scale aircraft component fatigue tests. The self sealing capability of sprayable materials is also under development. Ballistic tests show an improved aircraft survivability, due in part to the elastomer's mechanical properties and its ability to damp vibrations. New application equipment, system removal, and repair methods are being investigated.

  10. A Comparison of Fuel Sprays from Several Types of Injection Nozzles

    NASA Technical Reports Server (NTRS)

    Lee, Dana W

    1936-01-01

    This report presents the tests results of a series of tests made of the sprays from 14 fuel injection nozzles of 9 different types, the sprays being injected into air at atmospheric density and at 6 and 14 times atmospheric density. High-speed spark photographs of the sprays from each nozzle at each air density were taken at the rate of 2,000 per second, and from them were obtained the dimensions of the sprays and the rates of spray-tip penetration. The sprays were also injected against plasticine targets placed at different distances from the nozzles, and the impressions made in the plasticine were used as an indication of the distribution of the fuel within the spray. Cross-sectional sketches of the different types of sprays are given showing the relative sizes of the spray cores and envelopes. The characteristics of the sprays are compared and discussed with respect to their application to various types of engines.

  11. Comparison of Acute Health Effects From Exposures to Diesel and Biodiesel Fuel Emissions

    PubMed Central

    Mehus, Aaron A.; Reed, Rustin J.; Lee, Vivien S. T.; Littau, Sally R.; Hu, Chengcheng; Lutz, Eric A.

    2015-01-01

    Objective: To investigate the comparative acute health effects associated with exposures to diesel and 75% biodiesel/25% diesel (B75) blend fuel emissions. Methods: We analyzed multiple health endpoints in 48 healthy adults before and after exposures to diesel and B75 emissions in an underground mine setting—lung function, lung and systemic inflammation, novel biomarkers of exposure, and oxidative stress were assessed. Results: B75 reduced respirable diesel particulate matter by 20%. Lung function declined significantly more after exposure to diesel emissions. Lung inflammatory cells along with sputum and plasma inflammatory mediators increased significantly to similar levels with both exposures. Urinary 8-hydroxydeoxyguanosine, a marker of oxidative stress, was not significantly changed after either exposure. Conclusions: Use of B75 lowered respirable diesel particulate matter exposure and some associated acute health effects, although lung and systemic inflammation were not reduced compared with diesel use. PMID:26147538

  12. Comparison of Acute Health Effects From Exposures to Diesel and Biodiesel Fuel Emissions.

    PubMed

    Mehus, Aaron A; Reed, Rustin J; Lee, Vivien S T; Littau, Sally R; Hu, Chengcheng; Lutz, Eric A; Burgess, Jefferey L

    2015-07-01

    To investigate the comparative acute health effects associated with exposures to diesel and 75% biodiesel/25% diesel (B75) blend fuel emissions. We analyzed multiple health endpoints in 48 healthy adults before and after exposures to diesel and B75 emissions in an underground mine setting-lung function, lung and systemic inflammation, novel biomarkers of exposure, and oxidative stress were assessed. B75 reduced respirable diesel particulate matter by 20%. Lung function declined significantly more after exposure to diesel emissions. Lung inflammatory cells along with sputum and plasma inflammatory mediators increased significantly to similar levels with both exposures. Urinary 8-hydroxydeoxyguanosine, a marker of oxidative stress, was not significantly changed after either exposure. Use of B75 lowered respirable diesel particulate matter exposure and some associated acute health effects, although lung and systemic inflammation were not reduced compared with diesel use.

  13. Adaptive neuro-fuzzy inference system (ANFIS) to predict CI engine parameters fueled with nano-particles additive to diesel fuel

    NASA Astrophysics Data System (ADS)

    Ghanbari, M.; Najafi, G.; Ghobadian, B.; Mamat, R.; Noor, M. M.; Moosavian, A.

    2015-12-01

    This paper studies the use of adaptive neuro-fuzzy inference system (ANFIS) to predict the performance parameters and exhaust emissions of a diesel engine operating on nanodiesel blended fuels. In order to predict the engine parameters, the whole experimental data were randomly divided into training and testing data. For ANFIS modelling, Gaussian curve membership function (gaussmf) and 200 training epochs (iteration) were found to be optimum choices for training process. The results demonstrate that ANFIS is capable of predicting the diesel engine performance and emissions. In the experimental step, Carbon nano tubes (CNT) (40, 80 and 120 ppm) and nano silver particles (40, 80 and 120 ppm) with nanostructure were prepared and added as additive to the diesel fuel. Six cylinders, four-stroke diesel engine was fuelled with these new blended fuels and operated at different engine speeds. Experimental test results indicated the fact that adding nano particles to diesel fuel, increased diesel engine power and torque output. For nano-diesel it was found that the brake specific fuel consumption (bsfc) was decreased compared to the net diesel fuel. The results proved that with increase of nano particles concentrations (from 40 ppm to 120 ppm) in diesel fuel, CO2 emission increased. CO emission in diesel fuel with nano-particles was lower significantly compared to pure diesel fuel. UHC emission with silver nano-diesel blended fuel decreased while with fuels that contains CNT nano particles increased. The trend of NOx emission was inverse compared to the UHC emission. With adding nano particles to the blended fuels, NOx increased compared to the net diesel fuel. The tests revealed that silver & CNT nano particles can be used as additive in diesel fuel to improve combustion of the fuel and reduce the exhaust emissions significantly.

  14. Some physiochemical tests of sunflower oil and no. 2 diesel oil as fuels

    SciTech Connect

    Ramdeen, P.; Backer, L.F.; Kaufman, K.R.; Kucera, H.L.; Moilanen, C.W.

    1982-05-01

    The suitability of sunflower oil as a fuel for diesel engines was evaluated by determining the physiochemical properties of sunflower oil, No. 2 diesel and blends of both. This evaluation was accomplished by determining the American Petroleum Institute (API) gravity, cetane rating, heat of combustion, kinematic viscosity, pour point, cloud point, and water content of these fuels using methods specified by the American Society of Testing Materials (ASTM) for diesel fuels. These tests for petroleum products are designed to standardize results so comparisons can be made from one laboratory to another.

  15. Double-crop sunflowers for agricultural diesel fuel

    SciTech Connect

    Glenn, T.L.; Keener, H.M.; Henry, J.E.; Triplett, G.B. Jr.

    1982-01-01

    Agronomic and engineering information on double-crop sunflower production, processing and utilization is presented. This and other available information is used to assess feasibility and future directions in the use of sunflower oil for agricultural diesel fuel in the US Eastern Corn Belt area. Double-cropping yields varied considerably due to precipitation extremes, plus different soil characteristics and management practices. Average expeller oil yields of 0.344 kg of oil per kg of moisture free seed were achieved with a feed rate of 125 kg per hour for a range in seed and processing conditions. Results from feasibility analyses suggest that sunflower oil can be grown in Ohio and processed in a community cooperative plant with a favorable energy ratio and marginal profitability. 3 figures, 4 tables.

  16. Rheological properties of peanut oil-diesel fuel blends

    SciTech Connect

    Goodrum, J.W.; Law, S.E.

    1982-07-01

    Basic physical properties of peanut oil-diesel fuel blends were experimentally determined to help establish suitability for use in compression-ignition engines. For volumetric proportions of peanut oil ranging in 20 percent increments from 0 percent to 100 percent, the continuously varying properties at 21/sup 0/C were found to range as follows: heating value - 45.8 to 40.3 MJ/kg; specific gravity - 0.848 to 0.915; surface tension - 28.3 to 35.6 mN/m; and kinematic viscosity - 3.8 to 7.0 cSt. Dynamic viscosity measured as a function of shear rate over a 0/sup 0/C to 80/sup 0/C temperature range indicated nonNewtonian flow properties at shear rates less than 3/s.

  17. THE PERFORMANCE OF SMDS DIESEL FUEL MANUFACTURED BY SHELL'S GtL TECHNOLOGY

    SciTech Connect

    Clark, Richard H.

    2000-08-20

    The Royal Dutch/Shell Group's (Shell's) Gas to Liquids (GtL) technology, better known as the Shell Middle Distillate Synthesis (SMDS) process, converts natural gas into diesel and other products via a modem improved Fisher-Tropsch synthesis. The diesel cut has very good cetane quality, low density, and virtually no sulphur and aromatics; such properties make it valuable as a diesel fuel with lower emissions than conventional automotive gas oil.

  18. Ultra-Clean Diesel Fuel: U.S. Production and Distribution Capability

    SciTech Connect

    Hadder, G.R.

    2001-02-15

    Diesel engines have potential for use in a large number of future vehicles in the US. However, to achieve this potential, proponents of diesel engine technologies must solve diesel's pollution problems, including objectionable levels of emissions of particulates and oxides of nitrogen. To meet emissions reduction goals, diesel fuel quality improvements could enable diesel engines with advanced aftertreatment systems to achieve the necessary emissions performance. The diesel fuel would most likely have to be reformulated to be as clean as low sulfur gasoline. This report examines the small- and large-market extremes for introduction of ultra-clean diesel fuel in the US and concludes that petroleum refinery and distribution systems could produce adequate low sulfur blendstocks to satisfy small markets for low sulfur (30 parts per million) light duty diesel fuel, and deliver that fuel to retail consumers with only modest changes. Initially, there could be poor economic returns on under-utilized infrastructure investments. Subsequent growth in the diesel fuel market could be inconsistent with U.S. refinery configurations and economics. As diesel fuel volumes grow, the manufacturing cost may increase, depending upon how hydrodesulfurization technologies develop, whether significantly greater volumes of the diesel pool have to be desulfurized, to what degree other properties like aromatic levels have to be changed, and whether competitive fuel production technologies become economic. Low sulfur (10 parts per million) and low aromatics (10 volume percent) diesel fuel for the total market could require desulfurization, dearomatization, and hydrogen production investments amounting to a third of current refinery market value. The refinery capital cost component alone would be 3 cents per gallon of diesel fuel. Outside of refineries, the gas-to-liquids (GTL) plant investment cost would be 3 to 6 cents per gallon. With total projected investments of $11.8 billion (6 to 9

  19. Isolation and Identification of Nitrogen Species in Jet Fuel and Diesel Fuel

    SciTech Connect

    Link, D.D.; Baltrus, J.P.; Zandhuis, P.H.

    2007-05-01

    Many performance characteristics of liquid fuels--including lubricity, the ability to swell seal materials, storage stability, and thermal stability--are determined, to a large degree, by the trace polar species that the fuel contains. Because the polar fraction comprises such a small portion of the fuel matrix, it is difficult to detect these species without first isolating them from the bulk fuel. This manuscript describes the extension of previous work that established a protocol for the isolation and identification of oxygenates in jet fuels. The current work shows that a liquid-liquid extraction using methanol, followed by an isolation step using high-performance liquid chromatography (HPLC) with a silica column, can successfully separate polar nitrogen-containing species from the fuel, in addition to separating oxygenates. The analytical protocol further isolates the polar target species using a polar capillary gas chromatography (GC) column and a nontraditional oven heating program. The method is amenable to milliliter quantitites of fuel samples and produces a matrix that can be analyzed directly, using typical GC methods. The method was evaluated using spiked surrogate fuels, as well as actual petroleum-derived jet fuel samples. Furthermore, it is shown that the method also can be extended for use on diesel fuels.

  20. Isolation and Identification of Nitrogen Species in Jet Fuel and Diesel Fuel

    SciTech Connect

    Link, D.D.; Baltrus, J.P.; Zandhuis, P.H.

    2007-05-01

    Many performance characteristics of liquid fuels-including lubricity, the ability to swell seal materials, storage stability, and thermal stability-are determined, to a large degree, by the trace polar species that the fuel contains. Because the polar fraction comprises such a small portion of the fuel matrix, it is difficult to detect these species without first isolating them from the bulk fuel. This manuscript describes the extension of previous work that established a protocol for the isolation and identification of oxygenates in jet fuels. The current work shows that a liquid-liquid extraction using methanol, followed by an isolation step using high-performance liquid chromatography (HPLC) with a silica column, can successfully separate polar nitrogen-containing species from the fuel, in addition to separating oxygenates. The analytical protocol further isolates the polar target species using a polar capillary gas chromatography (GC) column and a nontraditional oven heating program. The method is amenable to milliliter quantitites of fuel samples and produces a matrix that can be analyzed directly, using typical GC methods. The method was evaluated using spiked surrogate fuels, as well as actual petroleum-derived jet fuel samples. Furthermore, it is shown that the method also can be extended for use on diesel fuels.

  1. One dimensional modeling of a diesel-CNG dual fuel engine

    NASA Astrophysics Data System (ADS)

    Azman, Putera Adam; Fawzi, Mas; Ismail, Muammar Mukhsin; Osman, Shahrul Azmir

    2017-04-01

    Some of the previous studies have shown that the use of compressed natural gas (CNG) in diesel engines potentially produce engine performance improvement and exhaust gas emission reduction, especially nitrogen oxides, unburned hydrocarbons, and carbon dioxide. On the other hand, there are other researchers who claimed that the use of CNG increases exhaust gas emissions, particularly nitrogen oxides. In this study, a one-dimensional model of a diesel-CNG dual fuel engine was made based on a 4-cylinder 2.5L common rail direct injection diesel engine. The software used is GT-Power, and it was used to analyze the engine performance and exhaust gas emissions of several diesel-CNG dual fuel blend ratios, i.e. 100:0, 90:10, 80:20, 70:30, 60:40 and 50:50. The effect of 100%, 75%, 50% engine loads on the exhaust gas emissions were also studied. The result shows that all diesel-CNG fuel blends produces higher brake torque and brake power at engine speed of 2000-3000 rpm compared with 100% diesel. The 50:50 diesel-CNG blend produces the highest brake torque and brake power, but also has the highest brake specific fuel consumption. As a higher percentage of CNG added to the dual fuel blend, unburned hydrocarbons and carbon monoxide emission increased while carbon dioxide emission decreased. The nitrogen oxides emission concentration is generally unaffected by any change of the dual fuel ratio.

  2. Measurements of Fuel Distribution Within Sprays for Fuel-Injection Engines

    NASA Technical Reports Server (NTRS)

    Lee, Dana W

    1937-01-01

    Two methods were used to measure fuel distribution within sprays from several types of fuel-injection nozzles. A small tube inserted through the wall of an air tight chamber into which the sprays were injected could be moved about inside the chamber. When the pressure was raised to obtain air densities of 6 and 14 atmospheres, some air was forced through the tube and the fuel that was carried with it was separated by absorbent cotton and weighed. Cross sections of sprays from plain, pintle, multiple-orifice, impinging-jets, centrifugal, lip, slit, and annular-orifice nozzles were investigated, at distances of 1, 3, 5, and 7 inches from the nozzles.

  3. Use of Water-Fuel Mixture in Diesel Engines at Fishing Vessels

    NASA Astrophysics Data System (ADS)

    Klyus, Oleg; Bezyukov, O.

    2017-06-01

    The paper presents the laboratory test results determining physical parameters of fuel mixture made up of petroleum diesel oil, rapeseed oil methyl esters (up to 20%) and water (up to 2.5%). The obtained parameters prove that adding bio-components (rapeseed oil methyl esters) and water to fuel does not result in deterioration of their physical and chemical properties and are comparable to base fuel parameters, namely petroleum diesel oil. The mixture was a subject of bench testing with the use of a self-ignition engine by means of pre-catalytic fuel treatment. The treatment process consisted in fuel - catalytically active material direct contact on the atomizer body. At the comparable operational parameters for the engine, the obtained exhaust gases opacity was lower up to 60% due to the preliminary fuel mixture treatment in relation to the factory-made fuel injection system using petroleum diesel oil.

  4. Characterization of particle size distribution from diesel engines fueled with palm-biodiesel blends and paraffinic fuel blends

    NASA Astrophysics Data System (ADS)

    Lin, Yuan-Chung; Lee, Chia-Fon; Fang, Tiegang

    Biodiesels are promoted as alternative fuels and their applications in diesel engines have been investigated by many researchers. However, the particle size distribution emitted from heavy-duty diesel engines fueled with palm-biodiesel blended with premium diesel fuel and paraffinic fuel blended with palm-biodiesel has seldom been addressed. Thus, five test fuels were used in this work to study the particle size distribution: D100 (premium diesel fuel), B100 (100% palm-biodiesel), B20 (20 vol% palm-biodiesel+80 vol% D100), BP9505 (95 vol% paraffinic fuel+5 vol% palm-biodiesel) and BP8020 (80 vol% paraffinic fuel+20 vol% palm-biodiesel). A Micro-Orifice Uniform Deposit Impactor (MOUDI) equipped with aluminum filters was used to collect size-resolved samples. Experimental results indicated that palm-biodiesel blends and paraffinic fuel blends could improve combustion efficiency in diesel engines, but pure palm-biodiesel could cause incomplete combustion. Adding palm-biodiesel to diesel fuel would slightly increase particles with diameter <0.31 μm but paraffinic fuel blends could decrease particles with diameter <1 μm. The mass median diameter of overall particles (MMD o) and σg,o are 0.439 μm and 3.88 for D100; 0.380 μm and 3.24 for B20; 0.465 μm and 4.22 for B100; 1.40 μm and 4.92 for BP9505; 1.46 μm and 2.25 for BP8020. There are more particles with low aerodynamic diameters (diameter <0.31 μm) in the exhaust of D100, B20 and B100 fuels. On the other hand, a greater fraction of particulate matter of BP9505 and BP8020 existed in coarse particles (diameter: 2.5-10 μm). Energy efficiency also increases significantly by 12.3-15.1% with the introduction of paraffinic fuel blends into the engine. Nevertheless, paraffinic fuel blends also reduce the emission of particulate matters by 36.0-38.4%. Carbon monoxide was decreased by 36.8-48.5%. Total hydrocarbon is 39.6-41.7% less than diesel fuel combustion. Nitrogen oxides emission is about 5% lower for paraffinic

  5. Near-Road Modeling and Measurement of Particles Generated by Nanoparticle Diesel Fuel Additive Use

    EPA Science Inventory

    Cerium oxide (ceria) nanoparticles (n-Ce) are used as a fuel-borne catalyst in diesel engines to reduce particulate emissions, yet the environmental and human health impacts of the ceria-doped diesel exhaust aerosols are not well understood. To bridge the gap between emission mea...

  6. 40 CFR 80.29 - Controls and prohibitions on diesel fuel quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... provided in 40 CFR 69.51, no person, including but not limited to, refiners, importers, distributors... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Controls and prohibitions on diesel... motor vehicles, unless the diesel fuel: (1) Has a sulfur percentage, by weight, no greater than...

  7. 40 CFR 80.29 - Controls and prohibitions on diesel fuel quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... provided in 40 CFR 69.51, no person, including but not limited to, refiners, importers, distributors... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Controls and prohibitions on diesel... motor vehicles, unless the diesel fuel: (1) Has a sulfur percentage, by weight, no greater than...

  8. Near-Road Modeling and Measurement of Particles Generated by Nanoparticle Diesel Fuel Additive Use

    EPA Science Inventory

    Cerium oxide (ceria) nanoparticles (n-Ce) are used as a fuel-borne catalyst in diesel engines to reduce particulate emissions, yet the environmental and human health impacts of the ceria-doped diesel exhaust aerosols are not well understood. To bridge the gap between emission mea...

  9. The Effects of Fuel and Cylinder Gas Densities on the Characteristics of Fuel Sprays for Oil Engines

    NASA Technical Reports Server (NTRS)

    Joachim, W F; Beardsley, Edward G

    1928-01-01

    This investigation was conducted as a part of a general research on fuel-injection engines for aircraft. The purpose of the investigation was to determine the effects of fuel and cylinder gas densities with several characteristics of fuel sprays for oil engines. The start, growth, and cut-off of single fuel sprays produced by automatic injection valves were recorded on photographic film by means of special high-speed motion-picture apparatus. This equipment, which has been described in previous reports, is capable of taking twenty-five consecutive pictures of the moving spray at the rate of 4,000 per second. The penetrations of the fuel sprays increased and the cone angles and relative distributions decreased with increase in the specific gravity of the fuel. The density of the gas into which the fuel sprays were injected controlled their penetration. This was the only characteristic of the chamber gas that had a measurable effect upon the fuel sprays. Application of fuel-spray penetration data to the case of an engine, in which the pressure is rising during injection, indicated that fuel sprays may penetrate considerably farther than when injected into a gas at a density equal to that of the gas in an engine cylinder at top center.

  10. Biodiesel: The use of vegetable oils and their derivatives as alternative diesel fuels

    SciTech Connect

    Knothe, G.; Bagby, M.O.

    1996-10-01

    Vegetable oils and their derivatives (especially methyl esters), commonly referred to as {open_quotes}biodiesel{close_quotes}, are prominent candidates as alternative diesel fuels. They have advanced from being purely experimental fuels to initial stages of commercialization. They are technically competitive with or offer technical advantages compared to conventional diesel fuel. Besides being a renewable resource, biodiesel reduces most emissions while engine performance and fuel economy are nearly identical compared to conventional fuels. Several problems, however, remain, which include economics, combustion, some emissions, lube oil contamination, and low-temperature properties. An overview on all the mentioned aspects of biodiesel will be presented.

  11. Green fuel utilization for diesel engine, combustion and emission analysis fuelled with CNSO diesel blends with Diethyl ether as additive

    NASA Astrophysics Data System (ADS)

    Kumar, Ashok; Rajan, K.; Senthil Kumar, K. R.; Maiyappan, K.; Rasheed, Usama Tariq

    2017-05-01

    The experimental investigation is conducted to evaluate the effects by using Diethyl ether (DEE) as an additive. The Cashew Nut Shell Oil diesel blends (CDB) are tested in a 4-stroke single cylinder DI unmodified diesel engine, rated power is 4.4 kW at a speed of 1500 rpm. The effect of combustion analysis of test fuels on net heat release rate, cylinder pressure, engine power, BSFC, BTE, EGT were observed by the performance tests. The combustion and emission characteristics of a diesel engine with an additive of high cetane number is utilized with CDB and thus investigated. The influence of blends on CO, CO2, HC, NOx and smoke opacity is investigated by emission tests. Initially, the experiment was conducted with different blends of CDB diesel blends like 10%, 20%, & 30% by volume basis in a diesel engine. Among this blends B20 shows reasonable result and heat dissipation rate at full load conditions. The BTE of B20 is 27.52% whereas base diesel fuel is 29.73%. Addition of the DEE by 5%, 10% and 15% by volume basis with B20 which is a base fuel has resulted with improved estimates. The result shows that at full load conditions BTE of B20D10 is 28.96% which is close to the base fuel i.e. B20. The emissions like CO2 shows reducing trends while HC emission rises with increase in CNSO blends. The HC in diesel corresponds to 30ppm and in B20 it is 34ppm, but addition of DEE shows a decreasing trend as in B20D5 has 29ppm and B20D15 has 23ppm respectively. NOx also shows increasing trends with CNSO blend, after addition of DEE it shows declining trend. The NOx for diesel, B20, B30, B20D5, B20D10 and B20D15 emits 1195, 1450, 1511, 1327, 1373 and 1200ppm respectively. The smoke emission is 3.96, 3.38, 3.15 FSN of B20, B20D15 and diesel respectively.

  12. Evaluation of Exxon Donor Solvent (EDS) coal-derived liquid as utility diesel fuel. Final report

    SciTech Connect

    Heater, W.R.; Froh, T.W.; Ariga, S.; Baker, Q.A.; Piispanen, W.; Webb, P.; Trayser, D.; Keane, W.J.

    1983-10-01

    The program consisted of three phases: (I) characterization of the physical and chemical properties of EDS, (II) evaluation of EDS in a laboratory medium-speed diesel engine, and (III) evaluation of EDS in a low-speed diesel engine operating at a utility. The characteristics of high aromatic content and low cetane number that were found during Phase I made it unlikely that EDS could be used as a direct substitute for diesel fuel without engine modification to provide ignition assistance. Phase II was conducted on a 12-cylinder General Electric Company 7FDL diesel engine. Blends of up to 30% EDS and 70% 0.2 diesel fuel (DF-2) were successfully consumed. Dual fuel tests were also conducted on a single cylinder by injecting EDS through the existing engine fuel oil system and injecting DF-2 through an auxiliary nozzle as an ignition source. Acceptable operation was achieved using 5 to 10% pilot oil heat input. Phase III was conducted on a 16-cylinder Cooper-Bessemer LSV-16-GDT diesel engine at an EUC plant in Easton, Maryland. Blends of up to 66.7% EDS and 33.3% DF-2 were successfully consumed. Dual fuel tests were also conducted on a single cylinder by injecting EDS through the existing fuel oil system and using a natural-gas-fueled precombustion chamber as an ignition source. Acceptable operation was achieved using 3 to 6% pilot gas heat input. The program confirmed that it is feasible to consume significant proportions of EDS in a diesel engine, but more development is needed before EDS can be considered a viable alternative liquid fuel for diesel engines, and an industrial hygiene program is needed to assure safe handling of the fuel.

  13. ENVIRONMENTAL TECHNOLOGY VERIFICATION, TEST REPORT OF MOBILE SOURCE EMISSIONS CONTROL DEVICES/CLEAN DIESEL TECHNOLOGIES FUEL BORNE CATALYST WITH CLEANAIR SYSTEM'S DIESEL OXIDATION CATALYST

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the Fuel-Borne Catalyst with CleanAir System's Diesel Oxidation Catalyst manufactured by Clean Diesel Technologies, Inc. The technology is a fuel-borne catalyst used in ultra low sulfur d...

  14. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT XXIII, I--MAINTAINING THE FUEL SYSTEM, PART II--CATERPILLAR DIESEL ENGINE, II--UNDERSTANDING STEERING SYSTEMS.

    ERIC Educational Resources Information Center

    Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE FUEL INJECTION SYSTEM AND THE STEERING SYSTEM OF DIESEL POWERED VEHICLES. TOPICS ARE FUEL INJECTION SECTION, AND DESCRIPTION OF THE STEERING SYSTEM. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING…

  15. ENVIRONMENTAL TECHNOLOGY VERIFICATION, TEST REPORT OF MOBILE SOURCE EMISSIONS CONTROL DEVICES/CLEAN DIESEL TECHNOLOGIES FUEL BORNE CATALYST WITH CLEANAIR SYSTEM'S DIESEL OXIDATION CATALYST

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the Fuel-Borne Catalyst with CleanAir System's Diesel Oxidation Catalyst manufactured by Clean Diesel Technologies, Inc. The technology is a fuel-borne catalyst used in ultra low sulfur d...

  16. Measured effect of wind generation on the fuel consumption of an isolated diesel power system

    NASA Technical Reports Server (NTRS)

    Stiller, P. H.; Scott, G. W.; Shaltens, R. K.

    1983-01-01

    The Block Island Power Company (BIPCO), on Block Island, Rhode Island, operates an isolated electric power system consisting of diesel generation and an experimental wind turbine. The 150-kW wind turbine, designated MOD-OA by the U.S. Department of Energy is typically operated in parallel with two diesel generators to serve an average winter load of 350 kW. Wind generation serves up to 60 percent of the system demand depending on wind speed and total system load. Results of diesel fuel consumption measurements are given for the diesel units operated in parallel with the wind turbine and again without the wind turbine. The fuel consumption data are used to calculate the amount of fuel displaced by wind energy. Results indicate that the wind turbine displaced 25,700 lbs. of the diesel fuel during the test period, representing a calculated reduction in fuel consumption of 6.7 percent while generating 11 percent of the total electric energy. The amount of displaced fuel depends on operating conditions and system load. It is also shown that diesel engine throttle activity resulting from wind gusts which rapidly change the wind turbine output do not significantly influence fuel consumption.

  17. Measured effect of wind generation on the fuel consumption of an isolated diesel power system

    NASA Astrophysics Data System (ADS)

    Stiller, P. H.; Scott, G. W.; Shaltens, R. K.

    1983-06-01

    The Block Island Power Company (BIPCO), on Block Island, Rhode Island, operates an isolated electric power system consisting of diesel generation and an experimental wind turbine. The 150-kW wind turbine, designated MOD-OA by the U.S. Department of Energy is typically operated in parallel with two diesel generators to serve an average winter load of 350 kW. Wind generation serves up to 60 percent of the system demand depending on wind speed and total system load. Results of diesel fuel consumption measurements are given for the diesel units operated in parallel with the wind turbine and again without the wind turbine. The fuel consumption data are used to calculate the amount of fuel displaced by wind energy. Results indicate that the wind turbine displaced 25,700 lbs. of the diesel fuel during the test period, representing a calculated reduction in fuel consumption of 6.7 percent while generating 11 percent of the total electric energy. The amount of displaced fuel depends on operating conditions and system load. It is also shown that diesel engine throttle activity resulting from wind gusts which rapidly change the wind turbine output do not significantly influence fuel consumption.

  18. Measured effect of wind generation on the fuel consumption of an isolated diesel power system

    NASA Technical Reports Server (NTRS)

    Stiller, P. H.; Scott, G. W.; Shaltens, R. K.

    1983-01-01

    The Block Island Power Company (BIPCO), on Block Island, Rhode Island, operates an isolated electric power system consisting of diesel generation and an experimental wind turbine. The 150-kW wind turbine, designated MOD-OA by the U.S. Department of Energy is typically operated in parallel with two diesel generators to serve an average winter load of 350 kW. Wind generation serves up to 60 percent of the system demand depending on wind speed and total system load. Results of diesel fuel consumption measurements are given for the diesel units operated in parallel with the wind turbine and again without the wind turbine. The fuel consumption data are used to calculate the amount of fuel displaced by wind energy. Results indicate that the wind turbine displaced 25,700 lbs. of the diesel fuel during the test period, representing a calculated reduction in fuel consumption of 6.7 percent while generating 11 percent of the total electric energy. The amount of displaced fuel depends on operating conditions and system load. It is also shown that diesel engine throttle activity resulting from wind gusts which rapidly change the wind turbine output do not significantly influence fuel consumption.

  19. Characteristics of SME biodiesel-fueled diesel particle emissions and the kinetics of oxidation.

    PubMed

    Jung, Heejung; Kittelson, David B; Zachariah, Michael R

    2006-08-15

    Biodiesel is one of the most promising alternative diesel fuels. As diesel emission regulations have become more stringent, the diesel particulate filter (DPF) has become an essential part of the aftertreatment system. Knowledge of kinetics of exhaust particle oxidation for alternative diesel fuels is useful in estimating the change in regeneration behavior of a DPF with such fuels. This study examines the characteristics of diesel particulate emissions as well as kinetics of particle oxidation using a 1996 John Deere T04045TF250 off-highway engine and 100% soy methyl ester (SME) biodiesel (B100) as fuel. Compared to standard D2 fuel, this B100 reduced particle size, number, and volume in the accumulation mode where most of the particle mass is found. At 75% load, number decreased by 38%, DGN decreased from 80 to 62 nm, and volume decreased by 82%. Part of this decrease is likely associated with the fact that the particles were more easily oxidized. Arrhenius parameters for the biodiesel fuel showed a 2-3times greater frequency factor and approximately 6 times higher oxidation rate compared to regular diesel fuel in the range of 700-825 degrees C. The faster oxidation kinetics should facilitate regeneration when used with a DPF.

  20. 40 CFR 80.511 - What are the per-gallon and marker requirements that apply to NRLM diesel fuel, ECA marine fuel...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false What are the per-gallon and marker requirements that apply to NRLM diesel fuel, ECA marine fuel, and heating oil downstream of the refiner or... marker requirements that apply to NRLM diesel fuel, ECA marine fuel, and heating oil downstream of...